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1
Introduction

Abstract: Th e aims, objectives and structure of the book are 
set out. Th e level of mathematics required is stated, and it 
is emphasised that key algebraic proofs are relegated to the 
end-notes of each chapter, where key references are also to 
be found. Th e provision in the accompanying website of 
both the data used in examples and of Econometric Views 
exercises for replicating the examples is discussed. A brief 
word on the notation used for cross-referencing is also 
provided.



 Analysing Economic Data: A Concise Introduction

1.1 About the book

Aft er nearly 40 years lecturing, teaching and examining various courses 
in quantitative techniques, probability, statistics and econometrics in 
departments of economics and business schools in the UK, I thought 
that the time was right to attempt to write a text book on analysing 
economic data that I would wish to use for an introductory course 
on the subject. Th is book is the result and, as a consequence, contains 
material that I think any student of economics and fi nance should be 
acquainted with if they are to have any understanding of a real, func-
tioning economy rather than having just a working knowledge of a 
set of academically constructed models of some abstract aspects of an 
artifi cial economy.1

Aft er an introductory chapter on basic descriptive statistics, 
attention is then given to issues such as how growth rates and index 
numbers might be computed, how moving averages can be used to 
decompose time series into various components such as the trend and 
seasonal, and to the various ways of defl ating nominal measures to 
obtain real measures. Th e core techniques of correlation and regres-
sion are then introduced, again as descriptive methods of assessing 
the strength or otherwise of associations between sets of data, as well 
as some key ideas in regression that are essential to understanding the 
behaviour of economic variables. Th e basic framework of statistical 
inference is then developed from the fundamentals of probability 
and sampling, thus enabling inferences to be drawn from correlation 
and regression results. Th is leads naturally to a discussion of classical 
linear regression, where the role of inference and hypothesis testing 
is placed centrepiece, refl ecting my view that with modern computer 
soft ware the computational aspects of regression analysis should be 
relatively downgraded and the interpretational aspects emphasised: if 
economic theory gives us anything it is hypotheses that require detailed 
examination and testing. Th e regression model is then extended to an 
analysis of the various breakdowns of the classical assumptions that 
pervade the analysis of economic data and essentially make up the 
subject of econometrics. A fi nal chapter introduces some basic time 
series concepts and models that are fi nding increased importance in 
economics and fi nance.
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1.2 Mathematical level, focus and empirical exercises

Basic algebra and calculus are all that is required by way of mathematical 
background. Several proofs are relegated to the end-notes of each chap-
ter: these notes also include key references, historical perspective and 
suggestions for further reading that should provide both a wider and 
a deeper understanding of the concepts. Th roughout the book, many 
examples are used to illustrate methods and techniques. Th ese typically 
involve actual data, oft en from the UK, as this is where my experience 
and interests lie. Th e content is thus suitable for undergraduate and some 
postgraduate students of economics, fi nance and related subjects as an 
initial foray into handling economic data from an integrated economic 
and statistical perspective. It will also provide a statistical foundation, if 
such is required, for any of the Palgrave Texts in Econometrics.

Empirical exercises accompany most chapters. Th ese are based on the 
soft ware package Econometric Views (or EViews), now the industry standard 
for econometric soft ware, and illustrate how all the examples used in the 
book may be calculated and how they may be extended. Th e data is avail-
able in EViews workfi les available for download at http://www.palgrave.
com/economics/millsaed/index.asp. It is assumed that readers already have 
a basic working knowledge of EViews or are prepared to obtain this knowl-
edge via the extensive online help facility accompanying the package.2

A brief word on notation: as can be seen, chapter sections are denoted 
x.y, where x is the chapter and y is the section. Th is enables the latter to 
be cross-referenced as §x.y.

Notes

Many of the articles contained in Diane Coyle (editor),  What’s the Use of 
Economics? Teaching the Dismal Science aft er the Crisis (London Publishing 
Partnership, 2012) provide a similar perspective to the views off ered 
here. In particular, Andrew Lo’s statements that ‘economists wish to 
explain 99 of all observable phenomena using three simple laws, like 
the physicists do, but ... have to settle, instead, for ninety-nine laws that 
explain only 3’ and that economists should ‘place much greater emphasis 
on empirical verifi cation of theoretical predictions and show much less 
attachment to theories rejected by the data’ (Chapter 7, ‘What post-crisis 
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changes does the economics discipline need? Beware of theory envy’, 
p. 42) both resonate. 

   So, too, do John Kay’s comments concerning deductive and inductive 
reasoning. ‘Deductive reasoning of any kind necessarily draws on 
mathematics and formal logic; inductive reasoning is based on experience 
and above all careful observation ... . Much scientifi c progress has been 
inductive: empirical regularities are observed in advance of any clear 
understanding of the mechanisms that give rise to them. ... Economists 
who assert that the only valid prescriptions in economic policy are 
logical deductions from complete axiomatic systems [nevertheless] 
take prescriptions from doctors who oft en know little more about these 
medicines than that they appear to treat the disease’ (Chapter 8, ‘Th e map is 
not the territory: an essay on the state of economics’, p. 53). 

   Th e importance of good data analysis to the ‘real’ world of economics 
and society is illustrated using many contemporary examples by Michael 
Blastland and Andrew Dilnot, Th e Tiger that Isn’t (London, Profi le Books, 
2007). Th e theme of high quality data analysis linked with innovative 
economic theorising is the basis of Steven D. Levitt and Stephen J. Dubner, 
Freakonomics: A Rogue Economist Explores the Hidden Side of Everything 
(London, Allen Lane, 2005) and its sequel, Superfreakonomics (London, Allen 
Lane, 2009). Tim Harford’s Th e Logic of Life (London, Little Brown, 2008) is 
written in a similar vein, and also listen to his and Blastland’s BBC Radio 4 
programme More or Less. 

   Th e importance of statistical analysis to medicine and health is the subject 
of Stephen Senn’s Dicing with Death: Chance, Risk and Health (Cambridge 
University Press, 2003), while an excellent debunking of many popular 
myths and fears using statistical analysis is Dan Gardener, Risk: Th e Science 
of Politics and Fear (London, Virgin Books, 2008). Th is theme is also taken 
up by John Brignell in Sorry, Wrong Number! Th e Abuse of Measurement 
(Brignell Associates, 2000) and Th e Epidemiologists: Have Th ey Got Scares for 
You! (Brignell Associates, 2004). Two thought-provoking books, particularly 
in light of the fi nancial crisis of the late 2000s, are those by Nassir Nicholas 
Taleb, Fooled by Randomness: Th e Hidden Role of Chance in the Markets and 
in Life (London, Texere, 2001) and Th e Black Swan: Th e Impact of the Highly 
Improbable (London, Penguin, 2007), although these require an appreciation 
of the concepts of probability and probability distributions, which are 
discussed in Chapters 7–11.
EViews 7  (Version 7.1) is used throughout: see EViews 7 (Quantitative Micro 
Soft ware, LLC, Irvine CA: www.eviews.com).





2
Presenting and 
Summarising Data

Abstract: Th e distinction between cross-sectional and 
time series data is made, and examples of world income 
inequality and infl ation in the UK are introduced to 
illustrate this distinction. Summary statistics for location, 
dispersion and asymmetry are developed, along with 
a composite pictorial representation of these measures, 
known as a boxplot. Scatterplots to graphically represent 
bivariate relationships between economic variables are 
introduced by way of an example investigating the long-run 
relationship between UK infl ation and interest rates.
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2.1 Data types

Economic data is either cross-sectional or arrives in the form of time series 
(although it is possible to combine the two types to form a panel data 
set, which must be analysed using methods that are too advanced to be 
covered in this book).1 While both types oft en lend themselves to stand-
ard forms of statistical modelling, they each have unique features that 
require their own special techniques of data analysis.

Cross-sectional data: income inequality

Table 2.1 shows a standard measure of income – purchasing power parity 
(PPP) adjusted real per capita gross domestic product (GDP, measured 
in US dollars) – for a wide cross-section of countries in 2009, and thus 
provides information on relative global living standards.2

Even though the data has been listed in ascending order of income, 
and while such an enumeration provides all the information that is avail-
able, it is still quite diffi  cult to get any overall ‘feel’ for certain crucial 
features of the data, such as the average income and the extent of devia-
tions about that average, which would give some indication of income 
inequality across the world.

Figure 2.1 encapsulates the complete data set in the form of a histogram, 
which is a means of representing the underlying frequency distribution of 
the data.

Here the income values have been classifi ed into groups (known as classes) 
of width $2500: thus the left -hand bar shows that there are 52  countries with 
incomes in the range $0 to $2500; the next bar shows there are 26 countries 
with incomes in the range $2500 to $5000; etc. Th e two extreme values 
have been identifi ed (Luxembourg ($84,572) and Qatar ($159,144): extreme 
values are oft en known as outliers) and the positions of the UK ($33,410) 
and the US ($41,147) have also been identifi ed out of interest.

An important feature of cross-sectional data is that, typically, the 
ordering of the data is irrelevant; Table 2.1 could just as well have listed 
the countries in descending order of income, or even alphabetically, 
rather than in ascending order.

Time series data: infl ation in the UK

Table 2.2 lists the rate of UK infl ation, as a percentage, for every year 
from 1751 up to 2011.3
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Table 2.1 Real per capita GDP, in PPP adjusted dollars, for 2009

  Zimbabwe   Congo, Republic of 
  Congo, Democratic 

Republic of   Kyrgyzstan 
  Burundi   Pakistan 
  Liberia   Uzbekistan 
  Somalia   Yemen 
  Niger   Moldova 
  Eritrea   Laos 
  Central African Republic   Papua New Guinea 
  Malawi   Philippines 
 Ethiopia   Vietnam 
 Togo   Mongolia 
 Madagascar   India 
 Mozambique   Morocco 
 Guinea-Bissau   Micronesia, Federal States 
 Guinea   Swaziland 
 Sierra Leone   Honduras 
 Burkina Faso   Paraguay 
 Comoros   Cape Verde 
 Mali   Bolivia 
 Rwanda   Syria 
 Benin   Sri Lanka 
 Uganda   Indonesia 
 Timor-Leste   Kiribati 
 Afghanistan   Fiji 
 Tanzania   Guyana 
 Kenya   Maldives 
 Nepal   Bhutan 
 Ghana   Jordan 
 Chad   Iraq 
 Lesotho   Namibia 
 Cote d’Ivoire   Angola 
 Bangladesh   Egypt 
 Haiti   Georgia 
 Gambia   Armenia 
 Senegal   Algeria 
 Mauritania   Ecuador 
 Sao Tome and Principe   Guatemala 
 Zambia   Tunisia 
 Cambodia   El Salvador 
 Cameroon   Ukraine 
 Tajikistan   Vanuatu 
 Solomon Islands   Samoa 
 Nigeria   Dominica 
 Djibouti   Albania 
 Sudan   Turkmenistan 
 Nicaragua   Marshall Islands 

Continued
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Table 2.1 Continued

 Bosnia and Herzegovina   Libya 
 Peru   Portugal 
 Montenegro   Slovak Republic 
 St. Vincent & Grenadines   Oman 
 China   Saudi Arabia 
 Colombia   Malta 
 South Africa   Equatorial Guinea 

 Macedonia   Barbados 
 Th ailand   Czech Republic 
 Tonga   Bahrain 
 Belize   Puerto Rica 
 Serbia   Seychelles 
 Jamaica   Slovenia 
 Botswana   South Korea 
 Venezuela   Israel 
 Brazil   Greece 
 Mauritius   Spain 
 Azerbaijan   Italy 
 Romania   New Zealand 
 Dominican Republic   Bahamas 
 Turkey   Taiwan 
 Panama   France 
 Gabon   Trinidad & Tobago 
 Iran   Japan 
 Suriname   Finland 
 Bulgaria   Germany 
 Uruguay   Ireland 
 Costa Rica   United Kingdom 
 Malaysia   Denmark 
 Cuba   Belgium 
 Mexico   Sweden 
 Kazakhstan   Canada 
 Argentina   Hong Kong 
 Chile   Iceland 
 Grenada   Austria 
 St. Kitts & Nevis   Switzerland 
 Latvia   Netherlands 
 Belarus   United States 
 Lebanon   Australia 
 St. Lucia   Brunei 
 Lithuania   Kuwait 
 Russia   Singapore 
 Palau   Norway 
 Antigua & Barbuda   Macao 
 Croatia   Bermuda 
 Estonia   United Arab Emirates 
 Poland   Luxembourg 
 Hungary   Qatar 
 Cyprus     



Presenting and Summarising Data

We may thus interpret the data as a time series of UK infl ation in 
which, unlike the previous example, the ordering of the data is para-
mount: it would make no sense to list the data in, for example, ascending 
order as it would lose the ‘calendar characteristics’ of infl ation entirely.

Figure 2.2 thus presents a time series plot of infl ation, whose features 
we shall discuss in detail in subsequent examples.

Constructing a histogram is still valid, and oft en useful, for a time 
series, and this is shown in Figure 2.3.

Here the data has been classifi ed into classes of width 2.5, and we see 
that there are two outliers: a maximum of 36 in 1800 and a minimum 
of −23 two years later in 1802; the Napoleonic wars obviously caused 
great volatility in the British economy. Th e general tendency, however, is 
for infl ation to cluster in the range 0 to 5.

2.2 Summary statistics: measures of location 
(central tendency)

Various summary statistics also accompany the two histograms. Th e mean is 
defi ned in the following way. If there are N data values, which are denoted 
x1, x2, ..., xN, then we defi ne the (sample) mean, x  (read as ‘x-bar’), as

Figure 2.1 Histogram of the per capita GDP data shown in Table 2.1
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Table 2.2 UK infl ation, per annum, 1751–2011

 –.  .  .  –.  –.  .
 .  .  .  –.  .  .
 –.  –.  –.  –.  –.  .
 .  –.  –.  –.  –.  .
 –.  .  –.  –.  –.  .
 .  .  .  .  –.  .
 .  .  .  .  –.  .
 .  –.  .  .  .  .
 –.  –.  .  .  .  .
 –.  .  –.  .  .  .
 –.  .  –.  –.  .  .
 .  –.  –.  –.  .  .
 .  –.  –.  –.  .  .
 .  .  .  –.  .  .
 .  .  .  .  .  .
 .  .  .  .  .  .
 .  –.  .  .  .  .
 –.  .  .  .  .  .
 –.  .  –.  .  .  .
 .  –.  –.  .  .  .
 .  –.  –.  .  .  .
 .  –.  .  .  .  .
 .  .  .  .  .  .
 .  .  –.  .  .  .
 –.  –.  –.  .  .  .
 –.  –.  –.  .  .  .
 .  –.  .  .  .  .
 .  –.  .  .  .  .
 –.  .  .  .  .  .
 –.  .  –.  .  .  .
 .  .  –.  –.  .  .
 .  –.  .  .  .  .
 .  –.  .  .  .  .
 .  –.  .  .  .  .
 –.  –.  .  .  .  .
 .  –.  –.  .  .  .
 .  .  –.  .  .  .
 .  –.  .  .  .  .
 –.  –.  –.  –.  .  –.
 .  –.  –.  –.  .  .
 .  .  –.  –.  .  .
 .  .  .  –.  .
 .  .  –.  .  .
 .  .  .  –.  .
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Figure 2.2 Time series plot of UK infl ation, 1751–2011
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Figure 2.3  Histogram of UK infl ation

0

10

20

30

40

50

60

70

–20 –10 0 10 20 30

1802 1800

N
um

be
r o

f y
ea

rs

% per annum

Observations 261
Mean 2.25
Median 1.59
Maximum 36.4
Minimum –23.2
Std. Dev. 6.99
Skewness 0.7



Analysing Economic Data: A Concise Introduction 

1 2 Nx x x
x

N
…

  
(2.1)

Th us, if we have N  =   observations, say x  =  , x  =  ,  x  =  , x  =    and 
x  =  , then the sample mean is

1 5 9 6 2 23
4.6

5 5
x

  

(2.2)

For the data in Table 2.1, N = 189. With such a ‘large’ sample size, the 
notation used in equations (2.1) and (2.2) becomes unwieldy, so we 
replace it with summation notation, in which the sum  x + x + xN is 
replaced by

1

N
ii
x

which is to be read as ‘the sum of the xi from i =  to i = N’: a typical data 
value being referred to as xi. Where there is no confusion, the limits of 
the summation and the identifying subscript are oft en omitted, to give 
∑ x (read as ‘sigma x’). Th us

1

N
ii
x x

x
N N

As we see from Figure 2.1,
189

1 13389
189

ii
x

x

so that mean income is $13389. Typically, no data value will exactly equal 
the mean: the closest to it here is St. Lucia, with an income of $13,079.

While the sample mean is a very popular and simple way to calculate 
a measure of location or central tendency, it can be overly infl uenced 
by extreme values. Suppose that, in our N  =   example, the third 
observation had been 59 rather than 9. Th e sample mean would then 
have been calculated as (/)  =  ., which is over twice as large as 
the second highest value of 6: x  has thus been ‘dragged’ towards the 
outlier and is no longer representative of the central tendency of the 
data.
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Looking at the income histogram in Figure 2.1, we have already 
identifi ed two outliers, so that the sample mean may be being unduly 
infl uenced by these values. An alternative measure of central tendency is 
the median. Th is is calculated in the following way. Th e data is fi rst sorted 
in ascending order (as in Table 2.1) to give the sequence of observations

1 2, , , Nx x x…   where  1 2 Nx x x…

that is, the smallest observation is denoted x[] (this is Zimbabwe with an 
income of just $143), the second smallest x[] (the Democratic Republic of 
Congo, $231) and so on, with the largest value thus denoted x[] (Qatar, 
which has already been identifi ed as having an income of $159,144). If N 
is odd, then the median is given by

1
2 2
Nmedx x

that is, it is the value for which as many observations lie below it in size 
as lie above it: it is the ‘middle’ value. Th us for our N  =   example

1 1 1x x  2 5 2x x  3 2 5x x  4 4 6x x  5 3 9x x

and

3 5medx x

Note that even if x  =  59, the median would be unaff ected because the 
ordering of the observations remains the same as before. Consequently, 
the median should be less aff ected by outliers.

If N is even, the median formula needs to be modifi ed to

1
2medx d

2 2

x xN NxNx N
1

N N
11

2 2
1

2 2
N N

that is, to the average of the two ‘middle’ values.
But for the data in Table 2.1, N  =  189 is odd, so that

95 7318medx x

Th us the median income is $7318, which is the income of Montenegro, 
some way below the mean income of $13,389.

When we have time series data, we typically denote the values as 
x, x, ..., xT, where T is the length of the series. With a typical value being 
denoted as xt, the mean is defi ned accordingly as
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1

T
tt
x

x
T

and the median (for odd T) as

1
2 2

med Tx x

Note that the median calculation does not preserve the natural time 
ordering of the data. Given the above notation, it is easy to see why 
cross-sectional data is sometimes referred to as ‘little-i’ data, and time 
series as ‘little-t’ data.

For the infl ation data shown in Table 2.2, the mean is 2.25 and the 
median is 1.59, so that they are much closer together than in the income 
data. A reason for this will be discussed shortly.

2.3 Summary statistics: measures of dispersion 
(variation)

While having information about the central tendency of a data set is gen-
erally useful, we usually also want a measure of how the observations are 
dispersed around that central value. Given our sorted data x[], x[], ..., x[N]

(we use little-i notation for convenience), a simple measure of dispersion 
is the range, which is defi ned as the diff erence between the maximum 
and minimum values of the data set. Since the minimum is 1x  and the 
maximum is x[N], we have

1Nrange x x

Although clearly a very simple fi gure (it can readily be calculated from 
the information provided in Figures 2.1 and 2.3, for example), it suff ers 
from being completely reliant on just the two extreme values of the data. 
An improvement is the inter-quartile range. Th e quartiles are those values 
that ‘split’ the ordered data into four equally sized parts. For N odd, the 
fi rst and third quartiles are

31
4 4
NQ x

    
3 13
4 4
NQ x

For example, with N  =  , Q  =  x[] and Q  =  x[], it should be easy to 
see that the second quartile, Q, is, in fact, the median, here x[]. Th e 
inter-quartile range is then defi ned as
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3 1IQR Q Q

Th e IQR thus defi nes the limits of the middle half (50) of the distribu-
tion. If we have an even number of observations, the formulae for the 
quartiles need to be modifi ed in an analogous way to that of the median. 
For our income inequality data, the quartiles are Q  =  x[]  =  $ 
(Kyrgyzstan) and Q  =  x[]  =  $ (Libya). Th us

19233 2300 16933IQR

On its own, the IQR is no more than a summary measure, but it could be 
used to compare the dispersion of, say, two income distributions if they 
were both measured in the same currency units: the distribution with 
the larger IQR would exhibit the greater inequality.

A more useful measure of dispersion is the sample variance, which 
makes use of all the available data. It is defi ned as the average of the 
‘squared deviations about the mean’,

2

2 1

1

N
ii
x x

s
N

Note that the divisor in s is N– rather than N, as it would be for a ‘true’ 
average. Th e reason for this is quite technical, and will be discussed in 
§11.1. One diffi  culty with the variance is that it is measured in units that 
are the square of the units that the data are measured in. Th us, for our 
income data the variance will be in ‘squared dollars’, which are both very 
diffi  cult to interpret and, in this case, lead to a very large numerical value 
for the variance. To get back to the original units we may take the square 
root of the variance, thus defi ning the sample standard deviation (denoted 
‘Std. Dev.’ in Figures 2.1 and 2.3),

2

1

1

N
ii
x x

s
N

so that for the income data s  =  , while for the infl ation data s  =  .. 
Taken on their own, standard deviations are also of limited use. However, 
when related to the sample mean, they become a very important statistic 
for measuring a variety of features of the data. Th ese ideas will be devel-
oped in due course, but a simple way of bringing together the sample 
mean and standard deviation is to defi ne the coeffi  cient of variation as the 
ratio of s to x : CV s x .
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For the income data, CV  =  /   =  , whereas for the infl a-
tion data, CV  =  ./ .  =  .. Th us for the income data the standard 
deviation is 1.3 times the mean, but for the infl ation data the ratio is over 
3: in relative terms infl ation in the UK displays much more variability 
than world income (with some fairly obvious qualifi ers!).

2.4 Summary statistics: the Boxplot

We have introduced a variety of concepts and measures for summarising 
data sets. We now present a neat pictorial representation that incor-
porates many of these measures in one display: the boxplot. Figure 2.4 
shows a boxplot for the income inequality data.

Income is measured on the vertical axis. Th e rectangular box stretches 
(vertically) from the fi rst to the third quartile and thus has a height equal 
to the inter-quartile range, covering the central half of the distribution. 
Th e mean and median are indicated by a dot and a horizontal line 
respectively. Two ‘whiskers’ extend above and below the box as far as 
the highest and lowest observations excluding outliers. Th ese are defi ned 
as any observation more than 1.5 times the inter-quartile range above or 
below the box. Observations lying between . IQR and   IQR above 
or below the box are termed near outliers; any more than   IQR are far 
outliers.

Luxembourg and Qatar are shown to be far outliers, while a group 
of seven countries (numbers 181–187 in Table 2.1) are identifi ed as near 
outliers. Th ere are no outliers below the box, so that the end of the lower 
whisker represents the minimum income value, that of Zimbabwe.

Th e corresponding boxplot for UK infl ation is shown in Figure 2.5.
We see that there are many more outliers than for the income data set: 

indeed, so many that we only identify the maximum and minimum and 
do not distinguish between far and near outliers. Th is boxplot confi rms 
that the variability of the infl ation data is much greater than that of the 
income data.

2.5 Summary statistics: symmetry and skewness

An important data feature that we have yet to comment upon is that 
of the symmetry, or indeed the asymmetry, of the underlying frequency 
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distribution.4 Consider again the histograms shown in Figures 2.1 and 2.3. 
Symmetry is the property of the ‘left -hand side’ of a frequency distribu-
tion being the mirror image of the ‘right-hand side’. Of course, this raises 
the question of how we defi ne left - and right-hand sides of a distribution. 
We may do this using a further measure of location, the mode.

With ‘raw’ data, like those tabulated in Tables 2.1 and 2.2, the mode is 
a particularly useless measure, as it is defi ned to be the value that occurs 
most oft en. For both sets of data, no value occurs more than once (par-
ticularly if we were to report the infl ation data to several decimal places), 
so that there are N diff erent values for the mode. Where the measure 
does become useful is when the data are grouped into a histogram. We 
can then see from Figures 2.1 and 2.3 that the modal class is sensibly 
defi ned to be the class that occurs most frequently: $0–2500 for income 
and 0–2.5 per cent for infl ation. A distribution is then said to be sym-
metric if, centred on the modal class, the left -hand side of the histogram 
is the mirror image of the right-hand side.

Of course, it is unlikely that a histogram will be perfectly symmetric, 
so we tend to be interested in how asymmetric a distribution is: that is, 

Figure 2.4 Boxplot for real per capita GDP, 2009
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we would like a measure of the extent of asymmetry, known as skewness. 
One such measure is the coeffi  cient of skewness, defi ned as

3

1
2

N
ii
x x

skew
Ns

Th is may be interpreted as the average of the ‘cubed deviations about the 
mean’ divided by the sample variance, which ensures that it is a ‘scale free’ 
measure. If the large positive deviations about the mean outweigh the 
large negative deviations, then skew will be positive, and the distribution 

Figure 2.5 Boxplot for UK infl ation, 1750–2011
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is said to be skewed to the right. In such a case, the sample mean will be 
larger than the median, which in turn will be larger than the mode. If the 
converse holds then the distribution will be negatively skewed. A value 
of zero will signify a perfectly symmetric distribution.

From Figure 2.1 we see that skew = ., so that the income distribu-
tion is positively skewed. Th is obviously follows from the fact that the 
modal class is also the smallest, refl ecting both that income cannot be 
negative and that many countries have very low incomes compared to 
the relatively fewer extremely wealthy nations. From Figure 2.3, infl ation 
has skew = ., so again the distribution is positively skewed. However, 
unlike income, infl ation can go negative, but the positive deviations from 
the mean nevertheless still outweigh the negative deviations, refl ecting 
the tendency for infl ation to be positive, so that prices generally rise over 
time (for more detail on the relationship between prices and infl ation, 
see §3.2). It is easily seen that the inequality mean > median > mode 
holds in both examples, but that the smaller skewness in the infl ation 
data leads to the three measures being (relatively) closer together than 
for the income data. Th e boxplots refl ect positive skewness by having 
more outliers above the box than below it, and showing that the mean 
exceeds the median.

2.6 Scatterplots

So far, we have been considering data observed on one variable in isola-
tion from data on other, possibly related, variables. Economics typically 
constructs theories relating one variable to another or, more usually, 
to a set of variables. When two variables are thought to be related, it is 
usually informative to construct a scatterplot. Suppose we have data on 
two variables, Y and X, and a particular economic theory suggests that 
movements in X produce movements in Y: in other words, the depend-
ent variable Y is some function, call it f ( ), of the independent variable X, 
so that Y  =  f (X). Th e data on the two variables can now be regarded as 
coming in (ordered) pairs:

1 1 2 2, , , , , ,N Ny x y x y x…

Th ese pairs may be plotted as a scatterplot with the convention that the 
dependent variable is plotted using the vertical axis and the independent 
variable the horizontal axis.
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Interest rates and infl ation in the UK

Th e main instrument of current UK macroeconomic policy is the setting 
of interest rates by the Bank of England’s Monetary Policy Committee 
(MPC). Th e interest rate is set with the primary aim of meeting a 2 
infl ation target 18 months ahead. An interesting question is to examine 
the historical link between infl ation and interest rates. Figure 2.6 presents 
a scatterplot of the long interest rate (the yield on gilt edged stock) and 
infl ation for the period 1751 to 2011.

An intriguing picture emerges: except for the period from 1965 to 1997 
(shown as dots), at the start of which the Bank of England was granted 
independence and the current infl ation-targeting arrangements came 
into practice, there looks to be only a very weak link between the two 
variables, with low (less than ~6) interest rates being associated with 
a wide range of infl ation rates. During the period from the mid-1960s 
to the mid-1990s, however, there is a clear positive link between interest 
rates and infl ation: this was the era in which infl ation was high, persist-
ent and volatile, and interest rates refl ected that. But for the bulk of the 

Figure 2.6 Scatterplot of UK long interest rate and infl ation, 1751–2011
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two and a half centuries, no strong link is observed. Th is could be due 
to a variety of reasons. Obviously, there could simply be no relation-
ship and interest rates were set according to other factors, such as the 
need to increase government borrowing to fund expenditure on wars. 
A more subtle reason probably holds since 1997: the MPC have been so 
successful in targeting infl ation that they have kept the rate at ~2 by 
shift ing interest rates around, so that there does not appear to be any 
link between the two variables!

Th is argument, though, is looking increasingly implausible since the 
global fi nancial turmoil of 2008. Since then, interest rates have been kept 
artifi cially low, while infl ation has remained well above target, arguably 
partly a consequence of the Bank of England’s policy of ‘quantitative eas-
ing’, as well as external factors such as rapid increases in energy prices and 
a fall in the sterling exchange rate. Th e relationship between these two 
variables is analysed in considerably more detail and formality in §17.5.

Th is example nevertheless illustrates, among other things, three key 
features of what we might call exploratory data analysis:

 i)  the importance of relationships shift ing within the sample, 
possibly due to institutional arrangements changing;

ii)  how subtle and imprecise relationships between economic 
variables can be; and

    iii)  how tricky it can be to decide which variable is the dependent and 
which is the independent in any particular analysis – do changes 
in infl ation always produce changes in interest rates, or is it the 
other way round or, indeed, is it even a mixture of both?

2.7 Extensions

Th e various measures of location, dispersion and skewness all have coun-
terparts that can be used when the data come in the form of grouped 
observations – if, say, all we have available are the class widths and the 
numbers of observations falling in each class (in other words, a tabular 
representation of the histograms in Figures 2.1 and 2.3).

Th e form of boxplot presented here is the simplest possible, and 
various modifi cations can be made to convey more sophisticated aspects 
of the data set. Scatterplots are, of course, restricted to depicting the 
relationship between just two variables, but we are oft en interested in 
the links between several variables. Th ere are many ways of extending 



 Analysing Economic Data: A Concise Introduction

scatterplots to cope with data in several dimensions, although of neces-
sity these tend to require specialised soft ware and will not be discussed 
further here.

Notes

Th e standard textbook reference to panel data is Badi H. Baltagi , Econometric 
Analysis of Panel Data, 4th edition (Chichester, Wiley, 2008).
Th e income data can be found in the Penn World Tables, located at  http://
pwt.econ.upenn.edu/php_site/pwt_index.php (Alan Heston, Robert Summers 
and Bettina Aten, Penn World Table Version 7.0, Center for International 
Comparisons of Production, Income and Prices at the University of 
Pennsylvania, May 2011).
Th e original source for the infl ation data is Jim O’Donoghue, Louise  
Goulding and Grahame Allen, ‘Consumer price infl ation’, Economic Trends 
604 (2004), 389–413.
Symmetry has a much wider importance than in data analysis alone, being  
at the basis of communication and evolutionary biology. For a fascinating 
account of the wider nature of symmetry, see Marcus du Sautoy, Finding 
Moonshine: A Mathematician’s Journey through Symmetry (London, Fourth 
Estate, 2008).
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3
Transforming Data

Abstract: Th e need to oft en transform raw data is 
discussed and the logarithmic transformation is introduced 
in some detail. It is emphasised that the slope of a graph of 
the original data says nothing about the growth rate of the 
variable, since it is only from the slope of the graph of the 
logarithms that such information can be obtained. Th ese 
ideas are illustrated by constructing alternative measures 
of UK infl ation. Other transformations are discussed, 
including the famous Phillips curve, linking infl ation to 
the inverse of the unemployment rate. Moving averages 
are introduced as a way of smoothing data and such ideas 
are extended to decomposing a time series, illustrated 
by decomposing retail sales into its trend, seasonal and 
irregular components as a prelude to seasonally adjusting 
the series.
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3.1 Why transform data?

It is oft en the case that we do not analyse the ‘raw’ data on a particular 
variable or set of variables, but mathematically manipulate the numbers 
(in general, transform the data) into a form that we consider to be more 
amenable for analysis. Why should this be? One reason is that, occasion-
ally, economic theory suggests the mathematical form that the variables 
should take. For example, the Cobb–Douglas production function links 
output, Y, to capital and labour inputs, K and L, respectively, by the 
relationship

 Y AK Lα β
 

(3.1)

Multiplicative relationships like (3.1) can be tricky to handle, so we lin-
earise (straighten out) the function by taking logarithms to yield1

 
Y A K Lln ln ln lnα β

 
(3.2)

Th e production function is now linear in the transformed variables 
ln Y, ln K and ln L, and is much easier to handle both mathematically 
and statistically. As we shall see, other reasons for transforming data 
are essentially statistical and are oft en suggested during the exploratory 
stage of data analysis.

3.2 Th e logarithmic transformation

Th e logarithmic transformation used above is employed regularly in 
economics. One important use is to linearise time series that are grow-
ing at constant rates. To illustrate this, consider the plots in Figures 3.1(a) 
and (b). Figure 3.1(a) shows a series, Yt, that is growing at a constant rate 
of 10 per period. 

It is calculated using the equation 

 11.10t tY Y  
(3.3)

which is the mathematical formula for generating a sequence that increases 
by 10 each period: the start-off  point was chosen to be Y  =  , so that 

 2 11.10 11,Y Y
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2

3 2 11.10 1.10 12.1Y Y Y ,

 
3

4 3 11.10 1.10 13.31Y Y Y , etc. 

Th us, by t  =  , say, Y  =  (.) Y  =  .. Note that, although the 
growth rate is constant, the slope of the function is increasing over time: 
it is thus incorrect to interpret the slope of a plot of the levels of Yt against 
time as a growth rate. 

Figure 3.1(b) shows the logarithms of the series: 

 1ln ln10 2.303,Y  

 2ln ln11 2.398,Y  

 3ln ln12.1 2.493,Y  

 4ln ln13.31 2.588,Y  etc.

Figure 3.1(a) Example of a time series growing at a constant rate of 10 
generated as Yt  =  .Yt–, Y  =  
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Th e slope is now constant at ln . = ., showing that you have to 
plot the logarithms of the series before you can infer anything about 
growth rates from the slope. Note also that lnY  =  ., so that the 
range of the observations has been reduced from ~– to ~.–: 
 taking logarithms thus compresses the scale of the data, and this can make 
analysis and interpretation simpler.

Now, suppose that a series takes the values 10, 11, 12 and 13 at times 
t = 1, 2, 3 and 4, that is, it changes by 1 every period and hence is a linear 
function of time: it should be easy to see that Yt  =   + t. 

What are its growth rates, though? Th e standard formula to calculate 
the growth rate (in percentages) of the series Yt between periods t– and 
t is

 

1

1

100 t t
t

t

Y Y
g

Y  
(3.4)

Th is formula may be derived from the general form of (3.3) in the fol-
lowing way. For a growth rate gt, (3.3) becomes

Figure 3.1(b) Logarithm of Yt: lnYt 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5



Transforming Data

 
11

100
t

t t
g

Y Y
 

 (3.5)

which of course gives (3.3) exactly if 10tg . 
Equation (3.5) may be written as 
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1
100

t t
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or as
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which is indeed (3.4). Th us, the growth rate between t =  and t =  is 

 
2

11 10
100 10%

10
g ,

 

but the growth rate between 2t  and 3t  is only 

 
3

12 11
100 9.09%

11
g

even though the change remains the same at 1 unit. Similarly, the next 
growth rate, g, is 8.33. A time series that changes by a constant amount 
each period therefore exhibits declining growth rates over time, because 
the denominator in (3.4) is increasing each period, whereas the numerator 
remains constant.

Note also that the constant slope of the logarithmic function implies 
that, by taking logarithms of (3.3), lnYt–lnYt–  =  ln .. On taking logarithms 
of (3.5) we have, if we assume for simplicity that gt = g, a constant,

 
1ln ln ln 1 ln 1

100t t
g

Y Y x
 

(3.6)

where x  =  g/ must be a positive but typically small number (if g  =  , 
x  =  .). Th e logarithmic series expansion under these conditions is 

 

2 3 4

ln 1
2 3 4
x x x

x x …
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Now, for small x, the terms in the expansion containing x, x, … etc. 
will all be much smaller than x, so that the expansion can be approxi-
mated as

 ln 1 x x  (3.7)

Th us, since x is the growth rate measured in decimals, equating (3.7) 
with (3.6) gives

 1ln lnt tY Y x

or

 1100 100 ln lnt tg x Y Y   
(3.8)

that is, the change in the logarithms (multiplied by 100) is an estimate of 
the percentage growth rate at time t. Such a change is oft en denoted by 
an upper-case delta, Δ, for example, lnYt – lnYt–  =  Δ lnYt.

We thus have the approximate equivalence (now making it explicit 
that the growth rate can change over time by using gt)

 

1
1

1 1 1

100 100 1 100 ln ln 100 lnt t t t
t t t

t t t

Y Y Y Y
g Y Y

Y Y Y

as long as 1 1t tY Y  is small. For a growth rate of 10 , using the change 
in the logarithms to approximate this rate gives  ln(.)  =  . , 
which may or may not be suffi  ciently accurate for the purpose at hand. 
For a smaller growth rate, say ,  ln(.)  =  .  gives a much 
more accurate approximation, as predicted (with x  =  ., the ignored 
second term in the logarithmic series expansion is . or ., but 
with x  =  . it is only ., or .).

Th us taking logarithms not only linearises a growing time series, but 
the successive changes in the logarithms can under many circumstances 
be used as estimates of the growth rate of the series over time.

Calculating UK infl ation

One of the most important growth rate computations in economics is 
the calculation of the rate of infl ation. Figure 3.2 plots the monthly UK 
retail price index from January 1948 to December 2011. 

Th is plot is typical of an economic time series that is generally growing 
at a positive, but not constant, rate. 
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Figure 3.2 UK retail price index, tP ; monthly, 1948–2011
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Figure 3.3 Logarithms of the UK retail price index, ln Pt; monthly, 1948–2011
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Th e plot is certainly not linear, so in Figure 3.3 we show the logarithms 
of the series. Th e slopes of the pre-1970 and post-1990 observations are 
fairly similar, but the intervening two decades are characterised by a 
much steeper slope.
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We emphasise at this point that neither of the series shown in the two 
fi gures can be interpreted as the rate of infl ation. Figure 3.2 is a plot of 
the price level, which we denote as Pt, while Figure 3.3 is a plot of the 
logarithms of the price level, lnPt.

How can we calculate the rate of infl ation? From the discussion above, 
an obvious way would be to use the growth rate formula (3.4), or its 
approximation (3.8), which here would be

 
1

1
1

100 100 ln lnm t t
t t t

t

P P
P P

P
π

 
(3.9)

Th e notation m
tπ  is used to signify that we are calculating the monthly rate 

of infl ation, that is, computing the rate at which prices change from one 
month to the next. Figure 3.4 plots this rate of infl ation scaled up by a 
factor of 12 (for reasons that will become clear shortly). It is an extremely 
volatile series, ranging from a minimum of –20 to a maximum of 52. 
No discussions of contemporary UK macroeconomics (or, indeed, of 
any era of the UK economy) have mentioned such huge variations in 
infl ation which, if they had occurred, would surely have led to unprec-
edented economic and social dislocation. Yet we have used the standard 
formula for calculating a growth rate. So what has, on the face of it, gone 
wrong? 

Figure 3.4 Monthly annualised UK infl ation, m
tπ , 1948–2011
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One reason for the very large (absolute) infl ation values is the scaling 
up by a factor of 12: this has been done to provide an annualised monthly 
rate of infl ation. Could we just ignore this scaling factor? Yes, of course 
we could, but the variation from one month to the next would still be 
substantial and this is not what contemporary discussions of macroeco-
nomic performance focus upon.

We can avoid the problems found in Figure 3.4 by calculating annual 
rates of infl ation

 

12
12

12

100 100 ln lna t t
t t t

t

P P
P P

P
π

 
(3.10)

where the rate of infl ation is calculated by comparing the price level at 
time t with the level that occurred one year (12 months) previously; for 
example the December 2011 price level is compared with the December 
2010 level. Th e time series for a

tπ  is shown in Figure 3.5, and is much 
smoother and less volatile than that for m

tπ . Th e two rates are on the 
same scale, though, so that comparisons are valid, which was why m

tπ  
needed to be scaled by a factor of 12.

Figure 3.5 Annual UK infl ation, a
tπ , 1949–2011
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Th ere is thus no unique defi nition of infl ation, as it can be calculated in 
various ways (try defi ning the annualised quarterly rate of infl ation). 
Th us when defi ning the rate of infl ation we should be very careful that 
we actually calculate the rate that we wish to use. Th e defi nition (3.10) 
is the one used by the MPC, the Offi  ce of National Statistics and by 
commentators of the UK economy, while (3.9) has traditionally been 
favoured in the US.

Figure 3.5 shows that UK infl ation has gone through several distinct 
phases since the end of World War II. Apart from a short period in the 
early 1950s (an era of ‘cheap money’ and low interest rates, designed to 
increase growth and living standards aft er the war), infl ation was generally 
low and stable up till the mid-1960s. For the next two decades infl ation was 
high and volatile, a consequence of two major external oil price shocks and 
an oft en lax internal monetary policy. During the mid-1980s infl ation was 
again quite low, but this was only temporary and it took off  again at the end 
of that decade. Since the exit from the European Exchange Rate Mechanism 
(ERM) in October 1992, infl ation has been low and relatively stable, at least 
compared with the previous two decades: Bank of England independence 
from 1997 has merely continued the infl ation ‘regime’ that had been in 
operation since the Black (or should it really be White?) Wednesday of 
the ERM exit. Note the decline in infl ation during the credit crunch of 
2007–2008, which invoked for a short while fears of defl ation – a sustained 
period of falling prices – although since 2009 infl ation has returned and 
has remained stubbornly above the Bank of England’s target range.

3.3 Other transformations

Figure 3.6 shows the shapes of three functional forms commonly found 
to link pairs of variables in economics. 

Th e fi rst two use an inverse transformation on the independent vari-
able X (that is, /X), while the third just transforms Y logarithmically (the 
semi-log functional form). Various other functional forms based on the 
transformation of variables may easily be conceived of.

Th e Phillips curve

One of the most famous examples of applied economics was published in 
the journal Economica by A.W. (Bill) Phillips in 1958.2 Th is investigated 



Transforming Data

Y

X

X
Y = 

Y –

1

Y

X

X
1

Y

X
ln Y X

Figure 3.6 Alternative functional forms

the relationship between the rate of inflation ( ) and the unemployment 
rate (U) in the UK from 1861 to 1957, and found that a curve of the form
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(3.11)

explained the relationship well. Th is is an example of the fi rst transforma-
tion in Figure 3.6 and implies that there is a trade-off  between infl ation and 
unemployment: to get infl ation low, unemployment has to be high and vice 
versa. Th e implications for economic policy of such a trade-off  have domi-
nated macroeconomics ever since (although we will not discuss this here!). 

Figure 3.7 updates the original Phillips data set to 2011. It superimposes 
a fi tted line of the form (3.11): how such a line is fi tted will be discussed 
later, in Chapter 6, but it is calculated to be

 U
1

1.4 4.4π
 

(3.12)

that is, α  =  . and β  =  .. To get a feel for how to interpret this equa-
tion, infl ation and unemployment since 2000 have averaged 3  and 
5.9  respectively. Equation (3.12) implies that, if U  =  ., then infl ation 
should be
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π

Figure 3.7 Phillips curve fi tted to UK infl ation and unemployment, 1855–2011, 
both measured in  p.a. Dots, rather than open circles, signify observations between 
1968 and 1981
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so that during the fi rst decade of the 21st century infl ation has been some-
what higher, on average, than predicted by the Phillips curve. However, 
if we wanted to get infl ation down to 2, the Bank of England’s target, 
then unemployment would need to rise to 7.3, obtained by solving the 
equation

 

4.4
2 1.4

U

Th e very fl at part of the fi tted Phillips curve implies that further declines 
in infl ation would require higher and higher rates of unemployment: 
1.5  infl ation would need 44 unemployment, higher than any level 
reached in the past and certainly unacceptable to any government (and 
electorate!).

However, we should treat this fi tted curve with some scepticism. Th e 
fi t is quite loose, with many observations lying some distance from the 
line: we shall propose a measure of ‘goodness of fi t’ in §6.4. Furthermore, 
for some historical periods the Phillips curve does not seem to hold at 
all. Th e observations shown with dots are those between 1968 and 1981: 
a curve fi tted to just these observations is π  =  .–./U, which has a 
positive slope (see Figure 3.6), implying that high rates of unemployment 
are accompanied by high, rather than low, infl ation. Th is is a period that 
is oft en referred to as an era of stagfl ation, a term defi ned as the concate-
nation of stagnation (high unemployment) and infl ation. 

3.4 Moving averages

With time series data, we oft en want to focus on long-term (per-
manent) movements without the eye being distracted by short-run 
(transitory) fl uctuations. We thus oft en want to smooth the data, and 
while there are many very sophisticated ways of doing this the easiest 
method is to calculate a moving average. Th e simplest of these is the 
three-period, equal weighted, centred moving average, defi ned for a 
time series xt as

 
1 13

3
t t t

t
x x x

MA

that is, each xt is replaced by the average of itself, its previous value, 
xt–,and its next future value, xt+. Th e more future and past values that 
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are included in the moving average, the smoother will be the resulting 
series. In general, we can defi ne the n + -period moving average as 

1 12 1
2 1 2 1

n
t it n t t t t n i n

t

xx x x x x
MA n

n n
… …

 
(3.13)

Clearly n observations will be ‘lost’ at the start and end of the sample, 
and each of the values in the moving average can be thought of as having 
the weight / n +  attached to it. Th e set-up of (3.13) ensures that the 
MA is computed over an odd number of observations, and its symmetric 
nature enables MAt (n + )to ‘match up’ with (to be centred on) xt. If an 
even number of terms is used in the moving average, then this centring 
will not happen unless an adjustment is made. For example, an MA of 
order four may be defi ned as

 

2 1 1
1 2 4

4
t t t t

t
x x x x

MA

Th e notation used makes it clear that the ‘central’ date to which the mov-
ing average relates to is non-integer, being halfway between t –  and t, 
that is t–/  – but of course xt–/ 

 does not exist! At t + , however, this 
moving average is

 

1 1 2
1 2 4

4
t t t t

t
x x x x

MA

which has a central date of t + / . 
Taking the average of these two moving averages produces (3.14) 

below, centred on the average of t – /  and t + / , which is, of course, t.

 
2 1 1 2

1 1 1 1 1
(5)

8 4 4 4 8t t t t t tWMA x x x x x
 

(3.14)

When compared to (3.13) with n  =  , and hence equal weights of / , 
(3.14) is seen to be a weighted moving average (WMA) with ‘half-weights’ 
on the two extreme observations. 

In general, a weighted moving average can be defi ned as 

 
n

t i t ii n
WMA n x2 1 ω   

n

ii n
1ω

Many trend extraction techniques lead to WMAs of various types, but 
these are too advanced to be discussed in any detail here.3
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$–£ exchange rate

Th e $–£ exchange rate is, along with the €–£ exchange rate, the most 
important currency in the London Foreign Exchange (FOREX) market, 
and its movements are followed closely by traders and commentators 
alike. Figure 3.8 plots the $–£ rate from January 1973, just as it began to 
fl oat freely aft er the breakdown of the Bretton Woods system of interna-
tional fi nance, until December 2011. 

Exchange rates typically follow quite variable and volatile time paths 
(they are close to being what are known as random walks: see §6.6) and 
it is oft en useful to smooth out short-run fl uctuations to be able to con-
centrate on longer-run movements, known as long swings. To do this, 
we calculate an MA(13) and superimpose it on the plot. An order of 13 
was chosen because it will smooth out fl uctuations that last for a year 
or less. Th e long swings in the exchange rate can now be seen somewhat 
more easily, with the rate appearing to go though extended periods of 
appreciation and depreciation. 

A close look at the fi gure reveals that n  =   values of the MA are lost at 
the start and end of the sample period. While this is usually not important 
at the start of the sample, as these observations are typically a long time 
in the past, the loss of values indicating the current trend of a time series 
at the end of the sample can be a major disadvantage. Th ere are ways 

Figure 3.8 $–£ exchange rate; January 1973 to December 2011, with 13-month 
moving average trend
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of overcoming this problem, typically by using some form of weighted 
moving average whose weights adjust as we get closer to the end of the 
sample – but again, this is too advanced a topic to be discussed here. Th e 
next example illustrates, without going into technical detail, one possible 
solution to the problem.

Global temperatures

Th is example concerns a series that, while not being an economic 
variable itself, may, if current concerns over global warming and climate 
change are substantiated, exert a major infl uence over the economic 
performance of many countries in years to come. 

Figure 3.9 shows the annual global temperature series from 1850 to 2011. 
Superimposed upon it is an estimated trend, known as the  Hodrick–Prescott 
(trend) fi lter, which is essentially a weighted moving average with end-point 
adjustments that allow the trend to be calculated right up to the end of the 
sample.4 Th is, of course, is important here, because global temperatures are 
quite volatile, and extracting the recent trend is thus essential for provid-
ing an indication of the current extent of global warming. We see that the 
series was on a rising trend from around 1970 to 1998, but has since levelled 
off . Before 1970, the trend went through long swings, with cooling trends 
between 1875 and 1910 and between 1945 and 1970.

Figure 3.9 Global temperatures, 1850–2011, with weighted moving average trend 
superimposed
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Of course, an instrumental temperature record like this is only avail-
able for a limited time in the past, but several temperature reconstruc-
tions, using proxies such as tree ring and borehole data, have taken 
the record back some 2000 years. Th is has provoked great interest and 
debate, and it is probably fair to say that the ‘statistical jury’ is currently 
still out on whether there is incontrovertible evidence that the recent 
warming trend is ‘uniquely anthropogenically forced’ or whether it may 
be part of temperature’s ‘natural variability’.5

3.5 Decomposing a time series

Th e moving averages fi tted in the above examples have been interpreted 
as trends, the long-run, smoothly evolving component of a time series. 
In general, an observed time series may be decomposed into several 
components. We will consider a three component decomposition in 
which the observed series Xt is decomposed into trend, Tt, seasonal, St, 
and irregular, It, components. Th e decomposition can either be additive

 t t t tX T S I  (3.15)

or multiplicative 

 t t t tX T S I   (3.16)

although this distinction is in a sense artifi cial, as taking logarithms of 
(3.16) produces an additive decomposition for ln Xt. Th e seasonal com-
ponent is a regular, short- term, annual cycle, so that it can only appear 
in series observed at higher than an annual frequency, typically monthly 
or quarterly. Since it is a regular cycle, it should be relatively easy to 
isolate. Th e irregular component is what is left  over aft er the trend and 
seasonal components have been removed. It therefore should be random 
and hence unpredictable.

Th e seasonally adjusted series is then defi ned as either

 
SA
t t t t tX X S T I

or

 

SA t
t t t
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Other components are sometimes considered. With macroeconomic 
series such as GDP, a business cycle component is oft en included: we 
assume here that this cycle is part of the trend component. With sales 
data, there can also be a trading day component, where the irregular 
needs adjusting for, say, the number of trading days, weekends or bank 
holidays in a month.

Decomposing and seasonally adjusting UK retail sales

Th ese ideas, and how the components may be computed, are illustrated 
using quarterly data on the volume of UK retail sales from 1986 to 2011, 
which is plotted in Figure 3.10. 

Retail sales are seen to have a generally upward trend, with pronounced 
seasonal variations about this trend, which have increased in amplitude 
(range) over time. In such circumstances, a multiplicative decomposi-
tion is appropriate, but, as noted above, if we take logarithms of (3.16) we 
obtain the additive decomposition (3.15) for ln Xt rather than Xt.

To obtain the trend component, we use the centred MA(4) (3.14), 
which is shown superimposed on the logged series in Figure 3.11(a). 

Th is is indeed a smooth series, but does not have a consistent upward 
trend: retail sales were very ‘fl at’ in the recession of the early 1990s, and 
again in the last two years of the sample.

Figure 3.10 Volume of UK retail sales, quarterly 1986–2011
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Figure 3.11(a) Decomposition of the logarithm of UK retail sales, 
1986 Q1–2011 Q4; Observed and trend 
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To isolate the seasonal component, we fi rst subtract the trend from the 
observed series:

 ln t t t tX T S I

Th is ‘trend-free’ series is the sum of the seasonal and irregular com-
ponents, which somehow need to be disentangled. We can do this by 
making the ‘identifying’ assumption that It should, on average, be equal 
to zero (if it was not, then a portion of it would be predictable and 
should be part of either the trend or the seasonal). Th is allows St to be 
calculated by taking the average of each quarter across years. Th us, for 
example,

 

1986 1 1987 1 2011 1ln ln ln
1 0.069

26
Q Q Q

t

X X X
S Q

…

and the other seasonal factors are calculated to be

 2 0.035tS Q  3 0.031tS Q  4 0.135tS Q

Th ese factors are required to sum to zero, and so would need adjusting 
if the raw calculations lead to a non-zero sum (if this sum is a  ≠  , say, 
then a/ should be subtracted from each factor). We see that the fourth 
quarter of each year has a large positive seasonal, obviously due to the 
run-up to Christmas – always a crucial period for retailers – and this 
is compensated by smaller negative factors for the other three quarters. 
Th e seasonal pattern is shown in Figure 3.11(b): this method forces the 
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Figure 3.11(c) Decomposition of the logarithm of UK retail sales; 
1986 Q1–2011 Q4; Irregular

Figure 3.11(b) Decomposition of the logarithm of UK retail sales; 
1986 Q1–2011 Q4; Seasonal
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seasonality to be ‘constant’ over time, but more sophisticated seasonal 
adjustment procedures allow seasonal patterns to evolve.6

Th e irregular is now calculated ‘by residual’ as

 lnt t t tI X T S

It is plotted in Figure 3.11(c). and turns out to be small compared to the 
other components and clearly random.7 

Th e seasonally adjusted series 

 ln lnSA
t t t t tX X S T I
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Figure 3.12 Observed and seasonally adjusted UK retail sales
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Figure 3.13 Annual growth rate of seasonally adjusted retail sales

is shown with the unadjusted series in Figure 3.12. 
From its defi nition, the seasonally adjusted series is the trend plus 

the irregular component. Since the irregular is small, it just adds minor 
random fl uctuations to the smooth trend.

Th e annual growth rate of seasonally adjusted retail sales is shown in 
Figure 3.13. 
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Growth is generally between 2 and 8  per annum, except for the two 
recessionary periods of the early 1990s and the late 2000s.

Notes

While logarithms to any base can be taken, it is conventional to use logs to  
the base e (loge, sometimes known as Napierian logarithms). Rather than 
loge, however, the slightly simpler ‘ln’ will be used to denote such logarithms. 
Equation (3.2) uses the standard rules of logarithms: ln xy  =  ln x + ln y and 
ln xa = alnx.
A.W. Phillips, ‘Th e relation between unemployment and the rate of change of  
money-wage rates in the UK, 1861–1957’, Economica 25 (1958), 283–299. Th e 
original form of the Phillips curve used here has long been regarded as being 
far too simplistic and has been extended in various ways: see, for example, 
the ‘New Keynesian Phillips curve’ of Olivier Blanchard and Jordi Gali, ‘Real 
wage rigidities and the New Keynesian model’, Journal of Money, Credit and 
Banking 39 (2007), 35–65. A retrospective look at the Phillips curve’s place in 
macroeconomics is provided by Understanding Infl ation and the Implications 
for Monetary Policy: A Phillips Curve Retrospective (MIT Press, 2009).
A useful introductory reference is Terence C. Mills,  Modelling Trends and 
Cycles in Economic Time Series (Palgrave Macmillan, 2003).
Th e original reference to the Hodrick–Prescott fi lter, oft en referred to as  
the H–P fi lter, is Robert J. Hodrick and Edward C. Prescott, ‘Postwar US 
business cycles: an empirical investigation’, Journal of Money, Credit and 
Banking 19 (1997), 1–16.
For detailed analyses of current temperature trends, see Terence C.  
Mills, ‘Modelling current trends in Northern Hemisphere temperatures’, 
International Journal of Climatology 26 (2006), 867–884; ‘Modelling current 
temperature trends’, Journal of Data Science 7 (2009), 89–97; ‘Skinning a 
cat: stochastic models for assessing temperature trends’, Climatic Change 
10 (2010), 415–426; and ‘Is global warming real? Analysis of structural time 
series models of global and hemispheric temperatures’, Journal of Cosmology 
8 (2010), 1947–1954.
A widely used seasonal adjustment method has been developed by the US  
Bureau of the Census and is known as X-11. Its latest version is available 
within EViews.
Th ere is a suggestion that the irregular has begun to show signs of having  
a ‘seasonal’ pattern since the mid-2000s. Th is might be an indication that 
the seasonal component may not be completely deterministic but may have 
started to evolve slowly.
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4
Index Numbers

Abstract: Transforming data into index form is proposed, 
along with chain-linking an index. More sophisticated 
index numbers, such as the Laspeyres and Paasche, are 
developed through an example in which an energy price 
index is constructed. A short discussion is provided on how 
the RPI and CPI indices for the UK are calculated. Th e 
links between price, quantity and expenditure indices are 
investigated, and this leads to a discussion of how nominal 
data can be defl ated to obtain real data, with a variety of 
examples being provided, such as how to defi ne real interest 
and exchange rates and how to compute real petrol prices. 
Th e Lorenz curve and the Gini coeffi  cient are introduced as 
indices for measuring income inequality.
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4.1 Transforming data to index form

Data in the form of index numbers are ubiquitous throughout applied 
economics, appearing in many forms and in many areas, so that two 
obvious questions to ask are: what exactly are index numbers and why are 
they used?

An index number can be thought of as a type of summary statistic, 
so that it summarises a large amount of information on, say, prices and 
quantities, in a single value. It is thus used when the underlying raw data 
is too time-consuming to present, or too complicated to comprehend 
easily.

A simple example: UK GDP

Table 4.1 shows, in column (1), UK GDP at 2008 prices (that is, a volume 
measure, typically referred to as output) for the fi rst decade of the 21st 
century.

Because it is measured in £ million, the scale is hard to interpret, 
particularly when trying to assess how quickly the values are growing. 
We can simply convert the observations to index form, however, by pick-
ing a base year, arbitrarily converting the base year value to a simple to 
understand number, known as the base, and then adjusting all the other 
values to the same base. Column (2) does this by defi ning 2005 to be the 
base year, with a base of 100. Each year’s GDP is then converted by the 
formula

Table 4.1 UK GDP at 2008 prices, £ million, 2000–2010

Income
()

Index
()

  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
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100 t
t

base

Observed
Index

Observed

Th us

2000
1185305

100 86.8
1365685

Index , etc.

Th e output observations are thus measured relative to the base year. 
Note that any year can be chosen to be the base year, and any value as the 
base, although it makes sense to pick a simple value. We may then easily 
calculate that the ‘output loss’ during the global fi nancial crisis between 
2007 and 2009 was 5.5: ( × (100.4–106.2)/106.2  =  –5.5).

Many economic time series are reported in index form in offi  cial 
publications. One problem that occasionally occurs, particularly when 
taking data from diff erent ‘vintages’ of publications, is that the base 
changes every so oft en, usually aft er fi ve or ten years, so that the data 
‘jumps’ at these years. Th is can easily be solved by chaining, to obtain a 
chain-linked index.

Consider Table 4.2, where we now report GDP from 1991 up until 2010.

Table 4.2 Chain-linked GDP indices

Base 
()

Base 
()

Chained 
()

Chained 
()

 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
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Unfortunately, the earlier data has a base year of 1995, so that the 
index appears to drop from 119.6 in 2000 (see column (2)) to 89.5 in 
2001 (see column (1)). Th is ~25 drop in a single year is clearly the result 
of trying to match up data with two diff erent bases, and so the artifi cial 
decrease must be eradicated. Th is can always be done so long as we have 
an ‘overlapping’ observation, that is, one date at which we have observa-
tions from both bases. In our example, 2000 is the overlapping observa-
tion, taking the value 86.8 on the 2005 base, and 119.6 on the 1995 base. 
Clearly, GDP in 2000 must be unaff ected by the choice of base year, so 
that, if we wish to stick to the 2005 base, the observations in column 
(2) must be multiplied by the conversion factor of (86.8/119.6)  =  ., 
giving column (3).

Alternatively, if we want to use the 1995 base, the observations in 
column (1) need to be divided by the conversion factor (or multiplied by 
its inverse, /.  =  .), thus giving column (4). In both cases, the 
jump in the data at 2000 has been smoothed out. If more than one base 
change occurs, then chaining can be used repeatedly.

While index numbers of this type are clearly simple, they have to be 
interpreted carefully. For an individual series, an index number in isola-
tion is meaningless; what does a GDP index of 102.5 in 2010 actually tell 
you? It only becomes meaningful if it is compared to another value: in 
2005 the index was 100, so that we can say that GDP has grown by 2.5 
over the period 2005 to 2010. Comparing GDP indices across countries, 
for example, will be misleading unless the base year, base and underlying 
GDP values in the base year are identical – which is unlikely, to say the 
least!

4.2 More sophisticated indices

Th is GDP example illustrates the transformation of an observed data set 
into index form: essentially, all we have done is to scale the original data 
so that it should be easier to interpret. More sophisticated index numbers 
attempt to combine information on a set of prices, say, by weighting the 
individual prices by some measure of their relative importance (perhaps 
given by the quantities sold of each of the products). Th is would defi ne 
a price index, of which the Consumer Price and Retail Price Indices (CPI 
and RPI respectively) are the most familiar in the UK, although the FTSE 
stock market indices are another popular example.
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Table 4.3 UK energy prices, 2000–2010

Coal Gas Electricity Petroleum
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .

Constructing an energy price index

Consider the data, shown in Table 4.3, on UK energy prices for the 
recent past.1 Here we have four categories of fuel, coal (and coke), gas, 
electricity and petroleum, and we wish to construct an overall energy 
price index for each year.

Taking an unweighted average (e.g., calculating an index for 2000 as 
the price average (. + . + . + ./  =  .) would be unwar-
ranted unless each fuel category was equally important. If we measure 
‘importance’ by the quantities used of each fuel, then we can construct a 
weighted average using these quantities as weights.

But what quantities do we choose? A traditional approach, similar to 
the previous example, is to choose a base year and to use the quantities 
prevailing in that year as a set of base-year weights. Suppose we choose 
2000 as our base year, for which the quantities were

Coal .
Gas .
Electricity .
Petroleum .

Th e cost of the ‘basket’ of energy in 2000 is then calculated by summing 
the costs of ‘purchasing’ each of the year 2000 amounts of energy con-
sumed, as follows:

 Price  Quantity Price × Quantity
Coal . . .
Gas . . .
Electricity . . .
Petroleum . . .
Total cost .
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We now need to fi nd what the 2000 basket of energy would cost in 2001. 
Th is calculation is

 Price  Quantity Price × Quantity

Coal . . .
Gas . . .
Electricity . . .
Petroleum . . .
Total .

Similar calculations for the years 2002 to 2010 lead to the set of costs

Th e index of energy prices can then be calculated by taking the ratio of 
the costs for each year relative to 2000 (and conventionally multiplying 
by 100). Th is leads to what is known as a Laspeyres price index:

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

Index  change

 . –
 . –.
 . .
 . .
 . .
 . .
 . .
 . .
 . .
 . .
 . .

Th e Laspeyres index shows that energy prices dropped in 2001 compared 
to 2000 before increasing slowly in 2002 and 2003 and then much faster 
until 2008, since when the rate of increase has declined.
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Mathematically, the Laspeyres price index is defi ned as
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t

i ii

p q
P

p q  
(4.1)

In this formula, pi, and qi, are the base year prices and quantities, and 
the pi,t are the ‘current’ year prices.

Rewriting (4.1) as
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where ,0 ,0 ,0
L
i i iw p q , shows that L

tP  is a weighted average of the price 
relatives pi,t /pi,, with the weights given by the base year expenditures 
pi, qi,.
Going a step further and defi ning the expenditure share as
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allows the index to be written as
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Th e choice of 2000 as the base year was arbitrary. If another year was 
chosen, then the base year expenditures and the price relatives in (4.2) 
would alter and so would the value of the index.

Th ere is a related, probably more signifi cant, defect with the Laspeyres 
index. As relative prices alter over time, one would expect quantities con-
sumed to change. Th is is not allowed for in the index, which is calculated 
using unchanging base year quantities. Th ese may therefore become 
unrepresentative aft er a while, and the index then has to be rebased using 
quantities of a more recent vintage. We can see these changes occurring 
in the quantities of energy consumed over successive years in Table 4.4 
(particularly coal, whose use has declined by more than 40 during the 
decade).
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An alternative to using base year weights is to use current year weights, 
thus defi ning the Paasche price index as
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(4.3)

Here the weights are , ,0 ,
P
i t i i tw p q  and the expenditure share form of the 

index is
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Th e calculation of the Paasche energy price index in 2001 proceeds as

2001
80.4 3.470 75.0 57.814 84.0 28.609 86.8 67.084

100
76.7 3.470 73.0 57.814 84.4 28.609 91.5 67.084

98.48

PP

Similar calculations for the later years obtain

Table 4.4 Quantities of energy consumed in the UK, 2000–2010

Coal Gas Electricity Petroleum

 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
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Th ese tend to be slightly lower than their Laspeyres counterparts. Th is is 
to be expected if consumption of energy is switched to those fuels that 
are becoming relatively cheaper, since the Paasche index, by using cur-
rent weights, can capture this switch.

Both indices have advantages and drawbacks. Th e Laspeyres is sim-
pler to calculate and to understand, but loses legitimacy over time as 
its weights become unrepresentative. Th e Paasche, on the other hand, 
always has current weights, but is more diffi  cult to calculate (although 
this is hardly a problem when computers do most of the calculations) 
and is a little harder to interpret. Th ey can be combined into (Fisher’s) 
ideal index, which is the geometric mean of the two:

0

0 0 0

100 t t tI L P
t t t

t

p q p q
P P P

p q p q

Th us, for 2010, the ideal index is

187.96 186.51 187.23I
tP

4.3 Construction of the RPI and CPI

Both the RPI and CPI are annually chain-linked indices. Each year a sepa-
rate index (based at 100 in January) is calculated, and each year’s indices are 
then chained together to produce an index covering several years. Within 
each year the RPI, say, is a fi xed-quantity price index, so that it measures 

Index  change

 . –
 . –.
 . .
 . .
 . .
 . .
 . .
 . .
 . .
 . .
 . .



 Analysing Economic Data: A Concise Introduction

the change in a basket of goods of fi xed composition, quantity and, as far 
as possible, quality. It is thus a ‘Laspeyres- type’ index of the form

,
,

, , ,0
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100 100

i t
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i t i b ii
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i i b ibi i

p
w

p q p
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p q w

where wi,b  =  pi,qi,b. Th is index diff ers from (4.1) in that qi,b is used rather 
than qi,0, so that quantities from a base period b are used rather than 
those from base period 0. Th is is because it is, in practice, impossible 
to get period 0 quantities accurately, and these are therefore calculated 
from data available from the most recent 12 months. Of course, the exact 
construction of the RPI and CPI is a good deal more complicated, but 
this is the general principle underlying their construction.2

4.4 Price, quantity and expenditure indices

Just as we can calculate price indices, it is also possible to calculate 
quantity and expenditure (or value) indices. Th e Laspeyres and Paasche 
quantity indices are defi ned as
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,0 ,0
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i ii

p q
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p q  

(4.4)

and
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i t ii
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(4.5)

while the expenditure index is

, ,

,0 ,0

i t i ti
t

i ii

p q
E

p q  
(4.6)

Th ere is an important link between price, quantity and expenditure 
indices. Just as multiplying the price of a single good by the quantity 
purchased gives the total expenditure on the good, so the same is true 
of index numbers. Or, to put it another way, an expenditure index can 
be decomposed as the product of a price index and a quantity index. 
However, the decomposition is both subtle and non-unique, as the fol-
lowing pair of equations show:
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Th us the expenditure index is either the product of a Laspeyres price 
index and a Paasche quantity index or the product of a Paasche price 
index and a Laspeyres quantity index. Th us two decompositions are pos-
sible and will give slightly diff erent results.

It is also evident that a quantity index can be constructed by dividing 
the expenditure index by a price index, since
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Th is is oft en the easiest way of computing quantity indices. With the 
available energy data, in particular the price indices, we can make the 
following calculations

 pq E QL QP

 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .

Th us expenditure on energy fell in 2001 and 2002 from its 2000 value 
before rebounding in 2003 and then increasing quickly until 2008, aft er 
which it declined in 2009 and then increased again in 2010. Th e quantity 
indices, however, show increases in 2001 which almost off set the decline in 
the price indices. Th e quantity indices then remained relatively fl at before 
declining throughout 2006–2009, although there was again a rebound in 
2010. Th e quantity indices were much more stable than the price indices, 
which increased rather rapidly: increases in energy expenditure were thus 
entirely a consequence of increases in energy prices.
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4.5 Defl ating nominal data to obtain real data

Constructing a quantity index by dividing an expenditure index by 
a price index is known as defl ating. It can be used in a more general 
context. Expenditure indices are an example of a nominal series – mac-
roeconomic examples are nominal GDP, nominal consumption and 
nominal money supply. By dividing a nominal series by a price index, 
such as the RPI or the CPI, we obtain a real series (for example, real 
GDP – generally known as output – real consumption or real money). 
When infl ation is generally positive, ‘stripping out’ the price compo-
nent of a nominal series will lead to a real series having a lower growth 
rate than its nominal counterpart. When plotted together, the nominal 
version of a variable will then have a steepening slope when compared 
to its real counterpart.

Nominal and real GDP

Th is feature is illustrated in Figure 4.1, which plots nominal (i.e., at mar-
ket prices) and real (that is, at constant, in this case 2008, prices) GDP 
for the UK annually from 1948 to 2010.

Figure 4.1 UK GDP, annual 1948–2010
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Real GDP is obtained by defl ating the nominal series by a price index, 
the GDP defl ator. Th e series are in index form with 2008 as the base 
year: both thus equal 100 in that year, which is the ‘cross-over’ point. 
Nominal GDP starts at a much lower level than its real counterpart and 
fi nishes higher, so that it must have grown faster. Average growth rates 
for the two series are 7.7 for nominal GDP and 2.4 for real GDP, 
which implies that the GDP defl ator must have grown on average by 
5.3, which is thus average GDP infl ation. Interestingly, the average 
growth of real GDP is close to what the Treasury has long regarded as 
trend growth for output, 2.5.

Nominal and real interest rates

A diff erent application of defl ation is to interest rates. Th e nominal inter-
est rate earned on an asset makes no allowance for expected infl ation over 
the period for which the asset is held, which will decrease the purchasing 
power of the interest earned on the asset. In general, the real interest rate, 
rt, can be defi ned as

e
t t tr i π

where it is the nominal interest rate and e
tπ  is expected infl ation. Expected 

infl ation over the future holding period is, of course, unobserved, and 
there are many schemes for estimating it. Th e simplest is to assume that 
expected infl ation equals current infl ation, πt, and thus calculate rt as the 
diff erence between it and πt.

Figure 4.2 shows nominal and real interest rates for the UK for the 
data originally used in Figure 2.6, although only observations from 1925 
are plotted for clarity and topicality.

Except for the decade up to the mid-1930s, real rates have always been 
lower than nominal rates (apart from 2009, when infl ation was nega-
tive), and for short periods have even been negative, when infl ation was 
greater than nominal interest rates. Th e period up to 1935 corresponds 
to the inter-war years of depression, when prices were falling, so that 
infl ation was negative and real rates were higher than nominal rates.

Nominal and real exchange rates

In Figure 3.8 we plotted the $–£ exchange rate. Th is is a nominal exchange 
rate, measuring the foreign price of domestic currency, that is, how many 
dollars are required to purchase £1. Similarly, the €–£ exchange rate 
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shows how many euros are required to purchase £1. Exchange rates in 
this form, which we shall denote as e, are popular in the UK, but they 
could be (and oft en are) defi ned as the domestic price of foreign currency, 
which would give us £–$ and £–€ exchange rates denoted as the reciprocal 
of e, written as e∗, which equals 1/e. An increase in e constitutes an appre-
ciation of the domestic currency (so if the $–£ rate goes up from 1.8 to 2, 
then the £ sterling has appreciated), while an increase in e* constitutes a 
depreciation (so if the £–$ rate goes up from 0.5 to 0.6 then the £ sterling 
has depreciated, since the $–£ rate has gone down, from 2 to 1.67). It is 
thus vital that users of exchange rate data are aware of which defi nition is 
being used in a particular context.

Th e real exchange rate measures a country’s competitiveness in interna-
tional trade, and is given by the ratio of goods prices abroad, measured 
in domestic currency, relative to the price of the same goods at home. 
Th us, using the superscript R to denote a real rate, we have either

f
R

d

P
e e

P

or
d

R
f

P
e e

P
=

where P d and P f are the domestic and foreign price levels.
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Figure 4.2 Nominal and real UK interest rates, 1925–2011
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As an example of real exchange rate calculations, consider the following 
(annual average) data for the UK and the US.

e: – e : – PUK PUS eR e R

 . . . . . .
 . . . . . .

Between 1998 and 2011, sterling depreciated nominally by 3.3, but because 
prices rose more in the UK than in the US over this period the real rate 
depreciated by 6.0, thus making UK goods more competitive than might 
be thought from just the movement in the nominal exchange rate.

Real petrol prices

Th e price of petrol has consistently vexed motorists over the years, 
particularly those in the UK, where approximately 60 of the price 
(132.9 pence per litre in 2011, a record high) is now taken as government 
taxation.

How has the real price of petrol moved over the years? Figure 4.3 shows 
the real price of a litre of petrol in the UK compared to the 2011 price (the 
base year is 2011 and the base is the actual price for that year) since the 
beginning of the ‘motoring age’ in the early part of the 20th century.

Figure 4.3 Real price of a litre of petrol compared to 2011

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

£



 Analysing Economic Data: A Concise Introduction

Th e 2011 price was exceeded by the real price during World War I (actu-
ally from 1913 to 1918), reaching a maximum of 182.5 pence in 1916, but 
since then the price has always been lower, sometimes considerably so. 
Th e minimum price of 50 pence was reached in 1928, during the depths 
of the inter-war recession, but even during World War II and its aft er-
math of petrol rationing, prices remained relatively low.

Real sterling gold prices

Th e price of gold is conventionally given in US dollars per ounce, with 
gold traditionally being seen as a ‘safe haven’ in times of political and 
economic uncertainty and generally as a hedge against infl ation and, 
possibly, exchange rate movements.3 Th e price of gold in sterling can 
easily be calculated by dividing by e, the $–£ exchange rate. Figure 4.4 
shows the two prices from 1835 until 2011.

Th e price was eff ectively fi xed until the early 1970s, at which point an 
unregulated market was allowed to develop and the price adjusted rap-
idly upwards before stabilising in the early 1980s. Since 2006 the price 
has again increased substantially, standing at $1571 (£1009) in 2011.

Th e narrowing diff erential between the dollar and sterling prices over 
the period refl ects the long-run depreciation of sterling against the dollar. 
Until 1938, the exchange rate fl uctuated in a quite narrow band about $5, 

Figure 4.4 Dollar and sterling price of an ounce of gold, 1835–2011
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aft er which successive devaluations and the move to fl oating exchange 
rates in the early 1970s has narrowed the diff erence in the two prices.

What has been the real sterling price of gold? Figure 4.5 shows the 
sterling price of gold defl ated by the RPI, so that prices are measured 
relative to the 2011 value of £1009.

Th e 2011 price is seen to be a real as well as a nominal high, eclipsing 
the previous high of £930 achieved in 1980. However, apart from most 
of 1974 to 1980 and the years from 2008, which were all periods of high 
prices, the real sterling price of gold has fl uctuated in the range £185 to 
£450, unlike the nominal price, so that the infl ation-hedging properties 
of gold are clearly identifi ed.

4.6 Inequality indices: the Lorenz curve and the 
Gini coeffi  cient

Th e index numbers considered so far are typically used to compare val-
ues across time and so become treated as time series data. Another type 
of index number is used specifi cally in the measurement of inequality, 
such as inequality in the distribution of income. We have already meas-
ured the dispersion of such a distribution using the sample standard 

Figure 4.5 Real sterling price of an ounce of gold compared to 2011

0

200

400

600

800

1,000

1850 1875 1900 1925 1950 1975 2000

£



 Analysing Economic Data: A Concise Introduction

deviation, based on the deviation of each observation from the sample 
mean (recall §2.3). An alternative idea is to measure the diff erence 
between every pair of observations, and this forms the basis of a statistic 
known as the Gini coeffi  cient. An attractive visual interpretation of this 
statistic is the Lorenz curve, from which the Gini coeffi  cient can easily be 
calculated. We develop these ideas using the income inequality data set 
introduced in Table 2.1 and Figure 2.1.

Th e Lorenz curve

Th e Lorenz curve plots the cumulative percentage income (on the verti-
cal axis) against the cumulative percentage of countries (on the horizon-
tal axis). Th e curve takes on the following form:

It will be of this shape for the following reasons:

Since 0 of countries have 0 of income, and 100 of countries  ▸

have 100 of income, the curve must run from the origin up to the 
opposite corner.
Since countries are ranked from the poorest to the richest,  ▸

the Lorenz curve must lie below the 45º line, which is the line 
representing complete equality. Th e further away from the 45º line 
is the Lorenz curve, the greater is the degree of inequality.
Th e Lorenz curve must be concave from above: as we move to  ▸

the right, we encounter successively richer countries, so that 
cumulative income grows faster.
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Th e Gini coeffi  cient

Th e Gini coeffi  cient is a numerical measure of the degree of inequality 
in a distribution, and can be derived directly from the Lorenz curve. 
Looking at the schematic form of the curve above, it is defi ned as the 
ratio of area A to the sum of areas A and B; that is, if the Gini coeffi  cient 
is denoted G then it is defi ned as

A
A B

G

so that  < G < . When there is total equality, the Lorenz curve coincides 
with the 45° line, area A disappears and G = . With total inequality (one 
country having all the income), area B disappears and G =  (in fact this 
is only true for an infi nite number of countries: with N countries the 
maximum value of G is –/(N +)). Neither of these two extremes is 
likely to occur, but in general, the higher is G, the greater the degree of 
inequality.

Th e Gini coeffi  cient can be calculated from the following formula for 
area B:

1
2

B 1 0 1 0 2 1 2 1 1 1x x y y x x y y x x y yk k k k…

Here the x and y values are the horizontal and vertical coordinates of the 
points on the Lorenz curve, with x  =  y  =   and xk  =  yk  =   being the 
coordinates of the two end-points; k being the number of classes. Area A 
is then given by

A 5000 B

(Th is uses the result of the area of a triangle being given by 
base height1

2 . Here, the base and height are both 100, so that the area 
of the triangle defi ned by A + B is 5000). Th us

5000 B
5000

G

Calculating the Lorenz curve and Gini coeffi  cient for the 
income inequality data

Th e calculations required to obtain the two sets of values needed to 
compute the Lorenz curve for the income inequality data are detailed 
in Table 4.5, while Figure 4.6 shows the Lorenz curve itself, which plots 
column (8) of the table against column (6).
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Notes:
Col (4) = col (2) × col (3)
Col (5) = col (3) ÷ 189
Col (6) = col (5) cumulated
Col (7) = col (4) ÷ 2516250
Col (8) = col (7) cumulated

Table 4.5 Lorenz curve calculations

Income 
class
()

Class 
mid-point x

()

No. of 
countries

f
()

f × x
()

f
()


Cumulative

f
()


Income

()


Cumulative

Income
()

-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-    . . . .
-     .  .
-    . . . .
-    . . . .
-    . . . .
-    . . . .

        

-    . . . .
        

-    . . . .
 Totals   . .

From the curve it can be seen that the poorest 25 of countries have 
about 2½ of income, while the richest 10 have 30. Th e curve is fairly 
smooth, and suggests that there is a much greater degree of inequality at 
the top of the distribution than at the bottom.

Using the data in Table 4.5, the Gini coeffi  cient is obtained by fi rst 
calculating B as



Index Numbers

27.51 0 2.58 0 41.27 27.51 6.46 2.58
B 2079.46

100 99.48 100 93.69

1
2

…

Th us

5000 2079.46
0.584

5000
G

or approximately 58. Th is is consistent with other Gini coeffi  cient esti-
mates of world income, which range between 0.56 and 0.66.

On its own, the Gini coeffi  cient does not tell us very much, but it is 
useful for looking at inequality movements across countries or over time. 
Th e developed European countries and Canada have Gini co effi  cients 

Figure 4.6 Lorenz curve for income equality data
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in the range of 0.23 (Sweden) to 0.36, while the US Gini index has con-
sistently been over 0.4 since 1980.4

Notes

Th e source for this price data and the subsequently introduced energy  
consumption data is the Offi  ce for National Statistics and Department of 
Energy and Climate Change (DECC): Quarterly Energy Prices, table 2.1.1, and 
Digest of UK Energy Statistics Annex, table 1.1.5.
Details of the actual construction of the RPI and CPI are given in the  
Consumer Price Indices Technical Manual, 2010 edition, Newport: Offi  ce for 
National Statistics, which is downloadable from www.ons.gov.uk .Th ere has 
been some debate concerning the calculation of the elementary aggregates in 
the construction of the RPI and CPI: see Duncan Elliott, Robert O’Neill, Jeff  
Ralph and Ria Sanderson, ‘Stochastic and sampling approaches to the choice 
of elementary aggregate formula’, Offi  ce for National Statistics Discussion Paper 
(5 October 2012) and History of and Diff erences between the Consumer Prices 
Index and Retail Prices Index (Offi  ce of National Statistics, 2011). 

   Th e elementary aggregates are the pi,t, which are themselves index 
numbers of the prices of the ‘elementary’ goods comprising the i-th 
aggregate: for example, if pi,t is the price of bread, then this is the ‘average’ 
price of all bread products; sliced white loaf, wholemeal loaf, bread rolls, 
ciabatta, pitta ... .
Discussion and empirical analysis of the role of gold as a hedge, particularly  
an exchange rate hedge, can be found in Forrest H. Capie, Terence C. 
Mills and Geoff rey E. Wood, ‘Gold as a hedge against the dollar’, Journal of 
International Financial Markets, Institutions and Money 15 (2005), 343–352. 

   Statistical analyses of gold prices are to be found in Terence C. Mills, 
‘Exploring the relationship between gold and the dollar’, Signifi cance 1 (2004), 
113–115, and ‘Statistical analysis of gold price data’, Physica A 338 (2004), 
559–566.
See  http://en.wikipedia.org/wiki/Gini_coeffi  cient for a useful technical 
discussion of the Gini coeffi  cient and a listing of the various estimates of the 
coeffi  cient for a variety of countries.
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5
Correlation

Abstract: Correlation, as a measure of the strength of 
the relationship between two variables, is introduced 
by analysing several key economic relationships. Aft er 
formally defi ning the correlation coeffi  cient and providing 
a detailed example of its computation, various pitfalls 
in using the measure are discussed, as well as the link 
between correlation and the concept of causality. Th e 
possibility that the correlation between two variables could 
be spurious, it being a consequence of the omission of a 
third variable related to the other two, is discussed; and 
the possible presence of spurious correlation is analysed 
via the calculation of partial correlation coeffi  cients. Some 
examples examining this possibility are provided.
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5.1 Examining the strength of the relationship 
between two variables

When discussing the use of transformations in §3.3, we presented an 
example of the Phillips curve, in which a (non-linear) function was 
fi tted to a scatterplot of infl ation and unemployment rates. In discuss-
ing the fi tted line, it was suggested that the overall fi t was ‘quite loose, 
with many observations lying some distance from the line’, and that a 
measure of ‘goodness of fi t’ would be proposed later. We are now going 
to develop the underlying techniques that will enable such measures to 
be calculated.

To provide a backdrop to this development, consider the scatterplots 
shown in Figures 5.1 to 5.3.

Figure 5.1 again shows the scatterplot of infl ation and unemployment. 
Although there is a noticeable ‘downward drift ’ from the top left  to the 
bottom right in the ‘cloud’ of points, signifying a negative relationship 
between the two variables (that is, high infl ation values are associated 
with low unemployment and vice versa), the dispersion of the cloud tells 
us that any such relationship is fairly weak. Th e superimposed straight 
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Figure 5.1 Scatterplot of UK infl ation and unemployment rates, 1855–2011
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Figure 5.2 Scatterplot of UK real consumption and income, 1948–2010
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line (the linear line of best fi t, whose calculation will be discussed in 
§6.2) serves to emphasise both the negative relationship and the loose-
ness of the fi t.

Figure 5.2, by contrast, shows a very strong positive relationship 
between real consumption expenditure (C) and real income (Y) in the 
UK. Indeed, this strong link between the two variables forms the basis of 
the fundamental equation in macroeconomic models – the consumption 
function.

Yet another contrast is provided in Figure 5.3, which shows the scat-
terplot of output (real GDP) growth and unemployment in the UK. 
Th e cloud of points is shapeless, suggesting no association between the 
two variables, and this is confi rmed by the fi tted line, which is virtu-
ally horizontal, signifying that one particular value of output growth 
(its sample mean, ~2.5) may be associated with any and every rate of 
unemployment.
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5.2 Th e correlation coeffi  cient

While this type of graphical analysis can be quite informative, it is oft en 
the case that we would like a single, summary statistic of the strength of 
the relationship between two variables. Th is is provided by the (sample) 
correlation coeffi  cient, which is defi ned in the following way. Suppose that 
we have a sample of N pairs of observations on the variables X and Y

N NX Y X Y X Y1 1 2 2, , , , , ,…

Th e correlation coeffi  cient is then given by

2 22 2
XY

N XY X Y
r

N X X N Y Y
 

(5.1)

In (5.1) we have omitted the i subscripts in the summations to avoid clut-
tering the notation.

Figure 5.3 Scatterplot of UK output growth and unemployment, 1949–2010
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How does this formula come about? Recall that the sample variance of 
X was defi ned as

22 1Xs X X N

Similarly, the sample variance of Y is
22 1Ys Y Y N

We may also defi ne the sample covariance between X and Y to be

1XYs X X Y Y N

Th is is a measure of how the two variables covary, that is, move together. 
If negative (positive) mean deviations in X are predominantly accom-
panied by negative (positive) mean deviations in Y, then the product of 
these mean deviations, and hence sXY, will be positive. If, however, mean 
deviations of opposite sign predominantly accompany each other, then 
their product and sXY will be negative. Th e covariance thus gives a meas-
ure of the strength and direction of the covariation existing between X 
and Y. It has the disadvantage, however, that it will be measured in units 
that are the product of the units that X and Y are measured in, and hence 
could take a value of any magnitude which would be almost uninterpret-
able in most cases. A scale free measure can be obtained by dividing the 
covariance by the square root of the product of the variances, that is, by 
dividing by the product of the (sample) standard deviations, in which 
case it can be shown that1

1 1XY

X Y

s
s s

In fact, this ratio defi nes the correlation coeffi  cient, that is:

2 2
XY

XY
X Y

X X Y Ys
r

s s X X Y Y
 

(5.2)

Although this looks diff erent to (5.1), the formulae are in fact equivalent, 
as some tedious algebra would demonstrate!2 Formula (5.1) is useful 
when the data is available in its ‘raw’ form, while (5.2) can be used if 
the data is in mean deviation form. Th e latter formula will also be easier 
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to use in subsequent algebraic derivations since, on defi ning the mean 
deviations i ix X X  and i iy Y Y , it can be written concisely as

2 2XY

xy
r

x y  
(5.3)

Th us, rXY >  signifi es a positive correlation between X and Y, with rXY  =   
signifying a perfect positive correlation, where all the points in the scat-
terplot lie exactly on an upward sloping (from left  to right) straight line. 
Conversely, rXY <  signifi es a negative correlation, and rXY  =  – a perfect 
negative correlation, where all the points lie on a downward sloping 
(from left  to right) straight line. X and Y are uncorrelated if rXY  =  , in 
which case the scatterplot has the appearance of a ‘shapeless cloud’.

A simple example: salary, education and experience

Computation of correlations can routinely be done by standard statisti-
cal soft ware, but it can be instructive to work through the calculations 
in a simple example. Table 5.1 shows annual salary Y (in £000) of N  =   
employees of a fi rm, their years of post-school education, X, and years 
of experience with the fi rm, Z, along with the data on these variables 
in mean deviation form. Th ese last columns were calculated using the 
sample means 30Y , 5X  and 10Z .

Table 5.2 provides the various squares, cross-products and their sums 
required to compute correlations.

Table 5.1 Salary (Y), education (X) and experience (Z) data for 12 employees

Employee Y X Z y x z

      
    – – –
      
    –  –
      
     – 
    – – –
    – – –
    –  

    –  –
      
    – – 
Σ      
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Using formula (5.1), the three correlations are calculated as

2 2

12 1912 60 360 0.783
12 338 60 12 11338 360

XYr

2 2

12 3724 120 360 0.976
12 1230 120 12 11338 360

ZYr

2 2

12 625 60 360 0.740
12 338 60 12 1230 120

XZr

while using (5.2), we have

112
0.783

38 538XYr

Table 5.2 Sums of squares and cross-products of the employee data

Employee Y X Z XY ZY XZ

      
      
      
      
      
      
      
      
      

      
      
      
Σ            

Employee y x z xy zy xz

      
      
      
      
      
    –  –
      
      
    –  

      
      
      
Σ            
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124
0.976

30 538ZYr

25
0.740

38 30XZr

Th e three correlations are all positive and high, showing that salary, 
post-school education and work experience are all strongly correlated, 
as can also be seen from the scatterplots in Figure 5.4.

Th ese are presented in the form of a ‘lower-triangular matrix’ showing 
the scatterplots of the three pairs in an obvious and concise way.

We may now calculate the correlation coeffi  cients for the scatterplots 
in Figures 5.1–5.3. Th e infl ation–unemployment correlation is –0.34, so 
that there is a moderately negative correlation between the two variables. 

Figure 5.4 Scatterplots of various salary, education and experience pairs
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Th e correlation between consumption and income is 0.997, indicative of 
the tightness of the association between the two variables, but the cor-
relation between output growth and unemployment is just –0.07, so that 
these two variables are eff ectively uncorrelated and there appears to be 
no association between them.

5.3 Outliers and rank correlation

Like many summary statistics, the correlation coeffi  cient can be heavily 
infl uenced by outliers. Consider the scatterplot shown in Figure 5.5, in 
which the data is obviously ‘contaminated’ by a single outlying observa-
tion, otherwise there would be a perfect correlation of +.

As it is, the sample correlation coeffi  cient is only 0.816 – large, but 
some way below unity. One way of dealing with the outlier is to compute 
a (Spearman’s) rank correlation coeffi  cient. Rather than using the raw data, 
this uses the ranks of the data instead, these being the position of each 
value of a variable when the values are ranked in ascending order (as 
in the computation of the median in §2.2). Th e calculations that are 

Figure 5.5 Perfect correlation contaminated by an outlier
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required to compute a rank correlation for the data in Figure 5.5 are 
shown in Table 5.3.

Here d  =  rank(X)–rank(Y) is the diff erence in ranks, and the rank cor-
relation is given by

2

2 2

6 6 21 1 0.991
1 11 11 1

s
XY

d
r

N N

Th us the rank correlation, at 0.991, is much closer to unity than is the 
standard correlation coeffi  cient.

In the absence of outliers, the rank correlation will be similar to the 
ordinary correlation: for example, for the employee data set, 0.735s

XYr , 
0.980s

ZYr  and 0.680s
XZr .

5.4 Correlation and causation

It is oft en tempting to conclude that when a large correlation between 
two variables is found, one of the variables in some sense causes the 
other.3 Such a temptation should be resisted because, unless we are able 
to invoke a feasible causal theory that posits that changes in one vari-
able produces changes in the other, correlation does not imply causation. 
Sometimes there is a ‘natural’ causal ordering: it is hard to believe that 
the large correlation found between salary and years of post-school edu-
cation refl ects other than a causal link from the latter to the former, as 
the reverse link would be ‘time inconsistent’. However, the negative cor-
relation between infl ation and unemployment found in Figure 5.1 could 

Table 5.3 Calculations for the rank correlation coeffi  cient of the data in Figure 5.5

X Y Rank(X) Rank(Y) d d2

 .    
 .    
 .    
 .    
 .    
 .    
 .    
 .    
 .    
 .   - 
 .    
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just as well be argued to represent a causal eff ect running from unem-
ployment to infl ation (high unemployment leads to lower demands for 
wage increases and hence lower infl ation) as one running from infl ation 
to unemployment (workers price themselves out of a job by demand-
ing wages that keep up with infl ation). Even the consumption–income 
relationship is by no means clear cut: the consumption function states 
that consumption is a function of income, but the national accounting 
identity has income defi ned as the sum of consumption, investment, 
government expenditure, etc., thus making the relationship one of simul-
taneity, that is, the two variables jointly infl uence each other.4

5.5 Further pitfalls in correlation analysis

Consider the data on the variables X and Y tabulated in Table 5.4.
Th e correlation between the two is clearly zero since the covariance is 

0xy , and hence it appears that X and Y are unrelated. However, the 
scatterplot of the two variables, shown in Figure 5.6, belies that conclu-
sion: it shows that they are, in fact, perfectly related, but that the relation-
ship is non-linear, as all the data points lie on the circle Y + X  =  , so 
that 29Y X .

Th is illustrates the important point that correlation is a measure of 
linear association and will not necessarily correctly measure the strength 
of a non-linear association. Th us, for example, the correlation of –0.34 
between infl ation and unemployment may well underestimate the 

Table 5.4 Data on two non-linearly related variables: Y2 + X2 = 9

Y X YX = yx Y2 = y2 X2 = x2

  –   
 . – –.  
 . – –.  
 .    
 .  .  
 .  .  
 .    
 -. – .  
 -. – .  

 -.    
 .  –.  
 .  –.  
Σ     



 Analysing Economic Data: A Concise Introduction

strength of the relationship if, as suggested by the earlier Phillips curve 
analysis of §3.3, it is really a non-linear one.

Another way that correlation can give a misleading measure of 
association is when the observed correlation between two variables is a 
consequence of both being related to a third variable. Th is gives rise to 
the phenomenon known as spurious correlation.

Salary, education and experience revisited

In this example we found that all three variables were highly correlated 
(the correlation coeffi  cients were calculated as 0.783, 0.976 and 0.740), 
so that it is possible that the large positive correlation between, for 
example, salary and education may be due to both variables being highly 
correlated with years of work experience.

To ascertain whether this may be the case, we can calculate the set of 
partial correlation coeffi  cients. Th ese coeffi  cients measure the correlation 
between two variables with the infl uence of the third removed or, to be 
more precise, ‘held constant’. Th e partial correlation between Y and X 
with Z held constant is defi ned as5

. 2 21 1
XY XZ YZ

XY Z
XZ YZ

r r r
r

r r

Figure 5.6 Scatterplot of the data in Table 5.5 showing the relationship Y2 + X2 = 9
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Only if both rXZ and rYZ are both zero, that is, if both X and Y are uncor-
related with Z, will the partial correlation rXY.Z be identical to the ‘simple’ 
correlation rXY. Th us, the partial correlation between salary and educa-
tion with experience held constant is

. 2 2

0.783 0.740 0.976
0.414

1 0.740 1 0.976
XY Zr

Th is is rather smaller than the simple correlation, and suggests that the 
strong positive correlation between salary and education may be spuri-
ous and could be a ‘statistical artefact’ produced by omitting experience 
from the analysis. Similarly

2 2
0.178

1 1
XZ XY ZY

XZ Y

XY ZY

r r rr
r r

and

2 2
0.948

1 1
YZ XY ZX

YZ X

XY ZX

r r r
r

r r

Th e latter partial correlation shows that the strength and sign of the 
association between salary and experience holds up on taking account 
of education, so that it is really experience that is the ‘driver’ of salary, 
rather than education.

Consumption, income and time trends

Figure 5.7 presents the time series plots of the consumption (C) and 
income (Y) series that produced the scatterplot in Figure 5.2.

Both have pronounced upward movements throughout the sample 
period, that is, they have time trends. This is behaviour typical of 
macroeconomic aggregates, but prompts the question of whether the 
very strong correlation between the two series (0.999) might, at least 
in part, be a consequence of a shared correlation with time itself. A 
time trend variable can be defined as t  =  , , , ..., i.e., it takes the 
value 1 for the first observation of the sample, here 1948, the value 
2 for the second observation (1949), and so on up to 63 for the last 
observation, 2010.

Th e simple correlations between consumption and t and income and 
t are rCt  =  . and rYt  =  ., respectively, confi rming the presence of 
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the time trends in each variable. Th e partial correlation between con-
sumption and income is then

. 2 2

2 2

1 1

0.999 0.969 0.976
0.988

1 0.969 1 0.976

CY Ct Yt
CY t

Ct Yt

r r r
r

r r

Although a little smaller than the simple correlation, the partial correla-
tion is still large, so that the strong association between consumption and 
income is not spurious and is not simply a consequence of their sharing 
a common time trend. Th is, of course, is good news for macroeconomics 
as the relationship between the two variables is central to all models of 
the macroeconomy!

Notes

Th ere are several ways of showing this inequality. One that requires nothing  
more than summations and basic algebra is to defi ne i ix X X= −  and j jy Y Y= −  
and to consider the double summation

Figure 5.7 Real consumption (C) and income (Y), 1948–2010
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2

i j j ii j
x y x y

  which must clearly be non-negative. Th is expression may be expanded as

22 2 2 2 2 22 2 0i j j i i i j j i i i ii j j i i j i i i
x y x y x y x y x y x y

  so that it must be the case that 
22 2 2 1XYr xy x y  and hence 

that – ≤ rXY ≤ . Th e expression for 2
XYr  is known as the Cauchy–Schwarz 

inequality. Th e square of the correlation coeffi  cient, 2
XYr , will be shown to be a 

useful statistic for measuring the goodness of fi t of regressions in §6.14.
It is perhaps easiest to show this equivalence by considering the numerator  
and denominator of (5.2) separately. Beginning with the numerator, we have

1

X X Y Y XY XY XY XY

X Y X Y X Y
XY

N N N
N N XY X Y

which is N– times the numerator of (5.1). Similarly for the denominator of 
(5.2):

2 2 2 2 2 2

2 2 2 2
2 2

2 2
2 2

2 22 2 2

2 2

2 2

X X Y Y X XX X Y YY Y

X X Y Y
X Y

N N N N

X Y
X Y

N N

N N X X N Y Y

which, on taking the square root, gives N– times the denominator of (5.1). 
On taking the ratio of these two expressions, the factor N– cancels out, thus 
showing the equivalence of (5.1) and (5.2).
We do not attempt to give a formal defi nition of what is meant by causality,  
as this is still the subject of great philosophical debate! Two important, 
but technically diffi  cult, references are Arnold Zellner, ‘Causality and 
econometrics’, in K. Brunner and A.H. Meltzer (editors), Th ree Aspects of 
Policy and Policymaking: Knowledge, Data and Institutions, Carnegie–Rochester 
Conference Series on Public Policy 10 (1979), 9–54, and Paul W. Holland, 
‘Statistics and causal inference’, Journal of the American Statistical Association 
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81 (1986), 945–960. A recent and more accessible discussion is Kevin 
Hoover, ‘Causality in economics and econometrics’, in S.N. Durlauf and 
L.F. Blume (editors), Th e New Palgrave Dictionary of Economics, 2nd edition 
(Palgrave Macmillan, 2008). Th e concept of Granger causality is widely used 
in economics: see, for example, Clive W.J. Granger, ‘Testing for causality: 
a personal viewpoint’, Journal of Economic Dynamics and Control 2 (1980), 
329–352.
A simple national accounting identity has  Y = C + I + G, to use a standard 
notation, so that if the consumption function has the linear form C = a + bY 
then it is clear that Y and C are simultaneously determined. Discussions of this 
fundamental problem in applied economics may be found in the chapters by 
Aris Spanos, Kevin Hoover, and Duo Qin and Christopher Gilbert in Terence 
C. Mills and Kerry Patterson (editors), Th e Palgrave Handbook of Econometrics, 
Volume 1: Econometric Th eory (Palgrave Macmillan, 2006). Th is problem is 
considered further in §16.2.
A derivation of this formula is given in  §6.4.
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6
Regression

Abstract: Regressions are introduced as straight lines 
fi tted through a scatterplot. Th e calculation of a regression 
as the ‘line of best fi t’, obtained by minimising the sum 
of squared vertical deviations about the line (the least 
squares approach), is developed. Th is provides the least 
squares formulae for estimating the intercept and slope, 
and the interpretation of the regression line is discussed. 
Th e links between correlation, causation, reverse regression 
and partial correlation are investigated. Further issues 
involving regressions, such as how to deal with non-
linearity, the use of time trends and lagged dependent 
variables as regressors, and the computation of elasticities, 
are all developed and illustrated using various economic 
examples.
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6.1 Correlation and regression

In the discussion of correlation in Chapter 5, a fi tted line was oft en 
superimposed on scatterplots to help visually assess the strength of the 
association between the two variables (recall Figures 5.1–5.3). Th ese fi tted 
lines are in fact regressions and, while closely related to correlation coef-
fi cients, they off er a more sophisticated and powerful way of examining 
the relationship between two (or indeed more) variables. Th ese strengths 
will be brought out in detail during this chapter, but we begin by focus-
ing on how a regression line is calculated.

6.2 Calculating a regression: the ‘line of best fi t’
Th e statistical set-up of regression is the same as that for correlation: a 
sample of N pairs of observations on the variables X and Y

1 1 2 2, , , , , ,N NX Y X Y X Y…

Rather than compute the correlation between the two variables, we now 
wish to fi t a (sample) regression line. Suppose we choose to fi t the line

î iY a bX  (6.1)

Here îY  is the predicted value of Y given Xi, while the intercept, a, and slope, 
b, are coeffi  cients. Th is is illustrated using the data on salary (Y) and 
post-school education (X) used in previous examples in Chapter 5 (see 
Tables 5.1 and 5.2). Th e scatterplot and fi tted line are shown as Figure 6.1: 
the line is actually

ˆ 15.263 2.947Y X

How did we arrive at these numbers (known as estimates) of a and b? 
To fi nd out, we fi rst have to introduce the concept of a regression residual. 
Th is is the diff erence between the observed value Yi and the value pre-
dicted by the regression line, îY , that is, ˆ

i i ie Y Y . Geometrically, it is the 
vertical distance from a point in the scatter to the fi tted line.

Equivalently, we can write

ˆ
i i iY Y e  (6.2)

Substituting (6.1) into (6.2) gives

i i iY a bX e  (6.3)
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so that the regression line splits Yi into two components: (i) a part 
‘explained’ by Xi, given by a + bXi; and (ii) the residual, ei, that is left  
unexplained by Xi. In a good fi t, part (i) should be as large as possible or, 
equivalently, the residuals should be as small as possible.

But what do we mean by the phrase ‘the residuals should be as small 
as possible’? We actually mean that we should minimise some function 
of the residuals that will produce the ‘line of best fi t’. Th is function can be 
shown to be the ‘sum of squared residuals’, so that a and b are chosen to 
be those values which minimise the sum of squared residuals (geometrically, 
the sum of the squared vertical distances from the regression line): this is 
known as the least squares criteria.1 Mathematically, the task is to choose 
those values of a and b that minimise

22
1 1

N N

i i ii i
e Y a bX  

(6.4)

Finding a solution to (6.4) requires the use of diff erential calculus, and 
such a solution is provided in §12.1. Th e resulting formulae for the least 
squares estimates a and b are

2 22

N XY X Y xy
b

xN X X
 

 (6.5)

Figure 6.1 Scatterplot of salary (Y) on education (X) with fi tted line 
superimposed
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a Y bX  
(6.6)

For the salary and education data, we thus have

2

12 1912 60 360 112
2.947

12 338 60 38
b

and

30 2.947 12 15.263a .

6.3 Interpreting the regression line

Th e fi tted regression line ˆ 15.263 2.947Y X  may be interpreted in the 
following way.

Th e intercept a  =  . is the value taken by Ŷ  when X  =  , i.e., it 
measures the predicted salary, £15,263, of an employee with no post-
school education. Th e slope b  =  . measures the increment to salary 
for each additional year of post-school education: one year of such edu-
cation is predicted to increase salary by 2.947 (that is, £2,947), two years 
is predicted to increase salary by . × 2  =  5.894, etc.

Presumably, this logic cannot be taken to extremes. Th e maximum 
X value in the sample is 8, that is, eight years of post-school education, 
which in itself seems to be taking the idea of a ‘perpetual student’ a 
bit far! Larger values of X are thus extremely unlikely, and even if they 
did occur might not follow the same linear relationship with Y, as the 
employer may not wish to pay such a large salary to someone who may 
be academically overqualifi ed and/or dilatory. Care must therefore 
be taken when using regression fi ts to predict the behaviour of Y for 
values of X outside their usual range: this is known as the ‘perils of 
extrapolation’.2

6.4 Correlation, causation and reverse regression

When discussing correlation, it was emphasised in §5.4 that unless we 
are able to invoke a feasible causal theory positing that a change in one 
variable produces a change in the other, correlation does not imply cau-
sation. In contrast, the set-up of a regression model implicitly assumes 
that such a causal theory exists by designating one variable, Y, to be the 
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dependent (or endogenous) variable and the other, X, to be independent (or 
exogenous): the equation Y  =  a + bX formalises the theory that changes in 
X produce changes in Y and not vice versa. Regression thus goes a stage 
further than correlation by assuming a causal link running from X to Y.

As discussed earlier, salary and years of post-school education have 
a natural, temporal causal ordering running from education to sal-
ary, which was why we estimated the regression model above. As was 
pointed out, however, in other cases such a causal ordering may be less 
clear-cut, so that regressing X on Y may be just as legitimate as regress-
ing Y on X. Given that we are following the usual convention of plotting 
the Y-variable on the vertical axis and the X-variable on the horizontal, 
the reverse regression of X on Y is, geometrically, obtained by minimis-
ing the sum of squared horizontal distances from the regression line. 
Mathematically, the formulae for estimating the intercept c and slope d 
of the line ˆ

i iX c dY  are obtained by interchanging X and Y in equa-
tions (6.5) and (6.6):

2 22

N XY X Y xy
d

yN Y Y

c X dY

Th us, for the regression of post-school education on salary, even though 
the regression is clearly theoretically inappropriate, we obtain

112
0.208

538
d

   
5 0.208 30 1.245c

An interesting result concerns the product of the slopes of the direct (Y 
on X) and reverse (X on Y) regressions, which is

2

2
2 2 XY

xy
bd r

x y

that is, the product of the slope coeffi  cients is the squared correlation 
between X and Y. If 2

XYr  is close to 1, b  ≈/db, and the two regressions will 
be close to each other. Note also that

2
2 2 2 2 2 2

XY XY
XY

Y X

xy xy xy xys s
r b d

x y s y x s
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Here, we have
22.947 0.208 0.614 0.783bd

so that the direct and reverse regressions are distinct, as can be seen from 
Figure 6.2.

Th e quantity 2
XYr  has an important interpretation: it measures the 

proportion of the variation in the dependent variable that is explained 
by the regression. To show this, substitute (6.6) into (6.4):

2 22 2 2 2

2 2 2

2 2

2
2 2

2

2
2

2

2
2 2

2 2

2

2

2

1

1 XY

e Y Y bX bX y bx y bxy b x

y b xy b x

xy xy
y

x x

xy
y

x

xy
y

x y

y r
 

(6.7)

Figure 6.2 Direct and reverse regressions of Y and X
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Th us
2 2 2

2
2 21XY

e y e
r

y y

Since 2 2y e  is clearly that part of the variation in y that is explained 
by the regression, 2

XYr  is the proportion of that variation explained by 
the regression. Th us 2 0.614XYr  implies that 61.4 of the variation in Y 
is explained by the regression ˆ 15.263 2.947Y X , leaving 38.6 unex-
plained and captured by the residual. For this reason 2

XYr  is oft en referred 
to as a measure of goodness of fi t. Note that 2 0.614XYr  also implies 
that 61.4 of the variation in X is explained by the reverse regression 
ˆ 1.245 0.208X Y .

Of course, a positive correlation implies a positive relationship 
between the two variables, which in turn implies that the slope b will be 
positive. Th is can be shown formally through

2

22 2 2

1

1
X

XY
Y

x Nxy xy s
r b

x sx y y N
 

(6.8)

Since the ratio of the sample standard deviations sX/sY must be positive, 
rXY and b must be of the same sign (or both be zero).

A link with partial correlations

The result in (6.7) may be used to derive the partial correlation coef-
ficient introduced in §5.5. Consider the residuals from the regres-
sions of Y on X, Y on Z and X on Z, using an obvious distinguishing 
notation:

YX YXe y b x ,  YZ YZe y b z  XZ XZe x b z

where we use the result implicit in the fi rst line of (6.7) that equation 
(6.3), Y  =  a + bX +e, and y  =  bx + e are equivalent ways of expressing 
a regression depending upon whether the data is measured in raw or 
mean deviation form. Th e partial correlation rYX.Z is then defi ned as the 
correlation between eYZ and eXZ, the residuals from the Y on Z and X on 
Z regressions, respectively, that is, it is the correlation between Y and X 
with the common infl uence of Z having fi rst been ‘purged’ by  regressing 
Y and X on Z:3
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. 2 2

YZ XZ
YX Z

YZ XZ

e e
r

e e

From (6.7), and using the expressions in §5.2, we have

2 2 21 1YZ Y YZe N s r

2 2 21 1XZ X XZe N s r

Some algebra shows that the covariance between eYZ and eXZ can be 
 written as4

1YZ XZ X Y XY YZ XZe e N s s r r r

so that it follows immediately that

. 2 2 2 21 1

YZ XZ XY YZ XZ
YX Z

YZ XZ YZ XZ

e e r r r
r

e e r r

6.5 Dealing with non-linearity

In discussing transformations of variables in §3.3, we presented a fi tted 
Phillips curve, namely

1
1.4 4.4

U
π

 
(6.9)

Th is non-linear function can be estimated by our (linear) regression 
technique by defi ning Y  =  π (infl ation) and X  =  /U (inverse unemploy-
ment). As long as the function is linear in the coeffi  cients a and b, as it is 
here (π  =  a + bU ), then linear regression can be used aft er the trans-
formed variables have been computed. Th us, for example, powers, such 
as X  and X , are straightforward to incorporate, as are logarithms and 
many other transformations.

Interestingly, the fi tted Phillips curve (6.9) may be compared to the 
linear regression fi t, which may be calculated to be

6.0 0.6Uπ

Th e two fi ts are shown graphically in Figure 6.3, but it is diffi  cult to assess 
from this fi gure which of the two equations should be preferred.
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Th e goodness of fi t measures from the two regressions are 2
,1 0.108Urπ  

and 2 0.113Urπ  so that, in fact, the linear regression provides a slightly 
better fi t than the Phillips curve, although both only explain ~11 of 
the variation in infl ation. Th is suggests that there is only a very weak 
relationship between infl ation and unemployment over the last 150 years 
or so in the U.K.

6.6 Regression on time trends and lagged 
dependent variables

In discussing spurious correlation in §5.5, we argued that both consump-
tion and income in the UK contained time trends, as both series were 
very highly correlated with time. Given the link between correlation 
and regression, another way of analysing this feature is to consider using 
time as the independent variable (sometimes referred to as the regres-
sor) in a regression, that is, if we have T observations on the variable Y, 
Y,Y, …,YT, then the time trend regression is

t tY a bt e

Figure 6.3 Phillips curve and linear fi ts to UK infl ation and unemployment rates, 
1855–2011
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Figure 6.4 plots the U.K. consumption series (C) and superimposes upon 
it the fi tted linear trend ˆ 158600 15460C t , which has a goodness of fi t 
of 2 20.939 0.969Ctr .

Th is trend has the interpretation that as t increases by one (year) C 
increases by 15460; in other words, as each year passes the trend in con-
sumption increases by this amount, starting from  +   =   
in year 1 (1948).

Although the goodness of fi t is pretty high at 94, the linear trend fails 
to capture the modest curvature in the series, as the trend under-predicts 
consumption in the early and later years of the sample and over-predicts 
it during the central years. Th is non-linearity could be captured by fi t-
ting a quadratic trend, which would require the technique of multiple 
regression (to be discussed in Chapter 13), but a better alternative here is 
to follow the approach of §3.2, and fi rst linearise consumption by taking 
logarithms and then fi t a linear trend. If we do this we obtain 2

ln , 0.993C tr  
and

ˆln 12.52 0.024C t

Th e plot of lnC with its fi tted trend is shown in Figure 6.5, and this pro-
vides a superior fi t to the linear trend of Figure 6.4 in the sense that the 

Figure 6.4 U.K. consumption, 1948–2010, with fi tted trend ˆ 158600 15460C t
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linear evolution of the logarithm of consumption is now closely fi tted by 
the time trend.

Th e regression of lnY on t has, in fact, a very important interpretation. 
At time t, the trend model is given by

ˆln tY a bt  (6.10)

whereas one time period earlier, at t–, it is given by

1
ˆln 1tY a b t  

(6.11)

Subtracting (6.11) from (6.10) gives

1
ˆ ˆln lnt tY Y a a bt bt b

which is, on recalling §3.2,

1
ˆ ˆ ˆln ln lnt t tY Y Y bΔ

In other words, the slope coeffi  cient b can be interpreted as the trend 
growth rate of Y. For consumption, b = ., so that trend consumption 
growth over the period 1948–2010 has been 2.4 per annum.

Figure 6.5 Logarithms of UK consumption with fi tted linear trend 
ˆln 12.52 0.024C t
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In models of this type, the residuals et  =  lnYt– a – bt also have an 
interesting interpretation as the deviation from the trend growth path of Y. 
For macroeconomic aggregates like consumption, income and output, 
such deviations can be thought of as business cycle fl uctuations. Th us, if we 
look carefully at Figure 6.5, negative residuals (when the actual value is 
below trend) correspond to periods of recession, while positive residuals 
correspond to periods of above-trend growth, expansion. For example, 
the decade from the late 1970s to the late 1980s saw consumption below 
trend, which was thus a recessionary period, while the late 1980s to the 
early 1990s and the years from 1997 saw above-trend growth until 2009, 
when the recessionary impact of the credit crunch began to be felt.

Fitting a linear trend to the logarithms of income gives 
ˆln 12.66 0.025tY t , which is very similar to the consumption trend. 

One of the key theories of aggregate consumption behaviour is that over 
long periods of time trend growth in consumption and income should 
be the same, and this appears to be borne out by the UK data.5

An alternative way of dealing with trending behaviour is to explain 
the current level of a variable, Xt, by the value it took last period, Xt–; we 
say that we include the lagged dependent variable as a regressor:

1t t tX a bX e

If we have data from t =  up to T, then a regression can only be run 
on the last T –  observations, that is, from t =  to T, because for t = , 
Xt–  =  X, which is the value of X immediately before the sample and is 
therefore not available to us. Th us the formula for the slope coeffi  cient 
estimate is

12
1 2

1

T
t tt

T
tt

x x
b

x

For the logarithm of income, the lagged dependent variable regression is

1
ˆ ˆln 0.113 0.993lnt tY Y

Th e estimate of b is seen to be very close to 1: if b  =   then we would have 
the general model

1t t tX a X e
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Th is is known as a random walk (with drift ) and is a very important model 
in theories of dynamic economic behaviour, particularly fi nancial theo-
ries.6 Not every economic series is a random walk or necessarily close to 
being one. Th e lagged dependent variable model for infl ation over the 
same period beginning in 1948 is

11.23 0.78t t teπ π

Here b = ., which is some way below 1. Th e size of b in models of this 
type can be thought of as measuring the degree of persistence in a time 
series, that is, how strongly the current value is related to past values. For 
the UK, it would thus appear that income is much more persistent than 
infl ation, but this would be a fl awed comparison, for we are not com-
paring like with like. Recall that infl ation is the growth rate of the price 
level, so for a fair comparison we should compare the lagged dependent 
variable model for infl ation with a similar model for income growth, 
ΔlnYt. Regressing income growth on its lagged value gives b = ., so 
that infl ation is, in fact, rather more persistent than income growth.

6.7 Elasticities

A very important concept in economics is that of elasticity, which is the 
proportionate change in Y in response to a proportionate change in X. 
Mathematically, the elasticity is defi ned as

YX

dY Y dY X
dX X dX Y

η

If we have the linear relationship Y  =  a + bX then, since dY/dX  =  b, the 
elasticity is

YX

X
b
Y

η

If we have a fi tted regression line, then the slope estimate can be used for 
b, but note that the elasticity depends on the pair of X and Y values and 
will thus change over the sample. As an example, the linear consumption 
function for the scatterplot in Figure 5.2 is estimated to be

ˆ 4708 0.86t tC Y
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so that the income elasticity of consumption is7

0.86 t
t

t

Y
C

η

and the estimated elasticities for, say, 1948, 1980 and 2010 (at the begin-
ning, in the middle and at the end of the sample period) are

1948
1948

1948

314496
0.86 0.86 0.94

288538
Y
C

η

1980
1980

1980

698528
0.86 0.86 1.02

589955
Y
C

η

2010
2010

2010

1395312
0.86 0.86 0.99

1211287
Y
C

η

Th e complete series of elasticities is shown in Figure 6.6, and they are 
seen to fl uctuate around unity throughout the sample period.

Rather than calculate the entire set, the average elasticity is oft en 
reported

Figure 6.6 Income elasticities of consumption, 1948–2010
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Y
b
C

η

For the above data, we have

764887
0.86 1.01

653330
η

Th us the average income elasticity of consumption over the period 1948 
to 2010 is very close to one, implying that, on average, an x change in 
income produces an x change in consumption.8

Suppose now that we have a log–linear consumption function

ln lnC a b Y

Standard results from calculus give

ln
ln

d C
b

d Y   

ln 1d C
dC C   

ln 1d Y
dY Y

so that

ln
ln

dC C d C C
b

dY Y d Y Y

and

CY

C Y
b b

Y C
η

that is, for a log–linear model the elasticity is constant and given by the 
slope b. Th e estimated log–linear consumption function is

ˆln 0.09 0.98lnC Y

so that the elasticity is now estimated to be constant at 0.98, close to the 
unit elasticity result arrived at above.

Notes

Th e method of least squares is traditionally thought to have been originally  
proposed by Carl Friedrich Gauss in the early years of the 19th century, 
although there is now some dispute about this: see, for example, Robin L. 
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Plackett, ‘Th e discovery of the method of least squares’, Biometrika 59 (1972), 
239–251, and Stephen M. Stigler, ‘Gauss and the invention of least squares’, 
Annals of Statistics 9 (1981), 463–474. Notwithstanding these debates over 
priority, least squares has since become one of the most commonly used 
techniques in statistics, and is the centrepiece of econometrics.
Mark Twain,  Life on the Mississippi (Harper, 1883), chapter 22, gives an 
entertaining example of the perils of extrapolation:

 In the space of one hundred and seventy six years the Lower Mississippi 
has shortened itself two hundred and forty-two miles. Th at is an average 
of a trifl e over a mile and a third per year. Th erefore, any calm person, 
who is not blind or idiotic, can see that in the Old Oölitic Silurian Period, 
just a million years ago next November, the Lower Mississippi was 
upwards of one million three hundred thousand miles long, and stuck 
out over the Gulf of Mexico like a fi shing-pole. And by the same token 
any person can see that seven hundred and forty-two years from now the 
Lower Mississippi will be only a mile and three-quarters long, and Cairo 
[Illinois] and New Orleans will have joined their streets together and be 
plodding comfortably along under a single mayor and a mutual board of 
aldermen. Th ere is something fascinating about science. One gets such 
wholesale returns of conjecture out of such a trifl ing investment of fact.

Note that the residuals from any regression must have zero mean, since 

0e y bx y b x

  as 0y x  by defi nition.

Using (6.8) we have  YZ YZ Y Zb r s s  and XZ XZ X Zb r s s , so that

2
2 2 2

YZ XZ YZ Y Z XZ X Z

Y X Y Z X Z
YZ XZ YZ XZ

Z Z Z

e e y r s s z x r s s z

s s s s s s
yx r r z r zx r zy

s s s

  Substituting the following expressions

2 21 , 1 , 1

1

YX X Y Z ZX Z X

ZY Z Y

yx N r s s z N s zx N r s s

zy N r s s

  and simplifying then leads to the required expression.
Th e idea that consumption and income grow at the same trend rate is an  
implication of the fundamental equation of neoclassical economic growth, which 
has a steady-state solution which exhibits ‘balanced growth’. Th e model is oft en 
referred to as the Solow growth model: Robert M. Solow, ‘A contribution to the 
theory of economic growth’, Quarterly Journal of Economics 71 (1956), 65–94.
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Th e term  random (or drunkard’s) walk was fi rst coined in a correspondence 
between Karl Pearson and Lord Rayleigh in the journal Nature in 1905. 
Although fi rst employed by Pearson to describe a mosquito infestation 
in a forest, the model was subsequently, and memorably, used to describe 
the optimal search strategy for fi nding a drunk who had been left  in the 
middle of a fi eld at the dead of night! Th e solution is to start exactly where 
the drunk had been placed, as that point is an unbiased estimate (see §11.1) 
of the drunk’s future position since he will presumably stagger along in an 
unpredictable and random fashion: ‘(t)he lesson of Lord Rayleigh’s solution 
is that in open country the most probable place to fi nd a drunken man who 
is at all capable of keeping on his feet is somewhere near his starting point’. In 
fact, random walks were fi rst formally introduced in 1900 by Louis Bachelier 
in his doctoral dissertation Th éorie de Speculation, although he never used 
the term. Under the supervision of the famous mathematician and polymath 
Henri Poincaré, Bachelier developed the mathematical framework of random 
walks in continuous time (where it is termed Brownian motion) in order 
to describe the unpredictable evolution of stock prices. Th e dissertation 
remained unknown until it was rediscovered in the mid-1950s aft er the 
mathematical statistician Jimmie Savage had come across a later book by 
Bachelier on speculation and investment. A translation of the dissertation 
(‘Th eory of speculation’) by James Boness was eventually published in 1964 
in Paul Cootner (editor), Th e Random Character of Stock Market Prices (MIT 
Press), pp. 17–78. Random walks were independently discovered by Albert 
Einstein in 1905 and, of course, have since played a fundamental role in 
mathematics and physics as models of, for example, waiting times, limiting 
diff usion processes, and fi rst-passage-time problems. A popular account of 
the model and its implications for many facets of life is Leonard Mlodinow, 
Th e Drunkard’s Walk: How Randomness Rules Our Lives (Penguin, 2009).
Note that we have dropped the  YX subscripts on η to ease ‘notational 
clutter’ but have added t subscripts to emphasise that the elasticity changes 
over time. Also, be aware of potential confusion caused by income, the 
independent variable, being denoted Yt.
Th is unit elasticity result is a key component  of the popular error correction 
model of consumption: see, for example, James Davidson, David Hendry, 
Frank Srba and Stephen Yeo, ‘Econometric modelling of the aggregate time 
series relationship between consumer’s expenditure and income in the 
United Kingdom’, Economic Journal 88 (1978), 661–692.
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7
Basic Concepts of Probability

Abstract: Aft er discussing some introductory concepts in 
statistical inference and contrasting these with our previous 
emphasis on exploratory data analysis, the basic axioms 
of probability are introduced, along with the additive 
and multiplication rules for computing probabilities 
of compound events. To aid in such computations, the 
counting rules for combinations and permutations are 
introduced. Bayes theorem is discussed, as are the various 
defi nitions of probability – classical, relative frequency and 
subjective – and it is emphasised that all defi nitions follow 
the same axioms and rules.
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7.1 Probability theory and statistical inference

Our analysis of data has so far been purely descriptive, in the sense that 
we have taken the data ‘as it comes’ and have attempted to investigate 
its basic features: this is oft en known as exploratory data analysis.1 While 
this is an essential fi rst step in analysing any set of data, it does have 
its limitations and is unable to provide answers to many interesting and 
important questions that economists may wish to ask. Th is is primarily 
because no attention has yet been paid as to how the observations – our 
sample of data – have been obtained. Th is might, at fi rst sight, seem a 
curious question: aft er all, we typically just analyse the observations that 
are available to us. But some refl ection on the data used in the examples 
of previous chapters should suggest that there are some intriguing diff er-
ences in the way the observations have ‘come to us’.

Consider fi rst the observations on employee’s salary, post-school 
education and years of work experience used in several examples. Now, 
it might be the case that this was a very small fi rm with just these 12 
employees, so that the data consists of a complete enumeration of the 
population of the fi rm’s employees. However, suppose that the fi rm has 
many more than 12 employees, so that our data represents a sample from 
the population. How can we be sure that this is a representative sample, 
one that reproduces the key features of the population? For example, are 
the sample means likely to be good estimates of the population mean 
salary, etc? From what we know, which is basically nothing, we cannot 
answer this question – the fi rm’s senior management, who presumably 
have very high salaries, probably several years of post-school education, 
and almost certainly many years of work experience, may not feature in 
the sample, thus potentially biasing the sample means considerably.

Now recall the examples in which income for a ‘wide cross-section of 
countries in 2009’ was analysed. If you look again at Table 2.1, data for 
189 countries was actually available, but the number of countries in the 
world is commonly thought to be larger than this, so that the analysis 
has again been carried out on an (admittedly large) sample from the 
population of countries.2 Is this sample likely to be representative of the 
population as a whole? Th e missing data typically comes from countries 
whose income is likely to be relatively low. As a consequence, the mean 
and median income estimated from the available sample are almost 
certainly too high, and the histogram shown in Figure 2.1 probably 
underestimates the degree of skewness in the income distribution.
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What about time series data? Surely this is a complete enumeration 
of the population, as the observations represent what has actually 
occurred in the past. Again, some refl ection suggests potential diffi  cul-
ties. Table 2.2 lists annual infl ation for the UK but, as we have seen, 
data on the underlying price index might be available, say, monthly. 
How was annual infl ation calculated? Does it measure the proportion-
ate rate of increase in prices from December of one year to December 
of the next, or does it measure it from June to June, or does it take the 
average price of the 12 months of one year and compare this with the 
corresponding average of the next year? All these will give diff erent 
infl ation values and hence, for example, diff erent estimates of mean 
infl ation. Is the estimate that we end up with representative of the 
population mean infl ation rate?3

Whenever we have available just a sample of data from a population – 
and this, as we have seen, is the typical situation however the data is 
generated – then we need to be able to infer the (unknown) values of 
the population characteristics from their estimated sample counter-
parts. Th is is known as statistical inference and requires the knowledge 
of basic concepts in probability and an appreciation of probability 
distributions.

7.2 Basic concepts in probability

Many, if not all, readers will have had some exposure to the basic con-
cepts of probability, so our treatment here will be accordingly brief. We 
will begin with a few defi nitions, which will enable us to establish a 
vocabulary.

An  ▸ experiment is an action, such as tossing a coin, which has a 
number of possible outcomes or events, such as heads (H) or tails (T).
A  ▸ trial is a single performance of the experiment, with a single 
outcome.
Th e  ▸ sample space consists of all possible outcomes of the 
experiment. Th e outcomes for a single toss of a coin are [H,T], for 
example. Th e outcomes in the sample space are mutually exclusive, 
which means that the occurrence of one outcome rules out all the 
others: you cannot have both H and T in a single toss of the coin. 
Th ey are also exhaustive, since they defi ne all possibilities: you can 
only have either H or T in a single toss.
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With each outcome in the sample space we can associate a  ▸

probability, which is the chance of that outcome occurring. Th us, if 
the coin is fair, the probability of H is 0.5.

With these defi nitions, we have the following probability axioms.

Th e probability of an outcome  ▸ A, P(A), must lie between 0 and 1, 
i.e.

0 1P A   (7.1)

Th e sum of the probabilities associated with all the outcomes in the  ▸

sample space is 1. Th is follows from the fact that one, and only one, 
of the outcomes must occur, since they are mutually exclusive and 
exhaustive, that is, if P(i) is the probability of outcome i occurring 
and there are n possible outcomes, then

1
1

n

i
P i

 
(7.2)

Th e  ▸ complement of an outcome is defi ned as everything in the 
sample space apart from that outcome: the complement of H is T, 
for example. We will write the complement of A as A  (to be read as 
‘not-A’ and is not to be confused with the mean of A!). Th us, since 
A and A  are mutually exclusive and exhaustive

1 ( )P A P A  
(7.3)

Most practical problems require the calculation of the probability of 
a set of outcomes, rather than just a single one, or the probability of a 
series of outcomes in separate trials; for example, what is the probability 
of throwing three H in fi ve tosses? We refer to such sets of outcomes as 
compound events.

Although it is sometimes possible to calculate the probability of a 
compound event by examining the sample space, typically this is too 
complex, even impossible, to write down. To calculate compound prob-
abilities in such situations, we make use of a few simple rules.

Th e addition rule

Th is rule is associated with ‘or’ (sometimes denoted as ∪, known as the 
union of two events):

or andP A B P A P B P A B  (7.4)
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Here we have introduced a further event, ‘A and B’, which encapsulates 
the idea of the intersection (∩) of two events.

Consider the experiment of rolling a fair six-sided die.4 Th e sample 
space is thus [, , , , , ], n = 6 and P(i)  =  / for all i  =  , , ..., . Th e 
probability of rolling a fi ve or a six is

5 or 6 5 6 5 and 6P P P P

Now, P( and )  =  , since a fi ve and a six cannot simultaneously occur 
(the events are mutually exclusive). Th us

P( or ) = / + / −  = /
It is not always the case that the two events are mutually exclusive, so 

that their intersection does not always have zero probability. Consider 
the experiment of drawing a single playing card from a standard n =  
card pack. Th e sample space is the entire 52-card deck, and P(i)  =  / 
for all i. Let us now compute the probability of obtaining either a king or 
a heart from this single draw. Using obvious notation

or andP K H P K P H P K H   (7.5)

Now, P(K)  =  /  and P(H)  =  / , obtained in each case by count-
ing up the number of outcomes in the sample space that are defi ned by 
each event and dividing the result by the total number of outcomes in 
the sample space: for example, on extending the notation of (7.5) in an 
obvious way,

 and  and  and  and P K P K C P K D P K H P K S

However, by doing this, the outcome representing the king of hearts 
(K and H) gets included in both calculations and is thus ‘double counted’. 
It must therefore be subtracted from P(K) + P(H), thus leading to (7.5). 
Th e events K and H are not mutually exclusive, since P(K and H)  =  / , 
and

or 4 52 13 52 1 52 16 52P K H

Th e multiplication rule

Th e multiplication rule is associated with ‘and’. Consider the event of 
rolling a die twice and asking what the probability of obtaining fi ves on 
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both rolls is. Denote this probability as P( and ), where we now use 
the notation ij to signify obtaining outcome i on trial j: this probability 
will be given by

1 2 1 2
1 1 1

5 and 5 5 5
6 6 36

P P P

Th e logic of this calculation is straightforward. Th e probability 
of obtaining a fi ve on a single roll of the die is /6 and, because the 
outcome of one roll of the die cannot aff ect the outcome of a second 
roll, the probability of this second roll also producing a fi ve must again 
be /6. Th e probability of both rolls producing fi ves must then be the 
product of these two individual probabilities. Technically, we can 
multiply the individual probabilities together because the events are 
independent.

What happens when events are not independent? Consider draw-
ing two playing cards and asking for the probability of obtaining a 
king of hearts (now denoted KH) on the first card and an H on the 
second. If the first card is replaced before the second card is drawn 
then the events KH and H are still independent, and the probability 
will be

1 2 1 2
1 13

 and 0.00480
52 52

P KH H P KH P H

However, if the second card is drawn without the fi rst being replaced (a 
‘normal’ deal) then we have to take into account the fact that, if KH has 
occurred, then the sample space for the second card has been reduced 
to 51 cards, of which only 12 will be H: thus the probability of H occur-
ring is / , not / . Th e probability of H is therefore dependent 
on KH having occurred, and thus the two events are not independent. 
Technically, this is a conditional probability, denoted here as P(H|KH) 
and generally as P(B |A); the general multiplication rule of probabilities 
is, for our example,

1 2 1 2 1
1 12and 0.00452

52 51
P KH H P KH P H KH

and, in general,

 and P A B P A P B A
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Only if the events are independent will P(B |A)  =  P(B). More formally, if 
A and B are independent, then, because the probability of B occurring is 
unaff ected by whether A occurs or not,

P B A P B A P B

and

P A B P A B P A

Combining the rules
Consider the following example. Suppose that it is equally likely that a 
mother has a boy or a girl on the fi rst (single) birth, but that a second 
birth is more likely to be a boy if there was a boy on the fi rst birth, and 
similarly for a girl. Th us

1 1 0.5P B P G

but, for the purposes of this example,

2 1 2 1 0.6P B B P G G

which implies that

2 1 2 1 0.4P B G P G B

Th e probability of a mother having one child of each sex is thus

1 2 1 2

1 2 1 1 2 1

1 girl and 1 boy  and or  and  

0.5 0.4 0.5 0.4
0.4

P P G B P B G

P G P B G P B P G B

Counting rules: combinations and permutations

Th e preceding problem can be illustrated using a tree diagram, which is 
a way of enumerating all possible outcomes in a sample space with their 
associated probabilities. Tree diagrams have their uses for simple prob-
lems, but for more complicated ones they quickly become very complex 
and diffi  cult to work with.5
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For more complicated problems, counting rules must be employed. 
Suppose we have a family of fi ve children of whom three are girls. To com-
pute the probability of this event occurring, our fi rst task is to be able to 
calculate the number of ways of having three girls and two boys, irrespective 
of whether successive births are independent or not. An ‘obvious’ way of 
doing this is to write down all the possible orderings, of which there are 
ten:

GGGBB  GGBGB  GGBBG  GBGGB  GBGBG

GBBGG  BGGGB  BGGBG  BGBGG  BBGGG

In more complex problems, this soon becomes diffi  cult or impossible, 
and we then have to resort to using the combinatorial formula. Suppose the 
three girls are ‘named’ a, b and c. Girl a could have been born fi rst, second, 
third, fourth or fi ft h, that is, in any one of fi ve ‘places’ in the ordering:

a????  ?a???  ??a??  ???a?  ????a

Suppose that a is born fi rst; then b can be born either second, third, 
fourth or fi ft h, that is, any one of four places in the ordering:

ab???  a?b???  a??b?  a???b

But a could have been born second, etc., so that the total number of 
places for a and b to ‘choose’ is    =  . Th ree places remain for c to 
choose, so, by extending the argument, the three girls can choose a total 
of     =   places between them. Th is is the number of permutations 
of three named girls in fi ve births, and can be given the notation

5 3

5!5 4 3 2 1
5 4 3

2 1 2!
P

which uses the factorial (!) notation.
P  =   is six times as large as the number of possible orderings writ-

ten down above. Th e reason for this is that the listing does not distinguish 
between the girls, denoting each of them as G rather than a, b or c. Th e 
permutation formula thus overestimates the number of combinations 
by a factor representing the number of ways of ordering the three girls, 
which is     =  !. Th us the formula for the combination of three girls 
in fi ve births is

5 3
5 3

5! 5 4 3 2 1
10

3! 3! 2! 3 2 1 2 1
P

C



 Analysing Economic Data: A Concise Introduction

In general, if there are n children and r of them are girls, the number of 
combinations is

!
! ! !

n r
n r

nP
C

r r n r

7.3 Bayes theorem

Recall that

 and P A B P A P B A

or, alternatively,

 and P A B
P B A

P A

Th is can be expanded to be written as

P A B P B P A B P B
P B A

P A P A B P B P A B P B

which is known as Bayes theorem.6 Armed with this theorem, we can 
now answer the following question: given that the second birth was a 
girl, what is the probability that the fi rst birth was a boy, that is, what is 
P(B|G)? Noting that the event 1B  is G, Bayes theorem gives us

2 1 1
1 2

2 1 1 2 1 1

0.4 0.5
0.4 0.5 0.6 0.5

0.4

P G B P B
P B G

P G B P B P G G P G

Th us, knowing that the second child was a girl allows us to update our 
probability that the fi rst child was a boy from the unconditional value of 
0.5 to the new value of 0.4.7
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7.4 Defi nitions of probability

In our development of probability, we have ignored one important 
question: where do the actual probabilities come from? Th is, in fact, is a 
question that has vexed logicians and philosophers for several centuries 
and, consequently, there are (at least) three defi nitions of probability in 
common use today.

Th e fi rst is the classical or a priori defi nition, and is the one that has 
been implicitly used in the illustrative examples. Basically, it assumes that 
each outcome in the sample space is equally likely, so that the probability 
that an event occurs is calculated by dividing the number of outcomes 
that indicate the event by the total number of possible outcomes in the 
sample space. Th us, if the experiment is rolling a fair six-sided die, and 
the event is throwing an even number, then the number of outcomes 
indicating the event is three (the outcomes [, , ]), and the total 
number of outcomes in the sample space is six [, , , , , ], so that the 
required probability is /   =  / .

Th is will only work if, in our example, we can legitimately assume 
that the die is fair. What would be the probability of obtaining an even 
number if the die was biased, but in an unknown way? For this, we need 
to use the relative frequency defi nition. If we conduct an infi nite number 
of trials of an experiment (that is, n → ∞), and the number of times an 
event occurs in these n trials is k, then the probability of the event is 
defi ned as the limiting value of the ratio k/ n.

Suppose that even numbers were twice as likely to occur on a throw of 
the die as odd numbers (the probability of any even number is / , the 
probability of any odd number is / , so that the probability of an even 
number being thrown is / ). However, we do not know this, and decide 
to estimate this probability by throwing the die a large number of times, 
say 10,000, and recording as we go the relative frequency of even numbers 
being thrown. A plot of this ‘cumulative’ relative frequency is shown in 
Figure 7.1.

We observe that it eventually ‘settles down’ on / , but it takes quite 
a large number of throws (around 6,000) before we get a really good 
estimate of the probability.

What happens if the experiment cannot be conducted more than once, 
if at all, for example, if it is a ‘thought experiment’? We can then use 
subjective probability, which assigns a degree of belief to an event actually 
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occurring. If we believe that it is certain to occur, then we assign a prob-
ability of one to the event; if we believe that it is impossible to occur then 
we assign a probability of zero; and if we think that it has a ‘good chance’ 
of occurring then we presumably assign a probability that is greater than 
0.5 but less than 1, etc.

No matter what defi nition seems appropriate to the experiment and 
outcome at hand, fortunately all defi nitions follow the same probability 
axioms, and hence rules, as those outlined above.

Notes

Th e importance of exploratory data analysis in general was established with  
the publication of John W. Tukey’s extraordinary book, Exploratory Data 
Analysis (Addison-Wesley, 1977), which remains a classic and is well worth 
reading.
Th ere are 193 members of the United Nations. Th e US State Department  
actually recognises 195, but this does not include, for historical political 
reasons, Taiwan. Table 2.1 also includes data for Bermuda and Puerto Rica, 
which some authorities claim are not technically countries at all, the former 
being a territory of the UK, the latter a territory of the US. On the other 
hand, there are 209 countries in the FIFA world football rankings, which 
some may feel is a more comprehensive listing!

Figure 7.1 Cumulative relative frequency plot for rolling a biased dice
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Th ere is another, much more sophisticated, problem with time series data:  
what we actually observe over time is, in fact, just one possible realisation 
from a stochastic process (that is, a process whose successive values occur 
randomly). Th e time path of infl ation could, if other events had occurred, 
have thus evolved diff erently to that which we actually observed. Th is 
is far too subtle a concept to discuss further here, but see, for example, 
Terence C. Mills, Time Series Techniques for Economists (Cambridge 
University Press, 1990).
Th at the basics of probability are typically explained using examples from  
games of chance (and we are no exception here) refl ects the fact that the 
early concepts of probability theory were developed through the analysis 
of such parlour games. For example, if a pair of dice are rolled 12 times in 
succession, what should one bet on the chance of seeing at least one double 
six? How many rolls of the dice are required before the odds of seeing a 
double six is 50–50? Questions like these began to be asked around 1650 
and attracted the attention of mathematicians such as Pascal and Fermat, 
who actually resolved the latter problem in what became the fi rst theorem 
in probability. For more on the early history of probability, see Anders 
Hald, A History of Probability and Statistics and Th eir Applications before 1750 
(Wiley, 2005).
See Mike Barrow,  Statistics for Economics, Accounting and Business Studies, 
6th edition (Prentice Hall, 2013), chapter 3, for a brief discussion of tree 
diagrams.
Th e eponymous Bayes in the theorem is the Reverend Th omas Bayes  
(1702(?)–1761), an English dissenting minister who lived in Tunbridge Wells 
from 1731. His friend Richard Price found the theorem in Bayes’ papers aft er 
his death and arranged for its posthumous publication (‘An essay towards 
solving a problem in the doctrine of chances’, Philosophical Transactions of 
the Royal Society 53 (1763)). For biographical details of Bayes, see Andrew 
I. Dale, Most Honourable Remembrance: Th e Life and Work of Th omas Bayes 
(Springer, 2003) and David R. Bellhouse, ‘Th e Reverend Th omas Bayes, 
FRS: a biography to celebrate the tercentenary of his birth’, Statistical Science 
19 (2007), 3–43. Th at Bayes theorem might have been discovered earlier 
is discussed in Stephen M. Stigler, ‘Who discovered Bayes’s theorem?’ 
American Statistician 37 (1983), 290–296.
Bayes’ theorem, or ‘rule’ as it is oft en referred to, has since become the  
foundation for a very infl uential school of statistical analysis, that of Bayesian 
inference, an approach that is rather too advanced to be covered in this text. 
Dale J. Poirier, Intermediate Statistics and Econometrics (MIT Press, 1995), and 
Gary Koop, Bayesian Econometrics (Wiley, 2003), both provide introductory 
discussions of this very important approach to statistical modelling. 
Th e story of Bayes’ theory through the last 250 years is recounted and 
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popularised in Sharon Bertsch McGrayne, Th e Th eory Th at Would Not Die: 
How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, & 
Emerged Triumphant from Two Centuries of Controversy (Yale University Press, 
2011). It is also a key technique for Nate Silver, Th e Signal and the Noise: Th e 
Art and Science of Prediction (Allen Lane, 2012).
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8
Probability Distributions

Abstract: A new concept, the random variable, is 
introduced to exploit fully the power of probability. Discrete 
random variables, those that take only a fi nite number 
of values, are focused upon, along with their associated 
probability distributions, which are essentially a listing of 
the values the random variable can take accompanied by 
their probabilities of occurrence. Th e concepts of expected 
value and variance of a random variable are developed. 
Some particular probability distributions are introduced 
that relate to types of probability experiments that occur 
in a variety of situations, most notably the binomial and 
Poisson (the latter being interpreted as an approximation 
to the former).
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8.1 Random variables

To be able to exploit fully the power of probability, we must introduce 
a new concept, that of the random variable. We have already encoun-
tered several examples of this: the outcome of a toss of a coin, a roll 
of a die or a draw of a card, and the number of girls in a family of 
fi ve children, are all random variables. A random variable is therefore 
one whose outcome is the result of chance and is thus unpredictable. 
But we must be clear what we mean here by unpredictability: it does 
not mean that we know absolutely nothing at all about the values that 
a random variable can take; rather, it means that although we might 
know the values that can be taken, those values cannot be predicted 
to occur as an outcome with complete certainty. We know that when 
a coin is tossed it will land either heads or tails, but before the toss is 
made we do not know what the outcome will be (unless, of course, 
it is a two-headed coin!) Similarly with rolling a die and picking a 
card: the possible outcomes are determined by the sample space of 
the experiment, but none of them are individually certain to occur in 
a single trial of the experiment (although one of them will) and thus 
they all have probabilities associated with them. For example, rolling 
a 6 will occur with probability 16  if the die is fair, but it is impossible 
to roll a 0 or a 7, which will thus have zero probabilities associated 
with them.

Th ese are all examples of discrete random variables, where the sam-
ple space is defi ned over a fi nite number of outcomes. Many random 
variables have sample spaces associated with them that have an infi -
nite number of outcomes, and these are known as continuous random 
variables. An example would be the height of a student drawn from 
those taking a particular module. In principle, this height could be 
measured to any degree of accuracy and thus could take on an infi -
nite number of values. Of course, it may be argued that in practice 
measuring instruments are limited in their precision, so that we can 
only measure height over a fi nite number of values. A response to this 
would be that, although fi nite, the number of values could neverthe-
less be extremely large, so that we may as well act as if the random 
variable was continuous, and this is something that is done regularly 
in statistical analysis.
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8.2 Probability distributions

As we have seen, the values or outcomes taken by a discrete random 
variable will have probabilities associated with them. A listing of these 
values and accompanying probabilities is called a probability distribu-
tion. For example, consider the probability distribution of the random 
variable defi ned to be the outcome of rolling the biased die of §7.4, in 
which even numbers were twice as likely as odd numbers: if the random 
variable is denoted X, and defi ned as Xi  =  i, i  =  , , ..., , then we can list 
the probability distribution of X as

iX 1 2 3 4 5 6

iP X 1
9

2
9

1
9

2
9

1
9

2
9

Th is shows clearly that a probability distribution has the following 
properties, which follow directly from the probability axioms of §7.2:

0 1iP X     
1

n

i i
i

E X X P X

Expected value and variance

Just as we can compute the mean of a sample of data, we can also 
compute a (weighted) mean for a random variable X. Th is is called the 
expected value, denoted E(X), and is defi ned as the weighted sum of the n 
values taken by X, with the weights given by the associated probabilities:

1

n

i i
i

E X X P X

For the weighted die,

331 2 1 2 1 2 2
9 9 9 9 9 9 9 31 2 3 4 5 6 3E X

Th is has the following interpretation: if we rolled this die a large 
number of times, recorded the results of the throws, and calculated the 
cumulative average, this will eventually settle down to 2

33 .E X  Th us 
the expected value is oft en referred to as the mean of X.
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Similarly, we can defi ne the variance of X as

22

1

n

i i
i

V X E X E X X E X P X

so, for our weighted die,

2 2 2 2 2 22 1 1 2 2 1 1 2 1 1 2 2
3 9 3 9 3 9 3 9 3 9 3 9

8
9

2 1 1 2
2

V X

Alternatively, we can note that
2

2 2 22 2

22

22

2 2

n

i i

V X E X E X E X E X X E X

E X XE X E X E X E X E X

E X E X

X P X E X

where we use the result that E[E(X)]  =  E(X), because E(X) is, by defi ni-
tion, a single number, that is, a constant, and the expectation of a con-
stant must be itself. Th us

22 2 2 2 2 21 2 1 2 1 2 2
9 9 9 9 9 9 3

147 26121
9 9 9

8
9

1 2 3 4 5 6 3

2

V X

E(X) and V(X) may thus be interpreted as measures of the central 
tendency and dispersion of the probability distribution of X. As with 
sample variances, we may take the square root of E(X)(X) to be the 
standard deviation of X: SD X V X . For the above distribution, 

26 3 1.70SD X .
We may be able to associate particular probability distributions with 

random variables. For example, a fair six-sided die would have the prob-
ability distribution

1,2, ,66
0 otherwise

i i
P X i

…
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Th is is an example of the (discrete) uniform distribution, which can be 
written more generally as

n i n
P X k hi

1 1,2, ,

0 otherwise

…

and which can be shown to have expected value E(X)  =  k +1/2 h(n+1) and 
variance V(X)  =  1/12 h2(n2–1).1 For k  =  , h  =   and n  =  , so that X takes 
the values 4, 7, 10, 13, 16, 19, 22 and 25 with probability 1/8 and all other 
values have zero probability, a graphical representation of the uniform 
distribution is shown in Figure 8.1: it has 1 12 21 3 9 14E X  and 

1 112 49 63 47V X , so that SD(X)  =  ..
For the fair die, k  =  , h  =   and n  =  , and thus 121 2 3E X n  and 

2 35121 12V X n . When a variable X follows a uniform distribution 
with parameters k, h and n, we use the notation X~U(k, h, n), which is to be 
read as ‘X is distributed as uniform with parameters k, h and n’. Th e random 
variable defi ned to be the result of tossing a fair die is thus X~U(, , ), and 
we can say that X is a uniformly distributed random variable.

Although simple, the uniform distribution lies behind most types 
of lottery and those situations where the only thing known about the 
outcome is that it can take one of a given set of values, so that all we can 
assume is that the probability of an outcome taking a particular value is 
the same for all values in the set.

Figure 8.1 A uniformly distributed random variable taking the values 4, 7, 10, 13, 
16, 19, 22 and 25 with probability 18 , with all other values having zero probability

5 10 15 20 25

P (X)
0.125

X
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8.3 Th e binomial distribution

A popular probability distribution defi ned for a discrete random vari-
able is the binomial. Th is provides the general formula for computing the 
probability of r ‘successes’ from n independent trials of an experiment 
that has only two mutually exclusive outcomes, generically defi ned as 
‘success’ and ‘failure’, and where the probability, p, of success (and hence 
the probability, q  =  –p, of failure), remains constant between trials.

As an example of a binomial experiment, recall the family of fi ve chil-
dren of which three are girls.2 To calculate the probability of the event 
of three girls from fi ve children, we have to be able to assume that the 
outcome of successive trials, that is, births, are independent and that 
the probability of a girl birth remains constant at p across trials (unlike 
the example in §7.2 in which girl births were not independent, so that 
the probability of such a birth was not constant). As we saw, there are 
ten possible orderings of three girls and two boys, and each of these will 
occur with probability p(–p), where we make use of the multiplication 
rule under independence. Th us, if X is the random variable defi ned to be 
the number of girls,

2 23 3
5 33 10 1 1P X p p C p p

Th us, if p  =  .,

3 23 10 0.5 0.5 0.3125P X

whereas if p  =  .,

3 23 10 0.6 0.4 0.3359P X

More generally, the probability of r successes from n trials is thus

1 n rr
n rP X r C p p

It can be shown that P(X  =) + P(X  =  ) + ... + P(X  =  n)  = and that 
E(X)  =  np and V(X)  =  np(–p).3 Th ese formulae show that the binomial 
distribution has two parameters, the number of trials n and ‘the’ prob-
ability p, so that we can write X ~ B(n, p) for a binomially distributed 
random variable.

Only allowing two outcomes is not as restrictive as it may seem. For 
example, we can compute the probability of, say, three 5 or 6s from six 
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rolls of a fair die by defi ning the outcome of ‘5 or 6’ as a success, with 
probability 13p , and ‘not 5 or 6’ as a failure, with probability 2

3 ,q  that 
is, by defi ning X ~ B(, / ) to be the number of ‘successes’. Th e required 
probability is then

3 3

6 3
1 2 8( 3) 20 0.2195
3 3 729

P X C

More complicated probabilities may be calculated by using the mutu-
ally exclusive version of the additive rule. For example, the probability 
of getting more than two girls in a family of fi ve is given by

5 5

5 4 5 5

2 3 3 4 5

1 10.3125
2 2

1 10.3125 5 1
32 32

0.3125 0.15625 0.03125 0.5

P X P X P X P X P X

C C

Common uses of the binomial distribution include quality control, 
public opinion surveys, medical research, and insurance problems. It 
can be applied to complex processes such as sampling items in factory 
production lines or to estimate percentage failure rates of products and 
components.

8.4 Th e Poisson distribution

When the number of trials n is large and the probability of success p is 
small, another discrete distribution, the Poisson, provides an excellent 
approximation to the binomial. To see this, consider a typical example 
in industrial quality control. Here the number of trials (the number 
of items of a good that is produced) is large and, hopefully, the prob-
ability of a defective item is very small. Suppose that a manufacturer 
gives a two-year guarantee on the product that he makes, and from past 
experience knows that 0.5 of the items produced will be defective and 
will fail within the guarantee period. In a consignment of 500 items, 
the number of defectives will be distributed as X ~ B(, .) and 
the probability that the consignment will contain no defectives is then 
8.16, calculated as
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0 500 500
500 00 0.005 0.995 0.995 0.0816P X C

However, it turns out that, if n is large and p is small, such that np ≤ , 
binomial probabilities are closely approximated by the values calculated 
using the following mathematical expression

!

r npnp e
P X r

r
  

2.718e …
 

 (8.1)

Th us, since np  =  .  =  ., we can approximate the probability of 
no defectives by

0 2.5
2.52.5

0 0.0821
0!
e

P X e
  

0! 1

that is, 8.21, which is probably accurate enough for most purposes.
Th is approximation becomes especially useful when more involved 

probabilities are required. Th e probability of more than three items being 
defective is given by

500 499
500 0 500 1

2 498 3 497
500 2 500 3

3 1 0 1 2 3

1 0.995 0.005 0.995

0.005 0.995 0.005 0.995
1 0.0816 0.2050 0.2570 0.2144
0.2420

P X P X P X P X P X

C C

C C

Using the above approximation, the calculation is much simpler and 
almost as accurate:

0 2.5 1 2.5 2 2.5 3 2.52.5 2.5 2.5 2.5
3 1

0! 1! 2! 3!
1 0.0821 0.2052 0.2566 0.2138
0.2423

e e e e
P X

Equation (8.1) in fact provides the formula for the Poisson distribution, 
which is also known as the ‘distribution of rare events’.4 Since np is the 
expected value of the binomial distribution, with the Poisson we can 
denote this as μ, write (8.1) as

!

r e
P X r

r

μμ
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and say that X ~ P(μ), with E(X)  =  μ. It must also be the case that the 
variance of the Poisson distribution will be V(X)  =  μ, since with p small 
the variance of the binomial becomes V(X)  =  np(–p) np  =  E(X). In 
this setup, there is no natural ‘number’ of trials: rather, we consider 
the number of trials to be the number of time or spatial intervals 
that the random variable is observed over, for which we know the 
mean number of occurrences per interval. Thus, suppose a football 
team scores an average of 1.5 goals per game and that we assume that 
the number of goals they score in any single game follows a Poisson 
distribution. Then the probability that the team scores no goals in a 
game is

1.50 0.2231P X e

that is, about 128  times in an English Premiership season of 38 games – 
whereas the probability that they score fi ve goals in a game is

5 1.51.5
5 0.0141

5!
e

P X

which is on average less than once a season!
Th e Poisson distribution has found application in the prediction of 

car accidents at traffi  c black spots, in modelling traffi  c fl ow and optimal 
‘gap distances’, in predicting machine failures and in devising operating 
procedures in call centres.

8.5 Other related distributions

As we have seen, the Poisson provides a good approximation to the 
binomial when the number of trials is large and the probability of suc-
cess is small. When the number of trials is small and successive trials 
can no longer be regarded as independent, then under certain forms 
of dependence we can use a hypergeometric distribution. If the trials are 
independent but there are more than two types of outcome, then we have 
a multinomial distribution. However, there is a very important distribu-
tion that results from another type of approximation to the binomial and 
it is to this that we turn to in the next chapter.
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Notes

Th e expectation can be obtained straightforwardly: 

1 1 1

1

1

11
2

1
2

2

2

1 2

1

n n n

n

n

n n
n

E X k h k h k nh

k h k h k nh

nk h n

nk h

k h n

…

…

…

  where the standard summation formula 1 + 2 + … + n = n(n+1)/2 is used. 
Obtaining the variance is a little more complicated. We begin by obtaining 
E(X2):

2 2 22 1 1 1

2 2 21

2 2 2 21

2 21
6

2

2

1 2 2 1 2

1 1 2 1

n n n

n

n

E X k h k h k nh

k h k h k nh

nk n hk n h

k n hk n n h

…

…

… …

  where the further standard result  is used. Th e variance is thus

V X k n hk n n h k h n 22 21 1
6 21 1 2 1 1

  and some algebraic manipulation will produce V X h n2 2112 1 .
Th is is oft en known as a  Bernoulli experiment and the distribution a Bernoulli 
distribution aft er Jacob Bernoulli (1654–1705), who fi rst introduced the 
concept, although strictly a Bernoulli experiment refers to just a single trial.
Derivations of these formulae are complicated and are omitted. 
Th e distribution is so-named aft er Siméon Denis Poisson (1781–1840), who  
fi rst published it in 1837. It was used by Ladislaus Bortkiewich (1868–1931), 
a Polish economist and statistician, who published a book about the 
distribution, titled Th e Law of Small Numbers, in 1898, where he noted that 
events with low frequency in a large population follow a Poisson distribution 
even when the probabilities of the events vary. In the book he gave an 
example of the number of soldiers killed by being kicked by a horse each 
year, showing that these numbers followed a Poisson distribution.





9
Continuous Random 
Variables and Probability 
Density Functions

Abstract: An alternative way of approximating a binomial 
distribution is considered that leads to a continuous 
random variable (one that takes on an infi nite number of 
values), known as the normal or Gaussian. Continuous 
random variables have probability density functions, 
rather than probability distributions, associated with 
them, and this leads to probabilities having to be 
calculated as an area under the function, which requires 
integral calculus. Th e standard normal distribution is 
introduced as a convenient way of calculating normal 
probabilities and examples of how to do such calculations 
are provided. Distributions related to the normal – the 
chi-square, Student’s t and the F – along with the concepts 
of independence and covariance between random variables 
are introduced. Methods of simulating random variables 
and distributions are discussed.
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9.1 Another approximation to the binomial

Figures 9.1 to 9.3 provide graphical representations of a binomially dis-
tributed random variable X with p = ., and with the number of trials 
increasing from n = 6, to n = , and fi nally to n = .

It is easy to calculate that, for n = , E(X)  =  . and V(X)  =  . 
for n  =  , E(X)  =   and V(X)  =  ., and for n  =  , E(X)  =   and 
V(X)  =  , so that both the mean and the variance increase proportion-
ately with n. Of more interest to us here is the skewness in the distribu-
tions. Th e coeffi  cient of skewness for a binomial distribution is given 
by the formula 1 2 1p np p  or (p)/SD(X), so that for n  =  , 
skew  =  ., and the distribution is quite heavily skewed to the right, but 
for n  =  , skew  =  ., so that the distribution is much more symmetric. 
Indeed, for n  =  , skew  =  . and, as well as being almost symmetric, 
the distribution is beginning to take on a distinct ‘bell-like’ shape.

Th is is an important feature of the binomial distribution, but note that 
as n increases, the number of values that X can take, r, also increases, and 
thus X becomes more and more like a continuous random variable. Figure 
9.4 presents the plot of a function of a continuous random variable with 

Figure 9.1 Distribution of X ~ B(,.)
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Figure 9.2 Distribution of X ~ B(,.)
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Figure 9.3 Distribution of X ~ B(,.)
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the same mean, 40, and variance, 24, as the B(,.) discrete random 
variable shown in Figure 9.3.

Th e general form of the function, for mean μ and variance s , is

2

22

1 1
exp

22
p X X

ss
μ

π  
X

  
(9.1)

and it defi nes a normally distributed random variable, denoted 
X ~ N(μ, s ). Th us, as the number of trials of a binomial experiment 
increases, the binomial distribution can be better and better approxi-
mated by a normal distribution having the same mean and variance (a 
good rule of thumb for the adequacy of the normal approximation is 
that V(X)  =  np(–p) should exceed 3). Th e normal distribution is bell 
shaped and symmetric about the mean μ, having its ‘points of infl ec-
tion’ at μ – s and μ + s, so that the standard deviation s determines 
the ‘width’ of the distribution. Th e normal is perhaps the most famous 
distribution in statistics, with many physical phenomena appearing to 
be normally distributed. It was fi rst proposed by the mathematician 
and astronomer, Karl Frederick Gauss, in 1809 as a model for the errors 
of measurement that occur in calculating the paths of stellar bodies, 
hence its alternative names, the Gaussian distribution and the ‘normal 
curve of error’.1

Figure 9.4 Probability density function of X ~ N(,)
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9.2 Continuous random variables and calculating 
probabilities

As we can see from Figures 9.1 to 9.3, calculating the probability that a 
discrete random variable X equals a particular value r, that is, P (X = r), is 
in eff ect carried out by simply reading the value on the vertical axis of the 
‘histogram’ representation of the probability distribution corresponding to 
X = r. But with a continuous random variable, things are not so simple. 
Mathematically, since X now takes on an infi nite number of values, the 
probability that it actually equals any particular value is infi nitesimally 
small: in other words, P(X = r) = 0 for continuous X. Geometrically, the 
vertical ‘line segment’ at X = r will have zero width and will cease to exist!

Obviously, we must be able to compute probabilities for continuous 
random variables, so what do we do? Although the probability that X 
exactly equals r is zero, the probability that X lies in an interval around r 
is non-zero, so that we can compute P(r–e < X < r + e), which reads as ‘the 
probability that X lies in the interval r – e to r + e’. Geometrically, this will 
be given by the shaded area in Figure 9.5. Mathematically, it will be given 
by the integral of the function p(X) evaluated between r – e and r + e. Th e 
function p(X) no longer has the interpretation of a probability distribu-
tion, but is now called the probability density function (pdf) of X. Th e form 
of the pdf defi nes the type of random variable that X is: if p(X) takes the 
form (9.1) then X is a normally distributed random variable.

Figure 9.5 Calculating probabilities from the normal probability density function

X

p(X)

 r+er–e
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9.3 Th e standard normal distribution

Th is ‘area under a curve’ interpretation of probability, for which we need 
methods of integral calculus, makes the computation of probabilities a 
much more complex problem to solve. It would appear that if we wanted 
to calculate the probability that a normally distributed random variable 
X falls in the interval a to b, then we would need to compute

2 2
2

1 exp 2
2

b

a
P a X b X dX

Not only would we have to do this for every probability that we might 
wish to calculate, but a closed-form expression for the integral does not 
even exist! Th is looks to be an insurmountable problem, but help is at 
hand.

One of the properties of the normal distribution is that it is ‘invariant to 
scale transformations’, which means that if we multiply a normally distrib-
uted random variable by a constant and then add another constant to the 
result, we will still have a normal distribution, that is, if X ~ N(μ,s), then 
W  =  a + bX will also be normal. However, the mean and variance of W will 
not be the same as those of X:

E W E a bX E a E bX a bE X a bμ

22 2

2 22 2 2 2

V W E W E W E a bX a b E b X

E b X b E X b

Th us, if we set a  =  –μ/s and b  =  /s, we can then defi ne the new variable

1 X
Z X

s s s

μ μ

which has

0E Z
s s

μ μ

and
2

2 1V Z
s

s
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Th us Z ~ N(, ) and is known as the standard normal, with pdf

21
exp 2

2
p Z Z

π

Th is contains no unknown parameters and its integral can be evaluated 
using numerical procedures, so that the probability that Z falls into any 
particular interval can be computed straightforwardly (at least by using 
a computer). Th is enables probabilities for any normally distributed X to 
be calculated: since

a b
P a X b P Z

s s

μ μ

we can transform from X to Z and use the ‘Z-probabilities’ accordingly. 
Some examples will illustrate this procedure. Typical tables of what are 
known as the ‘critical values’ of the standard normal distribution give 
the values zα such that P(Z > zα)  =  α: they thus give ‘right-hand tail areas’, 
as shown in Figure 9.6.

Th us, for example, if X ~ N(,) and we wish to fi nd P( < X <), 
then this probability is calculated as

Figure 9.6 Right-hand tail area of a normal distribution: P(Z > zα)  =  α

Z

p(Z)

α

zα
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42 40 50 40
42 50 0.4082 2.0412

24 24
0.4082 2.0412

0.3416 0.0206 0.3210

P X P Z P Z

P Z P Z

where P(Z > .  =  . and P(Z > .  =  . may be 
obtained from tables or appropriate soft ware commands. Some useful 
‘Z-values’ are those that leave 1, 2.5, 5 and 10 of the distribution in 
the right-hand tail (noting that z.  =   through symmetry):

0.01 2.326z   0.025 1.960z   0.05 1.645z   0.10 1.282z

Because of the symmetry of the normal distribution

P Z z P Z zα α  = α

and thus

1 1P Z z P Z z P Z zα α α

so that, for example,

30 42 2.0412 0.4082

2.0412 0.4082

1 2.0412 0.4082

1 2.0412 0.4082
1 0.0206 0.3416
0.6378

P X P Z

P Z P Z

P Z P Z

P Z P Z

9.4 Distributions related to the normal

Several distributions that are in common use in economics and, in 
particular, in econometrics, are related to, and can be derived from, the 
normal. We must, however, fi rst introduce the concept of independent 
random variables and the related idea of the covariance between two ran-
dom variables. Recall from §7.2 that two events A and B are independent 
if P(A and B)  =  P(A)P(B). Now consider two random variables X and Y 
with probability density functions p(X) and p(Y), and let us introduce 
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the joint probability density function p(X,Y), which allows us to compute 
probabilities such as P(a < X < b, c < Y < d). If p(X,Y)  =  p(X)p(Y), so that P
(a < X < b,c < Y < d)  =      P(a < X < b)P(c < Y < d), then X and Y are said to be 
independent: if this is not the case then they are dependent.

Now recall the concept of the sample covariance from §5.2. Th e 
covariance between two random variables X and Y is analogously 
defi ned as

,Cov X Y E X E X Y E Y E XY E X E Y

If X and Y are both normally distributed then independence implies that 
they also have zero covariance, and vice versa, but this implication does 
not hold for variables that are not normally distributed, as these can be 
dependent and yet have zero covariance: recall the example of the circu-
lar relationship between two variables in §5.5.2

Let us now consider ν independent normal random  variables, 
X, X, …,Xν, with means E(Xi) = μi and variances 2

i iV X s , i  =  , , …, ν, 
that is, 2~ ,i i iX N . If we defi ne the random variable U as a weighted 
average (or linear combination) of the Xis

1 1 2 2
1

i i
i

U a X a X a X a X…
ν

ν ν

then 2~ ,U UU N sμ , where

1
U i i

i

a
ν

μ μ
    

2 2 2

1
U i i

i

a s
ν

σ

that is, a linear combination of normal random variables is also normally 
distributed, with its mean given by the same linear combination of the 
individual means and its variance given by a linear combination of the 
individual variances but with squared weights.

A special case of this result is that if X ~ N(, ) and X ~ N(, ) then 
clearly X ± X ~ N, . A further special case is that if X and X are both 
N(μ, s 2) then clearly 2 2 2

1 1 2 2 1 2 1 2~ ,a X a X N a a a a  and, on 
using the scale transformation result of §9.3, it follows that

2 2 2 2
1 1 2 2 1 2 3 1 2 1 2a X a X a a X a a a a

where X is also N(μ, s 2).
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Th e converse of this result is also true: if X,X, …,Xν are independent 
and their sum is normal then they must individually be normal. If there 
are two linear combinations 1 i iU a X  and 2 i iU b X  then these will 
be independent if and only if 2 0i i ia b s .

Th e chi-square distribution

Now consider the standard normal transform 2
i i i iZ X sμ  and 

construct the ‘sum of squares’

2 2 2 2 2
1 2

1
i

i

Z Z Z Z…
ν

νχ

Th e random variable χ 2 then has a χ 2 (chi-square) distribution with ν 
degrees of freedom: χ  ~ χ ν.As it is defi ned as a sum of squares, χ 2 > 0, 
and so the variable can take only positive values. Th e χ 2 distribution is, to 
be precise, a ‘family’ of distributions in which the shape of the pdf (which 
takes a very complex form that need not concern us here) depends on ν, 
as do the mean and variance: E(X)  =  ν, V(X)  =  ν.

Figure 9.7 shows the pdfs for χ 2  =   and .
Since the coeffi  cient of skewness for a χ 2 variable is 2 2 ν , this takes 

the values 2.83 and 0.89 respectively, so that the χ 2 distribution becomes 
more symmetric as the degrees of freedom increase: in fact, for large ν it 
is approximately N(ν, 2ν).

Th e Student’s t distribution

If Z is a standard normal random variable that is independent of χ 2, then 
the random variable defi ned as

2

Z
T

χ ν

is said to have a (Student’s) t distribution with ν degrees of freedom: 
T ~ t(ν).3 Th e t distribution has E(T)  =   and V(T)  =  ν/(ν–), and is thus 
only defi ned for ν > 2, otherwise the variance would not be positive. It is 
also symmetric and, since V(T) → 1 as ν → ∞, the family of t distribu-
tions converges to a standard normal, although for fi nite ν it will always 
have a larger variance than Z, so that it will always have ‘fatter tails’ than 
the standard normal.
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Figure 9.8 shows the pdfs for t(3) and t(20) random variables, with the 
standard normal shown for comparison.

Th e fatter tails of the t distribution are best seen by comparing the 
values that leave, say, 5 in the right-hand tail of the distribution: 
t.()  =  . and t.()  =  . compared to z.  =  .. For any α, 
the tα(ν) values converge to zα as ν → ∞.

Th e F distribution
Suppose we have two independent chi-square random variables, 

2 2
1 1~χ χ ν  and 2 2

2 2~χ χ ν . Th e random variable defi ned as the ratio 
of the two (scaled by their degrees of freedom)

Figure 9.7 2χ ν  probability density functions
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ν  = 1

0 5 10 15 20 25 30
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2
1 1
2
2 2

F
χ ν
χ ν  

(9.2)

then has an F distribution with ν1 numerator degrees of freedom and ν2  
denominator degrees of freedom, that is, F ~ F(ν, ν).

Typically in economic applications ν1 is a lot less than ν2 , so that Figure 
9.9 shows the pdf of an F(, ) random variable.

It has the right skewness typical of F distributions. Two results con-
cerning F distributions can prove useful in obtaining probabilities. From 
the defi nition (9.2) it follows that

1 2 1
1 2

1
,

,
F

Fα
α

ν ν
ν ν

which enables left -hand tail critical values to be obtained from right-
hand tail critical values. Th ere is also a link between the F and t distribu-
tions through

2
2 21,F tν ν

Figure 9.8 t(ν) probability density functions compared to the standard normal z

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

ν=3

ν=20
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that is, the square of a t distribution with ν2  degrees of freedom is an F 
distribution with 1 and ν2  degrees of freedom.

9.5 Simulating distributions

It is oft en useful to simulate distributions using a random number gen-
erator. Figure 9.10 shows 500 simulated U(0,1) and N(0,1) variables: in 
eff ect, 500 random drawings have been made from the two distributions, 
and these have then been plotted as a pair of time series.4

Th e ‘side bars’ to the plots show the histograms of the simulated 
distributions. Even though these ‘sample distributions’ (a concept to be 
introduced formally in §10.2) seem to contain rather a large number 
of values, the histograms only provide approximations to the uniform 
and normal distributions from which the samples are drawn from. For 
example, the mean and standard deviation of the U(0,1) distribution 
are 0.5 and 0.2887 respectively, while the sample counterparts here are 
0.5047 and 0.2878. Similarly, the sample mean and standard deviation of 
the simulated standard normal are 0.0535 and 1.0033.

Figure 9.9 F(3,50) probability density function

X

F (X)
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Figure 9.10 Simulations of 500 drawings from U(0,1) (top) and N(0,1) (bottom) 
distributions
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Note that the maximum and minimum simulated values of the stand-
ard normal are . and –.: the probability that a standard normal 
lies outside the range – < X <  is ., which we should expect to 
occur only about once every 500 draws.5

Notes

A convenient source of information on the normal distribution, containing  
much more than is required here, is the Wikipedia entry http://en.wikipedia.
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org/wiki/ Normal_distribution. An interesting account of how the distribution 
became ‘normal’ and how a particular form of it became ‘standard’ (see §9.3) 
is given by Stephen M. Stigler, ‘Normative terminology’ (with William M. 
Kruskal), chapter 22 of Statistics on the Table (Harvard, 1999).
Technically, independence requires that the joint probability distribution   
p(X,Y) be equal to the product of the marginal probability distributions, p(X)
p(Y), which will imply that  so that Cov(X,Y) = 0. However, the converse will 
not hold except in the case of jointly normally distributed random variables, 
which are completely defi ned by E(X), E(Y) and E(XY).
Th e rather unusual name, ‘Student’, given to this distribution is a  
consequence of it being proposed by William Sealy Gosset (1876–1937), 
one of the most famous statisticians of the 20th century: see Student, ‘Th e 
probable error of the mean’, Biometrika 6 (1908), 1–25. As an employee of 
Guinness, the famous Irish brewer of stout, Gosset was precluded from 
publishing under his own name and thus took the above pseudonym: see 
‘Th at dear Mr Gosset’, chapter 3 of David Salsburg, Th e Lady Tasting Tea: How 
Statistics Revolutionized Science in the Twentieth Century (New York, Henry 
Holt, 2001).
Th e fi rst simulation actually uses the  continuous uniform distribution 
U(a,b), rather than the discrete version introduced in §8.2, hence the slight 
alteration in notation. Th is has the pdf p(x) = (b – a)–1 for a ≤ x ≤ b, b > a, 
with mean 1

2 ( )a b+  and variance 21
12 ( )b a− . Th e uniform distribution plays 

a key role in modern random number generation (RNG), as random number 
generators for many other distributions can be derived from the uniform 
generator: see Jurgen A. Doornik, ‘Th e role of simulation in econometrics’, 
in Terence C. Mills and Kerry Patterson (editors), Th e Palgrave Handbook of 
Econometrics, Volume 1: Econometric Th eory (Palgrave Macmillan, 2006), 
pp. 787–811.
An extension of this idea lies behind the ‘6 sigma’ business management  
strategy originally introduced by Motorola in the 1980s; only 3.4 per million 
draws from a normal distribution will be more than 6σ away from the mean.
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10
Sampling and Sampling 
Distributions

Abstract: Th e issue of sampling from an underlying 
population is considered more formally, with the 
distinction being drawn between deductive and inductive 
statistical reasoning. To allow the ideas of statistical 
inference to be analysed, the concept of a simple random 
sample is introduced, along with the related ideas of 
accuracy and precision. Th e sampling distribution of the 
mean from a normal population is developed and the result 
extended, through the central limit theorem, to non-normal 
populations. Th e sampling distribution of the variance is 
then considered.
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10.1 Sampling from a population

In §7.1 we argued that most, if not all, of the data sets used in earlier 
examples should be thought of as samples drawn, in some manner, 
from an underlying population which we cannot observe in its entirety. 
We now wish to return to this issue, and to consider the whole idea of 
sampling more formally.

To do this successfully, we must distinguish between deductive and 
inductive statistical reasoning. With deductive statistical reasoning, we 
start with a population about which we already know everything that we 
need or want to know, and we investigate the possible samples and their 
characteristics that could be obtained from our known population. Th is 
idea forms the basis of this section.

Inductive statistical reasoning, on the other hand, starts with a known 
sample and attempts to identify the population that actually generated 
the sample. Usually we will already know the population in a general 
way. What we won’t know – or what we want to test – is the actual value 
of some specifi c population characteristic, for example, the mean. We 
have the value of the sample counterpart – the sample mean – so how 
do we use this information to infer the value of the population mean? 
Subsequent sections will explore this problem of statistical inference in 
some detail.

An obvious question is – why sample at all? As we have seen, oft en 
only samples of data are available and we have to make do with what we 
have got. Th is is particularly the case with historical, typically time series, 
data. Another important reason is that it is costly and time consuming 
to perform a complete enumeration of the population: hence censuses 
are typically taken only every decade and opinion polls are ever popular! 
In some cases, enumerating the population would be counterproductive. 
Consider a producer of light bulbs who wants to know their mean life. 
One way of doing this is to plug in every bulb produced and clock the 
time it takes for each to burn out. Th e producer would certainly end up 
with a very accurate estimate of the mean life of a light bulb, but unfortu-
nately would also have no product left  to sell! In such cases of destructive 
sampling, taking just a limited sample is the only viable way of obtaining 
such information.

A second question is – if a sample is taken, how precise is the resulting 
information? Th is question implies a host of other questions, the most 
fundamental being – how was the sample selected? Th ere are two basic 
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alternatives: a judgement sample and a random sample. At fi rst sight, it 
may be thought that a judgement sample must be preferable to a random 
sample on the grounds that using one’s judgement to select a sample 
must be better than choosing it completely at random. Nothing could 
be further from the truth, however! Judgement samples selected by an 
‘expert’ are rife with implicit biases that we have no way of measuring, 
whereas random samples are based on procedures where the probability 
of getting each sample is known precisely.

A simple random sample is the result of selecting a sample from a popu-
lation in such a way that all possible samples have the same probability of 
being selected. If there are K possible samples from a particular popu-
lation, then each and every sample must have probability /K of being 
selected in order for the procedure to be regarded as simple random 
sampling. We shall only consider simple random sampling, but there 
are other random sampling techniques, such as stratifi ed sampling, cluster 
sampling and multi-stage sampling, that are oft en used in more complex 
sampling problems.1

Whatever method of sampling is used, the relevant characteristic of 
the population, say the mean, will almost certainly be diff erent from the 
same characteristic in the sample: the diff erence is called the sampling 
error. Random sampling allows us to measure the extent of sampling 
error. Th ere will usually be another type of error, which is unrelated 
to sampling. Th is is called non-sampling, or systematic, error and results 
from such things as ill-defi ned questionnaires, in the form of vague or 
ambiguous questions, and incorrectly calibrated measuring devices.

Th ese ideas about errors can be formalised to allow a distinction to 
be made between accuracy and precision. Let us consider using a sample 
mean X  to provide an estimate of the unknown population mean μ. We 
can then write the ‘decomposition’

s nsXμ ε ε

where εs is the sampling error and εns is the non-sampling error. If we 
took a census, εs would be zero, but there is no guarantee that εns would 
be zero. When εns is zero (or essentially zero) we say that the measure-
ment is accurate. When εs is as small as we want it to be, we say that the 
measurement is precise. Th e sample can only provide us with information 
on precision, with statistical inference concentrating on the extent of the 
sampling error. Accuracy is a function of ‘non-statistical’ experimental 
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design, which is not considered here, and hence we assume that all meas-
urements in this chapter are accurate.

10.2 Th e sampling distribution of the mean

Let us assume that the population of the random variable X that we 
are interested in is normally distributed: X ~ N(μ,s). Th e mean μ and 
variance s  are the parameters of the distribution, whose actual values 
are unknown. We wish to estimate these parameters by drawing a simple 
random sample of size N. We denote these sample values as X, X, ..., XN. 
From these values we can calculate the sample mean X  and sample 
variance s . Th ese are known as (sample) statistics, and they can then be 
used to make inferences (estimates or decisions) about the population 
parameters.

A crucial point to understand is that any random sample of N values 
has occurred by chance – we could have obtained a completely diff erent 
set of values. Th e sampled values X, X, ..., XN must therefore all be ran-
dom variables, so that any sample statistic constructed from them must 
also be a random variable, whose value would change from sample to 
sample. Being random variables, sample statistics will have distributions 
associated with them, known as sampling distributions. To be able to make 
inferences about population parameters from sample statistics requires 
knowledge of the statistic’s sampling distribution.

Let us concentrate on the sample mean, X , which can be thought of as 
a linear combination of the sample values:

1 2
1

1 1 1 1N

i N
i

X X X X X
N N N N

…

In the notation of §9.4, ai  =  /N for i = 1, ..., N. One of the properties of 
simple random sampling is that, since each sampled value is equally likely 
to occur, successive values are independent of each other. Moreover, since 
each value is drawn from the same normal distribution, the Xi are normally 
distributed with common mean μ and common variance s 2. Hence, using 
the results on linear combinations of independent random variables in §9.4,

1 1 1
X

N
E X

N N N N
…= μ = μ + μ + + μ = μ = μ
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2
2 2 2 2 2

2 2 2 2

1 1 1
X

N
V X

NN N N N
s

s s s s s…

and, because a linear combination of normal random variables is also 
normal, the sampling distribution of the sample mean is thus

2~ ,X N N� �

Hence, it follows that

~ 0,1X XZ N N
N
� �

� �

Figure 10.1 shows a population that follows a N(100,20) distribution, 
and the distribution of a sample of size 10 drawn from this population, 
which will be N(100,2).

Intuitively, if the population mean is 100, then a random sample of size 
N =  is expected to yield a sample mean of around the same value, per-
haps a little more, perhaps a little less. However, while it is quite likely that 
any single individual drawn from this population will be, say, at least 105 

Figure 10.1 Normal population and the distribution of the sample mean
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Distribution of sample mean

Population distribution
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(the probability is 105P X 105 100 20 1.118 0.132P Z , it is 
much less likely that the mean of 10 individuals drawn from the population 
will be at least 105, since the probability of this occurring is 105P X

105 100 2 3.536 0.029P Z , that is, around 3 rather than 13. 
Th is is because, in order to get a sample mean in excess of 105, we would 
need to draw approximately half the sample with values greater than this, 
which will be correspondingly less likely. By extension, the larger the 
sample, the smaller the variance of the sample mean. If the sample size 
is 100, ~ 100,0.2X N  and 105P X 105 100 0.2 11.18P Z , 
which is essentially zero!

Note that the variance of the sample mean is 2 2
X Ns s . Its square 

root, X Ns s , is known as the standard error, to distinguish it from s 
the standard deviation of the population.

10.3 Sampling from a non-normal population

Th e above analysis is based on the assumption that the population is 
normal. What happens if the population follows some other distribu-
tion? Extraordinary as it may seem, nothing – as long as the sample size 
is reasonably large! Th is is a consequence of one of the most important 
and useful results in statistics, the central limit theorem (CLT). Th is states 
that the distribution of the sample mean, calculated from a random sam-
ple, approaches 2~ ,X N N� �  as N → ∞ irrespective of the distribution 
of the population.2 More formally, if X, X, …, XN are independent and 
identically distributed with common mean μ and common variance s 
then, as N → ∞,

2~ 0,dN X N� �

where ‘~d ’ denotes ‘convergence in distribution’.
As an example of the CLT, consider Figure 10.2, which is the probabil-

ity distribution of a discrete and asymmetric Poisson random variable 
with parameter 1.5, that is, the population is X ~ P(1.5).

In §8.4 we stated that the mean of a Poisson distribution is given 
by its parameter, μ. We can now state that its variance is also given 
by μ  and its coeffi  cient of skewness by 1 μ : hence V(X)  =  . and 
skew(X)  =  ..
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Figure 10.3 shows the sampling distribution of X  for N  =  . Th is is still 
a discrete distribution, taking the values 1 2 1 23 3 3 30, , ,1,1 ,1 ,2, ,…  and has a 
mean of 1.5 and a standard error of 1.5 3 0.70, but is seen to be less 
skewed than the population X distribution.

Figure 10.4 shows the sampling distributions of X  for N  =   and 25, 
and these can now be approximated by density functions.

Figure 10.2  X ~ P(.) probability distribution

0 1 2 3 4 5 6 7 8 9 10 r

P(X=r)

Figure 10.3 Distribution of the mean of a sample of size N = 3 from X ~ P(.)

0 1 2 3 4 5 6 7 8 9 10
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Even with N  =  , the density function is close to the normal, and it 
certainly is with N  =  , thus showing that even for asymmetric, discrete 
random variables, the CLT very quickly produces a normal distribution 
for the sample mean as the sample size increases.

10.4 Th e sampling distribution of the variance

Let us now consider the distribution of the sample variance calculated 
from a random sample of size N from an X ~ N(μ, s) population. Since 
each of the values in the sample will have the same mean and variance, 
we can defi ne the standard normal variables Zi  =  (Xi – μ)/s and recall 
from §9.4 that

22 2
2

1 1

1 ~
N N

i i
i i

Z X N� �
�

If the unknown μ is replaced by the sample mean X , then the corre-
sponding random variable continues to be distributed as chi-square, but 
with one less degree of freedom:

2 2
2

1

1 ~ 1
N

i
i

X X N�
�

Figure 10.4 Distribution of the mean from samples of size N  =   and N  =    
from X ~ P(.) 
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Now recall that the sample variance is

22

1

1
1

N

i
i

s X X
N

  i.e.,  
2 2

1
1

N

i
i

X X N s

Th us

2
2

21 ~ 1sN N�
�

  or  
2

2 2~ 1
1

s N
N
�

�

that is, the sample variance is distributed as a scaled chi-square variable 
with N– degrees of freedom, the scaling factor being s/N.

Th us if the population is N(,) and a sample of size N  =   is 
taken,

2 220
~ 9

9
s χ

Th e sampling distribution of s is shown in Figure 10.5. Suppose we want 
to calculate the probability that we observe a sample variance greater 
than 30. Th is is calculated as

22 2 9
20

( 30) (9) 30 (9) 13.5 0.14122 22( )P( 30)30)2 22 (9) 13.513.5230)30) 222 χχ
20

(9) 30(9) 30
20

(9) 30(9) 30302 9

Figure 10.5 Sampling distribution of s ~ /χ
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On the other hand, the probability that the sample variance is less than 
10 is

22 2 9
20

( 10) (9) 10 (9) 4.5 0.12422 22( 0)P( 10)2 22 (9) 4.54.5210)10) 222 χχ
20

(9) 0(9) 10
20

(9) 0(9) 10102 9

Th e diff erence in the two probabilities (which would be the same if the 
sampling distribution was symmetric) is a consequence of the lower 
bound of zero on s inducing asymmetry into the distribution, which can 
clearly be seen in Figure 10.5.

Notes

Th e classic text on sampling remains William G. Cochran,  Sampling Techniques, 
3rd edition (Wiley, 1977). A recent general discussion is provided by Robert 
M. Groves, Floyd J. Fowler, Mick P. Couper, James M. Lepkowski, Eleanor 
Singer and Roger Tourangean, Survey Methodology, 2nd edition (Wiley, 2010).
Th ere are various versions of the CLT; the one we focus on here is the  classical 
or Lindeberg–Lévy version. Forms of the theorem go back at least to de Moivre 
in 1733, although the term ‘central limit theorem’ was fi rst used only in 1920.
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11
Estimation and Inference

Abstract: Th e diff erence between an estimate and an 
estimator is emphasised and some properties of the latter, 
such as unbiasedness, consistency and effi  ciency, are 
introduced. Th e concepts of confi dence intervals for the 
mean and variance are developed and their interpretation 
discussed by way of an example using income inequality 
data. Hypothesis testing is then introduced, and 
procedures for testing hypotheses about the mean and 
variance are proposed. Further considerations concerning 
hypothesis testing, such as Type I and II errors, power 
and prob-values, are discussed. Th ese concepts are 
used to develop methods for performing inference on 
correlation coeffi  cients, with a test for zero correlation and 
a confi dence interval for the correlation coeffi  cient being 
constructed.
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11.1 Estimators and their Properties

In §10.2, we focused attention on the sample mean X  as a statistic with 
which to make inferences about the population mean μ. Th e value of X  
calculated from a particular random sample of size N is an estimate of μ, 
while the formula used for the calculation, X X N , is referred to as 
an estimator. Th e sample mean is not the only estimator of the popula-
tion mean, for the sample median and mode are clearly alternatives. Th e 
sample mean does, though, have some desirable statistical properties 
that make it a popular choice. While we shall not dwell on these in detail 
here, recall that in §10.2 we showed that E X μ: that the expected value 
of the distribution of the sample mean was the population mean. Th is is 
the property of unbiasedness. We also showed that the variance of the 
sampling mean was the ratio s/N. Th us, as N → ∞, this variance tends to 
zero, and this is the property of consistency, that is, as samples get larger 
and larger, the sampling distribution of the sample mean becomes more 
tightly packed around the population mean. Th e sample median can also 
be shown to be unbiased and consistent, so why should we focus on the 
sample mean as an estimator of the population mean, to the exclusion of 
the median? Th e reason is that the variance of the sample median can be 
shown to be (π/) × (s/N), so that it is approximately 1.57 times bigger 
than the variance of the sample mean.1 Th e distribution of the sample 
median is thus more spread out than the corresponding distribution of 
the sample mean, so that we have a greater chance of getting a sample 
median estimate much further away from the population mean than 
we do if we use the sample mean. Th e sample mean is thus said to be 
relatively effi  cient compared to the sample median, and indeed it can be 
shown to be relatively effi  cient when compared to any other unbiased 
estimator of the population mean from a normal distribution.2

Not all estimators are unbiased. Suppose that we have an estimator 
θ̂  of a population parameter θ. If ˆ(E θ) θ  then θ̂  is biased and the bias 
is given by θ̂ −θ . Consider the estimator of the population variance s  
given by

2
*

1

1 N

i
i

s X X
N

that is, we use the divisor N rather than N – . Following the same deriva-
tion as in §10.4,
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2
2

2
* ~ ( 1)
s

N N
s

χ  or    
2

2 2
* ~ ( 1)s N

N
s χ

Th us
2

2 2 2 2
*

1( ) ( 1) NE s E N
N N
s

s sχ

and the bias is – s/N.
It is straightforward to show that s, on the other hand, is unbiased. 

Note that as N → ∞, the bias declines to zero, so that s
* is asymptotically 

unbiased. It can also be shown to be a consistent estimator, as is s, so that 
for large N it does not matter whether we use s

* or s, although for small 
N the latter should always be used.

11.2 A confi dence interval for the population mean

Suppose that we are in the simple, but unrealistic, situation of having a 
population that we know to be normal and that we also know its vari-
ance: all that we don’t know is the value of its mean, which we estimate 
by the sample mean from a random sample of size N. Th e sample mean 
X  is a point estimate of the population mean μ. However, we know 
from §10.2 that our single estimate should be interpreted as a random 
drawing from the population of all means that could be calculated 
from every sample of size N that could be drawn from the population: 
that is, it is a drawing from the distribution 2~ ,X N N� � . Hence, as 
we have seen,

~ 0,1XZ N N�

�
  

(11.1)

Now suppose we are interested in the interval of values that will include 
Z with probability 0.95. Th is will be given by the probability statement

0.975 0.025 0.025 0.025 0.95P z Z z P z Z z

where we use the symmetry of the normal distribution to equate z. 
with –z.. Th us
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0.025 0.025 0.025 0.025

X
P z N z P z X z

N N
s s

s

μ μ

0.025 0.025

0.025 0.025 0.95

P z X z
N N

P X z X z
N N

s s

s s

μ

μ

where the expression aft er the second equality is obtained by multiply-
ing the previous expression through by –, and consequently changing 
the direction of the inequalities (for example, if  < x <, then  < x <). 
Th e fi nal expression

0.025 0.025 0.95P X z X z
N N
s sμ

defi nes a 95 confi dence interval for μ: the upper bound of the interval is

0.025 1.96U XX z X
N
s

sμ

and the lower bound is

0.025 1.96L XX z X
N
s

sμ

More generally, we can defi ne a (–α)% confi dence interval (CI) for  
μ as

2 2 1P X z X z
N N
s s

α αμ α
  

(11.2)

Consider now the more realistic situation when we do not know the 
value of the population variance s. However, we do know that an unbi-
ased and consistent estimator of s is given by s, so that replacing s by 
s in (11.1) gives

2 2

2 2

X X Z
s N s s

N
s

s s

μ μ
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But, from §10.4,
22

2

1
~

1
Ns

Ns

χ

so that

2 2

2

~
1

1

X Z Z
N

s s N
Ns

μ

χ

From §9.4, this is the defi nition of a variable distributed as Student’s t 
with N– degrees of freedom.3 Th us

~ 1
X

t N t N
s

μ

and, by analogous reasoning to that above, a (–α)% CI for μ is

2 2 1s sP X t X t
N N� �� �

 
(11.3)

with upper bound

2 2U X

s
X t X t s

Nα αμ

and lower bound

2 2L X

sX t X t s
N� ��

But what happens when the population distribution is not normal? If the 
sample is large then, via the CLT result in §9.3, we can continue to use 
the confi dence interval given by (11.2). If the sample is small then, strictly, 
the interval given by (11.3) only applies under normality. However, as 
long as the departure from normality is not excessive, this interval based 
on the t distribution should continue to work reasonably well.

Th e interpretation of a confi dence interval

Many users of statistical methods are notoriously confused by what con-
fi dence intervals actually mean! Th is is not surprising since the ‘obvious’ 
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interpretation turns out to be wrong: it does not mean that there is, say, 
a 95 chance that the true mean lies within the interval. Th is is because 
the true mean, being a parameter of the population distribution, takes 
on one – and only one – value. It is thus not a random variable and hence 
either lies within the interval or does not: in this precise sense the state-
ment that the true mean has a 95 chance of lying within any interval is 
meaningless.

A correct explanation of a 95 confi dence interval is as follows: if we 
took many random samples of size N from a population with mean μ, we 
would fi nd that μ lies within 95 of the calculated intervals. If, as is usu-
ally the case, we can only take one sample, then we do not (and cannot) 
know if the population mean will lie within our calculated interval, but 
we are comforted by the fact that the great majority of such intervals, on 
average 19 out of 20, will contain the population mean; we can thus be 
fairly sure – we say with confi dence level 0.95 – that our single interval 
will indeed contain μ.

We illustrate this fundamental idea by an example using the income 
inequality data fi rst introduced in §2.1. To reprise, this data set contains 
189 observations on country incomes in 2009. Let us assume that these 
189 observations represent the entire population of countries, although 
we know that this is not actually true (recall the discussion in §7.1). Let 
us further assume that the mean of this population is given by μ  = 13389 
(the sample mean calculated using all 189 observations) and let us 
attempt to estimate this mean by taking random samples of size N =  
and constructing 95 confi dence intervals using (11.3). Th ese will use the 
critical t value t.() = ., and the intervals so constructed from 20 
such samples are shown in Figure 11.1.

Just one of the samples (coincidentally the fi rst) does not contain the 
‘population’ mean of 13389 (shown as the dashed horizontal line in Figure 
11.1), so that 19 of the 20 do contain it, a fraction (fortuitously) exactly 
equal to the nominal confi dence level of 0.95. Note that such a satisfac-
tory result has been achieved even though we know that the ‘population’ 
distribution is certainly not normal, being highly skewed to the right. 
However, the widths of the confi dence intervals vary quite widely. Th is 
is because we are estimating the unknown population variance by the 
sample variance s: across the 20 samples, the sample standard deviation 
s ranges from 7478 (sample 1) to 38298 (sample 19), so that the standard 
error Xs  ranges from 1672 to 8564.
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To illustrate the confi dence interval calculations, sample 1 was found 
to have a mean of 7144, while sample 19 had a mean of 27072. Th e two 
95 CIs were thus calculated (using the Xs values given above) as

Sample 1

7144 2.093 7478 20 7144 3499  i.e. 3645,10643

Sample 19

27072 2.093 38298 20 27072 17924  i.e. 9148, 44996

11.3 A confi dence interval for the 
population variance

Th e above example has shown that the sample standard deviation is 
rather variable across samples. Th us it would be useful to be able to 
construct a confi dence interval for the population variance. From §10.4, 
we know that

2
2

2
1 ~ 1N s N�

�

Figure 11.1 Confi dence intervals for 20 samples of size 20 drawn randomly from 
the income inequality data
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A (–α)% CI for s is then obtained from
2

2 2
1 2 22

1
1 1 1

N s
P N N

s
αχ χ αα

as

2 2
2

2 2
2 1 2

1 1
1

1 1
N s N s

P
N N

s
α α

α
χ χ

Th us, 95 confi dence intervals for s calculated from samples 1 and 19, 
respectively, are

2 2
2

2 2
0.025 0.975

19 7478 19 7478
19 19

s
χ χ

and
2 2

2
2 2
0.025 0.975

19 38298 19 38298
19 19

s
χ χ

With 2
0.975 19 8.907χ  and 2

0.025 19 32.85χ , these intervals are, in terms 
of s,

5687 10922s

and

29126 55935s

Since the standard deviation of the complete data set is 17629, we see 
that neither interval includes this value, although as we are calculating 
the confi dence intervals using the two extreme estimates of s, this is 
perhaps not too surprising.

11.4 Hypothesis testing

So far, we have been considering how to estimate the unknown popu-
lation parameters using sample data. Oft en, however, we wish to test 
hypotheses about the values taken by these parameters. Suppose that an 
economist, before looking at the income inequality data, claims that mean 
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income is μ = . If a sample of just 20 countries was available, then 
one way to test the validity of this claim would be to construct, say, a 95 
CI for the mean and see whether the value μ =  fell inside the cal-
culated interval. If it did, we might conclude that the claim was justifi ed; 
if it did not, we would be tempted to conclude that the claim was invalid. 
Looking again at the 20 confi dence intervals shown in Figure 11.1, only 
one of the intervals (the tenth) does not contain μ = , so there is 
a good chance that we would, when taking just a single sample, con-
clude that the claim had some validity. Of course, we could be ‘unlucky’ 
and actually draw the tenth sample that does not contain μ = , in 
which case we would conclude, perhaps erroneously, that the claim was 
invalid.

Now suppose that a second economist claims that mean income 
is μ = . Now only one of the intervals contains this value, sug-
gesting that the claim is likely to be false. However, it is again possible 
that the sample that is actually drawn turns out to be the 19th – the 
one that includes the value – in which case it would be concluded that 
the claim was valid. Further, suppose that, rather than computing 95 
confi dence intervals, we decided to compute 70 confi dence intervals. 
Since t.() = ., such intervals stretch roughly one standard error 
on either side of the sample mean, and are thus around half the length of 
the 95 intervals. Now 11 of the 70 intervals will not contain μ =  
(and certainly none will contain μ = ), so that it is more likely that 
the claim will be found to be invalid. Th us decisions about claims are 
seen to be dependent upon both chance (that is, which sample is actually 
drawn) and on our choice of confi dence level: there is thus no such thing 
as fi nding a claim defi nitely valid or invalid – each will have a probability 
of error attached to it.

Th ese ideas can be formalised within the framework of a hypothesis 
test. A claim made by an economist, or indeed by anyone else, about the 
values taken by a population parameter is known as the null hypothesis, 
typically denoted H0. Th e values not included in the claim become the 
alternative hypothesis, denoted here as HA (although the notation H1 
is also commonly used). Typically, the null hypothesis will defi ne a 
single value of the population parameter (say H0: μ = ), in which 
case the alternative will be all other values (the two-sided alternative 
HΑ: μ ≠ ), although in some cases a one-sided alternative may be 
specifi ed (say H0: μ >  if it is felt that values of μ less than  
cannot possibly occur).
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Th e validity of the null hypothesis is assessed by constructing a test 
statistic. Th is will depend upon the sample estimate of the population 
parameter and the value of the parameter under the null, and its exact 
form will depend upon the sampling distribution of the sample estimate. 
It will always be a random variable, however, and will thus follow a known 
probability distribution. A rejection region, based on a chosen signifi cance 
level of the test, is then defi ned. If the calculated test statistic falls into 
this rejection region then the decision is to reject the null hypothesis; if 
the test statistic falls outside this rejection region then the decision is not 
to reject the null.4

Testing a hypothesis on the population mean

Suppose that we are interested in testing a hypothesis about the unknown 
mean μ of a normally distributed random variable. We have available a 
sample of size N containing the observations X, X, … , XN, from which 
we calculate the sample mean X  and sample variance s. From §11.2, we 
know that

~ 1
X

t N t N
s

μ

Suppose that the null hypothesis is that μ equals a particular value, say 
μ0: formally, we state this as H0: μ = μ0, with the alternative hypothesis 
being HΑ: μ ≠ μ0. We now temporarily assume that H0 is true, in which 
case the test statistic

0
0

X
t N

s
μ

would be distributed as t (N – 1). Our next task is to choose the signifi -
cance level of the test, α. Th is is oft en set at 5, that is, α = 0.05, although 
it could easily be chosen to be some other value. Th is choice defi nes the 
rejection region for the test. With our two-sided alternative, the rejec-
tion region is defi ned to be the tails of the distribution that, because of 
the symmetry of the t-distribution, contain α/ 2 of the distribution in 
each of them, as shown pictorially in Figure 11.2.

Formally, the rejection region, RR, is defi ned as

0 2: 1RR t t Nα
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Th e test can now be performed by calculating t0 and establishing whether 
it falls in RR or not.

As an example, suppose that the null is H0: μ =  and that, from 
a sample of N = , 18756X  and s =  (that is, we have sample 10 
from the income inequality data available). Th en, assuming H0 is true,

0
18756 1000020 2.41

16248
t

Th e rejection region is defi ned, for α = 0.05, as

0 0.025: 19 2.093RR t t

Since 0 2.41 2.093,t  the test statistic falls into RR and hence we reject 
the null hypothesis.

If the alternative is the one-sided HΑ: μ > μ0 then all of the rejection 
region falls into the right-hand tail of the distribution and so

0: 1RR t t Nα

with an analogous rejection region based on the left -hand tail if 
H0: μ < μ0.

Th e temporary assumption that the null hypothesis is true is a 
crucial feature of the test. By making this assumption, we ask the 

Figure 11.2 A pictorial representation of a hypothesis test on a population mean

t0
α/2 α/2

–tα/2 tα/2

RR RR



Classical Regression 

following question: what is the behaviour of the test statistic likely to 
be if the null is true? Th e answer is that t0 will follow the appropriate t 
distribution, so that large (absolute) values of t0 would be unlikely to 
be observed if the null was indeed true. If, nevertheless, we do observe 
such a large value, then this must cast doubt upon the appropriateness 
of assuming that the null hypothesis is true, and we consequently 
prefer to reject the null in favour of the alternative. Choosing the 
signifi cance level α is thus a device that allows us to decide what we 
consider to be a suffi  ciently ‘large’ value of the test statistic to warrant 
rejection of the null.

Testing a hypothesis on the population variance

Suppose that we now wish to test a hypothesis concerning the unknown 
variance of a normal random variable. Here we can set up the null as 

2 2
0 0:H s s  and the alternative as 2 2

0:AH s s . In this case, again using 
the result that

2
2

2

1
~ 1

N s
N

s
χ

the test statistic is
2

2
0 2

0

1
s

N
s

χ

which will be distributed as χ (N – ) on the assumption that 2 2
0 0:H s s  

is true. Th e rejection region for a test with α level of signifi cance is 
defi ned as

2 2 2 2
0 2 0 1 2: 1  or  1RR N Nα αχ χ χ χ

as can be seen from the pictorial representation in Figure 11.3.
As an example, suppose that H0: s  =  and we again have sample 

10. Th e test statistic is then
2

2
0 2

16248
19 22.29

15000
χ

With α  =  0.05, 2
0.975 (19) 8.907χ  and 2

0.025 (19) 32.85,χ  so that 2
0χ  

does not fall in the rejection region and we cannot reject the null 
hypothesis.
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11.5 Further considerations concerning 
hypothesis testing

Th e apparatus of hypothesis testing is crucial to all areas of economics, 
and several features of it are worth exploring further. Th e device of setting 
a signifi cance level for a test has certain implications that data analysts 
need to be familiar with. Th e most important of these is to appreciate 
that, as has been made explicit in the development of hypothesis testing, 
incorrect decisions can, and oft en will, be made.

Consider again the setting up of a rejection region. Th e decision rule 
is to reject the null hypothesis if the test statistic falls in the rejection 
region. However, it is clear that the test statistic could fall into this region 
even if the null hypothesis is true: the choice of the signifi cance level 
merely determines the probability of this happening. Th is is why the sig-
nifi cance level is also known as the probability of making a Type I Error, 
formally defi ned as

0 0 is rejected  is trueP H H�

Th ere is a second way that an incorrect decision may be made. Th is is 
when the null hypothesis is not rejected when the alternative hypothesis 
is true; it is known as the Type II Error. Th e probability of making a Type 
II error is known as β and defi ned as

Figure 11.3 A pictorial representation of a hypothesis test on a population 
variance

χ2

χ2
1-α/2 χ2

α/2

α/2 α/2

RR RR
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0  is not rejected  is trueAP H H�

It is straightforward to show that a trade-off  exists between the two types 
of error: decreasing α necessarily implies that β increases. If the prob-
ability of incorrectly rejecting the null when it is true is made smaller, 
then the probability of incorrectly accepting the null when it is false 
must become larger.

Just as 1−α is known as the confi dence level, 1−β is called the power of 
the test: a good test is one that has, for a given confi dence level, high 
power.

It is diffi  cult to provide any fi rm guidelines for choosing the level 
of signifi cance. Setting α = 0.05 is traditional (and has the neat inter-
pretation that a Type I error will only be made once every 20 tests on 
average), but it is by no means universally accepted or, indeed, always 
sensible. An alternative approach to hypothesis testing is to use prob-
values (p-values). Th e p-value is the probability of observing a value 
of the test statistic at least as large as the one that has been calculated. 
Th us, when testing H0: μ = 10000, the test statistic t = 2.41 was obtained. 
Th e probability of drawing such a value from a t(19) distribution may 
be computed to be 0.0273, which states that there is a 2.73 chance of 
observing 0 2.41t  if the null hypothesis was true: such a small value 
suggests that the null is very likely to be false and therefore should be 
rejected.

Th e use of p-values helps to avoid problems associated with the abrupt 
cut-off s implied by the rejection region approach. For example, suppose 
that, when testing H0: μ = 10000, a test statistic of 2.08 was obtained. Th is 
is below the 5 signifi cance level of 2.093, but has a p-value of 0.0513, that 
is, it has a marginal signifi cance level of 5.13. Th ere may be good grounds 
for rejecting this null even if the test statistic is not quite signifi cant at 
the 5 level. One argument for doing so is that the size of the sample 
should be taken into consideration when signifi cance levels are set. With 
very large sample sizes, standard errors of estimators become very small 
(the consistency argument), so that even small diff erences between the 
estimate and the null hypothesis will lead to signifi cant test statistics, 
even though there may not be any ‘economic’ diff erence between them. 
On the other hand, with small samples standard errors are large, so that 
test statistics will be small and thus incapable of distinguishing between 
hypotheses. Th us there are good arguments for making signifi cance 
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levels inversely proportional to sample size: with small samples, set the 
signifi cance level high, with large samples, set it small.5

Finally, confi dence intervals and (two-sided) hypothesis tests are 
really ‘two sides of the same coin’. For a given choice of α, if a test statis-
tic falls into the rejection region then the value hypothesised under the 
null will lie outside the 100(1–α)% CI, so that in both cases a rejection 
of the null is indicated. Similarly, if the hypothesised value falls within 
the 100(1–α)% CI then the test statistic will not lie in the α% rejection 
region, and the null will not be rejected.

11.6 Inference in correlation

Having developed a set of inferential procedures, we can now return to 
the analysis of correlation and begin to answer questions such as: What 
is the 95 CI for the correlation between consumption and income? and: 
Is the correlation between infl ation and unemployment signifi cant? To 
be able to do this, we require the sampling distribution of the sample cor-
relation coeffi  cient rXY. Th is is made somewhat complicated by the fact 
that this distribution depends on the value of the unknown population 
correlation coeffi  cient, which, on recalling the defi nition of covariance 
introduced in §9.4, we defi ne as

,
XY

Cov X Y E XY E X E Y
V X V Y V X V Y

ρ

Th e sampling distributions of r for  ρ =  and ρ = . are shown in Figure 
11.4 (we drop the XY subscripts for notational simplicity).

To construct a CI for ρ we make use of the following transformation

1 1
22

1 1 1
ln ~ ln ,

1 1 3
r

f N
r N

ρ
ρ

where r is computed from the sample (X,Y), … , (XN,YN). Th us, a 
100(1–α)% CI for ρ is obtained by fi rst calculating the interval

2

1
3

f z
Nα

to give upper and lower bounds fU and fL. We then need to solve
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11 ln2 1
f

ρ
ρ

in terms of ρ. Some algebra shows this to be

exp 2 1
exp 2 1

f
f

ρ

and this formula can then be used to calculate ρU and  ρL. For example, 
in §5.1 we found that the sample correlation between U.K. consumption 
and income was r = 0.997 when calculated using N = 63 post-war annual 
observations.

A 95 confi dence interval for the population correlation is thus calcu-
lated in two steps. First, on noting that

1 0.9971 ln 3.25042 1 0.997
f

we calculate the interval

13.2504 1.96 3.2504 0.2469
63

yielding fU = . and fL = ..

Figure 11.4 Distribution of the population correlation coeffi  cient ρ
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Transforming back to correlations, we obtain

exp 2 3.4973 1
0.998

exp 2 3.4973 1Uρ

and

exp 2 3.0035 1
0.995

exp 2 3.0035 1Lρ

so that a 95 confi dence interval is 0.995 <  ρ  < 0.998, which, as expected, 
is very ‘tight’, but asymmetric about r  =  0.997.

Th is transformation, known as the Fisher transformation, can easily be 
used to construct a test of the hypothesis H: ρ  =  ρ0  ≠  0, but such tests 
are rarely used or of interest in economics. Of much more importance 
is a test of the null hypothesis H: ρ  =  0, as this states that X and Y are 
uncorrelated in the population. Here we can make use of the result, 
alluded to above, that r is approximately t distributed under this null. In 
fact, the test statistic that we use is

2

2 ~ 2
1
Nt r t N

r

In §5.1 we also found that, using N  = 156 annual observations, the cor-
relation between U.K. infl ation and unemployment was –0.34. Th e above 
test statistic is

2

1560.34 4.52 ~ 154
1 0.34

t t

which has a p-value less than 0.00002 and is thus clearly signifi cant: 
we may thus reject the hypothesis that infl ation and unemployment are 
uncorrelated.

Th is approach to testing the null of zero correlation may easily be 
extended to partial correlations. In this situation, where we are holding 
a third variable ‘constant’, the degrees of freedom are reduced by one: 
that is, N– appears in both the test statistic and the degrees of freedom. 
For example, the partial correlation between salary and education with 
experience held constant was rXY.Z  =  0.414, calculated using N  =  12 obser-
vations. To test H: ρXY.Z  =  0, we calculate
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2

90.414 1.36 ~ 9
1 0.414

t t

Th is has a p-value of 0.21 and is clearly insignifi cant.6

Notes

A proof of this result is extremely complicated, and was fi rst shown by Karl  
Pearson, ‘On the standard error of the median  ...’, Biometrika 23 (1931), 361–363.
A proof of this result, which is based on the  Cramer-Rao inequality (or lower 
bound), is given in Paul G. Hoel, Introduction to Mathematical Statistics, 4th 
edition (Wiley, 1971), p. 365.
Th is result assumes that the numerator and denominator are independent of  
each other, and it can be shown that this is the case here.
Hypothesis testing plays a central role in statistical inference and its  
compatriot, statistical signifi cance, has been the subject of many philosophical 
and methodological debates since the development of the competing 
inferential frameworks of Sir Ronald Fisher and Jerzy Neyman and Egon 
Pearson in the 1920s and 1930s: see, for example, Johannes Lenhard, ‘Models 
and statistical inference: the controversy between Fisher and Neyman-Pearson’, 
British Journal of the Philosophy of Science 57 (2006), 69–91. Th is debate has 
fl ared up again recently in economics: see Stephen T. Ziliak and Deirdre N. 
McCloskey, Th e Cult of Statistical Signifi cance: How the Standard Error Costs 
Us Jobs, Justice and Lives (University of Michigan Press, 2008) and Kevin D. 
Hoover and Mark V. Siegler, ‘Sound and fury: McCloskey and signifi cance 
testing in economics’, Journal of Economic Methodology 15 (2008), 1–37. A 
framework that may have the potential of reconciling the various approaches 
to hypothesis testing is the severe testing methodology of Deborah G. Mayo 
and Aris Spanos, ‘Severe testing as a basic concept in a Neyman–Pearson 
philosophy of induction’, British Journal of the Philosophy of Science 57 (2006), 
323–357. For more economic-centred discussion of this idea, see John DiNardo, 
‘Interesting questions in Freakonomics’, Journal of Economic Perspectives 
45 (2007), 973–1000, and Terence C. Mills, ‘Severe hypothesis testing in 
economics’, Journal of Quantitative Economics 7 (2009), 1–19.
Such an argument is oft en regarded as being an implication of Bayesian  
inference (recall §7.2), but it is also consistent with the severe testing approach.
For the rank correlation  rs introduced in §5.3, the null H: ρs  =  0 can be tested 
using the statistic 1 ~ 0,1s sz r N N .
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12
Th e Classical Linear 
Regression Model

Abstract: Th e regression model of Chapter 6 is revisited 
using the inferential framework developed in subsequent 
chapters. Th e theory underlying the least squares approach 
is developed in more detail, so providing the ‘algebra’ 
of regression. Th e concepts of population and sample 
regression functions are introduced, along with the 
‘classical assumptions’ of regression. Th ese assumptions 
allow the ordinary least squares (OLS) estimators to satisfy 
the Gauss–Markov theorem, thus becoming best linear 
unbiased estimators, this being illustrated by simulation. 
Statistical inference in regression is then developed 
along with a geometrical interpretation of hypothesis 
testing. Finally, the use of regressions for prediction and 
considerations of functional form and non-linearity are 
discussed. Several examples are used to illustrate these 
concepts throughout the chapter.
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12.1 Th e algebra of regression

In §6.2 we introduced (bivariate) regression analysis, in which 
a sample of N pairs of observations on the variables X and Y, 
(X,Y),  (X,Y), … ,  (XN,YN) were used to fi t the regression line

0 1
ˆ ˆ

î iY Xβ β

by the method of least squares.1 As we saw there, mathematically the 
least squares regression problem is to choose those values of 0β̂  and 1β̂  
that minimise the sum of squared residuals

22
0 11 1
ˆ ˆˆN N

i i ii i
S u Y X� �

Th us S has to be diff erentiated with respect to 0β̂  and 1β̂  and the deriva-
tives set to zero (subscripts and summation limits are now omitted for 
clarity):

0 1
0

ˆ ˆ2 1 0ˆ
S Y X� �

�

0 1
1

ˆ ˆ2 0ˆ
S Y X X� �
�

i.e.,

0 1
ˆ ˆ 0Y X� �

2
0 1
ˆ ˆ 0YX X X� �

Th ese ‘fi rst order conditions’ can be written as the normal equations

0 1
ˆ ˆ 0Y N Xβ β

   (12.1)

and

2
0 1

ˆ ˆ 0YX X Xβ β
 (12.2)
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Th e fi rst of these, (12.1), can be solved for 0
ˆ :β

0 1 1
ˆ ˆ ˆY X

Y X
N N

β β β
 

(12.3)

Th en substituting (12.3) into (12.2),

2
1 1

ˆ ˆ 0
Y X

XY X X
N N

β β

and rearranging gives

2

2
1

ˆX X Y
X XY

N N
β

which can then be solved for 1β̂ :

1 2 22
ˆ N XY X Y xy

xN X X
�

  

(12.4)

where the second equality uses the equivalences derived in note 2 of 
Chapter 4.

Strictly, setting the fi rst derivatives 0
ˆS∂ ∂β  and 1

ˆS∂ ∂β  to zero for 
the fi rst order conditions only ensures an extremum solution, which 
could correspond to either a minimum or a maximum sum of squared 
residuals. However, the second order conditions for a minimum, which 
involve

2

2
0

2ˆ
S

N
∂
∂β   

2
2

2
1

2ˆ
S

X
∂
∂β   

2

0 1

2ˆ ˆ
S

X
∂

∂β ∂β

are that 2 2
0

ˆ 0S∂ ∂β  and 2 2
1

ˆ 0S∂ ∂β , which are both clearly satisfi ed, 
and

2 2 2

2 2
0 1 0 1

0
S S S∂ ∂ ∂

∂β ∂β ∂β ∂β

Th is implies that 
2 22 0X X N X X , which is clearly the 

case, so the second order conditions do indeed ensure that the normal 
equations yield a minimum.
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As the residuals are given by

0 1
ˆ ˆˆ

i i iu Y Xβ β

the normal equations (12.1) and (12.2) can be written as

ˆ 0u

ˆ 0xu

that is, the least squares fi t is such that the sum of the residuals is zero, as 
is the sum of the product of the residuals and the regressor X, measured 
in deviations form.

Th e residual sum of squares (S; now defi ned as RSS) is (cf. a similar 
derivation in §6.4):

22
0 1

2

1 1

2

1

2

1

2 2 2
1 1

2 2 2
1 1

2
1

ˆ ˆˆ

ˆ ˆ

ˆ

ˆ

ˆ ˆ2

ˆ ˆ2
ˆ

RSS u Y X

Y Y X X

Y Y X X

y x

y x xy

y x xy

y xy

� �

� �

�

�

� �

� �

�

using 2
1

ˆ xy xβ . If we denote 2y  as the Total Sum of Squares 

(TSS) and 1
ˆ xyβ  as the Explained Sum of Squares (ESS), then we have 

the ‘decomposition’

RSS TSS ESS

We can now defi ne the Coeffi  cient of Determination, which measures 
goodness of fi t and was fi rst introduced in §6.4, as

2

2 2
1 2

12 2 2 2

1

ˆ
ˆ

XY
ESS TSS RSS RSSr
TSS TSS TSS

xyxy x
y x y y

b
b
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From the formula (12.3) for 0β̂ , we have

0 1
ˆ ˆY Xβ β

that is, the fi tted line passes through the point of the sample means 
, :Y X  this, of course, does not need to be an observation point. 

Furthermore, since ˆˆi i iu Y Y , so that

0 1
ˆ ˆ ˆ

i i iY X uβ β

we then have

1
ˆ ˆ

i i iY Y X X uβ

or

1
ˆ ˆ

i i iy x uβ

and

1
ˆˆ

i iy xβ

(cf. equation (6.7)). Th is implies that, if we work in deviations about 
means, we can ignore the intercept in our derivations: geometrically, we 
have shift ed the axes from origin (0,0) to ,Y X .

Fitting the UK consumption function

In §6.7 an estimated log–linear consumption function for the UK for the 
period 1948–2010 was reported as ˆln 0.09 0.98lnC Y . Th e calculations 
underlying this regression are, with c and y representing deviations of 
the logarithms of consumption and income from their respective means, 
lnC  and lnY :

4.97C   ln 13.4488Y

2 12.2854c
  

2 12.7003y
  

12.4705cy

Th us

1 2

12.4705ˆ 0.982
12.7003

cy

y
β

0 1
ˆ ˆln ln 13.2926 0.982 13.4488 0.087C Yβ β
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For this regression

12.2854TSS

0.982 12.4705 12.2451ESS

0.0403RSS TSS ESS

so that the goodness of fi t is

2 12.2451 0.04031 0.9967
12.2854 12.2854YCr

so that variation in the logarithms of income explains 99.7 of the varia-
tion in the logarithms of consumption.

12.2 Population and sample regression functions

Having developed the mechanics of linear regression, we need to pro-
vide some theoretical underpinnings to the technique so that we can 
assess under what circumstances it can, and cannot, be used to analyse 
economic data. To do this, we introduce the concept of the population 
regression function (PRF), which we may regard as a theoretical relation-
ship between Y and X of the form

0 1i i iE Y X Xβ β

where i iE Y X  is the mean of Y conditional on X.
Equivalently, we may write

0 1i i i

i i i

Y X u

E Y X u

β β

where

i i i iu Y E Y X

Th e error ui is the population counterpart of the residual, and captures 
the eff ect of all other infl uences on Y, apart from X, that we either choose 
not to model or which cannot be modelled.
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Following the approach in previous chapters, we can also define the 
sample regression function (SRF), which is simply our fitted regression 
line

0 1
ˆ ˆ

î iY X= +

We know that the SRF is the ‘line of best fit’ using a least squares crite-
rion – but do the estimators 0 1

ˆ ˆ and  have any desirable properties in 
themselves? In fact they do, if we make a certain set of assumptions for 
the PRF, known as the classical assumptions.

E. (ui)  =   for all i.

This assumes that the errors have zero mean.

V. (ui)  =   for all i.

This assumes that the errors have a common variance, a property known 
as homoskedasticity. Note that the combination of assumptions 1 and 2 
implies ( )2 2

iE u = , since 2 2 2( ) ( ( )) ( 0) ( ).i i i i iV u E u E u E u E u= − = − =

Cov. (ui,uj)  =   for all i  ≠  j.

This assumes that any two errors have zero covariance and hence are 
uncorrelated. Since Cov(ui,uj)  =  E(uiuj) – E(ui)E(uj), this assumption can 
equivalently be written as E(uiuj)  =  .

Cov. (ui,uj)  =   for all i and j.

This assumes either that the errors and the regressor are independent 
and hence have zero covariance or that the xj are non-stochastic. It can 
equivalently be written as E(uixj)  =  , which in the latter case becomes 
E(uixj)  =  xjE(ui)  =  .2

The . ui are normally distributed for all i.

With assumptions 1–3, this implies that the errors are normally and 
independently distributed with mean zero and common variance , 
which we denote as ui ~ IN(, ).

12.3 Properties of the ordinary least  
squares estimators

The estimators defined in §12.1 as (12.3) and (12.4) are known as the 
ordinary least squares (OLS) estimators:
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1 0 12
ˆ ˆ ˆxy

Y X
x

β β β

With assumptions 1 to 4, these OLS estimators satisfy the Gauss–Markov 
theorem:

Within the class of unbiased linear estimators, the OLS estimators have mini-
mum variance, that is, they are the best linear unbiased estimators (BLUE).

What does this theorem, which lies at the heart of regression analysis and 
hence of econometrics, actually mean? Th e following points are crucial 
in understanding its importance.

  (i)  We restrict attention only to linear estimators. Th is means that the 
formula for an estimator must be a linear function (in fact, a linear 
combination) of the yis:

1 1 1 2 22
ˆ i i

N N
i

x y
w y w y w y

x
…β i iw y

where the weights are given by

2
i

i
i

x
w

x

(ii)  Given that we are only considering linear estimators, we further 
restrict attention to unbiased estimators: those estimators that, on 
average, yield the true value of the parameter they are estimating. 
Formally, as we saw in §11.1, an unbiased estimator of β1, for 
example, has the property that 1 1

ˆE � � . Th at the OLS estimator 
is unbiased is easily shown:

1 1 1 1 1
ˆ 1E E wy E w x E wx E� � � � �

on noting that 2 2 2 2 1wx x x x x .

How do we interpret an unbiased estimator? Let us perform the follow-
ing experiment, known as a Monte Carlo simulation. Suppose that we are 
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in the unrealistic position of actually knowing the PRF between Y and a 
variable X, which takes the values

1 1X , 2 2X , ,…  100 100X

that is, X is a time trend: Xt  =  t with T  =  . Th is known PRF is 
Yt  =   + t + ut, where ut ~ IN(,), so that Y  =   +u, Y  =   +u, etc. 
Note that the true value of the slope is β  =  .Now suppose that we

(a) Draw a large number, say 1,000, of samples of size 100 from our u 
distribution. Th is is simple to do with random number generators 
in modern econometric computer packages. Note that these 
samples will all be diff erent.

(b) For each u sample, calculate Yt  =   + t + ut. Th is will give us 1,000 
samples of size 100 of (Yt, t) data.

(c) Run the 1,000 regressions of Y on t, calculating 1β̂  each time.
(d) Construct the frequency distribution of 1β̂  (typically represented 

as a histogram: recall §2.1): this should be centred on β  =   if 1β̂  is 
unbiased.

Th e histogram so constructed is shown in Figure 12.1(a), from which the 
unbiasedness property is clearly seen.

Figure 12.1(a) Monte Carlo distributions of two alternative estimators of β; 
distribution of 1β̂
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Furthermore, the distribution looks normal: in this experiment this is a 
consequence of u being normal, but it would in fact hold via the CLT for 
any distribution of u as long as the sample was of a reasonable size (recall 
§10.3).

(iii)  Note that, because the β diff er across the samples, we obtain a 
frequency distribution with, obviously, a variance associated with 
it. Th e best (minimum variance) property of the OLS estimator 
states that this variance is the smallest possible within the class of 
linear unbiased estimators.

To illustrate this property, consider the following alternative estimator 
of β.

100 1 100 1
1

100 1 99
Y Y Y Y
X X

β

β is linear and can be shown to be unbiased, but uses only two observa-
tions, ignoring all the rest! Not surprisingly, the variance of its frequency 
distribution calculated from the same 1,000 samples is far greater than 
that for β, being approximately 18 times as large (see Figure 12.1(b)).

Figure 12.1(b) Monte Carlo distributions of two alternative estimators of β; 
distribution of 1β

0

20

40

60

80

100

120

0.625 0.750 0.875 1.000 1.125 1.250 1.375 1.500

Mean = 1.003
Std.Dev. = 0.150



 Analysing Economic Data: A Concise Introduction

As we can see from the two histograms, this means that there is a far 
greater chance that we will (unluckily) obtain an estimate of β that is 
a considerable distance from the true value of 1, and hence obtain an 
inaccurate estimate of the slope.

More importantly, it will also be the case that all other linear unbiased 
estimators will have a greater variance than the OLS estimator (these 
remarks apply equally to estimators of the intercept, β). Th us the OLS 
estimator is relatively effi  cient and is said to be best in the class of unbi-
ased linear estimators.3

12.4 Statistical inference in regression

Given the fi ve assumptions made in §12.2, and now knowing that OLS is 
BLUE, we can state the following results about 0 1

ˆ ˆ and β β :4

0 0
ˆE � �

     1 1
ˆE � �

2
2

0 2
1ˆ XV
N x

� �

     

2

1 2
ˆV

x
�

�

2
0 1 2

ˆ ˆ, XCov
x

� � �

Furthermore, 0 1
ˆ ˆ and β β  are jointly normally distributed. Note that the 

formulae for the variances and covariance contain s, which will typi-
cally be unknown. An unbiased estimator of the error variance is

2
2

ˆ
ˆ

2 2
uRSS

N N
s

With this we can defi ne the standard errors of the estimators as

2

0 2
1ˆ ˆ XSE
N x

� �

1 2

ˆˆSE
x

�
�
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Now consider the variable

1 1 1 1
1

1
2

ˆ ˆ

ˆ ˆ( )
t

SE
x

− −
= =

∑
This can be written as

( )
1 1 1 1

1 2 2 2

12 22

ˆ ˆ

ˆ ˆˆ
t

V
x

− −
= =

∑

Since 1 1 1
ˆ ˆ ~ 0,1V N  and, by an obvious extension of the 

result in §10.4, ( ) ( )2 2 2ˆ ~ 2 2N N− − , it therefore follows that 
( )1 ~ 2t t N − .5

Suppose we wish to test the null hypothesis

= *
0 1 1:H

against the two-sided alternative ∗≠1 1:AH . If the null hypothesis is 
true, then

*
1 1

1

1

ˆ
~ 2

ˆ
t t N

SE

and hence the null will be rejected if t is sufficiently large in absolute 
value. If we test at the α significance level, then our decision rule is to

reject H if ( )1 2 2t t N> −

where t (N–) is the / percentage point of the t(N–) distribu-
tion. If the alternative is one-sided, say ∗>1 1:AH , then our decision 
rule is to

reject H if t > t (N–2)

Salaries, education and experience revisited

Let us consider again the salaries–education regression example of §6.2. 
Recall that we obtained
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0 1
ˆ ˆ15.263 2.947β β

Th e standard errors of these estimates are calculated as:

2

0
1 5ˆ ˆ ˆ0.861
12 38

SE � � �

1
ˆ ˆˆ
38 6.164

SE � �
�

Now

538 2.947 112
ˆ 4.56

10
s

so that

0
ˆ 3.926SE �

1
ˆ 0.740SE �

Suppose we wish to test the hypothesis that salary in the absence of any 
post-school education is £10,000. Th us to test H: β  =   against the 
two-sided alternative HA: β  ≠  , we compute

0
15.263 10 1.34

3.926
t

If we use an α  =  0.05 signifi cance level, so that t.  =  ., then since 
1.34 2.23, we do not reject the null hypothesis.

We may wish to test the null hypothesis that post-school education 
has no eff ect on salary against the alternative hypothesis that it has a 
positive eff ect. Th is is a test of H: β  =   against the one-sided alternative 
HA: β > . Using α  =  0.05, we compute

1
2.947 0 3.98

0.740
t

Since t.  =  . < t, we can reject the null hypothesis. Tests of a coef-
fi cient null hypothesis using a t distribution are usually known as ‘t-tests’, 
with the test statistic being referred to as a ‘t-statistic’. When the null 
has a value of zero, the latter is typically known as a ‘t-ratio’, for obvious 
reasons.
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Inference in the consumption function
A conventional format for reporting regression results is

0 1
2

ˆ ˆˆ
ˆ( ) ( )

[ ] [ ]

i iY X
SE SE R

t ratio t ratio

β β
s

where we now write R for 2
XYr  for consistency with subsequent notation. 

Without going into computational details, the linear and logarithmic 
consumption functions are estimated to be

ˆ 4708 0.860
(4328) (0.005)
[1.09] [166.1]

t tC Y

  

2 0.9978R   ˆ 13845s

ˆln 0.087 0.982 ln
(0.097) (0.007)
[0.90] [136.2]

t tC Y

  

2 0.9967R   ˆ 0.0257s

Using appropriate critical values of the t() distribution, it can be ascer-
tained that the intercepts in both functions are insignifi cantly diff erent 
from zero but that the slopes are signifi cantly less than one.

It is oft en tempting to compare regression models on the basis of 
goodness of fi t, by for example, selecting the regression with the highest 
R or lowest ŝ. Th is is a dangerous procedure in any event, but it is incor-
rect to compare these two regressions on the basis of R and ŝ values as 
the dependent variables are diff erent (a method by which they may be 
compared is suggested in §15.6). Note also that it is not good practice to 
report estimates to many decimal places, as this conveys a sense of ‘false 
precision’ and obfuscates interpretation.

Confi dence intervals
A (–α)CI for β is

1 2 1
ˆ ˆ2t N SE�� �

With α  =  0.05, a 95 CI for β from our salary–education regression is

2.947 2.23 0.740

i.e.
2.947 1.650
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or

11.297 4.597 0.95P β

Th e interval does not contain zero, thus confi rming that β is signifi cantly 
positive. Similarly, for β we have

15.263 2.23 3.926

i.e.

15.263 8.755

or

06.508 24.018 0.95P β

While this interval does not contain zero, so that β is certainly sig-
nifi cant, the width of the interval nevertheless shows that the intercept is 
quite imprecisely estimated.

12.5 A geometric interpretation of hypothesis testing

Suppose we have fi tted a regression to the scatterplot of data shown 
below and we are then interested in testing the hypothesis H: β  =  , i.e., 
that Y does not depend on X. We can interpret this null hypothesis as the 
horizontal line with intercept Y . Th e OLS regression line 0 1

ˆ ˆŶ Xβ β  
produces a residual sum of squares, which we now denote RSSU, which 
cannot be made any smaller.

Th e hypothesis H: β  =   imposes a restriction on the slope which 
forces the line to pivot about X  and become horizontal (recall that every 
regression line passes through the point of the sample means). Th is 
horizontal line will produce a residual sum of squares, RSSR, such that 
RSSR– RSSU > .

Th e crucial question is: by how much is RSSR greater than RSSU? If 
the increase in the residual sum of squares is large, then the restricted 
(horizontal) line provides a poor fi t and H: β  =   should be rejected. 
If the increase is only small, then the restricted line might be judged to 
provide a satisfactory fi t, and if this is the case H: β  =   should not be 
rejected.
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How, though, do we judge whether the increase in the residual sum 
of squares is suffi  ciently large to warrant the rejection of H: β  =  , or 
whether the increase is so small as to be simply explained by sampling 
errors, so leading us to conclude that the null is, in fact, ‘true’? We can 
make such a judgement using the statistic

2
~ 1, 2

2
R U

U

RSS RSS
F F N

RSS N
              

(12.5)

so that if F > Fα(, N – ) we reject H: β  =   at the α signifi cance level. Th e 
formula for F, with amendments for the two sets of degrees of freedom, 
is a quite general formulation, but in this case, since 0Y uβ  under the 
null, estimated to be ˆY Y u, the restricted residual sum of squares is 

2 2
RRSS Y Y y , and we have

2 2
1

2

2
2 2

11 1
2 2 2

2

2
1

ˆ

ˆ
ˆˆ ˆ 0

ˆ ˆ ˆ

y y xy
F

xy x

x

t

b

s

bb b

s s s

Y

X

Y

X

_

_
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where

1
1

1

ˆ

ˆ
t

SE

�

�

is the t-ratio for testing H: β  =  . (Th is derivation also confi rms that 
21, 2 2F n t n : recall §9.4.)

Th is approach can also be used to test joint hypotheses, for example,  
H: β  =  , β  =  : geometrically, the hypothesised line is a   ̊line going 
through the origin. Since the null contains two restrictions, the test sta-
tistic (12.5) becomes

2
~ 2, 2

2
R U

U

RSS RSS
F F N

RSS N

We can use this approach to hypothesis testing on our logarithmic 
consumption function. Th e fi tted regression line ˆln 0.087 0.982lnC Y  
provides us with RSSU  =  .. For the hypothesis H:  β  =  , 

2 12.2854RRSS y . Th us

0.05
12.2854 0.0403 18550 1,61 4.00

0.0403 61
F F

so that H: β  =   is clearly rejected. Note also that the t-ratio here is

1
0.982 136.2
0.007

t F

Let us now consider testing the joint hypothesis H:  β  =  , β  =   If 
this was true, then the consumption function would take the form 
lnC  =  lnY + u. Th e restricted residual sum of squares is given by 

ln ln 1.5812RRSS C Y  and thus

0.05

1.5812 0.0403 2
1167 2,61 3.15

0.0403 61
F F

and there is a clear rejection of H: β  =  , β  =  : the consumption func-
tion is not a   ̊line going through the origin.
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12.6 Prediction from regression

Suppose we have obtained the fi tted regression equation

0 1
ˆ ˆŶ Xβ β

If we have a given value X, the predicted value for Y is

0 0 1 0
ˆ ˆŶ Xβ β

Th e true value Y is given by the PRF as

0 0 1 0 0Y X uβ β

so that the prediction error is

0 0 0 0 0 1 1 0 0
ˆ ˆˆe Y Y X u� � � �

It is straightforward to show that predictions are unbiased, 0 0
ˆE Y Y , 

by showing that the prediction error has mean zero:

0 0 0 0 0 0 1 1 0
ˆ ˆˆ 0E e E Y Y E X E E u� � � �

Th e prediction error variance can be shown to be6

2

02
0 2

1
1

X X
Var e

N x
s

Th is is seen to increase the further X is from X . A 95 prediction interval 
for 0Y  is thus given by

2

0
0 1 0 0.025 2

1ˆ ˆ ˆ2 1
X X

X t N
N x

sβ β

Let us predict salary for the mean value of post-school education, 
0 5X X :

0̂ 15.263 2.947 5 30Y Y
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which just confi rms that the regression goes through the sample means. 
A 95 prediction interval for Y is

1
2130 2.23 4.56 1

12  
30 10.58

On the other hand, for X  =  
1
22

0
1 8 515.263 2.947 8 2.23 4.56 1

12 38
Y

i.e.

0 38.84 11.68Y

which has a wider prediction interval. Th us, the prediction interval is at 
a minimum when 0X X  and increases as X departs from the sample 
mean in either direction.

12.7 Functional forms and non-linearity

Although we have been analysing the linear regression model, some non-
linear models, as we saw in Chapter 3, can be analysed via transforma-
tions. One such model has already been introduced within the context of 
the consumption function, the log–linear specifi cation

1z Aw β

or

0 1Y Xβ β

where

0ln ln lnY z X w Aβ

It is important to note that the term linear regression model refers to 
models which are linear in the parameters, so that, for example, vari-
ables appearing as powers, such as X, 1 1X X  and 

1
2X X , are all 

allowed, as well as variables such as sin(X), cos(X) and exp(X) as long as 
they enter linearly. Popular examples discussed in §3.4 are the semi-log 
models:
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1expz A Xβ   and  
1exp Y Aw β

which transform to

1ln lnY A Xβ   and  1ln lnY A wβ

and the reciprocal models

0 1
1Y
X

β β
  

and
  

0 1
1Y
X

β β

However, we must be careful when introducing the error term. Th e 
model

1 uz Aw eβ

in which the error enters multiplicatively, transforms to

1ln ln lnz A w uβ

which can be estimated by OLS, whereas the model
1z Aw uβ

in which the error enters additively, cannot be transformed and must be 
estimated by a technique known as non-linear least squares.

Notes

  Note the change in notation from slope a and intercept b to 0β̂  and 1β̂  and, 
below, the residual from ei to ˆiu . Th is is done both to emphasise that the 
slope, intercept and residual can, as we shall shortly see, be regarded as 
estimators of underlying population parameters and to enable a more general 
notation to be used consistently in subsequent development of the regression 
model.

  Th e results to be presented in subsequent sections of this chapter assume the 
regressor to be non-stochastic. Independence of the error and regressor is 
discussed in Chapter 16.

  Th e proof that 1β̂  is BLUE is as follows. Consider any linear estimator 

1 dyβ . For 1β  to be unbiased we must have

 1 1 1 1E dE y dx dxβ β β β
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  so that 1dx =∑ . Under the classical assumptions, the variance of 1 will be 

( ) 2 2
1V d=∑ , and we have to find the d that minimises 1( )V  subject to 

1dx =∑ . This is achieved by minimising the expression ( )2 1d dx− −∑ ∑  , 

where λ is a Lagrangian multiplier. Differentiating with respect to d and 

equating to zero gives 2 0d x− =  or ( )2d x= , which implies that

 

21
2

dx x= =∑ ∑

  i.e., that 22 x= ∑ . Hence 2d x x= ∑ and 2
1 1

ˆxy x= =∑ ∑ . Thus 
the OLS estimator has the minimum variance in the class of linear unbiased 
estimators, this minimum variance being

 
( )

2
2

2
1 2 2

ˆ xV
x x

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑

  The alternative estimator in §12.3 sets ( )1 11 Nd x x= − −  and ( )11N Nd x x= −  , 
with 2 1 0Nd d −= = =… , where the pairs of observations are sorted in ascending 
order of X. Thus it is clear that 1 is unbiased, since

 

1

1 1

1N

N N

xx
dx

x x x x
= − + =

− −∑

  Its variance will be given by

 
( ) ( )

2

1 2
1

2

N

V
x x

=
−

  so that

 

2 2

21 1 2 2 2
1 21

22 2
2 12

2 2 2 2
1 1 2

2ˆ

2
NN

N N

N N

V V
x x xx x

x x x x

x x x x x

  which is clearly positive. It is, of course, possible that we might find non-
linear estimators that are unbiased but have a smaller variance than 1

ˆ . 
However, if the normality assumption 5 holds, then 1

ˆ  will have minimum 
variance amongst all unbiased estimators. The OLS estimators are also 
consistent, since as the sample size increases the denominator of 1

ˆ( )V   
must also increase.
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 4 Derivations of these results are as follows. First note that, using the mean 
deviation form 1y x u= + ,

Thus
( )1

1 12 2 2
ˆ xy x x u xu

x x x
+

= = = +∑ ∑ ∑
∑ ∑ ∑

 

2 2 2

0 0 0 1 0 0 1 1 0

2
2

1 1 2

2
2

2

ˆ ˆ ˆ ˆ

ˆ

1

V E E Y X E X u X

xu
E u X E u X

x

X
N x

The derivation of 0
ˆ( )V  uses the ‘population counterpart’ of 0 1

ˆ ˆY X= + , 

0 1Y X u= + + , from which, using §10.2, 2 2( ) ( )V u E u N s= = .
 5 This extension also enables us to demonstrate the unbiasedness of 2ˆ : since 

( ) ( )2 2 2ˆ 2 2N N= − −  then 2 2ˆE =  on using the result from §9.4 that 
( )( )2 2 2E N N− = − .

 6 The variance of the prediction error can be decomposed as

 

2
0 0 0 1 0 0 1 0

2 2
2 2 2 20

02 2 2

2
02

2

ˆ ˆ ˆ ˆ2 ,

1 2

11

V e V X V X Cov V u

X X X
X

N x x x

X X

N x
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13
Multiple Regression

Abstract: Th e bivariate regression model of the previous 
chapter is extended to allow more than one regressor 
(independent variable) to be included, which leads 
to certain necessary extensions to statistical inference 
and hypothesis testing. Th e possibility that omitting an 
important variable will lead to biased estimates of the other 
coeffi  cients is analysed both algebraically and by way of an 
empirical example, with further examples used to illustrate 
other aspects of hypothesis testing within a multiple 
regression framework. Th e concept of multicollinearity, 
in which regressors are highly correlated with each other 
and which has, of course, no counterpart in bivariate 
regression, is developed by way of a simulation example.
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13.1 Incorporating additional regressors

Th e ‘bivariate’ regression model analysed so far is quite restrictive, as it 
only allows Y to be infl uenced by a single regressor, X. A moment’s refl ec-
tion about the two examples that we have been using shows how limited 
this model is: why shouldn’t salary be infl uenced by both post-school 
education and experience? And ought we to consider determinants 
of consumption other than just income, such as infl ation and interest 
rates?

Th e question that we address now is how we should go about estimat-
ing the parameters of the ‘trivariate’ model

0 1 1 2 2i i i iY X X uβ β β ,   1, ,i N…

One possibility might be to regress Y on X and X separately, thus 
obtaining the bivariate regression slope estimators

1 2
1 22 2

1 2

ˆ ˆx y x y
b b

x x

but two intercept estimators

01 1 1
ˆ ˆb Y b X   02 2 2

ˆ ˆb Y b X

Th is non-uniqueness of the intercept estimates is just one problem of this 
approach. An arguably much more serious defect is that, in general, and 
as we will show later, 1 2

ˆ ˆ and b b  are biased estimators of β1 and β2, so that 
1 1

ˆ( )E b β  and 2 2
ˆ( ) .E b β

To obtain BLU (best linear unbiased) estimates, we must estimate a 
multiple regression by OLS (ordinary least squares). Th e PRF (population 
regression function) now becomes

0 1 1 2 2i i i iY X X uβ β β

and classical assumption 4 of §12.2 generalises to

1 2 1 2( , ) ( , ) ( ) ( ) 0i j i j i j i jCov u x Cov u x E u x E u x

OLS estimates are obtained by minimising

2 2
0 1 1 2 2

ˆ ˆ ˆˆ ( )i i i iu Y X Xβ β β
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with respect to 0 1 2
ˆ ˆ ˆ,  and β β β . Th is yields three normal equations, which 

can be solved to obtain1

2
1 2 2 1 2

1 22 2
1 2 1 2

ˆ yx x yx x x

x x x x
β

2
2 1 1 1 2

2 22 2
1 2 1 2

ˆ yx x yx x x

x x x x
β

0 1 1 2 2
ˆ ˆ ˆY X Xβ β β

It can also be shown that
2
22

1 22 2
1 2 1 2

ˆ( )
x

V
x x x x

sβ

2
12

2 22 2
1 2 1 2

ˆ( )
x

V
x x x x

sβ

1 22
1 2 22 2

1 2 1 2

ˆ ˆ( , )
x x

Cov
x x x x

sβ β

2
2 2

0 1 1 1 2 1 2 2 2
ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 ( , ) ( )V X V X X Cov X V

N
sβ β β β β

Th ese formulae all contain s, an estimate of which is now given by

2ˆ
3

RSS
N

s

where now

2 2
1 1 2 2

ˆ ˆˆRSS u y x y x yβ β
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It then follows that

ˆ
~ ( 3), 0,1,2ˆ( )

i i
i

i

t t N i
SE

β β

β

Note that the degrees of freedom are N– because we now have two 
regressors. Hypothesis tests and confi dence intervals can be constructed 
in an analogous fashion to those of bivariate regression.

However, with two regressors, further hypotheses are of interest. One 
in particular is the joint hypothesis

0 1 2: 0H β β

which is to be tested against the alternative that β1 and β2  are not both 
zero. Th is can be tested using the approach introduced in §12.5, being 
based on the statistic

2

2 2
~ 2, 3

ˆ3
R U R U

U

RSS RSS RSS RSS
F s F N

RSS N s

where

2
1 1 2 2

ˆ ˆ
URSS RSS y x y x yβ β

and
2

RRSS y

Now, analogous to 2
XYr  in bivariate regression, we can defi ne the coeffi  cient 

of MULTIPLE determination as

2 R U

R

RSS RSS
R

RSS
,
 

20 1R

and some algebra then yields
2

2

3
1 2
R NF
R
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Salaries, education and experience yet again

Returning to our salaries example, multiple regression yields the follow-
ing estimates, now denoting education as X and experience as X and 
noting that the ‘common denominator’ is

22 2 2
1 2 1 2 38 30 25 515x x x x

1
112 30 124 25 260ˆ 0.505

515 515
β

2
124 38 112 25 1912ˆ 3.713

515 515
β

0
ˆ 30 0.505 5 3.713 10 9.650β

2 538 0.505 112 3.713 124 21.09ˆ 2.343
9 9

ss

Th e variances and standard errors of the slope estimates are thus

1
30ˆ( ) 2.343 0.136

515
V β

  
1

ˆ( ) 0.369SE β

2
38ˆ( ) 2.343 0.173

515
V β

  
2

ˆ( ) 0.416SE β

For the variance and hence standard error of the intercept, we need

1 2
25ˆ ˆ( , ) 2.343 0.114

515
Cov β β

so that

2 2
0

2.343ˆ( ) 5 0.136 2 5 10 0.114 10 0.173 9.523
12

V β

and

0
ˆ( ) 3.086SE β
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Th e t-ratios for testing the individual hypotheses β1  =  0, β2  =  0 and  
β0  =  0 are

1
0.505 1.37
0.369

t ,
  

2
3.713 8.93
0.416

t

and

0
9.650 3.13
3.086

t

Since t.()  =  ., both  β2  =  0 and  β0  =  0 can be rejected at the 5 
level, while β1  =  0 cannot be rejected.

Furthermore,

2 538 21.09 0.9608
538

R

and

0.9608 9 110.3
1 0.9608 2

F

As F.,  =  ., we can reject H: β1  =  β2  =  0. Th e regressors X and 
X explain 96.1 of the variation in Y.

Th e estimated multiple regression

1 2
ˆ 9.650 0.505 3.713

3.086 0.4160.369
Y X X

has some interesting features that are worth comparing with the two 
bivariate regressions:

1
ˆ 15.263 2.947

3.926 0.740
Y X

and

2
ˆ 11.333 4.133

2.950 0.291
Y X

First, the estimates of β0 and β2 are close to each other in the multiple and 
Y on X regressions, but the estimates 1β̂  and 1̂b  of 1β  are very diff erent: 
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indeed, they are of diff erent orders of magnitude and the former is insig-
nifi cant. Consequently, it appears that X, post-school education, is not a 
signifi cant factor in determining salaries aft er all, and it is only experi-
ence that counts. Education only appears signifi cant when experience is 
excluded, so that it is acting as a ‘proxy’ for experience and the Y on X 
regression is spurious (cf. the partial correlation analysis of §5.5).

Second, in the multiple regression we have only nine degrees of 
freedom, so information is rather limited. Th is is why we need t-ratios 
in excess of 2.3 for coeffi  cients to be signifi cant at the 5 level, and this 
can be quite diffi  cult to achieve. It is oft en sensible to choose larger 
signifi cance levels (and hence smaller critical values) for small sample 
sizes – and, conversely, low signifi cance levels for very large samples 
(recall the arguments of §11.5). Further, note that the F-statistic rejects 
H: β1  =  β2  =  0 even though β1  =  0 cannot be rejected on a t-test: just one 
of the coeffi  cients needs to be non-zero for H to be rejected.

Th e spurious nature of the above Y on X regression can be explained 
algebraically. Comparing the formulae for 1̂b  and 1β̂ ,

1
1 2

1

ˆ x y
b

x
    

2
1 2 2 1 2

1 22 2
1 2 1 2

ˆ yx x yx x x

x x x x
β

we see that 1 1
ˆb̂ β  only if ∑xx  =  , i.e., only if X and X are uncorre-

lated (r  =  , in which case we will also have 1 1
ˆˆ( ) ( )V b V β ). If the two 

estimates are identical, multiple regression ‘collapses’ to a pair of simple 
regressions. In general, though,

2
1 1 1 2 2 1 1 2 1 2 1

1 2 2
1 1

1 2 1
1 2 2 2

1 1

ˆ x x x u x x x x u
b

x x
x x x u
x x

β β β β

β β

Th us

1 2
1 1 2 2

1

ˆ x x
E b

x
β β

since the last term in the formula for 1̂b  has zero expectation from 
assumption 4. Hence, if β2 and ∑xx have the same sign, 1 1

ˆ( )E b β  and 
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the bias 1 1
ˆ( )E b β is positive; whereas if they are of opposite sign, the bias 

is negative. Two related points are worth noting: (i) 1 2x x  is the same 
sign as the correlation between X and X , and (ii) 2

1 2 1/x x x  is the slope 
coeffi  cient in the regression of X on X. We can thus explain why we 
obtained the results that we did from simple regression: X and X  are 
positively correlated (r  =  .) and, if β1 is actually zero and β2 is posi-
tive, 1̂( ) 0E b , so that obtaining 1̂ 2.947b  when β1  =  0 is consistent with 
theory.

13.2 Regression with k explanatory variables

Let us now consider the general multiple regression where we have k 
regressors:

0 1 1i i k ki iY X X u…β β β

OLS estimates 0 1
ˆ ˆ ˆ, , , k…β β β  are BLUE under our set of assumptions. 

We do not provide formulae as they are ‘impossible’ to obtain alge-
braically without using a matrix formulation, and hence can only 
realistically be calculated using an appropriate econometric software 
package.

Nevertheless, all standard results carry forward, with minor alterations 
to refl ect the number of regressors, for example,

ˆ
~ 1

ˆ
i i

i

i

t t N k
SE

β β

β

2

2

1 ~ , 1
1
R N kF F k N k
R k

2ˆ
1

RSS
N k

s

We have referred to the quantity N – k –  as the degrees of freedom of the 
regression. Why is this?

Suppose k  =  , so that the normal equations are

1 2ˆ ˆ ˆ0; 0; 0u x u x u
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Th ese three equations fi x the values of three residuals, so that only N –  
are free to vary. Th us, if there are  k  =  N –  regressors, then there are 
NO degrees of freedom and the regression technique breaks down (in 
practice, it becomes problematic well before this limit is reached).

Including an additional variable in the regression cannot increase the 
RSS, for it will always explain some part of the variation of Y, even if by 
only a tiny (and insignifi cant) amount, unless the estimated coeffi  cient is 
exactly zero, which is highly unlikely. Hence, from its defi nition, R will 
increase towards 1 as more regressors are added, even though they may 
be both economically and statistically unnecessary. To adjust for this 
eff ect, we can defi ne the R-bar-squared statistic

2 211 1
1

NR R
N k  

(13.1)

2R  has some interesting properties. Th e defi nition (13.1) can be written 
as

2 2
2 2

1
1

1 1

R y
y R

N N k

Now recall that R  =  RSSR  RSSU/RSSR, 2ˆ 1URSS N ks  and 
2

RRSS y . Hence

2 2
2

1 ˆ1
N k

R
y

s

so that

2
2 2

1
ˆ

1

R
y

N
s

Th us the set of regressors that minimises 2ŝ  will be the set that max-
imises 2R . Note also that if R < k/(N–1) then   R > (N–k–)/(N–1) and, 
from (13.1), 2 0R . For example, with k  =   regressors and N  =   obser-
vations then, if R  <  ., 2R  will be negative.

13.3 Hypothesis tests in multiple regression

Th ere are a variety of hypotheses in multiple regression models that we 
might wish to consider. All can be treated within the general framework 
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of the F-test by interpreting the null hypothesis as a set of (linear) restric-
tions imposed on the regression model which we wish to test to fi nd out 
whether they are acceptable:

2

1
~ , 1

ˆ
R UR U

U

RSS RSS rRSS RSS N k
F F r N k

RSS r s

where

RSS ▸ U: RSS from the unrestricted regression, i.e., the regression 
estimated under the alternative hypothesis (without restrictions).
RSS ▸ R: RSS from the restricted regression, i.e., the regression 
estimated under the null hypothesis (with restrictions imposed).
r ▸ : the number of restrictions imposed by the null hypothesis.

An equivalent form of the test statistic, which may sometimes be easier 
to compute, is

2 2

2

1
1
U R

U

R R N kF
R r

where 2 2 and U RR R  are the Rs from the unrestricted and restricted regres-
sions respectively.

Some examples of hypotheses that might be investigated are the 
following:

We might be interested in testing whether a . subset of the coeffi  cients 
are zero, for example,

0 1 2: 0k r k r kH …β β β

that is, that the last r regressors are irrelevant (the theory that suggests 
including them in the model is false). Here the restricted regression is 
one that contains the fi rst k–r regressors (note that the ordering of the 
regressors is at our discretion):

0 1 1 ,i i k r k r i iY X X u…β β β

Th e test statistic here can be written as
2 2

2

ˆ ˆ1 1
ˆ
R U

U

N k r N k
rF

s s

s
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where 2ˆ 1U URSS N ks  and 2ˆ 1R RRSS N k rs . Th is statistic 
can be solved as

2

2

ˆ
ˆ 1

R

U

Fs

s

α
α  

where
 

1N k
r

α

Th us 2 2ˆ ˆR Us s  according to whether 1F , which implies that if the 
F-statistic associated with a set of regressors is less than 1 then dropping 
these regressors will reduce the error variance and hence increase 2R . For 
the single restriction case of r = , this means that if the absolute value of 
the t-ratio for a regressor is less then 1 then dropping this regressor will 
reduce 2ŝ  and increase 2R .

A more complicated type of restriction is where the coeffi  cients obey . 
a linear restriction of the general form

0 1 1 2 2: k kH c c c d…β β β

where c,c,…,ck,d are constants. An example of this type of restriction, 
which occurs regularly in economics, is two coeffi  cients summing to 
zero, for example, H: β + β = . Th is is obtained from the general form 
by setting c =c =,c = …. ck =,  d = . To construct a test of this hypoth-
esis we have to be able to estimate the restricted regression. Suppose k = 
for simplicity. Th e restricted model is then, since the hypothesis implies 
β  =  β,

0 1 1 1 2Y X X uβ β β

or

0 1 1 2Y X X uβ β

so that the restricted model is the regression of Y on X*  =X  X. An 
equivalent test is the t-ratio on X in the regression of Y on X* and X: 
suppose this regression is written

*
0 1 2 2

0 1 1 2 1 2

Y X X u

X X u

γ γ γ
γ γ γ γ

Th us only if γ =  will the coeffi  cients on X and X sum to zero, and 
this can be tested by the t-ratio on X in the regression of Y on X* and 
X .



Multiple Regression

Th e relationships between t-ratios for individual regressors and 
F-statistics for sets of regressors are oft en subtle and need to be treated 
carefully. It is possible that although the F-statistic exceeds 1, all the 
t-ratios are less than 1, which may occur when the regressors are highly 
inter-correlated (this is known as multicollinearity and will be discussed 
in §13.4). Th is does not mean that 2R  can be increased by dropping all 
the regressors, since the dropping of one regressor will alter the other 
t-ratios.

It is also possible for the F-statistic to be less than one yet for all of the 
t-ratios to exceed one. Th is is a rather complicated situation for which 
some guidelines are available. Th ere is also an interesting result that 
states that if a regressor is omitted then there can be no change in the 
sign of the coeffi  cient on any regressor that is more signifi cant (has a 
higher absolute t-ratio) than the omitted regressor.2

Modelling an extended consumption function

We now return to our consumption function example and consider 
including two further regressors, infl ation and the (long) interest rate. 
To help with notation, we now denote the logarithms of consumption 
and income by ct and yt respectively, infl ation by πt and the interest rate 
by Rt. Th e following extended consumption regression was fi tted:

1 1ˆ 0.9917 0.00212 0.00453 0.00336
0.0005 0.00072 0.00199 0.00204

t t t t tc y R Rπ

2 0.9985R    0.017362RSS    ˆ 0.01730s

Recall from §12.4 that the intercept was insignifi cant in the bivariate 
consumption function: it remains so in the multiple regression and 
hence is excluded. Lagged infl ation πt– and both Rt and Rt– are included 
as regressors: consumption is thus seen to depend upon last year’s rate of 
infl ation and both current and last year’s levels of the interest rate. Infl ation 
positively infl uences consumption because higher infl ation reduces pur-
chasing power and so induces an increase in current consumption at the 
expense of deferred consumption. Increases in interest rates, on the other 
hand, encourages saving at the expense of current consumption; hence 
the negative coeffi  cients on the interest rate regressors. Th e presence of 
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lagged regressors emphasises the dynamic nature of the typical empirical 
consumption function.

Th e coeffi  cient on yt, although very close to 1, is signifi cantly below this 
value: a test of H: β =  against HA: β <  is provided by the test statistic 
t = (.)/0.00046 = –17.93 ~ t(58), which is highly signifi cant. Both 
πt– and Rt are clearly signifi cant, but there is some doubt over Rt–, whose 
t-ratio is just –1.645 with a p-value of 0.105. However, the coeffi  cients 
on Rt and Rt– are reasonably similar, suggesting the linear restriction 
β3 – β4 =.

A test of this hypothesis is provided by estimating the restricted 
regression

1 2 1 3 1t t t t t tc y R R uβ β π β

Th is yields 0.017389RRSS  and hence the test statistic

2

0.017389 0.017362 0.09 ~ 1,58
0.01730

F F

which is clearly insignifi cant. Th e estimated restricted regression is

1 1
ˆ 0.9917 0.00214 0.00791 2

0.0005 0.00071 0.00109
t t t t tc y R Rπ

2 0.9985R     ˆ 0.01717s

Since the F-statistic associated with the restriction is less than 1, the error 
variance has declined and β3 now enters signifi cantly (note that we have 
interpreted the restriction in terms of the average interest rate over two 
years, so that the reported coeffi  cient is 3

ˆ2β ).
Th ere is an interesting link between t-ratios and the concept of partial 

correlations introduced in §5.5. Suppose we have the set of variables 
Y, X, … , Xk. Th e partial correlation between Y and X with X, … , Xk held 
constant may be denoted rY.…k. Th en, if t is the t-ratio on X in the 
regression of Y on X, … Xk, it can be shown that3

2
2 1
1 2 2

1 1Y k
t

r
t N k   

or
  

2
2 1 2
1 2

1 2

1
1

Y k

Y k

r
t N k

r

Th us the partial correlations between consumption and income, infl a-
tion and average interest rates, respectively, may be calculated as
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2

2

2197.547 0.9999
2197.547 59cy Rr π

2

2

3.01645 0.366
3.01645 59c yRr π

2

2

7.24777 0.686
7.24777 59cR yr π

Th us, although there is an extremely high partial correlation between 
consumption and income, infl ation and interest rates nevertheless still 
enter as important determinants of consumption.

13.4 Multicollinearity

When estimating multiple regressions, there is an important problem 
that is oft en encountered that can have no counterpart in bivariate regres-
sion, that of multicollinearity. We investigate this problem by employing 
another simulation example. Suppose that the ‘true’ PRF is

1 210 5 2 ~ 0,100i i i i iY X X u u IN

and that the two regressors are correlated. To ‘design’ this correlation , 
the following generating process for 2X  is used:

2
2 15 2 ~ 0,i i i iX X IN sεε ε

with Xi  =  i, i  =  ,…,. Th e choice of error variance, 2sε , is at our 
disposal. We now investigate what happens when we reduce 2sε : that is, 
what happens when we make the relationship between X and X ‘tighter 
and tighter’.

Th e regression estimates obtained as 2sε  is reduced are shown in 
Table 13.1. For 2 1sε  the coeffi  cient estimates are reasonably well 
estimated and close to their ‘true’ values of 10, 5 and 2, respectively. For 

2 20.5 0.25,sε  so that r  ≈ 1, all the estimates become individually 
insignifi cant, yet the R is unaff ected and implies a strong relationship 
between Y and the regressors: X and X are therefore jointly, but not 
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individually, signifi cant (recall the discussion in the previous section). 
What is going on here?

We can analyse the problem analytically using the standard least squares 
formulae

2
1 2 2 1 2

1 22 2
1 2 1 2

ˆ yx x yx x x

x x x x
β

and
2
22

1 22 2
1 2 1 2

ˆ x
V

x x x x
sβ

Both have the same denominator, which can be written as

2 2
2 21 22 2

1 2 1 2 1 22

1 2

1
x x

x x x x x x
x x

 

2

1 2 122
12

1 1 0   as   1x x r
r

Th us, as the correlation between the regressors increases, so the denomi-
nator in the expressions for both the coeffi  cient estimate and its standard 
error becomes very small. Minor changes in value will thus get magni-
fi ed into large eff ects, and hence both estimates and standard errors can 
become very unstable. In general, if we have the model

Table 13.1 Regression estimates as s  is reduced
sε 12r 0β̂ 1β̂ 2β̂ 2R
 . .

(.)
.

(.)
.

(.)
.

 . .
(.)

.
(.)

.
(.)

.

 . .
(.)

.
(.)

.
(.)

.

 . .
(.)

.
(.)

.
(.)

.

. . .
(.)

.
(.)

.
(.)

.
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0 1 1 2 2

2 0 1 1

Y X X u
X X

β β β
γ γ ε

where 2 2~ 0, and ~ 0,u IN INs sεε , then we can write

0 1 1 2 0 1 1

0 2 0 1 2 1 1 2

Y X X u
X u

β β β γ γ ε
β β γ β β γ β ε

As 2 0εs , so that r →1, the model collapses to a regression of Y on X 
alone, and X becomes irrelevant (this can be seen by noting that in the limit  
ε has both a zero mean and a zero variance, and hence is always zero).

Having demonstrated how multicollinearity can arise in a simulated 
example, the obvious question is: how prevalent is it in actual economic 
data? Th e answer is that it all depends on the type of data you are using. 
With cross-sectional data the problem may not be too important, but 
with time series data that contain trends it may become a serious prob-
lem. However, its eff ects can oft en be mitigated by the judicious use of 
transformations, or by dropping regressors that are not central to the 
aims of the analysis. Wherever possible, greater information, typically 
more data, will help matters.

Notes

 1  Nothing essential is gained by providing the derivation of these equations, 
which follows an obvious extension of the bivariate regression derivation in 
§12.1. For those interested, details may be found in G.S. Maddala, Introduction 
to Econometrics, 3rd edition (Wiley, 2001), pp. 129–132. It is here that Maddala 
introduces the salary, education and work experience example but uses 
only the fi rst fi ve observations of the twelve used here. I have taken the 
opportunity of artifi cially increasing the number of observations by seven to 
provide a slightly richer sequence of examples.

  See Maddala, ibid., pp. 164–168, for such guidelines and for an application of 
this result.

  See Maddala, ibid., pp. 146–147.
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14
Autocorrelation

Abstract: Basic econometrics essentially deals with 
violations to the classical assumptions. Th ese occur 
regularly when analysing economic data, and the fi rst 
violation we consider is that of dependence between errors 
in a time series regression. Th is is known as autocorrelation 
and leads to ineffi  cient, and in some cases biased, estimates 
of the regression coeffi  cients. It is thus very important 
to be able to test for the presence of autocorrelation, for 
which the standard statistic is that of Durbin and Watson. 
Estimation with autocorrelated errors is discussed using a 
detailed example concerning the UK consumption function, 
and further extensions for when a lagged dependent 
variable is included as a regressor are considered. Th e 
possibility of autocorrelation being a consequence of a 
misspecifi ed model is also investigated.
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14.1 Econometrics and the invalidity of the 
classical assumptions

If the assumptions of classical linear regression set out in §12.2 were 
always satisfi ed, then much economic data analysis would simply be an 
exercise in regression. Unfortunately, in many applications of regression 
to economic data, at least one of the assumptions is found to be invalid, 
which oft en makes OLS (ordinary least squares) a sub-optimal estimator. 
Th e subject of econometrics has thus developed a set of techniques that are 
designed to test the validity of each of the regression assumptions and to 
provide extensions when they are found to be invalid.1 We will therefore 
look at each of the classical assumptions in turn, beginning with prob-
ably the most important for economic applications, assumption , that 
of uncorrelated errors.2

14.2 Autocorrelated errors
Assumption 3 of classical linear regression states that

, 0 for all  i j i jCov u u E u u i j

i.e., that any two errors have zero covariance and hence are uncorrelated. 
Th is assumption may oft en be false when dealing with time series data. 
Let us move explicitly to a time series framework by using t subscripts, 
and consider the following model

0 1t t tY X uβ β   1,2, ,t T…  (14.1)

If the errors are autocorrelated (of the fi rst order), then they are gener-
ated by the fi rst-order autoregression

1t t tu uρ ε   1 1ρ  (14.2)

where 2~ (0, )t IN sεε  (a more detailed treatment of autoregressions is given 
in Chapter 18). Th e restriction that ρ is less than one in absolute value is 
a technical condition that need not concern us for the moment. It can be 
shown that, for this process, the covariance between the error at time t, 
ut, and the error j time periods in the past, ut–j, is3

2
2

2( )
1

j
j

t t jE u u
s

s ερ
ρ

ρ

which is obviously non-zero as long as ρ is non-zero.
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14.3 Consequences of autocorrelation

Suppose we estimate (14.1) by OLS and simply ignore (14.2). We will con-
centrate on the properties of the slope estimator: a similar analysis holds 
for the intercept. Because assumption 4 still holds, 1β̂  remains unbiased 
but will now have a variance that diff ers from the OLS variance. If we 
denote the variance under autocorrelated errors as 1

ˆ( )V ρβ , then it can be 
shown that4

2

1 12
ˆ ˆ( ) ( )V V

x
s

k kρβ β

where

1 2
1 22 11 1 1

2 2 2
1 1 1

1 2 2 2
T T

t t t t Tt t T
T T T

t t tt t t

x x x x x x

x x x
…κ ρ ρ ρ

Th e ‘correction factor’ κ can be written approximately as
2 1

1 2 1
ˆ ˆ ˆ1 2 2 2 T

Tκ ργ ρ γ ρ γ

where the ˆ
jγ , j =,…,T– are OLS slope estimates from the set of regres-

sions xt+j = γj  xt + vjt. Th us, if ρ =  then κ = 1 and no correction is needed 
because there is no autocorrelation.

However, a typical case with economic data is that both the errors and 
the regressor will be positively autocorrelated, so that ρ >  and ˆ 0jγ . 

Hence κ  > 1 and 1
ˆ( )V ρβ  will be bigger than 1

ˆ( )V β , oft en by an appreciable 

amount. For example, suppose that xt also follows a fi rst-order autoregres-

sion, xt = γxt– + vt, so that 2( ) ,j
t t j xE x x sγ  where 2

xs  is the variance of xt. It 
is then easy to see that ˆ ˆ j

jγ γ  and

2 2 2 2ˆ ˆ ˆ1 2 2 2 T T…κ ργ ρ γ ρ γ
2 2 1 1

1 1

ˆ ˆ ˆ ˆ1 2 1

ˆ1
ˆ1 2

ˆ1

T T

T T

…ργ ργ ρ γ ρ γ

ρ γ
ργ

ργ
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Since ˆ1 , 1ρ γ  then, for T large, 1 1ˆT Tρ γ  can be regarded as 
approximately zero so that

ˆ ˆ2 1
1 ˆ ˆ1 1

ργ ργκ
ργ ργ

Th us, if ˆ 0.8γ ρ , then 1.64 0.36 4.56κ , and ignoring this factor 
will lead to 1

ˆ( )V β  underestimating 1
ˆ( )V ρβ  by 78. Actually, in practice 

the underestimation will be even greater. As we have seen, 2s  is typically 
estimated by 2ŝ , which is only unbiased if 0ρ . If there is autocorrela-
tion, so that 0ρ , it can be shown that 2ŝ  becomes biased, since5

2
2 1ˆ

1 2
E T

T
s

s
ργ
ργ

Th us if T = , 2 2ˆ( ) 0.86E s s  and there is a further underestimation 
of 14. Th e overall eff ect is an underestimation of the standard error of 
over 80.

Th e problem here is that, unless we know that the errors are autocor-
related and have available a value for ρ, we shall continue to use the incor-
rect OLS variance. As one might expect from the above example, this can 
cause great problems when carrying out signifi cance tests, as the following 
simulation example illustrates. Suppose we generate Y and X by

1 0

1 0

0.95 , ~ 0,1 , 0

0.95 , ~ 0,1 , 0
t t t t

t t t t

X X v v IN X

u u IN uε ε

and

t tY u

that is, we have β = β =  in the true relationship, since Yt does not depend 
on Xt. T =  observations on Y and X are simulated, these being shown 
in Figure 14.1.

We now estimate the OLS regression of Yt on Xt, obtaining
2ˆ 1.205 0.565 0.38

0.192 0.104

6.27 5.43

t tY X R

 (14.3)

We should, of course, have obtained intercept and slope estimates 
which were insignifi cant, and an R that was close to zero – yet we get 



 Analysing Economic Data: A Concise Introduction

signifi cantly positive 0β̂  and 1β̂  and an R equal to 0.38! What we have 
got here is another example of a spurious regression, where we think that 
we have uncovered an important relationship when in reality it simply 
does not exist. Th e reason for the observed correlation between Yt and Xt, 
which is 0.62, is that the processes generating the two series introduce 
a smoothness into them, and this is a very common occurrence in eco-
nomics (recall the consumption–income example in §5.5).6

14.4 Testing for autocorrelation

Given the strong possibility of spurious regressions between economic 
time series, we must be able to detect such a problem should it exist. As 
with most regression ‘misspecifi cations’, clues can be obtained by exam-
ining the residuals. A plot of the residuals from the spurious regression 
(14.3), shown as Figure 14.2, reveals a distinct pattern, there being runs of 
positive and negative residuals.

Such a pattern implies that the residuals cannot be uncorrelated, must 
therefore have non-zero covariances, and hence exhibit autocorrelation. 
Th is pattern is in fact indicative of positive autocorrelation, which should 
be expected from the design of the experiment (ρ was set equal to 0.95).

Figure 14.1 50 simulated observations on Y and X
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Examining a residual plot, while oft en extremely useful, does not 
provide a formal test for the presence of autocorrelation, that is, a test of 
H: ρ =  in (14.2). Th e most common test for residual autocorrelation is 
that of Durbin and Watson.7 Th e Durbin–Watson statistic, denoted dw, 
assumes that the errors are generated by (14.2), and uses the residuals ˆtu  
from OLS estimation of (14.1):

2 2 2
1 1 12

22
1

ˆ ˆ ˆ ˆ ˆ ˆ2
ˆˆ

T
t t t t t tt
T

ttt

u u u u u u
dw

uu

Since 2 2
1ˆ ˆ and t tu u  are approximately equal if the sample size T is 

large,

1
2

1

ˆ ˆ
ˆ2 1 2 1

ˆ
t t

t

u u
dw

u
ρ

since, by analogy to OLS regression, 2
1 1ˆ ˆ ˆt t tu u u  can be regarded as an 

estimate of ρ. Now, if ˆ 0, 2dwρ , while if ρ̂  takes its maximum possible 
value of + 1, dw = , and if it takes its minimum possible value of –1, dw = 4. 
Th us 0 4dw , and the null hypothesis of zero autocorrelation, H: ρ = , 
corresponds to dw = , with the alternative HA: ρ  >  implying that dw < .

How, though, can we obtain critical values to perform hypothesis 
tests, that is, how far below 2 does dw need to be before we can reject 

Figure 14.2 Residuals from the spurious regression (14.3)
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the null in favour of the alternative HA: ρ  > ? Unfortunately, the sam-
pling distribution of dw depends upon the number k of regressors, the 
values that the regressors take, the sample size, and whether a constant is 
included in the regression or not! Th is means that rather than having a 
single critical value corresponding to, say, the 5 level, we actually have 
a set of upper and lower bounds, which we denote dU and dL. Our testing 
procedure thus becomes

If dw < dL, REJECT H: ρ  = 
If dw > dU, do not reject
If L Ud dw d , the test is inconclusive

When T is small and k is large, the ‘inconclusive region’ can be wide. 
However, a very useful rule of thumb with most economic data is to treat 
dU as the critical value. For our spurious regression example, dw = .. 
With T = , k =  and a constant included, dL = . and dU = . at the 
5 level, and thus there is a clear rejection of the null of zero autocor-
relation, as we might have expected.

Th e alternative : 0AH ρ  implies that  < dw < . To test for this alter-
native of negative autocorrelation, we may simply replace dw by –dw in 
the testing procedure above.

14.5 Estimation with autocorrelated errors

Suppose we again have the model (14.1) and (14.2), now written in 
deviations-from-mean form for simplicity,

t t ty x uβ   (14.4)

1t t tu uρ ε  
 (14.5)

We have already shown that OLS is inappropriate. Th e correct estima-
tion procedure is called generalised least squares (GLS). Without going 
into detail, the BLUE for β is

1 12
2

12

ˆ
T

t t t tt
GLS T

t tt

x x y y
C

x x

ρ ρ
β

ρ
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with variance
2

2

12

ˆ
GLS T

t tt

Var
x x

sβ
ρ

where C and D are correction factors that can be ignored in practice for 
all but the smallest sample sizes. Note that if ρ =  these formulae collapse 
to those of OLS. Of course, ρ is typically unknown and must be estimated 
along with β, and there are various methods of doing this. Th e general 
procedure is to note that by substituting (14.4) into (14.5) we have

1 1t t t t ty x y xβ ρ β ε

or, on rearranging,

1 1t t t t ty y x xρ β ρ ε

Since the error εt obeys all the assumptions of classical linear regression, 
we can regress the quasi-diff erences, that is, regress yt–ρyt– on xt – ρxt– (the 
GLS formulae above are of this form). But to do this requires an estimate of 
ρ, and this can be obtained as (recalling the defi nition of the dw statistic)

1
2

1

ˆ ˆ
ˆ

ˆ
t t

t

u u

u
ρ

from the regression of 1ˆ ˆ on t tu u . Such procedures are fully automatic in 
econometric packages, a popular version being known as the Cochrane–
Orcutt technique.8

One interesting case occurs when ρ = , because then we have an equa-
tion in fi rst diff erences,

t t ty xβ ε

Jointly estimating our spurious regression system obtains

1
ˆ ˆ ˆ0.844 0.148 , 0.768

(0.593) (0.159) (0.099)
[1.42] [0.93]

t t t t t tY X u u u ε

Since ˆ 0.768ρ  is reasonably close to unity, we might also estimate the 
fi rst diff erence regression
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2ˆ 0.026 0.0002
0.158
0.17

t tY X R

Both regressions confi rm the spuriousness of the relationship between 
Y and X: note the insignifi cance of the coeffi  cient estimates and the 
almost zero value of R in the fi rst-diff erence regression.

Autocorrelation in the consumption function

It is important to emphasise that although spurious regression problems 
can arise in econometrics, autocorrelation does not necessarily imply 
a spurious relationship. As an example of a ‘non-spurious’ regression 
exhibiting autocorrelation, let us return to our consumption function 
example from §13.3, in which we obtained the regression model

1 1
ˆ 0.9917 0.00214 0.00791 2

(0.0005) (0.00071) (0.00109)
t t t t tc y R Rπ

 
2 0.9985R   ˆ 0.01717s

For this regression, dw = .. With T =  and k = , the 5 lower and 
upper bounds are dL = ., dU = ., so that we have evidence of (posi-
tive) residual autocorrelation. Estimating with an autoregressive error 
yields

1 1
ˆ 0.9884 0.00163 0.00184 2

(0.0014) (0.00055) (0.00209)
t t t t tc y R Rπ

2 0.9994R   ˆ 0.0119s   
ˆ 0.871 0.066ρ

Note that both R and ŝ improve, indicating a much better overall 
fi t – but the standard errors are larger on the income and interest rate 
coeffi  cients. Th is is not a drawback, for it simply shows that the OLS 
standard errors were too small, and hence t-ratios too large, so that the 
estimates were erroneously precise: indeed, the interest rate variable is no 
longer signifi cantly diff erent from zero.
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14.6 Testing for autocorrelation with a 
lagged dependent variable

We very oft en encounter models in which the lagged dependent variable, 
Yt–, appears as a regressor:

0 1 1t t t tY X Y uβ β α

As we shall see in §16.4, the inclusion of Yt–, while having no adverse 
eff ects on the properties of OLS estimators when the error ut is independ-
ent, may nevertheless have severe consequences if ut is autocorrelated, 
for then OLS produces biased estimates of the coeffi  cients.

It is therefore important to test for residual autocorrelation in such 
models; but an added diffi  culty is that in these circumstances dw is 
biased towards 2.9 Th is means that we could incorrectly accept the null 
of no autocorrelation simply because dw is larger than it should be.

In these circumstances, Durbin’s h-test should be used:10

1
21 ~ 0,1

ˆ1
T

h dw N
TV α

As an example, consider the following dynamic specifi cation of the 
consumption function

1 1
ˆ 0.6497 0.4675 0.00063 0.8165

(0.0679) (0.0911) (0.00032) (0.0569)
t t t t tc y y cπ

from which dw = .. Th is is just above dL = ., the 5 lower bound for 
T =  and k = , so we might possibly be tempted to conclude that there 
is no residual autocorrelation. But, on calculating the h-test, we obtain

1
2 2

62
1 1.46 2.37

1 62 0.0569
h

Since h is distributed as a standard normal, this off ers a clear indica-
tion of residual autocorrelation (the p-value is 0.024), thus rendering 
both the coeffi  cient estimates and their standard errors unreliable.
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14.7 Residual autocorrelation as a consequence of 
model mis-specifi cation

Why might autocorrelation appear in the residuals? It could, of course, 
be that the true error process is such that the error at time t is related 
to the previous error at t–. An oft en more useful, and more plausible, 
explanation is that the appearance of autocorrelation in the residuals is 
a manifestation of a misspecifi ed model: a variable that has a systematic 
infl uence on Y has been omitted, and this infl uence has been transferred 
to the residual.

Consider the system

1

t t t

t t t

y x u

u u

β

ρ ε

or

1 1t t t t ty x y xβ ρ β ε

Th is can be rewritten as

1 1t t t t ty x x yβ βρ ρ ε

Note that the coeffi  cient on xt– is (minus) the product of the coeffi  -
cients on xt and yt–. Th us the model is the same as

1 2 1 3 1t t t yt ty x xγ γ γ γ ε

but with the (non-linear) restriction γγ3 + γ2 = 0 imposed. Th is restric-
tion can be tested, but only by using more general methods than we 
are able to consider here. Of more importance is the implication that 
residual autocorrelation could be a consequence of omitting important 
regressors, here xt– and yt–.

Modelling the consumption function yet again

As an example of this interpretation of autocorrelation, consider the fol-
lowing dynamic specifi cation of the consumption function
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1 2 1 2

1 1 2

ˆ 0.6778 0.3074 0.00076
0.0700 0.1239 0.00041

0.00191 2 1.0357 0.3451
0.00058 0.0774 0.0919

t t t t t t

t t t t

c y y y

R R c c

π π

 

(14.6)

2 0.9996R   ˆ 0.0090s

Th is specifi cation has a number of interesting features. Consumption is 
positively related to the current growth of income and the lagged (by two 
years) level of income. One and two year lags of consumption are found 
to be signifi cant, as well as the lagged change in infl ation (the accelera-
tion or deceleration of prices) and the average interest rate over the most 
recent two years. Th e coeffi  cient estimates of these variables imply that 
as price rises accelerate real consumption increases, because the cost of a 
basket of goods will become more expensive if consumption is delayed, 
while a general increase in interest rates reduces consumption, as saving 
becomes more attractive.

Th e presence of the various lags enables distinctions to be made 
between short-run and long-run eff ects. For example, the short-run 
income elasticity is given by the coeffi  cient on yt, 0.6778, while the long-
run elasticity is calculated as the sum of the y coeffi  cients, here 0.3074, 
divided by one minus the sum of the lagged c coeffi  cients, 0.3094. Hence 
the long-run elasticity is 0.993 which, interestingly, is signifi cantly less 
than one.11

Th e moral of this example is that residual autocorrelation is probably 
more oft en than not a consequence of dynamic misspecifi cation, in the 
sense that important variables, usually lagged values of already included 
variables, have been left  out of the analysis. Th is possibility should always 
be considered before resorting to an ‘autocorrelated error’ model, as 
dynamic specifi cations tend to be much richer and more in accord with 
the models resulting from economic theorising.12

14.8 Other tests of autocorrelation

We have so far discussed two tests for autocorrelation: the Durbin–
Watson dw statistic and Durbin’s h test. Th e former tests for fi rst-order 
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residual autocorrelation, whereas the latter is used if a lagged dependent 
variable is included as a regressor. Th ese two cases do not, however, 
exhaust the possible regression specifi cations that might be encountered. 
For example, the h test is invalid if Yt– as well as Yt– is included as a 
regressor, and it cannot be calculated in some cases (when ˆ 1),TV α  
while we may also wish to test for residual autocorrelation of a higher 
order than one, which neither dw or h is designed for.

We thus need a test that is valid for general dynamic regression specifi ca-
tions of the type encountered above for the consumption function: indeed, 
is (14.6) actually free of autocorrelation? Such a test is provided by the 
(Breusch–Godfrey) Lagrange Multiplier (LM) test, which is calculated in 
the following way.13 Suppose we have regressed Yt on a set of regressors 
Xt, Xt, … , Xkt which may contain lagged dependent variables (of any order) 
and lagged independent variables, and obtained the residuals ˆtu . If we wish 
to test for p-th order autocorrelation, that is, autocorrelation of the form

1 1 2 2t t t p t p tu u u u…ρ ρ ρ ε

we estimate an ‘auxiliary’ regression of ˆtu  on Xt, Xt, … , Xkt and 
1 2ˆ ˆ ˆ, , ,t t t pu u u…  and test the signifi cance of the group 1 2ˆ ˆ ˆ, , ,t t t pu u u…  

using an F-test, which will be distributed as F(p,T – k – p). If annual 
data is being used, p may be set at one or two, say, whereas if the data 
is quarterly or monthly then p may be set at either 4 or 12 respectively, 
this choice being made so that any seasonal pattern in the residuals may 
be picked up. Of course, any specifi c value of p may be used if that is 
thought to be appropriate in a specifi c context.

Th e LM test statistics for (14.6) with p set at 1 and 2 are, respectively, 
F(,) = . and  F(,) = ., which are both insignifi cant and thus 
give no indication that the model suff ers from residual autocorrelation.

Notes

For a brief description of the scope and aims of the subject, see Terence C.  
Mills, ‘Econometrics’, in Adam Kuper and Jessica Kuper (editors), Th e Social 
Science Encyclopedia, Volume 1, 3rd edition (Routledge, 2004), 258–260. 
G.S. Maddala, Introduction to Econometrics, 3rd edition (Wiley, 2001) remains 
an excellent introductory text.
We will not consider assumption 1, that the errors have zero mean, as this  
will always be satisfi ed as a consequence of the least squares fi t: recall the fi rst 
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of the normal equations, which says that the sum, and hence the mean, of the 
residuals is zero. In any case, if the errors did actually have a non-zero mean, 
this value could simply be added to the intercept.
Th is result may be shown by multiplying (14.2) through by  ut–j and taking 
expectations to obtain

…

t t j t t j t t j

t t t j t t j t t j t t j

j j
t j t j t j t t j

j

E u u E u u E u

E u u E u u E u E u

E u E u E u

1

2
2 1 2 1

2 1
1

2

ρ ε

ρ ρ ε ρ ρ ε ε

ρ ρ ε ε

ρ s

  where the results 2 2 2
t j tE u E u s  and 0t k t jE uε  for k < j are used to 

get the fi nal expression. Now, for j  =  ,

t t t t t

t t t t t t

t t t t

E u E u u E u

E u u E u

E u E u E

2
1

1 1 1

2 2 2
1 12

ρ ε

ρ ρ ε ε ρ ε

ρ ρ ε ε

  i.e.,

   

2
2 2 2 2

21
s

s s s ε
ερ

ρ

  so that
2

21

j

t t jE u u
sερ
ρ

  Note that the assumption that – < ρ <  ensures that the denominator of the 
expression is positive, so that the covariance depends on the sign of ρ. If 
ρ is positive then all covariances will be positive, while if ρ is negative the 
covariances will alternate in sign, being negative for odd j. Furthermore, 
since – < ρ <  the covariances approach zero as j increases.
Th e proof of this result is as follows: 

…

…

…

t t t t t t t t t t t t

t t

t t t t t

t

t t t t

t t t

E x u E x u x x u u x x u u
V

x x

x x x x x
x

x x x x
x x x

V

2 2 2
1 1 2 2

1 2 22 2

2
2 2

1 222

2
1 22

2 2 2

1

2 2ˆ

2 2

1 2 2

ˆ

ρ
β

ρ ρ

ρ ρ

β κ

s

s
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See Maddala,  op cit., p. 240.
Th e spurious regression phenomenon, then referred to as nonsense- 
correlations, was fi rst pointed out by the famous British statistician G. Udny 
Yule in the mid-1920s: ‘Why do we sometimes get nonsense-correlations 
between time series? A study in sampling and the nature of time series’, 
Journal of the Royal Statistical Society 89 (1926), 1–63. See Terence C. Mills, 
Th e Foundations of Modern Time Series Analysis (Palgrave Macmillan, 2011), 
chapter 5, and A Very British Aff air: Six Britons and the Development of Time 
Series Analysis during the 20th Century (Palgrave Macmillan, 2013), chapter 2, 
for extensive discussion.
James Durbin and George S. Watson, ‘Testing for serial correlation in least  
squares regression I and II’, Biometrika 37 (1950), 409–428; 38 (1951), 159–177.
Donald Cochrane and Guy H. Orcutt, ‘Application of least squares  
regressions to relationships containing autocorrelated error terms’, Journal of 
the American Statistical Association 44 (1949), 32–61.
A proof of this assertion is extremely complicated and will not be provided  
here. It may be found in G.S. Maddala and A.S. Rao, ‘Tests for serial 
correlation in regression models with lagged dependent variables and serially 
correlated errors’, Econometrica 41 (1973), 761–774.
James Durbin, ‘Testing for serial correlation in least squares regression  
when some of the regressors are lagged dependent variables’, Econometrica 38 
(1970), 410–421.
For the dynamic model 

… …t t t r t r t s t sy x x x y y0 1 1 1 1β β β α α

  the long-run multiplier (or elasticity if y and x are in logs) is given by

…
…

r

s

0 1

11
β β β

α α

  Th e econometric modelling involved in arriving at the specifi cation (14.6) 
and tests of the hypotheses contained in this regression are discussed in 
detail in the EViews exercise accompanying this chapter.
A technical justifi cation for this position is given by Grayham E. Mizon, ‘A  
simple message for autocorrelation correctors: don’t’, Journal of Econometrics 
69 (1995), 267–288.
Trevor S. Breusch, ‘Testing for autocorrelation in dynamic linear models’,  
Australian Economic Papers 17 (1978), 334–355; Leslie G. Godfrey, ‘Testing for 
higher order serial correlation in regression equations when the regressors 
include lagged dependent variables’, Econometrica 46 (1978), 1303–1310.
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15
Heteroskedasticity

Abstract: Heteroskedasticity occurs when the error 
variances are no longer constant across observations, 
and its presence leads to ineffi  ciency in OLS estimation. 
Tests for heteroskedaticity are presented, and methods for 
correcting for its presence are developed. Such methods 
are oft en diffi  cult to apply in multiple regression models 
and an alternative approach is suggested of continuing 
to use the OLS coeffi  cient estimates but adjusting their 
standard errors to take into account any heteroskedasticity 
that might be present. Th e use of logarithms to mitigate 
heteroskedasticity is discussed, and an approach to 
discriminating between linear and logarithmic regression 
models is proposed.
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15.1 Heteroskedastic errors

Assumption 2 of classical linear regression stated that the variance of the 
errors was constant across all observations, i.e.,

2 2
i iV u E u s    for all i.

Th is is the assumption of homoskedasticity. If it is false, then we have heter-
oskedastic errors. However, non-constancy of the error variance can occur in 
numerous ways. Let us use the simple bivariate regression for illustration:

0 1i i iY X uβ β                      (15.1)

Note that we have returned to ‘i-subscripts’: heteroskedasticity can occur 
in both time series and cross-sectional data. A common example of 
heteroskedasticity is where the error is a function, not necessarily linear, 
of the regressor,

2 2 2 2 2
i i i iE u f X Zs s s                 

(15.2)

Th us if df / dXi > 0, the error variance increases as Xi increases, whereas if the 
derivative is negative, the variance will decrease as the value of the regres-
sor increases. It is conventional to include a common ‘scaling factor’, s, 
so that homoskedasticity is a special case of (15.2) when f(Xi) = . Defi ning 

2
i iZ f X  enables notation to become a little simpler in what follows. Some 

forms that commonly occur are 2
0 1i if X Xδ δ , 0 1 1i if X Xδ δ  

and, if there are two regressors,
2 2

1 2 0 1 1 2 2 11 1 22 2 12 1 2,i i i i i i i if X X X X X X X Xδ δ δ δ δ δ

so that linear, squared and cross-product terms are all included in the 
functional form.

Another consumption function

Figure 15.1(a) displays a scatterplot of N  =   observations on consump-
tion expenditure, Y, and income, X, for a cross-sectional sample of 
families, with the fi tted OLS regression line1

2ˆ 0.847 0.899 0.986 31.074
0.0250.703

i iY X R RSS

superimposed.
Th is looks to provide a good fi t to the data, with a very precisely esti-

mated slope of around 0.9, but a less precisely estimated intercept (its 
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t-ratio is only 1.2). If we look at a plot of the regression residuals shown 
in Figure 15.1(b), we get a very clear visual indication of heteroskedastic-
ity in which the error variance increases with income level.

Figure 15.1(a) Heteroskedastic consumption function: consumption–income 
scatterplot
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Figure 15.1(b) Heteroskedastic consumption function: consumption–income 
residuals
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15.2 Consequences of heteroskedasticity

Why should we be concerned with heteroskedastic errors?
We will show that

OLS estimators, although remaining unbiased, are  inefficient in the 
presence of heteroskedasticity, and
the OLS estimated variances of the coefficient estimators are  biased, 
thus invalidating, for example, tests of significance.

Consider the regression model given by (15.1) and (15.2). The OLS slope 
estimator is

( )1
1 12 2 2

ˆ xy x x u xu
x x x

+
= = = +∑ ∑ ∑
∑ ∑ ∑

Thus 1
ˆ  remains unbiased, 1 1

ˆ( )E = , since ( ) 0E xu =∑  because of 
assumption 4. However, under heteroskedasticity, the variance of 1

ˆ  is2

( )
( )

( )2 2 2 2
1 1 12 22

1ˆ i i
n n

i

x u
V V x x

x x

⎛ ⎞
= = + +⎜ ⎟⎜ ⎟

⎝ ⎠

∑
∑ ∑

…

which will only collapse to the standard formula 2 2x∑  if 2 2
i =  for 

all i, i.e., only if we have homoskedastic errors.
Recall the heteroskedastic form (15.2), 2 2 2

i iZ= , and divide (15.1) by 
Zi to obtain

0 1
1i i

i
i i i

Y X
v

Z Z Z
= + +

                     
(15.3)

where the ‘new’ error, i i iv u Z= , has variance

( ) ( )2 2 2 2 2 2
i i i i iV v E u Z Z Z= = =

that is, ‘deflating’ by Zi transforms the error to homoskedasticity.
Because vi satisfies all the regression assumptions, equation (15.3) can 

now be estimated by OLS. If we assume 0  =  0 for simplicity (or work 
with the mean deviations y, x and z), this yields

( )( )
( )

*
1 2

y z x z

x z
=∑

∑
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Th is, in fact, is the GLS estimator (alternatively known here as the 
weighted least squares (WLS) estimator, because each observation is 
‘weighted’ by Z).

1
*β  can be shown to be unbiased and to have variance

2

1 2
*( )

( / )
V

x z
sβ

                     

(15.4)

Noting that we can write
22 2

1 2 22 2

ˆ i i i i

i i

x x z
V

x x

s s
β

we have that
22 2* 2

1

2 2 222 2
1

ˆ
xV x z

V x z xzxz x

s

s

β

β

Th is ratio will always be less than 1, and will only equal 1 if z is constant. 
Th is follows from the fact that ratios of the form 

2 2 2ab a b  
are always less than or equal to 1, the equality holding if a and b are 
proportional (recall the Cauchy–Schwarz inequality used in §5.2, 
note 1), that is,

*
1 1

ˆV Vβ β

and the OLS estimator 1β̂  is ineffi  cient relative to the GLS estimator 
*
1β  except when there is no heteroskedasticity, in which case they are 

identical.
However, this analysis assumes that s, and hence 2

is , are known. If, as 
would typically be the case, we estimate 2s  from the OLS regression, that 
is, as 2ˆ 2RSS Ns , we end up estimating 1

ˆV β  by an expression, 
2 2xs , whose expected value can be shown to be3

2 2 2 2

222

i i i i

i

x x

N x

s s

                   

(15.5)

rather than
2 2

1 22

ˆ i i

i

x
V

x

s
β

                     

(15.6)
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Under what circumstances will (15.5) be smaller than (15.6)? If

2 2 2 2

222

i i i i

i

x x

N x

s s 2 2

22

i i

i

x

x

s

then
2 2

2 2

1
1

i i

i i

x
N x

s

s

which will be guaranteed if 2 2 0i ix s , i.e., if 2
is  and 2

ix  are positively 
correlated, as is oft en the case.

In these circumstances the true variance of the OLS estimator is 
underestimated and so, for example, we get shorter confi dence intervals 
and larger test statistics than we should do: we suff er from ‘false pre-
cision’. It is important to emphasise this point. Although the true OLS 
coeffi  cient variance (15.6) (which takes into account heteroskedasticity) 
is larger than the optimal GLS coeffi  cient variance (15.4), OLS regression, 
which ignores heteroskedasticity, will use the wrong formula (15.5) which 
underestimates (15.6) (cf. the situation when dealing with autocorrela-
tion in §14.2).

15.3 A consistent variance estimate

Although the OLS formula for the variance of 1β̂  is incorrect, being both 
biased and inconsistent, we could use an estimator of (15.6) to obtain a 
better estimate of the variance. A consistent estimator of the changing 
variance 2

is  is, in fact, provided by the squared residual from the OLS 
regression, 2ˆiu . Substituting this into (15.6) yields White’s consistent vari-
ance estimator4

2 2

1 22

ˆ^ ˆ i i

i

x u
V

x
β

Th is is useful when the form of Zi is not completely known, as may well 
be the case when there are several regressors. For our consumption data, 
using White’s estimator gives a standard error on 1β̂  of 0.028, slightly 
larger than the OLS standard error.
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15.4 Testing for heteroskedasticity

Although there are a variety of tests for heteroskedasticity, we shall only 
concentrate on two, as these are the easiest to compute and interpret. 
Th e fi rst is White’s, and follows the same logic as the consistent variance 
estimator in §15.3, where it was stated that 2ˆiu  was a consistent estimator 
of 2

is . Th us, recalling (5.2), a general test of heteroskedasticity would be 
to regress 2ˆiu on a function of the regressor(s). Th e function chosen is the 
polynomial with cross-products, as this will be a decent approximation 
to most functional forms; for example, if we have two regressors, the 
auxiliary regression

2 2 2
0 1 1 2 2 11 1 22 2 12 1 2ˆi i i i i i i iu X X X X X X eδ δ δ δ δ δ

is fi tted and the null hypothesis of homoskedasticity, here

0 1 2 11 12 22: 0H δ δ δ δ δ

is tested, most straightforwardly using a standard F-test,

2

2

1 ~ , 1
1

A
W

A

R N mF F m N m
R m

where 2
AR  is the R from the auxiliary regression and m is the number 

of regressors in that regression: m  =   if k  =  , m  =   if k  =  , m  =   if  
k  =  , etc.

Th e second test is that of Goldfeld and Quandt, which is useful when it 
is felt that the error variance is either increasing or decreasing with the 
values of a particular regressor.5 Suppose we have a single regressor and 
we reorder the data in ascending values of Xi. Th e data is then split into 
two groups of N and N observations, corresponding to small and large 
values of X (N  +  N can be less than N, as observations may be omitted 
from the ‘middle’ of the data to improve the performance of the test). 
Separate regressions are then run, obtaining error variance estimates 

2 2
1 2ˆ ˆ and s s . Th e statistic

2
2

1 22
1

ˆ
~ 2, 2

ˆGQF F N N
s

s

is then calculated, and the null of homoskedasticity, 2 2
0 1 2:H s s , is rejected 

for signifi cantly large values of FGQ. (Th is assumes that the variance is 
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increasing with X, so that 2 2
1 2ˆ ˆs s . If the converse occurs, the terms in 

the F-ratio may be reversed, thus ensuring that it always exceeds 1.)

Testing the consumption function for heteroskedasticity

Using the residuals from the OLS regression, the following auxiliary 
regression was estimated

2 2 2ˆ 0.488 0.070 0.0037 0.878
(0.055)0.618 0.0011

i i i Au X X R

from which we calculate FW  =  . ~ F(,), which is clearly signifi cant. 
Since 2ˆ 0.070 0.0074i i idu dX X , only for the two smallest values of 
X, X  =  . and X  =  ., is the slope of the relationship (just) negative: 
otherwise it is positive and increasing, as is seen in the plot of 2û  on X 
shown in Figure 15.2.

To compute the Goldfeld–Quandt test, the sample may be split 
in half, so that N  =  N  =  , the small sample size precluding any 
observations from the middle being omitted. Th e two regressions are 
estimated as

Figure 15.2 Scatterplot of squared residuals on X
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2 2
1 1

2 2
2 2

ˆ ˆ1.053 0.876 0.985 0.475
(0.616) (0.038)

ˆ ˆ3.279 0.835 0.904 3.154
(3.443) (0.096)

i i

i i

Y X R

Y X R

s

s

and hence

3.154 6.64 ~ 8,8
0.475GQF F

which again is signifi cant (F.(8,8)  =  .). Both tests thus reject (not 
surprisingly) the null of homoskedasticity and although the alternative 
hypotheses are diff erent, both imply that larger values of X are associated 
with larger error variances.

15.5 Correcting for heteroskedasticity

We have already seen how to correct for heteroskedasticity by using GLS. 
If we have the model

0 1i i iY X uβ β

and it is known that

2 2 2
i iE u Zs

then we can divide through by Z and use OLS on the transformed model

0 1
1i i

i
i i i

Y X
v

Z Z Z
β β

where
22 2

i i iE v E u Z s

However, it is important to note that if there is an intercept in the original 
equation, then there will not be one in the transformed equation: Y/Z is 
regressed on /Z and X/Z alone, and the estimate of the slope coeffi  cient 
on the regressor /Z is the estimate of the intercept.
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Of course, in practice Z will be unknown, and a simple choice is to set 
it equal to the regressor X. Another possibility is to use the auxiliary 
regression from the White test:

2 20.488 0.070 0.0037i i iZ X X

Th us, using 
1
220.488 0.070 0.0037i i iZ X X , we obtain

2
ˆ 10.727 0.905 , 0.929

0.0200.330

i i

i i i

Y X
R

Z Z Z

Recalling that the OLS estimates were 0
ˆ 0.847 0.703β  and

1
ˆ 0.899 0.025 ,β  we see that the slope is estimated to be a little larger and 
is a little more precisely estimated, while the intercept, although numeri-
cally smaller, is now established to be reliably positive, with a t-ratio of 2.2.

It is diffi  cult to provide rules for selecting Zs, and the problem is com-
pounded when dealing with multiple regressions. Indeed, the most popu-
lar approach currently is to simply rely on the OLS coeffi  cient estimates 
but to report the White standard errors (the White standard error for the 
intercept of the consumption function is 0.527, leading to a t-ratio of 1.61).

15.6 Th e logarithmic transformation again

It is oft en the case that transforming the variables to logarithms will also 
transform a heteroskedastic error to a homoskedastic one, since logging 
variables compresses the scales on which they are measured (recall 
§3.2).

Does taking logarithms work for the consumption regression? Here 
the evidence is somewhat mixed, as the White test still rejects homo-
skedasticity (FW  =  .) but the Goldfeld–Quandt test does not (FGQ is 
only 1.75).

Th e logarithmic regression is

2ˆln 0.0757 0.956 ln 0.9935
0.0574 0.018

i iY X R

Again, Rs and 2s s cannot be compared across logarithmic and lin-
ear regressions, but the following decision rule may be used. Defi ne 

2 2ˆ  and s s  to be the error variances from the linear and log–linear 
regressions respectively, and calculate
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2
lin ˆln

2
N

L s
  

and
  

2
log ln ln

2 i

N
L Ys

Th e second term in the Llog expression is there to correct for the diff er-
ent units of measurement. We then select the model that yields the largest 
L value. For the linear regression, we have ˆ 1.3139s  and Llin  =  –. 
while for the log–linear model we have 0.0457s  and Llog   =  .. We 
therefore select the log–linear model as the most appropriate functional 
form.

Th e two models imply diff erent values for the income elasticity of con-
sumption. Th e log–linear regression gives a constant elasticity of 0.956, 
while from the linear regression the elasticity varies as

0.899 i
i

i

X
Y

η

which at the mean values of consumption and income is computed as

25.250.899 0.963
23.56

η

From these two regressions, can we infer that the elasticity is sig-
nifi cantly less than unity? A 95 confi dence interval for the elasticity 
obtained directly from the logarithmic regression is 0.918 0.995,η  
while a similar calculation from the linear regression might take the 
form 0.840 25.25 23.56 0.959 25.25 23.56η , that is, 0.900 1.028,η  
although this calculation takes no account of any sampling error in com-
puting the means.

Notes

  Data taken from G.S. Maddala, Introduction to Econometrics, 3rd edition 
(Wiley, 2001), table 5.1.

  A derivation of this result is as follows.

22
2

1 1 1 22 2

1 1 2 2 1 1 2 2
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2 2 2 2 2 2
1 1 2 2

22

N NE x u x u x u

x

…

2 2 2 2 2 2
1 1 2 2

22

N Nx x x

x

s s s…

where we make use of assumption 3, so that E(xixjuiuj)  =   whenever i ≠ j.

To show this result we must fi rst obtain an expression for the expected value  
of the residual sum of squares:
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539–547.





16
Simultaneity, 
Instrumental Variables 
and Non-Normal Errors

Abstract: Simultaneity occurs when the regressor and 
the error are no longer independent, as is required in the 
classical assumptions. Th is leads to simultaneity bias, 
while other violations of this assumption, which can occur 
regularly with economic data, also lead to biased estimates, 
in particular when autocorrelation and a lagged dependent 
variable appear together. Instrumental variables estimation 
is a potential solution to this problem. Th e presence of 
non-normally distributed errors may be symptomatic 
of important misspecifi cations that could easily lead to 
very misleading and, in some cases, completely ridiculous 
coeffi  cient estimates. Residuals should be examined for 
the presence of outliers and a test for non-normality is 
presented, with examples being used to illustrate the 
impact and mitigation of outlying observations.
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16.1 Stochastic regressors

In this chapter we examine the eff ects of violations to the classical regres-
sion assumptions 4 and 5 of §12.2. Assumption 4 is that the errors and the 
regressor are independent. Strictly, the results derived in §12.2 assume 
that the regressor is non-stochastic, so that E(uixj)  =  xj E(ui)  =   using 
assumption 1. Th is is clearly unrealistic in most economic situations, so 
when it is assumed that the regressor is stochastic but independent of 
the error, how valid are the results? Unbiasedness continues to hold, and 
the formulae for estimators, variances and covariances – and hence test 
statistics derived from them – continue to be correct if y and x are jointly 
normally distributed. If this cannot be assumed, then these have to be 
viewed as being conditional on the observed values of x.1

Violations of the assumption of independence between the regressors 
and the errors may, however, occur in various situations, and will typi-
cally lead to biased estimates. An appropriate method of estimation in 
these circumstances is known as instrumental variables.

16.2 Simultaneity bias

Assumption 4 of classical linear regression states that

( , ) ( ) 0i j i jCov u x E u x

for all i and j.
If this assumption is violated then, using the simple bivariate regres-

sion model as an example,

1 1 12
ˆ( )

E xu
E

x
β β β

                 

(16.1)

because we cannot set E(xu) to zero, so that the OLS estimator is then 
biased.

One commonly encountered situation in which this assumption is 
false is that of simultaneity bias, which we can illustrate using the simple 
(time series) consumption function

t t tc y uβ                        (16.2)
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So far we have considered the consumption function in isolation from 
the rest of the macroeconomy, but we now recall from §5.4 that con-
sumption and income are also linked in the Keynesian model through 
the national income accounting identity, which in its simplest form is

t t ty c i                         (16.3)

where it is investment. Now that we have the ‘system’ of equations (16.2) 
and (16.3), what are the properties of the OLS estimator β̂  from the 
regression of (16.2)? Substituting (16.2) into (16.3) gives

1 1 1
t t t t

t
i u i u

y
β β β

so that

2 2 2

1 1 1 1
t t t t t t t

t t

i u u i u u u
E y u E E E s

β β β β

on the assumption that E(itut)  =  , that is, that the errors in the consump-
tion function are independent of investment, so that it is exogenous. Now, 
using (16.1), we have

2 2

2 22

1 1ˆ
1

t t

y yt

E y u T
E

E y T

s s

s s

β
β β β β

β

Here we have used the sample size T to ‘scale’ the two expectations 
(which contain sums of T terms) and have taken account of the fact that 
the presence of the national accounting identity eff ectively makes y a 
random variable, so that it has variance 2 2

y E y Ts .
If  < β < , as would be suggested by the theory of the consumption 

function, it follows that the bias ˆ( )E β β must be positive, so that the 
OLS estimator β̂ overestimates β. For example, in the linear consumption 
function used as an example in Chapter 15, ˆ 1.3139s  and 11.910,ys  so 
that the bias is

1 0.0122
1 β

Th us if the true β is 0.80, the bias is 0.06 and the expected value of β̂ is 
0.86 (recall that the actual estimate was 0.90). As a second example, the 
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log–linear consumption function of §12.4 has ˆ 0.0257s  and 0.4451,ys  
so that

1ˆ( ) 0.0033
1

E β β
β

Substituting ˆ 0.982β  for the expectation, solving the resultant quad-
ratic in β and taking the ‘economic’ solution, gives β  =  0.938; that is, an 
OLS estimate of 0.982 for β implies an unbiased estimate of 0.938.

16.3 Errors in variables

A second way in which assumption 4 may be violated is when the 
variables are measured with error. By this we do not mean that the values 
taken by the variables have been recorded incorrectly: we will discuss 
this possibility later (see §16.6). Rather, we are looking at the case when 
the errors are due to using an imperfect measure of the true variable. 
Such imperfect measures are known as proxy variables, while the true 
variables, which are oft en not measurable, are called latent variables. 
Examples might be expectational variables, which must be replaced by 
proxies (either estimated from past observations or obtained from survey 
data), variables which do not match the defi nition required by economic 
theory (one important example uses measured income as a proxy for 
the theoretically more appropriate concept of permanent income in the 
consumption function), and the use of ‘agency’, rather than economic, 
defi nitions of a variable (for example, the rate of infl ation of the RPI may 
not correspond to the rate of infl ation felt by any particular individual or 
group).

Th us suppose that the true model is

**y x eβ
                       

(16.4)

but, instead of y* and x*, we measure

y = y* + v    and x = x* + u

u and v are measurement errors, which we will assume to have zero 
means and variances 2 2 and  u vs s , respectively. We will also assume that 
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they are mutually uncorrelated and also uncorrelated with the latent 
variables:

( ) ( *) ( *) ( *) ( *) 0E uv E ux E uy E vx E vy         
(16.5)

Equation (16.4) can be written as

y v x u eβ

or

y x wβ                         
(16.6)

where the error term is a linear combination of the three individual 
errors

w e v uβ

Now

2 2* uE wx E e v u x u E u sβ β β

using the conditions (16.5). Th is is clearly non-zero, thus violating 
assumption 4. Note, however, that E(wx) does not depend upon 2

vs , so 
that measurement error in y alone does not cause the problem: this is due 
solely to measurement error in x.

It can be shown that the bias in the OLS estimator β̂ is given by2

*

*

2

2 2 1x

ux

s

s s
β

                     
(16.7)

Since the term in brackets must be negative, the OLS estimator is biased 
downwards. Th us, if consumption is really dependent upon permanent 
income, but measured income is used instead, we obtain too small an 
estimate of β.

16.4 Lagged dependent variables and autocorrelation

A third way in which assumption 4 may be violated is when the model 
contains both a lagged dependent variable and an autocorrelated error:
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1

1

t t t t

t t t

y x y u
u u

β α
ρ ε

In the absence of autocorrelation, OLS provides unbiased (although 
ineffi  cient: recall §14.3) estimates of α and β. However, with an autocor-
related error we now have

1 1 1 2 1

2
1

2 0

t t t t t t t

t

E u y E u x y u

E u

s

ρ ε β α

ρ

ρ

Th is non-zero expectation ensures that both ˆˆ   and  α β are biased. It 
can also be shown that if ρ >  then α̂  is biased upwards by the same 
amount that the estimate of the autocorrelation parameter, ρ̂, is biased 
downwards. Th is is the reason why ˆ2 1dw ρ  is biased towards 2 in 
the presence of a lagged dependent variable.

16.5 Instrumental variables estimation

An appropriate estimation technique when assumption 4 is violated is 
that of instrumental variables (IV). Th e reason why we cannot use OLS to 
estimate (16.6) is that the error w is correlated with the regressor x. Th e 
IV method consists of fi nding a variable z that is uncorrelated with w but 
correlated with x and then estimating β by

ˆ
IV

yz
xz

β
                       

(16.8)

Th e variable z is called an ‘instrumental variable’. Note that the OLS 
estimator may be regarded as an IV estimator where the instrumental 
variable is x itself. Why does this method ‘work’, in the sense of produc-
ing a consistent estimator of β? We can write the IV estimator as

ˆ
IV

x w z wz
xz xz

β
β β
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Th e condition that the instrument z is uncorrelated with the error 
w but correlated with the regressor x ensures that the expectation of 
the ratio wz xz  is zero, thus showing that ˆ

IVβ  is unbiased (strictly, 
consistent).

Where do we get these instrumental variables from? Th ey will usually 
be suggested by the particular problem under investigation. For example, 
in the consumption function, investment is by defi nition correlated with 
income, but since it is assumed to be exogenous it is also uncorrelated 
with the error in (16.2). It thus satisfi es both conditions for an IV, so that 
a consistent estimate of β is given by (and noting the unfortunate change 
in defi nition of y compared to (16.8)!)

ˆ
IV

ci
yi

β

When we have a lagged dependent variable and an autocorrelated 
error (as in §16.4), we typically use the lagged independent variable, xt–, as 
the instrument. Again, this is uncorrelated with the error by defi nition, 
but will certainly be correlated with yt– by the nature of the model.

16.6 Non-normal errors

Assumption 5 of classical linear regression concerns the distribu-
tion of the errors; it was assumed that they were normally distributed: 
u ~ IN(, s). Th is is the ‘forgotten assumption’ of regression, and is oft en 
completely ignored in many applications. Th is neglect has typically been 
justifi ed on the grounds that the OLS estimator remains BLUE under 
non-normal errors, and as long as the sample is large enough, hypothesis 
tests based on a normal assumption will still be appropriate.

However, non-normal residuals are oft en symptomatic of important 
misspecifi cations that might lead to the actual estimate of β̂ being 
misleading, and in some cases completely ridiculous! Th e easiest way to 
detect non-normality is to examine a plot or the histogram of the residu-
als. Th is will oft en ‘fl ag’ one or two outliers in the data that may have an 
undue infl uence on the regression fi t. Th ese may be due to exogenous 
shocks, a strike or change in defi nition, for example, or may even be 
caused by a recording error. Typing in an incorrect number – a decimal 
point placed wrongly, say – can have an amazing aff ect on the fi tted line.
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A formal test of normality is available. Th is is the Jarque–Bera statistic3

22
3 4

ˆ ˆ 3
6 24
n nJB α α

Here 3α̂  is a measure of the amount of skewness in the residuals (recall 
§2.5), while 4α̂  measures the amount of kurtosis ( the extent to which 
the error distribution deviates from the ‘bell’ shape of the normal dis-
tribution). For a normal distribution, which is symmetric, skewness 
is obviously zero, and it has a kurtosis of 3. Th us 4

ˆ 3α  measures the 
excess kurtosis in the residuals: if kurtosis is greater than 3 then the error 
distribution is said to be fat-tailed and will have more outliers than it 
should have if it was normally distributed. Th is is the typical occurrence, 
and only very occasionally do we fi nd kurtosis to be signifi cantly less 
than 3 and the distribution to be thin-tailed (the uniform distribution 
introduced in §8.2 is an example of such a distribution). Th e JB statistic 
thus jointly tests for zero skewness and excess kurtosis, and under the 
null of normality should be zero.

Th e statistic is, in fact, asymptotically distributed as χ so that, 
since 2

0.05 2 5.99χ , a simple decision rule is available: reject the null of 
normality if 6JB . In fact, if there is non-normality, JB will oft en take 
values vastly in excess of 6. Some care should be taken with small sample 
sizes, however, as the JB statistic is then overly sensitive, having too large 
a Type I error probability: for example, using the above decision rule 
when T  =   will lead to an incorrect rejection probability in the region 
of 10 rather than 5.

Two examples of non-normal errors

As an example of how a ‘data transcription’ error can aff ect OLS regres-
sion, let us return to our original consumption function example fi rst 
introduced as Figure 5.2. Th e 1995 observation on consumption was 
832450, that is, C  =  . Suppose that when entering the data via 
a keyboard we inadvertently typed this value as 8324500. Th e resultant 
scatterplot is shown in Figure 16.1, where it is apparent that the single 
outlier clearly ‘drags’ the regression line towards it (cf. the outlier exam-
ple in §5.3).

Th e estimated line is

2ˆ 66865 1.10 0.136
(295816) (0.35)

t tC Y R
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Clearly, with 0 1
ˆ ˆ0  and 1β β , something is seriously amiss! Obviously, 

a look at the scatterplot shows the problem immediately, and this should 
always be done prior to any regression analysis.

Nonetheless, the Jarque–Bera statistic does indeed reveal a serious 
problem of non-normality, for it takes the value JB  =  .. Moreover, 

3 4
ˆ ˆ7.7 and 60.1α α , so that the distribution of the residuals is both 
highly skewed and fat-tailed – and all this because a single data value has 
been mistyped!

Th e solution here is obvious: re-enter C as the correct value! Oft en, 
however, large outliers occur naturally, rather than artifi cially, and a 
simple technique usually accounts for their infl uence. Th is ‘trick’ can be 
used here as well, and employs the dummy variable defi ned as

48,

481 if   
    
0   if   48

t

t
D

t

Figure 16.1 Th e eff ect of a data transcription error
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Th is is included as an additional regressor, to obtain

48,

2
3 4

ˆ 4837 0.861 7476501
4321 0.005 13980

ˆ ˆ0.9998 ; 0.14 ; 2.14 ; 2.14

t t tC Y D

R JBa a

Th is technique ‘removes’ the outlier in the sense that the predictions for 
Ct are

48 48
ˆ 4837 0.861 7476501,
ˆ 4837 0.861 48t i

C Y

C Y t

and no evidence of non-normality remains in the residuals.
Note, however, that the estimates from this regression are not quite 

identical to those from the regression on the ‘correct’ data, which is 
Ct  =  – + .Yt. Th is is because the presence of the dummy forces 
the residual for the data point (C,Y to be exactly zero, which it will 
not be for the ‘correct’ regression (where it is actually 48ˆ 15191.5u ), 
and this leads to the slight diff erences in the estimates.

As a second example, consider the regression of the change in the 
long UK interest rate (the yield on 20-year gilt edged stock, tR ) on 
the change in the short UK interest rate (the yield on three-month 
Treasury bills, tr ) estimated on monthly observations from March 1952 
to June 2012. A scatterplot of the data with the fi tted regression line 

ˆ0.002 0.307t t tR r u  superimposed is shown in Figure 16.2, while 
the histogram of the residuals ˆtu , with a normal distribution with the 
same mean and variance as the residuals superimposed, is shown in 
Figure 16.3.

It is clear from these fi gures that the residuals are highly non-normal, 
and this is confi rmed by the statistics 3

ˆ 0.3α , 4
ˆ 5.6α  and JB  =  .. 

In this case there are far too many outliers for each to be modelled by a 
dummy variable, and we must conclude that the error term is simply not 
normally distributed. Th is conclusion implies that estimation methods 
other than OLS must be used, but these are too advanced to be discussed 
here.
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Figure 16.3 Histogram of residuals with normal distribution superimposed

Figure 16.2 Scatterplot of tR  and tr  with regression line superimposed

–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Change in short rate

Ch
an

ge
 in

 lo
ng

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

–1.2 –1.0 –0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

D
en

sit
y

Residual



 Analysing Economic Data: A Concise Introduction

Notes

It is straightforward to show unbiasedness under the assumption of  
independence using the expression

 
1 1 2

ˆ xu
x

β β

  On taking expectations under independence we have

 
1 1 1 12 2

ˆ xu x
E E E E u

x x
β β β β

  using assumption 1 and without having to evaluate 2E x x . Th e results 
for the variances and covariances under normality are much more diffi  cult to 
obtain, but are conveniently summarised in Allan R. Sampson, ‘A tale of two 
regressions’, Journal of the American Statistical Association 69 (1974), 682–689.
Th e OLS estimator of  β in (16.6) is

 
22

* *ˆ
*

xy x u y v
x x u

β

  Multiplying * *y x eβ  by x* and taking expectations yields * * *
2

x y x
s sβ , 

where * * * * *, *x y E x y Cov x ys . Hence, on taking the expectation of β̂  
and using the conditions (16.5),

 

2
* * *

2 2 2 2
* *

ˆ x y x

x u x u

E
s s

s s s s

β
β

  and it then follows that ˆ( )E β β  is given by (16.7).
Carlos M. Jarque and Anil K. Bera, ‘Effi  cient tests for normality,  
homoscedasticity and serial dependence in regression residuals’, Economics 
Letters 6 (1980), 255–259.
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17
Testing for Stability in 
Regression Models

Abstract: An implicit assumption in all regression 
models is that their coeffi  cients remain constant across 
all observations. When they do not – and this occurs 
regularly with time series data in particular – the problem 
of structural change is encountered. Aft er presenting a 
simulation example of a typical structural break in a 
regression, methods are introduced to test for such breaks, 
whether at a known point in time or when the break-
point is unknown. An approach to modelling changing 
parameters using dummy variables is introduced and 
a detailed example of a shift ing regression relationship 
between infl ation and interest rates brought about by 
policy regime changes is presented.
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17.1  Structural stability in regression models

An implicit assumption in all regression models is that their coeffi  -
cients remain constant across all observations. Particularly with time 
series data, this may not necessarily be the case, since coeffi  cients 
can ‘evolve’ through time, or indeed alter abruptly at a point in time, 
in many diff erent ways. Th is is known as the problem of structural 
change, which has a tendency to pervade many attempts at modelling 
economic data.

A simple, but plausible, artifi cial example will be used to demonstrate 
the problems that may arise with structurally changing models. Consider 
a (static) consumption function, Ct  =  β + β1Yt + ut, estimated using 
annual data for the 20th century, that is, we have t  =  ,,…,. 
It would not be surprising if both the average propensity to consume, 
APCt  =  Ct/Yt  =  β + β/Yt, and the marginal propensity to consume, 
MPC  =  β, were smaller during war years than during peacetime, as 
expenditure is switched away from consumption into war produc-
tion. Th is would imply that both the intercept, β, and the slope, β,  
take diff erent values during war time to the values they take during 
peacetime.

Suppose that the consumption function took the following form dur-
ing peacetime

10 0.8 , ~ 0,100

1900, ,1913, 1919, ,1938, 1946, ,1999

t t t tC Y u u IN

t … … …

and the form

6 0.5 , ~ 0,100

1914, ,1918, 1939, ,1945

t t t tC Y u u IN

t … …

during wartime, leading to the scatterplot shown in Figure 17.1.1

It is clear that there are two separate models and that the coeffi  cients 
do not remain constant: the slope shift s down from 0.8, its peacetime 
value, to 0.5 during the war years, while the intercept also declines, from 



Testing for Stability in Regression  

Figure 17.1 ‘War & Peace’ consumption function scatterplot

10 to 6. Note that the error variance is assumed to remain constant across 
periods and we do not distinguish between the two world wars, both 
being assumed to have identical eff ects. Th is latter assumption could 
easily be relaxed in a more general example.

Suppose we ignore the distinction between peacetime and wartime, 
and estimate a single regression. Doing this yields

ˆ ˆ6.93 0.85 , 18.9, 0.85
(6.74) (0.03)

t tC Y dws

Th e slope coeffi  cient is ‘weighted’ towards the peacetime MPC of 0.8, as 
these observations numerically dominate (88 out of the 100 years); but ŝ 
is far too high (it should be around 10) and dw is signifi cant (it should, of 
course, be around 2 as the errors are IN(,) in both periods). Th e fi t-
ted line is superimposed on the scatterplot, shown again in Figure 17.2(a), 
and also plotted are the residuals (Figure 17.2(b)): wartime consumption 
is considerably overpredicted, leading to runs of negative residuals and 
hence a very low dw.
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Figure 17.2(a) Consumption function and residuals: single consumption function
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Figure 17.2(b)  Consumption function and residuals: residuals
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17.2 A test for structural stability: the Chow test

Suppose that we now have a more general problem. We have two inde-
pendent sets of data with sample sizes N and N, respectively, on the 
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same set of variables, Y,X,…,Xk for which we have two models. For the 
fi rst data set we have

10 11 1 12 2 1k kY X X X u…β β β β            
(17.1)

while for the second we have

20 21 1 22 2 2k kY X X X u…β β β β            (17.2)

We wish to test the ‘stability hypothesis’

0 10 20 11 21 12 22 1 2: , , , , k kH …β β β β β β β β

because, if it was true, we could estimate a single equation for the two 
data sets. Th e hypothesis can be tested using a Chow test, which is derived 
in the following way:2

Let RSS be the residual sum of squares from estimating (17.1)
Let RSS be the residual sum of squares from estimating (17.2)
Note that RSS + RSS  =  RSSU in the terminology of §13.3, since no 

restrictions are placed on the model by estimating separately over the 
two data sets.

Let RSSR be the residual sum of squares from estimating a single 
regression over all N + N observations.

Since the null hypothesis imposes r  =  k +  restrictions, and there are

1 2 1 21 1 2 2N k N k N N k

degrees of freedom aft er estimation of (17.1) and (17.2), the usual F-statistic 
from §13.3 is

1 2
1 2

1 2 1 2

1
~ 1, 2 2

2 2
RRSS RSS RSS k

F F k N N k
RSS RSS N N k

In the above consumption function example, we have k = , N  =   
peacetime observations and N  =   wartime observations. We also have 
the following residual sums of squares
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1

2

9323.0
10012.8

689.8
34906.9

U

R

RSS
RSS

RSS
RSS

and thus

34906.9 10012.8 96 119.3 ~ 2,96
10012.8 2

F F

which clearly rejects H: β  =  β20, β11  =  β21.
For the Chow test to be applicable, the error variance must be constant 

across samples, that is, the error needs to be homoskedastic. Hence a 
Goldfeld–Quandt test (recall §15.4), for example, should be carried out 
before calculating the Chow test.

A second, and related, test asks whether the model fi tted to the fi rst 
sample can successfully predict the Y observations in the second sample. 
If it can, then the model has remained unchanged; if it cannot then the 
coeffi  cients are probably diff erent. Th is test, known as Chow’s second test, 
or the predictive failure (PF) test, has the form

1 2
2 1

1 1

~ , 1
1

R
PF

RSS RSS N
F F N N k

RSS N k

For the consumption function,

0.01

(34906.9 9323.0) 12
~ (12,86)

9323.0 86
19.87 (12,86) 2.39

PFF F

F

and thus, not surprisingly, the model fi tted for the peacetime years 
is unable to predict accurately the values taken by consumption in 
wartime.

Th ese tests are oft en used to investigate whether a model has altered 
aft er a certain date. For example, we may ask whether our consumption 
function was diff erent before 1939 than aft er, so that we have a ‘break’ at 
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this year, with sub-samples 1900, ... ,1938 and 1939, ... ,1999. Th e tests can 
be constructed using the above procedures. Note that the PF test can be 
used when the Chow test cannot, that is, when the ‘second’ sample has 
too few observations for a regression to be computed (when N < k + ). 
Even when N is only just larger than k + , the PF test will be preferable, 
because the degrees of freedom will still only be small.

For reference, the two estimated consumption functions are, for 
peacetime,

ˆ ˆ10.59 0.795 , 10.41, 2.01
(3.97) (0.019)

t tC Y dws

and, for wartime,

ˆ ˆ9.21 0.613 , 8.31, 2.20
(14.62) (0.088)

t tC Y dws

Th e peacetime regression almost reproduces the PRF, but the wartime 
regression imprecisely estimates the intercept and underestimates s: 
this is due to the very small sample size. Th e two functions are shown 
superimposed on the scatterplot in Figure 17.3.

Figure 17.3 Fitted ‘War & Peace’ consumption functions
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17.3 Using dummy variables to model changing 
parameters

Continuing with the consumption function example, suppose we defi ne 
the dummy variable

0 if  is a peacetime year
1 if  is a wartime yeart

t
D

t

Our consumption function is, in general,

10 11

20 21

            peacetime

            wartime 

t t t

t t t

C Y u

C Y u

β β

β β

Using the dummy variable defi ned above, these two equations can be 
written as the single equation

10 20 10 11 21 11t t t t t tC D Y D Y uβ β β β β β

because, when 0tD , the peacetime function is obtained, whereas, if 
1,tD

10 20 10 11 21 11 20 21 ,t t t t t tC Y Y u Y uβ β β β β β β β

and the wartime function reappears. On defi ning

0 if  is a peacetime year
 
 if  is a wartime year

t t t

t

t
Z D Y

Y t

and

0 20 10 1 21 11, ,γ β β γ β β

we can now estimate

10 0 11 1t t t t tC D Y Z uβ γ β γ

If the ‘structural stability’ hypothesis H: β  =  β20, β11  =  β21  holds, then 
γ  =  γ1  =  0, which can, of course, be tested by a standard F statistic: this 
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test is, in fact, exactly the Chow F-test introduced above. We may also 
test for just the intercept shift ing (γ1  =  0: a parallel shift  of the function 
to a new intercept β10  +  γ0  =  β20), or just the slope shift ing (γ0  =  0: the 
function pivots about the intercept β10 to the new slope β11  +  γ1  =  β21).

Estimating the ‘dummy variable’ regression obtains

ˆ 10.59 19.80 0.795 0.181
(3.89) (18.40) (0.018) (0.110)

ˆ 10.21 1.99 10012.8

t t t tC D Y Z

dw RSSs

which yields the peacetime model when Dt  =  Zt  =  , and the wartime 
model when Dt  =   and Yt  =  Zt.

Note that in the Chow test the RSS is the same as the RSSU, the estimate 
of s is close to its true value of 10 and the dw is close to its expected value 
of 2. A t-test of γ  =   is insignifi cant, however, so that we cannot reject 
the hypothesis that the function pivots about a single intercept. Th is is 
consistent with the discussion of the two estimated regressions above 
and the associated scatterplot.

17.4 Parameter stability: recursive regressions

We have already discussed the two Chow tests for parameter stability. 
We may also investigate the issue of parameter stability in a rather less 
formal, but perhaps more informative, manner.

Certain relationships holding in the ‘algebra’ of OLS may be used to 
re-estimate coeffi  cients rapidly as the sample size is altered in various 
ways. One important case is when the sample period is sequentially 
incremented by one observation at a time, thus leading to the sequence 
of recursive residuals and coeffi  cients. More formally, suppose we have the 
regression

0 1 1 ,t t k kt tY X X u…β β β  1,2, ,t T…

As there are k regressors, the minimum number of observations that 
are required for estimation are k +  (anything less and there will be no 



 Analysing Economic Data: A Concise Introduction

degrees of freedom). Setting r  =  k + , k + ,…,T the recursive coeffi  cients 
are denoted as

0 1
ˆ ˆ ˆ, , , , 2, 3, ,r r r

k r k k T… …β β β

these being obtained by estimating the regression initially over the 
sample ,, …,k + 2, then over the sample ,, …,k + 3, and so on, so that 
ˆ T
iβ  is simply the OLS estimator ˆ

iβ  obtained from estimating over the 
complete sample ,, …,T. Th e recursive residuals are defi ned as

1 1 1
0 1 1

ˆ ˆ ˆr r r
r r r k kr rY X X d…υ β β β , 

3, 4, ,r k k T…

that is, they are the residuals obtained by estimating the model over 
the fi rst r– observations and then using the resulting recursive coef-
fi cients to predict the next value Yr (the residuals are divided by the 
‘scaling factor’ dr, whose formula need not concern us here, to ensure 
that they have a common variance of s). Th e recursive residuals can 
be used to construct two tests which are useful for detecting parameter 
instability.

Th e Cumulative Sum (CUSUM) statistic is defi ned as

3

ˆ ,
r

r j
j k

W sυ
    

3, 4, ,r k k T…

where ŝ is the OLS estimator of s. Th e test uses a graphical tech-
nique and involves plotting Wr and a pair of straight lines for values 
of r  =  k + , k + ,…,T. Th e straight lines are 5 signifi cance levels, so 
that if the plot of Wr cuts either of the lines then there is evidence of 
parameter instability at, or around, the value of r at which the ‘break’ 
takes place.

Th e Cumulative Sum of Squares (CUSUM of SQUARES) statistic is 
defi ned as
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Figure 17.4 Recursive residuals from the consumption function
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Th e test again involves plotting WWr and a pair of 5 signifi cance level 
lines, and is interpreted in a similar way to the CUSUM test.

Figure 17.4 plots the recursive residuals from the ‘War & Peace’ 
consumption function, and Figure 17.5 shows plots of the CUSUM and 
CUSUM of SQUARES statistics with associated 5 signifi cance level 
lines.3

Th e recursive residuals are shown accompanied by ± standard error 
bands, and we can see that the νj penetrate the bands during the fi rst 
and second world wars, as we should expect. Th e CUSUM statistic fails 
to pick up either of the wartime breaks, a consequence of the potential 
lack of power of this statistic. Th e CUSUM of SQUARES statistic, 
however, clearly picks up the break in the second world war, but also 
fails to identify the break in 1914. Recursive estimates of the intercept 
and slope are also plotted, in Figure 17.6, and reveal instability in the 
expected ways.
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Figure 17.5 CUSUM statistics for the consumption function
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Figure 17.6 Recursive estimates for the consumption function
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17.5 Interest rates and infl ation in the UK revisited

Figure 2.6 presented a scatterplot of UK long interest rates and infl ation 
from 1751 to 2011, showing what appeared to be a ‘structural shift ’ in the 
relationship between the two variables for the period 1965 to 1997: during 
these years the variables look to be strongly positively correlated, while 
outside of this period there appears to be little relationship between 
them at all. We are now in a position to examine this relationship more 
formally. We begin by reporting regressions between the long interest 
rate, Rt, and infl ation, πt, and the lagged interest rate, Rt–, for a variety of 
sample periods:

1751–2011

1
ˆ 0.187 0.010 0.955

0.083 0.006 0.017
t t tR Rπ

  

2 0.933R   ˆ 0.599s

1,257 0.51 0.48F     2,256 0.37 0.69F

1751–1964

1
ˆ 0.178 0.004 0.954

0.090 0.003 0.024
t t tR Rπ

  

2 0.884R   ˆ 0.284s

1,210 1.79 0.18F     2,209 3.13 0.05F

1965–1997

1
ˆ 4.411 0.243 0.359

1.113 0.066 0.148
t t tR Rπ

  

2 0.749R   ˆ 1.226s

1,29 1.92 0.17F     2,28 3.96 0.06F

1998–2011

1
ˆ 4.159 0.062 0.120

0.809 0.058 0.161
t t tR Rπ

  

2 0.150R   ˆ 0.305s

1,10 0.28 0.61F     2,9 0.20 0.82F
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1751–1964, 1998–2011

1
ˆ 0.288 0.004 0.922

0.092 0.003 0.024
t t tR Rπ

  

2 0.869R   ˆ 0.303s

1,224 0.88 0.35F     2,223 1.04 0.35F

Th e F-tests are LM tests for fi rst- and second-order residual autocorrela-
tion (§14.8), and show little evidence of dynamic misspecifi cation in the 
regressions. Th e estimated coeffi  cients confi rm that it is only between 
1965 and 1997 that interest rates and infl ation are signifi cantly positively 
related (the t-statistic on πt is 3.70 for this regression, whereas in the other 
regressions it is 1.70, 1.50, –1.06 and 1.37, respectively). A Chow test for 
a break at 1965 produces the highly signifi cant statistic F(,)  =  .,  
and the PF test yields the equally signifi cant statistic F(,)  =  .. If 
the sample period is restricted to 1965–2011, then the Chow test fi nds a 
signifi cant break at 1998 (F(,)  =  .).

Figures 17.7 and 17.8 show the recursive residuals and the CUSUM of 
SQUARES plots (the CUSUM plot shows no signifi cance, again suggest-
ing that it oft en lacks power). It is clear that the years from 1965 to 1997 

Figure 17.7 Recursive residuals from the interest rate–infl ation regression
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were a period of great instability in the relationship between interest 
rates and infl ation.

From the link between t-ratios and partial correlations given in §13.3, 
we calculate rRπ.R–1

 to be 0.54 for 1965–1997, 0.10 for 1751–1964 and –0.27 
for 1998–2011, the latter two correlations being insignifi cant. In fact, on 
deleting insignifi cant coeffi  cients in the various regressions, we obtain

1751–1964

1
ˆ 0.177 0.956

(0.090) (0.024)
t tR R

    

ˆ 0.285s

1998–2011

ˆ 4.548
(0.081)

tR

    

ˆ 0.304s

Since Bank of England independence, therefore, there has been no rela-
tionship between interest rates and infl ation, with the long interest rate 
fl uctuating randomly around a mean of approximately 4½. No rela-
tionship between the variables was also the norm before 1965: however, 

Figure 17.8 CUSUM of SQUARES statistic from the interest rate–infl ation 
regression

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1775 1800 1825 1850 1875 1900 1925 1950 1975 2000

CUSUM of squares 5% Significance



Testing for Stability in Regression  

in this period there was a high degree of persistence in the interest rate, 
with the lagged interest rate having a coeffi  cient only a little below unity. 
Indeed, imposing the value of unity on this coeffi  cient yields4

ˆ 0.014
(0.020)

tR

    

ˆ 0.285s

and the insignifi cance of the intercept in this regression implies that up 
until 1965 the interest rate followed a drift -free random walk (recall §6.6). 
For the ‘aberrant’ 1965–1997 period, the relationship is approximately 
Rt  =  . + .πt + 0.4Rt–1. We are thus led to the view that the process 
generating the interest rate is regime switching, altering because of eco-
nomic and institutional changes during the last half of the 20th century.5

Notes

Th e income data is assumed to be generated by  Yt  =   + t +vt, vt ~ IN(,).
Gregory C. Chow, ‘Tests of equality between sets of coeffi  cients in two linear  
regressions’, Econometrica 28 (1960), 591–605.
Th ese statistics were proposed by R.L. Brown, James Durbin and D.M. Evans,  
‘Techniques for testing for the constancy of regression relationships over 
time’, Journal of the Royal Statistical Society, Series B 37 (1975), 141–192, where 
expressions for the standard errors associated with the two statistics may be 
found.
Testing the hypothesis that the coeffi  cient on  Rt– is unity through a t-test 
turns out to be invalid, because under this null hypothesis the t statistic does 
not follow a t-distribution. Th is problem of testing for a unit root is discussed 
in §18.7.
In fact, there is evidence that the interest rate-generating process altered  
even more frequently over this period, in the earlier years being dependent 
upon whether Britain was on the gold standard or not. Much more detailed 
statistical and economic analysis of the historical interaction between 
infl ation and interest rates is provided by Terence C. Mills, ‘Exploring 
historical economic relationships: two and a half centuries of British interest 
rates and infl ation’, Cliometrica 2 (2008), 213–228, and Terence C. Mills 
and Geoff rey E. Wood, ‘Two and a half centuries of British interest rates, 
monetary regimes and infl ation’, in Nicholas Craft s, Terence C. Mills and 
Geoff rey E. Wood (editors), Explorations in Financial and Monetary History: 
Essays in Honour of Forrest H. Capie (London, Routledge, 2011), pp. 158–177.
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18
Basic Time Series Models

Abstract: A popular model to describe an economic time 
series is that of an autoregression, in which the current 
value is expressed as a function of past values. Th is 
is a simple class of time series model and methods of 
determining the order of an autoregression are considered. 
Moving average and mixed models may also be fi tted, and 
methods for building such models are developed by way of 
several empirical examples. An important requirement for 
time series modelling is that of stationarity, and the use of 
diff erencing and of formal testing procedures for inducing 
such a property are both considered. It is also important 
to distinguish between various types of non-stationarity, 
and the trend stationarity versus diff erence stationarity 
distinction is developed in some detail.
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18.1  Autoregressions

In §6.6 the lagged dependent variable regression was introduced, taking 
the form

1t t tX a bX u                      
(18.1)

Th is is, in fact, an example of a fi rst-order autoregression, oft en referred 
to as an AR(1) process.1 A natural extension is the general p-th order 
autoregression (AR(p))

1 1t t p t p tX X X u…θ φ φ
             

(18.2)

in which Xt is regressed on p lagged values of itself: hence the term 
autoregression. An equivalent ‘diff erence from mean’ form is

1 1t t p t p tX X X u…μ φ μ φ μ
         

(18.3)

where the relationship between the intercept θ in (18.2) and the mean of 
Xt, μ, in (18.3) is given by θ  =  μ(1–φ1–…–φp). Th e errors ut are assumed 
to satisfy the classical regression assumptions of §12.2 and, within this 
explicitly time series context, ut is oft en referred to as a white noise inno-
vation, denoted ut ~ WN(,s ).2

18.2 Stationarity

It was pointed out in §6.6 that if b =  in (18.1) then Xt follows a random 
walk with drift . Th is is an example of a non-stationary process and it is 
easy to show that if X is the initial value of the series, then E(Xt)  =  X + ta 
and V(Xt)  =  ts , so that both the mean and variance of Xt are time-
dependent.3 Th is makes statistical analysis rather problematic, and it is 
therefore typically assumed that Xt is stationary, which requires in the 
AR(1) case that 1b  and, generally, that φ1 + …+φp < 1. Stationarity rules 
out the presence of trends in the data (cf. the trends in consumption 
and income examined in §6.6), and so if such series are to be analysed 
within an autoregressive framework, they must fi rst be transformed 
to stationarity. Consequently, if generated by the AR(1) process (18.1), 
the stationary series Xt will have a constant mean of μ = a ∕(–b) and a 
constant variance of s /( – b).4 Th e operation of diff erencing, that is, of 
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defi ning ΔXt  =  Xt – Xt–, has been found to be a useful way of inducing 
stationarity in many time series, and when combined with the taking of 
logarithms essentially transforms a non-stationary, trending series to a 
stationary series of growth rates: recall using such a transformation in 
§3.2 to transform the non-linearly trending RPI to stationary infl ation.

18.3 Determining the order of an autoregression

Important and useful statistics for modelling time series are the sample 
autocorrelations and sample partial autocorrelations. Th e lag-k sample auto-
correlation is defi ned for the sample X,…,XT as

1
2

1

T
t t kt k

k T
tt

X X X X
r

X X

and may be interpreted as an estimator of the corresponding population 
(or theoretical) autocorrelation

,t t k
k

t

Cov X X
V X

ρ

which uses the stationarity implication that V(Xt) = V(Xt–k) and illustrates 
the fact that under stationarity the autocorrelations and autocovariances 
depend solely on the ‘time-lag’ k and not on time t.

Th e lag-k sample partial autocorrelation is defi ned as the regression 
coeffi  cient ˆ

kkφ  in the estimated k-th order autoregression

11 1
ˆ ˆ ˆˆ

t t kk t kX X X…θ φ φ

and may be interpreted as an estimate of the coeffi  cient on Xt–k in an 
AR(k) process, φkk, which is the theoretical partial autocorrelation. 
Listings of the sample autocorrelations and sample partial autocorrela-
tions with respect to k are known as the sample autocorrelation function 
(SACF) and sample partial autocorrelation function (SPACF) respectively, 
while analogous listings of their theoretical counterparts are termed the 
ACF and PACF.

Th e partial autocorrelations may be used to select the order of an 
autoregression, and this makes models such as (18.3) operational, since 
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on selecting a value for p, the autoregression may be estimated by OLS. 
If Xt was really generated by an AR(k) process, then fi tting autoregres-
sions of higher order would lead to the 1, 1

ˆ ,k k …φ  all being insignifi cantly 
diff erent from zero. Since the standard error of all sample partial auto-
correlations of lag greater than k is approximately 1 T , then as long as 
T is reasonably large, standard t-tests may be constructed to determine 
the signifi cance of ˆ

kkφ . Th is procedure may be performed iteratively, 
with the order of the autoregression being determined as that lag aft er 
which all higher order partial autocorrelations are insignifi cantly diff er-
ent from zero.5

An alternative approach to selecting p is to choose a maximum autore-
gressive order – K, say – and to fi t all autoregressions up to that order. 
If the estimated error variance of the fi tted k-th order autoregression is 
denoted 2ˆ ks , then the order of the autoregression may be selected as that 
value which minimises the information criterion

2 1ˆln ,k kIC f k T Ts ,
   1, ,k K…

Two popular choices for the ‘penalty function’ are f(k,T)  =  k, which 
defi nes Akaike’s Information criterion (AIC), and f(k,T)  =  klnT, which 
defi nes Schwarz’s Bayesian Criterion (BIC).6

Determining the order of an autoregression for infl ation

In §6.6 an AR(1) process was fi tted to annual infl ation from 1948. Th e 
SPACF, AIC and BIC values for 10k  are shown in Table 18.1.

Since T  =   the standard error of each ˆ
kkφ  is 0.126 so that only 11φ̂  

is signifi cantly diff erent from zero. Th e choice of an AR(1) process is 

Table 18.1 Autoregressive order determination statistics for infl ation

k ˆ
kkφ kAIC kBIC

 . . .
 –. . .
 . . .
 . . .
 –. . .
 –. . .
 –. . .
 –. . .
 . . .
 –. . .
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confi rmed by the BIC, but the AIC is minimised at k = 6. Th e AIC typi-
cally selects a higher order than the BIC, as the latter’s penalty function 
penalises higher values of k more onerously than the former. Th e fi tted 
AR(1) and AR(6) models are

1
ˆ 1.23 0.776

0.60 0.081
t tπ π

 

ˆ 2.984us

1 2 3

4 5 6

ˆ 1.14 0.832 0.064 0.048
0.1810.1830.67 0.135

0.118 0.260 0.319
0.179 0.178 0.125

t t t t

t t t

π π π π

π π π

 

ˆ 2.797us

Th e estimated coeffi  cients on lags 2, 3 and 4 in the latter model are 
very imprecisely determined, and deleting these regressors leads to the 
‘restricted AR(6)’ model

1 5 6
ˆ 1.14 0.785 0.341 0.319

0.63 0.126 0.1250.089
t t t tπ π π π

 

ˆ 2.734us

4.917AIC     5.060BIC

Th e AIC has been reduced even further, and the model has a BIC that is 
smaller than any other model so far fi tted.

18.4 Checking the fi t of an autoregression

Analogous to checking the fi t of a regression model, as detailed in 
Chapters 14–17, the residuals from a fi tted autoregression should ‘mimic’ 
white noise and, in particular, should contain no autocorrelation. 
An obvious test statistic to use is the LM test of §14.8, but an alterna-
tive is to consider the portmanteau test statistic based on the residual 
autocorrelations

1
2

1

ˆ ˆ
ˆ

ˆ

T
t t kt k

k T
tt

u u
r

u
 

1 1
ˆ ˆ ˆˆt t t p t pu X X X…θ φ φ
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Th is statistic is defi ned as

1 2 2

1

ˆ2 ~
m

k
k

Q m T T T k r m pχ

and tests the null hypothesis that the fi rst m residual autocorrelations 
are all zero.7 Individual residual autocorrelations may also be tested by 
comparing them with their standard error of 1 T .

Diagnostic checking of autoregressive models of infl ation

Th e AR(1) model has 5̂ 0.318r  and Q() = .. Not only are both highly 
signifi cant, but also they point the way to including lags of up to six in 
the autoregression. Th e AR(6) fi ts, either unrestricted or restricted, off er 
no evidence of any residual autocorrelation using these tests.

18.5 Moving average and mixed time series models

A distinctive feature of autoregressive processes is that their ACFs tail 
off  with k, following a mixture of geometric declines and damped sine 
waves. For example, the autocorrelations of the AR(1) process (18.1) are 
given by ρk  =  bk, which will follow a geometric decline under the station-
arity assumption that 1b .8 For an AR(p) process the ACF is given by

1 1 2 2
k k k

k p pA g A g A g…ρ
                

(18.4)

where 1 1 1
1 2, , , pg g g…  are the roots of the characteristic equation, the p-th 

order polynomial

1
1 11 1 0p p

p pz z g z g z… …φ φ

and A,A,…,Ap are constants that depend upon the gis, i  =  ,,…,p. 
Stationarity requires that 1ig , so that if a root is real, the term k

i iA g  in 
(18.4) geometrically decays to zero as k increases. If there is a complex 
pair of roots then these will contribute a term to (18.4) which follows a 
damped sine wave.

Th e SACF of an autoregressive process will display analogous features, 
while the PACF and SPACF will ‘cut off ’ at the order of the process, p. 
Th us Figure 18.1 shows the SACF and SPACF of infl ation along with 
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their ‘theoretical’ counterparts obtained from the fi tted AR(6) model, 
and these clearly exhibit both these features of autoregressive processes.

What, though, if the reverse of this is observed: that is, the SACF 
appears to cut off  but the SPACF tails off ? Th is will happen if Xt follows 
a moving average (MA) process. A fi rst-order moving average (MA(1)) 
takes the form Xt  =  θ + ut + ϑut– so that ρ  =  ϑ ∕( + ϑ 2) and ρk  =   for 
k > , that is, the ACF cuts off  at lag one and the memory of the process 
is just one period.9 A moving average process is always stationary, but 
since ρ1 and ϑ are linked by the quadratic ρ1ϑ 2–ϑ + ρ1 = 0, which will 
have solutions

2
1

1 2
1

1 1 4
,

2
ρ

ϑ ϑ
ρ

there will be two solutions for ϑ for a particular value of ρ1: since  
ϑ1ϑ2 = 1, these are ϑ1 and 1

2 1ϑ ϑ . Th is lack of ‘identifi cation’ is typically 

Figure 18.1 Th e sample ACF and PACF of infl ation and the theoretical ACF and 
PACF from the fi tted AR(6) model
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resolved by taking the invertible solution 1 1ϑ , which is known as the 
invertibility condition.

Th e PACF for an MA(1) process can be shown to be dominated by 
a geometric decline and thus there will be a duality existing between 
AR(1) and MA(1) processes.10 Th e ACF of an MA(1) process has a cut-
off  aft er lag one, but the ACF of an AR(1) process declines geometri-
cally. Conversely, whereas the PACF of an MA(1) process tails off  and is 
dominated by a geometric decline , the PACF of an AR(1) process has a 
cut-off  aft er lag 1.
A similar duality holds for the MA(q) process

1 1t t t q t qX u u u…θ ϑ ϑ
               (18.5)

when compared to an AR(p) process: (18.5) will have an ACF that cuts 
off  aft er q lags and a PACF that behaves like that of the ACF of an AR(p) 
process in that it will tail off  as a mixture of geometric declines and 
damped sine waves.

A moving average model for infl ation

Figure 18.2 shows the SACF and SPACF of the infl ation series shown in 
Table 2.2, plotted as Figure 2.2 and used in the example in §17.5, along 
with the ‘theoretical’ ACF and PACF from the fi tted MA(1) process11

1ˆ ˆ2.246 0.476
0.562 0.054

t t tu uπ

    

ˆ 6.158s

Th e model fi ts the low-order sample autocorrelations and partial auto-
correlations quite well, and implies that the ‘memory’ of the infl ation 
process is one year; infl ation values a year apart are positively correlated 
(r  =  .), but values further than a year apart are uncorrelated.

However, it can be seen that some modestly sized higher-order auto-
correlations are not so closely fi tted, and a more complicated model 
might therefore be entertained (this is confi rmed by a Q() statistic of
15.28: in general, if an MA(q) process is fi tted then Q(m) ~ χ m–q).

Two further possibilities exist: either both the SACF and SPACF 
decline or they both cut off . In the former case a mixed autoregressive-
moving average (ARMA) process might be considered. Th e ARMA(1,1) 
process is

1 1t t t tX X u uθ φ ϑ                  (18.6)
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For stationarity it is required that 1φ , while for invertibility 1ϑ . 
Th e ACF will decline geometrically as ρk  =  φ k for k > , with the lag-one 
autocorrelation being given by12

1 2

1
1 2

φϑ φ ϑ
ρ

ϑ φϑ

Th e PACF also has a single initial value, φ11  =  ρ, but then behaves as an 
MA(1) process, being dominated by a geometric decline. It is rare when 
modelling economic time series to fi nd that more complicated mixed 
models than the ARMA(1,1) are needed.

An ARMA model for infl ation

An autoregressive term was added to the MA(1) specifi cation for infl a-
tion, producing the fi tted ARMA(1,1) model

Figure 18.2 Th e sample ACF and PACF of infl ation and the theoretical ACF and 
PACF from the fi tted MA(1) model with two standard error bounds of 0.12
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1 1
ˆ ˆ2.279 0.250 0.298

(0.656) (0.117) (0.116)
t t t tu uπ π

   

ˆ 6.113s

Th is off ers a modest improvement over the MA(1), but in fact does little 
to improve the fi t of the higher-order autocorrelations.

A potential problem when modelling this infl ation series is that the 
presence of large outliers (recall the histogram shown in Figure 2.3 and 
the boxplot of Figure 2.5) leads to non-normality of the residuals, with 
the Jarque–Bera statistic of §16.6 being JB = .. Following the sugges-
tion of that section, two dummy variables were defi ned, D,t and D,t, 
and included in the ARMA(1,1) specifi cation, leading to

1800, 1802, 1 1
ˆ ˆ2.289 24.80 26.02 0.356 0.199

0.650 4.95 4.94 0.112 0.118
t t t t t tD D u uπ π

with ˆ 5.636s  and JB = ., which, although still signifi cant, is much 
reduced.13

Th e situation when both the SACF and SPACF cut off , typically at low 
lags, is very common when analysing economic time series. Figure 18.3 
shows the SACF and SPACF of the output growth series shown in the 
scatterplot of Figure 5.3, along with the theoretical ACFs and PACFs 
from the following fi tted AR(2) and MA(1) processes:

Figure 18.3 ACFs and PACFs from AR(2) and MA(1) fi ts to output growth with 
two standard error bounds of 0.26
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1 2 ˆ2.325 0.453 0.407
0.440 0.125 0.139

t t t tX X X u

   

ˆ 1.806s

1ˆ ˆ2.429 0.535
0.350 0.112

t t tX u u

   

ˆ 1.803s

Only r, 11φ̂  and 22φ̂  are signifi cant, and the fi ts of the two models are very 
similar. Th e reason for this similarity is that an MA(1) process can be 
written as

1 1 2
2

1 2 1
2

2 3

2 2 3
1 2 3

2 2
1 2

1 1

1

1

t t t t t t

t t t t

t t t

t t t t

k
t t

k k
t k t t k

X u u u X u

X u u X

u X u

X X u u

X X

X u u

…

…

θ ϑ θ ϑ ϑ θ
θ ϑ ϑ ϑ θ ϑ ϑ

ϑ ϑ θ

θ ϑ ϑ ϑ ϑ ϑ

θ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ

Using the invertibility condition 1ϑ  then, as k ,

2
1 21

k
t t t t k tX X X X u… …θ ϑ ϑ ϑ

ϑ

In other words, an invertible MA(1) process can be approximated 
by a stationary autoregression of infi nite order. With ϑ = ., so that  
ϑ = . and ϑ = ., the fi tted AR(2) process will thus give a reason-
able approximation to the fi tted MA(1) model.

18.6 Diff erencing to stationarity and beyond

Figure 18.4 provides the SACF and SPACF of the dollar/sterling exchange 
rate shown in Figure 3.8, along with the theoretical ACF and PACF 
obtained from the fi tted model implied by the SACF and SPACF, the 
AR(2) process Xt  =  . + .Xt– – .Xt– + ut.

A feature of the SACF is its slow, essentially linear, decline. Th is may 
be explained by noting that for an AR(2) process with one root close to 
the non-stationary boundary and the other root small (the two roots are 
estimated here to be 0.97 and 0.14), (18.4) can be written as



Basic Time Series Models

Figure 18.4 Th e sample ACF and PACF of the exchange rate and the theoretical 
ACF and PACF from the fi tted AR(2) model
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1 1 2 2 1 1 11 1 1kk k

k A g A g A A k k k A k…ρ δ δ δ δ δ

for δ small. Since in these circumstances A ≈ , the autocorrela-
tions decline approximately linearly as ρ =   δ, ρ =   δ  =  ρδ, ... ,
ρk = ρ –(k–δ.14

Th e closeness of the largest root to unity suggests that the exchange 
rate is borderline non-stationary at best, and would be better treated 
as being non-stationary, leading to the conclusion that the SACF and 
SPACF of the diff erences ΔXt  =  Xt – Xt– should be examined. In fact, this 
makes sense economically, for the ‘diff erence from mean’ form of the 
AR(2) model is

1 21.677 1.110 1.677 0.134 1.677t t t tX X X u

Th is has the implication that the exchange rate always reverts, albeit slowly, 
to an ‘equilibrium’ value of 1.677 dollars to the pound, and would thus off er 
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traders a ‘one-way bet’ whenever the rate got too far away from this value. 
Such bets do not happen in the foreign exchange market  – or indeed, it is 
argued in the theory of effi  cient markets, in any fi nancial market.

Figure 18.5 shows the ACFs and PACFs from an MA(1) fi tted to the 
changes in the exchange rate: these are almost the same as those obtained 
from an AR(1) fi t, since the models are essentially identical using the 
analysis of §18.5:

1
ˆ ˆ0.0017 0.116

0.0460.0026
t t tX u u

    

ˆ 0.0511s

1
ˆ0.0016 0.125

0.0460.0460
t t tX X u

    

ˆ 0.0511s

Note that the intercepts are estimated to be both small and insignifi cant 
and hence can be omitted. Th is, too, makes good economic sense, 
because the presence of an intercept would imply that exchange rate 
changes were, on average, non-zero so that over time the exchange rate 

Figure 18.5 ACFs and PACFs from an MA(1) fi tted to changes in the exchange 
rate with two standard error bounds of 0.09
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itself would be continually appreciating or depreciating, again producing 
a one-way bet that is inconsistent with effi  cient market theory. Indeed, 
the two models fi tted to the changes in the exchange rate are examples 
of an autoregressive-integrated-moving average, or ARIMA (p,d,q), model, 
where d denotes the order of integration, the number of times the series 
needs to be diff erenced to transform it to stationarity. Th e models here 
are either ARIMA(1,1,0) or ARIMA(0,1,1).

What happens when an already stationary series is diff erenced, an 
occurrence known as over-diff erencing? To take a simple example, sup-
pose that a series is itself white noise, so that Xt  =  ut. On diff erencing, 
this becomes ΔXt  =  ut – ut–: in other words, ΔXt follows an MA(1) proc-
ess that, since ϑ  =  –, is not invertible. However, since all moving average 
processes are stationary, ΔXt is stationary. Note that the lag-one auto-
correlation is ρ  =  ., so that a good indication of over-diff erencing 
will be a fi rst-order sample autocorrelation in the region of this value, 
accompanied by an SPACF that declines slowly from –0.5.

Figure 18.6 shows the consequences of over-diff erencing the exchange 
rate.

Figure 18.6 ACFs and PACFs of the second diff erences of the exchange rate

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Sample Theoretical

Au
to

co
rr

el
at

io
n

–.4

–.2

.0

–.4

–.2

.0

Pa
rt

ia
l a

ut
oc

or
re

lat
io

n

Sample Theoretical



 Analysing Economic Data: A Concise Introduction

Th is fi gure presents the SACF and PACF of the second diff erences 
Δ2Xt  =  Δ(ΔXt)  =  Xt –2Xt–1+Xt–2, along with the theoretical ACF and 
PACF of the fi tted ARIMA(0,2,1) model

2
1ˆ ˆ0.996

0.003
t t tX u u

    

ˆ 0.0515s

With r  =  ., ˆ 0.996ϑ  and an approximately geometrically declin-
ing SPACF, all the implied consequences of over-diff erencing are clearly 
seen. Note also that the estimate of s has increased on fi tting an over-
diff erenced model: this is oft en an indication of the problem.

18.7 Testing for unit roots

Determining the appropriate order of diff erencing, or degree of inte-
gration, is not always straightforward from just an examination of the 
SACFs of various diff erences of a time series. Consider the series shown 
in Figure 18.7.

Th is is the ‘spread’ between the long and short UK interest rates exam-
ined in §16.6, that is, it is defi ned as Xt  =  Rt–rt. From a visual inspection, 
two possibilities suggest themselves: either the spread is stationary, in 

Figure 18.7 Spread between long and short UK interest rates, March 1952–June 2012
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which case it fl uctuates rather persistently around a constant mean which 
has the interpretation of being the equilibrium diff erence between long 
and short interest rates; or it is non-stationary and thus wanders ran-
domly, in which case the concept of an equilibrium diff erence between 
long and short rates has no meaning.

Th e SACFs and SPACFs of the levels and fi rst diff erences of the 
spread, along with their theoretical counterparts obtained by fi tting the 
following ARIMA(2,0,0) and ARIMA(1,1,0) models to Xt, are shown in 
Figure 18.8.

1 2 ˆ0.034 1.191 0.223
0.018 0.036 0.036

t t t tX X X u

    

ˆ 0.4081s

1 ˆ0.207
0.036

t t tX X u

    

ˆ 0.4118s

Th e ARIMA(2,0,0) model implies that the spread fl uctuates around 
a mean of μ  =  ./(  . + .)  =  . percentage points as an 
AR(2) process with roots of 0.96 and 0.23. Th e ARIMA(1,1,0) says that 
changes in the spread follow an AR(1) process with a root of 0.21.

Th e essential diff erence between the two models is that the latter 
imposes a unit root, whereas the former estimates this largest root to 

Figure 18.8 ACFs and PACFs from ARIMA(2,0,0) and ARIMA(1,1,0) fi ts to the 
spread with two standard error bounds of 0.07
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be 0.96. What is thus required to formally distinguish between the two 
models is a test of the hypothesis that the autoregressive model for Xt 
contains a unit root against the alternative that this root is less than one.

A unit root test can be constructed in the following way. Suppose we 
have the AR(1) model Xt  =  θ + φXt– + ut and we wish to test the unit root 
hypothesis H: φ  =  1 against the stationary alternative HA: φ  <  1. An ‘obvi-
ous’ approach would be to estimate the model by OLS and compute 
the t-statistic ˆ ˆ( 1) ( )SEφ φ , rejecting the null if there is a signifi cantly 
large negative value of the statistic. Th e problem is that this statistic is 
not distributed as t(T–) on H, as might be expected from following 
the analysis of §12.3. Th e distribution that the statistic follows is known 
as the Dickey–Fuller distribution, is usually denoted τμ to distinguish 
it from t, and is shown, with the standard normal for comparison, in 
Figure 18.9.15

For large samples, the 5, 2.5 and 1 critical values of τμ are –2.86, –3.12 
and –3.43, as compared to –1.645, –1.96 and –2.33 for the standard normal, 
so that incorrectly using these latter critical values substantially increases 
the probability of making a Type 1 error. For example, using –1.645 rather 
than the correct –2.86 as the critical value will increase the probability of 
incorrectly rejecting a unit root null in favour of the stationary alternative 
from 5 to over 46. Since the AR(1) model can be written as

Figure 18.9 Th e Dickey–Fuller τμ distribution compared to the standard normal
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1 11t t t t tX X u X uθ φ θ ϕ            
(18.7)

the test statistic τμ may be obtained directly as the t-ratio on ˆˆ 1ϕ φ , the 
slope coeffi  cient in the regression of ΔXt on Xt–.16

Higher order autoregressions may be tested for the presence of a unit 
root by a straightforward extension of these ideas. Suppose we consider 
the AR(2) process, for which the unit root null hypothesis is φ

 +φ  =  . 
Analogous to (18.7), an AR(2) model can be written as

1 2 1 2 11t t t tX X X uθ φ φ φ
           (18.8)

Th us the unit root null can be tested using the t-ratio of Xt–  in the regres-
sion of ΔXt on Xt– and ΔXt–, and this will continue to follow the τμ dis-
tribution. Generally, a unit root in an AR(p) process can be tested using 
an analogous regression to (18.8) but with p– lags of ΔXt  included as 
additional regressors. Such a regression is known as an augmented Dickey–
Fuller (ADF) regression, and the associated test an ADF test. Typically the 
order of the autoregression will be unknown, and p must be selected by, 
say, an information criterion or some other method (cf. §18.3).

Testing for unit roots in the spread and the exchange rate

Th e AR(2) specifi cation for the spread can be written as the ADF 
regression

1 1 ˆ0.034 0.032 0.223
0.018 0.008 0.036

t t t tX X X u

so that 0.03208 0.22291 3.89μτ , which is less than the 1 critical 
value and thus rejects the null that the spread contains a unit root.

Th us, even though the spread contains a very large autoregressive 
root, this root is signifi cantly less than unity and the spread is stationary 
around a constant mean. On average, therefore, long rates are just over 
one percentage point higher than short rates, but the rate spread can lie 
above or below this equilibrium value for considerable periods of time.17

Th e ADF regression for the exchange rate is

1 1 ˆ0.039 0.023 0.134
0.015 0.008 0.046

t t t tX X X u
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so that τμ  =  –./.  =  –.. Since this is greater than the 5 
critical value, the hypothesis that the exchange rate contains a unit root 
cannot be rejected at this signifi cance level – although, interestingly, it 
can be rejected at the 10 level (the p-value is 0.0565). Th us the exchange 
rate appears to follow a drift less but slightly autocorrelated random 
walk: note that conventional but incorrect inference would have clearly, 
but erroneously, rejected a unit root in favour of stationarity around a 
constant equilibrium exchange rate!

18.8 Trend stationarity versus diff erence stationarity

§6.6 also introduced the time trend regression Xt  =  β+βt + et, which 
may be thought of as another way of transforming a non-stationary Xt to 
stationarity if the detrended et  =  Xt–ββt is itself stationary.

Whether this is the case or not can be investigated using an extension 
of the Dickey–Fuller test. Th e time trend regression can be considered 
to be the trend stationary (TS) alternative to the diff erence stationary (DS) 
null Xt  =  Xt– +θ + et, that is, the DS null states that Xt is generated by a 
(possibly autocorrelated) drift ing random walk, while the TS alternative 
is that Xt is generated as stationary fl uctuations around a linear trend.18

Formally, consider the following ‘structural’ model, in which Xt is 
generated as a linear trend ‘buried’ in noise, where an autoregression of 
order two for et is assumed for expositional convenience

0 1t tX t eβ β                      (18.9)

1 1 2 2t t t te e e uφ φ
                   (18.10)

Substituting (18.9) into (18.10)

0 1 1 1 0 1 2 2 0 11 2t t t tX t X t X t uβ β φ β β φ β β

and rearranging gives

0 1 2 1 1 2 1 1 2

1 2 1 2 1

1 2 1

1
t

t t t

X t

X X uφ

β φ φ β φ φ β φ φ

φ φ       

(18.11)

If Xt contains a unit root then φ + φ  =   and (18.11) reduces to
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1 2 2 11t t tX X uβ φ φ

or

1 2 1t t tX X uβ φ β

that is, the structural model

*
1 1t t tX X eβ

* *
2 1t t te e uφ

where *
t te e . A test of the unit root null is thus given by the t-ratio 

on Xt– in (18.11). More generally, if an AR(p) is specifi ed in (18.10), then 
(18.11) can be written as the extended ADF regression

1
1 1

p
t t i t i ti

X t X X uθ β ϕ φ
           (18.12)

where θ and β are functions of β0, β1 and the φi and ϕ  =  φ + φ + … + φp – . 
Th e DS null hypothesis is thus H: ϕ  =  0 and the TS alternative is HA: ϕ  <  0  
and the test statistic is again the t-ratio on ϕ̂ . Th e presence of t as a regressor 
in the ADF regression, however, alters the distribution of the test statistic to 
that shown in Figure 18.10, and the statistic is denoted ττ accordingly. Th e 
large T 5, 2.5 and 1 critical values of ττ are –3.41, –3.66 and –3.96, so 
that the presence of a drift  term in the null model requires an even more 
extreme test statistic for the null to be rejected.

Figure 18.10 Th e Dickey–Fuller τμ distribution compared to the standard normal
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Are consumption and income trend or diff erence stationary?

Th e time trend regressions for consumption and income reported in §6.6 
clearly assume that their logarithms were generated as TS processes– but 
is this in fact the case? Estimates of (18.12) with p  =  , the order chosen 
by the BIC, for the two series, are

1 1 ˆln 2.442 0.0047 0.194 ln 0.546 ln
0.704 0.0014 0.056 0.111

t t t tC t C C u

1 1 ˆln 2.943 0.0056 0.231 ln 0.456 ln
0.899 0.0018 0.071 0.122

t t t tY t C Y u

From these regressions, the ττ statistics for consumption and income may 
be calculated to be –. ∕0.0563  =  –3.45 and –. ∕0.0711 = –3.25 
respectively. Since the 10 and 5 critical values for this sample size 
are -3.17 and -3.49, both statistics reject the DS null at the 10 level but 
not at the 5 level, the p-values being 0.0544 and 0.0839 respectively. 
Th is confers some doubt as to the correct specifi cation for both series, 
particularly as Dickey–Fuller tests can suff er from rather low power 
(recall §11.5).

Consequently, it seems worth reporting both types of model. Th e 
structural TS models are

ln 12.51 0.0243
0.02 0.0005

t tC t e

1 2 ˆ1.352 0.546
0.112 0.111t t t te e e u

   

ˆ 1.44%s

and

ln 12.67 0.0244
0.02 0.0006

t tY t e

1 2 ˆ1.225 0.456
0.119 0.122

t t t te e e u

   

ˆ 1.78%s

while the structural DS models are

*ln 0.0230
0.0036

t tC e
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* *
1

ˆ0.451
0.117

t t te e u

   

ˆ 1.56%s

and

*ln 0.0238
0.0037

t tY e

* *
1

ˆ0.335
0.123

t t te e u

   

ˆ 1.90%s

Th e TS structural models can be thought of as ‘decomposing’ the observed 
series into additive (linear) trend and cyclical (AR(2)) components (cf. 
§6.6; also recall the decompositions of §3.5), as shown graphically in 
Figure 18.11.

Th e trend lines are essentially parallel since trend growth is almost 
identical for both series at approximately 2.43. Th e AR(2) represen-
tations of the cyclical components both have a pair of complex roots, 
. ± 0.30i for consumption and . ± 0.28i for income: these imply 
that the components follow ‘stochastic’ sine waves with average periods 
of 15.1 and 14.5 years respectively, the nature of which are clearly seen in 
the fi gure.19

Th e DS structural models show that both series follow an AR(1) auto-
correlated random walk with drift  (essentially ARIMA(1,1,0) processes). 
Th ere is no unique trend-cycle decomposition of such a model, but the 
Beveridge–Nelson decomposition is popular. Here Xt  =  Tt + It with the trend, 
Tt, and cycle, It, components being assumed to be perfectly correlated 
with each other and given by20

1 1
2

1
1t t tT T uβ

φ

2
2 1

21t t tI I u
φφ

φ

Th us the trend is a random walk with the same drift  as Xt and the cycle 
is a (stationary) AR(1) process. Th e components are perfectly cor-
related because they are ‘driven’ by the same innovation ut. Th us, for 
consumption,
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1 0.0230 1.821t t tT T u ,    10.451 0.821t t tI I u

while for income

1 0.0238 1.504t t tT T u .
    10.335 0.504t t tI I u

With these decompositions, consumption and income have trend growth 
rates that are approximately equal on average, but the trends evolve as 
drift ing random walks rather than as deterministic linear functions. Th e 

Figure 18.11 Logarithms of consumption and income with fi tted trends (top 
panel) and cyclical components (bottom panel) from TS models
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AR(1) models for the cyclical components preclude any business cyclical 
interpretation of their fl uctuations.

TS and DS models have a further important diff erence. As we have 
seen, the TS model is Xt  =  β+βt + et, where et is stationary. For example, 
if et  =  φet–+u, then

2
0 1 2 1

0 1 1

t t t t

k
t t t t k

X t e u u

X t u u u… …

β β φ φ

β β φ φ

using the stationarity condition 1φ . Th us the eff ect of any innovation 
on Xt must dissipate through time, and the series has to revert to its 
unique trend line, so that shocks are transitory.

On the other hand, the DS model *
1 1t t tX X eβ , where *

te  is station-
ary, can be written as

* *
2 1 1

* * *
0 1 1 1

2t t t t

t t t

X X e e

X X t e e e…

β

β

that is, as a linear trend but with a non-stationary error, this being the 
accumulation of all past innovations. Since any innovation *

t ke  remains 
unweighted in this accumulation, its eff ect on Xt fails to die away so that 
shocks are permanent.

This difference has the implication that if consumption and income 
were TS, then a major recessionary shock, such as that of 2008, will 
have only a temporary effect so that after a period of negative growth, 
consumption and income must subsequently grow more rapidly than 
‘normal’ to return to the trend path. If these series are DS, however, 
such a major recessionary shock remains in the data for ever, and 
there is no tendency for the series to return to any unique trend path: 
in fact, the trend paths alter each period in response to the latest 
innovation.

18.9 Further models and tests

Th is chapter has only scratched the surface of time series modelling. 
Seasonal time series, such as retail sales analysed in §3.5, can be modelled 
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using an extension to seasonal ARIMA models. Several time series may 
be analysed jointly by using vector extensions of the models introduced 
here. Th ese models can also be used to investigate heteroskedasticity 
that changes through time, producing the class of generalised autoregres-
sive conditional heteroskedastic (GARCH) models that have become the 
standard way of modelling volatility in fi nancial time series data.

A number of variants to the Dickey–Fuller unit root test have been 
proposed, essentially to improve the power properties of such tests, so 
that a clear distinction between the TS and DS models for consumption 
and income might be established. Th ese tests have also been extended 
to cover the cases of potentially multiple unit roots, breaks in the series, 
and situations in which combinations of integrated time series may be 
stationary, the phenomenon known as co-integration.21

Notes

Autoregressions were fi rst introduced by the famous British statistician  
George Udny Yule during the 1920s: see G.U. Yule, ‘On a method of 
investigating periodicities in disturbed series, with special reference to 
Wolfer’s sunspot numbers’, Philosophical Transactions of the Royal Society 
of London, Series A 226 (1927), 267–298. For details on the historical 
development of these models, see Terence C. Mills, Th e Foundations of 
Modern Time Series Analysis (Palgrave Macmillan, 2011) and A Very British 
Aff air: Six Britons and the Development of Time Series Analysis (Palgrave 
Macmillan, 2013). Acronyms abound in time series analysis and have even 
prompted a journal article on them: Clive W.J. Granger, ‘Acronyms in time 
series analysis (ATSA)’, Journal of Time Series Analysis 3 (1982), 103–107, 
although in the three decades since its publication many more have been 
suggested.
Th e term ‘white noise’ was coined by physicists and engineers because of  
its resemblance, when examined in the ‘frequency domain’, to the optical 
spectrum of white light, which consists of very narrow lines close together: 
see Gwilym M. Jenkins, ‘General considerations in the analysis of spectra’, 
Technometrics 3 (1961), 133–166. Th e term ‘innovation’ refl ects the fact that 
the current error ut is, by defi nition, independent of all previous values of 
both the error and X and hence represents unforecastable ‘news’ becoming 
available at time t.
Th e random walk  Xt  =  a + Xt– + ut can be written, on successively substituting 
for lagged X’s back to the initial value X, as Xt  =  X + ta +ut +ut– +… +u, 
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from which the expressions for the mean and variance of Xt are obtained 
immediately.
Writing (18.1) in the form of (18.3), that is, as  1t t tX b X uμ μ , then

 

22 22 2
1 1

2 2

2 21

t t t t t t

t

V X E X E b X u b E X u

b V X

b

s

s

μ μ μ

  Note that the stationarity condition 1b  also ensures that V(Xt) is positive 
and fi nite.
Th e successive sample partial autocorrelations may be estimated recursively  
using the updating equations proposed by James Durbin, ‘Th e fi tting of 
time series models’, Review of the International Statistical Institute, 28 (1960), 
233–244, which are known as the Durbin–Levinson algorithm:

 

1
1,1

1
1,1

ˆ
ˆ

ˆ1

k
k k j k jj

kk k
k j jj

r r

r

φ
φ

φ

 1, 1,
ˆ ˆ ˆ ˆ
kj k j kk k k jφ φ φ φ

 
j = , , ..., k  

  See George E.P. Box and Gwilym M. Jenkins, Time Series Analysis: Forecasting 
and Control, revised edition (Holden Day, 1976), pages 177–178, for discussion 
of the standard errors to be attached to both sample autocorrelations and 
sample partial autocorrelations.
Th ese information criteria may be used to select between any competing  
regression models explaining the same dependent variable, with k 
interpreted as the number of parameters fi tted in a particular model.
Th is is also known as the  Ljung–Box statistic: Greta M. Ljung and George E.P. 
Box, ‘On a measure of lack of fi t in time series models’, Biometrika 65 (1978), 
297–303.
Th is result may be obtained directly on noting that 

1 1

,t t k t t k

k
t k t t t k t k

k k k
t t k t k t

Cov X X E X X

E b X u u u X

b E X X b V X b V X

…

μ μ

μ μ

μ μ

It is clear that for the MA(1) process,  μ  =  θ. Th us

 
2

1 1 1 1

,t t k t t k

t t k t t k t t k t t k

Cov X X E X X

E u u u u u u u u

θ θ

ϑ ϑ ϑ

For k  =  , V(Xt)  =  s( + ϑ ), for k  =   , Cov(Xt, Xt–)  =  sϑ, and for 
k > , Cov(Xt, Xt–k)  =  .
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From Box and Jenkins,  op. cit., p. 70, we have

 

2

2 1

1
1

k

kk k

ϑ ϑ
φ

ϑ

  Th us k
kkφ ϑ  and the PACF is dominated by a geometric decline. If ρ1 is 

positive, so that ϑ is positive, the partial autocorrelations alternate in sign, 
whereas if the converse holds the partial autocorrelations will all be negative.
Estimation of models with moving average errors is usually carried out by  
conditional least squares (CLS), where the initial values of the error series that 
are required for estimation are set to their conditional expectation of zero.
Th e algebraic derivation of this result is as follows. First write the process as 

 1 1t t t tX X u uμ φ μ ϑ

  where 1μ θ φ . Next obtain 1, , and ,t t t t t kV X Cov X X Cov X X for 
k > 1:
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  Using these expressions the results for ρ1 and ρk, k > 1, follow automatically.
Th e inclusion of dummy variables into an ARMA specifi cation produces  
what has become known as an intervention model in the time series 
literature: see George E.P. Box and George C. Tiao, ‘Intervention analysis 
with application to economic and environmental problems’, Journal of the 
American Statistical Association 70 (1975), 70–79.
For an AR(2) process, it can be shown that 

 

2
1 2

1
1 2 1 2

1
1

g g
A

g g g g
 

2
2 1

2
2 1 1 2

1
1

g g
A

g g g g



Basic Time Series Models

  Th us if g ≈  and g ≈ , then A ≈ 1.
15  Th e seminal article on what has become a vast subject, and which gives the 

distribution its eponymous name, is David A. Dickey and Wayne A. Fuller, 
‘Distribution of the estimators for autoregressive time series with a unit root’, 
Journal of the American Statistical Association 74 (1979), 427–431. Th e statistical 
theory underlying the distribution is too advanced to be considered here but 
see, for example, Kerry Patterson, A Primer for Unit Root Testing (Palgrave 
Macmillan, 2010) and, at a rather more technical level, his Unit Root Tests in 
Time Series. Volume 1: Key Concepts and Problems (Palgrave Macmillan, 2011).

16  Strictly, the τμ statistic tests φ =  conditional upon θ  =  , so that the model 
under H is the drift less random walk Xt  =  Xt– + ut. Th e joint hypothesis 
θ  =  , φ =  may be tested by constructing the usual F-statistic along 
the lines of §13.3, although clearly the statistic will not follow the F(2, 
T – 2) distribution. For large samples the 5 and 1 critical values of the 
appropriate distribution are 4.59 and 6.53, rather than the 2.99 and 4.60 
critical values of the F-distribution.

  We are also now able to confi rm the appropriateness of imposing a unit root 
on the interest rate pre-1965 in §17.5, for here τμ   =  (1–0.956) ∕0.024  =  –1.84. As 
this is insignifi cant, we cannot reject the hypothesis that the interest rate is 
indeed a random walk.

  Th e TS and DS terminology was introduced by Charles R. Nelson and 
Charles I. Plosser, ‘Trends and random walks in macroeconomic time series’, 
Journal of Monetary Economics 10 (1982), 139–162.

  Th e period, f, of the cycle can be obtained by solving the equation

 1 1
1 2cos 2 360f φ φ

  See Box and Jenkins, op. cit., pp. 58–63.
  Stephen Beveridge and Charles R. Nelson, ‘A new approach to decomposition 

of economic time series into permanent and transitory components with 
particular attention to measurement of the “business cycle”‘, Journal of 
Monetary Economics 7 (1981), 151–174. For a recent introduction to models 
of this type, see Terence C. Mills, ‘Trends, cycles and structural breaks’, in 
Nigar Hashimzade and Michael A Th ornton (editors), Handbook on Empirical 
Macroeconomics (Edward Elgar, 2013).

  Th ese extensions have been covered in, for example, Terence C. Mills and 
Raphael N. Markellos, Th e Econometric Modelling of Financial Time Series, 3rd 
edition (Cambridge University Press, 2008).



 

Index
accuracy, 140–1
ACF, 265–7, 268, 271, 272, 

273–4
addition rule, 103–4
additive decomposition, 39
Akaike’s Information criterion 

(AIC), 263–4
alternative hypothesis, 156
annualised monthly rate of 

inflation, 31
annual rate of inflation, 31–2
appreciation, currency, 58
asymmetry, 16–18
asymptotically unbiased, 150
augmented Dickey-Fuller 

(ADF) regression, 277
autocorrelation, 204–18

autocorrelated errors, 
205–6

consequences of, 206–8
in the consumption 

function, 212
estimation with 

autocorrelated errors, 
210–12

lagged dependent variables 
and, 235–6

partial, 262–3
positive, 208–9
residual, 213, 214–15, 216, 

264–5
sample autocorrelation 

function (SACF), 262, 
265–7, 269–71, 275

sample partial 
autocorrelation function 
(SPACF), 262–3, 265–7, 
269–71, 275

testing for, 208–10
testing for, with lagged 

dependent variable, 213
tests of, 215–16

autoregression, 261
checking fit of, 264–5
determining order of, 

262–4
determining order of, for 

inflation, 263–4
first-order 

autoregression, 205
inflation models, 265

autoregressive-integrated-
moving average (ARIMA), 
273–4, 275

autoregressive-moving average 
(ARMA), 267–70

auxiliary regression, 225
average elasticity, 96–7

bars, 6
base, 46
base year, 46
base-year weights, 49
Bayes theorem, 108, 111n6, 

111n7
Bernoulli distribution, 

122n2
Bernoulli experiment, 122n2



Index

best linear unbiased estimators 
(BLUE), 173, 176, 185n3, 
210–11, 237

Beveridge-Nelson decomposition, 281
bias

downwards, 235
simultaneity, 232–4

biased, 149
biased estimators, 189
binomial distribution, 118–19, 123–6
bivariate regression model, 84–6, 167, 

189, 193
boxplot, 16, 17, 18, 21
Bretton Woods system, 37
business cycle, 40
business cycle fluctuations, 94

Cauchy-Schwarz inequality, 81, 223
causality, 81–2
causation, 76–7

correlation and, 86–90
reverse regression and, 86–90

central limit theorem (CLT), 143, 147n2
central tendency, 9, 12–14
chaining, 47
chain-linked index, 47, 53–4
chance, 111n4
characteristic equation, 265
chi-square distribution, 132
Chow’s second test, 248–9
Chow test, 247–9, 251
classes, 6
classical assumptions, 172, 205
CLS, see conditional least 

squares (CLS)
CLT, see central limit theorem (CLT)
cluster sampling, 140
Cobb-Douglas production function, 24
Cochrane-Orcutt technique, 211
Coefficient of determination, 169–70
coefficient of multiple 

determination, 191
coefficient of skewness, 18–19
coefficient of variation, 15
co-integration, 284

combinations, 106–8
combinatorial formula, 107
complements, 103
compound events, 103
conditional least squares (CLS), 286n11
conditional probability, 105–6
confidence intervals, 179–80

hypothesis testing and, 155–60, 162
interpretation of, 152–4
for population mean, 150–2
for population variance, 154–5

confidence level, 153, 161
consistency, 149
constant growth rate, 25–8
Consumer Price Index (CPI), 48, 53–4
consumption, 79–80, 92–3

income elasticity of, 96–7, 98n6, 
162–3

inflation and, 199–201
interest rates and, 199–201
time trend regressions for, 280–3

consumption function, 69, 170–1, 179, 
182, 184, 233–4

autocorrelation in the, 212
CUSUM statistics for, 254
heteroskedastic, 220–1
log-linear, 234
modelling, 214–15
modelling an extended, 199–201
recursive estimates for, 255
recursive residuals from, 253
residuals and, 245–6
structural change and, 244–5
testing for heteroskedasticity, 226–7

continuous random variables, 114, 
123–7

continuous uniform 
distribution, 137n4

conversion factor, 48
correlation, 67–99

causation and, 76–7, 86–90
computation of, 72–5
inference in, 162–5
negative, 76–7
partial, 89–90, 164



 Index

correlation – continued
partial correlation coefficients, 

78–9, 80
pitfalls in analysis, 77–80
rank, 75–6
regression and, 84
reverse regression and, 86–90
spurious, 78
strength of relationship between 

variables, 68–70
correlation coefficient, 70–2, 75–6
counting rules, 106–8
covariance, 162

between random variables, 130–1
sample, 71

cross-sectional data, 6–8
Cumulative Sum (CUSUM) statistic, 

252–4, 258
Cumulative Sum of Squares (CUSUM 

of SQUARES) statistics, 252–4
currency appreciation, 58
currency depreciation, 58
current year weights, 52

data
cross-sectional, 6–8
deflating nominal, 56–61
presenting and summarising, 5–22
smoothing, 35
time series, 6, 9–11, 35–9, 102, 111n3
transforming to index form, 46–8
types, 6–9

data analysis, 4
exploratory, 21, 101–2, 110n1

data transcription errors, 238–40
data transformations, 22–44

decomposing, 39–44
Fisher transformation, 164
index form, 46–8
inverse, 32
logarithmic transformations, 24–32
moving averages, 35–9
Phillips curve, 32–5
reasons for, 24

decompositions, 39–44, 54–5
deductive reasoning, 4, 139

deflating, 56–61
degree of belief, 109–10
degrees of freedom, 195–6
dependent variables, 19

lagged, 91–5, 213, 235–6, 261
depreciation, currency, 58
destructive sampling, 139
deviations, 6, 170
Dickey-Fuller distribution, 276
Dickey-Fuller unit root test, 284
difference stationarity (DS), 278–83
discrete random variables, 114
distributions

binomial, 118–19, 123–6
chi-square ( 2) 132
Dickey-Fuller, 276
F, 133–5
fat-tailed, 238
Gaussian, 126
hypergeometric, 121
multinomial, 121
normal, 142, 241
Poisson, 119–21
probability, 113–22
related to the normal, 130–5
sampling, 141–7, 162–5
simulating, 135–6
standard normal, 128–30
Student’s t, 132–5, 137n3, 152

domestic price of foreign currency, 58
drift, 95
drunkard’s walk, see random walk
duality, 267
dummy variables, 239–40, 250–1, 

286n13
Durbin’s h-test, 213, 215–16
Durbin-Watson statistic, 209, 215–16
dynamic misspecification, 215

econometrics, 205
econometric software, 3
Econometric Views (EViews), 3
education, 78–9, 85, 164–5, 177–8, 

192–5
efficient markets, theory of, 272
elasticities, 95–7



Index

elasticities – continued
average, 96–7
income, of consumption, 96–7, 98n6

energy price index, 49–53
enumerations, 6
error correction model, 99n8
errors

autocorrelated, 205–6, 210–12
data transcription, 238–40
heteroskedastic, 220–1, 222–4
non-normal, 237–41
in variables, 234–5

estimates, 149
point, 150

estimation, 148–65
with autocorrelated errors, 210–12
instrumental variables, 236–7

estimators, 149–50, 172
best linear unbiased estimators 

(BLUE), 173, 176, 185n3, 
210–11, 237

biased, 189
generalised least squares (GLS), 223
linear, 173
ordinary least squares (OLS), 172–6, 

213, 222, 224, 235
unbiased linear, 173
weighted least squares (WLS), 223
White’s consistent variance 

estimator, 224
events, 102

independent, 105
intersection of, 104
union of, 103–4

exchange rate
$-£, 37–8
nominal, 57–9
real, 57–9
testing for unit roots in, 277–8

Exchange Rate Mechanism (ERM), 32
excluding outliers, 16
expected value, 115–17
expenditure index, 54–5
expenditure share, 51
experimental design, 140–1
experiments, 102

binomial, 118
exploratory data analysis, 21, 

101–2, 110n1

factorial (!) notation, 107–8
false precision, 224
fat-tailed distribution, 238
F distribution, 133–5
first differences, 211
first-order autoregression, 205
Fisher’s ideal index, 53
Fisher transformation, 164
fitted regression equation, 183–4
Foreign Exchange (FOREX) 

market, 37
foreign price of domestic currency, 

57–8
frequency distributions, 6, 16–17
F-statistics, 199, 200
F-test, 197, 257
functional forms, 184–5

Gauss, Carl Friedrich, 97n1
Gaussian distribution, 126
Gauss-Markov theorem, 173
GDP deflator, 57
generalised autoregressive conditional 

heteroskedastic (GARCH) 
models, 284

generalised least squares (GLS), 
210–11, 223

geometric mean, 53
Gini coefficient, 62, 63–6
global temperatures, 38–9
gold, as hedge, 66n3
Goldfeld-Quandt test, 225–7
gold prices, 60–1
goodness of fit, 89, 91, 92, 169–70
gross domestic product (GDP), 6–9, 

46–8
nominal, 56–7
real, 56–7

growth rate, 25–8
deviations, 94
of inflation, 28–32
trend, 93–4



 Index

heteroskedastic errors, 220–1, 222–4
heteroskedasticity, 219–30

consequences of, 222–4
correcting for, 227–8
testing for, 225–7

histograms, 6, 9, 11, 17–18, 241
Hodrick-Prescott (trend) filter, 38
homoskedasticity, 172, 220
hypergeometric distribution, 121
hypothesis testing, 155–60, 165n4

further considerations, 160–2
geometric interpretation of, 180–2
in multiple regression, 196–9
on population mean, 157–9
on population variance, 159–60
significance levels, 160–2

ideal index, 53
income

consumption and, 162–3
current growth of, 215
level of, 215
permanent, 234
scatterplot of, 69
time trend regressions for, 280–3
time trends, 79–80

income distribution, 101
income elasticity, of consumption, 

96–7, 98n6
income inequality, 6, 63–6
independent events, 105
independent random variables, 130–1
independent variables, 19
index numbers, 45–66

deflating, 56–61
expenditure index, 54–5
ideal index, 53
inequality indices, 61–6
price indices, 48–54
quantity index, 54–5
rebasing, 51
transforming data to index form, 

46–8
inductive reasoning, 4, 139
inequality indices, 61–6
inference

in consumption function, 179
in correlation, 162–5
statistical, 101–2, 139, 165n4

inflation, 14
annual rate of, 31–2
ARMA model for, 268–70
autoregressive models of, 265
calculating rate of, 28–32
change in, 215
consumption and, 199–201
interest rates and, 20–1, 256–9
monthly rate of, 30–1
moving average model for, 267–8
order of autoregression for, 263–4
scatterplot of, 68
time series data on, 6, 9–11, 111n3
unemployment and, 33–5, 76–7, 164

inflation rate, 102
information criterion, 263
instrumental variables, 232, 236–7
interest rates, 20–1

average, 215
consumption and, 199–201
inflation and, 256–9
nominal, 57
real, 57

inter-quartile range (IQR), 14–15
intersection, of events, 104
inverse transformation, 32
invertibility condition, 267
irregular component, 39
i-subscripts, 220

Jarque-Bera statistic, 238, 239
joint hypotheses, 182, 191
joint probability density function, 131
joint probability distribution, 137n2
judgement sample, 140

kurtosis, 238

lagged dependent variables, 91–5, 213, 
235–6, 261

lagged independent variables, 237
lag-k sample partial 

autocorrelation, 262



Index

Lagrange Multiplier (LM) test, 
186n3, 216

Laspeyres price index, 50–2, 54, 55
Laspeyres quantity index, 54–5
latent variables, 234
least squares criteria, 85
least squares formulae, 202–3
least squares regression problem, 

85, 167
linear association, 77–8
linear estimators, 173
linear regression model, 166–87
linear restriction, 198
line of best fit, 84–6
Ljung-Box statistic, 285n7
logarithmic transformations, 24–32, 

228–9
logarithms of price level, 30
log-linear consumption function, 97, 

170–1, 184, 234
long swings, 37
Lorenz curve, 62, 63–6
lower bound, 152

marginal significance level, 161
mathematics, 3
mean, 9, 12, 115, 170

sampling distribution of the, 141–3
measures of dispersion (variation), 

14–16
measures of location (central 

tendency), 9, 12–14
median, 13–14
method of least squares, 85, 97n1, 167, 

202–3
minimum variance, 173
mixed autoregressive-moving average 

(ARMA), mixed time series 
models, 267–70

mixed time series models, 265–70
modal class, 17
mode, 17
Monetary Policy Committee 

(MPC), 20–1
Monte Carlo simulation, 173–6
monthly rate of inflation, 30–1

moving averages, 35–9, 265–70
ARMA model for inflation, 268–70
inflation model, 267–8

multicollinearity, 199, 201–3
multinomial distribution, 121
multiple regression, 188–203

hypothesis testing, 196–9
with k explanatory variables, 195–6

multiplication rule, 104–6
multiplicative decomposition, 39
multiplicative relationships, 24
multi-stage sampling, 140

Napierian logarithms, 44n1
national income accounting 

identity, 233
near outliers, 16
negative correlation, 76–7
nominal data

deflating, 56–61
GDP, 56–7

nominal exchange rates, 57–9
nominal interest rates, 57
non-linear association, 77–8
non-linearity, 90–1, 92, 184–5
non-linear least squares, 185
non-normal errors, 237–41
non-normal population, sampling 

from, 143–5
non-sampling error, 140
non-stationary process, 261
non-uniqueness, 189
normal curve of error, 126
normal distribution, 142, 241

standard, 128–30
normal equations, 167–8
null hypothesis, 156, 160, 177, 178, 197

ordinary least squares (OLS) estimator, 
172–6, 186n3, 213, 222, 224, 235

ordinary least squares (OLS) 
regression, 206–7, 209, 238–40

outcomes, 102, 103
outliers, 6, 12–13, 16, 75–6
output, 46
output growth, scatterplot of, 70



 Index

over-differencing, 273–4

Paasche price index, 52–3, 55
Paasche quantity index, 54–5
PACF, 265–7, 268, 271, 272, 273–4
parameters, 141, 184
parameter stability, 251–5
partial autocorrelations, 262–3
partial correlation analysis, 78–9, 194
partial correlation coefficients, 

78–9, 80
partial correlations, 89–90, 164
per capital GDP, 6–9
permanent income, 234
permutations, 106–8
petrol prices, real, 59–60
Phillips curve, 32–5, 68, 90–1
point estimate, 150
Poisson distribution, 119–21, 122n4
population, 101

complete enumeration of the, 
101, 102

correlation, 163–4
non-normal, sampling from, 143–5
sample regression functions and, 

171–2
sampling from, 139–41

population mean, 153
confidence interval for, 150–2
testing hypothesis on, 157–9

population regression functions 
(PRFs), 171–2, 189

population variance, 154–5
testing hypothesis on, 159–60

portmanteau test, 264–5
positive autocorrelation, 208–9
powers, 90, 161
precision, 140
prediction, from regression, 183–4
prediction error variance, 183
prediction interval, 183
predictive failure (PF) test, 248–9, 257
price index, 48–54

Consumer Price Index (CPI), 
48, 53–4

energy price index, 49–53

Laspeyres price index, 50–2, 54
Paasche price index, 52–3
Retail Price Index (RPI), 48, 53–4

price level, 30
price relatives, 51
probability

axioms, 103
basic concepts, 100–12
Bayes theorem, 108
calculating, and continuous random 

variables, 127
conditional, 105–6
definitions of, 109–10
standard normal distribution and, 

128–30
subjective, 109–10
theory, 101–2, 111n4

probability density function, 127, 
133, 134

joint, 131
probability distributions, 113–22

binomial distribution, 118–19
expected value, 115–17
hypergeometric, 121
multinomial, 121
Poisson distribution, 119–21
random variables, 114, 117
variance, 115–17

prob-values (p-values), 161
production function, 

Cobb-Douglas, 24
proxy variables, 234

quadratic trend, 92
quantity index, 54–5
quartiles, 14–15
quasi-differences, 211

random number generator, 135–6, 
137n4

random sample, 140
random variables, 114, 117

continuous, 114, 123–7
independent, 130–1
normally distributed, 126

random walk, 37, 95, 99n6, 281, 284n3



Index

range, 14–15
rank correlation, 75–6
rank correlation coefficient, 75–6
R-bar-squared statistic, 196
real consumption, scatterplot of, 69
real data

deflating nominal data to obtain, 
56–61

GDP, 56–7
real exchange rates, 57–9
real interest rates, 57
real petrol prices, 59–60
real sterling gold prices, 60–1
reciprocal models, 185
recursive regressions, 251–5
recursive residuals, 251, 253, 257
regime switching, 259
regression, 83–99

algebra of, 167–71
augmented Dickey-Fuller 

(ADF), 277
auxiliary, 225
bivariate, 193
calculating, 84–6
causation and, 86–90
classical assumptions, 205
correlation and, 84, 86–90
elasticities, 95–7
first-order autoregression, 205
interpreting the regression line, 86
with k explanatory variables, 195–6
lagged dependent variables 

and, 91–5
least squares problem, 85, 167
linear regression model, 166–87
multiple, 188–203
non-linearity, 90–1
OLS, 206–7, 209
ordinary least squares (OLS), 238–40
population regression functions 

(PRFs), 171–2, 189
prediction from, 183–4
recursive, 251–5
residual, 84
restricted, 197–8
reverse, 86–90

sample regression functions 
(SRFs), 172

spurious, 194, 208, 209, 210, 218n6
statistical inference in, 176–80
stochastic regressors, 232
time trends, 91–5
unrestricted, 197–8

regression models
structural stability in, 244–9
testing for stability, 243–59

rejection region, 157, 160
relative frequency, 109, 110
relatively efficient, 149
representative sample, 101
recursive coefficients, 251
residual autocorrelation, 213–16, 264–5
residuals, 245–6
residual sum of squares (RSS), 169, 

180–2, 190, 191, 196, 197, 230n3
restricted regression, 197–8
Retail Price Index (RPI), 48, 53–4
retail sales, 40–4
reverse regression, 86–90

SACF, see sample autocorrelation 
function (SACF)

salary, 78–9, 85, 164–5, 177–8, 192–5
sample

judgment, 140
from population, 101
random, 140
representative, 101

sample autocorrelation function 
(SACF), 262, 265–7, 269, 
270–1, 275

sample covariance, 71
sample partial autocorrelation 

function (SPACF), 262–3, 265–7, 
269–71, 275

sample regression functions 
(SRFs), 172

sample space, 102–3
sample standard deviation, 15–16
sample statistics, 141
sampling, 138–47

accuracy, 140–1



 Index

sampling – continued
cluster, 140
destructive, 139
error, 140
multi-stage, 140
from non-normal population, 143–5
non-sampling error, 140
from a population, 139–41
precision, 140
standard error, 143
stratified, 140
systematic error, 140

sampling distribution, 162–5
of the mean, 141–3
of the variance, 145–7

scale compression, 26
scale free measure, 71
scatterplots, 19–21, 68–9

extensions of, 21–2
Schwarz’s Bayesian Criterion (BIC), 

263–4
seasonal component, 39
seasonally adjusted series, 39–44
seasonal time series, 283–4
semi-log, 32
severe testing methodology, 165n4
significance level, 157, 160–2
simple random sample, 140
simulating distributions, 135–6
simultaneity, 231
simultaneity bias, 232–4
6 sigma strategy, 137n5
skewness, 16–19, 238
slope, 25–8
SPACF, see sample partial 

autocorrelation function (SPACF)
Spearman’s rank correlation 

coefficient, 75–6
spurious correlation, 78
spurious regression, 193, 208, 209, 210, 

218n6
squared residuals, 85
square units, 15
stability tests, 243–59

Chow’s second test, 248–9
Chow test, 247–9, 251

parameter stability, 251–5
using dummy variables, 250–1

stagflation, 35
stagnation, 35
standard deviation, 15–16, 116
standard error, 143
standard error of intercept, 192
standard normal distribution, 128–30
standard summation formula, 122n1
stationarity, 261–2, 270–4

difference, 278–83
trend, 278–83

statistical analysis, 4
statistical inference, 101–2, 139, 165n4, 

176–80
statistics

sample, 141
summary, 9, 12–19

stochastic process, 111n3
stochastic regressors, 232
stratified sampling, 140
structural change, 244
structural stability, in regression 

models, 244–9
Student’s t distribution, 132–5, 

137n3, 152
subjective probability, 109–10
summary statistics

see also index numbers
boxplot, 16, 17, 18, 21
measures of dispersion (variation), 

14–16
measures of location (central 

tendency), 9, 12–14
symmetry and skewness, 16–19

summation notation, 12
symmetry, 16–19
systematic error, 140

t distribution, 132–5, 137n3, 152
test statistic, 157
theory of efficient markets, 272
time series data, 6, 9–11, 102, 111n3

$-£ exchange rate, 37–8
decomposing, 39–44
global temperatures, 38–9



Index

moving averages, 35–9
seasonally adjusted, 39–44

time series models, 260–87
autoregressions, 261, 264–5
mixed, 265–70
moving averages, 265–70
seaonsal, 283–4
stationarity, 261–2, 270–4
trend stationarity, 278–83
unit roots, 274–8

time series plot, 11
time trends, 79–80, 91–5
trading day, 40
transformations, see also data 

transformations
logarithmic, 228–9

t-ratio, 178, 182, 193, 258
tree diagrams, 106
trend extraction techniques, 36
trend growth rate, 93–4
trends, 39, 203
trend stationarity (TS), 278–83
trials, 102
trivariate regression model, 189–95
t-statistic, 178, 276
t-tests, 178
two-sided alternative hypothesis, 

156, 162
Type I errors, 161
Type II errors, 160–1

unbiased linear estimators, 173
unbiasedness, 149, 232, 242n1
unemployment

inflation and, 33–5, 76–7, 164
scatterplot of, 68, 70

union, 103–4
unit root hypothesis, 276
unit roots, 274–8
unit root test, 276, 277–8, 284

unrestricted regression, 197–8
upper bound, 152

value index, 54–5
variables

continuous random, 114, 123–7
correlation of, 67–99
dependent, 19
dummy, 239–40, 250–1, 286n13
errors in, 234–5
independent, 19
independent random, 130–1
instrumental, 232, 236–7
lagged dependent, 91–5, 213, 

235–6, 261
lagged independent, 237
latent, 234
proxy, 234
random, 114, 117
strength of relationship between, 

68–70
variance, 115–17

estimate, consistent, 224
minimum, 173
prediction error, 183
sampling distribution of the, 145–7
zero, 203

variation, 14–16
volatility, 284

weighted least squares (WLS) 
estimator, 223

weighted moving average (WMA), 36
white noise, 284n2
White’s consistent variance 

estimator, 224
White’s test, 225

zero variance, 203
Z-probabilities, 129
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