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1
Time Series Analysis and the British

1.1 During the writing of The Foundations of Modern Time Series Analysis
(Mills, 2011a), it became apparent to me just how important was the
role played by British statisticians in the development of the subject.
Although that book focused on the period up to 1970, British statisti-
cians have since continued to be at the forefront of time series research
and this led naturally to the conceit of the present book: that the story
of time series analysis can be told largely through the published research
of six Britons, beginning with George Udny Yule and seguing through
Maurice Kendall, James Durbin, George Box and Gwilym Jenkins, before
reaching finally Clive Granger. This distinguished group of statisticians
includes three Englishmen, two Welshmen and a Scot, two knights of
the realm, one Nobel prize winner, a holder of the UN Peace Medal,
three Presidents of the Royal Statistical Society (RSS) and four recipi-
ents of the Guy Medal in Gold, the highest honour awarded by the
RSS, as well as the holding of numerous international awards and hon-
ours. In terms of university affiliations, three have been associated with
St John’s College, Cambridge and four with University College, London
(UCL), with Imperial College, the London School of Economics (LSE),
Lancaster and Nottingham also featuring, along with the American uni-
versities of Stanford, Princeton, North Carolina, Wisconsin at Madison
and San Diego.

1.2 The links between time series analysis and economic statistics and
econometrics have always been particularly strong and have become
increasingly so over recent years. I must therefore emphasize that my
focus in this book is on time series analysis and time series statisticians,
not on the equally eminent and influential group of British time series
econometricians, such as Denis Sargan and David Hendry. Econometrics
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2 A Very British Affair

already has its own histories – Epstein (1987), Morgan (1990), Qin
(1993), Hendry and Morgan (1995), Spanos (2006), Farebrother (2006)
and Gilbert and Qin (2006) are notable examples – with the influential
work of the ‘LSE group’ on time series econometrics being the topic of
Gilbert (1989). Time series analysis, on the other hand, appears to have
just Klein (1997) and Mills (2011a).

1.3 My choice of these six British time series analysts seemed to me
uncontroversial but when I mentioned this project to Robert Taylor, he
immediately mentioned our mutual friend and colleague Paul Newbold,
arguing that if he was included in the group I could then refer to the
‘Magnificent Seven’! Much as I was tempted, Paul’s most influential work
has been written jointly with George Box and, in particular and most
memorably, with Clive Granger, so he appears regularly as a co-author
in Chapters 8 to 10. Nevertheless, in recognition of Paul’s contribution
to the subject, it gives me great pleasure to dedicate this book to him.
Those colleagues of Paul who know of his struggles with ill-health over
the last few years will, I hope, join with me in honouring him here as a
fine time series analyst and colleague whose presence always enlivened
academic discussion. Granger and Leybourne (2009) provide an appreci-
ation of Paul Newbold’s contributions to time series and econometrics as
part of the Econometric Theory special issue (Volume 25, No. 6) dedicated
to him.

1.4 Some of the material in Mills (2011a) unavoidably finds its way into
this book and, although the theme here is narrower in scope, it takes
the story on a further 40 years. I have again employed the format of sub-
heading and section number used in that book, so that a cross-reference
to section y of Chapter x is denoted §x.y in subsequent chapters. The
structure of the book is straightforward and, as it turns out, almost
chronologically ordered, beginning with Yule’s initial forays into time
series analysis in the early 1920s and ending with Granger’s contem-
porary research throughout the first decade of the twenty-first century,
with a final chapter praising the pragmatism of these giants of the subject
and presenting my views on the current state of the subject and the like-
lihood of the further involvement by British statisticians in the future.
Nothing more needs to be said by way of preamble, so let us begin our
story of a fascinating and increasingly important area of statistics.



2
Yule: The Time–Correlation
Problem, Nonsense Correlations,
Periodicity and Autoregressions

George Udny Yule

2.1 George Udny Yule was born on 18 February 1871 in Beech Hill near
Haddington, Scotland, into an established Scottish family composed
of army officers, civil servants, scholars and administrators, and both
his father, also named George Udny, and a nephew were knighted.
Although he originally studied engineering and physics at UCL and
Bonn, Germany, publishing four papers on electric waves, Yule returned
to UCL in 1893 as a demonstrator for the distinguished statistician
(and much else besides!) Karl Pearson, later becoming an Assistant Pro-
fessor. Yule left UCL in 1899 to work for the City and Guilds of London
Institute, although he was also to hold the Newmarch Lectureship in
Statistics at UCL. In 1912 he became lecturer in statistics at the Univer-
sity of Cambridge (later being promoted to Reader) and in 1913 began
his long association with St. John’s College, becoming a Fellow in 1922.
Yule was also active in the RSS: elected a Fellow in 1906, he served as
Honorary Secretary, was President from 1924 to 1926, and was awarded
the prestigious Guy Medal in Gold in 1911. His textbook, Introduction to
the Theory of Statistics, ran to 14 editions (the last four being co-authored
with Maurice Kendall: see Chapter 3) and, as well as contributing mas-
sively to the foundations of time series analysis, he also researched on
Mendelian inheritance (see, in particular, Yule, 1902, 1914, and for dis-
cussion, Tabery, 2004) and on the statistics of literary style (Yule, 1944,
1946), as well as on many other aspects of statistics. Retiring from his
readership at the age of 60, and having always been a very fast driver, he
decided to learn to fly, eventually buying his own plane and acquiring
a pilot’s licence. Unfortunately, heart problems from 1932 curtailed his
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4 A Very British Affair

flying experiences and he became a semi-invalid for the rest of his life,
dying on 26 June 1951 in Cambridge.

Much of Yule’s early research in statistics was on developing the the-
ory of correlation and regression, with applications to both economic
and sociological topics (see, in particular, Yule 1897a, 1897b, 1907,
1910). Historical perspectives on these aspects of Yule’s work, which are
not our major concern or focus here, but are arguably extremely impor-
tant for the development of applied statistical techniques, have been
provided by Aldrich (1995, 1998) and Hepple (2001). For further bio-
graphical details and a full list of publications, see Kendall (1952) and
Williams (2004), while Stuart and Kendall (1971) provided a collection
of Yule’s major papers for the centenary of his birth.

The time–correlation problem

2.2 Yule’s first major foray into time series analysis was a paper in the
Journal of the Royal Statistical Society in 1921, which he began by survey-
ing the literature on what he termed the ‘time correlation problem’ as at
1914, summarizing it with his customary clarity thus:

the essential difficulty of the time correlation problem is the difficulty
of isolating for study different components in the total movement of
each variable: the slow secular movement, probably non-periodic in
character or, if periodic, with a very long period; the oscillations of
some ten years’ duration, more or less, corresponding to the wave in
trade; the rapid movements from year to year which give the appear-
ance of irregularity to the curve in a statistical chart and which may
in fact be irregular or may possess a quasi-periodicity of some two
years duration; the seasonal movements within the year, and so on.
It is unfortunate that the word ‘periodic’ implies rather too much as
to the character of such more rapid movements; few of us, I sup-
pose, now believe that they are strictly periodic in the proper sense
of the term, and hence the occurrence in writings on the subject of
such terms as ‘quasi-periodic’ and ‘pseudo-periodic’. They are wave-
like movements, movements which can be readily represented with
a fair degree of accuracy over a moderate number of years by a series
of harmonic terms but which cannot be represented in the same way,
for example, by a polynomial; movements in which the length of time
from crest to crest of successive waves is not constant, and in which, it
may be added, the amplitude is not constant either, but would prob-
ably, if we could continue our observations over a sufficient number
of waves, exhibit a frequency distribution with a fairly definite mode;
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Figure 2.1 Idealistic representation of a time series as the sum of trend, cyclical
and irregular components

to avoid the suggestion of strict periodicity and the use of the term
period I propose to speak of them as oscillations of a given duration to
imply, not a fixed and constant duration, but an average only. In these
terms, the problem of time-correlation may be said to be the isolation,
for separate study, of oscillations of differing durations. Most writers
up to 1914 – indeed all writers so far as I am aware – seem to be agreed
on this. (Yule, 1921, page 501; italics in original)

An idealistic graphical representation of such a component structure of
a time series, much in the spirit of Warren Persons (1917, Figure 1),
whose views were similar to Yule’s, is shown in Figure 2.1. Of course, as
emphasized by Persons, the secular trend may be other than a straight
line and the cyclical fluctuations could be more complicated than the
simple sine curve shown here.

2.3 Why Yule emphasized 1914 was because in that year the famous
statistician Student, in his only published paper on time series analy-
sis, introduced what subsequently became known as the variate-difference
method, in which he advocated correlating the successive differences of
pairs of time series:1

if we wish to eliminate variability due to position in time or space
and to determine whether there is any correlation between the
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residual variations, all that has to be done is to correlate the 1st, 2nd,
3rd … dth differences between successive values of our variable with
the 1st, 2nd, 3rd … dth differences between successive values of the
other variable. When the correlation between the two dth differences
is equal to that between the two (d + 1)th differences, this value gives
the correlation required. (Student, 1914, page 180)

The variate-difference method had quickly been taken up with enthusi-
asm by Karl Pearson and his co-workers.

The method is at present in its infancy, but it gives hope of greater
results than almost any recent development of statistics, for there
has been no source more fruitful of fallacious statistical argument
than the common influence of the time factor. One sees at once
how the method may be applied to growth problems in man and
in lower forms of life with a view to measuring common extrane-
ous influences, to a whole variety of economic and medical problems
obscured by the influences of the national growth factor, and to a great
range of questions in social affairs where contemporaneous change
of the community in innumerable factors has been interpreted as a
causative nexus, or society assumed to be at least an organic whole;
the flowers in a meadow would undoubtedly exhibit highly corre-
lated development, but it is not a measure of mutual correlation, and
the development of various social factors has to be freed from the
time effect before we can really appreciate their organic relationships.
(Cave and Pearson, 1914, page 354)

(T)here is small doubt that it is the most important contribution to the
apparatus of statistical research which has been made for a number of
years past. Its field of application to physical problems alone seems
inexhaustible. We are no longer limited to the method of partial cor-
relation, nor compelled to seek for factors which rendered constant
will remove the changing influence of environment. (Elderton and
Pearson, 1915, page 489)

Notwithstanding such enthusiasm, and the empirical results that the
method generated in both economic and medical applications, Persons
and Yule were both perplexed by the approach, the latter stating

(a)nd if ‘Student’ desires to remove from his figures secular move-
ments, periodic movements, uniform movements, and accelerated
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movements – well, the reader is left wondering with what sort of
movements he does desire to deal. (Yule, 1921, page 502; italics in
original)

[‘Student’] desires to find the correlation between x and y when every
component in each of the variables is eliminated which can well be
called a function of the time, and nothing is left but residuals such
that the residual of a given year is uncorrelated with those that
precede or that follow it. (ibid., page 503)

Yule left the reader in no doubt as to which position he preferred.

But which view of the problem is correct? Do we want to isolate oscil-
lations of different durations, two years, ten years, or whatever it
may be, or nothing but these random residuals? Personally I cannot
hesitate for a moment as to the answer. The only residuals which it
is easy to conceive as being totally uncorrelated with one another
in the manner supposed are errors of observation, errors due to the
‘rounding off’ of index numbers and the like, fluctuations of sam-
pling, and analogous variations. And an error of observation or fluc-
tuation of sampling in x would normally be uncorrelated with an error
of observation or fluctuation in y, so that if the generalized variate-
difference method did finally isolate nothing but residuals of the kind
supposed I should expect it in general to lead to nothing but correla-
tions that were zero within the limits of sampling. … [T]he problem
is not to isolate random residuals but oscillations of different dura-
tions, and unless the generalized method can be given some meaning
in terms of oscillations it is not easy to see what purpose it can serve.
(ibid., page 504)

2.4 Yule then focused attention on the correlation that was induced
into a series by differencing. Student (1914) had begun by assuming
that two time series yt and xt were randomly distributed in time and space,
by which he meant that, in modern terminology, E(ytyt−i), E(xtxt−i) and
E(ytxt−i), i �= 0, were all zero if it was assumed that both variables had
zero mean. If the correlation between yt and xt was denoted ryx = E(ytxt )/
σyσx, where σ 2

y = E(y2
t ) and σ 2

x = E(x2
t ), Student then showed that the cor-

relation between the dth differences of x and y was the same value. To
show this result using modern notation, define these dth differences as


dyt = (yt − yt−1)d 
dxt = (xt − xt−1)d



8 A Very British Affair

Consider first d = 1. Then

σ 2

y = E(
y2

t ) = E(y2
t − 2ytyt−1 + y2

t−1) = 2σ 2
y (2.1)

σ 2

x = 2σ 2

x

E(
yt
xt ) = E(ytxt + yt−1xt−1 − ytxt−1 − yt−1xt ) = 2ryxσyσx

and

r
y
x = E(
yt
xt )
σ
yσ
x

= ryx

Thus, proceeding successively, we have

r
dy
dx = r
d−1y
d−1x = · · · = ryx

Student then generalized the argument by assuming that yt and xt were
given by polynomials in time:

yt = Yt +
d∑

j=1

βjt j xt = Xt +
d∑

j=1

γjt j

where E(YtYt−i), E(XtXt−i) and E(YtXt−i), i �= 0, are all zero. Since a
polynomial of order d,

T (d)
t =

d∑
j=1

βjt j

becomes, on differencing d times,


dT (d)
t = d!βj

we have


dxt = 
dXt + d!βd , 
dyt = 
dYt + d!γd ,

so that 
dxt and 
dyt are independent of time. Thus

r
dy
dx = r
dY
dX = rYX

and

r
d+1y
d+1x = r
dy
dx

leading Student to his conclusions quoted in §2.3 above.
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While Student was concerned with the correlation between pairs of
time series, Yule investigated the correlation between adjacent differences
of an individual random series, pointing out that, in our notation,

E(
yt
yt−1) = E(ytyt−1 − ytyt−2 − y2
t−1 + yt−1yt−2) = −σ 2

y

If the correlation between 
dyt and 
dyt−k is denoted dry(k), then clearly

1ry(1) = E(
yt
yt−1)√
E(
y2

t )E(
y2
t−1)

= −σ 2
y

2σ 2
y

= −1
2

so that the adjacent differences are (negatively) correlated even though
the original series is random. Note, though, that this correlation does
not extend any further than adjacent observations, for

E(
yt
yt−2) = E(ytyt−2 − ytyt−3 − yt−1yt−2 + yt−1yt−3) = 0

implying that 1ry(2) = 0 and, by extension, 1ry(k) = 0 for k > 1. Having
shown this, Yule then generalized these results to dth differences:

dry(1) = − d
d + 1

, dry(2) = d(d − 1)
(d + 1)(d + 2)

,

dry(k) = (−1)k d(d − 1) · · · (d − k + 1)
(d + 1)(d + 2) · · · (d + k)

= (−1)k d!d!
(d − k)!(d + k)! k ≤ d

with dry(k) = 0 for k > d.2 Hence dth differences of a random series have
non-zero correlations between observations up to d intervals apart, with
these correlations declining and alternating in sign, being negative for
odd d:

The correlations start with a high negative value between adjacent
terms, and the values slowly die away with alternating signs. Differ-
encing a random series tends therefore to produce a series in which
the successive terms are alternately positive and negative. (Yule, 1921,
page 521)

2.5 Yule then extended the analysis by considering differences of the
periodic function

yt = ρ sin
(

2π
t + α

n

)
= ρ sin

(
2π t
n

+ 2πα
n

)
(2.2)
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where ρ is the amplitude of the sine wave, n is the period, and α is
the phase, whose effect is to advance the peak of the sine function by
nα/2π periods. The first difference of interval h of (2.2) is


yt+h = ρ

(
sin

(
2π

t + α + h
n

)
− sin

(
2π

t + α

n

))
= 2ρ sin

(
π

h
n

)
cos

(
2π

t + α + 0.5h
n

)
(2.3)

= 2ρ sin
(
π

h
n

)
sin

(
2π

t + α + 0.5h + 0.25n
n

)
The second equality in (2.3) uses the trigonometric identity 2 cos A sin B =
sin (A + B) − sin (A − B), with A = 2π(t + α + 0.5h)/n and B = πh/n,
while the third equality uses sin (A + 0.5π) = cos A.

Thus the first difference of y is given by a sine wave of the same
period as the original function but with the phase shifted by the amount
0.5h + 0.25n and the amplitude multiplied by the factor 2 sin (πh/n). The
second difference will therefore be derived from the first difference by
multiplying the amplitude by the same factor and shifting the phase by
the same amount, and so on for successive differences.

Yule focused attention on the factor 2 sin (πh/n), since whether this
is greater or less than unity will determine if successive differences will
continually diverge (because of an increasing amplitude) or will con-
verge with the amplitude getting smaller and smaller. It is clear that
the factor will exceed unity if n/6 < h < 5n/6, so that if h lies in this
interval, differencing will emphasize periodic fluctuations rather than
eliminating them. Equivalently, this interval can be written as 6h/5 <
n < 6h, so that if h = 1 year, a period of between 1.2 years and 6 years
will produce a diverging amplitude.

Since 2 sin (πh/n) reaches a maximum of 2 at h = n/2 then, for h = 1,
a period of n = 2 produces the greatest increase in amplitude. For exam-
ple, by taking sixth differences the amplitude will be multiplied 26 =
64-fold, leading Yule to conclude that

(t)he effect then of differencing the values of a function which is
given by a series of harmonic terms is not gradually to extinguish
all the terms, but selectively to emphasize the term with a period
of 2 intervals; terms with a period between 2 and 6 intervals, or
between 2 and 1.2 intervals have their amplitude increased, but not
so largely; terms with a period between 1 and 1.2 intervals, or greater
than 6 intervals, are reduced in amplitude. Further, every term is
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altered in phase, by an amount depending on its period. Correlations
between high differences will accordingly tend to give the correlations
between component oscillations of very short period – predominantly
of a two-yearly period, in so far as such oscillations exist in the origi-
nal observations, even though they may not be the most conspicuous
or characteristic oscillations. (ibid., page 509; italics in original)

2.6 Yule’s overall conclusions concerning the time-correlation problem
were that it was a

problem of isolating, for the purpose of discussing the relations
between them, oscillations of different durations – such oscilla-
tions being, in all probability, not strictly periodic but up-and-down
movements of greater or less rapidity. …

The problem is not that of isolating uncorrelated residuals.
The variate-differencing method does not tend to isolate nor lay

most stress on such uncorrelated residuals. It tends to stress prepon-
derantly oscillations with a duration of two years, the actual weight
of oscillations of two, three, four, five … year durations of kth differ-
ences naturally depending, however, on their relative amplitudes in
the data.

In so far as the problem consists in finding the relations between
such shorter oscillations, eliminating or reducing the effects of others
so far as may be possible, the variate-difference method may pos-
sibly be of service on appropriate data in which short oscillations
are significant. The work already done by the method requires re-
interpretation, however, in the light of the present discussion. (ibid.,
page 524)

Yule expressed an, albeit tentative, preference for isolating the compo-
nents of a time series in the manner of Figure 2.1, as the method

isolates or may isolate (subject to the use of suitable processes for
determining the trend) the oscillations with relatively little distor-
tion and – no mean advantage – they can be exhibited graphically, so
that investigator and reader can see what are actually the movements
considered. The variate-difference method distorts the actual oscilla-
tions, altering the various harmonic components in amplitude and
phase. (ibid., page 524)

Not surprisingly, this critique produced a vigorous response by Pearson
and Elderton (1923), in which it became clear that proponents of the
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variate-differencing method conceived of a time series as being decom-
posed into just two components, a ‘catch-all’ component comprising
both the secular trend and periodic fluctuations, modeled by a poly-
nomial in time, and a random component – in modern time series
parlance they work within a trend stationary specification à la Nelson
and Plosser (1982). Persons and Yule, on the other hand, preferred to
decompose the series into its secular trend, which will typically be a sim-
ple linear function of time or something similar, and cyclical (periodic)
and irregular components, thus giving rise to an unobserved compo-
nents (UC) formulation. The elimination of the signal by differencing
shows the variate-differencing procedure to be an early forerunner of the
Box–Jenkins approach to modelling non-stationarity (see §§6.10–6.14),
and is indeed mentioned by them (Box and Jenkins, 1970, page 89),
although they state that the motivation and objectives of the procedure
were quite different from their own differencing approach. In contrast,
the Persons–Yule UC formulation is what would now be referred to as
a structural model (Nerlove, Grether and Carvalho, 1979; Harvey, 1989).
From a bivariate perspective, using variate-differencing prior to correlat-
ing a pair of time series was a forerunner of the ‘pre-whitening’ approach
(see §§8.14–8.18 and Pierce, 1977), while the Persons–Yule idea of cor-
relating the components has its descendants in Mills (1982) and Watson
(1986).

Nonsense correlations between time series

2.7 In his Presidential Address to the RSS in November 1925, Yule con-
sidered a problem that had puzzled him for many years. Since it lies
at the centre of all attempts to analyze the relationships between time
series, Yule’s statement of the problem is worth setting out in his own
words:

It is fairly familiar knowledge that we sometimes obtain between
quantities varying with the time (time-variables) quite high correla-
tions to which we cannot attach any physical significance whatever,
although under the ordinary test the correlation would be held
to be certainly ‘significant’. As the occurrence of such ‘nonsense-
correlations’ makes one mistrust the serious arguments that are
sometimes put forward on the basis of correlations between time-
series … it is important to clear up the problem of how they arise
and in what special cases. [Figure 2.2] gives a very good illustration.
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Figure 2.2 Correlation between standardized mortality per 1,000 persons in
England and Wales (circles), and the proportion of Church of England marriages
per 1,000 of all marriages (line), 1866–1911. r = +0.9512. (Recreated from Yule,
1926, Fig. 1, page 3)

The full line shows the proportion of Church of England marriages to
all marriages for the years 1866–1911 inclusive: the small circles give
the standardized mortality per 1,000 persons for the same years. Evi-
dently there is a very high correlation between the two figures for the
same year: the correlation coefficient actually works out at +0.9512.

Now I suppose it is possible, given a little ingenuity and goodwill,
to rationalize very nearly anything. And I can imagine some enthu-
siast arguing that the fall in the proportion of Church of England
marriages is simply due to the Spread of Scientific Thinking since
1866, and the fall in mortality is also clearly to be ascribed to the
Progress of Science: hence both variables are largely or mainly influ-
enced by a common factor and consequently ought to be highly
correlated. But most people would, I think, agree with me that the
correlation is simply sheer nonsense; that it has no meaning what-
ever; that it is absurd to suppose that the two variables in question are
in any sort of way, however indirect, causally related to one another.

And yet, if we apply the ordinary test of significance in the ordinary
way, the result suggests that the correlation is certainly ‘significant’ –
that it lies far outside the probable limits of fluctuations of sampling.
The standard error of a coefficient of correlation is (1 − r2)/

√
T , where

T is the number of observations: that is to say, if we have the values
of the two variables x and y entered in their associated pairs on cards,
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if we take out a random sample of Tcards (small compared with the
total of cards available) and work out the correlation, for this sample,
take another sample in the same way, and so on – then the correla-
tion coefficients for the samples will fluctuate round the correlation r
for the aggregate of cards with a standard deviation (1 − r2)/

√
T . For

the assigned value of r, viz. 0.9512 and 46 observations, the stan-
dard error so calculated is only 0.0140, and on this basis we would
judge that we could probably trust the coefficient within 2 or 3 units
in the second place of decimals. But we might ask ourselves a differ-
ent question, and one more germane to the present enquiry. If we
took samples of 46 observations at random from a record in which
the correlation for the entire aggregate was zero, would there be any
appreciable chance of our getting such a correlation as 0.9512 merely
by chances of sampling? In this case the standard error would be
1/

√
46, or 0.1474, the observed correlation is 6.45 times this, and

the odds would be many millions to one against such a value occur-
ring ‘by chance’ – odds so great that the event may be written down
as for all practical purposes impossible. On the ordinary test applied
in the ordinary way we seem compelled to regard the correlation as
having some meaning. (Yule, 1926, pages 2–4; italics in original;
notation altered for consistency)

Having thus restated the standard statistical argument of the day, Yule
then made a crucial assertion:

Now it has been said that to interpret such correlations as implying
causation is to ignore the common influence of the time-factor. While
there is a sense – a special and definite sense – in which this may
perhaps be said to cover the explanation …, to my own mind the
phrase has never been intellectually satisfying. I cannot regard time
per se as a causal factor; and the words only suggest that there is some
third quantity varying with the time to which the changes in both
the observed variables are due …. But what one feels about such a
correlation is, not that it must be interpreted in terms of some very
indirect catena of causation, but that it has no meaning at all; that
in non-technical terms it is simply a fluke, and if we had or could
have experience of the two variables over a much longer period of
time we would not find any appreciable connection between them.
But to argue like this is, in technical terms, to imply that the observed
correlation is only a fluctuation of sampling, whatever the ordinary
formula for the standard error may seem to imply: we are arguing
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that the result given by the ordinary formula is not merely wrong, but very
badly wrong. (ibid., page 4: italics added for emphasis)

Yule next set out the problem, as he saw it, more formally:

When we find that a theoretical formula applied to a particular case
gives results which common sense judges to be incorrect, it is gen-
erally as well to examine the particular assumptions from which it
was deduced, and see which of them are inapplicable to the case in
point. In obtaining the formula for the standard error we assume, to
speak as before in terms of drawing cards from a record: (1) that we
are drawing throughout from the same aggregate and not taking one
sample from one aggregate, a second sample from another aggregate
and so on; (2) that every card in each sample is also drawn from the
same aggregate, not the first card from one batch, the second from
another, and so on; (3) that the magnitude of x drawn on, say, the sec-
ond card of the sample is quite independent of that on the first card,
and so on for all other pairs in the sample; and similarly for y; there
must be no tendency for a high value of x on the first card drawn
to imply that the value of x on the second card will also probably
be high; (4) in order to reduce the formula to the very simple form
given, we have also to make certain assumptions as to the form of the
frequency distribution in the correlation table for the aggregate from
which the samples are taken. (ibid., pages 4–5)

In what ways does the example chosen by Yule and shown in Figure 2.2
diverge from these basic assumptions?

In the particular case considered and in many similar cases there are
two of these assumptions – leaving aside the fourth as comparatively
a minor matter – which quite obviously do not apply, namely, the
related assumptions (2) and (3). Our data necessarily refer to a con-
tinuous series of years, and the changes in both variables are, more
or less, continuous. The proportion of marriages celebrated in the
Established Church falls without a break for years together; only a
few plateaus and little peaks here and there interrupt the fall. The
death-rate, it is true, shows much larger and more irregular fluctua-
tions from year to year, but there is again a steady tendency to fall
throughout the period; only one rate (the last) in the first half of the
years chosen, 1866–88, is below the average, only five in 1889–1911
are above it. Neither series, obviously, in the least resembles a random
series as required by assumption (3). (ibid., page 5)
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What, then, are the implications for these violations of the basic
assumptions?

‘But can this breach of the assumed conditions render the usual for-
mula so wholly inapplicable as it seems to be? May it not merely
imply … some comparatively slight modification? Even if the stan-
dard error by the usual formula were doubled, this would still leave
the correlation almost significant. … [W]hen the successive x’s and y’s
in a sample no longer form a random series, but a series in which successive
terms are closely related to one another, the usual conceptions to which we
are accustomed fail totally and entirely to apply. (ibid., pages 5–6; italics
added for emphasis)

This, in a nutshell, is the problem of ‘nonsense correlations’ that Yule
intended to analyze in his Presidential address.

2.8 Yule began his attack on the problem by considering two simple
harmonic functions

yt = sin
(

2π
t
n

)
xt = sin

(
2π

t + α

n

)
where, as in (2.2), n is the period and α is now the difference in phase
between the two functions (the amplitude is taken as unity as its value
is irrelevant to the analysis). Yule wished to compute the correlation
between simultaneous values of y and x over an interval ±h around
the time t = u, treating the observed values as continuous. Since, for
example,∫ u+h

u−h
sin

(
2π

t + α

n

)
dt = n

2π

(
cos

(
2π

u + α − h
n

)
− cos

(
2π

u + α + h
n

))
= n

π
sin

(
2π

u + α

n

)
sin

(
2π

h
n

)
dividing this by 2h will give the mean of x over the interval u ± h:

x̄(u ± h) = n
2πh

sin
(

2π
u + α

n

)
sin

(
2π

h
n

)
(2.4)

Similarly,∫ u+h

u−h
sin2

(
2π

t + α

n

)
dt = h − n

4π
cos

(
4π

u + α

n

)
sin

(
4π

h
n

)
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so that, on division by 2h, we have

s2
x(u ± h) = 1

2
− n

8πh
cos

(
4π

u + α

n

)
sin

(
4π

h
n

)
− x̄2(u ± h) (2.5)

which is the variance of x over the interval u ± h. In a similar vein, using

∫ u+h

u−h
sin

(
2π

t
n

)
sin

(
2π

t + α

n

)
dt

= h cos
(
2π

α

n

)
− n

4π
cos

(
2π

2u + α

n

)
sin

(
4π

h
n

)

enables the covariance between y and x over the interval u ± h to be
written as

yx(u ± h) = 1
2

cos
(
2π

α

n

)
− n

8πh
cos

(
2π

2u + α

n

)
sin

(
4π

h
n

)

The correlation between y and x over u ± h is then given by

ryx(u ± h) = yx(u ± h) − ȳ(u ± h)x̄(u ± h)
sy(u ± h)sx(u ± h)

(2.6)

where ȳ(u ± h) and s2
y (u ± h) are the mean and variance of y calculated

in an analogous fashion to (2.4) and (2.5).
Yule focused attention on the case where the phase shift was a quarter

of the period, α = n/4. The correlation between y and x over a whole
period is then obviously zero, as positive deviations from zero in y
are exactly matched in frequency by negative deviations from zero in
x, as shown in Figure 2.3. Now suppose we only observe data for a
short interval of the whole period, say that enclosed between the two
verticals aa, bb. This interval is so short that the segments of the two
curves enclosed between aa and bb are very nearly straight lines, that for
y rising and that for x falling, so that the correlation between the two
variables within this interval will therefore be close to −1. Suppose fur-
ther that the interval from a to b is represented by t = u ± h and we let
h → 0, so that the interval becomes infinitesimally short and the seg-
ments of the two curves can be taken to be strictly linear. For u = 0,
0.25, 0.5, 0.75, 1, … the correlation between the two curves will be zero,
while for the intervals between these points the correlation will alternate
between −1 and +1 (see Figure 2.4).
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Figure 2.3 Two sine curves differing by a quarter-period in phase, and conse-
quently uncorrelated when the correlation is taken over a whole period
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Figure 2.4 Variation of the correlation between two simultaneous intervals of
the sine curves of Figure 2.3, as the centre of the interval is moved across from
left to right

Yule then considered how this correlation ‘function’ varies as the
length of the interval increases from h = 0 to h = n/2. When α = n/4
we have

ȳ(u ± h) = n
2πh

sin
(
2π

u
n

)
sin

(
2π

h
n

)
x̄(u ± h) = n

2πh
cos

(
2π

u
n

)
sin

(
2π

h
n

)
s2

y = 1
2

− n
8πh

cos
(
4π

u
n

)
sin

(
4π

h
n

)
− ȳ2(u ± h)

s2
x = 1

2
+ n

8πh
cos

(
4π

u
n

)
sin

(
4π

h
n

)
− x̄2(u ± h)
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Figure 2.5 Variation of the correlation coefficient between two simultaneous
finite intervals of the harmonic curves of Figure 2.3, when the length of the inter-
val is 0.1, 0.3, …, 0.9 of the period, as the centre of the interval is moved across
from left to right; only one-eighth of the whole period shown

and

yx(u ± h) = n
8πh

sin
(
4π

u
n

)
sin

(
4π

h
n

)
from which the correlation as u varies for a given value of h can be
calculated from (2.6). Figure 2.5 recreates Yule’s Fig. 4, which shows
‘correlation curves’ for 2h/n = 0.1, 0.3, . . . , 0.9 and from which Yule
concluded that

(t)he first effect of lengthening the interval from something infinites-
imally small up to 0.1 of a period is only slightly to round off the



20 A Very British Affair

corners of the rectangles of [Figure 2.4], and quite slightly to decrease
the maximum correlation attainable; it is not until the sample-
interval becomes as large as half a period, or thereabouts, that the
contours of the curve round off and the maximum undergoes a rather
sudden drop. (ibid., page 8)

Yule then used these curves to construct the frequency distribution of
the correlation coefficient for a given value of 2h/n. These distributions
are shown in Figure 2.6 and led Yule to conclude that the3

answer to our question, how the distribution of isolated frequencies
at +1 and −1 closes up to the distribution of an isolated clump of
frequency at zero, is then that the distribution first of all becomes
a U-shaped distribution, with limits not far from +1 and −1, and
that these limits, at first gradually and then more rapidly, close in
on zero; but the distribution always remains U-shaped, and values of the
correlation as far as possible removed from the true value (zero) always
remain the most frequent.

The result is in complete contrast with what we expect in sam-
pling under the conditions usually assumed, when successive values
of either variable drawn from the sample are independent of one
another. In that case the values of r in successive samples may dif-
fer widely, but the mode tends to coincide with the ‘true’ value in
the aggregate from which the sample is drawn – zero in the present
illustration. Here the values in the samples tend to diverge as widely
as possible, in both directions, from the truth. We must evidently
divest ourselves, in such a case, from all our preconceptions based on
sampling under fundamentally different conditions. And evidently
the result suggests – it cannot do more – the answer to the problem
with which we started. We tend – it suggests – to get ‘nonsense-
correlations’ between time-series, in some cases, because some time
series are in some way analogous to the harmonic series that we have
taken as illustration, and our available samples must be regarded as
very small samples, if not practically infinitesimal, when compared
with the length required to give the true correlation. (ibid., pages
10–12; italics in original)

Yule then considered the case of two sine curves for which the corre-
lation over the whole period was not zero. Specifically, he took two
curves that differed in phase by 60◦ (i.e., α = n/6), so that the correlation
over a whole period is 0.5, and assumed that 2h/n = 0.2. The resulting
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Figure 2.6 Frequency distribution of correlations between simultaneous intervals
of the sine curves of Figure 2.3 when the interval is, from the top, 0.1, 0.3, 0.5,
0.7 and 0.9, respectively, of the period
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Figure 2.7 Frequency distribution of correlations between two simultaneous
intervals of sine curves differing by 60◦ in phase (correlation over a whole period
+0.5) when the length of interval is 0.2 of the period

frequency distribution is shown in Figure 2.7, and was described by Yule
thus:4

(i)t remains U-shaped, but has become asymmetrical. The limits are
−0.85055 and +0.98221, and frequencies are much higher near the
positive limit. Roundly 68 per cent of the correlations are positive,
32 per cent are negative, nearly 48 per cent exceed +0.9, only some
13 per cent are less than −0.8. We could only conjecture, in such a
case, that the true correlation was positive, if we had a number of
samples available, and noted that those giving a positive correlation
were to those giving a negative correlation as about 2 to 1. Quite often,
at about one trial in eight, a single sample might entirely mislead
us by giving a high negative correlation exceeding 0.8. And, be it
remembered, we have taken a fairly long sample, amounting to one-
fifth of the period; if the complete period were something exceeding,
say, 500 years, it is seldom that we would have such a sample at our
disposal. (ibid., pages 12–13)

2.9 The implication of the analysis in §2.8 is that meaningless correla-
tions between time series could arise because the series are in some way
analogous to harmonic functions, leading Yule to ask

(w)hat characteristics must two empirical series possess in order that
small random samples, taken from them in the same way that we took



Yule: Nonsense Correlations 23

the small samples from the sine-curves, may tend to give a U-shaped
frequency-distribution for the resultant correlations? (ibid., page 14)

The phenomenon is clearly related to the fact that a small segment of
a sine curve, when taken at random, will usually be either rising or
falling and so will tend to be highly correlated (of either sign) with other
segments taken at random. It is easily seen that, if h = 2n, then

x̄ = x̄(u ± n/2) = ȳ = ȳ(u ± n/2) = 0

s2
x = s2

x(u ± n/2) = s2
y = s2

y (u ± n/2) = 0.5

yx = yx(u ± n/2) = 1
2

cos
(
2π

α

n

)
so that

ryx = ryx(u ± n/2) = cos
(
2π

α

n

)
If the whole period is n = 360 years and the phase is taken to be α = 1
year, then r = cos 1◦ = 0.99985 gives the correlation between the value
of the variable in one year and the value in the next. Similarly, the cor-
relation between the value in one year and that in the next but one year
is cos 2◦ = 0.99939, so that, for example, the correlation between values
ten years apart is cos 10◦ = 0.98481.

If, adapting the notation used previously in §2.4, we denote the cor-
relation between xt and xt+k as rx(k), then Yule proposed that such
correlations should be termed the serial correlations of the x series (ibid.,
page 14). With this concept thus defined, Yule then considered answer-
ing the following question:

will it suffice to give us a U-shaped distribution of correlations for
samples from two empirical series, if the serial correlations for both
of them are high, and positive at least as far as rx(T − 1) where T is
the number of terms in the sample? (ibid., page 14: notation altered
for consistency)

Yule argued that, if the first term in a sample of consecutive obser-
vations taken from a variable having positive serial correlations is
considerably above the sample average, then the next few terms will
probably be above the average as well, but later terms will have to be
below the average to compensate, thus implying that a plot of the sam-
ple against time would tend to show a downwards movement from left
to right. Conversely, if the first term is below the average such a plot will
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show an upwards movement from left to right. Different segments of
two such variables would then tend to have markedly positive or negative
correlations, depending on whether the two segments had movements
in the same or opposite directions. ‘This suggests that the frequency-
distribution of correlations will be widely dispersed and possibly tend
to be bimodal. But will it tend to the extreme of bimodality, a definite
U-shape?’ (ibid., page 15).

To answer this question, Yule referred back to Figure 2.3.

When we take a small sample out of either of the curves, such as that
between the verticals aa, bb of the figure, the sample does not tend
to show a more or less indefinite upward or downward trend; it moves
upward or downward with a clear unbroken sweep. This must imply
something more: if the curve is going up from year t to year t + 1,
it tends to rise further from year t + 1 to t + 2, which is to say, that
first differences are positively correlated with each other, as well as the val-
ues of the variable. For the sine-curve, in fact, we know that the first
differences form a curve of the same period as the original: the serial
correlations for the first differences are therefore precisely the same as
those for the values of the variable, given above. This is a very impor-
tant additional property. It suggests that, for random samples from
two empirical series to give a U-shaped distribution of correlations,
each series should not merely exhibit positive values for the serial cor-
relations up to rx(T − 1), but their difference series should also give
positive serial correlations up to the limit of the sample. (ibid., page
15; italics in original, notation altered for consistency)

2.10 Yule formalized these ideas by first considering the case of a random
series, for which all the serial correlations are zero, and utilized a well-
known result that, in a sample of size T taken from such a series, the
correlation between the deviations of any two terms from the sample
mean is −1/(T − 1).5 If the first sample value was then above the sample
mean, there would be no tendency for the remaining terms to show a
downward movement, as they would all have an equal, although slight,
tendency to lie below the sample mean. Yule then took 60 sets of 10
random terms, obtained by drawing cards from two packs of playing
cards in the following way:

The court cards were removed from two patience packs; black cards
were reckoned as positive, red cards as negative and tens as zeros,
so that the frequency-distribution in the pack was uniform from −9
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to +9, with the exception that there were two zeros. The mean of this
distribution is zero, and the standard deviation is

√
28.5, or 5.3385.

The pack was shuffled and a card drawn; thoroughly shuffled again
and another card drawn, and so on. Every precaution was taken to
avoid possible bias and ensure randomness. The use of a double pack
helps, I think, towards this, as the complete series is repeated four
times. Shuffling was very thorough after every draw; after shuffling,
the pack was cut and, say, the fifth card from the cut taken as the card
drawn, so as to avoid any possible tendency of the cards to cut at a
black rather than a red, or a ten rather than an ace, and so on. (ibid.,
page 30)

He then computed the deviations from the means in each sample and
next separated the samples into two groups, depending on whether the
first deviation was positive or negative. Taking each group separately, he
then averaged the deviations of each term across the group. Since the
standard deviations of all the terms are the same, and the correlation of
every term with every other is −1/9, then if the mean of the first term
of the positive deviation group is rescaled as 1000, the most probable
deviation of each of the other terms is −1000/9 or −111, with a simi-
lar expectation for the probable deviations of the terms in the negative
deviation group on reversing signs.

We recreate this simulation in Table 2.1 but, to avoid having to phys-
ically repeat Yule’s rather heroic sampling procedure, we utilize modern
computing power and software!6 Column (3) gives the average devi-
ations for the first deviation positive group; column (4) the average
deviations for the first deviation negative group; and column (5) for the
two groups taken together. As Yule concluded,

(t)he figures of neither [column 3], nor [column 4], nor [column 5]
show any definite trend in terms 2 to 10. Selection of the first term
does not bias the remainder of the sample, or give it any trend or ‘tilt’
either upwards or downwards; the remaining terms are still random
in order. (ibid., page 16)

He then constructed a correlated series by cumulating a random series
(see Table 2.1).

Now suppose we take from a series of random terms (with mean zero)
a sample of ten terms a, b, c, d, e, f , g, h, k, l, and form from it, by suc-
cessive addition, a new series a, a + b, a + b + c . . . . In this new series
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Table 2.1 Deviations from the mean of the sample in samples of 10 terms from a
random series, averaging separately samples in which the first deviation is positive
and samples in which the first deviation is negative: average of first deviations
taken as +1000

Term Expectation Experimental results

First term + First term − Together

(1) (2) (3) (4) (5)

1 +1000 +1000 +1000 +1000
2 −111 −379 −198 −274
3 −111 −167 −464 −340
4 −111 −131 −105 −116
5 −111 −158 +141 +15
6 −111 +173 +21 +85
7 −111 −2 −192 −112
8 −111 +99 −132 −35
9 −111 −222 −178 −197

10 −111 −213 +108 −27

the terms are correlated with each other, since each term contains the
term before, but the differences are random. (ibid., page 16)

The mean of the sample is thus

a + 0.9b + 0.8c + 0.7d + 0.6e + 0.5f + 0.4g + 0.3h + 0.2k + 0.1l

so that the deviation of the first term, a, from the mean is

−0.9b − 0.8c − 0.7d − 0.6e − 0.5f − 0.4g − 0.3h − 0.2k − 0.1l

Table 2.2 gives the deviations of the successive terms in the sample
from the mean. The standard deviation of each deviation for a series
of such samples is given by the square root of the sum of squares of
the coefficients in the appropriate row in Table 2.2 (scaled by the stan-
dard deviation of the original random series). These are given in the
rightmost column and show that the end terms in the sample are the
most variable, the central terms are the least variable, and the standard
deviations are symmetrical about the centre of the sample. The correla-
tion between any pair of terms will be given by the ratio of the product
sum of the coefficients associated with the two terms divided by the
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Table 2.2 Coefficients of the terms in the deviations from the mean of the sample,
in a sample of 10 terms from a series with random differences a, b, c, . . . , l

Term (1) (2) (3) (4) (5) (6) (7) (8) (9) Coefficient
b c d e f g h k l of s.d.

1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 1.688
2 +0.1 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 1.432
3 +0.1 +0.2 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 1.204
4 +0.1 +0.2 +0.3 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 1.025
5 +0.1 +0.2 +0.3 +0.4 −0.5 −0.4 −0.3 −0.2 −0.1 0.922
6 +0.1 +0.2 +0.3 +0.4 +0.5 −0.4 −0.3 −0.2 −0.1 0.922
7 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 −0.3 −0.2 −0.1 1.025
8 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 −0.2 −0.1 1.204
9 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 −0.1 1.432

10 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 1.688

Table 2.3 Coefficients between deviations from the mean of the sample, in a
sample of 10 terms from a series of random differences

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 +1 +0.81 +0.57 +0.26 −0.10 −0.42 −0.61 −0.66 −0.64 −0.58
2 +0.81 +1 +0.73 +0.37 −0.04 −0.42 −0.65 −0.73 −0.71 −0.64
3 +0.57 +0.73 +1 +0.61 +0.14 −0.32 −0.61 −0.72 −0.73 −0.66
4 +0.26 +0.37 +0.61 +1 +0.48 −0.05 −0.43 −0.61 −0.65 −0.61
5 −0.10 −0.04 +0.14 +0.48 +1 +0.41 −0.05 −0.32 −0.42 −0.42
6 −0.42 −0.42 −0.32 −0.05 +0.41 +1 +0.48 +0.14 −0.04 −0.10
7 −0.61 −0.65 −0.61 −0.43 −0.05 +0.48 +1 +0.61 +0.37 +0.26
8 −0.66 −0.73 −0.72 −0.61 −0.32 +0.14 +0.61 +1 +0.73 +0.57
9 −0.64 −0.71 −0.73 −0.65 −0.42 −0.04 +0.37 +0.73 +1 +0.81

10 −0.58 −0.64 −0.66 −0.61 −0.42 −0.10 +0.26 +0.57 +0.81 +1

product of their respective standard deviations. These coefficients are
shown in Table 2.3. The correlations of terms adjacent to each other
at either end of the sample are high and positive, but terms at oppo-
site ends have moderately high and negative correlations. The general
effect of this arrangement of correlations, argued Yule, was to ‘give
the sample as a whole a tendency to be tilted one way or the other as
the first term is above or below the average’ (ibid., page 18; italics in
original).

If the first term in the sample is one unit above the sample mean then
the expected mean deviations of the other terms are given by multiplying
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Table 2.4 Deviations from the mean of the sample in samples of 10 terms from
a series with random differences, averaging separately samples in which (a) first
deviation is +, (b) first deviation is −, (c) last deviation is +, (d) last deviation
is −. The average of first or last deviations, respectively, called +1000

Term Expectation Experimental
results a and b

Term Experimental results

c and d Together

(1) (2) (3) (4) (5) (6)

1 +1000 +1000 10 +1000 +1000
2 +684 +738 9 +754 +746
3 +404 +436 8 +513 +474
4 +158 +283 7 +274 +278
5 −53 −30 6 +79 +25
6 −228 −184 5 −194 −189
7 −368 −346 4 −479 −412
8 −474 −621 3 −498 −559
9 −544 −655 2 −674 −664

10 −579 −621 1 −776 −698

the appropriate correlation by the ratio of their standard deviations to
the standard deviation of the first term. These mean deviations (mul-
tiplied by 1,000) are shown in column (2) of Table 2.4: they show a
continuous decline from +1000 for the first term to −579 for the tenth
term. The deviations from the mean of each sample constructed from
accumulating each of the 60 random samples drawn earlier were then
calculated and an analogous computation to that reported in Table 2.1
is shown in column (3) of Table 2.4.

As Yule noted, since the correlations and standard deviations in
Table 2.2 are symmetrical, the calculations could be repeated if the sam-
ples were sorted depending on whether the last term was positive or
negative. These calculations are shown in column (5) of Table 2.4 and
the results from combining the data on which columns (3) and (5) are
based are shown in column (6), leading Yule to conclude that

(i)n marked contrast with the random series, the sample from the
series with random differences shows a clear tendency to tilt one way
or the other as a whole; and hence one random sample from such a
series will tend to give more or less marked correlations, either positive
or negative, with another, (ibid., page 19)
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although he did add the proviso,

it must be remembered that this tendency of the sample to be tilted
one way or the other as a whole is only a tendency; it is sufficiently
clearly marked to attract attention during experimental work, but by
no means stringent, as is evident from the moderate values of the
correlations in [Table 2.3]. (ibid., page 19: italics in original)

Yule finally considered a third type of series, one whose first differences
were positively correlated. He investigated a special case of such a series:
that obtained by cumulating a random series twice, i.e., from our original
random sample of size 10, we calculate

a

2a + b

3a + 2b + c

...

10a + 9b + 8c + 7d + 6e + 5f + 4g + 3h + 2k + l

for which the mean is

5.5a + 4.5b + 3.6c + 2.8d + 2.1e + 1.5f + g + 0.6h + 0.3k + 0.1l

Analogous calculations to those reported in Tables 2.2 and 2.3 are shown
as Tables 2.5 and 2.6:

It will be seen that the standard deviations are now no longer sym-
metrical about the centre of the sample, the s.d. of term 10 being
much larger than that of term 1; while the general arrangement of
the correlations is similar to that of [Table 2.2], the correlations are
much higher, and again they are not symmetrical with respect to
the two ends of the sample. But the magnitude of the correlations is
now very high. Between terms 1 and 2 there is a correlation of 0.992,
and between terms 9 and 10 a correlation of 0.991. The maximum
negative correlation is that between terms [3 and 8, and is −0.990].
The tendency of the sample to ‘tilt’ as a whole becomes now very
clearly marked, so clear that it becomes quite evident on forming
even a few experimental samples in this way. (ibid., page 20; italics in
original)7
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Table 2.5 Coefficients of the terms in the deviations from the mean of the sam-
ple, in a sample of 10 terms from a series of which the second differences are
random

Term (1) (2) (3) (4) (5) (6) (7) (8) (9) Coefficient
b c d e f g h k l of s.d.

1 −4.5 −4.5 −3.6 −2.8 −2.1 −1.5 −0.6 −0.3 −0.1 2.635
2 −3.5 −3.5 −3.6 −2.8 −2.1 −1.5 −0.6 −0.3 −0.1 2.311
3 −2.5 −2.5 −2.6 −2.8 −2.1 −1.5 −0.6 −0.3 −0.1 1.877
4 −1.5 −1.5 −1.6 −1.8 −2.1 −1.5 −0.6 −0.3 −0.1 1.357
5 −0.5 −0.5 −0.6 −0.8 −1.1 −1.5 −0.6 −0.3 −0.1 0.801
6 +0.5 +0.5 +0.4 +0.2 −0.1 −0.5 −0.6 −0.3 −0.1 0.492
7 +1.5 +1.5 +1.4 +1.2 +0.9 +1.5 −0.6 −0.3 −0.1 0.971
8 +2.5 +2.5 +2.4 +2.2 +1.9 +1.5 +0.4 −0.3 −0.1 1.738
9 +3.5 +3.5 +3.4 +3.2 +2.9 +2.5 +1.4 +0.7 −0.1 2.597

10 +4.5 +4.5 +4.4 +4.2 +3.9 +3.5 +2.4 +1.7 +0.6 3.513

Table 2.6 Coefficients between deviations from the mean of the sample, in a
sample of 10 terms from a series of which the second differences are random

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 +1 +0.99 +0.97 +0.91 +0.71 −0.32 −0.94 −0.98 −0.96 −0.94
2 +0.99 +1 +0.99 +0.94 +0.75 −0.27 −0.94 −0.99 −0.98 −0.96
3 +0.97 +0.99 +1 +0.97 +0.82 −0.18 −0.91 −0.99 −0.99 −0.97
4 +0.91 +0.94 +0.97 +1 +0.91 +0.01 −0.84 −0.96 −0.98 −0.98
5 +0.71 +0.75 +0.82 +0.91 +1 +0.36 −0.59 −0.80 −0.87 −0.89
6 −0.32 −0.27 −0.18 +0.01 +0.36 +1 +0.51 +0.21 +0.07 −0.01
7 −0.94 −0.94 −0.91 −0.84 −0.59 +0.51 +1 +0.94 +0.87 +0.82
8 −0.98 −0.99 −0.99 −0.96 −0.90 +0.21 +0.94 +1 +0.98 +0.96
9 −0.96 −0.98 −0.99 −0.98 −0.87 +0.07 +0.87 +0.98 +1 +0.99

10 −0.93 −0.96 −0.97 −0.98 −0.89 −0.01 +0.82 +0.96 +0.99 +1

Table 2.7 reports analogous simulations to those given in Table 2.4 and,
as should be expected, these show an appropriate degree of conformity,
with the experimental results being very close to their expectations.

2.11 After reporting these simulations, Yule summarized their implica-
tions in a crucial insight into what are now called integrated processes
(a term introduced by Box and Jenkins, 1970: see §6.10):

Now this argument has led us to a remarkable result, which at first
sight may seem paradoxical: namely, that for the present purpose we
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Table 2.7 Deviations from the mean of the sample, in samples of 10 terms from
a series of which the second differences are random, averaging separately samples
in which (a) first deviation is +, (b) first deviation is −, (c) last deviation is +,
(d) last deviation is −. The average of first or last deviations, respectively, called
+1000

Term Expectation Experimental Term Expectation Experimental
results a and b results c and d

(1) (2) (3) (4) (5) (6)

1 +1000 +1000 10 +1000 +1000
2 +870 +868 9 +733 +726
3 +689 +691 8 +473 +459
4 +467 +489 7 +226 +206
5 +215 −258 6 −1 −10
6 −59 −10 5 −203 −205
7 −347 −300 4 −377 −367
8 −644 −637 3 −520 −502
9 −945 −1002 2 −629 −615

10 −1247 −1357 1 −702 −692

are really only concerned with the serial correlations for the differences
of our given series, and not with the serial correlations of those series
themselves. For if we take a long but finite series of random terms and
sum it, the serial correlations for the sum-series are not determinate
and will vary from one such series to another: and yet all such series
evidently have the same characteristics from the present standpoint.
And obviously again, if we form the second-sum of a long but finite
series of random terms, the serial correlations for the second-sum are
not determinate and will vary from one such series to another, and
yet all such series, from the present standpoint, have the same charac-
teristics. If in either case we make the series indefinitely long, all the
serial correlations will tend towards unity, but the samples remain just
the same as they were before, so evidently we cannot be concerned
with the mere magnitude of the serial correlations themselves: they
are dependent on the length of the series. (ibid., page 22; italics in
original)

To formalize this important insight, suppose that x1, x2, . . . , xT is a zero
mean series with standard deviation σx for which the serial correla-
tions are rx(1), rx(2), . . . , rx(k), using the notation of §2.9. Then, if T is
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assumed to be large,

T−1∑
t=1

(xt+1 − xt )2 =
T−1∑
t=1

x2
t+1 +

T−1∑
t=1

x2
t − 2

T−1∑
t=1

xt+1xt

≈ 2
T−1∑
t=1

x2
t − 2

T−1∑
t=1

xt+1xt

= 2
T−1∑
t=1

x2
t

(
1 −

∑T−1
t=1 xt+1xt∑T−1

t=1 x2
t

)

or (cf. equation (2.1)),

σ 2

x = 2σ 2

x (1 − rx(1))

Similarly, and dropping summation limits to ease notation,

∑
(xt+2 − xt+1)(xt+1 − xt ) =

∑
xt+2xt+1 +

∑
xt+1xt −

∑
xt+2xt −

∑
x2

t+1

∼= 2
∑

xt+1xt −
∑

xt+2xt −
∑

x2
t+1

=
∑

x2
t+1

(
2
∑

xt+1xt∑
x2

t+1

−
∑

xt+2xt∑
x2

t+1

− 1

)

Denoting the serial correlations of the differences as 1rx(k) (as in §2.4),
we thus have

1rx(1)σ 2

x = σ 2

x (2rx(1) − rx(2) − 1)

that is,

1rx(1) = 2rx(1) − rx(2) − 1
2(1 − rx(1))

Generalizing this result gives

1rx(k) = 2rx(k) − rx(k + 1) − rx(k − 1)
2(1 − rx(1))

= − 1
2(1 − rx(1))


2rx(k + 1) (2.7)

Suppose that the differences are random, so that all the 1rx(k) are zero
and 
2rx(k + 1) = 0 for all k, implying that

rx(k) = 2rx(k − 1) − rx(k − 2)
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Successive serial correlations are then generated by the arithmetical
progression

rx(2) = 2rx(1) − rx(0) = 2rx(1) − 1

rx(3) = 2rx(2) − rx(1) = 3rx(1) − 2

...

rx(k) = krx(1) − (k − 1)

To compute these serial correlations obviously requires a value of rx(1),
say r̂x(1). Yule (ibid., page 59) suggested determining r̂x(1) by making
the sum of the calculated correlations equal to the sum of the observed
correlations, so that the mean error was zero. This gives

k∑
j=1

rx( j) = 1
2

k(k + 1)r̂x(1) − 1
2

k(k − 1)

from which r̂x(1) can be calculated. To implement these results, Yule gen-
erated three series with random differences, denoted A1, B1 and C1, in
the same fashion as in §2.10 above, these being shown in Figure 2.9
with the underlying random series, A0, B0 and C0, being shown in
Figure 2.8. Formally, if the random series is denoted u1, u2, . . . , uT , then
xt = u1 + u2 + · · · + ut is a series with random differences (in the simula-
tions T is set at 100). Setting k = 10, r̂x(1) was computed for each series
by solving

11r̂x(1) = 9 + 0.2
10∑
j=1

rx( j)

producing the serial correlations shown in Table 2.8 and plotted in
Figure 2.10. The fits are quite accurate but it is noticeable how the mag-
nitudes of the serial correlations differ across the three series: rx(10) is
0.764, 0.191 and 0.697 for A1, B1 and C1, respectively. Yule considered
a potential difficulty arising from these linearly declining serial correla-
tions: ‘if the lines are continued downwards, they will lead to negative
and then to impossible values of the correlation’ (ibid., page 60). He
responded to this by emphasizing that

we can only obtain such series as those in [Table 2.8] if the serial
correlations are determined from a finite series, and for a finite series
[
2rx(k + 1) = 0] will be only approximately true for moderate values
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Figure 2.8 Three random series

of k and will cease to be valid for large values. (ibid., page 60; italics
in original)

Yule next considered the case when the differences are correlated such
that 1rx(k) is a linear function of k. This can be expressed as 1rx(k) = 1 − αk
since 1rx(0) = 1. From (2.7) we then have


2rx(k + 1) = −2(1 − rx(1))(1 − αk)
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Figure 2.9 Three series with random differences (conjunct series with random
differences)

Table 2.8 Comparison of serial correlations for three series with random differ-
ences, with fitted arithmetical progressions

Series A1 Series B1 Series C1

Observed Calculated Observed Calculated Observed Calculated
correlation correlation correlation correlation correlation correlation

1 0.975 0.978 0.909 0.920 0.954 0.967
2 0.953 0.956 0.835 0.840 0.920 0.935
3 0.935 0.934 0.766 0.760 0.894 0.902
4 0.916 0.912 0.691 0.679 0.864 0.870
5 0.897 0.890 0.594 0.599 0.834 0.837
6 0.876 0.868 0.515 0.519 0.801 0.805
7 0.853 0.846 0.458 0.439 0.780 0.772
8 0.826 0.824 0.366 0.360 0.747 0.740
9 0.796 0.802 0.268 0.279 0.720 0.707

10 0.764 0.780 0.191 0.199 0.697 0.675

and, since their second differences are a linear function of k, the serial
correlations rx(k) must be generated by a cubic in k:

rx(k) = 1 + bk + ck2 + dk3

This implies that


2rx(k + 1) = 2(c + 3dk)
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Figure 2.10 Serial correlations up to r(10) for three experimental series (of 100
terms) with random differences

and, on equating coefficients, we have

c = −(1 − rx(1)) d = 1
3α(1 − rx(1)) b = −d = − 1

3α(1 − rx(1))

Defining m = 1 − rx(1), we can thus write the cubic as

rx(k) = 1 − mk2 + 1
3αmk(k2 − 1) (2.8)

Again determining m by making the sum of the calculated correla-
tions equal to the sum of the observed correlations yields the general
equation

k∑
j=1

rx( j) = k − m̂
{ 1

6 k(k + 1)(2k + 1) + 1
6αk(k + 1) − 1

12αk2(k + 1)2} (2.9)

To utilize this result, Yule constructed a series with correlated dif-
ferences by taking the random series ut and cumulating 11-period
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moving sums, that is, by calculating

st =
t∑

j=t−10

uj, xt =
t∑

j=1

sj = ut + 2ut−1+ · · · +2ut−10 + ut−11, t = 11, . . . , T

It is then straightforward to show that

1rx(k) = rs(k) =
{

1 − (k/11) for k = 1, . . . , 10

0 for k ≥ 11

Thus, setting α = 1
11 and k = 10 reduces (2.9) to

295m̂ = 10 −
k∑

j=1

rx( j)

The series so generated, A2, B2 and C2, are shown in Figure 2.11, with
their observed serial correlations and the serial correlations calculated
from the cubic in k reported in Table 2.9 and plotted in Figure 2.12.
The cubic fit is fairly accurate for A2 and B2, but is rather poor for series C2,
for which the serial correlations appear to decline linearly rather than as
a cubic. Again, the serial correlations differ considerably from series to
series.
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Figure 2.11 Three series with positively correlated differences (conjunct series
with conjunct differences)
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Table 2.9 Comparison of serial correlations for three series with correlated
differences, with fitted cubic series

Series A2 Series B2 Series C2

Observed Calculated Observed Calculated Observed Calculated
correlation correlation correlation correlation correlation correlation

1 0.984 0.995 0.989 0.990 0.973 0.995
2 0.965 0.983 0.960 0.963 0.946 0.980
3 0.944 0.962 0.916 0.921 0.919 0.956
4 0.919 0.936 0.858 0.864 0.891 0.925
5 0.892 0.903 0.789 0.795 0.862 0.887
6 0.862 0.866 0.711 0.716 0.831 0.843
7 0.829 0.824 0.625 0.628 0.801 0.794
8 0.793 0.779 0.534 0.533 0.770 0.742
9 0.756 0.732 0.441 0.432 0.738 0.686

10 0.718 0.683 0.348 0.329 0.706 0.629
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Figure 2.12 Serial correlations up to r(10) for three experimental series (of 100
terms) with positively correlated (conjunct) differences
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Finally, Yule briefly considered the case when the second differences
of a series were random, so that the series is the ‘second sum’ of a random
series, that is,

st =
t∑

j=1

uj, xt =
t∑

j=1

sj = tut + (t − 1)ut−1 + · · · + u1, t = 1, . . . , T

In this case the first differences of xt are the sum of a random series and
therefore the serial correlations of 
xt are given by 
2

1rx(k + 1) = 0, or

1rx(k) = k1rx(1) − (k − 1) = 1 − k(1 − 1rx(1)) = 1 − αk

with α = 1 − 1rx(1). Thus, the rx(k) are given by (2.8) and the analysis is
identical to that above.

2.12 This analysis led Yule to classify time series into the following
categories based on the nature of their serial correlations:

Random series: Series for which all serial correlations are zero.

Conjunct series: Series for which all serial correlations are positive. With
finite series, r(k) may well decrease with k and become negative at some
point, in which case the series is said to be ‘conjunct up to r(k)’.

Disjunct series: Series for which the serial correlations are all negative.
Although Yule (ibid., pages 62–3) provided a setup that would gen-
erate such a series, the conditions under which this might occur are
extremely stringent. However, a series that is ‘disjunct up to r(1)’ is sim-
ply obtained by taking first differences of a random series, for which
r(1) = −0.5 and all higher serial correlations are zero (see §2.4).

Oscillatory series: Series for which the serial correlations change sign,
alternating between runs of positive and negative values.

Yule regarded these classifications as simply building blocks: ‘clearly in
the endless variety presented by facts we may expect to meet with com-
pound series of any type, for example, conjunct series with an oscillatory
series superposed’ (ibid., page 26). Nevertheless, his focus continued
to be on the three types of series analyzed in §2.11: (a) random series,
(b) conjunct series having random differences; and (c) conjunct series having
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differences which are themselves conjunct. In terms of these three types,
the random series A0, B0 and C0 shown in Figure 2.8 display ‘no secu-
lar trend, and the whole movement is highly irregular. The graphs are
not, to the eye at least, very unlike graphs of some annual averages in
meteorological data’ (ibid., page 26). Figure 2.9 shows A1, B1 and C1, con-
junct series having random differences: ‘we now get a marked “secular
movement,” with irregular oscillations superposed on it’ (ibid., page 26).
Figure 2.11 shows A2, B2 and C2, conjunct series with conjunct differ-
ences: ‘the curves are smoothed out, the secular movements or long
waves are conspicuous, but there are no evident oscillations of short
duration’ (ibid., page 26).

2.13 Having considered the various ‘internal’ properties of the differ-
ent types of time series, Yule then turned his attention to his primary
aim, that of analyzing the correlations between pairs of series drawn
from each of the types. Using samples of size 10, he correlated 600
pairs of random series, 600 pairs of conjunct series with random differ-
ences, and 600 pairs of conjunct series with conjunct differences. These
series were generated using the sampling procedure of §2.10. We again
recreate Yule’s calculations and show in Figures 2.13–2.15 the frequency
distributions of the correlations between pairs drawn from the three

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8–1 1

Figure 2.13 Frequency distribution of 600 correlations between samples of 10
observations from random series
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Figure 2.14 Frequency distribution of 600 correlations between samples of 10
observations from conjunct series with random differences
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Figure 2.15 Frequency distribution of 600 correlations between samples of 10
observations from conjunct series with conjunct differences

types of series. The three distributions are quite distinct, being approx-
imately normal, uniform and U-shaped, respectively. The distribution
of correlations between random series (Figure 2.13) matches theory:
‘the distribution … should be symmetrical about zero, and … should
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approximate the normal form with the mode at zero’ (ibid., page 31).
With regard to

the two simple types of conjunct series, those with random differ-
ences and those with conjunct differences respectively, correlations
between samples of the first type are subject to a much higher stan-
dard error than that given by the usual formula [1/

√
10 = 0.3162],

but do not tend definitely to mislead [Figure 2.14]; correlations
between samples of the second type tend definitely to be ‘nonsense-
correlations’ – correlations approaching plus or minus unity in value
[Figure 2.15]. The tentative answer to the problem of my title is there-
fore this: that some time-series are conjunct series with conjunct
differences, and that when we take samples from two such series the
distribution of correlations between them is U-shaped – we tend to
get high positive or high negative correlations between the samples,
without any regard to the true value of the correlation between the
series that would be given by long experience over an indefinitely
extended time. (ibid., page 39)

Yule emphasized that conjunct series with random differences (the sum
of a random series with zero mean) would swing above and below the
zero base line but, as the length of the series was increased, would
not tend to be correlated with time (viz. Figure 2.9). The second sum
of a random series, being a conjunct series with conjunct differences,
would display swings above and below the base line that would be
smoother, longer and of greater amplitude, but there would still be no
tendency to be correlated with time as the series length was increased
(viz. Figure 2.11). With this analysis, Yule was making the first tentative
steps towards identifying what are now referred to as stochastic trends
(see §10.40).

Interestingly, Yule ended the theoretical part of his paper with this
statement:

I give my answer to the problem as a tentative answer only, for
I quite recognize that the discussion is inadequate and incomplete.
The full discussion of the mathematical problem – given two series,
each with specified serial correlations, required to determine the fre-
quency distribution of correlations between samples of T consecutive
observations – I must leave to more competent hands. It is quite
beyond my abilities, but I hope that some mathematician will take it
up. The results that he may obtain may seem to be of mere theoretical
importance, for in general we only have the sample itself, which may
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be quite inadequate for obtaining the serial correlations. But to take
such a view would, I think, be short-sighted. The work may not lead, it
is unlikely to lead, to any succinct standard error, or even frequency-
distribution applicable to the particular case. But only such direct
attack can, it seems to me, clear up the general problem; show us
what cases are particularly liable to lead to fallacious conclusions, and
in what cases we must expect a dispersion of the sample-correlations
greater than the normal. … If my view is correct, that the serial cor-
relations of the difference series are the really important factor [then]
the sample may be a more adequate basis for the approximate deter-
mination of the difference correlations than for the determination of
the serial correlations of the series itself. (ibid., page 40)

The statement is extraordinarily prescient on at least two counts. Exam-
ination of the serial correlations of the difference series underlies the
famous Box and Jenkins (1970) approach to time series model build-
ing, to be discussed in Chapter 6, while the mathematical treatment of
the nonsense regression problem had to wait some sixty years before a
complete solution was provided by Phillips (1986): see §10.19.

2.14 Yule then turned his attention to applying these ideas to two
time series: Beveridge’s (1921, 1922) wheat price index and rainfall at
Greenwich. We rework here the first application and concentrate, as
did Yule, on the 300-year period from 1545 to 1844, the series being
shown in Figure 2.16 with the serial correlations up to k = 40 displayed
in Figure 2.17.8

The correlations are all positive, as they evidently must be in a series
that sweeps up from values round about 20 or 30 in earlier years to 100,
200 and over in the later years. They fall away at first with some rapid-
ity to a minimum of [0.67] at r(8); there is then a large broad hummock
in the curve followed by some minor oscillations, and finally, from
about r(25) onwards, the curve tails away comparatively smoothly to
[0.30] at r(40). (ibid., pages 42–3; notation altered for consistency)

Yule’s next step was to compute the serial correlations of various differ-
ences of the index. By a similar reasoning to that of §2.11, the serial
correlations of the h-step differences xt+h − xt , which we denote as rh(k)
(noting that r1(k) ≡ 1r(k)), are given by a generalization of (2.7)

rh(k) = 2r(k) − r(k + h) − r(k − h)
2(1 − r(h))
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Figure 2.16 Beveridge’s index numbers of wheat prices in Western Europe,
1545–1844
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Figure 2.17 Serial correlations up to r(40) for Beveridge’s index numbers of wheat
prices in Western Europe, 1545–1844

on noting that if k < h, r(k − h) = r(h − k). The ‘serial difference cor-
relations’ for various values of h are plotted in Figure 2.18. Yule then
embarked on a detailed discussion of the oscillations contained in the
plots of these serial correlations, which we summarize thus. The plot of
the serial correlations for the first differences (h = 1) shows that both
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Figure 2.18 Serial difference correlations rh(k) for the index numbers of wheat
prices in Western Europe; intervals for differencing h = 1, 5, 6, 11 and 15 years
respectively
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peaks and troughs occur between five and six years apart, which is thus
consistent with Beveridge’s findings of important periodicities in this
interval (see Figure 2.16). These oscillations in the serial correlations
would be practically eliminated by setting the differencing interval to
either 5 or 6, thus determining the next two choices for h. The two serial
correlation plots are almost identical, having pronounced oscillations
with a peak-to-peak period of around 18 years and a trough-to-trough
period of about 14 years. Setting h = 11 shows a peak-to-peak period of
around 14 years and a trough-to-trough period of 12 years.

Yule’s final choice was h = 15, which produces many minor oscilla-
tions in the serial correlations. By ignoring these, he argued that, since
the curve cuts the zero axis at around 13.5 years, this was consistent
with the long cycle of 54 years found by Beveridge. He concluded that
analyses such as this ‘may suffice to suggest the interesting way in which
the serial correlations can be used to bring out, at least by a rough first
analysis, the predominant characteristics of a given series. In the series
in question there can be no doubt about the differences being oscillatory’
(ibid., page 47).

Yule finally compared the curve for h = 5 with a compound cosine
curve constructed by taking the predominant periodicities found by
Beveridge (see ibid., Tables XV and XVI). These are plotted together in
Figure 2.19. Although there is only a rough agreement between the two
plots, Yule felt that, given the circumstances, ‘the agreement is, perhaps,
as good as we have any right to expect’ (ibid., page 49).

2.15 Yule concluded his address with the following summary which,
since it encapsulates what are arguably the most important concepts so
far developed for the foundations of time series analysis, is again quoted
in detail.

Starting from a question that may have seemed to some silly and
unnecessary, we were led to investigate the correlations between sam-
ples of two simple mathematical functions of time. It appeared that
small samples … of such functions tended to give us correlations
departing as far as possible from the truth, the correlations tending to
approach ±1 if the time for which we had experience was very small
compared with the time necessary to give the true correlation. Ask-
ing ourselves, then, what types of statistical series might be expected
to give results analogous to those given by the mathematical func-
tion considered, we were led to a classification of series by their serial
correlations r(1), r(2), r(3), . . . , r(k), r(k) being the correlation between
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Figure 2.19 Serial difference correlations for h = 5 (r5(k)) (dots) and a curve
constructed from certain of the periodicities given by Beveridge (dashed line)

terms t and t + k. The important matter in classification was the form
of the function relating r(k) to k, which indicated the nature of the
serial correlations between differences of the time series. If this func-
tion is linear, the time-series has random differences; if it gives a graph
concave downwards the difference correlations are positive. We con-
cluded that it was series of the latter type (positively correlated series
with positively correlated differences, or conjunct series with con-
junct differences to use my suggested term) that formed the dangerous
class of series, correlations between short samples tending towards
unity. Experimental investigation completely confirmed this sugges-
tion. Samples from conjunct series with random differences gave a
widely dispersed distribution of correlations; samples from conjunct
series with conjunct differences gave a completely U-shaped distribu-
tion, with over one-third of the correlations exceeding ±0.9. (ibid.,
page 53)

Superposed fluctuations and disturbances

2.16 At the same time as he was analyzing the nonsense correlation
problem, Yule was also turning his attention back to harmonic motion
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and, in particular, to how harmonic motion responds to external shocks.
This attention led to yet another seminal paper (Yule, 1927), in which
Yule’s starting point was to take a simple harmonic function of time and
to superpose upon it a sequence of random errors. If these errors were
small, ‘the only effect is to make the graph somewhat irregular, leav-
ing the suggestion of periodicity still quite clear to the eye’ (Yule, 1927,
page 267), and an example of this situation is shown in Figure 2.20(a).
If the errors were increased in size, as in Figure 2.20(b), ‘the graph
becomes more irregular, the suggestion of periodicity more obscure, and
we have only sufficiently to increase the ‘errors’ to mask completely
any appearance of periodicity’ (ibid., page 267). Yule referred to this
set-up as one of superposed fluctuations – ‘fluctuations which do not in

0
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1

0

–1

(a)

(b)

Figure 2.20 Graphs of simple harmonic functions of unit amplitude with super-
posed random fluctuations: (a) smaller fluctuations; (b) larger fluctuations
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any way disturb the steady course of the underlying periodic function’
(ibid., page 268).

But Yule did not see this setup as being the most likely hypothesis in
most physical situations, leading him to suggest a delightful thought
experiment, based on the following set-up of a pendulum.

If we observe at short intervals of time the departures of a simple har-
monic pendulum from its position of rest, errors of observation will
cause superposed fluctuations of the kind supposed in [Figure 2.20].
But by improvement of apparatus and automatic methods of record-
ing, let us say, errors of observation are practically eliminated. (ibid.,
page 268)

The recording apparatus is then left to itself, but

unfortunately boys get into the room and start pelting the pendu-
lum with peas, sometimes from one side and sometimes from the
other. The motion is now affected, not by superposed fluctuations
but by true disturbances, and the effect on the graph will be of an
entirely different kind. The graph will remain surprisingly smooth,
but amplitude and phase will vary continually. (ibid., page 268)

To illustrate this experiment formally, consider the simple harmonic
function given by

xt = ρ sin 2π
t
n

(2.10)

where, once again, ρ is the amplitude of the sine wave and n is the
period. The function (2.10) can be written as


2xt = −4 sin2 π
1
n

= −θxt+1 (2.11)

where

θ = 4 sin2 π
1
n

= 2
(

1 − cos 2π
1
n

)
= 2 − 2 cosϑ

on defining ϑ = 2π/n. The proof of this fundamental result uses stan-
dard trigonometric identities. If we define

A = 2π
t + 1

n
B = 2π

1
n
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then


2xt = xt+2 − 2xt+1 + xt = sin (A + B) − 2 sin A + sin (A − B)

= 2 sin A cos B − 2 sin A

= 2 sin A(1 − 2 sin2 (B/2)) − 2 sin A

= −4 sin2 B sin A = −θxt+1

on using, first, the addition theorem sin (A ± B) = sin A cos B ± cos A
sin B; second, the double-angle formula cos B = 1 − 2 sin2 (B/2); and,
finally, setting θ = 4 sin2 (2π/n).

Equation (2.11) may be written equivalently as

xt+2 = (2 − θ)xt+1 − xt (2.12)

The ‘errors’ produced by the boys pelting the pendulum with peas leads
to the inclusion of an error, εt+2, in (2.12), which we may then rewrite
in the more convenient form

xt = (2 − θ)xt−1 − xt−2 + εt (2.13)

Figure 2.21 shows a graph of xt constructed from (2.13) by setting n = 10,
so that θ = 4 sin2 18◦ = 4 × 0.30902 = 0.382 and thus

xt = 1.618xt−1 − xt−2 + εt (2.14)

Following Yule, εt was defined to be 1/20th of the deviation of the sum
of four independent throws of a dice from the expected value of the
four throws (which is 14). This defines a discrete random variable tak-
ing the values −0.5(0.05)0.5, with mean zero and standard deviation
0.1708. Setting x1 = 0 and x2 = sin 36◦ = 0.588, Figure 2.21 shows the
simulation of (2.14) for t = 1, . . . , 300, which led Yule (ibid., page 269)
to observe that ‘(i)nspection of the figure shows that there are now no
abrupt variations in the graph, but the amplitude varies within wide
limits, and the phase is continually shifting. Increasing the magnitude
of the disturbances simply increases the amplitude: the graph remains
smooth’.

2.17 Why does the simulated series in Figure 2.21 present such a smooth
appearance? An undisturbed harmonic function may be regarded as the
solution of the difference equation


2xt + θxt+1 = 0 (2.15)
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Figure 2.21 Graph of a disturbed harmonic function, equation (2.14)
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If the motion is disturbed, however, we now have, say,


2xt + θxt+1 = φ(t) (2.16)

where φ(t) is some ‘disturbance function’. Hence we see that (2.15) is
the complementary function of the solution to (2.16) and φ(t) is the
particular integral.

The solution to (2.13), given initial values x1 and x2 and writing
k = 2 − θ , is the following series for t > 2

x3 = kx2 − x1 + ε3

x4 = (k2 − 1)x2 − kx1 + kε3 + ε4

x5 = {k(k2 − 1) − k}x2 − (k2 − 1)x1 + (k2 − 1)ε3 + kε4 + ε5

x6 = {(k(k2 − 1) − k) − (k2 − 1)}x2 − {k(k2 − 1) − k}x1

+ {k(k2 − 1) − k}ε3 + (k2 − 1)ε4 + kε5 + ε6

etc.

The coefficients on the ε terms form the sequence 1, k, k2 − 1, k(k2 − 1) −
k, … and hence are related by an equation of the form

Am = kAm−1 − Am−2

where Am is the coefficient on εm, m ≥ t − 3. But this is simply an
equation of the form (2.12), so that the coefficients on the ε’s are
therefore the terms of a sine function having the same period as the
complementary function (2.15) and with initial terms 1 and k: for our
simulated series, they take the values +1, +1.6180, +1.6180, +1, 0, −1,
−1.6180, etc.

The first 30 terms of the simulated series, along with its complementary
function, particular integral and disturbances, are shown in Table 2.10.

The series tends to be oscillatory, since, if we take adjacent terms,
most of the periodic coefficients of the ε’s are of the same sign, and
consequently the adjacent terms are positively correlated; whereas if
we take terms, say, 5 places apart, the periodic coefficients of the ε’s
are of opposite signs, and therefore the terms are negatively correlated.
The series tends to be smooth – i.e., adjacent terms highly correlated –
since adjacent terms represent simply differently weighted sums of ε’s,
all but one of which are the same. (ibid., page 272)
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Table 2.10 Decomposition of the first 30 terms of the simulated series used
in Figure 2.21 into complementary function (simple harmonic function) and
particular integral (function of the disturbances alone)

T Observed xt Complementary Particular Disturbance εt

function integral

1 0 0 0 0
2 +0.5878 +0.5878 0 0
3 +0.7014 +0.9511 −0.2497 −0.25
4 +0.4468 +0.9511 −0.5042 −0.10
5 +0.1216 +0.5878 −0.4662 +0.10
6 −0.2501 0 −0.2501 0
7 −0.3262 −0.5878 +0.2616 +0.20
8 −0.2778 −0.9511 +0.6733 0
9 −0.0232 −0.9511 +0.9279 +0.10

10 +0.3902 −0.5878 +0.9780 +0.15
11 +0.6046 0 +0.6046 −0.05
12 +0.4880 +0.5878 −0.0998 −0.10
13 −0.0150 +0.9511 −0.9661 −0.20
14 −0.4623 +0.9511 −1.4134 +0.05
15 −0.8330 +0.5878 −1.4208 −0.10
16 −0.9355 0 −0.9355 −0.05
17 −0.6806 −0.5878 −0.0928 0
18 −0.2158 −0.9511 +0.7353 −0.05
19 +0.3315 −0.9511 +1.2826 0
20 +1.0521 −0.5878 +1.6399 +0.30
21 +1.3709 0 +1.3709 0
22 +1.1659 +0.5878 +0.5781 0
23 +0.2856 +0.9511 −0.6655 −0.25
24 −1.0362 +0.9511 −1.9873 −0.30
25 −1.8422 +0.5878 −2.4300 +0.10
26 −2.0944 0 −2.0944 −0.15
27 −1.3966 −0.5878 −0.8088 +0.15
28 −0.2653 −0.9511 +0.6858 −0.10
29 +0.8674 −0.9511 +1.8185 −0.10
30 +1.7687 −0.5878 +2.3556 +0.10

Yule pointed out (in an addition to the original text) that if the initial
conditions were set as x1 = x2 = 0 then there would be no true har-
monic component and the series would reduce to the particular integral
alone, although the graph of the series would look little different to that
shown in Figure 2.21 – ‘the case would correspond to that of a pendulum
initially at rest, but started into movement by the disturbances’ (ibid.,
page 272).
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The peak-to-peak periods range from 8.24 to 10.83 with an average of
10.03, while the trough-to-trough periods range from 8.75 to 10.85 with
an average of 10.05, the true period being, of course, 10. Considerations
of this type led Yule to conclude that

(i)t is evident that the problem of determining with any precision
the period of the fundamental undisturbed function from the data of
such a graph as [Figure 2.21] is a much more difficult one than that of
determining the period when we have only to deal with superposed
fluctuations. It is doubtful if any method can give a result that is
not subject to an unpleasantly large margin of error if our data are
available for no more than, say, 10 to 15 periods. (ibid., page 278)

2.18 Yule proposed that models of the type (2.13) should be analyzed
by least squares regression. If (2.13) is written

xt = kxt−1 − xt−2 + εt (2.17)

and it is assumed that the disturbances εt have zero mean, the regression
of xt + xt−2 on xt−1 will provide an estimate of k and hence of cosϑ =
k/2, from which estimates of ϑ and the period of the harmonic may be
calculated. Yule first obtained such estimates for the simulated series of
Figure 2.21, having split the series into two halves of length 150. Here
we provide estimates for the complete sample and for the two halves:

Complete sample of 300 terms

xt = 1.62338xt−1 − xt−2

cosϑ = 0.81169; ϑ = 35◦.74; period = 10.07

First 150 terms

xt = 1.62897xt−1 − xt−2

cosϑ = 0.81448; ϑ = 35◦.46; period = 10.15

Second 150 terms

xt = 1.62026xt−1 − xt−2

cosϑ = 0.81013; ϑ = 35◦.89; period = 10.03
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The periods thus found are not far from those obtained in §2.17 and
the estimates of k are close to the ‘true’ value of 1.61803. The three
regressions give values of the disturbances which have correlations of
+0.998, +0.992 and +0.999 with the true disturbances: ‘on the whole,
I think that the result may be regarded as reasonably satisfactory’ (ibid.,
page 275).

2.19 Yule then turned his attention to annual sunspot numbers between
1749 and 1924. Rather than just focusing on the raw numbers, Yule also
constructed a ‘graduated’ series, defined as

x′
t = wt

3
− 
2wt−1

9

where wt = xt−1 + xt + xt+1. Some simple algebra shows that x′
t is the

weighted moving average

x′
t = 1

9 (− xt−2 + 4xt−1 + 3xt + 4xt+1 − xt+2)

The sunspot and the graduated numbers for the extended sample period
1700 to 2011 are shown in the top two panels of Figure 2.22. To Yule

the upper curve in [Figure 2.22] … suggests quite definitely to my eye
that we have to deal with a graph of the type of [Figure 2.21], not of the
type of [Figure 2.20], at least as regards its principal features. It is true
that there are minor irregularities, which may represent superposed
fluctuations, probably in part of the nature of errors of observation; for
the sunspot numbers can only be taken as more or less approximate
‘index numbers’ to sunspot activity. But in the main the graph is
wonderfully smooth, and its departures from true periodicity, which
have troubled all previous analysts of the data, are precisely those
found in [Figure 2.21] – great variation in amplitude and continual
changes of phase. (ibid., page 273)

It was to reduce the impact of superposed fluctuations that the gradu-
ated series was constructed and this aspect is discussed further below.

As both the sunspot and graduated numbers have positive means,
being necessarily non-negative, a constant was included in the regres-
sion (2.17). Estimation over both the extended sample period 1700 to
2011 and the period available to Yule gave the following results (the first
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Figure 2.22 Graphs of the sunspots and graduated numbers, and of the dis-
turbances given by equation (2.16): the lines on the disturbance graphs show
quinquennial averages
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two observations in each period are lost due to the construction of xt−1

and xt−2):

Sunspot Numbers, 1749–1924

s.d. of whole series = 34.75

xt = 1.61979xt−1 − xt−2 + 17.06

cosϑ = 0.80989; ϑ = 35◦.91; period = 10.02

s.d. of disturbances = 17.08

Sunspot Numbers, 1700–2011

s.d. of whole series = 40.39

xt = 1.64723xt−1 − xt−2 + 17.62

cosϑ = 0.82361; ϑ = 34◦.55; period = 10.42

s.d. of disturbances = 18.05

The regression for the shorter sample period available to Yule recovers
his estimates quite closely. The results for the extended sample show
that the estimate of the period has increased by 0.4 of a year and
the variability of the series has also increased somewhat. The distur-
bances estimated from the extended sample regression are plotted in
the third panel of Figure 2.22 with a quinquennial moving average
superimposed. Focusing on the sample from 1749 to 1924, Yule described
their behavior thus.

It will be seen that the disturbances are very variable, running up
to over ±50 points. But the course of affairs is rather curious. From
1751 to 1792, or thereabouts, the disturbances are mainly positive and
highly erratic; from 1793 to 1834 or thereabouts, when the sunspot
curve was depressed, they are mainly negative and very much less
scattered; from 1835 to 1875, or thereabouts, they are again mainly
positive and highly erratic; and finally, from 1876 to 1915, or there-
abouts, once more mainly negative and much less erratic. It looks as
if the ‘disturbance function’ had itself a period of somewhere about
80 to 84 years, alternate intervals of 40 to 42 years being highly
disturbed and relatively quiet. (ibid., pages 275–6)

The additional observations now available serve only to confirm Yule’s
impressions. The disturbances in the first half of the eighteenth century
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were predominantly negative and not particularly erratic. The final inter-
val isolated by Yule probably continued until the late 1930s, whereupon
there was again an extended sequence of generally positive and highly
erratic disturbances.

One problem that exercised Yule was that the estimated period for
the shorter sample, here 10.02 years, was too low compared to the usual
estimates of somewhat over 11 years. In Yule’s opinion ‘this was probably
due to the presence of superposed fluctuations: as already noted, the
graph of sunspot numbers suggests the presence of minor irregularities
due to this cause’ (ibid., page 273), leading him to the view that

if such fluctuations are present, our two variables xt + xt−2 and xt−1

are, as it were, affected by errors of observation, which would have
the effect of reducing the correlation and also the regression [coeffi-
cient]. Reducing the regression [coefficient] means reducing the value
of cosϑ – that is, increasing ϑ or reducing the apparent period. (ibid.,
page 276)

Yule therefore re-estimated the regressions using the graduated data.
Doing that here obtains the following results.

Graduated Sunspot Numbers, 1753–1920

s.d. of whole series = 34.10

x′
t = 1.68431x′

t−1 − x′
t−2 + 14.23

cosϑ = 0.84216; ϑ = 32◦.63; period = 11.03

s.d. of disturbances = 11.50

Graduated Sunspot Numbers, 1704–2009

s.d. of whole series = 39.52

x′
t = 1.69664x′

t−1 − x′
t−2 + 15.19

cosϑ = 0.84832; ϑ = 31◦.97; period = 11.26

s.d. of disturbances = 12.15

From the first regression, Yule felt able to conclude that ‘(t)he estimate
of the period is now much closer to that usually given, and I think it
may be concluded that the reason assigned for the low value obtained
from the ungraduated numbers is correct’ (ibid., page 276). Interest-
ingly, the period obtained from the extended sample, 11.26, turns out
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to be very similar to the period obtained using Fourier analysis for the
period 1750–1914 by Larmor and Yamaga (1917), 11.21. The calculated
disturbances are shown as the bottom panel of Figure 2.22: ‘the scatter
is greatly reduced (s.d. of disturbances [12.15] against [18.05]), but the
general course of affairs is very similar to that shown from the graph for
the ungraduated numbers’ (ibid., page 276).

Figure 2.23 shows a scatterplot of xt + xt−2 on xt−1 and its graduated
counterpart and these provide scant indication of any non-linearity in
the relationships. The proportion of the variance of xt that has been

(a) Sunspot numbers

(b) Graduated numbers

Figure 2.23 Scatterplot of xt + xt−2 (horizontal) on xt−1 (vertical)
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accounted for by xt−1 and xt−2 is calculated to be 76 per cent for Yule’s
sample and 80 per cent for the extended sample, with the graduated
counterpart values being 89 per cent and 90 per cent.

2.20 Yule then extended the model (2.10) to contain two harmonics:

xt = ρ1 sin 2π
t

n1
+ ρ2 sin 2π

t
n2

Writing xt = a + (xt − a), where a is that part of xt due to the first
harmonic and (xt − a) is that part due to the second, (2.11) extends
naturally to


2xt = xt − 2xt+1 + xt+2 = −θ1a − θ2(xt+1 − a)


4xt = xt − 4xt+1 + 6xt+2 − 4xt+3 + xt+4 = θ2
1 a + θ2

2 (xt+2 − a)

where

θi = 4 sin2 π

ni
= 2(1 − cosϑi) i = 1, 2

By eliminating a, this pair of equations can be reduced to (cf. (2.12))

xt+4 = (4 − θ1 − θ2)(xt+3 + xt+1) − (6 − 2θ1 − 2θ2 + θ1θ2)xt+2 − xt

and, if a disturbance is again appended, we can write (cf. (2.13))

xt = k1(xt−1 + xt−3) − k2xt−2 − xt−4 + εt (2.18)

While questioning the theoretical legitimacy of appending such an
error, Yule thought that it could be justified in practice.

If … we nevertheless assume a relation of the form [2.18] and pro-
ceed to determine k1 and k2 by the method of least squares, regarding
xt + xt−4, xt−1 + xt−3 and xt−2 as our three variables, and forming the
regression equation for the first on the last two, can this give us any
useful information? I think it can. The results may afford a certain
criterion as between the respective conceptions of the curve being
affected by superposed fluctuations or by disturbances. If there are no
disturbances in the sense in which the term here is used, the appli-
cation of the suggested method is perfectly legitimate, and should
bring out any secondary period that exists. To put the matter in a
rather different way: disturbances occurring in every interval imply
an element of unpredictability very rapidly increasing with the time.
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Superposed fluctuations imply an element of unpredictability which
is no greater for several years than for one year. If, then, there is a
secondary period in the data, and we might well expect a period of
relatively small amplitude – if only a sub-multiple of the fundamen-
tal period – equation [2.18] should certainly bring out this period,
provided that we have only to do with superposed fluctuations and not
disturbances. (ibid., page 279: italics in original, notation altered for
consistency)

Estimates of the regression (2.18) for the various series and samples were
obtained as follows:

Sunspot Numbers 1749–1924

xt = 1.15975(xt−1 + xt−3) − 1.016367xt−2 − xt−4 + 31.21

θ1 = 2.56899 cosϑ1 = −0.284495

ϑ1 = 106◦53 or 253◦47 period = 1.42 or 3.38 years

θ2 = 0.27126 cosϑ1 = −0.86437

ϑ1 = 30◦19 period = 11.91 years

s.d. of disturbances = 21.97 years

Graduated Sunspot Numbers 1753–1920

x′
t = 1.67128(x′

t−1 + x′
t−3) − 1.86233x′

t−2 − x′
t−4 + 23.48

θ1 = 2.07867 cosϑ1 = −0.03933

ϑ1 = 92◦25 or 267◦75 period = 1.34 or 3.90 years

θ2 = 0.25005 cosϑ1 = 0.87498

ϑ1 = 28◦96 period = 12.43 years

s.d. of disturbances = 17.47 years

Sunspot Numbers 1700–2011

xt = 1.17239(xt−1 + xt−3) − 1.02072xt−2 − xt−4 + 33.82

θ1 = 2.56398 cosϑ1 = −0.28199

ϑ1 = 106◦38 or 253◦62 period = 1.42 or 3.38 years

θ2 = 0.26363 cosϑ1 = 0.868185

ϑ1 = 29◦75 period = 12.10 years

s.d. of disturbances = 23.99 years
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Graduated Sunspot Numbers 1704–2009

x′
t = 1.70403(x′

t−1 + x′
t−3) − 1.92042x′

t−2 − x′
t−4 + 25.73

θ1 = 2.09097 cosϑ1 = −0.04549

ϑ1 = 92◦61 or 267◦39 period = 1.35 or 3.89 years

θ2 = 0.20500 cosϑ1 = 0.89750

ϑ1 = 26◦17 period = 13.75 years

s.d. of disturbances = 19.02 years

Since the values of the θs give cosϑ and not ϑ itself, the value of
ϑ is not strictly determinate; the longer period is naturally taken as
approximate to the fundamental, but the choice of the shorter period
is quite uncertain. So far as the results go then, they at first sight sug-
gest the existence of two periods, one year or more longer than the
value which anyone, on a mere inspection of the graph, would be
inclined to take for the fundamental, and the other much shorter.
On the face of it the result looks odd, and the last figures given for
the ungraduated and graduated numbers respectively show that it is
really of no meaning. The standard deviations found for the disturbances
are … larger than when we assumed the existence of a single period only. …
So far from having improved matters by the assumption of a second
period, we have made them very appreciably worse: we get a worse
and not a better estimate of xt when xt−3 and xt−4 are brought into
account than when we confine ourselves to xt−1 and xt−2 alone. To put
it moderately, there is no evidence that any secondary period exists. …
The result also bears out the assumption that it is disturbances rather
than superposed fluctuations which are the main cause of the irregu-
larity, the element of unpredictability, in the data. (ibid., page 280)

Yule explained this result, which might be taken as paradoxical, in a
way that is now familiar to econometricians but which demonstrated
his mastery of contemporary regression analysis:

it is simply due to the fact that we have insisted on the regression
equation being of a particular form, the coefficients of xt−1 and xt−3

being identical, and the coefficient of xt−4 unity. The result tells us
merely that, if we insist on this, such and such values of the coeffi-
cients are the best, but even so they cannot give as good a result as
the equation of form [2.17] with only two terms on the right. (ibid.,
page 280)
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2.21 As a second approach, Yule considered the ‘ordinary regression
equation’

xt = b1xt−1 − b2xt−2 (2.19)

For xt to have a harmonic component, the roots of the equation

z2 − b1z + b2 = 0

must be imaginary. If these roots are α ± iβ and we let

α2 + β2 = b2 = e2λ and tanϑ = β/α

then the general solution of the difference equation (2.19) is of the form

xt = eλt (A cosϑt + B sinϑt) (2.20)

For a real physical phenomenon, λ would be expected to be either neg-
ative (b2 < 1), so that the solution (2.20) would be a damped harmonic
vibration, or zero (b2 = 1), in which case the solution would be simple
harmonic vibration.

The regression (2.19), with a disturbance term εt implicitly appended,
was first fitted to the simulated series of Figure 2.21, producing the
following results.

Complete sample of 300 terms

xt = 1.6220xt−1 − 0.9983xt−2

Roots: 0.8110 ± 0.5836i
tanϑ = 0.71959 ϑ = 35◦74 Period = 10.07 λ = −0.0009

First 150 terms

xt = 1.6253xt−1 − 0.9955xt−2

Roots: 0.8126 ± 0.5789i
tanϑ = 0.712334 ϑ = 35◦46 Period = 10.15 λ = −0.0023

Second 150 terms

xt = 1.601xt−1 − 0.9999xt−2

Roots: 0.8101 ± 0.5863i
tanϑ = 0.723753 ϑ = 35◦89 Period = 10.03 λ = −0.0001
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The periods are identical to those obtained previously, with the value of
λ being very close to its true value of zero, leading Yule (ibid., page 281)
to conclude that ‘the agreement seems quite satisfactory’!

For the various sunspot series and sample periods, the following results
are obtained

Sunspot Numbers 1749–1924

xt = 1.33597xt−1 − 0.64986xt−2 + 13.94

Roots: 0.66798 ± 0.45128i

tanϑ = 0.67559 ϑ = 34◦04 Period = 10.58 λ = −0.21550

s.d. of disturbances = 15.56

Graduated Sunspot Numbers 1753–1920

x′
t = 1.51975x′

t−1 − 0.80457x′
t−2 + 12.84

Roots: 0.75987 ± 0.47661i

tanϑ = 0.62723 ϑ = 32◦10 Period = 11.22 λ = −0.10872

s.d. of disturbances = 10.96

Sunspot Numbers 1700–2011

xt = 1.39328xt−1 − 0.69239xt−2 + 14.97

Roots: 0.69664 ± 0.45600i

tanϑ = 0.65457 ϑ = 33◦21 Period = 10.84 λ = −0.18380

s.d. of disturbances = 16.65

Graduated Sunspot Numbers 1704–2009

x′
t = 1.55555x′

t−1 − 0.83341x′
t−2 + 13.90

Roots: 0.77777 ± 0.47799i

tanϑ = 0.61456 ϑ = 31◦57 Period = 11.40 λ = −0.09111

s.d. of disturbances = 11.65

For Yule’s sample, the period for the ungraduated sunspot numbers is
increased when compared with the harmonic formula (10.58 to 10.02)
although it is still too low, but that obtained from the graduated numbers
(11.22 against 11.03) is now almost the same as that suggested by Larmor
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Figure 2.24 Graphs of the disturbances given by equation (2.19): the lines on
the graphs show quinquennial averages

and Yamaga (1917). For the extended samples, both periods are increased
to 10.84 and 11.40, respectively (as against 10.42 and 11.26 from the
harmonic formula).

2.22 The two disturbance series for the extended sample period are
shown in Figure 2.24. Yule analysed these in the context of the alter-
nating quiet and disturbed periods of approximately 42 years alluded
to in §2.19. Table 2.11 extends Yule’s periods both backwards and
forwards in time to cover the extended sample now available. As dis-
cussed in §2.19, Yule found that there were alternating periods of 42
years in which the disturbances gave positive and negative mean values
accompanied by high and low standard deviations respectively.

In the extended period covered in Table 2.11, this alternating pattern
continues to be found from the early 1700s up until 1960, but the final
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Table 2.11 Means and standard deviations of disturbances in succes-
sive periods of 42 years. (Y) corresponds to periods investigated by Yule
(1927, Table II)

Period Sunspot disturbances Graduated disturbances

Mean St. Dev. Mean St. Dev.

1709–1750 −2.31 12.06 −2.64 8.69
1751–1792 (Y) 2.49 18.92 2.42 11.84
1793–1834 (Y) −7.21 7.41 −6.29 5.86
1835–1876 (Y) 2.56 18.00 2.20 12.65
1877–1918 (Y) −4.33 13.95 −3.63 8.66
1919–1960 4.20 19.21 3.01 14.25
1961–2002 6.78 19.66 6.25 12.71

Figure 2.25 Graph of the square of a damped harmonic vibration, (2.21)

period ‘bucks the trend’, having a positive mean accompanied by a high
standard deviation, rather than a negative mean and a low standard
deviation.9,10

2.23 Yule concluded from his examination of these disturbances that
a damped vibration did explain the evolution of the sunspot numbers.
However, rather than being a simple damped vibration, Yule argued that
the process generating the sunspot numbers was more akin to a ‘train’ of
squared damped harmonic vibrations superposed upon each other. The
square of a damped harmonic vibration,

xt = Ae−at(1 − cosϑt) (2.21)

is shown in Figure 2.25. Figure 2.26 shows a train of such functions,
each with different amplitude A and each starting when the one before
it reaches its first minimum. This looks much more like the graph of
the sunspot numbers. However, if (2.21) is regarded as the solution of
a difference equation, then it is seen to imply that there must be a real
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Figure 2.26 Graph of a series of superposed functions of the form of Figure 2.25,
each one starting when the one before reaches its first minimum

root, thus giving rise to at least a third-order difference equation. The
difference equation (2.19) would then need extending to include xt−3,
in which case it becomes necessary to examine the correlation between
xt and xt−3 and, possibly, between xt and more distant terms.

Yule thus considered the serial correlations of the sunspot numbers
up to lag five, i.e., he computed r(1), . . . , r(5) using the notation of
§2.9. He then computed corresponding partial correlations, which we
may denote as r(1), r(2 · 1), r(3 · 12), r(4 · 123) and r(5 · 1234), where
r(k · 12 . . . (k − 1)) denotes the correlation between xt and xt−k with the
intervening lagged values, xt−1, . . . , xt−k+1, held constant. Although no
details are presented, presumably Yule computed the partial correlations
by following the recursive scheme outlined in Yule (1907, §§14–16) with
the assumption ‘that the correlation between xt−1 and xt−2 is the same
as that between xt and xt−1, and so forth – an assumption which implies
corresponding equalities between partial correlations’ (Yule, 1927, pages
286–7). The serial and partial correlations for the extended sample are
shown in Table 2.12. The third column, labelled 1 − r2, uses the partial
correlations in its calculation. The fourth column is computed so as to
be able to use the result, taken from Yule (1907, §17), that

1 − R2
1···k = (1 − r2(1))(1 − r2(2 · 1)) · · · (1 − r2(k · 1 . . . (k − 1)))

where R2
1···k is the coefficient of multiple correlation. 1 − R2

1···k then mea-
sures the proportionate reduction in the variance of xt induced by
taking into account k lags of xt .

For both the sunspot numbers and their graduations, the original
conclusions of Yule continue to hold.

It will be seen that after the first two terms all the [partial] correlations
are so small that the continued product of (1 − r2) hardly falls at all.
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Table 2.12 Serial correlations of the sunspot numbers and the deduced partial
correlations for the extended sample period 1700–2011. In the serial correlations,
1 denotes the correlation between xt and xt−1, i.e., r(1), and so on. In the partial
correlations, 2.1 denotes the correlation between xt and xt−2 with xt−1 constant,
that is, r(2 · 1), and so on

Serial correlations Partial correlations 1 − r2 Continued product
of 1 − r2

Sunspot Numbers
1 0.822 1 0.822 0.324 0.324
2 0.455 2.1 −0.680 0.540 0.175
3 0.045 3.12 −0.140 0.980 0.171
4 −0.270 4.123 0.049 0.998 0.171
5 −0.421 5.1234 0.018 0.999 0.171

Graduated Sunspot Numbers
1 0.846 1 0.846 0.284 0.284
2 0.483 2.1 −0.816 0.334 0.095
3 0.054 3.12 0.034 0.999 0.095
4 −0.277 4.123 0.297 0.912 0.086
5 −0.435 5.1234 0.174 0.970 0.084

… It seems quite clear that … it would be an entire waste of time to
take into account any terms more distant from xt then xt−2 for pur-
poses of estimation. As regards the idea suggested that the difference
equation should be of the form required for such a function as [2.21],
it may be noted that r(3 · 12) is of the wrong sign: a positive correla-
tion would be required. The correlations give no evidence at all of any
periodicity other than the fundamental, nor of any other exponen-
tial function. They strongly emphasise the increase of the element of
predictability with the time. (Yule, 1927, page 288)

2.24 After conducting some experiments that used periodogram analysis
on ‘disturbed’ harmonic functions, which need not concern us here,
Yule concluded his paper with the following observation:

many series … may be subject to ‘disturbance’ in the sense in which
the term is here used, and … this may possibly be the source of
some rather odd results which have been reached. Disturbance will
always arise if the value of the variable is affected by external cir-
cumstances and the oscillatory variation with time is wholly or partly
self-determined, owing to the value of the variable at any time being
a function of the immediately preceding values. Disturbance, as it
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seems to me, can only be excluded if either (1) the variable is quite
unaffected by external circumstances, or (2) we are dealing with a
forced vibration and the external circumstances producing this forced
vibration are themselves undisturbed. (ibid., pages 295–7)

Yule’s legacy to time series analysis

2.25 The three papers discussed in this chapter produced major
advances in time series analysis so that, by the mid-1930s, many of
the foundations of the subject had been lain. Along with Persons, Yule
introduced the unobserved component formulation of a time series and
emphasized the difficulties that may be encountered when correlat-
ing differenced series having cyclical components. Yule also considered
the implications for correlating time series when they individually had
internal correlation structures, which he termed serial correlations (he
also introduced the concept of partial serial correlations). Two of these
structures – which Yule regarded as building blocks – correspond to
integrated processes of orders one and two, that is, series obtained by
accumulation, either once or twice, of basic series, typically random but
not necessarily so. The implications of taking sums and differences of a
time series was considered in great detail by Eugene Slutzky (1927, 1937),
and later Holbrook Working (1934) analyzed further the implications of
summing a time series.

Yule also provided an alternative to the then conventional model of
harmonic motion disturbed by superposed fluctuations, typically mea-
surement errors. This was a model in which the evolution of a time
series was dependent upon both previous values and on disturbances.
This ‘ordinary regression’ was analyzed further by Gilbert Walker (1931)
using a difference equation framework and led to Herman Wold (1938),
in his treatise introducing the concept and theoretical structure of sta-
tionary time series, terming such a model an autoregression. Wold’s
contribution was essential because it was able to provide a probabilistic
basis for the models developed essentially intuitively by Yule, Walker and
Working and consequently paved the way for the explosion of research
in theoretical time series analysis that was to come over the subsequent
two decades.



3
Kendall: Generalizations and
Extensions of Stationary
Autoregressive Models

Sir Maurice Kendall

3.1 After being introduced by Yule and Walker and having its theoret-
ical foundations established by Wold (recall §2.25), the autoregressive
model was further developed in a trio of papers written during the
Second World War by Kendall (1943a, 1944, 1945a). Sir Maurice Kendall
(he was knighted in 1974 for his services to the theory of statistics)
was born in Kettering, in Northamptonshire, on September 6, 1907
and grew up in Derby. After graduating as a mathematics wrangler (i.e.,
he received first-class honours) from St John’s, Cambridge, he joined
the Ministry of Agriculture in 1930 before moving to the Chamber of
Shipping as Assistant General Manager in 1940, combining this with
nightly war-time duties as an air-raid warden.

During the early 1930s Kendall became interested in using statistics
to analyze agricultural problems and returned to St John’s in the sum-
mer of 1935 to consult the statistics collection in the college’s library.
This produced a chance encounter with Yule, who kept the key to the
library, and subsequently they became close friends until Yule’s death in
1951, with Yule becoming godfather to Kendall’s second son. They also
became professionally close with Kendall becoming co-author of Yule’s
Introduction to the Theory of Statistics for the 11th edition and for three
subsequent editions (the last being Yule and Kendall, 1950), the textbook
becoming commonly known as ‘Yule and Kendall’.

By the end of the 1930s Kendall had published on random number
generation, on non-parametric statistics (Kendall’s tau), and had become
part of a group of statisticians aiming to produce a reference work sum-
marizing recent developments in statistical research. The project was
cancelled at the onset of war, but Kendall somehow managed to continue

70
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the project on his own, producing Volume 1 of The Advanced Theory
of Statistics in 1943 and Volume 2 in 1946 (Kendall, 1943b, 1946). He
was later joined by Alan Stuart for a three-volume revision published
between 1958 and 1966 and it is now in its sixth edition (Stuart and
Ord, 1994), being titled eponymously as Kendall’s Advanced Theory of
Statistics.

In 1949 Kendall accepted a chair in statistics at the LSE, which he left
in 1961 to become managing director and then chairman of a computer
consulting company, later known as Scientific Control Systems (SciCon).
On retiring from this position in 1972 he became director of the World
Fertility Survey, a project sponsored jointly by the United Nations and
the International Statistical Institute (of which he later became hon-
orary president), which aimed to study fertility in both developed and
developing nations. He continued with this work until 1980, when
illness forced him to retire, and he died on 29 March 1983.

As well as his knighthood, Kendall was also awarded the Peace Medal
of the United Nations in 1980 in recognition for his work on the World
Fertility Survey. He also held many other honorary positions and received
several awards, including the Presidency of the RSS, 1960–2, and the Guy
Medal in Gold in 1968. For further biographical details and discussion
of Kendall’s many and varied contributions to statistics see the obituar-
ies by Ord (1984) and Stuart (1984), the biographical sketch of Barnard
(1997) and the centenary tribute from David and Fuller (2007).

Oscillations induced by taking moving averages

3.2 In his first paper on time series, Kendall (1941) considered a problem
initially discussed by Yule but later studied in depth by Slutzky. Suppose
an observed series yt has a decomposition into trend, τt , oscillatory, γt ,
and random, εt , components of the form

yt = τt + γt + εt

and a moving average, denoted

Wyt = [w−m, . . . , w0, . . . , wm]yt =
m∑

j=−m

wjyt+j

m∑
j=−m

wj = 1

is applied, so that

Wyt = Wτt + Wγt + Wεt
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As Kendall (1941) pointed out, the ideal moving average would be one
that reproduces the trend exactly, that is, one for which Wτt = τt , in
which case the ‘detrended’ series is

yt − Wyt = γt + εt − Wγt − Wεt (3.1)

(T)he point to be emphasized is that the existence of the terms Wγt

and Wεt in [3.1] may introduce oscillatory terms which were not,
or annihilate oscillatory terms which were, in the original yt . That
is to say, the method of moving averages may induce into the data
oscillations which are entirely spurious or may reduce or remove oscil-
lations which are entirely genuine. (ibid., page 45: notation altered
for consistency)

3.3 Kendall considered first the effect on the random component of tak-
ing a moving average. Given that the typical moving average can be
expressed as an iteration of simple sums (or, to be precise, averages),
the results of Slutzky (1937) and those later provided by Dodd (1939,
1941a, 1941b) on the effect of summing random series may be used.
Thus suppose that, on setting wj = 1/(2m + 1), −m ≤ j ≤ m,

ε
[2]
t = Wεt = 1

2m + 1

m∑
j=−m

εt+j = 1
n

m∑
j=−m

εt+j

is a simple moving average of εt . If εt is random, so that consecutive
values are independent, consecutive values of ε(2)

t will not be indepen-
dent, since ε

(2)
t and ε

(2)
t+k will have n − k values of εt in common and

will thus be correlated if n > k. ε(2)
t will then be much smoother than the

random series εt and, if further moving averages are taken, the result will
be smoother still. Indeed, as Slutzky pointed out, after only a few sum-
mations the resulting series becomes very smooth, having fluctuations
with varying amplitude and with phase and periods concentrated around
a particular modal value – just those features that are characteristic of
oscillatory time series.

Dodd utilized the following useful geometrical result. Consider the
two sums

xt =
n∑

j=1

ajεt+j

zt =
n∑

j=1

bjεt+j
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where it is now assumed that the εt are normally distributed with zero
mean and constant variance, V say. Treating xt and yt as planes, the
cosine of the angle θ between them is given by

cos θ =
∑

ajbj(∑
a2

j

∑
b2

j

)1/2

When θ is expressed in radians, θ/360 has the interpretation of being
the probability that xt and yt are of opposite signs. Using this result, it
follows that the probability of xt and xt+1 changing signs is obtained
from

cos θ =
∑

ajaj+1∑
a2

j

The change of sign from negative to positive between successive values
of xt is known as an ‘up-cross’, so that the mean distance between up-
crosses is 2π/θ: this, of course, is also the mean distance between ‘down-
crosses’ – changes of sign from positive to negative. For


xt = xt+1 − xt = c1εt + c2εt+1 + · · · + cnεt+n−1 + cn+1εt+n

the probability that 
xt−1 > 0 and 
xt < 0, i.e., that xt is a maximum,
is then θ′/360, and the mean ‘peak-to-peak’ distance between maxima
is 2π/θ′, where

cos θ′ =
∑

cjcj+1∑
c2

j

c1 = −a1, cn+1 = an, cj = aj−1 − aj, j = 2, 3, . . . , n − 1

Dodd considered various extensions and generalizations of these
results. For example, minor oscillations, or ‘ripples’, may be eliminated
by requiring that, for maxima, the condition xt > xt+p, for p arbitrarily
chosen, must hold along with 
xt−1 > 0 and 
xt < 0. The assumption
of normal random variation can be relaxed with the results seeming to
be applicable to various other distributional assumptions.

3.4 The amplitude of the induced oscillations in Wεt was also consid-
ered by Kendall. Since ε(2)

t is the sum of n independent random variables
each with variance V , it will have variance V/n. As further sums are
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taken, the variance of these sums becomes progressively more compli-
cated to derive, although an expression was given in Kendall (1941,
equation (11)). The general effect is clear, however:

the variance of the series … is reduced very considerably by the first
averaging but less so by subsequent averagings, and this is what we
might expect from the correlations between members of the series.
For example, when n = 7, the first averaging reduced the variance
by 1

7 , whereas the next four averagings reduce it by little more than a
further 1

2 . (ibid., page 47)

Although oscillatory movements in Wεt will thus tend to be small
compared to the random fluctuations in εt itself if n is large, they are
not necessarily negligible: as Kendall pointed out, even though a peri-
odogram analysis of εt would reveal no periodicities, an analysis of Wεt

may and probably would.
To reduce the effect of Wεt as much as possible, n should be made

large rather than increasing the number of iterations of the moving aver-
age, that is, the individual weights should be as small and as equal as
possible.

3.5 Kendall then considered the effect of taking a moving average on
the genuinely oscillatory part of the original series, i.e., on the behaviour
of Wγt . Suppose that this component follows a simple sine wave, γt =∑n

j=1 sin(α+ jλ). Since

n∑
j=1

sin (α+ jλ) = sin 1
2 nλ

sin 1
2λ

sin
(
α+ 1

2 (n − 1)λ
)

a simple moving average of n consecutive terms centred at the middle
term will result in a sine series of the same period and phase as the
original, but with its amplitude reduced by the factor

1
n

sin 1
2 nλ

sin 1
2λ

Iterating q times will reduce the amplitude by the qth power of this fac-
tor. This implies that Wγt will be small if n and q are both large or if
1
2 nλ = 0(mod π), that is, if the extent of the moving average is a period
of the oscillation. On the other hand, if λ and nλ are small then the
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amplitude will barely be reduced at all and γt − Wγt will largely disap-
pear because the moving average will partially obliterate the harmonic
term in γt . With nλ being small, the extent of the moving average will
be short compared to the period of the harmonic. The oscillation will
then be a very slow one and will be treated as part of the trend by the
moving average and eliminated accordingly. The moving average will
therefore emphasize the shorter oscillations at the expense of the longer
ones. If, on the other hand, the moving average is longer than the period,
Wγt may have the original oscillation but with the sign reversed, so that
the fluctuations from trend may exaggerate the true oscillations. Kendall
thus concluded that

in the study of oscillations obtained from a time-series by eliminating
trend with moving averages it is desirable to safeguard against the
introduction of spurious effects and the distortion of genuine effects
due respectively to the random and oscillatory terms of the original
series. This can best be done by extending the moving average so far
as possible and by making it approximate to a multiple of any cycles
which are suspected to exist. Iteration rapidly reduces the distortion
of genuine oscillatory movements, but does not exert such a great
effect on the spurious cycles due to random fluctuations.

These considerations support the desirability of extending the mov-
ing average as far as possible; but other considerations will work in
the reverse direction. The saving of arithmetic; the avoidance of sac-
rificing terms at the beginning and end of the series; and the nature
of the weighting dictated by trend elimination itself are factors of this
kind. (ibid., page 49)

Oscillatory autoregressions

3.6 Kendall’s interest in oscillatory autoregressions was kindled by his
work at the Ministry of Agriculture, where he was examining a wide
variety of agricultural time series which he had detrended by using a
nine-term moving average. Given the above analysis, Kendall was able
to argue that, although the mean period of the oscillations induced by
taking such a moving average to eliminate the trend was not sufficiently
different from the observed mean period to dispose of the suggestion
that the observed oscillations were spurious, the use of variate differ-
encing revealed that the variance of the random component was almost
certainly very much smaller than that implied by the process of mov-
ing averaging. Hence Kendall was able to conclude that detrending his
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series in this way did not induce spurious oscillations and that the oscil-
latory character of the detrended series were indeed an inherent feature
of the data.1

This enabled him to concentrate on analyzing the detrended obser-
vations as an ‘oscillatory’ time series generated by the second-order
autoregressive process studied by Yule (1927)

xt + axt−1 + bxt−2 = εt (3.2)

for which the roots of the characteristic equation z2 + az + b = 0 are
assumed to be the complex conjugates α± iβ. The complementary
function of (3.2) is then

pt (A cos θt + B sin θt) (3.3)

where p = +√
b,

θ = tan−1 β

α
= tan−1

√(
4b
a2

− 1
)

= cos−1
( −a

2
√

b

)
and A and B are arbitrary constants. Assuming b > 0, 0 < p < 1, and
4b > a2, the complementary function (3.3) represents a damped har-
monic with a fundamental period of 2π/θ. If ξt is a particular value of
(3.3) such that ξ0 = 0 and ξ1 = 1, so that A = 0, B = 1/p sin θ, and

ξt = ptB sin θt = pt sin θt/p sin θ = pt sin θt/p tan θ cos θ

= 2√
(4p2 − a2)

pt sin θt

then a particular integral of (3.3) is
∑∞

j=0 ξjεt−j+1 and the complete
solution becomes

xt = pt (A cos θt + B sin θt) +
∞∑

j=0

ξjεt−j+1

If the series was ‘started up’ some time ago, so that the complementary
function has been damped out of existence, then this solution is just

xt =
∞∑

j=0

ξjεt−j+1

which is a moving sum of a random series with damped harmonic
weights. For a long series, Kendall showed that the autocorrelations were
given by2
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ρk = pk sin (kθ + ψ)
sinψ

tanψ = 1 + p2

1 − p2
tan θ

so that, apart from a constant factor, ρk is given by the product of the
damping factor pk and a harmonic term which has the fundamental
period of the generating equation (3.2). Using results in Wold (1938),
the relationship between the autocorrelations and the coefficients of the
autoregression may be shown to be

ρ1 = − a
(1 + b)

ρ2 = a2 − b(1 + b)
1 + b

with subsequent autocorrelations being computed using the recursion

ρk + aρk−1 + bρk−2 = 0

Focusing on the oscillatory characteristics of both the generated series
xt and its correlogram (as the plot of the autocorrelations against k had
become known), Kendall pointed out that, although ρ0 = 1 will always
be a peak at the beginning of the correlogram, the presence of the
phase angle ψ implies that the interval from k = 0 to the next maxi-
mum of the correlogram will not be equal to the fundamental period
2π/θ = 2π/ cos−1 (− a/2

√
b). Consequently, Kendall preferred to judge

the length of the period by measuring from up-cross to up-cross (that
is, values of k at which the correlogram turns from negative to positive)
or from trough-to-trough of the correlogram – if peaks are to be preferred,
then the peak at k = 0 should not be counted. On the assumption that
the εt are normal, Kendall (1945a, Appendix) showed that the mean
distance (m.d.) between up-crosses was

m.d. (up-crosses) = 2π
cos−1 ρ1

= 2π
cos−1 (− a/(1 + b))

while the mean distance between peaks was

m.d. (peaks) = 2π
cos−1 τ1

, τ1 = −1 + 2ρ1 − ρ2

2(1 − ρ1)
= b2 − (1 + a)2

2(1 + a + b)

The relationship between the variances of the random error εt and the
generated series xt , denoted σ2

ε and σ2
x respectively, is easily shown to be

σ2
ε

σ2
x

= 1 − b
1 + b

((1 + b)2 − a2) (3.4)

a result that will be found to be useful in §3.13.
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3.7 Kendall illustrated these properties of an oscillatory autoregressive
process by generating 480 observations from the model (3.2) with a =
−1.1 and b = 0.5, that is,

xt = 1.1xt−1 − 0.5xt−2 + εt (3.5)

The error process was assumed to be an integer rectangular random
variable ranging from −49 to +49. The observations on this variable,
termed Series I, are listed in Kendall (1945a, Table 2) and are plotted as
Figure 3.1. ‘Evidently systematic movements are present although they
are obscured to some extent by the random variable. The series is,
in fact, highly damped, the damping factor being

√
0.5 = 0.7071, so

that we should expect the disturbance function to exercise considerable
influence on the course of the series’ (ibid., page 105).

The frequency distributions of the peak to peak and up-cross to up-
cross intervals are shown in Table 3.1. As τ1 = 0.3, so that cos−1 τ1 =
72.54◦, the expected mean-distance between peaks is 360/72.54 = 4.96:
the observed mean distance in Series I of 5.05 thus represents an
excellent agreement.

The expected mean-distance between up-crosses is 2π/ cos−1 (0.7333) =
8.40 compared to an observed value of 8.30. The fundamental period of
the generating equation, however, is 2π/θ = 2π/ cos−1 (− a/2

√
b) = 9.25,

which is rather longer.
Given these oscillatory properties of Series I, Kendall considered

whether a standard periodogram analysis would uncover them (see
Mills, 2011a, chapter 2, for discussion of the contemporary develop-
ment of the periodogram: the rudiments of periodogram analysis are
sketched out in §§5.4–5.5). The periodogram calculated by Kendall is
shown in Figure 3.2, the top panel for integer values of the period P up
to 50, the bottom panel for a finer mesh of periods between 8 and 9. This
led him to conclude that

(t)he results are rather striking. There are about a dozen peaks, two
of which, at 20 and 42, stand out as offering substantial evidence of
significant periods. In fact there are periods almost everywhere except
in the right place, at 8 or 9. (ibid., page 106)

Kendall compared ‘the ambiguous and confusing picture presented by
the periodogram’ with the correlogram of Series I, shown in Figure 3.3.

The damped oscillatory effect is now clearly evident, and the only
doubt that would occur is that after a point the oscillations do not
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Figure 3.1 480 observations of Kendall’s Series I
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Table 3.1 Distribution of intervals from peak-to-peak
and up-cross to up-cross for Series I

Interval Peak-to-peak Up-cross to
(units) frequency up-cross frequency

2 10 3
3 17 3
4 14 5
5 13 2
6 14 6
7 13 9
8 5 10
9 4 5

10 1 2
11 2 2
12 – 3
13 – 2
14 – 1
15 – 1
17 – 2
29 – 1

Total 93 57

continue to damp out. This is due to the shortness of the series ….
The average interval between troughs of the correlogram is 7.2 (or
8.0 if we ignore the doubtful ripple at 41), moderately close to the
mean-distance between up-crosses (but considerably longer, one may
remark, than the mean-distance between peaks).

It seems undeniable that so far as this particular series is concerned
the correlogram gives much better results than the periodogram.
Without prior knowledge of the way in which the series was gen-
erated, we should be led by the correlogram to suspect a simple
autoregressive scheme.’ (ibid., page 110)

Indeed, using the observed serial correlations leads to the scheme

xt = 1.132xt−1 − 0.486xt−2 + εt

which is a good approximation to the true generating equation (3.5).

3.8 Kendall (1943a, 1944) applied these ideas to several agricultural
series for England and Wales. Figure 3.4 shows the annual observations
from 1871 to 1934/1935 for wheat prices and sheep population taken
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Figure 3.2 Periodogram of Series I: ρ(P) is the value of the periodogram for
period P

from Kendall (1943a, Table 1), while Figure 3.5 shows their correlograms.
Kendall concluded that both show ‘real systematic fluctuations’ and he
used, for the first time, concepts of statistical significance to support
this conclusion.

Owing to the comparative shortness of the series one has to safe-
guard against being misled by sampling effects and against seeing
more in the diagrams than actually exists. No test is known for the
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Figure 3.3 Correlogram of Series I

significance of a correlogram. For any given serial correlation the the-
ory of large samples may be used to show that the standard error is
approximately 1/

√
n, where n is the number of pairs entering into the

correlation. To test the hypothesis that correlations are zero we should
probably not make a serious misjudgment by using the standard error
to obtain probabilities in the normal way – that is, by reference to the
normal distribution; but it is not clear that the number of terms used
in calculating these particular coefficients (e.g., … 64 for r1, 63 for
r2 . . .35 for r30) is large enough to justify the use of large sample the-
ory. However, taking the standard error as 1/

√
n, we see that, to the

5 per cent level of probability, a value of 0.25 would be required for
r1 before we could assume its significance, and a value of 0.33 for r30.

This applies for any given coefficient, but it does not help much
in deciding whether the undulatory character of the whole set of
serial correlations is significant of regular oscillation. However, I do
not think that anyone would doubt, after looking at the correlo-
grams … that the undulations are not accidental.’ (Kendall, 1943a,
pages 102–3; italics in original)

Focusing first on the sheep population data, Kendall considered the
partial correlations of the series, the first six being shown in Table 3.2,
along with the continued product of 1 − r2 (as in Table 2.12), conclud-
ing that ‘it is clear that no appreciable gain in representation is to be
obtained by taking the regression on more than two preceding terms’
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Figure 3.4 Detrended wheat prices and sheep population for England and Wales:
1871–1934/5

(ibid., page 104). A similar pattern of partial correlations is found for the
wheat price series, also shown in Table 3.2.

The autoregression implied by the correlogram of the sheep popula-
tion series is

xt = 1.029xt−1 − 0.741xt−2 + εt

Since

tan θ =
√(

4b
a2

− 1
)

= 1.341, θ = 53.3◦
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Figure 3.5 Correlograms of wheat prices and sheep population

Table 3.2 Partial correlations of the sheep population and wheat price series

Serial correlations Partial correlations 1 − r2 Continued product
of 1 − r2

(a) Sheep population
1 0.575 1 0.575 0.669 0.669
2 −0.144 2.1 −0.709 0.497 0.332
3 −0.561 3.12 −0.036 0.999 0.332
4 −0.477 4.123 −0.049 0.998 0.331
5 −0.119 5.1234 −0.089 0.992 0.329
6 0.128 6.12345 −0.209 0.956 0.314

(b) Wheat prices
1 0.568 1 0.568 0.677 0.677
2 0.023 2.1 −0.442 0.805 0.545
3 −0.255 3.12 −0.041 0.998 0.544
4 −0.378 4.123 −0.260 0.991 0.539
5 −0.361 5.1234 −0.097 0.995 0.536
6 −0.313 6.12345 −0.271 0.927 0.497

the period is calculated as 360/53.3 = 6.8 years. In the correlogram there
are peaks at k = 7, 17 and 25 years (ignoring k = 0: see §3.6), giving
periods of 10 and 8 years with a mean of 9, while there are troughs
at k = 3, 13, 21 and 28, giving periods of 10, 8 and 7 with a mean of
8.3 years. ‘We therefore conclude that the real period is between 8 and
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9 years, whereas that given by solving the autoregressive equation is
much shorter’ (ibid., page 107).

Similar calculations for the wheat price series obtains

xt = 0.826xt−1 − 0.448xt−2 + εt

with θ = 51.9◦ and a period of 6.9 years. The correlogram has peaks at
k = 9, 19 and 28 and troughs at k = 4, 14 and 25, thus implying a period
of around 10 years, again larger than the fundamental period implied by
the autoregressive scheme.

3.9 Kendall considered whether this underestimation of the period
from the autoregression could be a consequence of an additional super-
posed random element of the type discussed by Yule (1927) (see §2.16).
If this is denoted ηt and assumed to have variance σ2

η and to be indepen-
dent of the disturbance εt , then, if superposed on xt , it will increase the
variance of the observed series from σ2

x to σ2
x + σ2

η . The autocovariances
will not be affected, so that all autocorrelations (except ρ0 = 1) will be
reduced by the ratio

c = σ2
x

σ2
x + σ2

η

(3.6)

To illustrate this effect, Kendall constructed an autoregressive series of
65 terms as

ut = 1.5ut−1 − 0.9ut−2 + εt (3.7)

where the εt are rectangular random variables in the range −49.5(1) . . .
+49.5. On to the series so derived were superposed (a) a second rectan-
gular random variable with the same range, and (b) a further rectangular
random variable with the range −199.5(1) . . .+199.5, the combined vari-
able then being divided by 10 and rounded up to the nearest integer.
These constructed series are given in Kendall (1944, Table 5) and their
correlograms are shown in Figure 3.6. Kendall showed that, for a series
of infinite length, the value of c would be 0.93 for (a) and 0.45 for (b),
so that the autocorrelations for the second series should be much smaller
than those for the first.

The correlograms run according to expectation. The effect of the big-
ger random element is to reduce the amplitude at the beginning of
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Figure 3.6 Correlograms of two artificial series with (a) a slight superposed
variation, and (b) a large superposed variation

the series and to introduce some minor irregularities in the data, but
not to effect substantially the lengths of the correlogram oscillations.
(ibid., page 114)

From the equations for ρ1 and ρ2 in §3.6, the coefficients a and b can
be written in terms of the serial correlations r1 and r2 as

−a = r1(1 − r2)
1 − r2

1

− b = r2 − r2
1

1 − r2
1

(3.8)

Apart from the fact that r1 and r2 may not be reliable estimates of ρ1

and ρ2 if the observed series is short, thus imparting sampling error
into the estimates of a and b, the presence of superposed variation will
reduce the autocorrelations by a factor c, leading to the estimates

−a′ = cr1(1 − cr2)
1 − c2r2

1

− b′ = cr2 − c2r2
1

1 − c2r2
1

The estimated fundamental period of the generating equation is then
given by

4 cos2 θ′ = a′2

b′ = cr2
1 (1 − cr2)2

(1 − c2r2
1 )(r2 − cr2

1 )
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which Kendall expanded in powers of γ = 1 − c to obtain, as a first-order
approximation,

a′2

b′ = a2

b

(
1 − γ

(1 + b(3b2 − b − a2))
b((1 + b)2 − a2)

)

Hence, if 3b2 − b − a2 > 0 the effect of a superposed variation (that is.,
γ positive) is to make a′2/b′ < a2/b or, in other words, to result in a
shortening of the observed period. The condition 3b2 − b − a2 > 0 is
equivalent to

b > 1
6 (−1 +

√
(12a2 + 1))

which is not very restrictive since, in any case, a2 ≤ 4 and 4b ≥ a2.
Kendall was thus led to

the interesting conclusion that if there is any superposed random
variation present, the period calculated from the observed regres-
sion equation according to formulae [3.8] will probably be too short
even for long series. Yule himself found too short a period for his
sunspot material and, suspecting that it was due to superposed vari-
ation, attempted to reduce that variation by graduation [§2.19]. The
result was a longer period more in accordance with observation. It
does not appear, however, that the superposed variation in his case
was very big. In a number of agricultural time series which I have
examined it is sometimes about half the variation of the series and
the effect on the period as calculated from the serial correlations is
very serious. For instance, in the cases of wheat prices and sheep pop-
ulation referred to above, formulae [3.8] give periods of 7.0 and 6.8
years, whereas the correlograms indicate periods of about 9.5 and 8.5
years respectively. (ibid., page 116)

To demonstrate this effect, the correlogram of series (b) in Figure 3.6 has
r ′
1 = 0.486 and r ′

2 = 0.133, thus giving, according to (3.8),

−a′ = 0.552 b′ = 0.135 cos θ′ = −a′

2
√

b′ = 0.751 θ′ = 41.3◦

which corresponds to a period of about 8.7 years. In contrast, since it is
known that a = −1.5, b = 0.9 and θ = 37.7◦, the true period is 9.5 years.
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This may not seem to be too large an effect, given that the first two
serial correlations have been reduced from 0.78 and 0.33 to 0.49 and
0.13, respectively. Kendall argued, however, that the example served to
bring out the difficulties associated with short series and the consequent
unreliability of coefficients calculated from the first two serial correla-
tions in such situations, pointing out that if r ′

2 = 0.18 rather than 0.13
then an increased period of about 12 years would have been obtained
and if r ′

2 = 0.20 no solution would be possible since then a′2 > 4b′ and
cos θ′ > 1. Both these changes in values are well within the one-standard
error bound of 1/

√
65 = 0.12.

Kendall also pointed out that the proportionate declines in the first
two serial correlations brought about as a consequence of superposed
variation were rather different, being 0.49/0.78 = 0.63 and 0.13/0.33 =
0.40 respectively, making it difficult to conclude that r1 and r2 were
reduced by a constant proportion c. In fact, Kendall went on to show
that, even in long series where it is legitimate to make this assumption,
the length of the period was very sensitive to superposed variation, pro-
viding an example based on (3.7) in which a superposed variation of
about 10% of the total (c = 0.9) shortened the period by around one year.

3.10 Kendall employed these results to investigate the oscillatory prop-
erties of the wheat price series of Figure 3.4. The correlogram shown in
Figure 3.5 has up-crosses at about 7.5, 17.2 and 26.1 years, giving peri-
ods of 9.7 and 8.9 years with a mean of 9.3 years, with a similar result
being obtained from the troughs in the correlogram. Calculating a′ and b′

by (3.8) with r ′
1 = 0.5773 and r ′

2 = 0.0246 gives

a′ = −0.8446 b′ = 0.4630

so that

cos θ′ = 0.6206 θ′ = 51.63◦

with an estimated period of 6.97 years. As this is rather smaller than
that calculated from the correlogram, Kendall suspected the existence
of superposed variation. To estimate the variance of the superposed ele-
ment η, he assumed that this was random with no periodic terms of very
short period, thus enabling him to use the variate differencing method
(cf. §2.4). By taking up to tenth differences of the original series (that
is, before the trend was eliminated), Kendall estimated the random vari-
ance as 27.72. Since the total variance of the series is 272.8, this gives



Kendall: Stationary Autoregressive Models 89

c as 1 − (27.72/272.8) = 0.90, so that r1 = r ′
1/c = 0.5773/0.90 = 0.641

and, similarly, r2 = 0.027. From these are obtained

a = −1.059 b = 0.652 cos θ = 0.6551 θ = 49.07◦

giving a period of 7.34 years, which is still too short.
To produce a period of 9.3 years would require a random superposed

variance of about 25%, rather than 10%, of the total variance and
this led Kendall to question the assumption of a random superposed
variation:

‘we have little ground for expecting that it should be. A positive corre-
lation between successive values of η will reduce the variance shown
as random by the variance difference method and unless we have
prior reason to suppose that η is random the values given by the
variate difference method are likely to be too small. Unfortunately
we rarely have any prior knowledge of η, but from general economic
considerations one would not be surprised to find that there do exist
positive correlations from one year to the next, owing to the endur-
ing nature of some of the causes which can give rise to superposed
variation. I conclude generally that discrepancies of the type here
considered support the view that the period is to be determined from
the correlogram, not from solution of the regression equation.’ (ibid.,
pages 118–19)

Interactions and cross-correlations between time series

3.11 After mentioning extensions to higher order and non-linear autore-
gressive schemes, in his final paragraph Kendall (1944) introduced a
further potential difficulty.

A more serious problem arises if the series ε is itself not random, a
state of affairs which one fears might be fairly common in economic
series. To take the wheat price data once again, it would not be sur-
prising to find that the wheat price oscillations were regenerated by
a series of disturbances, part of which were attributable to variations
in acreages, yields, or the prices of other crops. Such disturbances
might themselves be oscillatory. For such cases the problem becomes
exceedingly complicated. To discuss it at all satisfactorily one would
require a long series or collateral evidence in the form of other series
of a similar character. If there is a royal road in this subject it has
not yet been discovered. (ibid., page 119)



90 A Very British Affair

In fact, Kendall (1943a) had already addressed the case in which the
oscillations of two series could be correlated.

When a number of products are associated or are likely to be affected
together by external shocks there may appear interactions of a very
complicated kind. Movements in one series may affect the distur-
bance function in others, and in consequence the functions may cease
to be random: and even if they continue to be random, the functions
for different products may be correlated. (ibid., page 112)

To analyze such a situation, Kendall used cross-correlations, which were
first introduced over forty years earlier by Hooker (1901) and which may
be denoted rxy(k). Suppose there are two series of the form (3.2) with
solutions

xt =
∞∑

j=0

ξjεt−j+1

and

yt =
∞∑

j=0

χjζt−j+1

The covariance between xt and yt+k is then given by

E(xtyt+k) =
∞∑

t=−∞

⎛⎝ ∞∑
j=0

ξjεt−j+1

⎞⎠⎛⎝ ∞∑
j=0

χjζt−j+1

⎞⎠
Kendall assumed that the disturbances were random but that ξt = μζt ,
so that an external disturbance affects both series to a similar extent but
in different proportions. The covariance then reduces to

E(xtyt+k) =
∞∑

j=0

(ξjχj+k)μ2σ2
ζ

so that it and the cross-correlation rxy(k) will be proportional to∑
ξjχj+k. If

ξj = A1p j
1 sin θ1j χj = A2p j

2 sin θ2j

then

rxy(k) ∝ pk
2

∞∑
j=0

p j
1p j

2 sin θ1j sin θ2( j + k) (3.9)
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Thus, for k ≥ 0, rxy(k) will have the appearance of a damped sinusoid
because of the presence of pk

2. For k ≤ 0 the effect will be the same except
that the damping will be according to the factor pk

1, so that the damping
is not symmetrical and thus rxy(k) �= rxy(− k).

3.12 Figure 3.7 shows the sheep and cow population series, while the
cross-correlation function rcs(k), using an obvious nomenclature, is
shown in Figure 3.8: Kendall referred to this as the lag correlogram. The
series clearly show a similar pattern of oscillations, while the lag cor-
relogram appears to be of the type arrived at above, although Kendall
was careful to point out that the assumptions made to reach (3.9) were
‘rather specialized, and unlikely to be realized exactly in practice’ (ibid.,
page 113). Nevertheless, he concluded that

‘the [cross-]correlations … reach a maximum for k = 0, which indi-
cates that the oscillations have some cause in common. It may be
inferred that the oscillations do not take place one at the expense of
the other – that is to say, an increase in cows is not accompanied by
a decline in sheep. On the contrary, the two seem, on the average, to
react in the same direction. This conforms to the idea that the oscil-
lations in livestock populations are excited by disturbance functions
outside the farming system.’ (ibid., page 116)
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Figure 3.7 Cow and sheep populations for England and Wales, 1871–1935
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‘Internal’ correlations and the lambdagram

3.13 In his final paper on time series, Yule (1945) broke away from the
analysis of oscillatory processes to consider an alternative way of charac-
terizing the properties of a time series. This was based on a result in Yule
and Kendall (1950, page 390) concerning the variance of the means of
independent samples drawn from a time series, and which focused on
the behavior of the quantity

λn = 2
n

((n − 1)ρ1 + (n − 2)ρ2 + · · · + ρn−1) (3.10)

as n increases. This can be written as

λn = 2
n

Tn

where

Tn =
n−1∑
i=1

Si Si =
i∑

j=1

ρj

so that it is the second sum of the serial correlations scaled by the fac-
tor 2/n. If Sm has a finite value such that m and Tm become negligible
when compared to n and Tn, then the limiting value of λn is 2Sm.



Kendall: Stationary Autoregressive Models 93

Yule termed λn the coefficient of linkage. If λn = 0 then either all of
the serial correlations are zero or any positive correlations are bal-
anced by negative correlations. Yule showed that −1 < λn < n − 1 and
the implications of these limits are revealed when we use Yule’s result
that the variance of the means of independent samples of length n is
(σ2/n)(1 + λn), where σ2 is the variance of the series itself. The maximum
value λn = n − 1 occurs when ρi = 1 for i = 1, . . . , n − 1, so that the terms
of samples of size n are completely linked together and the means of the
successive samples have the same variance as the series itself. The min-
imum value λn = −1 is achieved when the terms in the sample are as
completely negatively linked as possible (bearing in mind that not all
pairs in a sample can have a correlation of −1) and the means of the
successive samples have zero variance and hence do not vary at all. If
λn = 0 then the terms are unlinked and the means of successive samples
behave like means of random samples. Yule termed a plot of λn against
n a lambdagram.

If a correlated series is formed by summing a random series in over-
lapping runs of k terms, i.e., as vt = ∑k

j=1 ut+j, then ρi = (k − i)/k,
i = 1, . . . , k − 1, ρi = 0, i ≥ k, Sn = 1

2 (k − 1) and, in the limit, λn =
k − 1. Thus all values of λn are positive and the lambdagram clearly
approaches a limit, as is seen in Figure 3.9, which displays the lambda-
gram for k = 5.
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Figure 3.9 Lambdagram for a correlated series formed by summing the terms of
a random series in overlapping groups of five
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Figure 3.10 Calculated lambdagrams for a variety of time series

Figure 3.10 displays calculated lambdagrams for a variety of series
analysed by Yule and Kendall, as well as the sunspot index (n is generally
set at the value chosen by Yule). They display a variety of patterns, with
Kendall’s agricultural series having similar lambdagrams both between
themselves and with the Beveridge wheat price index. The sunspot
index has a lambdagram that is generally increasing towards a maxi-
mum that appears to be in the region of 3.75, while the lambdagram
of Kendall’s series I looks to be declining towards a value of around
1.2. Since this latter series is generated by the oscillatory process (3.5),
Kendall (1945b) analysed the implications for the lambdagram of this
underlying generating process. For the process of §3.6, Kendall showed
that the limiting value of the lambdagram for large n is

λ = −2(a + b + b2)
(1 + b)(1 + a + b)

(3.11)
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If b = 1 then it is easy to see that λ = −1, while using (3.4) and (3.8)
allows λ to be written as

λ = 2
1 + a + b

(ρ1 − b)

For an oscillatory process 1 + a + b = (1 − ρ1)/(1 + b) ≥ 0 because b > 0
and −1 ≤ ρ1 ≤ 1. Hence λ will be positive or negative depending on
whether ρ1 is greater than or less than b, the square of the damping
factor p.

3.14 Of course, the ‘true’ autocorrelations are given by ρ0 = 1 and
ρ1 = −a/(1 + b) followed by the recursion ρi+2 = −aρi+1 − bρi. The set
of autocorrelations thus generated with a = −1.1 and b = 0.5 can then
be used to calculate the ‘theoretical’ lambdagram, which is shown with
the empirical lambdagram of Series I in Figure 3.10. The limiting value
from (3.11) is λ = 1.167 and by n = 50 both the observed and theoret-
ical lambdagrams are consistent with this and are themselves almost
identical. However

throughout the previous course of the lambdagram the observed
values are much higher than the theoretical values.

It seems clear that these differences are due to the failure of the
observed correlations to damp out according to theoretical explana-
tion [cf. the discussion of §3.7]. If this is the correct explanation
I should expect it to be equally possible on occasion for the obser-
vations to be systematically lower than the theoretical over parts of
the range. Series I, it is to be remembered, is based on 480 terms and
we are entitled to expect that for shorter series observation and theory
will be less in agreement. (Kendall, 1945b, page 228)

Values of a and b for each of the other series shown in Figure 3.10
can be computed using (3.10) and the limiting values of the lambda-
gram calculated using (3.11). This produces λ values of −0.421, −0.394
and 0.004 for the sheep, wheat and cow series, 0.876 for the Beveridge
wheat price index and 0.935 for the sunspot index. From Figure 3.10
it is clear that none of these limiting values look to be very close to the
values that the empirical lambdagrams appear to be tending towards.
While Kendall thought that short oscillatory series would give rise to
serial correlations that did not damp out according to theoretical expec-
tation, and hence empirical lambdagrams at odds with their theoretical
counterparts, an alternative explanation could be that these series are
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not adequately represented by oscillatory processes, so that more general
autoregressions are required.

Estimation of autoregressive models

3.15 Yule had estimated the coefficients of his autoregressions by ordi-
nary least squares. Using the second-order autoregression (3.2) as an
example, then (3.8), which expresses the coefficients a and b in terms of
the first two serial correlations r1 and r2 as

a = − r1(1 − r2)
1 − r2

1

b = r2
1 − r2

1 − r2
1

provides the least squares estimates of the coefficients (strictly, these
expressions are asymptotically equivalent to the least squares estimates,
that is, they are identical if the serial correlations are estimated as
rk = ∑T−k

t=1 xtxt+k
/∑T

t=1 x2
t ). The properties of the least squares estimator

were analyzed by Mann and Wald (1943), who showed that they were
equivalent to maximum likelihood estimators on the assumption that εt

was identically and independently distributed.
The equations for a and b can be expressed as the pair

r1 + a + r1b = 0

r2 + ar1 + b = 0

Wold (1938, chapter III. 24) showed that, in fact, these were only the
first two equations in the extended system

r1 + a + r1b = 0

r2 + ar1 + b = 0

r3 + ar2 + br1 = 0

...

Kendall (1949) termed this system the Yule–Walker equations. The solu-
tion of the first two equations yields the standard least squares estimates.
The least-squares solution to the first m of these equations is obtained
by minimizing

m∑
i=1

(ri + ari−1 + bri−2)2
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For example, using the first three Yule–Walker equations leads to the pair
of equations

(r1 + r1r2 + r2r3) + a(1 + r2
1 + r2

2 ) + b(2r1 + r1r2) = 0

(r2
1 + r2 + r1r3) + a(2r1 + r1r2) + b(1 + 2r2

1 ) = 0

and the solutions

a = (2r1 + r1r2)(r2
1 + r2 + r1r3) − (1 + 2r2

1 )(r1 + r1r2 + r2r3)
(1 + 2r2

1 )(1 + r2
1 + r2

2 ) − (2r1 + r1r2)2

b = (2r1 + r1r2)(r1 + r1r2 + r2r3) − (1 + r2
1 + r2

2 )(r2
1 + r2 + r1r3)

(1 + 2r2
1 )(1 + r2

1 + r2
2 ) − (2r1 + r1r2)2

From a set of simulation experiments Kendall concluded that this
approach provided no improvement over the least squares approach of
solving the first two Yule–Walker equations, particularly for large val-
ues of m, and he suggested that this was because the higher-order serial
correlations were so affected by sampling variability that any gain from
using the additional equations was more than offset by the increase in
sampling unreliability.

Kendall considered two further estimation methods. The first was a
method of moments type estimator in which the first k covariances
of εt were set to zero and the resulting expressions solved, while the
second extended the approach of Quenouille (1947). Again, neither
method proved superior to least squares, which has since become the
standard method of estimating the coefficients of autoregressions.

Fitting polynomial trends

3.16 As we discussed in §3.2–3.5, a popular method of detrending
during the first half of the twentieth century was to use a moving aver-
age and many of the variants are discussed in detail in Mills (2011a,
chapter 10). An important reason for their popularity was that they
could be computed essentially as a sequence of summations, which sub-
stantially minimized the arithmetic burden. As computational require-
ments became less of a concern, attention focused on the direct fitting
of local polynomials. The general approach was set out by Kendall in
Volume 2 of his Advanced Theory of Statistics (Kendall, 1946). This is
to take the first n terms of a time series, u1, . . . , un say, where n is
taken to be an odd number, fit a polynomial of degree p ≤ n − 1 to
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these observations, and use this polynomial to determine the ‘trend’
value vt for t = (n + 1)/2 (the choice of an odd value of n ensures that
a unique ‘middle’ value exists at any observed date). The operation is
then repeated using the terms u2, . . . , un+1 to obtain the next trend value
v(n+3)/2, and then repeated throughout the time series, finally obtaining,
for the terms uT−n+1, . . . , uT , the trend value vT−(n−1)/2.3

While this procedure would, on the face of it, require the contin-
ual fitting of a pth degree polynomial by least squares, the recursive
nature of the computations enables the trend values to be calculated
directly as a weighted moving average. To see this, again put n = 2m + 1
and, without loss of generality, consider the sequence of terms u−m,
u−m+1, . . . , u0, . . . , um−1, um. To fit a polynomial of degree p by least
squares to this sequence requires solving the p + 1 equations

∂

∂aj

m∑
t=−m

(ut − a0 − a1t − · · · − aptp)2 = 0 j = 0, 1, . . . , p

which gives equations of the form∑
t jut − a0

∑
t j − a1

∑
t j+1 − · · · − ap

∑
t j+p = 0 j = 0, 1, . . . , p

(3.12)

Since the summations in (3.12) are functions of m only, solving for a0

yields an equation of the form

a0 = c0 + c1u−m + c2u−m+1 + · · · + c2m+1um (3.13)

where the c’s depend on m and p, but not on the u’s. As u0 = a0 at
t = 0, this value, as given by (3.13), is the value required for the poly-
nomial and is seen to be a weighted average of the observed sequence
of values, the weights being independent of which part of the series is
being used. The process of fitting the polynomial trend then consists
of determining the constants c and then calculating, for each consec-
utive sequence of 2m + 1 terms of the series, a value given by (3.13):
if the sequence is uk, . . . , u2m+k, the calculated value will correspond to
t = m + k.

As an example of the procedure, suppose m = p = 3, so that the cubic

ut = a0 + a1t + a2t2 + a3t3

is fitted to sequences of seven terms. Since the origin is t = 0, the
summations in (3.12) are
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∑
t0 = 7;

∑
t2 = 28;

∑
t4 = 196;

∑
t6 = 1588;∑

t =
∑

t3 =
∑

t5 =
∑

t7 = 0

and the set of equations are

∑
u = 7a0 +28a2∑
tu = 28a1 +196a3∑
t2u = 28a0 +196a2∑
t3u = 196a1 +1588a3

(3.14)

These may be solved to give, for a0,

a0 = 1
21

(
7
∑

u −
∑

t2u
)

= 1
21 (−2u−3 + 3u−2 + 6u−1 + 7u0 + 6u1 + 3u2 − 2u3)

= 1
21 [−2, 3, 6, 7, 6, 3, −2]

To illustrate this example, suppose the series is given by the following
values

t 1 2 3 4 5 6 7 8 9 10
ut 0 1 8 27 64 125 216 343 512 729

The trend value at t = 4 is then

a0 = 1
21 ((−2 × 0) + (3 × 1) + (6 × 8) + · · · − (2 × 216))

= 1
21 567 = 27

which is, of course, equal to the actual value u4 since a cubic is being
fitted to the series ut = (t − 1)3. In (3.14) it is seen that a0 does not
depend on a3, so that the same value for a0 would have been obtained if
a quadratic rather than a cubic had been fitted. This is a general result:
fitting a polynomial of odd degree p gives the same trend values as fit-
ting a polynomial of even degree p − 1. The implied moving averages
for p ≤ 5 and m ≤ 10 are given in, for example, Kendall, Stuart and Ord
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(1983, §46.6).4 Further, although rather arcane, properties of the method
were later derived in Kendall (1961).

The sampling theory of serial correlations

3.17 As we saw in §3.8, Kendall (1945a) had expressed frustration at the
lack of a sampling theory related to serial correlations when attempt-
ing to interpret the correlograms obtained from his experimental series,
going on to say that

‘(t)he significance of the correlogram is … difficult to discuss in theo-
retical terms. … (O)ur real problem is to test the significance of a set of
values which are, in general, correlated. It is quite possible for a part of
the correlogram to be below the significance level and yet to exhibit
oscillations which are themselves significant of autoregressive effects.
At the present time our judgments of the reality of oscillations in the
correlogram must remain on the intuitive plane.’ (ibid., page 103)

In his discussion of the paper from which this quote is taken, Maurice
Bartlett took Kendall to task for not attempting any form of inference:
‘it might have been useful, and probably not too intractable mathemat-
ically, to have evaluated at least the approximate theoretical standard
errors for the autocorrelations’ (ibid., page 136). This rebuke may have
been a marker for a major development in the sampling theory of serial
correlations that was to be published within a year of the appearance
of Kendall’s paper, and whose aim was to ‘amplify some suggestions
I made in the discussion on [Kendall’s] paper about the sampling errors
of a correlogram’ (Bartlett, 1946, page 27). Bartlett’s main result was to
show that, even for large samples with the simplifying assumption of
normality, the variance of rk depends on all the autocorrelations and
these, of course, cannot all be estimated directly from a finite series. The
actual formula is

V(rk) = 1
T

∞∑
i=−∞

(ρ2
i + ρi−kρi+k − 4ρkρiρi+k + 2ρ2

i ρ
2
k ) (3.15)

but useful approximations may be obtained in certain cases. If xt is ran-
dom, so that ρk = 0, k �= 0, then, from (3.15), V(rk) = 1/T , which is the
variance of a correlation coefficient from a bivariate normal sample and
was the formula employed by Kendall (1943): cf. §3.8. Using the fact
that ρ−k = ρk then, if ρi �= 0, 0 < i < k, and ρi = 0, i ≥ k, from (3.15)
we have
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V(rk) = 1
T

k−1∑
i=−(k−1)

ρ2
i = 1

T
(1 + 2ρ2

1 + · · · + 2ρ2
k−1) (3.16)

a formula whose square root has since become known as the ‘Bartlett
standard error’. Suppose that xt is generated by a first-order autoregres-
sion, now denoted as AR(1), and which is also known as a Markov
process. We then have ρk = ρk, and

V(rk) = 1
T

(
(1 + ρ2)(1 − ρ2k)

1 − ρ2
− 2kρ2k

)
which, for large k, becomes

V(rk) = 1
T

∞∑
i=−∞

ρ|2i| = 1
T

1 + ρ2

1 − ρ2

3.18 Bartlett (1946) used these results to analyze the correlogram of
Kendall’s (1944) artificial series of length T = 65 generated as (3.5)
but with the error process now an integer rectangular random vari-
able ranging from −9.5 to +9.5 (cf. the process in §3.7). Two estimates
of the correlogram and the true autocorrelations, calculated from ρk =
1.1ρk−1 − 0.5ρk−2, with ρ0 = 1 and ρ1 = 1.1/1.5 = 0.733, are shown for
k up to 30 in Figure 3.11 (two-standard error bounds under the null
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hypothesis that the series is random are 2/
√

65 ≈ 0.25). The first estimate
of the correlogram uses the large sample formula

rk =
∑T−k

t=1 xtxt+k∑T
t=1 x2

t

,

while the second uses the formula employed by Kendall (1944, equa-
tion (1)):

r ′
k =

∑T−k
t=1 xtxt+k(∑T−k

t=1 x2
t

∑T−k
t=1 x2

t+k

) 1
2

Neither rk nor r ′
k die down as k increases in the manner predicted by

the theoretical autocorrelations ρk: indeed, r ′
24 = −0.43, r ′

25 = −0.57 and
r ′
26 = −0.56 are unexpectedly large compared to their corresponding ρk

values, which by this time are essentially zero. The ‘large sample’ coun-
terparts, r24 = −0.24, r25 = −0.31 and r26 = −0.33, are somewhat smaller
but still apparently far larger than they ‘should’ be. However, using
(3.16), V(ρk) ≈ 2.44/T for k > 10 and so these serial correlations have
standard errors of approximately 0.20, implying that, although they are
quite large in magnitude, they are not significantly so (one-standard error
bounds of ±0.20 are also shown on Figure 3.11).

Bias in the estimation of serial correlations

3.19 As well as developing the sampling theory of serial correlations,
there was also great attention paid to examining possible biases in the
estimates themselves. Kendall (1954) (along with Marriott and Pope,
1954) showed that, for the Markov AR(1) scheme xt = ρxt−1 + ηt , for
which ρk = ρk,

E(rk) = ρk − 1
T − k

(
1 + ρ

1 − ρ
(1 − ρk) + 2kρk

)

to terms of order T−1, so that, for example,

E(r1) = ρ − 1
T − 1

(1 + 3ρ)

Thus, for T = 25 and ρ = 0.5, E(r1) ≈ 0.4, and for ρ = 0.9, E(r1) ≈ 0.75.
If, on the other hand, we have the first-order moving average scheme
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(denoted MA(1)) xt = ηt + θηt−1, so that ρ1 = θ/(1 + θ2) = ρ and ρk = 0,
k ≥ 2, we obtain, using the method of Kendall (1954),

E(r1) = ρ + 1
T − 1

(1 + ρ)(4ρ2 − 2ρ − 1)

E(r2) = − 1
T − 2

(1 + 2ρ + 2ρ2)

E(rk) = − 1
T − k

(1 + 2ρ) k > 2

Once again, the bias is always downwards (for T = 25 and ρ = 0.5,
E(r1) ≈ 0.44, E(r2) ≈ −0.11, E(r3) ≈ −0.09, etc.).

Kendall (1954) cautioned against using such expressions when ρ was
near to unity, where the distribution of r1, for example, is so highly
skewed that using expectations as a criteria for bias is itself open to
question. Moreover, Kendall argued that expansions of the type being
used above are asymptotic and may not be accurate unless the serial
correlations decline rapidly.

Kendall’s later time series research

3.20 Kendall’s later work on time series was restricted (apart from a few
peripheral book reviews) to analyzing share prices (Kendall, 1953), to
investigating the higher moments of the ‘Leipnik distribution’, that is,
the distribution of the serial correlation coefficient of a Markov process
(Kendall, 1957), to a study of economic forecasting (Coen, Gomme and
Kendall, 1969), to a review of Box and Jenkins’ book (Kendall, 1971),
to a very short discussion of spectral analysis aimed at geophysicists
(Kendall, 1973a) and to a textbook (Kendall, 1973b). The review of Box
and Jenkins will be commented upon in §8.2, while the papers on the
Leipnik distribution and on spectral analysis are tangential to our theme
and will be ignored.

3.21 Kendall (1953) analyzed many different weekly financial price
series and came to the same conclusion as Holbrook Working (1934)
some two decades earlier, that there was no structure of any sort in the
history of price patterns.

Broadly speaking the results are these:
(a) In series of prices which are observed at fairly close intervals the

random changes from one term to the next are so large as to swamp
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any systematic effect which may be present. The data behave almost
like wandering series.

(b) It is therefore difficult to distinguish by statistical methods
between a genuine wandering series and one wherein the systematic
element is weak.
...

(e) An analysis of stock-exchange movements revealed little serial
correlation within series and little correlation between series. Unless
individual stocks behave differently from the average of similar
stocks, there is no hope of being able to predict movements on the
exchange for a week ahead without extraneous information. (Kendall,
1953, page 11)

Kendall was clearly surprised by these empirical findings.

At first sight the implications of these results are disturbing. If the
series is homogeneous, it seems that the change in price from one
week to the next is practically independent of the change from that
week to the week after. This alone is enough to show that it is impos-
sible to predict the price from week to week from the series itself.
And if the series really is wandering, any systematic movements such
as trends and cycles which may be ‘observed’ in such series are illu-
sory. The series looks like a “wandering” one, almost as if once a week
the Demon of Chance drew a random number from a symmetrical popula-
tion of fixed dispersion and added it to the current price to determine the
next week’s price. (ibid., page 13: italics added for emphasis)

Interestingly, Kendall, for all his great knowledge of the history of statis-
tics and of time series, did not appear to be familiar with the term
‘random walk’, even though the term had first been used almost half
a century earlier. Although such a model is clearly implied from the
quotes above, he preferred to state that ‘(i)t may be that the motion is
genuinely random and that what looks like a purposive movement over
a long period is merely a kind of economic Brownian motion’ (ibid.,
page 18).

3.22 Coen, Gomme and Kendall (1969) carried out an exercise in eco-
nomic forecasting in which the focus was on uncovering and using
dynamic relationships existing between, in standard regression termi-
nology, the dependent variable and lagged values of the regressors.
Notwithstanding Kendall’s findings a decade and a half earlier (see §3.21
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above), the focus was on forecasting quarterly values of the FT ordinary
share index and, although a variety of regression models were investi-
gated using a selection of regressors (or indicator variables), concentra-
tion first fell on the following model:

Yt = β0 + β1X1,t−6 + β2X2,t−7 + nt (3.17)

Here Yt is the share price index in quarter t, X1,t−6 is UK car production
in quarter t − 6 and X2,t−7 is the FT commodity index in quarter t − 7,
so that share prices react to car production six quarters earlier and to
commodity prices seven quarters earlier. The residual nt was assumed
to be independently and identically distributed with a zero mean and
constant variance – the typical regression assumptions.

The lags were selected on the basis of initial and exploratory graphical
examination (‘by graphing the series on transparencies to a roughly com-
parable scale and then superposing them, sliding them along the time-
axis to see whether there was any fairly obvious coincident variation’,
Coen et al., 1969, page 136) and calculating cross-correlation coefficients
between the share price index and the indicator variables (either linearly
detrended or annually differenced). Once a lag length was tentatively
identified a regression analysis was undertaken, which was ‘conducted
by including among the regressors a variable at several lags around the
value where the cross-correlation was a maximum in absolute value,
for example, if Yt had a high correlation with Xt−u we might include
among the regressors Xt−u−4, Xt−u−3, . . . , Xt−u+4’ (ibid., page 140, nota-
tion altered for consistency). The step-wise algorithm of Beale, Kendall
and Mann (1967) was then employed to reject redundant regressors, so
that ‘the regression analysis effectively determines the lags to be included
in the final equations’ (Coen et al., page 140). Figure 3.12 shows plots
of the share index against car production six quarters earlier and the
commodity index seven quarters earlier and appears to show a posi-
tive relationship between the former pair and a negative relationship
between the latter pair, this being confirmed by the fitted regression
(t-ratios shown in parentheses)5

Yt = 653.2 + 0.00047
(14.1)

X1,t−6 −6.128
(−9.9)

X2,t−7 R2 = 0.90 1954.2–1966.4

Forecasts for 1967 from this regression are shown in Figure 3.13: ‘the
resulting prediction was quite unambiguous: before the end of the
year a downward swing would start on the stock market and would be
equivalent to a serious recession’ (ibid., 1969, page 140). Unfortunately,
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Figure 3.12 FT ordinary share index plotted against UK car production six quar-
ters earlier and the FT commodity index seven quarters earlier: 1954.1–1967.4

‘(a)s things turned out the market went on rising until the most opti-
mistic bulls had doubts about its stability. It looked as if our first
attempts at forecasting were a spectacular failure’ (ibid., page 140),
a fact that Coen et al. attributed to the subsequent sterling crisis and
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Figure 3.13 Forecasts from equation (3.17) for 1967

devaluation of 1967, after which ‘there was a consumer-spending spree,
and a stock market boom and imports rose to a level which caused acute
concern’ (ibid., page 143).

In response to this forecasting failure, Coen et al. included a con-
structed variable, termed the ‘euphoria index’, in (3.17) and also
considered further regressors, reporting the following regression6

Yt = 539.0 + 2.127
(8.9)

X3,t−17 − 0.211
(3.4)

X4,t−8 − 3.042
(6.0)

X5,t−13

R2 = 0.96 1952.2–1966.4

(3.18)

Here X3 is the Standard and Poor stock index, X4 is Reuter’s commodity
index and X5 is a UK government securities index. The forecasts out to
1968.1 from this model are shown in Figure 3.14 and they are much
more accurate than those from (3.17) during 1967, but are again ‘out of
control’, to use Coen et al.’s phrase, by early 1968.

3.23 Coen et al.’s paper elicited a good deal of interest and was accom-
panied by detailed comments from a number of discussants from both
the statistics and econometrics communities. Chief amongst the con-
cerns of the discussants was the lack of a theoretical economic model
underlying the forecasting equations that would explain the length of
the lags attached to the regressors, the question of endogeneity and,



108 A Very British Affair

Actual FT share index Fitted values

100

150

200

250

300

350

400

450

1954 1956 1958 1960 1962 1964 1966

Figure 3.14 Forecasts from equation (3.18) for 1967 and early 1968

most importantly, the complete absence of lagged dependent variables
as regressors and the consequent possibility that the regressions suffered
from serial correlation, which might be thought to be an odd omission
given Kendall’s seminal research on autoregressive processes discussed
earlier. Although the authors made a spirited defense of their paper,
many of the above criticisms were later formalized in quite devastating
fashion by Box and Newbold (1971), which will be discussed in §8.3.

3.24 Kendall’s textbook, published in 1973, was one of the first to pro-
vide an explicitly introductory exposition of time series analysis at the
expense of giving a comprehensive and rigorous treatment of all aspects
of the subject. Much of the material was taken from the chapters on time
series contained in the third edition of The Advanced Theory of Statistics,
while another chapter was devoted to the analysis of forecasting dis-
cussed in §3.22–3.23 above. While reviewers were generally impressed
by the informal style and lucidity of the exposition, the overall impres-
sion given by the reviews was that the book represented the swansong
of an ageing master of the subject who had not really kept up with, or
indeed was even very sympathetic to, developments that had taken place
over the last 15 years or so. In fact, there had been several major develop-
ments in this period that had transformed the subject completely, both
theoretically and empirically, and it to those developments that we must
now necessarily turn to.
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Durbin: Inference, Estimation,
Seasonal Adjustment and
Structural Modelling

James Durbin

4.1 James Durbin was born in 1923 and, like Yule and Kendall before
him, has a St John’s, Cambridge connection, for he obtained a ‘wartime’
BA in Mathematics there before spending the rest of the war attached to
the Army Operational Research Group and then the British Boot, Shoe
and Allied Trades Research Association as a statistician. After demobiliza-
tion, he returned to Cambridge to become part of the first intake into
the Postgraduate Diploma in Mathematical Statistics before joining the
research staff at the Department of Applied Economics in 1948. In 1950
he was appointed, as part of Maurice Kendall’s professorial deal with
the LSE, to an assistant lectureship in statistics and thus began his long
association with that institution. After becoming a Reader in Statistics
in 1953 he was promoted to Professor in 1961 on Kendall’s departure to
SciCon, remaining in this post until official retirement in 1988. Since
then James Durbin has remained professionally active, continuing to
publish well into the first decade of the twenty-first century: see, for
example, Durbin and Koopman (2001) and Durbin (2004). In 2007 he
became an honorary fellow of the Centre for Microdata Methods and
Practice (CeMMAP) at UCL.

Having been the recipient of the RSS’s Guy Medals in Bronze and
Silver, in 1966 and 1976 respectively, and been president of the Society
in 1986–7, Durbin was awarded the Guy Medal in Gold in 2008 for

a life-time of highly influential contributions which have given him
outstanding international recognition as a leader in [the] field, tak-
ing particular account of his pioneering work on testing for serial
correlation in regression, on estimating equations, on Brownian

109
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motion and other processes crossing curved boundaries, on good-
ness of fit tests with estimated parameters, and on many aspects of
time series analysis especially in areas relevant to econometrics, and
also his remarkable service to the wider statistical profession on the
international stage.

It is, of course, these ‘many aspects of time series analysis’ that we shall
focus upon in this chapter.

Inference on the first-order serial correlation coefficient

4.2 Along with the large-sample theory of serial correlation that devel-
oped from the seminal research of Bartlett (1946), the 1940s also saw
great progress made on developing exact, small-sample, inferential
methods. Beginning with Anderson (1942), the cyclic definition of the
first-order serial correlation of the observed series X1, X2, . . . , XT , with
sample mean X̄ = ∑T

t=1 Xt/T , was the prime focus of attention, mainly
for reasons of analytical tractability. This correlation coefficient may be
expressed as

rc
1 =

∑T
t=1 xtxt+1∑T

t=1 x2
t

(4.1)

where xt = Xt − X̄, and assumes ‘circularity’, so that xT+t = xt . The distri-
bution of rc

1 was known to have an exact form under the assumption of
independence, being a piecewise density function for very small samples
but quickly approaching normality centered on a mean of −1/(T − 1).
To illustrate this, Figures 4.1 and 4.2 show, respectively, the exact distri-
bution of rc

1 for T = 6 and 7 (labelled r(6) and r(7)), and for T = 15 (r(15))
with its normal approximation (see Dixon, 1944).

Watson and Durbin (1951) argued that this circular conception of the
stochastic process generating Xt , as embodied in the cyclic definition
(4.1) of rc

1, while being analytically convenient, was rarely plausible in
practice. They thus relaxed the assumption of circularity and considered
the following statistic for testing independence:

d =
∑T

i=2 (Xi−1 − Xi)2 − (Xn − Xn+1)2∑T
i=1 (Xi − X̄)2

where n = T/2 if T is even and n = (T − 1)/2 if T is odd. The exclu-
sion of the central squared difference in the numerator sum is a device
to give the statistic a known distribution. By extending the results
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Figure 4.1 Exact distributions of the first-order serial correlation coefficient for
T = 6 and T = 7
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Figure 4.2 Exact distribution of the first-order serial correlation coefficient for
T = 15 with its normal approximation

of Anderson (1942), Watson and Durbin (1951) showed that, for
ζi = 4 sin2 (n − i)π/2n, the distribution of d is

P(d > d′) =
s∑

i=1

(ζi − d′)n− 3
2

ζ
1
2

i

∏n−1
j=1,j �=i (ζi − ζj)

ζs+1 ≤ d′ ≤ ζs s = 1, 2, . . . , n − 1
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Watson and Durbin provided 5% critical values for d for various values
of T that may be used for testing independence against the alternative
of positive serial correlation: for example, for T = 12 the 5% critical
value is 0.967 while for T = 30 it is 1.35. This statistic was extended
by Durbin and Watson (1950, 1951, 1971: see also Durbin, 1982) to test
for first-order serial correlation in regression models using the regres-
sion residuals in place of the observed values of the dependent variable,
becoming probably the most recognized test statistic in econometrics.
Known eponymously as the Durbin–Watson test, it is a staple output of
most econometric packages, even though its performance can be beaten
by several tests that have since been developed. However, since the test
is not applicable to models containing lagged dependent variables, thus
ruling out autoregressions, for example, this extension will not be con-
sidered further here, although a later extension, Durbin’s h-test (Durbin,
1970), was explicitly designed to deal with regression models containing
a single lagged dependent variable.

Estimation and inference in moving average models

4.3 While the estimation of autoregressive models was the main focus
of attention during the 1940s and 1950s, much less progress was made
on the estimation of the moving average schemes introduced by Wold
(1938) and hence, not surprisingly, on the combined class of mixed
autoregressive-moving average models introduced by Walker (1950).
Whittle (1953, 1954a) developed a large sample approach to the esti-
mation of moving average models that, while providing a complete
solution, was extremely difficult to implement in practice. The search
was thus on for feasible estimators that had satisfactory properties and
this led to the approach proposed by Durbin (1959) and subsequently
extended by Walker (1961).

4.4 Durbin began by focusing on estimating the parameter β in the first-
order moving average model

xt = εt + βεt−1 t = 1, 2, . . . , T (4.2)

where εt is identically and independently distributed and it is assumed
that |β| < 1, so that the moving average is ‘regular’ in Wold’s (1938,
III.26) terminology, although it is now more commonly referred to as
being ‘invertible’. A perhaps obvious estimator is to use the result that
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ρ1 = β/(1 + β2) (obtained by setting k = h = 1 in equation (250) of
Wold, ibid., page 122), solve the quadratic r1β̃

2 − β̃ + r1 = 0, and use the
regular solution |β̃| < 1. Whittle (1953), however, showed that this esti-
mator was very inefficient but his proposed adjustment was extremely
complicated. Durbin thus considered the infinite autoregressive repre-
sentation of (4.2) truncated at lag p:

xt − βxt−1 + β2xt−2 − · · · + (−β)pxt−p

= xt + α1xt−1 + · · · + αpxt−p = εt

where αi = (−β)i. This finite representation can be made as close as
desired to the infinite autoregression by taking p sufficiently large.
Durbin showed that an approximate maximum likelihood (ML) estima-
tor of β is given by

β̂ = −
∑p−1

k=0 α̂kα̂k+1∑p
k=0 α̂

2
k

(4.3)

where the α̂k are the least squares estimates of the αk (taking α̂0 = 1).
Moreover, for sufficiently large p the asymptotic variance of β̂ is T−1

(1 − β2), which was shown by Whittle (1953) to be the minimum
asymptotic variance of all consistent estimators under the assumption
of normality of εt . Without the assumption of normality, the efficiency
property is no longer assured.

To test the hypothesis β = β0, the statistic
√

T(β̂ − β0)(1 − β2
0 )−

1
2 ∼

N(0, 1) may be used, while to assess the goodness-of-fit of the model
(4.2) Durbin showed that the statistic

T

(
(1 − β2)

p∑
k=0

α2
k − 1

)
∼ χ2(p − 1)

can be employed.
Durbin then considered the extension to higher-order moving aver-

ages, which is straightforward, at least in theory. For the model

xt = εt + β1εt−1 + · · · + βqεt−q (4.4)

assumed to be regular, the estimators β̂1, . . . , β̂q of β1, . . . ,βq are given by
the solution of the linear equation system
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∑
k=0

α̂2
k

p−1∑
k=0

α̂kα̂k+1 · · ·
p−q+1∑

k=0

α̂kα̂k+q−1

p−1∑
k=0

α̂kα̂k+1

p∑
k=0

α̂2
k

...

...
. . .

...

p−q+1∑
k=0

α̂kα̂k+q−1 · · · · · ·
p∑

k=0

α̂2
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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...

β̂q

⎤⎥⎥⎥⎥⎦ = −
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p−1∑
k=0

α̂kα̂k+1

p−2∑
k=0

α̂kα̂k+2

...
p−q∑
k=0

α̂kα̂k+q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The asymptotic variance matrix of β̂1, . . . , β̂q is T−1Vq, where

Vq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − β2
q β1 − βq−1βq β2 − βq−2βq · · · βq−1 − β1βq

β1 − βq−1βq 1 + β2
1 − β2

q−1 − β2
q

.

.

.

β2 − βq−2βq β1 + β1β2 − βq−2βq−1 − βq−1βq

.
.
.

.

.

.

.

.

. 1 + β2
1 − β2

q−1 − β2
q β1 − βq−1βq

βq−1 − β1βq · · · · · · β1 − βq−1βq 1 − β2
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, for q = 1, 2, 3,

V1 = 1 − β2
1 V2 =

[
1 − β2

2 β1 − β1β2

β1 − β1β2 1 − β2
2

]

V3 =
⎡⎢⎣ 1 − β2

3 β1 − β2β3 β2 − β1β3

β1 − β2β3 1 + β2
1 − β2

2 − β2
3 β1 − β2β3

β2 − β1β3 β1 − β2β3 1 − β2
3

⎤⎥⎦
The hypothesis βk = β0k, k = 1, . . . , q, may be tested using the statistic

T
q∑

i=1

q∑
j=1

vij
q,0(β̂i − β0i)(β̂j − βoj) ∼ χ2(q)

where vij
q,0 is the ijth element of V−1

q evaluated at βk = β0k, k = 1, . . . , q.
The goodness-of-fit of (4.4) can be assessed using

T

⎛⎝ p∑
k=0

α̂2
k +

q∑
j=1

β̂j

p−j∑
i=0

α̂iα̂i+j − 1

⎞⎠ ∼ χ2(p − q)

with large values of the statistic indicating that the fit is inadequate.
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4.5 Durbin (1959) examined this method by simulating twenty series of
length T = 100 from the model (4.2) with β = 0.5 and εt ∼ N(0, 1), and
computing β̂ from (4.3) using fitted autoregressions with p = 5, i.e.,

β̂ = − α̂1 + α̂1α̂2 + · · · + α̂4α̂5

1 + α̂2
1 + · · · + α̂2

5

He also compared this estimator with the simple estimator β̃ obtained
from r1 (when the roots of r1β̃

2 − β̃ + r1 = 0 are imaginary β̃ was taken
to be one: this will occur when r1 > 0.5). Table 4.1 shows the results,
along with summary statistics, obtained by recreating Durbin’s simula-
tion. β̂C is the corrected estimator suggested by Durbin (but not actually
used by him) to mitigate the downward bias observed in β̂. It is obtained
by using only the first p − 1 terms in the divisor of (4.3). The results of the
simulation accord well with those presented by Durbin (1959, Table 1).
The mean value of r1 is below, but reasonably close to, the true value
of ρ1, 0.5/(1 + 0.52) = 0.4. The variance of β̂, 0.0972 = 0.0094, is a lit-
tle larger than the theoretical variance (1 − 0.52)/100 = 0.0075, and is
considerably less than that of β̃. The downward bias in β̂, which is not
substantial here, is mitigated a little by Durbin’s correction.1

4.6 Walker (1961) was concerned that the truncation of the infinite
autoregression to a finite-order p might lead to problems in some

Table 4.1 Twenty simulations of length T = 100 from a first-order moving
average with β = 0.5

Series r1 β̂ β̂C β̃ Series r1 β̂ β̂C β̃

1 0.502 0.601 0.603 1.000 11 0.349 0.525 0.529 0.407
2 0.346 0.428 0.434 0.401 12 0.382 0.388 0.397 0.465
3 0.389 0.417 0.423 0.478 13 0.256 0.486 0.487 0.275
4 0.423 0.445 0.445 0.553 14 0.410 0.586 0.587 0.522
5 0.481 0.486 0.488 0.756 15 0.256 0.409 0.420 0.274
6 0.171 0.254 0.255 0.176 16 0.332 0.361 0.361 0.380
7 0.384 0.434 0.442 0.469 17 0.290 0.494 0.502 0.320
8 0.250 0.300 0.300 0.268 18 0.403 0.375 0.389 0.506
9 0.430 0.445 0.452 0.571 19 0.416 0.543 0.543 0.534

10 0.393 0.520 0.520 0.485 20 0.435 0.637 0.649 0.582

r1 β̂ β̂C β̃

Mean 0.365 0.457 0.461 0.471
Std. Dev. 0.084 0.097 0.098 0.184
SE of mean 0.019 0.022 0.022 0.041
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circumstances and thus proposed an extension of Durbin’s method
which had the added advantage of allowing bias adjustments to be made
fairly straightforwardly. Walker showed that his estimator had excel-
lent asymptotic efficiency for p as small as 4 unless ρ was close to its
maximum value of 0.5 for a first-order moving average. He also showed
that his estimator suffered less bias than Durbin’s, a property that con-
tinued to hold when higher-order moving averages were considered.
Interestingly, however, Walker argued that it was by no means clear why
his method appeared to suffer from less bias than Durbin’s, suggesting
that the improvements that he found in his simulations were ‘probably
fortuitous’.

Estimation and inference in autoregressive-moving
average models

4.7 Durbin (1960a) and Walker (1962) extended their methods for esti-
mating moving averages to mixed autoregressive-moving average models
of the general form

xt − φ1xt−1 − · · · − φpxt−p = εt + θ1εt−1 + . . .+ θqεt−q (4.5)

which may be termed an ARMA(p, q) process and where it is assumed
that all the roots of the equations zp − φ1zp−1 − · · · − φp = 0 and zq +
θ1zq−1 + · · · + θq = 0 have modulus less than unity (models of this type
seem to have been first considered by Walker, 1950). Durbin pointed
out that, apart from obviously containing the autoregressive and mov-
ing average models as special cases, when q = p − 1 (4.5) is invariant
under changes in the time period between successive observations,
which is not the case for the simpler models (a point made earlier by
Quenouille, 1958). Furthermore, equi-spaced observations from a con-
tinuous stochastic process generated by a linear stochastic differential
equation will also conform to (4.5) with q = p − 1. Nevertheless, notwith-
standing the theoretical importance of the ARMA process, until Durbin
only Walker (1950) and Quenouille (1958) had considered fitting the
model, with neither attempting an efficient method of estimation.

4.8 Durbin began by focusing attention on the ARMA(1,1) process

xt − φxt−1 = εt + θεt−1 (4.6)

and suggested fitting an autoregression of order p, as in §4.4, and
estimating the parameters by
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φ̂ = α̂1r2 + α̂2r3 + · · · + α̂prp+1

α̂1r1 + α̂2r2 + · · · + α̂prp
(4.7)

and

θ̂ = −φ̂ + r1 + α̂1r2 + · · · + α̂prp+1

1 + α̂1r1 + · · · + α̂prp
(4.8)

showing that this was the solution obtained by minimizing the sum of
squared residuals from (4.6) with the εt replaced by the residuals from
the approximating autoregression. Durbin then used these estimates as
the starting values for the following iterative procedure. Given φ̂ and
defining

�i = α̂i + φ̂�i−1 �0 = 1 i = 1, . . . , p

Durbin showed that an efficient estimator of θ was

θ̂ =
∑p

i=0 �i�i+1∑p
i=0 �

2
i

(4.9)

Given θ̂ , and now defining

wt = xt − φwt−1 = φwt−1 + εt , w0 = 0, t = 1, . . . , T

an efficient estimator of φ is then

φ̂ =
∑T−1

t=1 wtwt+1∑T−1
t=1 w2

t

(4.10)

Thus, given either (4.7) or (4.8) as an initial condition, (4.9) and (4.10)
can be used iteratively to obtain estimates of φ and θ . Durbin then
showed how this approach can readily be extended to the general
ARMA(p, q) model.

4.9 Durbin provided no simulation evidence on the properties of his
procedure, but this is not difficult to do and hence the simulation of §4.5
was repeated for the ARMA(1,1) process (4.6) with φ = 0.8 and θ = 0.5,
Table 4.2 presenting the results. Since no suggestions were provided by
Durbin as to the number of iterations to use or the convergence criteria
to employ, we used ten iterations, by which time the estimates of both
φ and θ had settled down sufficiently. However, the results are by no
means satisfactory, with φ being consistently underestimated and θ being
consistently overestimated.
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Table 4.2 Twenty simulations of length T = 100 from a first-order autoregressive-
moving average model with φ = 0.8 and θ = 0.5

Series φ̂ θ̂ Series φ̂ θ̂

1 0.649 0.718 11 0.751 0.670
2 0.603 0.650 12 0.673 0.696
3 0.578 0.643 13 0.749 0.733
4 0.578 0.582 14 0.714 0.688
5 0.738 0.752 15 0.787 0.744
6 0.575 0.610 16 0.691 0.758
7 0.712 0.728 17 0.617 0.678
8 0.762 0.699 18 0.717 0.708
9 0.653 0.686 19 0.734 0.735

10 0.774 0.760 20 0.666 0.684

φ̂ θ̂

Mean 0.686 0.696
Std. Dev. 0.070 0.045
SE of mean 0.065 0.097

Walker (1962) extended his method (§4.6) to the ARMA case and
provided simulation evidence, which suggested that his estimates were
superior to Durbin’s in terms of both smaller bias and in the ratio of the
bias to the standard error. Walker also proposed a bias adjustment that
reduced the bias in φ but made the bias in θ worse.

4.10 The fitting of continuous time models from discrete data was con-
sidered in Durbin (1961), while Durbin (1960a, 1960b) investigated the
estimation of regression models of the form

yt = θ1yt−1 + · · · + θpyt−p + β1x1,t + · · · + βqxq,t + εt

that is, a regression model in which p lags of the dependent variable were
included as regressors, and

yt = β1x1,t + · · · + βqxq,t + ut ut − θ1ut−1 − · · · − θput−p = εt

a model in which the regression errors followed an AR(p) process. The
analysis of the estimation of such models subsequently paved the way
for many of the major developments in the econometric modelling
of time series that were to be made over the following decades (see
§§10.21–10.22).
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Trend elimination and seasonal adjustment

4.11 While visiting Stanford during the summer of 1960, Durbin began
working on the nature of trend and the consequences of attempting
to eliminate it by various methods. This quickly led him on to issues
related to seasonal adjustment, a topic that was becoming of major prac-
tical concern in the early 1960s (see Mills, 2011a, chapter 14). Durbin
(1962) considered, from the standpoint of estimating the ‘residuals’,
the deviations of the observations from the fitted trend, the conse-
quences of detrending by either taking variate-differences, calculating
moving averages or subtracting a low-order polynomial from the origi-
nal observations. He showed that the three methods could be regarded
as essentially equivalent, at least in providing estimates of the periodo-
gram of the series, although differencing could confer some advantages
in that a greater concentration of residual trend would be left in the low
frequencies of the periodogram.

Durbin (1963) used these ideas to investigate some issues in seasonal
adjustment. He began with the customary additive model for an observed
series yt

yt = mt + st + ut t = 1, . . . , T (4.11)

in which mt is the trend, assumed to be a smooth deterministic function
of time, st is the seasonal component, regarded as strictly periodic with
a period of one year, and ut is assumed to be a stationary random distur-
bance. It is assumed that there are p + 1 years of monthly data available
for which (4.11) takes the form

yt = mt + αi + ut t = 12j + i; i = 1, . . . , 12; j = 0, . . . , p (4.12)

The monthly constants α1, . . . ,α12 measure deviations of the monthly
means from the overall mean of yt and so may be constrained to sum to
zero:

∑12
i=1 αi = 0. A simple moving average estimator of trend is obtained

by taking the mean of two successive arithmetic means of 12 successive
observations, so that the ‘centred’ moving average

m̂t = 1
24 (yt−6 + 2yt−5 + · · · + 2yt+5 + yt+6)

= 1
24 [1, 2, . . . , 2, 1]yt t = 7, 8, . . . , 12p + 6

is used as an estimator of mt . This will be free of seasonal variation by
virtue of the sum constraint placed on the αis. Let xt = yt − m̂t be the
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deviation from trend and let x̄1, . . . , x̄12 denote the monthly means of
the x’s:

x̄i = 1
p

p∑
j=1

x12j+i i = 1, . . . , 6

= 1
p

p−1∑
j=0

x12j+i i = 7, . . . , 12

(4.13)

The difference in summation limits arises from the fact that six values are
‘lost’ from each end of the series when the trend is estimated so that xt

can only be obtained for t = 7 to 12p + 6 inclusive. The monthly seasonal
constants can then be estimated as

ai = x̄i − x̄ x̄ =
12∑
i=1

x̄i
/

12

After some algebra, Durbin showed that (4.13) can be written as

x̄1 = ȳ1 − ȳ + 1
24p

(y7 − y12p+7)

x̄i = ȳi − ȳ + 1
24p

[
yi+6 − y12p+i+6 + 2

i+5∑
r=7

(yr − y12p+r)

]
i = 2, . . . , 6

x̄i = ȳi − ȳ − 1
24p

[
yi−6 − y12p+i−6 + 2

6∑
r=i−5

(yr − y12p+r)

]
i = 7, . . . , 11

x̄12 = ȳ12 − ȳ − 1
24p

(y6 − y12p+6)

where ȳ and ȳi are defined analogously to x̄ and x̄i. Each x̄i can thus be
obtained by adding to the deviation ȳi − ȳ an adjustment term depend-
ing only on 12 observations at the beginning and end of the series.
There is thus no need to calculate the trend estimate m̂t and hence
the individual xt values, since the same estimates of the seasonal con-
stants may be obtained directly by applying end-correction terms to the
simple monthly means. These results led Durbin to the view that their
importance lay in

the light they throw on the nature of the trend elimination implicit
in the method. I feel that the loyalty many economic statisticians
have toward the moving-average method arises from their skepticism
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of the adequacy of any simple mathematical model for the fitting of
the trends found in many economic time series. The flexibility of the
moving average in following a trend of arbitrary shape has a consider-
able intuitive appeal, and it will doubtless come as a shock to many to
realize that what the method reduces to in the end is the adjustment
of the raw monthly means by crude estimates of trend derived from
a few observations taken from each end of the series. The fact that
the behavior of the series at intermediate points of time has no effect
whatever on the adjustments for trend demonstrates conclusively that
the apparent fidelity with which the moving average reproduces the
true trend is illusory as far as the estimation of seasonal variation is
concerned. (Durbin, 1963, pages 6–7)

Note that the deviations from trend can be written in the form

xt = − 1
24

2

4∑
s=−6

(6 − |s + 1|)2yt+s

Since taking second differences of a quadratic in t gives a constant which
will disappear on taking deviations from means to get x̄t , using this mov-
ing average to remove trend will eliminate a quadratic trend in the data
exactly.

4.12 If the monthly seasonal constants had been estimated from a series
of length 12p without any trend-elimination procedure having been
applied, each estimate would have standard error σ

√
11/12p on the

assumption that the disturbances ut were uncorrelated with constant
variance σ 2. Durbin showed that using the centred moving average of
the previous section induces only small effects on these standard errors.
For example, if p = 6, the standard error will be increased from 0.391σ to
a maximum of 0.392σ (for a1 and a12), while several of the standard errors
will actually be reduced, the minimum being 0.389σ (for a6 and a7).

A more important factor affecting the precision with which the sea-
sonal constants are estimated is the loss of observations at the beginning
and end of the series brought about by taking a moving average. The
12-month centred moving average will lose six observations from each
end of the series and if these were available then the standard error of
the estimates would be σ

√
11/12(p + 1): with p = 6 this is 0.362σ . Durbin

thus considered applying the adjustments to the entire set of 12(p + 1)
observations and showed that these new estimates have a maximum
standard error of 0.364σ with p = 6, with no standard error being reduced
in size.
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4.13 Durbin extended his analysis to the case when the seasonal pattern
is changing slowly over time and a linear regression on time is fitted
to the deviations from trend for each month, showing that a similar
set of adjustments to those outlined above are obtained. He then ana-
lyzed more general moving averages of length 2m + 1, in particular those
considered by Kendall (1946) (see §3.16), and again obtained analogous
results, enabling him to argue that

the behavior of the series between the first 2m + 1 and the last 2m + 1
observations has no effect whatever on the allowance made for trend
in the final estimates, and we are forced to conclude, possibly with
reluctance, that the faithful manner in which a moving-average esti-
mator appears to follow a trend of arbitrary shape is deceptive and
misleading as far as the estimation of seasonal variation is concerned.
(Durbin, 1963, page 14)

4.14 This purely theoretical foray into the estimation of seasonal fac-
tors was the prelude to a more sustained interest in the practicalities
of the seasonal adjustment process as undertaken by official statistical
agencies. In 1968 the Central Statistical Office (CSO) of the UK set up
a Research and Special Studies Section to investigate methodological
problems, to which Durbin was asked to act as an academic consul-
tant on time series problems. One of Durbin’s first investigations was
the seasonal adjustment of unemployment and this led to the develop-
ment of a mixed additive-multiplicative model for seasonal adjustment,
which resulted some years later in the publication of Durbin and Murphy
(1975) and Durbin and Kenny (1979) and the related paper by Kenny and
Durbin (1982) on local trend estimation and seasonal adjustment.2 These
papers are both interesting and important because they demonstrate
how technical statistical virtuosity and applied statistical experience can
be combined to develop robust statistical procedures that can be pro-
grammed and thus used by non-specialists to carry out the routine tasks
of statistical analysis that are the essential raison d’être of government
statistical agencies.

4.15 The papers on seasonal adjustment began by contrasting the
additive model, now written as

yt = ξt + αt + εt (4.14)

where ξt is the trend, εt is the irregular and αt is the additive seasonal
factor, with both the multiplicative model
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yt = ξt (1 + βt ) + εt (4.15)

where βt is a multiplicative seasonal factor, and the ‘mixed’ additive-
multiplicative model

yt = ξt (1 + βt ) + αt + εt = ξt + αt + βtξt + εt (4.16)

The additive and multiplicative models are the basis for, respectively,
‘difference-from-trend’ seasonal adjustment, which uses yt − ξt as the
seasonally adjusted series, and ‘ratio-to-trend’ adjustment, which uses
yt/ξt .

Let zt , at and bt denote estimates of ξt , αt and βt obtained from a
sample of monthly data. Assuming that the seasonal variation is constant
from year to year, the fitted mixed model can then be written, with
t = 12(i − 1) + j, i = 1, 2, . . . , j = 1, 2, . . . , 12, as

yi,j = zi,j + aj + bjzi,j + ei,j (4.17)

where ei,j is the estimated irregular component. The additive and
multiplicative factors are constrained by the relations

12∑
j=1

aj =
12∑
j=1

bj = 0

to ensure they do indeed measure departures from the general level of
the series. The estimated model (4.17) may be written as

yi,j − aj

1 + bj
= zi,j + ei,j

1 + bj

so that the seasonally adjusted series can be defined as

ySA
i,j = yi,j − aj

1 + bj
(4.18)

By suppressing either the multiplicative terms bj or the additive terms
aj the standard forms yi,j − aj or yi,j/(1 + bj) for additively and multiplica-
tively adjusted series are obtained.

4.16 Although (4.18) does not depend explicitly on the trend, this
will typically be estimated by a moving average filter of the form
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ẑt = ∑
wpyt+p. The first step of the seasonal adjustment method pro-

posed by Durbin and Murphy is to obtain a preliminary estimate of the
trend using a specially constructed 21-term filter. This filter was designed
to pass a cubic polynomial unchanged while eliminating all additive sea-
sonal waves, and to minimize the amount of the irregular component
passed through (which is equivalent to minimizing the variance of the
estimated trend). The filter weights are found by solving the following
model for the trend value

∑
αjt j over the 21 terms from t = −10 to +10

xt =
3∑

j=0

αjt j +
6∑

j=1

βj cos (2π j/12) +
6∑

j=1

γj sin (2π j/12)

For t = 0 the filter weights are

[−0.04769, −0.02535, −0.00301, 0.01933, 0.04167, 0.06401

0.08634, 0.10868, 0.13102, 0.08333, 0.08333, . . . ]

Given the trend estimate ẑi,j, the second step in the Durbin–Murphy
method is to estimate (4.17), now expressed as

yi,j − ẑi,j = aj + bjẑi,j + ei,j

There will be 24 constants in this model so that estimation could be
problematic when only short stretches of data are available (the typical
length of a model fit is seven years, with the model being refitted over
each window of seven calendar years). Durbin and Murphy’s solution
is to express the constants aj and bj in terms of (orthogonal) Fourier
components and then to employ a stepwise regression procedure, which
typically reduces the number of parameters to between 9 and 12.

In some series the pattern of seasonal variation remains relatively sta-
ble over time but the amplitude of the seasonal component changes
quite rapidly. Durbin and Murphy thus introduced the concept of a
local amplitude scaling factor. If si,j = aj + bjẑi,j is the seasonal component
estimated by the stepwise regression, the further regression

yi,j − xi,j = di,jsi,j + e∗
i,j

is then fitted over a relatively short sample of observations, typically 15
or 25. The estimate of the local amplitude scaling factor di,j is then used
to amend the seasonally adjusted values to
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ySA
i,j = yi,j − di,jaj

1 + di,jbj

The final major step of the procedure is to filter the adjusted series, this
time using the 13-term filter suggested by Burman (1965), which has
weights

[−0.0331, −0.0208, 0.0152, 0.0755, 0.1462, 0.2039, 0.2262, . . . ]

and to run through the stepwise regression and local amplitude scaling
factor steps again to obtain a final seasonally adjusted series. In practice,
however, extreme values, arising from causes such as strikes and excep-
tional weather conditions, need to be identified and modified before
refitting as necessary.

Further features of the methodology include an extensive testing
program to determine the actual form of the model, be it additive, mul-
tiplicative or mixed, and further extensions deal with changing seasonal
patterns. Extensive details of all these procedures may be found in the
papers by Durbin and Murphy and Durbin and Kenny, where several
examples using various unemployment series are presented in detail.

4.17 Kenny and Durbin focused on local and current trend estimation as
well as on current seasonal adjustment: ‘what estimates of trend should
be employed for the current and recent months as each new monthly
value of the underlying series becomes available(?)’ (Kenny and Durbin,
1982, page 1). They were at pains to point out that

our approach … has been entirely pragmatic and empirical … we have
not attempted to set up mathematical models to represent the trend,
seasonal and irregular components for the purpose of obtaining for-
mulae by applying some kind of optimality criterion. Instead we have
applied the standard X-11 trend estimation procedure to observations
in the central part of the series to define the trend we wish to estimate;
we have considered as possible methods of estimating local trend a
wide variety of techniques including those used in current practice,
our choice being determined essentially by intuitive and pragmatic
considerations, and we have based our recommendations for practi-
cal implementation on empirical investigation of the performance of
the methods on a variety of real time series. (ibid., page 2)

Kenny and Durbin took the trend to be that given by the Hender-
son moving average used in the X-11 seasonal adjustment program for
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observations in the central part of the time series record, these being
assumed to be far enough from the beginning and end of the series such
that, even if more observations were added at the beginning or end of
the record, the trend value produced by the program would be essentially
unaltered.3 The idea was then to investigate how accurate the first esti-
mate of local trend or local seasonal adjustment, made when a monthly
observation first becomes available, could be made to be. Accuracy was
measured as the discrepancy between the estimate and the value subse-
quently given by the Henderson trend or the X-11 program, respectively,
after three further years of data has been added. A range of estimation
and seasonal adjustment methods were investigated using a wide set
of economic and social time series embodying various trend and sea-
sonal characteristics. Two features stood out from the results, extensive
details of which may be found in the Kenny and Durbin paper. For local
trend estimation, forecasting future values of the series by, in particu-
lar, stepwise autoregression, and then using the Henderson trend from
X-11 produced by far the most accurate local trend estimates, while for
seasonal adjustment the greatest improvements were obtained by using
‘current updating’, i.e., using the current X-11 seasonal adjustment based
on forecasting future values. They summarized their conclusions and
recommendations as follows.

As each new observation is added to the series, forecast the next 12
values by stepwise autoregression … or any other suitable method.
Then seasonally adjust the augmented series by X-11 in the current
updating mode discarding output values corresponding to future time
points. Take as an estimate of current and recent trends the value given
by the Henderson moving average in the X-11 program.

…
We recommend, therefore, that each observation is seasonally

adjusted when it first enters the series, is revised 1 month later, and
thereafter is revised as at present at the end of each calendar year.
(ibid., page 24)

Kenny and Durbin expressed a preference for using stepwise autore-
gression for forecasting because ‘our view is that many applied workers
would prefer to use a forecasting method based on a simple regres-
sion formula to one derived from a more sophisticated approach
provided there is relatively little difference in overall performance.
The completely mechanical nature of the stepwise method is also an
advantage’ (ibid., page 25). They thus termed their procedure ‘X-11
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Stepwise’ and recommended its adoption by the Government Statistical
Service.

Testing the constancy of regressions over time

4.18 Durbin’s involvement with the CSO also bore fruit in another area,
that of testing the constancy of regression relationships over time using
recursive residuals and rolling regressions. A preliminary account of the
underlying theory was given in Brown and Durbin (1968) but the main
results, with applications, were presented in Brown, Durbin and Evans
(1975), henceforth denoted as BDE. Such was the practical usefulness of
the techniques proposed by BDE that they have since been programmed
into many time series and econometric packages.

4.19 The basic regression model considered by BDE is

yt = x′
tβt + ut t = 1, . . . , T (4.19)

where at time t, yt is the observation on the dependent variable and xt is
a column vector of observations on k regressors. The first regressor, x1t ,
is taken to be equal to unity for all t if the model contains a constant
while the other regressors are assumed to be non-stochastic, thus ruling
out autoregressive models, for example.4 The column vector of regres-
sion coefficients, βt , is allowed to vary over time and it is assumed that
the error terms, ut , are independent and normally distributed with zero
means but possibly changing variances σ 2

t . The hypothesis of constancy
over time, denoted H0, is

β1 = β2 = · · · = βT = β

σ 2
1 = σ 2

2 = · · · = σ 2
T = σ 2

BDE noted that, in order to assess departures from H0, a natural thing
to do would be to look at the regression residuals from (4.19). Unfor-
tunately, plots against time of the ordinary least-squares residuals et =
yt − x′

tb, where b = (X′X)−1X′y, X′ = [x1, . . . , xT ] and y′ = [y1, . . . , yT ],
tend not to be very sensitive indicators of small or gradual changes in
the regression coefficients.

By analogy to industrial quality control problems, BDE therefore con-
sidered plotting the cumulative sum (cusum) of the residuals, Zr =
σ̂−1 ∑r

t=1 et , where the cumulative sum has been divided by the estimated

standard deviation σ̂ = (∑T
t=1 e2

t

/
(T − k)

) 1
2 to eliminate the irrelevant
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scale factor. Unfortunately, there does not seem to be any easy way of
assessing the significance of the departure of Zr from E(Zr) = 0 and this
also goes for the cumulative sum of squared residuals (cusum of squares),
σ̂−2 ∑r

t=1 e2
r .

4.20 BDE thus preferred to make the transformation to recursive residuals,
which may be specified in the following way. Define X′

r and y′
r to be the

first r columns of X′ and y′ and let br = (X′
rXr)−1X′

ryr be the least-squares
estimate of βr based on the first r observations. The recursive residuals
are then defined as

wr = yr − x′
rbr−1√

(1 + x′
r(X

′
r−1Xr−1)−1xr)

r = k + 1, . . . , T (4.20)

BDE proved that, under H0, the wk+1, . . . , wT are independent and
distributed as N(0, σ 2).

Implicit in formula (4.20) is the assumption that the matrix X′
rXr

is non-singular. This will not be the case if the regression model con-
tains a constant and one of the regressor variables is itself constant for
the first r1 ≥ k observations, a situation that arises quite frequently in
practice. BDE provided a method of computing the wr in these circum-
stances which involves deleting the initially constant regressor from the
recursions up to r1 and then bringing it in when it has changed.

4.21 If βt is constant up to time t = t0 and then changes, the wrs
will have zero means up to t0 but will have non-zero means subse-
quently, which suggests that plots aimed at revealing departures of the
means of the recursive residuals from zero through time could be worth
examining. BDE therefore proposed plotting the cusum quantity

Wr = 1
σ̂

r∑
j=k+1

wj

against r for r = k + 1, . . . , T . Here σ̂ is the residual standard deviation
determined by σ̂ 2 = ST/(T − k), where Sr = Sr−1 + w2

r , r = k + 1, . . . , T .
Under H0, Wk+1, . . . , Wr is a sequence of approximately normal variables
such that Wr has mean zero and variance r − k, with the covariance
between Wr and Ws being min (r, s) − k. BDE then showed that the sig-
nificance of any departure of Wr from zero may be assessed from the
cusum plot by reference to a pair of significance lines found by connect-
ing the points {k, ±a

√
T − k} and {T , ±3a

√
T − k}. For a 5% test, a should
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be set at 0.948, while for a 1% test a = 1.143. A movement of Wr outside
of these lines represents a rejection of H0 and evidence of some form of
parameter instability.

4.22 BDE suggested a second test that uses the squared recursive resi-
duals, w2

r , to define the statistic

W ′
r =

⎛⎝ r∑
j=k+1

w2
j

⎞⎠/⎛⎝ T∑
j=k+1

w2
j

⎞⎠ = Sr

ST

This cusum of squares test is a useful complement to the cusum test,
particularly when the departure from constancy of the βts is haphazard
rather than systematic. On H0 W ′

r has a beta distribution with mean
(r − k)/(T − k), so BDE recommended drawing a pair of parallel straight
lines, given by ±c0 + (r − k)/(T − k), on the cusum of squares plot. For
a given significance level, c0 may be obtained from Table 1 of Durbin
(1969) and BDE provided details of how to do this. Again, H0 is rejected
if W ′

r cuts these lines, although BDE preferred to regard the lines con-
structed in this way as ‘yardsticks’ against which to assess the observed
sample path rather than providing formal tests of significance.

4.23 BDE also suggested plotting the components of br against time to
try to identify the source of any departure from constancy indicated by
the cusum tests, perhaps running the analysis backwards through time
as well as forwards: this has since become known as recursive regression
and the br recursive coefficients.

They also considered moving regressions (also known as rolling regres-
sions), where the regression is fitted to short segments of n observations
which are then ‘rolled’ through the sample by dropping the first observa-
tion of the segment and adding a new observation at its end. Analogues
of the recursive formulae are provided by BDE to facilitate the estimation
of moving regression coefficients.

4.24 As an example of the BDE procedures, Figure 4.3 shows the obser-
vations on a variable defined as yt = 1 + 0.5t + u1t , u1t ∼ N(0, 9), for
t = 1, . . . , 50, and yt = 1.2 + 0.8t + u2t , u2t ∼ N(0, 25), for t = 51, . . . ,
100, along with the ordinary least squares fitted line ŷt = −5.98 + 0.87t
on the assumption of parameter constancy. As there are intercept, slope
and error variance shifts midway through the sample, the fit, although
accompanied by an R2 of 0.95, is clearly unsatisfactory, having a large
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Figure 4.3 Linear trend fitted to yt

negative intercept, a residual standard deviation of σ̂ = 5.86 and dis-
playing evidence of residual autocorrelation (the Durbin-Watson statistic
is 1.09).

Figure 4.4 shows cusum and cusum of squares plots accompanied by
5% significance lines and both indicate a clear shift in the regression
at t = 50 (here c0 = 0.1795). Figure 4.5 shows the plots of the recursive
intercept and slope estimates, which again indicate shifts in the coeffi-
cients at the mid-sample point. Since the magnitudes of the shifts are
reasonably small, the recursive estimates do not alter as markedly or
abruptly as the cusum plots, although all plots show that a shift has
taken place by t = 60.

Structural models and the Kalman filter

4.25 Although the idea of sequentially updating or recursively estimat-
ing the parameters of a model has a history stretching back to Gauss in
the 1820s, it was only rediscovered in the middle of the twentieth century
by Plackett (1950).5 A decade later, Rudolf Kalman published a recursive
state estimation algorithm for stochastic dynamic systems described by
discrete-time state space equations (Kalman, 1960), at the core of which
was a modified Gauss–Plackett RLS algorithm (although it was unlikely
that Kalman was aware of this at the time). After something of a delay,
Kalman’s idea led to a huge body of research on recursive estimation
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Figure 4.4 Cusum and cusum of squares plots

across a range of different disciplines, with the algorithm being referred
to universally as the Kalman filter.6

It is generally accepted that the reasons for this delay in the takeup of
Kalman’s procedure by the time series community were twofold. First,
the original paper and its continuous time counterpart (Kalman and
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Bucy, 1961) were written for an engineering audience and so used a lan-
guage, notation and style that was alien to statisticians. Second, the
original setup of the model assumed that the parameters of the underly-
ing state space model were known exactly, so that it could only provide
estimates and forecasts of the state variables of the system. This latter
restriction was lifted with the development of methods for computing
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the likelihood function for state space models (see Schweppe, 1965),
while several papers in the early 1970s introduced the Kalman filter to a
wider audience by casting it in more familiar terminology (see, especially,
Harrison and Stevens, 1976, and Duncan and Horn, 1972).

4.26 Durbin’s first discussion of the Kalman filter was in the context of
forecasting models in his contribution to the Journal of the Royal Statistical
Society, Series A issue commemorating the 150th Anniversary of the RSS
(Durbin, 1984). Here he analyzed the non-stationary structural model
proposed by Theil and Wage (1964),

yt = μt + εt μt = μt−1 + δt−1 + ηt δt = δt−1 + ζt (4.21)

in which the observed value yt is made up of a trend component, μt ,
whose level and slope are both determined by uncorrelated random
walks, together with a disturbance εt . Theil and Wage showed that opti-
mal one step-ahead forecasts, in the minimum mean square error sense,
were equivalent to those obtained by the first two recursions of the Holt–
Winters extension of exponential smoothing (see, for example, Mills,
2011a, §§11.16–11.20, for details and historical perspective). Durbin
pointed out that (4.21) was a simple special case of the Kalman filter-state
space model

yt = Xtβt + εt t = 1, 2, . . . , T (4.22)

βt = Ttβt−1 + Rtηt t = 1, 2, . . . , T (4.23)

where yt is an n-dimensional vector of observed time series and βt is an
m-dimensional vector of state variables. Xt , Tt and Rt are non-stochastic
matrices, and εt and ηt are n-dimensional and g-dimensional vectors of
uncorrelated and non-autocorrelated unobserved disturbances with vari-
ance matrices Ht and Q t respectively, typically assumed to be normally
distributed. Equation (4.22) is often referred to as the measurement or
observation equation and (4.23) as the transition or state equation. The
model (4.21) is obtained by setting

yt = yt Xt = [1 0] βt = [μt δt ]′

εt = εt Tt =
[

1 1
0 1

]
Rt = I2 ηt = [ηt ζt ]′

Ht = σ 2
ε Q t =

[
σ 2
η 0
0 σ 2

ζ

]
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Durbin was rather enthusiastic about this approach, stating that the

beauty of Kalman’s formulation is that there is a routine mechan-
ical way of updating estimates, whether of parameters or of past,
present or future values of some unknown vector, each time a new
observational vector arrives; moreover, the updating is essentially
straightforward on a modern computer. (Durbin, 1984, page 169)

This updating could be carried out in the following way. The minimum
mean square linear estimator bt of the state βt , based on all the data,
y1, y2, . . . , yt through to time t, is given by the set of recursive updating
equations

bt = bt |t−1 + Pt |t−1X′
tD

−1
t (yt − Xtbt |t−1)

The variance matrix associated with bt is given by the set of recursive
equations

Pt = Pt |t−1 − Pt |t−1X′
t−1D−1

t XtPt |t−1

In these recursions

bt |t−1 = Ttbt−1 Pt |t−1 = TtPt−1T′
t + RtQ tR′

t t = 2, . . . , T
Dt = Ht + XtPt |t−1X′

t t = 1, 2, . . . , T

The one step-ahead forecast of yt is then yt (1) = Xt+1bt+1|t . The quan-
tities yt − Xtbt |t−1 are called innovations and are uncorrelated, and
independent if normality of the disturbances can be assumed. This prop-
erty can be exploited to compute the likelihood function efficiently and
can thus be used to obtain exact ML estimators of parameters in very
general dynamic models, as shown by Harvey (1981).

4.27 Durbin (1984) claimed that the first explicit use of the Kalman fil-
ter for statistical forecasting was Jones (1966), who employed it in the
context of multivariate exponential smoothing, with Enns et al. (1982)
later extending the procedure to obtain exact ML estimates of the model
parameters. A general treatment of Kalman forecasting was provided
by Harrison and Stevens (1976), ostensibly from a Bayesian perspective
although, as Durbin pointed out, their model can easily be treated in a
non-Bayesian way.

Durbin’s LSE colleague, Andrew Harvey, had contemporaneously given
a comprehensive review of statistical forecasting from a Kalman fil-
ter standpoint, emphasizing its flexibility and suitability for structural
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modelling (Harvey, 1984). Durbin agreed: ‘Harvey’s overall conclusion,
with which I concur, is that the Kalman formulation offers considerable
advantages to the forecaster because of its flexibility and comprehensive
scope’ (Durbin, 1984, page 170). He also pointed out the potential of
the approach for analyzing a variety of issues in the decomposition of
time series. ‘My own belief is that because of its capacity to cope easily
with such things as data revisions, calendar variations, extreme values
and current updating as well as appropriateness of its structural form, the
Kalman model should provide a preferable basis for a modern treatment
of the decomposition problem’ (ibid., page 170).

4.28 This enthusiasm for structural models analyzed within the state
space form and estimated using the Kalman filter was quickly put to
practical use by Durbin and Harvey in a project commissioned by the
UK Department of Transport on the effect of seat belt legislation on
British road casualties.7 While a full description of the findings of the
investigation was given in Durbin and Harvey (1985), Harvey and Durbin
(1986) focused on providing an opportunity for public discussion of
their results on the effects of the seat belt law on road casualties and
on inviting a technical debate on the methodology they had used.8

The model fitted by Harvey and Durbin was of the form (4.21) but
extended to include a seasonal component, exogenous explanatory vari-
ables and an intervention variable in the measurement equation

yt = μt + γt +
k∑

j=1

δjxjt + λwt + εt (4.24)

The seasonal component is modelled by the trigonometric function

γt =
s/2∑
j=1

γjt

With s even (typically 4 or 12) and ϑj = 2π j/s, a fixed seasonal pattern
could be modelled by setting (on noting that sinϑs/2t = sinπ t = 0)

γjt = γj cosϑjt + γ ∗
j sinϑjt, j = 1, . . . , 1

2 s − 1

γs/2,t = γs/2 cosϑs/2t
(4.25)

It is easily shown that this is equivalent to including a set of seasonal
dummies as regressors with the constraint that the seasonal effects sum
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to zero. The seasonal pattern can be allowed to evolve over time by
replacing (4.25) with

γjt = γj,t−1 cosϑjt + γ ∗
j,t−1 sinϑjt + ωjt

γ ∗
jt = γ ∗

j,t−1 cosϑjt − γj,t−1 sinϑjt + ω∗
jt

γs/2,t = γs/2,t−1 cosϑs/2t + ωs/2,t

j = 1, . . . , 1
2 s − 1

where ωjt and ω∗
jt are zero mean non-autocorrelated errors uncorrelated

with each other and having common variance σ 2
ω . The larger is σ 2

ω the
greater the evolution of the seasonal component through time.

The xjt are explanatory variables while wt is an intervention variable
(see §8.10–8.13) defined by Harvey and Durbin to be the simple dummy
variable

wt =
{

0 t < τ

1 t ≥ τ

4.29 The model (4.24) was fitted to monthly series on numbers killed
or killed and seriously injured in various road user categories for the
period January 1969 to December 1984. Typically two explanatory vari-
ables were included, an appropriate traffic index and the real price of
petrol, and these, along with the dependent variable, were logarith-
mically transformed. The intervention variable was defined by setting
τ = January 1983 and estimates of the intervention effect of the seat belt
law, 100(1 − exp λ), measuring the percentage change in the monthly
level of casualty rates after January 1983 over and above that predicted
by the model without the intervention, were obtained for the various
road user categories. These ranged from −18 per cent for drivers killed
to −30.3 per cent for front seat passengers killed and seriously injured,
but other categories of road user, such as rear seat passengers, pedes-
trians and cyclists, saw percentage increases (or insignificant declines)
in casualty rates. Drawing firm conclusions from these results proved
rather tricky, however, although Harvey and Durbin felt able to ‘con-
clude that, whether we concentrate on those directly affected or also
include those indirectly affected, there have been substantial net reduc-
tions in numbers [killed and seriously injured] and numbers killed due
to the introduction of the seat belt law’ (ibid., page 208).

4.30 The above analysis was restricted to casualties to car occupants,
pedestrians and cyclists because, although the series are obviously
‘counts’, and hence can only be positive integers, the range and extent
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of the data was sufficient for Harvey and Durbin to feel comfortable
using an approximating linear, Gaussian state space model. This was
not the case, however, for the light goods vehicles (van) drivers fatal-
ity series, whose numbers, according to Durbin and Koopman (2000),
were regarded as being too small to justify the use of the linear Gaussian
model. State space models with non-Gaussian observations were thus
analyzed in Durbin and Koopman (1997, 2000). The linear Gaussian
model of (4.22) and (4.23),

yt = Xtβt + εt εt ∼ N(0, Ht )

βt = Ttβt−1 + Rtηt ηt ∼ N(0, Q t )

where it is now assumed that the elements of the matrices Ht , Q t , Xt and
Tt may be functions of an unknown parameter vector ψ, can be extended
to the non-Gaussian case by writing the observation equation as

p(yt |β1, . . . , βt , y1, . . . , yt−1) = p(yt |Xtβt )

and the transition equation as

βt = Ttβt−1 + Rtηt ηt ∼ p(ηt )

where the notation p( · ), p(·, ·) and p( · | · ) is used to denote generic
marginal, joint and conditional densities respectively. Durbin and Koop-
man define θt = Xtβt , calling it the signal, and pay particular attention
to two special cases:

(a) observations which come from exponential family distributions with
densities of the form

p(yt |θt ) = exp{y′
tθt − bt (θt ) + ct (yt )}

where bt (θt ) is twice differentiable and ct (yt ) is a function of yt only;
(b) observations generated by the relationship

yt = θt + εt εt ∼ p(εt )

where the εt are non-Gaussian and serially independent.

While such models had previously been analyzed by several methods,
Durbin and Koopman argued that all of these involved approximation
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errors of unknown magnitude, in contrast to their own approach, where
the only errors were due to simulation and thus their size could be mea-
sured and made as small as desired. Essentially, their approach is to
consider the stacked vectors β = (β′

1, . . . , β′
T )′ and y = (y′

1, . . . , y′
T )′ and to

attempt to estimate by simulation the conditional mean

x̄ = E[x(β)|y]

of an arbitrary function x(β) of β given the observation vector y.9 Denot-
ing Gaussian marginal, joint and conditional densities generically as
g( · ), g(·, ·) and g( · | · ) respectively, Durbin and Koopman showed that
this conditional mean can be written as

x̄ =
∫

x(β)p(β|y)dβ =
∫

x(β)
p(β|y)
g(β|y)

g(β|y)dβ = Eg

[
x(β)

p(β|y)
g(β|y)

]
(4.26)

where Eg denotes expectation with respect to the Gaussian importance
density g(β|y), which is chosen to resemble p(β|y) as closely as possible.
Since g(β|y) and p(β|y) are typically algebraically complicated, whereas
the corresponding joint densities g(β, y) and p(β, y) tend to be relatively
straightforward, Durbin and Koopman rewrite (4.26) as

x̄ = Eg [x(β)w(β, y)]
Eg [w(β, y)]

w(β, y) = p(β, y)
g(β, y)

(4.27)

In principle, a Monte Carlo estimate x̂ of x̄ could be obtained by taking
a series of independent draws β(1), . . . , β(N) from g(β, y) and computing

x̄ =
∑N

i=1 xiwi∑N
i=1 wi

xi = x(β(i)), wi = w(β(i), y)

Since the draws are independent x̂ will converge to x̄ as N → ∞.

4.31 This simple estimator is, however, numerically inefficient, so
Durbin and Koopman refined it in several ways. Denoting η =
(η′

1, . . . , η′
T )′, (4.27) is rewritten as

x̄ = Eg [x(η)w(η, y)]
Eg [w(η, y)]

w(η, y) = p(η, y)
g(η, y)

where the relationship between β and η is determined from βt = Ttβt−1 +
Rtηt and Eg now denotes expectations with respect to the importance
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density g(η, y). The simulations are then based on random draws of
η from this importance density using the very efficient simulation
smoother of de Jong and Shephard (1995). The efficiency is increased
by the use of antithetic variables, which are variables constructed from
η that have negative covariance and so both increase the size of the simu-
lation sample and decrease the sampling variance at no extra computing
cost.

Durbin and Koopman also provided an importance sampling ML esti-
mator of ψ and several examples of the overall method. Assuming that
van drivers killed can be modeled by the Poisson density with mean
exp (θt ) (the Poisson, of course, being a special case of the exponential)

p(yt |θt ) = exp (θ ′
t yt − exp (θt ) − log (yt !))

with the signal θt generated by

θt = μt + γt + λwt

where μt = μt−1 + ηt , γt is the evolving seasonal component and wt is
the seatbelt legislation dummy, Durbin and Koopman found that both
classical and Bayesian analysis produced an estimate of around 24 per
cent for the reduction in deaths after the introduction of the legislation.

4.32 Durbin’s long-standing interest in official statistics continued in
Durbin and Quenneville (1997), in which a state space approach to the
benchmarking of official statistics was proposed, and Durbin (2000),
which was a more general survey of the usefulness of state space models
to official statistics. These papers resulted from visits to Statistics Canada
and Statistics New Zealand, respectively, as Durbin continued to hold
visiting posts overseas well into his 70s.

Durbin’s research on filtering and smoothing algorithms for state space
models was extended with Siem Jan Koopman in Durbin and Koopman
(2002) and Koopman and Durbin (2000, 2003). They also published a
book on state space modelling (Durbin and Koopman, 2001) while 2004
saw the publication of the proceedings of a conference held in Durbin’s
honor to which he contributed the introduction (Durbin, 2004), which
appears to be his final publication.



5
Jenkins: Inference in Autoregressive
Models and the Development
of Spectral Analysis

Gwilym Jenkins

5.1 Gwilym Meirion Jenkins was born in 1933 in Gowerton, Swansea,
in the principality of Wales and was very much a Welshman, speaking
only Welsh until the age of seven and even in later life often thinking in
the language. He obtained a first class honours degree in Mathematics
from UCL in 1953 and remained there to complete a doctorate, in the
area of time series analysis, in 1956. He then spent two years as a junior
fellow at the Royal Aircraft Establishment (RAE) at Farnborough helping
to design aircraft before being appointed to a lectureship in statistics at
Imperial College. During 1959–60 Jenkins was invited to Stanford and
Princeton as a visiting professor, where he began his long collaboration
with George Box (see Chapter 6), and he returned to the United States
in 1964–5 as a visiting professor at the University of Wisconsin, where
the collaboration continued. It was during this visit that the seriousness
of his medical condition was first realized: for the next 17 years he would
fight a slowly losing battle against Hodgkin’s disease.

Although promoted to Reader at Imperial in 1964, Jenkins, through
his extensive consultancy work, wanted to place his statistical exper-
tise within a wider, systems, context, and consequently took up the
offer of a chair in Systems Engineering at Lancaster in 1965. In 1969 he
founded, and became co-ordinating editor of, the Journal of Systems Engi-
neering, contemporaneously writing an introductory book on the subject
( Jenkins and Youle, 1971). His consultancy work expanded with the help
of industrial and governmental projects undertaken by students on the
MSc degree that he had devised and this led Jenkins to found and become
Managing Director of the consultancy enterprise ISCOL (International
Systems Corporation of Lancaster). Although initially wholly owned by

140
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Lancaster University, this proved to be an unworkable arrangement and
Jenkins left in 1974 to set up his own consultancy company, at the
same time taking up a visiting professorial appointment at the London
Business School. The success and variety of these consultancy projects
eventually led directly to two volumes of case studies, Jenkins (1979)
and Jenkins and McLeod (1982), and indirectly to the related article by
Jenkins and Alavi (1981).

All the while, however, his health continued to deteriorate and Jenkins
eventually succumbed to Hodgkin’s lymphoma on 10 July 1982 at the
tragically young age of 49. Further biographical details, particularly of
his collaboration with George Box, may be found in Box (1983a, 1983b)
and also see De Groot (1987) and Pêna (2001) for additional reflections
by Box.

Inference in autoregressive models

5.2 Jenkins’ first published papers appeared in Biometrika in 1954 which,
given that he had only graduated the previous year, certainly demon-
strated Jenkins’ tremendous statistical precocity and, as we shall see, his
extraordinary technical virtuosity. Jenkins (1954a) considered testing the
significance of φ in the Markov AR(1) model

xt = φxt−1 + εt εt ∼ iidN(0, σ 2) (5.1)

by using an inverse sine transformation of the circular serial correla-
tion coefficient (4.1) calculated from a sample of size T , which we now
denote r for convenience (note that it is thus assumed that the theoreti-
cal mean of the series is zero):

r = x1x2 + x2x3 + · · · + xT x1

x2
1 + x2

2 + · · · + x2
T

(5.2)

Leipnik (1947) had derived the distribution of r as

p(r) = κ1(1 − r2)
1
2 (T−1)(1 + φ2 − 2φr)−

1
2 T

where κ1 is a ratio of gamma functions. The mean and variance of r are
then given by

E(r) = α = φT
T + 2
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and

σ 2
r = 1

T + 2

(
1 − φ2T(T + 1)

(T + 2)(T + 4)

)
= 1

T + 2
(1 − λα2), λ = (T + 2)(T + 1)

T(T + 4)

Since λ ≈ 1,

σ 2
r ≈ 1

T + 2
(1 − α2)

Jenkins’ approach was to seek a transformation y = f (r) such that
the variance of y is approximately independent of φ and he showed
that the inverse sine transformation y = sin−1 r would accomplish this.
On defining η = sin−1 φ, Jenkins then obtained the distribution of
z = y − η, which has mean and variance given by, respectively,

E(z) = β(φ)
T

+ γ (φ)
T2

+ O(T−2)

and

σ 2
z = 1

T
+ δ(φ)

T2
+ O(T−2)

where

β(φ) = −3
2

φ

(1 − φ2)
1
2

γ (φ) = 1
8

φ

(1 − φ2)
1
2

(17 − 2φ2)

δ(φ) = − 1
2T2

(2 − 5φ2)
(1 − φ2)

The variance is very stable, altering from 1/T − 1/T2 ≈ 1/(T + 1) to
1/T − 1/(2T2) ≈ 1/(T + 2) in the range 0 < φ < 0.5. Jenkins thus sug-
gested that z = y − η may be taken to be approximately normally dis-
tributed with zero mean and variance 1/(T + 1) provided that φ was
small and T reasonably large. This led him to define approximate
confidence intervals for φ of the form

φ = r cos
Zα√
T + 1

± (1 − r2)
1
2 sin

Zα√
T + 1
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or, since cos Zα/
√

T + 1 ≈ 1 and sin Zα/
√

T + 1 ≈ Zα/
√

T + 1 for T large
enough,

φ = r ± Zα(1 − r2)
1
2√

T + 1

where Zα is the α percentage point of the standard normal distribution.
Thus, if r = 0.4 is calculated from a sample of T = 35, a 95% confidence
interval for the autoregressive coefficient is given approximately by
φ = 0.4 ± 0.3.

5.3 Jenkins (1954b) considered the ‘Yule scheme’, or AR(2) model, and
showed that the partial correlation v2 = (r2 − r2

1 )/(1 − r2
1 ) calculated from

the lag 1 and lag 2 circular serial correlations r1 = r and r2, defined
analogously to (5.2), has a ‘smoothed’ distribution of the form

p(v2) = κ2(1 − v2
2)

1
2 (T−2)(1 − v2) (5.3)

The term ‘smoothed’ reflects the assumption made by Jenkins that the
exact characteristic function generating the moments of v2 may be
replaced by a smoothed function that produces moments that are correct
up to O(T). Jenkins (1956) then showed that the distribution (5.3) also
holds for v4, while for v1 and v3 the distribution is

p(vk) = κ3(1 − v2
k )

1
2 (T−1) k = 1, 3 (5.4)

with κ2 and κ3 again being ratios of gamma functions. Daniels (1956),
using the more elegant method of saddlepoint approximation, subse-
quently generalized this result to all k, with (5.3) holding for even k
and (5.4) for odd k.

Jenkins also considered the modifications required when the circu-
lar definition (5.2) was corrected for the sample mean. The distribution
of v̄2, to use an obvious notation, is

p(v̄2) = κ4(1 − v̄2
2)

1
2 (T−3)

(
(1 − v̄2)2 − 2

T
(1 − v̄2

2)
)

with κ−1
4 being a linear combination of beta functions. The first two

moments of this distribution are

E(v̄2) = − 2
T − 1

E(v̄2
2) = 1

T + 2

(
T + 3
T − 1

)
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and Jenkins (1956) provided general expressions for higher moments.
This paper also presented results for the moments of v̄3 and also results
for non-null distributions for general autoregressive schemes. Unfortu-
nately, and in stark contrast to his later work, no empirical examples
of testing procedures were provided by Jenkins, presumably because of
the highly complicated and abstract nature of the results that he had
obtained, and he never returned to the topic again.

Spectral analysis in the mid-1950s

5.4 During his time at the RAE, Jenkins produced one of the first
reviews of spectral analysis, in collaboration with Maurice Priestley, who
subsequently became a world leader in the subject (see, for example,
Priestley, 1981). Jenkins and Priestley (1957) began by considering the
trend-free, and hence stationary, discrete time series xt , t = 1, 2, . . . , T ,
taken to have zero mean for simplicity, which may be decomposed,
following Wold (1938) and Rudra (1955), as

xt =
p∑

i=1

αixt−i +
q∑

j=0

βjεt−j +
u∑

r=1

n∑
s=1

γrs cos (2π ts/n + δrs)

= ut + vt + wt

(5.5)

where the εt ’s are uncorrelated random variables and β0 is normalized
to unity. The components ut and vt are the familiar autoregressive and
moving average processes while wt is termed a linear cyclical process.
The periodogram of xt is defined as

IT (ωi) = A2
i + B2

i = 2
T−1∑

s=−(T−1)

(1 − |s|/T)Cs cosωis

where

Ai =
(

2
T

)1
2

T∑
t=1

xt cosωit Bi =
(

2
T

)1
2

T∑
t=1

xt sinωit

and the

Cs = 1
T − |s|

T−|s|∑
t=1

xtxt+|s|
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are the serial covariances. The autocorrelation function is defined as

ρs = Extxt+|s|
Ex2

t

=
∫ T

0
cosωs dF(ω) (5.6)

F(ω) is the integrated spectrum and is a distribution function in (0,π),
so that it is non-decreasing with F(0) = 0 and F(π) = 1. Inverting (5.6)
obtains

F(ω) = π−1

(
ω + 2

∞∑
s=1

ρs
sinωs

s

)

When F(ω) is differentiable, its derivative

f (ω) = π−1
∞∑

s=−∞
ρs cosωs

is called the spectral density, power spectrum or just spectrum, reserving the
term power for the value of the spectral density at a particular frequency.

5.5 The traditional method of harmonic analysis is concerned with the
estimation of the principal harmonic components of a time series.

The amplitudes of these harmonics are given by
√

(2/T)(A2
i + B2

i ) with
frequencies ωi = 2π i/T . For each (integral) period Pi = 2π/ωi, the coeffi-
cients Ai and Bi may be estimated after arranging the observations in a
Buys-Ballot table with each row corresponding to a period.

In periodogram analysis a period Pi (either integral or fractional) is
tested for significance with the sample size being adjusted to T ′ < T if
necessary so that T ′ is a multiple of Pi. Although such tests are strictly
applicable to harmonic analysis only as the periodogram coordinates are
no longer independent for non-integral periods, Jenkins and Priestley
argued that the tests were unlikely to be seriously affected in such
circumstances as the correlation between two ordinates was only of
O(T−2). The first test of significance in harmonic analysis was given by
Schuster (1898, 1906), who showed that, asymptotically, under the null
hypothesis that the series is random,

P[IT (ωi) ≥ z] ∼ e−z/c

where

c =
[T/2]∑
i=1

IT (ωi)/[T/2]
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This was later modified to take account of the fact that, in practice, the
largest peak of the periodogram is tested. If IT (ωg ) is the largest peak,
then asymptotically

P[IT (ωg ) ≥ z] ∼ 1 − (1 − e−z/c)[T/2]

An exact test for the largest peak when T is odd was developed by Fisher
(1929) using the statistic

g = IT (ωg )∑ 1
2 (T+1)
i=1 IT (ωi)

The distribution of g was also derived by Fisher, who showed that the
100α per cent critical values could be closely approximated by

gα = 1 − (α/T)
1

T−1

Jenkins and Priestley discussed further modifications to Fisher’s statistic
which involved testing the significance of the second largest peak and
dealing with a continuous spectrum with spectral density f (ω). How-
ever, their overall conclusion was that the periodogram displayed very
erratic behavior and therefore should not be used for estimating the
spectrum of a time series.

5.6 If the structure of (5.5) is fairly simple then there is, in fact, no need
to estimate the spectrum as it may be written down directly in terms
of the estimated parameters. For example, if the parameters αi and βj

are estimated by ai and bj and if wt = 0 then the spectrum of xt may be
written as

fx(ω) = σ 2
ε

σ 2
x

∣∣∣∣∣1 + b1e−iω + b2e−2iω + · · · + bqe−qiω

1 − a1e−iω − a2e−2iω − · · · − ape−piω

∣∣∣∣∣ fε(ω) (5.7)

Here fε(ω) is the spectrum of εt , typically assumed to be uniform, and σ 2
x

and σ 2
ε are the variances of xt and εt respectively. An equivalent way of

writing (5.7) is as

σ 2
x fx(ω) = ψ(ω)fε(ω)σ 2

ε

where ψ(ω) is known as the transfer, or frequency response, function. For
example, if xt is an AR(1) process with autocorrelation function ρs = ρs
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and fε(ω) = σ 2
ε /π , (5.7) becomes

fx(ω) = 1
π

(
1 − ρ2

(1 − ρe−iω)(1 + ρe−iω)

)
= 1
π

(
1 − ρ2

1 + ρ2 − 2ρ cosω

)
on noting that σ 2

ε = (1 − ρ2)σ 2
x . The parameter ρ may be estimated from

the correlogram and the spectrum then computed.

5.7 In most practical applications, however, it will be necessary to esti-
mate the spectrum. Although the periodogram does provide an estimate
of the spectral density, unfortunately it is not consistent, since its vari-
ance is approximately (2σ 2

x fx(ω))2, which remains positive as T → ∞.
Bartlett (1948, 1950) therefore suggested estimates of the form

fT (ω) = 1
π

(
1 + 2

m−1∑
s=1

(
1 − s

T

)
rs cosωs

)
(5.8)

fS(ω) = 1
π

(
1 + 2

m−1∑
s=1

(
1 − s

m

)
rs cosωs

)
(5.9)

where rs = Cs/C0 are the serial correlations. Both estimates use the first
m < T serial correlations and are known as the truncated and smoothed
periodograms respectively and may be regarded as the average of m/T
periodogram estimates computed from sub-series of length m.

A more general class of estimates, suggested by Grenander and
Rosenblatt (1953), is

fG(ω) = 1
π

(
1 + 2

T−1∑
s=1

λs(ω)rs cosωs

)
(5.10)

where the weighting function is chosen to make the estimate consis-
tent. Grenander and Rosenblatt also introduced the concepts of resolv-
ability and statistical reliability. The former is defined to be the ability
to distinguish between the power of the spectrum at a given frequency
and that at a neighbouring frequency; the latter relates to the fact that
power estimates are subject to errors induced by recording at discrete
intervals and using a series of finite length. They proved a theorem stat-
ing that the product of the errors made in estimating the amplitude and
frequency have a certain lower bound.

Lomnicki and Zaremba (1957) argued that resolvability and reliabil-
ity were not ‘antagonistic’, particularly when the estimation problem
was viewed as that of estimating a function, so that standard errors
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attached to individual frequency estimates were of lesser importance.
They defined ‘best’ estimators in the sense that the expected mean square
error over the whole range of ω was to be a minimum, leading to the set
of optimum weights

λs = ρ2
s

V(rs) + ρ2
s

although how this was to be put into practical use remained unclear.

5.8 Jenkins and Priestley emphasized that, while a satisfactory theoret-
ical solution to estimating the spectral density was clearly emerging,
estimates of the density at individual frequencies were often subject
to large sampling fluctuations. They suggested that it might be safer in
practice to estimate the average spectrum over a band width, which was
often of direct interest anyway. For a bandwidth (ω − ξ ,ω + ξ ) the equiv-
alent smoothed band spectrum estimate (5.9) is

fS,B(ω) = 1
π

(
1 + 2

m−1∑
s=1

(
1 − s

m

)
Cs cosωs

sin sξ
sξ

)
(5.11)

5.9 Using (5.10), the (non-normalized) integrated spectrum can be
estimated as

FG(ω) = 1
π

(
ω + 2

m−1∑
s=1

λsCs
sinωs

s

)

where λs = 1 − s/hT , hT = [kTθ ] and 1
2 < θ < 1.

5.10 Jenkins and Priestley proposed that a confidence interval for the
spectral density f (ω) be derived from taking log (c + fS,T (ω)) to be asymp-
totically distributed with mean log (c + f (ω)) and variance m/T , where
c is a suitably chosen positive constant, although they pointed out
that this method only provides a confidence interval at a particular fre-
quency ω and not for the entire spectral density function.

A confidence interval for f (ω) may also be derived from the band
spectrum estimate (5.11): a 100(1 − α)% interval is given by(

υ

χ2
1−α,υ

fS,B(ω),
υ

χ2
α,υ

fS,B(ω)

)

where υ = 2ξT/π .
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5.11 Jenkins and Priestley concluded their survey by summarizing the
two main difficulties facing spectral analysis at this point, these being:
(i) the choice of the optimum truncation point m; and (ii) the practical
problems that arise when there are both continuous and discrete compo-
nents present in a time series. The correlogram will then not be damped
but will oscillate widely, in which case the surveyed methods are no
longer applicable without further modification, although Jenkins and
Priestley did offer some tentative suggestions for dealing with this situa-
tion of a mixed spectra. Finally, they offered a brief description of some
computer programs that had been developed at the RAE for computing
serial and cross-correlations, spectra and periodograms.

Spectral analysis at the start of the 1960s

5.12 Jenkins (1961) represented an updated survey ‘written with the
intention of giving some motivation for spectral analysis to statisticians
who might be puzzled by the fact that one would want to work in the
frequency domain at all’ (pages 140–1). While it necessarily repeated
much of the preliminary ground covered in Jenkins and Priestley (1957),
it does contain much new material that is worth discussing.

After giving some physical/engineering examples to motivate spectral
analysis, Jenkins introduced the concept of white noise. This is a series,
such as εt in §5.4, which has a constant spectral density f (ω) = 1/π ,
which corresponds to the series having zero autocovariances and thus
being uncorrelated through time. Jenkins regarded white noise and its
associated spectrum as having special theoretical importance, making it
an essential building block for time series processes.1

5.13 Jenkins then returned to the analysis of §5.6 related to frequency
response functions, introducing a finer distinction between the con-
cepts of gain and phase and the frequency response. He began by
considering the, possibly continuous time, ‘cosinusoidal disturbance’
x(t) = A cosωt and the output, y(t), from the linear system

y(t) = G(ω)A cos (ωt +�(ω)) =
∫ ∞

0
W(τ )x(t − τ )dτ

where G(ω) is the gain or attenuation factor and �(ω) is the phase shift.
The frequency response is then defined as

ψ(ω) = G(ω)ei�(ω) =
∫ ∞

0
eiωτW(τ )dτ
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and it therefore follows that G(ω) = |�(ω)| and �(ω) = argψ(ω). It is
also the case that, cf. §5.6 and the notation used there,

σ 2
y fy(ω) = σ 2

x fx(ω)G2(ω) (5.12)

so that G(ω) may be calculated if the spectral densities fx(ω) and fy(ω)
have been estimated.

Closely related to the notion of a frequency response is the idea of a
(digital) filter, which essentially is a tailored G(ω) which may be used to
produce an output falling in a required frequency range. In effect, such a
filter is a symmetrical moving average whose weights have been selected
to produce particular frequency domain properties. Thus the (discrete)
periodic input xt = Aeiωt (now being represented in complex form) may
be converted into an output yt = AeiωtT(ω) through the use of the filter

T(ω) =
k∑

i=−k

δieiωt

A low (high)-pass filter is such that T(ω) is designed so that the output
yt only contains frequencies up to (above) a chosen cut-off frequency.
A band-pass filter produces an output that contains only frequencies in
a certain interval and thus can be considered as the difference between
two low-pass or high-pass filters.

Replacing G2(ω) by |G(ω)|2 and integrating (5.12) over all frequencies
obtains

σ 2
y = σ 2

x

∫ ∞

0
fx(ω)|G(ω)|2dω

which shows that the variance of the output is a weighted average, with
weights given by the squared gain, over the spectrum of the input.

5.14 If the data consist of a continuous trace x(t) then it is often read
only at discrete intervals ∇t, which will obviously lead to a loss of
information. In terms of the spectrum, all information will be lost for
frequencies above what is called the Nyquist frequency ωN = π/∇t, as what
is measured at ωN is not f (ωN ) but the latter confounded with all fre-
quencies which are indistinguishable from ωN . In general, if f ∗(ω) is the
spectral density corresponding to x(t), then the spectral density of the
sampled trace is given by

f (ω) =
∞∑

k=0

{
f ∗
(

2πk
∇t

+ ω

)
+ f ∗

(
2πk
∇t

− ω

)}
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This may be interpreted as being obtained by ‘folding’ the unsampled
spectrum about even multiples 2πk/∇t of the Nyquist frequency and
then adding these contributions in the range (0,ωN ), a practice known
as aliasing. It is clear that, for this to work, f ∗(ω) should be (approxi-
mately) zero for ω > ωN and Jenkins (1961, pages 144–5) offered some
guidance on how this could be achieved.

5.15 Jenkins showed that (5.9), say, could, in general, be expressed
equivalently as

f̂ (ω) =
∫ π

0
I(y)K(ω, y)dy

where

K(ω, y) = 1
2 (λ(ω + y) + λ(ω − y)) λ(y) = 1

π

T∑
s=−T

λseiys

from which it follows that the kernel or window K(ω, y) is such that

∫ π

0
K(ω, y)dy = 1

For example, the kernel corresponding to the ‘Bartlett weights’ of (5.9),
λs = 1 − s/m for s ≤ m and λs = 0 for s > m, is

K(ω, y) = 1
πm

(
sin2 (m/2)(ω + y)

sin2 1
2 (ω + y)

+ sin2 (m/y)(ω − y)

sin2 1
2 (ω − y)

)

This kernel has a shape that falls off rapidly from its maximum at the
peak frequency y = ω and reaches zero at y = ±π/m, beyond which it
oscillates with decreasing amplitude.

Associated with a kernel is its bandwidth. This is defined to be half the
base width, 2π/m, of a rectangular kernel which has the same height
and same area as K(ω, y), although other definitions have been sug-
gested. Increasing m thus has the effect of reducing the bandwidth,
which increases the ‘focusing power’ of the kernel and hence decreases
the sampling distortion: unfortunately, it will also increase the variance
of the estimated spectrum. The trade-off between these considerations
led to a variety of weight functions being suggested, which are sum-
marized, along with their associated kernels, as Jenkins (1961, Table 1).
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Writing the weight function as λ(u), u = k/m, then the Bartlett weights
correspond to setting

λ(u) = 1 − |u|, |u| ≤ 1

= 0, |u| > 1

The ‘hanning’ estimate of Blackman and Tukey (1958) is

λ(u) = 1
2 (1 + cosπu), |u| ≤ 1

= 0, |u| > 1

while their ‘hamming’ estimate is

λ(u) = 0.54 + 0.46 cosπu, |u| ≤ 1

= 0, |u| > 1

A generalization of these two weight functions is

λ(u) = 1 − 2a + 2a cosπu, |u| ≤ 1

= 0, |u| > 1

in which hanning is obtained by setting a = 0.25 and hamming by
setting a = 0.23. Parzen (1957, 1961) suggested the weight functions

λ(u) = 1 − u2, |u| ≤ 1

= 0, |u| > 1

and

λ(u) = 1 − 6u2(1 − |u|), |u| ≤ 1
2

= 2(1 − |u|)2, 1
2 < |u| ≤ 1

= 0, |u| > 1

Finally, the Daniell weight function sets λ(u) = sin u/u and so involves
no weight truncation. The ‘design’ considerations involved in choosing
a weight function/kernel and a bandwidth were then discussed in detail
by Jenkins, who concluded the paper with the following convenient
summary of the various stages of a spectral analysis.
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(1) Preliminary considerations: It will be very important to know
what relation the estimated spectrum bears to that of the spectrum
of interest. Most of the important errors have been introduced
before the statistical considerations have begun. The interpretation
of the spectrum is then dictated almost entirely by non-statistical
considerations.

(2) Choice of Spectral Window: The most important feature of spec-
tral estimation is that some sort of window should be used with a
bandwidth considerably greater than 1/T where T is the total number
of observations.

There is still some doubt as to what constitutes a good spectral shape
but [Tukey’s hamming and Parzen’s second window] seem to have
attractive properties.

(3) Analysis Considerations
(a) Calculate the autocovariances having removed a mean and pos-

sibly a linear trend. For fixed T , all that is needed is to select the
number of lags.

(b) There seem to be three ways of doing this:
(i) Plot the autocovariance function up to 25%–30% of the total

sample size and determine a reasonable truncation point empirically.
(ii) Specify a bandwidth for the spectral window chosen taking care

that there are enough degrees of freedom per estimate.
(iii) Choose m from a mean square error criterion using some

knowledge of f (ω) obtained from (i) or from pilot spectral analysis.

…

Ultimately there is not going to be a great deal to choose between
the above three methods of choosing m from a practical point of view
since one will be wise to base spectra on a few selections of m any-
way. The author would prefer to work with (i) backed up by (iii) on
the grounds that he is unable to specify a bandwidth in a vacuum
unless possibly there are special objectives which restrict the choice
of bandwidth. In addition to basing spectra on a few choices of m, it
is suggested that one should feel free to calculate spectral ordinates at
any frequencies.

In the last resort, if it is difficult to make sense of the spectrum
from a physical point of view, then the more refined statistical consider-
ations are irrelevant. In particular, if taking the two halves of the same
series gives widely differing answers or if the next experiment pro-
duces a different spectral shape, then one has far greater problems
than statistical ones. ( Jenkins, 1961, pages 164–5: italics in original)
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This summary represents a good reflection of Jenkins’ data modelling
philosophy, in that progress can only be made by experimentation
using robust techniques within a wider context of the physical ‘system’
producing the data.

Open loop transfer functions and cross-spectral analysis

5.16 Jenkins (1963a, 1963b) considered the more general frequency
response/transfer function model

y(t) = φx(t) + n(t) =
∫ ∞

0
W(τ )x(t − τ )dτ + n(t) (5.13)

where x(t) is a continuous vector of past values of the input and n(t)
is a noise term containing the influences of other inputs on the out-
put and also any non-linear effects that have been omitted from the
linear approximation implicit in (5.13): Jenkins referred to the pres-
ence of n(t) as ‘smudging’ the relationship between y(t) and x(t), which
may be termed a linear dynamic equation with the regression function
W(τ ) often being known as the impulse response. The frequency response
function is given by (cf. §5.13)

T(ω) = G(ω)e−�(ω) =
∫ ∞

0
W(τ )e−iωτdτ

The modulus G(ω) = |T(ω)| then represents the gain and �(ω) the phase
shift. The system is said to be open loop if there is no feedback from y(t)
to x(t).

Assuming that y(t) and x(t) are stationary and x(t) and n(t) are uncor-
related then multiplying (5.13) throughout by x(t − s) and averaging
obtains

γxy(s) =
∫ ∞

0
W(τ )γxx(s − τ )dτ

where γxy(s) = E(x(t − s)y(t)) = σxσyρxy(s) is the cross-covariance func-
tion at lag s between x(t) and y(t) and γxx(v) is the autocovariance of
x(t) at lag v. The frequency response function can then be written as

T(ω) = σy

σx

gxy(ω)
gxx(ω)

(5.14)
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where gxy(ω) is the cross-spectral density function given by

σxσygxy(ω) = 1
π

∫ π

−π
γxy(s)e−iωsds

This cross-spectrum can be written as

gxy(ω) = cxy(ω) − iqxy(ω)

where cxy(ω) and qxy(ω) are the cospectrum and quadrature spectrum,
respectively, given by

cxy(ω) = 2
π

∫ ∞

0
αxy(s) cosωs ds

qxy(ω) = 2
π

∫ ∞

0
βxy(s) sinωs ds

where

αxy(s) = 1
2 (ρxy(s) + ρxy(−s))

βxy(s) = 1
2 (ρxy(s) − ρxy(−s))

so that

ρxy(s) = αxy(s) + βxy(s)

αxy(s) = αxy(−s) is known as the even part of the spectrum and βxy(s) =
−βxy(−s) as the odd part. It then follows that

G(ω) = σy

σx

(c2
xy(ω) + q2

xy(ω))1/2

gxx(ω)

�(ω) = tan−1 qxy(ω)
cxy(ω)

The cross-amplitude spectrum is defined as

Rxy(ω) =
√

c2
xy(ω) + q2

xy(ω)
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and the squared coherency, a measure of the correlation between y(t) and
x(t) at frequency ω, is then defined as

0 ≤ C2
xy(ω) = R2

xy(ω)

gxx(ω)gyy(ω)
= |gxy(ω)|2

gxx(ω)gyy(ω)
≤ 1

Since from (5.13) it follows that, using an obvious notation,

σ 2
y gyy(ω) = σ 2

x G2(ω)gxx(ω) + σ 2
n gnn(ω)

the coherency can then be written as

C2
xy(ω) = σ 2

x G2(ω)gxx(ω)
σ 2

n gnn(ω) + σ 2
x G2(ω)gxx(ω)

(5.15)

The coherency will therefore be 1 if gnn(ω) = 0 and will tend to zero
as σ 2

nngnn(ω) becomes large compared to σ 2
x G2(ω)gxx(ω). The relationship

(5.15) can also be written as

σ 2
n gnn(ω) = σ 2

y gyy(ω)(1 − C2
xy(ω)) (5.16)

Recall that the slope of the linear regression of yt on xt is given by
γxy(0)/γxx(0) and that the residual sum of squares from the fitted regres-
sion is σ 2

n = σ 2
y (1 − ρ2

xy(0)). These formulas are seen to be mimicked by
(5.14) and (5.16) so that transfer function estimation is effectively linear
regression analysis at each frequency ω.

5.17 The quantities required for estimating the gain, phase and coher-
ence can be obtained using obvious extensions and modifications of
(5.10), viz.,

ĝxx(ω) = 1
π

(
1 + 2

T−1∑
s=1

λsrx(s) cosωs

)

ĝyy(ω) = 1
π

(
1 + 2

T−1∑
s=1

λsry(s) cosωs

)

ĉxy(ω) = 1
π

(
1 + 2

T−1∑
s=1

λsaxy(s) cosωs

)

q̂xy(ω) = 1
π

(
1 + 2

T−1∑
s=1

λsbxy(s) cosωs

)
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where

axy(s) = 1
2 (rxy(s) + rxy(−s))

bxy(s) = 1
2 (rxy(−s) − rxy(s))

For large T , the covariance matrix of these estimates is given by, after
dropping the dependence on ω for notational convenience, (�/T)V,
where

V =

⎡⎢⎢⎢⎣
g2

xx c2
xy + q2

xy gxxcxy gxxqxy

g2
yy gyycxy gyyqxy

1
2 (gxxgyy + c2

xy − q2
xy) cxyqxy

1
2 (gxxgyy + q2

xy − c2
xy)

⎤⎥⎥⎥⎦ (5.17)

and

� = 1
2

T∑
s=−T

λ2
s

depends upon the weight function being used. Using (5.17), the vari-
ances of the estimated cross-amplitude spectrum, R̂xy(ω), gain, Ĝ(ω),
coherence, Ĉxy(ω), and phase, �̂(ω), are given by

V(R̂xy(ω)) = m
T

R2
xy(ω)

1
2

(
1 + 1

C2
xy(ω)

)

V(Ĝ(ω)) = m
T

G2(ω)
1
2

(
1

C2
xy(ω)

− 1

)

V(Ĉxy(ω)) = m
T

1
2

(1 + C2
xy(ω))

V(�̂(ω)) = m
T

1
2

(
1

C2
xy(ω)

− 1

)

The formulae for the variance of the estimated gain and phase are seen
to depend on the factor

ϑ2(ω) = 1
C2

xy(ω)
− 1

which tends to zero as C2
xy(ω) tends to one and tends to infinity as

C2
xy(ω) tends to zero. Since the coherency is determined by the size
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of the noise, the sampling properties of the estimated gain and phase
may become dominated by the uncontrollable influence of ϑ2(ω) rather
than the controllable influence of m/T . It may also be shown that
cov(Ĝ(ω), �̂(ω)) = 0 so that the phase and gain can be treated separately.

A confidence interval for the gain may be constructed using the result
that f Ĝ(ω)/G(ω) is approximately distributed as χ2 with 4T/(mϑ2(ω))
degrees of freedom, so that a 100(1 − α)% interval is given by(

f Ĝ(ω)
χ2

1−α/2(f )
,

f Ĝ(ω)
χ2
α/2(f )

)

A confidence interval for the phase may be obtained by taking tan�(ω)
to be approximately normally distributed with variance

V( tan�(ω)) = m
T

sec4 �(ω)
ϑ2(ω)

2

from which it follows that

V(�(ω)) = m
T
ϑ2(ω)

2

Spectral analysis at the end of the 1960s

5.18 Jenkins (1965) returned to surveying the spectral scene, including
a discussion of cross-spectral analysis and a detailed treatment of transfer
function modelling and estimation. His experiences of spectral analysis
were then brought together in a major textbook written with Donald
Watts. Jenkins and Watts (1968) remains a key reference to the subject,
but it was Jenkins’ last published foray in spectral analysis although, as
will be seen in Chapter 8, several of the topics discussed in this chap-
ter subsequently became important features and building blocks of later
developments in time series analysis.

The final section of Jenkins (1965) discussed the uses and limitations
of spectral analysis. The uses are summarized in the following table,
and reflect Jenkins’ burgeoning interest in systems engineering: for an
expanded discussion of these areas see Jenkins (1965, pages 26–30).

1. Suggesting Models (a) Presence of peaks
(b) Variation of spectra with controlled

or uncontrolled variables
(c) Shape of cross amplitude, gain and

phase plots
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(d) Importance of digital filters
(e) Non-linearities
(f ) Non-Poisson nature of point processes

2. Systems Design (a) Choose G(ω) so as to modify fx(ω)
σ 2

y fy(ω) = σ 2
x fx(ω)G2(ω) (b) Design of experiments to which block

size is chosen from the minimum of the
spectral density

Perhaps of more interest are Jenkins’ views concerning the limitations of
spectral analysis. Jenkins had, in fact, begun the paper by stating that

(i)n no sense … can it be said that spectral analysis is widely used or
even understood by statisticians and many of the applications of the
technique have in fact been made by physicists and engineers. It is
suggested that there are two reasons for this:

(1) The genuine difficulties which statisticians (as opposed to
physicists and engineers) face in thinking in terms of frequency
concepts.

(2) The highly mathematical nature of papers written on spectral
analysis.

This undue emphasis on mathematical work has led many statisticians
to believe that spectral analysis is very difficult to apply. (ibid., page 2)

The paper thus tried ‘to present, using the minimum of mathematics, all
those ideas in spectral analysis which are necessary in order to be able to
apply the technique’ (ibid., page 2: italics in original) and Jenkins and
Watts (1968) represented a further attempt to do this with greater detail
and mathematical rigour. Nonetheless, Jenkins felt compelled to end the
paper by discussing what he felt to be the major limitations of spectral
analysis. He thought that the fact that it was a non-parametric technique
was a big disadvantage because it was then necessary to estimate a whole
function, or at least a very large set of parameters, something that statis-
ticians were not usually accustomed to do, with a consequent impact
upon the efficiency with which the parameters could be estimated. The
availability of a parametric model, say of the ARMA type, could place cer-
tain assumptions upon the smoothness of the spectrum and thus lead to
better behaved estimates.

A further disadvantage of spectral analysis was its dependence on sta-
tionarity, for during the 1960s the presence of trends in time series
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and the implications these had for statistical modelling and infer-
ence were becoming increasingly of interest. Parametric estimation of
non-stationary models involving only a few parameters was becoming
possible and, as will be emphasized in subsequent chapters, this was an
area in which Jenkins was to become increasingly involved in.



6
Box and Jenkins: Time Series
Analysis, Forecasting and Control

George Box

6.1 George Box was born in Gravesend, Kent on 18 October 1919 and,
after being educated at grammar school, went to the local polytechnic to
study chemistry. When the war intervened he was posted to the British
Army Engineers to work as a laboratory assistant in a chemical defence
experiment station investigating the effects of poison gas. His job was
to carry out tests on small animals and determine the effects of gassing
and subsequent treatment but, as the test results varied considerably, Box
realized that statistical analysis was required and that any such analysis
would have to be done by himself! Being 1942, all that he could do was
to purchase some books and teach himself enough statistics to analyze
the data. This he certainly did ‘beyond the call of duty’ and his work on
experimental design in this area of pathology was recognized with the
award of a British Empire Medal at the end of the war.

On returning to higher education after the war, Box saw that his
interests lay in statistics rather than chemistry and he obtained a BSc
in mathematical statistics from UCL in 1947. He then embarked on a
Master’s degree, later upgraded to a doctorate, at UCL but, after a summer
placement, accepted a job with Imperial Chemical Industries (ICI) which
consequently delayed the completion of his PhD until 1953. During his
time at ICI Box worked on experimental design and began to publish
papers that got the attention of statisticians in the United States, leading
to a visiting professorship at the University of North Carolina in 1953–4
and eventually a permanent move, first as Director of the Statistical Tech-
niques Research Group at Princeton in 1957 and then to the University
of Wisconsin, Madison in 1960, where he became professor and chair-
man of the new Statistics department that he was asked to set up. In 1971

161
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he was appointed to the Ronald Aylmer Fisher chair in Statistics and in
1980 was named the Vilas Research Professor of Statistics before finally
retiring from Wisconsin in 1992 with the title Professor Emeritus.

Box continued to work in experimental design as well as many other
areas of statistics and, in later years, became especially interested in qual-
ity control (see, for example, Box, 1989), establishing the Centre for
Quality and Productivity Improvement at Madison. By his own admis-
sion, until he met Gwilym Jenkins, Box ‘regarded time series as a very
boring subject. … Indeed, I think that Gwilym was the first person I’d
ever met who talked coherently about time series in terms of actually
doing something with it’ (Box, 1983b, page 516). Their initial collabo-
ration was essentially about a problem in experimental design in which
it was required to make an industrial process track a moving optimum.
They gradually realized that this problem in automatic optimization was
actually one of control, and involved forecasting because simple control
algorithms can be regarded as mechanisms for forecasting how big the
process deviation will be at the end of the next process interval and then
taking action which will cancel out the forecast deviation. This led them
to forecasting techniques such as exponential smoothing and then nat-
urally on to methods of modeling and forecasting non-stationary time
series:

The book that finally came out [Box and Jenkins, 1970] is sort of back-
ward to the way we got in. The control part is at the end and I don’t
think the actual problem we started with, pursuing the maximum,
even gets mentioned in the book. But that’s the place we actually
started. We worked back and then realized we had to do something
about non-stationary time series in order to do that. (de Groot, 1987,
page 251)

In 1964 Box was awarded the RSS’s Guy Medal in Silver and in 1993
the Guy Medal in Gold. He has also been awarded the Wilks Memorial
Medal from the American Statistical Association in 1972 and the She-
whart Medal from the American Society for Quality Control in 1968.
Further biographical details on Box, plus a host of reminiscences, may
be found in Box (1983b), de Groot (1987) and Peňa (2001).

Statistical aspects of adaptive optimization and control

6.2 The first fruit of their collaboration was Box and Jenkins (1962), in
which they addressed the issues of adaptive optimization and control
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within a statistical context. The simple discrete adaptive optimization
model they began with has data that is available only at equal intervals
of time, which they refer to as a phase, during which the underlying
process remains constant but which may change from phase to phase.
The model thus provides a discrete approximation to the operation of a
continuous process from which discrete data are taken at equal intervals
of time.

In discrete adaptive optimization the uncontrollable and immeasurable
variables have levels ξt during the tth phase which change from one
phase to the next. The controllable variable X then determines the con-
ditional response function η(X|ξt ), which is assumed to be approximated
by the quadratic function

ηt = η(X|ξt ) = η(θt ) − 1
2β(X − θt )2 (6.1)

where θt = Xmax|ξt is the conditional maximal setting during the tth
phase and β is known from prior calibration and does not change appre-
ciably with ξt . Because of fluctuations in ξt , the conditional maximal
value θt follows, typically, a non-stationary process. If Xt is the set point
at which X is held during the tth phase and εt = θt − Xt measures the
extent to which Xt deviates from θt , then an estimate of εt is given by

et = εt + ut = θt − Xt + ut = zt − Xt (6.2)

where ut is the measurement error and zt = θt + ut is an estimate of the
optimal setting θt during the tth phase.

If a series of adjustments have actually been made, then there will
be available a record of the set points Xt , Xt−1, Xt−2, . . . and deviations
et , et−1, et−2, . . ., from which the sequence zt , zt−1, zt−2, . . . of estimated
positions of the maxima in phases t, t − 1, t − 2, . . . may be calculated.
From these data an adjustment xt+1 to the set point Xt is required to be
calculated so that the adjusted set point Xt+1 = Xt + xt+1, which will
be maintained during the coming (t + 1)-th phase, will, in some sense,
be ‘best’ in relation to the coming and unknown value of θt+1.

The loss sustained during the (t + 1)-th phase is assumed, using (6.1),
to be measured by

η(θt+1) − η(Xt+1|ξt+1) = 1
2β(Xt+1 − θt+1)2

The adjustment xt+1 will then minimize the expected loss if it is chosen
so that E(Xt+1 − θt+1)2 is minimized. This will be achieved if Xt+1 is set
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equal to

θ̂t+1 =
∞∑

j=0

μjzt−j

where θ̂t+1 is the minimum mean square linear estimate (MMSLE) or
predictor of θt+1 based on zt , zt−1, zt−2, . . . and the μj’s are referred to as
the predictor weights.

At the beginning of the (t + 1)-th phase an adjustment of xt+1 = θ̂t+1 −
θ̂t should be applied to the previous setting Xt . In practice the z’s will not
be observed, only the e’s, so that the adjustment is calculated from

xt+1 = Xt+1 − Xt = θ̂t+1 − θ̂t =
∞∑

j=0

wjet−j (6.3)

with the wj being the controller weights. The optimal adjustment is then
obtained by choosing the w’s to minimize E(ε2

t+1) = E(θt+1 − θ̂t+1)2.
Assuming that the measurement error ut+1 = zt+1 − θt+1 is distributed

about zero with variance σ2
u independently of ut , ut−1, ut−2, . . . and

θt , θt−1, θt−2, . . ., then

E(e2
t+1) = E(zt+1 − θ̂t+1)2 = E(ε2

t+1) + σ2
u

The loss E(ε2
t+1) is then minimized when E(zt+1 − θ̂t+1)2 = E(et+1)2 is

minimized and x̂t+1, the best predictor of xt+1, is then the best predictor
θ̂t+1 of θt+1.

6.3 Equation (6.2) can be placed in an alternative context in which the
object is to hold θ as closely as possible to some target value, taken with-
out loss of generality to be zero, and to achieve this by adjusting the
process z up or down at will. Suppose that by the tth phase a total cor-
rection −Xt has been applied to z so that the apparent deviation from
target is given by (6.2). A further adjustment xt+1 is then to be made
so that, when the total correction −Xt+1 = −(Xt + xt+1) is applied, the
actual deviation from target εt+1 = θt+1 − Xt+1 will hopefully be small.
If a quadratic loss function is assumed then xt+1 should be chosen as
before so that E(ε2

t+1) = E(θt+1 − Xt+1)2 is minimized. Once more, this
requires that (6.3) holds with the wj’s chosen so that θ̂t+1 is the MMSLE
of θt+1 and, if the measurement errors are uncorrelated with each other
and with the θ’s, then ẑt+1 = θ̂t+1 is the MMSLE of zt+1. Box and Jenkins
referred to this problem as discrete adaptive quality control.
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6.4 The adaptive optimization and quality control problems of §6.2
and §6.3 are identical, as in both cases optimal action is taken when
Xt is adjusted either directly or indirectly to a value

Xt+1 = Xt + xt+1 = θ̂t+1

where θ̂t+1 is the mean square error predictor of θt+1.
Unlike in the prediction problem, where the z’s are directly observed

and the predictor θ̂t+1 can be conveniently calculated from

θ̂t+1 =
∞∑

j=0

μjzt−j (6.4)

where the μ’s are chosen to minimize E(θt+1 − θ̂t+1)2, in the optimization
and control problems optimal action is taken by setting Xt+1 equal to θ̂t+1,
so that only the e’s are observed and not the z’s. The optimal adjust-
ments xt+1 can then be calculated from the e’s using (6.3) according to

xt+1 = θ̂t+1 − θ̂t =
∞∑

j=0

wjet−j (6.5)

On defining the lag operator B such that Bjzt ≡ zt−j, equation (6.4) can
be written as

θ̂t+1 =
∞∑

j=0

μjBjzt (6.6)

and (6.5) as

(1 − B)θ̂t+1 =
∞∑

j=0

wjBj(zt − θ̂t )

so that ⎛⎝1 − B + B
∞∑

j=0

wjBj

⎞⎠ θ̂t+1 =
∞∑

j=0

wjBjzt (6.7)

Since both (6.6) and (6.7) express θ̂t+1 as an infinite series in powers
of B, equating coefficients on Bj, j = 0, 1, 2, . . ., leads to the following
recurrence relationship between the controller and predictor weights

wj = μj − μj−1 +
j−1∑
k=0

μkwj−1−k (6.8)



166 A Very British Affair

6.5 Box and Jenkins then considered various specifications of the series
zt and how to choose corresponding predictor weights having desirable
properties. The associated controller weights can then be obtained from
the recurrence relation (6.8) and will, of course, have the same desirable
properties.

The approach they suggested begins by assuming once again that
the measurement errors u are uncorrelated with each other and with
the θ’s, so that ẑt+1 = θ̂t+1. Now the change in the predictor ẑ at the
(t + 1)-th phase may be written, using the difference operator 
 = 1 − B,
as (cf. (6.5))


ẑt+1 = 
θ̂t+1 =
∞∑

j=0

wjet−j

If the predictor model is such that it fits a polynomial of degree d to the
last d + 1 observations then Box and Jenkins showed that


ẑt+1 = et + S1et + S2et + · · · + Sdet

where

S1et =
∞∑

j=0

et−j, S2et =
∞∑

j=0

∞∑
k=0

et−j−k · · ·

Sdet =
∞∑

j1=0

∞∑
j2=0

· · ·
∞∑

jd=0

et−j1−j2···−jd

so that Sjet denotes the jth multiple sum over the past history of the e’s.

6.6 Box and Jenkins modified this model to


ẑt+1 = (γ−lS−l + · · · + γ−1S−1 + γ0 + γ1S1 + · · · + γmSm)et (6.9)

where S−j = 
jet , and asked what stochastic process would z need to
follow for such a predictor to be optimal. To answer this, they consid-
ered the, generally non-stationary, process

zt+1 =
∞∑

j=0

ηjzt−j + αt+1
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where αt+1,αt ,αt−1, . . . are zero mean, uncorrelated and identically
distributed random variables, and proposed predicting the series by

ẑt+1 =
∞∑

j=0

μjzt−j

Since

E(e2
t+1) = E(zt+1 − ẑt+1)2 = E

⎧⎨⎩
∞∑

j=0

(ηj − μj)zt−j

⎫⎬⎭
2

+ E(α2
t+1)

such a prediction will be optimal if μj = ηj, j = 0, 1, 2, . . .. It then follows
that the equivalent predictor


ẑt+1 =
∞∑

j=0

wjet−j

will be optimal for the equivalent stochastic process


zt+1 = 
αt+1 +
∞∑

j=0

wjαt−j

and that when the optimal predictor is used the e’s become α’s and
are uncorrelated. It then follows that the predictor (6.9) will be optimal
for a series generated by


zt+1 = 
αt+1 +
m∑

j=−l

γjSjαt

Differencing m times gives


m+1zt+1 = 
m+1αt+1 +
l+m∑
j=0

γj

l+m−jαt

which can be rearranged to yield


m+1zt+1 = αt+1 +
l+m∑
j=0

δjαt−j
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Thus the predictor (6.9) would be optimal for a stochastic variable z
whose (m + 1)-th difference can be represented by a moving average of
order l + m + 1:

Thus we have a result which is of considerable practical value. If,
after differencing our series z, which in general will be non-stationary,
m + 1 times, we could render it stationary and if the population serial
covariances of lag greater than some value l + m + 1 were then zero,
a predictor of the type [6.9] would be optimal. (ibid., page 313)

Box and Jenkins pointed out that the widely used predictor of taking the
exponentially weighted mean

ẑt+1 = γ0

∞∑
j=0

(1 − γ0)jzt−j

corresponded to taking the central term of (6.9), 
ẑt+1 = γ0et , and would
be optimal for the stochastic process


zt+1 = 
αt+1 + γ0αt = αt+1 − (1 − γ0)αt

that is,

zt+1 = m + αt+1 + γ0S1αt

for which the first difference is a moving average of order one. The
addition of further terms can thus be considered to be a generaliza-
tion of this exponential predictor: for example, for series that are highly
non-stationary and exhibit marked trends, the additional term in S1et

should be of particular value since it will allow the predictor to adjust to
changes in linear trend as well as to changes in mean.

6.7 Bearing in mind the great success of the exponential predictor (see
Mills, 2011a, chapter 11, for historical development), Box and Jenkins
thought that a simple generalization to the three-term model


ẑt+1 = γ−1
et + γ0et + γ1Set (6.10)

could be useful in practice. One reason for this is that (6.10) can be
considered to be the discrete time analogue to a form of continuous
automatic control in which corrections are made proportional to a lin-
ear combination of: (i) the first derivative of the current deviation; (ii) the
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deviation itself; and (iii) the integral of the deviations over all past
history. These types of continuous control are called derivative, propor-
tional and integral respectively and the corresponding terms in (6.10) are
referred to as first difference, proportional and cumulative controls.

The stochastic process for which (6.10) is optimal is

zt+1 = m + αt+1 + γ−1αt + γ0S1αt + γ1S2αt

for which the second difference is the third-order moving average


2zt+1 = αt+1 + (γ1 + γ0 + γ−1 − 2)αt + (1 − 2γ−1 − γ0)αt−1 + γ−1αt−2

Box and Jenkins noted that, when no difference term is needed in (6.10),
γ−1 = 0 and only the first two serial correlations of 
2zt+1 would be non-
zero. If, as well, γ1 = γ0 = 1 the model reduces to 
2zt+1 = αt+1 with
predictor 
2ẑt+1 = et + S1et .

Box and Jenkins found that, in their experience, second differencing
(m = 1) was always adequate but a higher order would be suggested if
positive serial correlations for the second differences persisted for higher
lags. If serial correlations at the fourth or higher lags were appreciable,
but much higher lag correlations were small, further parameters corre-
sponding to higher derivative control, that is, Sjet , could be introduced.

6.8 Although they described a spectral method of estimating the param-
eters of (6.10), Box and Jenkins preferred to evaluate the sum of squares
function S(γ1, γ0, γ−1) = e2

1 + e2
2 + · · · + e2

T for a grid of γ values and to pick
out the best values of the parameters. Given a set of data z1, z2, . . . , zT , the
sequence e1, e2, . . . , eT needed to compute S(γ1, γ0, γ−1) may be obtained
by first setting ẑ1 = z1, so that e1 = 
e1 = S1e1 = 0, and then using

z2 = z1 + γ−1
e2 + γ0e2 + γ1S1e2

to obtain

e2 = z2 − z1

γ−1 + γ0 + γ1

Repeating the calculation for t incremented one period yields the
general expression

et = 
zt + γ−1et−1 + γ1S1et−1

γ−1 + γ0 + γ1
, t = 1, 2, . . . , T

which thus enables S(γ1, γ0, γ−1) to be calculated.
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Box and Jenkins showed that it was necessary to restrict the grid
of values (γ1, γ0, γ−1) to a certain region or else the control procedure
would become unstable because the prediction variances become infi-
nite. For the general model the stability condition is that the roots of the
characteristic equation

1 +
l+m∑
j=0

δjxj+1 = 0

should not lie on or outside the unit circle with the possible exception
of m + 1 roots which could all be equal to unity.

6.9 Box and Jenkins’ predictor (6.9) clearly reduces a non-stationary time
series to stationarity by successive differencing and then fits a moving
average model to the differenced data. While differencing had earlier
been proposed by Irving Fisher (1925) as a means of inducing station-
arity, the success of their polynomial predictor, as it became known, led
Box and Jenkins to a more systematic study of the role of differencing
in time series model building. This eventually became the approach uti-
lized in Box and Jenkins (1968, 1970), where they termed series that
could be reduced to stationarity by differencing one or more times as
being homogeneous non-stationary.1

Figure 6.1(a) shows a non-stationary series that is homogeneous in its
level: except for a vertical translation, one part of the series looks much

(a) A series showing non-stationarity in level

(b) A series showing non-stationarity in level and in slope

Figure 6.1 Two kinds of homogeneous non-stationary behavior
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the same as any other. Such a series can be rendered stationary by differ-
encing once, that is, by analyzing zt = 
xt rather than xt . Figure 6.1(b)
shows a second type of non-stationarity of fairly common occurrence,
where the series has neither a fixed level nor a fixed slope but exhibits
homogeneous behavior if differences in these characteristics are allowed
for, for example, if second differences zt = 
2xt are considered.

Integrated processes

6.10 In general, if dth differences are required to render xt stationary
then the series to be analyzed is zt = 
dxt . This can be ‘inverted’ to give

xt = 
−dzt = Sdzt

where S is the infinite summation operator introduced in §6.5 and
defined in terms of the lag operator B by

Szt =
t∑

j=−∞
zj = (1 + B + B2 + · · · )zt = (1 − B)−1zt = 
−1zt

The operator S2zt is similarly defined as 
−2zt and so on. Thus xt can be
obtained by summing (or ‘integrating’) zt d times and is therefore said
to be an integrated process of order d, a terminology first introduced by
Hall (1925) (recall §3.16).

Autoregressive-integrated-moving average processes

6.11 If the stationary dth differences zt = 
dxt can be represented by an
ARMA(p, q) process (cf. §§4.7–4.9), then this process can be written as

φ(B)zt = θ(B)at (6.11)

where φ(B) = 1 − φ1B − · · · − φpBp and θ(B) = 1 − θ1B − · · · − θqBq are
polynomials in B of order p and q respectively and at is a zero mean white
noise process. Box and Jenkins (1970, chapter 4) called the equivalent
model for xt itself,

φ(B)
dxt = θ(B)at (6.12)

an autoregressive-integrated-moving average process of orders p, d and q,
succinctly given the acronym ARIMA(p, d, q). Such processes have some
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important and interesting properties which have led to them becom-
ing perhaps the most widely used class of model for dealing with
non-stationary processes.

Recall the simple AR(1) process, now written as (1 − φB)xt = at . If
|φ| < 1, xt is stationary and will therefore always revert back to its mean,
here taken to be zero for simplicity. On the other hand, if φ > 1 the
process is said to be explosive, with xt increasing rapidly with t. The
important point is that, in both cases, the local behaviour of a series gen-
erated from the model is heavily dependent upon the level of xt . This is
in contrast to the behavior of the series shown in Figure 6.1(a), where
its local behaviour appears to be independent of its level. For an ARMA
model to exhibit such behaviour, the autoregressive operator must be
chosen such that

φ(B)(xt + c) = φ(B)xt

where c is any constant. Thus the autoregressive operator must satisfy
φ(B)c = 0, which implies that φ(1) = 0, which will be satisfied if φ(B) is
of the form

φ(B) = φ1(B)(1 − B) = φ1(B)


Hence the class of processes having the desired property will be of the
form

φ1(B)
xt = θ(B)at

which, of course, is (6.12) with d = 1, i.e., an ARIMA(p − 1, 1, q) pro-
cess. The required homogeneity excludes the possibility that zt = 
xt

should increase explosively. This means that either φ1(B) is a stationary
autoregressive operator or φ1(B) = φ2(B)(1 − B), so that φ2(B)zt = θ(B)at ,
where zt = 
2xt , which is the case for the series shown in Figure 6.1(b).
In the latter case the same argument can be applied to the second dif-
ference and so on. Consequently, it must be the case that, for time
series that are non-stationary, but nevertheless exhibit homogeneity, the
autoregressive operator must be of the form shown in (6.12).

6.12 For the AR(1) process, the requirement that φ(1) = 0 implies φ = 1,
so that the model becomes xt = xt−1 + at or, equivalently, 
xt = at . This,
of course, is the famous random (or drunkards) walk, so termed in a corre-
spondence between Karl Pearson and Lord Rayleigh in the journal Nature
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in 1905 (see Pearson and Rayleigh, 1905). Although first employed by
Pearson to describe a mosquito infestation in a forest, the model was
subsequently, and memorably, used to describe the optimal search strat-
egy for finding a drunk who had been left in the middle of a field at
the dead of night! The solution is to start exactly where the drunk had
been placed, as that point is an unbiased estimate of the drunk’s future
position since he will presumably stagger along in an unpredictable and
random fashion: ‘(t)he lesson of Lord Rayleigh’s solution is that in open
country the most probable place to find a drunken man who is at all
capable of keeping on his feet is somewhere near his starting point’
(ibid., page 342).2 If the random walk starts at time t = 0 then

xt = x0 +
t∑

j=1

aj

so that xt is the accumulation of all past innovations. The random walk
is thus equivalent to Yule’s (1926) conjunct series with random dif-
ferences (§§2.12–2.13), to Working’s (1934) ‘random-difference series’,
and to Macaulay’s (1931) ‘cumulated chance series’. Macaulay’s ‘chance
series which has been cumulated twice’ is thus an integrated series of
order two, and may be thought of as a random walk with random walk
innovations, since the process 
xt = bt with 
bt = at can be written as

2xt = at . The two series shown in Figure 6.1 are generated as 
xt = at

and
2xt = at , respectively, in both cases with at being a standard normal
variate.

If a constant is included, the process

xt = xt−1 + θ0 + at (6.13)

is known as a random walk with drift. Figure 6.2 depicts such a pro-
cess with at standard normal and θ0 = 0.2. It is often remarked that the
evolution of many macroeconomic time series look very much like this.

Figure 6.2 A random walk with drift
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If the process again starts at t = 0, the random walk with drift can be
written as

xt = x0 + tθ0 +
t∑

j=1

aj

It therefore follows that the mean of the process will be time varying

μt = E(xt ) = x0 + tθ0

as will be the variance and all the auto-covariances

γk,t = Cov(xt , xt−k) = (t − k)σ2
a k > 0

where σ2
a = E(a2

t ). Thus the autocorrelation between xt and xt−k is
given by

ρk,t = t − k√
t(t − k)

=
√

t − k
t

If t is large compared to k, all ρk,t will be approximately unity. The
sequence of x values will therefore be very smooth, but xt will, of course,
be non-stationary since both its mean and variance increase with t.

With a constant included, the ARIMA(p, d, q) process takes the form

φ(B)
dxt = θ0 + θ(B)at

The inclusion of θ0 has the effect of including a deterministic function
of time, a polynomial of order d, into the model, but this will now
be ‘buried’ in non-stationary noise. This should be contrasted with the
traditional model of a deterministic trend, in which xt is expressed as the
sum of a polynomial and stationary noise, for example

xt =
d∑

j=0

βjt j + bt φ(B)bt = θ(B)at

This can be written as


dxt = βdd! +
dbt = βdd! +
d θ(B)
φ(B)

at
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or

φ(B)
dxt = φ(1)βdd! +
dθ(B)at

with the stationary nature of the noise in xt being manifested in d roots
of the moving average operator being unity.

Determining the order of differencing

6.13 The autocorrelations of an ARIMA(p, 0, q) process will satisfy the
difference equation φ(B)ρk = 0 for k > q (see Box and Jenkins, 1970,
section 3.4.2). On factorizing the autoregressive operator as

φ(B) =
p∏

i=1

(1 − GiB)

then the solution of this difference equation for the kth autocorrelation
is, assuming distinct roots,

ρk = A1Gk
1 + A2Gk

2 + · · · + ApGk
p k > q − p (6.14)

The stationarity requirement is that the roots of φ(B) must lie outside
the unit circle, thus implying that |Gi| < 1, i = 1, . . . , p. From (6.14) it is
clear that, in the case of a stationary process in which none of the roots
lie close to the boundary of the unit circle, the autocorrelation function
will quickly ‘die out’ for moderate and large k. However, suppose that a
single real root, say G1, approaches unity, so that G1 = 1 − δ where δ is
small and positive. Then, for k large,

ρk ≈ A1(1 − δ)k = A1(1 − kδ+ k2δ2 − · · · ) ≈ A1(1 − δk)

and the autocorrelations will not die out quickly but will decline only
slowly and approximately linearly. (A similar argument may be applied
if more than one of the roots approaches unity.) This led Box and Jenkins
(1970, page 175) to the conclusion that

a tendency for the autocorrelation function not to die out quickly
[can be] taken as an indication that a root close to unity may exist.
The estimated autocorrelation function tends to follow the behavior
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of the theoretical autocorrelation function. Therefore, failure of the
estimated autocorrelation function to die out rapidly might logically
suggest that we should treat the underlying stochastic process as non-
stationary in xt , but possibly as stationary in 
xt , or in some higher
difference.

Box and Jenkins emphasized that the sample autocorrelations need not
be high at low lags: all that is required for non-stationarity is that they do
not die out rapidly. It may then be assumed that the degree of differenc-
ing necessary to achieve stationarity has been reached when the sample
autocorrelations of zt = 
dxt die out fairly quickly. In practice, Box and
Jenkins found that, as with their experience of the polynomial predic-
tor, typically d ≤ 2 and that it was usually sufficient to inspect the first
twenty or so sample autocorrelations of the original series and its first
and second differences.

6.14 Figures 6.3 and 6.4 show Series B and C taken from Box and Jenkins
(1970, pages 526 and 528 respectively), along with plots of the sam-
ple autocorrelation functions for d ≤ 2 and k ≤ 20. It is clear that both
series are non-stationary with the autocorrelations for d = 0 declining
only very slowly. For Series B, which is the IBM common stock price
for 369 days during 1961 and 1962, first differencing is seen to induce
stationarity: indeed, for d = 1 all sample autocorrelations are close to
zero, thus implying that 
xt is white noise and that the series itself
follows a random walk, the traditional model used for stock prices.

For Series C (the 226 minute by minute temperature readings of a
chemical process), there is some indication that the sample autocorre-
lations for d = 1 are decaying only slowly, which might suggest that
second differencing is required. Such a conclusion would be consistent
with the changes in level and slope that are observed in the series.
If d = 2 is chosen, then it would appear from the associated sample
autocorrelations that 
2xt is white noise. Box and Jenkins were not
convinced that second differencing was required, however, for the auto-
correlations for d = 1 could equally be argued to be declining exponen-
tially from an initial value of 0.8, which would suggest the ARIMA(1, 1, 0)
model (1 − 0.8B)(1 − B)xt = at rather than the ARIMA(0, 2, 0) model

2xt = at .

This difficulty of deciding the appropriate order of differencing from
the behavior of sample autocorrelations alone was to become a major
drawback of the Box and Jenkins identification procedure and, sub-
sequently, led to a massive research project on the subject of testing
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for unit roots (see §10.32). Nevertheless, determining the order of
differencing in this way was an important part of establishing a work-
able method of identifying ARIMA processes and certainly had a major
impact on getting those models accepted and used across a wide range
of time series applications.

Identification of ARMA models

6.15 Having chosen the order of differencing d, so that zt = 
dxt , the
orders p and q of the ARMA model generating zt need to be selected.
Box and Jenkins (1970, chapter 6) recognized that this was an essential
first stage of the model-building process and formalized a procedure,
known as the identification stage, for the purposes of doing just this.
The ‘philosophy’ behind identification is best summed up by their state-
ment that

identification methods are rough procedures applied to a set of data
to investigate the kind of representational model which is worthy
of further investigation. It should be explained that identification is
necessarily inexact. It is inexact because the question of what types
of models occur in practice and in what circumstances, is a prop-
erty of the behavior of the physical world and cannot, therefore,
be decided by purely mathematical argument. Furthermore, because
at the identification stage no precise formulation of the problem is
available, statistically ‘inefficient’ methods must necessarily be used.
It is a stage at which graphical methods are particularly useful and
judgment must be exercised. However, it should be borne in mind
that preliminary identification commits us to nothing except to ten-
tatively entertaining a class of models which will later be efficiently
fitted and checked. (ibid., page 173)

The principal tools for the identification of an ARMA process are the
sample and theoretical autocorrelation and partial autocorrelation func-
tions: ‘(t)hey are used not only to help guess the form of the model, but
also to obtain approximate estimates of the parameters. Such approxi-
mations are often useful at the estimation stage to provide starting values
for iterative procedures employed at that stage’ (ibid., page 174).

Identification involves studying the general appearance of the sam-
ple autocorrelation and partial autocorrelation functions to obtain clues
about the choice of the autoregressive and moving average orders
p and q. This is done by relating their appearance to the characteristic
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behavior of the theoretical autocorrelation and partial autocorrelation
functions for moving average, autoregressive, and mixed processes. Such
characteristic behavior is developed in detail in Box and Jenkins (1970,
chapter 3) and subsequently in many time series texts, being succinctly
summarized by them in the following way.

Briefly, whereas the autocorrelation function of an autoregressive pro-
cess of order p tails off, its partial autocorrelation function has a cutoff
after lag p. Conversely, the autocorrelation function of a moving
average process of order q has a cutoff after lag q, while its partial
autocorrelation function tails off. If both the autocorrelations and
partial autocorrelations tail off, a mixed process is suggested. Further-
more, the autocorrelation function for a mixed process, containing
a pth order autoregressive component and a qth order moving aver-
age component, is a mixture of exponentials and damped sine waves
after the first q − p lags. Conversely, the partial autocorrelation func-
tion for a mixed process is dominated by a mixture of exponentials
and damped sine waves after the first p − q lags.

In general, autoregressive (moving average) behavior, as measured
by the autocorrelation function, tends to mimic moving average
(autoregressive) behavior as measured by the partial autocorrelation
function. For example, the autocorrelation function of a first-order
autoregressive process decays exponentially, while the partial auto-
correlation function cuts off after the first lag. Correspondingly, for a
first-order moving average process, the autocorrelation function cuts
off after the first lag. The partial autocorrelation function, while not
precisely exponential, is dominated by exponential terms and has the
general appearance of an exponential. (ibid., pages 175–6)

Particularly important for model building are the first- and second-
order autoregressive and moving average processes and the simple mixed
ARMA(1, 1) process. The theoretical properties of these models are sum-
marized in Table 6.1, which has been adapted from Box and Jenkins’
own Table 6.1.

6.16 Comparing the behavior of the sample and theoretical autocorre-
lation functions is by no means straightforward, particularly with small
sample sizes. As was discussed in Chapter 3 (particularly §§3.8–3.9),
Kendall had been particularly concerned that moderately large sample
autocorrelations could occur after the theoretical autocorrelation func-
tion had damped out, and that apparent ripples and trends could appear
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Table 6.1 Behaviour of the autocorrelation and partial autocorrelation functions
of various ARMA(p, q) processes. φkk is the kth partial autocorrelation, being the
coefficient on the kth lag of an AR(k) process

ARMA Order (1,0) (0,1)

Behaviour of ρk decays exponentially only ρ1 nonzero
Behaviour of φkk only φ11 nonzero exponential dominates decay

Preliminary
estimates from

φ1 = ρ1 ρ1 = −θ1

1 + θ2
1

Admissible
region

−1 < φ1 < 1 −1 < θ1 < 1

ARMA Order (2,0) (0,2)

Behaviour of ρk mixture of exponentials or
damped sine wave

only ρ1 and ρ2 nonzero

Behaviour of φkk only φ11 and φ22 nonzero Dominated by mixture of
exponentials or damped
sine wave

Preliminary
estimates from φ1 = ρ2(1 − ρ2)

1 − ρ2
1

ρ1 = −θ1(1 − θ2)
1 + θ2

1 + θ2
2

φ2 = ρ2 − ρ2
1

1 − ρ2
1

ρ2 = −θ2

1 + θ2
1 + θ2

2
Admissible
region

⎧⎪⎨⎪⎩
−1 < φ2 < 1

φ2 + φ1 < 1

φ2 − φ1 < 1

⎧⎪⎨⎪⎩
−1 < θ2 < 1

θ2 + θ1 < 1

θ2 − θ1 < 1

ARMA order (1,1)

Behaviour of ρk decays exponentially from first lag
Behaviour of φkk Dominated by exponential decay from first lag
Preliminary
estimates from ρ1 = (1 − θ1φ1)(φ1 − θ1)

1 + θ2
1 − 2φ1θ1

ρ2 = ρ1φ1

Admissible
region

−1 < φ1 < 1 − 1 < θ1 < 1

in the sample autocorrelation function which had no place in the the-
oretical function. Box and Jenkins thus recommended caution when
attempting to use the sample autocorrelation function as a tool for iden-
tification, because while ‘it is usually possible to be fairly sure about broad
characteristics, … more subtle indications may or may not represent real
effects, and two or more related models may need to be entertained and
investigated further at the estimation and diagnostic checking stages of
model building’ (ibid., page 177).
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Given the behavior of the theoretical autocorrelation and partial
autocorrelation functions, as shown in Table 6.1, it is also important
that there are some means to judge whether their sample counter-
parts are effectively zero after some specific lag. Box and Jenkins (1970,
section 6.2.2) suggested using the Bartlett formula (3.16), with sam-
ple estimates replacing theoretical autocorrelations, to compute the
standard error of rk as

s(rk) ∼= T− 1
2 (1 + 2r2

1 + 2r2
2 + · · · + 2r2

k−1)1/2

and to use the result that the standard error of the kth sample partial auto-
correlation, which we denote φ̂kk, is s(φ̂kk) = T− 1

2 . In both cases the ratio
of the estimate to its standard error may be taken to be asymptotically
standard normal.

6.17 To illustrate the identification stage of ARMA model building, we
shall again use the sunspot index from 1700 to 2011, which was fitted
as an AR(2) process in §2.21, and also Series A from Box and Jenkins
(1970, page 525). The sample and partial autocorrelation functions for
the sunspot index are shown in Figure 6.5. The sample autocorrelation
function shows the familiar oscillatory pattern, while the sample partial
autocorrelation function appears to cut off at k = 9 when compared to its
two-standard error bounds, thus tentatively identifying an AR(9) process,
as was suggested by both Craddock (1967) and Morris (1977), although
a mixed model, such as an ARMA(2, 1) process, might be appropriate.

Series A, consisting of 197 two-hourly concentration readings on a
chemical process, is plotted as Figure 6.6 and appears to be station-
ary. The sample autocorrelation and partial autocorrelation functions
are shown in Figure 6.7 and from these Box and Jenkins tentatively
identified the series as being generated by an ARMA(1, 1) process on
the grounds that, from r1 onwards, the sample autocorrelations decay
roughly exponentially, albeit rather slowly.

The likelihood function of an ARMA model

6.18 Having selected a particular ARMA model or, often more likely, a
small set of candidate models, these now need to be fitted to the data. The
advances in both computing power and numerical algorithms during
the 1960s (see, for example, Hartley, 1961, and Marquardt, 1963) meant
that the estimation methods outlined in, for example, §§4.3–4.9 were
quickly superseded by non-linear estimation techniques based on the
likelihood principle.3
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Figure 6.5 Sample autocorrelation and partial autocorrelation functions for the
sunspot index with, respectively, one- and two-standard error bounds

This approach was developed in considerable detail in Box and Jenkins
(1970, chapter 7) and, because of its central importance to the analysis
of time series, we review it in commensurate detail here. The gen-
eral model to be estimated is the stationary and invertible ARMA(p, q)
process which may be written

at = xt − φ1xt−1 − · · · − φpxt−p + θ1at−1

+ · · · + θqat−q t = 1, 2, . . . , T (6.15)

where the notation of Box and Jenkins is adopted with xt = Xt − μ and
at ∼ IID(0, σ2

a ). Typically the mean μ will be replaced by the sample
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Figure 6.6 Series A from Box and Jenkins (1970): T = 197 two-hourly concentra-
tion readings of a chemical process

mean X̄, but if desired it can be estimated along with the other param-
eters of (6.15), φ = (φ1,φ2, . . . ,φp)′, θ = (θ1, θ2, . . . , θq)′ and σa. The obser-
vations x1, x2, . . . , xT are gathered together in the vector x, while the
innovations a1, a2, . . . , aT are gathered together in the vector a.

The x’s cannot be substituted immediately into (6.15) to calculate
the a’s because of the difficulty inherent in starting up the differ-
ence equation. However, if the p values x−p+1, . . . , x0 and the q values
a−q+1, . . . , a0 were available, then (6.15) could be used recursively to cal-
culate a1, a2, . . . , aT conditional on this choice of starting values, and
these can be gathered together in the vectors x∗ and a∗.

Thus, for any given choice of parameters (φ, θ) and starting values
(x∗, a∗), we could calculate recursively a set of values at (φ, θ|x∗, a∗, x),
t = 1, 2, . . . , T . If it is assumed that the a’s are normally distributed then
their joint probability distribution is

p(a1, a2, . . . , aT ) ∝ σ−T
a exp

(
−
(

T∑
t=1

a2
t /σ

2
a

))

For a particular set of data x, the log likelihood associated with the
parameter values (φ, θ, σa), conditional on the choice (x∗, a∗), would
then be

�∗(φ, θ, σa) = −T ln σa − S∗(φ, θ)
2σ2

a
(6.16)
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Figure 6.7 Sample autocorrelation and partial autocorrelation functions for Box
and Jenkins’ Series A with, respectively, one- and two-standard error bounds

where

S∗(φ, θ) =
T∑

t=1

a2
t (φ, θ|x∗, a∗, x) (6.17)

Since the conditional log likelihood �∗ involves the data only through
the conditional sum of squares function S∗ (�∗ being a linear function of
S∗ for any fixed σa), the maximum likelihood estimates will be the same
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as the least squares estimates and the behaviour of the conditional like-
lihood can therefore be studied by examining the conditional sum of
squares function.

6.19 Although the unconditional likelihood is strictly what is needed
for parameter estimation, if T is reasonably large then a sufficiently
close approximation to it is obtained by using the conditional likeli-
hood with suitable values substituted for the elements of x∗ and a∗ in
(6.17). One possibility is to set these elements equal to their uncondi-
tional expectations, which are zero. This approximation can be poor,
however, if some of the roots of φ(B) = 0 lie close to the boundary of the
unit circle (cf. the condition in §6.8). In these circumstances the process
is approaching non-stationarity and, as a consequence, the initial value
x1 could deviate considerably from its unconditional expectation of zero,
thus introducing a large transient which would be slow to die out. An
alternative is then to use (6.15) to calculate the a’s from ap+1 onwards,
setting previous a’s equal to zero. Consequently, actually occurring val-
ues are used for the x’s throughout the recursion, but only T − p terms
appear in the summation in (6.17), a loss of information which should
only be slight for large T . For pure moving average models with p = 0,
the two procedures are obviously equivalent.

6.20 The unconditional likelihood of (6.15) is given by (Box and Jenkins,
1970, chapter 7.1.4 and Appendix A7.4)

�(φ, θ, σa) = f (φ, θ) − T ln σa − S(φ, θ)
2σ2

a
(6.18)

where f (φ, θ) is a function of φ and θ, and

S(φ, θ) =
T∑

t=−∞
E(at |φ, θ, x)2 (6.19)

is the unconditional sum of squares function. Usually f (φ, θ) is only impor-
tant for small T and quickly becomes dominated by S(φ, θ)/2σ2

a as T
increases. Consequently, the parameter estimates obtained by minimiz-
ing the sum of squares (6.19), known as the least squares estimates,
usually provide very close approximations to the maximum likelihood
estimates.
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Backward ARMA processes

6.21 In order to compute S(φ, θ), the set of conditional expectations
E(at |φ, θ, x) for t = −∞, . . . , −1, 0, 1, . . . , T need to be calculated. To con-
struct an algorithm to do this, Box and Jenkins (1970, chapter 6.4)
introduced the concept of a backward process. Consider the regular,
invertible, MA(1) process (recall §4.4)

xt = (1 − θB)at |θ| < 1 (6.20)

This has the dual, but not invertible, representation (ibid., section 6.4.2)

xt = (1 − θ−1B)αt

with σ2
α = θ2σ2

a . This can be written as

xt = (1 − θB−1)(−θ−1B)αt

= ((1 − θ−1B)(−θB−1))(−θ−1B)αt

= ((1 − θ−1B)(−θB−1))et

= (1 − θB−1)et

on setting et = −θ−1Bαt = −αt−1/θ, which has variance σ2
a . By defining

F ≡ B−1 to be the forward operator, the ‘backward’ process

xt = (1 − θF)et (6.21)

is then seen to be the dual of the forward process (6.20), in which the
innovation et is expressible as the convergent sum of current and future
values of x:

et = xt + θxt+1 + θ2xt+2 + · · ·

An ARMA(p, q) process thus has both a forward and a backward repre-
sentation:

φ(B)xt = θ(B)at (6.22)

φ(F)xt = θ(F)et (6.23)

A value x−h therefore bears exactly the same probability relationship
to the sequence x1, x2, . . . , xT as does the value xT+h+1 to the sequence
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xT , xT−1, . . . , x1. The expected value of x−h can then be obtained in
exactly the same way as xT+h+1 but by using the backward model (6.23),
a procedure termed by Box and Jenkins as ‘back forecasting’ (or simply
‘backcasting’).

Calculating the sum of squares function

6.22 The two representations can be used to generate the conditional
expectations E(at |φ, θ, x), which we now denote as [at ], by taking
conditional expectations of (6.23) to generate the backcasts

φ(F)[xt ] = θ(F)[et ]

and then using (6.22) to generate the [at ]’s, from which the uncondi-
tional sum of squares can be calculated.

To illustrate the procedure, consider the following T = 12 successive
values of xt .

t 1 2 3 4 5 6 7 8 9 10 11 12

xt 2.0 0.8 −0.3 −0.3 −1.9 0.3 3.2 1.6 −0.7 3.0 4.3 1.1

Suppose we wish to compute the unconditional sum of squares S(φ, θ)
associated with the ARMA(1, 1) process

(1 − φB)xt = (1 − θB)at

(1 − φF)xt = (1 − θF)et

with parameter values φ = 0.3 and θ = 0.7. If it is assumed that back-
casts are negligible beyond t = −Q, then the non-zero [et ]’s can be
generated from

[et ] = [xt ] − 0.3[xt+1] + 0.7[et+1] t = 1, 2, . . . , T − 1 = 11

on noting that [e12] = 0 and [et ] = 0 for t ≤ 0. The backcasts of xt are
then generated from

[xt ] = 0.3[xt+1] − 0.7[et+1] t = −Q, −Q + 1, . . . , 0

With the starting value [a−Q ] = [x−Q ], successive values of [at ] are then
generated from

[at ] = [xt ] − 0.3[xt−1] + 0.7[at−1] t = −Q + 1, −Q + 2, . . . , T = 12
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and the unconditional sum of squares is calculated as

S(0.3, 0.7) =
T=12∑
t=−Q

[a2
t ]

The calculations are shown in Table 6.2 for Q = 4, from which we obtain
S(0.3, 0.7) = 89.16. Box and Jenkins discussed how a second iteration
could be carried out by using the forward model with [a12] = 3.989
to obtain [x13], [x14], . . . and then substituting these into the backward
equation to obtain new backcasts [x0], [x−1], . . . . They showed that little
was gained by doing this and that, in general, the procedure converged
very quickly.

The two conditional sums of squares suggested as approximations in
§6.19 were: (i) to start the recursion at the first available observation,
setting all unknown a’s and e’s to zero and all the x’s equal to their
unconditional expectation; and (ii) to start the recursion at the pth obser-
vation using only observed values of the x’s and zeros for the unknown
a’s and e’s. In the above example the unconditional expectation of x is

Table 6.2 Calculation of the [at ]’s from 12 values
of a series assumed to be generated by the process
(1 − 0.3B)xt = (1 − 0.7B)at

t [at] [xt] [et]

−4 −0.008 −0.008 0
−3 −0.031 −0.028 0
−2 −0.107 −0.094 0
−1 −0.359 −0.312 0

0 −1.197 −1.039 0
1 1.474 2.0 2.342
2 1.232 0.8 0.831
3 0.322 −0.3 −0.838
4 0.016 −0.3 0.180
5 −1.799 −1.9 −0.128
6 −0.389 0.3 2.660
7 2.837 3.2 4.743
8 2.626 1.6 2.890
9 0.658 −0.7 1.542

10 3.671 3.0 4.489
11 5.970 4.3 3.970
12 3.989 1.1 0
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zero and p = 1, so that the two approximations produce

12∑
t=1

(et |0.3, 0.7, x13 = 0, e13 = 0, x)2 = 101.0

and

12∑
t=2

(et |0.3, 0.7, x12 = 1.1, e12 = 0, x)2 = 82.44

respectively. The sum of squares using (i) is a poor approximation,
although the discrepancy, which is over 10 per cent in a series of
12 values, would be diluted if the sample was larger, since the tran-
sient introduced by the choice of starting value will eventually die out.
The approximation (ii) is much more accurate and confirms Box and
Jenkins’ view in §6.19 that this is the method to employ if a conditional
approximation is to be used.

6.23 Figure 6.8 presents a contour plot of S(φ, θ) obtained by calculating
the unconditional sum of squares for φ, θ = −1, (0.1), 1: the minimum
is obtained at S(0.1, −0.9) = 26.05. While the results for such a small
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sample cannot be taken too seriously, the example does illustrate the
usefulness of studying the complete sum of squares function and hence
the likelihood function.

Box and Jenkins (1970, chapter 7.1.6) discussed alternative ways of
graphically presenting sums of squares functions, and hence likelihood
functions, for two and three parameters. They pointed out that the
likelihood function does not merely indicate the maximum likelihood
values but, according to the likelihood principle, also represents all the
information contained in the data. Its overall shape can therefore be
extremely informative: the existence of multiple peaks, for example,
would imply that there are more than one set of values of the para-
meters that might explain the data, whereas the existence of a sharp
ridge means that one parameter’s value, considerably different from the
maximum likelihood, could explain the data if accompanied by a value
of the other parameter which deviated appropriately from its maximum
value. Box and Jenkins referred to this as the estimation situation, which
needed to be understood by examining the likelihood both graphi-
cally and analytically. For example, care needs to be taken when the
maximum may be on or near a boundary, as in Figure 6.8 where the
maximum likelihood estimate of θ looks to be close to −1.

Analytically, the treatment of likelihood functions has typically con-
sisted of: (i) differentiating the log likelihood and setting first derivatives
to zero to obtain the ML estimates; and (ii) deriving approximate
variances and covariances of these estimates from either the second
derivatives of the log likelihood or from their expected values. Mechan-
ical application of this treatment can be problematic for two reasons:
setting first derivatives to zero does not always produce maxima, and
the information contained in the likelihood is only fully expressed by
the ML estimates and the second derivatives of the log likelihood if the
function can be adequately represented by a quadratic approximation
over the region of interest.

Variances and covariances of ML estimates

6.24 Following Box and Jenkins (1970, chapter 7.1.7), we define β to be
a vector whose k = p + q elements, βi, i = 1, . . . , k, are the autoregressive
and moving average parameters φ and θ, and ξ as the complete set of
parameters β, σa. The log likelihood can then be written

�(ξ) = �(β, σa) ∼= �(β̂, σa) + 1
2

k∑
i=1

k∑
j=1

�ij(βi − β̂i)(βi − β̂j)
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where, on the assumption that a quadratic approximation is adequate,
the derivatives

�ij = ∂2�(β, σa)
∂βi∂βj

are constant. For large T , the quadratic approximation will be valid if
S(β) is, or if the conditional expectations in (6.19) are, approximately
locally linear in the elements of β. Under these circumstances, useful
approximations to the variances and covariances of the estimates may
be obtained and approximate confidence intervals constructed.

6.25 The information matrix for the β parameters is the k × k matrix
defined by Whittle (1953) as I(β) = −E(�ij). For a given value of σa, the
variance–covariance matrix V(β̂) for the ML estimates β̂ is, for large T ,
given by the inverse of this information matrix:

V(β̂) ∼= −E(�ij)−1

For example, if k = 2,

V(β̂) =
[

V(β̂1) Cov(β̂1, β̂2)
Cov(β̂1, β̂2) V(β̂2)

]
∼= −

[
E(�11) E(�12)
E(�12) E(�11)

]−1

Now, using (6.18),

�ij ∼= − Sij

2σ2
a

= − 1
2σ2

a

∂2S(β|x)
∂βi∂βj

so that

V(β̂) ∼= 2σ2
a

⎡⎢⎢⎢⎣
∂2S(β)
∂β2

1

∂2S(β)
∂β1∂β2

∂2S(β)
∂β1∂β2

∂2S(β)
∂β2

2

⎤⎥⎥⎥⎦
−1

= 2σ2
a

[
S11 S12

S12 S22

]−1

(6.24)

If S(β) were exactly quadratic in β over the relevant region of the param-
eter space, then all the derivatives Sij would be constant over this region.
In practice the Sij will vary somewhat and they are usually evaluated at
or near the point β̂. Box and Jenkins showed that an estimate of σ2

a is
provided by σ̂2

a = S(β̂)/T and that, for T large, σ̂2
a and β̂ are uncorrelated.
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Confidence regions for the parameters

6.26 The square roots of the diagonal elements of (6.24) define the
standard errors of the estimates, SE(β̂i). When several parameters are con-
sidered simultaneously, joint confidence regions may be constructed from
the result that

−
∑
i,j

E(�ij)(βi − β̂i)(βj − β̂j) = 1
2σ2

a

∑
i,j

Sij(βi − β̂i)(βj − β̂j) < χ2
ε

defines an approximate 1 − ε confidence region. Such a region will be
bounded by the contour of the sum of squares surface for which

S(β) = S(β̂)
(

1 + χ2
ε

T

)

Given the estimates φ̂ = 0.1, θ̂ = −0.9 and S(0.1, −0.9) = 26.05 obtained
by minimizing S(φ, θ) for the data in Figure 6.8, 0.95 and 0.99 confi-
dence regions are bounded by the contours given by

S0.95(φ, θ) = 26.05
(

1 + 5.99
12

)
= 39.05

S0.99(φ, θ) = 26.05
(

1 + 9.21
12

)
= 46.04

These regions are shown in Figure 6.9 and, not surprisingly given the
very small sample size, are rather wide.

The covariance matrix for an ARMA(1, 1) model was shown by Box
and Jenkins (1970, Appendix 7.5) to be

V(φ̂, θ̂) = T−1 1 − φθ

(φ − θ)2

[
(1 − φ2)(1 − φθ) (1 − φ2)(1 − θ2)
(1 − φ2)(1 − θ2) (1 − θ2)(1 − φθ)

]

so that in the example here it is

V(0.1, −0.9) =
[

0.09802 0.01709
0.01709 0.01882

]

leading to the standard errors SE(φ̂) = 0.313 and SE(θ̂) = 0.137.
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Non-linear estimation

6.27 Although plotting the sum of squares function is important as it
ensures that any peculiarities in the estimation situation are shown up,
once we are satisfied that anomalies are unlikely, non-linear estimation
algorithms may be applied. The need for a non-linear algorithm is seen
by contrasting the autoregressive process [at ] = φ(B)[xt ], for which

∂[at ]
∂φi

= −[xt−i] + φ(B)
∂[xt ]
∂φt

(6.25)

with the moving average process [at ] = θ−1(B)[xt ], for which

∂[at ]
∂θj

= θ−2(B)[xt−j] + θ−1(B)
∂[xt ]
∂θj

(6.26)

In (6.25) [xt ] = xt and ∂[xt ]/∂φj = 0 for t > 0, while for t ≤ 0 both are
functions of φ, so that, except for the effect of ‘starting values’, [at ]
is linear in φ. In contrast, [at ] is always a non-linear function of θ in
(6.26). Nevertheless, iterative application of linear least squares may be
used to estimate the parameters of any ARMA model.

The problem, as set out earlier, is to minimize
∑T

t=1−Q [at ]2. Suppose
[at ] is expanded in a Taylor series about its value corresponding to some
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initial set of ‘guessed’ parameter values β′
0 = (β1,0,β2,0, . . . ,βk,0):

[at ] = [at,0] −
k∑

i=1

(βi − βi,0)zi,t (6.27)

where

[at,0] = [at |x, β0]

and

zi,t = −∂[at ]
∂βi

∣∣∣∣
β=β0

If Z is the (T + Q) × k matrix containing the zi,t as elements, the T + Q
equations (6.27) may be expressed as

[a0] = Z(β − β0) + [a]

where [a0] and [a] are column vectors with T + Q elements. The adjust-
ments β − β0, which minimize S(β) = [a]′[a], can now be obtained by
linear least squares, regressing the [a0]’s onto the z′s. Because the [at ]’s
will not be exactly linear in β, a single adjustment will not immediately
produce least squares values, so that an iterative procedure, in which
the adjusted values are substituted as new guesses and the process is
repeated until convergence occurs, becomes necessary. The speed of con-
vergence and, indeed, whether there is convergence at all, often depends
on how good the initial guess β0 is to the ‘true’ vector β.

While (6.25) and (6.26) allow the derivatives zi,t to be obtained ana-
lytically, it is often easier to obtain them numerically. Box and Jenkins
(1970, chapter 7.2) outlined the methods then available to do this and
also provided a suite of computer programs that enabled non-linear
estimation of ARMA models to be carried out.

Estimated models for the sunspot index and Series A

6.28 Table 6.3 reports the estimated parameters of various models fit-
ted to the sunspot index. Initial values are not needed for the various
autoregressive models as these are linear least squares fits. Initial esti-
mates for the ARMA(2, 1) model were obtained using the procedure set
out in Box and Jenkins (1970, Appendix A6.2). The ARMA(2, 1) model
clearly gives a better fit than the AR(2), with the additional parameter θ1
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Table 6.3 Alternative model estimates for the sunspot index. Standard errors
are shown in parentheses. AR(9)∗ denotes an AR(9) model with the restrictions
φ3 = · · · = φ8 = 0 imposed

AR(2) AR(9) AR(9)∗ ARMA(2, 1)

μ̂ 50.03 (3.16) 51.31 (6.68) 51.59 (8.70) 50.03 (2.79)
φ̂1 1.39 (0.04) 1.18 (0.06) 1.22 (0.04) 1.47 (0.05)
φ̂2 −0.69 (0.04) −0.40 (0.09) −0.52 (0.04) −0.76 (0.05)
φ̂3 − −0.16 (0.09) − −
φ̂4 − 0.15 (0.09) − −
φ̂5 − −0.10 (0.09) − −
φ̂6 − 0.02 (0.09) − −
φ̂7 − 0.04 (0.09) − −
φ̂8 − −0.08 (0.09) − −
φ̂9 − 0.25 (0.06) 0.20 (0.03) −
θ̂1 − − − 0.16 (0.08)
σ̂a 16.65 15.17 15.15 16.55

being significantly different from zero and σ̂a being a little smaller. The
innovation standard error from the ARMA(2, 1) model is reduced consid-
erably (the innovation variance being some 16 per cent smaller) when
the previously identified AR(9) model is fitted. Several autoregressive
coefficients are found to be insignificant, however, and so a restricted
autoregression was also estimated with the coefficients φ3, . . . ,φ8 set to
zero, which further improves the fit.

For the ARMA(1, 1) model identified for Series A, initial estimates
of φ and θ may be obtained by solving the expressions for ρ1 and ρ2

in Table 6.1 on substitution with r1 = 0.57 and r2 = 0.50. Chart D of
Box and Jenkins (1970) may be used to read off values for these initial
estimates, which Box and Jenkins report as φ̂ ≈ 0.87 and θ̂ ≈ 0.48. The
estimated ARMA(1,1) model is

xt − 0.92
(±0.04)

xt−1 = 1.41 + ât − 0.61
(±0.08)

at−1 σ̂2
a = 0.099

which accords well with the estimated model provided by Box and
Jenkins (1970, Table 7.13).

Diagnostic checking of fitted ARMA models

6.29 The iterative model building procedure proposed by Box and
Jenkins consists of three stages, the first two being identification and
estimation, which have already been discussed. The third stage is that
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of diagnostic checking, that of deciding whether the fitted model is
adequate. Box and Jenkins’ general philosophy is that if

there should be evidence of serious inadequacy, we shall need to
know how the model should be modified in the next iterative
cycle. What we are doing is only partially described by the words,
‘testing goodness of fit.’ We need to discover in what way a model is
inadequate, so as to suggest appropriate modification. …

No model form ever represents the truth absolutely. It follows
that, given sufficient data, statistical tests can discredit models which
could nevertheless be entirely adequate for the purpose at hand.
Alternatively, tests can fail to indicate serious departures from assump-
tions because these tests are insensitive to the types of discrepancies
that occur. The best policy is to devise the most sensitive statistical
procedures possible but be prepared, for sufficient reason, to employ
models which exhibit slight lack of fit. Know the facts as clearly as
they can be shown – then use judgment.

Clearly, diagnostic checks must be such that they place the model
in jeopardy. That is to say, they must be sensitive to discrepancies
which are likely to happen. No system of diagnostic checks can ever
be comprehensive, since it is always possible that characteristics in
the data of an unexpected kind could be overlooked. However, if diag-
nostic checks, which have been thoughtfully devised, are applied to
a model fitted to a reasonably large body of data and fail to show
serious discrepancies, then we shall rightly feel more comfortable
about using that model. (ibid., pages 286–7: italics in original)

6.30 One technique proposed by Box and Jenkins is that of overfitting:
‘(h)aving identified what is believed to be a correct model, we actually
fit a more elaborate one. This puts the identified model in jeopardy,
because the more elaborate model contains additional parameters cover-
ing feared directions of discrepancy’ (ibid., page 286). They emphasized
that care needed to be taken as to how the model should be augmented:
for example, additional autoregressive and moving average terms should
not be added simultaneously as this may lead to model redundancy, as
discussed in Box and Jenkins (1970, section 7.3.5).

The ARMA(1, 1) model for Series A was subjected to overfitting by
estimating both ARMA(2, 1) and ARMA(1, 2) models, producing

xt−1.05xt−1 + 0.11xt−2 = 1.14 + at − 0.68at−1 σ̂2
a = 0.098

(±0.15) (±0.12) (±0.13)
xt−0.94xt−1 = 1.06 + at − 0.59at−1 − 0.08at−2 σ̂2

a = 0.098
(±0.04) (±0.08) (±0.08)
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In both cases the additional parameter is insignificant, thus providing
no evidence that the ARMA(1, 1) model is inadequate.

Because the model is extended in a particular direction, overfitting
assumes that we know what kind of discrepancies are to be feared. Box
and Jenkins also considered procedures that were less dependent upon
knowledge of this type, being based on the analysis of the residuals
ât = θ̂−1(B)φ̂(B)xt , for if the fitted model was inadequate in some way
this should be reflected in the existence of patterns and predictabili-
ties in the ât , which should mimic white noise if the fitted model is an
adequate representation of the data.

If the form of the model and the true parameter values φ and θ were
actually known, then, using the results of §3.17, the autocorrelations
of the a’s, the rk(a), would be uncorrelated and approximately nor-
mally distributed about zero with variance T−1, so that the statistical
significance of apparent departures of these autocorrelations from zero
could be assessed. In practice, of course, the true values φ and θ are
unknown and we only have their estimates (φ̂, θ̂), from which the resid-
uals ât , but not the true innovations at , may be calculated. Although
the autocorrelations rk(â) of the residuals can yield valuable evidence
concerning lack of fit and the possible nature of model inadequacy,
it might be dangerous to make this assessment on the basis of a standard
error of T− 1

2 . To confirm this, Durbin (1970) showed that, for an AR(1)
process with parameter φ, the variance of r1(â) was φ2T−1, which could
be substantially less than T−1. Box and Pierce (1970) derived the large
sample variances and covariances of the â’s from any ARMA process,
and showed that T− 1

2 should be regarded as an upper bound for the
standard error of rk(â), and its use could seriously underestimate the
significance of apparent departures from zero of the residual autocor-
relations for small values of k, although for moderate to large values this
estimate of the standard error would be accurate.

Box and Pierce (1970) also considered assessing the significance of
a group of residual autocorrelations, rather than just examining the
rk(â) individually. They showed that if the fitted ARMA(p, q) model was
appropriate then, for the group containing the first K autocorrelations,
the statistic

Q(K) = T
K∑

k=1

r2
k (â)

was approximately distributed as χ2(K − p − q), so that significantly large
values of Q(K) would indicate model inadequacy of some form.
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For the residuals obtained from the ARMA(1, 1) fit to Series A, Q(20) =
23.50 ∼ χ2(18), which is not significant at the 10% level and so offers
no evidence against the adequacy of this model. For the AR(2) fit to the
sunspot index, Q(20) = 53.66 ∼ χ2(18), which is significant at the 0.1%
level and thus confirms the inadequacy of this model found previously.
However, the statistic for the AR(9)* model is Q(20) = 22.35 ∼ χ2(17),
which is insignificant at the 10% level (note that only three AR coef-
ficients have actually been fitted for this restricted model, so that the
degrees of freedom are 20 − 3 = 17).

Box and Jenkins emphasized that a variety of other diagnostic checks
should be performed on the residuals from a fitted ARMA model, such
as examining the cumulative periodogram, and the adequacy of a model
could also be assessed by looking at the stability of the parameter
estimates across subsamples of the data.

6.31 If the residuals are found to be correlated then this information
can be used to identify a modified model and the three-stage model-
building strategy could then be repeated. For example, suppose the
residuals bt from the model

φ0(B)xt = θ0(B)bt (6.28)

are non-random and from their autocorrelation function the model

φ̄(B)bt = θ̄(B)at (6.29)

was identified. Eliminating bt from (6.28) and (6.29) leads to the new
model

φ0(B)φ̄(B)xt = θ0(B)θ̄(B)at

which can now be fitted and diagnostically checked. For example, if, after
fitting an ARMA (1, 1) model to series A, the residuals had been found to
follow an AR(1) process (1 − φ̄B) = bt , then the ARMA(2, 1) model

(1 − φB)(1 − φ̄B)xt = (1 − φ1B − φ2B2)xt = (1 − θB)at

could then be fitted in a second iteration of the modelling strategy.

Forecasting using ARIMA models

6.32 Having obtained an adequate ARIMA model for a particular series,
Box and Jenkins (1968, 1970, chapter 5) then proceeded to develop



200 A Very British Affair

a theory of forecasting for ARIMA(p, d, q) processes. They focused on
the general model

ϕ(B)xt = θ(B)at (6.30)

where ϕ(B) = φ(B)
d is the ‘generalized autoregressive operator’, to
answer the question of how a future value, xt+l, l ≥ 1, could be forecast
at the current time t. Such a forecast is said to be made at origin t for lead
time l.

An observation xt+l generated by the process (6.30) can be expressed
in three equivalent forms. First, it can be written directly as the difference
equation

xt+l = ϕ1xt+l−1 + · · · + ϕp+dxt+l−p−d − θ1at+l−1 − · · · − θqat+l−q + at+l

(6.31)

Second, it can be written as an infinite weighted sum of current and
past shocks at+l, at+l−1, . . .

xt+l =
t+l∑

j=−∞
ψt+l−jaj =

∞∑
j=0

ψjat+l−j (6.32)

where ψ0 = 1 and the ‘ψ-weights’ are obtained by equating the coeffi-
cients of powers of B in

ϕ(B)(1 + ψ1B + ψ2B2 + · · · ) = θ(B)

Equivalently, for positive l > q, the model may be written in the trun-
cated form

xt+l = Ct (l ) + at+l + ψ1at+l−1 + · · · + ψt−1at+1 (6.33)

where

Ct (l ) =
t∑

j=−∞
ψt+l−jaj =

∞∑
j=0

ψl+jat−j

has the interpretation of being the ‘complementary function’. Finally,
xt+l can be written as an infinite weighted sum of previous observations
plus a random shock

xt+l =
∞∑

j=1

πjxt+l−j + at+l (6.34)
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The ‘π-weights’ may be obtained by equating the coefficients in

ϕ(B) = (1 − π1B − π2B2 − · · · )θ(B)

and, if d ≥ 1,

x̄t+l−1(π) =
∞∑

j=1

πjxt+l−j

will be a weighted moving average, since
∑∞

j=1 πj = 1.

6.33 Suppose that, at origin t, a forecast x̂t (l ) is to be made of xt+l which
is required to be a linear function of current and previous observations
xt , xt−1, xt−2, . . .. It will then also be a function of the current and pre-
vious shocks at , at−1, at−2, . . .. The best forecast, in the minimum mean
square error (MMSE) sense, will be

x̂t (l ) = ψ∗
l at + ψ∗

l+1at−1 + ψ∗
l+2at−2 + · · ·

where the weights ψ∗
l ,ψ∗

l+1,ψ∗
l+2, . . . minimize the mean square error of

the forecast,

E[xt+l − x̂t (l )]2 = (1 + ψ2
1 + ψ2

2 + · · · + ψ2
l−1)σ2

a +
∞∑

j=0

(ψt+j − ψ∗
t+j)

2σ2
a

This expectation will be minimized by setting ψ∗
t+j = ψt+j, in which case

xt+l = (at+l + ψ1at+l−1 + · · · + ψl−1at+1) + (ψlat + ψl+1at−1 + · · · )

= et (l ) + x̂t (l )

where et (l ) is the error of the forecast x̂t (l ) at lead time l.
On denoting the conditional expectation of xt+l, given knowledge of

all the x’s up to time t, as (cf. §6.21)

[xt+l] = E[xt+l|xt , xt−1, . . . ]

then

x̂t (l ) = ψlat + ψl+1at−1 + · · · = [xt+l] (6.35)

The MMSE forecast at origin t, for lead time l, is thus the conditional
expectation of xt+l at time t. When x̂t (l ) is regarded as a function of
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l for fixed t, Box and Jenkins refer to it as the forecast function for ori-
gin t. Indeed, not only is x̂t (l ) the MMSE forecast of xt+l, but any linear
function

∑L
l=1 wlx̂t (l ) of the forecasts will be a MMSE forecast of the cor-

responding linear function
∑L

l=1 wlxt+l of the future observations, which
is a useful property when, for example, constructing annual forecasts
from monthly data.

6.34 The forecast error for lead time l is

et (l ) = at+l + ψ1at+l−1 + · · · + ψl−1al+1

Since [et+l] = 0 the forecast is unbiased and the variance of the forecast
error is

V(l ) = Var[et (l )] = (1 + ψ2
1 + ψ2

2 + · · · + ψ2
l−1)σ2

a (6.36)

The one-step ahead forecast error is, from §6.33,

et (1) = xt+1 − x̂t (1) = at+1

Hence the residuals at are the one-step ahead forecast errors, so that
the sequence of such errors must be uncorrelated: ‘this is eminently
sensible, for if one-step ahead errors were correlated, then the fore-
cast error at+1 could, to some extent, be predicted from available forecast
errors at , at−1, at−2, . . .. If the prediction so obtained was ât+1, then
x̂t (1) + ât+1 would be a better forecast of xt+1 than was x̂t (1)’ (Box and
Jenkins, 1970, page 129).

However, this result does not extend to higher lead times. Box and
Jenkins (ibid., Appendix 5.1.1) showed that the correlation between the
forecast errors et (l ) and et−j(l ) made for the same lead time l, but at
different origins t and t − j, was given by

ρ[et (l ), et−j(l )] =
∑l−1

i=j ψiψi−j∑l−1
i=0 ψ

2
i

for 0 ≤ j < l and would be zero for j ≥ l. Furthermore, the forecast
errors et (l ) and et (l + j), that is, those made for different lead times from
the same origin, will also be correlated: from Box and Jenkins (ibid.,
Appendix 5.1.2)

ρ[et (l ), et (l + j)] =
∑l−1

i=0 ψiψj+i{∑l−1
h=0 ψ

2
h

∑l+j−1
g=0 ψ2

g

} 1
2
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For example, setting l = 2 and j = 1 in these formulae yield

ρ[et (2), et−1(2)] = ψ1

(1 + ψ2
1)

and

ρ[et (2), et (3)] = ψ2 + ψ1ψ3

{(1 + ψ2
1)(1 + ψ2

1 + ψ2
2)} 1

2

‘One consequence of this is that there will often be a tendency for the
forecast function to be wholly above or below the values of the series
when they eventually come to hand’ (ibid., page 129).

Alternative forms of the ARIMA forecast

6.35 The forecasts from the ARIMA model (6.30) can be written down in
three different ways, corresponding to the three equivalent expressions
in §6.32. Taking conditional expectations of the difference equation
(6.31) yields

[xt+l] = x̂t (l ) = ϕ1[xt+l−1] + · · · + ϕp+d[xt+l−p−d]

−θ1[at+l−1] − · · · − θq[at+l−q] + [at+l]

while using (6.32) and (6.33), respectively, give

[xt+l] = x̂t (l ) = [at+l] + ψ1[at+l−1] + · · · + ψt−1[at+1] + ψt [at ]

+ψt+1[at−1] + · · · + [at+l]

and

[xt+l] = x̂t (l ) = Ct (l ) + [at+l] + ψ1[at+l−1] + · · · + ψt−1[at+1]

Finally, taking conditional expectations of (6.34) yields

[xt+l] = x̂t+l =
∞∑

j=1

πj[xt+l−j] + [at+l] (6.37)
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Box and Jenkins (ibid., page 130) noted that, although the MMSE
forecast was defined in terms of the conditional expectation [xt+l] =
E[xt+l|xt , xt−1, . . . ], which theoretically requires knowledge of the x’s
stretching back into the infinite past,

the requirement of invertibility, which we have imposed on the
general ARIMA model, ensures that the π weights in [6.37] form a
convergent series. Hence, for the computation of a forecast to a given
degree of accuracy, for some k, the dependence on xt−j for j > k can be
ignored. In practice, the πweights usually decay rather quickly, so that
whatever form of the model is employed in the computation, only a
moderate length of series xt , xt−1, . . . , xt−k is needed to calculate the
forecasts to sufficient accuracy.

The conditional expectations can be calculated using the results

[xt−j] = xt−j j = 0, 1, 2, . . .

[xt+j] = x̂t ( j) j = 1, 2, . . .

[at−j] = at−j = xt−j − x̂t−j−1(1) j = 0, 1, 2, . . .

[at+j] = 0 j = 1, 2, . . .

Thus, to obtain the forecast x̂t (l ), the model for xt+l can be written in
any one of the above forms, with the terms on the right-hand side of
these forms being treated according to the following rules:

The xt−j( j = 0, 1, 2, . . . ), which have already occurred at origin t, are
left unchanged.
The xt+j( j = 1, 2, . . . ), which have yet to occur, are replaced by their
forecasts x̂t ( j) at origin t.
The at−j( j = 0, 1, 2, . . . ), which have occurred, are calculated as xt−j −
x̂t−j−1(1).
The at+j( j = 1, 2, . . . ), which have yet to occur, are replaced by their
expectation of zero.

6.36 As an example of constructing ARIMA forecasts, consider Box and
Jenkins’ Series C, which in §6.14 was suggested as being generated by
the ARIMA(1, 1, 0) model

(1 − 0.8B)(1 − B)xt+l = (1 − 1.8B + 0.8B2)xt+l = at+l
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The difference equation form, which is usually the simplest to work
with for computing forecasts, is thus

xt+l = 1.8xt+l−1 − 0.8xt+l−2 + at+l

The forecasts at origin t are then given by

x̂t (1) = 1.8xt − 0.8xt−1

x̂t (2) = 1.8x̂t (1) − 0.8xt

x̂t (l ) = 1.8x̂t (l − 1) − 0.8x̂t (l − 2) l = 3, 4, 5, . . .

and are readily generated recursively in the order x̂t (1), x̂t (2), . . ..
Thus suppose that we wish to forecast Series C from origin t = 20. The

observed values that are required are x19 = 23.7 and x20 = 23.4, using
which

x̂20(1) = (1.8 × 23.4) − (0.8 × 23.7) = 23.16

x̂20(2) = (1.8 × 23.16) − (0.8 × 23.4) = 22.97

and so on. As soon as x21 becomes available, a new set of forecasts x̂21(1),
x̂21(2), . . . can be generated. Since x21 = 23.1, x̂21(1) = (1.8 × 23.1) −
(0.8 × 23.7) = 22.86, etc. Using at = xt − x̂t (1), the residual a21 = 23.1 −
23.16 = −0.06 may be calculated as soon as x21 becomes known.

Calculation of the ψ-weights and the construction of
probability limits

6.37 The ψ-weights are obtained by equating the coefficients of powers
of B in

(1 − ϕ1B − · · · − ϕp+dBp+d)(1 + ψ1B + ψ2B2 + · · · ) = (1 − θ1B − · · · − θqBq)

that is, as

ψ1 = ϕ1 − θ1

ψ2 = ϕ1ψ1 + ϕ2 − θ2

...

ψj = ϕ1ψj−1 + · · · + ϕp+dψj−p−d − θj



206 A Very British Affair

where ψ0 = 1, ψj = 0 for j < 0 and θj = 0 for j > q. If K is the greater
of the integers p + d − 1 and q, then for j > K the ψ-weights satisfy the
difference equation

ψj = ϕ1ψj−1 + · · · + ϕp+dψj−p−d

which enables them to be calculated recursively. Thus, for the model
(1 − 1.8B + 0.8B2)xt = at , which is appropriate for Series C,

(1 − 1.8B + 0.8B2)(1 + ψ1B + ψ2B2 + · · · ) = 1

from which ψ0 = 1, ψ1 = 1.8 and ψj = 1.8ψj−1 − 0.8ψj−2, j = 2, 3, . . ..
Hence

ψ2 = (1.8 × 1.8) − (0.8 × 1.0) = 2.44

ψ3 = (1.8 × 2.44) − (0.8 × 1.8) = 2.95

and so on.
From (6.35) the forecasts x̂t+1(l ) and x̂t (l + 1) of the future observation

xt+l+1 made at origins t + 1 and t can be written as

x̂t+1(l ) = ψlat+1 + ψl+1at + ψl+2at−1 + · · ·
x̂t (l + 1) = ψl+1at + ψl+2at−1 + · · ·

from which it follows that

x̂t+1(l ) = x̂t (l + 1) + ψlat+1

Thus the t-origin forecast of xt+l+1 can be updated to become the (t + 1)-
origin forecast of the same xt+l+1 by adding a multiple, given by ψl,
of the one-step ahead forecast error at+1. For example, when forecast-
ing Series C, once x21 = 23.1 is known, from which a21 = 23.1 − 23.16 =
−0.06 has been computed, new forecasts for all lead times may then be
calculated as

x̂21(1) = 22.97 + (1.8 × −0.06) = 22.86

x̂21(2) = 22.81 + (2.44 × −0.06) = 22.67

x̂21(3) = 22.69 + (2.95 × −0.06) = 22.51

and so on.
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6.38 The expression (6.36) shows that the variance of the l-step ahead
forecast error for any origin t is given by

V(l ) =
⎛⎝1 +

l−1∑
j=1

ψ2
j

⎞⎠ σ2
a

Assuming the a’s are normally distributed, it then follows that, given
information up to time t, the conditional probability distribution of a
future value xt+l will be normal with mean x̂t (l ) and standard deviation

SE(l ) =
⎛⎝1 +

l−1∑
j=1

ψ2
j

⎞⎠
1
2

σa

(1 − ε) probability limits, xt+l( − ) and xt+l( + ), for xt+l will then be
given by xt+l(±) = x̂t (l ) ± zε/2SE(l ), where zε/2 is the ε/2 percentage point
of the standard normal distribution.

Of course, σa is typically unknown and must be estimated along with
the θ’s and φ’s using the methods of §§6.18–6.23. Such an estimate for
Series C is σ̂a = 0.134 and, since the length of the series, T = 226, is
reasonably large, this value can be substituted into SE(l ) to obtain, for
example, 50% and 95% limits for x̂t (2)4:

50% limits: x̂t (2) ± 0.674 × (1 + 1.82)1/2 × 0.134 = x̂t (2) ± 0.19
95% limits x̂t (2) ± 1.960 × (1 + 1.82)1/2 × 0.134 = x̂t (2) ± 0.55

The interpretation of the limits xt+l( − ) and xt+l( + ) should be care-
fully noted. These limits are such that, given the information available
at origin t, there is a probability of 1 − ε, that the actual value xt+l,
when it occurs, will be within them.

It should also be explained that the probabilities quoted apply to
individual forecasts and not jointly to the forecasts at all the different
lead times. For example, it is true with 95% probability, the limits
for lead time 10 will include the value xt+10 when it occurs. It is not
true that the series can be expected to remain within all the limits
simultaneously at this level of probability. (ibid., page 138: italics in
original)

The eventual forecast function and forecast weights

6.39 At time t + l the ARIMA model may be written

xt+l − ϕ1xt+l−1 − · · · − ϕp+dxt+l−p−d = at+l − θ1at+l−1 − · · · − θqat+l−q

(6.38)



208 A Very British Affair

Taking conditional expectations at time t yields, for l > q,

x̂t (l ) − ϕ1x̂t (l − 1) − · · · − ϕp+dx̂t (l − p − d) = 0 l > q

where it is understood that x̂t (−j) = xt−j for j ≥ 0. This difference equa-
tion has the solution

x̂t (l ) = b(t)
1 f1(l ) + b(t)

2 f2(l ) + · · · + b(t)
p+dfp+d(l ) (6.39)

for l > q − p − d. Box and Jenkins referred to (6.39) as the eventual forecast
function, whose mathematical form is decided by the general autore-
gressive operator ϕ(B), which determines whether the functions fj(l ),
j = 1, . . . , p + d, are polynomials, exponentials, a mixture of sines and
cosines, or some combination of these functions. For example, suppose
d = 0 so that ϕ(B) = φ(B). Using the factorization of §6.13 and assum-
ing that all the roots Gi, i = 1, . . . , p, are distinct, then if G1, say, is real,
f1(l ) = Gl

1. If, on the other hand, G1 and G2 are a pair of complex roots,
then they will contribute a damped sine wave to (6.39). If ϕ(B) has d
equal roots of G0 then this imposes the forms fp+j(l ) = lj−1G0, j = 1, . . . , d,
onto (6.39). If these roots are equal to unity then, since now fp+j(l ) = lj−1,
a polynomial in l of order d − 1 is introduced into the eventual forecast
function.

For a given origin t, the coefficients b(t)
j are constants applying for all

lead times l, but they change from one origin to the next. It can be shown
that the updating equations of these coefficients can be written as (Box
and Jenkins, 1970, Appendix A5.3.3)

b(t) = (F−1
l Fl+1)b(t−1) + (F−1

l ψl)at (6.40)

where

Fl =

⎡⎢⎢⎢⎢⎣
f1(l ) f2(l ) · · · fp+d(l )

f1(l + 1) f2(l + 1) · · · fp+d(l + 1)
...

...
...

f1(l + p + d) f2(l + p + d) · · · fp+d(l + p + d)

⎤⎥⎥⎥⎥⎦

b(t) =

⎡⎢⎢⎢⎢⎢⎣
b(t)

1

b(t)
2
...

b(t)
p+d

⎤⎥⎥⎥⎥⎥⎦ ψl =

⎡⎢⎢⎢⎢⎣
ψl

ψl+1
...

ψl+p+d

⎤⎥⎥⎥⎥⎦



Box and Jenkins: Time Series Analysis 209

While ϕ(B) decides the nature of the eventual forecast function, the
moving average operator θ(B), through the ψ-weights, determines how
the function is to be ‘fitted’ to the data, that is, how the b(t)

j are to be
calculated and updated.

In general, since only one function of the form [6.39] can pass
through p + d points, the eventual forecast function is that unique
curve of the form required by ϕ(B), which passes through the p + d
‘pivotal’ values x̂t (q), x̂t (q − 1), . . . , x̂t (q − p − d + 1), where x̂t (−j) =
xt−j( j = 0, 1, 2, . . . ). In the extreme case where q = 0, so that the model
is of the purely autoregressive form ϕ(B)xt = at , the curve passes
through the points xt , xt−1, . . . , xt−p−d+1. Thus, the pivotal values can
consist of forecasts or of actual values of the series. …

The moving average terms … help to decide the way in which we
“reach back” into the series to fit the forecast function determined by
the autoregressive operator ϕ(B). (ibid., page 140)

6.40 Substituting for the conditional expectations in (6.37) obtains

x̂t (l ) =
∞∑

j=1

πj x̂t (l − j) = π1x̂t (l − 1) + · · · + πl−1x̂t (1) + πlxt + πl+1xt−1 + · · ·

on using x̂t (l ) = xt−l for l ≥ 0. In particular,

x̂t (1) = π1xt + π2xt−1 + · · ·

and the forecasts for higher lead times may also be expressed directly as
linear functions of the observations xt , xt−1, . . .. For example, the lead-
two forecast at origin t is

x̂t (2) = π1x̂t (1) + π2xt + · · ·

= π1

∞∑
j=1

πjxt−j+1 +
∞∑

j=1

πj+1xt−j+1

=
∞∑

j=1

π
(2)
j xt−j+1

where

π
(2)
j = π1πj + πj+1 j = 1, 2, . . .

More general results and alternative methods of computing these weights
are given in Box and Jenkins (ibid., page 142 and Appendix 5.2).
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Forecasting with some special cases of ARIMA models

6.41 Consider the ARIMA(0, 1, 1) process
xt = (1 − θB)at , which at time
t + l may be written

xt+l = xt+l−1 + at+l − θat+l−1

Taking conditional expectations at origin t gives

x̂t (1) = xt − θat

x̂t (l ) = x̂t (l − 1) l ≥ 2

so that, for all lead times, the forecasts at origin t will follow a straight
line parallel to the time axis. Using xt = x̂t−1(1) + at , it is clear that

x̂t (l ) = x̂t−1(l ) + λat (6.41)

where λ = 1 − θ.

This implies that, having seen that our previous forecast x̂t−1(l ) falls
short of the realized value by at , we adjust it by an amount λat . … λ

measures the proportion of any given shock at , which is permanently
absorbed by the ‘level’ of the process. Therefore it is reasonable to
increase the forecast by that part λat of at , which we expect to be
absorbed. (ibid., page 144)

Alternatively,

x̂t (l ) = λxt + (1 − λ)x̂t−1(l ) (6.42)

This implies that the new forecast is a linear interpolation at argu-
ment λ between old forecast and new observation. The form [6.42]
makes it clear that if λ is very small, we shall be relying principally
on a weighted average of past data and heavily discounting the new
observation xt . By contrast, if λ = 1, the evidence of past data is com-
pletely ignored, x̂t (1) = xt , and the forecast for all future time is the
current value. With λ > 1, we induce an extrapolation rather than an
interpolation between x̂t−1(l ) and xt . The forecast error must now be
magnified in [6.41] to indicate the change in the forecast. (ibid., pages
144–5: italics in original)
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The ψ-weights are obtained from

ψ(B) = 1 − θB
1 − B

= 1 + (1 − θ)B + (1 − θ)B2 + · · · = 1 + λB + λB2 + · · ·

The eventual forecast function is the solution of (1 − B)x̂t (l ) = 0. From
§6.39, f1(l ) = 1 and x̂t (l ) = b(t)

1 for l > q − p − d = 0. For any fixed origin,
b(t)

1 will be a constant and, as has been shown above, the forecasts for all
lead times will follow a straight line parallel to the time axis. However,
b(t)

1 will get updated when a new observation becomes available and the
origin advances. From (6.40), the updating equation is

b(t+1)
1 = b(t)

1 + λat+1

The forecast function can therefore be thought of as a polynomial of
degree zero in the lead time l, with a coefficient which is adaptive with
respect to the origin t.

The π-weights are obtained from

(1 − θB)π(B) = 1 − B

as

π(B) = 1 − B
1 − θB

= 1 − θB − (1 − θ)B
1 − θB

= 1 − (1 − θ)(B + θB2 + θ2B3 + · · · )

i.e.,

πj = (1 − θ)θj−1 = λ(1 − λ)j−1

Hence

x̂t (l ) = λxt + λ(1 − λ)xt−1 + λ(1 − λ)2xt−2 + · · ·

and the forecast for all future values of an ARIMA(0, 1, 1) process is an
exponentially weighted moving average (EWMA) of all current and past x’s.

The variance of the lead-l forecast is

V(l ) = (1 + (l − 1)λ2)σ2
a

so that the variance increases linearly with l.
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6.42 Now consider the ARIMA(0, 2, 2) process 
2xt = (1 − θ1B − θ2B2)at ,
which at time t + l may be written

xt+l = 2xt+l−1 − xt+l−2 + at+l − θ1at+l−1 − θ2at+l−2

On taking conditional expectations at time t

x̂t (1) = 2xt − xt−1 − θ1at − θ2at−1

x̂t (2) = 2x̂t (1) − xt − θ2at

x̂t (l ) = 2x̂t (l − 1) − x̂t (l − 2) l ≥ 3

from which forecasts are most naturally calculated. These forecasts
are seen to follow a straight line passing through the forecasts x̂t (1)
and x̂t (2). The ψ-weights are calculated from

ψ(B) = 1 − θ1B − θ2B2

(1 − B)2

= 1 + (2 − θ1)B + (3 − 2θ1 − θ2)B2 + · · ·
+(1 + θ2 + j(1 − θ1 − θ2))Bj + · · ·

The eventual forecast function is the solution of (1 − B)2x̂t (l ) = 0, which
from §6.39 is

x̂t (l ) = b(t)
1 + b(t)

2 l l > 0

since q − p − d = 0. The forecast function is thus a linear function of the
lead time l with coefficients that are adaptive with respect to the origin t.
Here

Fl = Fl+1 =
[

1 1
1 2

]
ψl =

[
2 − θ1

3 − 2θ1 − θ2

]

so that (6.40) yields the following updating equations

b(t+1)
1 = b(t)

1 + b(t)
2 + (1 + θ2)at+1

b(t+1)
2 = b(t)

2 + (1 − θ1 − θ2)at+1

The variance of the lead-l forecast is (ibid., page 149)

V(l ) = σ2
a

(
1 + (l − 1)(1 + θ2)2 + 1

6 l(l − 1)(2l − 1)(1 − θ1 − θ2)2

+l(l − 1)(1 + θ2)(1 − θ1 − θ2)

)

which again increases with l, although now in a rather complicated
manner.
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6.43 A model that has been found to be useful in a variety of appli-
cations is the ARIMA(0, 1, 1) process ‘with deterministic drift’, 
xt =
θ0 + (1 − θ1B)at . This has the eventual forecast function

x̂t (l ) = b0 + b(t)
1 l = (l − 1)θ0 + θ0

1 − θ1
+ b(t)

1 l l > 0

where, as in §6.41,

b(t)
1 = b(t−1)

1 + (1 − θ1)at

The forecast function thus contains a deterministic slope, or ‘drift’, due
to the term (l − 1)θ0. This forecast function should be compared with
that obtained from the ARIMA(0, 2, 2) model, which is also a linear func-
tion but with an adaptive intercept. A special case, of course, is the
random walk with drift, obtained when θ1 = 0. In this case the eventual
forecast function becomes

x̂t (l ) = lθ0 + b(t)
1 l

with

b(t)
1 = b(t−1)

1 + at

i.e.,

x̂t (l ) = lθ0 + xt l > 0

In general, if an intercept is included in the ARIMA model then an addi-
tional term, b0 = ξ

∑t+l
j=t+1 ψt+l−j, where ξ = θ0/(1 − θ1 − · · · − θq), appears

in the eventual forecast function (6.39).

6.44 These examples lead to the following summarization. For an
ARIMA(0, d, q) process with drift, the eventual forecast function sat-
isfies (1 − B)dx̂t (l ) = 0 and has for its solution a polynomial in l of
degree d − 1:

x̂t (l ) = b0 + b(t)
1 + b(t)

2 l + · · · + b(l )
d ld−1

which provides forecasts for l > q − d. The coefficients b(t)
1 , . . . , b(t)

d are
progressively updated as the origin advances. The forecast for origin t
makes q − d initial jumps, which depend upon at , at−1, . . . , at−q+1, before



214 A Very British Affair

following this polynomial, whose position is uniquely determined by
the ‘pivotal’ values x̂t (q), x̂t (q − 1), . . . , x̂t (q − d + 1), where x̂t ( j) = xt−j

for j ≤ 0.
Analogous results can be obtained for an ARIMA(p, d, 0) process. Here

the eventual forecast function satisfies φ(B)(1 − B)dx̂t (l ) = 0 and has for
its solution

x̂t (l ) = b0 +
p∑

j=1

b(t)
j fj(l ) +

p+d∑
j=p+1

b(t)
j lj−p−1 (6.43)

This provides forecasts for all l > 0 and passes through the last p + d
available values, xt , xt−1, . . . , xt−p−d+1, these being the pivotal values.

For the mixed ARIMA(p, d, q) process, equation (6.43) holds for
l > q − p − d if q > p + d and for l > 0 if q < p + d. In both cases the
forecast function is uniquely determined by the pivotal values x̂t (q),
x̂t (q − 1), . . . , x̂t (q − d + 1). Thus, for the ARIMA(1, 1, 1) process (1 − φB)

xt = (1 − θB)at , forecasts are readily obtained from

x̂t (1) = (1 + φ)xt − φxt−1 − θat

x̂t (l ) = (1 + φ)x̂t (l − 1) − φx̂t (l − 2) l > 1

Since q < p + d, the eventual forecast function for all l is the solution of
(1 − φB)(1 − B)x̂t (l ) = 0, which is

x̂t (l ) = b(t)
1 + b(t)

2 φl

Here

Fl =
[

1 φ

1 φ2

]
Fl+1 =

[
1 φ2

1 φ2

]
ψl =

⎡⎢⎢⎣
1 − θ

1 − φ
+ θ − φ

1 − φ
φ

1 − θ

1 − φ
+ θ − φ

1 − φ
φ2

⎤⎥⎥⎦
so that the updating equations are

b(t)
1 = b(t−1)

1 + (1 − θ)
(1 − φ)

at

b(t)
2 = b(t−1)

2 + (θ − φ)
(1 − φ)

at
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Substituting for x̂t (1) and x̂t (2) in terms of b(t)
1 and b(t)

2 obtains

b(t)
1 = xt + φ

1 − φ
(xt − xt−1) − θ

1 − φ
at

b(t)
2 = θat − φ(xt − xt−1)

1 − φ

so that

x̂t (l ) = xt + φ
(1 − φl)
1 − φ

(xt − xt−1) − θ
(1 − φl)
1 − φ

at → b(t)
1 as l → ∞

The ARIMA(1, 1, 0) model used to forecast Series C in §6.36 has φ = 0.8
and θ = 0, which leads to the eventual forecast function

x̂t (l ) = b(t)
1 + b(t)

2 0.8l

with

b(t)
1 = b(t−1)

1 + 5at = xt + 4(xt − xt−1)

b(t)
2 = b(t−1)

2 − 4at = −4(xt − xt−1)

Hence

x̂t (l ) = xt + 4(1 − 0.8l)(xt − xt−1) → b(t)
1

Thus l-step ahead forecasts tend to the constant xt + 4(xt − xt−1). If a
constant is included then these forecasts will tend to a straight line with
slope given by the constant (see Box and Jenkins, ibid., page 152 and
their Figure 5.10).

6.45 The research effort over the thirty-year period beginning with
Kendall’s work on oscillatory time series thus produced a practical
methodology of inference and estimation that enabled ARMA models
to be identified, estimated and checked. Although Box and Jenkins
(1970) may be regarded as a synthesis of this research program, it was
much more than that, for it also extended the analysis to non-stationary
time series and to the modeling of seasonal time series and to the rela-
tionships between series, and it is to these latter areas that we now
turn to.



7
Box and Jenkins: Modelling
Seasonal Time Series and Transfer
Function Analysis

The Box–Jenkins approach to modelling seasonality

7.1 As was developed in some detail in Chapter 6, the Box–Jenkins
approach to modelling time series revolves around the ARMA process

ϕ(B)xt = θ(B)at

which has an eventual forecast function that is the solution to the dif-
ference equation ϕ(B)x̂t (l ) = 0, where B is understood to operate on l
(cf. §6.39). Box and Jenkins (1970, chapter 9) argued that, to be able to
represent seasonal behaviour, the forecast function would need to trace
out a periodic pattern. This could be achieved by allowing the autoregres-
sive operator ϕ(B) to consist of a mixture of sines and cosines, possibly
mixed with polynomial terms to allow for changes in the level of xt and
changes in the seasonal pattern. For example, a forecast function con-
taining a sine wave with a 12-month period, which is adaptive in both
phase and amplitude, will satisfy the difference equation

(1 − √
3B + B2)x̂t (l ) = 0

The operator 1 − √
3B + B2 has roots of exp ( ± i2π/12) on the unit cir-

cle and is thus homogeneously non-stationary. Box and Jenkins pointed
out, however, that periodic behaviour would not necessarily be repre-
sented parsimoniously by mixtures of sines and cosines. Taking their
cue from their use of the differencing operator 
d = (1 − B)d to effec-
tively model homogenously non-stationary series, so that setting ϕ(B) =

dφ(B) allowed for d roots of the equation ϕ(B) = 0 to be equal to unity
(cf. §6.11), Box and Jenkins considered the seasonal difference opera-
tor 
s = 1 − Bs, where s is the period of seasonality (for example, s = 12

216
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for monthly data). 
s is a stable non-stationary operator having s roots
of exp (i2πk/s), k = 0, 1, . . . , s − 1, evenly spaced on the unit circle. The
eventual forecast function will then satisfy (1 − Bs)x̂t (l ) = 0 and so may
(but need not) be represented by a full complement of sines and cosines:

x̂t (l ) = b(t)
0 +

[s/2]∑
j=1

{
b(t)

1j cos
2π jl

s
+ b(t)

2j sin
2π jl

s

}

The b’s are adaptive coefficients and [s/2] = s/2 if s is even and (s − 1)/2
if s is odd.

7.2 When analyzing seasonal data, say monthly, Box and Jenkins
pointed out that relationships would be expected to occur (a) between
observations for successive months in a particular year, and (b) between
observations for the same month in successive years. They suggested
that observations one year apart might be linked by a model of the form

�(Bs)
D
s xt = 	(Bs)αt (7.1)

Here �(Bs) and 	(Bs) are polynomials in Bs of degrees P and Q, respec-
tively, which satisfy the appropriate stationarity and invertibility
conditions.

In general, the error component αt would be expected to be correlated
and, to take care of such relationships, a second model is introduced,
this being an ARIMA(p, d, q) process for αt

φ(B)
dαt = θ(B)at (7.2)

Substituting (7.2) into (7.1) obtains the general multiplicative model

φ(B)�(Bs)
d
D
s xt = θ(B)	(Bs)at (7.3)

This process is said to be of order (p, d, q) × (P, D, Q)s. A similar argu-
ment can be used to obtain models with more periodic components to
take care of multiple seasonalities.

The ‘airline model’

7.3 Box and Jenkins focused their attention on the seasonal time series
shown in Figure 7.1, which is Series G from Box and Jenkins (1970),
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Figure 7.1 Series G from Box and Jenkins (1970): international airline passengers
(in thousands), monthly, 1949–1960

originally provided by Brown (1963). These are monthly observations
from 1949 to 1960 on international airline passengers and have since
become a stock series for analyzing seasonality, often being referred to
as the ‘airline data’.

The general multiplicative model (7.3) contains a high level of gener-
ality and, in accord with their principle of parsimony, Box and Jenkins
focused attention on generalizing a simple and widely applicable stochas-
tic process for modelling non-stationary time series, the ARIMA(0, 1, 1)
model, to the seasonal case. This leads to the component models (setting
s = 12 for convenience)


12xt = (1 −	B12)αt


αt = (1 − θB)at

and the multiplicative (0, 1, 1) × (0, 1, 1)12 model



12xt = (1 − θB)(1 −	B12)at (7.4)

which can be written explicitly as

xt − xt−1 − xt−12 + xt−13 = at − θat−1 −	at−12 + θ	at−13
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Since the roots of (1 − θB)(1 −	B12) = 0 must lie outside the unit cir-
cle for invertibility, this imposes the conditions |θ | < 1, |	| < 1 on the
parameters of the model.

Box and Jenkins found that (7.4) provided an adequate fit to the log-
arithms of the airline data with θ̂ = 0.4, 	̂ = 0.6 and σ̂ 2

a = 1.34 × 10−3

and hence the (0, 1, 1) × (0, 1, 1)12 model often became referred to as the
‘airline model’.1

7.4 Forecasts from (7.4) can be made directly by using the difference
equation approach of §6.35. Thus, using the airline parameter estimates,
the first three months-ahead forecasts are given by

x̂t (1) = xt + xt−11 − xt−12 − 0.4ât − 0.6ât−11 + 0.24ât−12

x̂t (2) = x̂t (1) + xt−10 − xt−11 − 0.6ât−10 + 0.24ât−11

x̂t (3) = x̂t (2) + xt−9 − xt−10 − 0.6ât−9 + 0.24ât−10

Figure 7.2 shows the forecasts of the logarithms of the airline data made
at July 1957 for lead times up to 36 months: ‘we see that the simple
model, containing only two parameters, faithfully reproduces the sea-
sonal pattern and supplies excellent forecasts’ (Box and Jenkins, 1970,
page 307).

4.8

5.2

5.6

6.0

6.4

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

Actual
Forecasts

Logs

Figure 7.2 Logarithms of the airline data with forecasts for 1, 2, 3, . . . , 36 months
ahead made from the origin July 1957
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On defining λ = 1 − θ and� = 1 −	, theψ-weights of (7.4) (cf. §6.32)
are given by

ψ12r+m = λ(1 + r�) + δ� r = 0, 1, 2, . . . m = 1, 2, 3, . . . , 12

where

δ =
{

1 when m = 12

0 when m �= 12

Given these ψ-weights, the forecast error variance at lead l is then given
by (6.36) and, for the airline data and parameter estimates, the forecast
error standard deviations increase from 3.7 × 10−2 at lead l = 1 to 19.6 ×
10−2 at lead l = 36.

7.5 The π -weights of the airline model are obtained by equating coeffi-
cients in

(1 − B)(1 − B12) = (1 − θB)(1 −	B12)(1 − π1B − π2B2 − · · · )

to give

πj = θ j−1(1 − θ) j = 1, 2, . . . , 11

π12 = θ11(1 − θ) + (1 −	)

π13 = θ12(1 − θ) − (1 − θ)(1 −	)

(1 − θB −	B12 + θ	B13)πj = 0 j > 14

These are plotted in Figure 7.3 for the parameter values θ = 0.4 and 	 =
0.6. The reason why the weight function takes this particular form stems
from the fact that (7.4) can be written as

at+1 =
{

1 − λB
1 − θB

}{
1 − �B12

1 −	B12

}
xt+1 (7.5)

A useful way of rewriting (7.5) is to note that

λ

1 − θB
xt = λ(1 + θB + θ2B2 + · · · )xt

= λ(1 + (1 − λ)B + (1 − λ)2B2 + · · · )xt

= EWMAλ(xt )

where EWMAλ(xt ) denotes an exponentially weighted moving average
of xt with parameter λ. Similarly,
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Figure 7.3 π -weights of the airline model for θ = 0.4 and 	 = 0.6

�

1 −	B12
xt = �(1 + (1 −�)B12 + (1 −�)2B24 + · · · )xt = EWMA�(xt )

so that (7.5) can be written as

at+1 = (1 − EWMAλ(xt ))(1 − EWMA�(xt )B11)xt+1

On substituting x̂t (1) = xt+1 − at+1, this becomes

x̂t (1) = EWMAλ(xt ) + EWMA�(xt−11 − EWMAλ(xt−12)) (7.6)

The one-step ahead forecast is thus a EWMA taken over previous
months, modified by a second EWMA of discrepancies found between
similar monthly EWMAs and actual observations in previous years. As
Box and Jenkins (1970, page 313) put it,

suppose we are attempting to predict December sales for a department
store. These sales would include a heavy component from Christmas
buying. The first term on the right of [7.6] would be an EWMA taken
over previous months up to November. However, we know this will
be an underestimate, so we correct it by taking a second EWMA over
previous years of the discrepancies between actual December sales and
the corresponding monthly EWMA’s taken over previous months in
those years.

7.6 Recall from Table 6.1 that, for a nonseasonal IMA(0, 1, 1) process, the
autocorrelations of the first differences beyond the first lag are all zero.
For the multiplicative (0, 1, 1) × (0, 1, 1)12 process (7.4) the only non-zero
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Figure 7.4 Sample autocorrelations of 

12xt for the airline data with
±2-standard error bounds

autocorrelations of 

12xt are those at lags 1, 11, 12 and 13, which take
the values

ρ1 = − θ

1 + θ2
ρ11 = θ	

(1 + θ2)(1 +	2)
= ρ13

ρ12 = − 	

1 +	2

The sample autocorrelations of 

12xt for the airline data are shown in
Figure 7.4. On the assumption that the model is of the form (7.4), the
variances for the higher-order sample autocorrelations are given by

V(rj) ≈ (T − 13)−1(1 + 2(ρ2
1 + ρ2

11 + ρ2
12 + ρ2

13)) j > 13

The standard errors to be attached to the higher-order sample autocor-
relations for the airline data are approximately 0.11 and two-standard
error bounds are also shown in Figure 7.4. The sample autocorrelations
at lags 1 and 12 are clearly significant and of the correct sign, those at 11
and 13 are correctly signed and approximately equal, and no others are
significant, thus suggesting that the (0, 1, 1) × (0, 1, 1)12 process might
provide an adequate fit to the airline data.

Seasonal ARMA models

7.7 More general seasonal ARMA models of the form (7.3) were discussed
in Box and Jenkins (1970, chapter 9.3 and Appendix A9.1), where the
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autocovariance structures of numerous seasonal models are provided,
including models for which a non-multiplicative seasonal structure is
allowed for. The identification, estimation and diagnostic checking
of seasonal ARMA models essentially follow obvious generalizations of
the principles outlined in Chapter 6 (Box and Jenkins find no major
inadequacies in the model fitted to the airline data).

Transfer function analysis

7.8 Although dynamic relationships between time series had initially
been analyzed by Irving Fisher (1925) through the concept of a distributed
lag and Kendall (1943, 1944) had discussed the cross-correlation between
two time series (§3.11–3.12), Fisher’s distributed lag concept resurfaced
in the time series literature during the 1960s in the guise of the linear
transfer function model, whose development formed chapters 10 and 11
of Box and Jenkins (1970).2 While Fisher did not formally set out his
concept of a distributed lag, the distributed lag/transfer function model
was formalized by Box and Jenkins in the following way. Given obser-
vations on an ‘output’ variable Yt and an ‘input’ variable Xt , attention
is often focused on the value at which the output eventually comes to
equilibrium when the input is held at a fixed level X. This steady state
relationship can be denoted Y∞ = gX, where g is the steady state gain.

If the level of the input is varied and Xt and Yt represent deviations
at time t from equilibrium then the inertia in the system can often be
adequately approximated by the linear filter

Yt = υ0Xt + υ1Xt−1 + υ2Xt−2 + · · ·
= (υ0 + υ1B + υ2B2 + · · · )Xt (7.7)

= υ(B)Xt

in which the output deviation at some time t is represented as a linear
aggregate of input deviations at times t, t − 1, . . .: the operator υ(B) is the
transfer function of the filter, with the weights υ0, υ1, υ2, . . . being known
as the impulse response function.

The incremental changes in Y and X are yt = 
Yt and xt = 
Xt , which,
on differencing (7.7), are related by yt = υ(B)xt and so satisfy the same
transfer function model as do Y and X.

It is assumed that the infinite series υ0 + υ1B + υ2B2 + · · · converges for
|B| ≤ 1 so that the system is stable, which implies that a finite incremental
change in the input results in a finite incremental change in the output.
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If X is then held indefinitely at the value +1, Y will adjust and maintain
itself at the value g. Substituting the values Yt = g and 1 = Xt = Xt−1 =
Xt−2 = · · · into (7.7) then obtains

g =
∞∑

j=0

υj

so that, for a stable system, the sum of the impulse response weights
converges and is equal to the steady state gain of the system.

7.9 The transfer function υ(B) is of infinite extent and thus has limited
use for empirically representing such dynamic systems. A parsimonious
representation is given by the general linear difference equation

(1 + ξ1
+ · · · + ξr

r)Yt = g(1 + η1
+ · · · + ηs


s)Xt−b (7.8)

known as a transfer function model of order (r, s). This may also be
written in terms of B = 1 −
 as

(1 − δ1B − · · · − δrBr)Yt = (ω0 − ω1B − · · · − ωsBs)Xt−b (7.9)

or

δ(B)Yt = ω(B)Xt−b = ω(B)BbXt = �(B)Xt

so that the transfer function is υ(B) = δ−1(B)�(B), a ratio of two poly-
nomials in B. With this representation, an ARIMA model can thus be
regarded as a dynamic system having a white noise input for which
the transfer function can be expressed as the ratio of two polynomials.
The stability of the system requires that the roots of the characteristic
equation δ(B) = 0 all lie outside the unit circle. From (7.9), if Xt is held
indefinitely at +1, Yt will eventually reach the steady-state gain

g = ω0 − ω1 − · · · − ωs

1 − δ1 − · · · − δr

Substituting yt = υ(B)xt into (7.9) yields the identity

(1 − δ1B − δ2B2 − · · · − δrBr)(υ0 + υ1B + υ2B2 + · · ·)
= (ω0 − ω1B − · · · − ωsBs)Bb
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On equating coefficients of B, the following relationships are obtained

υj = 0 j < b

υj = δ1υj−1 + δ2υj−2 + · · · + δrυj−r + ω0 j = b

υj = δ1υj−1 + δ2υj−2 + · · · + δrυj−r − ωj−b j = b + 1, b + 2, . . . , b + s

υj = δ1υj−1 + δ2υj−2 + · · · + δrυj−r j > b + s (7.10)

The weights υb+s, υb+s−1, . . . , υb+s−r+1 supply r starting values for the
difference equation

δ(B)υj = 0 j > b + s

the solution of which applies to all values υj for which j ≥ b + s − r + 1.
In general, the impulse response weights consist of

(i) b zero values υ0, υ1, . . . , υb−1;
(ii) a further s − r + 1 values υb, υb+1, . . . , υb+s−r following no fixed

pattern (although no such values occur if s < r);
(iii) for j ≥ b + s − r + 1, values υj that follow the pattern dictated by

the rth-order difference equation δ(B)υj = 0, which has r starting
values υb+s, υb+s−1, . . . , υb+s−r+1. Starting values for j < b will be zero.

7.10 The step response weights Vj are defined through the identity υ(B) =
(1 − B)V(B), so that

V(B) = V0 + V1B + V2B2 + · · · = υ0 + (υ0 + υ1)B + (υ0 + υ1 + υ2)B2 + · · ·

from which it follows that

(1 − δ∗
1B − δ∗

2B2 − · · · − δ∗
r+1Br+1)(V0 + V1B + V2B2 + · · ·)

= (ω0 − ω1B − · · · − ωsBs)Bb

with

(1 − δ∗
1B − δ∗

2B2 − · · · − δ∗
r+1Br+1) = (1 − B)(1 − δ1B − δ2B2 − · · · − δrBr)

Using (7.10), it follows that the step response function is defined by

(i) b zero values V0, V1, . . . , Vb−1;
(ii) a further s − r values Vb, Vb+1, . . . , Vb+s−r−1 following no fixed pat-

tern (no such values occur if s < r + 1);
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(iii) for j ≥ b + s − r, Vj values that follow the pattern dictated by the
(r + 1)-th order difference equation δ∗(B)Vj = 0 which has r + 1
starting values Vb+s, Vb+s−1, . . . , Vb+s−r . Starting values for j < b will
be zero.

7.11 An example of the representations (7.9) and (7.10) is the transfer
function of order (2, 2):

(1 + ξ1
+ ξ2

2)Yt = g(1 + η1
+ η2


2)Xt−b

(1 − δ1B − δ2B2)Yt = (ω0 − ω1B − ω2B2)Xt−b

The links between the parameters in these ‘
’ and ‘B’ forms are

ξ1 = δ1 + 2δ2

1 − δ1 − δ2
ξ2 = −δ2

1 − δ1 − δ2

η1 = ω1 + 2ω2

1 − ω1 − ω2
η2 = −ω2

ω0 − ω1 − ω2

and

δ1 = ξ1 + 2ξ2

1 + ξ1 + ξ2
δ2 = −ξ2

1 + ξ1 + ξ2

ω0 = g(1 + η1 + η2)
1 + ξ1 + ξ2

ω1 = g(η1 + 2η2)
1 + ξ1 + ξ2

ω2 = −gη2

1 + ξ1 + ξ2

where

g = ω0 − ω1 − ω2

1 − δ1 − δ2

The general behaviour of the transfer function yt = υ(B)xt may be
characterized thus:

Models with r = 0. With r and s both equal to zero, the impulse response
consists of a single value υb = ω0 = g, so that the output is proportional
to the input but is displaced by b time periods. More generally, if s
is positive, after the displacement the input will be spread over s + 1
periods in proportion to υb = ω0, υb+1 = −ω1, . . . , υb+s = −ωs. The step
response is obtained by summing the impulse response and will even-
tually satisfy the difference equation (1 − B)Vj = 0 with starting value
Vb+s = g = ω0 − ω1 − · · · − ωs.

Models with r = 1. For s = 0, the impulse response tails off geomet-
rically from the initial starting value υb = ω0 = g/(1 + ξ1) = g/(1 − δ1).
The step response, on the other hand, increases geometrically to g,
being the solution of (1 − δ1B)(1 − B)Vj = 0 with starting values Vb = υb
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and Vb−1 = 0. For s = 1 the initial impulse response υb = ω0 = g(1 + η1)/
(1 + ξ1) follows no pattern, with the geometric decline induced by the
difference equation υj = δ1υj−1 beginning with the starting value υb+1 =
δ1ω0 − ω1 = g(ξ1 − η1)/(1 + ξ1)2. The step response is again determined
by the difference equation (1 − δ1B)(1 − B)Vj = 0 and again approaches
g asymptotically from the starting values Vb = υb and Vb+1 = υb + υb+1.
With s = 2 neither υb or υb+1 follow a pattern, the geometric decline
beginning at υb+2. Correspondingly, the step response has a sin-
gle preliminary value Vb = υb, after which it is again determined by
(1 − δ1B)(1 − B)Vj = 0 but with starting values Vb+1 and Vb+2.

Models with r = 2. Here the impulse responses eventually satisfy the
difference equation

υj − δ1υj−1 − δ2υj−2 = 0 j > b + s (7.11)

the nature of which depends on the roots S−1
1 and S−1

2 of the associated
characteristic equation

1 − δ1B − δ2B2 = (1 − S1B)(1 − S2B) = 0

If the roots are real (δ2
1 + 4δ2 ≥ 0) the solution to (7.11) is the sum of

two exponentials and the system can be thought of as being equivalent
to two first-order systems arranged in tandem and having parameters S1

and S2. If the roots are complex (δ2
1 + 4δ2 < 0) the solution will follow a

damped sine wave.
The weights in the step response function eventually satisfy the

difference equation

(Vj − g) − δ1(Vj−1 − g) − δ2(Vj−2 − g) = 0

As this is of the same form as (7.11), the asymptotic behaviour of the
step response Vj about its asymptotic value g will parallel the behaviour
of the impulse response about zero. If there are complex roots the
step response ‘overshoots’ g and then oscillates about this value until
it reaches equilibrium. When the roots are real and positive the step
response approaches its asymptote without crossing it. If there are neg-
ative real roots, the step response may once again overshoot and then
oscillate.

7.12 Box and Jenkins discussed in detail how the discrete dynamic sys-
tems developed above may be linked to continuous systems, either
directly or as approximations. This analysis will not be discussed here but
the interested reader may consult Box and Jenkins (1970, chapter 10.1.2,
10.3, A10.1) for details.
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Empirical identification of transfer function models

7.13 In practice, the output Y would not be expected to follow exactly
the pattern determined by the transfer function model since distur-
bances of various kinds other than X will normally ‘corrupt’ the system.
Box and Jenkins therefore assumed that all such disturbances are cap-
tured by a noise, Nt , which is independent of the level of X and additive
with respect to the influence of X. Hence the transfer function with
added noise model may be specified as

Yt = δ−1(B)ω(B)Xt−b + Nt (7.12)

Representing the noise as the ARMA(p, q) process

Nt = ϕ−1(B)θ(B)at

leads to the representation

Yt = δ−1(B)ω(B)Xt−b + ϕ−1(B)θ(B)at

the actual form of which may then be identified, fitted and checked
using an extension of the three-stage procedure for individual series
discussed in §6.15–6.31.

7.14 The procedure begins by assuming that there are T simultaneous
pairs of observations (X1, Y1), (X2, Y2), . . . , (XT , YT ) available and uses the
cross-covariance and cross-correlation functions (cf. §3.11). It is assumed
that, if Xt and Yt are individually non-stationary, then they may be
transformed to stationarity by differencing. If the order of differenc-
ing is assumed, for simplicity, to be the same in both cases, then the
cross-covariance between xt = 
dXt and yt = 
dYt at lag k is defined as

γxy(k) = E[(xt − μx)(yt+k − μy)] k = 0, ±1, ±2, ± · · ·

from which the cross-correlation function may be defined as

ρxy(k) = γxy(k)
σxσy

k = 0, ±1, ±2, ± · · ·

As usual, μx, μy , σx and σy are the means and standard deviations,
respectively, of x and y and it should be noted that γxy(k) = γyx(−k) �=
γxy(−k) and ρxy(k) = ρyx(−k) �= ρxy(−k), so that the cross-covariance and
cross-correlation functions are not symmetric about k = 0.
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These functions may be estimated from the τ = T − d pairs of values
(x1, y1), (x2, y2), . . . , (xτ , yτ ) available for analysis. Thus the sample cross-
covariance at lag k is

cxy(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
τ−1

τ−k∑
t=1

(xt − x̄)(yt+k − ȳ) k = 0, 1, 2, . . .

τ−1
τ−k∑
t=1

(xt−k − x̄)(yt − ȳ) k = 0, −1, −2, . . .

from which the sample cross-correlation at lag k is defined as

rxy(k) = cxy(k)
sxsy

k = 0, ±1, ±2, ± . . .

Here x̄ and ȳ are the sample means and sx = √
cxx(0) and sy = √

cyy(0) are
the sample standard deviations of x and y.

7.15 Figure 7.5 shows the pair of observations denoted Series J in Box
and Jenkins (1970). Xt is the input gas feed rate into a gas furnace and
Yt is the output CO2 concentration rate, observed at a nine-second sam-
pling interval, with T = 296. Both series are clearly stationary and hence
no differencing is required prior to cross-correlation analysis, i.e., d is
set equal to zero. Figure 7.6 shows the cross-correlation function rXY (k),
which is not symmetrical about k = 0 and has a well-defined peak at
k = +5, indicating that the output lags behind the input, as one might
expect. The cross-correlations are negative, which is also to be expected
since an increase in the input X produces a decrease in the output Y , as
can be seen from Figure 7.5.

7.16 Box and Jenkins used the following formula, originally obtained
by Bartlett (1955) as an extension of the univariate formulae of (3.16),
to obtain standard errors to attach to cross-correlations:

V [rxy(k)] ≈ (τ − k)−1
+∞∑

v=−∞
ρxx(v)ρyy(v) + ρxy(k + v)ρxy(k − v)

+ ρ2
xy(k)

{
ρ2

xy(v) + 1
2ρ

2
xx(v) + 1

2ρ
2
yy(v)

}
(7.13)

− 2ρxy(k){ρxx(v)ρxy(v + k) + ρxy(−v)ρyy(v + k)}
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Figure 7.5 Series J from Box and Jenkins (1970): X is the input gas feed rate into
a furnace; Y is the percentage output CO2 concentration
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Figure 7.6 Cross-correlation function between X and Y of Figure 7.5
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Here ρxx(v) and ρyy(v) are the individual autocorrelation functions of xt

and yt themselves and replacing each correlation with their sample coun-
terpart will provide, on taking the square root of (7.13), an approximate
standard error for a sample cross-correlation.

There are some interesting special cases of (7.13) that can be very useful
in practical applications. For example, on the null hypothesis that xt and
yt have no cross-correlation, (7.13) simplifies to

V [rxy(k)] ≈ (τ − k)−1
∞∑

v=−∞
ρxx(v)ρyy(v)

If, in addition, one of the series is white noise, say xt = at , this simplifies
further to

V [rxy(k)] ≈ (τ − k)−1

In such circumstances, it can then be shown that the cross-correlation
function will vary about zero with standard deviation (τ − k)−1/2 in a
systematic pattern given by the autocorrelation function of xt .

7.17 The procedure for identifying a transfer function model of the
form (7.12) consists of the following steps:

(i) deriving rough estimates υ̂j of the impulse response weights;
(ii) using these estimates to make guesses of the orders r and s of the

polynomials δ(B) and ω(B) and the delay parameter b;
(iii) substituting the estimates υ̂j into equations (7.10) to obtain initial

estimates of the parameters in δ(B) and ω(B).

The properties of the υj implied by (7.10) and outlined in §7.9 can
be used to guess the values of b, r and s, while the appropriate order
of differencing for the individual series may be identified by the stan-
dard methods of §§6.13–6.14. Given this value of d, the model can be
written as

yt = υ(B)xt + nt (7.14)

where nt = 
dNt .
Box and Jenkins argued that the identification procedure would be

considerably simplified if the input series was white noise or, if xt follows
an ARMA process, if it was ‘pre-whitened’, i.e., transformed using the
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ARMA process to the white noise

αt = φx(B)θ−1
x (B)xt

which will also supply an estimate s2
x of σ 2

x .3 If the same transformation
is applied to yt to obtain

βt = φx(B)θ−1
x (B)yt

then (7.14) may be written

βt = υ(B)αt + εt (7.15)

where εt = φx(B)θ−1
x (B)nt is the transformed noise. Multiplying (7.15)

through by αt−k and taking expectations yields

υk = γαβ(k)
σ 2
α

= ραβ(k)σβ
σα

so that, after pre-whitening the input, the cross-correlation function
between the pre-whitened input and the correspondingly transformed
output is directly proportional to the impulse response function. The
preliminary estimates υ̂k will then be given by

υ̂k = rαβsβ
sα

7.18 To identify a transfer function model for the gas furnace data of
Figure 7.5, an ARMA model for the input Xt was first obtained, this being
the AR(3) process

(1 − 1.98B + 1.37B2 − 0.34B3)Xt = αt s2
α = 0.0360

On defining βt = (1 − 1.98B + 1.37B2 − 0.34B3)Yt , and with sα = 0.190
and sβ = 0.360, the estimated cross correlation function between αt and
βt is shown in Figure 7.7, along with two standard error bounds of
2T−1/2 = 0.12, which are appropriate if the series are uncorrelated. The
impulse responses are then preliminarily estimated as

k 0 1 2 3 4 5 6 7 8 9 10

υ̂k 0.00 0.11 0.04 0.54 0.63 0.86 0.49 0.29 0.01 0.10 0.07
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Figure 7.7 Estimated cross-correlation function for the gas furnace data

The values υ̂0, υ̂1 and υ̂2 are all small compared with their standard errors
(approximately 0.11), suggesting that b = 3. Using the results of §7.9, the
subsequent pattern of the υ̂’s might be accounted for by a model with
(r, s, b) equal to either (1, 2, 3) or (2, 2, 3). The former model implies that
υ3 and υ4 are preliminary values following no fixed pattern and that υ5

provides the starting value for a geometric decay determined by the dif-
ference equation υj − δυj−1 = 0, j > 5. The latter model implies that υ3

is a single preliminary value and that υ4 and υ5 provide the starting
values for a pattern of double exponential decay determined by the
difference equation υj − δ1υj−1 − δ2υj−2 = 0, j > 5. This preliminary iden-
tification suggests the transfer function model

(1 − δ1B − δ2B2)Yt = (ω0 − ω1B − ω2B2)Xt−3 (7.16)

or some simplification of it. Assuming this model, the equations (7.10)
become

υj = 0 j < 3

υ3 = ω0

υ4 = δ1υ3 − ω1

υ5 = δ1υ4 + δ2υ3 − ω2

υ6 = δ1υ5 + δ2υ4

υ7 = δ1υ6 + δ2υ5

Substituting the estimates υ̂k into the last two of these equations yield

−0.86δ̂1 − 0.63δ̂2 = −0.49

−0.49δ̂1 − 0.86δ̂2 = −0.29
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which give δ̂1 = 0.55 and δ̂2 = 0.02. Substituting these values into the
second, third and fourth equations yields

ω̂0 = υ̂3 = −0.54

ω̂1 = δ̂1υ̂3 − υ̂4 = (0.55)(−0.54) + 0.63 = 0.33

ω̂2 = δ̂1υ̂4 + δ̂2υ̂3 − υ̂5 = (0.55)(−0.63) + (0.02)(−0.54) + 0.86 = 0.50

Hence preliminary identification leads to the transfer function model

(1 − 0.55B − 0.02B2) Yt = −(0.54 + 0.33B + 0.50B2)Xt−3

δ̂2 is seen to be very small, suggesting that this parameter may be omitted
from the model.

7.19 In general, given an estimate of the transfer function υ̂(B), an
estimate of the noise series is provided, from (7.14), by

n̂t = yt − υ̂(B)xt = yt − δ̂−1(B)ω̂(B)xt−b

= yt + δ̂1(n̂t−1 − yt−1) + δ̂2(n̂t−2 − yt−2) + · · · + δ̂r(n̂t−r − yt−r)

− ω̂0xt−b + ω̂1xt−b−1 + · · · + ω̂sxt−b−s

A straightforward approach to identifying the ARMA structure of the
noise is to use the conventional identification procedure of §§6.15–
6.17 on n̂t . This suggested an AR(2) structure and the first two sample
autocorrelations, rn̂(1) = 0.886 and rn̂(2) = 0.743, yielded the initial
autoregressive parameter estimates of ϕ̂1 = 1.06 and ϕ̂2 = −0.20.4 Thus
the identified model for the gas furnace data is

Yt = ω0 − ω1B − ω2B2

1 − δ1B − δ2B2
Xt−3 + 1

1 − ϕ1B − ϕ2B2
at

7.20 Box and Jenkins stressed the importance of using the rational form
υ(B) = δ−1(B)ω(B) for the transfer function in order to reduce the num-
ber of parameters that need to be estimated, particularly as the impulse
response weights will typically have large variances and be highly cor-
related. Related to this, the identification procedure requires that the
variation in the input X be reasonably large compared with the variation
in the noise and/or a large amount of data is available, otherwise identifi-
cation may fail, although even then a process of beginning with a simple
and rudimentary model and extending it if necessary after estimation
and checking (see §7.21 below) may still prove successful.
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Box and Jenkins also emphasized the problems that may arise through
lack of uniqueness. Since the model (7.12) could equally well be repre-
sented by

L(B)Yt = L(B)δ−1(B)ω(B)Xt−b + L(B)ϕ−1(B)θ(B)at

it is possible that the identification strategy could lead to a model of
unnecessarily complicated form. This possibility is reduced if simple
rational forms of the transfer function are employed initially – these
are often found to be adequate so that more complicated models should
only be considered if the need is demonstrated. Potential common fac-
tors in the operators on Yt , Xt and at should be investigated and, if
possible, removed, as their presence can lead to instability in estimation.
Considerable ingenuity may be needed in order to do this, as estimated
coefficients will often be accompanied by large standard errors, but
parameter redundancy should be avoided at all costs, with a parsimonious
parameterization always being the goal of model building.

Estimation and checking of transfer function models

7.21 Box and Jenkins estimated the transfer function with noise model
(7.12) using an extension of the non-linear least squares method outlined
in §§6.18–6.27: Box and Jenkins (1970, chapter 11.3) may be consulted
for details.

After estimation, serious model inadequacy can usually be detected by
examining

(a) the autocorrelation function rââ(k) of the residuals ât from the fitted
model, and

(b) certain cross-correlation functions involving the input and the resid-
uals, in particular the cross-correlation function rαâ(k) between the
pre-whitened input αt and the residuals ât .

The model (7.12) can be written as

yt = δ−1(B)ω(B)xt−b + ϕ−1(B)θ(B)at

= υ(B)xt + ψ(B)at

Suppose that an incorrect model has been identified, producing the
residuals a0t , where

yt = υ0(B)xt + ψ0(B)a0t (7.17)
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These residuals can be written as

a0t = ψ−1
0 (B){υ(B) − υ0(B)}xt + ψ−1

0 (B)ψ(B)at (7.18)

so that it is apparent that, if a wrong model is selected, the a0t ’s will be
autocorrelated and also cross-correlated with the xt ’s and hence the αt ’s
which generate the xt ’s. Two important cases need considering.

Transfer function model correct: noise model incorrect. If υ0(B) = υ(B) then
(7.18) becomes

a0t = ψ−1
0 (B)ψ(B)at

The a0t ’s would not be cross-correlated with the input but they would be
autocorrelated and the form of the autocorrelation function may indicate
how the noise structure could be modified.

Transfer function model incorrect. From (7.18), if the transfer function is
incorrect then, as stated above, the a0t ’s will be autocorrelated and cross-
correlated with both the xt ’s and the αt ’s, even if the noise model were correct,
so that a cross-correlation analysis could indicate the modifications
needed in the transfer function model.

7.22 Of course, in practice the parameters of the transfer function model
are unknown and must be estimated, so that the checks suggested in
the previous section must be applied to the residuals ât computed after
least squares fitting. This will introduce discrepancies into autocorrela-
tion and cross-correlation functions so that some caution is warranted
when using these results. Nevertheless, if the estimated autocorrelation
function of the residuals, rââ(k), shows marked correlation patterns then
model inadequacy is suggested, while if the cross-correlation checks do
not indicate that the transfer function model is inadequate, then the
problems will tend to lie in the fitted noise model nt = ψ0(B)at . In this
latter case, identification of the ‘subsidiary’ model â0t = T(B)at to repre-
sent the autocorrelation of the residuals from the ‘primary’ model (7.17)
will indicate that the modification of the noise model should take the
form nt = ψ0(B)T(B)at .

Determining the significance of a residual autocorrelation departing
from zero needs to take account of the issues discussed previously in
§6.30 when dealing with residuals from univariate models, although
individual tests of significance and a joint test using the Q(K) statistic
can continue to be used. Similar statistics may be employed for assessing
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the significance of the cross-correlations of the residuals with the pre-
whitened input, rαâ(k): for example, a test of the joint significance of the
first K of these cross-correlations is given by the statistic

S(K) = T ′
K∑

k=0

r2
αâ(k)

which will be distributed approximately as χ2(K − r − s), T ′ being the
effective sample size used for estimation, while an individual cross-
correlation will have a variance of 1/T ′, although in practice low-order
correlations may have a considerably smaller variance than this. (Note
that the degrees of freedom in S(K) are independent of the number of
parameters fitted in the noise model.)

7.23 The transfer function model fitted to the gas furnace data was(
1 − 0.57

(±0.21)
B − 0.01

(±0.14)
B2
)

Yt = −
(

0.53
(±0.08)

+ 0.37
(±0.15)

B + 0.51
(±0.16)

B2
)

Xt−3

+ 1(
1 − 1.53

(±0.05)
B + 0.63

(±0.05)
B2

)at

where ± one-standard error limits are shown in parentheses and
σ̂ 2

a = 0.0561. Diagnostic checks showed no evidence of model inade-
quacy with Q(36) = 41.7 ∼ χ2(34) and S(35) = 29.4 ∼ χ2(31) both being
insignificant. The estimate δ̂2 = 0.01 is very small when compared to its
standard error of ±0.14 and omitting it from the model has no effect on
the estimates of the other parameters.

The impulse response and step functions are shown in Figure 7.8: the
former has two initial values of υ̂3 = −0.53 and υ̂4 = 0.67, after which the
weights decay geometrically from υ̂5 = 0.89 as υ̂j = 0.57υ̂j−1; the latter
tends, without overshooting, to the steady state gain

g = −(0.53 + 0.37 + 0.51)
1 − 0.57

= 3.28

Forecasting and control using leading indicators

7.24 Box and Jenkins utilized the transfer function model to develop
the technique of forecasting Yt from the ‘leading indicator’ Xt . This is
essentially a generalization of their approach to forecasting individual
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Figure 7.8 Impulse and step responses for the transfer function model
(1 − 0.57B)Yt = −(0.53 + 0.57B + 0.51B2)Xt−3 fitted to the gas furnace data

time series, as discussed in §6.32–6.38, and will not be developed here:
see Box and Jenkins (1970, chapter 11.5) for details. They also discussed
the design of feedforward and feedback control schemes based on the
transfer function–noise model: see (ibid., chapters 12 and 13).

Box and Jenkins’ contribution to time series analysis

7.25 Box and Jenkins’ book had an enormous impact on the time series
community and its ideas quickly permeated many fields. As Mills, Tsay
and Young (2011, pages 1–2) wrote in commemorating the fortieth
anniversary of its publication

after 40 years, many still regard this book as the bible of time series
analysis. It not only popularizes time series applications, but also leads



Box and Jenkins: Seasonality and Transfer Functions 239

to many new developments in time series research. In an era without
powerful computers and statistical software, the book provided a prac-
tical iterative procedure for modelling time series data. The concept of
identification-estimation-checking continues to be as important and
relevant as ever. …

The airline seasonal time series model remains widely applicable
for most business and economic data. Indeed, … students are equally
impressed by the simplicity and applicability of the model in forecast-
ing quarterly earnings of companies across many industrial sectors.
The transfer function model and pre-whitening continue to be at the
forefront of studying cross-dependence over time between time series.
The spirit of motivating statistical research by solving real-world prob-
lems never fades with time. In the presence of so many time series
books available, one often finds oneself drawn to Box and Jenkins
when one looks for important concepts and ideas in time series anal-
ysis. The book continues to be inspirational for statisticians in general
and for time series researchers in particular.

A revised edition was published in 1976, which was then followed in
1994 and 2008 by the third and fourth editions, now co-authored by
Gregory Reinsel, which incorporate some of the more recent develop-
ments in time series analysis that will subsequently be covered in later
chapters (see, for example, Box, Jenkins and Reinsel, 2008).



8
Box and Jenkins: Developments
Post-1970

Forecasting issues

8.1 Box and Jenkins’ book had an immediate impact on the practice of
time series analysis and it was not long before Chatfield and Prothero
(1973) presented an application of their seasonal modelling procedure
to short-term sales forecasting, concluding that ‘with our particular set of
data, the Box–Jenkins procedure has not proved satisfactory. … Clearly
one cannot generalize from one set of data, but discussion with other
statisticians who have tried the Box–Jenkins approach has strengthened
our view that the procedure is likely to be less useful in seasonal sales fore-
casting than in other time-series applications particularly when the data
exhibit high multiplicative seasonal variation’ (ibid., page 313). They
suspected that, in part, this could be due to their choice of logarithms
to transform the series prior to their ARIMA analysis, and this was also
the view of several of the academic discussants of the paper, although
others, typically from the perspective of industrial and sales forecast-
ing, concurred with Chatfield and Prothero that a major drawback of
the Box–Jenkins approach was that ‘the subjective assessment involved
in choosing a model means that considerable experience is required in
interpreting sample correlation functions. In addition the procedure is
expensive in terms of both computing and staff time’ (ibid., page 313).

Box and Jenkins (1973) commented in detail on the Chatfield and
Prothero study and, at the same time, took the opportunity to respond
to Kendall’s (1971) book review (recall §3.24). Box and Jenkins were able
to confirm that most of the difficulties encountered by Chatfield and
Prothero were indeed a consequence of taking logarithms, which ‘over-
transforms’ the data, and that a cube-root or fourth-root transformation
was more appropriate. They also provided an explanation of the ARIMA

240
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(1, 1, 0) × (0, 1, 1)12 model (1 + 0.5B)

12zt = (1 − 0.8B12)at , where zt =
x0.25

t , that was identified and fitted to the transformed data, which was
a concern of Chatfield and Prothero. The model can be written as

(1 + 0.5B)(1 − B)(zt − z̄t−12) = at (8.1)

where

zt − z̄t−12 = 1 − B12

1 − 0.8B12
zt = 1 − 0.8B12 − 0.2B12

1 − 0.8B12
zt

= (1 − 0.2(B12 + 0.8B24 + · · · ))zt

so that

z̄t−12 = 0.20(zt−12 + 0.80zt−24 + 0.802zt−36 + · · · )

= 0.20zt−12 + 0.16zt−24 + 0.13zt−36 + · · ·

that is, it is a EWMA of observations observed one year apart. Equa-
tion (8.1) may then be written

(1 − 0.5B − 0.5B2)(zt − z̄12) = at

or

zt = z̄t−12 + 0.5((zt−1 − z̄t−13) + (zt−2 − z̄t−14))

Thus ‘to forecast (say) next June’s values, take an exponentially weighted
moving average of previous June figures and adjust it by the average
amount that this year’s May and April figures (or their forecasts if we are
forecasting more than one step ahead) exceeded last year’s correspond-
ing exponentially weighted moving averages’ (Box and Jenkins, 1973,
page 339).

In terms of forecasting, Chatfield and Prothero did suggest the
improvement of using backcasts of residuals rather than setting initial
values of at to zero and this was subsequently incorporated into Jenkins’
programs for forecasting ARIMA models.

8.2 Kendall (1971) was concerned with several aspects of the Box–
Jenkins procedure, particularly the possibility that it might be difficult
to distinguish between several alternative ARIMA models, in which
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case ‘we might as well be content with autoregressive series … taking
[their order] as far as is necessary to give approximate independence in
residuals’ (ibid., page 452). He was also disturbed by certain aspects of
the differencing process and was of the opinion that non-invertibility
should not be ruled out as inadmissible: ‘it does not appear to me a valid
reason for rejecting the model. The series is stationary and thoroughly
respectable. … A man is not the less an individual because he has two par-
ents, four grandparents, eight great grandparents and a divergent series
of ancestors’ (page 451).

Box and Jenkins (1973) responded to each of these concerns. Different
models could easily fit a time series equally well, especially for short
series, but this was simply a reflection of them being close approxi-
mations to each other and so were basically equivalent: ‘we can use
either and obtain essentially the same result’ (ibid., page 341). They were
quite clear, however, that they did not think that approximating a low
order moving average with a higher order autoregression was a good
idea when the moving average parameters were not small, as is often
the case, pointing out that a first-order moving average parameter of
0.8 (as was found by Chatfield and Prothero and see equation (8.1)) has
an autoregressive representation which still has a lag seven coefficient
of 0.21, making any autoregressive approximation necessarily heavily
parameterized compared to the moving average specification. The use
of a moving average (plus the assumption of invertibility) also enables
the forecast memory to die out slowly while using only a small number
of parameters. For Box and Jenkins, it was models that were both non-
stationary and invertible that were the most useful in forecasting and for
control problems. With regard to Kendall’s perceived problem with dif-
ferencing, they emphasized that it was failing to difference rather than
actual differencing which tended to lead to errors, pointing towards the
problems found in the Coen, Gomme and Kendall (1969) paper by Box
and Newbold (1971) as examples of this.

8.3 Recalling §§3.22–3.23, and in particular equation (3.17), Coen et al.
had used a regression model to forecast the quarterly FT ordinary share
price, Yt , using the ‘inputs’ X1,t−6 and X2,t−7, UK car production lagged
six quarters and commodity prices lagged seven quarters respectively.
Since they had linearly detrended the series before cross correlating them
to obtain their chosen specification, Box and Newbold pointed out that
the regression could more usefully be written as

Yt = α + β0t + β1X1,t−6 + β2X2,t−7 + nt (8.2)
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where Coen et al. had tacitly assumed that nt = at , a white noise pro-
cess. Box and Newbold suggested that a more realistic assumption was
that the noise followed an ARIMA(0, 1, 1) process, the ‘noisy random
walk’ 
nt = at − θat−1. Introducing this noise process into (8.2) yields
the transformed model

yt = β0 + β1x1,t−6 + β2x2,t−7 + at − θat−1

where

yt = 
Yt x1,t = 
X1,t x2,t = 
X2,t

Alternatively, Box and Newbold considered the AR(2) noise structure
nt = φ1nt−1 + φ2nt−2 + at , pointing out that the two noise models would
‘intersect’ at the random walk if θ = φ2 = 0 and φ1 = 1. The two models
have estimated coefficients of, respectively,1

θ̂ = 0.06 ± 0.15, β̂0 = 1.78 ± 2.74
β̂1 = 0.00016 ± 0.00008 β̂2 = −1.16 ± 1.20

and

α̂ = 2.47 ± 122 β̂0 = 2.42 ± 1.05
β̂1 = 0.00017 ± 0.00009 β̂2 = −1.81 ± 1.25
φ̂1 = 0.93 ± 0.16 φ̂2 = −0.13 ± 0.16

It is clear from the estimates of the parameters of the two noise models
that nt is very close to being a random walk and, on assuming this, the
other parameter estimates become

β̂0 = 1.74 ± 2.58 β̂1 = 0.00017 ± 0.00008 β̂2 = −1.27 ± 1.17

Although β̂1 is just significant at the 5% level it is very small in mag-
nitude, so that Coen et al.’s regression model is effectively 
Yt = at ,
the familiar random walk model of stock prices. Box and Newbold also
pointed out that, whereas Coen et al.’s equation (3.17) has a highly signif-
icant Durbin–Watson statistic (cf. §4.2) of 0.98, the random walk model
has a Durbin–Watson statistic of 1.86, which shows no sign of resid-
ual autocorrelation. It thus follows that, by specializing the example in
§6.41, the MMSE forecast of Yt+l made at origin t is simply Yt (l ) = Yt .

8.4 Box and Newbold next turned their attention to the puzzling cross-
correlations between the Coen et al. series. Figure 8.1(a) shows a plot of
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Figure 8.1 (a) Sample cross-correlations rk between the FT share index
(detrended) and lagged values of UK car production (detrended). Fifty-one pairs
of observations. (b) Sample cross-correlations rk between two unrelated detrended
random walks. Fifty pairs of observations

the cross-correlation function between the share price (Y detrended) and
car production (X1 detrended):

when cross-correlations with negative as well as positive lags are plot-
ted one finds even larger cross-correlations existing at negative lags
than those found in the [Coen et al.] paper at positive lags. This might
suggest on the reasoning of that paper that the stock price might be
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used to forecast car production instead of vice versa. And a priori this
seems at least equally plausible. (Box and Newbold, 1971, page 233)

To answer the question of how such cross-correlation patterns could
arise, Box and Newbold considered what might happen if the individ-
ual series were not adequately represented by the linear trend model
Xt = α + βt + at , as is implied by linear detrending, but rather followed
the random walk 
Xt = β + at or, equivalently,

Xt = α + βt +
∞∑

j=0

at−j

To gain some insight into the behavior of cross-correlations between
series generated by models of this kind, Box and Newbold conducted
a small simulation experiment, which we recreate here. Five indepen-
dent random walks were obtained by, in each case, cumulating 50
standard normal random deviates. These were then linearly detrended
and the sample cross-correlations between each pair computed. Figure
8.1(b) shows the cross-correlations between a representative pair of these
detrended random walks, while Table 8.1 reports the largest absolute
values of each of the cross-correlation functions and the lag at which
this correlation appeared.

(P)ersuasive features of the cross-correlation patterns in the [Coen
et al.] paper, to which the authors have drawn attention are:

(i) their smoothness;
(ii) the large absolute magnitude of the biggest cross-correlation.

But it is exactly these features which are displayed by the cross-
correlations of the random walks. (Box and Newbold, 1971, page 235)

Table 8.1 Largest cross-correlations (with lag in brackets)
found between five detrended independent random walks

i 2 3 4 5
j

1 0.55 [0] −0.41 [12] −0.42 [18] −0.71 [0]
2 −0.24 [0] −0.40 [3] −0.55 [0]
3 0.31 [−4] −0.20 [−7]
4 0.43 [−18]
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Box and Newbold then estimated regressions of the form

Y ′
t = α + βX′

t−m + at

where Y ′
t and X′

t are a pair of detrended random walks and m is cho-
sen to give the maximum cross-correlation from Table 8.1. By applying
the standard t-test on β it is found that every one of the ten pairs of
series yields a regression ‘significantly different‘ from zero at least at the
10 per cent level (and eight at the 5 per cent level), even though the series
are, by construction, independent. Figure 8.2 plots two of the random
walks (i = 1, j = 2, having maximum cross-correlation of 0.55 at lag 0:
see Table 8.1).

The apparent relationship is partly due to the flexibility allowed in
what is treated as similar – we can in effect adjust for location, spread,
trend and lag before we need find similarity; partly due to the com-
parative smoothness of what is to be compared – to find a correlation
only a few detrended rescaled and suitably lagged bumps have to
roughly match; and partly due to the selection process – among n
series there are 1

2 n(n − 1) pairs of series that could show such an
apparent relationship. (ibid., page 235)

–6

–4

–2

0

2

4

Figure 8.2 A plot of two detrended independent random walks whose maximum
cross-correlation of 0.55 is at lag 0
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The reason for the smoothness and large absolute magnitudes of the
cross-correlations was explained by Box and Newbold as follows. Suppose
we have T observations on two random walk processes


Xt − β1 = xt − β1 = ut

and


Yt − β2 = yt − β2 = vt

where ut and vt are independent white noise processes, and we define
the cross-covariance between the differences xt and yt in usual fashion as

C∗
k = (T − 1)−1

T−k∑
t=2

(xt − x̄)(yt+k − ȳ)

Now consider the detrended series (any values or estimates of the
detrending parameters will do)

X′
t = Xt − α1 − β1t Y ′

t = Yt − α2 − β2t

with cross-covariance

Ck = T−1
T−k∑
t=1

(X′
t − X̄′)(Y ′

t+k − Ȳ ′)

Box and Newbold showed that, for T moderate or large, to a close
approximation


2Ck+1 = −C∗
k

Since the C∗
k between two independent white noise processes are inde-

pendently distributed about zero with constant variance, ek = −C∗
k−1

forms a white noise process and the Ck’s satisfy the difference equation

2Ck = ek, the solution of which may be written as

Ck =
∞∑

i=0

∞∑
j=0

ek−i−j

Hence the cross-covariances Ck follow a highly non-stationary stochas-
tic process – the cumulative sum of the cumulative sum of random
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deviates – so that the appearance of any particular series of cross-
covariances, and hence the corresponding cross-correlations, must
therefore be smooth.

Thus, even though X and Y are generated by independent processes,
their cross-correlations will wander about in a smooth pattern peculiar
to each generating set of random numbers, in much the same way as
was found for the economic series in the [Coen et al.] paper. This will
be so irrespective of whether, or in which way, the series is detrended.
(ibid., page 237)

The potentially large magnitudes of the cross-correlations follow from
the result that, if X and Y are generated by unrelated first-order autore-
gressive processes each with parameter φ, then (cf. §3.17)

V(rXY(k)) = T−1 1 + φ2

1 − φ2

The ‘inflation factor’ (1 + φ2)/(1 − φ2) becomes large as φ approaches
unity and X and Y approach random walks and hence large cross-
correlations become very likely.

Box and Newbold were therefore able to conclude that

Coen, Gomme and Kendall end their paper with the conclusion that
their method deserves serious consideration for short-term forecast-
ing. We have written this paper because on the contrary we believe
this method should not be employed because of an innate and insidi-
ous capacity to mislead which we have discussed in some detail. (ibid.,
page 238)

8.5 Box and Tiao (1976) considered using forecasts to analyze a possible
change in the system generating a time series.

Suppose a system has been subjected to a change. A natural way to
consider the possible effect of that change is to compare, with actual-
ity, forecasts made from a stochastic model built on data prior to the
suspected change with data actually occurring. (ibid., page 195)

Thus suppose that the general model xt = ψ(B)at , or π(B)xt = at with
π(B)ψ(B) = 1, has been fitted to data on x up to ‘origin’ t. If the MMSE
forecast of xt+l is x̂t (l ), l = 1, 2, . . ., then from §6.34 the lead l forecast
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error et+l = xt+l − x̂t (l ) is given by

et+l =
l∑

j=1

ψl−jat+j

where ψ0 = 1. For the set of forecasts x̂t (1), x̂t (2), . . . , x̂t (m), and writ-
ing a′ = (at+1, . . . , at+m) and e′ = (et+1, . . . , et+m), the transformation
from random shocks to forecast errors is e = ψa, where

ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · · · · 0

ψ1 1
. . .

...

ψ2 ψ1 1
. . .

...

...
...

. . . 1
. . .

...

...
... ψ1 1 0

ψm−1 ψm−2 · · · ψ2 ψ1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Conversely, a = πe, where

π = ψ−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · · · · 0

−π1 1
. . .

...

−π2 −π1 1
. . .

...

...
...

. . . 1
. . .

...

...
... −π1 1 0

−πm−1 −πm−2 · · · −π2 −π1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The covariance matrix of e is V = E(ee′) = ψψ′σ 2

a so that it follows that,
if the original model is appropriate during the period l = 1, . . . , m, then
Q = e′V−1e ∼ χ2(m). If, on the other hand, the model changes in some
way then it might be expected that Q would be inflated to a value above
some critical value of the distribution. Since

Q = e′V−1e = e′π′πe/σ 2
a = a′a/σ 2

a = σ−2
a

m∑
l=1

a2
t+l

the statistic can be regarded as the standardized sum of squared one-step
ahead forecast errors. The use of Q implies that nothing specific is known
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about how the model might have broken down in the forecast period.
If such information is available, say in terms of a change in level of x or
a shift in the parameters, then Box and Tiao suggest ways in which this
information may be modeled and tested.

8.6 Abraham and Box (1978) considered the distinction between
‘deterministic’ and ARIMA models through the associated behaviour of
the forecast functions (cf. §6.39) of the latter models. For example, sup-
pose at time origin t we wish to use a model to obtain a forecast x̂t (l ) of
the value xt+l l periods in the future. One possibility is to consider the
deterministic model

xt+l = β
(t)
0 + β

(t)
1 l + at+l (8.3)

which has the forecast function

x̂t (l ) = β
(t)
0 + β

(t)
1 l

This model has the properties that the variance of the forecast error is
constant at σ 2

a and independent of the lead time l and that the function
does not change as the forecast origin is changed. For example, when
the forecast origin is changed from t to t + 1 the coefficients change
only so as to express the same function from the new origin. Thus, from
(8.3) the forecast function from origin t + 1 is

x̂t+1(l ) = β
(t+1)
0 + β

(t+1)
1 l (8.4)

and the shift formulae for the coefficients are

β
(t+1)
0 = β

(t)
0 + β

(t)
1 , β

(t+1)
1 = β

(t)
1

On the other hand, the ARIMA(0, 2, 2) process 
2xt+l = (1 − θ1B −
θ2B2)at has, from §6.42, the same forecast function (8.4) but the
coefficient updating equations

β
(t+1)
0 = β

(t)
0 + β

(t)
1 + (1 + θ2)at+1, β

(t+1)
1 = β

(t)
1 + (1 − θ1 − θ2)at+1 (8.5)

so that each updating formula consists of the appropriate shift formula
plus an adjustment proportional to the one-step ahead forecast error
at+1 = xt+1 − x̂t (1).
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It can then be seen that if θ1 → 2 and θ2 → −1 the updating formulae
approach the shift formulae, as do the solutions of the two models. In
general, if the ARMA process φ(B)xt+l = θ(B)at+l has a moving average
polynomial that cancels with the autoregressive polynomial then

xt+l = ft (l ) + at+l

where ft (l ) may include polynomials, exponentials, trigonometric func-
tions or any mixture of these.

Abraham and Box presented a general analysis of the factorization of
difference equations and provided examples to show how these ideas
may be put to practical use.

8.7 In his last journal article, Jenkins (1982) attempted to place fore-
casting into the wider context of decision taking within systems, which
had been a concern of his for the last 25 years of his life. While the
paper makes for very interesting reading across a whole range of issues,
it is perhaps the following statement that, within our present context,
provides the most fitting epitaph to Gwilym Jenkins, representing as it
does a synthesis of his views concerning the modelling and forecasting
of time series that have been developed over the last three chapters.

(T)he history of forecasting is littered with ‘ad hoc’ methods, many of
which have merit in the overall scheme of things. However, … the
building of statistical models for forecasting requires a similar out-
look to the building of ‘models’ in other areas of statistics and in
science generally. In particular, the model building process requires
‘experience’ and ‘craftsmanship’ which in turn requires extensive
practical application and frequent interaction between theory and
practice. Model building also requires a method of approach, or
a methodology, that eventually leads to models that contain no
detectable inadequacies – at least for the time being. However, in the
fullness of time they will be shown to be inadequate as more evi-
dence and understanding becomes available. On the other hand, ad
hoc forecasting methods are attractive to many practitioners because
they can be applied with little thought – so that the forecaster can
use the computer to proceed from data to forecasts with speed and
with the minimum of ‘pain and suffering’. In contrast, statistical
model building requires thought and an interactive and iterative dia-
logue between those who know about the problem and the data, the
forecaster and the computer. Since thinking is a painful process, it is
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not surprising that some will want to shy away from it and use ad hoc
methods. Quite apart from their arbitrariness, ad hoc methods, mainly
based on forecasting a time series from its past history, are not much
use for policy making. To be effective in this area it is necessary to
gain understanding of the relevant system before attempting to fore-
cast the effect of continuing with present policies, or embarking on
new policies. Although properly constructed models which forecast a
time series from its past history have a very important role to play, …
for effective policy making it is necessary to introduce policy vari-
ables into a model – again in a systematic not an ad hoc manner. Thus
we are against ‘ad hoc’ methods both for ‘past history forecasting’
and for forecasting involving policy variables. (ibid., page 4: italics
in original)

Several examples of this philosophy of forecasting may be found in
Jenkins and Alavi (1981) and in two collections of case studies, Jenkins
(1979) and Jenkins and McLeod (1983), to which we will return in §8.31.

Estimation and diagnostic checking

8.8 The likelihood function of an ARMA process and Box and Jenkins’
(1970) approach to estimation via an approximation using non-linear
least squares was discussed in §§6.18–6.28. While this approach and
other closely related procedures (see, for example, Anderson, 1975, 1977,
for developments and references) were usually quite accurate, difficulties
began to be encountered when the sample was small or the moving aver-
age parameters were near or on the boundary of the invertibility region,
for example, when θ was close to or equal to 1 in a first-order moving
average. In such circumstances evaluation of the exact likelihood, and
hence exact maximum likelihood estimation, tended to provide supe-
rior estimates. Expressions for the exact likelihood of an ARMA process
and methods for evaluating it were given by several authors, notably
Newbold (1974) and Ansley (1979).

Ljung and Box (1979) suggested writing the ARMA(p, q) process

xt − φ1xt−1 − · · · − φpxt−p = at − θ1at−1 − · · · − θqat−q t = 1, 2, . . . , T

in matrix form as, recalling the notation of §6.18,

L1x = L2a + Vu∗ (8.6)
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where u∗ = (x′∗, a′∗)′ is the vector of p + q initial values and L1 and L2 are
the T × T matrices

L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · · · · · · · 0

−φ1 1
. . .

...

...
. . . 1

. . .
...

−φp
. . . 1

. . .
...

0
. . .

. . . 1
. . .

...

...
. . .

. . .
. . . 1 0

0 · · · 0 −φp · · · −φ1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · · · · · · · 0

−θ1 1
. . .

...

...
. . . 1

. . .
...

−θq
. . . 1

. . .
...

0
. . .

. . . 1
. . .

...

...
. . .

. . .
. . . 1 0

0 · · · 0 −θq · · · −θ1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
V is the T × (p + q) matrix

V =
[

V1

0

]

with

V1 =

⎡⎢⎢⎢⎢⎣
φp φp−1 . . . φ1 −θq −θq−1 · · · −θ1

0 φp . . . φ2 0 −θq · · · −θ2
...

. . .
. . .

...
...

. . .
. . .

...

0 . . . 0 φp 0 · · · · · · −θq

⎤⎥⎥⎥⎥⎦
being of order m × (p + q), m = max(p, q), and 0 is the null matrix of
order (n − m) × (p + q).

The unconditional, or exact, likelihood function now takes the form,
under the assumption that the at ’s are normally distributed,

L(φ, θ, σa|x) = (2πσ 2
a )−

T
2 |
| 1

2 exp (−(2σ 2
a )−1x′
−1x)
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where 
 = σ−2
a 
x, 
x being the covariance matrix of x. This may be

maximized with respect to φ and θ by minimizing the function

�0(φ, θ|x) = (x′
−1x)|
|1/T (8.7)

On writing (8.6) as a = Mx − Nu∗, where M = L−1
2 L1 and N = L−1

2 V,
Ljung and Box applied generalized least squares theory to show that the
constituents of (8.7) can be written as

x′
−1x = â′
0â

and


−1 = M(I − N(
−1
∗ + N′N)−1N′)M

where

â0 = Mx, â = Mx − Nû∗

u∗ = (
−1
∗ + N′N)−1N′Mx

Evaluation of (8.7) thus requires the computation of 
∗ and N and Ljung
and Box both provided a method for doing this and showed that their
approach compared favourably, in terms of speed and efficiency, with
that of Ansley (1979).

8.9 Ljung and Box (1978) revisited the portmanteau statistic of Box and
Pierce (1970), which had been suggested as an overall test of lack of fit in
ARMA models (see §6.30). Davies, Trigg and Newbold (1977), amongst
others, had found that the Q(K) statistic could deviate considerably from
the assumed χ2(K − p − q) distribution, with suspiciously low values of
the statistic appearing frequently, so that the chance of incorrectly reject-
ing the null hypothesis of model adequacy could be much smaller than
the chosen significance level. Ljung and Box therefore examined the
performance of an alternative statistic proposed by Box and Pierce, viz.,

Q∗(K) = T(T + 2)
K∑

k=1

(T − k)−1r2
k (â)

They found that this modified statistic offered a marked improvement
in terms of approximating the underlying χ2 distribution, particularly
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for small sample sizes, and it has since become a widely used diag-
nostic test for the appropriateness of the noise specification in both
ARMA and transfer function models, although Davies and Newbold
(1979) and Godfrey (1979) both quickly showed that the power of this
test was still quite low even in the presence of severe misspecification.
This prompted the development of other types of diagnostic tests, most
notably the class of Lagrange multiplier tests (see, for example, Godfrey
and Tremayne, 1988).

Intervention analysis and outliers

8.10 Box and Tiao (1965) investigated the problem of making inferences
about a possible shift in the level of a non-stationary time series at some
particular point in time. Assuming that the process generating the series
is a EWMA with known parameter γ0 and pre-shift location μ, that a shift
of size δ occurs after τ1 observations and that there are τ2 observations
after the shift, then

x1 = μ+ a1

xt = μ+ γ0

t−1∑
i=1

at−i + at t = 2, . . . , τ1

xt = μ+ δ + γ0

t−1∑
i=1

at−i + at t = τ1 + 1, . . . , τ1 + τ2

Assuming that τ1 and τ2 are large, Box and Tiao showed that estimates
of μ and δ are given by

μ̂ = γ0

τ1∑
j=1

(1 − γ0) j−1xj

δ̂ = γ0

⎛⎝ τ2∑
j=1

(1 − γ0) j−1xτ1+j −
τ1∑

j=1

(1 − γ0)τ1−jxj

⎞⎠
leading to the test statistic

δ̂ − δ

sa
√
γ0(2 − γ0)

∼ t(τ1 + τ2 − 2)

where s2
a is an estimate of the noise variance σ 2

a whose formula is given
by Box and Tiao (1965, equation (3.11)). The estimate δ̂ is thus the
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difference between two EWMAs, one having maximum weight imme-
diately prior to the shift and the other having maximum weight
immediately after.

Box and Tiao considered various extensions of the model, specifi-
cally the adjustments to the estimates and test statistics when τ1 and
τ2 are small so that truncation of the sums in the estimator formulae
are needed, an extension to a first-order autoregressive model, and how
inferences can be made when γ0 is unknown.

8.11 A decade later, Box and Tiao (1975) returned to the problem of
detecting a shift in a time series, now couched in terms of the ques-
tion ‘given a known intervention, is there evidence that change in the
series of the kind expected actually occurred, and, if so, what can be said
of the nature and magnitude of the change?’ (page 70).2 Box and Tiao
suggested modelling interventions by using the transfer function frame-
work developed in §§7.8–7.23. Recalling (7.12), a simple model with one
intervention can be written as

Yt = Rt + Nt = δ−1(B)ω(B)It + Nt Nt = ϕ−1(B)θ(B)at (8.8)

It is the intervention variable and typically is a ‘dummy’ or ‘indicator’
sequence taking the values 1 and 0 to denote the occurrence or not of
the exogenous intervention. Various dummy variables have been found
to be useful for representing different forms of intervention, the two
most popular being the following.

(i) A pulse variable, which models an intervention lasting only for the
observation τ ,

It = P(τ )
t =

{
0 t �= τ

1 t = τ

(ii) A step variable, which models a step change in Yt beginning at τ ,

It = S(τ )
t =

{
0 t < τ

1 t ≥ τ

Thus an output step change of unknown magnitude immediately follow-
ing a known step change would be modelled as Rt = ωBS(τ )

t . If, however,
a step change is not expected to produce an immediate response but
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rather a dynamic response, a ‘first-order’ intervention might then be
defined as

Rt = (ωB/(1 − δB))S(τ )
t

The steady-state gain is ω/(1 − δ) and, as δ approaches unity, the transfer
function becomes

Rt = (ωB/(1 − B))S(τ )
t

so that a step change in the input produces a ‘ramp’ response in the
output.

Since (1 − B)S(τ )
t = P(τ )

t any of these transfer functions could equally
well be used with a unit pulse intervention. An intervention which has
no lasting effect could then be modelled as

Rt = (ωB/(1 − δB))P(τ )
t

with ω being the initial increase immediately following the intervention
and δ being the rate of decay of this increase. More complex responses
can be achieved by combining interventions. For example

Rt = (ω1B/(1 − δB) + ω2B/(1 − B))P(τ )
t = (ω1B/(1 − δB))P(τ )

t + ω2BS(τ )
t

would allow an increase of ω2 to persist, while an intervention extending
over several time intervals could be represented by a series of pulses.

8.12 The identification and estimation of intervention models essen-
tially follow that of transfer function modelling, although care needs
to be taken when identifying intervention response functions in the
presence of a possibly non-stationary noise structure.

One of the examples used by Box and Tiao was the examination of the
effect of price controls on US inflation. Figure 8.3 shows the latter part
of a record of the monthly rate of change in the consumer price index
(CPI). The complete (July 1953 to December 1972) data set contains 234
successive values, 218 of which occurred prior to the institution of price
controls in August 1971. As indicated in Figure 8.3, Phase I control was
applied in the three months beginning September 1971 and after that
Phase II was in effect to the end of the data set.

Inspection of the autocorrelation functions of the first 218 observa-
tions and their differences prior to Phase I suggested the noise model

(1 − B)Nt = (1 − θB)at
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Figure 8.3 Monthly rate of inflation of the US Consumer Price Index: January
1964–December 1972. I denotes that Phase I price controls were in effect;
II denotes that Phase II price controls were in effect

and estimating this model obtained θ̂ = 0.92 ± 0.03 and σ̂a = 0.0026.
Diagnostic checks on the residuals revealed no obvious inadequacies of
this model and it was thus used as a basis for answering the question
‘what were the possible effects of Phases I and II?’ To answer this, Box
and Tiao assumed that: (i) Phases I and II could be expected to produce
changes in the level of the rate of change of the CPI; and (ii) the form
of the noise model remained essentially the same, thus leading to the
overall model

Yt = ω1I1t + ω2I2t + ((1 − θB)/(1 − B))at

where

I1t = P(219)
t + P(220)

t + P(221)
t

=
{

1 t = September, October, November 1971

0 otherwise

I2t =
{

1 t ≥ December 1971

0 otherwise
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Since

(1 − B)/(1 − θB) = 1 − B(1 − θ)(1 + θB + θ2B2 + · · · )

the model can be written as

zt = ω1x1t + ω2x2t + at

where

zt = Yt − Ỹt−1 x1t = I1t − Ĩ1,t−1 x2t = I2t − Ĩ2,t−1

Ỹt−1, Ĩ1,t−1 and Ĩ2,t−1 being EWMAs of the form, for example,

Ỹt−1 = (1 − θ)(Yt−1 + θYt−2 + θ2Yt−3 + · · · )

The estimated parameters of this intervention model are θ̂ = 0.93 ± 0.02,
ω̂1 = 0.0030 ± 0.0016, ω̂2 = 0.0008 ± 0.0011 and σ̂a = 0.0026, enabling
Box and Tiao to conclude that the ‘analysis suggests that a real drop in
the rate of increase of the CPI is associated with Phase I, but the effect of
Phase II is less certain’ (ibid., page 75).

8.13 Abraham and Box (1979) considered a related application of inter-
vention variables. If the model ϕ(B)Yt = θ(B)at is written π(B)Yt = at ,
with π(B) = θ−1(B)ϕ(B), and it is supposed that any given innovation
has a small probability, say α, of being ‘aberrant’, then we can write

π(B)Yt = ωIt + at

where It = 1 if there is an aberrant innovation at t and It = 0 otherwise.
Abraham and Box refer to this as the aberrant innovation model. Alterna-
tively, the aberration may affect the observation itself rather than the
innovation, in which case we have

π(B)(Yt + ωIt ) = at

which they refer to as the aberrant observation model. While Abraham and
Box offered a Bayesian analysis of these models under the purely autore-
gressive assumption θ(B) = 1, the framework was subsequently extended
by Hillmer, Bell and Tiao (1983) (see also Tsay, 1986, 1988, and Chang,
Tiao and Chen, 1988) to allow the detection of innovational and additive
outliers, respectively, occurring at unknown times.
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Modelling multiple time series

8.14 The transfer function modelling strategy of §7.8–7.23 relies on the
assumption that there is no feedback from the output Yt to the input
Xt . Box and MacGregor (1974, 1976) analyzed the consequences of a
breakdown of this assumption.3 If both the output and input require
differencing d times to induce stationarity, thus defining yt = 
dYt and
xt = 
dXt , then suppose that the transfer function (cf. (7.14))

yt = υ(B)xt + nt (8.8)

where nt = φ−1(B)θ(B)at is a stationary noise, is supplemented by the
feedback relationship

xt = ω(B)yt + mt (8.9)

If xt can be pre-whitened to αt = φx(B)θ−1
x (B)xt and the same transfor-

mation is applied to yt , nt and mt to obtain βt = φx(B)θ−1
x (B)yt , εt =

φx(B)θ−1
x (B)nt and ξt = φx(B)θ−1

x (B)mt , then the closed-loop equations
(8.8) and (8.9) can be written

βt = υ(B)αt + εt

αt = ω(B)βt + ξt

(8.10)

Multiplying (8.10) by αt−k, taking expectations and dividing by σxσy

yields

ραβ(k) = υk
σα

σβ
+ ραε(k)

σε

σβ
k ≥ 0

= ραε(k)
σε

σβ
k < 0

(8.11)

where ραβ(k) and ραε(k) are appropriate cross-correlations at lag k. If the
input xt is uncorrelated with the disturbance nt then ραε(k) = 0 and (8.11)
reduces to

ραβ(k) = υk
σβ

σα
k ≥ 0 (8.12)

which is the relationship used in §7.16 for identifying a transfer func-
tion from open-loop data. However, the relationship (8.12) will not hold
under the feedback conditions (8.8) and (8.9) since xt is related to nt by

xt = ω(B)(1 − υ(B)ω(B))−1nt + (1 − υ(B)ω(B))−1mt
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so that identifying the transfer function using (8.11) will almost certainly
lead to an incorrect model identification.

8.15 To circumvent this problem, Haugh and Box (1977) proposed pre-
whitening yt as well as xt , i.e., obtaining the white noise series δt =
φy(B)θ−1

y (B)yt , which, of course, will typically differ from the generally
autocorrelated series βt . The series αt and δt may then be cross-correlated
in the usual way and a tentative model identified, which can then be
recombined with the two univariate models for xt and yt to obtain a
joint model for these two series.

The theoretical background to this approach begins with the
covariance-generating function for xt and yt ,

�(B) =
∞∑

k=−∞
�kBk =

∞∑
k=−∞

[
γx(k) γxy(k)
γyx(k) γy(k)

]
Bk

which is assumed to be rational (each element of �k being a rational
function of B). It is also assumed that det(�(B)) has zeros lying out-
side the unit circle. This ensures that the joint (x, y) process is invertible
and of full rank, which eliminates the possibility, for example, of pro-
cesses in which both series are transformations of the same white noise,
and also allows �(B) to be uniquely factorized as �(B) = �(B−1)
ε�

′(B),
where �(0) = I and 
ε is the covariance matrix of MMSE one-step-ahead
forecast errors.4 Under these assumptions there will be a unique model
generating the observed covariance structure. Haugh and Box showed
that such a unique representation may be written as

[
xt

yt

]
= V(B)at =

[
Vxx(B) Vxy(B)
Vyx(B) Vyy(B)

][
axt

ayt

]

=
[

θxx(B)/φxx(B) Cxyθxy(B)/φxy(B)
Cyxθyx(B)/φyx(B) θyy(B)/φyy(B)

][
axt

ayt

]

where V(0) = V0 is lower triangular with unit diagonal and

E(ata′
t ) = 
a = diag(σ 2

ax
, σ 2

ay
).

The φ(B) polynomials have unit leading terms and roots outside the unit
circle, θxx(B) and θyy(B) have unit leading terms, θxy(0) = 0, and the roots
of det (V(B)) lie outside the unit circle.
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8.16 Each series can be modelled individually, leading to[
xt

yt

]
=
[

Vx(B) 0
0 Vy(B)

][
uxt

uyt

]

=
[
θx(B)/φx(B) 0

0 θy(B)/φy(B)

][
uxt

uyt

] (8.13)

The joint process (ux, uy) will not, however, be bivariate white noise since
ux and uy may be cross-correlated at non-zero lags:

[
uxt

uyt

]
= W(B)at =

[
Wxx(B) Wxy(B)
Wyx(B) Wyy(B)

][
axt

ayt

]

=
[

θ11(B)/φ11(B) C12θ12(B)/φ12(B)
C21θ21(B)/φ21(B) θ22(B)/φ22(B)

][
axt

ayt

] (8.14)

A complete model for x and y can then be formed by combining (8.13)
and (8.14):[

xt

yt

]
=
[

Vx(B) 0
0 Vy(B)

][
uxt

uyt

]

=
[

Vx(B) 0
0 Vy(B)

][
Wxx(B) Wxy(B)
Wyx(B) Wyy(B)

][
axt

ayt

]

=
[

Vx(B)Wxx(B) Vx(B)Wxy(B)
Vy(B)Wyx(B) Vy(B)Wyy(B)

][
axt

ayt

]

Haugh and Box made no claim that this factorization of V(B) would nec-
essarily be parsimonious, either for identification or structural descrip-
tion, but they believed that this two-stage analysis would lead to more
easily interpretable cross-correlation analysis, particularly as their expe-
rience, and of others at the time (for example, Pierce, 1977), was that
the cross-correlation function of the univariate residual series ux and uy

typically revealed a quite simple structure for W(B).

8.17 Haugh and Box’s idea was then to compute the sample cross-
correlation function between ûx and ûy , the residual series obtained
from fitting univariate models to x and y. By knowing the cross-
correlation patterns appropriate to various bivariate models, a pattern
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in rûxûy ( · ) could then be matched to a ‘true’ cross-correlation pattern
ρuxuy ( · ), which should then lead to the identification of a model of the
form (8.14).

An important result for identifying models is that when there is no
feedback from y to x then Vxy(B) = 0 and ρuxuy (k) = 0 for negative k.
Thus if rûxûy ( · ) seems to indicate no feedback effect, in that no signif-
icant cross-correlations occur at negative lags, a dynamic regression model
may be identified as[

xt

yt

]
=
[

Vx(B) 0
0 Vy(B)

][
Wxx(B) 0
Wyx(B) Wyy(B)

][
axt

ayt

]

=
[

Vx(B)Wxx(B) 0
Vy(B)Wyx(B) Vy(B)Wyy(B)

][
axt

ayt

]

In this case Wxx(B) = 1 and axt = uxt, so that[
xt

yt

]
=
[

Vx(B) 0
Vy(B)Wyx(B) Vy(B)Wyy(B)

][
uxt

ayt

]

and

yt = Vy(B)Wyx(B)V−1
x (B)xt + Vy(B)Wyy(B)ayt

is a rational distributed lag model with transfer function ω(B)/δ(B) =
Vy(B)Wyx(B)/Vx(B) and ARMA noise model θ(B)/φ(B) = Vy(B)Wyy(B).

Haugh and Box considered four cases of primary interest.

(a) x and y are uncorrelated at all lags k, so that x will have no influence
on forecasts of y and vice versa.

(b) ρuxuy (0) �= 0 but x and y are uncorrelated at all other non-zero lags k.
Although dynamic regression models for y on x and x on y can both
be built, the past of x will be of no use in forecasting y beyond that
already achieved by using the past of y, and again vice versa.

(c) There is at least one non-zero cross-correlation ρuxuy (k) for positive k
and there is no cross-correlation at negative lags. A dynamic regres-
sion model for y on x may then be built which will improve the
forecastability of y.

(d) There exist non-zero cross-correlations ρuxuy (k) for both positive and
negative k so that there is feedback and it is not possible to build
a dynamic regression model of y on present and past x.
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In either (b) or (c) there will exist a dynamic regression model of the form

yt = δ−1(B)ω(B)xt + φ−1(B)θ(B)ayt

The cross-correlation function ρuxuy (k) will then have the following
structure:

ρuxuy (k) = σ−1
ux
σ−1

uy
Euxtuyt

= σ−1
ux
σ−1

uy
Euxt(θ−1

y (B)φy(B)yt+k)

= σ−1
ux
σ−1

uy
Euxt(θ−1

y (B)φy(B)δ−1(B)ω(B)xt+k

+ θ−1
y (B)φy(B)φ−1(B)θ(B)ayt)

= σ−1
uy
θ−1

y (B)φy(B)δ−1(B)ω(B)φ−1
x (B)θx(B)ρux (k)

from which it is clear that the cross-correlations are not proportional to
the transfer function weights. However, if the analogous dynamic shock
model,

uyt = δ′−1(B)ω′(B)uxt + φ′−1(B)θ ′−1(B)at = V ′(B)uxt + ψ ′(B)at

is considered then ρuxuy (k) takes on the simpler form

ρuxuy (k) = σ−1
uy

V ′(B)ρux (k) = σ−1
uy

V ′
k

and ρuxuy (k) is then directly indicative of the transfer function V ′(B). The
residual cross-correlation function rûxûy ( · ) may then be used to identify
V ′(B) using the approach of §§7.13–7.20.

As well as indicating the form of the transfer function V ′(B), the resid-
ual cross-correlation rûxûy ( · ) can also be used to identify the form of the
noise model ψ ′(B) = θ ′(B)/φ′(B). Haugh and Box showed that, to ensure
uy is white noise, it must be the case that φ′(B) = δ′(B) and θ ′(B) is at most
of order r ′ or s′, these being the orders of δ′(B) and ω′(B) respectively.

8.18 One of the examples used by Haugh and Box to illustrate this
model-building methodology employs two UK macroeconomic indica-
tors analyzed by Bray (1971). These are the first differences of GDP
(xt ) and the logarithms of unemployment (yt ), observed quarterly from
1955II to 1968IV (T = 55) and shown in Figure 8.4.

The AR(1) model (1 − 0.62B)yt = ûyt gives a reasonable univariate fit to
the y series, while the x series is adequately fitted by the simple white
noise xt = 0.66 + ûxt. The cross-correlation function of the residual series
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Figure 8.5 Estimated residual cross-correlation function with two standard error
bounds at ±0.27

ûx and ûy is shown in Figure 8.5. Given the standard error of these
cross-correlations under the assumption of independence (1/

√
T =

0.135), there is no evidence of feedback from ûy to ûx since no cross-
correlation at negative k is significant, at least for low lags. The highest
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correlation is at k = 0 and the cross-correlations at lags 1 and 2 are also
significant. This leads to the identification of the dynamic shock model

uyt = (ω′
0 − ω′

1B − ω′
2B2)uxt + (1 − θ ′

1B − θ ′
2B2)ayt

with the order of θ ′(B) chosen to be the same as ω′(B) to insure that uy

can be specified as white noise.
Combining this dynamic shock model with the univariate models for

ûx and ûy leads to the dynamic regression formulation

yt = θ0 + (ω′
0 − ω′

1B − ω′
2B2)

(1 − φ1B)
xt + (1 − θ1B − θ2B2)

(1 − φ1B)
ayt

which was fitted by non-linear least squares to give

yt = 0.041
(±0.007)

−

(
0.0135
(±0.0044)

+ 0.0184
(±0.0044)

B + 0.0182
(±0.0042)

B2
)

(
1 − 0.801

(±0.124)
B
) xt

+

(
1 − 0.615

(±0.168)
B − 0.354

(±0.156)
B2
)

(
1 − 0.801

(±0.124)
B
) ayt

with standard errors shown in parentheses. The coefficients of the model
are all precisely determined and, in addition, the estimate of the resid-
ual variance is 0.00061, which is some 30 per cent smaller than that of
the univariate model for y. Usual residual auto- and cross-correlation
checks (§7.22) indicate no model inadequacies and Haugh and Box
(1977, page 128) thus concluded that ‘the differenced GDP series seems to
be of some value in explaining the stochastic structure of the differenced
unemployment series’.

8.19 Box and Tiao (1977) explicitly considered an n-dimensional station-
ary autoregressive process in which there could be feedback. Denoting
this n × 1 vector process as zt , conveniently taken to have zero mean,
then if zt follows a pth-order autoregression it may be represented as

zt = ẑt−1(1) + at (8.15)
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where

ẑt−1(1) = E(zt |zt−1, zt−2, . . . ) =
p∑

j=1


jzt−j

is the expectation of zt conditional on past history up to time t − 1,
the 
j are n × n matrices and at is a sequence of independently and nor-
mally distributed n × 1 vector random shocks, independent of ẑt−1(1)
and having mean zero and positive-definite covariance matrix 
. Writ-
ing (8.15) as ⎛⎝I −

p∑
j=1


jBj

⎞⎠ zt = at

stationarity is then ensured if det(I −∑

jB j) has all its zeros lying out-

side the unit circle. This model has come to be known as a vector
autoregression of order p, or VAR(p). If n = 1, so that we have just the
single series zt , stationarity implies that

E(z2
t ) = E(ẑt−1(1))2 + E(a2

t )

or

σ 2
z = σ 2

ẑ + σ 2
a

from which can be defined the quantity λ = σ 2
ẑ /σ

2
z = 1 − σ 2

a /σ
2
z , which

measures the predictability of a stationary series from its past. Box and
Tiao (1977, page 356) considered the multivariate generalization of this
idea using the following ‘thought experiment’.

Suppose that we are considering n different stock market indicators
such as the Dow Jones Average, the Standard and Poors index, etc.,
all of which exhibit dynamic growth. It is natural to conjecture that
each might be represented as some aggregate of one or more com-
mon inputs which may be nearly nonstationary, together with other
stationary or white noise components. This leads one to contemplate
linear aggregates of the form ut = m′zt , where m is a n × 1 vector.
The aggregates which depend most heavily on the past, namely hav-
ing large λ, may serve as useful composite indicators of the overall
growth of the stock market. By contrast, the aggregates with λ nearly



268 A Very British Affair

zero may reflect stable contemporaneous relationships among the
original indicators. The analysis given [below] yields n ‘canonical’
components from least to most predictable. The most predictable
components will often approach nonstationarity and the least pre-
dictable will be stationary or independent. Thus we may usefully
decompose the n-dimensional space of the observations zt into
independent, stationary and nonstationary subspaces. Variables in
the nonstationary space represent dynamic growth while those
in the stationary and independent spaces can reflect relationships
which remain stable over time. (Notation altered for consistency)

8.20 If �j(z) = E(zt−jz′
t ) is the lag j autocovariance matrix of zt then,

from (8.15),

�0(z) =
p∑

j=1


j�j(z) + 
 = �0(ẑ) + 


say, where �0(ẑ) is the positive-definite covariance matrix of ẑt−1(1). The
linear combination ut = m′zt will have the property that ut = ût−1(1) +
vt , where ût−1(1) = m′ẑt−1(1) and vt = m′at . The predictability of ut from
its past is then measured by

λ = σ 2
û /σ

2
u = (m′�0(ẑ)m)/(m′�0(z)m) (8.16)

from which it follows that, for maximum predictability, λ must be the
largest eigenvalue of �−1

0 (z)�0(ẑ) and m the corresponding eigenvector.
Similarly, the eigenvector corresponding to the smallest eigenvalue will
yield the least predictable combination of zt .

If the n real eigenvalues are denoted λ1, . . . , λn and are ordered with
λ1 being the smallest, and the corresponding linearly independent
eigenvectors m′

1, . . . , m′
n are gathered together to form the n rows of

a matrix M, then a transformed process yt = Mzt can be constructed
such that

yt = ŷt−1(1) + bt

�0(y) = �0(ŷ) + 
̃
(8.17)

where

bt = Mat ŷt−1(1) =
p∑

j=1


̃jyt−j 
̃j = M
jM−1
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and

�0(y) = M�0(z)M′ �0(ŷ) = M�0(ẑ)M′ 
̃ = M
M′

From (8.16) it then follows that

M′−1�−1
0 (z)�0(ẑ)M′ = � M′−1�−1

0 (z)
M′ = I − �

where � is the n × n diagonal matrix with elements (λ1, . . . , λn). It is
also the case that 0 < λi < 1, i = 1, . . . , n, and, for i �= j, m′

i
mj =
m′

i�0(ẑ)mj = 0, so that M
M′, M�0(ẑ)M′ and therefore M�0(z)M′ are
all diagonal. Thus the transformation (8.17) produces n components
(y1t , . . . , ynt) which (i) are ordered from least predictable to most pre-
dictable; (ii) are contemporaneously independent; (iii) have predictable
components (ŷ1,t−1(1), . . . , ŷn,t−1(1)) which are contemporaneously inde-
pendent; and (iv) have unpredictable components (b1t , . . . , bnt) which
are contemporaneously and temporally independent.

8.21 If the first n1 roots, λ1, . . . , λn1 , are zero then

�0(ŷ) = M�0(ẑ)M′ =
[

0 0
0 D

]

where D is a n2 × n2 diagonal matrix for n2 = n − n1. On defining the
partitions y′

t = [y′
1t y′

2t ], bt = [b′
1t b′

2t ] and


̃j =
⎡⎣ 
̃

( j)
11 
̃

( j)
12


̃
( j)
21 
̃

( j)
22

⎤⎦
where y1t is n1 × 1 and 
̃

( j)
11 is n1 × n1, etc., yt can then be written as

[
y1t

y2t

]
=

p∑
j=1

[
0 0


̃
( j)
21 
̃

( j)
22

][
y1,t−j

y2,t−j

]
+
[

b1t

b2t

]
(8.18)

Thus, the canonical transformation decomposes the original n × 1 vector
process zt into two components: (i) a component y1t which follows a
n1-dimensional white noise process, and (ii) a component y2t which is
stationary but whose predictable part depends on both y1,t−j and y2,t−j

for j = 1, . . . , p.
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The practical importance of (8.18) is that it implies that there are
n1 relationships between the original variables having the ‘static’ form
mi1z1t + · · · + minznt = bit, i = 1, . . . , n1, where the bit are contemporane-
ously and temporally independent and mi = (mi1, . . . , min).

8.22 Box and Tiao focused attention on the VAR(1) process obtained by
setting 
1 = � and 
j = 0, j > 1:

zt = ẑt−1(1) + at = �zt−1 + at (8.19)

Since now �′
1(z) = ��0(z) it follows that �0(z) = ��0(z)�′ + 
 and the

n eigenvalues λi and eigenvectors mi are obtained from the matrix
�−1

0 (z)��0(z)�′. On defining �̃ = M�M−1, the transformed process can
be written

yt = �̃yt−1 + bt (8.20)

The general condition for stationarity hinges on the zeros of det (I −∑

jB j), which for (8.19) becomes

det (I − �B) =
n∏

i=1

(1 − αi)B

where α1, . . . ,αn are the eigenvalues of �. If one or more of these eigen-
values lie on the unit circle then �0(z) does not exist and the canonical
transformation method breaks down. Suppose, however, that n2 of the
eigenvalues approach values on the unit circle. Box and Tiao showed
that, under these circumstances, n2 of the λi will approach unity and, in
the limit, the transformed model (8.20) for yt becomes

[
y1t

y2t

]
=
[

�̃11 0
�̃21 �̃22

][
y1,t−1

y2,t−1

]
+
[

b1t

b2t

]

The canonical transformation thus again decomposes zt into two com-
ponents: one, y1t , that follows a stationary first-order autoregressive
process, and a second, y2t , which approaches non-stationarity and also
depends upon y1,t−1.

These results can be generalized to the case where n1 of the λi

are zero, n3 of them approach unity and the remaining n2 = n − n1 − n3
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are intermediate in size. Employing an obvious partitioning notation,
(8.20) becomes⎡⎢⎣ y1t

y2t

y3t

⎤⎥⎦ =
⎡⎢⎣ 0 0 0

�̃21 �̃22 0
�̃31 �̃32 �̂33

⎤⎥⎦
⎡⎢⎣ y1,t−1

y2,t−1

y3,t−1

⎤⎥⎦+
⎡⎢⎣ b1t

b2t

b3t

⎤⎥⎦
Thus there are three components: (i) a n1-dimensional white noise
process, y1t ; a n2-dimensional stationary process y2t such that its pre-
dictable part depends only on y1,t−1 and y2,t−1; and (iii) a n3-dimensional
near non-stationary process y3t such that its predictable part depends on
all three lagged components.

8.23 For the ith element yit of yt , its variance σ 2
yi

can be written as

σ 2
yi

=
n∑

j=1

φ̃2
ijσ

2
yj

+ σ 2
bi

where (φ̃i1, . . . , φ̃in) is the ith row of �̃. The proportional contributions
of y1,t−1, . . . , yn,t−1 and bit to the variance of yit are therefore φ̃2

ijσ
2
yj
/σ 2

yi

and σ 2
bj
/σ 2

yi
= 1 − λi. A convenient scaling is one for which the variances

of yit are all unity. This can be achieved by choosing M such that
M�0(z)M′ = I. In this scaling the transformed model becomes

xt = x̂t−1(1) + dt = �̄xt−1 + dt ��
′ = I

with φ̄2
ij = φ̃2

ijσ
2
yj
/σ 2

yi
, so that the rows of �̄ are orthogonal and the sum of

squares of the ith row is λi.

8.24 Box and Tiao used this framework to analyze Quenouille’s (1957)
‘hog data’, which contains five series of 82 annual observations from
1867 to 1948, the data used by them being plotted in the left-hand
column of Figure 8.6. On fitting a first-order model to the data, the
estimated eigenvalues λi and eigenvectors mi are shown in Table 8.2.
These lead to the transformed series shown in the right-hand column of
Figure 8.6, which are scaled so that all components of the transformed
process xt = �̄xt−1 + dt have unit estimated variances. The estimated �̄

are shown in Table 8.3 and the estimated proportional contributions of
x1,t−1, . . . , x5,t−1 and dit to xit are shown in Table 8.4.

From these calculations it is seen that there is very little contribution
to x1t and x2t from past history, so that these series are essentially white
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Figure 8.6 US hog data
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Table 8.2 Estimated eigenvalues and eigenvectors for the hog data

i λi z1 z2 z3 z4 z5

1 0.0232 (1.0000 0.3876 −0.2524 −0.5896 −0.2665) ×0.0284
2 0.1421 (0.2080 1.0000 −0.8614 −0.3382 −0.3655) ×0.0111
3 0.5061 (0.8925 −0.6433 −0.8277 −0.4784 1.0000) ×0.0074
4 0.6901 (−0.9358 −0.2410 −0.4391 −0.5614 1.0000) ×0.0129
5 0.8868 (0.6687 −0.1206 −0.0134 −0.0396 1.0000) ×0.0039

Table 8.3 Estimates of the �̄ matrix⎡⎢⎢⎢⎢⎣
0.1213 −0.0778 0.0465 −0.0110 0.0113
0.2215 0.2766 −0.1241 −0.0309 0.0119

−0.0321 0.3167 0.6334 0.0444 −0.0404
0.0885 −0.0025 −0.0492 0.8235 0.0416

−0.0801 0.0378 0.0396 −0.0363 0.9360

⎤⎥⎥⎥⎥⎦

Table 8.4 Component variances of the transformed series

x1,t−1 x2,t−1 x3,t−1 x4,t−1 x5,t−1 dit

x1t 0.015 0.006 0.002 0.000 0.000 0.977
x2t 0.049 0.077 0.015 0.001 0.000 0.858
x3t 0.001 0.100 0.401 0.002 0.002 0.494
x4t 0.008 0.000 0.002 0.678 0.002 0.310
x5t 0.006 0.001 0.002 0.001 0.876 0.113

noise. In contrast, x3t , x4t and x5t are highly dependent on the past and,
in fact, the latter pair of series can be expressed as two independent
univariate first-order autoregressive processes:

x4t = 0.82x4,t−1 + d4t x5t = 0.94x5,t−1 + d5t

The model for x5t implies y5t − 0.94y5,t−1 = 0.35 + d5t , so that the series
is close to a random walk with a drift of 0.35. Since x5t = m′

5zt , with m′
5

given in the last row of Table 8.2, it is essentially a linear combination
of farm wages and hog supply,

x5t ≈ 0.0039(z5t + 0.67z1t )

and serves as an indicator of the overall dynamic growth pattern in
the data.
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The components x1 and x2 both have small λ values and are nearly
random. Their existence implies that any linear combination of the pair
in the hyperplane

Z = αx1 + βx2 = c1z1 + c2z2 + c3z3 + c4z4 + c5z5

will vary nearly independently about fixed means. Noting that the data
are in logarithms, Box and Tiao offered arguments that, on choosing
α and β appropriately, enable the antilog of Z to be interpreted as either
the ratio of return to expenditure or the ratio between hog supply and
the hog price–corn price ratio, both of which are relatively stable through
time.

8.25 Box and Tiao finally made the point that, if the five series were
analyzed individually, all bar z3, perhaps, would be candidates for
differencing.

However, in analyzing multiple time series of this kind, it is useful to
entertain the possibility that the dynamic pattern in the data may be
due to a small subset of nearly nonstationary components and that
there may exist stable contemporaneous linear relationships among
the variables. If this is so, then differencing all the original series could
lead to complications in the analysis. (ibid., page 362)

As an example, consider the bivariate model

z1t = z1,t−1 + a1t z2t = βz1t + a2t

so that each series is individually non-stationary and the model has the
bivariate autoregressive representation[

z1t

z2t

]
=
[

1 0
β 0

][
z1,t−1

z2,t−1

]
+
[

a1t

βa1t + a2t

]

If, on the other hand, the differenced series w1t = z1t − z1,t−1 and w2t =
z2t − z2,t−1 are used then

w1t = a1t w2t = βa1t + a2t − a2,t−1

and these do not have an autoregressive representation, thus complicat-
ing the analysis.
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8.26 Peña and Box (1987) considered a common factor representation
of zt in terms of an unobservable r ≤ n-dimensional vector process yt

such that

zt = Pyt + εt (8.21)

where P is an n × r matrix of unknown parameters and εt is an
n-dimensional white noise sequence with full-rank covariance matrix

ε. If r < n then the representation (8.21) leads to a reduction in dimen-
sionality without any loss of information, while if r = n (and 
ε = 0)
P provides a linear transformation of zt that perhaps allows a simpler
representation of the system. Peña and Box provided a canonical trans-
formation of zt that would do this and gave an example in which a
first-order vector autoregression of five wheat price series was canoni-
cally transformed into two factors, one the mean of the five series, the
second the ratio of two of them.

8.27 Tiao and Box (1981) focused attention on the vector ARMA
(VARMA) model analyzed originally by Quenouille (1957):

ϕ(B)zt = θ(B)at

where

ϕ(B) = I − ϕ1B − · · · − ϕpBp

and

θ(B) = I − θ1B − · · · − θqBq

are matrix polynomials in B, the ϕ’s and θ’s are n × n matrices and at

is an n-dimensional sequence of random shock vectors identically,
independently and normally distributed with zero mean vector and
covariance matrix 
a. The zeros of the determinantal polynomials |ϕ(B)|
and |θ(B)| are assumed to lie on or outside the unit circle. If the zeros
of |ϕ(B)| are all outside the unit circle then zt will be stationary, while
if those of |θ(B)| are all outside the unit circle then zt will be invertible.
Non-stationarity may be modelled by allowing the zeros of |ϕ(B)| to lie
on the unit circle, e.g. (1 − B)zt = (I − θB)at , but Tiao and Box point
out that, for vector time series, linear combinations of the elements of
zt may often be stationary and simultaneous differencing of all series
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may lead to unnecessary complications during model fitting (recall §8.25
and compare this with the concept of co-integration to be discussed in
§10.21–10.40).

Under the assumption of stationarity, the lag k cross-covariance
matrix is

�(k) = E(zt−kz′
t ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k−1∑
j=k−r

�( j)ϕ′
k−j −

r−k∑
j=0

ψj
aθ
′
j+k, k = 0, . . . , r

r∑
j=1

�(k − j)ϕ′
j, k > r

where the ψj’s are obtained from the relationship

ψ(B) = ϕ−1(B)θ(B) = (I + ψ1B + · · · )

θ0 = −I, r = max(p, q) and it is understood that if p < q, ϕp+1 = · · · = ϕr =
0, while if q < p, θq+1 = · · · = θr = 0. The lag k cross-correlation matrix
is then defined as ρ(k) = �−1(0)�(k).

If p = 0, so that we have a vector MA(q) model,

�(k) =

⎧⎪⎪⎨⎪⎪⎩
q−k∑
j=0

θj
aθ
′
j+k, k = 0, . . . , q

0 k > q

so that all auto- and cross-correlations are zero for k > q. For a vector
autoregressive model the auto- and cross-correlations will tend to decay
gradually as |k| increases.

Tiao and Box then defined the partial autoregression matrix function
P(k) having the property that, if the model is VAR(p), then

P(k) =
{

ϕk, k = p

0, k > p

Expressions for P(k) for k < p are given by equation (3.11) of Tiao and
Box (1981).

8.28 Tiao and Box proposed a method of identifying models of the form
(8.21) using the sample cross-correlation and partial autoregressive matri-
ces �̂(k) and P̂(k) in an analogous fashion to that of the univariate
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case discussed in §§6.15–6.17. However, as plotting the sample auto-
and cross-correlations against k quickly becomes cumbersome as the
number of series under analysis increases, they suggested displaying the
matrices with indicator symbols replacing numerical values: values in
excess of 2T−1/2 being replaced by a ‘+’, those with values less than
−2T−1/2 by a ‘−’, and those in between these two extremes being replaced
by ‘·’. Thus for a sample of size T = 100, the cross-correlation matrix

⎡⎢⎣−0.28 0.37 0.06
−0.21 −0.19 0.12

0.46 −0.03 0.15

⎤⎥⎦
would be represented as

⎡⎢⎣− + ·
− · ·
+ · ·

⎤⎥⎦
Tiao and Box emphasized that, because the standard errors of the cross-
correlations could be considerably greater than T−1/2 when the series
are highly autocorrelated, these symbols should not be interpreted as a
formal significance test but rather as a rough guide to the general pattern
of autocorrelation. A similar approach can be used for sample partial
autoregression matrices, obtained by fitting vector autoregressive models
of successively higher orders k = 1, 2, . . . by standard multivariate least
squares.

The order of a vector autoregressive model may be tentatively iden-
tified by employing likelihood ratio statistics corresponding to testing
the null hypotheses ϕk = 0 against the alternative ϕk �= 0 when a VAR(k)
model is fitted. If

S(k) =
T∑

t=k+1

(zt − ϕ̂1zt−1 − · · · − ϕ̂kzt−k)(zt − ϕ̂1zt−1 − · · · − ϕ̂kzt−k)′

is the matrix of residual sums of squares and cross-products after fit-
ting a VAR(k) model, then the likelihood ratio statistic is the ratio of
determinants

U = |S(k)|/|S(k − 1)|
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The statistic

M(k) = −(T − p − 1
2 − kn

)
ln U

is then asymptotically distributed as χ2 with n2 degrees of freedom.

8.29 Tiao and Box proposed that (8.22) could be estimated by max-
imizing the conditional likelihood function, particularly during the
preliminary stages of model identification. This approach might, how-
ever, be inadequate with small samples when one or more zeros of |θ(B)|
lie on or close to the unit circle, in which case maximization of the exact
likelihood function should be used.

To guard against model misspecification and to search for directions
of improvement, Tiao and Box recommended that the residuals

ât = zt − ϕ̂1zt−1 − · · · − ϕ̂pzt−p + θ̂1ât−1 + · · · + θ̂qât−q

should be subjected to various diagnostic checks, such as plotting
standardized residual series against time and/or other variables and
investigating the cross-correlation matrices of the residuals. Although
multivariate portmanteau-style statistics were available, Tiao and Box
did not regard such tests as substitutes for more detailed study of the
correlation structure.

8.30 To illustrate their model-building technique, Tiao and Box recon-
sidered the Coen, Gomme and Kendall (1971) data within a multivariate
framework (recall §§8.3–8.4). Thus we denote zt = (z1t , z2t , z3t )′, where
z1 is the FT ordinary share price index, z2 is UK car production and z3

is the FT commodity price index. Using the sample period 1952III to
1967IV, Table 8.5 shows the sample cross-correlations between the three
series using a second display device in which the sequence of cross-
correlations between zit and zj,t−k are shown using the indicator symbols
introduced in §8.28. These series show high and persistent auto- and
cross-correlations but examination of the partial autoregression matri-
ces, M(k) statistics and residual variances (the diagonal elements of 
a)
suggests that k is at most 2 (see Table 8.6).

Fitting both VAR(2) and VARMA(1,1) models revealed no major mis-
specifications and Tiao and Box chose the latter model to report, in
which a vector of constants was included because the series were not
de-meaned. The estimated full model

(I − ϕ̂B)zt = θ̂0 + (I − θ̂B)ât
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Table 8.5 Pattern of sample cross-correlations for the Coen et al. data,
k = 1, . . . , 20

z1(−k) z2(−k) z3(−k)

z1 + + + + + + + + ++ + + + + + + + + ++ − − − − − − − − − −
+ + + + + + + + . . + + + + +. . . . . − − − − − − − − − −

z2 + + + + + + + + ++ + + + + + + + + ++ − − − − − − − − − −
+ + + + + + + + . . + + + + + + +. . . − − − − − − − − − −

z3 − − − − − − −. . . . . . . . . . . . . . + + + + + + + + . .

. . . .+ + + + + + . . . . . .+ + + + . . . . . . . . . .

Table 8.6 Partial autoregression matrices and related statistics

Lag Indicator symbols for partials M(k) ∼ χ2(9) Diagonal elements of �

1 304.2 2.98 × 102

0.95 × 109

4.63

⎡⎣+ · ·
· + ·
· · +

⎤⎦
2 18.8 3.92 × 102

0.96 × 109

3.73

⎡⎣− · ·
· + ·
− + −

⎤⎦
3 9.7 2.85 × 102

1.01 × 109

4.00

⎡⎣· · ·
· · ·
· · ·

⎤⎦
4 3.6 3.09 × 102

1.08 × 109

3.97

⎡⎣· · ·
· · ·
· · ·

⎤⎦
5 12.1 2.96 × 102

1.04 × 109

4.06

⎡⎣· + ·
· + ·
· · ·

⎤⎦

is shown in Table 8.7, along with a simpler model obtained by set-
ting to zero those coefficients whose estimates were small compared to
their standard errors. This simpler model implies that the system can be
approximated by

(1 − 0.98B)z1t = a1t

(1 − 0.93B)z2t = 0.2 + a2t

(1 − 0.83B)z3t = 2.8 + 0.40a1,t−1 + (1 + 0.41B)a3t

= 2.8 + 0.40(1 − 0.98B)z1,t−1 + (1 + 0.41B)a3t
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Table 8.7 Estimation results for the vector ARMA(1,1) model

θ̂0 ϕ̂ θ̂

Full model
⎡⎢⎢⎢⎢⎢⎢⎣

1.11
(0.64)
1.74

(0.82)
4.08

(1.47)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0.81 0.15 −0.06
(0.08) (0.07) (0.04)

−0.07 0.98 −0.09
(0.10) (0.10) (0.05)

−0.32 0.30 0.76
(0.18) (0.17) (0.08)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

−0.29 0.23 0.06
(0.15) (0.11) (0.07)

−0.45 0.20 −0.15
(0.22) (0.17) (0.11)

−0.79 0.57 −0.44
(0.28) (0.21) (0.13)

⎤⎥⎥⎥⎥⎥⎥⎦
Restricted
model

⎡⎢⎢⎢⎢⎢⎢⎣

0.12
(0.08)
0.24

(0.10)
2.76

(1.07)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0.98 · ·
(0.03)

· 0.93 ·
(0.04)

· · 0.83
(0.06)

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

· · ·
· · ·

−0.40 · −0.41
(0.23) (0.12)

⎤⎥⎥⎦

All three series behave approximately as random walks with slightly cor-
related innovations, since 
a is estimated to have small but non-zero
off-diagonal elements. The model thus implies that the ordinary share
index is a leading indicator of the commodity share index, which is a
very different model from that fitted by Coen et al. (1969).

8.31 Tiao and Box ended their paper by contrasting their procedure
to some other approaches then extant in the literature and emphasiz-
ing the potential usefulness of including a moving average structure to
model the dynamics of the data. In fact, contemporaneously to Tiao
and Box, Jenkins and Alavi (1981) had also analyzed the vector ARMA
model, providing a similar treatment and methodology for identify-
ing, fitting and checking such models. It is fair to say, however, that
the building of vector ARMA models has never really taken off in the
thirty years since this paper was published, with the focus, particularly
in economics, being on analyzing, possibly highly and overly parameter-
ized, vector autoregressions: the ubiquitous VAR of (8.15), as exemplified
by the contemporaneously published and hugely influential paper by
Sims (1980).

Seasonal ARIMA models

8.32 Box and Jenkins’ interpretation of the monthly airline model for
seasonal data as a EWMA taken over previous months modified by a
second EWMA of discrepancies found between similar monthly EWMAs
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and actual observations in previous years (recall §7.5) was extended in
Box, Hillmer and Tiao (1979) to more general models of the form

�(B12)ϕ(B)xt = 	(B12)θ(B)at (8.22)

This model may be written as

ϕ(B)
θ(B)

�(B12)
	(B12)

xt = R(B)Q(B12)xt = at

where

R(B) = 1 − R1B − R2B2 − · · ·

and

Q(B12) = 1 − Q1B12 − Q2B24 − · · ·

On defining

x(R)
t = (R1 + R2B + · · · )xt = (1 − R(B))B−1xt

and

x(Q)
t = (Q1 + Q2B12 + · · · )xt = (1 − Q(B12))B−12xt

we have

xt+1 = x(R)
t + (xt−11 − x(R)

t−12)(Q) + at+1

which is an extension of (7.6) with monthly and seasonal weights
following more general, and not necessarily exponential, patterns.

8.33 The airline model

(1 − B)(1 − B12)xt = (1 − B)2(1 + B + · · · + B11)xt

= (1 − θB)(1 −	B12)at

(8.23)

has the forecast function (cf. §6.39)

x̂t (l ) = b(t)
0 + b(t)

1 l + b(t)
0,m (8.24)
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which takes the form of an updated straight line plus seasonal adjustment
factors which automatically adjust as each new observation becomes
available and are weighted averages of past data. An alternative form
of (8.24) is

x̂t (l ) = b(t)
0 + b(t)

1 l +
5∑

j=1

{
b(t)

1j cos
2π jl
12

+ b(t)
2j sin

2π jl
12

}

in which the seasonal component contains a complete set of undamped
sinusoids, adaptive in amplitude and phase with frequencies of 0, 1, . . . , 6
cycles per year.

Box, Pierce and Newbold (1987) showed that the parameters of (8.24)
are given by

b(t)
1 = 1

12 (x̂t (13) − x̂t (1))

b(t)
0 = 1

12

12∑
l=1

x̂t (l ) − 13
2

b(t)
0

b(t)
0,m = x̂t (m) − b(t)

0 − b(t)
1 m m = 1, 2, . . . , 12

If the observed series has the additive decomposition xt = pt + st + et

into independent trend, pt , seasonal, st , and noise, et , components, then
the optimal estimate of the trend at time t + l is given by b(t)

0 + b(t)
1 l, while

the optimal estimate of the seasonal is b(t)
0,m for l = m + 12j, j being the

number of years ahead that are being forecast. In terms of available data
on xt , Box, Pierce and Newbold provided expressions for the parameters
that involve functions of the π -weights as in §6.40.

Trend and seasonal extraction using model-based
procedures

8.34 Box, Hillmer and Tiao (1979) also investigated the problem of how,
given an ARIMA model for the observed series xt , estimates of the trend
and seasonal components could be obtained that were consistent with
this model. They assumed that the observed series was generated as
ϕ(B)xt = η(B)at , where ϕ(B) is of order p with zeros on or outside the
unit circle, η(B) is of order u with zeros outside the unit circle and ϕ(B)
and η(B) have no common zeros. Assume for the moment the simple
trend plus noise decomposition xt = pt + et , where the trend pt and the
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noise et are independent of each other, pt follows some ARIMA model
and et is white noise with variance σ 2

e . Box et al. showed that the model
for the trend component will be ϕ(B)pt = α(B)ct , where α(B) is of order
q ≤ max(p, u) and ct is white noise with variance σ 2

c .
The various lag polynomials and variances are linked through the

relationship

σ 2
a η(B)η(B−1) = σ 2

c α(B)α(B−1) + σ 2
e ϕ(B)ϕ(B−1) (8.25)

Various combinations of σ 2
c , σ 2

e and α(B) will satisfy this equation so
some further conditions need to be placed on them, leading Box et al. to
prove the following results. A model for pt is said to be acceptable if α(B)
has zeros on or outside the unit circle and satisfies (8.25) for some σ 2

c ≥ 0
and σ 2

e ≥ 0. Every model for xt has at least one acceptable model for pt

and, given a model for xt , every σ 2
e in the range 0 ≤ σ 2

e ≤ K∗ determines
a unique acceptable model for pt . When σ 2

e = 0, xt = pt , while if σ 2
e = K∗

the variance of the added white noise is maximized. The bound K∗ is
attainable and occurs when α(B) has a zero on the unit circle. Thus for
any model for xt , the maximum value of σ 2

e that is consistent with this
model can be calculated.

Box et al. then go on to show that, when t is not close to the beginning
or end of the observed series, an estimate of the trend, p̂t , is given by a
symmetric moving average of pt with the weights, ωj, being given by
the coefficients of B in the generating function

ω(B) = σ 2
c

σ 2
a

α(B)α(B−1)
η(B)η(B−1)

= 1 − σ 2
e

σ 2
a

ϕ(B)ϕ(B−1)
η(B)η(B−1)

(8.26)

so that knowledge of the model for pt together with σ 2
e will enable the

trend to be estimated; a method by which the weight function ω(B) may
be determined is given in the appendix of Box, Hillmer and Tiao (1979).

For values of p̂t near the end of the observed series there will not
be enough xt values available for entering into the weight function
ω(B). Box et al. proposed that the model for pt should be used to pro-
vide enough forecasts to extend the observed series so that ω(B) can be
calculated, with a similar procedure using backcasts employed at the
beginning of the series.

8.35 As an example of these ideas, suppose that the model for the
observed series is (1 − B)xt = (1 − ηB)at , so that the model for the trend
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must be (1 − B)pt = (1 − αB)ct for some α and (8.25) becomes

σ 2
a (1 − ηB)(1 − ηB−1) = σ 2

c (1 − αB)(1 − αB−1) + σ 2
e (1 − B)(1 − B−1)

By setting B = 1/α, solving for σ 2
e obtains

σ 2
e = −σ 2

a (α − η)(1 − αη)
(1 − α)2

Setting the derivative of this expression with respect to α to zero shows
that the maximum value of σ 2

e occurs when α = −1, thus agreeing with
the result that the bound K∗ is attained when the zero of (1 − αB) is on the
unit circle. The trend model corresponding to the largest possible σ 2

e is
therefore (1 − B)pt = (1 + B)ct with

σ 2
e = (1 + η)2

4
σ 2

a

From (8.26) the weight function is

ω(B) = 1 − (1 + η)2

4
(1 − B)(1 − B−1)

(1 − ηB)(1 − ηB−1)

and Box et al. derived the weights as

ω0 = 1 − η

2
, ω1 = ω−1 = 1 − η2

4
, ωj = ω−j = ηωj−1, j = 2, 3, . . .

The estimate of the trend in the middle of the observed series is thus

p̂t = 1 − η

2
xt + 1 − η2

4
((xt+1 + xt−1) + η(xt+2 + xt−2) + · · · ) (8.27)

while at the very end of the series the estimate becomes

p̂T = 1 − η

2
xT + 1 − η2

4
((x̂T (1) + xT−1) + η(x̂T (2) + xT−2) + · · · )

Since

x̂T (1) = (1 − η)xT + η(1 − η)xT−1 + η2(1 − η)xT−2 + · · · ,

x̂T (l ) = x̂T (1), l = 2, 3, . . .
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this final estimate can be written as

p̂T = (3 − 2η − η2)
4

xT + 1 − η2

4
((1 − η)xT−1 + η(1 − η)xT−2 + · · · )

with the trend for other observations near the end of the series being
obtained in a similar manner.

The model fitted to the monthly rate of change of the US CPI (infla-
tion) in §8.12 was (1 − B)xt = (1 − 0.92B)at with σa = 0.0026. The trend
component is shown superimposed upon inflation in Figure 8.7 for the
period January 1955 to December 1971 and is seen to be a smooth,
slowly varying function since (8.27) takes the form

p̂t = 0.04xt + 0.0384((xt+1 + xt−1) + 0.92(xt+2 + xt−2)

+ 0.846(xt+3 + xt−3) + · · · )

so that the filter weights are all small and decline only slowly, a conse-
quence, of course, of η being large and positive. The white noise error
component will have σe = 0.0025.

8.36 Box et al. then extended this ‘model-based decomposition’ method
to the seasonal model xt = pt + st + et = st + Tt , where Tt is now termed
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Figure 8.7 Monthly rate of inflation of the US consumer price index: January
1955 to December 1971 with fitted trend superimposed
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the ‘trend plus noise’ component. They assumed that the seasonal
component st was able to evolve over time so that the sum of twelve
consecutive values varies about zero with minimum variance, arguing
that if this was not the case then the excess variation should properly
be reflected in pt or et . Focusing on the airline model (8.23) (a natural
seasonal extension of the model of §8.34), Box et al. assumed that st

and Tt followed independent ARIMA processes. Given the model for xt ,
the product of the trend plus noise and seasonal autoregressive opera-
tors must be (1 − B)(1 − B12) = (1 − B)2(1 + B + · · · + B11) = (1 − B)2U(B),
so that appropriate models for the components will be

U(B)st = (1 − ψ1B − · · · − ψ11B11)bt = ψ(B)bt

(1 − B)2Tt = (1 − η1B − η2B2)dt = η(B)dt

where bt and dt are two independent white noise processes with zero
means and variances σ 2

b and σ 2
d respectively. Letting θ(B) = (1 − θB)(1 −

	B12) and noting that

(1 − B)(1 − B12)xt = (1 − B)(1 − B12)st + (1 − B)(1 − B12)Tt

it follows that

θ(B)at = (1 − B)2ψ(B)bt + U(B)η(B)dt

and

σ 2
a θ(B)θ(B−1) = σ 2

b (1 − B)2ψ(B)(1 − B−1)2ψ(B−1)

+ σ 2
d U(B)η(B)U(B−1)η(B−1)

Under the assumption that ŝt = U(B)st has to have minimum variance,
Box et al. showed that the components are estimated as ŝt = w(B)xt and
T̂t = h(B)xt , where

w(B) = σ 2
b

σ 2
a

(1 − B)2ψ(B)(1 − B−1)2ψ(B−1)
θ(B)θ(B−1)

and

h(B) = σ 2
d

σ 2
a

U(B)η(B)U(B−1)η(B−1)
θ(B)θ(B−1)
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The trend component itself can then be estimated as

p̂t =
(

1 − σ 2
e

σ 2
d

(1 − B2)(1 − B−1)2

η(B)η(B−1)

)
T̂t

Box et al. provided additional details on the computational aspects of
this model based procedure and an example using a US unemployment
series.

This model-based approach to seasonal adjustment, in which the
seasonally adjusted series is defined as xSA

t = xt − ŝt , was extended in sub-
sequent years, notable contributions being Burman (1980), Hillmer and
Tiao (1982), Hillmer, Bell and Tiao (1983), Maravall and Pierce (1987),
Pierce (1978) and Tiao and Hillmer (1978) and, in a further develop-
ment, Maravall (2000). The optimality of the Bureau of the Census
X-11 seasonal adjustment method, by now the ‘industry standard’ for
empirically-based adjustment, was also investigated using similar model-
based techniques: see Cleveland and Tiao (1976), Bell and Hillmer (1984)
and Burridge and Wallis (1984). Box was thus instrumental in being at
the forefront of developments in that most practical of time series areas,
seasonal adjustment. This was to be his last major involvement in time
series research, however, as his interests became increasingly focused on
statistical issues of quality control, although even here the use of time
series techniques in process control remained at the forefront, as shown
by Box and Kramer (1992) and Box and Luceño (1995).



9
Granger: Spectral Analysis,
Causality, Forecasting, Model
Interpretation and Non-linearity

Clive Granger

9.1 Clive William John Granger was born on September 4, 1934 in
Swansea, Wales, only a few months after the birth, and only a few
miles from the birthplace, of Gwilym Jenkins. Unlike Jenkins, however,
Granger’s family was English, his father being a commercial traveller for
Chivers, a then well-known company based near Cambridge, England,
producing preserves such as jams and marmalades. His sojourn in
Wales was very brief, with the family quickly relocating to Lincoln,
England, and then, during the war while his father was serving in the
RAF, to Cambridge, where both sets of grandparents lived. In 1946,
after his return from war duties, Granger’s father was once again relo-
cated, this time to Nottingham, where they lived in the suburb of
West Bridgford. After attending Nottingham Grammar School, Granger
entered Nottingham University in the first intake of the joint mathemat-
ics and economics degree program, although he switched after the first
year to single honours mathematics. On obtaining a first in 1955, he
stayed on to do a PhD in statistics even though, by his own admission,
he knew very little about the subject. Wanting to research in a subject
related to economics, he fortuitously chose time series as an area that
looked to be ripe for development!

After just six months of doctoral research, an opportunity arose to
apply for a lectureship in statistics in the Department of Mathematics at
Nottingham, for which he was successful, and he joined the academic
staff at the age of 22 in 1956. On receiving his doctorate in 1959 for
a thesis on testing for non-stationarity, Granger applied for a Harkness
Fellowship and, on receiving the award, moved to Princeton for a year
to work with Oscar Morgenstern on his new ‘Time Series Project’, which

288
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essentially formed the basis for Granger’s early publications on spectral
analysis (see §§9.2–9.8). Although he returned to Princeton over the
next two summers, primarily working on stock prices, Granger remained
at Nottingham until 1974, having become a professor a decade ear-
lier. At that point, and by now having a world class reputation in time
series analysis and forecasting, Granger moved to the Department of
Economics at the University of California, San Diego (UCSD), where he
remained for the rest of his career, being instrumental in building up one
of the best econometric groups in the world.

His research in time series and econometrics was honored in 2003,
when he was awarded, jointly with Robert Engle, his long-time col-
league and collaborator at UCSD, with the Nobel Prize in Economics,
the citation being ‘for methods of analyzing economic time series with
common trends (co-integration)’ (see §§10.21–10.39). Having retained
his British nationality, Granger was further honored by being knighted
in the 2005 New Year’s Honours List. Although he had officially retired
in the summer of 2003, the Nobel award ensured that he was in great
demand throughout the world and he continued to be a very active
researcher, lecturer and writer until his untimely death on 27 May
2009, from complications related to a brain tumor. Further biographi-
cal details on Sir Clive Granger may be found in a variety of sources,
most notably Phillips (1997) and Frängsmyr (2004), with a curriculum
vitae, including a full list of publications, being published as Granger
(2010a).

Attempting to distill Granger’s published research, even just those on
time series (he also published widely on consumer attitudes to prices
and various aspects of finance and statistics) would be a herculean task
requiring a book of its own, so we focus in this and the next chapter on
five major areas: (i) spectral analysis, causality and feedback, (ii) fore-
casting and evaluation, (iii) model interpretation and non-linearity,
(iv) long memory, and (v) spurious regression and co-integration. A brief
summary of Granger’s other research and an appreciation of his impact
on economics and statistical science in general is then provided.1

Spectral analysis, causality and feedback

9.2 Granger’s first publication was on a statistical model for sunspot
activity (Granger, 1957), so continuing a long line of research by time
series analysts in this area (recall Yule’s analysis of the sunspot index
discussed in Chapter 2, while Moran, 1954, and Whittle, 1954b, had
both published prior to Granger on the topic). His second publication
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was on estimating the probability of flooding on a tidal river (Granger,
1959), so establishing early on his wide range of statistical interests. The
time spent at Princeton on the Time Series Project quickly bore fruit and
Granger’s initial publications on spectral analysis were the book Spec-
tral Analysis of Economic Time Series, written in association with Michio
Hatanaka (Granger and Hatanaka, 1964), which introduced the tech-
nique to many economists and econometricians, and the article in the
journal Information and Control (Granger, 1963), which was essentially
chapter 7 of the book, in which the concepts of feedback and causality
were introduced. Of course, as we saw in §§5.4–5.18, Gwilym Jenkins
was contemporaneously attempting to introduce spectral concepts to
statisticians, while Granger’s concepts of feedback and causality were to
be formalized some years later in what was to become a very influential
article: Granger (1969a).2

9.3 Granger and Hatanaka (1964) covered a good deal of the same
basic material as Jenkins but provided further interpretation of the con-
cepts of cross-, co- and quadrature spectrum and coherence discussed in
§§5.16–5.17. Here they considered the Cramér (1940) representation of
the real time series Xt and Yt :

Xt =
∫ π

−π
eitωdzx(ω) =

∫ π

0
cos tωdux(ω) +

∫ π

0
sin tωdvx(ω)

Yt =
∫ π

−π
eitωdzy(ω) =

∫ π

0
cos tωduy(ω) +

∫ π

0
sin tωdvy(ω)

where the dzx(ω), etc., are random and uncorrelated processes. Xt and
Yt can thus each be represented by the integral over all frequencies in
0 ≤ ω ≤ π , with each frequency being decomposed into two components
π/2 out of phase with each other. Each of the components has a ran-
dom amplitude, dux(ω), etc., and Granger and Hatanaka showed that,
for both processes, these amplitudes are uncorrelated not only between
the components for any particular frequency but also with the random
amplitudes of the components for all other frequencies. The random
amplitudes for frequency ω1 for one process are also uncorrelated with
the frequencies, other than ω1, of the other process. Consequently, only
the relationships between a particular frequency in one process and the
same frequency in the other process need to be considered.

Granger and Hatanaka also showed that

E(dux(ω)duy(ω)) = E(dvx(ω)dvy(ω)) = 2cxy(ω)dω



Granger: Causality, Forecasting and Non-linearity 291

and

E(dux(ω)dvy(ω)) = 2qxy(ω)dω

E(duy(ω)dvx(ω)) = −2qxy(ω)dω

where cxy and qxy are the co-spectrum and quadrature spectrum intro-
duced in §5.16. Thus (twice) the co-spectral density gives the covari-
ance between the components that are ‘in phase’, while (twice) the
quadrature spectral density gives the covariance between the compo-
nents that are ‘in quadrature’ (i.e., π/2 out of phase). If q(ω) = 0( �=0)
the components of the two processes at frequency ω are exactly in (out
of) phase with each other, while if c(ω) = 0( �=0) the two processes at
frequency ω are uncorrelated (correlated).

9.4 Granger and Hatanaka took the analysis of the cross-spectrum much
further than Jenkins. Paralleling the use of partial correlation coeffi-
cients, partial cross-spectra may be defined to help in assessing the
spectral relationships between sets of time series. Granger and Hatanaka
(1964, chapter 5.8) thus considered the set of M stationary series
(X1t , X2t , . . . , XMt). Each series has its own (auto) spectra, fii(ω), and
there will be a set of cross-spectra, fij(ω), i, j = 1, . . . , M , which will typ-
ically be complex quantities. The matrix of these spectra, 
(ω), was
regarded by Granger and Hatanaka (ibid., page 91: italics in original)
as ‘estimating the covariance matrix of the time series around frequency ω,
the term “around” being deliberately chosen as a reminder that spectral
estimates are estimates of an average over a frequency band’.

Concentrating on the partial cross-spectrum between X1(ω) and
X2(ω), these being the components of X1t and X2t around frequency
ω, consider the following partition of the cross-spectral matrix


(ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f11(ω) f12(ω) f13(ω) . . . f1M (ω)
f21(ω) f22(ω) f23(ω) . . . f2M (ω)

f31(ω) f32(ω) f33(ω) . . . f3M (ω)
...

...
...

...

fM1(ω) fM2(ω) fM3(ω) . . . fMM(ω)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
[

11 
12


21 
22

]

and define the matrix


12·k(ω) = 
11 − 
12

−1
22 
21 =

[
f11·k(ω) f12·k(ω)
f21·k(ω) f22·k(ω)

]
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where k denotes the set 3, 4, . . . , M . This is the partial cross-spectral
matrix for X1t and X2t and from it the definitions of the partial coher-
ence and partial phase angle follow naturally:

C2
12·k(ω) = |f12·k(ω)|2

f11·k(ω)f22·k(ω)
ψ12·k(ω) = Imaginary part of f12·k(ω)

Real part of f12·k(ω)

These concepts have the following interpretation. Suppose that a lin-
ear combination of the series X3t , X4t , . . . , XMt has been subtracted from
X1t and X2t to form X̂1t and X̂2t . f11·k(ω) will thus be the spectrum of
X̂1t , and C2

12·k(ω) and ψ12·k(ω) will be the coherence and phase angle,
respectively, between X̂1t and X̂2t .

As a simple example, consider a three variable set of series X1t , X2t

and X3t . If X1t and X3t are related for all frequencies and X2t and X3t

are also related, there is no reason why X1t and X2t should be. If,
for example, X1t were sale of ice cream, X2t sale of air conditioners,
and X3t was a temperature series, then the coherence between X1t

and X3t and between X2t and X3t would probably be large for many
frequencies. The coherence between X1t and X2t might also be large
but this would be a spurious relationship, as X1t , X2t are connected
only via X3t . In such a case the partial coherence between X1t , X2t

ought to be zero (in theory) or small (in practice) for all frequencies.
(Granger and Hatanaka, 1964, pages 92–93)

9.5 Through the phase-lag and coherence, cross-spectral methods pro-
vide a useful way of describing the relationship between two (or more)
variables when one is leading in time, so ‘causing’ (in a very precise way
to be defined below) the other(s). Suppose Xt and Yt have the Cramér
representations

Xt =
∫ π

−π
eitωdz(ω) =

∫ π

0
cos tωdux(ω) +

∫ π

0
sin tωdvx(ω)

and

Yt =
∫ π

−π
eitωa(ω)e−i�ωdz(ω)

= a(ω)
∫ π

0
cos tω�(ω)dux(ω) + a(ω)

∫ π

0
sin tω�(ω)dvx(ω)

where �(ω) = φ(ω), ω > 0 and �(0) = 0. The spectrum of Yt is then given
by fy(ω) = a2(ω)fx(ω) and the relationship between the two series can be
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expressed as

Yt = Xt {a(ω),φ(ω)} + Ut (9.1)

where Ut is some stationary series such that C2
xu(ω) = 0, so that (cf. equa-

tion (5.15))

0 < C2
yx(ω) = a2fx(ω)

fy(ω)
< 1

If, as well as (9.1),

Xt = Yt {b(ω), θ(ω)} + Vt

where Vt has similar properties to Ut , then there is said to be feedback
between Xt and Yt . In the presence of feedback the phase diagram is
unlikely to provide much useful information as no process continually
lags the other.

To provide a formal definition of feedback from which tests may
be developed, Granger (1969a) set up the following framework. Sup-
pose, in general, that At is a stationary stochastic process and that
A(k) = {At−k, At−k−1, . . .}. Then Ā = A(1) and ¯̄A = A(0) represent the sets
of past and past and present values of At . The optimum, unbiased, least
squares predictor of At using the set of values B is denoted Pt (A|B), so
that Pt (X|X̄) is the optimum predictor of Xt using only past values of Xt .
The predictive error series is then denoted εt (A|B) = At − Pt (A|B), with
variance σ 2(A|B). Let It be all the information in the universe accumu-
lated since time t − 1 and let It − Yt denote all this information apart
from the specified series Yt . Granger then introduced the following
definitions.

Causality

If σ 2(X|Ī) < σ 2(X|Ī − Ȳ) then Y is said cause X, denoted Y ⇒ X. Thus Xt

is better able to be predicted using all available past information than if
the information apart from past Y had been used.

Feedback

If σ 2(X|Ī) < σ 2(X|Ī − Ȳ) and σ 2(Y |Ī) < σ 2(Y |Ī − X̄) then feedback is said
to occur, denoted Y ⇔ X. Feedback thus occurs when Y causes X and, at
the same time, X causes Y .
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Instantaneous causality

If σ 2(X|Ī , ¯̄Y) < σ 2(X|Ī) then instantaneous causality is said to occur,
denoted Yt ⇒ Xt . Xt is better predicted if the current value of Y is
included in the prediction than if it is not.

Causality lag

If Y ⇒ X, the causality lag m is defined to be the least value of k
such that σ 2(X|Ī − Y(k)) < σ 2(X|Ī − Y(k + 1)). Thus knowing the values
Yt , Yt−1, . . . , Yt−m+1 is of no help in improving the prediction of Xt .

The assumption that only stationary series are involved ensures that
prediction variances remain constant. If non-stationarity was allowed
such variances would depend upon time, implying that the existence of
causality could alter over time.

Granger argued that the unrealistic use of the universal information set
I could easily be modified so that it was defined to contain only those
series that are relevant. For example, if it is restricted to just the two
series Xt and Yt then Y ⇒ X if σ 2(X|X̄) > σ 2(X|X̄, Ȳ). Use of restricted
data sets opens up the possibility of spurious causality in a way analo-
gous to that of spurious correlation: if a third series Zt is actually causing
both Xt and Yt , but is omitted from the analysis, spurious causality pat-
terns may result (see §9.11). Spurious instantaneous causality is another
possibility when the sampling interval is greater than the causality lag
(see §9.9).

In practice linear predictors will tend to replace optimum predictors
in these definitions and it might be argued that the prediction error
variance is not always the appropriate criterion to employ, although it
is natural to use it in connection with linear predictors. Granger sug-
gested that ‘causality in mean’ might be a more accurate term in these
circumstances.

9.6 These definitions of feedback and causality have implications for
the cross-spectrum between Xt and Yt and the related measures of coher-
ence and phase. Suppose these series are generated by the bivariate
process

Xt =
p∑

j=1

ajXt−j +
p∑

j=1

bjYt−j + εt = a(B)Xt + b(B)Yt + εt

Yt =
p∑

j=1

cjXt−j +
p∑

j=1

djYt−j + ηt = c(B)Xt + d(B)Yt + ηt

(9.2)
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where εt and ηt are two uncorrelated white noises with variances σ 2
ε

and σ 2
η respectively. From the definitions above, Y ⇒ X if some bj is not

zero, while X ⇒ Y if some cj is not zero. Using Cramér representations,
the lag polynomial a(B)Xt in (9.2), for example, can be written as

a(B)Xt =
∫ π

−π
eitωa(e−iω)dzx(ω)

so that (9.2) may be represented as∫ π

−π
eitω((1 − a(e−iω))dzx(ω) − b(e−iω)dzy(ω) − dzε(ω)) = 0∫ π

−π
eitω(−c(e−iω)dzx(ω) + (1 − d(e−iω))dzy(ω) − dzη(ω)) = 0

From this representation, Granger (1969a) showed that the spectra of Xt

and Yt are given by

fx(ω) = 1
2π


(|1 − d|2σ 2
ε + |b|2σ 2

η )

fy(ω) = 1
2π


(|c|2σ 2
ε + |1 − a|2σ 2

η )

in which a is written for a(e−iω), etc., and where
 = |(1 − a)(1 − d) − bc|2.
The cross-spectrum takes the form

fxy(ω) = 1
2π


((1 − d)cσ 2
ε + (1 − a)bσ 2

η ) = f1(ω) + f2(ω)

where

f1(ω) = σ 2
ε

2π

(1 − d)c f2(ω) = σ 2

η

2π

(1 − a)b

Thus, if Yt is not causing Xt then b = 0 and f2(ω) vanishes and, simi-
larly, if Xt is not causing Yt then c = 0 and f1(ω) vanishes. Hence the
cross-spectrum may be decomposed into the sum of two components:
f1(ω), depending upon the causality of Y by X, and f2(ω), depending
on the causality of X by Y . In general, these may be treated separately
and coherences can be defined for X ⇒ Y and Y ⇒ X: for example, the
causality coherence,

C2→
xy

(ω) = |f1(ω)|2
fx(ω)fy(ω)

= σ 4
ε |(1 − d)c|2

(σ 2
ε |1 − d|2 + σ 2

η |b|2)(σ 2
ε |c|2 + σ 2

η |1 − a|2)
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may be considered to be the strength of the causality X ⇒ Y at
frequency ω. Similarly,

φ→
xy

(ω) = tan−1 Imaginary part of f1(ω)
real part of f1(ω)

will measure the phase lag at frequency ω of X ⇒ Y . Similar functions
can be defined for Y ⇒ X using f2(ω).

Instantaneous causality may be allowed for by including the terms
b0Yt and c0Xt in the respective equations in the representation (9.2).
The cross-spectrum is then given by

fxy(ω) = 1
2π
′ ((1 − d)(c + c0)σ 2

ε + (1 − a)(b + b0)σ 2
η )

= f ′
1(ω) + f ′

2(ω) + f ′
3(ω)

where 
′ = |(1 − a)(1 − d) − (b + b0)(c + c0)|2, f ′
1(ω) and f ′

2(ω) are defined
as f1(ω) and f2(ω) but using 
′ rather than 
, and

f ′
3(ω) = 1

2π
′ (c0(1 − d)σ 2
ε + b0(1 − a)σ 2

η )

The presence of instantaneous causality clearly means that the mea-
sures of causal strength and phase lag lose their distinct interpretations.

Granger causality

9.7 Granger (1969a) provided an illustrative example to show the poten-
tial usefulness of these definitions and also considered extensions to
more than two variables. However, an estimation and testing method-
ology for causal cross-spectra was not presented and the importance of
what was later to be termed ‘Granger causality’ had to wait until a time
domain approach to estimation and testing was developed.3 Fortunately,
this was not long in coming, with Christopher Sims providing both
this and a very thought provoking example on the causal links between
money and income, a ‘hot’ topic at the time and for some years after
(Sims, 1972). Essentially, Sims recommended testing sets of coefficients
in (9.2) directly in the time domain using group F-tests: for example,
the hypothesis that Y does not cause X, Y ⇒| X, may be parameterized
as b1 = · · · = bp = 0, which may then be tested directly with rejection
leading to Y ⇒ X. Within Sims’ framework Granger causality became
straightforward to test for and applications and theoretical extensions
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quickly followed. Sims (1977) and Geweke (1984) were particularly use-
ful contributions which also set out the links between Granger causality
and econometric concepts of exogeneity.

Naturally, there were also several critiques of the concept, both from
economists (notably Zellner, 1979) and from a wider philosophical and
statistical perspective (for example, Holland, 1986). Granger had been
quite clear from the outset about his definition of causality, it being

based entirely upon the predictability of some series, say Xt . If some
other series Yt contains information in past terms that helps in the
prediction of Xt and if this information is contained in no other
series used in the predictor, then Yt is said to cause Xt ,

adding that ‘(t)he flow of time clearly plays a central role in these defini-
tions’ and that ‘(i)n the author’s opinion there is little use in the practice
of attempting to discuss causality without introducing time, although
philosophers have tried to do so’ (Granger, 1969a, page 430). A decade
later, Granger (1980a) returned to this theme, placing his definition of
causality given in §9.5 within a wider setting based on the following
three axioms.

Axiom A

The past and present may cause the future, but the future cannot cause
the past.

Axiom B

It contains no redundant information, so that if some variable Zt is
functionally related to one or more other variables, in a deterministic
fashion, then Zt should be excluded from It .

Axiom C

All causal relationships remain constant in direction throughout time.

Given these axioms, Granger proposed the following

General Definition

Yt is said to cause Xt+1 if

P(Xt+1 ∈ A|It ) �= P(Xt+1 ∈ A|It − Yt ) for some A

Thus, for causation to occur, Yt must have some unique information
about what value Xt+1 will take in the immediate future.
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9.8 This general definition is not operational, in the sense that it could
not be used with actual data, so Granger re-stated it in terms of a vector
Y t causing another vector Xt . Thus suppose that Jt is an information
set defined to consist of the vector Zt , i.e. Jt : Zt−j, j ≥ 0: Jt is said to be
a proper information set with respect to Xt if Xt is included within Zt .
Suppose further that Zt does not include any components of Yt , so that
the intersection of Zt and Yt is zero and we define J ′

t : Zt−j, Yt−j, j ≥ 0,
as Jt plus the past and present values of Yt .

If F(Xt+1|Jt ) is the conditional distribution function of Xt+1 given
Jt , with the mean of this distribution being E[Xt+1|Jt ], then Granger
introduced the following definitions.

Definition 1

Yt does not cause Xt+1 with respect to J ′
t if F(Xt+1|Jt ) = F(Xt+1|J ′

t ), so that
the extra information in J ′

t does not affect the conditional distribution.
A necessary condition is that E[Xt+1|Jt ] = E[Xt+1|J ′

t ].

Definition 2

If J ′
t = It , the universal information set, and if F(Xt+1|It ) �= F(Xt+1|It − Yt ),

then Yt is said to cause Xt+1. This is equivalent to the general definition
of causality introduced in §9.7.

Definition 3

If F(Xt+1|J ′
t ) �= F(Xt+1|Jt ) then Yt is said to be a prima facie cause of Xt+1

with respect to the information set J ′
t .

Definition 4

Yt is said not to cause Xt+1 in mean with respect to J ′
t if δt+1( J ′

t ) =
E[Xt+1|J ′

t ] − E[Xt+1|Jt ] is identically zero.

Definition 5

If δt+1(It ) is not zero, then Yt is said to cause Xt+1 in mean.

Definition 6

If δt+1( J ′
t ) is not identically zero, then Yt is said to be a prima facie cause

in mean of Xt+1 with respect to J ′
t .

The final three definitions become relevant if just (one-step ahead) point
forecasts obtained using a least squares criterion are employed, rather
than the whole distribution of Xt+1, which is often the case in prac-
tice. These forecasts will often be linear functions of the information set,
although non-linear functions are not excluded by the definitions, and
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attention is often focused on pairs of series, Yt and Xt+1, rather than
pairs of vectors, Yt and Xt+1. It is also necessary to assume that the series
are stationary, or at least that they belong to some simple class of mod-
els with time varying parameters, for practical implementation of the
definitions.

9.9 There are a number of important implications of this definition of
causality that Granger addressed by way of a sequence of examples. He
first made a general point using the simple model

Xt = εt + ηt−1 Yt = ηt + εt−1

where εt and ηt are a pair of independent white noises. Since these equa-
tions imply that Xt+1 = Yt + εt+1 − εt−1 and Yt+1 = Xt + ηt+1 − ηt−1 it is
clear that feedback exists, with X causing Y and Y causing X.

Example 1

Xt = εt Yt = εt−1 + ηt Zt = ηt−1

In this example there are four information sets to consider. If Jt (X, Y , Z)
denotes the information set containing the past and present values of
Xt−j, Yt−j and Zt−j, j ≥ 0, then the subsets Jt (X, Y), Jt (X, Z) and Jt (Y , Z)
may be defined analogously. Since the example implies Yt+1 = Xt +
ηt+1 = Xt + Zt+1 and Zt+1 = Yt − εt−1 = Yt − Xt−1, then clearly X causes
Y with respect to either Jt (X, Y) or Jt (X, Y , Z) and Y causes Z with respect
to Jt (Y , Z) and Jt (X, Y , Z). However, X does not cause Z with respect
to Jt (X, Z) but does cause Z with respect to Jt (X, Y , Z), because Zt+1 is
completely determined from Yt−j and Xt−j but not from Yt−j alone, thus
demonstrating the importance of stating the information set being uti-
lized. Granger’s general point is that, although it may be the case that X
causes Y and Y causes Z, it may not necessarily be true that X causes Z.
This is further illustrated by

Example 2

Xt = εt + ωt Yt = εt−1 Zt = εt−2 + ηt

where ωt is another independent white noise. Here Zt+1 = Xt−1 + ηt+1 −
ωt−1 = Yt + ηt+1 so that X causes Z in Jt (X, Z) but not in Jt (X, Y , Z).

If Yt causes Xt+1 then Y ′
t = a(B)Yt causes X′

t+1 = b(B)Xt+1 if a(B) and
b(B) are one-sided filters, but this may not be the case if the filters are
two-sided, as might occur in some seasonal adjustment procedures, since
Axiom A is disrupted.
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It is impossible for a series that is self-deterministic (that is, perfectly
forecastable from its past) to be caused by any other variable, as is
demonstrated by

Example 3

Xt = a + bt + ct2 Yt = dXt+1

As well as the quadratic in time, the following pair of equations will also
generate Xt exactly:

Xt = d−1Yt−1 Xt = 2Xt−1 − Xt−2 + 2c

so that it would appear that Xt is ‘caused’ by time, by Yt−1, or by
its own past. Since all three equations fit perfectly it is impossible to
distinguish between them and a statistical test for causality is impossible.

A particular problem is that of missing variables, which can lead to
apparent causation due to a common cause, as in

Example 4

Zt = ηt Xt = ηt−1 + ωt Yt = ηt−2 + εt

Since Xt+1 = Zt + ωt+1 and Yt+1 = Zt−1 + εt+1, Z will cause both X and
Y with respect to Jt (X, Z), Jt (Y , Z) and Jt (X, Y , Z). However, since
Yt+1 = Xt + εt+1 − ωt = Zt−1 + εt+1, X will cause Y in Jt (X, Y) but not
in Jt (X, Y , Z). This apparent causation of Y by X in Jt (X, Y) may be
thought of as spurious because it vanishes when the information set
is expanded. This situation is encountered when dealing with leading
indicators: X is a leading indicator of Y but will cease to be a cause of Y
when Z is observed.

A related problem occurs when one variable is measured with an error
having some form of time structure, as in

Example 5

Xt = ηt Yt = δt Zt = Xt + εt + βεt−1

where ηt and δt are white noises which are contemporaneously corre-
lated. Since Zt = ηt + εt + βεt−1, it can be written as Zt = et + θet−1 =
(1 + θB)et , where et is a white noise, so that

et = (1 + θB)−1ηt + (1 + θB)−1(1 + βB)εt
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The one-step ahead forecast of Zt+1 using Zt−j ( j ≥ 0) will be θet with
forecast error et+1. This error will be a function of ηt−j ( j ≥ 0), which
itself is correlated with δt−j = Yt−j ( j ≥ 0). Thus Yt−j can help forecast
Zt+1 so that, apparently, Y causes Z with respect to Jt (Y , Z), although
this would not be the case if Xt−j were observable, so that Jt (X, Y , Z)
could be considered.

These definitions focus on one-step forecasts rather than h-step ahead
forecasts for any h. It can be shown that if Y causes X with respect to
Jt (X, Y) when using an h > 1-step forecasting criterion then it will neces-
sarily be found that Y causes X with a one-step criterion. This does not,
however, appear to be true in the multivariate case, for consider

Example 6

Xt = εt Yt = εt−2 + ηt Zt = εt−1 + ωt

Since Zt+1 = Xt + ωt+1, Xt causes Zt+1 with respect to both Jt (X, Z) and
Jt (X, Y , Z). However, since Yt+2 = Xt + ηt+2 but Yt+1 = Zt + ηt+1 − ωt , Xt

causes Yt+2 with respect to both Jt (X, Y) and Jt (X, Y , Z) but only causes
Yt+1 with respect to Jt (X, Y).

9.10 The definitions given above do not allow for instantaneous causal-
ity. Granger (1988) provided a detailed discussion of this concept,
although several of his earlier writings touch upon it (recall §9.5). Define
the one-step ahead forecast errors to be

eX,t+1 = Xt − E[Xt+1|Jt (X, Y)] eY ,t+1 = Yt − E[Yt+1|Jt (X, Y)]

If ρ = corr(eX,t+1, eY ,t+1) �= 0 then there is apparent instantaneous causal-
ity between X and Y . Such a definition might be regarded as unsatis-
factory since no direction of causality may be deduced just from the
data: what is required is some further knowledge, say that X cannot
cause Y . This situation is essentially identical to the long-standing prob-
lem that correlation cannot be equated to causality unless an assumption
is made concerning the structure of the relationship between X and Y .

Three possible explanations for apparent instantaneous causality were
discussed by Granger:

(i) There actually is true instantaneous causality so that some variables
react without any measurable time delay to changes in some other
variables.
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(ii) There is no true instantaneous causality but the finite time delay
between cause and effect is small compared to the time interval
over which the data is collected, so that the apparent causation is
a consequence of temporal aggregation.

(iii) There is a jointly causal variable Zt that causes both Xt+1 and
Yt+1 but is not included in the information set, possibly because
it cannot be observed.

9.11 The bivariate relationship between the zero mean, jointly sta-
tionary series Xt and Yt can be characterized in various ways (recall
§§8.14–8.17). The moving average representation is

[
Xt

Yt

]
=
[
ψ11(B) ψ12(B)
ψ21(B) ψ22(B)

][
at

bt

]
(9.3)

where [at bt ]′ is a two-element white noise vector with zero correlation
between at and bs except possibly when t = s. Assuming invertibility of
the moving average matrix, the corresponding autoregressive model is

[
A(B) H(B)
C(B) D(B)

][
Xt

Yt

]
=
[

at

bt

]
(9.4)

As in §8.17, the series could be pre-whitened using the filters F(B)Xt =
ut and G(B)Yt = vt , leading to the moving average and autoregressive
models linking [ut vt ]′ to [at bt ]′:[

ut

vt

]
=
[
θ11(B) θ12(B)
θ21(B) θ22(B)

][
at

bt

]
(9.5)

and [
α(B) β(B)
γ (B) δ(B)

][
ut

vt

]
=
[

at

bt

]
(9.6)

If ρuv(k) is the cross-correlation between ut−k and vt then there exists the
following regression

vt =
∞∑

j=−∞
ωjut−j + ft (9.7)
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where ωk = (σv/σu)ρuv(k). Similarly, there will exist the regression

Yt = V(B)Xt + ht (9.8)

in which V(B) = (F(B)/G(B))ω(B). The residuals ft and ht are uncorrelated
with ut−j and Xt−j, respectively, but are not necessarily white noise. It
will then be the case that the following theorems, originally proved by
Pierce and Haugh (1977) but set out by Granger (1980a), hold.

Theorem 1

Instantaneous (prima facie) causality (in mean) exists if and only if the
following equivalent conditions hold:

(i) at least one of cov(at , bt ), γ (0), β(0) in (9.6) are non-zero, or
(ii) at least one of cov(at , bt ), H(0), C(0) in (9.4) are non-zero.

Theorem 2

Y is not a (prima facie) cause (in mean) of X if and only if the following
equivalent conditions hold:

(1) ψ12(B) in (9.3) [equivalently θ12(B) in (9.5)] can be chosen to be zero.
(2) θ12(B) in (9.5) is either 0 or a constant.
(3) ψ12(B) in (9.3) is either 0 or proportional to ψ11(B).
(4) Vj = 0 ( j < 0) in (9.8).
(5) β(B) is either 0 or a constant.
(6) H(B) in (9.4) is either 0 or proportional to A(B).
(7) ρuv(k) or, equivalently, ω(k) = 0 (k < 0) in (9.7).

If any of these conditions do not hold then Y will be a prima facie cause
of X in mean with respect to Jt (X, Y). Multivariate generalizations of
these conditions to the vectors Yt and Xt may also be obtained. Because
of the variety of equivalent conditions, numerous statistical tests may
be devised and Granger pointed out that the performance of such tests
would clearly need investigating, either by using statistical theory or
by Monte Carlo simulation, especially as some were suspected of being
occasionally biased or to be lacking in power.

An approach that emphasizes the predictive implications of causality
and which marries causality testing with forecasting (see §§9.13–9.19)
is Ashley, Granger and Schmalensee (1980). Here a bivariate model is
built for X and Y and a set of one-step ahead forecasts generated for
a post-sample period. These are then compared to the one-step ahead
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forecasts produced by univariate models for X and Y to see if the
bivariate model actually forecasts better. Ashley et al. argued that focus-
ing attention on post-sample forecasts avoids a number of difficulties
inherent in basing causality conclusions entirely on within-sample per-
formance, illustrating their procedure with an example investigating the
causal links between advertising and consumption expenditure.

9.12 Over the last 40 years Granger’s concept of causality has stimulated
a remarkable amount of research, be it empirical (as well as being preva-
lent in economics and finance, it has found application in many other
fields, such as meteorology (Mosedale et al,. 2006) and neuroscience
(Seth and Edelman, 2007)), theoretical (for example, Chamberlain, 1982;
Florens and Mouchart, 1982), related to economic policy issues (notably
Buiter, 1984), or as an integral part of modern econometric theory and
practice able to unify a wide range of disparate topics (see Engle, Hendry
and Richard, 1983; Hendry and Mizon, 1999). The concept has also
continued to attract controversy as to whether it provides a general def-
inition of causality: see, for example, Jacobs, Leamer and Ward (1979),
Hoover (2001, 2008) and, for his last words on this all pervasive topic,
Granger (2008a).

Error functions and combining forecasts

9.13 On being asked by Box and Jenkins to comment on an advance
copy of Time Series Analysis: Forecasting and Control, Granger became
interested in forecasting issues and quickly published two papers on the
topic in the same volume of Operational Research Quarterly (ORQ). Box
and Jenkins’ univariate forecasting framework (§§6.32–6.45) essentially
focused on linear models and a MMSE forecast criterion. Granger (1969b)
took a rather more general perspective on forecasting by considering the
optimum point prediction of the purely non-deterministic stationary
series xt+l by some, possibly non-linear, function ft (l ) = h(xt , xt−1, . . . )
using a general ‘cost of error’ function C(et (l )), where et (l ) = xt − ft (l ).
This cost function has C(0) = 0 and C(|e1|) > C(|e2|) for |e1| > |e2|, so
that if a forecast is made without error, no cost arises, but if there is
an error then the larger it is the larger the cost. C(e) does not have to
be symmetrical, however, so that C(−e) will not necessarily equal C(e).
Granger showed that the optimum function h(xt , xt−1, . . . ) is that which
minimizes

E[C(xt+l − ft (l ))|xt , xt−1, . . . ] = [C(xt+l − ft (l ))] =
∫ ∞

−∞
C(x − ft (l ))fc,l(x)dx
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where the conditional expectation notation of §6.33 is used, fc,l(x) is
the conditional frequency function of xt+l given xt , xt−1, . . ., and it is
assumed that the integral exists.

The MMSE criterion uses the quadratic cost of error function C(et (l )) =
e2

t (l ), in which case, on writing Ml = [xt+l],

[xt+l − h]2 = [xt+l − Ml]2 + [Ml − h]2

and the optimum predictor is h(xt , xt−1, . . . ) = Ml. When xt is Gaussian,
so that every finite subset of the process is normally distributed, then
this optimum least squares predictor is Ml = ∑∞

j=0 ajxt−j, where the aj’s
are fully determined by the covariance matrix and mean vector of the
multivariate normal distribution of xt+l, xt , xt−1, . . .. It will also be the
case that fc,l(x) is normal with mean Ml. If xt is not Gaussian then Ml

need not be a linear function of xt , xt−1, . . ., in which case the restric-
tion to linear predictors is sub-optimal, although Granger argued that
the gains in computational simplicity generally made such a choice a
reasonable one.

Granger next considered the asymmetric linear cost function

C(e) = ae e ≥ 0 a > 0

= be e < 0 b < 0

for which

[C(xt+l − ft (l ))] = a
∫ ∞

h
C(x − ft (l ))fc,l(x)dx + b

∫ h

−∞
C(x − ft (l ))fc,l(x)dx

Granger showed that this function is minimized when Fc,l( ft (l )) =
a/(a − b), where Fc,l(x) is the conditional cumulative distribution func-
tion of xt+l. If C(e) is symmetric, so that a = −b, Fc,l( ft (l )) = 1

2 , and the
optimum ft (l ) is the median. In the asymmetric case, the optimal fore-
cast will be of the form Ml + α, where α is a constant, independent of
xt , xt−1, . . ., obtained from Fc,l( ft (l )) under the assumption of normality.

For more general cost functions, Granger showed that, under symme-
try and some simple conditions on C(e) and fc,l(x), the optimal predictor
will be ft (l ) = Ml. If xt is Gaussian then the optimum predictor will again
be of the form Ml + α; if xt is not Gaussian Ml will be non-linear and α

will be a function of xt , xt−1, . . .. It would therefore appear that a MMSE
approach, corresponding to a quadratic cost function, is both more gen-
eral and more defensible than might have first been thought. With
Gaussian data the optimal least-squares predictor will also be optimal
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for all symmetric cost functions. If the cost function is asymmetric then
an appropriate procedure is to obtain the best least-squares predictor and
then add the bias term α depending upon the cost function being used.4

9.14 The second paper in ORQ , Bates and Granger (1969), took as its
lead two sets of one-step ahead forecast errors prepared by Barnard
(1963) and obtained by forecasting the airline passenger data (recall §7.3)
using the ‘Box–Jenkins method’ and the ‘adaptive forecasting method’
attributed to Brown (1959), although in neither case were any details of
the modelling and estimation provided. Bates and Granger computed
the variance of the forecast errors to be 177.7 for Brown’s adaptive fore-
casting and 148.6 for Box–Jenkins, these therefore suggesting that the
latter were a clearly superior set of forecasts. They also computed the
variance of the errors of a third forecast, that of the averages of the two
sets, and found it to be 130.2, so that ‘even though Brown’s forecasts had
a larger variance than that of Box–Jenkins’s forecasts, they were clearly
of some value’ (Bates and Granger, 1969, page 452).

This prompted Bates and Granger to consider whether combinations
of forecasts could be constructed using optimal, rather than a pri-
ori assigned equal, weights that would prove superior to any of the
individual forecasts. They began by assuming that the performance of
the individual forecasts was consistent over time (a type of stationar-
ity assumption), so that the variances of the two sets of forecasts errors
could be regarded as constants, σ 2

1 and σ 2
2 , say. Under the further assump-

tion that the forecasts are unbiased, a combined forecast was defined as
the linear combination f (c)

T = kf (1)
T + (1 − k)f (2)

T , where f (1)
T and f (2)

T are the
individual forecasts of xT . Hence, if the forecast errors are e( j)

T = xT − f ( j)
T ,

j = 1, 2, with E(e( j)
T ) = 0, E(e( j)2

T ) = σ 2
j and E(e(1)

T e(2)
T ) = ρσ1σ2, so that ρ is

the correlation between the individual forecast errors, the forecast error
of f (c)

T will be

e(c)
T = xT − f (c)

T = ke(1)
T + (1 − k)e(2)

T

with variance

σ 2
c = k2σ 2

1 + (1 − k)2σ 2
2 + 2k(1 − k)ρσ1σ2

This variance will be minimized when k is given by

k0 = σ 2
2 − ρσ1σ2

σ 2
1 + σ 2

2 − 2ρσ1σ2
(9.9)
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so that the minimum achievable error variance is

σ 2
c,0 = σ 2

1 σ
2
2 (1 − ρ2)

σ 2
1 + σ 2

2 − 2ρσ1σ2
(9.10)

It then follows that

σ 2
1 − σ 2

c,0 = σ 2
1 (σ1 − ρσ2)2

(σ1 − ρσ2)2 + σ 2
2 (1 − ρ2)

≥ 0

and similarly σ 2
2 − σ 2

c,0 ≥ 0, the equality occurring only if ρ = σ1/σ2 or
σ2/σ1, in which case σ 2

c.0 = min (σ 2
1 , σ 2

2 ). The best available combined
forecast should therefore outperform the better individual forecast and,
in any event, it cannot do worse. From (9.9) it can be seen that k0 � 0 if

and only if σ2/σ1 � ρ. It then follows that, if f (2)
T is the optimal forecast

based on a particular information set, any other forecast f (1)
T based on

the same information set must be such that ρ = σ2/σ1 exactly.
Note that it is possible for k0 to be negative: an inferior forecast may

still be worth including with negative weight if its relatively high error is
outweighed by a large ρ value, which would be the case if the part of xT

that is left unexplained by the poorer forecast f (1)
T is sufficiently strongly

related to the part left unexplained by the better forecast f (2)
T .

The behavior of σ 2
c,0 as ρ approaches its limiting values of −1 and +1 is

worthy of attention. In the former case σ 2
c,0 tends to zero so that a perfect

forecast become obtainable. Interestingly, this also appears to happen
as ρ approaches +1 except when σ1 = σ2, in which case σ 2

c,0 = 1
2σ

2
1 (1 + ρ)

and its limit is σ 2
1 . This, on first sight counter-intuitive, result may be

explained by considering two forecasts producing perfectly positively
correlated errors e(1)

T and Ae(1)
T , where A is positive:

e(1)
T = xT − f (1)

T e(2)
T = xT − f (2)

T = A(xT − f (1)
T )

Thus

f (2)
T = xT − e(2)

T = (1 − A)xT + Af (1)
T

which, for A �= 1, contains xT and implies the exact relationship

xT = − A
1 − A

f (1)
T + 1

1 − A
f (2)
T
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9.15 Of course, as it stands (9.19) is not operational unless numerical
values of σ 2

1 , σ 2
2 and ρ are available. Suppose that sets of forecasts have

been made over the previous T − 1 periods, yielding errors e( j)
t = xt − f ( j)

t ,
t = 1, 2, . . . , T − 1. If the combining weights are allowed to alter through
time as evidence accumulates about the relative performance of the two
forecasts, then the combined forecast at time T can more correctly be
written as f (c)

T = kT f (1)
T + (1 − kT )f (2)

T . In order to provide estimates of
the weight kT , Bates and Granger offered three desirable properties of
combining methods:

(a) The weight should approach the optimum value given by (9.10) as
the number of forecasts increases.

(b) The weight should adapt quickly if there is a lasting change in the
success of one of the forecasts.

(c) The weight should vary only a little about the optimum value.

In the spirit of these properties, they suggested several combining
methods, most notably

k̂1T =
∑T−1

t=T−v e(2)2

t∑T−1
t=T−v (e(1)2

t + e(2)2
t )

k̂2T = αk̂2,T−1 + (1 − α)k̂1T 0 < α < 1

k̂3T =
∑T−1

t=1 wt (e(2)2

t − e(1)
t e(2)

t )∑T−1
t=1 wt (e(1)2

t + e(2)2
t − 2e(1)

t e(2)
t )

w ≥ 1

k̂4T =
∑T−1

t=1 wte(2)2

t∑T−1
t=1 wt (e(1)2

t + e(2)2
t )

w ≥ 1

Bates and Granger applied these combining formulae to the airline
passenger data using pairs of univariate one-step ahead forecasts, and
generally obtained successful results. This prompted a wider study by
Newbold and Granger (1974), in which three one-step ahead forecasts
(Box–Jenkins, Holt–Winters exponential smoothing and stepwise autore-
gression) were combined for 80 monthly economic series. A further
combining method, based directly on (9.9), was also proposed:

k̂5T =
∑T−1

t=T−v (e(2)2

t − e(1)
t e(2)

t )∑T−1
t=T−v (e(1)2

t + e(2)2
t − 2e(1)

t e(2)
t )
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This can be regarded as the ML estimator of k0 if the forecast errors
are assumed to be bivariate normally distributed or, alternatively, as a
least squares estimator given that the combined forecast at time t can
be written

f (c)
t − f (2)

t = k( f (1)
t − f (2)

t ) (9.11)

or

e(2)
t = k(e(2)

t − e(1)
t ) + e(c)

t

Forecasts were combined in pairs and also with all three combined
together (Newbold and Granger, 1974, equations (1) to (5), provided
multivariate extensions of the various combining formulae), with set-
tings of v = 1, 3, 6, 9, 12, α = 0.5, 0.7, 0.9 and w = 1, 1.5, 2, 2.5, and with
the weights constrained to lie between zero and unity. A concise sum-
mary of the results was provided in Granger and Newbold (1986,
chapter 9.2). The general findings were that methods which ignored
correlation between forecast errors (k̂1, k̂2 and k̂4) performed better
than those (k̂3 and k̂5) that attempted to take it into account and that,
overall, in pairwise combining, k̂2 with v = 12 produced the best fore-
casts in terms of mean square error. Combining stepwise autoregression
and Holt–Winters exponential smoothing, both automatic forecasting
procedures, was found to perform competitively with Box–Jenkins fore-
casting. Including a third forecast produced a marginal improvement in
forecast accuracy.

Further results on combining were provided by Granger and Newbold
(1975), in which econometric model forecasts and Box–Jenkins fore-
casts of inventory investment were combined. Although the Box–Jenkins
forecast was on average considerably better than the econometric fore-
cast, the combined forecast, in line with previous results, produced a
notable further improvement in forecast accuracy.

9.16 Judging from the published discussion of Newbold and Granger
(1974), the potential improvements in accuracy from forecast combin-
ing were initially regarded with some skepticism, particularly by Gwilym
Jenkins (see pages 148–150 of the discussion). Nevertheless, the idea
quickly took hold and twenty years after it was first introduced a special
section on combining forecasts was published in the International Journal
of Forecasting (volume 5, number 4), which included a major survey by
Clemen (1989) containing an annotated bibliography of more than 200
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works, followed by a special issue of the Journal of Forecasting (volume 8,
number 3) on the topic.5

Granger’s major contribution to this literature was to point out, in
Granger and Ramanathan (1984), that although the least squares inter-
pretation of (9.11) implies that e(c)

t is uncorrelated with f (1)
T − f (2)

T , it
may not necessarily be uncorrelated with f (1)

T and f (2)
T individually, so

that e(c)
t may be forecastable from them, in which case the combination

will not be optimal. Relaxing the implied condition that the combining
weights sum to unity loses the unbiasedness property, so Granger and
Ramanathan suggested including the unconditional mean E(xT ) = m in
the combination:

f (c∗)
T = α1f (1)

T + α2f (2)
T + α3m α1 + α2 + α3 = 1

These weights can be estimated from the unconstrained regression

xt = α1f (1)
t + α2f (2)

t + a + e(c∗)
t

where, by construction, e(c∗)
t is uncorrelated with f (1)

T and f (2)
T .

If f (1)
T and f (2)

T are based on the same information set, finding α1 �= 0
and α2 �= 0 would suggest that neither forecast can be considered to
be optimal. For example, the two forecasts may be based on different
assumptions about functional form, linear or logarithmic say. If a forecast
combination successfully beats both individual forecasts then this sug-
gests that the best functional form is neither of those originally selected.
If the individual forecasts are based on different information sets then
a combined forecast with non-zero weights would suggest that a model
which combines the two information sets should be considered.

In his contribution to the Journal of Forecasting’s special issue, Granger
(1989a) formalized these ideas. Suppose there are N forecasters, with
the jth having the information set IjT : I0T , JjT at time T , where I0T is
the information available to everyone and JjT is the information avail-
able only to the jth forecaster, the contents of which are assumed to be
independent of I0T and JkT, k �= j. Assuming, for convenience, that each
forecaster has only a single series in their information set, then I0T : zT−s

and JjT : xj,T−s, s ≥ 0. The universal information set, consisting of all the
information available to all forecasters, is UT : I0T , J1T , . . . , JNT. If yt is the
series being forecast, then the optimum linear least squares forecast of
yT if UT−1 was known will be

FU = E[yT |UT−1] = a(B)zT−1 +
N∑

j=1

βj(B)xj,T−1
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The optimal forecast of the jth forecaster, on the other hand, is

Fj = E[yT |Ij,T−1] = a(B)zT−1 + βj(B)xj,T−1

Forming a simple average of these individual forecasts gives

F̄ = 1
N

N∑
j=1

Fj = a(B)zT−1 + 1
N

N∑
j=1

βj(B)xj,T−1 (9.12)

the second term of which is the sum of N independent components
divided by N and so will have a standard deviation of order N−1/2.
Thus, if N is large, F̄ = a(B)zT−1, which is the forecast made using just
I0,T−1. This result will generally hold for any other set of weights sum-
ming to one, so that FU cannot be obtained by optimally combining the
individual forecasts Fj. However, if the additional forecast

F0 = E[yT |I0,T−1] = a(B)zT−1

becomes available, then the optimal forecast can be achieved by setting

FU =
N∑

j=1

Fj − (N − 1)F0 (9.13)

Granger used this analysis to illustrate a number of general points.

(i) Aggregating forecasts is not the same as aggregating information
sets: F̄ is based on all available information but is not equal to FU

as the information is not being used efficiently.
(ii) Equal weight combinations, as in (9.12), will be useful if each

information set contains both common and independent compo-
nents. If the amount of shared information varies across forecast-
ers, unequal weights will usually result.

(iii) A new forecast can improve the combined forecast even if it is not
based on new information, e.g., F0.

(iv) Negative weights can be useful, as in (9.13).
(v) It is also useful to include as many forecasts as is possible in the

combination, again as in (9.13).

Granger (1989a) went on to discuss various extensions of the com-
bining technique to time varying weights, possibly based on second
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moments of the forecast errors, as in Engle, Granger and Kraft (1984),
to non-stationary situations, and to combining forecasts of quantiles
rather than just means (Granger, White and Kamstra, 1989). He also
discussed the links between a dominant forecast (a forecast with a zero
weight in the combination is said to be dominated by the other fore-
cast) and the deeper econometric concept of ‘encompassing’ proposed in
Mizon and Richard (1986). Forecast combining using changing weights
derived from non-linear models was examined in Deutsch, Granger and
Teräsvirta (1994).

Forecast evaluation

9.17 The early 1970s witnessed the building of the first generation of
large-scale econometric models and, with the publication of the fore-
casts from those models, attention began to be focused on how such
forecasts should be evaluated. Granger and Newbold (1973, page 35)
were critical of the evaluation procedures then in use: ‘(m)ost of the
available techniques … are almost entirely concerned with discovering
the “best” forecasting methods from some set or, equivalently, in ranking
methods. We … argue that much of this work has little or no operational
significance and that a wider viewpoint is required’.

Granger and Newbold began by considering the forecasts from an
autoregressive model. From §6.35, ft (l ) = π(B)[xt+l−1], where [xt+j] =
ft ( j), j = 1, . . . , l − 1 and [xt−j] = xt−j, j = 0, 1, . . .. One-step ahead forecast
errors are given by et,1 = xt+1 − ft (1) = εt+1 and constitute a zero-mean
white noise process with variance σ 2

ε = σ 2
x − V( ft (1)). Thus the variance

of the optimum one-step ahead forecast will be less than the variance of
the series that is being forecast. The spectrum of ft (1) will be |π(eiω)|2fx(ω)
and hence ft (1) will also have time series properties that are different
to the series it is attempting to forecast. The cross-spectrum between
ft (1) and xt+1 is π(eiω)fx(ω), so that the coherence is unity at every fre-
quency but the phase diagram will generally be complicated and difficult
to interpret. Granger and Newbold (1973, page 35) were thus led to
conclude that

the optimal predictor generally has different distributional and time
series properties than the series being predicted. … It therefore fol-
lows that it is pointless to compare, as many practitioners do, the
distributional or time series properties of the predictor and pre-
dicted series. … (R)ather than consider properties of predictor and
actual series separately, the most fruitful approach is to consider the
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distributional and time series properties of the forecast error series,
particularly the one-step errors.

Thus, if there are T forecast errors et = xt − ft (the l-step ahead nature of
such forecasts being suppressed for clarity of notation) and a quadratic
cost of error criterion is used, then the MSE is

D2
T = 1

T

T∑
t=1

e2
t

Theil’s (1958) first U -statistic was an early attempt at evaluating a set of
forecasts. Defined as

U1 = DT( 1
T

∑
f 2
t

)1/2 + ( 1
T

∑
x2

t

)1/2
this ‘inequality coefficient’ clearly takes the value zero if ft is a perfect
forecast of xt , but, as Granger and Newbold demonstrated, in general its
use could be rather problematic. To show this, suppose that xt is gen-
erated by an AR(1) process with autoregressive coefficient α but that a
set of one-step ahead suboptimal forecasts are made using ft = βxt−1,
0 ≤ β ≤ 1. In the limit as T → ∞,

lim
T→∞

D2
T = ((1 − α2) + (β − α)2)V(x) V( f ) = β2V(x)

so that, after some algebra,

lim
T→∞

U2
1 = 1 − 2β(1 + α)

(1 + β)2

This expression is minimized when β = 1 and not for the optimal fore-
cast for which β = α, so that U1 can fail to select the optimum forecast
from a group of forecasts which includes it! The reason for this is that
the denominator of U1 contains the variance of the forecasts, which will
be highest (and U1 lowest) when β = 1.

9.18 An important part of any forecast evaluation is an assessment of
the quality of a set of forecasts. As comparisons with a competitor fore-
cast are often impossible, Theil’s (1966) second U -statistic compares the
performance of a set of forecasts with that of a simple ‘no change’ rule,
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in which forecasts are set at the most recent observed value:

U2
2 = D2

T∑
x2

t

This will be minimized when the expected MSE,

S = E(D2
T ) = E(xT − fT )2 = (μx − μf )2 + σ 2

x + σ 2
f − 2ρxfσxσf (9.14)

is minimized, where μx and μf are the means of the observations and
the forecasts, respectively, σx and σf are their standard deviations, and
ρxf is the correlation between them. Since

∂S
∂μf

= −2(μx − μf )
∂S
∂σf

= −2(σf − ρxfσx)
∂S
∂ρxf

= −2σxσf

S will be minimized by taking ρxf as large as possible with μx = μf and
σf = ρxf σx, so that the two standard deviations should optimally not be
equal except when ρxf = 1, i.e., for deterministic processes for which
the forecasts are perfectly correlated with the actual series.

Theil (1958) proposed two MSE decompositions based on rewriting
(9.14) as

S = (μx − μf )2 + (σx − σf )2 + 2(1 − ρxf)σxσf (9.15)

and

S = (μx − μf )2 + (σf − ρxf)2 + (1 − ρ2
xf)σ

2
x (9.16)

The decomposition (9.15) leads to the definition of the following
quantities in terms of sample statistics:

UM = (x̄ − f̄ )/D2
T US = (sx − sf )2/D2

T UC = 2(1 − rxf)sxsf /D2
T

Clearly UM + US + UC = 1 and Theil suggested that the three quantities
had useful interpretations. Granger and Newbold doubted this, how-
ever, and pointed out that, if xt was again generated by an AR(1) process
with autoregressive parameter α, as in §9.16, the limiting values of the
quantities would be

lim
T→∞

UM = 0 lim
T→∞

US = 1 − α

1 + α
lim

T→∞
UC = 2α

1 + α
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Thus, as α varies from 0 to 1, US and UC can take on any values subject
only to the restrictions 0 ≤ US, UC ≤ 1 and US + UC = 1, so that interpre-
tation of these quantities is impossible. In general, the problem is that
some series are inherently difficult to forecast so that a large value of ρxf

may be difficult to achieve, in which case the standard deviation of the
optimal forecasts will be much lower than that of the observed series, so
that US differs substantially from zero. For more predictable series the
value taken by US can be expected to be lower for optimal forecasts.

The decomposition (9.16) again leads to the quantity UM , now accom-
panied by

UR = (sf − rxfsx)2

D2
T

UD = (1 − r2
xf)s

2
x

D2
T

UR will tend to zero along with UM for optimal forecasts and hence
UD should be close to unity. These requirements may be placed in an
alternative context. Consider the regression of the actual values on the
forecasts, i.e., xt = a + bft . Mincer and Zarnowitz (1969) called a forecast
‘efficient’ if a = 0 and b = 1 and these restrictions are equivalent to UM

and UR both being zero. Granger and Newbold raised several objections
to this definition , pointing out that, if xt is generated by a random walk,
then the entire set of one-step ahead predictors ft (l ) = xt−l, l = 1, 2, . . .,
will in theory lead to a = 0 and b = 1 so that all these forecasts would
be deemed to be ‘efficient’ by this criterion. Granger and Newbold
regarded the criterion as a necessary condition for forecast efficiency
but by no means a sufficient one, although they suggested that such a
regression could be examined within the context of Theil’s ‘prediction-
realization diagram’, in which a plot of forecasts against actuals is made,
yielding a spread of points around the ‘line of perfect forecasts’ xt = ft .

Even this approach has drawbacks, for Granger and Newbold argued
that such a plot would invariably look very impressive whenever the
series being forecast follows an integrated process (recall §8.4 – in par-
ticular Figure 8.2 – where Box and Newbold (1971) demonstrated that a
random walk can give reasonable predictions of another independent ran-
dom walk). Their solution was to plot predicted against actual changes,
since these will be much less smooth than the levels.

9.19 Finally, Granger and Newbold argued that what was of primary
importance in forecast evaluation was an examination of the forecast
errors themselves, particularly the one-step ahead errors, which should
be zero-mean white noise. More generally, optimal l-step ahead forecast
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errors should have autocorrelations of order l or higher equal to zero, for
otherwise the forecast error would be correlated with some information
that was known at the time the forecast was made, and so the fore-
cast could have been improved upon. As it is unlikely that a sufficient
number of forecasts errors are available for detailed statistical analysis,
Granger and Newbold suggested that, at the very least, the one-step
ahead errors should be tested for randomness, against the alternative
of first-order autocorrelation, by using the von Neumann ratio

T
T − 1

∑T
t=2 (et − et−1)2∑T

t=1 (et − ē)2

Forecasting transformed series

9.20 It is very often the case that, rather than model and subsequently
forecast the observed series xt , a function of the series is analyzed
instead. The most obvious example of this is the differencing oper-
ation 
d employed to remove homogenous non-stationarity, but a
second example that is regularly encountered is the logarithmic trans-
formation yt = log xt . More generally, Granger and Newbold (1976)
considered the implications of forecasting the instantaneously trans-
formed series yt = T(xt ), where T( ) is some well-behaved function, an
example of which is the well-known Box and Cox (1964) transformation
yt = ((xt − m)θ − 1)/θ , which might be used to produce data that is nearer
to Gaussianity.

Granger and Newbold assumed that xt was a stationary, Gaussian
series with mean μ, variance σ 2 and autocorrelation sequence ρx,k, from
which it follows that zt = (xt − μ)/σ is a stationary, Gaussian series with
zero mean, unit variance and the same autocorrelations ρx,k. They then
considered the instantaneous transformation yt = T(zt ), where T( ) can
be expanded in terms of Hermite polynomials in the form

T(z) =
M∑

j=0

αjHj(z)

The jth Hermite polynomial Hj(z) is a polynomial in z of order j with,
for example, H0(z) = 1, H1(z) = z, H2(z) = z2 − 1, H3(z) = z3 − 3z and, in
general,

Hj(z) = j!
[j/2]∑
r=0

(−1)r(2r r!( j − 2m)!)−1z j−2r
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If X and Y are standard normal random variables with correlation ρ,
Hermite polynomials have the following orthogonality properties

E[Hj(X)Hi(X)] = 0 j �= i
= j! j = i

and

E[Hj(X)Hi(Y)] = 0 j �= i
= ρ j j! j = i

Using these properties, Granger and Newbold showed that E(yt ) = α0

and

Cov(yt , yt−k) =
M∑

j=1

α2
j j!ρ j

x,k Cov(xt , yt−k) = α1ρx,kσ

so that the linear properties of the transformed series can be determined.
For example, the autocorrelation sequence of yt is

ρy,k =
M∑

j=1

α2
j j!ρ j

x,k

/
M∑

j=1

α2
j j! (9.17)

and, if ρx,k �= 0 for some k, it follows that |ρy,k| < |ρx,k| for M > 1, so that
the transformed series is ‘closer’ to white noise than the original series.

As an example, Granger and Newbold first considered the quadratic
transformation

yt = a + bxt + cx2
t = a + b(σzt + μ) + c(σzt + μ)2

= a + bμ+ cμ2 + (b + 2cμ)σzt + cσ 2z2
t

In terms of Hermite polynomials this can be written as

yt = T(zt ) = α0H0(zt ) + α1H1(zt ) + α2H2(zt )

= α0 + α1zt + α2(z2
t − 1)

where

α0 = a + bμ+ c(μ2 + σ 2) α1 = (b + 2cμ)σ 2 α2 = cσ 2
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The auto-covariance sequence of yt is then

Cov(yt , yt−k) = α2
1ρx,k + 2α2

2ρ
2
x,k = (b + 2cμ)2σ 2ρx,k + 2c2σ 2ρ2

x,k

Granger and Newbold used this result to show that the quadratic trans-
formation of an AR(p) process will be ARMA( 1

2 p(p + 3), 1
2 p(p + 1)), so

that a quadratic transformation of an AR(1) will be an ARMA(2, 1), for
example. On the other hand, a quadratic transformation of an MA(q)
will also be a moving average process of at most order q.

They then specialized these results to consider the square of the
AR(1) process (xt − μ) = φ(xt−1 − μ) + at , for which σ 2 = σ 2

a /(1 − φ2) and
ρx,k = φk. The transformation yt = x2

t thus has, since a = b = 0 and c = 1,
E(yt ) = μ2 + σ 2 and the auto-covariance structure

Cov(yt , yt−k) = α2
1ρx,k + 2α2

2ρ
2
x,k = σ 2(4μ2φk + 2σ 2φ2k)

The transformed series yt will therefore have the same auto-covariance
structure as y1,t + y2,t , where y1,t = φy1,t−1 + a1,t and y2,t = φ2y2,t−1 +
a2,t , where a1,t and a2,t are independent white noises with variances
4μ2σ 2(1 − φ2) and 2σ 4(1 − φ4), respectively. Hence yt has the auto-
covariance properties of the ARMA(2, 1) series

(1 − φB)(1 − φ2B)yt = (1 − φ2B)e1,t + (1 − φB)e2,t = (1 −�B)et

If the mean μ is very large compared to the standard deviation σ the
behavior of the transformed series will be approximately AR(1), rather
than ARMA(2, 1).

The exponential transformation can be written as

yt = exp (xt ) = exp (μ+ σzt ) = exp
(
μ+ 1

2
σ 2
) ∞∑

j=0

σ j

j! Hj(zt )

Hence E(yt ) = exp (μ+ 1
2σ

2) and the covariance sequence is

Cov(yt , yt−k) = exp (2μ+ σ 2)
∞∑

j=1

(σ 2ρx,k) j

j!

= exp (2μ+ σ 2)( exp (σ 2ρx,k) − 1)

(9.18)

These results prompted Granger and Newbold (1976, page 192) to
conclude that ‘if the series to be fitted is subjected to instantaneous
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transformation, it can be the case (except for moving average processes)
that the autocorrelation function of the transformed series exhibits
markedly different behavior patterns from that of the original series’.

Granger and Newbold also considered instantaneous transforma-
tions of integrated processes, showing that if 
xt follows an ARMA
process then so will 
yt . In particular, if 
xt is AR(1) then 
x2

t will be
ARMA(2, 2).

9.21 Suppose now that a forecast fT (l ) has been made for the Gaussian
series xt but, rather than xT+l, a forecast is actually required for

yT+l = T
(

xT+l − μ

σ

)
A typical example would be where xt represents the logarithm of the
variable of interest but forecasts are required for the variable itself and
not its logarithms.

Several forecasts of yT+l were considered by Granger and Newbold. The
first is the optimal quadratic loss forecast g (1)

T (l ) = E[yT+l|IT ], where IT :
xT−j, j ≥ 0. Defining e(x)

T (l ) = xT+l − fT (l ) to be the l-step ahead optimal
forecast error of xT+l and s2(l ) to be the associated forecast error variance
then, with wt+l = e(x)

t (l )/s(l ), yT+l can be written as

yT+l =
M∑

i=0

γiHi(wT+l)

and it follows that g (1)
T (l ) = γ0. The expected squared forecast error con-

ditional on IT is

V (1)
c (l ) =

M∑
j=1

γ 2
j j!

The optimal, generally non-linear, forecast is given by

g (1)
T ,o(l ) =

M∑
j=0

αjAjHj(P)

where

A = (1 − s2(l )/σ 2)1/2 P = fT (l ) − μ

(σ 2 − s2(l ))1/2
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Thus E[g (1)
T ,o(l )] = E[yt+l] = α0 and the variance of the unconditional

expected squared forecast error can be shown to be

V (1)(l ) = E[e( y)
T (l )] = E[yT+l − g (1)

T ,o(l )] =
M∑

j=1

α2
j j!(1 − A2j)

Granger and Newbold then defined a measure of forecastability as the
ratio of the variance of the optimal forecast of yT+l to the unconditional
variance:

R2
y,l = V(g (1)

T (l ))
V(yT+l)

=
∑M

j=1 α
2
j j!A2j∑M

j=1 α
2
j j!

Since 0 ≤ R2
x,l = A2 < 1 it thus follows that R2

y,l < R2
x,l for M > 1, so that

the transformed series y is always less forecastable than the original series
x and, in this sense, is ‘nearer white noise’. An interesting corollary was
considered by Granger (1983): can a forecastable series be transformed
completely to white noise? It is clear from (9.17) that, if any ρx,k is pos-
itive, then the corresponding ρy,k will also be positive and so yt cannot
be white noise: thus, for example, no AR(1) process can be transformed
to white noise as ρx,2 must always be positive. However, consider the
MA(1) process xt = εt + bεt−1 and the transformation

yt = α1xt + α2(x2
t − 1)

If

α2
1

2α2
2

= − b
1 + b2

so that b and ρx,1 = b/(1 + b2) must both be negative, then

ρy,1 = α2
1ρx,1 + 2α2

2ρ
2
x,1

α2
1 + 2α2

2

= 0

and, as ρx,k = 0 for k > 1, it follows that ρy,k = 0 for all k > 0. Thus it is
possible for a series that cannot be forecast linearly from its own past
(here yt ) to be transformed into a series

xt =
(

−α1 ±
√
α2

1 + 4α2(yt + α2)
)
/2α2
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that is forecastable. In fact, if xt were known then yt could be forecast
from it, although Granger (1983) wondered how such ‘hidden non-linear
forecastability’ would ever be detected.

For the transformation yt+l = exp (xt+l) the optimal conditional fore-
cast is given by

g (1)
T (l ) = exp

(
fT (l ) + 1

2 s2(l )
)

with

V (1)
c (l ) = exp (2fT (l ) + s2(l ))

∞∑
j=1

s2j(l )
( j!)2

j!

= exp (2fT (l ) + s2(l ))( exp (s2(l )) − 1)

which may be compared with the unconditional variance

V (1)(l ) = exp (2(μ+ σ 2))(1 − exp (−s2(l )))

9.22 The second forecast considered by Granger and Newbold was the
‘naïve’ forecast g (2)

T (l ) = T(( fT (l ) − μ)/σ ) obtained by substituting fT (l )
for xT+l in the transformation T( ). Since we can write

yT+l − g (2)
T (l ) = (yT+l − g (1)

T (l )) + (g (1)
T (l ) − g (2)

T (l ))

the conditional expected squared forecast error has variance

V (2)
c (l ) = V (1)

c (l ) + (g (1)
T (l ) − g (2)

T (l )) =
M∑

j=1

γ 2
j j! + (g (1)

T (l ) − g (2)
T (l ))

while the variance of the unconditional expected squared error is

V (2)(l ) = V (1)(l ) +
M∑

j=0

A2j( j!)−1

⎛⎝[ 1
2 (M−j)]∑

i=1

αj+2i
( j + 2i)!

i!
(− 1

2 (1 − A2)
)i⎞⎠2

with the second term representing the average amount lost in squared
error through the use of the naïve predictor.

For the exponential transformation, the biased naïve forecast is
g (2)

T (l ) = exp ( fT (l )) and it can be shown that
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V (2)(l ) = exp (2(μ+ σ 2))

×
(
1 − exp (−s2(l )) + [

exp
(− 1

2 s2(l )
)− exp (−s2(l ))

]2)
so that use of the naïve predictor leads to a proportionate increase in
expected squared forecast error of

V (2)(l ) − V (1)(l )
V (1)(l )

= ( exp (− 1
2 s2(l )) − exp (−s2(l )))2

1 − exp (−s2(l ))

9.23 Granger and Newbold then considered forecasting the trans-
formed variable yt either as a linear combination of the elements of the
information set IT , that is, current and past values of xt , or as a linear
combination of current and past values of yt itself. In the former case,
they showed that the optimal forecast of yT+l under quadratic loss is

g (3)
T (l ) = α0 + α1

(
fT (l ) − μ

σ

)
with unconditional and conditional expected squared forecast errors

V (3)(l ) =
M∑

j=2

α2
j j! + α2

1s2(l )/σ 2

and

V (3)
c (l ) = V (1)

c (l ) + (g (1)
T (l ) − g (3)

T (l ))

In the latter case the forecast, g (4)
T (l ), is, in principle, given by matching

the known auto-covariance structure

Cov(yt , yt−k) =
M∑

j=1

α2
j j!ρ j

x,k

with a specific ARMA model φ(B)(yt − α0) = θ(B)at and forecasting in
the usual manner (cf. §§6.32–6.45), so producing the forecast error
variance

V (4)(l ) = σ 2
a (1 + ψ2

1 + · · · + ψ2
l−1)

where ψ(B) = φ−1(B)θ(B) and σ 2
a is the variance of the white noise at .

This may not always be straightforward in practice and Granger and
Newbold suggested that the ARMA model for yt may need to be
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approximated by a moving average and Wilson’s (1969) algorithm for
obtaining the ψj’s and σ 2

a from a given set of autocovariances used to
enable g (4)

T (l ) and V (4)(l ) to be computed.
Granger and Newbold illustrated these results using the MA(1) pro-

cess xt − μ = εt + 0.5εt−1, where the white noise εt will have variance
0.8σ 2 and the autocorrelations of xt are ρx,1 = 0.4 and ρx,k = 0, k > 1.
If yt = exp (xt ), then using (9.18) yields

ρy,k = ( exp (σ 2ρx,k) − 1)/( exp (σ 2) − 1)

and so

ρy,1 = ( exp (0.4σ 2) − 1)/( exp (σ 2) − 1), ρy,k = 0, k > 1

i.e., the transformed process is also MA(1). If σ 2 = 1 then ρy,1 = 0.286
and yt follows the process

yt − exp
(
μ+ 1

2

) = at + 0.31at−1

where σ 2
a = (1 + 0.312)−1E(y2

t ) = 4.26 exp (2μ). Hence

V (4)(1) = 4.26 exp (2μ), V (4)(l ) = 4.67 exp (2μ), l > 1

Since s2(1) = 0.8 and s2(l ) = 1 for l ≥ 1, the optimum forecast g (1)
T (l )

will have V (1)(1) = 4.07 exp (2μ) and V (1)(l ) = 4.67 exp (2μ) = V (4)(l ) for
l > 1, so that there is no loss in using the linear model for forecasting
more than one step ahead, although for one-step ahead forecasts the
proportionate increase in MSE from using the linear model is approxi-
mately 5%:

V (4)(1) − V (1)(1)
V (1)(1)

= 0.047

This analysis led Granger and Newbold (1976, page 201) to conclude that

one can frequently do much better than using g (2)
T (l ), the naïve fore-

cast, in which the optimum forecast of xT+l is inserted into the
transforming function. For many of the models and transformations
met in practice, it is possible to find the optimum forecast for yT+l and
this is to be recommended. However, some extra effort is required to
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do this and for speed one could use the naïve forecast or the linear
forecast of yT+l based on xT−j, j ≥ 0, i.e., g (3)

T (l ). Neither is necessarily
near to the optimal forecast and one is not clearly always superior
to the other, but both are easily obtained. A better compromise
might be to combine these two simple forecasts, … but no exercise
is yet available on combining this particular pair of forecasts. The
methods … enable a wide class of transformations and models to be
considered, although in some cases the amount of algebraic manipu-
lation required to find the optimum forecast, or the loss from using
a sub-optimal one, is rather large. (Notation altered for consistency)

9.24 Nelson and Granger (1979) applied this analysis to the forecast-
ing performance of the Box–Cox transformation yt = x(θ)

t = (xθt − 1)/θ ,
for which yt = log (xt ) as θ → 0.6 The naïve forecast of xT+l is then
given by

g (θ)
T (l ) = (θ f (θ)

T (l ) + 1)1/θ , θ �= 0
= exp ( f (0)

T (l )), θ = 0

where f (θ)
T (l ) is the forecast of yT+l = x(θ)

T+l. Unfortunately, there is no

closed form for the optimal l-step ahead forecast, g (θ)
T ,o(l ), and it has to be

obtained, under the assumption of normality, from the integral

1

sθ (l )
√

2π

∫ ∞

−∞
exp − 1

2

(
z − f (θ)

T

sθ (l )

)2

(θz − 1)1/θdz

In an extensive empirical exercise using five alternative forecasts over
twenty economic time series and up to ten forecasting horizons, Nelson
and Granger (1979, pages 68, 69) found that ‘when the necessary under-
lying assumptions are true, the Box-Cox transformation works well and
does produce superior forecasts when a transformation is really justified’;
they concluded, however, that ‘the extra inconvenience, effort and cost
is usually such as to make the use of these transformations not worth-
while’, arguing that the ‘main problem seems to be the extreme non-
normality of actual economic data, and the use of the transformation
does not dramatically reduce the problem’.

Later thoughts on forecast evaluation and related issues

9.25 Granger’s research on forecasting up to the end of the 1980s was
effectively distilled into the second editions of the monograph Forecasting
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Economic Time Series (Granger and Newbold, 1986), which emphasized
the technical aspects of the subject, and the more general and descrip-
tive text, Forecasting in Business and Economics (Granger, 1989b). He did,
however, continue to research into various aspects of forecasting, some
of which will be discussed in later sections of this and the next chapter.
We shall primarily concentrate here on a theme that Granger continually
returned to, that of the evaluation of forecasts.

9.26 Granger and Pesaran (2000a, 2000b: see also Granger and Machina,
2006) developed a ‘decision theoretic’ approach to forecast evaluation
because, in their view, ‘(i)n the real, non-academic world forecasts are
made for a purpose … (which is) to help decision makers improve their
decisions. It follows that the correct way to evaluate forecasts is to
consider and compare realized values of different decisions made from
alternative sets of forecasts’ (Granger and Pesaran, 2000b, page 537).
This approach focuses on predictive distributions rather than point fore-
casts and on the evaluation of probability forecasts using the concept of
‘economic value’, rather than on cost functions using forecast errors.

The set-up in Granger and Pesaran (2000a) is deceptively simple. There
are two states of the world, say ‘good’ and ‘bad’. A forecaster provides a
probability forecast π̂ that the good state will occur (so that the proba-
bility of the bad state occurring is 1 − π̂). A decision maker can decide
whether or not to take some action on the basis of this forecast, leading
to the set of payoffs shown in Table 9.1, where the Yij’s are the utilities
or profit payoffs under each state and action net of any costs of taking
the action. The action to ensure that the good state prevails should be
undertaken if

π̂

1 − π̂
>

Y22 − Y12

Y11 − Y21

An alternative type of forecast, the ‘event forecast’, consists of the
forecaster announcing the event that is judged to have the highest

Table 9.1 Payoff matrix

Action State

Good Bad

Yes Y11 Y12

No Y21 Y22
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probability. Granger and Pesaran showed that using an event forecast
will be suboptimal compared to using a predictive distribution but, in
general, their analysis clearly illustrated the advantages of using an eco-
nomic cost function along with a decision-theoretic approach, rather
than some statistical evaluation measure.

Granger and Pesaran (2000b) used this type of model to establish links
between simple decision problems and measures of forecast accuracy,
not just those based on quadratic loss but also the Kuipers score, defined
as KS = H − F, where H is the fraction over time that bad events were
correctly forecast to occur and F is the fraction of good events that had
been incorrectly forecast to have come out bad, often referred to as the
‘false alarm rate’. The Kuipers score was originally designed to be used
with meteorological forecasts and has the desirable feature that both
random forecasts and forecasts that consistently predict good or bad
events will produce an average KS score of zero. It does, however, have
several undesirable features and Granger and Pesaran suggested that a
better evaluation measure would be simply the overall fraction of events
(be they good or bad) that were correctly forecast.

They also showed that the Kuipers score is related to the market tim-
ing test statistic proposed by Pesaran and Timmermann (1992). A stock
market timing example was analyzed in some detail, showing that the
use of a decision theoretic economic measure, terminal wealth, which
incorporates transactions costs, produces a better evaluation of the accu-
racy of market timing forecasts than the statistical measures, although
at the cost of some considerable effort of analysis and computation.

Granger and Machina (2006) explored the links between decision
problems and their associated loss functions, asking such questions as
whether every statistical loss function can be derived from some well-
specified decision problem (there is a close but not unique link between
the two) and what the use of squared-error loss reveals or implies about
the underlying decision problem (the utility or profit functions of the
decision problem are then non-standard and may have some unrealistic
properties, such as ‘location independence’, in which profit shortfalls
are the same for all forecast errors of a given size irrespective of the price
level).

9.27 An important property of forecasts from a stationary series or a
random walk is that optimum forecasts lag the actual observations. This
is most easily seen in the case of a random walk, xt = xt−1 + at , where
the optimum least squares forecast of xT+1 given the information set xT−j,
j ≥ 0, is fT (1) = xT and so the forecast, xT , lags the actual, xT+1, by one
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time unit. Granger and Jeon (2003a, 2003b) introduced the concept of
time-distance, implicit in the above property, as an alternative way of
evaluating forecasts.

If there are a pair of time series, yt and zt , t = 1, 2, . . . , T , say, their
‘nearness’ is typically measured in terms of their vertical difference yt − zt ,
so providing measures such as the ‘mean absolute deviation’ 1

T

∑ |yt − zt |
and ‘mean squared error’ 1

T

∑
(yt − zt )2, which, if the series are the

actual and forecast values of a particular variable, are standard measures
of forecast evaluation. Rather than the vertical difference, Granger and
Jeon focused attention on the horizontal distance, so defining the notion
of time-distance in the following way.

A pair of adjacent points yt+k and yt+k+1 is said to include zt if either
yt+k ≤ zt ≤ yt+k+1 or yt+k ≥ zt ≥ yt+k+1. [S+

t ] is then defined to be the
smallest value of k ≥ 0 such that yt+k and yt+k+1 include zt . Thus if yt and
yt+1 include zt then [S+

t ] = 0; if [S+
t ] is not zero but yt+1 and yt+2 include

zt then [S+
t ] = 1, and so on. A similar quantity [S−

t ] may be defined for
k ≤ 0 and measures the number of time units one has to move through
the negative time periods until zt is included.

Now suppose that the discrete series yt is interpolated using straight
lines between adjacent points. Fractional time distances, S̄+

t and S̄−
t , can

then be defined on noting that S̄+
t yt+k+1 + (1 − S̄+

t )yt+k = zt , so that

S̄+
t =

⎧⎨⎩
zt − yt+k

yt+k+1 − yt+k
if yt+k �= yt+k+1

0 if yt+k = yt+k+1

where k = [S+
t ]. Clearly, as zt gets near to yt+k, S̄+

t → 0, while as zt gets
near to yt+k+1, S̄+

t → 1. Similarly,

S̄−
t =

⎧⎨⎩
zt − yt−k

yt−k−1 − yt−k
if yt−k �= yt−k−1

0 if yt−k = yt−k−1

where now k = [S−
t ]. Both of these quantities are positive fractions and

enable the complete time-distances to be defined as

S+
t = [S+

t ] + S̄+
t S−

t = [S−
t ] + S̄−

t

for any zt . If the interpolated series is regarded as the continuous
time process y(t) then, since yt+k + (yt+k+1 − yt+k)S+

t = zt , S+
t is then the

shortest time-distance for which y(t + S+
t ) = zt for the nearest zt on the
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positive side. Similarly, y(t − S−
t ) = zt then defines S−

t for the nearest zt

on the negative side. These time-distances lead to two further measures:

St = min (S+
t , S−

t )

and

Ssign
t =

{
S+

t if S+
t ≤ S−

t

−S−
t otherwise

St may be considered to be the time-distance version of the mean abso-
lute error, while, unlike the other measures, Ssign

t can take negative values,
which would suggest that zt leads yt .

9.28 Granger and Jeon (2003a) investigated the performance of time-
distance measures by considering first the simple bivariate model

zt = αzt−1 + βyt−1 + et yt = yt−1 + εt

where et and εt are independent white noises with variances σ 2
e and σ 2

ε

respectively. Thus

(1 − αB)(1 − B)zt = βεt−1 + (1 − B)et = wt (9.19)

for which

E(wtwt−j) =

⎧⎪⎪⎨⎪⎪⎩
β2σ 2

ε + 2σ 2
e for j = 0

−σ 2
e for j = ±1

0 otherwise

Since wt can be written as wt = at + θat−1, where at is white noise with
variance σ 2

a , it will have autocovariances

E(wtwt−j) =

⎧⎪⎪⎨⎪⎪⎩
(1 + θ2)σ 2

a for j = 0

θσ 2
a for j = ±1

0 otherwise

Thus it must be the case that

β2σ 2
ε + 2σ 2

e = (1 + θ2)σ 2
a

−σ 2
e = θσ 2

a
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from which θ and σ 2
a can be obtained as functions of β, σ 2

e and σ 2
ε .

Taking the invertible solution |θ | < 1, then (9.19) can be written as

(1 − αB)(1 − B)zt = (1 + θB)at

or

(1 − αB)(1 − B)(1 − θB + θ2B2 − θ3B3 + · · · )zt = at

This can be written as the autoregression

zt =
∑

Ajzt−j = at

where

A1 = 1 + α + θ Aj = −(−θ) j−2(1 + θ)(α + θ), j ≥ 1

Thus

E[zt+1|zt ] = A1zt + A2zt−1 + · · ·

as compared to

E[zt+1|zt , yt ] = αzt + βyt

Through simulation, Granger and Jeon (2003a) showed that, under full
information, that is, using E[zt+1|zt , yt ], the usual MSE measure will
provide an accurate estimate of the variance σ 2

e , but with only partial
information, so that E[zt+1|zt ] is used, the MSE can be considerably
upward biased.

When β = 0, so that zt = αzt−1 + et , θ = −1, A1 = α and Aj = 0, j ≥ 1,
St and Ssign

t both have median values of unity, as the model suggests. For
β > 0, the value of Ssign

t is often very small, although values near one
can occur for β ≤ 0.5 when σ 2

e is large. In general, using univariate mis-
specified models can produce poor forecasts, in terms of time-distance,
compared to bivariate models based on full information.

When the set-up is extended to allow for feedback between yt and zt ,
both S−

t and S+
t can be large and the overall simulation results suggest

that misspecification can produce substantial leads and lags.
Granger and Jeon (2003a) suggested that the distributions of S+

t , S−
t

and St , but not Ssign
t , could be modelled using survival, or duration,
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analysis, although in a study of inflation forecasting in Granger and
Jeon (2003b) the distributions were obtained by bootstrap simulation.

9.29 In applying this concept to inflation forecasting, Granger and Jeon
(2003b) returned to the result in §9.17 that σ 2

x = V( ft (1)) + σ 2
e , where

σ 2
e is the variance of the one-step ahead forecast error et,1 = xt+1 − ft (1),

and hence σ 2
x ≥ V( ft (1)), so that MSE forecasts have inhibited variabil-

ity in the sense that the variability of the one-step ahead realizations
is greater than that of the one-step ahead forecasts. Granger and Jeon
suggested that the forecasts be multiplied by a ‘timing-varying’ scaling
factor so as to equate the two variances.

9.30 Granger presented an extended discussion of his views on model
evaluation in general in his 1998 Marshall Lectures at Cambridge, pub-
lished as Granger (1999b), and later amplified these in Granger (2005,
2007), both of which also looked forward to predict how the subject was
likely to advance during the first decades of the twenty-first century.

A long-standing interest of Granger’s was the forecasting of finan-
cial variables and he published numerous articles on this topic, notable
ones being Granger (1992a), which was chosen by the editors of the
International Journal of Forecasting as the best paper published by the
journal in the years 1992 and 1993, and Granger and Poon (2003),
a comprehensive and influential survey on forecasting volatility.

Model interpretation

9.31 In their discussion of the Box–Jenkins approach (recall §8.1),
Chatfield and Prothero (1973, page 311) expressed some concern over
the difficulty of interpreting ARIMA models, arguing that they ‘are gen-
erally more difficult to understand conceptually than traditional models
involving trend and seasonal terms together with an error term which
may or may not be autocorrelated. … (T)he Box–Jenkins procedure does
not provide a simple description of the data although it does provide
straightforward forecasts’ (italics in original). They did, though, men-
tion a 1972 conference paper by Granger in which he ‘suggested several
ways of generating mixed moving average autoregressive models’. This
paper eventually became Granger and Morris (1976), whose theme was
indeed to suggest a number of ways in which an ARMA model could arise
from simpler processes.

9.32 Suppose that Xt and Yt are independent, zero mean, stationary
series following ARMA processes, so that we can write Xt ∼ ARMA(p, m)
and Yt ∼ ARMA(q, n). If Zt = Xt + Yt then Zt ∼ ARMA(x, y), a statement
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which Granger and Morris denoted as

ARMA(p, m) + ARMA(q, n) = ARMA(x, y)

They first provided the following

Lemma

MA(m) + MA(n) = MA(y)

where

y ≤ max (m, n)

and then the

Basic Theorem

ARMA(p, m) + ARMA(q, n) = ARMA(x, y)

where

x ≤ p + q y ≤ max (p + n, q + m)

This theorem is straightforward to prove. Let the ARMA representa-
tions for Xt and Yt be a(B)Xt = c(B)εt and b(B)Yt = d(B)ηt , where εt and
ηt are independent white noises. Then, since Zt = Xt + Yt , it follows that

a(B)b(B)Zt = a(B)b(B)Xt + a(B)b(B)Yt = b(B)c(B)εt + a(B)d(B)ηt

The right-hand side of this equation is of the form MA(q + m) + MA(p +
n) = MA(y), where, from the lemma, y ≤ max(p + n, q + m). The order
of the autoregressive polynomial a(B)b(B) cannot be more than p + q, so
establishing the theorem.

The inequalities in the expressions for x and y arise primarily because
a(B) and b(B) may contain common roots: for example, if Xt ∼ AR(1)
and Yt ∼ AR(2) then, from the basic theorem, Zt ∼ ARMA(x, y) where
x ≤ 3 and y ≤ 2. However, if (1 − aB)Xt = εt and (1 − aB)(1 − bB)Yt = ηt ,
so that a(B) and b(B) contain a common root, then

(1 − aB)(1 − bB)Zt = (1 − bB)εt + ηt ∼ ARMA(2, 1)

In general, if a(B) and b(B) have k roots in common then the inequal-
ities in the basic theorem become x = p + q − k and y ≤ max(p + n −
k, q + m − k). The continuing need for the inequality on y may be seen
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from the following example. Suppose that again (1 − aB)Xt = εt but
now (1 + aB)Yt = ηt , and suppose further that εt and ηt have common
variance σ 2. Now

(1 − aB)(1 + aB)Zt = (1 + aB)εt + ηt = ζt

say. It then follows that E(ζ 2
t ) = 2(1 + a2)σ 2 and E(ζtζt−j) = 0 for all

j > 0, so that ζt is white noise and Zt ∼ AR(2) rather than ARMA(2, 1),
as would generally occur when two independent AR(1) processes are
added together. Granger and Morris called such a case a ‘coincidental
situation’.

As Granger and Morris remarked, if Xt and Yt are both stationary,
all cases of common roots and other situations where x and y take
less than their maximum values might be considered coincidental. For
ARIMA models, however, the presence of unit roots in the autore-
gressive polynomials will naturally lead to common roots. Thus, if
Xt ∼ ARIMA(p, d1, m) and Yt ∼ ARIMA(q, d2, n) then Zt ∼ ARIMA(x, d, y),
where x ≤ p + q and d = max(d1, d2). If d1 ≥ d2, y ≤ max(p + n + d1 −
d2, q + m), while if d2 ≥ d1, y ≤ max(p + n, q + m + d2 − d1).

The basic theorem may be generalized to cover the sum of any number
of independent series, so that, using an obvious extension of notation,

N∑
i=1

ARMA(pi, mi) = ARMA(x, y)

where

x ≤
N∑

i=1

pi y ≤ max (x − pi + m, i = 1, . . . , N)

9.33 Granger and Morris went on to consider a number of special cases
of the basic theorem, continuing to assume that independent compo-
nents are being aggregated and ruling out coincidental reductions of
parameters.

(i) AR(p) + white noise = ARMA(p, p)
This corresponds to an AR(p) signal plus a simple white noise
observational error.

(ii) AR(p) + AR(q) = ARMA(p + q, max(p, q)), e.g., AR(1) + AR(1) =
ARMA(2, 1)
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This might correspond to a series which is the aggregate of two
independent AR series: note that the sum of k AR(1) series will be
ARMA(k, k − 1).

(iii) MA(p) + MA(q) = MA( max(p, q)), e.g., MA(p) + white noise = MA(p)
The addition of a white noise error to an MA process will not alter
the form of the process, although the parameter values will change.

(iv) ARMA(p, m) + white noise = ARMA(p, p) if p > m, but = ARMA(p, m)
if p < m
The addition of a white noise error may alter the order of an ARMA
model but need not do so.

(v) AR(p) + MA(n) = ARMA(p, p + n)

Cases (ii) and (v) suggest that a series that is an aggregate of several
series, some of which are AR, will very likely be an ARMA process, as will
the addition of white noise to either an AR or ARMA process (cases (i)
and (iv)). Only if all the individual series are MA processes or white
noise will the aggregate be MA. These conclusions can also generally
be reached if the assumption of independence is relaxed in a realistic
fashion.

9.34 Granger and Morris considered other situations that may occur
in practice and which would lead to ARMA models. These included
time aggregation, in which a variable obeys a simple model such as an
AR(1) when it is recorded at an interval of K units but an ARMA model
when it is actually observed at an interval of M > K units, and situations
where, for example, a variable obeys the model Xt − aXt−b = εt , where
b is non-integer. This model may be shown to have the AR(∞) repre-
sentation

∑
hjXt−j = εt , where hj = (sin ( j − b)π)/( j − b)π , which may be

approximated by an ARMA process.
If there is a bivariate autoregressive scheme with feedback in opera-

tion, so that

a(B)Xt + b(B)Yt = εt c(B)Xt + d(B)Yt = ηt b(0) = c(0) = 0

then eliminating Yt leads to the univariate model

(a(B)d(B) − c(B)b(B))Xt = d(B)εt + b(B)ηt

for Xt , which is ARMA(p, q) with, generally, p > q. Granger and Morris
thus concluded that many real data situations could give rise to ARMA
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models and hence that these were the most likely to be found in
practice.

9.35 They then asked whether a given ARMA(p, q) model could have
arisen from aggregating some simpler processes: this is referred to as real-
izability. Sometimes this question can be answered immediately: from
the bivariate example above, if p < q then a feedback model is not
appropriate. In other cases simplifications may not always be possi-
ble, as certain conditions on the coefficients of the ARMA model may
need to be satisfied for a simpler model to be realizable. As an exam-
ple, Granger and Morris considered whether an observed ARMA(1, 1)
model could equal an AR(1) plus white noise. To investigate this, sup-
pose that (1 + aB)Xt = εt and Yt = ηt . Then, from case (i) of §9.33,
Zt = Xt + Yt ∼ ARMA(1, 1), given by

(1 + aB)Zt = εt + (1 + aB)ηt

If the observed ARMA(1, 1) process is

(1 + cB)Zt = (1 + dB)ζt

then for these processes to be equivalent we clearly require that c = a
but we also need some further realizability conditions to ensure that the
right-hand sides of the two processes are equivalent. These are obtained
by equating variances and lag one autocovariances,

dσ 2
ζ = aσ 2

η

(1 + d2)σ 2
ζ = σ 2

ε + (1 + a2)σ 2
η

and defining the lag one autocorrelation ρ1 = d/(1 + d2). It then
follows that

ρ1 = c
(1 + c2) + σ 2

ε /σ
2
η

and so the realizability conditions are

1
1 + c2

>
ρ1

c
≥ 0

By a generalization of this approach, the ARMA(2, 2) model

(1 + c1B + c2B2)Zt = (1 + d1B + d2B2)ζt
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can only be written as the sum of an AR(2) and white noise if the
following realizability conditions are satisfied:

1
1 + c2

1 + c2
2

>
ρ2

c2
≥ 0

ρ1

c1(1 + c2)
= ρ2

c2

where

ρ1 = d1(1 + d2)
1 + d2

1 + d2
2

ρ2 = d2

1 + d2
1 + d2

2

If only the first of these conditions hold then the ARMA(2, 2) can be
written as the sum of an ARMA(2, 1) plus white noise. Granger and
Morris concluded from these examples that some models are not capa-
ble of simplification and that the realizability conditions will typically
be rather complicated.

Invertibility and non-linearity

9.36 In (linear) ARMA models the requirement of invertibility ensures
that the π–weights of the autoregressive representation form a conver-
gent series: ‘in general, the linear process π(B)xt = at is invertible if
the weights πj are such that the series π(B) converges on, or within the
unit circle’ (Box and Jenkins, 1970, page 51). Granger and Andersen
(1978a) investigated the concept of invertibility when the assumption
of linearity has been relaxed by considering a general class of univariate
models defined by

xt = f (xt−j, εt−j; j = 1, . . . , P) (9.20)

where εt is an unobserved input into the system which is assumed to
be pure white noise, so that εt and εs are independent for t �= s rather
than just being uncorrelated (see, for example, Granger, 1983, and §9.41
below, for more on the distinctions between white noise, pure white
noise and empirical white noise). For models of this type to be useful for
forecasting, and provided the function f ( ) actually contains some εt−j,
j ≥ 1, we must be able to estimate the εt sequence from the observed
x’s. A way of doing this is to assume values for as many initial ε’s as are
needed, ε̂−j, j = 0, . . . , P − 1, say, and then, assuming that x−j, j = 0, . . . ,
P − 1, are also available, estimate ε1 directly from (9.20) as

ε̂1 = x1 − f (x1−j, ε̂1−j; j = 1, . . . , P)
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after which the sequence ε̂2, ε̂3, . . . can be obtained recursively. Denoting
the ‘estimation error’ as et = εt − ε̂t , Granger and Andersen defined (9.20)
to be invertible if E[e2

t ] → 0 as t → ∞, so that the variance of the error
involved in estimating εt from a finite number of past and present x’s
tends to zero as that number tends to infinity, unconditional on the
initial values. If the parameter values of (9.20) are not known exactly
but have been estimated, the invertibility condition can be replaced by
E[e2

t ] → c, where c is some finite constant.
For the simple MA(1) model xt = εt + bεt−1, the MMSE forecast of

xT+1 is fT (1) = bεT , but this needs to be made operational by using
an estimate ε̂T obtained by setting ε̂0 = 0 and recursively generating
ε̂t = xt − bε̂t−1. The use of ε̂t will yield the error series

et = xt − bεt−1 − (xt−1 − bε̂t−1) = −bet−1

which will have the solution et = (−b)t e0. Clearly et → 0, and hence
E[e2

t ] → 0, if |b| < 1, which is the standard condition that the MA(1)
model is invertible (recall §4.4). The ARMA(p, 1) model will have exactly
the same invertibility condition.

If the moving average parameter is replaced by an estimate b̂ then the
error series becomes

et = (b − b̂)εt−1 − b̂et−1

which will have the solution

et = (−b̂)t e0 + (b − b̂)
t∑

j=1

b̂ j−1εt−j

If |b̂| < 1 then

E[e2
t ] = b̂2t e2

0 + (b − b̂)2

1 − b̂2
σ 2
ε

where σ 2
ε = E[ε2

t ], will tend to a finite value given by the second term.

9.37 For the MA(1) process the only non-zero autocorrelation is ρ1 =
b/(1 + b2), which may be solved to obtain b as a function of ρ1. It is
easily shown, however, that there will be two solutions, b and 1/b, thus
leading to the choice of the invertible solution |b| < 1 to ensure a conver-
gent AR(∞) representation. The extension of this idea to MA(q) processes,
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or indeed to ARMA(p, q) processes, leads to the general definition used
by Box and Jenkins (1970, page 74) that such models are invertible if
the roots of the characteristic equation associated with the moving aver-
age polynomial θ(B) all lie outside the unit circle, so that the AR(∞)
representation is convergent. It is clear that this definition is only rele-
vant to linear models and Granger and Andersen went on to show that
their definition is operational for non-linear as well as linear processes.

As an example of a non-invertible model they consider the non-linear
moving average

xt = εt + αε2
t−1 (9.21)

for which the ε̂’s will be obtained by recursively solving

ε̂t = xt − αε̂2
t−1

The error series is then

et = xt − αε2
t−1 − (xt − αε̂2

t−1) = −α(ε2
t−1 − ε̂2

t−1)

= −α(εt−1 − ε̂t−1)2 − 2αε̂t−1(εt−1 − ε̂t−1)

= −αe2
t−1 − 2αε̂t−1et−1

The solution to this equation has two components, one of which is
also the solution to zt = −αz2

t−1, a difference equation that Granger and
Andersen showed was unstable and whose only non-trivial solution is
explosive. Thus ε̂t will diverge from εt and (9.21) must therefore be
non-invertible. A similar argument shows that the non-linear models
analyzed by, for example, Robinson (1977) and which take the form

xt = εt + αεt−1εt−2

are also never invertible.

Bilinear models

9.38 A related non-linear model is the bilinear form

xt = εt + αxt−1εt−1 (9.22)

for which

ε̂t = xt − αxt−1ε̂t−1
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and

et = −αxt−1et−1

This model has the solution

et = (−α)t

⎛⎝ t∏
j=1

xj−1

⎞⎠ e0

Granger and Andersen (1978b) proved that a sufficient condition for
invertibility is that

E[α2x2
t ] = λ2(2λ2 + 1)

1 − λ2
< 1

where λ = ασε, provided λ2 < 1. Solving the quadratic (in λ2) 2λ4 +
2λ2 − 1 = 0 implies that a sufficient condition for invertibility is that
|λ| < 0.605.

Granger and Andersen (1978b) proved several interesting properties
concerning the bilinear model (9.22). They showed that xt is station-
ary if |λ| < 1 and that its ACF is

ρ1 = λ2(1 − λ2)
1 + λ2 + λ4

ρk = 0, k > 1

ρ1 increases in value as |λ| increases from zero, reaching a maximum
of 0.155 at |λ| = 0.605 and then decreasing. The model is found to be
non-invertible for |λ| > 0.707, but in the interval from approximately
0.6 to 0.7 the issue is less clear-cut. The distribution of xt is generally
skewed, with the third moment increasing with λ > 0, reaching a maxi-
mum at λ = 0.8 and decreasing thereafter. The fourth moment does not
exist for λ > 0.75 and some higher moments do not exist for non-zero λ.

These very complicated properties, being highly dependent upon λ,
contrast sharply with the simple properties of the linear AR(1) and MA(1)
models. Given the behavior of the ACF, the bilinear form could very
easily be mistaken for an MA(1), with corresponding loss of forecast
accuracy: for example, if σ 2

ε = 1 and α = λ = 0.55, the error variance
from the MA(1) model is nearly double that from using the true bilin-
ear form (9.22). Can the bilinear model actually be identified from an
observed series or is it completely indistinguishable from an MA(1)?
From the results of §9.20, if xt ∼ MA(1) then x2

t ∼ MA(1), but Granger
and Andersen showed that if xt is of the form (9.22) then the ACF of x2

t is
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the same as that of an ARMA(1, 1) process, so that identification of the
correct bilinear form is possible, at least in principle.

9.39 The bilinear form (9.22) is a special case of the general Bilinear
ARMA (BARMA) model of order (p, q, P, Q)

xt =
p∑

i=1

φixt−i + εt +
q∑

j=1

θjεt−j +
Q∑

k=0

P∑
l=1

αklεt−kxt−l,

This model is linear in the x and ε variables separately but not in both. If
p = 0 (q = 0) the model is said to be homogenous in the output (input),
although Granger and Andersen (1978b, 1978c) concentrated on the
simpler model that is homogenous in both variables:

xt = εt +
Q∑

k=0

P∑
l=1

αklεt−kxt−l (9.23)

If αkl = 0 for all l < k then the model is said to be superdiagonal and the
multiplicative terms with non-zero coefficients are such that the input
εt−k occurs after the output xt−l, so that these terms are independent.
Correspondingly, the model is subdiagonal if αkl = 0 for all l ≥ k, while
the special case when αkl = 0 for all l �= k is said to be diagonal: (9.23)
is thus BARMA(0, 0, 1, 1) with the additional restriction α01 = 0. This
restriction is a useful one because, if α0l = 0 for all l, then (9.23) can
always be written as

xt = εt + H(εt−1, εt−2, . . . )

where H( ) is some non-linear function, and forecasting becomes
particularly easy if the model is invertible.

A simple example of a superdiagonal model is

xt = αxt−2εt−1 + εt (9.24)

which will be stationary if |λ| = |ασε| < 1 and invertible for |λ| < 0.707.
Since ρk = 0 for all non-zero k, the model thus has a ‘white noise’ prop-
erty that suggests that xt cannot be forecast from its past when clearly it
can be, although in a non-linear fashion, as the ACF of x2

t from (9.24)
can be shown to be that of an ARMA(2,1) process.

9.40 A particularly simple way in which a bilinear form might arise is
to suppose that the proportionate change (or rate of return) of a series is
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generated by an MA(1) process, so that

xt − xt−1

xt−1
= εt + bεt−1

This can be written as

xt = xt−1 + εt xt−1 + bεt−1xt−1

which is a bilinear form, albeit a non-stationary one. If xt can only
be observed with added noise, so that the available data is yt = xt + nt ,
then yt will follow a non-homogenous bilinear model.

Chaotic processes

9.41 Granger (1983) discussed a variety of models that appear to be
white noise but have the potential of being forecast non-linearly. To
make his development more precise, he defined three types of white
noise: ‘standard’ white noise, where xt is uncorrelated with its past val-
ues; ‘pure’ white noise, where xt is independent of its past values; and
‘empirical’ white noise, where the sample covariances tend to zero as
the sample size increases, so that the SACF will, in the limit, be the same
as white noise.

One particular class of models that created considerable interest dur-
ing the 1980s was that of ‘white chaos’. Three examples of this class are
the logistic

xt = 4xt−1(1 − xt−1)

the triangular

xt = 1 − 2
∣∣xt−1 − 1

2

∣∣
and the cubic

xt = xt−1 + 4xt−1(x2
t−1 − 1)

All three processes produce sequences (at least for most values) that are
empirical white noise and lie in the region 0 to 1, even though they
are deterministic and xt is perfectly forecastable from xt−1. Each process
has a pair of non-stable equilibrium points (values for which xt = xt−1),
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these being 0 and 3
4 for the logistic, 0 and 2

3 for the triangular and 0
and 1 for the cubic, with the triangular model producing a sequence
that appears to be rectangularly distributed over 0 to 1.

A further example is the tent map

xt = a−1xt−1 0 ≤ xt−1 < a
= (1 − a)−1(1 − xt−1) a ≤ xt−1 ≤ 1

for which a sequence generated from the map will display an SACF con-
sistent with an AR(1) process. When the constant a is close to 0.5, the
autocorrelations will be close to empirical white noise. A final exam-
ple is xt = x2

t−1 − 2 with starting value −2 < x0 < 2. This has equilibrium
points at 2 and −1, although unless x0 = 2 the first equilibrium point is
never reached. For this process both xt and x2

t display empirical white
noise even though a regression of xt on x2

t−1 will give perfect forecasts.

9.42 Granger was rather skeptical about the practical usefulness of
chaotic models and, in particular, as to whether there was any evi-
dence of such processes actually occurring in reality rather than just as
computer simulations or in experiments in physics laboratories. Three
quotes from Granger’s comments on the Chatterjee and Yilmaz (1992)
and Berlinger (1992) reviews of the links between chaos and statistics
make this skepticism abundantly clear.

There is a great deal to be admired in the extensive work on chaos
that has appeared in recent years, including some startling but simple
theorems, and also the best art work produced by mathematics. How-
ever, in my opinion, it is often surrounded by an unnecessary amount
of hype, considerable zeal and possibly some illogical arguments and
confusion. Granger (1992b, page 102)

Chatterjee and Yilmaz take the position that [chaos] is ubiquitous,
finding examples in ‘such diverse fields as physiology, geology, …,
economics’ and ‘theoretical models of population biology’. There are
also theoretical models in economics that produce chaos, but that
does not imply that it occurs in practice. I would prefer to suggest
that there is no evidence of chaos outside of laboratories. My reason
is that there exists no statistical test, that I know of, that has chaos as
its null hypothesis. There are plenty of tests that have as a null H0 :
iid (or linear) and are designed to have power against chaos. How-
ever, as is well known by statisticians, if one rejects the null a specific
alternative hypothesis cannot be accepted. If a null of linearity or iid
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is rejected, one cannot accept (white) chaos, as nonlinear stochastic
models are also appropriate. … Until a property P can be found that
holds only for chaos and not for stochastic series, and a test is based
on P with chaos as the null, can there be a suggestion that chaos is
found in the real world. (ibid., page 104: italics in original)

I think that scientists working in this area are doing a disservice to this
important area of research by overselling its relevance, by trying to
equate it with randomness and by using concepts (such as probability)
that are unnecessary and only lead to confusion. The techniques being
developed for analysis of chaotic processes … are potentially powerful
and useful when applied to truly stochastic, real-world series. There
is a need for statistical methods to investigate the properties of these
techniques … and this, in my opinion, is the natural link between
chaos and statistics. (ibid., page 104)

Taking up the theme of the latter quotes, Granger focused his own
attention on testing both for chaos and also for more general forms
of non-linearity: see Lui, Granger and Heller (1992), Lee, White and
Granger (1993) and Granger, Teräsvirta and Lin (1993). The general
conclusion from these exercises confirmed Granger in his view ‘that
probabilistic methods are … the most appropriate technique for ana-
lyzing economic time-series data. We suspect that this conclusion also
applies to much data where chaos has been “found” in the behavioral sci-
ences, biology, health sciences and education’ (Lui, Granger and Heller,
1992, page S39).

9.43 Granger continued to investigate models of stochastic non-
linearity, whether in terms of forecasting ability (Granger and Lin,
1994a), theoretical issues (Granger and Lin, 1994b; Granger, Inoue and
Morin, 1997; Granger, 2008b), or modelling methodology (Granger,
1991, 1993), as well as publishing various applied contributions. He
also drew together the non-linear models extant in the early 1990s
in the monograph Modelling Nonlinear Economic Relationships (Granger
and Teräsvirta, 1993), an updated version of which was published
posthumously as Teräsvirta, Tjostheim and Granger (2011).
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Granger: Long Memory, Fractional
Differencing, Spurious Regressions
and Co-integration

Long memory and fractional differencing

10.1 Granger’s research on bilinear models had left him dissatisfied as
he did not feel that they, or indeed many other forms of non-linear
models, were of much practical use. He was also struck by the limitations
imposed by ARIMA(p, d, q) models on the behaviour of the ACF, which
declines either geometrically, when d = 0, or linearly when d = 1. In
Granger (1979) he suggested the possibility of models displaying long
memory, taking his cue from the water resources literature (as surveyed by
Lawrence and Kottegoda, 1977) and, in particular, the models proposed
by Mandelbrot and Van Ness (1968). Rather than having a spectrum
taking the form ω−2 for small frequencies ω, as would be the case for a
process that required first differencing for it to be rendered stationary
(see §10.2 below), such models would have spectra proportional to ω−α

for 0 < α < 2. If long memory models should prove useful then ‘ordinary
integer differencing is inappropriate, yet the series would have an infinite
variance and its correlogram would suggest differencing according to
the Box–Jenkins rules. If such series arise in practice, they could be of
considerable importance and “fractional differencing” should become a
standard component of analysis’ (Granger, 1979, page 251). An example
given by Granger of a long-memory process was the infinite moving
average

xt =
∞∑

j=0

blog jat−j

where at is white noise, although he presented no analysis of it.

343
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10.2 The idea of long memory was formally developed by Granger in two
papers published in the subsequent year: Granger and Joyeux (1980) and
Granger (1980b).1 The starting point was to consider yt = 
dxt , where,
adapting the terminology of §9.34, yt ∼ I(0) and xt ∼ I(d): yt and xt are
said to be integrated processes of order zero and d respectively. If yt has
spectrum fy(ω) then xt , although it does not strictly possess a spectrum,
can be thought to have the ‘pseudo-spectrum’

fx(ω) = |1 − z|−2dfy(ω) = 2−d(1 − cosω)−dfy(ω) z = e−iω ω �= 0

If yt has the ARMA representation φ(B)yt = θ(B)at then limω→0 fy(ω) =
c > 0 and it then follows that, for ω small, fx(ω) = cω−2d , where

c = σ 2
a

2π

(
θ(1)
φ(1)

)2

More generally, suppose that xt has the pseudo-spectrum

fx(ω) = α(1 − cosω)−d α > 0 ω �= 0 (10.1)

When differenced d times xt will produce white noise but, for −1< d< 1
2 ,

d �= 0, the ACF of xt will be of the form

ρk =  (1 − d)
 (d)

 (k + d)
 (k + 1 − d)

where  (n) = (n − 1)! is the gamma function. Using the standard approx-
imation that, for k large,  (k + a)/ (k + b) ≈ ka−b, these autocorrelations
may be approximated as

ρk ≈  (1 − d)
 (d)

k2d−1 = A(d)k2d−1 (10.2)

This may be contrasted with the autocorrelations from a stationary
ARMA model which, for large k, are approximately of the form Aθk with
|θ | < 1. These tend to zero at an exponential rate and thus decay quicker
than the hyperbolic decline of the ρk given in (10.2), which thus display
a ‘long memory’ property.

10.3 The AR(∞) representation π(B)xt = at has π -weights given by

πk =  (k − d)
 (−d) (k + 1)

= (k − d − 1)!
(−d − 1)!k ! ≈ Ak−(1+d)
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while the MA(∞) representation xt = ψ(B)at has ψ-weights given by

ψk =  (k + d)
 (d) (k + 1)

= (k + d − 1)!
(d − 1)!k! ≈ Ckd−1

Thus the ψk and |πk| also tend to zero hyperbolically and hence decay
more slowly than the exponential decline associated with a stationary
process, so that no ARMA(p, q) process with finite p and q would provide
an adequate approximation for large k. If d is positive then the π -weights
are negative and the ψ-weights positive, with these signs being reversed
for negative d. The partial correlations are given by φkk = d/(k − d) and
hence decay as k−1 independently of d.

Writing the MA(∞) representation as

xt = C
∞∑

k=1

kd−1at−k + at

shows that xt has variance

V(xt ) = C2σ 2
a

(
1 +

∞∑
k=1

k2(d−1)

)

Since
∑∞

k=1 k−s converges for s > 1, the variance of xt will be finite
provided d < 1

2 but will be infinite for d ≥ 1
2 .

10.4 The model represented by the spectrum in (10.1) is


dxt =
(

1 − dB + d(d − 1)
2! B2 − d(d − 1)(d − 2)

3! B3 + · · ·
)

xt = at (10.3)

and may be regarded as fractional white noise. The ARIMA(p, d, q) process
with p and q integer but d real, φ(B)
dxt = θ(B)at , will exhibit long-run
behaviour that is similar to the ARIMA(0, d, 0) process (10.3) because the
φ and θ parameters model the correlation structure at low lags and will
thus have negligible influence on very distant observations, whose long-
run correlation structure is modelled by d. Such processes have been
given the acronym ARFIMA, with ‘FI’ standing for fractional integration
(see Baillie, 1996, for a later survey of ARFIMA processes). In general, xt

will be stationary if d < 1
2 and invertible if d > − 1

2 .

10.5 How might fractionally integrated models arise? Granger sug-
gested that aggregation was a possible mechanism. Suppose there are
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N independent AR(1) processes

xj,t = φjxj,t−1 + aj,t j = 1, 2, . . . , N (10.4)

From §9.35 the aggregate x̄t = x1,t + · · · + xN,t will then be ARMA(N,
N − 1) unless there is some cancellation of roots in the autoregressive and
moving average polynomials. Since many macroeconomic variables, for
example, are aggregates of a large number of micro-variables, this would
suggest that ARMA models fitted to such aggregates would have to be of
high order, which is not found to be the case in practice. Consider, then,
the spectrum of x̄t ,

f̄ (ω) =
N∑

j=1

fj(ω)

where fj(ω) is the spectrum of xj,t which, from (10.4), is

fj(ω) = σ 2
j

2π
1

|1 − φjz|2

with σ 2
j being the variance of aj,t . If the φj are assumed to be ran-

dom variables drawn from a population with distribution function F(φ)
and the σ 2

j are drawn from a population independent of the φj then,
approximately,

f̄ (ω) ≈ N
2π

E[σ 2
j ] ·

∫
1

|1 − φz|2 dF(φ)

If F(φ) is the distribution function of a discrete random variable on
[−1, 1], so that φ can take just m, say, values in this range then f̄ (ω)
will be the spectrum of an ARMA(m, m − 1) process. However, if φ is con-
tinuous then f̄ (ω) will not correspond to any finite order ARMA process.
Suppose that φ is beta distributed over the range (0, 1):

dF(φ) = 2
B(p, q)

φ2p−1(1 − φ2)q−1dφ, 0 ≤ φ ≤ 1

= 0 elsewhere

where p > 0, q > 0 and B(p, q) is the beta function. Granger showed that,
provided q < 1, the kth autocovariance of x̄t could be written as

γ̄k =  (q − 1)
B(p, q)

 (p + k/2)
 (p + k/2 + q − 1)

≈ Dk1−q
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for large k. On comparing this with (10.2) it follows that x̄t ∼ I
(1 − q/2) with 1 − q/2 > 1

2 , so that x̄t is fractionally integrated with infi-
nite variance. Granger relaxed some of the conditions required for this
approximation and showed that it was possible for x̄t to be stationary
(i.e., I(0)) if the φj’s were constrained to be less than some quantity which
is itself strictly less than one.

If the component series are now generated as xj,t = φjxj,t−1 + yj,t , where
the yj,t are independent of each other but serially correlated, then x̄t ∼
I(dy + 1 − q), where dy is the order of integration of ȳt = y1,t + · · · + yN,t .
Granger then considered more general models in which dependence and
feedback were allowed and found that aggregation was often likely to
lead to aggregate series that were fractionally integrated.

10.6 Granger thought that the practical usefulness of long-memory
models lay in long-run forecasting, where the shape of the spectrum
at low frequencies becomes paramount. It was also clear that a realistic
method for estimating the fractional differencing parameter d needed to
be found. A rudimentary method was proposed in Granger and Joyeux
(1980) but much was left undeveloped, a gap that was quickly filled
over the next few years by various researchers: for example, Geweke
and Porter-Hudak (1983) proposed a method based on log-periodogram
regression, Sowell (1992) introduced ML methods of estimating d jointly
with the other parameters in an ARFIMA model, and a huge literature
on semi-parametrically estimating d was subsequently developed, this
being surveyed by Velasco (2006).

10.7 Granger returned to long memory processes in the mid-1990s, pub-
lishing a series of papers, primarily co-authored with Zhuanxin Ding,
investigating a variety of models using a very long run of US stock
prices. This series was the daily price of the S&P 500 index from Jan-
uary 1928 to August 1991, totaling over 17,000 observations. Figure 10.1
shows the daily price (pt ), daily (compounded) return, calculated as the
log-differences rt = ln pt − ln pt−1, and the absolute daily return (|rt |). As
Ding, Granger and Engle (1993) pointed out, there is an upward trend
for pt while rt is fairly stable around a mean of 0.00018. Large values of
|rt | are more likely to be followed by large values than small values and
vice versa, so that market volatility appears to be changing over time.
Volatility was particularly high during the Great Crash of 1929 and the
subsequent Great Depression of the early 1930s and there was also a large
drop in prices and a short burst of volatility at the Crash of October 1987,
but otherwise the market has been relatively stable.
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Figure 10.1 S&P 500 daily price index (top); daily returns (middle); absolute daily
returns (bottom)

Figure 10.2 shows the SACFs for rt , r2
t and |rt | for the first 200 lags

along with ±1.96/
√

T = ±0.015 bounds, which correspond to a 95%
confidence interval for the estimated sample autocorrelations if rt is inde-
pendently and identically distributed (i.i.d.). A considerable number of
sample autocorrelations lie outside these bounds, particularly noticeable
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Figure 10.2 SACFs of daily returns (r), squared daily returns (r2) and absolute
daily returns (|r|) with 95% confidence bands under the i.i.d. hypothesis

ones being the first, estimated to be 0.063, and the second, −0.039,
so that returns cannot be considered to be a realization from an i.i.d.
process.

If rt was an i.i.d. process then any transformation of rt , such as r2
t

and |rt |, would also be i.i.d. These transformations would then also have
sample autocorrelations with standard errors 1/

√
T under the i.i.d null

as long as r2
t has finite variance and |rt | finite kurtosis. From Figure 10.2

it is seen that all sample autocorrelations for these transformations fall
well outside the i.i.d. 95% confidence bands and, moreover, that they are
all positive, with the sample autocorrelations for absolute returns always
being greater than those for squared returns for every one of the first 200
lags: the daily S&P 500 return is clearly not an i.i.d. process.

Figures 10.3 and 10.4 show the SACFs of |rt |d for various values of d.
These power transformations of absolute returns have significant positive
autocorrelations at least up to lag 200 for d ≥ 0.25. The autocorrela-
tions decrease relatively quickly during the first month or so, and then
decrease very slowly. The largest autocorrelations are found for d = 1 and
they decline almost monotonically as d moves away from 1 in either
direction. This phenomenon, whereby the autocorrelations of power
transformed absolute stock returns are greatest for d = 1 and exhibit the
slow decline of a long-memory process, was termed the ‘Taylor effect’ by
Ding and Granger (1995), as it was first reported in Taylor (1986).

Figure 10.5 shows the sample autocorrelations at lags 1, 2, 5 and 10
as a function of d. These autocorrelations are seen to be smooth func-
tions of d, having a maximum in the region of d = 1 and a saddle point
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Figure 10.3 SACFs of |r|d for d = 1, 0.5, 0.25, 0.125 from high to low
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Figure 10.4 SACFs of |r|d for d = 1, 1.25, 1.50, 1.75, 2 from low to high

between d = 2 and 3, although they remain positive for all lags and
values of d.

Shown below is the lag k∗ at which the first negative autocorrelation
appears for |rt |d for various values of d. In most cases |rt |d has positive
autocorrelations over more than 2500 lags, i.e., over ten years!

d 0.125 0.25 0.5 0.75 1 1.25 1.5 1.75 2 3

k∗ 2028 2534 2704 2705 2705 2705 2705 2685 2598 520
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Figure 10.5 Autocorrelation of |r|d at lags 1, 2, 5 and 10

The sample autocorrelations for |rt | are shown in Figure 10.6 for the
first 2500 lags. Not only are they all positive but they all lie outside
the i.i.d. 95% confidence interval. Ding et al. (1993) fitted several mod-
els to these autocorrelations. The first assumes ρk = αβk, so that the
autocorrelations decrease exponentially with k, similar to the ACF of
an ARMA process. The second allows the autocorrelations to decline
in a manner consistent with a fractionally integrated process, so that,
from §10.2,

ρk =  (1 − β)
 (β)

 (k + β)
 (k + 1 − β)

=  (1 − β)
 (β)

(k + β − 1) · · ·β
(k − β) · · · (1 − β)

 (β)
 (1 − β)

= (k + β − 1) · · ·β
(k − β) · · · (1 − β)

= ρk−1
(k + β − 1)

(k − β)
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Figure 10.6 Sample and theoretical autocorrelations for absolute daily returns for
2500 lags

The third, and preferred, model is a combination of these with the ACF
being specified as

ρk = αρk−1β
k
2

kβ3
(10.5)

The parameters can easily be estimated by least squares applied to a log
transformation of (10.5), leading to

ρk = 0.893ρ0.784
k−1 (0.999955)k/k0.057

These theoretical autocorrelations are also shown in Figure 10.6 and are
seen to fit the sample autocorrelations quite well except at very low lags.

Ding et al. considered both temporal aggregation of returns and sub-
periods of the data. Temporal aggregation did not alter the long memory
property but long memory was found to be much more prevalent in
the pre-1946 period than in the postwar period, in the sense that the
later period was characterized by autocorrelations that were smaller and
decreased quicker.

10.8 Ding and Granger (1995, 1996) proposed a formal model for the
long-memory property of absolute returns. They began by assuming that
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the return is given by the product process rt = σt et , where et is i.i.d. with
zero mean and unit variance. The model for the conditional standard
deviation σt is, for 0 < d < 1

2 ,

σt = (1 −
d)
|rt |

E|et | =
∞∑

j=1

d
 (1 − d)

 ( j − d)
 ( j + 1)

|rt−j|
E|et | (10.6)

For this model ρk = 0 for all k > 0 but the correlation between |rt | and
|rt−k| is

ρk(|r|) =  (1 − d)
 (d)

 (k + d)
 (k + 1 − d)

which, from §10.2, is the same as the autocorrelation from a fractionally
integrated series. This can also be seen by rewriting (10.6) as


d |rt | = σt (|et | − E|et |) = εt

where εt = σt (|et − E|et ||) is a mean zero short memory process with
conditional heteroscedasticity.

Using the Geweke and Porter-Hudak (1983) log periodogram regres-
sion approach (known as the GPH estimator), the fractional differencing
parameter is estimated to be d̂ = 0.474, which proves to be too large an
estimate as the fitted autocorrelations are much larger than the sample
autocorrelations (see Ding and Granger, 1996, Figure 4). A better fit is
obtained by directly minimizing the squared differences between ρk(|r|)
and the sample autocorrelations of |rt |, which produces d̂ = 0.358. Even
this value of d does not fit the first 20 or so autocorrelations particularly
well, so that the model (10.5), which includes a short-run component,
performs better.

Further results on the absolute returns of a wide variety of specula-
tive assets were provided in Granger, Spear and Ding (2000), who also
extended (10.6) to

σt = λσt−1 + (1 − λ)
∞∑

j=1

d (p + d) (p + j − 1)
 (p) (p + d + j)

|rt−j|
E|et |

where 0 ≤ λ ≤ 1. The specification (10.6) is recovered if p + d = 1 and
λ = 0. This specification also allows the mean and standard deviation
of |rt | to be equal, as was found for a number of series by Granger et al.,
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particularly after some outlier reduction, when the marginal distribution
of |rt | could be taken to be exponential (see also Granger and Jeon, 2002).
Granger and Sin (2000) considered various aspects of forecasting absolute
returns.

An important finding in these studies (confirmed by Mills, 1997, using
other financial time series) was that d appeared to be time-varying, with
estimates of the parameter altering markedly across subperiods of the
sample: for example, splitting the S&P 500 sample into ten subperiods of
approximately seven years produced estimates of d ranging from 0.156
for the period 1954–60 to 0.714 for 1974 to 1979. Ding and Granger
(1996) offered some possible models for explaining this time-varying
long memory.

10.9 Ding and Granger (1996) also discussed generalized integrated (GI)
processes, a particular example of which is the GI(d, q) model


dxt = ( ln
−1)−qεt

where εt is white noise. Provided d > 0 or if d = 0 but q > 0, the process
will have long memory. The GI(d, q) series has the spectrum

|1 − eiω|−2d |ln(1 − eiw)−1|−2qσ 2
ε

which, for small ω, will be proportional to ω−2d( lnω)2q. The d = 0, q > 0
case, denoted GI(0+), will have autocorrelations that, for large lags, are
close to being proportional to the inverse of the lag.

Non-linearity and long memory

10.10 Using the Hermite polynomial approach of Granger and Newbold
(1976) (cf. §9.22), Ermini and Granger (1993) considered non-linear
transformations of integrated processes. Polynomial transformations of
order m of a random walk with drift will contain polynomial time trends
of order m and drifts (defined as the unconditional mean of the first dif-
ferences of the transformed series) of order m − 1. If the original series
has no drift the transformed series will exhibit a polynomial time trend
of order [m/2] and a drift of order [m/2] − 1, which will therefore be
a constant for m ≤ 3. The autocorrelations of the transformed process
will approximate the autocorrelations of an I(1) process irrespective of
the order m as long as the sample size is large but, if the sample is
small and m is large, the autocorrelations may appear to be those of
an I(0) process. The exponential transformation of a random walk will,
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in general, contain exponential trends in both mean and variance even
if the random walk does not contain a drift. It will also have autocor-
relations that decline in a similar fashion to those of an AR(1) process,
as will its changes. Exponential transformations of more general I(1)
processes will also contain exponential trends and stationary geometric
decays of their autocorrelations. Periodic transformations of I(1) pro-
cesses behave, in large samples, as stationary, zero-mean, homoscedastic
AR(1) processes.

10.11 Dittman and Granger (2002) subsequently extended these results
to fractionally integrated processes. Their findings may be summarized
thus.

(i) Non-linear transformations of I(d) processes for which 0 < d < 1
2

remain fractionally integrated processes but with a reduced value
of d, although the larger d is, the smaller will be this reduction. As a
special case, the square of a Gaussian I(d) process will be I(2d − 0.5)
for 1

4 < d < 1
2 but I(0) for 0 < d ≤ 1

4 .
(ii) Processes for which −1 < d < 0 are said to be anti-persistent.

Although, in theory, non-linear transformations of such processes
become short-memory, ‘odd’ transformations, such as the cubic,
might still appear anti-persistent in finite samples.

(iii) For d > 1
2 , power transformations will contain trends in mean and

variance: for a power of m the trend will be of order tm(d−0.5) while
the variance will be of order tm(2d−1), which will therefore dominate
the trend in mean for all m.

(iv) I(d) processes for which d > 1
2 will have time-dependent auto-

correlations which individually converge to unity, a property that
is maintained for a Gaussian process under any power transforma-
tion. Thus a power transformation of such a process will be I(d′)
for d′ > 1

2 and so will still exhibit non-stationary long memory.
In fact, the square of a non-stationary I(d) process will also be I(d)
as long as 1

2 < d < 1, in contrast to (i), where squaring a stationary
long-memory series reduces the amount of long memory (the d = 1
case is omitted as Granger, 1995, earlier showed that the square of
a random walk is a random walk with drift having a variance that
is quadratic in t).

(v) Anti-persistence disappears under cosine or exponential transfor-
mations, as these are even transformations, but is partly preserved
under odd transformations such as the sine and logistic. All the
transcendental transformations tend to reduce the extent of long
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memory in the stationary case, 0 < d < 1
2 , but their effect in the

non-stationary case is varied. As d increases from 0.5 the long mem-
ory in the sine and cosine transformations decreases to such an
extent that, for d = 1, the sine and cosine of a random walk become
AR(1) processes with heteroscedastic errors. This behaviour is also
shown by the exponential transformation, where the long-memory
parameter of the transformed series decreases as d approaches unity.
Indeed, the exponential transformation of a random walk behaves
like an AR(1) process but with an exponentially increasing vari-
ance. The logistic function exactly retains the long memory of
stationary long-memory processes while, for non-stationary long-
memory processes, the non-stationary long memory is reduced but
still retained. Since the logistic transformation is bounded, this
implies that non-stationary long-memory processes can therefore
also be bounded. The logistic transformation of a random walk is
still a random walk but with a constant variance (Granger, 1995).

10.12 Can long-memory models be mistaken for non-linear models and
vice versa? Granger and Teräsvirta (1999) considered the simple non-
linear model

xt = sgn(xt−1) + εt

where εt is a zero mean Gaussian i.i.d. process and the ‘sign function’ is

sgn(x) = 1 if x > 0
= 0 if x = 0
= −1 if x < 0

If

p = P(εt < −1) = P(εt > 1)

then, as shown by Rydén, Teräsvirta and Ầsbrik (1998), the theoreti-
cal autocorrelations of xt are given by ρk = (1 − 2p)k and so will decline
exponentially as in a linear, stationary AR(1) process.

If p is small then a plot of xt will show that it is essentially a regime-
switching process, taking the value 1 plus a small random error for a
considerable period of time until a low enough value of εt occurs, with
probability p, in which case xt switches to −1 plus errors until another
switch occurs (see Figure 10.7, where 2000 values of xt are simulated
with p = 0.01). The sample autocorrelations from generated values of the
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Figure 10.7 Simulated xt = sgn(xt−1) + εt with p = 0.01

series are found to decline at a rate that is slower than exponential but
consistent with a fractionally integrated process. For the series shown in
Figure 10.7 the theoretical autocorrelations should decline as ρk = 0.98k,
thus reaching 0.603 by k = 25 and 0.133 by k = 100. The lag one sample
autocorrelation, however, is only 0.850, but the subsequent decline in
the sample autocorrelations is much slower than exponential, with the
k = 25 and k = 100 values being 0.606 and 0.387 respectively. Estimates
of d obtained using the GPH estimator will increase as p gets smaller,
as there will be less regime switching: for the series in Figure 10.7 d is
estimated to be 0.727. It is thus quite plausible that, by focusing on just
the linear autocorrelation properties, it might be concluded that xt is
long memory rather than regime switching.

10.13 A useful definition of long memory, related to the hyperbolic
decline of the autocorrelations found in §10.2, is that the quantity
limT→∞

∑T
k=−T |ρk| is non-finite. Granger and Hyung (2004) used this

definition, in conjunction with an ‘occasional break’ model, to show
that infrequent level shifts in mean can indeed give rise to observed
long memory. This occasional break model represents the observed series
xt as

xt = μt + εt t = 1, . . . , T (10.7)
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where εt is a noise variable and the level μt is defined as

μt = μt−1 + qtηt (10.8)

ηt is a zero mean i.i.d. process with variance σ 2
η , measuring the size of the

shift in the mean, while qt follows an i.i.d. binomial distribution such
that qt = 0 with probability 1 − p and qt = 1 with probability p.

Granger and Hyung made the following assumption: the probability of
a break converges to zero slowly as the sample size increases, i.e., p → 0
as T → ∞, but limT→∞ Tp is a non-zero finite constant. This implies that
the expected number of breaks, Tp, is bounded from above even in the
extreme case that T increases to infinity, so that, regardless of sample size,
realizations from this process have a finite number of breaks. Combining
(10.7) and (10.8) allows xt to be written as

xt = (μ0 + q1η1 + · · · + qtηt ) + εt

The time-varying meanμ0 + q1η1 + · · · + qtηt thus shows infrequent level
shifts depending on the size of p.

Granger and Hyung showed that the autocorrelations of xt are such
that

ρk = Tpσ 2
η√

Tpσ 2
η + σ 2

ε

√
(T − k)pσ 2

η + σ 2
ε

→
(

1 + σ 2
ε

Tpσ 2
η

)−1

> 0

as T → ∞ for all k and thus possess the long memory property. They
also showed that the sample autocorrelations, ρ̂k,T , converge to non-zero
values for any k such that k/T → 0 as T → ∞:

ρ̂k,T →
(

1 + 6σ 2
ε

Tpσ 2
η

)−1

These sample autocorrelations do not decline exponentially but decay
very slowly as k increases, approaching a non-zero constant. As Tp
increases there are more breaks and the sample autocorrelations increase
in magnitude. A similar effect is found for an increase in σ 2

η , which pro-
duces breaks with larger magnitude, so that increases in Tp and σ 2

η make
the occasional-break process closer to a random walk.

The log-periodogram GPH estimator of the fractional differencing
parameter d was shown by Granger and Hyung to be seriously biased
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away from zero if xt is generated by the occasional-break model. These
results were confirmed by simulations, allowing Granger and Hyung
to conclude that, if just linear properties of the data, such as autocor-
relations, are considered, then an occasional break model will exhibit
long-memory and that disentangling this model from an I(d) process
will become difficult as the size and number of breaks increase.

10.14 Granger and Hyung also discussed the converse problem, that a
fractionally integrated series may exhibit spurious breaks. They were able
to show that, as the sample size goes to infinity, a positive number of
breaks in a fractionally integrated series will be detected, the actual num-
ber depending upon the value taken by d. On analyzing the absolute
daily returns of the S&P 500, they found that, on analyzing subperiods,
those with large estimates of d tended to exhibit the largest number of
breaks, although this was not an exact relationship because the size of
the breaks also needs to be taken into account. There was also little dif-
ference in the forecasting performance of the two models, thus pointing
to the fact that it may be very difficult to discriminate between the two
processes in many situations.

The links between long-memory processes, structural breaks and
regime shifts have since been investigated by, for example, Diebold and
Inoue (2001) and Banerjee and Urga (2005).

Extended memory

10.15 Granger and Hallman (1991a) and Granger (1995) extended the
definitions of long memory in various ways. These extensions are based
on the conditional probability density function of xt+h given the infor-
mation set It : xt−j, qt−j, j ≥ 0, where qt is a vector of other explanatory
variables: xt is said to be short memory in distribution (SMD) with respect
to It if

|P(xt+h in A|It in B) − P(xt+h in A)| → 0 (10.9)

as h → ∞ for all appropriate sets A and B such that P(It in B) > 0. If (10.9)
does not hold then xt is said to have long memory in distribution (LMD).
A narrower definition of memory focuses on the conditional mean

E(xt+h|It ) = ft,h

so that ft,h is the optimum least squares forecast of xt+h using It . xt

is said to be short memory in mean (SMM) if limh→∞ ft,h = F, where F
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is a random variable with a distribution which does not depend on It . If
ft,h depends on It for all h then xt is extended memory in mean (EMM).2

If the optimum forecast is linear, so that, for example,

ft,h =
t∑

j=0

βh,jxt−j

and the sequence βh,j does not tend to zero as h increases for all j, then
xt is called linear EMM (LEMM).

If xt is SMD then it will also be SMM, as will any function of xt provided
that the unconditional mean of the function exists. If xt is EMM then it
must be LMD but not necessarily vice versa, although if this is the case
then many functions g(xt ) will be EMM. If xt is EMM then any monotonic
non-decreasing function of xt will also be EMM. However, if xt is EMM
then a function of xt that is not monotonic non-decreasing may be SMM,
examples being the sine and cosine functions.

10.16 Although the concept of extended memory has made few inroads
into applied time series analysis, the general use of fractional differencing
and long memory models has become widespread across many disci-
plines. Recent surveys of this very popular and important concept are
Velasco (2006), who concentrates on estimation of d, and Gil-Alana and
Hualde (2009), who provide a wide-ranging discussion of the many appli-
cations of fractional differencing and long memory across subject areas.
The legacy of Granger’s initial foray into the topic and his subsequent
extensions and applications is thus seen to be all pervading.

Spurious regressions

10.17 Granger and Newbold (1974) returned to the question considered
by Box and Newbold (1971) and discussed in §8.4, that of explaining
why puzzling cross-correlations may be found between detrended ran-
dom walks (in fact, one can trace this puzzle back to Yule’s nonsense
correlations of §§2.9–2.15). More specifically, they focused attention
on the then common practice in the applied econometrics literature
of reporting time series regressions with an apparently high degree of
fit, as measured by the coefficient of multiple correlation, R2, accom-
panied by extremely low values of the Durbin–Watson statistic (recall
§4.2 but now denoted dw to avoid confusing it with the differencing
parameter d).
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We find it very curious that whereas virtually every textbook on
econometric methodology contains explicit warnings of the dangers
of autocorrelated errors, this phenomenon crops up so frequently in
well-respected applied work. … The most extreme example we have
met is an equation for which R2 = 0.99 and dw = 0.093. However, we
shall suggest that cases with much less extreme values may well be
entirely spurious. (Granger and Newbold, 1974, page 111)

10.18 Granger and Newbold noted that two of the major consequences
of autocorrelated regression errors, that estimates of the regression coef-
ficients were inefficient and that forecasts based on the fitted regressions
were suboptimal, were both well documented. They therefore focused
on a third consequence, that the usual significance tests on the coeffi-
cients were invalid. To do this, they considered the usual linear regression
model with stochastic regressors

Yt = β0 + β1X1t + · · · + βktXkt + εt t = 1, . . . , T (10.10)

where E(εt ) = 0, E(ε2
t ) = σ 2 and E(εtεs) = 0, s �= t. A test of the null

hypothesis that the ‘independent’ variables contribute nothing towards
explaining the variation in the dependent variable, i.e., H0 : β1 = β2 =
· · · = βk = 0, is given by the statistic

F = T − k − 1
k

R2

1 − R2
∼ F(k, T − k − 1) (10.11)

Granger and Newbold made the important point that, although it is
always possible, whatever the properties of the individual time series in
(10.10), that there could exist some set of β’s such that the assumptions
on εt were satisfied, to the extent that the Yt ’s did not constitute a white
noise process, the null hypothesis H0 could not be true and tests of it were
therefore inappropriate.

If H0 is correct and (10.10) is fitted to the levels of a set of non-
stationary (or, at best, highly autocorrelated) series then the quantity
F in (10.11) will not follow an F-distribution since under H0 the residuals
from (10.10), εt = Yt − β0, will have the same autocorrelation structure
as Yt itself.

Suppose that k = 1 in (10.10) and the regression is written Yt = β0 +
β1Xt + εt . If Yt and Xt are independent AR(1) processes,

Yt = φYt−1 + at Xt = φ∗Xt−1 + bt
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then R2 will be the square of the sample correlation between Yt and Xt .
Granger and Newbold showed that if φ and φ∗ are large, in the region
of 0.9 say, then the expected value of R2 will be around 0.5, so that
a high value of this statistic should not be regarded as evidence of a
significant relationship between autocorrelated series. Furthermore,
a low value of dw would suggest that there does not exist a set of β’s
such that the assumptions placed on εt are satisfied. Granger and New-
bold thus argued that the phenomenon whereby R2 exceeds dw might
well arise from an attempt to fit regression equations relating the levels
of independent time series.

10.19 To investigate this phenomenon in more detail, Granger and
Newbold conducted a number of important simulation experiments
which we recreate here, albeit using a greater number of simulations
than they were able to.3 Granger and Newbold began by considering the
bivariate regression Yt = β0 + β1Xt + εt , where Yt and Xt are generated as
independent random walks. Table 10.1 shows the frequency distribution
of the t-statistic

t = |β̂1|
ŜE(β̂1)

which is customarily used to test the significance of β̂1, obtained from
1000 simulations of pairs of independent random walks, each of length
T = 50, with starting values Y0 = X0 = 100 and each with standard
normal innovations.

Using the traditional t-test at the 5% significance level (so that the
critical t value is approximately 2), the null hypothesis of no relationship
between the two series (β1 = 0) would be incorrectly rejected two-thirds
of the time. If β̂1/ŜE(β̂1) was distributed as standard normal, then the
expected value of t would be

√
22/π = 0.8, but the average value of the

observed t-statistics is 4.13, suggesting that the standard deviation of β̂1

Table 10.1 t-statistics obtained from regressing two independent random walks

t 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10
Frequency 172 161 138 112 85 79 66 49 37 35

t 10–11 11–12 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20
Frequency 19 17 8 10 5 3 0 0 3 0
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is being underestimated by a factor of over 5. Thus, instead of using a
t-value of 2, a value in excess of 10 should be used when deciding whether
an estimated coefficient is significant or not at the 5% level (observe that
there are 65 t-statistics greater than 10 reported in Table 10.1).

Granger and Newbold’s second simulation allowed for up to k = 5
regressors and considered series generated both as random walks and as
ARIMA(0, 1, 1) processes, along with their changes (that is, white noise
and MA(1) processes). The ARIMA(0, 1, 1) processes were generated as
the sum of a random walk and independent standard normal white
noise, again using starting values of 100 and standard normal innova-
tions for the random walks.4 The results from 1000 simulations with
T = 50 are shown in Table 10.2, where the proportion of times the null
of no relationship is rejected when levels are used increases with the
number of regressors, being in excess of 85 per cent for k ≥ 3, although

Table 10.2 Regressions of a series on k independent ‘explanatory’ variables. R2 is
corrected for degrees of freedom

% times H0 rejected Average Average %
at 5% level dw R2 R2> 0.7

Random walks
Levels k = 1 67 0.33 0.23 5

k = 2 86 0.46 0.38 14
k = 3 93 0.58 0.49 23
k = 4 96 0.70 0.55 31
k = 5 97 0.81 0.61 40

Changes k = 1 5 2.01 −0.001 0
k = 2 4 2.01 −0.002 0
k = 3 5 2.01 0.000 0
k = 4 6 2.01 0.000 0
k = 5 6 2.01 −0.000 0

ARIMA(0, 1, 1)
Levels k = 1 59 0.69 0.18 1

k = 2 78 0.86 0.28 4
k = 3 85 1.01 0.37 9
k = 4 90 1.13 0.42 13
k = 5 91 1.24 0.46 16

Changes k = 1 7 2.59 0.004 0
k = 2 8 2.57 0.007 0
k = 3 8 2.54 0.011 0
k = 4 8 2.52 0.013 0
k = 5 9 2.51 0.018 0
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matters considerably improve when changes are used.5 These findings
led Granger and Newbold (1974, page 116–17) to report that

the probability of accepting H0, the hypothesis of no relationship,
becomes very small indeed for k ≥ 3 when regressions involve inde-
pendent random walks. The average R2 steadily rises with k, as
does the average dw, in this case. Similar conclusions hold for the
ARIMA(0, 1, 1) process. When white noise series, i.e., changes in ran-
dom walks, are related, classical regression yields satisfactory results
since the error series will be white noise and least squares fully effi-
cient. However, in the case where changes in the ARIMA(0, 1, 1) series
are considered – that is, first order moving average processes – the null
hypothesis is rejected, on average, twice as often as it should be.

It is quite clear from these simulations that if one’s variables are
random walks, or near random walks, and one includes in regression
equations variables which should not in fact be included, then it will
be the rule rather than the exception to find spurious relationships.
It is also clear that a high value of R2, combined with a low value of
dw, is no indication of a true relationship. (italics in original: notation
altered for consistency)

In a subsequent paper, Granger and Newbold (1977) provided further
simulation results in which two ARIMA(0, 1, 1) processes were regressed
together. These processes were defined as

Yt = Yt−1 + at + θat−1 Xt = Xt−1 + bt + θ∗bt−1

The regression Yt = β0 + β1Xt + εt was computed for various values of θ
and θ∗ using 1,000 simulations (again with T = 50), producing the results
shown in Table 10.3.

The main conclusion from this table is that employment of the deci-
sion procedure, ‘reject the null hypothesis of no relationship between
two series only if t differs significantly from zero and dw does not differ
significantly from two’, will generally not lead one astray (although,
of course, neglect of the second condition will do so). The exception
is for moderately large values of −θ , with −θ∗ not too large. Given this
combination of circumstances, a significant regression coupled with
an absence of warning signals from the Durbin–Watson statistic will
be found on about 20 percent of occasions. (Granger and Newbold,
1977, page 11: notation altered for consistency)
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Granger and Newbold (1977) then ‘corrected’ for autocorrelated errors
using the Cochrane–Orcutt (1949) iterative procedure, a then common
approach for dealing with autocorrelation. Table 10.4 shows the per-
centage of times for which significant estimates of β1 were obtained
after this correction, with Granger and Newbold concluding that the
null hypothesis β1 = 0 was still incorrectly rejected for a wide range of
wholly reasonable moving average parameter values.

10.20 What conclusions did Granger and Newbold draw for econo-
metric practice from these simulation results? They first emphasized a
supposedly well-known implication that they thought had perhaps been
stated insufficiently strongly:

if a regression equation relating economic variables is found to have
strongly related residuals, equivalent to a low Durbin–Watson value,
the only conclusion that can be reached is that the equation is mis-specified,
whatever the value of R2 observed. (Granger and Newbold, 1974,
page 117: italics in original)

They then considered the question of what to do about such a misspec-
ification. The usual solutions are threefold: include a lagged dependent
variable as an additional regressor, take first-differences of the variables,
or assume a simple first-order autoregressive form for the residual. As
can be seen from Table 10.4, the third option does not appear to pro-
duce satisfactory results. Granger and Newbold were also not convinced
by the first solution as they thought that estimation bias could be sub-
stantial, particularly with the short samples then typically available to
econometricians. They therefore recommended the taking of first differ-
ences as, although it may not completely remove the problem, it would
considerably improve the interpretability of the coefficients.

Indeed, Granger and Newbold stressed that they were not advocating
first differencing as a ‘sure-fire universal solution’, but they did think
that it would be useful for a class of time series that occurs frequently in
practice:

many economic series are rather smooth, in that the first serial cor-
relation coefficient is very near unity and the other low-order serial
correlations are also positive and large. Thus, if one has a small sam-
ple, of say twenty terms, the addition of a further term adds very
little to the information available, as this term is so highly correlated
with its predecessor. It follows that the total information available is
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Table 10.3 Percentage of times the t and dw statistics are significant at 5% level for a regression of an ARIMA(0, 1, 1) series on an
independent ARIMA(0, 1, 1) series

θ∗= 0 θ∗= −0.2 θ∗= −0.4 θ∗= −0.6 θ∗= −0.8

t t t t t

N.Sig Sig N.Sig Sig N.Sig Sig N.Sig Sig N.Sig Sig

θ = 0 dw

⎧⎪⎨⎪⎩
N.Sig
Inconc.
Sig

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.1 0 0

34.1 65.9 36.9 63.1 36.3 63.7 44.0 55.9 62.3 37.7

Mean dw 0.33 0.35 0.38 0.42 0.35
Mean t 3.85 3.78 3.46 3.01 1.86

θ = −0.2 dw

⎧⎪⎨⎪⎩
N.Sig
Inconc.
Sig

0.1 0 0.1 0.2 0 0 0.1 0 0 0.1
0 0.1 0 0.2 0 0.1 0 0 0 0.1

35.8 64.0 34.4 65.1 36.6 63.3 44.3 55.6 62.8 37.0

Mean dw 0.46 0.49 0.50 0.52 0.47
Mean t 3.74 3.81 3.40 2.85 1.87

θ = −0.4 dw

⎧⎪⎨⎪⎩
N.Sig
Inconc.
Sig

0.3 0.8 0.3 0.8 0.5 1.0 0.5 0.6 0.5 0.2
0.2 0.6 0.3 0.9 0.1 0.8 0.2 0.9 0.3 0.3

39.3 58.8 37.6 60.1 40.2 57.4 48.1 49.7 67.3 31.4

Mean dw 0.69 0.35 0.71 0.72 0.65
Mean t 3.48 3.78 3.21 2.62 1.71
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θ = −0.6 dw

⎧⎪⎨⎪⎩
N.Sig
Inconc.
Sig

5.1 7.0 6.8 7.5 6.1 6.7 5.6 5.7 6.4 2.4
2.3 2.9 1.9 3.2 2.4 1.6 1.7 2.2 3.6 2.0

33.0 49.7 39.1 41.5 41.2 42.0 45.9 38.9 59.6 26.0

Mean dw 1.10 1.09 1.09 0.42 1.03
Mean t 3.05 2.73 2.59 3.01 1.58

θ = −0.8 dw

⎧⎪⎨⎪⎩
N.Sig
Inconc.
Sig

40.5 20.6 38.0 20.1 40.7 21.5 41.5 17.4 42.4 9.2
7.0 3.6 4.7 4.3 5.2 2.6 5.2 2.5 6.8 1.3

16.2 12.1 20.4 12.5 20.0 10.0 23.7 9.7 33.7 7.6

Mean dw 1.69 1.66 1.68 1.65 1.59
Mean t 1.87 1.85 1.72 1.57 1.18
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Table 10.4 Percentage of times the t-statistic is significant at 5% level in a
regression of an ARIMA(0, 1, 1) series on an independent ARIMA(0, 1, 1) series
‘allowing’ for first order serial correlation in residuals by Cochrane–Orcutt iterative
estimation technique

θ∗ = 0 θ∗ = −0.2 θ∗ = −0.4 θ∗ = −0.6 θ∗ = −0.8

θ = 0 16.2 16.5 15.1 12.7 5.5
θ = −0.2 19.4 20.3 19.6 16.5 7.5
θ = −0.4 23.7 26.0 23.2 17.9 9.6
θ = −0.6 31.1 27.8 26.0 21.9 11.7
θ = −0.8 27.5 28.3 24.6 21.4 13.2

very limited and the estimates of parameters associated with this data
will have high variance values. However, a simple calculation shows
that the first differences of such a series will necessarily have serial
correlations that are small in magnitude, so that a new term of the
differenced series adds information that is almost uncorrelated to that
already available and this means that estimates are more efficient. One
is much less likely to be misled by efficient estimates. (ibid., page 118)

Moreover, Granger and Newbold thought that differencing would prove
beneficial when testing economic theories, because

if one does obtain a very high R2 value from a fitted equation, one
is forced to rely on the correctness of the underlying theory, as
testing the significance of adding further variables becomes impos-
sible. It is one of the strengths of using changes, or some similar
transformations, that typically lower R2 values result and so more
experimentation and testing can be contemplated. In any case, if
a “good” theory holds for levels, but is unspecific about the time-
series properties of the residuals, then an equivalent theory holds for
changes so that nothing is lost by model building with both levels and
changes. However, much would be gained from this strategy as it may
prevent the presentation in econometric literature of possible spuri-
ous regressions, which we feel is still prevalent despite the warnings
given in the text books about this possibility. (ibid., page 120)

Error correction and co-integration

10.21 Granger and Newbold’s advocacy of differencing for alleviat-
ing the spurious regression problem did not find universal support.
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The econometricians from the ‘LSE group’ (recall §1.2) were particularly
sceptical, as was shown in David Hendry’s (1977) comments on, inter
alia, Granger and Newbold (1977), described by Christopher Sims in the
introduction to the volume in which these papers appeared as ‘somewhat
acerbic’!

Hendry reconsidered the setup of Table 10.3 and noted that the regres-
sion Yt = β0 + β1Xt + εt , with errors falsely assumed to follow the process
εt = ρεt−1 + vt for |ρ| < 1, was equivalent to

Yt = β0(1 − ρ) + β1Xt − ρβ1Xt−1 + ρYt−1 + vt (10.12)

which itself is a restricted version of

Yt = γ0 + γ1Xt + γ2Xt−1 + γ3Yt−1 + wt (10.13)

The restriction is γ2 + γ1γ3 = 0, which Sargan (1964) had shown could
be tested by the likelihood ratio statistic � = T ln

(∑
v̂t/

∑
ŵt
) a∼χ2(1)

if (10.13) really is the unrestricted version of (10.12). If the apparent
autocorrelation arises, however, because the regression is a misspecified
approximation to (10.13) then the latter would provide a better fit than
(10.12) and hence a large value of �. Hendry suggested that �would reject
(10.12) reasonably frequently relative to the number of cases of spurious
significance found in Table 10.4 and also suggested that Xt and Xt−1

would now rarely have a significant effect in (10.13). Consequently, he
argued that, if (10.13) was used as a new baseline model with wt allowed
to be autocorrelated, ‘it is hard to see why an approximately correct
model could not be detected even for the paradigm used by Granger and
Newbold’ (Hendry, 1977, page 184).

10.22 Hendry then offered two distinct interpretations of differencing
an equation such as (10.13). The first was the ‘operator form’, implicitly
considered by Granger and Newbold, which transforms (10.13) to


Yt = γ1
Xt + γ2
Xt−1 + γ3
Yt−1 +
wt (10.14)

If an intercept had been included then this would correspond to a trend
term appearing in (10.13). The autocorrelation properties of the error
term are completely altered since 
wt will only be white noise if wt is a
random walk.

On the other hand, an equation in first differences could be obtained
from (10.13) by imposing the parameter restrictions γ1 + γ2 = 0 and



370 A Very British Affair

γ3 = 1, producing the ‘restriction form’


Yt = γ0 + γ1
Xt + wt (10.15)

If the restrictions are valid then the interpretation of the intercept and
the error term now remain unaltered and (10.15) implies the exclusion
of the regressors
Xt−1 and
Yt−1 compared to (10.14). Indeed, if (10.15)
is the true data generation process such that wt is white noise then so
must be the error term in the ‘levels’ equation (10.13). The regression
(10.14) is then an incorrect specification as it falsely includes 
Xt−1 and

Yt−1, excludes the intercept, and has a moving average error with a
coefficient of −1.6

Hendry thought that distinguishing between (10.14) and (10.15)
should not present difficulties (even though the original spurious regres-
sion problem, that of obtaining nonsense results if γ1 = 0 but Yt was
regressed on Xt without including Yt−1, still ‘lurked in the background’).
Yet he continued to feel that differencing remained problematic, as both
(10.14) and (10.15) have unacceptable features in terms of being univer-
sally valid formulations for economic systems, although these features
may not be as problematic for other environments. In particular, (10.15)
either has no equilibrium solution in terms of Yt and Xt , or one that
collapses to zero if γ1 = 0. Moreover, the time paths that Yt can describe
are independent of the states of disequilibrium existing in prior peri-
ods. Hendry was particularly keen to emphasize that there were more
ways of transforming to stationarity than by just differencing and that
the choice of which transformation to adopt should be based on con-
siderations from economic theory. While marginal adjustments might
favour differencing, long-run considerations could suggest specifications
of the form


Yt = γ0 + γ1
Xt + (γ2 − 1)(Yt−1 − Xt−1) + wt (10.16)

which is obtained from (10.13) by imposing the restriction that γ1 +
γ2 + γ3 = 1. If the variables are measured in logarithms then the term
Yt−1 − Xt−1 can be regarded as the logarithm of the ratio of the lagged
levels and implies that the two variables are related in the long-run by
having a unit elasticity, with their individual non-stationarities being
‘cancelled’ by the act of taking log-differences. The specification (10.16)
thus embodies a long-run equilibrium condition in levels in an equation
otherwise containing differences and is thus able to model both short
and long-run relationships between Yt and Xt . Equations of this type
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quickly became known as ‘error correction’ models, although they had
been suggested earlier by Sargan (1964) and could also be interpreted
as having derivative and proportional control mechanisms, correspond-
ing to γ1 and γ2 − 1 respectively (cf. Box and Jenkins’, 1962, three term
predictor of §6.9, for which (10.16) may be regarded as a multivariate
generalization).

10.23 This critique of differencing and the emphasis on error correction
models forced Granger to consider more carefully the implications of
the orders of integration of variables appearing in a regression equation.
Granger (1981, page 121) termed such a regression a generating equation
if ‘a simulation of the explanatory side should produce the major prop-
erties of the variable being explained’, calling an equation which had
this property consistent, although it has subsequently become known as
‘balanced’ (see Banerjee et al., 1993, pages 164–8, and Granger, 1999b,
pages 18–22).He gave as a simple example of a non-consistent equation a
regression in which Yt was positive but Xt was unbounded in both direc-
tions, a specific example of which is when Yt is exponentially distributed
and Xt is normally distributed.

In terms of integrated series, suppose that xt ∼ I(dx), yt ∼ I(dy), where
dx and dy may be non-integer, and a(B) is an integrating filter of order
d′, that is, a filter of infinite order such that a(B) = 
−d′

a′(B), where a′(z)
has no roots at z = 0. From Granger (1981) it then follows that a(B)xt ∼
I(dx + d′) and, in general, that zt = bxt + cyt ∼ I( max(dx, dy)). This result
follows from noting that the spectrum of zt is

fz(ω) = b2fx(ω) + c2fy(ω) + 2bcfxy(ω)

where |fxy(ω)|2 ≤ fx(ω)fy(ω) (extending the results in §5.16). For small ω,
fx(ω) and fy(ω) are proportional to ω−2dx and ω−2dy , respectively, so that
the variable with the largest d value will dominate at low frequencies.

More generally, consider the equation

b(B)yt = c(B)xt + h(B)εt (10.17)

where all the polynomials are of finite order and εt is white noise with
finite variance and independent of xt . This equation will only be consis-
tent if dx = dy : if dx < dy , for example, then, for it to be consistent, either
c(B) must be an integrating filter of order dy − dx or h(B) must be an inte-
grating filter of order dy (or indeed both), so that in neither case can
the polynomials be of finite order. As an example, suppose dx <

1
2 and
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1 > dy >
1
2 , so that xt has finite variance, but the variance of yt is infinite.

Clearly yt cannot be explained by xt using just finite polynomials and
(10.17) cannot be consistent.

For the more general model

b(B)yt = c(B)xt + g(B)zt + h(B)εt (10.18)

the relevant condition must be that dy = max(dx, dz) unless one of the
polynomials in (10.18) corresponds to an integrating filter and is hence
of infinite order.

10.24 Of crucial importance, however, was that Granger found a spe-
cial case in which these rules did not hold.7 For simplicity, suppose
that c(B) = c and g(B) = g in (10.18) and that εt has unit variance with
h(B)εt ∼ I(dy) for dy > 0. The spectrum of the right-hand side of (10.18)
will then be

(c2fx(ω) + g2fz(ω) + gcfxz(ω)) + |h(z)|2/2π (10.19)

Granger’s special case has

(i) fx(ω) = α2fz(ω) for small ω, so that dx = dz;
(ii) fxz(ω) = αfz(ω) for small ω, which implies that the coherence

between xt and zt will be unity and the phase angle zero for small ω.

Any pair of series obeying (i) and (ii) was termed co-integrated by Granger.
If, as well, g = −cα then the spectrum (10.19) will reduce to just
|h(z)|2/2π at low frequencies, so that a model of the form (10.18) would
be appropriate even when dy < max(dx, dz): indeed, since now

b(B)yt = c(xt − αzt ) + h(B)εt (10.20)

the difference between two co-integrated series can result in an I(0) series.
More generally, consider xt = zt + qt , where dz = dx, dq < dx and zt and

qt are independent. It then follows that xt and zt will be co-integrated but
the difference qt = xt − zt will be I(dq). It will also follow that α(B)xt and
β(B)zt will also be co-integrated for α(B) and β(B) of finite order, so that xt

and zt−k will also be co-integrated for all k (although the approximation
that the phase is zero at low frequencies may become untenable for large
values of k). Two co-integrated series will therefore move in a similar way
over long periods and, although they may be unequal in the short term,
they will be ‘tied together’ in the long run.
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10.25 Granger (1981) noted that the appearance of xt − αzt in (10.20)
was akin to the error correction term in (10.16), pointing out that if
dX > dw in the latter then Xt and Yt would be co-integrated and hence
they would move closely in the long run, so explaining why such mod-
els had proved to be empirically popular: as well as Sargan (1964),
influential applications of the error correction model had been pro-
vided by, amongst others, Davidson et al. (1978), Hendry and von
Ungern-Sternberg (1981) and Currie (1981). If, however, dX = dY = dw

then co-integration would not hold as then the coherence between Xt

and Yt would not necessarily be high at low frequencies: in this case
(10.16) would essentially just be an algebraic rearrangement of a levels
specification between Xt and Yt .

These ideas began to be formalized in Granger and Weiss (1983), who
considered first the bivariate model

a1(B)
dyt = β(yt−1 − Axt−1) + b1(B)
dxt + c1(B)ε1t (10.21a)

a2(B)
dxt = c2(B)ε2t (10.21b)

where ε1t and ε2t are independent zero mean white noises and d is either
0 or 1, with 
dxt and 
dyt assumed to be stationary. The polynomials
in B are all finite with the property that a1(1) �= 0, b1(1) �= 0, etc., and
a1(0) = a2(0) = c1(0) = c2(0) = 1. Note that (10.21) has a one-way causal
structure, with xt causing yt+1 but yt not causing xt+1, while allowing
b1(0) to be non-zero allows for the possibility of simultaneity between
xt and yt . Only a single error correction term is included in (10.21a)
since additional terms such as β2(yt−2 − Axt−2) can always be incorpo-
rated without altering the structure of the model. For example, to take a
simple case,


yt = β1(yt−1 − Axt−1) + β2(yt−2 − Axt−2) + a
yt−1 + b1
xt + ε1t

= (β1 + β2)(yt−1 − Axt−1) + (a − β2)
yt−1 + b
xt + β2A
xt−1 + ε1t

Equation (10.21a) may be written as

α1(B)yt = α2(B)xt + c1(B)ε1t (10.22)

on defining α1(B) = 
da1(B) − βB and α2(B) = 
db1(B) − βAB. Eliminat-
ing xt from (10.22) using (10.21b) gives

a2(B)α1(B)
dyt = α2(B)c2(B)ε2t + c1(B)a2(B)
dε1t (10.23)
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It is clear that, irrespective of whether d is 0 or 1, the right-hand
side of this equation can always be written as a finite moving aver-
age (recall case (iii) of §9.33). It then follows that yt ∼ I(d) regardless
of the value of β. However, if d = 1 the value of the error correction
coefficient has a dramatic impact on the low-frequency component
of yt . If β �= 0 then replacing B by eiω in (10.23) and letting ω become
small such that 1 − eiω is negligible ensures that, when considered in
the frequency domain, the term involving ε1t on the right-hand side
is essentially zero. The low-frequency component of yt will then be
largely determined by the low frequency component of ε2t , which in turn
also determines the low-frequency component of xt through (10.21b).
If β = 0, on the other hand, it is clear that the low-frequency com-
ponents of both ε1t and ε2t will jointly determine the low-frequency
component of yt .

On defining zt = yt − Axt , this is seen to have the univariate model

a2(B)α1(B)zt = c2(B)(b1(B) − Aa1(B))ε2t + c1(B)a2(B)ε1t

and it follows immediately that zt ∼ I(0) even if xt and yt are both I(1),
which leads to Granger’s definition of co-integration: if xt ∼ I(d) and
yt ∼ I(d) and there exists a constant A such that zt = yt − Axt ∼ I(0), then
xt and yt are said to be co-integrated. A will be unique. When d = 1 both
xt and yt will have infinite variance but there will exist a unique and
constant A such that zt has finite variance, which will not in general
be the case, as a linear combination of infinite variance series will typi-
cally also have infinite variance. Moreover, if xt and yt are generated by
(10.21) with d = 1 then they will necessarily be co-integrated, whereas if
they are not co-integrated the error correction model will be inappropri-
ate. This is because, while the left-hand side of (10.21a), 
yt , will have
finite variance, the right-hand side will contain the infinite variance term
yt−1 − Axt−1 and the equation is clearly not consistent. The differenced
series 
yt and 
xt will have a coherence of unity and a phase of zero
at low frequencies so that yt and Axt will have identical low-frequency
components (that is, they are said to have ‘common stochastic trends’),
but they can differ substantially at high frequencies.

If xt and yt are co-integrated then so will be any linear transformations
and series obtained by applying finite-length filters: for example, x′

t =
a + bxt−s and y′

t = c + fyt−k will be co-integrated for any finite (although
not too large) values of s and k and for any constants a, b, c and f .

When d = 0 it is clear that yt − Axt will be I(0) for any A. The model
(10.22) can then always be written as (10.21a) with d = 1 but xt will
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be given by (10.21b) with d = 0. Consequently, for I(0) series the error
correction model has no special implications.

10.26 Suppose that xt and yt are co-integrated but that xt = x1t + γ x2t .
The error correction term in (10.21a) now becomes β(yt−1 − A1x1,t−1 −
A2x2,t−1) and, if yt ∼ I(1), a necessary condition for both x1t and x2t to
enter the error correction is that they are both I(1). If, say, x1t ∼ I(d),
d > 1, then the error correction term cannot be I(0), while if x1t ∼ I(0)
it cannot contribute to the coherence, at low frequencies, between

yt and 
xt and therefore should not appear in the error correction.
Assuming this condition, Granger and Weiss (1983) obtain the following
relationship between coherences at low frequencies:

1 − C2
12 − C2

1y − C2
2y + 2C12C1yC2y = 0

where C12 is the coherence between x1t and x2t at low frequencies and
C1y and C2y are the coherencies between these series and yt . Some
consequences of this relationship are

(i) If Ca = 1 then Cb = Cc: if any pair of series are co-integrated then
the remaining pairs must be equally related at low frequencies.

(ii) If Cb = Cc = 1 then Ca = 1: if any two pairs are co-integrated then
the remaining pair must also be co-integrated.

(iii) If Ca = 0 then Cb + Cc = 1: even if xt and yt are co-integrated it does
not necessarily mean that x1t and x2t will be co-integrated with yt .

This last property implies that a search for co-integrated series should
not be done in pairs when more than two series are being considered.

10.27 The model (10.21) allows only for causality running from xt to
yt+1. Feedback may be allowed by extending the model (with d = 1) to

a1(B)
yt = β1(yt−1 − A1xt−1) + b1(B)
xt + c1(B)ε1t (10.24a)

a2(B)
xt = β2(yt−1 − A2xt−1) + b2(B)
yt + c2(B)ε2t (10.24b)

or, equivalently, as

α1(B)yt = α2(B)xt + c1(B)ε1t (10.25a)

α3(B)xt = α4(B)yt + c2(B)ε1t (10.25b)
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where

α1(B) =
a1(B) − β1B α2(B) =
b1(B) − β1A1B

α3(B) =
a2(B) + A2β2B α4(B) =
b2(B) + β2B

To identify the model a recursive scheme may be assumed, so that
b2(0) = 0 but b1(0) �= 0. The univariate models for yt and xt take the form

D(B)yt = c1(B)α3(B)ε1t + c2(B)α2(B)ε2t

D(B)xt = c1(B)α4(B)ε1t + c2(B)α1(B)ε2t

where

D(B) = α1(B)α3(B) − α2(B)α4(B)

To ensure that yt and xt are both I(1), D(B) must contain the factor 
,
which will be the case if either β1β2 = 0 or A1 = A2. The model for zt =
yt − Axt takes the form

D(B)zt = (c1(B)α3(B) − Ac1(B)α4(B))ε1t + (c2(B)α2(B) − Ac2(B)α1(B))ε2t

= f1(B)εit + f2(B)ε2t

If β1β2 = 0 or A1 = A2 = A then f1(B) and f2(B) will both contain the fac-
tor 
, which then cancels with the same factor in D(B), giving zt ∼ I(0)
as required. It must therefore be the case that, for yt and xt to be
co-integrated and for an error-correction term to appear in both equa-
tions of (10.24), A1 = A2 = A. If only one error-correction term appears
in (10.24), say if β2 = 0 and β1 �= 0, then yt and xt will be co-integrated,
with the low-frequency component of ε2t driving the low-frequency
components of both yt and xt . If both β1 and β2 are non-zero then the
low-frequency components of yt and xt are driven by a mixture of the
low-frequency components of ε1t and ε2t .

10.28 Given the potential importance of co-integrating relationships
and, consequently, of error-correction representations, it was clearly
important to discover whether such relationships could be uncovered
if they existed. Granger and Weiss pointed out that, if both yt and xt

are I(1), then the typical approach to model building would be to focus
on bivariate models of the differenced series 
yt and 
xt , consequently
identifying models such as

α1(B)
yt = α2(B)
xt + c1(B)
ε1t
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Although this model is over-differenced, it is very likely that the unit root
in the moving average term c1(B)
ε1t would not be found, especially if
it was not being looked for. Granger and Weiss thus suggested that, prior
to a full analysis, simple tests of the error-correction specification should
be developed, basing these on least squares estimation of the ‘levels’
regression

yt = m + Axt + et

Their first suggestion was to try to determine whether the residuals êt =
yt − m̂ − Âxt were I(0) or I(1) by standard identification methods such as
whether the sample autocorrelation function declines fast enough for the
residuals to be considered stationary (cf. §§6.13–6.17). There are clearly
two major difficulties with this identification procedure: the estimate of
A will generally be inefficient, as there is no reason to suppose that et

will be white noise, and no formal test of et ∼ I(0) is being used. Granger
and Weiss thus proposed an ‘efficient test’ based on the residuals from
fitting the extended models

yt = m + Axt +
p∑

i=1

αj
yt−i +
q∑

j=0

βj
xt−j + εt

and

yt = m + Axt + γ (yt−1 − Axt−1) +
p∑

i=1

αj
yt−i +
q∑

j=0

βj
xt−j + εt

Under the hypothesis that yt and xt are co-integrated εt should be white
noise if the lag lengths p and q are chosen appropriately. Note that asking
if the estimate of A is significant in these regressions does not provide a
test for the presence of error correction because, in its absence, a spurious
regression may well occur.

10.29 Although Granger and Weiss presented several examples of this
approach to testing for co-integration, it quickly became apparent that
it faced many difficulties and that providing useful tests would need fur-
ther research. Moreover, a more general formulation of co-integration
and error correction was also clearly required. Both of these extensions
were provided in Engle and Granger (1987), which has since become
one of the most heavily cited papers in the history of econometrics
and certainly the most heavily cited paper in time series econometrics
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(see Boswijk, Franses and van Dijk, 2010, and, for personal reminiscences
on the genesis of the paper, Granger, 2010b).

Engle and Granger first offered a broader definition of co-integration:
the components of a vector xt are said to be co-integrated of order d, b,
denoted xt ∼ CI(d, b), if (i) all components of xt are I(d); (ii) there exists
a vector α( �=0) such that zt = α′xt ∼ I(d − b), b > 0. The vector α is called
the co-integrating vector and zt is known as the equilibrium error, using
the idea that, if there is an equilibrium condition α′xt = 0, zt = α′xt

represents the extent to which the system diverges from this equilibrium.
As Engle and Granger (1987, pages 253–4) went on to explain, in the
typical case where d = b = 1,

co-integration would mean that if the components of xt were all I(1),
then the equilibrium error would be I(0) and zt will rarely drift far
from zero if it has zero mean and zt will often cross the zero line.
Putting this another way, it means that equilibrium will occasionally
occur, at least to a close approximation, whereas if xt was not co-
integrated, then zt can wander widely and zero-crossings would be
very rare, suggesting that in this case the equilibrium concept has
no practical implications. The reduction in the order of integration
implies a special kind of relationship with interpretable and testable
consequences. If however all the elements of xt are already stationary
so that they are I(0), then the equilibrium error zt has no distinctive
property if it is I(0).

This move to a multivariate setup has several intriguing consequences.
If xt has N > 2 components then there may be more than one co-
integrating vector, for it is clearly possible that several equilibrium
relations might govern the joint behaviour of the variables. Engle and
Granger assumed that there are exactly r ≤ N − 1 linearly indepen-
dent co-integrating vectors, and that these are gathered together in
the N × r matrix A which, by construction, has rank r, known as the
‘co-integrating rank’ of xt .

Engle and Granger then defined the error correction representation of
xt as

A(B)
xt = −�zt−1 + ut (10.26)

where ut is a stationary multivariate disturbance, A(0) = I, all elements
of A(1) are finite, z = A′xt is an r × 1 vector of error corrections and � �= 0
is an N × r matrix of coefficients.
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10.30 If each component of xt is I(1) then there will always exist a
multivariate Wold representation of the form


xt = C(B)εt

where C(0) = I and εt is a zero mean white noise vector. The moving
average polynomial C(B) can always be expressed as

C(B) = C(1) + (1 − B)C∗(B)

and if C(B) is of finite order then so will be C∗(B). With this representation
Engle and Granger proved and stated the

Granger Representation Theorem

If the N × 1 vector xt is co-integrated with d = b = 1 and has co-
integrating rank r, then

(1) C(1) is of rank N − r;
(2) There exists a vector ARMA representation

A(B)xt = d(B)εt (10.27)

with the properties that A(1) has rank r, d(B) is a scalar lag polyno-
mial with d(1) finite, and A(0) = I. When d(B) = 1, this is a vector
autoregression.

(3) There exist N × r matrices A, � of rank r such that

A′C(1) = 0

C(1)� = 0

A(1) = �A′

(4) There exists an error correction representation with zt = A′xt , an r × 1
vector of stationary random variables:

A∗(B)
xt = −�zt−1 + d(B)εt (10.28)

with A∗(0) = I.
(5) The vector zt is given by

zt = K(B)εt


zt = −α′γ zt−1 + J(B)εt
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where K(B) = A′C∗(B) is an r × N matrix of lag polynomials with all
elements of K(1) finite with rank r, and det(A′�) > 0.

(6) If a finite vector autoregressive representation is possible, it will have the
form given by (10.27) and (10.28) above with d(B) = 1 and both A(B)
and A∗(B) as matrices of finite polynomials.

Engle and Granger pointed out that, when d(B) = 1, (10.27) and (10.28)
were akin to standard VARs (cf. §8.19) for xt and 
xt respectively. How-
ever, there are some crucial differences. In (10.27) co-integration imposes
constraints on A(1) such that it has reduced rank and hence is singu-
lar, making estimation of the unrestricted VAR inefficient and analyses
that make use of the moving average representation treacherous, while
the lagged levels embodied in zt imply that a VAR fitted to 
xt will be
mis-specified as the error correction term will have been omitted. From
Engle and Granger’s Lemma 1 it follows that A(B) = adj C(B)/
r−1 and
d(B) = det C(B)/
r .

The matrices A and � are not uniquely defined since, if � is an r × r
matrix of full rank, � can be replaced by �� and A by �−1A′ and the
equation in part (3) of the Theorem will still hold. As an illustration,
consider N = 3 and r = 2, so that A = (α1, α2) and there are a pair of I(0)
error corrections which can be written as

zt (α1) = α11x1t + α12x2t + α13x3t

zt (α2) = α21x1t + α22x2t + α23x3t

As any linear combination of a pair of I(0) variables will also be
I(0), then

zt (λ) = (1 − λ)zt (α1) + λzt (α2)

will be I(0) and the equilibrium relations α′
1xt = α′

2xt = 0 will not be
uniquely identified and the error-correction representation (10.28) can-
not strictly be interpreted as ‘correcting’ for deviations from a particular
pair of equilibrium relationships. The only invariant relationship is the
line in (x1, x2, x3) space defined by zt (α1) = zt (α2) = 0 or, equivalently, by
zt (λ1) = zt (λ2) = 0 for any λ1 �= λ2. This is termed the ‘equilibrium sub-
space’ and the error-correction representation can then be interpreted
as 
xt being influenced by the distance the system is from the equilib-
rium sub-space. For general N and r the equilibrium sub-space will be a
hyperplane of dimension N − r.
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For the N = 3 and r = 2 case, the λ’s can be chosen to give z1t = α1x1t +
α2x2t and z2t = α3x1t + α4x3t , say, and this seems to provide a natural
way of ‘normalising’ the co-integrating relationships. For more general
N and r the number of possible normalising combinations increases and
alternative identifying conditions become possible.

10.31 Engle and Granger next focused attention on the estimation of co-
integrated systems, noting that the error correction form (10.28) appears
to be the most convenient (particularly if d(B) = 1, so that no moving
average terms are involved). However, since the error-correction term
is, essentially, −�A′xt−1, there are cross-equation restrictions, involv-
ing the coefficients in the co-integrating vector, that need to be taken
into account, so that maximum likelihood estimation would require an
iterative procedure.

Engle and Granger thus proposed a ‘two-step’ estimator for the case
when r = 1, so that there is a single co-integrating vector. The first step
is to estimate by least squares the static regression yt = β0 + β′x∗

t−1 + et ,
where the partition xt = (yt , x∗

t−1) has been made (essentially the (non-
unique) co-integrating vector α has been normalized). This is known
as the ‘co-integrating regression’, from which the estimate of the co-
integrating vector is obtained as α̂ = (1, −β̂). Under the I(1) assump-
tion the co-integrating regression will be spurious, in the sense of
§§10.17–10.20, but Stock (1987) established the consistency of α̂ under
co-integration, with convergence to probability limits being very rapid
(convergence is at a rate of the sample size T , rather than the rate

√
T

associated with stationary processes: this is known as the ‘super-
consistency’ theorem of co-integrating regressions). This estimate can
then be substituted into (10.28), which then becomes linear in its
unknown parameters and can then also be estimated by least squares.
Engle and Granger then proved the following theorem:

The two-step estimator of a single equation of an error-correction system
with one co-integrating vector, obtained by taking the estimate α̂ of α from
the static regression in place of the true value for estimation of the error
correction form at a second stage, will have the same limiting distribution
as the maximum likelihood estimator using the true value of α. Least-
squares standard errors in the second stage will provide consistent estimates
of the true standard errors.

They provided the following simple example to illustrate this approach.
Suppose that N = 2 and the components of xt are jointly generated
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according to the following model:

x1t + βx2t = u1t , u1t = u1,t−1 + ε1t

x1t + αx2t = u2t u2t = ρu2,t−1 + ε2t |ρ| < 1
(10.29)

where ε1t and ε2t are possibly correlated white noises. The parameters
α and β are clearly unidentified and the reduced form of the system is,
with α �= β,

x1t = α(α − β)−1u1t − β(α − β)−1u2t

x2t = −(α − β)−1u1t + (α − β)−1u2t

Since both x1t and x2t depend linearly on u1t , which is a random
walk, they must be I(1). However, x1t + αx2t must be I(0) because u2t

is stationary and hence x1t and x2t are CI(1, 1).
Regressing x1t on x2t will produce an excellent estimate of α because

all linear combinations of x1t and x2t , except that defined by the co-
integrating regression, will have infinite variance. The error-correction
representation is obtained from the VAR representation


x1t + β
x2t = ε1t


x1t + α
x2t = ε2t − (1 − ρ)x1,t−1 − (1 − ρ)x2,t−1

as


x1t = βδ zt−1 + η1t


x2t = −δ zt−1 + η2t

(10.30)

where δ= (1 − ρ)/(α−β), η1t = (α−β)−1(αε1t −βε2t ) and η2t = (α−β)−1

(ε2t − ε1t ). From this representation it is seen that δ �= 0 if and only if
ρ �= 1, but ρ = 1 is exactly the condition that makes both u1t and u2t

random walks and leads to a non-co-integrated system, i.e., if ρ = 1 the
levels variables vanish in the VAR and the error correction reduces to
that restricted form of the VAR.

Testing for co-integration

10.32 Engle and Granger’s next task was to provide tests for co-
integration. As they pointed out, the setup is nonstandard and closely
related to tests for unit roots in observed series, as initially formulated
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by Fuller (1976) and Dickey and Fuller (1979, 1981) and subsequently
developed by many others (see Patterson, 2011, for a recent exposition
and survey of this enormous literature).

To appreciate the problems inherent in testing for co-integration, con-
sider again the simple model (10.29). The null hypothesis is taken to be
that of no co-integration, or ρ = 1. If α is known then a test of this null
hypothesis could be constructed as a Dickey–Fuller type unit root test
by taking zt = x1t + αx2t as the observed series, which has a unit root
under the null. Although the distribution of the test statistic, the t-ratio
on the slope coefficient of the regression of 
zt on zt−1 (known as the
Dickey–Fuller regression), is nonstandard, critical values are available via
simulation. However, when α is unknown it must be estimated from the
co-integrating regression but, if ρ = 1 is true, α is not identified, which
has the implication that only if the series are co-integrated can α be esti-
mated from the co-integrating regression. Yet a test must be based upon
the distribution of a statistic when the null of no co-integration is true.
Since OLS estimation seeks that α which minimizes the residual variance
and is therefore most likely to be stationary, the usual critical values of
the Dickey–Fuller test will reject the null too often when an estimated α

is used to construct zt .
To attack this problem, Engle and Granger proposed a range of test

statistics for testing the null of non-co-integration against the alternative
of co-integration. The basic setup is that the data are generated by (10.30)
when ρ = 1 and so δ = 0. This ‘first-order’ system is then extended to
a stationary linear system in the 
x’s, so that the null is defined over
a full set of stationary autoregressive and moving average coefficients,
leading to ‘augmented’ tests analogous to the augmented Dickey–Fuller
univariate tests.

Using arguments concerning test similarity and the results of size and
power simulations, Engle and Granger recommended that, if the first-
order system was tenable, then the preferred test was to estimate the
co-integrating regression and compare the Durbin–Watson dw statistic to
a critical value of 0.386 for a 5% test: if the dw exceeds this critical value
then the null should be rejected in favour of co-integration, utilising the
results of Bhargava (1986) and Sargan and Bhargava (1983). However,
a second test, that of comparing the Dickey–Fuller unit root test of the
residuals of the co-integrating regression to a 5% critical value of −3.37
and rejecting the null if the statistic was less than this value, was almost as
good. If the system was of higher order, Engle and Granger recommended
using the augmented form of the Dickey–Fuller test on the co-integrating
regression residuals.
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Figure 10.8 Real private consumption (c) and real personal disposable income (y)
for the USA from 1947I to 2011IV

10.33 To illustrate these tests, two of Engle and Granger’s examples are
updated. Figure 10.8 shows plots of the logarithms of real private con-
sumption (c) and real personal disposable income (y) for the USA from
1947I to 2011IV and the distinctive ‘common trend’ in the two vari-
ables is, at the very least, indicative of co-integration potentially existing
between them. Standard univariate unit root tests confirmed that both
series are I(1) and a series of regressions are reported in Table 10.5 that
establish, first, that there is evidence of co-integration between the two
variables at approximately the 10% significance level, the critical value
for this level being −2.91. For example, the co-integrating regression of
c on y is estimated to be ct = −0.17 + 1.01yt + zt with R2 = 0.999 and a
t-statistic of 444 on α̂. As dw = 0.21 the ‘co-integrating regression dw’ test
does not reject the null hypothesis of no co-integration but this statistic
is only appropriate for a first order system, which from the regressions
reported in Table 10.5 does not appear to be the case here. An augmented
Dickey–Fuller regression on the co-integrating residuals produces a t-ratio
of −2.93 on zt−1, which is just significant at the 10% level, and a slightly
stronger result is obtained from regressing y on c.

The remaining regressions in Table 10.5 build error-correction mod-
els for the two variables. Interestingly, there is only weak evidence that
a lagged error correction appears in the equation for 
c, as it has an
accompanying t-statistic of just 1.2. The lagged error correction is more
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Table 10.5 Regressions of consumption and income for the USA, 1948I to 2011IV.
ec and ey are the residuals from the regressions of c on y and y on c respectively.
Absolute t-ratios are shown in parentheses; σ̂ is the regression standard error.

Dep. Var c 
ec 
ec 
c 
c

y 1.01 (444)
c(−1) −0.030 (1.3)
y(−1) 0.028 (1.3)
ec(−1) −0.07 (2.7) −0.08 (2.9) −0.03 (1.2)

c(−1) −0.00 (0.0)

c(−2) 0.35 (4.9) 0.36 (5.7)

c(−3) 0.11 (1.5)

c(−4) −0.10 (1.5) −0.13 (2.1)

y(−1) 0.12 (2.0) 0.14 (2.6)

y(−2) 0.03 (0.5)

y(−3) −0.17 (2.9) −0.12 (2.3)

y(−4) −0.06 (1.1)

ec(−1) −0.28 (4.5) −0.28 (4.8)

ec(−2) −0.02 (0.2)

ec(−3) −0.08 (1.3)

ec(−4) −0.23 (3.8) −0.20 (3.6)

Constant −0.17 (9.1) 0.013 (1.6) 0.006 (7.5)
σ̂ 0.02352 0.00944 0.00943 0.00770 0.00774
dw 0.21 2.0 2.0 2.0 2.0

Dep. Var y 
ey 
ey 
y 
y

c 0.99 (444)
c(−1) −0.04 (1.6)
y(−1) 0.05 (1.7)
ey(−1) −0.08 (2.8) −0.08 (3.0) −0.05 (2.0)

c(−1) 0.29 (3.6) 0.25 (3.3)

c(−2) 0.13 (1.6)

c(−3) 0.28 (3.3) 0.25 (3.0)

c(−4) 0.19 (3.4) 0.19 (2.4)

y(−1) −0.13 (1.8)

y(−2) −0.10 (1.5)

y(−3) −0.22 (3.2) −0.16 (2.4)

y(−4) −0.25 (3.9) −0.21 (3.3)

ey(−1) −0.28 (4.5) −0.28 (4.8)

ey(−2) −0.02 (0.2)

ey(−3) −0.08 (1.3)

ey(−4) −0.23 (3.8) −0.20 (3.6)

Constant 0.18 (9.8) 0.040 (4.2) 0.006 (5.3)
σ̂ 0.02332 0.00935 0.00934 0.00907 0.00925
dw 0.21 2.0 2.0 2.1 2.2
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significant in the equation for 
y, which suggests that consumption
may be weakly exogenous even though the variables are co-integrated,
which is the converse of what Engle and Granger found in their example,
although they used levels of per capita consumption and income over a
much shorter sample period ending in 1981.

The co-integrating regressions may be interpreted as providing a long-
run equilibrium in which ct = k + yt and the plot of the logarithm of
the consumption-income ratio, c − y, is shown in Figure 10.9. This ratio
takes long swings around its mean value but its stationarity enables the
equilibrium condition ct − yt = −0.102, or a long-run average propensity
to consume of exp (−0.102) = 0.903, to assert itself in the long-run.

The second example looks for co-integration between short and long
interest rates, as suggested by the efficient markets hypothesis of the term
structure of interest rates. Figure 10.10 shows monthly observations from
January 1953 to December 2011 on US three month Treasury Bill rates
(rt ) and 20 year bond yields (Rt ).

Both interest rates are found to be (driftless) I(1) processes and, while
there is some indication from Figure 10.10 that they are bound together
over the long run, there have been several episodes when the ‘spread’
between the rates has been rather large for a considerable period of time,
particularly since the financial crisis of 2008, after which the Federal
Reserve Board has kept short rates at almost zero. This example would
thus appear to be a challenging examination of co-integration.
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Figure 10.9 Logarithms of the consumption-income ratio, c − y
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Figure 10.10 US short (r) and long (R) interest rates: January 1953 to December
2011

The co-integrating regression with the long rate as the dependent
variable is estimated to be Rt = 2.80 + 0.567rt + zt with R2 = 0.63 and
a t-statistic of 35 on α̂. The dw statistic is only 0.04 but a unit root test on
zt , using nine lagged differences, produces a test statistic of −3.39, which
is clearly significant at the 5% level, the critical value being −3.17. From
the reverse regression a unit root test on the error correction produces
a statistic of −3.75, again with nine lagged differences. It therefore does
appear that long and short interest rates are co-integrated and, once
again, the dw test gives a false indication of non-co-integration in a
system that is of a much higher order than one.

Generalizations and extensions of co-integration

10.34 In a companion piece to Engle and Granger (1987), Granger
(1986) developed some extensions to the basic concept of co-integration.
The Representation Theorem focuses on the ‘typical’ case when d = b = 1,
but for any values of these parameters the error-correction model
becomes

A∗(B)
dxt = −�(1 −
b)
d−bzt + d(B)εt (10.31)

Although zt appears in this model, Granger noted that 1 − (1 − B)b, when
expanded in powers of B, has no term in B0 and so only lagged z actually
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occur on the right-hand side of (10.31). Again, every term in the model is
I(0) when co-integration is present and Granger noted that it is also pos-
sible to have fractional differencing here as well, leading to the possibility
of fractional co-integration.

Granger then considered a more general concept of co-integration.
Suppose α(B) is an N × 1 vector of functions of B such that each com-
ponent, say αj(B), has the property that αj(1) �= 0. If xt is a vector of I(d)
processes such that zt = α′(B)xt ∼ I(d − b) then xt may again be called co-
integrated. If a co-integrating vector α, as previously defined, occurs then
there may be many α(B) that also co-integrate, thus losing the property
of uniqueness but possibly gaining extra flexibility. For example, sup-
pose N = 2 and α′ = (1,α): α will be unique if it does not depend on B so
that r = 1. However, there may also exist another co-integrating vector
of a quite different form, this being

α′(B) = (1 + α′
−1,αα′
−1)

This would occur in the following situation. Since the error correction
zt = x1t + αx2t will be I(0), it follows that yt = ∑t

j=0 zt−j = 
−1zt must be
I(1): x1t and x2t are then said to be multi-cointegrated if yt and x1t are co-
integrated; if they are then yt and x2t will also be co-integrated. If this is
the case then wt = x1t + α′yt ∼ I(0), from which it follows that

wt = x1t + α′
−1zt = x1t + α′
−1(x1t + αx2t )

= (1 + α′
−1)x1t + αα′
−1x2t

= α′(B)xt

The concept of multi-cointegration was analysed and further developed
by Granger and Lee (1989, 1990), where applications to production, sales
and inventory relationships were provided.

10.35 Granger (1986) also considered relaxing the linearity with time-
invariant parameters assumption implicit in the development so far. He
began by considering the time-varying parameter (TVP) process

xt = β(t)xt−1 + εt

where β(t) is a deterministic function of time such that |β(t)| < 1. This
will have a time-varying spectrum that is always finite and positive
and will be called a TVP-I(0) process. If the change in xt is TVP-I(0),
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then xt itself will be TVP-I(1). For a vector process xt that is TVP-I(d) and
has no deterministic components, there will exist a generalized Wold
representation 
dxt = Ct (B)εt . If Ct (1) has reduced rank N − 1 for all t,
then there will exist N × 1 vectors α(t) and γ(t) such that

α′(t)Ct (1) = 0

Ct (1)γ(t) = 0

and the TVP equilibrium error process will be zt = α′(t)xt . The corre-
sponding error-correction model will be as (10.28) but with A∗(B), � and
d(B) all being functions of time.

Another route by which non-linearity may appear is through the
error correction itself. In the model (10.28) zt−1 appears linearly so
that changes in the variables are related to the lagged error correction,
whatever its size. More realistic behaviour might be to ignore small equi-
librium errors but to react substantially to large errors, thus suggesting
a non-linear relationship. An error-correction model that captures this
idea would be, say,


xt = f1(zt−1) + lagged(
xt ,
yt ) + ε1t


yt = f2(zt−1) + lagged(
xt ,
yt ) + ε2t

Granger argued that generally zt and f (zt ) would be integrated of the
same order so that a finding of co-integration between two variables
might suggest that a non-linear error-correction model was a possibility.

Granger’s bequest of co-integration to time series
econometrics

10.36 As we remarked earlier, Engle and Granger (1987) has since
become the most heavily cited paper in time series econometrics and
it is interesting to ask why that is. Clearly, part of the answer must
be that its success was, to a large extent, attributable to the concept
of co-integration itself, which combines both elegance and usefulness
to become readily applicable to many areas of economic modelling.
Boswijk, Franses and van Dijk (2010) also advance several external fac-
tors for why co-integration appeared just at the right time. Essentially,
theoretical and applied econometricians alike needed such a concept, as
both large-scale macroeconomic systems and univariate models, such as
ARIMA processes, were thought to be deficient in forecasting ability and
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economic substance respectively. Co-integration was able to bridge the
gap between them, especially as there was a sense of urgency in finding
appropriate statistical tools to analyse trending economic data. It was also
no doubt helped by the increased availability of long enough samples
of data to allow long-run equilibrium relationships to be explored and
by the rapid expansion of computing power and the dissemination of
software that enabled many researchers to apply co-integration methods.

In the next few sections we briefly discuss some of the extensions to
the co-integration framework that have been developed as a result of
Granger’s introduction of the concept. Little detail is given as much of
this is now standard material in advanced econometric textbooks, thus
confirming the importance of Granger’s contribution of co-integration
to time series econometrics.

10.37 Within the single co-integrating relationship framework, two
major extensions have been undertaken. Although superconsistent, the
least squares estimate of the co-integrating vector was shown to be
adversely affected by second-order biases, which result in the asymptotic
distributions of the estimators being biased and non-normal. Phillips
and Hansen (1990) thus proposed fully modified estimation, in which
the least squares estimate is modified by subtracting an estimate of the
bias. A second approach, originally due to Saikkonen (1991) and Phillips
and Loretan (1991), is to augment the static co-integrating regression by
including leads and lags of 
xt , which counteract simultaneity bias, and
also to include lags of 
yt or the error correction zt to deal with issues of
autocorrelation.

With regard to testing for a single co-integrating vector, much more
extensive tables of critical values of the test for a unit root in the co-
integrating regression residuals were obtained using response surface
methodology (see MacKinnon, 1991, 1996), and these quickly became
available in most econometric software packages. Tests have also been
derived using the error-correction representation, with the coefficient on
the error-correction term being tested for significance, although the dis-
tribution of the statistic is again nonstandard (see, for example, Ericsson
and MacKinnon, 2002).

10.38 The interest in co-integrated systems really started to take off
when dealing with the general case of r co-integrating vectors. Johansen
(1988a, 1988b, 1991) examined the mathematical structure of multi-
variate error-correction models and showed that ML estimation could
be recast as an exercise in reduced rank regression. Within this framework,
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tests of the value of r could be constructed using likelihood ratio princi-
ples: see Johansen (1995a) for extended development and discussion.
Johansen also analysed the role of deterministic terms, such as time
trends, in the error-correction model and their influence on hypothesis
testing (Johansen, 1994).

The identification of co-integrated systems was considered by Phillips
(1991) and Pesaran and Shin (2002), while co-integration in I(2) systems
was analysed in Johansen (1995b, 1997). Fractional co-integration was
investigated by Baillie and Bollerslev (1994) and Cheung and Lai (1993),
while seasonal co-integration was discussed by Hylleberg et al. (1990).
The links between co-integration and structural change are surveyed in
Perron (2006). Recent surveys of many of the issues mentioned in this
section are Johansen (2006), Juselius (2006, 2009) and Gil-Alana and
Hualde (2009).8

10.39 Granger’s subsequent work in co-integration was often on non-
linear extensions. Granger and Hallman (1991a) considered the repre-
sentation of non-linear co-integration as a bivariate ‘attractor’ between
variables that are individually EMM but have an SMM non-linear com-
bination (recall the definitions of these concepts in §10.15). They sug-
gested that non-linear equilibrium relationships could emerge between,
say, prices of commodities traded at spatially separated markets due
to the existence of varying marginal costs and profits. Granger and
Hallman (1991b) found that variables are, in general, not co-integrated
with non-linear transformations of themselves, but the same transforma-
tion applied to a pair of co-integrated series can result in co-integration
between the transformed series.

Granger and Swanson (1996) suggested asymmetric error-correction
models in which positive and negative errors have different effects,
while Siklos and Granger (1997) argued that co-integrating relation-
ships may switch according to a policy regime, proposing the concept
of temporal co-integration to allow variables to be co-integrated in one
regime and non-co-integrated in another. Granger and Yoon (2002) con-
sidered ‘hidden co-integration’, where co-integrated variables respond
only to certain kinds of shocks, say positive or negative. Granger and
Hyung (2006) developed an innovative regime-switching non-linear co-
integration process using ‘M-M ’ models. Here xt and yt vary according
to a switching regime process that allows a mixture of integration and
co-integration. In each step a max or min operator is used to choose
between integration (for example, xt+1 = xt + εt ) or co-integration (for
example, xt+1 = yt + εt ) for each variable. Although in simple cases
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M-M processes imply linear co-integrating relationships, they always
have threshold-type non-linear error-correction relationships. Thresh-
old effects in multivariate error-correction models are discussed more
generally by Gonzalo and Pitarakis (2006).

Another area of co-integration that Granger worked in was that of
interpreting such systems in terms of their underlying, but unobserved,
components: typically the permanent factors that capture the long-
memory or low-frequency variability in the observed series and the
transitory factors that explain the shorter memory or high-frequency
variation. Gonzalo and Granger (1995) proposed a decomposition hav-
ing two important characteristics: first, both components are a function
only of the current values of the series and, second, innovations in the
persistent component are uncorrelated with the innovations in the tran-
sitory component. Granger and Haldrup (1997) took up the issue of how
these components could be estimated in large systems, investigating
whether the components might be computed separately for groups of
series, thus avoiding having to model the entire system.

10.40 Regarding co-integration as that property of a set of time series
which cancels out the common ‘permanent’ component that drives
them in the long run leads to the ‘common stochastic trends’ interpre-
tation of the concept (see, for example, Stock and Watson, 1988). Such
was the impact of co-integration that Granger was awarded the Sveriges
Riksbank Prize in Economic Science in memory of Alfred Nobel, jointly
with Robert Engle, in October 2003 in ‘recognition of his achievements
in developing methods of analysing economic time series with common
trends (co-integration)’. Hendry (2004) provided a formal appreciation
of this award to Granger, whose own acceptance lecture was published
as Granger (2004). In a memorial to Granger, Hendry’s (2010) conclud-
ing paragraph, although couched in terms of Granger’s contribution
to econometrics, is nevertheless a fitting epitaph to a great time series
analyst.9

Clive’s contributions have combined to implement his long-term
research agenda of improving the quality of econometric model build-
ing by a better match with empirical evidence. His research has shaped
the agenda of many econometricians, and given rise to a large number
of applications, from sun-spot activity and land use in the Brazilian
Amazon, through gold, silver and stock market prices, and eighteenth
century wheat prices, to electricity demand, exchange rates, volatil-
ity clustering, and yield curves. His unravelling of cointegration and
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common trends and their properties was a major development, but-
tressed by many later important insights. He was a major generator
of new ideas, yet always in the context of solving a real problem, not
just for its own sake: the wealth of further advances and applications
of his ideas bear witness to his fecundity. Sir Clive Granger’s was one
of the most successful research programmes in the history of econo-
metrics as his total citations of more than 45000 corroborates, and
will be a lasting contribution to our discipline.



11
The End of the Affair?

In praise of British pragmatism

11.1 An overriding theme running through this book is one of British
pragmatism, in that time and time again method and theory have been
developed from attempts to solve practical problems.1,2 Yule’s interest in
analysing time series stemmed, at least in part, from his desire to under-
stand the nature of the nonsense correlation problem which bedevilled
early empirical work, while Kendall’s research was prompted by his work
at the Ministry of Agriculture on analysing detrended and oscillatory
agricultural time series and later on practical forecasting issues emanat-
ing from his consultancy contracts. Durbin had long associations with
governmental statistical agencies from which his research on seasonal
adjustment and regression stability over time was a natural development.
Jenkins first encountered spectral analysis whilst tackling aircraft design
problems at the Royal Aircraft Establishment and later developed his
own consultancy company specializing in complete forecasting and deci-
sion systems for industry and government. Box cut his statistical teeth
on wartime chemical experiments and later worked on control prob-
lems for ICI, maintaining his interest in this area throughout his career
and setting up the Centre for Quality and Productivity Improvement
at Madison. Box and Jenkins’ joint research on forecasting and control
was aimed at providing a practical method for understanding and solv-
ing such problems with observed time series. Granger’s research, across
numerous areas, was often sparked by the desire to understand and solve
real, practical problems in time series.

Two quotes from opposite ends of our story reflect these preoccu-
pations with practical problem solving rather than abstract technical
theorizing. Maurice Kendall (1952, page 158), in his obituary of Yule,
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remarked that he had ‘the legitimate scepticism of a practical statistician
for the monstrous regiment of mathematicians’, while David Hendry
(2010, page 168) said of Granger that ‘he was a major generator of new
ideas, yet always in the context of solving a real problem’.

11.2 But with the passing of Clive Granger and with George Box and
James Durbin in their early nineties and late eighties respectively, it is
apposite to ask whether the British love of pragmatism in time series
analysis might now be fading away. I ask this because academic journals
seem nowadays to be full of theoretical extensions of co-integration and
volatility models and of ever deeper analyses of non-linearity, but few of
these papers attempt to provide any serious practical applications.

Alongside co-integration, volatility modelling has engendered enor-
mous interest since the original publication of Engle (1982) looking at
the variability of inflation, undoubtedly a consequence of the attraction
of empirically analysing financial markets, with their massive data sets
just waiting to be attacked by the huge computing power now avail-
able, but there does not appear to be have been many major conceptual
breakthroughs since those of Granger and Engle in the mid-1980s.3

A future for British time series analysis?

11.3 Will we see the likes of these statistical giants again? From a purely
British perspective, it is difficult not to be pessimistic, even though there
are pockets of excellence, notably the ‘Nottingham group’ of David Har-
vey, Steven Leybourne and Robert Taylor associated with the Granger
Centre for Time Series Econometrics. Two factors conspire in this, I feel.
Fewer students are being trained in statistics and econometrics in Britain
and those that are taking postgraduate degrees are invariably not British
and tend to concentrate on the minutiae of theoretical ‘tweaking’ of
assumptions and models. This is compounded by the perceptions of aca-
demics working in Britain concerning the research assessment exercises
undertaken over the last twenty years: the latest, now known as the
Research Excellence Framework (REF), being due in 2014. It is felt by
many that only articles published in a small range of journals will score
highly in these assessments and that those journals prefer theoretical to
applied research: hence the incentive structure by which academics per-
ceive that the only way to secure tenure and then promotion is to play the
game and concentrate their research efforts on technical but relatively
minor advances that are easier to publish, rather than on engaging with



396 A Very British Affair

practical problems that require deep understanding of the context, data
and robustness of techniques and models.4

But this is important. As greater amounts of data are made avail-
able, and computing requirements become ever cheaper and powerful,
it surely becomes equally important to have methods available that can
detect relationships existing both within and between observed time
series. Having time series analysts trained in both theory and applied
aspects of the subject must certainly be a key aim of future education
and training in this increasingly useful and important area of statistics,
with its obvious applications to the areas of economics, finance and
meteorology – areas, it could be argued, that are key to the well-being of
civilisation today and in the future.

Brown and Kass (2009, page 109), in their commentary on the current
state of statistical training, concluded that ‘many of today’s big chal-
lenges throughout society are tackled by large teams, and these teams
are in desperate need of statistical thinking at the very top levels of man-
agement. We suggest that a way forward begins with a focus on the
fundamental goals of training, combined with a broad vision of the dis-
cipline of statistics.’ As with the wider subject of statistics, we feel that
such a view also pertains to the current state of time series analysis as
well and we would like to think that these suggestions will take hold in
the training of British time series analysts, although it is difficult, in the
present environment, to be overly optimistic that this will be the case.



Notes

2 Yule: The Time–Correlation Problem, Nonsense
Correlations, Periodicity and Autoregressions

1. William S. Gosset (1876–1937) was one of the most influential statisticians of
the twentieth century. As an employee of Guinness, the famous Irish brewer
of stout, he was precluded from publishing under his own name and thus
took the pseudonym ‘Student’. Gosset worked primarily on experimental
design and small-sample problems and was the inventor of the eponymous
Student’s t-distribution. For further biographical details see Pearson (1950,
1990).

2. Yule admitted that he could not produce a proof of this result. It is, in fact, a
special case of a more general result proved by Egon Pearson for a non-random
series: see Pearson (1922, pages 37–40, and in particular his equation (xviii)).

3. The method used by Yule to produce his Figs 5–9 is discussed in Yule (1926,
page 55). We approximate it here to recreate these distributions in our
composite Figure 2.6.

4. The calculations required to construct Figure 2.7 are outlined in Yule (1926,
page 56).

5. For a derivation of this result in the more general context of calculating
‘intraclass’ correlation, see Yule and Kendall (1950, §§11.40–11.41).

6. A small Gauss program was written to simulate Yule’s sampling procedure
and to compute the results shown in Table 2.1 and later in Tables 2.4 and 2.7.
Necessarily, the results differ numerically from those of Yule because of the
sampling process.

7. Yule states that the maximum negative correlation is that between ‘terms 2
and 8 or 3 and 9, and is −0.988’, which is clearly a misreading of his Table VI,
which gives correlations to three decimal places, unlike our Table 2.6, which
retains just two to maintain consistency with earlier tables.

8. The index numbers themselves are used, rather than the smoothed Index
of Fluctuations, which are often analyzed (see Mills, 2011a, §§3.8–3.9). The
serial correlations were obtained using the correlogram view in EViews 6.
Compared to Yule’s own heroic calculations, which he described in detail
(Yule, 1926, page 42) and reported as Table XIII and Fig. 19, they are
uniformally smaller but display an identical pattern.

9. Yule (1927, pages 284–6) discussed further features of the sunspot numbers
and their related disturbances estimated from equation (2.19). These features
do not seem to appear in the extended series and are therefore not discussed
here.

10. Indeed, the unusual behavior of sunspots over the last decades of the twen-
tieth century has been the subject of great interest: see, for example, Solanki
et al. (2004).
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3 Kendall: Generalizations and Extensions of Stationary
Autoregressive Models

1. Spencer-Smith (1947, page 105) returned to this point about moving averaging
inducing spurious oscillations, but defined trend in a manner rather different
to that considered here, being more akin to a long cycle: ‘such series do not
contain very prolonged steady increases or decreases in the general values of
these terms, as may happen in economic series, and where such movements
occur the use of the moving average method may be valid’.

2. The use of the term autocorrelation follows Wold, 1938, with ‘serial correla-
tion’ being reserved for the sample counterpart, rk. Note also the simplification
of the notation used by Kendall from that employed in Chapter 2.

3. Hall (1925) had earlier suggested the same approach but restricted attention
to local linear trends and failed to make the link with moving averages as
set out below. Interestingly, however, he introduced moving sums to remove
seasonal and cyclical components, referring to these as moving integrals and
the process of computing them as moving integration, thus predating the use
of the term integrated process to refer to a cumulated variable, introduced by
Box and Jenkins (see §6.9), by some four decades.

4. A recent application of the approach is to be found in Mills (2007), where it is
used to obtain recent trends in temperatures. An extension was suggested by
Quenouille (1949), who dispensed with the requirement that the local poly-
nomial trends should smoothly ‘fit together’, thus allowing discontinuities
in their first derivatives. As with many of Quenouille’s contributions, this
approach was both technically and computationally demanding and does not
seem to have captured the attention of practitioners of trend fitting!

5. The data are provided in Table 1 of Coen et al. (1969). We have used EViews 6
to compute this regression, which leads to some very minor differences in the
estimates as reported in Coen et al.’s Table 2 equation (7).

6. The estimates differ somewhat from Coen et al. (1969, Table 3, equation (10))
as some of the early observations on the lagged regressors are not provided
there, so that the regression is here estimated over a slightly truncated sample
period.

4 Durbin: Inference, Estimation, Seasonal Adjustment
and Structural Modelling

1. Walker (1961, Appendix) provided a more complicated adjustment for the
bias in this estimator. For this simulation it leads to a bias adjustment of
the order 0.02, which would almost eradicate the bias. He also showed
that Durbin’s adjustment would be approximately 0.004, which is what
we find.

2. Durbin recounts that the government of the time was becoming increasingly
worried about the rising unemployment figures. The Prime Minister, Harold
Wilson, ‘had worked as an economic statistician in the government service
during the war, and he was really rather good at interpretation of numerical
data … and … was very interested in looking at the figures himself. He got
the idea … that maybe the reason why the unemployment series appeared to
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be behaving in a somewhat strange way was due to the seasonal adjustment
procedure that was being used … and asked the CSO to look into this. … It
turned out that Wilson was right and there was something wrong with the
seasonal adjustment. I think it is remarkable that a point like this should be
spotted by a prime minister’ (Phillips, 1988, pages 140–1). To be fair, Wilson
had a long-standing interest in economics and statistics, having been a lecturer
in economic history at New College, Oxford (from the age of 21) and a Research
Fellow at University College, as well as holding a variety of government posts
that dealt with economic data.

3. The paper represented the work of a team of statisticians at the Research Branch
of the CSO, with the authors being responsible for the supervision of the work
and the writing of the paper. The Bureau of the Census X-11 seasonal adjust-
ment package has been used extensively by statistical agencies across the world
for adjusting economic time series. Mills (2011a, §§14.7–14.10) discusses its
development in some detail. The Henderson moving average is based on the
requirement that it should follow a cubic polynomial trend without distor-
tion. The filter weights are conveniently derived in Kenny and Durbin (1982,
Appendix) and also in Mills (2011a, §10.6).

4. Extensions to autoregressive models were later provided by Kulperger (1985)
and Horváth (1993) and then to ARMA processes by Bai (1994).

5. Gauss’ original derivation of the recursive least squares (RLS) algorithm is given
in Young (1984, Appendix 2), which provides the authorized French trans-
lation of 1855 by Bertrand along with comments by the author designed to
‘translate’ the derivation into modern statistical notation and terminology.
Young (2011, Appendix A) provides a simple vector-matrix derivation of the
RLS algorithm.

6. Hald (1981) and Lauritzen (1981, 2002) claim that T.N. Thiele, a Danish
astronomer and actuary, proposed in an 1880 paper a recursive procedure
for estimating the parameters of a model that contained, as we know them
today, a regression component, a Brownian motion and a white noise, that
was a direct antecedent of the Kalman filter. Durbin was aware of this histori-
cal link, for he remarked that it was ‘of great interest to note that the Kalman
approach to time series modelling was anticipated in a remarkable way for a
particular problem by … Theile in 1880, as has been pointed out by Lauritzen
(1981)’ (Durbin, 1984, page 170).

7. The wearing of seatbelts by front seat occupants of cars and light goods vehicles
had been made compulsory in the UK on 31 January 1983 for an experimen-
tal period of three years with the intention that Parliament would consider
extending the legislation before the expiry of this period. The Department of
Transport undertook to monitor the effect of the law on road casualties and,
as part of this monitoring exercise, invited Durbin and Harvey to conduct an
independent technical assessment of the statistical evidence.

8. This ‘opportunity for public discussion’ was facilitated by reading the paper
at a meeting of the RSS. The resulting discussion, along with the author’s
rejoinder, was then published along with the paper. While we do not refer
to the discussion here, it does make for highly entertaining and, in a couple
of places, rather astonishing, reading, with non-statisticians being somewhat
perplexed with the findings, to say the least! More generally, a number of
Durbin’s papers published in RSS journals are accompanied with discussants
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remarks and author rejoinders and these typically make fascinating, if often
tangential, reading.

9. Only Durbin and Koopman’s classical solution to the estimation problem is
discussed here, although they also provide formulae for undertaking Bayesian
inference (see Durbin and Koopman, 2000).

5 Jenkins: Inference in Autoregressive Models and
the Development of Spectral Analysis

1. The name white noise was coined by physicists and engineers because of its
resemblance to the optical spectrum of white light, which consists of very
narrow lines close together.

6 Box and Jenkins: Time Series Analysis,
Forecasting and Control

1. Following Fisher, several others had considered differencing as a means of
inducing stationarity (recall §2.3–2.6), most notably Tintner (1940), in his
advocacy of the variate differencing method, and Yaglom (1955). A number
of econometricians also proposed the differencing of variables in regression
analysis: Tintner and Kadekodi (1973) provide numerous references to research
in these areas during the period 1940 to 1970.

2. Pearson’s metaphor was, of course, in terms of spatial displacement, but the
time series analogy should be clear. Random walks were, in fact, first formally
introduced in 1900 by Louis Bachelier in his doctoral dissertation Théorie de
Speculation, although he never used the term. Under the supervision of Henri
Poincaré, Bachelier developed the mathematical framework of random walks
in continuous time (where it is termed Brownian motion) in order to describe
the unpredictable evolution of stock prices (biographical details of Bachelier
may be found in Mandelbrot, 1989: see also Dimand, 1993). The dissertation
remained unknown until it was rediscovered in the mid-1950s after the mathe-
matical statistician Jimmie Savage had come across a later book by Bachelier on
speculation and investment (Bachelier, 1914). A translation of the dissertation
by James Boness was eventually published as Bachelier (1964). Random walks
were independently discovered by Albert Einstein in 1905 and, of course, have
since played a fundamental role in mathematics and physics as models of, for
example, waiting times, limiting diffusion processes, and first-passage-time
problems: see Weiss (1986).

3. The likelihood principle states that everything the data has to tell about the
parameters of an assumed model is contained in the likelihood function, with
all other aspects of the data being irrelevant. From a Bayesian perspective, the
likelihood function is that part of the posterior distribution of the parameters
which comes from the data. Although the principle has by no means uniform
support amongst statisticians, it does underpin a large body of modern sta-
tistical analysis: see Barnard, Jenkins and Winsten (1962) for a contemporary
discussion of its importance to time series analysis.

4. Estimation of the autoregressive parameter obtains a value of 0.813 for φ, but
the value of 0.8 continues to be used for simplicity.
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7 Box and Jenkins: Modelling Seasonal Time Series and
Transfer Function Analysis

1. Estimation of the model in EViews 6 obtained the estimates θ̂ = 0.403,
	̂ = 0.636 and σ̂ 2

a = 1.332 × 10−3.
2. Distributed lags had also made a considerable impact in econometrics through

the work of, most notably, Koyck (1954), Jorgensen (1963) and Almon (1965).
Further developments in cross-correlation and multiple time series modeling
made during the 1940s and 1950s are discussed in Mills (2011a, Chapter 12).

3. Transforming to white noise was also advocated some two decades earlier by
Orcutt and James (1948) in a static regression setting.

4. Box and Jenkins (1970, pages 384–6) suggested an alternative procedure for
identifying the noise through the prewhitened input and output.

8 Box and Jenkins: Developments post-1970

1. Again estimated using EViews 6, so that there are minor differences to the
estimates reported by Box and Newbold (1971).

2. The hypothesised change in the level of the series is now referred to as an
intervention, a term attributed by Box and Tiao to Glass (1972), which led to
the phrase intervention analysis to describe the modelling of such impacts.

3. Box and MacGregor (see also Box, Jenkins and MacGregor, 1974) were typically
concerned with situations arising with process industries data where feedback
control is being applied, so that the set-up is one of closed-loop operation, in
which the feedback control scheme is deterministic, rather than the transfer
function assumption of open-loop operation. The discussion here will concen-
trate on the more general framework in which both output and input have
noise components.

4. Relaxation of the full rank assumption is considered in Granger’s Representa-
tion Theorem of co-integration: see §10.30.

9 Granger: Spectral Analysis, Causality, Forecasting,
Model Interpretation and Non-linearity

1. Granger’s published output contains almost 300 items. It has to be said that,
on close inspection, one is struck by the number of typographical errors that
remain in, particularly, the journal articles, both in the text and in the math-
ematics. This sometimes becomes a distraction from the highly novel and
innovative ideas that Granger is typically presenting in his published research.

2. Although this section focuses on the analysis of the cross-spectrum between
two stationary series and its interpretation in terms of the concept of ‘causal-
ity’, Granger also published several other papers on spectral analysis, both
on theoretical issues (Granger, 1966; Granger and Hughes, 1968) and on
applied applications (Granger and Morgenstern, 1963; Godfrey, Granger and
Morgenstern, 1964; Granger and Rees, 1968).

3. Granger fully recognized that a precursor of his causality framework had
been proposed by Norbert Wiener, referencing Wiener (1956) from the very
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beginning (see Granger and Hatanaka, 1964, page 114) and preferring to use
the term Wiener-Granger causality.

4. Granger returned to the topic of generalized cost functions some thirty years
later in Granger (1999a), where he developed the theory in much greater depth
and generality.

5. Newbold and Granger (1974) also focused attention on comparisons between
the individual forecasting methods themselves, so providing the first ‘fore-
casting competition’. Such competitions subsequently became very popular,
beginning with Makridakis and Hibon (1979). The next, Makridakis et al.
(1982), quickly became known as the ‘M-competition’, and was followed by
the M2-competition (Makridakis et al., 1992), in which the author himself
took part (see Mills, 1992), and the M3-competition (Makridakis and Hibon,
2000). Other competitions were undertaken by Meese and Geweke (1984) and
Fildes et al. (1998). These competitions spawned a vast number of papers rean-
alyzing the series contained in them and, although not universally favored
(interestingly, Newbold, 1983, was particularly critical, although the ‘forecast’
contained in the title of his comments on the M2 competition clearly proved
to be some way off the mark!), nevertheless provided a focus and much impe-
tus for research and practice in forecasting. Fildes and Ord (2002) provide a
detailed survey of them.

6. The use of Box–Cox transformations in ARMA modelling had been the source
of some controversy between Chatfield and Prothero (1973) and Box and
Jenkins (1973) (recall §8.1). For Nelson and Granger (1979, page 63), the ‘main
reason for using the Box-Cox transformation, according to Box and Jenkins
(1973), is to produce improved forecasts’.

10 Granger: Long Memory, Fractional Differencing,
Spurious Regressions and Co-integration

1. Joyeux (2010) offers Roselyne Joyeux’s reflections on the writing of the joint
paper, whose genesis was an invitation from Maurice Priestley to contribute
to the first issue of his new Journal of Time Series Analysis. It should also be
pointed out that, contemporaneously and independently, J.R.M. Hosking,
a statistician then working at the Institute of Hydrology in Oxfordshire, Eng-
land, also developed much of the material on fractional differenced processes:
see Hosking (1981, 1982).

2. Granger and Hallman (1991a) referred to this property, perhaps more nat-
urally, as long memory in mean. Granger (1995) preferred to use ‘extended
memory in mean’ because ‘the term “long memory in mean” … has a technical
meaning in the time series literature, applying to processes whose spectrum
tends to infinity as frequency goes to zero which essentially need not apply
here and is too linear for our purposes’ (page 272).

3. Granger recounted that when he presented these simulation results during
a seminar presentation at the LSE they were ‘met with total disbelief. Their
reaction was that we must have gotten the Monte Carlo wrong – we must have
done the programming incorrectly’ (Phillips, 1997, page 262). Paul Newbold,
who had actually done the programming, confirmed this story to me some
years ago over a couple of pints in the Nottingham University Staff Club.
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4. It is easily shown that this method of generating an ARIMA(0,1,1) process
implies that the MA coefficient is forced to be −0.382 using the notation
of Table 10.3. The use of 1000 simulations rather than the 100 used by
Granger and Newbold obviously produces different results to those contained
in their Tables 1 and 2, but the two sets are very similar and lead to identical
conclusions.

5. It might be thought that these findings are simply a consequence of using
a rather small sample by current standards. In fact, with five regressors the
rejection rate increases to 99.2 per cent and then to 100 per cent as the sample
size is increased to 100 and then to 1000. These simulation findings were later
placed and explained within a formal theoretical framework by Phillips (1986).

6. These different interpretations and implications of differencing had, in fact,
been discovered half a century earlier by Bradford Smith (1926) in a remarkably
prescient article that quickly disappeared almost without trace until being
rediscovered by Mills (2011b): see also Mills (2011a, §12.4).

7. In Phillips (1997, page 25) Granger recalls discussing the issue with Hendry: ‘he
was saying that he had a case where he had two I(1) variables, but their differ-
ence was I(0), and I said that is not possible, speaking as a theorist. He said he
thought it was. So I went away to prove that I was right, and I managed to prove
that he was right. Once I realized that this was possible, then I immediately saw
how it was related to the formulation of an error correction model and their
balancing. So, in a sense, all the main results of cointegration came together
within a few minutes. I mean, without any proof, at least not any deep proof,
I just sort of saw what was needed. … Then I had to go away and prove it. That
was another thing. But I could see immediately what the main results were
going to be.’ See also Granger (2010b) for further recollections of this episode.

8. An interesting development was that of Bewley et al. (1994), who established
that there were close links between Johansen’s reduced rank vector autoregres-
sion estimator and Box and Tiao’s (1977) canonical decomposition of a VAR
discussed in §§8.19–8.25.

9. The previous year, after I, as the then head of the Department of Economics,
had made the proposal, Clive Granger was awarded an Honorary Doctorate
by Loughborough University. I had the honour of making the oration:

Public Orator, Professor Terence Mills, presented the Honorary Graduand at
the Degree Congregation held on the afternoon of Friday 12 July 2002.

Chancellor,

Clive Granger was born in Swansea, but completed his high school education
at West Bridgford Grammar School, some 12 miles north of Loughborough
on the southern outskirts of Nottingham. He then went to Nottingham
University, becoming one of the initial intake into the first-ever joint degree
in economics and mathematics. On graduating in 1955, Clive stayed on at
Nottingham, becoming a lecturer in statistics in the Mathematics Department
in 1956, publishing his first academic paper, ‘A statistical model for sunspot
activity’, in the Astrophysical Journal in 1957, and obtaining a PhD in statistics
in 1959.

In the early 1960s Clive obtained a Harkness Fellowship and visited Prince-
ton, working on spectral techniques with such famous scholars as John Tukey



404 Notes

and Oscar Morgenstern. Although he came back to Nottingham to become a
Professor of Economics and Statistics, this visit to the United States had whet-
ted his appetite for life in an American university. Clive eventually returned
in 1974 to a professorship in the Economics Department at the University of
California at San Diego, where he has remained and has been instrumental in
building up the econometrics section to become one of the finest in the world.

From that early visit to Princeton, Clive Granger has been one of the most
influential scholars in time series econometrics. His writings encompass all of
the major developments over the last 40 years, and he is personally respon-
sible for some of the most exciting ideas and methods of analysis that have
occurred during this time. Indeed, it is now virtually impossible to do empir-
ical work in time series econometrics without using some of his methods or
being influenced by his ideas. I am thinking here particularly of the concepts
of ‘Granger-causality’ and co-integration, which our final year students study-
ing econometrics now employ as a matter of course in their project work.
However, his research on spurious regression, long memory, and all aspects
of forecasting has also had a profound and lasting influence. Most scholars
would deem it the accomplishment of a lifetime if their work were to have the
impact of a single one of these contributions. To have had repeated instances of
such extraordinarily influential research is surely testimony to Clive Granger’s
special talent as a researcher and writer.

One of the most defining characteristics of Clive’s work is his concern for
the empirical relevance of his ideas. Another hallmark is the accessibility of his
work, which stems from his unusually rich capacity to write highly readable
papers and books, many of which have gone on to become citation classics.
These successes in communication show us the vital role that good writing
plays in the transmission of scientific knowledge. To me, it is no coincidence
that the much improved performance of the Bank of England and the Treasury
in monitoring and forecasting the UK economy has come about since Clive’s
ideas and research techniques have been promulgated by his many ‘disciples’
to recent generations of economics graduates, for it is they who form the
research teams in these organisations.

Clive Granger’s research has been an inspiration to all time series econome-
tricians, and has been recognised internationally with many awards. Currently
he is President of the Western Economic Association and has just become a
Distinguished Fellow of the American Economic Association.

It is thus with great pleasure and honour, Chancellor, that I present Clive
Granger to you and the University for the Degree of Doctor of Science,
honoris causa.

11 The End of the Affair?

1. I use ‘pragmatism’ here for both its vernacular meaning of indicating a ‘prac-
tical, matter-of-fact way of solving problems’ and as a philosophical tradition
that is centred on the linking of practice and theory, describing a process
whereby theory is extracted from practice and then applied back to prac-
tice. Pragmatism as a philosophical movement began in the United States
during the 1870s and is most closely associated with Charles Sanders Peirce
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and William James (see Haack and Lane, 2006). Although often referred to
as ‘American pragmatism’, it was heavily influenced by Charles Darwin and
the earlier ‘British empiricists’ Locke and Hume (although ‘British sceptical
realists’ might be a better term: see Buckle, 1999). Box (1984) emphasises
the importance of theory-practice interaction using many examples from the
development of statistical thinking.

2. ‘Statistical pragmatism’ has recently been proposed by Kass (2011) as a foun-
dation for an eclectic statistical inference that goes beyond narrow frequentist
and Bayesian positions and emphasises the ‘identification of models with data’
and ‘the assumptions that connect statistical models to observed data’, recog-
nising ‘that all forms of statistical inference make assumptions, assumptions
that can only be tested very crudely and can almost never be verified’. As
Box (1979) memorably stated, ‘all models are wrong, but some are useful’ and
I think that this sums up the approach of our ‘British pragmatists’ admirably.

3. Interestingly, and as Engle (2004) recounts, the ARCH model of volatility,
which led to Engle’s joint Nobel Prize with Granger in 2003, was invented
while Engle was on sabbatical at the LSE in 1979. Indeed, the term which pro-
duced the acronym, autoregressive conditional heteroskedasticity, was coined by
David Hendry. Some of the major theoretical developments in co-integration
and unit roots have been made by Peter Phillips, a New Zealander whose
postgraduate work was undertaken at the LSE and whose first two academic
appointments were in the UK at Essex and Birmingham.

4. It is certainly true that a book like this would not be recognised in the REF but
then I’m far too long in the tooth to be unduly bothered by such things!
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