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Introduction

This book examines problems associated with green growth and sustainable de-
velopment using economic theory, systems theory and optimal control theory.
Especially, questions of sustainability of economic growth are crucial for green
economies envisaging local and global environmental constraints, biodiversity man-
agement, human capital development, improvements in resource productivity, and
investments in new technologies. The focus is on elaboration of series of mod-
els which catch interactions of production factors as driving forces of economic
growth.

The book is based on material provided for the Symposium “Green Growth and
Sustainable Development Symposium” held at the International Institute for Ap-
plied Systems Analysis (IIASA) on the 9th–10th of December, 2011, within the
IIASA Project “Driving Forces of Economic Growth” (ECG). The symposium was
organized by coordinators of the ECG project: Jesus Crespo-Cuaresma from IIASA
World Population Program, Tapio Palokangas and Alexander Tarasyev from IIASA
Advanced Systems Analysis Program.

The chapters of the book are presented in a popular-science style and can be in-
teresting to a wide range of scientific literature readers. The prime audience for the
book is economists, environmental managers, mathematicians and engineers work-
ing on problems of economic growth and environment regulation. The mathematical
part of the book is written in a rigorous manner, and the detailed analysis is expected
to be of interest to specialists in dynamic systems, optimal control and applications
to economic modeling.

The book starts with three chapters on optimal economic growth with environ-
mental constraints, continues with three chapters on the control of climate change,
abatement and biodiversity, and with two chapters on dynamics of environmental
policy, and ends up with two applications of systems theory to the supply of energy.
As a whole, the book provides an integrated view on environmental policy in the
setting of economic growth and dynamics.

The first part, “Optimal Economic Growth with an Environmental Constraint”,
is devoted to methodological problems of economic growth arising in presence of
environmental constraints and lack of resources. It considers models oriented on
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vi Introduction

optimization of investments in production factors, examines optimal transitional dy-
namics and forecasts future trends of economic development.

Sergey Aseev, Konstantin Besov and Serguei Kaniovski study optimal research
and extraction policies in an endogenous growth model in which both production
and research use exhaustible resources. They show that optimal growth is not sus-
tainable if the accumulation of knowledge uses exhaustible resources, or if the re-
turns to scale in research are decreasing, or the economy is too small. The authors
state the model as an infinite-horizon optimal control problem with an integral con-
straint on the control variables. They consider the main mathematical aspects of the
problem, establish an existence theorem and derive an appropriate version of the
Pontryagin maximum principle, and give a complete characterization of the optimal
transitional dynamics.

Ulla Lehmijoki develops a long-run consumer optimization model where pollu-
tion aggravates mortality. In that model, the optimal growth path is sustainable if it
provides non-decreasing consumption for a non-decreasing population. As usually,
optimality and sustainability may conflict; with population endogenous to pollution,
this conflict may ultimately lead the human species toward self-imposed extinction.
In that case, not even technical progress can warrant sustainability.

Alexander Tarasyev and Bing Zhu analyse a dynamic optimization model of
investment in the improvement of resource productivity in order to find balanced
growth trends in terms of consumption and the use of natural resources. This re-
search is closely connected with the problems concerning shortages of natural re-
source stocks, the security of supply of energy and materials, and the environmental
effectiveness of their consumption. The author’s main idea is to introduce an in-
tegrated environment to control the management of the investment process in the
development of basic production factors such as capital, energy and material con-
sumption. Essential features of the model are (i) the possibility to invest in econ-
omy’s dematerialization and (ii) the price formation mechanism which presumes the
rapid growth of prices on exhausting materials. The authors solve optimal control
problem for the investment process by the Pontryagin maximum principle, showing
that for specific range of the model parameters, there exists the unique steady state
of the Hamiltonian system. This enables the existence of a sustainable growth path
in an economy with exhausting resources. By these results, strategies for investment
in dematerialization, resource and environmental management can be constructed
for the purpose to shift the economic system from non-optimal paths to sustainable
development.

The second part, “Biodiversity, Abatement and Climate Change”, comprises
chapters that address application of dynamic systems modeling to economic growth,
with especial focus on issues of environmental impact and policy regulation.

Tapio Palokangas examines a group of countries where the conservation of land
anywhere yields utility everywhere through biodiversity. All countries produce the
same good from labor and land and improve their productivity through abatement
investment. The international agency performing biodiversity management is self-
interested. Palokangas compares three cases of biodiversity management: (i) laissez-
faire, (ii) the regulation of land use, and (iii) subsidies to the conservation of land.
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His results are the following. Regulation promotes biodiversity, abatement and wel-
fare. Because subsidies must be financed by distortionary taxes, the replacement
of regulation by subsidies hampers biodiversity, abatement and welfare. Applied to
NATURA 2000 in the EU, this suggests that regulation without any budget is the
appropriate degree of authority for the Commission.

Due to recent global discussions about climate change and its possible conse-
quences, the usage of environmental policy instruments with the intent to counteract
against the current environmental developments has become increasingly important.
Elke Moser, Alexia Prskawetz and Gernot Tragler investigate the impact of envi-
ronmental standards on capital accumulation and R&D investments in an economy
where both, brown (dirty) as well as green (clean) capital can be used in production.
Environmental regulation as policy instrument is commonly supposed to reduce or
ideally minimize emissions and pollution. The authors show that such regulations
can repress innovation and economic growth rather than induce a shift toward a
greener technology.

Nordhaus (2000, 2008) developed a dynamic model that links economic growth
with climate change. Helmut Maurer, Johann Jacob Preuß and Willi Semmler
present variants of that model, building on the dynamic model of Greiner et al.
(2010), who discuss multiple equilibria and thresholds in a canonical optimal con-
trol problem with infinite horizon. The authors study various extensions of the basic
optimal control problem and compare the solutions for finite horizon and infinite
horizon. They admit terminal constraints for the state variable, consider the impacts
of constraints (such as CO2 and temperature constraints) on abatement policies and
consumption, and attempt to control the temperature by suitable penalties on the
temperature. The introduction of these constraints allows exploring the implications
for mitigation policies that arise from the Kyoto treaty (CO2 constraint) and the
Copenhagen agreement (temperature constraint).

The third part, “Dynamics of Environmental Policy with an Oligopoly”, deals
with dynamic game modeling of oligopolistic competition with environmental ex-
ternalities.

Luca Lambertini and George Leitmann adopt a stepwise approach to the analysis
of a dynamic oligopoly game in which production exploits a natural resource and
pollutes the environment. They start with simple models where firms’ output is not
a function of the natural resource to end up with a full-fledged model in which (i)
the resource is explicitly considered as an input of production and (ii) the natural
resource and pollution interact via the respective state equations. They show that
the relationship between the welfare properties of the economic system and the in-
tensity of competition is sensitive to the degree of accuracy with which the model is
constructed.

The established view on oligopolistic competition with environmental external-
ities has it that, since firms neglect the external effect, their incentive to invest in
R&D for pollution abatement is nil unless they are subject to some form of envi-
ronmental taxation. Davide Dragone, Luca Lambertini and Arsen Palestini take a
dynamic approach to this issue, showing by a simple differential game that con-
clusion reached by the static literature is not robust: the introduction of dynamics
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shows that firms do invest in R&D for environmental-friendly technologies through-
out the game, as long as R&D is accompanied by an output restriction exhibiting a
distinctively collusive flavor. The authors show that there exists a feasible tax rate
that induces profit-seeking firms to choose a combination of output and R&D that
imposes the same level of social welfare as in the first best.

The fourth part, “Application of Dynamic Systems to Energy Supply”, consists of
papers that analyse of the role of energy supply and new technologies in economic
growth and energy transition.

Chihiro Watanabe and Jae-Ho Shin consider green technology driven energy for
sustainable growth by the Japanese example. Japan has constructed a sophisticated
co-evolutionary dynamism between innovation and institutional systems by trans-
forming external crises into a springboard for new innovation. This can largely be
attributed to the unique features of the nation such as having a strong motivation to
overcoming fear based on xenophobia and uncertainty avoidance as well as abun-
dant curiosity, assimilation proficiency, and thoroughness in learning and absorp-
tion. Such explicit dynamism was typically demonstrated by technology substitution
for energy in the 1970s leading Japan to achieve a high-technology miracle in the
1980s. While this dynamism shifted to the opposite direction in the 1990s due to a
system conflict with the rise of the information society, recent increase in oil prices
has signaled the possibility of a paradigm shift to a post-oil society. In addition,
global economic stagnation due to excessive consumption has been inducing “new
normal” customers supra-functionality. The authors show by empirical analysis that
these trends inevitably compel to explore high efficient photovoltaic (PV) system.

Bo Hu, Armin Leopold and Stefan Pickl present a System Dynamics model that
depicts the development of the energy market in Germany in an aggregated form.
They use that model to compare different possible pathways of the impeding energy
transition. Their simulations show that a concept presented by the German Advisory
Council on Environment (SRU) will only achieve about 31% GHG mitigation in
2025 compared to 1990, despite the high costs due to planned huge storage capacity.
A more effective GHG mitigation of about 40% can be achieved at a lower cost
by making use of higher wind and photovoltaic capacities in combination with the
capability to produce synthetic natural gas (SNG) using excess electricity from wind
and solar energy.

We expect that the results of this monograph provide readers with a methodologi-
cal technique and modeling environment for analysis of economic growth processes,
and give an instrument for forecasting growth trends and improving its precision.
Furthermore, the models elaborated in the book could serve as helpful tools for pol-
icy advice in designing strategies of economic and environmental management.
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Part I
Optimal Economic Growth

with an Environmental Constraint



The Problem of Optimal Endogenous Growth
with Exhaustible Resources Revisited

Sergey Aseev, Konstantin Besov, and Serguei Kaniovski

1 Introduction

Endogenous growth theory identifies technological progress as a means of sustain-
ing economic growth despite the reliance on exhaustible resources as inputs to pro-
duction. The supply of an exhaustible resource may limit growth, unless the econ-
omy can either substitute away from the resource or increase the efficiency of the
resource’s use to offset its scarcity. Can an optimal research and extraction pol-
icy compensate the negative effects on production (consumption) that arise due to
scarcity of the exhaustible resource?

Existing literature in the tradition of Dasgupta-Heal-Solow-Stiglitz (Dasgupta
and Heal 1974; Stiglitz 1974) offers an affirmative answer in a scenario in which
production requires the resource but the accumulation of knowledge does not. Our
point of departure is the ‘toy economy’ model by Charles Jones (Jones 2004), as one
of the simplest models of endogenous growth. We show that resource-dependency
may preclude perpetual growth along a welfare-maximizing output trajectory if
technical progress depends on the resource, or, as was advocated by Jones (1999,
2004), technical progress shows weak scale effects, or the economy is too small. The
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4 S. Aseev et al.

possibility of the research sector being dependent on an exhaustible resource chal-
lenges the feasibility of perpetual growth, while the strong scale condition seems
less profound in view of many existing models that obtain balanced positive growth
without it, see Segerstrom (1998), Young (1998). The minimum size condition is
the least restrictive of all conditions.

We thus show that welfare-maximizing growth can be either perpetual or tran-
sient, and derive optimal research and extraction policies in each scenario. Perpetual
growth is balanced and the optimal research policy allocates a constant fraction of
the labor force to research. Perpetual growth is feasible even in the absence of pop-
ulation growth and is thus fully-endogenous. Perpetual growth becomes unfeasible
if technical progress requires the resource or has weak scale effects. In this more
realistic scenario it is optimal to pursue a certain ratio of the knowledge to the re-
source stock. In the resulting ‘rise and decline’ scenario output grows initially but
stagnates and eventually declines following stagnation of the knowledge stock. In
either scenario it is optimal to deplete the resource according to the well-known
Hotelling rule.

The model is formulated as an infinite-horizon optimal control problem whose
solution is a welfare-maximizing dynamic research and extraction policy. The model
includes an integral constraint (in L1-space) associated with a finite stock of an ex-
haustible resource. Such integral constraints on control (policy) variables are the
defining feature of a class of models in the resource and growth literature (see ex-
amples in Weitzman 2003).

Due to the unbounded nature of controls corresponding to the extraction policy,
we cannot directly appeal to the standard results on existence of an optimal con-
trol in the class of locally bounded measurable functions (such results usually rely
on pointwise boundedness conditions; see, for example, Cesari 1983). We over-
come this difficulty by reducing our problem to one without integral constraints.
This allows us to prove an existence result and apply a version of the Pontryagin
maximum principle for problems with a dominating discount developed in Aseev
and Kryazhimskiy (2004), Aseev and Kryazhimskii (2007) to fully characterize the
optimal transitional dynamics.

The infinite time horizon gives rise to specific mathematical features of the Pon-
tryagin maximum principle (Pontrjagin et al. 1964). The most characteristic fea-
ture is that the standard transversality conditions may fail (see examples in Aseev
and Kryazhimskii 2007; Halkin 1974; Shell 1969). There exist modifications of the
Pontryagin maximum principle that pay attention to this phenomenon (Aseev and
Kryazhimskiy 2004; Aseev and Kryazhimskii 2007; Aubin and Clarke 1979; Ben-
veniste and Scheinkman 1982; Seierstad and Sydsæter 1987). Yet our problem fails
to satisfy the assumptions imposed in them due to the integral constraint.

When the Hamiltonian is concave, some infinite horizon problems can be solved
by means of well-known sufficient conditions (Arrow and Kurz 1970; Seierstad
and Sydsæter 1987). This is a standard way of solving many optimal economic
growth problems (see Acemoglu 2008). Nevertheless, even in our simple model the
concavity of the Hamiltonian cannot be asserted for all relevant parameter values.

In this paper we follow the more general approach based on necessary conditions
and an existence theorem. It should be stressed that without an existence theorem
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one cannot be sure that a path satisfying the necessary conditions exists, or that
one of the paths satisfying the necessary conditions is indeed a solution (see the
discussion in Romer 1986).

2 The Model

In the following two-sector endogenous growth model the production sector yields
output that is consumed, while the research sector augments the productivity of the
production means. Both sectors require an exhaustible resource as an input. There
are constant returns to scale in production, and either weak or strong scale effects in
the research sector.

At every instant t ∈ [0,∞), the economy produces output Y(t) > 0, which is
assumed to be described by a Cobb–Douglas production function:

Y(t)=A(t)κ
[
L−LA(t)

]α
R1(t)

1−α where α ∈ (0,1) and κ > 0. (1)

Here A(t) > 0 is the current knowledge stock and R1(t) > 0 is the quantity of the
exhaustible resource used in production. The population (total labor supply) is fixed
at L > 0. Part of the labor L − LA(t) is employed in production, while the other
part LA(t) ∈ [0,L) is allocated to research.

The amount of new knowledge produced at time t depends on the hitherto ac-
cumulated knowledge, the number of researchers and the portion of the exhaustible
resource used in research:

Ȧ(t)=A(t)θ
[
LA(t)

]η
R2(t)

1−η where η ∈ (0,1] and θ ∈ (0,1]. (2)

Here R2(t)≥ 0 is the quantity of the exhaustible resource used in research; typically
R2(t) is small compared to R1(t). The initial knowledge stock is given by A(0)=
A0 > 0. If θ ∈ (0,1), then growth rate of the knowledge stock decreases while the
knowledge stock expands. The case of θ < 0—when the expansion of knowledge
is progressively more difficult—has also been considered in the literature (see, e.g.,
Jones 1999). Empirical evidence supports the idea of weak scale effects, i.e. θ < 1,
in the production of knowledge. We retain θ = 1 as a special case of strong scale
effects.

The fact that the stock of the exhaustible resource is finite imposes the following
integral constraint on the controls R1(·) and R2(·):

∫ ∞

0

[
R1(t)+R2(t)

]
dt ≤ S0, (3)

where S0 > 0 is the initial supply of the exhaustible resource.
The welfare is measured by a discounted logarithmic utility function, maximiz-

ing which amounts to maximizing future growth rates. This leads to the following
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objective functional for the economy (see (1)):

J
(
A(·),LA(·),R1(·)

)

=
∫ ∞

0
e−ρt

{
ln
[
Y(t)

]}
dt

=
∫ ∞

0
e−ρt

{
κ lnA(t)+ α ln

[
L−LA(t)

]+ (1 − α) lnR1(t)
}
dt,

where ρ > 0 is a subjective discount rate.
Given the parameters θ ∈ (0,1], α ∈ (0,1), κ > 0, η ∈ (0,1], ρ > 0, L > 0 and

S0 > 0, the optimization problem J (A(·),LA(·),R1(·))→ max, subject to (2) and
the resource constraint (3), can be formulated as the following infinite-horizon op-
timal control problem (P):

Ȧ(t)=A(t)θ
[
LA(t)

]η
R2(t)

1−η, (4)

LA(t) ∈ [0,L), R1(t) > 0, R2(t)≥ 0,
∫ ∞

0

[
R1(t)+R2(t)

]
dt ≤ S0,

(5)

A(0)=A0 > 0, (6)

J
(
A(·),LA(·),R1(·)

)=
∫ ∞

0
e−ρt

{
κ lnA(t)+ α ln

[
L−LA(t)

]

+ (1 − α) lnR1(t)
}
dt

→ max. (7)

The above formulation follows closely the model suggested in Sect. 5.2.1 by
Groth (2006) who characterized the steady-state solution. In this paper we offer a
rigorous derivation of the optimal solution, which will be a steady state only under
certain ‘knife-edge’ conditions that are unlikely to hold. These conditions are: the
exhaustible resource is not an input to the production of knowledge (η= 1), and the
accumulation of knowledge has strong scale effects (θ = 1) (see Sect. 6).

The main difference between our model and the model by Groth lies in the exclu-
sion of capital as a third factor input to production and a perpetual inventory equa-
tion describing the evolution of the capital stock. A closer look of what essentially is
Groth’s model in Cabo et al. (2010) shows that knowledge and capital accumulation
together lead (under some conditions) to explosive growth. Reaching infinite output
in finite time is not a reasonable feature for an infinite time horizon growth model.
We therefore exclude capital accumulation in our present model, planning to return
to the issue of the interplay of capital and knowledge accumulation in future work.

Next, we introduce the basic elements of model in the terminology of optimal
control theory. By an admissible control w(·) : [0,∞) → R

3 in problem (P) we
mean a triple w(·) = (LA(·),R1(·),R2(·)), t ≥ 0, of (locally) bounded measurable
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functions LA(·), R1(·) and R2(·) each of which is defined on the infinite half-open
time interval [0,∞) and satisfies the respective constraints in (5).

An admissible trajectory A(·) : [0, τ ) → R
1, τ > 0, corresponding to an ad-

missible control w(·) is a (locally) absolutely continuous function A(·) which is
a (Carathéodory) solution (see Filippov 1988) of the differential equation (4) on
some (finite or infinite) time interval [0, τ ), subject to the initial condition (6).

Due to (4) and the integral constraint in (5), for any admissible control w(·) =
(LA(·),R1(·),R2(·)) the corresponding admissible trajectory A(·) can be extended
to the whole infinite interval [0,∞). Consequently, in what follows, without loss
of generality, we always assume that any admissible trajectory A(·) is defined on
[0,∞).

A pair (A(·),w(·)), where w(·) is an admissible control and A(·) is the corre-
sponding admissible trajectory, is called an admissible pair (or a process) in prob-
lem (P).

For any admissible pair (A(·),w(·)) the improper integral in (7) converges either
to −∞ or to a finite real. Moreover, it is uniformly bounded from above; i.e., there
is a number M ≥ 0 such that

sup
(A(·),w(·))

∫ ∞

0
e−ρt

{
κ lnA(t)+ α ln

[
L−LA(t)

]+ (1 − α) lnR1(t)
}
dt ≤M, (8)

where the supremum is taken over all admissible pairs (A(·),w(·)).
Indeed, due to the integral constraint in (5), for any admissible control w(·) we

have
∫ ∞

0
e−ρt lnR1(t)dt <

∫ ∞

0
e−ρtR1(t)dt < S0. (9)

Further, for an arbitrary admissible trajectory A(·) we have

A(t)θ ≤A(t)+ 1, t ≥ 0.

Then, due to (4), we obtain

d

dt
ln
(
A(t)+ 1

)= Ȧ(t)

A(t)+ 1
≤ LηR2(t)

1−η, t ≥ 0,

and hence

ln
(
A(t)+ 1

)≤ ln(A0 + 1)+Lη
∫ t

0
R2(s)

1−ηds

≤ ln(A0 + 1)+Lη
∫ t

0

(
1 +R2(s)

)
ds

< ln(A0 + 1)+Lη(t + S0), t ≥ 0. (10)
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This inequality immediately implies the following inequality for an arbitrary admis-
sible trajectory A(·):
∫ ∞

0
e−ρt lnA(t)dt <

∫ ∞

0
e−ρt ln

(
A(t)+ 1

)
dt <

ln(A0 + 1)+LηS0

ρ
+ Lη

ρ2
. (11)

Since LA(t) ∈ [0,L), t ≥ 0 (see (5)), inequalities (9) and (11) provide the fol-
lowing uniform estimate for all control processes (A(·),w(·)):

∫ ∞

0
e−ρt

{
κ lnA(t)+ α ln

[
L−LA(t)

]+ (1 − α) lnR1(t)
}
dt

< κ

ln(A0 + 1)+LηS0

ρ
+ κLη

ρ2
+ α lnL

ρ
+ (1 − α)S0.

This furnishes the proof of inequality (8).
The uniform bound (8) allows us to define an optimal control w∗(·) : [0,∞)→

R
3 in problem (P) as a welfare-maximizing triple w∗(·) = (LA∗ (·),R1∗(·),R2∗(·))

of dynamic labor and extraction policies adopted in the research and production
sectors. The corresponding trajectory A∗(·) is an optimal admissible trajectory.

3 Reduction to a One-dimensional Problem Without Integral
Constraints

Let us introduce a new state variable x(·) : [0,∞)→ R
1 and new control variables

u(·) : [0,∞)→ (0,∞) and v(·) : [0,∞)→ [0,∞) as follows:

x(t)= S(t)1−η

A(t)1−θ , u(t)= R1(t)

S(t)
, v(t)= R2(t)

S(t)
, t > 0. (12)

Here the state variable S(·) represents the current supply of the exhaustible resource.
This variable is a (Carathéodory) solution to the following Cauchy problem (for
given admissible controls R1(·) and R2(·)) on [0,∞):

Ṡ(t)= −R1(t)−R2(t), S(0)= S0. (13)

Note that the case η = θ = 1 is not excluded, although in this case the new vari-
able x(·) degenerates into a constant. This case can easily be analyzed directly, but
we include it in our general scheme to save the space. Below we show that for
η = θ = 1 the problem reduces to a zero-dimensional problem, i.e. to a problem
in which the utility function depends only on the controls and does not depend on
the state variables (hence the control variables take constant values maximizing the
utility function at each moment in time).

Note also that S(t) > 0 for all t > 0, so the quantities u(t) and v(t) are well
defined for all t > 0. Indeed, if S(τ)= 0 for some τ > 0, then S(t)= 0 for all t > τ



The Problem of Optimal Endogenous Growth 9

and hence R1(t)= R2(t)= 0 for t > τ , which is precluded by (5). Moreover, u(·)
and v(·) are locally bounded measurable functions since Ri(·), i = 1,2, is locally
bounded and measurable and S(·) is positive and continuous.

Since x(·) is a (locally) absolutely continuous function, we can calculate its
derivative a.e. on [0,∞):

ẋ(t)= (1 − η)
Ṡ(t)

A(t)1−θS(t)η
− (1 − θ)

Ȧ(t)S(t)1−η

A(t)2−θ

= −(1 − η)
[
u(t)+ v(t)

]
x(t)− (1 − θ)

A(t)θ [LA(t)]ηR2(t)
1−ηS(t)1−η

A(t)2−θ

= −(1 − η)
[
u(t)+ v(t)

]
x(t)− (1 − θ)

[
LA(t)

]η
v(t)1−ηx(t)2.

Thus, x(·) is a Carathéodory solution of the differential equation

ẋ(t)= −(1 − η)
[
u(t)+ v(t)

]
x(t)− (1 − θ)

[
LA(t)

]η
v(t)1−ηx(t)2, t > 0, (14)

satisfying the initial condition

x(0)= x0 = S
1−η
0

A1−θ
0

. (15)

Now we express the functional J (A(·),LA(·),R1(·)) (see (7)) in terms of the
new variables x(·), u(·) and v(·). Consider the first term in the integrand in (7):

∫ ∞

0
e−ρt lnA(t)dt = lnA0

ρ
+ 1

ρ

∫ ∞

0
e−ρt Ȧ(t)

A(t)
dt. (16)

This formula is valid for any admissible trajectory A(·) of problem (P). To show
this, it suffices first to integrate by parts on a finite time interval [0, T ] and then pass
to the limit as T → ∞:

∫ T

0
e−ρt lnA(t)dt = lnA0 − e−ρT lnA(T )

ρ
+ 1

ρ

∫ T

0
e−ρt Ȧ(t)

A(t)
dt. (17)

Due to (10) the integral on the left-hand side and the first term on the right-hand
side tend to the corresponding terms in (16). Further, Ȧ(t) ≥ 0, t > 0; therefore,
e−ρt Ȧ(t)/A(t) is integrable on [0,+∞) and the last term in (17) tends to the last
term in (16).

Substituting Ȧ(t) from (4) into (16), we obtain

∫ ∞

0
e−ρt lnA(t)dt = lnA0

ρ
+ 1

ρ

∫ ∞

0
e−ρt A(t)

θ [LA(t)]ηv(t)1−ηS(t)1−η

A(t)
dt

= lnA0

ρ
+ 1

ρ

∫ ∞

0
e−ρt

[
LA(t)

]η
v(t)1−ηx(t)dt.
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Similarly,

∫ T

0
e−ρt lnR1(t)dt

=
∫ T

0
e−ρt

[
lnu(t)+ lnS(t)

]
dt

=
∫ T

0
e−ρt lnu(t)dt + lnS0 − e−ρT lnS(T )

ρ
+ 1

ρ

∫ T

0
e−ρt Ṡ(t)

S(t)
dt

= lnS0 − e−ρT lnS(T )

ρ
+
∫ T

0
e−ρt

[
lnu(t)− u(t)+ v(t)

ρ

]
dt.

Passing to the limit as T → ∞, we see that

∫ ∞

0
e−ρt lnR1(t)dt = lnS0

ρ
+
∫ ∞

0
e−ρt

[
lnu(t)− u(t)+ v(t)

ρ

]
dt,

where both sides may be −∞.
Thus, multiplying J (A(·),LA(·),R1(·)) by ρ and neglecting constant terms, we

arrive at the functional

J1
(
x(·),LA(·), u(·), v(·)) =

∫ ∞

0
e−ρt

{
κ

[
LA(t)

]η
v(t)1−ηx(t)+ αρ ln

[
L−LA(t)

]

+ (1 − α)ρ lnu(t)− (1 − α)
[
u(t)+ v(t)

]}
dt. (18)

Now consider the following optimal control problem (P1) (see (14), (15) and
(18)):

ẋ(t)= −(1 − η)
[
u(t)+ v(t)

]
x(t)− (1 − θ)

[
LA(t)

]η
v(t)1−ηx(t)2, (19)

v(t) ∈ [0,∞), LA(t) ∈ [0,L), u(t) ∈ (0,∞), (20)

x(0)= x0,

J1
(
x(·),LA(·), u(·), v(·))=

∫ ∞

0
e−ρt

{
κ

[
LA(t)

]η
v(t)1−ηx(t)+ αρ ln

[
L−LA(t)

]

+ (1 − α)ρ lnu(t)− (1 − α)
[
u(t)+ v(t)

]}
dt

→ max. (21)

We say that a control w̃(·)= (LA(·), u(·), v(·)) : [0,∞)→ [0,L)× (0,∞)×[0,∞)

(which is a triple of measurable functions) is admissible in problem (P1) if the func-
tions u(·) and v(·) are locally bounded. The corresponding trajectory x(·) : [0, τ )→
R

1, τ > 0, can obviously be extended to the whole infinite time interval [0,∞). So,
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without loss of generality, we assume that any admissible trajectory x(·) is defined
on [0,∞). A pair (x(·),w(·)) where w(·) is an admissible control and x(·) is the
corresponding trajectory is called an admissible pair or a process in problem (P1).

Note that, structurally, problem (P1) is simpler than problem (P) because problem
(P1) does not contain integral constraints on the control variables. Problem (P1) is
equivalent to problem (P) in the following sense:

Lemma 1 For fixed A0 and S0, there is a one-to-one correspondence between
processes (A(·),w(·)) in problem (P) and (x(·), w̃(·)) in problem (P1). Moreover,
the corresponding values of the objective functionals J (A(·),LA(·),R1(·)) and
J1(x(·),LA(·), u(·), v(·)) are related by a linear transformation of the form

J1
(
x(·),LA(·), u(·), v(·))= ρJ

(
A(·),LA(·),R1(·)

)+C, (22)

where C depends only on ρ, A0 and S0.

Proof As shown above, any process (A(·),w(·)) = (A(·),LA(·),R1(·),R2(·)) in
problem (P) generates a process (x(·), w̃(·)) = (x(·),LA(·), u(·), v(·)) in problem
(P1), and relation (22) is valid for these processes.

Now, we show that any control process (x(·), w̃(·))= (x(·),LA(·), u(·), v(·)) in
problem (P1) corresponds to a control process (A(·),w(·)) = (A(·),LA(·),R1(·),
R2(·)) in problem (P). First, using the controls u(·) and v(·), we determine S(·) as a
unique solution to the Cauchy problem

Ṡ(t)= −[u(t)+ v(t)
]
S(t), S(0)= S0.

Since u(·) + v(·) is positive and locally bounded, we obtain a positive monotoni-
cally decreasing function S(·) defined on [0,∞). Then we define R1(t)= u(t)S(t)

and R2(t)= v(t)S(t), t ≥ 0, which are locally bounded and satisfy the integral con-
straint in (5). Finally, we find A(·) as a unique solution to the Cauchy problem

d

dt

[
A(t)1−θ ]= (1 − θ)

[
LA(t)

]η
v(t)1−ηS(t)1−η, A(0)=A0

if θ < 1, or as a unique solution to the Cauchy problem

d

dt

[
lnA(t)

]= [LA(t)]ηv(t)1−ηS(t)1−η, A(0)=A0

if θ = 1. This is certainly possible because the right-hand side of each of these
equations is positive and locally bounded.

We thus have a process (A(·),w(·))= (A(·),LA(·),R1(·),R2(·)) in problem (P).
Passing from this process (A(·),w(·)) in problem (P) back to some process
(x1(·), w̃1(·)) in problem (P1) along the scheme described at the beginning of this
section, we see that w̃1(·)= w̃(·) and x1(·) satisfies the same Cauchy problem (14),
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(15) as x(·). Therefore, by the uniqueness theorem for solutions of differential equa-
tions, x1(·)= x(·). This proves the required one-to-one correspondence between the
admissible processes in problems (P) and (P1). Since (22) holds for the processes
(A(·),w(·)) and (x1(·), w̃1(·)), and (x1(·), w̃1(·)) = (x(·), w̃(·)), we conclude that
(22) is valid for (A(·),w(·)) and (x(·), w̃(·)). �

As a direct consequence of Lemma 1 and estimate (8) we arrive at

Lemma 2 There exists a constant M1 > 0 depending only on ρ, L, A0 and S0 such
that

sup
(x(·),w̃(·))

∫ ∞

0
e−ρt

{
κ

[
LA(t)

]η
v(t)1−ηx(t)+ αρ ln

[
L−LA(t)

]

+ (1 − α)ρ lnu(t)− (1 − α)
[
u(t)+ v(t)

]}
dt ≤M1,

where the supremum is taken over all admissible pairs (x(·), w̃(·)) in problem (P1).

Lemma 2 allows us to define an optimal control w̃∗(·) : [0,∞)→R
3 in problem

(P1) as a welfare-maximizing triple w̃∗(·)= (LA∗ (·), u∗(·), v∗(·)). The correspond-
ing admissible trajectory x∗(·) is an optimal one in problem (P1).

To recapitulate, we showed that a process (A(·),w(·)) is optimal in problem (P)
if and only if the corresponding process (x(·), w̃(·)) is optimal in problem (P1). In
the next section we formulate and prove two main theoretical results on which the
subsequent solution of the problem is based.

4 Existence of an Optimal Control and Pontryagin’s Maximum
Principle

Denote

f (x, �,u, v)= −(1 − η)(u+ v)x − (1 − θ)�ηv1−ηx2,

g(x, �,u, v)= κ�ηv1−ηx + αρ ln(L− �)+ (1 − α)ρ lnu

− (1 − α)(u+ v),

x > 0, � ∈ [0,L), u > 0, v ≥ 0,

(23)

so that (19) and (21) become

ẋ(t)= f
(
x(t),LA(t), u(t), v(t)

)
,

J1
(
x(·),LA(·), u(·), v(·))=

∫ ∞

0
e−ρtg

(
x(t),LA(t), u(t), v(t)

)
dt → max.
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Let M(x,u, v,p) and M(x,p) be the current value Hamilton–Pontryagin func-
tion and the current value Hamiltonian for problem (P1) in the normal form:

M(x, �,u, v,p)= f (x, �,u, v)p+ g(x, �,u, v)

= −(1 − η)(u+ v)xp− (1 − θ)�ηv1−ηx2p+κ�ηv1−ηx

+ αρ ln(L− �)+ (1 − α)ρ lnu− (1 − α)(u+ v),

M(x,p)= sup
�∈[0,L),u>0,v≥0

M(x, �,u, v,p).

(24)

Here x > 0, � ∈ [0,L), u > 0, v ≥ 0 and p ∈ R
1.

Next, we formulate two important theorems (an existence theorem and a version
of the Pontryagin maximum principle for problem (P1)) that allow us to perform a
qualitative analysis of the solution to problem (P) (in Sect. 5). The proofs of these
theorems (together with all necessary auxiliary statements) constitute the rest of this
section.

Theorem 1 (Existence) There exists an optimal process (x∗(·), w̃∗(·)) in problem
(P1). The process (A∗(·),w∗(·)) corresponding to (x∗(·), w̃∗(·)) (in the sense of
Lemma 1) is optimal in problem (P).

Theorem 2 (Maximum principle) Let (x∗(·), w̃∗(·)) = (x∗(·),LA∗ (·), u∗(·), v∗(·))
be an optimal process in problem (P1) and (A∗(·),w∗(·)) be the corresponding (in
the sense of Lemma 1) optimal process in problem (P). Then there exists a current
value adjoint variable p(·) such that the following conditions hold:

(i) The process (x∗(·), w̃∗(·)), together with the current value adjoint variable
p(·), satisfies the core relations of the Pontryagin maximum principle in the
normal form on the infinite time interval [0,∞):

ṗ(t)= ρp(t)− ∂M(x∗(t),LA∗ (t), u∗(t), v∗(t),p(t))
∂x

for a.e. t > 0, (25)

M
(
x∗(t),LA∗ (t), u∗(t), v∗(t),p(t)

)=M
(
x∗(t),p(t)

)
for a.e. t > 0. (26)

(ii) The process (x∗(·), w̃∗(·)), together with the current value adjoint variable
p(·), satisfies the normal-form stationarity condition

M
(
x∗(t),p(t)

)

= ρeρt
∫ ∞

t

e−ρsg
(
x∗(s),LA∗ (s), u∗(s), v∗(s)

)
ds for all t ≥ 0.

(iii) For any t ≥ 0

p(t)= eρt e−y(t)
∫ ∞

t

e−ρsey(s) ∂g(x∗(s),LA∗ (s), u∗(s), v∗(s))
∂x

ds, (27)

where y(t)= ∫ t0 ∂f (x∗(s),LA∗ (s),u∗(s),v∗(s))
∂x

ds ≤ 0.
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Let us outline the scheme of proofs of these two theorems. First, we show that
it suffices to consider only bounded controls in problem (P1). Then we introduce
the problem with a slightly modified objective functional, which is defined for con-
trols that take values in the compact closure of the admissible control set. We show
that the optimal processes in these two problems coincide. Finally, using standard
results of optimal control theory, we prove analogs of Theorems 1 and 2 for the mod-
ified problem, which automatically implies the assertions of Theorems 1 and 2. The
above approach is presented as a series of auxiliary lemmas that are subsequently
used to prove the theorems.

Denote

V0 =
(
(1 − η)κLηx0

1 − α

)1/η

(28)

and consider the following optimal control problem (P1′) with bounded controls:

ẋ(t)= −(1 − η)
[
u(t)+ v(t)

]
x(t)− (1 − θ)

[
LA(t)

]η
v(t)1−ηx(t)2, (29)

LA(t) ∈ [0,L), u(t) ∈ (0, ρ], v(t) ∈ [0,V0], (30)

x(0)= x0, (31)

J1
(
x(·),LA(·), u(·), v(·))=

∫ ∞

0
e−ρt

{
κ

[
LA(t)

]η
v(t)1−ηx(t)+ αρ ln

[
L−LA(t)

]

+ (1 − α)ρ lnu(t)− (1 − α)
[
u(t)+ v(t)

]}
dt

→ max. (32)

Lemma 3 If w̃∗(·)= (LA∗ (·), u∗(·), v∗(·)) is an optimal admissible control in prob-
lem (P1), then

u∗(t)≤ ρ and v∗(t)≤ V0 =
(
(1 − η)κLηx0

1 − α

)1/η

for a.e. t > 0,

and so w̃∗(·) is also an optimal admissible control in problem (P1′). Conversely, if
ˆ̃w∗(·) is an optimal admissible control in problem (P1′), then it is also an optimal

admissible control in problem (P1).

Before proving the lemma, we point out a corollary to this lemma and formula
(27).

Corollary 1 The current value adjoint variable p(·) satisfying the conditions of
Theorem 2 is bounded:

0 ≤ p(t)≤ κLηV
1−η
0

ρ
for all t > 0
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(if η= 1, then V0 = 0 and we consider V 1−η
0 to be 1). In particular, the transversal-

ity condition

lim
t→∞ e−ρtx∗(t)p(t)= 0

holds for any optimal process (x∗(·), w̃∗(·)) in problem (P1).

Proof Indeed, since ∂f
∂x
(x, �,u, v)≤ 0 for all x > 0, � ∈ [0,L), u > 0 and v ≥ 0, it

follows that y(·) is a monotonically decreasing function, and so

0 ≤ p(t)≤ eρt
∫ ∞

t

e−ρsκLA∗ (s)ηv∗(s)1−ηds ≤ κLηV
1−η
0

ρ
for all t > 0.

This implies the transversality condition, as 0< x∗(t)≤ x0 for t > 0. �

Proof of Lemma 3 Let w̃(·)= (LA(·), u(·), v(·)) be an admissible control in prob-
lem (P1) such that ess supt>0 u(t) > ρ or ess supt>0 v(t) > V0. Define a new ad-
missible bounded control w(·) = (LA(·), ū(·), v̄(·)) with ū(t) = min{u(t), ρ} and
v̄(t)= min{v(t),V0}, t ≥ 0. Note that w(·) is also an admissible control in problem
(P1′).

Let x(·) and x̄(·) be the trajectories of problem (P1) (with the same initial con-
dition x0) that correspond to w̃(·) and w(·), respectively (x̄(·) is also a trajectory of
problem (P1′)). Then we have

ū(t)≤ u(t), v̄(t)≤ v(t) and x0 ≥ x̄(t)≥ x(t) > 0 for all t > 0

by virtue of (19). Therefore,

J1
(
x(·),LA(·), u(·), v(·))≤

∫ ∞

0
e−ρt

{
κ

[
LA(t)

]η
v(t)1−ηx̄(t)+ αρ ln

[
L−LA(t)

]

+ (1 − α)ρ lnu(t)− (1 − α)
[
u(t)+ v(t)

]}
dt

<

∫ ∞

0
e−ρt

{
κ

[
LA(t)

]η
v̄(t)1−ηx̄(t)+ αρ ln

[
L−LA(t)

]

+ (1 − α)ρ ln ū(t)− (1 − α)
[
ū(t)+ v̄(t)

]}
dt

= J1
(
x̄(·),LA(·), ū(·), v̄(·)),

where we used the inequalities

d

du

(
(1 − α)ρ lnu− (1 − α)u

)
< 0,

d

dv

(
κ

[
LA(t)

]η
v1−ηx̄(t)− (1 − α)v

)
< 0

for all t > 0 and u > ρ, v > V0.
Thus, we see that if ess supt>0 u(t) > ρ or ess supt>0 v(t) > V0, then the control

w̃(·) cannot be optimal. This proves the first part of the lemma.
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Conversely, if (x∗(·), w̃∗(·)) = (x∗(·),LA∗ (·), u∗(·), v∗(·)) is an optimal process
in problem (P1′) and (x(·), w̃(·)) = (x(·),LA(·), u(·), v(·)) is any process in prob-
lem (P1), then, again, introducing a new bounded control w(·)= (LA(·), ū(·), v̄(·))
with ū(t)= min{u(t), ρ} and v̄(t)= min{v(t),V0}, t ≥ 0, we see that

J1
(
x(·),LA(·), u(·), v(·))≤ J1

(
x̄(·),LA(·), ū(·), v̄(·))

≤ J1
(
x∗(·),LA∗ (·), u∗(·), v∗(·)

)
,

where x̄(·) is the trajectory of problem (P1) (as well as of (P1′)) corresponding to
the control w(·). �

Our next goal is to establish the existence of an optimal admissible control w̃∗(·)
in problem (P1′). To apply a standard existence theorem of optimal control theory,
we need to compactify the range of values of the control variables. For this purpose,
we introduce the function

Lε(ξ)=
⎧
⎨

⎩
ln ε+ 1

ε
(ξ − ε) for 0 ≤ ξ ≤ ε,

ln ξ for ξ > ε,
(33)

where ε < 1 is a small positive constant, to the utility functional J1(x(·),LA(·), u(·),
v(·)). Obviously, Lε(·) is a continuously differentiable and concave function on
[0,∞) and Lε(ξ)≥ ln ξ for ξ ∈ (0,∞).

Now consider an auxiliary problem (Pε):

ẋ(t)= −(1 − η)
[
u(t)+ v(t)

]
x(t)− (1 − θ)

[
LA(t)

]η
v(t)1−ηx(t)2, (34)

LA(t) ∈ [0,L], u(t) ∈ [0, ρ], v(t) ∈ [0,V0], (35)

x(0)= x0,

Jε
(
x(·),LA(·), u(·), v(·))=

∫ ∞

0
e−ρt

{
κ

[
LA(t)

]η
v(t)1−ηx(t)+ αρLε

(
L−LA(t)

)

+ (1 − α)ρLε
(
u(t)

)− (1 − α)
[
u(t)+ v(t)

]}
dt

→ max, (36)

where x0 is the same as in (31). Clearly, any process (x(·), w̃(·)) = (x(·),LA(·),
u(·), v(·)) in problem (P1′) is also an admissible process in problem (Pε).

Lemma 4 If there is an optimal process (x∗(·), w̃∗(·))= (x∗(·),LA∗ (·), u∗(·), v∗(·))
in problem (Pε) such that LA∗ (t)≤ L− ε and u∗(t)≥ ε for a.e. t ∈ (0,∞), then

(i) this process is also optimal in problem (P1′);
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(ii) any other optimal process (x̂∗(·), ˆ̃w∗(·)) = (x̂∗(·), L̂A∗ (·), û∗(·), v̂∗(·)) (if it ex-
ists) in problem (P1′) is such that L̂A∗ (t) ≤ L − ε and û∗(t) ≥ ε for a.e.
t ∈ (0,∞) and so it is also optimal in problem (Pε).

Proof Assertion (i) is valid because Jε(x(·),LA(·), u(·), v(·)) ≥ J1(x(·),LA(·),
u(·), v(·)) for any admissible process (x(·), w̃(·))= (x(·),LA(·), u(·), v(·)) in prob-
lem (P1′), while Jε(x∗(·),LA∗ (·), u∗(·), v∗(·))= J1(x∗(·),LA∗ (·), u∗(·), v∗(·)).

If (x̂(·), ˆ̃w(·)) = (x̂(·), L̂A(·), û(·), v̂(·)) is a process in problem (P1′) such that
L̂A(t) > L− ε or û(t) < ε on a positive measure set of values of t , then

J1
(
x̂(·), L̂A(·), û(·), v̂(·))< Jε

(
x̂(·), L̂A(·), û(·), v̂(·))

≤ Jε
(
x∗(·),LA∗ (·), u∗(·), v∗(·)

)

= J1
(
x∗(·),LA∗ (·), u∗(·), v∗(·)

)

and hence this process cannot be optimal in problem (P1′). This implies (ii). �

Denote

W = [0,L] × [0, ρ] × [0,V0]
and

gε(x, �,u, v)= κ�ηv1−ηx + αρLε(L− �)

+ (1 − α)ρLε(u)− (1 − α)(u+ v),

x > 0, (�, u, v) ∈W,
(37)

so that (34) and (36) become

ẋ(t)= f
(
x(t),LA(t), u(t), v(t)

)
,

Jε
(
x(·),LA(·), u(·), v(·))=

∫ ∞

0
e−ρtgε

(
x(t),LA(t), u(t), v(t)

)
dt → max

(see (23)).
For every x > 0, consider the following set, which is standard in optimal control

theory:

Q(x)= {(z0, z
) ∈R

2 : z0 ≤ gε(x, �,u, v), z= f (x, �,u, v), (�,u, v) ∈W}.

Lemma 5 For every x > 0, the set Q(x) is convex.

Proof It suffices to show that for any two points (z0
1, z1), (z

0
2, z2) ∈ Q(x) the

midpoint of the segment joining (z0
1, z1) to (z0

2, z2) also lies in Q(x). Let zi =
f (x, �i, ui, vi) and z0

i ≤ gε(x, �i, ui, vi) for some (�i, ui, vi) ∈ W (i = 1,2). We
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need to show that there exists (�̄, ū, v̄) ∈W such that

f (x, �̄, ū, v̄)= z̄= z1 + z2

2
and gε(x, �̄, ū, v̄)≥ z̄0 = z0

1 + z0
2

2
.

We will seek (�̄, ū, v̄) in the form

�̄= �̄(ε)= �1 + �2

2
− ε, ū= u1 + u2

2
, v̄ = v1 + v2

2

with 0 ≤ ε ≤ �1+�2
2 . It is obvious that such a triple belongs to W .

Note that

(
�1 + �2

2

)η(
v1 + v2

2

)1−η
≥ �

η
1v

1−η
1 + �

η
2v

1−η
2

2
, 0 ≤ η ≤ 1

(see, e.g., Theorem 38 in Hardy et al. 1934). Therefore,

f (x,0, ū, v̄)≥ z̄ and f
(
x, �̄(0), ū, v̄

)≤ z̄.

Since f (x, �̄(·), ū, v̄) is a continuous function of ε, there indeed exists an ε, 0 ≤ ε ≤
�1+�2

2 , such that

f
(
x, �̄(ε), ū, v̄

)= z̄. (38)

We fix such an ε and write simply �̄ instead of �̄(ε) in what follows.
Now let us show that gε(x, �̄, ū, v̄)≥ z̄0. Note that due to (38), for θ < 1,

�̄ηv̄1−ηx = −(1 − η)(ū+ v̄)x − z̄

(1 − θ)x
= −(1 − η)(u1 + u2 + v1 + v2)x − (z1 + z2)

2(1 − θ)x

= �
η
1v

1−η
1 x + �

η
2v

1−η
2 x

2
. (39)

If θ = 1, then f (·) does not depend on � and so (38) holds for all ε. Therefore,
choosing an appropriate ε, we can achieve the equality of the first and last expres-
sions in the chain (39) in this case as well.

Since Lε(·) is a concave increasing function, we have Lε(L− �̄)≥ Lε(L− �̄(0))
and in view of (39) find that

gε(x, �̄, ū, v̄)≥ gε(x, �1, u1, v1)+ gε(x, �2, u2, v2)

2
≥ z̄0.

This completes the proof of Lemma 5. �

Lemma 6 For any ε, 0 < ε < 1, there exists an optimal control in problem (Pε).
Moreover, if ε is small enough, then any optimal control w̃(·)= (LA∗ (·), u∗(·), v∗(·))
in problem (Pε) is such that LA∗ (t)≤ L− ε and u∗(t)≥ ε for a.e. t ∈ (0,∞).
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Proof The existence follows from Theorem 2.1 in Aseev and Kryazhimskii (2007)
and Lemma 5.

Note that problem (Pε) falls within the case of dominating discount (see Sect. 12
in Aseev and Kryazhimskii 2007), so we can apply the version of Pontryagin’s max-
imum principle formulated in Theorem 12.1 in Aseev and Kryazhimskii (2007) to
this problem. To this end, define the current value Hamilton–Pontryagin function
Mε(x,u, v,p) and the current value Hamiltonian Mε(x,p) in problem (Pε) in the
normal form:

Mε(x, �,u, v,p) = f (x, �,u, v)p+ gε(x, �,u, v)

= −(1 − η)(u+ v)xp− (1 − θ)�ηv1−ηx2p+κ�ηv1−ηx

+ αρLε(L− �)+ (1 − α)ρLε(u)− (1 − α)(u+ v), (40)

Mε(x,p) = sup
(�,u,v)∈W

Mε(x, �,u, v,p). (41)

Here x > 0, (�,u, v) ∈W and p ∈ R
1.

Let (x∗(·), w̃∗(·))= (x∗(·),LA∗ (·), u∗(·), v∗(·)) be an optimal process in problem
(Pε). Then, by Theorem 12.1 from Aseev and Kryazhimskii (2007), we have

Mε

(
x∗(t),LA∗ (t), u∗(t), v∗(t),p(t)

)=Mε

(
x∗(t),p(t)

)
for a.e. t > 0, (42)

where

p(t)= eρt e−y(t)
∫ ∞

t

e−ρsey(s) ∂gε(x∗(s),LA∗ (s), u∗(s), v∗(s))
∂x

ds (43)

with the same y(·) as in Theorem 2. As shown in the proof of Corollary 1, y(·) is a
monotonically decreasing function, and so

0 ≤ p(t)≤ 1

ρ
sup

x>0,(�,u,v)∈W
∂gε(x, �,u, v)

∂x
= κLηV

1−η
0

ρ
for all t > 0.

We also have 0 < x∗(·) ≤ x0. However, it is easy to show that if ε is suffi-
ciently small,1 then the maximum of the function Mε(x, ·, ·, ·,p) with respect to
(�,u, v) ∈W for fixed x ∈ (0, x0] and p ∈ [0,κLηV 1−η

0 /ρ] cannot be attained at a
point (�,u, v) such that � > L−ε or u < ε. Indeed, it suffices to calculate the partial
derivatives of Mε with respect to � and u.

This fact, together with the maximum condition (42), completes the proof of the
lemma. �

Proof of Theorem 1 Above we have shown that the auxiliary problem (Pε) has
a solution, i.e. an optimal process (x∗(·), w̃∗(·)) = (x∗(·),LA∗ (·), u∗(·), v∗(·)), and

1Of course, the upper bound for ε that guarantees the validity of this statement depends on x0, but
x0 is fixed from the onset.
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proved certain estimates for the corresponding optimal control (Lemma 6). These
estimates show (Lemma 4) that any such solution is also an optimal process in prob-
lem (P1′), and so is an optimal process in problem (P1) (Lemma 3), which is equiv-
alent to the original problem (P) (Lemma 1). Thus, we obtain the existence of an
optimal control in problem (P). �

Proof of Theorem 2 Fix a sufficiently small ε. By Lemmas 6 and 4(ii), LA∗ (t) ≤
L− ε and u∗(t)≥ ε for a.e. t ∈ (0,∞), and (x∗(·), w̃∗(·)) is an optimal process in
problem (Pε).

By Theorem 12.1 in Aseev and Kryazhimskii (2007), such an adjoint vari-
able p(·) satisfying properties (i)–(iii) of Theorem 2 (with gε(·), Mε(·) and
Mε(·) instead of g(·), M(·) and M(·), respectively) exists for the optimal pro-
cess (x∗(·), w̃∗(·)) in problem (Pε). Since LA∗ (t) ≤ L − ε and u∗(t) ≥ ε for a.e.
t > 0, we have g(x∗(t),LA∗ (t), u∗(t), v∗(t)) = gε(x∗(t),LA∗ (t), u∗(t), v∗(t)) and
M(x∗(t),LA∗ (t), u∗(t), v∗(t),p(t)) = Mε(x∗(t),LA∗ (t), u∗(t), v∗(t),p(t)) for a.e.
t > 0. Moreover, since M(x, �,u, v,p) ≤ Mε(x, �,u, v,p) for all x > 0, p > 0
and (�,u, v) ∈W , we also have M(x∗(t),p(t))=Mε(x∗(t),p(t)).

Thus, properties (i)–(iii) of Theorem 2 with g(·), M(·) and M(·) follow from the
same properties with gε(·), Mε(·) and Mε(·). In particular, (42) and (43) become
(26) and (27). �

Theorem 2 allows us to explicitly write the Hamiltonian system of the Pontrya-
gin maximum principle for problem (P1). In the next section, we will analyze the
qualitative behavior of solutions to this system and single out all optimal regimes.

5 Analysis of the Hamiltonian System

We know from Theorem 1 that an optimal process (x∗(·), w̃∗(·)) in problem (P1)
exists and satisfies the relations of Theorem 2. Using Theorem 2, we can construct
the Hamiltonian system of the Pontryagin maximum principle for problem (P1) in
the variables x(·) and p(·) directly. However, to simplify the further analysis, we
pass from the variable p(·) to a new variable φ(·) defined as φ(t)= x(t)p(t), t > 0.
Then we write and analyze the relations of the Hamiltonian system of the Pontryagin
maximum principle for problem (P1) in the variables x(·) and φ(·).

In terms of the variable φ(·), the adjoint system (see (25)) and the maximum
condition (see (26)) take the forms

φ̇(t)= ẋ(t)p(t)+ x(t)ṗ(t)

= ρφ(t)+LA(t)ηv(t)1−ηx(t)
[
(1 − θ)φ(t)−κ

]
(44)

and

M̃(x, �,u, v,φ)→ max
�∈[0,L),u>0,v≥0

, (45)
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respectively. Here the function M̃(·) is defined by the equality (see (24))

M̃(x, �,u, v,φ)= −[1 − α + (1 − η)φ
]
(u+ v)

+ [κ − (1 − θ)φ
]
�ηv1−ηx

+ αρ ln(L− �)+ (1 − α)ρ lnu, (46)

for all x > 0, φ ≥ 0, u > 0, v ≥ 0 and 0 ≤ � < L.
Our first aim is to write the Hamiltonian system of the maximum principle for

problem (P1) in terms of the variables x(·) and φ(·) by combining (19) and (44)
(and using maximum condition (45)). To this end, we first express the quantities
LA(x,φ), u(x,φ) and v(x,φ) as functions of x and φ that are (unique) maximizers
of M̃(·) with respect to �, u and v, respectively (see maximum condition (45)), for
all x > 0 and φ ≥ 0. Then, substituting these maximizers into (19) and (44), we get
the Hamiltonian system of the maximum principle for problem (P1) in the form

ẋ(t)= −(1 − η)
[
u
(
x(t), φ(t)

)+ v
(
x(t), φ(t)

)]
x(t)

− (1 − θ)LA
(
x(t), φ(t)

)η
v
(
x(t), φ(t)

)1−η
x(t)2,

φ̇(t)= ρφ(t)+LA
(
x(t), φ(t)

)η
v
(
x(t), φ(t)

)1−η
x(t)

[
(1 − θ)φ(t)−κ

]
.

(47)

The value u(x,φ) at which the maximum of M̃(·) with respect to u is attained
can easily be found by means of differentiation (see (46)):

u(x,φ)= (1 − α)ρ

1 − α + (1 − η)φ
. (48)

If κ ≤ (1 − θ)φ, then the maximum of M̃(·) with respect to � and v is attained
for v(x,φ)= LA(x,φ)= 0.

Suppose that κ > (1 − θ)φ. If η = 1, then v(x,φ) = 0 simply because of the
constraint 0 ≤ v ≤ V0 = 0 (see (35) and (28)), and u(x,φ) = ρ (see (48)). In this
case it is obvious that the maximum point of M̃(·) as a function of � is given by

LA(x,φ)= L− αρ

(κ − (1 − θ)φ)x
. (49)

Finally, consider the case when κ > (1 − θ)φ and η < 1. Note that M̃(x, �,u,

v,φ)→ −∞ as v → ∞ or �→ L− 0. On the other hand, if one of the variables, v
or �, is zero, then the maximum with respect to the other variable is attained at zero.
Therefore, the maximum of M̃(·) with respect to � and v is attained either at the
point v(x,φ)= LA(x,φ)= 0 or at an interior point, in which case this point can be
found by equating the partial derivatives of M̃(·) with respect to � and v to zero:

η
[
κ − (1 − θ)φ

](v
�

)1−η
x = αρ

L− �
, (50)
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Fig. 1 The sets 0 and 1
and the optimal trajectory
(thick line). All trajectories
lying above the optimal one
tend to infinity along the
φ-axis. All trajectories lying
below the optimal one
transversally intersect the
x-axis

(1 − η)
[
κ − (1 − θ)φ

]( �
v

)η
x = 1 − α + (1 − η)φ. (51)

Denoting

h(x,φ)= 1 − α + (1 − η)φ

(1 − η)x[κ − (1 − θ)φ] , x > 0,0 ≤ φ <
κ

1 − θ
,

we find

�

v
= h(x,φ)1/η (52)

and

�= L− αρh(x,φ)(1−η)/η

η[κ − (1 − θ)φ]x = L− αρ(1 − α+ (1 − η)φ)(1−η)/η

η(1 − η)(1−η)/η(x[κ − (1 − θ)φ])1/η , (53)

v = L

h(x,φ)1/η
− αρh(x,φ)−1

η[κ − (1 − θ)φ]x

= L((1 − η)x[κ − (1 − θ)φ])1/η
(1 − α+ (1 − η)φ)1/η

− αρ(1 − η)

η(1 − α+ (1 − η)φ)
. (54)

If these formulas yield positive values v(x,φ) and LA(x,φ) of v and �, then this is
the maximum point of M̃(·) with respect to v and �. Otherwise, the maximum point
is v(x,φ)= LA(x,φ)= 0.

Note that (53) and (54) for η = 1 turn into (49) and v(x,φ)= 0, respectively, if
we consider (1 − η)1−η to be 1 for η= 1.

Set

h1(φ)= αηρη(1 − α+ (1 − η)φ)1−η

Lηηη(1 − η)1−η[κ − (1 − θ)φ] , 0 ≤ (1 − θ)φ < κ,

and introduce the following sets (see Fig. 1):

 = {(x,φ) ∈ R
2 : x > 0, φ ≥ 0

}
,

0 = {(x,φ) ∈  : (1 − θ)φ ≥ κ or
{
(1 − θ)φ < κ, x < h1(φ)

}}
, 1 =  \ 0.
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According to the above analysis, in 0 both LA(x,φ) and v(x,φ) vanish, and so
our Hamiltonian system (47) in 0 has the form

ẋ(t)= − (1 − η)(1 − α)ρ

1 − α + (1 − η)φ(t)
x(t),

φ̇(t)= ρφ(t).

Note that h1(·) is a monotonically increasing function of φ (except for the case
η = θ = 1, in which h1(·) ≡ const). Therefore, any trajectory of our system that
reaches the set 0 cannot leave this set afterward. (Indeed, at every point of 0
we have ẋ(·) ≤ 0 and φ̇(·) ≥ 0.) However, we know that φ(·) is bounded along an
optimal trajectory (e.g., by Corollary 1); hence the only candidate for an optimal
trajectory in 0 lies on the x-axis and looks like

x(t)= x̄e−(1−η)ρ(t−τ), φ(t)= 0 for t ≥ τ, (55)

where

x̄ = h1(0)= ρηαη(1 − α)1−η

Lηηη(1 − η)1−η
κ

. (56)

On the other hand, since ẋ(t)≤ 0, any bounded trajectory must tend to a fixed point.
If η < 1, then ẋ(·) < 0 in the interior of 1 and consequently any trajectory of our
system starting in 1 eventually enters the set 0. This shows that there is a unique
bounded trajectory of our system, and hence the optimal process in problem (P1) is
also unique. The tail of this trajectory is described by (55).

If η= 1 and θ < 1, then for similar reasons any bounded trajectory starting in 1
tends to the point (x̄,0) on the boundary of 1. Let us show that there is only one
such trajectory (x̃(·), φ̃(·)) in 1. Indeed, if there were two trajectories lying in 1
and tending to (x̄,0), then any trajectory lying between these two would also tend
to (x̄,0) (because ẋ(·) ≤ 0). However, this is impossible, as we can show, for ex-
ample, by considering the linearization of the Hamiltonian system of the maximum
principle in 1 at the point (x̄,0) and applying the Grobman–Hartman theorem (see
Hartman 1964).

Finally, if η = θ = 1, then x(t) ≡ 1 (see (12)) and φ̇(t) = ρφ(t) − �κ, where
� = max{0,L − αρ

κ
}. Thus, the only bounded trajectory is the fixed point x = 1,

φ = max{0, Lκ
ρ

− α}. Recall that in this case the optimal controls are u(t) ≡ ρ,

v(t)≡ 0 and LA(t)≡ max{0,L− αρ
κ

}.
Let us now examine the initial part of the optimal trajectory lying in 1, for

η < 1. Using formulas (52) and (54), we find

�ηv1−η = h(x,φ)v = L

h(x,φ)(1−η)/η − αρ

ηx[κ − (1 − θ)φ] .

Similarly, due to (48) and (54), we obtain

u+ v = (η− α)ρ

η(1 − α + (1 − η)φ)
+ L

h(x,φ)1/η
.
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Thus, our system (47) in 1 has the form

ẋ(t)= −(1 − η)

[
(η− α)ρ

η(1 − α + (1 − η)φ(t))
+ L

h(x(t), φ(t))1/η

]
x(t)

− (1 − θ)

[
L

h(x(t), φ(t))(1−η)/η − αρ

ηx(t)[κ − (1 − θ)φ(t)]
]
x(t)2,

φ̇(t)= ρφ(t)− L(1 − α + (1 − η)φ(t))

(1 − η)h(x(t), φ(t))1/η
+ αρ

η
,

(57)

and we are interested in the trajectory (x̃(·), φ̃(·)) that passes through the point
(x̄,0). It would be difficult to solve this system analytically, but for numerical sim-
ulations it suffices to know that the sought trajectory (x̃(·), φ̃(·)) is a solution to the
Cauchy problem for system (57) in reverse time (i.e., with the right-hand side taken
with the opposite sign) under the initial condition x̃(0)= x̄, φ̃(0)= 0.

Moreover, since ˙̃x(t) < 0 for all t > 0, we can express φ̃(·) as a function of x̃(·)
along this trajectory, φ̃ = φ∗(x).

If η = 1 and θ < 1, we can also express φ̃(·) as a (continuous) function of x̃(·)
along this trajectory, φ̃ = φ∗(x) (with φ∗(x)= 0 for x ≤ x̄). However, this trajectory
cannot be found as a solution of the Cauchy problem, as described above, as (x̄,0)
is a fixed point of the Hamiltonian system for η= 1.

Thus, for ηθ < 1 we obtain a unique optimal feedback control u∗(x) =
u(x,φ∗(x)), v∗(x) = v(x,φ∗(x)), LA∗ (x) = LA(x,φ∗(x)) according to formulas
(48), (54) and (49), (53).

Let us summarize the above analysis of the Hamiltonian system as follows:

Theorem 3

(a) If η= 1 and θ = 1, then there is a unique optimal control w̃(·)= (LA∗ (·), u∗(·),
v∗(·)) in problem (P1), with

LA∗ (t)≡ max

{
0,L− αρ

κ

}
, u∗(t)≡ ρ, v∗(t)≡ 0 for all t ∈ [0,∞).

In this case x(t)≡ x0 = 1, t ≥ 0 is a unique admissible trajectory (see (12)).
(b) If ηθ < 1, then there is a unique optimal feedback control (optimal synthesis)

w̃∗(x) = (LA∗ (x), u∗(x), v∗(x)) in problem (P1), with LA∗ (x) = LA(x,φ∗(x)),
u∗(x) = u(x,φ∗(x)) and v∗(x) = v(x,φ∗(x)) determined by formulas (49),
(53), (48) and (54). Here the feedback φ∗(x) is generated by a unique solu-
tion (x̃(·), φ̃(·)) of the Hamiltonian system (57) that reaches (or tends to) the
point (x̄,0) from the right, where (see (56))

x̄ = ρηαη(1 − α)1−η

Lηηη(1 − η)1−η
κ

.

Namely,
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(b.1) If ηθ < 1 and x ≤ x̄, then

LA∗ (x)= 0, u∗(x)= ρ, v∗(x)= 0.

(b.2) If η= 1, θ < 1 and x > x̄, then (see (49), (48) and (54))

LA∗ (x)= L− αρ

(κ − (1 − θ)φ∗(x))x
, u∗(x)= ρ, v∗(x)= 0.

In the case of η = 1 and θ < 1, for any initial state x0 ≤ x̄ the corresponding
optimal trajectory x∗(·) is x∗(t)≡ x0, t ≥ 0, while for any initial state x0 > x̄

the corresponding optimal trajectory x∗(·) monotonically tends to the point x̄
from the right as t → ∞.

(b.3) If η < 1, θ ≤ 1 and x > x̄, then (see (53), (48) and (54))

LA∗ (x)= L− αρ(1 − α + (1 − η)φ∗(x))(1−η)/η

η(1 − η)(1−η)/η(x[κ − (1 − θ)φ∗(x)])1/η ,

u∗(x)= (1 − α)ρ

1 − α + (1 − η)φ∗(x)
,

v∗(x)= L((1 − η)x[κ − (1 − θ)φ∗(x)])1/η
(1 − α + (1 − η)φ∗(x))1/η

− αρ(1 − η)

η(1 − α+ (1 − η)φ∗(x))
.

In the case of η < 1 and θ ≤ 1, for any initial state x0 > 0, the corresponding
optimal trajectory x∗(·) monotonically decreases to 0 as t → ∞.

Finally let us analyze the dynamics of the output Y(·) and the knowledge stock
A(·) along the optimal trajectory.

If η = θ = 1, then (Theorem 3(a)) the optimal controls are u(t) ≡ ρ, v(t) ≡ 0
and LA(t) ≡ max{0,L − αρ

κ
}. In the case of Lκ ≤ αρ, we have stagnation of the

knowledge stock (Ȧ(t)≡ 0) and depletion of the output (Y(t)→ 0 as t → ∞). For
Lκ > αρ, the knowledge stock grows exponentially, while the output still depletes
to zero for Lκ < ρ(α + κ(1 − α)), is constant for Lκ = ρ(α + κ(1 − α)), and
grows exponentially for Lκ > ρ(α +κ(1 − α)).

Let us consider the case ηθ < 1 in more detail. If x0 ≤ x̄, then we again have
stagnation of the knowledge stock and depletion of the output. If x0 > x̄, then the
knowledge stock grows in the beginning, but the growth either terminates at a certain
instant (η < 1) or decelerates (η = 1), so that the knowledge stock never exceeds a
certain level determined by the parameters of the system. The output falls to zero in
the long run. However, the following proposition shows that it may grow on some
initial time interval.

Theorem 4 Let ηθ < 1. Then, for sufficiently large initial values x0 (i.e., for a rela-
tively large initial stock of the exhaustible resource S0 and/or for a relatively small
initial knowledge stock A0; see (15)), the output Y(·) as a function of t increases on
some initial time interval 0< t < τ , τ > 0.
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Proof For large x0 the initial part of the optimal trajectory lies in 1 and hence Y(·)
is continuously differentiable for the corresponding values of t . Let us show that
Ẏ (t) > 0 on the initial time interval 0< t < τ , τ > 0, of the optimal trajectory. We
have

Ẏ (t)= Y(t)

[
κ

Ȧ(t)

A(t)
− α

L̇A(t)

L−LA(t)
+ (1 − α)

u̇(t)

u(t)
+ (1 − α)

Ṡ(t)

S(t)

]

= Y(t)

[
κLA(t)ηv(t)1−ηx(t)− α

L̇A(t)

L−LA(t)

+ (1 − α)
u̇(t)

u(t)
− (1 − α)

(
u(t)+ v(t)

)]
(58)

(see (1), (2), (13) and (12)), where u(t) = u∗(x(t)), v(t) = v∗(x(t)) and LA(t) =
LA∗ (x(t)).

Let us show that φ̇(t) < 0 along the optimal trajectory in 1. To see this, note
that the curve on which φ̇(t)= 0 in 1 is described by the equation

ρφ + αρ

η
= L(1 − α + (1 − η)φ)

(1 − η)h(x,φ)1/η
= L(1 − η)(1−η)/η(x[κ − (1 − θ)φ])1/η

(1 − α + (1 − η)φ)(1−η)/η . (59)

This equation defines x as a monotonically increasing function of φ. So any trajec-
tory of our system that intersects this curve at some instant τ (at a point different
from (x̄,0)) acquires a positive derivative of the φ-coordinate and later enters the
set 0 (at a point different from (x̄, φ)). Such a trajectory tends to infinity and so it
is not optimal. Hence our optimal trajectory lies in 1 completely below the above
curve, and φ̇(t) < 0 on it. This immediately implies that u̇(t)≥ 0 in (58) (see (48)).

To estimate the second term in the square brackets in (58), we first denote
ζ(t) = x(t)[κ − (1 − θ)φ(t)], ζ∗(x) = x[κ − (1 − θ)φ∗(x)], and calculate (along
the optimal trajectory in 1)

ζ̇ (t) = d

dt

(
x(t)

[
κ − (1 − θ)φ(t)

])= ẋ(t)
[
κ − (1 − θ)φ(t)

]− (1 − θ)x(t)φ̇(t)

= −(1 − η)
[
u∗
(
x(t)

)+ v∗
(
x(t)

)]
ζ(t)− (1 − θ)ρx(t)φ(t) < 0, (60)

because ζ(t) > 0 for (x(t), φ(t)) ∈ 1. Then, after some calculations, we find from
(49) for η= 1, from (53) for η < 1, and from (44), (60) that

− L̇A(t)

L−LA(t)
= (1 − η)2φ̇(t)

η(1 − α + (1 − η)φ(t))
− 1

η

ζ̇ (t)

ζ(t)

>− (1 − η)2LA(t)ηv(t)1−ηζ(t)
η(1 − α + (1 − η)φ(t))

+ (1 − θ)ρx(t)φ(t)

ζ(t)
. (61)



The Problem of Optimal Endogenous Growth 27

If η= 1 and θ < 1, then the right-hand side of (61) is positive; hence dLA∗ (x)
dx

> 0
and

LA∗ (x)ηv∗(x)1−ηx → +∞ as x → +∞. (62)

This obviously implies that Ẏ (t) > 0 for large x(t) along the optimal trajectory, as
the second and third terms in the square brackets in (58) are nonnegative, while the
last term is bounded due to the restrictions u(t)≤ ρ and v(t)= 0.

If η < 1 and θ ≤ 1, then φ∗(x) < κ/(1 − θ) in 1. Let us show that φ∗(x) →
κ/(1 − θ) as x → ∞. Indeed, suppose the contrary. Then it follows from (53) that
LA∗ (x)→ L as x → ∞, and due to (52) v∗(x)∼ x1/η as x → ∞. Therefore,

dφ∗(x)
dx

= φ̇(t)

ẋ(t)

= LA∗ (x)ηv∗(x)1−ηx[κ − (1 − θ)φ∗(x)] − ρφ∗(x)
(1 − η)[u∗(x)+ v∗(x)]x + (1 − θ)LA∗ (x)ηv∗(x)1−ηx2

∼ 1

x
, (63)

which contradicts the boundedness of φ∗(·). Thus, φ∗(x)→ κ/(1 − θ) as x → ∞.
If ζ∗(·) is unbounded, then by (53) LA∗ (x)→ L as x → ∞, and by (52) v∗(x)∼

ζ∗(x)1/η = o(x1/η) and v∗(x)→ ∞ as x → ∞. This shows that the first term in the
square brackets in (61) dominates all the negative terms there, and so Ẏ (t) > 0 for
large x(t) along the optimal trajectory.

If ζ∗(·) is bounded, then v∗(·) is bounded by (51). Hence the right-hand side of

(61) is positive for large x(t) and, in particular, dL
A∗ (x)
dx

> 0 for large x. Therefore,
again by (51), v∗(x) is bounded away from zero for large x. We see that (62) holds in
this case as well, which again implies that Ẏ (t) > 0 for large x(t) along the optimal
trajectory.

Finally, consider the case of η < 1 and θ = 1. In this case ζ(t)= κx(t). Multi-
plying (50) raised to the power η by (51) raised to the power 1 − η, we find that

ηη(1 − η)1−η
κx = αηρη(1 − α + (1 − η)φ∗(x))1−η

(L−LA∗ (x))η

Recall that φ∗(·) is a monotonically increasing function of x. If it were bounded,
then we would have LA∗ (x) → L as x → ∞, v∗(x)η ∼ x by (51), and hence (63)
would be valid, which is impossible for a bounded φ∗(·). Thus, φ∗(x) → ∞ as
x → ∞.

On the other hand, φ∗(x) =O(x) because the optimal trajectory lies below the
curve described by (59). Therefore, LA∗ (x)→ L as x → ∞ by (53) and v∗(x)≥ v0
for some v0 > 0 and for all sufficiently large x by (54). At the same time, v∗(x)η =
o(x) by (54). This shows that the first term in the square brackets in (61) domi-
nates all the negative terms there, and so Ẏ (t) > 0 for large x(t) along the optimal
trajectory.

We showed that for ηθ < 1 the output Y(t) increases on some initial time interval
provided that the initial supply of exhaustible resource S0 is large and/or the initial
knowledge stock A0 is small. �
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Fig. 2 Dynamics of the
output Y (·) under optimal
resource allocation:
(1) η= θ = 1,
Lκ > ρ(α +κ(1 − α));
(2) η= θ = 1,
Lκ = ρ(α +κ(1 − α));
(3) ηθ < 1; (4) η= θ = 1,
Lκ < ρ(α +κ(1 − α))

Fig. 3 Dynamics of the
knowledge stock A(·) under
optimal resource allocation:
(1) η= 1, θ < 1; (2) η < 1;
(3) η= θ = 1, Lκ > αρ;
(4) η= θ = 1, Lκ ≤ αρ

6 Discussion

Dynamics of the output Y(·) and the knowledge stock A(·) along the optimal tra-
jectory are depicted in Figs. 2 and 3. It follows from the above analysis that optimal
growth is only sustainable if the following three conditions hold simultaneously:

(i) the exhaustible resource is not an input to the production of knowledge;
(ii) the accumulation of knowledge has strong scale effects;

(iii) the population is not too small.

In this scenario the growth of output is exponential. The resulting dynamics corre-
spond to the optimal balanced growth path. In this case for a sufficiently large pop-
ulation size L, a constant fraction of labor is allocated to research. The lower the
discount rate ρ, the higher this fraction. The fraction also depends on the elasticity
of substitution in the production function. The optimal extraction policy implies an
exponential depletion of the stock of the exhaustible resource, with the rate equal
to the discount rate. This is the well-known Hotelling rule for the optimal depletion
of exhaustible resources (see Hotelling 1931). In sum this implies an exponential
growth of the knowledge stock A(·). Note that unlike in Jones (1995, 1999) and
many other models, this balanced growth is fully endogenous in the sense of not
requiring an exogenous population growth.
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Requirement of strong scale effects (ii) for a balanced growth is the opposite to
that obtained by Jones (2004). In his model, strong scale effects, coupled with an
exponential growth of labor supply, lead to a double-exponential growth of output.
This result follows from the assumption of an exponential population growth, which
is unrealistic in the long run (Weeks 2004). Exponential population growth implies
constant birth and death rates that are independent of the current population density.
Second, more relevant here, exponential growth implies an arbitrarily large popula-
tion in the long run. This is problematic in view of a finite resource base, a defining
feature of our framework.

In the most realistic case ηθ < 1 we may have two qualitatively different op-
timal policies depending on whether the accumulation of knowledge requires the
resource:

(i) When the accumulation of knowledge is independent of the resource (η= 1),
the fraction of labor employed in research tends from an initially positive value to
zero. This means that the research effort becomes successively smaller. The extrac-
tion policy is identical to that in the case of optimal sustainable growth described
above. The stock of the exhaustible resource depletes exponentially with the rate
equal to the discount rate (the Hotelling rule). The policy described above is opti-
mal provided the initial knowledge stock is not too large (x0 > x̄). Otherwise it is
optimal to allocate the entire labor to production from the onset.

(ii) When the accumulation of knowledge requires the resource (η < 1), it is op-
timal to conduct research until a certain ratio (characterized by (56)) between the
knowledge stock and the current supply of the resource is reached. In this case the
labor and resource allocated to research gradually decrease and ultimately vanish
at the moment of reaching the above-mentioned ratio. Afterward the research ef-
fort stops and the stock of knowledge remains at its maximum level. This policy is
optimal when x0 > x̄. For x0 ≤ x̄ it is optimal not to invest in research as the ini-
tial knowledge stock is sufficiently large; the optimal extraction policy follows the
Hotelling rule in this case.

Finally, condition (iii) says that a sufficiently small economy (withLκ ≤ αρ) will
not grow, even under strong scale effects and even if the accumulation of knowledge
does not depend on the exhaustible resource. This minimum size condition is the
least restrictive of all conditions and can be assumed to hold a priori. In the typical
case κ = 1, we have L > αρ. This inequality can be maintained in all cases of
interest since L is the size of the labor force, α < 1 and ρ is the discount rate. The
case Lκ ≤ αρ is included for completeness.
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Optimal Pollution, Optimal Population, and
Sustainability

Ulla Lehmijoki

1 Introduction

Is it possible that current utility maximization takes place at the cost of human
lives? This possibility was already implied in the long-run consumer optimization
models of Dasgupta and Heal (1974), Solow (1974), Stiglitz (1974), Krautkraemer
(1985), and Pezzey and Withagen (1998) who argued that the scarcity of natural
resources may lead to ever-decreasing per capita consumption. Per capita consump-
tion may also decrease if excessive pollution impairs production and compromises
life-supporting systems as was argued by Keeler et al. (1971), Plourde (1972), Fos-
ter (1973) and Smulders and Gradus (1996). However, in both types of models the
demographic aspect is deficient as population either keeps constant or grows at a
constant rate in spite of decreasing consumption numbers.

In this paper, I explicitly assume that population is endogenous to the environ-
ment, i.e., there is feedback from the environment to mortality which rises if popu-
lation is not environmentally supported, this feedback being defined as a “positive
check” by Robert Malthus (1914). Positive check may occur either because of the
increasing scarcity of resources or because of the continuing concentration of pollu-
tants. In this paper, I focus on pollutants as emerging evidence on the lethal effects
of the pollutants maintains that the positive check is at work. This evidence consists
of medical and econometric studies, showing that there already is a statistically sig-
nificant increase in mortality due to urban air pollution, and that climate change may
induce further increases in the future. Other global concerns, such as the pollution
of ground waters and oceans, are also possible, but less evidence on their mortality
effects has been received thus far.1

1In spite of my emphasis on pollutants, the model can be generalized to natural resources since
resource depletion can be seen as pollution in the extended sense (Keeler et al. 1971).
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Section 2 of this paper reviews the empirical evidence on the positive check and
Sect. 3 introduces a model of optimal pollution with endogenous population. Sec-
tion 4 discusses the sustainability implications and a new definition for sustainability
is supplied. The role of technical progress is shown to be less positive than what is
usually suggested. Section 5 gives a parametric example and Sect. 6 closes the paper.
To concentrate on population, the simplest model of optimal pollution is provided.
Even so, endogenous population tends to make the model “murky” (Solow 1974)
but excessive complexity can be avoided by modeling in virtual time.

2 The Positive Check—Recent Evidence

This Section reviews the global evidence on environmental mortality with focus on
air pollution and climate change (CO2 emissions). Mortality induced by air pollu-
tion has been debated since the smog in the Meuse Valley in 1930 and London in
1952 took the lives of 60 and 4000 people (Nemery et al. 2001 and Logan 1953).
Recently, the Clean Air for Europe program (CAFE) and WHO have summarized
the European research by collecting 629 peer-reviewed time-series studies and 160
individual or panel studies up to February 2003 (WHO 2004). In the original studies,
daily adult mortality in several European cities was regressed against daily changes
in air pollution as indicated by particular matter (PM) and ozone.2 The summary
estimates show that there is a statistically significant 0.6% and 0.3% increase in
mortality for each 10 µg/m3 increase in PM and ozone respectively.

The study for the effects of long-term PM exposure got its onset in the United
States as Pope et al. (2002) analyzed questionnaires from 1982 which provided data
on sex, race, smoking, alcohol consumption, etc., so that controlling for alternative
risk sources was possible. The mortality data which were collected until 1998 im-
plied that there was 4%, 6%, and 8% increases in all-cause, respiratory, and lung
cancer mortality respectively for each 10 µg/m3 increase in PM. Evans and Smith
have estimated similar increases (Evans and Smith 2005). For a recent review of
long-term study literature, see Raaschou-Nielsen et al. (2011). The estimates of
Pope et al. (2002) were applied to the European data by CAFE and WHO to cal-
culate that the short-term and long-term exposures were together responsible for
370 000 premature deaths in 2000 in Europe (WHO 2004). The infant mortality risk

2Air pollution consists of several components, of which particulate matter (PM) and ozone are the
most dangerous (WHO 2004). The term particulate matter (PM) refers to solid airborne particles of
varying size, chemical composition and origin. For example, the particles in PM10 have a diameter
of less than 10 µm and are mainly combustion-derived, either from traffic or from energy produc-
tion, often from long-distance sources. Existing evidence suggests that the smaller the particles
are, the more deeply into the lung they penetrate (WHO 2004). Air pollution increases mortality
mainly through an increase in respiratory and cardiovascular diseases and lung cancer (Samet et
al. 2000), but an increase in skin cancer is also reported (Brunekreef and Holgate 2002). All age
groups are affected, but unborn and young children as well as the elderly are the most vulnerable
(Pope and Dockery 2006).
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has been studied by for example by Currie and Neidell (2004), Chay and Green-
stone (2003) and Scheers et al. (2011). WHO has summarized that, taken all types
of deaths together, urban outdoor air pollution causes 1.3 million deaths worldwide
per year (WHO 2011).

In climate-change studies, the mortality estimates are based on simulations
(Pitcher et al. 2008). Tanser et al. (2003), for example, have applied the Hadley
Centre’s climate model to estimate that the increase in malaria distribution and
the prolonged malaria season would lead to a 25% increase in the risk of death
from malaria by 2100, mainly in Africa. The abundant literature on climate change
has been collected and analyzed by the UN’s Intergovernmental Panel on Climate
Change (IPCC). Its Third Assessment Report suggests that mortality will increase
because of weather extremes, because of environmental changes which lead to dis-
eases or to water and food shortages, or because of conflicts in displaced populations
(IPCC 2003, updated 2007). Relying on the IPCC, WHO has published a summary
report on human health and climate change (WHO 2003). This report projects a
maximum increase in the risk of 83%, 17%, and 32% for the great killers; malaria,
diarrhoea, and malnutrition, respectively. There is also a great projected risk increase
in coastal floods, but the number of deaths may be low (Gosling et al. 2009). The
mortality effects of climate change are unequally distributed and are particularly se-
vere in countries with already high disease burdens, such as sub-Saharan Africa and
Asia (IPCC 2003). Nevertheless, Deschênes and Greenstone (2011) suggest that,
under a business-as-usual scenario, climate change will also lead to an increase in
the overall U.S. annual mortality rate ranging from 0.5% to 1.7% by the end of the
21st century. WHO has also summarized that, currently, climate change contributes
to 150 000 deaths each year (WHO 2012).

3 The Model

3.1 Modeling the Positive Check

To model the positive check, note that the population growth rate L̇/L= n is the dif-
ference between fertility and mortality. In what follows, I assume that only mortality
depends on pollution while fertility is constant.3

Pollution may increase mortality (decrease population growth) both as emissions
E and as stocks S, but it seems appropriate to model in terms of stocks because their
mortality effects are more longstanding. Hence, let:

n= n(S), n(0) > 0, n′(S) < 0, n(Ŝ)= 0, (1)

3Some studies suggest, however, that fertility may respond to environmental degradation both be-
cause it is causing poverty and because toxins etc. cause miscarriage (Lutz et al. 2005). Because
the emphasis of this paper is on the positive check, the fertility effects are excluded, for simplicity.
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Fig. 1 Possible functional
formulas for the positive
check. Meadows et al. (1972)

where Ŝ is the critical stock beyond which population starts to decrease. Normaliz-
ing the initial level of population to unity it holds

L(t)= exp
∫ t

0
n
[
S(τ)

]
dτ. (2)

Several functional formulas satisfy the assumption of the population growth
function (1). Some alternatives, repeated in Fig. 1, have been suggested already
in the Report of Rome (Meadows et al. 1972). In A population growth decreases
linearly, in C the negative effect is exponential, and in B mortality increases as pol-
lution stock bypasses the threshold level after which the positive check cuts in and
mortality starts to increase (population growth starts to decrease). Section 5 gives a
closer look at these alternative cases.

The accumulation of the pollution stock is dictated by emissions and abatements
which are given by an abatement function δ(S),

Ṡ =E − δ(S). (3)

The first component of (3) can be rewritten as E = (E/L) · L to see that the envi-
ronmental burden of population comes from two sources, namely from per capita
emission E/L and from the number of people L.

The role of the second component, the abatement function δ(S) has been broadly
debated in the literature.4 In this paper, I assume a simple hump-shaped abatement
function which is strictly concave. Thus, let δ(0)= δ(S̃)= 0 and δ′(0) > 0, δ′(S̃) <
0, δ′′(S) < 0 where S̃ > 0 is the carrying capacity of the environment. To allow the
possibility of negative population growth in the area 0< S < S̃, I assume Ŝ < S̃.

3.2 The Household Optimization

Consider an infinitely living representative household which wants to maximize
its Benthamian total utility. At each instant of time, the total utility then becomes

4For a review, see Tahvonen and Salo (1996).
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u(C/L) · L, where u satisfies the standard concavity properties and Inada condi-
tions.5 In its intertemporal choice, the household faces the discount factor ρ > 0. To
focus on population and pollution in the absence of production problems, I adopt
the simplest formulation for the rest of the model in line with Foster (1973) who
assumes that consumption C takes place directly at the cost of environment, i.e.,
C =E. The representative household then chooses emissions E(t) to maximize

U =
∫ ∞

0
u
[
E(t)/L(t)

]
L(t)e−ρtdt =

∫ ∞

0
u
[
E(t)/L(t)

]
e−
∫ t

0 {ρ−n[S(τ)]}dτ dt, (4)

subject to (3). The mechanism of the model is the following: by choosing the optimal
path for E(t), the household determines S(t), which in turn dictates the optimal
population growth rate n(t) and the optimal population L(t). Finally, per capita
emissions E(t)/L(t) are determined.

Because the discount factor in (4) is not constant, I apply the virtual time tech-
nique suggested by Uzawa (1968). Let us denote

Δ(t)≡
∫ t

0

{
ρ − n

[
S(τ)

]}
dτ

to get dΔ(t)
dt

= ρ − n[S(t)] and dt = dΔ(t)
ρ−n[S(t)] . The problem can now be rewritten in

virtual time as:

U =
∫ ∞

0

u(E/L)

ρ − n(S)
· e−Δ · dΔ,

S̊ ≡ dS

dΔ
= dS

dt

dt

dΔ
= E − δ(S)

ρ − n(S)
,

where E ≡ E[Δ(t)], S ≡ S[Δ(t)], L ≡ L[Δ(t)]. This concave problem with con-
stant discount factor can be solved in virtual time by using standard methods (Ben-
veniste and Scheinkman 1982). Given that both the population size L and its growth
rate n depend on the pollution stock S through (1) and (2), the current value Hamil-
tonian and the necessary conditions become:

H(S,E,λ) = 1

ρ − n(S)

{
u(E/L)+ λ(Δ)

[
E − δ(S)

]}
,

∂H(S,E,λ)

∂E
= 0 ⇐⇒ −u′(E/L)= λ(Δ) ·L, (5)

λ̊ ≡ dλ(Δ)

dΔ
= −∂H

∂S
+ λ(Δ), (6)

lim
Δ→∞λ(Δ)e−ΔS = 0. (7)

5Krutilla (1967) and Barbier (2003).
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Taking the derivative in (6) and rearranging one gets

λ̊/λ= −(1/ρ − n)
{
n′H/λ− (δ′ + ρ − n

)}
. (8)

To eliminate λ, one can follow the usual procedure by taking the derivative of (5)
in terms of (virtual) time. These derivatives are denoted by E̊ ≡ dE/dΔ and L̊ ≡
dL/dT . To simplify the analysis, let us adopt the CIES utility function u(E/L)=
[(E/L)1−θ ]/(1 − θ), θ = 1 with u′′ · (E/L)/u′ = −θ to give

λ̊/λ= −θE̊/E + (θ − 1)L̊/L, (9)

which together with (8) gives E̊/E = [1/θ(ρ − n)]{−n′H/λ − (δ′ + ρ − θn)},
where L̊/L= n/(ρ−n) is applied. Substituting the expression −n′H/λ= [n′/(ρ−
n)][θE/(θ − 1)− δ] and noting E̊ = Ė/(ρ − n) one finally derives

Ė

E
= 1

θ

{
n′

ρ − n

[
θE

θ − 1
− δ

]
− (δ′ + ρ − θn

)}
. (10)

The non-linear equations (3) and (10) supply the solution to the model. The phase
lines become:

Ė

E
= 0 ⇔ E = θ − 1

θ

{
δ + ρ − n

n′
(
δ′ + ρ − θn

)}
, (11a)

Ṡ = 0 ⇔ E = δ. (11b)

In the (S,E)-space, the shape of the Ṡ = 0-line is that of δ, i.e., inverted U with
δ(0) = δ(S̃) = 0 (Fig. 2). The shape of the Ė = 0-line depends on the value of θ .
Because Hall has argued that empirical elasticities tend to be large (Hall 1988), I as-
sume θ > 1, but nothing essential is changed if θ < 1 is assumed instead. Even for
θ > 1, there is variety in the shape of the Ė = 0-line. The following is the sufficient
condition for the existence of at least one interior steady state:

Lemma 1 If δ′(0)+θn(0) > ρ and δ′(S̃)+θn(S̃) < ρ then the problem has at least
one steady state S∗ ⊂ (0, S̃).

Proof In the (S,E)-space the Ṡ = 0-line hits the S-axis at S = 0 and at S = S̃. For
S = 0 and S = S̃, (11a) then becomes Ė = 0 ⇔ E = θ−1

θ
{ρ−n
n′ (δ′ + ρ − θn)}. By

assumption, θ − 1> 0, ρ − n > 0 and n′ < 0. Graphically, if δ′(0)+ θn(0) > ρ and
δ′(S̃) + θn(S̃) < ρ, the Ė = 0-line lies below the Ṡ = 0-line for S = 0 and above
it for S = S̃ (Fig. 2). By continuity, the Ė = 0-line intersects the Ṡ = 0-line at least
once. �

To comprehend, consider marginal emissions. If consumed tomorrow, emissions
are discounted by ρ. If consumed today, it adds to the pollution stock S and produces
a change in abatement δ′(S) and population n(S). If the sum of the latter two is
larger, consumption today pays. The first unit of emission is consumed if δ′(0) +
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Fig. 2 The phase diagrams of the model

θn(0) > ρ. On the other hand, if δ′(S̃)+ θn(S̃) < ρ it never pays to pollute until the
carrying capacity S̃.

Depending upon the properties of the population growth function (1), the Ė = 0-
line may be non-linear and the model may have several steady states; I assume that
the number of the steady states is either one or three as shown in Fig. 2. The local
stability analysis in Appendix shows that the single steady state is a saddle with
stable manifolds running from the North-West and South-East, as the left panel of
Fig. 2 illustrates. If the number of the steady states is three (the right panel of Fig. 2),
then the first and third are saddles but the second is an unstable focus or node. The
following lemma characterizes all saddle-stable steady states:

Lemma 2 Inefficient under-accumulation of the pollutant is not possible.

Proof Equations (11a) and (11b) imply that in a steady state

θ − 1

θ

{
δ+ ρ − n

n′
[
δ′ + ρ − θn

]
}

= δ. (12)

The transversality condition is limΔ→∞{λ(Δ)e−ΔS(Δ)} = 0. Because the model
tends to the steady state, S and n(S) go to constants S∗ and n(S∗). In a steady state,
E̊ = 0 so that (9) implies λ̊/λ= (θ − 1)L̊/L, which is a constant in the steady state.
The transversality condition then requires (θ − 1)L̊/L − 1 < 0. Because L̊/L =
n/(ρ − n), we get (θ − 1)n(S∗)/(ρ − n(S∗))− 1< 0 and further

ρ − θn
(
S∗)> 0. (13)

Arranging and using (12) we get ρ − θn = n′
(ρ−n)(θ−1) δ − δ′ > 0. Because

n′
(ρ−n)(θ−1) δ < 0, it must be δ′(S∗) < 0. Therefore, the steady state is located on

the downwards sloping part of the Ṡ = 0-line. �
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4 Sustainability and Technical Progress

The Brundtland Commission 1987 defines sustainable development as a develop-
ment that “meets the needs of the present without compromising the ability of fu-
ture generations to meet their own needs” (WCED 1987). This definition refers to
non-decreasing consumption or non-decreasing utility, concepts also used by most
economists (for a review, see Pezzey 1992). With the positive check present, the
concept of sustainability needs a redefinition:

Definition An optimal path is sustainable if it provides non-decreasing consump-
tion for a non-decreasing population.

Thus, an optimal path can lose sustainability either because per capita consump-
tion decreases or because population decreases.

Consider first a steady state. Recall that E = C. The growth rate of the per
capita consumption is γC/L = Ė/E− L̇/L. In the steady state, E is constant so that
γC/L = −L̇/L= −n(S∗). Three alternatives are possible. For n(S∗) > 0, the popu-
lation keeps increasing and per capita consumption decreasing. For n(S∗)= 0, both
the population and per capita consumption are constants. For n(S∗) < 0, an ever-
decreasing population enjoys ever-increasing per capita consumption. Note that this
steady state implies limt→∞L(t)= 0 so that, asymptotically, the size of the popula-
tion vanishes to zero. Thus, of the above alternatives, only n(S∗)= 0 is sustainable.

Which of the above cases realizes? First note that the a priori assumptions ρ > 0
and ρ−n(S) > 0 pose no explicit limit to signn(S∗). Another candidate that would
limit signn(S∗) is the transversality condition in (13) but for the suitable values of
ρ and θ it can hold for positive and negative values of n(S∗). Thus, in the steady
state S∗ the optimal population may be constant, increasing, or decreasing because
the utilitarian objective functional

∫∞
0 u(E/L)Le−ρtdt may take its maximum both

at high E/L and low L or vice versa. Therefore, it may well be optimal to increase
consumption at the cost of population.

Some optimists argue, however, that technical progress ultimately warrants sus-
tainability (Neumayer 1999, for example). To see whether this optimism is sup-
ported by the model, let A(t) be the available technology at time t and assume that
technical progress is exogenously running at rate x so that A(t)= ext for A(0)= 1.
Further, let technical progress be consumption augmenting in the meaning that, at
every instant of time t , we have C = extE implying that for given emissions it is
possible to consume more than before (Krautkraemer 1985). Per capita consumption
then becomes

C/L= extE/L. (14)

Per capita consumption C/L grows at rate γC/L = Ė/E + x − n. In a steady state,
Ė/E = 0, so that γC/L is positive if x > n(S∗). It is thus possible to have growing
per capita consumption and growing population together. However, positive popu-
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Fig. 3 Technical progress shifts the Ė = 0-line down and increases the steady state pollution S∗

lation growth is by no means warranted. To see why, apply (14) to (4)–(9) to derive

Ė

E
= 0 ⇔ E = θ − 1

θ

{
δ + ρ − n

n′
[
δ′ + (θ − 1)x + (ρ − θn)

]}
. (15)

The derivative of (15) in terms of x is:

∂E

∂x

∣∣∣
∣
Ė=0

= (θ − 1)2(ρ − n)

θn′ < 0.

Therefore, the Ė = 0-line shifts down as the pace of technical progress increases
(Fig. 3).

To comprehend, note that in the equilibrium, the negative utility effect of a
marginal emission through an increase in S and a decrease in population growth,
and its positive utility effect through an increase in consumption are equal and fur-
ther emissions are rejected. Technical progress increases the positive consumption
effect and larger emission are accepted. Given the biologically determined Ŝ, it is
then more likely that Ŝ < S∗ and n(S∗) is negative. Therefore, contrary to conven-
tional wisdom, we find that technical progress does not necessarily save us because
it makes extra consumption and emission pay.

To stipulate γC/L = Ė/E + x − n during the transitional period, write

Ė

E
= n′

(ρ − n)(θ − 1)

{
Ṡ + 1

θ

[
δ− (ρ − n)(θ − 1)

n′
[
δ′ + ρ − θn+ (θ − 1)x

]]}
,

where the leftmost element is the positive difference of the Ṡ = 0 and E = 0-lines
indicating Ė/E < 0 along the north-western saddle path. Further, as earlier, we
have limS→S∗ Ė/E = 0. Therefore, the sign of limS→S∗ γC/L depends on the sign
of x − n(S∗). In particular, for n(S∗) < 0 we have x − n(S∗) > 0 for all x and
limS→S∗ γC/L = Ė/E + x − n > 0 implying that per capita consumption increases
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as the economy approaches the steady state n(S∗) < 0.6 The following proposition
summarizes the results:

Proposition If the optimal population growth in the steady state is negative, then
per capita consumption increases as the economy approaches the steady state.
A high rate of technical progress increases the probability for negative steady state
population growth.

5 Parametric Examples

Consider the current pollution-population situation. The population on our planet is
larger than ever and increasing, and many specialists argue that we are running out
of food supply, that air pollution increases, and that global warming is already on
its way. The evidence in Sect. 2 indicates that some signals of the positive check are
already available. The parametric examples of this Section try to illustrate the this
situation and to give some ideas how our demographic and environmental future
looks like.

The abstract style of the model naturally makes its parametric presentation diffi-
cult but not impossible.7 Let us start with the assumption that the carrying capacity
of the environment S̃ takes some arbitrary value, say S̃ = 1000. Since this value
refers to a complete disappearance of life, it seems that, in spite of some alarming
signals, this situation is not very close yet. Thus, let the current pollution stock be
S(0)= 250 which is one quarter of S̃ = 1000. Further, let n(S(0))= 0.005, indicat-
ing that the current (initial) population growth rate is 0.5%. Next, assume that the
environmental mortality is high enough to push the population growth below zero
if pollution reaches three quarters of S̃ = 1000, implying that the critical value is
Ŝ = 750.

Other parameters of the model are adapted such that they are in line with the
benchmark values above. Consider the population function given in (1) and Fig. 1.
The parametric examples provided here concentrate on cases A and B which refer
to linear and threshold population function respectively (Fig. 1). These functions are
specified as

n(S) = β − ηS, (16a)

n(S) = β − α

1 + (μS)−γ
, (16b)

6The slope of the entire time path for γC/L depends on limS→0 γC/L. This and the cases n(S∗) > 0
and n(S∗)= 0 are not considered for shortness.
7The critical obstacle, preventing a full calibration on real data is that, on order to focus on popula-
tion and pollution, no production function is specified in the model. The main simplification is that
the stock of capital (another state variable) is left away, which makes the optimization procedure
much simpler and the phase portrait much more intuitive.
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where the latter is one of the simplest expressions to produce a threshold function.
In the linear case (16a), the demographic response to pollution is given by a single
parameter, η > 0, whereas this response is more complicated in the threshold case
as β − α gives the lowest population growth reached, μ > 0 multiplies the effect
of pollution such that a large value of μ leads to negative population growth at low
concentrations and γ > 0 gives the curvature of the threshold function with high
values referring to a highly curved shape and severity of the mortality crisis. In
both (16a) and (16b), the parameter β gives the autonomous population growth, i.e.,
the population growth rate which prevails in a complete the absence of pollution
(S = 0).

To meet the benchmark values n(S(0)) = n(250)= 0.005 and S̃ = 750, the pa-
rameters of the linear case (16b) must be β = 0.0075 and η = 0.00001. In the non-
linear case (16b), the autonomous population growth rate β ≈ 0.005 directly war-
rants n(S(0)) = n(250) = 0.005. The choice α ≈ 0.020 indicates that the lowest
population growth reached is −0.15%, a value that seems reasonable even though
it can not be derived from the benchmark values above. Further, if γ = 8 then
μ≈ 0.00116 warrants the property S̃ = 750 for the threshold case. The top panel in
Fig. 4 illustrates.

The abatement function δ(S) takes the standard logistic formula

δ(S)= rS

(
1 − S

S̃

)
, (17)

in which r is the intrinsic rate of annual decay with an assumed value of r = 0.175.
Conventional values θ = 4 and ρ = 0.03 describe the preferences (see Barro and
Sala-i-Martin 1995, for example). Two rates of technical progress are assumed,
namely x = 0.00 and x = 0.02. All parameters are collected to Table 1. To summa-
rize, there will be four cases, the linear case without and with technical progress,
referred to as A00 and A02, and the threshold case without and with technical
progress, referred to as B00 and B02 respectively.8

Table 2 reports the main steady-state results of the parameterized model and
Fig. 4 illustrates, showing that all cases have a single steady state S∗. Table 2
shows that, in the absence of technical progress we have S∗ < Ŝ both in linear
and threshold cases while, in the presence of technical progress, the opposite is true,
i.e., S∗ > Ŝ. Thus, technical progress makes the steady state population to decrease
both in the linear and threshold case, the half-life times being 3623 and 181 years,
respectively (Table 2). On the other hand, the steady state population increases by
0.17% or 0.45% if there is no technical progress, doubling in 409 and 153 years
(Table 2).

The depicted off-steady-state paths for population in Fig. 5 (left) show that pop-
ulation first rises from the initial value L(0) = 1 in all cases, continues to rise
for A00 and B00, almost levels-off for A02 and starts to decrease for B02. In

8Calculations are performed by Mathematica 7.0. Time-elimination method is used to derive the
saddle paths (Mulligan and Sala-i-Martin 1991).
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Fig. 4 The parametric
population growth functions
A and B (top), the phase
diagram for the case A00
(middle), and a combined
phase diagram for all cases
(bottom)

the latter case, the initial population L = 1 is reached after 160 years. The dif-
ference between the population projections is prominent, indeed. The per capita
emission (per capita consumption) paths, instead, are rather similar initially. But af-
ter some hundred years, per capita emissions along B02 start to rise as the number
of people decreases, meeting the proposition in Sect. 4. Thus, in B02, it is opti-
mal to choose higher and higher per capita consumption at the cost of lower and
lower number of people. Note also that per capita consumption almost levels-off
in A02. Given that population levels-off as well, A02 almost meets the sustain-
ability as defined in Sect. 4, but only by change.9 To summarize, the parametric
example provided here imply that the utility-maximizing path with positive check
may take a large variety of consumption-population combinations depending upon

9Note, that in the presence of technical progress, however, the case with rising per capita consump-
tion and rising population in the steady state is possible, see Sect. 4.
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Table 1 The parameters of
the model Parameter Linear A Threshold B

S̃ 1000 1000

r 0.175 0.175

β 0.0075 0.005

η 0.00001

α 0.020

μ 0.00116

γ 8

θ 4 4

ρ 0.03 0.03

x 0.00 or 0.02 0.00 or 0.02

the parameters of the population growth functions and on the rate of technical
progress.

Several extensions of the current model are both necessary and possible. Maybe
the first of them would be to include a realistic production function in order to
see how the role of population (labor) as a factor of production changes the re-
sults. A more realistic version of technical progress would take this progress as a
response to environmental degradation and overpopulation. This paper assumes that
all technical progress is consumption-augmenting, but technical progress may also

Table 2 The results of the model

Results A00 A02 B00 B02

x 0.00 0.02 0.00 0.02

S∗ 580.7 769.1 545.8 833.8

n(S∗) 0.17% −0.019% 0.45% −0.38%

Doubling/half-life (years) 409 3623 153 181

Fig. 5 The parametric time paths for population and per capita consumption
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save lives and increase longevity. It may be “dirty” or “clean” as it may either in-
crease the number of polluting product variants or rise the consumer’s utility value
of constant-pollution goods (Palokangas 2012; Smulders et al. 2011). Furthermore,
since new ideas and R&D are positively related to the population size (Kremer
1993), the economies should be better equipped to tackle the environmental prob-
lems in the future. Public policies to support technical progress should be modeled
as well. On the consumer’s side, the option to choose between dirty and clean goods
and between lower and higher birth rates should enrich the model. All these exten-
sions should be made in the future. Nevertheless, it seems that they will not change
the basic implication of the model, namely that there is a fundamental trade-off
between per capita consumption and population in the long run optimization. This
trade-off arises because per capita consumption and population are both valuable to
man and because emissions increase the former but decrease the latter. The trade-off
implies that sustainable paths may appear, but are not warranted, indicating that op-
timality and sustainability may conflict for the reasonable parameters and functional
specifications of the model.

6 Discussion

Any article on sustainable growth is, more or less, a wake-up call. Broadly speak-
ing, one wants to predict what happens if the currently shown disturbing behavior
continues and if environmental concerns are not taken seriously. Currently, some
people suffer and die for environmental reasons but the vast majority consumes ever
more. If, however, pollution-related mortality remains tolerable, the worrisome con-
clusion is that, in the real world as well as in the model, the incentives for a change
in economic behavior may not be sufficient.

The long run consumer optimization with endogenous pollution and endogenous
population implies that utility maximization may take place at the cost of human
lives. Solow has suggested that “The theory of optimal growth. . . is thoroughly util-
itarian in conception. It is also utilitarian in the narrow sense that social welfare is
(usually) defined as the sum of the utilities of different individuals or generations”
(Solow 1974). In the case of endogenous pollution and endogenous population, this
utilitarianism may take an extreme expression: a path that ultimately leads to self-
imposed extinction may still be optimal. Naturally, a different result would have
been derived if positive population were posed as an a priori constraint on opti-
mization. However, an emerging empirical evidence suggests that there already is
an increase in mortality because of environmental reasons. Therefore, as a descrip-
tion of the current situation, the utilitarian approach may not be so distorted after
all.
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Appendix: Local Stability of the Steady States

Lets write Ṡ = ϕ(S,E) and Ė = φ(S,E). In a steady state it hods Ṡ = Ė = 0 im-
plying

δ + δ′S + ρ − θn= n′

(ρ − n)(θ − 1)
δS. (18)

The Jacobian of the model is

J =
[
ϕS ϕE
φS φE

]
.

As evaluated around a steady state, its elements become

ϕS = −(δ + δ′S
)
,

ϕE = 1,

φS = E

θ

{ −n′′(ρ−n)−(n′)2
(ρ−n)2 [ θE1−θ+δS]

− n′
ρ−n [δ + δ′S] − [2δ′ + δ′′S − θn′]

}

,

φE = 1

θ

{
n′

ρ − n

[
θE

θ − 1
+ δS

]
− [δ + ρ + δ′S − θn

]}+ E

θ

{
n′

ρ − n

θ

θ − 1

}

= n′E
(ρ − n)(θ − 1)

,

in which the last row is derived by using (12) and (11b). Because φE contains the
undefined second derivative n(S), we write

DETJ = ϕS · φE − φS · ϕE
=
[(

− ϕS

ϕE

)
−
(

− φS

φE

)]
(−ϕE) · φE.

The expression in the square brackets is the difference in the slopes of the phase
lines Ṡ = 0 and Ė = 0 and (−ϕE) · φE = − n′E

(ρ−n)(θ−1) is positive for all E > 0. In

steady states 1 and 3 the slope of the Ė = 0-line is steeper than that of the Ṡ = 0-line
(see Fig. 2) making the square brackets negative. Thus, DETJ < 0 and these steady
states are saddles. In steady state 2 the slope of the Ė = 0-line is smaller (possibly
negative) than the slope of the Ṡ = 0-line and the value of the square brackets is
positive. The trace of the Jacobian is

TRJ = ϕS + φE

= −(δ + δ′S
)+ n′E

(ρ − n)(θ − 1)

= −(δ + δ′S
)+ n′δS

(ρ − n)(θ − 1)
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= −(δ + δ′S
)+ n′

(ρ − n)(θ − 1)
· (ρ − n)(θ − 1)

n′ · (δ + δ′S + ρ − θn
)

= ρ − θn > 0.

Therefore, this steady state is an unstable node or focus.
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Optimal Proportions in Growth Trends
of Resource Productivity

Alexander Tarasyev and Bing Zhu

1 Introduction

The paper is devoted to the problem of optimizing trends in resources productivity
and balancing investment in economy’s dematerialization with sustainable growth
of the consumption index. The problem is considered within the classical approach
(Solow 1970; Shell 1969) of construction of economic growth models. The main
new element in the proposed model is a price formation mechanism which reflects
possibility of rapid growth of prices on exhausting resources. Growing prices nega-
tively influence on the consumption index which should be maximized in the model
as the basic element of the utility function. Let us note that the stated problem has
in its background very important concerns of the modern society with respect to the
current world resource utilization. The recent statistics (IPCC 2007; OECD 2011)
shows rapid increase of natural resource consumption, especially, in the following
components: fossil energy (oil, natural gas, oil), ferrous metals (iron ore, etc.), non-
ferrous metals (bauxite, etc.), non-metalliferous minerals (lime), biomass (wood,
etc.). Taking into account the limitations of natural resources, at least, of its assured
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part, the problem of raising resource efficiency and even reducing resource con-
sumption becomes extremely significant. Nowadays, a comprehensive research is
being implemented on material flow analysis (MFA) by international (EUROSTAT,
IPCC, OECD, World Resources Institute) and national (Germany, the Netherlands,
the United States, Japan, China) research and policy making organizations. Material
flow analysis is a systematic assessment of the flows and stocks of materials within
a system defined in space and time. It connects the sources, the pathways, and the
intermediate and the final sinks of a material. The method is an attractive decision-
support tool in resource management, waste management, and environmental man-
agement.

In this paper, we supplement this research and develop the model of dynamic
optimization of investment process in improving resource productivity within the
economic growth theory (Arrow 1985; Ayres and Warr 2009; Barro and Sala-i Mar-
tin 1995; Crespo-Cuaresma et al. 2010; Gordon et al. 1988; Grossman and Help-
man 1991). Particularly, the construction of the model inherits elements of eco-
nomic growth models introduced in Ane et al. (2007a, 2007b), Ayres et al. (2009),
Krasovskii and Tarasyev (2009), Krasovskii et al. (2008), Sanderson et al. (2010),
Tarasyev and Watanabe (2001), Tarasyev et al. (2002), Watanabe et al. (2009) and
Kryazhimskii and Watanabe (2004). Let us mention here papers (Aseev et al. 2010;
Feichtinger et al. 2006; Hutschenreiter 1995) which are devoted to different as-
pects of economic growth modeling and conceptually are close to our approach. The
model dynamics includes production, current material use and cumulative material
consumption as main phase variables. Growing trend in production is given exoge-
nously by the exponential term generated by such production factors as capital and
labor. Material use is introduced as a production factor in the production function
of the Cobb–Douglas type. The main control variable is presented by investment in
raising resource productivity in the current period.

It is assumed that prices on materials due to exhaustion are growing rapidly to in-
finity when the cumulative material consumption is close to the available (assured)
stock. In the balance equation both growth and decline trends are taken into account:
the growth trend in the consumption index is stimulated by the production growth
and the decline trend is caused by raising costs of materials and expenditures di-
rected on improvement of resource productivity.

The problem is to find the optimal proportion of investment in the dynamic pro-
cess with maximization of the utility function given as the integrated consumption
index over trajectories of the economic system. The model is examined within the
framework of the Pontryagin maximum principle (Pontryagin et al. 1962) with spe-
cial characteristics of infinite horizon (Aseev and Kryazhimskiy 2007). Specific fea-
tures of the corresponding Hamiltonian system are examined within the qualitative
theory of differential equations (Hartman 1964). In our analysis we use construc-
tions of dynamic programming and the theory of generalized solutions of Hamilton–
Jacobi equations (Bellman 1957; Krasovskii and Krasovskii 1995; Subbotin 1995;
Rockafellar 2004). The range of model parameters is indicated for existence and
uniqueness of a steady state. The steady state plays the role of the optimal steady
solution and its proportions can be used as an economic standard for the first ap-
proximation of solution of the optimal control problem. It is shown that at the steady
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state the optimal level of investment in resource productivity provides reduction in
resource consumption and raise of its efficiency, and establish a reasonable balance
between investment and consumption. The main output of the implemented analysis
and modeling is construction of investment strategies in economy’s dematerializa-
tion and improvement of resource productivity.

2 Model Description

We assume that the model dynamics is evolved in time t on the infinite horizon
[0,+∞). The main phase variables of the model are presented by the current pro-
duction y = y(t), the resource use m=m(t) and the cumulative resource consump-
tion which is introduced as the integrated material use

M =M(t)=
∫ t

0
m(s)ds. (1)

Initial values for the resource use and the cumulative resource consumption are de-
fined by the levels m(0)=m∗ and M(0)=M∗, respectively.

Resource productivity in period t is denoted by the symbol z= z(t) and is given
by the following expression

z(t)= y(t)

m(t)
. (2)

Further, for convenience we use in several relations the value of resource intensity—
the inverse value to productivity

Z(t)= 1

z(t)
= m(t)

y(t)
. (3)

Price Formation Mechanism In the definition of the price formation mechanism
the basis is provided by the concept of raising prices p(t) on natural resources in the
case of their limitation or exhaustion. It is assumed that prices are growing according
to the inversely proportional rule of resource exhaustion

p = p(t)= p0

(
1 − M(t)

M0

)−γ
, γ ≥ 0. (4)

Here the parameter γ is the elasticity coefficient of the price formation mechanism,
the symbol M0 stands for the limitation of natural resources, and the symbol p0

denotes the initial price on natural resources. Formula (4) envisages that price p(t)
can grow rapidly to infinity according to the hyperbolic law when the integrated
material use M(t) reaches its limitation M0.
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Balance Equation In the balance equation it is taken into account that production
y(t) in period t is shared between consumption c(t), from the one hand, and the
growing cost of natural resources p(t)m(t) plus investment s(t) in improving the
resource productivity, from the other hand,

y(t)= c(t)+ p(t)m(t)+ s(t). (5)

Let us assume that there exists an upper bound s0 for investment s(t), i.e. 0 ≤ s(t)≤
s0 < y(t). Deducing the consumption intensity c(t)/y(t) from (5) through the re-
source intensity m(t)/y(t) we obtain the following relation

c(t)

y(t)
= 1 − p(t)

m(t)

y(t)
− u(t). (6)

Here the symbol u(t) stands for the investment intensity

u(t)= s(t)

y(t)
. (7)

We assume that there exists an upper bound u0 for the investment intensity u(t), so
u(t)≤ u0.

Production Function The exponential production function of the Cobb-Douglas
type is chosen for the first version of the model

y(t)= aebtmα(t), a > 0, b ≥ 0,0 ≤ α < 1. (8)

Here the parameter a is a scale factor; the growth rate b indicates the growth process
of production y(t) due to development of basic production factors such as capital,
labor, technology, etc.; the symbol α denotes the elasticity coefficient of natural
resources. We assume the diminishing return to scale of natural resources as a pro-
duction factor, 0 ≤ α < 1. Principally, one can assume in formula (8) that production
y(t) is normalized with respect to the labor growth and stands for per capita produc-
tion.

Consumption Intensity Let us obtain the formula for the consumption intensity
expressed through the resources consumption m(t), M(t), by substituting relations
of the price formation mechanism (4) and the production function (8) to relation (6)

c(t)

y(t)
= 1 − 1

a
p0e

−bt
(

1 − M(t)

M0

)−γ
m1−α(t)− u(t). (9)

Model Dynamics Let assume that the relative raise in the resource productivity
z(t) is proportional to the portion of the assigned investment u(t) which can be
interpreted as investment in “green” technology (see Grossman and Helpman 1991)

1

z(t)

dz(t)

dt
= βu(t), β ≥ 0. (10)
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Here the parameter β describes the effectiveness of investment u(t) in raising the
resource productivity. Taking into account the definition (2) of the resource produc-
tivity z(t) one can obtain the following presentation for its rate

1

z(t)

dz(t)

dt
= dy(t)

y(t)
− dm(t)

m(t)
. (11)

The last equation means that the rate of the resource productivity can be decomposed
into two components: the production rate and the rate of the resource consumption.
Developing this formula further on the basis of the presentation for the production
function (8) we get the following relation

1

z(t)

dz(t)

dt
= b− (1 − α)

dm(t)

m(t)
. (12)

Finally, combining formulas (10) and (12) we derive the equation for the rate of the
resource consumption

dm(t)

m(t)
= 1

1 − α

(
b− βu(t)

)
. (13)

Equation (13) shows that the rate of the resource consumption is influenced by the
production growth rate b and can be reduced only by investment u(t) in raising
the resource productivity. Let us note that if investment is equal to zero, u(t) = 0,
then the rate of the resource consumption should be proportional to the production
growth rate b.

To develop the model dynamics further, let us introduce the following change of
variables

x1(t)= e−bγ t/(1−α−γ )
(

1 − M(t)

M0

)γ
, x2(t)= e−bt/(1−α−γ )m(t). (14)

We derive the differential equations for the model dynamics by differentiating vari-
ables x1(t), x2(t) in time t and taking into account (1)–(2), (8), (13). We obtain the
following differential equations which form the basic model dynamics

dx1(t)

dt
= −γ

(
b

1 − α − γ

1

M0
x

−1/γ
1 (t)x2(t)

)
x1(t), (15)

dx2(t)

dt
= − 1

1 − α

(
bγ

1 − α − γ
+ βu(t)

)
x2(t), (16)

x1(0)= 1, x2(0)=m∗. (17)

Initial conditions (17) mean that the variable x1(t) is an analogue of the cumula-
tive resource consumption M(t), and the variable x2(t) is equivalent to the current
resource use m(t).
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It is important to remind that the control variable u(t) in the model dynamics
(15)–(17) is subject to constraints

0 ≤ u(t)≤ u0 < 1. (18)

Logarithmic Consumption Index Using variables x1(t), x2(t) we introduce the
logarithmic consumption index in period t

ln c(t)= lny(t)+ ln

(
1 − p0

α

x1−α
2 (t)

x1(t)
− u(t)

)

= ln
(
aebtmα(t)

)+ ln

(
1 − p0

α

x1−α
2 (t)

x1(t)
− u(t)

)

= ln
(
ae(1−γ )bt/(1−α−γ ))+ α lnx2(t)+ ln

(
1 − p0

α

x1−α
2 (t)

x1(t)
− u(t)

)
.

Considering the model dynamics (15)–(17) on the time horizon [0, T ), T ≤ +∞,
we introduce the integrated logarithmic index discounted with the discount rate ρ,
ρ > 0,

J
(
x1(·), x2(·), u(·)

) =
∫ T

0
e−ρt

(
lna + (1 − γ )bt

1 − α− γ

+ α lnx2(t)+ ln

(
1 − p0

a

x1−α
2 (t)

x1(t)
− u(t)

))
dt, (19)

as the utility function for the optimal control problem.

3 A Model Interpretation

Let us suppose that there are two agents: the (representative) resource owner; and the
central planner that represents all the other agents in the economy. The consumption
of the resource owners is not included in the social welfare function. There are two
possible justifications as follows:

1. The resource owners are foreigners that repatriate their profits abroad. The local
central planner does not mind the foreigners’ welfare.

2. The resource owners are domestic, they consume their profits, but their propor-
tion in the population (among the voters) is so small that the central planner
ignores their welfare.

In both cases, the central planner bases the social welfare function only on the con-
sumption of the rest of the population.
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The inverse supply function (4) can be derived from the resource owners’ behav-
ior e.g. as follows:

1. Assume that the (representative) resource owner faces extraction cost f , which
is an increasing and convex function of the use of resources, M :

f = f (M), f ′(M) > 0, f ′′(M) > 0.

The resource owner maximizes its profit pM − f (M), where M is the quantity,
p is the price and f (M) is the extraction cost of natural resources. This leads to
the profit maximization condition

p = f ′(M).

2. Let’s put the cost function in the parametric form

f (M)= θ

(
1 − M

ϕ

)1−γ
,

where θ , ϕ and γ are parameters. Let us choose the unit of resources so that
ϕ =M0, where M0 is the limit value of the parameter M . This implies

p = f ′(M)= (γ − 1)θ

ϕ

(
1 − M

ϕ

)−γ
= (γ − 1)θ

M0

(
1 − M

M0

)−γ
.

Now the initial price is given by

p0 = p|M=M0 = (γ − 1)θ

M0
.

Solving for θ implies

θ = p0M0

γ − 1
.

Plugging this and ϕ =M0 into the cost function implies

f (M)= θ

(
1 − M

ϕ

)1−γ
= p0M0

γ − 1

(
1 − M

M0

)1−γ
> 0,

where γ > 1. This leads to the supply function

p = f ′(M)= p0

(
1 − M

M0

)−γ
.

4 Optimal Control Problem

We pose the optimal control problem related to the goal of raising the resource pro-
ductivity. Namely, the problem is to maximize the utility function (19) over control
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processes (x1(t), x2(t), u(t)) of the dynamic system (15)–(17) satisfying the initial
conditions (x0

1 , x
0
2)= (1,m∗) and subject to constraints (18) for the control param-

eter u(t).

Special Case γ = 1 Let us consider the special case when the elasticity coeffi-
cient in the price formation mechanism has the unit value, γ = 1. In this case the
phase variables have the following form

x1(t)= ebt/α
(

1 − M(t)

M0

)
, x2(t)= ebt/αm(t). (20)

The model dynamics is described by the system of differential equations

dx1(t)

dt
= b

α
x1(t)− 1

M0
x2(t), x1(0)= 1,

dx2(t)

dt
=
(
b

α
− βu(t)

)
x2(t)

1 − α
, x2(0)=m∗

(21)

with the same constraints (18) on the control parameter u(t). The utility function
has the form similar to the structure (19)

J
(
x1(·), x2(·), u(·)

) =
∫ T

0
e−ρt

(
α lnx2(t)

+ ln

(
1 − p0

a

x1−α
2 (t)

x1(t)
− u(t)

))
dt. (22)

5 The Hamiltonian of the Optimal Control Problem

Let us introduce the Hamiltonian function for the optimal control problem (21)–(22)

H̃ (x,u, t, ψ̃) = e−ρt
(
α lnx2 + ln

(
1 − p0

a

x1−α
2

x1
− u

)

+
(
b

α
x1 − 1

M0
x2

)
ψ̃1 +

(
b

α
− βu

)
x2ψ̃2

1 − α

)
.

Here symbol x denotes the vector of phase variables x = (x1, x2), parameter
ψ̃ = (ψ̃1, ψ̃2) is the vector of adjoint variables for the phase variables x1, x2. Imple-
menting the following change of variables

ψ1(t)= eρt ψ̃1(t), ψ2(t)= eρt ψ̃2(t)
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we obtain the expression for the stationary Hamiltonian H(x,u,ψ), where H(x,
u,ψ)= e−ρt H̃ (x,u, t, ψ̃)

H(x,u,ψ) = α lnx2 + ln

(
1 − p0

a

x1−α
2

x1
− u

)

+
(
b

α
x1 − 1

M0
x2

)
ψ1 +

(
b

α
− βu

)
x2ψ2

1 − α
, (23)

where ψ = (ψ1,ψ2).

6 The Maximized Hamiltonian

Let us maximize the stationary Hamiltonian (23) with respect to the control pa-
rameter u. Using methods of convex analysis one can show that the Hamiltonian
H is strictly concave with respect to this parameter. Therefore (see Krasovskii and
Tarasyev 2009), three maximum regimes for the control parameter u, and, respec-
tively, for the maximized Hamiltonian may take place.

The first regime corresponds to the zero value of the control parameter, u = 0.
For this regime the maximized Hamiltonian has the following form

H1(x,ψ) = α lnx2 + ln

(
1 − p0

a

x1−α
2

x1

)

+
(
b

α
x1 − x2

M0

)
ψ1 + b

α(1 − α)
x2ψ2, (24)

where symbols x and ψ denote vectors (x1, x2) and (ψ1,ψ2), respectively.
The second regime arises at the upper bound for the control parameter, u= u0.

The maximized Hamiltonian in this case is presented by the following relation

H2(x,ψ) = α lnx2 + ln

(
1 − p0

a

x1−α
2

x1
− u0

)

+
(
b

α
x1 − x2

M0

)
ψ1 +

(
b

α
− βu0

)
x2ψ2

1 − α
. (25)

The third regime is connected with an intermediate maximum value of the optimal
parameter and is determined by the maximum condition

∂H(x,u,ψ)

∂u
= −1

1 − (p0/a)(x
1−α
2 /x1)− u

− βx2ψ2

1 − α
= 0. (26)

Resolving the maximum condition (26) with respect to the control parameter u we
obtain the relation for the intermediate maximum value

u∗ = 1 − p0

a

x1−α
2

x1
+ 1 − a

βx2ψ2
. (27)
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It is clear from formula (26) that the adjoint variable ψ2 is negative, ψ2 < 0, for the
intermediate regime. The maximized Hamiltonian for the intermediate regime has
the following form

H3(x,ψ) = α lnx2 − 1 + ln

(
− 1 − α

βx2ψ2

)
+ b

α
x1ψ1

− x2

M0
ψ1 +

(
b

α
− β + βp0

a

x1−α
2

x1

)
x2ψ2

1 − α
. (28)

7 The Hamiltonian Systems

Let us compile the Hamiltonian systems for the obtained three control regimes, i =
1,2,3, basing on the general constructions of the Pontryagin maximum principle

ẋj (t)= ∂Hi(x(t),ψ(t))

∂ψj
, ψ̇j (t)= ρψj (t)− ∂Hi(x(t),ψ(t))

∂xj
,

where j = 1,2.
For providing economic interpretations of the Hamiltonian dynamics we intro-

duce the following change variables z1 = ψ1x1, z2 = ψ2x2 for costs of material
consumption x1, x2, by prices ψ1, ψ2, respectively. For the Hamiltonian dynamics
of costs z1, z2, in the case (i = 3) of the intermediate optimal control u = u∗ one
can obtain the following system of differential equations

ẋ1(t)= b

α
x1(t)− 1

M0
x2(t),

ẋ2(t)= x2(t)

1 − α

(
b

α
− 1 − α

z2(t)
− β

(
1 − p0

a

x1−α
2 (t)

x1(t)

))
,

ż1(t)=
(
ρ − x2(t)

M0x1(t)

)
z1(t)+ p0βx

1−α
2 (t)

a(1 − α)x1(t)
z2(t),

ż2(t)= x2(t)

M0x1(t)
z1(t)+

(
ρ − p0βx

1−α
2 (t)

ax1(t)

)
z2(t)− α.

(29)

Let us denote the right-hand parts of the Hamiltonian dynamics (29) by symbols
Gj(x, z), j = 1,4.

8 Existence of Steady State

We are interested in existence of steady states for the Hamiltonian dynamics (29)
which are connected with the structure of the optimal solution of the posed optimal
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control problem. The equilibrium conditions for steady states are presented by the
system of algebraic equations

Gj(x, z)= 0, j = i,4. (30)

Let us note that the steady state solution can be considered as the “ideal” equilibrium
state of the economic growth model at which the variables of material consumption
x1, x2, and their costs z1, z2 keep constant equilibrium values.

Proposition 1 The solution for the steady state equations (30) exists and can be
found analytically under the regularity conditions

β > ρ >
b

α
. (31)

Remark 1 The first inequality in (31) means that the effectiveness coefficient β of
investment in raising the resource productivity should be greater than the discount
rate ρ. The second inequality in (31) presumes that the discount rate ρ is larger than
the growth rate b of production factors since elasticity coefficient α is less than one,
α < 1.

Proof of Proposition 1 Under conditions (31) the steady state P ∗ = (x∗
1 , x

∗
2 , z

∗
1, z

∗
2)

as the solution of equilibrium equations (30) has the following analytical form

x∗
1 = α

bM0

(
βρbp0M0

a(αρ − b)((ρ − b)+ α(β − ρ))

)1/α

,

x∗
2 =

(
βρbp0M0

a(αρ − b)((ρ − b)+ α(β − ρ))

)1/α

,

z∗1 = α(ρ(1 − α)+ αβ − b)

αρ(1 − α)(β − ρ)+ b(αβ − b)
,

z∗2 = − αρ(1 − α)

αρ(1 − α)(β − ρ)+ b(αβ − b)
.

(32)

Let us note that due to the regularity conditions (31) all coordinates of solution (32)
have the property of well-posedness x∗

1 > 0, x∗
2 > 0, z∗1 > 0, z∗2 < 0. �

Proposition 2 The value of the optimal control u∗ at the steady state P ∗ (32) is
estimated by the relation

u∗ = b

αβ
. (33)

Proof Substituting formulas (32) for coordinates of the steady state to relation (27)
of optimal control in the intermediate regime one can get the necessary expression
(33) of optimal control at the steady state. �
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Remark 2 Due to regularity conditions (31) the value of the optimal control u∗ is
located in the proper range 0 < u∗ < 1. It means that it is reasonable to make an
assumption that the upper bound u0 for the control parameter u should satisfy to the
following condition

b

αβ
≤ u0 < 1. (34)

Remark 3 Under regularity conditions (31) a nontrivial (nonzero) steady state ex-
ists only for dynamics (29) corresponding to the maximized Hamiltonian for the
intermediate regime (28). There are no nontrivial steady states for dynamics corre-
sponding to the maximized Hamiltonian functions for the zero regime (24) and for
the upper bound regime (25). Thus, there exists the unique nontrivial steady state
for the series of the maximized Hamiltonian functions (24)–(28).

9 Qualitative Analysis of Model Solutions at the Steady State

Let us analyze properties of the main model solutions at the steady state P ∗ and
prove that they have realistic trends of sustainable development of model trajecto-
ries.

Proposition 3 At the steady state the current resource use m(t) is declining to zero
according to the exponential law

m(t)= x∗
2e
bt/α. (35)

The cumulative resource consumption M(t) increases up to the limit level M0 of
natural resources according to the logistic growth law

M(t)=M0
(
1 − x∗

1e
−bt/α). (36)

Proof Formulas (35)–(36) follow immediately from dynamic equations (21) inte-
grated with the optimal control (33). �

Proposition 4 The price parameter p(t) generated by the price formation mecha-
nism (4) increases exponentially at the steady state

p(t)= p0

x∗
1
ebt/α. (37)

Proof Exponential growth property of price p(t) (37) is generated by the logistic
growth law (36) of the cumulative resource consumption M(t). �

Finally, we determine optimal levels of production y and consumption index c.
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Proposition 5 Production y∗ and consumption index c∗ have strictly positive values
at the steady state

y∗ = a
(
x∗

2

)α = βρbp0M0

(αρ − b)((ρ − b)+ α(β − ρ))
> 0, (38)

c∗ = a
(
x∗

2

)α
(

1 − b

αβ

)
− b

α
p0M0

= b2p0M0((αβ − b)+ (1 − α)(β − ρ))

α(αρ − b)(ρ − b+ α(β − ρ))
> 0. (39)

ν∗ = c∗

y∗ = b((αβ − b)+ (1 − α)(β − ρ))

αβρ
, (40)

where symbol ν∗ denotes the consumption intensity evaluated at the steady state P ∗.

Proof Relations (38)–(40) follow from the balance equation (5), relation (8) for
the production function, and formulas (32) for the steady state under the regularity
condition (31). �

Let us calculate the absolute value of investment s∗ and derive proportions be-
tween consumption c∗ and investment s∗.

Proposition 6 The optimal absolute value of investment s∗ is given by the formula

s∗ = u∗y∗ = b∗ρp0M0

α(αρ − b)((ρ − b)+ α(β − ρ))
. (41)

Proportion between consumption c∗ and investment s∗ is given by the ratio

w∗ = c∗

s∗
= (ρ − b)+ α(β − ρ)

ρ
. (42)

10 Sensitivity Analysis of Steady State

Basing on analytical solutions (33), (38)–(39) for the steady state coordinates one
can implement sensitivity analysis of the equilibrium solution with respect to model
parameters.

Proposition 7 The optimal level of control u∗ (33) (investment intensity) has the
following trends:

(1) it increases when the growth parameter b in the production function increases;
(2) it decreases when the elasticity coefficient α of the production function in-

creases;
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Fig. 1 Investment
s∗ = s∗(α,β)

(3) it decreases when the effectiveness coefficient β of investment in the resource
productivity increases;

(4) it does not depend on the discount rate ρ.

Proof These properties are direct conclusions from proportionality conditions for
the optimal control (33). �

Let us estimate trends of the absolute value of investment.

Proposition 8 The optimal absolute value of investment s∗ (41) has the following
trends:

(1) it increases when the growth parameter b in the production function increases;
(2) it decreases when the elasticity coefficient α of the production function in-

creases;
(3) it decreases when the effectiveness coefficient β of investment in the resource

productivity increases;
(4) it decreases when the discount rate ρ increases.

Proof The first three trends are quite evident and follow from the growing and de-
clining properties of numerator and denominator in (41). To show the fourth trend,
we calculate the partial derivative with respect to the discount parameter ρ and ver-
ify that it is negative

∂s∗

∂ρ
= −b2p0M0

(b(ρ − b+ α(β − ρ))+ ρ(1 − α)(αρ − b))

α(αρ − b)2(ρ − b+ α(β − ρ))2
< 0. �

The optimal absolute value of investment s∗ as function in parameters α and β
is depicted on Fig. 1.

Proposition 9 The optimal level of production y∗ (38) has the following trends:

(1) it increases when the growth parameter b in the production function increases;
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Fig. 2 Investment
y∗ = y∗(α,β)

(2) it decreases when the elasticity coefficient α of the production function in-
creases;

(3) in the case when the elasticity coefficient α ≤ 0.5, production y∗ increases
when the effectiveness coefficient β of investment in the resource productivity
increases;
in the case when the elasticity coefficient α > 0.5, both growing and declining
trends are feasible;

(4) it decreases when the discount rate ρ increases.

Proof The indicated trends are obtained in analysis of positive and negative signs of
the partial derivatives of production y∗ (38) with respect to the corresponding model
parameters. The estimation of trends (1), (2) and (3) is similar to calculations in the
proof of the previous statement. To demonstrate the third property we calculate the
partial derivative of production y∗ with respect to the effectiveness parameter β

∂y∗

∂β
= ρbp0M0((1 − α)ρ − b)

(αρ − b)(ρ − b+ α(β − ρ))2
.

Due to the regularity condition (31) the obtained derivative is strictly positive in
the case when α ≤ 0.5. In the opposite case, both signs positive and negative are
feasible. �

The optimal level of production y∗ as function in parameters α and β is depicted
on Fig. 2. Let us consider behavior of proportion between consumption c∗ and in-
vestment s∗ at the steady state P ∗.

Proposition 10 Proportion w∗ between consumption c∗ and investment s∗ has the
following trends at the steady state:

(1) it decreases when the growth parameter b in the production function increases;
(2) it increases when the elasticity coefficient α of the production function in-

creases;
(3) it increases when the effectiveness coefficient β of investment in the resource

productivity increases;
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Fig. 3 Proportion w∗
between consumption c∗ and
investment s∗ as function of
parameters b and ρ,
w∗ =w∗(b,ρ)

(4) it decreases when the discount rate ρ increases.

Proof One can easily calculate partial derivatives of proportion c∗/s∗ and estimate
their signs

∂w∗

∂b
= − 1

ρ
< 0,

∂w∗

∂α
= 1> 0,

∂w∗

∂β
= 1

ρ
> 0,

∂w∗

∂ρ
= −β − b

ρ2
< 0.

The obtained signs in the corresponding derivatives prove the statement. �

The optimal level of the proportion w∗ between consumption c∗ and investment
s∗ as function in parameters b and ρ is depicted on Fig. 3.

The implemented sensitivity analysis shows that the model synthetic solutions at
the steady state demonstrate quite adequate trends and provide reasonable propor-
tions of equilibrium sustainable development. This observation creates a basis for
application of the model to the real data analysis and forecasting procedures.

11 Conclusion

The paper is devoted to construction of the model for optimizing investment in rais-
ing resource productivity and establishing a proper balance for production and con-
sumption. One of the basic features of the model is implementation of the price
formation mechanism which generates rapidly growing prices for exhausting re-
sources. The balance is formed in the consumption index which negatively depends
on growing prices on materials. The optimal control problem for the investment
process is posed and solved within the Pontryagin maximum principle. Properties
of the corresponding Hamiltonian systems are analyzed in order to obtain station-
ary optimal model solutions. Sufficient conditions for specific range of the model
parameters are indicated providing the existence result for the steady state of the
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Hamiltonian system which is interpreted as the stationary optimal solution. Ana-
lytical formulas are derived for coordinates of the steady state and its derivatives
with respect to model parameters. The related sensitivity analysis is given for the
stationary equilibrium solution.
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Part II
Biodiversity, Abatement and

Climate Change



International Biodiversity Management
with Technological Change

Tapio Palokangas

1 Introduction

This document considers optimal institutional design of international biodiver-
sity management under lobbying, with a special focus on the following problems.
Should biodiversity management be run by an international agency or by individual
countries independently? How much authority should this agency get? Are regula-
tory powers sufficient, or should the international agency have a budget to finance
conservation subsidies, for instance?

The framework for this study is based on the following experience. The “interna-
tional agency” called the European Commission (EC) manages biodiversity and two
directives regulate nature conservation in the European Union (EU) (cf. Ostermann
1998):

• Birds Directive 79/409/EEC on the conservation of wild birds;
• Habitats Directive 92/43/EEC on the conservation of natural habitats and of wild

fauna and flora.

The Habitats Directive calls for the establishment of a network of designated sites,
called Natura 2000, which will consist of sites designated under the Habitats Direc-
tive (Special Areas of Conservation, SACS) and the Birds Directive (Special Protec-
tion Areas, SPAS). These directives contain annexes with habitats and species listed
as being of Community interest, and whose conservation requires the designation of
sites by the Member States. A Member State is obliged to guarantee a “Favorable
Conservation Status”, which is defined in the Habitats Directive, to a Natura 2000
site with the obligations of monitoring and reporting.

Non-governmental organizations (NGOs) play a crucial role in the highly com-
plex political structure of the EU. Weber and Christophersen (2002) describe the
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political influence of the forest-owner associations (CEPF and BNFF) and the envi-
ronmental NGOs (WWF and Fern) on the process of implementing the EU habitats
directive (HD). They highlight the relationship between the involvement of inter-
est groups in the political process and the acceptance of legislation among their
members. This document examines the political equilibrium in which the interest
groups representing the member countries lobby the Commission over biodiversity
management.

There are three reasons why EU policy relies heavily on regulation rather than
on other mechanisms to achieve its objectives (Ledoux et al. 2000).

• Until 1987, EU environmental policy lacked a proper legal basis in the founding
Treaty of Rome. Consequently, all environmental policies had to rely on the “im-
plied powers” of Article 235 of the Treaty, which stipulated the use of directives
and nothing else.

• With the ratification of the 1999 Amsterdam Treaty, the EU can only adopt eco-
taxes and other fiscal measures with the unanimous agreement of every state (Jor-
dan 1998). This need for unanimity represents both a huge hurdle to ecological
tax reform and a continuing institutional inducement to rely on regulation.

• The founding Member States gave the EU a powerful institutional incentive to
regulate wherever possible by vesting it with so few financial resources of its own.
From the Commission’s perspective, regulation has the benefit of being paid for
by private actors in the Member States rather than the EU itself (Majone 1996).

In this document, three cases of biodiversity management are considered:

• There is no such international authority as the Commission.
• The current situation in the EU: regulation by the Commission.
• The Commission gets more authority: it can use subsidies and distribute the costs

of these to the member countries.

The comparison of these cases reveals whether or not the Commission’s present
authority is adequate.

MacArthur and Wilson (1967) show that the total number of species is an increas-
ing function of the habitat area. On the assumption that the number of species yields
utility, Swanson (1994), Barbier and Schulz (1997) and Endres and Radke (1999)
consider the optimal area of habitat, comparing the benefits of its maintenance with
the opportunity cost of using land in production. These authors analyze the effects
of an external shock (e.g. a change in trade policy) on biodiversity. Rowthorn and
Brown (1999) introduce exogenous technological change into the optimal habitat
model, finding that a country with a high discount rate preserves more land when
the elasticity of substitution between consumption and species exceeds unity.

The optimal choice of a habitat is merely that of allocating land between conser-
vation and production without abatement investment. This document shows that the
introduction of abatement investment leads to the following positive link between
biodiversity and technological change. The protection of biodiversity requires trans-
ferring land from production to conservation. If this decreases output and the em-
ployment of labor, then wages fall. Lower wages encourage abatement investment,
speeding up technological change.
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To consider the political economy of biodiversity management, lobbying is in-
troduced into the optimal habitat model. This can be examined either by the all-pay
auction model in which the lobbyist making the greater effort wins with certainty,
or the menu-auction model in which the lobbyists announce their bids contingent
on the politician’s actions. In the all-pay auction model, lobbying expenditures are
incurred by all the lobbyists before the politician takes an action. A good example
of this is Johal and Ulph (2002) in which local interest groups lobby to influence the
probability of getting their favorite type of government elected. In the menu-auction
model, it is not possible for a lobbyist to spend money and effort on lobbying without
getting what he lobbied for. This model is chosen here, because it characterizes bet-
ter the case in which (i) the international agency’s decision variables lobbied over
(e.g., regulatory constraints, subsidies) are continuous and (ii) the interest groups
obtain marginal improvements in their position by lobbying. In this document, the
international agency is self-interested, households love biodiversity, goods are pro-
duced from labor and land and biodiversity is an increasing function of habitat land
in all countries of the economy.

This paper is organized as follows. Section 2 presents the structure of the econ-
omy and Sect. 3 the model for a single country. Section 4 constructs the Pareto
optimum for the economy as a reference case. Sections 5 and 6 examine the two al-
ternatives of biodiversity management: direct regulation and conservation subsidies.

2 The Model

Consider an economy with a large number of countries which are placed evenly over
the limit [0,1].1 All countries produce the same consumption good at the price p.
Each country j possesses one unit of labor, of which the amount lj is devoted to
production and the rest zj to abatement investment, and one unit of land, of which
the amount nj is devoted to production and the rest bj to conservation:

1 = lj + zj , 1 = nj + bj . (1)

MacArthur and Wilson (1967) show empirically that the number of species ex-
pected to survive in an island is proportional to the area of that island. Following
Rowthorn and Brown (1999), the area devoted to conservation, bj , functions like an
“island” in the MacArthur-Wilson sense in each country j . Thus, biodiversity in the
economy, b, can be specified simply as the sum of conserved areas in the economy:

b
.=
∫ 1

0
bkdk. (2)

1If the countries were heterogeneous, then there could be multiple equilibria.
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There is a single revenue-maximizing agent (hereafter called country j ) that con-
trols all resources in country j . Its utility starting at time T is2

∫ ∞

T

cj b
δe−ρ(θ−T )dθ, δ > 0, ρ > 0, (3)

where θ is time, ρ the constant rate of time preference, cj its consumption, b bio-
diversity, and δ a parameter with the following characterization: the higher δ, the
more the households appreciate biodiversity in the economy, b. Because there is no
money in the model that would pin down the nominal price level at any time, the
monetary unit can be chosen so that the consumer price (1 + τ)p, where p is the
producer price and τ is the consumption tax, is equal to the externality effect bδ in
the model:

(1 + τ)p = bδ or p = bδ/(1 + τ). (4)

2.1 Technology

When country j develops a new technology, it increases its total factor productivity
(TFP) by the constant a > 1. Its TFP is then equal to aγj , where γj is its technol-
ogy serial number. Given TFP, country j is subject to the CES production function
f (lj , nj ) with constant returns to scale, where lj (nj ) is the input of labor (land):

yj = aγj f (lj , nj ), fl > 0, fn > 0, fll < 0,

fln = −fll lj /nj , fnn = −flnlj /nj = fll(lj /nj )
2,

(5)

where the subscript l (n) denotes the partial derivative with respect to lj (nj ). In this
one-good economy, total consumption is equal to total production:

∫ 1

0
cj dj =

∫ 1

0
ykdk. (6)

Because the labor (land) market is competitive, the producer real wage (rent) wj
(rj ) is determined by the marginal product of labor (land):

wj = ∂yj /∂lj = aγj fl(lj , nj ), rj = ∂yj /∂lj = aγj fn(lj , nj ). (7)

Noting (5) and (7), the expenditure shares of land ξ and labor 1 − ξ are

njfn(lj , nj )

f (lj , nj )

.= ξ

(
lj

nj

)
,

wj lj

yj
= lj fl(lj , nj )

f (lj , nj )
= 1 − ξ

(
lj

nj

)
. (8)

2With the general form of the utility function,
∫∞
T
c

1−β
j bδe−ρ(θ−T )dθ , where β ∈ [0,1) is a con-

stant, it would be very difficult to find a stationary state in the model.
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2.2 Research and Development

The improvement of technology in country j depends on labor devoted to abate-
ment investment in that country, zj . In a small period of time dt , the probability that
abatement investment will lead to development of a new technology with a jump
from γj to γj + 1 is given by λzjdt , while the probability that abatement invest-
ment will remain without success is given by 1 − λzjdt , where the constant λ is
productivity in abatement investment. Noting (1), this defines a Poisson process χj
with

dχj =
{

1 with probability λzjdt,

0 with probability 1 − λzjdt,
zj = 1 − lj , (9)

where dχj is the increment of the process χj . The expected growth rate of produc-
tivity aγj is given by

gj
.=E
[
logaγj+1 − logaγj

]= (loga)λzj = (loga)λ(1 − lj ), (10)

where E is the expectation operator (cf. p. 59 in Aghion and Howitt 1998).

2.3 The International Agency

The international agency does not observe the level of productivity, aγj , but observes
the producer real wage wj and the producer rent rj in each country j . It is assumed

that the only revenue-raising tax is the tax τ on consumption expenditure p
∫ 1

0 ckdk,
where p is the consumption price and ck consumption in country k.3 With a subsidy
η to abatement investment expenditure wjzj and a subsidy s to expenditure on
conserved land, rj bj , the international agency’s budget is

τ

∫ 1

0
ckdk =

∫ 1

0
(ηwjzj + srj bj )dj. (11)

The international agency decides on the minimum proportion of conserved land,
b, for all country j :

bj ≥ b ∈ [0,1] for j ∈ [0,1]. (12)

When this constraint is binding, the agency exercises direct regulation.
In order to avoid multiple equilibria, it is assumed that the countries are biased

for a low tax rate:

Assumption 1 If the countries face two candidates for the international agency so
that both of these offer the same level of welfare for them but with a different tax
rate τ , then they vote for the one with a lower tax rate τ .

3This corresponds well to the institutions of the EU.
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3 Countries

Country j pays political contributions Rj to the international agency. It is assumed,
for simplicity, that the agency consists of civil servants, of which a constant propor-
tion gj ∈ [0,1] inhabits country j . It is then true that

∫ 1

0
gkdk = 1. (13)

Thus, each country j gets a constant share gj of total contributions

R =
∫ 1

0
Rkdk. (14)

Without political contributions, country j earns output yj and subsidies ηwjzj +
srj bj in terms of the consumption good. Given the consumption tax τ , this income
is in terms of consumption equal to (ηwjzj + srj bj )/(1 + τ). Noting (1), (5) and
(7), the ratio of this ‘legal’ income relative to productivity, aγj , is defined as follows:

(yj + ηwjzj + srj bj )/
[
(1 + τ)aγj

]

= [f (lj , nj )+ ηzjfl(lj , nj )+ sfn(lj , nj )bj
]
/(1 + τ)

= [f (lj ,1 − bj )+ (1 − lj )ηfl(lj ,1 − bj )+ sfn(lj ,1 − bj )bj
]
/(1 + τ)

.= φ(lj , bj , s, η, τ ). (15)

The budget constraint of country j is given by

(1 + τ)pcj = p(yj + ηwjzj + srj bj )+ gjR−Rj , (16)

where cj is consumption, τ the consumption tax, p the price of the consumption
good, yj + ηwjzj + srj bj the ‘legal’ income, Rj the contributions to the interna-
tional agency and gjR the proportion of total contributions in country j . Noting (4),
(15) and (16), consumption in country j is determined by

cj = (yj + ηwjzj + srj bj )/(1 + τ)+ (gjR −Rj )/
[
p(1 + τ)

]

= aγj φ(lj , bj , s, η, τ )+ (gjR −Rj )b
−δ. (17)

Noting (3) and (17), the expected utility of country j starting at time T is

Γj = E

∫ ∞

T

cj b
δe−ρ(θ−T )dθ

= E

∫ ∞

T

aγj
bδ

1 + τ
φ(lj , bj , s, η, τ )e

−ρ(θ−T )dθ + gjR −Rj

ρ
, (18)

whereE is the expectation operator. Country j maximizes (18) by labor input lj and
conserved land bj subject to technological change (9) and the regulatory constraint
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(12), taking the tax τ , the subsidies (s, η), biodiversity b, and the contributions
(Rj ,R) as given. This maximization and the symmetry throughout the countries
j ∈ [0,1] imply (cf. Appendix A):

(i)

lj = l, bj = b and nj = 1 − bj = 1 − b for j ∈ [0,1], (19)

(ii) the equilibrium value of the function φ:

φ(l, b, s, η, τ )= f (l,1 − b), (20)

(iii) the first-order condition for conserved land bj :

(1 − s)ξ

(
l

1 − b

)
=
[
(1 − l)η− slb

1 − b

]
lfll(l,1 − b)

f (l,1 − b)
for b > b, (21)

(iv) the first-order condition for labor input in production, lj :

(1 − η)

[
1 − ξ

(
l

1 − b

)]
+
[
(1 − l)η− slb

1 − b

]
lfll(l,1 − b)

f (l,1 − b)

= (a − 1)λl

ρ + (1 − a)λ(1 − l)
, (22)

(v) the value function Γj :

Γj (b, γj , s, η, τ,R,Rj ), ∂Γj /∂Rj = −1/ρ,

∂Γj

∂b
= bδ−1Ωj

1 + τ

[
b

1 − b

{
(s − 1)ξ

(
l

1 − b

)

+
[
(1 − l)η− sl

1 − b

]
lfll(l,1 − b)

f (l,1 − b)

}
+ δ

]
for b= b,

∂Γj

∂b
= bδ

1 + τ
δ
Ωj

b
= δ

bδ−1Ωj

1 + τ
for b > b,

(23)

where Ωj is the maximum value of E
∫∞
T
aγj φe−ρ(θ−T )dθ .

4 The Pareto Optimum

Assume a benevolent international agency that claims no political contributions,
Rj = 0 for all j , uses subsidies (s, η) to both abatement investment and conserved
land, and maximizes the expected value of the geometric average of the utility of
the countries in the whole economy:

E

∫ ∞

T

cbδe−ρ(θ−T )dθ with log c
.=
∫ 1

0
log cjdj. (24)
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Because the agency controls the allocation of resources completely by the subsidies
(s, η), it attains the Pareto optimum (lP , bP ) (cf. Appendix B):

[
1 − ξ

(
lP

1 − bP

)][
ρ + (1 − a)λ

(
1 − lP

)] = (a − 1)λlP , (25)

bP

1 − bP
ξ

(
lP

1 − bP

)
= δ. (26)

5 Direct Regulation

Assume a self-interested international agency that has no budget of its own, s =
η = τ = 0, controls the proportion of conserved land directly by setting b = b, and
maximizes the present value of the expected flow of the political contributions at
time T [cf. (13)],4

E

∫ ∞

T

∫ 1

0
Rje

−ρ(θ−T )dθ = 1

ρ

∫ 1

0
Rjdj. (27)

In line with Grossman and Helpman (1994), a common agency game is con-
structed as follows. First, the countries set their political contributions Rj condi-
tional on the international agency’s prospective policy b, taking total contributions
R as given.5 Second, the international agency sets b and collects the contributions.
Third, the countries maximize their expected utility given the contributions Rj and
R. The game is solved in reverse order: first for a country (stage 3) and then for the
political equilibrium (stages 2 and 1).

With direct regulation, labor input lj is the only instrument and (22) the only
equilibrium condition for country j . Noting (12), the value function (23) and the
equilibrium condition (22) for country j take the form

Γj
(
bR,γj ,0,0,0,R,Rj

)
, (28)

(a − 1)λlR = [ρ + (1 − a)λ
(
1 − lR

)][
1 − ξ

(
lR

1 − bR

)]
. (29)

4This is a modification of the idea of Grossman and Helpman (1994), who assume that a pol-
icy maker’s welfare is a linear function of both the political contributions and the utilities of the
lobbies. This characterizes the fact that the policy maker cares about (a) its revenue from polit-
ical contributions and (b) the possibility of being re-elected, which depends of the utility of the
electorate (i.e. the members of the lobbies). This setup is simplified by ignoring the utilities of the
lobbies. Because the policy instruments must maximize the utility of each lobby in equilibrium [cf.
condition (iii) in Appendix C], the results would not change if Grossman and Helpman’s original
welfare function were used.
5The crucial point in the common agency game is that each country j can credibly commit itself
to its contribution function Rj (b).
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The international agency maximizes the present value (27). Each country j maxi-
mizes the value of its optimal program, (28), by influencing the international agency
by its contributions Rj , but taking total contributions R as given. Because bR is a
policy and Rj (bR) the strategy of country j , the equilibrium conditions of this game
are [cf. (ii) and (iii) in Appendix C]

b = arg max
bR

1

ρ

∫ 1

0
Rj
(
bR
)
dj = arg max

bR

∫ 1

0
Rj
(
bR
)
dj, (30)

b = arg max
bR

Γj
(
bR,γj ,0,0,0,R,Rj

(
bR
))

for j ∈ [0,1]. (31)

With (23) and η= s = τ = 0, the condition (31) is equivalent to

0 = ∂Γj

∂b
+ ∂Γj

∂Rj
R′
j = (bR)δ−1

Ωj

[
− bR

1 − bR
ξ

(
lR

1 − bR

)
+ δ

]
− 1

ρ
R′
j

and

R′
j = ρ

(
bR
)δ−1

Ωj

[
δ − bR

1 − bR
ξ

(
lR

1 − bR

)]
. (32)

Finally, given (32), the condition (30) is equivalent to

0 = 1

ρ

∫ 1

0
R′
j dj =

[
δ − bR

1 − bR
ξ

(
lR

1 − bR

)](
bR
)δ−1

∫ 1

0
Ωjdj. (33)

Equations (29) and (33) satisfy the conditions (25) and (26). This result can con-
cluded as follows:

Proposition 1 Direct regulation is Pareto optimal, (lR, bR)= (lP , bP ).

The international agency, benevolent or self-interested, eliminates the externality
due to biodiversity as a macroeconomic decision-maker.

6 Conservation Subsidies

Assume a self-interested international agency that imposes the conservation sub-
sidy s. Assume furthermore that because the agency cannot fully distinguish be-
tween abatement investment and other labor expenditures, the abatement invest-
ment subsidy η is incentive incompatible. Without losing any generality, one can
then choose η= 0.

In this common agency game, the subsidy s is a public policy instrument. With
η= 0, the value function (23) and the equilibrium conditions (21) and (22) for coun-
try j become
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Γj
(
bS, γj , s,0, τ,R,Rj

)
, (34)

s
(lS)2bSfll(l

S,1 − bS)

(1 − bS)f (lS,1 − bS)
= (s − 1)ξ

(
lS

1 − bS

)
, (35)

(a − 1)λlS

ρ + (1 − a)λ(1 − lS)
= 1 − ξ − s(lS)2fll

(1 − bS)f
= 1 − sξ

(
lS

1 − bS

)
. (36)

In this setup, the budget constraint (11) becomes (cf. Appendix D)

τ = sbS

1 − bS
ξ

(
lS

1 − bS

)
. (37)

In the three equations (35), (36) and (37), there are three unknown variables τ , lS

and bS , and one known variable s. This system defines the functions

τ(s), lS(s), bS(s). (38)

Unfortunately, the derivatives of these functions are mathematically ambiguous. For
this reason, one can make the plausible assumption that the direct effect of the sub-
sidy s dominates. This implies that the following holds true:

Assumption 2 An increase in the subsidy s to conserved land increases both the
supply of conserved land, (bS)′ > 0, and the tax that is needed for financing the
increase of the subsidy, τ ′ > 0.

The international agency maximizes the present value of the expected flow of the
political contributions at time T , (27). Country j maximizes the value of its optimal
program, (34), by influencing the international agency by its contributions Rj , but
taking total contributions R as given. Because s is a policy and Rj (s) the strategy
of country j , then, given (38), the equilibrium conditions are [cf. (ii) and (iii) in
Appendix C]:

s = arg max
s

1

ρ

∫ 1

0
Rj (s)dj = arg max

s

∫ 1

0
Rj (s)dj, (39)

s = arg max
s
Γj
(
b, γj , s,0, τ (s),R,Rj (s)

)
for j ∈ [0,1]. (40)

From (5), (8) and (35) it follows that conserved land is subsidized:

s =
[
ξ︸︷︷︸
+

− (lS)2bSfll

(1 − bS)f
︸ ︷︷ ︸

−

]−1

ξ︸︷︷︸
+

> 0.

Given (37), this subsidy s > 0 must be financed by the wage tax τ > 0. To show that
(lS, bS) = (lP , bP ), assume (lS, bS) = (lP , bP ). In that case, relations (25), (36)
and (38) lead to the following contradiction:
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0 = 1 − ξ

(
lP

1 − bP

)
− (a − 1)λlP

ρ + (1 − a)λ(1 − lP )

= 1 − ξ

(
lS

1 − bS

)
− (a − 1)λlS

ρ + (1 − a)λ(1 − lS)
= slS

1 − bS

lSfll(l
S,1 − bS)

f (lS,1 − bS)
= 0.

Thus, (lS, bS) = (lP , bP ) holds true. This and Proposition 1 imply that:

Proposition 2 The equilibrium with conservation subsidies is Pareto suboptimal,
(lS, bS) = (lP , bP ). Consequently, a switch from regulation to conservation subsi-
dies decreases welfare.

This is because the international agency imposes a distorting consumption tax τ
to finance the conservation subsidy s. With direct regulation, there is no distorting
taxation.

Because the equilibrium (lS, bS) is Pareto suboptimal, then the same welfare can
be attained by two tax rates τ (with corresponding subsidies s):

• With the higher tax rate τ , the subsidy s is higher and consequently, the amount
of conserved land is bigger than at Pareto optimum, bS > bP .

• With the lower tax rate τ , the subsidy s is lower and consequently, the amount of
conserved land is smaller than at Pareto optimum, bS < bP .

Given Assumption 1, only the equilibrium with a lower tax rate, bS < bP , is feasible.
Given this, Assumption 2 and Proposition 2, the following conclusion is made:

Proposition 3 A switch from direct regulation into conservation subsidies decreases
both the growth rate (i.e. gR = gP > gS ) and biodiversity in each country (i.e. bR =
bP > bS ).

Because any inefficiency decreases the resources of the economy, there are less
resources to be put into abatement investment and the conservation of biodiversity.

7 Conclusions

This paper considers an economy in which the conservation of land yields utility
through biodiversity, firms improve their efficiency by in-house abatement invest-
ment and local interest groups lobby a self-interested international agency over bio-
diversity management. Two policy alternatives are compared: the regulation of land
use and subsidies for conserved land. The main findings are the following.

In the case of direct regulation, the international agency determines the use
of land throughout the whole economy, fully internalizing the externality through
biodiversity. In the case of conservation subsidies, revenue-raising taxes cause
distortions. For this reason, a shift from subsidies to direct regulation increases the
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resources of the countries, promoting investment in abatement investment and eco-
nomic growth. The transfer of labor from production to abatement investment de-
creases the demand for land in production. This promotes the conservation of land
and biodiversity.

While a great deal of caution should be exercised when a highly stylized game-
theoretical model is used to derive results on growth and biodiversity, the following
conclusion seems to be justified. The prospect of lobbying changes the outcome
of biodiversity management fundamentally. A larger package of policy instruments
leads to Pareto improvement with a benevolent international agency, but to Pareto
worsening with a self-interested one. In the case of Natura 2000, for instance, reg-
ulation without any budget may be an appropriate degree of authority for the Com-
mission. Greater authority narrows biodiversity and slows down economic growth.

Acknowledgements The author is grateful to Timothy Swanson and Duncan Knowler for their
constructive comments.

Appendix A: Equations (21) and (22) and Function (23)

Noting (5) and (8), the function (15) has the partial derivatives:

∂φ

∂bj
= (s − 1)fn(lj ,1 − bj )− (1 − lj )ηfln(lj ,1 − bj )− sfnn(lj ,1 − bj )bj

=
{
(s − 1)ξ

(
lj

1 − bj

)
+
[
(1 − lj )η− slj bj

1 − bj

]
lj fll(lj ,1 − bj )

f (lj ,1 − bj )

}

× f (lj ,1 − bj )

1 − bj
= 0 for b > b, (41)

∂φ

∂lj
= (1 − η)fl(lj ,1 − bj )+ (1 − lj )ηfll(lj ,1 − bj )+ sfln(lj ,1 − bj )bj

= (1 − η)

[
1 − ξ

(
lj

1 − bj

)]
f (lj ,1 − bj )

lj

+
[
(1 − lj )η− slj bj

1 − bj

]
fll(lj ,1 − bj ). (42)

The maximization of the expected utility (18) by (lj , bj ) s.t. (9) and (12), given
(τ, s, η, b,Rj ,R), is equivalent to the maximization of

E

∫ ∞

T

aγj
bδ

1 + τ
φ(lj , bj , s, η, τ )e

−ρ(θ−T )dθ

s.t. (9) and (12), given (τ, s, η, b,Rj ,R). The value of this optimal program starting
at time T is
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Ωj(γj , b, s, η, τ )

.= max
(lj ,bj ) s.t. (9), (12)

E

∫ ∞

T

bδ

1 + τ
aγj φ(lj , bj , s, η, τ )e

−ρ(θ−T )dθ. (43)

The Bellman equation corresponding to the optimal program (43) is given by (cf.
Dixit and Pindyck 1994)

ρΩj = max
(lj ,bj ) s.t. (9)

Λj(lj , bj , γj , b, s, η, τ ), (44)

where

Λj(lj , bj , γj , b, s, η, τ )

= bδ

1 + τ
aγj φ(lj , bj , s, η, τ )

+ λ(1 − lj )
[
Ωj(γj + 1, b, s, η, τ )−Ωj(γj , b, s, η, τ )

]
. (45)

The first-order conditions corresponding to the Bellman equation (44) and (45)
are ∂Λj/∂lj = 0 and ∂Λj/∂bj = 0. To solve the dynamic program, I assume that
the value of the program, Ωj , is in fixed proportion to the instantaneous utility at
the optimum:

Ωj(γj , b, s, η, τ )

= ϕj
bδ

1 + τ
aγj φ

(
l∗j , bj , s, η, τ

)
with bj = b∗

j for bj > b, (46)

where ϕj is a constant and l∗j and b∗
j are the optimal values of lj and bj . From (46)

it follows that

Ωj(γj + 1, b, s, η, τ )/Ωj (γj , b, s, η, τ )= a. (47)

Inserting (46) and (47) into the Bellman equation (44) and (45) yields

1/ϕj = ρ + (1 − a)λ(1 − lj ) > 0. (48)

Noting (41), (42), (45), (47) and (48), the first-order conditions corresponding to
the maximization (44) are given by

1

Ωj

∂Λj

∂bj
= bδaγj

Ωj

∂φ

∂bj

= bδaγj

(1 + τ)Ωj

f (lj ,1 − bj )

1 − bj

×
{
(s − 1)ξ

(
lj

1 − bj

)
+
[
(1 − lj )η− slj

1 − bj

]
lj fll(lj ,1 − bj )

f (lj ,1 − bj )

}

= 0 for b > b, (49)
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1

Ωj

∂Λj

∂lj
= bδaγj

(1 + τ)Ωj

∂φ

∂lj
− λ

[
Ωj(γj + 1, b, s, η, τ )

Ωj (γj , b, s, η, τ )
− 1

]

= 1

ϕjφ

∂φ

∂lj
− (a − 1)λ

= [ρ + (1 − a)λ(1 − lj )
] 1

φ

∂φ

∂lj
− (a − 1)λ

= [ρ + (1 − a)λ(1 − lj )
]f (lj ,1 − bj )

(1 + τ)φ

×
{
(1 − η)

[
1 − ξ

(
lj

1 − bj

)]
1

lj

+
[
(1 − lj )η− slj bj

1 − bj

]
fll(lj ,1 − bj )

f (lj ,1 − bj )

}
− (a − 1)λ

= 0. (50)

In the system consisting of the international agency budget (11) and the first-
order conditions (49) and (50) for all countries j ∈ [0,1], there is symmetry through-
out j ∈ [0,1]. This implies lj = l and bj = b for j ∈ [0,1]. From this, (1), (5), (6),
(13), (14), (15) and (17) it follows that

φ(l, b, s, η, τ ) =
∫ 1

0
aγj φ(l, b, s, η, τ )dj

/∫ 1

0
aγkdk

=
[∫ 1

0
aγj φ(l, b, s, η, τ )dj + b−δ

∫ 1

0
(gjR −Rj )dj

︸ ︷︷ ︸
=0

]/∫ 1

0
aγkdk

=
∫ 1

0

[
aγj φ(l, b, s, η, τ )+ (gjR −Rj )b

−δ]dj
/∫ 1

0
aγkdk

=
∫ 1

0
cj dj

/∫ 1

0
aγkdk

=
∫ 1

0
yjdj

/∫ 1

0
aγkdk

= f (l,1 − b). (51)

This implies (20). Inserting (51), lj = l and bj = b back to (49) and (50) yields (21)
and (22).

Noting lj = l, bj = b, (15), (43), (46) and (51), the expected utility of country j ,
(18), can be written as follows:

Γj (b, γj , b, s, η, τ,R,Rj )
.=Ωj(γj , b, s, η, τ )+ (gjR −Rj)/ρ,

∂Γj

∂Rj
= − 1

ρ
,
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∂Γj

∂b

∣∣∣∣
b=b

= bδ

1 + τ

[
∂Ωj

∂bj
+ δ

Ωj

b

]
= bδ

1 + τ

[
Ωj

φ

∂φ

∂bj
+ δ

Ωj

b

]

= bδ

1 + τ

×
{
Ωj

φ

[
(s − 1)fn − (1 − lj )ηfln − sfnn

]+ δ
Ωj

b

}

= bδΩj

1 + τ

×
[

1

φ

{
(s − 1)

f (lj ,1 − bj )

1 − bj
ξ

+
[
(1 − l)η− sl

1 − b

]
lfll

1 − b

}
+ δ

b

]

= bδΩj

1 + τ

[
f (l,1 − b)

(1 − b)φ(l, b, s, η, τ )

×
{
(s − 1)ξ +

[
(1 − l)η− slb

1 − b

]
lfll

f

}
+ δ

b

]

= bδ−1Ωj

1 + τ

[
b

1 − b

{
(s − 1)ξ

(
l

1 − b

)

+
[
(1 − l)η− slb

1 − b

]
lfll(l,1 − b)

f (l,1 − b)

}
+ δ

]
,

∂Γj

∂b
= bδ

1 + τ
δ
Ωj

b
= δ

bδ−1Ωj

1 + τ
for b > b.

Appendix B: Equations (25) and (26)

The average serial number of technology in the economy is given by

γ =
∫ 1

0
γjdj. (52)

Given the Poisson property of the improvement of technology in countries j ∈ [0,1]
(cf. Sect. 2.2), one obtains the following. In a small period of time dt , the probability
that abatement investment will lead a jump from γ to γ + 1 is given by λzdt , while
the probability that abatement investment will remain without success is given by
1 − λzdt . Noting (9), this defines a Poisson process χ with

dχ =
{

1 with probability λ(1 − l)dt,

0 with probability 1 − λ(1 − l)dt,
l
.=
∫ 1

0
lj dj, (53)
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where dχ is the increment of the process χ .
Because there is perfect symmetry throughout countries j ∈ [0,1] in the sys-

tem (2), (53), (21) and (22), there is lj = l = lP and bj = b = bP for j ∈ [0,1] in
equilibrium. Because there is one-to-one correspondence from (η, s) to (lP , bP ),
one can replace the subsidies (η, s) by (lP , bP ) as the international agency’s policy
instruments. Thus, the international agency maximizes (24) by (lP , bP ) s.t. techno-
logical change (53). Noting (5), (17) and (52), one obtains the value function of this
maximization as follows:

Δ
(
lP , bP

) .= E

∫ ∞

T

cbδe−ρ(θ−T )dθ = f
(
lP ,1 − bP

)(
bP
)δ
E

∫ ∞

T

aγ e−ρ(θ−T )dθ

= f (lP ,1 − bP )(bP )δ

ρ + (1 − a)λlP
.

Noting (8), this leads to the first-order conditions

∂ logΔ

∂lP
= fl(l

P ,1 − bP )

f (lP ,1 − bP )
+ (1 − a)λ

ρ + (1 − a)λlP

= 1

lP

[
1 − ξ

(
lP

bP

)]
+ (1 − a)λ

ρ + (1 − a)λlP
= 0,

∂ logΔ

∂lP
= δ

bP
− fm(l

P ,1 − bP )

f (lP ,1 − bP )
= δ

bP
− 1

1 − bP
ξ

(
lP

bP

)
= 0.

These equations imply (25) and (26).

Appendix C: The Lobbying Game

Following Dixit et al. (1997), a subgame perfect Nash equilibrium for this game
is a policy ζ and a set of contribution schedules R1(ζ ), . . . ,RJ (ζ ) such that the
following conditions (i)–(iv) hold:

(i) Contributions Rj are non-negative but no more than the contributor’s income,
Γj ≥ 0.

(ii) The policy ζ maximizes the international agency’s welfare (27) taking the con-
tribution schedules Rj as given.

(iii) Country j cannot have a viable strategy Rj (ζ ) that yields it a higher level of
utility than in equilibrium, given the others’ contributions.

(iv) Country j provides the international agency at least with the level of utility as
in the case in which it offers nothing (Rj = 0), and the international agency
responds optimally given the contribution functions of the other countries.
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Appendix D: Equation (37)

Given η= 0, (7), (8), (13), (14), (17), (19) and (20), the international agency budget
constraint (11) becomes

τ =
∫ 1

0 (ηwjzj + srj bj )dj
∫ 1

0 ckdk
= s

∫ 1
0 rj bj dj∫ 1
0 ckdk

= s
∫ 1

0 a
γj fn(lj , nj )bj dj
∫ 1

0 ckdk

= s
∫ 1

0 a
γj fn(lj , nj )bj dj

∫ 1
0 a

γkφ(lk, bk, s, η, τ )dk+ ∫ 1
0 (gkR−Rk)b

−δdk
︸ ︷︷ ︸

=0

= s
∫ 1

0 a
γj fn(lj , nj )bj dj

∫ 1
0 a

γkφ(lk, bk, s, η, τ )dk

= s
fn(l

S,1 − bS)bS

φ(lS, bS, s,0, τ )
= s

fn(l
S,1 − bS)bS

f (lS,1 − bS)
= sbS

1 − bS
ξ

(
lS

1 − bS

)
.
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Economic Growth

Elke Moser, Alexia Prskawetz, and Gernot Tragler

1 Introduction

In recent years climate change and the possible consequences that human society
might have to deal with, if further global warming cannot be stopped, have become
one of the most important topics in science, politics and the world wide media. The
scientific evidence that many key climate indicators are already moving beyond the
patterns of natural variability defines this dramatic change as a world wide concern.
Hence, the importance of climate mitigation has become undeniable. These indica-
tors, including global mean surface temperature, global ocean temperature, global
average sea level, northern hemisphere snow cover and Arctic sea ice decline as
well as extreme climatic events, additionally come along with the risk of abrupt or
irreversible climatic shifts, which might have devastating consequences for the en-
tire world population. This underlines how urgent the need of climate actions has
become (see Richardson et al. 2009).

In the 4th Assessment Report by the International Panel on Climate Change
(IPCC 2007), scientific evidence on global warming, its damages and the impor-
tance of climate mitigation as well as the reduction of anthropogenic greenhouse
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gas (GHG) emissions are highlighted. According to their Synthesis Report, the in-
dustry sector, besides the energy supply and transport sectors, is one of the main
sources of anthropogenic GHG emissions accounting for almost 20% of all GHG
emissions (2004). The majority are CO2 emissions due to the use of fossil fuels, but
also the emissions of other gases like PFCs, SF6, CH4 and N2O due to physical and
chemical processes contribute to the overall CO2 emissions. Additionally, one has
to consider the impact of industrial waste and wastewater on pollution. Further on,
not only the sources are discussed in the IPCC (2007) but also a broad range of miti-
gation policy measures are suggested, which especially emphasizes the role of tech-
nology policies and the increasing need for more R&D efforts. In the Mitigation of
Climate Change Report, some possible mitigation options for a greener technology
are explained, such as fuel switching, including the use of waste material, advanced
energy efficiency, the use of bioenergy and material recycling and substitution. As
far as according policy instruments are concerned, they consider performance stan-
dards, subsidies, tax credits, tradeable permits and voluntary agreements as the most
environmentally effective instruments.

Although these environmental policy instruments seem to be promising, the
question arises how they can be utilized in the most effective way and whether strict
environmental regulation has a supporting or repressing impact on innovation and
economic growth. To address this issue, many economic growth models include the
environment as an additional dimension in form of pollution that is modeled either
as a by-product of production like in Kalkuhl et al. (2011) or Saltari and Travaglini
(2011), or as a result of consumption, as in Bretschger and Smulders (2007). To
reduce pollution in order to protect the environment, the possibility of end-of-pipe
abatement often is added in such models, like in Lange and Moslener (2004), Ras-
mussen (2001), Antweiler et al. (2001) or Xepapadeas (1992). Instead of reducing
pollution only after production, a different approach is to reduce pollution directly in
the process of production by including a cleaner substitute for the pollutive produc-
tion input or for the pollutive technology. Examples for this can be found in Cunha-e
Sá et al. (2010), Hartley et al. (2010), Cassou and Hamilton (2004), Acemoglu et al.
(2009) and Lehmijoki and Palokangas (2010).

We refer in our work to a recent paper by Rauscher (2009) who addresses this
topic by constructing a simple dynamic environmental-economic model which con-
siders capital accumulation, end-of-pipe emission abatement, R&D investments and
knowledge spillovers in an endogenous growth framework. Rauscher investigates
in a conveniently tractable way whether tighter environmental standards will in-
duce a shift from end-of-pipe emission abatement to a process-integrated one and
how these alternative policies effect R&D investments and growth. The model
Rauscher employs is kept algebraically simple without specifying concrete func-
tional forms. In this paper we introduce specific functional forms and apply optimal
control theory to solve for the dynamic paths of the environmental-economic sys-
tem.

The paper is organized as follows. In the next section we introduce the model,
which is solved Sect. 3 by applying Pontryagin’s Maximum Principle. Numerical
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simulations, including a bifurcation analysis, are presented in Sect. 4. Section 5
concludes and gives an outlook for further research.

2 The Model

To investigate the effects of environmental standards on economic growth and R&D
investments, we build on the model by Rauscher (2009), who considers a competi-
tive market economy where a continuum of identical firms using identical technolo-
gies produce a homogenous GDP good. In this economy two types of capital are
accumulated: first, there is conventional capital, also called brown capital, which
is pollutive, secondly, a non-polluting green capital can be chosen. Additionally,
the government sets environmental standards which the entrepreneurs are obligated
to meet. The necessary abatement effort as well as the abatement costs depend on
the stringency of these regulations. Consequently, firms adopting cleaner technolo-
gies have to spend less on end-of-pipe abatement. This benefit, however, comes at
a cost because the required resources for green R&D could be invested otherwise
profitably in conventional R&D. Instead of assuming different groups of agents,
as frequently done in many other papers approaching this topic, Rauscher (2009)
focuses on one type of agent in the private sector of the economy, who is a capital-
owning entrepreneur doing his/her R&D in-house and who saves and consumes all
at the same time. In case of perfect competition of the markets on which these agents
interact, the simple homogenous-representative-agent model generates the same re-
sults as its more elaborated version with heterogeneous agents.

Maximizing his/her own profit, the representative agent has to consider the
present value of future utility, given as

∫ ∞

0
e−rt

(
ln
(
C(t)

)+ u(ε)
)
dt with C(t) > 0, (1)

where C(t) is the consumption or dividend income, ln(C(t)) describes the utility
level that the agent obtains from C(t) and r is the discount rate. Further on, ε spec-
ifies the exogenously given environmental quality determined by the government,
which is represented by index between 0 and 1, with ε = 0 denoting the laissez-faire
scenario (any environmental regulation exists and therefore environmental quality is
low) and ε = 1 stands for the maximal attainable environmental quality. The private
sector’s utility of environmental quality is denoted as u(ε) and will be set in the
following as u(ε)= cεγ with c > 0 and 0< γ < 1.

The entrepreneurs use conventional capital K(t) and/or green capital G(t) to
produce an output

F
(
K(t),G(t)

)= bK(t)α1G(t)α2

with b > 0, t ∈ [0,∞),0< α2 ≤ α1 < 1 and α1 + α2 ≤ 1. (2)

Output is used for consumption, for the coverage of opportunity costs due to green
and brown R&D investments and for end-of-pipe emission abatement. Note, that
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savings are not included in this model approach. The budget constraint is given as
follows,

F
(
K(t),G(t)

)−C(t)−w
(
RK(t)+RG(t)

)− χ(ε)K(t)= 0. (3)

Note that as of here, we will often omit the time argument t for the ease of exposi-
tion. RK and RG denote the investments for R&D to generate new capital of types
K and G, respectively. The parameter w ∈ [0,1] represents the exogenous opportu-
nity costs. The abatement costs for achieving the binding environment constraints of
the government are proportional to the installed conventional capital K . The costs
per unit capital is given as χ(ε) which is increasing and convex in the stringency
of environmental regulation, i.e. χ ′ > 0, χ ′′ > 0, and will be set for this analysis as
χ(ε)= aεβ with a > 0 and β > 1.

The two types of capital accumulate through a Cobb Douglas production function
with decreasing returns to scale and depreciate at fixed exogenous rates φ and ψ ,

K̇ = A(K,RK)= dKδ1R
δ2
K − φK with δ1 + δ2 < 1, (4)

Ġ = B(G,RG)= eGσ1R
σ2
G −ψG with σ1 + σ2 < 1. (5)

The existing capital stock itself has a positive feedback on the accumulation. Assum-
ing that this positive feedback is weaker than the contribution of new technology due
to R&D, the partial elasticity of production of the capital stock is supposed to be less
than the one of the R&D investments. Hence, δ1 < δ2 and σ1 < σ2. Additionally, it is
more likely that conventional capital is more established in the economy than green
one and therefore accumulation is much easier. To take this imbalance into account,
the partial elasticities of green capital G should at least not be greater than those of
conventional capital K , i.e. σ1 ≤ δ1 and σ2 ≤ δ2.

Figure 1 shows the interrelations of the variables to illustrate the dynamics of the
model. Starting from the capital stocksK andG, output F(K,G) is produced. Con-
stricted by the available budget (3), the decision-maker has to determine the extend
of R&D investments that are made for either brown (RK ) or green (RG) capital or
possibly both. These investments in turn influence the growth of the capital stocks
K and G, respectively. Additionally, also the existing capital stock contributes to
the accumulation.

Solving (3) for consumption C together with (1) leads to an optimal control prob-
lem with RK and RG as control variables and the two available types of capital as
states, which is given as

max
RK,RG

∫ ∞

0
e−rt

(
ln
(
bKα1Gα2 −w(RK +RG)− aεβK

)+ cεγ
)
dt (6a)

s.t.: K̇ = dKδ1R
δ2
K − φK (6b)

Ġ= eGσ1R
σ2
G −ψG (6c)

0 ≤RK ∀t ≥ 0 (6d)
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Fig. 1 Sketch of the
dynamics of the model

0 ≤RG ∀t ≥ 0 (6e)

0< bKα1Gα2 −w(RK +RG)− aεβK (6f)

0 ≤ ε ≤ 1 (6g)

0< α1, α2, γ,w < 1 and α1 + α2 ≤ 1 (6h)

0< δ1, δ2 < 1 and δ1 + δ2 < 1 (6i)

0< σ1, σ2 < 1 and σ1 + σ2 < 1 (6j)

1< β (6k)

0< φ,ψ,a, b, c, d, e, r. (6l)

3 Analytical Results

3.1 Derivation of the Canonical System

Summing up, we consider a discounted autonomous model with infinite planning
horizon. To derive the necessary conditions for an optimal solution we consider the
Lagrangian L in current value notation, where H denotes the Hamiltonian, C the
control and mixed path constraints and μ the vector of Lagrange Multipliers:

L = H+μC

= λ0
(
ln
(
F(K,G)−w(RK +RG)− χ(ε)K

)+ u(ε)
)

+ λ1A(K,RK)+ λ2B(G,RG)+μ1RK +μ2RG

+μ3
(
F(K,G)−w(RK +RG)− χ(ε)K

)
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with the co-states (λ0, λ1, λ2) = 0. The first order conditions are

LRK = −wλ0

F(K,G)−w(RK +RG)− χ(ε)K
+ λ1ARK +μ1 −wμ3 = 0 (7)

LRG = −wλ0

F(K,G)−w(RK +RG)− χ(ε)K
+ λ2BRG +μ2 −wμ3 = 0 (8)

λ̇1 = λ1(r −AK)− λ0
FK(K,G)− χ(ε)

F (K,G)−w(RK +RG)− χ(ε)K

−μ3
(
FK(K,G)− χ(ε)

)
(9)

λ̇2 = λ2(r −BG)− λ0
FG(K,G)

F(K,G)−w(RK +RG)− χ(ε)K

−μ3FG(K,G) (10)

where subscripts denote partial derivatives of multivariate functions. The comple-
mentary slackness conditions are

μ1 ≥ 0 and 0 = μ1RK

μ2 ≥ 0 and 0 = μ2RG

μ3 ≥ 0 and 0 = μ3
(
F(K,G)−w(RK +RG)− χ(ε)K

)
.

(11)

One can show that λ0 = 1, without loss of generality. For the derivation of the canon-
ical system one has to distinguish between the different cases of an interior arc and
a boundary arc. In the first case none of the constraints are active and, due to the
complementary slackness conditions in (11), (μ1,μ2,μ3) = 0. Hence, an optimal
control should maximize the current value Hamiltonian, i.e.

(
R∗
K,R

∗
G

)= arg max
(RK,RG)

H

and therefore

LRK = HRK = 0 (12)

LRG = HRG = 0. (13)

To prove that the Hamiltonian is strictly concave, the positivity of the co-states is
necessary which can be shown by solving (12) and (13) for λ1 and λ2 respectively.
This yields

λ1 = w

(F(K,G)−w(RK +RG)− aεβK)ARK (K,RK)
> 0

λ2 = w

(F(K,G)−w(RK +RG)− aεβK)BRG(G,RG)
> 0.

Note that ARKRK (K,RK) < 0 and BRGRG(G,RG) < 0. The Hessian matrix of the
Hamiltonian
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H =
⎛

⎝
− w2

(F (K,G)−w(RK+RG)−χ(ε)K)2 + λ1ARKRK (K,RK)

− w2

(F (K,G)−w(RK+RG)−χ(ε)K)2

− w2

(F (K,G)−w(RK+RG)−χ(ε)K)2
− w2

(F (K,G)−w(RK+RG)−χ(ε)K)2 + λ2BRGRG(G,RG)

⎞

⎠

therefore is negative definite and the Hamiltonian H is strictly concave.
The optimality conditions in (12) and (13) allow to derive control functions de-

pending on co-state and state variables (cf. conditions (7) and (8))

RK =RK(K,G,λ1, λ2)

RG =RG(K,G,λ1, λ2).
(14)

Substituting these control functions into the state dynamics (4) and (5) as well as
into the adjoint equations (9) and (10) the canonical system in the state-co-state-
space is given as

K̇ = A
(
K,RK(K,G,λ1, λ2)

)

Ġ = B
(
G,RG(K,G,λ1, λ2)

)

λ̇1 = λ1(r −AK)

− FK(K,G)− χ(ε)

F (K,G)−w(RK(K,G,λ1, λ2)+RG(K,G,λ1, λ2))− χ(ε)K

λ̇2 = λ2(r −BG)

− FG(K,G)

F(K,G)−w(RK(K,G,λ1, λ2)+RG(K,G,λ1, λ2))− χ(ε)K
.

However, from an application orientated point of view it is often more convenient to
transform the canonical system from the state-co-state-space into the state-control-
space. Within this representation immediate interpretation of the results is more
convenient (see Grass et al. 2008). Additionally, inserting the specific functions
from above, the two controls from (7) and (8) are given only implicitly. There-
fore, the derivation of the canonical system in the state-control space is even neces-
sary.

Considering the specific functions from above, the first order conditions are

HRK = − w

bKα1Gα2 −w(RK +RG)− aεβK
+ λ1

(
dKδ1δ2R

δ2−1
K

)

= 0 (15a)

HRG = − w

bKα1Gα2 −w(RK +RG)− aεβK
+ λ2

(
eGσ1σ2R

σ2−1
G

)

= 0 (15b)
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λ̇1 = λ1
(
r − dδ1K

δ1−1R
δ2
K + φ

)

− α1bK
α1−1Gα2 − aεβ

bKα1Gα2 −w(RK +RG)− aεβK
(15c)

λ̇2 = λ2
(
r − eσ1G

σ1−1R
σ2
G +ψ

)

− α2bK
α1Gα2−1

bKα1Gα2 −w(RK +RG)− aεβK
. (15d)

Solving (15a) and (15b) for λ1 and λ2 instead of the controls yields

λ1(K,G,RK,RG) = w

(bKα1Gα2 −w(RK +RG)− aεβK)dKδ1δ2R
δ2−1
K

(16)
λ2(K,G,RK,RG) = w

(bKα1Gα2 −w(RK +RG)− aεβK)eGσ1σ2R
σ2−1
G

.

By using the total time derivatives of the co-states

λ̇1 = λ1K K̇ + λ1GĠ+ λ1RK
ṘK + λ1RG

ṘG
(17)

λ̇2 = λ2K K̇ + λ2GĠ+ λ2RK
ṘK + λ2RG

ṘG

two equations for the control dynamics can be obtained. Together with the adjoint
dynamics in (15c) and (15d) these control dynamics are given as

ṘK = −(λ̇2λ1RG
− λ̇1λ2RG

+ Ġ(λ1Gλ2RG
− λ1RG

λ2G)+ K̇(λ1Kλ2RG
− λ1RG

λ2K )
)

/(λ1RK
λ2RG

− λ1RG
λ2RK

)
(18)

ṘG = −(λ̇1λ2RK
− λ̇2λ1RK

+ Ġ(λ1RK
λ2G − λ1Gλ2RK

)+ K̇(λ1RK
λ2K − λ1Kλ2RK

)
)

/(λ1RK
λ2RG

− λ1RG
λ2RK

)

which yields the canonical system

ṘK =D2
1D

2
2R

2
GR

2
KY

3

/
(
w2(d(δ2 − 1)δ2K

δ1R
δ2
K

(
D2R

2
Gw− eY (σ2 − 1)σ2G

σ1R
σ2
G

)

+D1eR
2
Kw(σ2 − 1)σ2G

σ1R
σ2
G

))

×
{[(

eY (σ2 − 1)σ2G
σ1R

σ2−2
G −D2w

)

× (D1
(
aεβ − bα1G

α2Kα1−1)+w
(−dδ1K

δ1−1R
δ2
K + r + φ

))
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+D2w
(
w
(−eσ1G

σ1−1R
σ2
G + r +ψ

)− bD2α2G
α2−1Kα2

)]

× w

D1D
2
2Y

3
+ ĠT1 + K̇T2

}

ṘG =D2
1D

2
2R

2
GR

2
KY

3 (19)

/
(
w2(d(δ2 − 1)δ2K

δ1R
δ2
K

(
D2R

2
Gw− eY (σ2 − 1)σ2G

σ1R
σ2
G

)

+D1eR
2
Kw(σ2 − 1)σ2G

σ1R
σ2
G

))

×
{[(

dY (δ2 − 1)δ2K
δ1R

δ2−2
K −D1w

)

× (w(−eσ1G
σ1−1R

σ2
G + r +ψ

)− bD2α2G
α2−1Kα2

)

+D1w
(
aD1ε

β − bD1α1G
α2Kα1−1 − dwδ1K

δ1−1R
δ2
K

+w(r + φ)
)]

× w

D1D
2
2Y

3
+ ĠT3 + K̇T4

}

K̇ = dKδ1R
δ2
K − φK

Ġ = eGσ1R
σ2
G −ψG

with

T1 = ew2σ2G
σ1−1R

σ2−2
G (bα2(σ2 − 1)Gα2Kα1 +RGwσ1)

D1D
2
2Y

3

T2 = − w2

D2
1D

2
2KR

2
GRKY

3

× (dδ1δ2K
δ1R

δ2
K

(
D2R

2
Gw− eY (σ2 − 1)σ2G

σ1R
σ2
G

)

−D1eRK(σ2 − 1)σ2G
σ1R

σ2
G

(
bα1G

α2Kα1 − aKεβ
))

T3 = w2

D2
1D

2
2GRGR

2
KY

3

× (d(δ2 − 1)δ2K
δ1R

δ2
K

(
bD2RGα2G

α2Kα1 + eYσ1σ2G
σ1R

σ2
G

)

−D1eR
2
Kwσ1σ2G

σ1R
σ2
G

)

T4 = dw2δ2K
δ1−1R

δ2−2
K ((δ2 − 1)(bα1G

α2Kα1 − aKεβ)+RKwδ1)

D2
1D2Y 3

Y = bKα1Gα2 −w(RK +RG)− aεβK
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and D1 and D2 being the first derivatives of the state dynamics with respect to the
corresponding control

D1 = dKδ1δ2R
δ2−1
K

D2 = eGσ1σ2R
σ2−1
G .

In the boundary arc case, the optimal controls do not necessarily maximize the
Hamiltonian, i.e. HRK = 0 and HRG = 0 might not be fulfilled in the optimum.
Hence, the approach to derive the canonical system in the state-control-space, as
done in (15a)–(18), cannot be used. Instead, the optimal controls have to maximize
the Lagrangian. Therefore, in case of one or even both control constraints being
active, the partial derivatives of the Lagrange function with respect to the controls,
LRK = 0 and LRG = 0, together with the active constraint equations yield the cor-
responding Lagrange multipliers and the control dynamics, while the adjoint equa-
tions can be used to calculate the co-states. The state dynamics remain the same
just with the according control values inserted, i.e. RK = 0 and/or RG = 0. If, how-
ever, the mixed path constraint is fulfilled, the derivation of the according canonical
system is more extensive. Assuming that the mixed path constraint is the only con-
straint being active, meaning that RK and RG are positive, the following DAEs have
to be solved

K̇ = A(K,G,RK,RG)

Ġ = B(K,G,RK,RG)

λ̇1 = λ1(r −AK)− FK(K,G)− χ(ε)

F (K,G)−w(RK +RG)− χ(ε)K

−μ3
(
FK(K,G)− χ(ε)

)

λ̇2 = λ2(r −BG)− FG(K,G)

F(K,G)−w(RK +RG)− χ(ε)K
−μ3FG(K,G)

LRK = HRK +μ3CRK = 0

LRG = HRG +μ3CRG = 0

0 = C(K,G,RK,RG)

where C defines the mixed path constraint and this time μ3 ≥ 0. In order to trans-
form these DAEs into ordinary differential equations (ODEs), total time derivatives
have to be considered:

d

dt
LRK = (HRKK +μ3CRKK)K̇ + (HRKG +μ3CRKG)Ġ

+ (HRKRK +μ3CRKRK )ṘK + (HRKRG +μ3CRKRG)ṘG

+ λ̇1HRKλ1 + λ̇2HRKλ2 + μ̇3CRK

= 0



Environmental Regulations, Abatement and Economic Growth 97

d

dt
LRG = (HRGK +μ3CRGK)K̇ + (HRGG +μ3CRGG)Ġ (20)

+ (HRGRK +μ3CRGRK )ṘK + (HRGRG +μ3CRGRG)ṘG

+ λ̇1HRGλ1 + λ̇2HRGλ2 + μ̇3CRG

= 0
d

dt
C = CKK̇ +CGĠ+CRK ṘK +CRGṘG = 0.

Inserting the according equations for K̇ , Ġ, λ̇1 and λ̇2 and solving the previous
equations for ṘK , ṘG and μ̇3 yields the equations for the controls. Note, however,
that λ̇1 and λ̇2 include λ1 and λ2 respectively, and therefore also ṘK , ṘG are both
dependent on the co-state. For this reason the reduction of the canonical system to
four dimensions is not possible anymore and one has to consider all six dimensions
which are given as follows

K̇ =A(K,G,RK,RG)

Ġ= B(K,G,RK,RG)

λ̇1 = rλ1 − TK − λ1AK − TRK + λ1ARK

w

(
FK − χ(ε)

)

λ̇2 = rλ2 − TG − λ2BG − TRG + λ2BRG

w
FG

ṘK = Y(K,G,RK,RG,λ1, λ2)

ṘG = V (K,G,RK,RG,λ1, λ2)

(21)

where T denotes the target function

T = ln
(
F(K,G)−w(RK +RG)− χ(ε)K

)+ u(ε)

and Y and V denote the obtained results for the control dynamics, which we omit
here because they are very complex and don’t allow any immediate insights.

3.2 Steady States

According to the maximum principle (see Grass et al. 2008), in the following the
maximization problem (6a) subject to (6b)–(6l) will be solved by determining the
stable manifolds arising from the canonical system which has been derived in the
previous section. The steady states of the canonical system are determined by solv-
ing K̇ = 0, Ġ= 0, ṘK = 0, ṘG = 0 simultaneously. Considering the two state dy-
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namics, the according roots are:

KK̇ =
(

φ

dR
δ2
K

)1/(δ1−1)

RKK̇ =
(

φ

dKδ1−1

)1/δ2

(22)

GĠ =
(

ψ

eR
σ2
G

)1/(σ1−1)

RGĠ
=
(

ψ

eGσ1−1

)1/σ2

where subscripts denote the equation which is set to zero, respectively. Further on,
also K = 0 and G = 0 would obviously be solutions. However, K and G occur in
the denominator of ṘK and ṘG multiplicatively. Hence, for K =G= 0 we find no
feasible steady state solution of the canonical system. But since the intention of en-
vironmental policy is not to completely shut down the production, the main focus of
this paper lies on the determination of steady states with a positive production out-
put. Inserting the roots in (22) together with parameter values into ṘK and ṘG, the
intersection of the isoclines ṘK = 0 and ṘG = 0 determines the steady states. In this
first approach only one steady state can be identified, which will be demonstrated in
what follows.

3.3 Stability

To determine the stability of this steady state, the Jacobian matrix is used, which is
given by

J =

⎛

⎜⎜
⎝

K̇K 0 K̇RK 0
0 ĠG 0 ĠRG

ṘKK ṘKG ṘKRK
ṘKRG

ṘGK
ṘGG

ṘGRK
ṘGRG

⎞

⎟⎟
⎠ , (23)

where subscripts denote partial derivatives again. Hence the characteristic polyno-
mial is

P(μ) = (K̇RK ṘKK − (K̇K −μ)(ṘKRK
−μ)

)

× (ĠRGṘGG
− (ĠG −μ)(ṘGRG

−μ)
)
, (24)
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Table 1 Possible cases of stability

det(J ) Discriminant Eigenvalues (EV) Signs of real part of EV Behavior

> 0 Z1,Z2 > 0 X1,X2 > 0 Real with opposite signs (+,−,+,−) Saddle point

Z1,Z2 < 0 X1,X2 > 0 Real with same signs (−,−,+,+) Saddle point

X1,X2 < 0 Complex (−,−,−,−) Stable

sgn(X1) = sgn(X2) Real and complex (+,+,+,+) Repelling

< 0 Z1 > 0, Z2 < 0 X1,X2 > 0 Real (+,+,+,−) Unstable

X1 < 0, X2 > 0 Real and complex

Z1 < 0, Z2 > 0 X1,X2 > 0 Real (−,−,−,+)
X1 > 0, X2 < 0 Real and complex

which determines four eigenvalues

μ1,2 = K̇K + ṘKRK

2
±
√
(K̇K − ṘKRK

)2

4
+ K̇RK ṘKK

︸ ︷︷ ︸
X1

μ3,4 = ĠG + ṘGRG

2
±
√
(ĠG − ṘGRG

)2

4
+ ĠRGṘGG

︸ ︷︷ ︸
X2

.

(25)

Considering the sign of the determinant

detJ = (K̇RK ṘKK − K̇KṘKRK
)

︸ ︷︷ ︸
:=Z1

(ĠRGṘGG
− ĠGṘGRG

)
︸ ︷︷ ︸

:=Z2

,

the various cases summarized in Table 1 can be distinguished.

3.4 The Laissez-Faire Scenario and the Introduction of
Environmental Policy

For the numerical analysis we set the parameter values as summarized in Table 2.
At first, an economy is considered in which no environmental standards at all are
imposed, i.e. ε = 0. In this laissez-faire scenario, the agent does not have to fulfill
any environmental restrictions and therefore is completely free of abatement costs.
However, this comes at the expense of environmental quality and consequently of
the utility it yields. Anyway, as long as the utility of consumption is high enough to
compensate for the loss of environmental quality, the agent’s capital accumulation is
conceivable. Due to the fact that green capital is less productive than brown capital
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Table 2 Parameter values

Parameter Value Description

a 1 Constant of proportionality of abatement costs

b 1 Scale parameter of the production function

c 5 Scale parameter describing the utility of environmental quality

d 1 Scale parameter of K̇

e 1 Scale parameter of Ġ

r 0.05 Discount rate

w 0.1 Opportunity cost of research

β 2 Exponent of abatement costs

γ 0.4 Exponent describing the utility of environmental quality

δ1 0.3 Production elasticity of K in K̇

δ2 0.5 Production elasticity of RK in K̇

σ1 0.3 Production elasticity of G in Ġ

σ2 0.4 Production elasticity of RG in Ġ

φ 0.05 Depreciation rate of K̇

ψ 0.05 Depreciation rate of Ġ

it is obvious that the agent will mainly use the polluting capital as much as possible.
However, complete abandonment of green capital is not possible due to the assump-
tion of a Cobb Douglas production function, but the green input factor is expected to
be comparatively low. Figure 2 shows that the single steady state is at K = 29,160,
G= 4,126 with control levels RK = 4,453 and RG = 1,187, which is a saddle point
according to the first case in Table 1. Obviously K is dominant in production. The
colored region in Fig. 2 corresponds to the admissible region according to the mixed
path constraint C ≥ 0.

In the next step, an economy with a medium environmental quality standard
ε = 0.4 is considered. As one can see in Fig. 3, this causes a big change in the po-
sition of the steady state. In this scenario, the saddle point is at K = 714, G= 981,
RK = 24 and RG = 96. Due to the higher abatement costs, brown capital as domi-
nant input factor has become too expensive. Green capital now is an essential sub-
stitute, despite its lower productivity. Comparing Fig. 3 with Fig. 2 one can see that
the admissible region C ≥ 0 shrinks with increasing ε.

Figure 4 finally shows the steady state for the basic model with constant returns
to scale (CRS) in the production function, which is at K = 904,808, G= 104,374,
RK = 545,908 and RG = 333,154. One can see that these equilibrium values are
quite high, compared to the previous two scenarios. Also the admissible region ex-
pands with constant returns instead of decreasing returns to scale.
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Fig. 2 Steady state in the
laissez-faire scenario for
α1 = 0.6 and α2 = 0.2

Fig. 3 Steady state for
α1 = 0.6, α2 = 0.2 and
ε = 0.4

4 Optimal Paths

In this section, the matter of interest is to find trajectories converging toward the
equilibrium and to get the corresponding projections that cover a significant part
of the (K,G)-plane. For this purpose, the initial value problem approach is used.
Hence, initial values for a backward solution of the four-dimensional canonical sys-
tem need to be constructed first. However, note that only the stable manifold leads
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Fig. 4 Steady state for CRS
with α1 = 0.7, α2 = 0.3 and
ε = 0.4

directly into the equilibrium. Consequently, this set of starting points has to be very
close to the equilibrium, in order to stay on or at least close to the stable manifold.
Additionally, also dominant directions in the convergence to the steady state have
to be considered. Therefore, an appropriate ellipse around the equilibrium is gen-
erated from which these starting points are taken. To take the dominant directions
into account, the eigenvectors with negative eigenvalues are used for the calculation
according to the formula

S =E + e1

|e1| cos (η)+ e2

|e2| sin (η) with η ∈ [0,2π], (26)

where S is the calculated starting point,E denotes the equilibrium, and e1 and e2 are
the corresponding eigenvectors. Within this calculation the values of the angle η are
close to π

2 and 3π
2 . This comes along with the fact that in those cases cos(η) is close

to zero and therefore the dominant directions are weighted less here (cf. Knoll and
Zuba 2004). Based on these constructed initial values the canonical system is solved
backward. The projection of the resulting four-dimensional optimal trajectories onto
the (K,G)-plane leads to a phase portrait, from which those trajectories have to be
chosen, which correspond to the given initial conditions. In Fig. 5 the phase portrait
for ε = 0.4 is depicted. Here, the crucial and obviously very narrow intervals for the
angle η are [0.4999755π,0.4999756π] and [1.500024418π,1.500024419π].

As one can see in Fig. 5, some of the trajectories are divided into two parts. The
first part, which is common for all and depicted in gray, corresponds to the back-
ward solution of the system starting from the equilibrium. On the left hand side the
trajectories are continued untilK = 0. On the right hand side, however, continuation
aborts when the trajectories reach the boundary of the admissible region subject to
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Fig. 5 Phase portrait in (K,G)-space for α1 = 0.6, α2 = 0.2 and ε = 0.4

the control constraint in (6d) where RK = 0. This constraint is depicted in the fig-
ure as dashed black line. To enable further continuation of these trajectory paths,
RK is constantly set to zero and calculation continues with the according canonical
system where ṘK = 0. These second parts of the trajectories are depicted in black
and their continuation is possible until they finally reach the admissible boundary
of the mixed path constraint in (6f), where consumption, and therefore also utility
from consumption, is zero.
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Fig. 6 Two trajectories for
α1 = 0.6, α2 = 0.2 and
ε = 0.4 with equal initial
capital levels

4.1 Initial Points with an Equal Level of K and G

Figure 6 shows two trajectories from the phase portrait in the (K,G)-plane which
both have initial points with almost equal levels of K and G. The first one starts at
very low levels of brown and green capital which are smaller than the equilibrium
values. Along the path to the equilibrium the levels of both types of capital increase.
The second trajectory has its initial point at a high level of brown and green capital
above the equilibrium values. Accordingly, the levels of capital decrease along the
trajectory while approaching the equilibrium.

Figure 7 shows the optimal time paths in K , G, RK and RG along the trajectory
starting at the lower level of capital. As one can see, the levels of both types of
capital increase monotonously while converging toward their equilibrium values,
where conventional capital in the beginning is a little bit higher than green capital.
Nevertheless, green capital finally gets dominant. Considering the paths of the R&D
investments, the levels of RK and RG initially increase very quickly. Therefore less

Fig. 7 Optimal time paths of state and control starting from low capital levels for α1 = 0.6,
α2 = 0.2 and ε = 0.4
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Fig. 8 Optimal time paths of state and control starting from high capital levels for α1 = 0.6,
α2 = 0.2 and ε = 0.4

time is needed to get close to their equilibrium values. In order to cause growth in the
capital levels, initially high R&D investments are needed until the positive feedback
of the capital stock on itself is effective enough to thwart the negative pressure of
depreciation. Note that the level of RK even decreases after reaching a peak to slow
down this positive feedback until growth and depreciation are perfectly balanced
close to the equilibrium. Due to the fact that the production elasticity of RG is less
than the one of RK , the behavior is different here. Higher investments are necessary
to achieve the same effects and the RG level monotonously increases toward the
equilibrium value.

In Fig. 8 the same paths are considered for the trajectory starting at the high
capital level. Here the levels of both capitals are decreasing. Due to the almost equal
initial level of K and G and the comparatively lower equilibrium level of K , the
decline of K is stronger than in green capital. To switch off the positive feedback
of K on its own stock completely, and therefore to boost the negative impact of
depreciation, RK initially is even zero and only rises again to stop this decline, but
stays at a very low level, though. Due to lower production elasticity the level of
green R&D initially rises very quickly up to a peak to stop the negative pressure of
depreciation. Then it slightly decreases again to finally remain at a level obviously
higher than the one of RK .

4.2 Initial Points with One Type of Capital Being Dominant

As mentioned above the initial use of both capital types is assumed due to the use of
a Cobb Douglas production function. However, situations in which one type of cap-
ital is definitely the dominant input factor, whereas the other one almost equals zero,
are certainly of interest. Figure 9 shows two trajectories for such initial conditions.
One either starts at a green capital-dominated production or in an initial point where
K is used almost exclusively as production input. In both cases, the level of the
dominant capital lies above the equilibrium values, while the level of the dominated
capital is below its equilibrium level.
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Fig. 9 Two trajectories
starting at a
one-capital-type-dominated
production for α1 = 0.6,
α2 = 0.2 and ε = 0.4

Figure 10 shows the optimal time paths in the case of an initially green capital-
dominated production. In contrast to the previous case of an almost balanced initial
mix of production, the behavior of the capital levels in this scenario are respectively
opposed. Because green capital is dominant here, the level of G decreases while
brown capital, starting at a very low level, rises up to the equilibrium value. Consid-
ering the R&D investments, the same behavior as in Fig. 7 can be observed, where
RK rises up to a peak, then falls again and slows down the positive feedback, while
RG increases monotonously. Summarizing this scenario it is interesting to see that
RG is increasing while G is decreasing. In other words, green R&D investments are
made so to keep G at a sufficiently high level.

Regarding the case of an initially brown capital-dominated production, the ac-
cording optimal time paths are depicted in Fig. 11. Accordingly, in this case K
decreases and G rises up to the equilibrium values. Again, RK is initially zero and
rises up to slow down the decline, while RG rises up to a peak and then slightly
decreases.

Fig. 10 Optimal time paths of state and control starting from a definitely green capital-dominated
production for α1 = 0.6, α2 = 0.2 and ε = 0.4
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Fig. 11 Optimal time paths of state and control starting from a definitely brown capital-dominated
production for α1 = 0.6, α2 = 0.2 and ε = 0.4

Fig. 12 Bifurcation diagram
for steady state levels of K
and G with respect to ε for
α1 = 0.6, α2 = 0.2

4.3 Bifurcation Analysis

In the previous sections, equilibria for specific values of ε were considered. How-
ever, the main focus of this paper is the investigation of the influence of the required
environmental standards on the capital accumulation and hence on the production.
We therefore apply bifurcation analysis is used with ε being the parameter to be
varied. Although only one steady state has been detected so far, and hence the bi-
furcation diagram for the basic model is quite simple, it gives a first idea about the
interrelation of the environmental quality and the usage of both types of capital as
input in production.

Figure 12 depicts the change of the equilibrium values under the variation of the
environmental quality imposed by the government. For ε = 0 (laissez-faire scenario)
K is clearly dominant in production as already mentioned above. As one can see,
increasing ε results in an immediate decrease of K due to the rising abatement costs
per unit of brown capital. Also G decreases with growing environmental quality.
This might seem a little bit astonishing at first sight, but comes along with the fact
that, due to the Cobb Douglas production function, a complete abandonment of K
as production input is impossible, and therefore a sufficiently small level of K has
to be used which at the same time has an increasingly absorbing impact on the
productivity of G. However, this decrease is much smaller than the one of K . The
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Fig. 13 Bifurcation diagram
for steady state levels of RK
and RG with respect to ε for
α1 = 0.6, α2 = 0.2

Fig. 14 Bifurcation diagram
of the steady state production
output with respect to ε for
α1 = 0.6, α2 = 0.2

point of special interest is at ε = 0.362. At this point, abatement gets so expensive
that the use of green capital as dominant production input is more advantageous. In
Fig. 13 changes of the equilibrium values of RK and RG over ε are shown. They
behave quite similarly. Initially, RK is dominant until abatement gets too expensive
and higher investments in green R&D are optimal. This change happens already at
ε = 0.263, i.e. earlier than for the capital stocks.

Note, however, that in this basic model increasing environmental standards in
general have a diminishing impact on the production inputs, and therefore on pro-
duction output, and furthermore on economic growth. As one can see in Fig. 14, the
production is strictly monotonously decreasing.

In contrast, the utility function as depicted in Fig. 15 rises up to a peak before
it decreases due to the trade-off between consumption and environmental quality.
If ε is small enough, a small loss in consumption in return for a slightly better
environment is advantageous. The utility-maximizing environmental quality is at
ε = 0.125.

In order to get a more qualitative comparison of the changing use of K and G
in production with increasing ε, the percentage values of green and brown capital
in total production are shown in Fig. 16. As one can see, the ratio of G follows a



Environmental Regulations, Abatement and Economic Growth 109

Fig. 15 Bifurcation diagram
of equilibrium utility with
respect to ε for α1 = 0.6,
α2 = 0.2

convex-concave shape. At the beginning, the usage of G is quite low and does not
change much with increasing ε. In this area, the abatement costs are still too low
to change the advantage of conventional capital. The inflexion point is at ε = 0.362
where green capital starts to dominate conventional capital. From here on the ratio
of G grows quite quickly until it converges to almost 100%. Note however, that
100% can never be reached. Accordingly, the ratio of K follows a concave-convex
decrease.

In Fig. 17 the percentage values of the according R&D investments are depicted.
Their development is similar, the only difference is the position of the inflexion
point which is already at ε = 0.263.

5 Conclusion

The aim of this work is to investigate how environmental regulation influences eco-
nomic growth as well as R&D investments and whether or not they induce a shift to
a greener technology.

As far as economic growth is concerned, it becomes obvious that increasing strin-
gency of environmental regulation causes a decline in both types of capital and

Fig. 16 Bifurcation diagram of the equilibrium percentage values of K and G with respect to ε
for α1 = 0.6, α2 = 0.2
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Fig. 17 Bifurcation diagram of the equilibrium percentage values of RK and RG with respect to
ε for α1 = 0.6, α2 = 0.2

consequently also in production output. Therefore it rather represses than supports
economic growth.

However, the analysis shows, that increasing environmental regulation indeed
has a positive impact on the accumulation of green capital and on the increase of
green R&D investments. This can especially be seen when the shares of capital lev-
els and R&D investments under varying stringency of environmental standards are
considered. Although both capital levels decline, increasing abatement costs even
accelerate the decrease of brown capital levels so that in total production turns out
to be greener the higher environmental quality standards are. The same applies for
R&D investments.

To sum up, environmental regulation standards can cause a shift to greener pro-
duction but only at the cost of reduced economic growth. Therefore, the introduction
of additional environmental instruments, such as taxes or maybe subsidies, might be
interesting and could possibly be helpful to achieve better results.

We want to close this paper with pointing out two further model extensions we
would like to consider for future work. First, environmental quality so far is deter-
mined exogenously through the required standards set by the government. Hence,
an interesting aspect would be to include an emission function E(K,G) describ-
ing the pollution during the production process. Second, a main assumption in the
present model is that the abatement effort exactly equals the necessary level needed
to satisfy the required standards. This, however, shall be adapted for future model
approaches by considering the abatement share as third control so that an environ-
mentally aware agent can abate even more than necessary for the standards.
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Optimal Control of Growth and Climate
Change—Exploration of Scenarios

Helmut Maurer, Johann Jakob Preuß, and Willi Semmler

1 Introduction

Nordhaus (Nordhaus and Boyer 2000; Nordhaus 2008) has developed a dynamical
model linking economic growth with climate change. This model represents the core
of the DICE climate model which is extensively calibrated in his book (Nordhaus
2008). This canonical model has by now become a work horse of the research on
the economics of climate change. The model variants presented here focus only on
the core dynamic equations of the canonical model of growth and climate change.
Though we refer to the Nordhaus Dice model as a point of reference, we work with
a lower dimensional system. We have fewer equations but a more realistic modeling
of the temperature dynamics. This simpler model variant allows us to explore in
a transparent way policy options and permits to suggest some directions of future
research.

The model considered here builds on the dynamical model developed by Greiner
et al. (2010), who discuss multiple equilibria and thresholds in a canonical optimal
control problem with infinite horizon. In this paper, we study various extensions
of the basic optimal control problem and compare the solutions for finite horizon
and infinite horizon. We admit terminal constraints for the state variable, consider
the impacts of constraints (such as CO2 and temperature constraints) on abatement
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policies and consumption, and try to adjust the temperature by suitable penalties
on the temperature. Such constraints allow to explore the implications for mitiga-
tion policies arising from the Kyoto treaty (CO2 constraint) and the Copenhagen
agreement (temperature constraint). Overall, we understand the exploration of our
different scenarios as guidance to different policy options.

The paper is organized as follows. Section 2 introduces the dynamic model of
growth and climate change that will be called the canonical model. In Sect. 3, we
formulate the basic optimal control problem associated with the canonical model.
We consider several extensions of the basic control problem incorporating termi-
nal conditions, a penalty functional on the temperature as well as control and state
constraints. Section 4 discusses the evaluation of the necessary optimality condi-
tions (Pontryagin Maximum Principle) for the different optimal control problems
in Sect. 3. In particular, the adjoint equations allow us to compute the stationary
points (steady states) of the canonical system which determine the behavior of the
infinite-horizon optimal solution. Finally, in Sect. 5 we present a number of case
studies illustrating the various types of optimal control problems in Sect. 3. Optimal
control and state trajectories of infinite-horizon control problems are computed by
the routine opttrj (Kunkel and von dem Hagen 2000), whereas solutions of finite-
horizon control problems with control and state constraints are obtained by dis-
cretization and nonlinear programming methods (Betts 2010; Büskens and Maurer
2000; Wächter and Biegler 2006).

2 Dynamic Model of Growth and Climate Change

Our model starts with a basic growth model which includes a simplified dynamics of
the link between economic growth and the earth’s climate. For details of the model
the reader can be referred to the model description in Nordhaus (2008) and Greiner
et al. (2010). For basic facts on climate change, as much as it is caused by economic
activity, we refer the reader to the work by Keller et al. (2000, 2004). In the basic
model the economy is represented by a decision making household. Its consumption
is chosen optimally over time. Greiner et al. (2010) treat only the case of discounted
utility which is maximized over an infinite time horizon. In this paper also the case
of a finite horizon will be treated. In contrast to Nordhaus, and Greiner et al. the
case of how damages affect the household’s welfare will also be studied as well as
the cases of state constraints, for example temperature and CO2 constraints.

2.1 Capital

The dynamics of the per capita capital is described by the following differential
equation:

K̇ = Y −C −A− (δ + n)K, K(0)=K0, (1)
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where Y is the per capita production, K the per capita capital, A the per capita
abatement measure and δ the depreciation of capital. The input of labor, L, grows
at a rate n. The per capita production Y is defined by the production function

Y = BKαD(T ), (2)

where α ∈ (0,1) is the capital share and B a positive constant. The function D(T )
denotes the inverse of the damage, that results from an increase of the temperature
T above the pre-industrial temperature To, and has the form

D(T )= (a1(T − To)
2 + 1

)−ψ (3)

with a1 > 0 and ψ > 0. This is called the damage function and its effect can be
characterized as follows: The greater the deviation of the current temperature T
from the pre-industrial temperature To, the smaller the function value D(T ) and
accordingly the smaller the value of the per capita production Y .

2.2 Emission and CO2 Concentration

It is assumed that economic activity emits greenhouse gases, which depend on the
capital that is used for production and which are here given in CO2 equivalents.
Thus they can be understood as a function of the per capita capital K , relative to the
per capita abatement measure A. A larger capital goes along with higher emissions.
Formally, this results in the expression

E =
(
a
LK

LA

)γ
= (aK/A)γ (4)

for the emission, where L is the labor input and γ > 0 and a > 0 are constants. The
bigger a, the bigger the emission for given K and A and accordingly the worse the
corresponding technology for the environment.

Emission causes an increase of the greenhouse gas (CO2 concentration) in the
atmosphere. It develops according to the differential equation

Ṁ = β1E −μM, M(0)=M0. (5)

Here, μ is the inverse of the atmospheric lifetime of CO2 and β1 highlights the fact
that a certain part of the greenhouse gas emission is captured by the oceans and does
not reach the atmosphere.

2.3 Temperature

To model the climate system of the earth, an energy balance model is used; cf.
Roedel and Wagner (2011). Some parameters in the following equations have been
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improved by discussions with W. Roedel (2011). The change of the average surface
temperature T is given by the equation

ch
dT

dt
= SE −H − FN, T (0)= T0. (6)

All magnitudes on the right side indicate annual averages, so each time step has to
include exactly one year, hence Δt = 365 · 24 · 60 · 60 s = 31536000 s is assumed.
Because of that the differential equation changes to

Ṫ ≡ dT

dt
= Δt

ch
(SE −H − FN), T (0)= T0. (7)

The earth’s surface is greatly covered by oceans. Its heat capacity is given by the
numerical value ch = 210652078 J/(m2 K), that follows from the identity ch =
0.7ρwcwd , where ρw = 1027 kg/m3 is the density and cw = 4186 J/(kg K) the spe-
cific heat capacity of the sea water and d = 70 m describes the depth of the oceanic
top layer where a mixing and thus a heat transport takes place. The factor 0.7 repre-
sents the proportion of sea water in the total surface of the earth. The unit of Δt

ch
is

given by

s

J/(m2 K)
= s m2 K/J = m2 K/W,

from which it follows that Δt
ch

≈ 0.149707 m2 K/W.
SE is the supplied sun energy,H the non-radiative energy flux and FN = F↑ −F↓

the net flux of the terrestrial radiation. F↑ complies with the Stefan Boltzmann law,
which has the form

F↑ = εσT 4 (8)

with the relative emissivity ε = 0.95 and the Stefan Boltzmann constant σ =
5.67 · 10−8 W/(m2 K4). Furthermore, the flux ratio is F↑/F↓ = 116/97 and the
difference is SE − H = (1 − α1(T ))

Q
4 with the solar constant Q = 1367 W/m2

and the planetary albedo α1, which indicates how much energy is reflected back to
space. The factor 1

4 is the ratio between the cross-sectional area πr2
earth and the sur-

face area 4πr2
earth of the earth, because it receives the sun’s radiation flux only on

a hemisphere. The share of non-reflected sun energy is given by the differentiable
function

1 − α1(T )= k1
2

π
arctan

(
π(T − 293)

2

)
+ k2, (9)

in which k1 = 5.6 · 10−3 and k2 = 0.1795 should apply.
A high concentration of greenhouse gases affects the temperature through the

so-called radiative forcing, which describes the change of incoming and outgoing
energy in the atmosphere. For carbon dioxide (CO2) we have

F = 5.35 ln

(
M

Mo

)
[W/m2] (10)
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Table 1 Parameter values in the order of appearance in (12) and (13)

ρ = 0.035, n= 0.03, L0 = 1, B = 1, α = 0.18,

a1 = 0.025, To = 288, ψ = 0.025, δ = 0.075, β1 = 0.49,

a = 3.5 · 10−4, γ = 1, μ= 0.1, Δt = 31536000, ch = 210652078,

k1 = 5.6 · 10−3, k2 = 0.1795, Q= 1367, ε = 0.95, σ = 5.67 · 10−8,

Mo = 1.

with the pre-industrial CO2 concentration Mo. In summary, we obtain the following
differential equation for the average surface temperature T ,

Ṫ = Δt

ch

((
1 − α1(T )

)Q
4

− 19

116
εσT 4 + 5.35 ln

(
M

Mo

))
, T (0)= T0, (11)

where the unit on the right hand side is given by m2 K/W · W/m2 = K.

3 Optimal Control Problems

We present several versions of optimal control problems associated with the dy-
namics (1), (5) and (7) which is considered on a time interval [0, tf ] with termi-
nal time 0 < tf ≤ ∞. The state variable is the vector X = (K,M,T ) ∈ R

3, the
control variable is given by u = (C,A) ∈ R

2. The basic optimal control prob-
lem is defined as follows: determine a (piecewise continuous) control function
u= (C,A) : [0, tf ] → R

2 that maximizes the objective (cost functional),

maxJ (X,u)=
∫ tf

0
e−(ρ−n)tL0 lnCdt, (12)

subject to the differential equations (1), (5), (7),

K̇ = BKαD(T )−C −A− (δ + n)K,

Ṁ = β1(aK/A)
γ −μM, (13)

Ṫ = Δt

ch

((
1 − α1(T )

)Q
4

− 19

116
εσT 4

)
+ 5.35 ln

(
M

Mo

)
,

with initial conditions

K(0)=K0, M(0)=M0, T (0)= T0. (14)

Recall the damage function (3) and albedo function (9):

D(T )= (a1(T − To)
2 + 1

)−ψ
,

1 − α1(T )= k1
2

π
arctan

(
π(T − 293)

2

)
+ k2.

A complete list of parameters can be found in Table 1.
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The problem (12)–(14) is called a finite–horizon optimal control problem, if the
terminal time is finite, 0 < tf < ∞, otherwise for tf = ∞ it is called an infinite–
horizon control problem.

Now we present some variants and extensions of the basic control problem.
A simplified version of the control problem arises, when the abatement control is
kept constant,

A(t)≡Ac for 0 ≤ t ≤ tf . (15)

Then the consumption C is the only control variable. We shall also study terminal
constraints for the state variable given by

K(tf )≥Kf , M(tf )≤Mf , T (tf )≤ Tf , (16)

with appropriate values Kf , Mf , Tf . In particular, a positive value Kf > 0 will
prevent the capital from approaching zero. It is also of interest to impose control
constraints of the form

Cmin ≤ C(t)≤ Cmax, Amin ≤A(t)≤Amax 0 ≤ t ≤ tf , (17)

with suitable bounds Cmin <Cmax and Amin <Amax. Another variant of the control
problem is obtained when the objective functional (12) is modified by subtracting a
penalty term which measures the quadratic deviation of the temperature T (t) from
a desirable temperature Tc,

maxJT (X,u)= J (X,u)− c

∫ tf

0

(
T (t)− Tc

)2
dt (c > 0). (18)

Here, the negative sign of the penalty appears in the modified functional, since the
penalty term will be minimized. Note that the penalty term does not involve a dis-
count factor. The penalty term in the extended functional can be viewed as a so-
called soft state constraint. From a practical point of view, it is more important to
consider explicit state constraints of the form

S
(
X(t)

)= S
(
K(t),M(t), T (t)

)≥ 0 ∀0 ≤ ts ≤ t ≤ tf , (19)

where the function S : R3 → R is assumed to be sufficiently often differentiable.
The starting time ts for the state constraint can be positive, ts > 0, to account for
the fact that the state constraint may not be feasible at the initial time but should be
satisfied on a terminal interval [ts , tf ].

We briefly review some basic notions for state constraints and refer the reader to
Hartl et al. (1995), Maurer (1979) for a thorough theoretical discussion. A boundary
arc is a subinterval [t1, t2] ⊂ [ts , tf ] with S(X(t))= 0 for t1 ≤ t ≤ t2. If the interval
[t1, t2] is maximal with this property, then t1 is called the entry-time and t2 is called
the exit-time of the boundary arc; t1 and t2 are also called junction times. A contact
point tc ∈ (ts , tf ) is defined by the condition that there exists ε > 0 such that

S
(
X(tc)

)= 0, S
(
X(t)

)
> 0 for tc − ε ≤ t < tc and tc < t ≤ tc + ε.

The occurrence of boundary arcs and contact points is closely related to the notion
of the order q ∈N+ of a state constraint. The index q ∈ N+ is defined as the lowest



Optimal Control of Growth and Climate Change—Exploration of Scenarios 119

order time derivative of S(X(T )) that contains the control variable explicitly (Hartl
et al. 1995; Maurer 1979). Specifically, we consider the following state constraints
for K , M and T , which should hold jointly or separately:

S
(
X(t)

)=K(t)−Kmin ≥ 0 ∀ts ≤ t ≤ tf , (20)

S
(
X(t)

)=Mmax −M(t)≥ 0 ∀ts ≤ t ≤ tf , (21)

S
(
X(t)

)= Tmax − T (t)≥ 0 ∀ts ≤ t ≤ tf . (22)

It is straightforward to show that the state constraint (20) for K has the order q = 1,
the constraint (21) for M has the order q = 2, and the constraint (22) for T has
the order q = 3. State constraints of order q = 1 usually exhibit only boundary
arcs and no contact points, whereas state constraints of order q = 2 can have both
boundary arcs and contact points. For q = 3, there are no boundary arcs with an
analytic junction, i.e., every junction with a boundary arc exhibits some kind of
chattering. Examples for boundary arcs and contact points and the phenomenon of a
non-analytic junction with a boundary arc T (t)= Tmax will be discussed in Sect. 5.

4 Maximum Principle: Necessary Optimality Conditions

The celebrated Pontryagin Maximum Principle (Pontryagin et al. 1964; Hestenes
1966; Sethi and Thompson 2000) furnishes the necessary optimality conditions for
the finite-horizon control problem (12)–(16). Maximum Principles for state con-
strained optimal control problems were discussed in Maurer (1979) and Hartl et al.
(1995). The Maximum Principle for infinite-horizon control problems is presented
in Aseev and Kryazhimskiy (2004, 2007), Michel (1982) and Seierstadt and Syd-
saeter (1987). For a modern theory of infinite–horizon control problems we refer to
Lykina (2010); Lykina et al. (2008).

4.1 Basic Control Problem

4.1.1 Steady States for Constant Abatement A(t) = Ac

First, we consider the case of a constant abatement control (15) with A(t)≡ Ac =
1.21 · 10−3 for 0 ≤ t ≤ tf . Here, the consumption C is the only control variable.
The current–value Hamiltonian (Pontryagin function) (cf. Aseev and Kryazhimskiy
2007; Seierstadt and Sydsaeter 1987; Sethi and Thompson 2000) is given by

H(X,λ,C)= lnC + λK
(
BKαD(T )−C −Ac − (δ + n)K

)

+ λM
(
β1a

γKγA
−γ
c −μM

)

+ λT
Δt

ch

((
1 − α1(T )

)Q
4

− 19

116
εσT 4 + 5.35 ln

(
M

Mo

))
, (23)
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where λ= (λK,λM,λT ) is the vector of adjoint variables (shadow prices). The ad-
joint differential equations λ̇= (ρ − n)λ−HX read explicitly:

λ̇K = (ρ + δ)λK − λKαK
α−1BD(T )− λMβ1γ a

γKγ−1A−γ ,

λ̇M = (ρ − n)λM + λMμ− λT
Δt

ch
5.35

1

M
, (24)

λ̇T = (ρ − n)λT − λKBK
αD′(T )+ λT

Δt

ch

(
Q

4
α′

1(T )+
19

116
εσ4T 3

)
.

The derivatives of the albedo function α1(T ) and the damage function D(T ) are

α′
1(T )= −5.6 · 10−3(1 + 0.25π2(T − 293)2

)−1

(25)
D′(T )= −2a1ψ(T − To)

(
a1(T − To)

2 + 1
)−ψ−1

.

The control C maximizes the Hamiltonian (23). Since no control constraints are
imposed, we get the condition HC = 1/C − λK = 0 implying

C = 1

λK
or λK = 1

C
. (26)

Note that the strict Legendre-Clebsch condition is satisfied in view of

HCC = −1/C2 < 0.

The two expressions in (26) lead to two different systems of differential equations
that contain either the control C or the adjoint variable λK . In this paper, we use the
expression C = 1/λK and work with the adjoint equations (24), whereas Greiner
et al. (2010) choose λK = 1/C to eliminate λK .

Thus with C = 1/λK , the state equations (13) and the adjoint equations (24)
constitute a system of six differential equations. To calculate the steady states (sta-
tionary points) of this system, we consider the nonlinear equation of order six,

F(X,λ)∗ = (Ẋ∗, λ̇
)= 0 ∈R

6, (27)

where ∗ denotes the transpose. To solve this equation we proceed as follows

1. λ̇M = 0 is solved for M =M(λM,λT , ·),
2. Ṁ = 0 is solved for λT = λT (K,T ,λM, ·),
3. λ̇K = 0 is solved for λK = λK(K,T ,λM, ·) and finally
4. K̇ = 0 is solved for λM = λM(K,T , ·).
In this way, we eliminate the variablesM and λ in the equation (27) and are left with
two equations for Ṫ and λ̇K that depend only on the variables T and K . Figure 1(a)
shows that the isoclines Ṫ = 0 and λ̇K = 0 have three intersection points, each of
them corresponding to a steady state. Numerical values of the three steady states are
found in Table 2.

Stability properties of the three steady states are determined by the eigenvalues
of the Jacobian of the function F(X,λ) in (27) evaluated at the steady states. The
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Fig. 1 Isoclines for Ṫ = 0 (solid) and λ̇T = 0 (dashed). (left) constant abatement A(t) ≡
1.21 · 10−3, (right) social optimum for control u= (C,A)

Table 2 Steady states for
abatement A(t)≡ 1.21 · 10−3 Steady state I Steady state II Steady state III

K 1.4471998 1.3472580 1.4660558

M 2.0511964 1.9095434 2.0779221

T 291.60713 294.25816 294.96943

λK 1.1011613 1.1178274 1.1172386

λM −0.17093840 −0.22542515 −0.14931998

λT −0.045966518 −0.056432593 −0.040676338

C 0.90813214 0.89459250 0.89506393

Jacobian has six eigenvalues that are listed in Table 3. Since the real parts of the
eigenvalues are nonzero, every steady state is hyperbolic. The first and third steady
state have three eigenvalues with a positive and three eigenvalues with a negative
real part, which implies that they are saddle points. However, the second steady
state has only two eigenvalues with a negative real part, hence, it is unstable but has
a two-dimensional stable manifold.

Table 3 Eigenvalues of the Jacobian of F , A= 1.21 · 10−3

Steady state I Steady state II Steady state III

−0.270660 0.283712 −0.260618

0.275660 −0.278712 0.265618

−0.094078±0.059941i −0.136197 −0.114440

0.141197 −0.067721

0.099078±0.059941i 0.002500±0.072057i 0.119440

0.072721
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4.2 Social Optimum for Control u = (C,A)

The current-value Hamiltonian for the optimal control problem with two control
variables (C,A) agrees with that in (23) except that now the abatement A is a vari-
able,

H(X,λ,C,A)

= lnC + λK
(
BKαD(T )−C −A− (δ + n)K

)

+ λM
(
β1a

γKγA−γ −μM
)

+ λT
Δt

ch

((
1 − α1(T )

)Q
4

+ 19

116
εσT 4 + 5.35 ln

(
M

Mo

))
. (28)

The adjoint equations λ̇ = (ρ − n)λ−HX are identical with (23). The controls C
and A that maximize the Hamiltonian are determined by the conditions

HC = 1/C − λK = 0, HA = −γ λMβ1a
γKγA−γ−1 − λK = 0,

which implies

C = 1

λK
, A=

(
−γ λM

λK
β1a

γKγ

)1/(1+γ )
. (29)

The second derivatives of H are given by HCA = 0 and

HCC = − 1

C2
< 0,

(30)
HAA = γ (γ + 1)λMβ1a

γKγA−γ−2 < 0 for λM < 0.

Note that the strict Legendre–Clebsch condition Huu < 0 is only satisfied if λM < 0
holds. This sign condition will be verified in all examples in the next section. It
follows from the control representation (29) that the optimal control u= (C,A) is a
continuous and even an analytic function.

The steady state calculation proceeds as above. Here, one substitutes the control
terms (29) into the state equation (13) and adjoint equation (24), and thus obtains as
in (27) a six-dimensional equation

F(X,λ)∗ = (Ẋ∗, λ̇
)= 0 ∈ R

6.

In this case, one finds only a single steady state; see Figure 1(b) and Table 4. The
six eigenvalues of the Jacobian of F(X,λ) at the steady state are computed as

−0.213640, 0.218640,

−0.162069 ± 0.129951i, 0.167069 ± 0.129951i.

There are three eigenvalues with a positive and three eigenvalues with a negative
real part. Therefore, the steady state is a saddle point.
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Table 4 Steady state for
control (C,A): Social
optimum

K 1.7964682 λK 1.0868071

M 1.2859989 λM −0.020246732

T 288.28653 λT −0.0034134235

C 0.92012653 A 0.0023957545

4.3 Transversality Conditions for Adjoint Variables

In the basic control problem, no terminal state conditions were prescribed. In the
finite-horizon case, the transversality for the adjoint variables is

λ(tf )= (λK(tf ), λM(tf ), λT (tf )
)= (0,0,0).

Note that the condition λK(tf ) = 0 is incompatible with the control law C(t) =
1/λK(t). As consequence, in order to get a well-defined solution one has to impose
either a terminal constraint K(tf ) ≥ Kf > 0 or a control constraint C(t) ≤ Cmax;
cf. Sect. 5.5.

This is not relevant when studying infinite-horizon optimal control problems.
Here, the adjoint variable λ(t) converges to one of the steady states. The transversal-
ity condition at infinity then takes the form (Aseev and Kryazhimskiy 2004; Aseev
and Kryazhimskiy 2007; Michel 1982; Sethi and Thompson 2000),

lim
t→∞ e−(ρ−n)tλ(t)= 0. (31)

When the terminal constraints (16)

K(tf )≥Kf , M(tf )≤Mf , T (tf )≤ Tf ,

are imposed in the finite-horizon control problem, the transversality condition for
adjoint variables asserts that there exist multipliers νK, νM, νT ∈ R with

λK(tf )= νK ≥ 0, νK
(
K(tf )−Kf

)= 0,

λM(tf )= νM ≤ 0, νM
(
M(tf )−Mf

)= 0, (32)

λT (tf )= νT ≤ 0, νT
(
T (tf )− Tf

)= 0.

Recall that in the infinite-horizon case we can not prescribe terminal conditions,
since the trajectory converges to one of the steady states.

4.4 Control Constraints

In the case of the control constraints (17),

Cmin ≤ C(t)≤ Cmax, Amin ≤A(t)≤Amax ∀t ∈ [0, tf ],
the control expressions (17) have to be replaced by the projections onto the control
sets,

C = proj[Cmin,Cmax](1/λK), A= proj[Amin,Amax]
(

−γ λM
λK

β1a
γ

)
. (33)
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4.5 State Constraints

In (19), we considered the general state constraint

S
(
X(t)

)= S
(
K(t),M(T ),T (t)

)≥ 0 ∀0 ≤ t ′s t ≤ tf .

Practically relevant state constraints were considered in (20)–(22),

S
(
X(t)

)=K(t)−Kmin ≥ 0 ∀ts ≤ t ≤ tf ,

S
(
X(t)

)=Mmax −M(t)≥ 0 ∀ts ≤ t ≤ tf , (34)

S
(
X(t)

)= Tmax − T (t)≥ 0 ∀ts ≤ t ≤ tf .

To evaluate necessary optimality conditions, we use the direct adjoining approach
described in Maurer (1979), Hartl et al. (1995), where the state constraint is directly
adjoined to the Hamiltonian by a multiplier μ which defines the augmented Hamil-
tonian

H(X,λ,μ,C,A)=H(X,λ,C,A)+μS(X)

Under some additional regularity conditions, the Maximum Principle (Maurer 1979;
Hartl et al. 1995) asserts that there exists a multiplier function μ : [0, tf ] → R+ such
that the adjoint variables λ satisfies the adjoint equation

λ̇= (ρ − n)λ−HX = (ρ − n)λ−HX −μSX (35)

and the complementarity condition μ(t)S(X(t)) = 0 ∀t ∈ [0, tf ] holds. Moreover,
at every contact or junction point t1, the adjoint variable may have a jump according
to

λ
(
t+1
)= λ

(
t−1
)− ν1SX

(
X(t1)

)
, ν1 ≥ 0. (36)

For the state constraints (34), we get the jump conditions

λK
(
t+1
)= λK

(
t−1
)− νK, νK ≥ 0,

λM
(
t+1
)= λM

(
t−1
)− νM, νM ≥ 0, (37)

λT
(
t+1
)= λT

(
t−1
)− νT , νT ≥ 0.

5 Numerical Results for Various Scenarios

5.1 Numerical Methods

We have used direct optimization methods for solving the finite-horizon basic op-
timal control problem (12)–(14) and its extension incorporating the constraints or
a modified functional (16)–(22). The direct optimization approach is based on a
suitable discretization of the control problem by which the control problem is tran-
scribed into a (large-scale) nonlinear programming problem (NLP). Such NLP can
efficiently be solved either by Sequential Quadratic Programming (SQP) methods
(cf. Betts 2010 and Büskens and Maurer 2000) or by an Interior-Point method like
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Fig. 2 Infinite horizon,
abatement Ac = 1.21 · 10−3,
T (0)= 290. Consumption C

IPOPT (cf. Wächter and Biegler 2006). It is very convenient to formulate the dis-
cretized control problem by means of the modeling language AMPL developed by
Fourer et al. (1993). It can be shown that the Lagrange multipliers of the NLP rep-
resent the adjoint variables λ̃(t) for the discounted objective (12). Then the adjoint
variables in the current-value formulation are obtained as λ(t)= exp((ρ−n)t)λ̃(t).

To solve the infinite-horizon optimal control problem we implemented the solver
OPTTRJ developed by Kunkel and von dem Hagen (2000). In this approach, a bound-
ary value problem for the state and adjoint variable (X,λ) ∈R

6 is solved, where the
dynamic equations are given by (13) and (23) and the control variables are substi-
tuted by the expressions (26) or (29). By a suitable time transformation, the infi-
nite time interval [0,∞) is transformed into the finite time interval [0,1]. Terminal
conditions for state and adjoint variables are determined by the eigenvalues of the
Jacobian of the mapping F(X,λ) in (27) evaluated at the steady states.

We shall start the numerical analysis with the infinite-horizon control problem,
since their optimal trajectories serve as a point of orientation for the finite-horizon
case. We shall see that the finite-horizon case offers a greater flexibility in handling
terminal constraints and control or state constraints.

5.2 Infinite Horizon, Abatement Ac = 1.21 ·10−3 and T (0) = 290

For the initial condition

T (0)= 290, K(0)= 1.4, M(0)= 2.0,

the infinite horizon solution converges to the steady state I in Table 2. The con-
trol and state and adjoint variables are shown in Figs. 2 and 3 on the time interval
[0,500]. The code OPTTRJ Kunkel and von dem Hagen (2000) yields the following
numerical results

X(∞)= (1.4471997,2.0511964,291.60713),

λ(0)= (1.1293319,−0.13696052,−0.030260502),

λ(∞)= (1.1011613,−0.17093840,−0.045966518).
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Fig. 3 Infinite horizon, abatement Ac = 1.21 · 10−3, T (0)= 290. Top row: capital K and adjoint
variable λK . Middle row: CO2 concentration M and adjoint variable λM . Bottom row: temperature
T and adjoint variable λT

5.3 Infinite Horizon, Abatement Ac = 1.21 ·10−3 and T (0) = 293

We chose the initial condition

T (0)= 293, K(0)= 1.4, M(0)= 2.0

with a rather high initial temperature. Even in this case, the infinite horizon solution
converges to the steady state I in Table 2. The control and state variables are shown
in Fig. 4 on the time interval [0,500]. The code OPTTRJ (Kunkel and von dem Hagen
2000) gives the numerical results

X(∞)= (1.4471997,2.0511964,291.60713),

λ(0)= (0.98130594,−0.67165995,−0.041997270),

λ(∞)= (1.1011613,−0.17093840,−0.045966518).

It is noteworthy that even for the higher initial temperature T (0) = 294 the op-
timal trajectories converge to the steady state I and are similar to those in Fig. 4.
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Fig. 4 Infinite horizon, abatement Ac = 1.21 · 10−3, T (0) = 293. Top row: consumption C and
capital K . Bottom row: temperature T and CO2 concentration M

Thus, despite high initial temperatures there exist infinite-horizon solutions that are
not doomed to converge to the steady state III in Table 2 with the high final temper-
ature T = 294.969.

5.4 Infinite Horizon: Social Optimum for Control u = (C,A)

Again, we consider the initial condition

T (0)= 292, K(0)= 1.4, M(0)= 2.0.

Using both controls C and A the infinite horizon solution converges to the steady
state in Table 3 and thus terminates slightly above the pre-industrial temperature
To = 288.

The controls C and A are shown in Fig. 5, while the state and adjoint variables
are depicted in Fig. 6. We obtain the numerical results

X(∞)= (1.7964682,1.2859989,288.28652),

λ(0)= (1.1144233,−0.051097441,−0.017504689),

λ(∞)= (1.0868071,−0.020246782,−0.0034134235).
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Fig. 5 Infinite horizon, social optimum, T (0)= 292. Consumption C and abatement A

Fig. 6 Infinite horizon, social optimum, T (0)= 292. Top row: capital K and adjoint variable λK .
Middle row: CO2 concentrationM and adjoint variable λM . Bottom row: temperature T and adjoint
variable λT
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Fig. 7 Finite horizon tf = 200, abatement Ac = 1.21 · 10−3, T (0)= 290. Top row: consumption
C and capital K . Bottom row: temperature T and CO2 concentration M

5.5 Finite Horizon: Basic Control Problem with Abatement
Ac = 1.21 ·10−3

The initial condition are

T (0)= 290, K(0)= 1.4, M(0)= 2.0.

Since no terminal conditions are prescribed, a control constraint has to be imposed.
Otherwise the control law C = 1/λK can not be applied due to λK(tf ) = 0. We
choose the control constraint

C(t)≤ 1 ∀0 ≤ t ≤ tf .

The code IPOPT provides the control C and state variables displayed in Fig. 7 and
the numerical results

J (X,u)= −11.7972,

X(tf )= (0.000445590,1.49287,291.354),

λ(0)= (1.12933,−0.136961,−0.030260),

λ(tf )= (0.174102,0.0,0.0).
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Fig. 8 Finite horizon
tf = 200: abatement
Ac = 1.21 · 10−3,
T (0)= 292, terminal
constraint X(tf )=Xs1.
Consumption C

5.6 Finite Horizon, Abatement Ac = 1.21 ·10−3 and Terminal
Condition X(tf ) = Xs,1

To avoid the strong decrease of capital and increase of consumption in Fig. 7 the ba-
sic control problem, we prescribe the steady state I in Table 2 as a terminal condition
and choose the boundary conditions

T (0)= 292, K(0)= 1.4, M(0)= 2,

X(tf )=Xs1 = (1.4471998,2.0511964,291.60713)

The solution is displayed in Figs. 8 and 9. The code IPOPT gives the results

J (X,u)= −12.2455

λ(0)= (1.11619,−0.180347,−0.0522408)

λ(tf )= (1.10116,−0.170933,−0.0459687)

5.7 Finite Horizon: Abatement Ac = 1.21 ·10−1, T (0) = 292,
T (tf ) = 290

It is desirable to reach a smaller terminal temperature than the steady state temper-
ature T (tf ) = 291.607 in the preceding case and attain a smaller CO2 concentra-
tion M . Here, we choose the boundary conditions

T (0)= 292, K(0)= 1.4, M(0)= 2,

T (tf )= 290, K(tf )= 1.4, M(tf )= 1.8.

The optimal trajectories computed by IPOPT are shown in Fig. 10. Numerical
results of the functional value and the adjoint variables are

J (X,u)= −12.3439,

X(tf )= (1.4,1.683188,290.0),

λ(0)= (1.11619,−0.180347,−0.0524082),

λ(tf )= (1.13861,0.0,−0.316547).



Optimal Control of Growth and Climate Change—Exploration of Scenarios 131

Fig. 9 Finite horizon tf = 200, abatement Ac = 1.21 · 10−3, T (0) = 292, terminal constraint
X(tf )=Xs1. Top row: capital K and adjoint variable λK . Middle row: CO2 concentration M and
adjoint variable λM . Bottom row: temperature T and adjoint variable λT

The solution shows a strong decrease in capital and consumption. This effect can
be avoided by imposing suitable control and state constraints; cf. the following sce-
nario.

5.8 Finite Horizon: Abatement Ac = 1.21 ·10−1 and Control and
State Constraints

This scenario treats the boundary conditions

T (0)= 292, K(0)= 1.4, M(0)= 2; T (tf )= 290, K(tf )= 1.3.

Motivated by Fig. 10, we impose control and state constraints,

0.895 ≤ C(t)≤ 0.95, K(t)≥ 1.1, M(t)≤ 1.8, ts = 10 ≤ t ≤ tf ,

for which we obtain the numerical results
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Fig. 10 Finite horizon tf = 200, abatement Ac = 1.21 · 10−3, T (0) = 292, terminal tempera-
ture T (tf ) = 290. Top row: consumption C and capital K . Bottom row: temperature T and CO2
concentration M

Fig. 11 Finite horizon
tf = 200: abatement
Ac = 1.21 · 10−3,
T (0)= 292, T (tf )= 290,
constraints M(t)≤ 1.8,
K(t)≥ 1.1 and
0.895 ≤ C(t)≤ 0.95 for
t ≥ 10. Consumption C

J (X,u)= −12.6479,

X(tf )= (1.3,1.720185,290.0),

λ(0)= (0.0123934,−1.20090,−0.0452723),

λ(tf )= (3.17599,0.0,−1.04181).

The consumption C displayed in Fig. 11 has three boundary arcs, where the con-
straints 0.895 ≤ C(t) ≤ 0.95 become active. The constraint K(t) ≥ 1.1 is binding
toward the end of the planning period. The associated adjoint variable λK is contin-
uous though jumps are permitted according to the jump condition (37). This is due
to the fact that this state constraint is of order q = 1, cf. Hartl et al. (1995). The state
constraint M(t) ≤ 1.8, t ≥ 10, of order q = 2 becomes active at t = ts = 10 and
has a boundary arc in an intermediate interval [t1, t2]. Note that the adjoint variable
λK(t) has jumps at ts and t1, t2. The optimal trajectories computed by IPOPT are
shown in Fig. 12.
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Fig. 12 Finite horizon tf = 200, abatement Ac = 1.21 · 10−3, T (0) = 292, T (tf ) = 290, con-
straints M(t) ≤ 1.8, K(t) ≥ 1.1 and 0.895 ≤ C(t) ≤ 0.95 for t ≥ 10. Top row: capital K and
adjoint variable λK . Middle row: CO2 concentration M and adjoint variable λM . Bottom row:
temperature T and adjoint variable λT

5.9 Finite Horizon: Abatement Ac = 1.21 ·10−1 and State
Constraint for T

One may also efficiently decrease the initial temperature T (0) = 292 by imposing
the state constraint

T (t)≤ 289 for ts = 10 ≤ t ≤ tf .

With K(0) = 1.4, M(0) = 2.0 and the terminal constraint K(tf ) = 1.3 we get the
numerical results

J (X,u)= −14.36051,

X(tf )= (1.3,1.51783,289.0),

λ(0)= (0.847434,−0.755547,−0.0991925),

λ(tf )= (1.13135,0.0,−0.358985).
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Fig. 13 Finite horizon
tf = 200, abatement
Ac = 1.21 · 10−3 and state
constraint T (t)≤ 289 for
t ≥ ts = 10. Consumption C

The solution is displayed in Fig. 13. Figure 14 shows that the state constraint for T
becomes active at t = ts = 10 and on a boundary arc [t1, t2]. The adjoint variable
λK(t) has jumps at t = 10, t1, t2 in agreement with the jump condition (37). Since
the state constraint has order q = 3, the junctions to the boundary arc are non-
analytic which, however, can hardly be detected from the numerical solution.

Fig. 14 Finite horizon tf = 200, abatement Ac = 1.21 · 10−3 and state constraint T (t) ≤ 289
∀t ≥ 10. Top row: capital K and adjoint variable λK . Middle row: CO2 concentration M adjoint
variable λM . Bottom row: temperature T and adjoint variable λT
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5.10 Finite Horizon: Abatement Ac = 1.21 ·10−1 and Penalty
Functional (18)

We make an attempt for adjusting the temperature during the control process by
maximizing the penalty functional (18):

maxJT (X,u)=
∫ tf

0
e−(ρ−n)t lnCdt − cT

∫ tf

0

(
T (t)− Tc

)2dt (cT > 0).

We have to impose a lower bound for the capital; otherwise the capital tends to
zero. For convenience, we also consider an upper bound for the consumption and
thus impose the constraints

C(t)≤ 1, K(t)≥ 1 for all t ∈ [0, tf ].
We choose the initial temperature T (0) = 292 and try to get near the desired

temperature Tc = 289 by choosing suitable penalty parameters cT . In Fig. 15, the
solutions for the penalty parameters cT = 0.01 (left column) and cT = 0.001 (right
column) are compared. The left column in Fig. 15 shows that the aim of reaching
the desired temperature Tc = 289 is quite well attained but goes at the expense of
a decreasing consumption and capital level. A larger penalty does not significantly
improve on this result, since the state constraint K(t) ≥ 1 is an obstacle to further
improvement.

The values of the cost functionals are

cT = 0.01: J (X,u)= −13.5105, JT (X,u)= −14.7162,

cT = 0.001: J (X,u)= −12.9543, JT (X,u)= −12.3949.

5.11 Finite Horizon: Social Optimum with Control u = (C,A)

Finally, we study the case of a social optimum using both controls u= (C,A). We
prescribe the steady state in Table 4 as terminal state. Hence, we choose the initial
and terminal conditions

T (0)= 292, K(0)= 1.4, M(0)= 2.0;
X(tf )= (1.796468,1.285998,288.2865).

Moreover, the following upper bound is imposed on the abatement control:

A(t)≤ 0.003, ∀0 ≤ t ≤ tf .

We obtain the following numerical results:

J (X,u)= −11.0766,

λ(0)= (1.20362,−0.0856009,−0.0330846),

λ(tf )= (−1.08681,0.0202467,−0.00341343).



136 H. Maurer et al.

Fig. 15 Finite horizon tf = 200, abatement Ac = 1.21 · 10−3, T (0)= 292 and penalty (18). Left
column: penalty cT = 0.01. Right column: penalty cT = 0.001. Consumption C, capital K , CO2
concentration M and temperature T

Figure 16 displays the control and state variables for the initial temperature T (0)=
292; it clearly reflects the fact that the maximum abatement is needed for at least
13 years to substantially decrease the temperature T and CO2 concentration M .
However, it is remarkable that the decrease in temperature is more pronounced in
the finite-horizon solution than in the infinite-horizon solution displayed in Fig. 16,
bottom row (b).
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Fig. 16 Finite horizon tf = 200, social optimum with control u= (C,A). Top row: consumption
C and abatement A. Middle row: capital K and CO2 concentration M . Bottom row: (left) temper-
ature T , (right) temperature T in infinite-horizon solution

6 Conclusion

In this paper, we study the canonical model of growth and climate change as put for-
ward by Nordhaus’ work (Nordhaus and Boyer 2000; Nordhaus 2008) and explore
extensions of the basic model with respect to different scenarios. Policy options to
mitigate climate change are often constrained by political events, lack of coalition
formation, and the countries’ political and economic means. In our paper, we ex-
plore a large number of scenarios of how mitigation policies could be pursued. We
study the implication of infinite and finite horizon models, investigate the BAU sce-
nario (business as usual scenario with low level abatement), and contrast it with an
optimal abatement policy for infinite and finite horizon.

In finite-horizon scenarios, we explore the implications of terminal constraints
of the state variable and consider the impacts of state constraints (such as CO2 and
temperature constraints) on abatement policies and consumption. Imposing such
constraints allows us to find feasible control strategies for keeping the temperature
and CO2 concentration at low levels while preserving acceptable levels of consump-
tion and capital. We also study another approach of keeping the temperature at a



138 H. Maurer et al.

desirable level by putting suitable quadratic penalties on temperature deviations.
The numerical analysis of these scenarios takes advantage of modern numerical
techniques for solving constrained optimal control problems. In particular, the con-
strained scenarios allow us to explore the implications for mitigation policies arising
from the Kyoto treaty (CO2 constraint) and the Copenhagen agreement (tempera-
ture constraint). It is in this sense that we want to understand the exploration of our
suggested different scenarios as guidance for different policy options.
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Part III
Dynamics of Environmental Policy

with an Oligopoly



Market Power, Resource Extraction and
Pollution: Some Paradoxes and a Unified View

Luca Lambertini and George Leitmann

1 Introduction

The conflict between individual incentives and the preservation of the environment
and natural resources, and the associated market failures, are well known since Gor-
don (1954) and Hardin’s (1968) tragedy of the commons. In the subsequent decades,
the economic literature has produced countless contributions concerning either the
exploitation of natural resources or the environmental externalities generated by in-
dustrial activities, but rarely—if ever—both at the same time, although the interplay
between growth and the environment and the sustainability of our economic system
are both generally viewed as a circular model with feedback effects.1

This partial approach to a single side of the problem at a time is quite common
in both static and dynamic applications of oligopoly theory to environmental or
resource economics. Some recurrent themes emerging from this strand of literature
can be quickly recollected so as to fix ideas. A cornerstone of the discussion is the
market failure associated with external effects:

• Firms do not internalise environmental externalities, and therefore will not spon-
taneously invest in green technologies. This prompts the design of Pigouvian tax-
ation to supply the proper R&D incentives to firms.2

1This view is so largely shared in the profession, that it appears regularly in the introductory chap-
ters of textbook at any level (see, e.g., Pearce and Turner 1989; Tisdell 2009; and Anderson 2010).
2See Downing and White (1986), Milliman and Prince (1989), Karp and Livernois (1994), Chiou
and Hu (2001) and Poyago-Theotoky (2007), inter alia.
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• For analogous reasons, firms may overexploit natural resources, renewable or
not.3

Another critical point concerns the pros and cons of any variation in industry
output. Any industrial economist would agree that market power is detrimental to
welfare because of high prices and low output levels. However, expanding output
puts additional pressure upon the environment and the stock of natural resources.
This reveals the presence of a tradeoff between the static efficiency usually associ-
ated with marginal cost pricing and the dynamic efficiency one should refer to in
connection with the long-run sustainability of the current economic system.

Here we set out to revisit these issues through a differential game approach
which, unlike the majority—if not all—of the existing contributions in this field,4

explicitly incorporates the exploitation of natural resources and the environmental
consequences of industrial production in a single setting, to investigate their inter-
play in such a way that the tragedy of commons can indeed be reinterpreted as
simultaneously involving the depletion of natural resources and an undesirable im-
pact on the environment, these two facts being (i) two sides of the same coin and
(ii) both driven by the selfishness implicit in firms’ pure profit incentives. To put it
differently, we propose a way of modelling environmental externalities as a direct
consequence of the tragedy of commons associated with the exploitation of natural
resources.

Although being not properly a general equilibrium one, our setup draws explic-
itly the endogenous link between the dynamics of resource exploitation and envi-
ronmental externalities, to show that (i) pure profit incentives can indeed give rise to
investments in green technologies which are ruled out in the conventional approach,
and (ii) competition may (but not necessarily does) exert positive long-run welfare
effects, although with mixed feelings, as a cleaner environment is accompanied by
a lower residual stock of natural resources. Our procedure will be the following. We
will set out with the illustration of simple setups alternatively accounting for the
presence of either natural resources or pollution, in open-loop games in which firms
control output levels. Then we will enrich the picture introducing a simple produc-
tion function accounting for the fact that the natural resource enters the productive
activities of firms as an input, and pollution may be subject to Pigouvian taxation
which can be used as an incentive for green R&D. Then we will lay out a com-
prehensive model capturing the interplay between the output and R&D decisions of
firms on one side and the preservation of natural resources and the environment on
the other. Whenever appropriate, we will also dwell on the optimal industry structure
(i.e., the number of firms) in the commons, an issue that has received a considerable
amount of attention in the early debate on common property in oligopoly (on this,

3Classical contributions in this vein are those of Clark and Munro (1975) and Levhari and Mirman
(1980). For a model of international trade with natural resource extraction, see Copeland and Taylor
(2009), inter alia. An overview of the debate is in Long (2010).
4See, for instance, Chap. 12 in Dockner et al. (2000) and Chaps. 2–3 in Long (2010), offering
surveys of dynamic games in which environmental externalities and resource extraction are treated
separately.
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see Cornes and Sandler 1983; Cornes et al. 1986; and Mason and Polasky 1997, in-
ter alia). In particular, the full model involving an endogenous link between resource
extraction and pollution shows that the socially efficient industry structure is sensi-
tive to the environment’s natural recycling capabilities. It turns out that monopoly
is socially optimal if either the rate of reproduction of the natural resource is large
enough or the natural rate of absorption of polluting emissions is low enough, as in
both cases the usual output restriction associated with monopoly power reduces the
environmental impact of production more than consumer surplus.

The remainder of the paper is structured as follows. In Sect. 2, we offer a step-
by-step reconstruction of the standard approach, whereby resource extraction and
pollution are studied in isolation from each other. Then, in Sect. 3, we propose a
fully fledged model taking into account the interplay between state variables. Con-
cluding remarks are in Sect. 4.

2 Preliminaries: The Standard Approach

Here we summarise the acquired wisdom based on previous literature, where ei-
ther pollution or the exploitation of natural resources have been treated in isolation
from one another. Throughout, we will consider an industrial sector existing over
continuous time t ∈ [0,∞).

2.1 Natural Resources I

The simplest model of the interplay between profit incentives and resource extrac-
tion is the following. The market is supplied by n firms offering a homogeneous
good produced through a renewable natural resource (say, forestry) to deliver an
intermediate or final commodity (say, timber or paper) to consumers. The market
demand for the final good is

p(t)= a −Q(t), Q(t)=
n∑

i=1

qi(t), (1)

qi(t) being the instantaneous output of firm i = 1,2,3, . . . , n. Therefore, the game
features n controls, q = (q1, q2, . . . , qn), one for each player. All firms share a sym-
metric technology with the same marginal cost c for extraction and production, giv-
ing rise to a cost function Ci(t) = cqi(t), with a > c > 0. This imposes the con-
straint Q(t) ∈ [0, a − c] at any time t . Additionally, the difference between reser-
vation price and marginal cost, a − c, is assumed to be large enough to ensure the
non-negativity of controls at all times during this and the subsequent versions of the
game. The instantaneous profit function of firm i is πi(t)= (p(t)− c)qi(t).
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The only state variable appearing in this version of the model is the stock of the
natural resource x(t)≥ 0, which evolves over time according to the following state
equation:5

ẋ(t)= ηx(t)−
n∑

i=1

qi(t) (2)

where η > 0 is the constant rate of reproduction.
The game is non-cooperative and simultaneous play takes place at any instant.

The individual firm has to

max
qi (t)

∫ ∞

0
πi(t)e

−ρtdt (3)

subject to the dynamic constraints (2), the initial condition x(0) = x0 ≥ n(a − c)/

(n+ 1)/η,6 and the appropriate transversality condition. The discount rate ρ > 0 is
constant and common to all firms.

Firm i’s Hamiltonian function is

Hi (t) = e−ρt
{(

a − qi(t)−
∑

j =i
qj (t)− c

)
qi(t)

+ λi(t)

[

ηx(t)−
n∑

i=1

qi(t)

]}

(4)

in which λi(t)= eρtγi(t) is the co-state variable (in current value) associated with
the dynamics of the state. This being a linear state game, the open-loop solution is
subgame perfect (or equivalently, strongly time consistent).

The necessary conditions are7

∂Hi

∂qi
= e−ρt

(
a − c− 2qi −

∑

j =i
qj − λi

)
= 0 (5)

λ̇i = (ρ − η)λi (6)

5We could model the state equation as

ẋ(t)= ηx(t)− ν

n∑

i=1

qi(t)

with ν ∈ (0,1]. This, however, would not modify significantly the qualitative predictions of the our
analysis. Therefore, we have imposed ν = 1 to restrict the set of parameters.
6Taking x0 > 0 as the initial condition does not ensure the sustainability of extraction activities
over t ∈ [0,∞) as the stock x(t) would become nil in finite time.
7Henceforth, we omit the time argument for the sake of brevity. Mangasarian’s (1966) and Arrow’s
(1968) sufficiency conditions are also satisfied. They are also omitted for the sake of brevity.
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Fig. 1 Phase diagram in the
(q, x) space

together with the transversality conditions limt→∞ γix = limt→∞ e−ρtλix = 0.
Now observe that (6) admits the solution λi = 0 at all times, whereby the first or-
der condition on the output level yields the static Cournot-Nash solution qi = qN =
(a − c)/(n+ 1) for all i.8 Then, imposing stationarity on ẋ, one gets

x∗ = nqN

η
= n(a − c)

(n+ 1)η
, (7)

with ∂x∗/∂n > 0, which seems to indicate that increasing competition has positive
consequences for the preservation of the natural resource in the long run.

Since the output is constant throughout the game, the dynamics of the model re-
duces to (2), as depicted in Fig. 1. As ẋ ≷ 0 for all x ≷ nq/η, it appears that pertur-
bations could cause the system to diverge, in either direction. This—which, literally,
is a technical feature of the model—lends itself to an intuitive interpretation, which
can be spelled out in the following terms. Firms’ myopic behaviour, dictated by
pure profit incentives, may indeed cause the delicate equilibrium between the eco-
nomic system and the environment to collapse (of course x could indeed experience
a limitless growth, but casual observation suggests the opposite).

The bottom line of this exercise is well known, as it states that firms replicate
forever the equilibrium of the static Cournot game without internalising the effects
of production on the existing amount of the natural resource.9 The industry output
is therefore increasing with n, and this causes, at any time t , an increase in the

8Throughout the paper, we shall use superscript N to identify the Nash solution, while starred val-
ues will indicate steady state magnitudes of states and controls. Note that in the present section the
optimal output is stationary as firms do not take into account the consequences of their behaviour
on the stock of resources. Hence, here the steady state output is the same as the Nash equilibrium
output at any time t . The same applies to the model illustrated in Sect. 2.3.
9This is the reason why we have taken the initial stock to be at least as large as the Cournot-Nash
industry output.
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rate of extraction as compared to pure monopoly, due to the output restriction that is
usually associated with monopolistic sectors, as compared to any even slightly more
competitive industries. On the other hand, any increase in output lowers market
price and brings about an increase in consumer surplus CS∗ = (Q∗)2/2. The balance
between these effects is captured by the net effect of a change in n on the social
welfare function10

SW∗ = nπ∗ + CS∗ + x∗ (8)

with

∂SW∗

∂n
= (a − c)[n+ 1 + η(a − c)]

η(n+ 1)3
> 0 (9)

for all n. That is, competition is promoting social welfare, notwithstanding the fact
that it involves a higher exploitation rate at any time. The next step consists in taking
into consideration a slightly richer version of the same problem, which explicitly
acknowledges the presence of an endogenous link between the natural resource and
the output via a simple production function.

2.2 Natural Resources II

Define now the individual output of firm i as qi = bix, bi being the instantaneous
rate at which firm i extract the resource and uses it in the production of the interme-
diate or final good. This can be thought of as a production function operating at con-
stant returns to scale, using the natural resource as the only relevant input. We shall
see in the remainder of the section that this seemingly simple transformation indeed
has relevant consequences on our understanding and interpretation of the problem
at hand. As in the previous version, we have n controls, b = (b1, b2, . . . , bn), one
for each player, while there is a single state, x, whose dynamics is now

ẋ =
(

η−
n∑

i=1

bi

)

x, (10)

so that the insertion of a simple linear technology in the model establishes a multi-
plicative effect between state and control in the state equation which was altogether
absent in the previous version. The remainder of the setup is unmodified, so the
Hamiltonian of firm i is

10Note that the amount of natural resource enters the social welfare function with a weight equal
to one, i.e., the same attached to industry profits and consumer surplus. The ongoing debate on
this point has not yet produced a unanymous view (see, e.g., Chap. 5 in Stern 2009). The need for
guaranteeing the prosperity of future generations suggests that one should attach to the preservation
of natural resources at least the same importance as traditional economic indicators strictly related
to production and consumption.
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Hi = e−ρt
[(
a − bix − x

∑

j =i
bj − c

)
bix + λi

(

η−
n∑

i=1

bi

)

x

]

. (11)

The game is thus no longer a linear state one,11 but for the sake of comparability we
stick to the open-loop solution, requiring the following necessary conditions:

∂Hi

∂bi
= e−ρtx

(
a − c− 2bix − x

∑

j =i
bj − λi

)
= 0 (12)

λ̇i =
(

ρ − η+
n∑

i=1

bi

)

λi − bi

[
a − c− 2x

(∑

j =i
bj + 2bi

)]
, (13)

while the transversality conditions are limt→∞ e−ρtλix = 0.
To simplify calculations, henceforth we impose symmetry on controls and co-

states, bi = bj = b and λi = λj = λ for all i, j . From (12) we obtain

b= max

{
a − c− λ

(n+ 1)x
,0

}
(14)

and, if b > 0,

λ= a − c− b(n+ 1)x. (15)

Then, employing (10), we can write

ḃ= −xλ̇+ (a − c− λ)ẋ

(n+ 1)x2
. (16)

which, using (13)–(15), can be rewritten as

ḃ= (a − c)[η− ρ − b(n− 1)] + b[ρ + (2nb+ ρ)n− 2(n+ 1)η]x
(n+ 1)x2

(17)

Imposing stationarity on state and control, we identify the unique open-loop
steady state equilibrium, where:12

b∗
i = b∗ = η

n
∀i; x∗ = (a − c)(η− nρ)

η[2η− (n+ 1)ρ] . (18)

Note that x∗ > 0 for all

11Additionally, note that it is not defined in linear-quadratic form. Consequently, we have no obvi-
ous conjecture as to the form of the value function.
12The corresponding value of the co-state variable at the steady state equilibrium is

λ∗ = (a − c)(n− 1)η

n[2η− (n+ 1)ρ]
and the transversality condition limt→∞ e−ρtλix = 0 is met thanks to exponential discounting.
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ρ ∈
(

0,
η

n

)
and ρ >

2η

n+ 1
. (19)

The same obviously holds for the individual output q∗ = b∗x∗ as well as for the
industry output Q∗ = nq∗. Steady state individual profits are

π∗ = (a − c)2(η− ρ)(η− nρ)

n[2η− (n+ 1)ρ]2
> 0 ∀ρ ∈

(
0,
η

n

)
. (20)

Hence, the survival of firms at the steady state requires indeed ρ ∈ (0, η/n). Now
observe that

∂x∗

∂n
= (a − c)(ρ − η)

η[2η− (n+ 1)ρ]2
< 0 (21)

for all ρ ∈ (0, η). In view of the previous result, this is surely the case for any n≥ 1.
This contradicts the result of the previous—and simpler—version of this problem,
as now it appears that a more intense competition throughout the game leads to a
lower amount of natural resource left over at the steady state.

Now reconsider the social welfare function, defined as in (8). Its partial derivative
w.r.t. n is

∂SW∗

∂n
= (a − c)(η− ρ)[ρ(n+ 1 + η(a − c))− η(2 + η(a − c))]ρ

η[2η− (n+ 1)ρ]3
(22)

which is positive iff

ρ >
η(2 + η(a − c))

n+ 1 + η(a − c)
. (23)

However,

η(2 + η(a − c))

n+ 1 + η(a − c)
− 2η

n+ 1
= η2(a − c)(n− 1)

[n+ 1 + η(a − c)](n+ 1)
> 0 ∀n≥ 2. (24)

Hence, the equilibrium level of social welfare monotonically decreases with n once
the interplay between the natural resource and the firms’ output has been duly ac-
counted for, although admittedly in a very simple manner.13 Once again, the sign
of the partial derivative (22) is reversed as compared to the previous setup. The
foregoing discussion can be summarised in

Proposition 1 Endogenising the technological link between the exploitation of the
natural resource and the intermediate or final output of the industry singles out
the negative effect of an increase in the intensity of competition on the resulting
equilibrium level of social welfare.

13This result relates the long-run effects of increasing the population of firms with the discount
rate. This aspect is a crucial feature of an ongoing debate concerning the need for applying low
discount rates to the well-being of future generation (see Stern 2007; and Weitzman 2007, inter
alia).
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We can now move on to the stability analysis of the dynamic system formed by
(10) and (17). This is carried out by investigating the features of the Jacobian matrix:

J =

⎡

⎢⎢
⎣

∂ẋ

∂x

∂ẋ

∂b

∂ḃ

∂x

∂ḃ

∂b

⎤

⎥⎥
⎦

whose determinant, in correspondence of the unique steady state point, is

Δ(J )= η[ρ(n+ 1)− 2η]
n+ 1

< 0 ∀ρ ∈
(

0,
η

n

)
. (25)

This suffices to prove:

Proposition 2 The unique steady state equilibrium (x∗, b∗) is a saddle point.

2.3 Pollution I

Let us now turn to an alternative scenario where natural resources are left out of
the picture and the focus is on the environmental consequences of production (or
consumption). Still, we consider the same n-firm oligopoly offering a homogeneous
good, which now generates an undesirable environmental externality. Let s(t) ≥ 0
be the stock of environmental pollution at any instant. We assume that pollution
follows the dynamic equation:

ṡ = z

n∑

i=1

qi −
n∑

i=1

ki − δs (26)

that is, it increases with the industry output level Q =∑n
i=1 qi at a constant rate

z > 0, while it decreases with the industry’s green R&D investments K =∑n
i=1 ki ,

ki being the instantaneous R&D effort of firm i at the cost Γi = vk2
i , parameter

v > 0 measuring the marginal cost of R&D. Pollution by itself diminishes at the
constant rate δ ≥ 0. Hence, we are considering a single state, s and 2n controls,
q = (q1, q2, . . . , qn) and k = (k1, k2, . . . , kn), two for each player.

The market demand function is p = a −Q, while firm i’s production involves a
cost function Ci(qi)= cqi , c > 0. The Hamiltonian of firm i is

Hi = e−ρt
[(
a − qi −

∑

j =i
qj − c

)
qi − vk2

i +μi

(

z

n∑

i=1

qi −
n∑

i=1

ki − δs

)]

(27)

whereμi = eρt�i is the co-state variable (in current value) associated with s. Strate-
gic interaction is simultaneous, and we shall focus on the open-loop non-cooperative
Nash solution. This game is a linear state one, so that (i) the open-loop Nash equi-
librium is subgame perfect, and (ii) we may anticipate that unregulated firms will
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Fig. 2 Phase diagram in the
(q, s) space

never spontaneously internalise the environmental consequences of their productive
activities at any time during the game. This ultimately implies that they will not
invest in R&D, as can be ascertained through a quick examination of the necessary
conditions:

∂Hi

∂qi
= e−ρt

(
a − c− 2qi −

∑

j =i
qj − zμi

)
= 0 (28)

∂Hi

∂ki
= −e−ρt (2vki +μi)= 0 (29)

μ̇i = (δ + ρ)μi (30)

Since (30) admits the solution μi = 0 at all times,14 this immediately entails that
kNi = 0 and qNi = (a − c)/(n + 1) at any time t . The transversality condition
limt→∞�is = limt→∞ e−ρtμis = 0 is also met. The resulting level of pollution
at the steady state is s∗ = n(a − c)z/[(n+ 1)δ], with ∂s∗/∂n > 0.

As in Sect. 2.1, again here the system dynamics reduces to the state equation
(26). The crucial difference is that here a stability property emerges, since ṡ ≷ 0 for
all s ≶ znq/δ. This is depicted in Fig. 2.

2.4 Pollution II

As is well known, the way out of this impasse consists in introducing a Pigouvian
taxation/subsidization P proportional to the stock of pollution, say, P = θs, on all
firms alike (see, e.g., Benchekroun and Long 1998, 2002), θ being the tax or subsidy
rate, which we will take to be constant throughout the game, for reasons that will

14Note that μi = 0 suffices to ensure that the transversality condition limt→∞μis = 0 be satisfied.
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be clarified below.15 This entails that instantaneous per firm profits are πi = (p −
c)qi − vk2

i − θs, and transforms the Hamiltonian of firm i into the following:

Hi = e−ρt
[(
a − qi −

∑

j =i
qj − c

)
qi − vk2

i − θs

+μi

(

z

n∑

i=1

qi −
n∑

i=1

ki − δs

)]

. (31)

As before, firms play simultaneously and non-cooperatively at all times, taking now
as given the Pigouvian policy set by the government. Observe that a direct conse-
quence of the presence of regulation is that

μ̇i = (δ + ρ)μi + θ (32)

which does not admit the nil solution any more and therefore opens the way for
positive R&D investments and also influences firms’ output decisions:

qi = q∗ = a − c− 2vzk∗

n+ 1
; ki = k∗ = θ

2(δ + ρ)v
∀i (33)

with q∗ > 0 provided a − c > zθ/(δ + ρ). Output q∗ is decreasing with k∗ and the
steady state R&D effort k∗ is increasing with θ , in such a way that—if firms are
being taxed, i.e., for all θ > 0—R&D efforts are positive and the industry output
is lower than in the unregulated case (the opposite holds of course if firms are sub-
sidised, which happens for θ < 0). The resulting level of pollution at the steady state
equilibrium is

s∗ = n[2v(a − c)(δ + ρ)z− θ(n+ 1 + 2vz2)]
2δ(n+ 1)(δ + ρ)v

. (34)

The stability analysis is readily dealt with, as at any time the optimal individual
quantity is indeed as in (33), so that dynamic system involves the behaviour of
pollution and green R&D only. Hence, focussing on the Jacobian matrix:

J =

⎡

⎢⎢
⎣

∂ṡ

∂s

∂ṡ

∂k

∂k̇

∂s

∂k̇

∂k

⎤

⎥⎥
⎦

one can write its determinant, Δ(J ) = −δ(δ + ρ), which is always negative. This
implies:

Proposition 3 The unique steady state equilibrium (s∗, k∗, q∗) is a saddle point.

15Therefore, we have a single state, s and 2n + 1 controls, i.e., q = (q1, q2, . . . , qn) and k =
(k1, k2, . . . , kn), two for each firm, and the Pigouvian policy rate θ for the government.
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Then the question arises as to how the government should choose the optimal θ .
Since θ appears in the firms’ first order conditions, the open-loop solution of the
Stackelberg game with the government leading would obviously be subject to a
problem of time inconsistency. To avoid it, one may either solve the Stackelberg
game via a degenerate Markov approach (see Chap. 5 in Dockner et al. 2000), or
simply calculate the value of θ maximising the steady state level of social welfare16

defined as

SW∗ = nπ∗ + CS∗ − s∗ + nP = nπ∗ + CS∗ − s∗(1 − nθ), (35)

since the tax revenues nP = nθs are assumed to be redistributed across consumers
as windfall money. This requires solving

∂SW∗

∂θ
= 0 (36)

yielding

θ∗ = (δ + ρ)[(n+ 1)(n+ 1 + 2vz2)− 2δ(a − c)vz]
δ[n2 + 1 + 2(1 + vz2)n] (37)

which may take either positive or negative values depending on the relative size of
parameters {a, c,n, v, z, δ, ρ}, in particular n and a − c. We have that

SW∗∣∣
θ=θ∗ > SW∗∣∣

θ=0 (38)

always, while

sign s∗
∣∣
θ=θ∗ − s∗

∣∣
θ=0 = sign

[
2δ(a − c)vz− (n+ 1)

(
n+ 1 + 2vz2)] (39)

which delivers the following:

Proposition 4 For all

a − c ∈
(

0,
(n+ 1)(n+ 1 + 2vz2)

2δvz

)
,

θ > 0 and (i) SW∗|θ=θ∗ > SW∗|θ=0; (ii) s∗|θ=θ∗ < s∗|θ=0.
For all

a − c >
(n+ 1)(n+ 1 + 2vz2)

2δvz
,

θ < 0 and (i) SW∗|θ=θ∗ > SW∗|θ=0; (ii) s∗|θ=θ∗ > s∗|θ=0.

The second claim appearing in the above Proposition states that, if either the
reservation price a is high enough or the marginal cost c is sufficiently low, the
Pigouvian policy takes the form of a subsidy leading to a level of pollution higher

16This is the route taken by Benchekroun and Long (1998, 2002).
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than it would be without regulation. The increase in welfare, which obtains irrespec-
tive of whether firms are being taxed or subsidised, obtains because of the output
expansion that is brought about by subsidization and ultimately increases consumer
surplus. This is a direct consequence of the aforementioned tradeoff between the
price effect and the external effect which, provided the market is affluent enough,
paradoxically induces the regulator to opt for a higher consumer surplus even though
this entails a larger amount of pollution.17

It can be shown that ∂SW∗|θ=θ∗/∂n > 0 always.18 The analysis of the effects of
a change in n on industry profits can only be carried out numerically, revealing that
the industry concentration which maximises collective profits is increasing in δ. To
see this, we fix a − c = 1, v = 3, z= 1 and ρ = 1/5, and solve ∂nπ∗|θ=θ∗/∂n= 0
for different values of δ, obtaining (n is rounded to the lower integer):

n= 58 for δ = 1

5

n= 73 for δ = 1

4

n= 99 for δ = 1

3

n= 149 for δ = 1

2

n= 224 for δ = 3

4

n= 239 for δ = 4

5

(40)

That is,

Remark 5 The higher the environment’s degree of efficiency in recycling pollution,
the larger is the population of firms maximising industry profits at the steady state
equilibrium in which a benevolent regulator adopts the socially optimal Pigouvian
policy.

3 The Full Model

We are now ready to investigate a full-fledged model in which the natural resource
enters explicitly in the production function of the intermediate or final output, and

17It is worth noting that this mechanism would still exist in a simpler version of this setup, without
R&D investments. This is due to the fact that the conflict between two equally desirable objectives
(lowering the price and reducing pollution) is entirely inherent in production decisions only.
18The proof, trivial but lengthy, is omitted for brevity. It is however available from the authors upon
request.
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productive activities generate a negative environmental externality. To do so, we
modify the state equations as follows.

We pose that pollution evolves according to the following equation:

ṡ = zx

n∑

i=1

bi −
n∑

i=1

ki − δx, (41)

where the only detail that has changed as compared to the previous version is that
the environment is being cleaned at a rate δ ≥ 0 by the existing amount of natural
resource.19

The dynamics of the natural resource is

ẋ =
(

η−
n∑

i=1

bi

)

x − s, (42)

in which, it should be noted, the stock of pollution enters negatively.
All of the control variables have been already defined. Thus, the present game

features two state variables, s and x, and 2n controls, q = (q1, q2, . . . , qn) and
k = (k1, k2, . . . , kn), two for each player. We disregard the possibility of regula-
tion through a Pigouvian policy for reasons that will become apparent below. The
instantaneous profit function of firm i is

πi = (p− c)bix − vk2
i (43)

so that the individual firm must

max
bi ,ki

∫ ∞

0
πie

−ρtdt (44)

subject to the dynamic constraints (41)–(42), initial conditions s(0) = s0 > 0 and
x(0) = x0 > s/(η −∑n

i=1 bi), and the appropriate transversality conditions. Once
again, we solve the game under open-loop information. The firm’s Hamiltonian
function is

Hi = e−ρt
{(

a − bix − x
∑

j =i
bj − c

)
bix − vk2

i

+ ϕi

(

zx

n∑

i=1

bi −
n∑

i=1

ki − δx

)

+ψi

[(

η−
n∑

i=1

bi

)

x − s

]}

, (45)

variables ϕi = eρt ζi and ψi = eρtκi being the co-states (in current value) associated
with s(t) and x(t), respectively. The maximization of (45) requires meeting the

19This applies to rain forests and the oceans absorbing CO2 emissions, while it does not apply to
other natural resources, like the stock of fish. On the contrary, the latter is negatively affected by
pollution (as specified in (2), (10) and (42)).
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following set of necessary conditions:

∂Hi

∂bi
= e−ρtx

(
a − c− 2bix − x

∑

j =i
bj + zϕi −ψi

)
= 0 (46)

∂Hi

∂ki
= −e−ρt (2vki + ϕi)= 0 (47)

ϕ̇i = ρϕi +ψi (48)

ψ̇ = (ρ − η+B)ψ + (δ − zB)ϕi − bi(a − c− 2xB) (49)

with B ≡∑n
i=1 bi measuring the industry extraction rate. The associated transver-

sality conditions are

lim
t→∞ e−ρtϕis = 0; lim

t→∞ e−ρtψix = 0 ∀i. (50)

Observe that (47) entails that, if the individual firm attaches a negative shadow value
to the environmental damage, i.e. ϕi < 0, the resulting instantaneous green R&D ef-
fort ki = −ϕi/(2v) is positive. As we know, this usually does not happen if firms are
unregulated (see Sects. 2.3–2.4). We are about to see that allowing for an endoge-
nous interaction between natural resources and the environmental consequences of
production modifies this crucial aspect, even in the absence of any intervention by a
policy maker.

From (46), we obtain

ψi = a − c− 2bix − x
∑

j =i
bj + zϕi (51)

and

ḃi =
x(zϕ̇i − ψ̇i − x

∑
j =i ḃj )− (a − c+ zϕi −ψi)ẋ

2x2
(52)

while from (47) we get

ϕi = −2bki (53)

and therefore also

k̇i = − ϕ̇i

2b
= −ρϕi +ψi

2b
. (54)

Before proceeding any further, it is worth noting that (47) and (54) jointly imply:

Lemma 6 Given ρ > 0, any triple {ρ,ϕi,ψi} such that ϕi < 0 and ψi < −ρϕi
suffices to ensure the presence of positive and increasing R&D efforts during the
game.

Namely, the interplay between states may indeed act as a substitute for regula-
tion, the reason being that the source of the environmental externality (which, in the
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traditional approach to the matter, is deemed irrelevant to pure profit-seeking firms)
is to be traced back to the exploitation of a natural resource for production whose
extraction and use is costly to the firm itself. This endogenous link does not turn
the firm into an altruistic agent, but forces it to become aware of the social cost of
its own activities as they exert an impact on the technological cost of production.
Consequently, the firm may find it profitable to search for cleaner technologies by
virtue of its own profit incentives only.

Substituting (48), (49), (51) and (53) into (52) and (54), and imposing symmetry
across firms, we can write the control equations:

ḃ = {(a − c)
[
η− ρ + z− b(n− 1)

]+ 2vk
[
δ + z

(
b(n− 1)− η− z

)]

+ b(n+ 1)
[
s − x

(
b− ρ + z− 2(nb− η)

)]}
/
[
(n+ 1)x

]
(55)

k̇ = b(n+ 1)x + 2v(ρ + z)k − a + c

2v
. (56)

This version of the control equations reveals a relevant property of the game, namely
that, at any time,

k̇ > 0 if a − c < b(n+ 1)x + 2v(ρ + z)k. (57)

In other words, this condition says that the individual R&D effort in green technolo-
gies will increase provided a − c is sufficiently small. An equivalent reading is that
R&D efforts will increase if the population of firms is large enough. Either way, it
boils down to saying that the pace of green innovation is positively related to the
intensity of competition characterising this industry.20

Imposing stationarity on the system {ẋ, ṡ, ḃ, k̇}, we obtain the coordinates of the
unique steady state equilibrium of the open-loop game:

x∗ = n(a − c)z

(n+ 1)δ
; s∗ = n(a − c)(ηz− δ)

(n+ 1)δ
; b∗ = δ

nz
; k∗ = 0. (58)

This steady state coincides with the monopoly equilibrium if n = 1, and it is
admissible provided that δ ≤ ηz. Steady state output and profits are q∗ = (a −
c)/(n + 1) and π∗ = (a − c)2/(n + 1)2, i.e., the standard Cournot-Nash profits,
and ϕ =ψ = 0.

Now we can examine the steady state social welfare level, defined as

SW∗ = nπ∗ + CS∗ + x∗ − s∗

= n(a − c)[(2(a − c+ 1)+ n(a − c+ 2))δ + 2(n+ 1)(1 − η)z]
2δ(n+ 1)2

. (59)

20This result has a definite Arrowvian flavour. For a summary of the debate between Schumpeter
(1942) and Arrow (1962) on the relationship between market power and innovation incentives, see,
e.g., Tirole (1988).
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That is, in the absence of any regulation, at the steady state equilibrium welfare is
the sum of industry profits, consumer surplus and the residual stock of resources,
minus the amount of pollution. The effect of a change in n on welfare is described
by

∂SW∗

∂n
= (a − c)[δ(a − c+ n+ 1)+ (n+ 1)(1 − η)z]

δ(n+ 1)3
, (60)

η ∈ (0,1] being a sufficient condition for ∂SW∗/∂n > 0 for all n. In this region
(i.e., if the instantaneous regeneration rate of the natural resource is less than 100%,
which, realistically, will almost always be the case), any increase in the intensity of
competition generated by an increase in the population of firms is indeed beneficial.
More precisely, the overall effect of a change in n on SW∗ can be decomposed as
follows:

∂SW∗

∂n
= ∂(nπ∗)

∂n
+ ∂(CS∗)

∂n
+ ∂x∗

∂n
− ∂s∗

∂n
(61)

with

∂(nπ∗)
∂n

< 0; ∂(CS∗)
∂n

> 0; ∂x∗

∂n
> 0; ∂s∗

∂n
< 0, (62)

whereby it appears that the negative effect on industry profits is more than compen-
sated by the increase in consumer surplus, the higher volume of the natural resource
and the lower level of pollution. Also, note the opposite sign of the partial derivatives
of s∗ and x∗ w.r.t. n: a cleaner environment goes along with a higher exploitation of
the natural resource in steady state, the larger the population of firms is.

If, instead, η > 1, ∂SW∗/∂n= 0 in

n∗ = (η− 1)z− (a − c+ 1)δ

δ − (η− 1)z
> 1 (63)

for all

δ ∈
(

2(η− 1)z

a − c+ 2
, (η− 1)z

)
. (64)

The welfare effects of a change in the number of firms can be illustrated as in Fig. 3,
drawn in the space (η, δ). Observe that

ηz > (η− 1)z≥ 2(η− 1)z

a − c+ 2
(65)

everywhere, with

∂SW∗

∂n
> 0 ∀δ > (η− 1)z (66)

and

∂SW∗

∂n
< 0 ∀δ ∈

[
0,

2(η− 1)z

a − c+ 2

)
, (67)
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Fig. 3 Steady state welfare
effects of a change in n in n
in the (η, δ) space

while

∂SW∗

∂n
= 0 in n∗ > 1 (68)

for values of δ in (64). Supposing δ takes, e.g., a value like the one represented
by the horizontal dashed line, the impact of industry structure on social welfare
changes with η, the rate of reproduction of the natural resource. Now note, from
(58), that the only steady state magnitude affected by η is s∗, in such a way that any
increase in η brings about an increase in the environmental externality as it makes
the resource availability constraint less stringent and therefore fosters its extraction.
This, in turn, has beneficial effects on consumer surplus. For sufficiently low values
of η, the positive welfare effect generated by enhancing consumer surplus exceeds
the negative one associated with the parallel increase in pollution. In this range,
from the standpoint of social efficiency, increasing the number of firms is desirable;
accordingly, a regulator would like the market to become as competitive as possi-
ble. For sufficiently high levels of η exactly the opposite argument applies, so that
monopoly is the socially efficient industry structure. In between, there exists a range
where a finite number of oligopolistic firms is socially optimal. Mutatis mutandis,
a similar argument holds if one takes an appropriate value of η > 1 as given, like
the one represented by the vertical dashed line in the Figure, and evaluates what
happens if δ increases. Keeping in mind that δ measures the instantaneous rate at
which the environment absorbs and neutralizes pollutants, we have that, if δ is suffi-
ciently low, monopoly maximises welfare because of the classical output restriction
associated with monopoly power: here, monopoly pricing is a lesser evil. For in-
termediate values of δ, an oligopoly is the efficient compromise between market
power and its environmental implications. Finally, if the natural process of emission
recycling is sufficiently efficient, the standard pro-competitive argument prevails on
environmental considerations, and therefore perfect competition maximises steady
state welfare.
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This discussion can be summarised in

Proposition 7 Any η ∈ (0,1] suffices to ensure that any increase in the intensity of
competition is welfare-increasing. If, instead, η > 1, the socially optimal number of
firms is finite, monopoly being Pareto-efficient for all

δ ∈
[

0,
2(η− 1)z

a − c+ 2

)
.

An oligopoly with n∗ > 1 firms is efficient for all

δ ∈
(

2(η− 1)z

a − c+ 2
, (η− 1)z

)
,

while the Pareto-efficient structure is perfect competition for all δ > (η− 1)z.

To ascertain the stability properties of the system, one has to inspect the following
Jacobian matrix:

J =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

∂ẋ

∂x

∂ẋ

∂s

∂ẋ

∂b

∂ẋ

∂k

∂ṡ

∂x

∂ṡ

∂s

∂ṡ

∂b

∂ṡ

∂k

∂ḃ

∂x

∂ḃ

∂s

∂ḃ

∂b

∂ḃ

∂k

∂k̇

∂x

∂k̇

∂s

∂k̇

∂b

∂k̇

∂k

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

whose eigenvalues can be easily calculated in the special case of a single firm (i.e.,
n= 1), with

∂ẋ

∂x
= η− b; ∂ẋ

∂s
= −1; ∂ẋ

∂b
= −x; ∂ẋ

∂k
= 0 (69)

∂ṡ

∂x
= zb− δ; ∂ṡ

∂s
= 0; ∂ṡ

∂b
= zx; ∂ṡ

∂k
= −1 (70)

∂ḃ

∂x
= 2[v(z(η+ z)− v)k− bs] − (a − c)(η− ρ + z)

2x2
; ∂ḃ

∂s
= b

x
;

∂ḃ

∂b
= s + x[2(b+ η)+ ρ − z]

x
; ∂ḃ

∂k
= v[δ − z(η+ z)]

x

(71)

∂k̇

∂x
= b

v
; ∂k̇

∂s
= 0; ∂k̇

∂b
= x

v
; ∂k̇

∂k
= ρ + z. (72)

The resulting eigenvalues of J in {x∗, s∗, b∗, k∗} are:
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ε1 = η+√η2 + 4δ

2
> 0; ε2 = η−√η2 + 4δ

2
< 0

ε3 = 2ρ − η+√η2 + 4δ

2
> 0

ε4 = −η− 2ρ +√η2 + 4δ

2
< 0 ∀ρ < η+√η2 + 4δ

2
.

(73)

Accordingly, {x∗, s∗, b∗, k∗} is a saddle point equilibrium in the monopoly case.
Performing the same analysis in the general case of an oligopoly is, however, cum-
bersome. Yet, we can work out some numerical examples. For instance, one can
fix

a − c= 1; n= 2; v = 1; z= 1;

δ = 1

30
; η= 1

10
; ρ = 1

100

(74)

to obtain

ε1 = 0.2725; ε2 = −0.2524; ε3 = 0.0217; ε4 = −0.0164, (75)

which again reveals saddle point stability—in this case, of the duopoly equilibrium.

4 Concluding Remarks

We have modelled the dynamic interplay between firms’ decisions and the resulting
welfare performance of an industry involving the exploitation of a natural resource
and negative environmental effects. Towards this aim, we have adopted a stepwise
procedure, starting from the simplest settings to end up with a complete model in-
cluding all relevant variables in a single framework. This has been done with the
purpose of illustrating how some of the main properties and policy conclusions may
change depending upon the degree of accuracy and completeness with which the
model itself is endowed. In particular, we have focussed on the tradeoff between the
opposite effects of output expansions on market price on one hand and the intensity
of resource exploitation and environmental externality on the other. In this regard,
a key aspect one has to bear in mind is the intensity of market competition, measured
by the size of the number of active firms in the industry. The full-fledged model we
have constructed indicates that, for any realistic rate of reproduction of the natu-
ral resource, any increase in the population of firms is indeed welfare-improving;
conversely, monopoly is socially efficient if the emission recycling rate is very low.
A related issue we have also dwelled upon is whether firms may have any incen-
tive to invest in green technologies in the absence of taxation/subsidization. In this
respect, our model suggests that such an incentive does exist, due to competitive
pressure, even if firms do not explicitly internalise the effects of their activities.
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Appendix: List of Symbols

Parameters, variables and functions appearing in text are defined as follows:

a: reservation price
bi(t): extraction rate of firm i

B ≡∑n
i=1 bi : industry extraction rate

c: marginal production cost
CS: consumer surplus
Hi (t): Hamiltonian function of firm i

J : Jacobian matrix
ki(t): green R&D effort of firm i

n: number of firms
p(t): market price
P : Pigouvian taxation
qi(t): quantity of firm i

Q(t): industry output
s(t): pollution stock
SW: social welfare
v: marginal cost of R&D
x(t): resource stock
z: marginal environmental damage
δ: natural rate of emission absorption
γi(t), �i(t), ζi(t), κi (t): co-state variables
η: rate of reproduction of natural resources
θ : Pigouvian tax rate
λi(t), μi(t), ϕi(t), ψi(t): co-state variables (in current value)
πi(t): profits of firm i

ρ: discount rate
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The Incentive to Invest in
Environmental-Friendly Technologies:
Dynamics Makes a Difference

Davide Dragone, Luca Lambertini, and Arsen Palestini

1 Introduction

The enormous amount of data being assembled by the IPCC (Intergovernmental
Panel on Climate Change) on the anthropic responsibility in generating (or at least
increasing) global warming, and the debate on how to cope with it along the guide-
lines of the Kyoto Protocol and its follow-ups, are clearly identifying the control of
polluting emissions damaging the environment as one of the hottest scientific issues
of our times. As such, it is receiving an increasing amount of attention in the current
literature in the field of environmental economics, with particular attention to the
general equilibrium implications of environmental aspects on trade and growth.1

Most of the existing contributions adopting a partial equilibrium approach inves-
tigate the design of optimal Pigouvian taxation aimed at inducing firms to reduce
damaging emissions, both in monopoly and oligopoly settings.2 A related stream of

1On the optimality of free trade with environmental externalities, see Copeland and Taylor (1994,
2004) and Antweiler et al. (2001). As to the role of environmental issues in growth theory, see
Grossman and Krueger (1995), Bovenberg and de Mooij (1997), Bartz and Kelly (2008), Itaya
(2008) and Dragone et al. (2010), inter alia.
2See Karp and Livernois (1994) and Benchekroun and Long (1998, 2002), inter alia.
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literature examines the incentive for firms to carry out R&D activities in order to in-
troduce environmental-friendly technologies. This of course is very closely related
to trade and growth. In particular, a sustainable development will require cheaper
and cleaner energy sources and productive technologies than are currently available,
to be attained through innovation.3 In static setups, this requires the introduction of
some form of taxation/subsidy by the policy maker, in order to induce firms to take
into account the presence of the externality, that they would clearly neglect other-
wise.4 A third line of research investigates the optimal design of minimum quality
standards and/or profit taxation in vertically differentiated industries affected by en-
vironmental externalities.5

In the present paper, we take a differential game approach to the investigation
of environmentally-oriented R&D efforts in a dynamic Cournot oligopoly model
where (at least in the first version of the game) there may not be any tax or subsidy
linked to the external effect, in order to show that the main message emerging from
the corresponding static version of the same game falls short of telling the whole
story of the issue at hand. In particular, we describe a scenario where the stock of
pollution increases in proportion to industry output, and each firm may invest in
R&D in order to diminish its individual contribution to the emission of pollutants.

Our first result consists in showing that unregulated firms may indeed fully ne-
glect the environmental effects of their productive activity and replicate the static
Cournot-Nash equilibrium forever, without putting any effort whatsoever in R&D
activities for cleaner technologies at any point in time. However, we also show that
the alternative may in fact be more attractive, if R&D efforts go along with an out-
put contraction closely resembling cartel behaviour, although the setup remains fully
non cooperative. That is, we identify a path along which, by taking explicitly into
account the externality, firms performs environmental R&D investments not because
of some altruistic or environmental concern but for pure profit-seeking reasons.6

The game among unregulated firms yields multiple steady state equilibria, all
of them (except of course the quasi-static solution replicating the Cournot outcome
forever) being characterised by positive R&D efforts at all times, except possibly
doomsday. In summary, the appraisal of our analysis of private incentives can be
outlined as follows. First, the static game captures the main feature of one of the
steady states we identify, but cannot grasp the essence of what happens along the
optimal path to this long run equilibrium. Secondly, the remaining two equilibria,
both emerging whenever the stock of polluting emissions vanishes, are linked by

3See, e.g., Klemperer (2007).
4To this regard, see Downing and White (1986), Milliman and Prince (1989), Damania (1996),
Scott (1996), Chiou and Hu (2001), Mohr (2002), Hart (2004), Greaker (2006) and Poyago-
Theotoky (2007), inter alia.
5See Lutz et al. (2000), Amacher et al. (2004), Lombardini-Riipinen (2005), André et al. (2009)
and Bottega and De Freitas (2009), inter alia.
6In a similar setting, Benchekroun and Chaudury (2011) show that imposing a Markovian tax on
emissions may bring about a stable cartel, while this does not happen with a uniform tax.
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saddle point trajectories which exit the least preferable point to enter the most desir-
able one, as far as profit, consumer surplus and social welfare are concerned. This
is a desirable property, entirely driven by profit incentives, which in the present case
are not in conflict with social preferences.

Then, we examine two modified versions of our setup: in the first one, a social
planner concentrates the production of the good in a unique plant, whereby the ac-
tivity of R&D takes place in N different structures (due to the decreasing returns to
scale characterising the R&D technology). In this case, five steady state points exist,
one of which replicates the perfectly competitive allocation that would emerge un-
der social planning in the corresponding static version of the model. Yet, a relevant
feature of this equilibrium is that the planner would be able to reach it only in the
very specific (and totally unrealistic) case where the production of the final good
were not polluting the environment at all.

The second extension takes into account the possibility of regulating profit-
seeking firms via the introduction of a Pigouvian tax associated to the environmental
externality. In this case, we show that the tax can be designed so as to induce the
industry to yield the first best level of social welfare that is unattainable under plan-
ning, although of course the associated surplus distribution is not the same as it
would be at the first best.

The remainder of the paper is structured as follows. Section 2 briefly outlines the
static version of the game. The setup of the dynamic problem and the related trajec-
tory analysis are laid out in Sect. 3, where we also compare the profit and welfare
performance of the industry in correspondence of the multiple steady state equi-
libria. In Sect. 4 we examine the behaviour of the model under social planning. In
Sect. 5 we illustrate the effects of Pigouvian taxation on the equilibrium behaviour
of profit-seeking firms as well as the related welfare levels and provide an interpre-
tation for such a tax. Section 6 contains our concluding remarks.

2 A Summary of the Static Problem

As a preliminary step, we revisit the static Cournot game in order to highlight the
lack of R&D incentives to decrease the amount of polluting emissions characterising
firms. The market is supplied by N single-product homogeneous-good firms. The
market inverse demand function is p = a−Q, with Q=∑N

i=1 qi , qi being firm i’s
output. Technology is the same for all firms alike, and it is summarised by the cost
function C = cqi . Supplying the final good entails a negative environmental exter-
nality S =∑N

i=1 biqi , where bi = b− ki ≥ 0; b measures the marginal contribution
of each firm to the stock of pollutants; ki is the R&D effort of firm i to decrease
its individual amount of pollution,7 and it involves a convex cost Γi = rk2

i , r > 0.

7Here we assume firm-specific externalities and R&D activities, as it appears to be reasonable in
examining investments in environmental-friendly technologies. Hence, we rule out the possibility
of spillovers in R&D.
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Consequently, firm i’s instantaneous profits are πi = (p− c)qi −Γi . This game has
a two-stage structure: in the first stage, firms non-cooperatively and simultaneously
set their respective R&D efforts; in the second, they compete à la Cournot-Nash.
The solution concept is subgame perfection by backward induction.

The optimal individual output in the second stage is q∗ = (a − c)/(N + 1),
whereby the profit function at the first stage reads as πi = (q∗)2 − rk2

i . This clearly
entails that ∂πi/∂ki < 0, and therefore the optimal R&D investment is nil, yielding
the static Cournot-Nash profits πCN = (q∗)2. On this basis, one has to introduce
some form of environmental taxation, no matter whether it is firm-specific or not,
to induce firms to take into account the presence of the externality and indeed carry
out some R&D efforts to reduce it. As we shall see in the following sections, this
is not necessarily the case if one adopts a properly dynamic approach to this is-
sue.

3 The Dynamic Setup

As in the static model, consider a Cournot oligopoly with N single-product
homogeneous-good firms interacting over continuous time t ∈ [0,∞). At any time
t , the demand function is p(t)= a−Q(t), with Q(t)=∑N

i=1 qi(t), qi(t) being the
instantaneous individual output of firm i. All firms use the same productive tech-
nology, described by the cost function Ci(t) = cqi(t). The production of the final
output involves a negative environmental externality S(t), evolving according to the
following dynamics:

Ṡ(t)= dS

dt
=

N∑

i=1

bi(t)qi(t)− δS(t), (1)

where δ > 0 is a constant decay rate and S(0)= S0 > 0 is the initial condition. The
coefficient bi(t) ≥ 0, with bi(0) = bi0 ≥ 0, measures the marginal contribution to
the stock of pollution that the production of firm i entails. Depending on the R&D
effort ki(t) of i, it evolves over time according to the following equation:

ḃi (t)= bi(t)
[
η− ki(t)

]
, η > 0. (2)

That is, until ki is smaller than the threshold value η, bi is increasing. As in the static
game, the instantaneous cost associated with the R&D activity is Γi(t)= r(ki(t))

2,
with r > 0. Hence, firm i’s instantaneous profits are πi(t)= [p(t)− c]qi(t)−Γi(t),
and each firm i has to set qi(t) and ki(t) so as to maximise

Πi =
∫ ∞

0

{[
p(t)− c

]
qi(t)− Γi(t)

}
e−ρtdt, (3)
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under the state equations (1) and (2) and the initial conditions. Parameter ρ > 0 is a
constant discount rate common to all firms.

3.1 Equilibrium Analysis

From now on, we will omit the time argument for simplicity, whenever possible. The
solution concept is the open-loop Nash equilibrium.8 The current-value Hamiltonian
of firm i is:

Hi (·) = [p− c]qi − Γi + λiṠ +μii ḃi +
∑

j =i
μij ḃj

= (σ −Q)qi − rk2
i + λiṠ +μii ḃi +

∑

j =i
μij ḃj , (4)

where σ ≡ a − c > 0 denotes the market dimension.
The necessary conditions (FOCs) are:

∂Hi

∂qi
= σ − 2qi −Q−i + λibi = 0, (5)

where Q−i ≡∑j =i qj , and

∂Hi

∂ki
= −2rki −μiibi = 0. (6)

Note that no μij (t) appears in the FOCs, thus it does not affect the model’s equilib-
rium structure. The adjoint equations read as follows:

λ̇i = (ρ + δ)λi (7)

μ̇ii = [ρ − η+ ki]μii − λiqi (8)

μ̇ij (t) = [ρ − η+ kj (t)
]
μij (t)− λi(t)qj (t). (9)

From (5) and (6) one obtains, respectively:

λi = −σ − 2qi −Q−i
bi

, (10)

μii = −2rki
bi

. (11)

The associated (necessary) transversality conditions are:

8Note that, since (2) contains a product between a control and a state, the model is not a linear-
quadratic one, and therefore there exists no obvious candidate for the optimal value function that
one should adopt to solve the feedback game.
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lim
t→∞ e−ρtλi(t)S(t) = 0;

lim
t→∞ e−ρtμii(t)bi(t) = 0; (12)

lim
t→∞ e−ρtμij (t)bj (t) = 0.

Before carrying out the equilibrium analysis, it is worth dwelling upon the in-
terpretation of the above necessary conditions. First of all, note that (7) admits the
solution λi(t) = 0 at all times, which in turn allows μii(t) = 0 to be a solution to
(8). In such a case, the dynamic model would immediately reproduce the very same
outcome of the static game, with no investments at all at any time and the static
Cournot-Nash equilibrium replicated at all t :

Proposition 1 Adjoint equations admit the solution λi(t) = μii(t) = 0 at all t ∈
[0,∞). This entails qi(t)= σ/(N + 1) and ki(t)= 0 for all i = 1,2,3, . . . ,N at all
t ∈ [0,∞).

However, if the R&D control is always nil and the output control is always equal
to the static Cournot-Nash solution, the level of pollution would explode to plus
infinity unless bi(0)= bi0 = 0, i.e., unless the polluting features of productive tech-
nology are not an issue because technology itself is already clean at the very outset
(which of course makes the entire story a trivial one).

Additionally, adjoint equations (7)–(8) also admit non-nil solutions which, by
definition, do not appear in the static version of the game. This has some interesting
implications as to the firms’ incentive to invest in environmental-friendly technolo-
gies. To shed light on this aspect, we may propose the following observations.

Equation (5) produces firm i’s instantaneous best reply:

q∗
i (Q−i )= σ −Q−i + λibi

2
(13)

This yields firm i’s optimal output for any given vector of the rivals’ outputs, irre-
spective of the value of the costate vector λ−i (t). In particular, note that (13) does
not convey any information as to λ−i (t), but simply instructs firm i as to the even-
tual profitability of a strategy involving a non-nil shadow value λi(t). To assess this
perspective, we proceed as follows.

The best reply q∗
i (Q−i ) shifts inwards (resp. outwards) w.r.t. its static counter-

part for all λi < 0 (resp., λi > 0). Equivalently, (10) takes a negative value for all
Q<Nσ/(N+1), i.e., whenever the industry output is lower than its static Cournot-
Nash level (and conversely). Now, if λi < 0, the inward shift of best reply functions
entails an output contraction that, nonetheless, is driven by a fully non cooperative
behaviour. Also, note that (8) yields μii < 0 for all ki > 0. The fact that adjoint
variables are negative indicates that firm i attaches a negative shadow value to its
marginal contribution to the increase in the pollution stock. Yet, the output contrac-
tion opens the possibility that the firm increases its profits instant by instant, even if
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a costly R&D project for a greener technology is undertaken.9 That is, the incentive
to adopt the investment strategy associated with λi(t) < 0 is highlighted by the flow
of instantaneous gains exemplified by:

πCN(k = 0)≡ σ 2

(N + 1)2
< (p̂− c)̂q − rk2 ≡ π̂ (k > 0) (14)

for non-empty sets of values of k > 0 and q̂ ∈ (0, σ
N+1 ). During the game, firm i may

smooth the R&D investment not because she has developed any environmentally-
oriented conscience of her own, but rather in order to be able to keep the output at
a quasi-collusive level forever. In other words, from the firms’ viewpoint, the R&D
cost Γi is the fee to be paid to build up a path replicating that of a cartel in quanti-
ties, without actually taking any implicitly collusive attitude that would constitute a
target for the antitrust authority.10 Conversely, from consumers’ viewpoint, a higher
market price is what they have to pay in return for a cleaner environment.

Having said that, we may proceed to the characterisation of the equilibrium be-
haviour. One can impose symmetry across quantities, costate variables and states:

qi = qj = q, λi = λj = λ, (15)

μii = μjj = μ, bi = bj = b. (16)

From the FOCs (5) and (6) one also obtains the control equations:

q̇ = λḃ+ λ̇b

N + 1
, k̇ = −μḃ+ μ̇b

2r
(17)

which can be rewritten, using (7)–(8) and (10)–(11), leading to the following state-
control dynamical system:

Ṡ = Nbq − δS (18)

ḃ = b(η− k) (19)

q̇ = [(N + 1)q − σ ][ρ + δ + η− k]
N + 1

(20)

k̇ = ρk − q[σ − (N + 1)q]
2r

(21)

Although the equations (18)–(19) and (20)–(21) are not decoupled, we can stress
that, given any solution curve (q∗(t), k∗(t)) of equations (20)–(21), we can obtain

9Using a repeated game with infinite Nash reversion, Damania (1996) finds that firms may not be
willing to buy pollution-abating technologies if the associated exogenous cost is too high.
10Moreover, this eliminates any issue concerning the possibility of unilateral deviations, as it is the
outcome of a fully noncooperative behaviour.
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the state trajectories by applying the methods of separation of variables and La-
grange’s variation of constants to (18)–(19):

b∗(t) = b0e
ηt−∫ t0 k∗(s)ds, (22)

S∗(t) =
(
S0 + b0

∫ t

0

(
e(η+δ)s−

∫ s
0 k

∗(τ )dτ )q∗(s)ds
)
e−δt . (23)

In particular, note that if the costate variables are not identically zero, then the
transversality condition concerning S(t) becomes:

lim
t→∞ e−ρtλi0e(ρ+δ)t

(
S0 + b0

∫ t

0

(
e(η+δ)s−

∫ s
0 k

∗(τ )dτ )q∗(s)ds
)
e−δt

= lim
t→∞λi0

(
S0 + b0

∫ t

0

(
e(η+δ)s−

∫ s
0 k

∗(τ )dτ )q∗(s)ds
)

= 0

if and only if S0 = −b0
∫∞

0 (e(η+δ)s−
∫ s

0 k
∗(τ )dτ )q∗(s)ds, meaning that this is the re-

lation between the initial conditions of the state variables leading to a non-trivial
equilibrium structure. That is, when such relation holds, the optimal trajectories
will approach the steady states described in the following Proposition.

Expressions (22) and (23) imply that both b∗
i (t) and S∗(t) > 0 are non negative

at all times (except, possibly, doomsday in which they are nil) Before inspecting the
stationary points of the above dynamic system, it is worth observing that, using the
time elimination method, we can write the derivatives ratio:

q̇

k̇
= 2r[(N + 1)q − σ ][ρ + δ + η− k]
(N + 1)[2rρk − q(σ − (N + 1)q)] = dq

dk
(24)

indicating the slope of the open-loop Nash trajectory in the control plane.
The sign of (24) is evaluated in

Remark 2 Take q ∈ (0, σ
N+1 ). Then, dq/dk < 0 for all

k ∈
(

min

{
ρ + δ + η,

q(t)[σ − (N + 1)q]
2rρ

}
,

max

{
ρ + δ+ η,

q[σ − (N + 1)q]
2rρ

})
.

That is to say, for any individual output level lower than the Cournot-Nash out-
put, there exists an admissible range of values for k wherein the two controls are
substitutes at a generic point in time, during the game. In such a case, any output
contraction with respect to the Cournot-Nash static equilibrium drives some R&D
effort for cleaner technologies.
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Steady state equilibria are described by the following:

Proposition 3 The stationary points of the system are:

PA = (SA, bA, qA, kA)=
(

0,0,
σ

N + 1
,0

)
,

PB = (SB, bB, qB, kB)= (0,0, qB, δ+ ρ + η),

PC = (SC, bC, qC, kC)= (0,0, qC, δ+ ρ + η),

where

qB = σ −√σ 2 − 8r(N + 1)(ρ + δ + η)ρ

2(N + 1)
,

qC = σ +√σ 2 − 8r(N + 1)(ρ + δ + η)ρ

2(N + 1)
.

Proof Imposing the stationarity condition k̇ = 0 yields

k(q)= q[σ − (N + 1)q]
2rρ

(25)

which can be plugged into q̇ = 0 to obtain the following solutions:

qA = σ

N + 1
; qB,C = σ ±√σ 2 − 8r(N + 1)(ρ + δ + η)ρ

2(N + 1)
(26)

with qB,C ∈ R+ for σ >
√

8r(N + 1)(ρ + δ + η)ρ. By substituting in (25) we have
that kB,C = δ + ρ + η.

In correspondence of the Cournot-Nash optimal quantity qA, we have kA = 0,
SA = 0, bA = 0. �

The following results show the dynamic behaviour of the optimal solutions:

Proposition 4 PA, PB and PC are saddle points of the system.

Proof The Jacobian matrix of the state-control system reads as:

J =

⎛

⎜⎜⎜
⎜
⎝

−δ Nq Nb 0
0 η− k 0 −b
0 0 ρ + δ + η− k −q + σ

N + 1

0 0
1

2r

[
2(N + 1)q − σ

]
ρ

⎞

⎟⎟⎟
⎟
⎠
. (27)

J (PA) has the eigenvalues λ1 = −δ < 0, λ2 = η > 0, λ3 = ρ + δ + η > 0 and
λ4 = ρ > 0, subsequently PA is a saddle point.
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The analysis of the remaining two equilibria is slightly more difficult: both J (PB)
and J (PC) admit the negative eigenvalues λ1 = −δ < 0 and λ2 = −ρ − δ < 0, so
the stability properties of those two points depend on the roots of the characteristic
polynomials of the submatrices, for j = B,C:

⎛

⎜⎜
⎝

ρ + δ + η− kj −qj + σ

N + 1

1

2r

[
2(N + 1)qj − σ

]
ρ

⎞

⎟⎟
⎠ , (28)

i.e.

pj (λ)= λ2 − ρλ− 1

2r

(
−qj + σ

N + 1

)[
2(N + 1)qj − σ

]
. (29)

If j = B , the two remaining eigenvalues are complex with real part ρ/2 > 0,
whereas if j = C, they are real and at least one of them is positive, hence PB and
PC are saddle points too. �

In the above Proposition, we have used the term saddle point with reference to
the presence of eigenvalues with different signs. However, as is well known, a saddle
point can be reached starting from initial states that can be subject to more or less
stringent conditions. In particular, this requires delving into the details of PA:

Remark 5 The steady state PA is degenerate, as it can be reached only along an
equilibrium trajectory which solves (18)–(19) for b0 = 0 and for any S0 > 0, i.e., it
is completely contained in the half-line determined by the intersection of the hyper-
spaces b= 0, q = σ

N+1 , k = 0, with the stock of pollution asymptotically decreasing
to 0.

That is, the equilibrium reproducing the Cournot-Nash outcome can be attained
iff the technology is already fully environmental-friendly from the outset, which
makes this case quite peculiar and somewhat uninteresting. Or, put it in other terms,
the requirement on b0 indicates that the prediction of the static game is far from
convincing. Completely different considerations apply to the remaining two steady
states, that are attainable for b0 > 0.

Proposition 6 In the half-space k > η, along each equilibrium trajectory of the
system close to PB and PC the state variables S and b are monotonically decreasing
to 0.

Proof The stationary points PB and PC belong to the half-space k > η. The eigen-
vectors of J (PB) and J (PC) imply that the stable subspaces Es(PB) and Es(PC)
are spanned by the vectors of the canonical basis of R4: (1,0,0,0) and (0,1,0,0),
that is the trajectories on the respective stable manifolds are heading towards the
equilibrium coordinates S = 0, b= 0. �
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Fig. 1 On the control plane,
the saddle point trajectories
either leave the Cournot-Nash
equilibrium PA or spiral
around PB . The feasibility of
PC is ensured

The economic meaning of the previous results is clear: in correspondence of the
two points PB and PC the stock of pollution tends to diminish and finally disappears.

From the standpoint of the dynamical behaviour of the system, in the above-
mentioned half-space the Nash trajectories approach PB in the control plane, spiral
around it and then head towards PC , which is a saddle point in the sense that there
exists a phase curve contained in the control plane which enters PC . As we will see
in next subsection, this is good news because in that point higher levels of profit and
social welfare can be reached with respect to PB .

The figure we are showing is sketched with the help of Mathematic@ 5.0, after
suitably setting the relevant parameters:

N = 20, σ = 1, ρ = 3 · 10−2,

η = 10−2, r = 10−2, δ = 10−2.

In the plot we can visualize the sketches of some equilibrium trajectories on the
(k, q) control plane, with the same parameter values as in Fig. 1. On such a plane,
coherently with the eigenvalues of (28), PB = (0.16,0.08) is clearly an unstable
focus, whereas PC = (0.16,0.38) is a saddle point.

Moreover, the optimal R&D effort of the representative firm is positive at any
time t during the game. Or, put it the other way around, any non-zero value of the
co-state variable attached to the dynamics of the individual firm’s contribution to the
increase of the pollution stock ensures that the firm itself has indeed an incentive to
invest in R&D activities for pollution abatement all along the game.

3.2 Profit and Welfare Assessment

In this section we compare the optimal quantities, the level of profits and of social
welfare associated to the three steady states.
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Proposition 7 For every admissible σ , N , r , ρ, δ, η, we have qA > qC > qB .

In steady state, the profit levels are the following:

π(PA) = σ 2

(N + 1)2
, (30)

π(PB) = σqB −Nq2
B − r(ρ + δ + η)2, (31)

π(PC) = σqC −Nq2
C − r(ρ + δ + η)2. (32)

On the basis of (30)–(32), we can state:

Proposition 8 The profits π(PB) and π(PC) are positive if either of the following
holds:

1. ρ ≥ δ + η;
2. ρ < δ + η and

2
√

2(N + 1)(δ + η− ρ) < σ <
[
(N + 1)(δ + η)+ (1 −N)ρ

]
√
r(δ + η+ ρ)

δ + η− ρ
.

Assuming that the parameters are such that profits are indeed non negative, we
can make a comparison to assess the relative desirability of the three outcomes:

Proposition 9 The following inequalities hold:

1. π(PC) > π(PB) irrespective of parameter values;
2. π(PA) > π(PC) if ρ ∈ [0, δ + η).

The intuition behind the above result is that PA is characterised by a larger output
level (which, per se, would be detrimental for profits) but the corresponding R&D
effort is nil (which in turn is good news for profits), while the remaining two steady
states are characterised by lower output levels in combination with positive R&D
efforts. In particular, it is noteworthy observing that the Cournot-Nash solution may
be worse than the steady state PC where the firm indeed invests in R&D, despite the
fact that pollution does not affect its profits.

Now we turn to consumer surplus CS(Pi), i = A,B,C, in the three equilibria.
Note that, in principle, the definition of consumer surplus would be

CS(Pi)= Q2
i

2
− Si, (33)

where Qi is the sum of outputs and Si is the pollution stock at the i-th steady
state. Since S = 0 always in steady state, we can summarise the resulting ranking as
follows:
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Proposition 10 Over the entire admissible range of parameters, we have CS(PA) >
CS(PC) > CS(PB).

Finally, we are going to evaluate social welfare. Assuming symmetry throughout
all the oligopolists, the social welfare function SW(Pi) evaluated at the steady state
Pi reads as:

SW(Pi) = Nπ(Pi)+ CS(Pi)

= N
[
(σ −Nqi)qi − rk2

i

]+ N2q2
i

2
− Si

= N
(
σqi − rk2

i

)− N2q2
i

2
− Si, (34)

for i =A,B,C, to obtain:

Proposition 11 Over the entire admissible range of parameters, we have SW(PA) >

SW(PC) > SW(PB).

Propositions 7–11 also entail:

Corollary 12 Any ρ ∈ [0, δ + η) suffices to ensure that private and social prefer-
ences over the spectrum of steady state equilibria are reciprocally aligned.

This essentially relies upon the fact that the industry R&D effort in PA is nil.
Note however that, as we have outlined above, PA is indeed degenerate.

4 Social Planning

We assume that the benevolent planner uses a single plant for the production of
the consumption good (in view of the constant returns to scale characterising the
related technology), while keeping N R&D labs, as this activity features decreasing
returns. Hence, the list of variables reduces toN+1 controls and two states, namely,
S and b. The Hamiltonian of the planner is:11

HSP (·)=
{
(σ − q)q + q2

2
− S −Nrk2 + λ(bq − δS)+μb(η− k)

}
(35)

11We attribute to the planner the same time discounting that we have used to measure firms’s time
preferences in the previous section. One might, however, suppose that the planner’s discount rate
be significantly lower than firms (possibly even nil), in order to give an appropriate weight to the
welfare of future generations. For a thorough appraisal of this issue, see the Stern Review (Stern
2007) as well as Dasgupta (2007), Nordhaus (2007) and Weitzman (2007).
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where subscript SP stands for social planning. The necessary conditions are:

∂HSP

∂q
= σ − q + λb= 0; (36)

∂HSP

∂k
= −N(μb+ 2rk)= 0; (37)

−∂HSP

∂S
= λ̇− ρλ ⇔ λ̇= (ρ + δ)λ+ 1; (38)

−∂HSP

∂b
= μ̇− ρμ ⇔ μ̇= (ρ − η+Nk)μ− λq. (39)

With respect to the case of competition, observe that, under social planning, in
steady state it cannot be that λ = μ = 0. By manipulating the above conditions,
we obtain the following state-control system:

Ṡ = bq − δS (40)

ḃ = b(η−Nk) (41)

q̇ = b+ (q − σ)(ρ + δ + η−Nk) (42)

k̇ = ρk − q(σ − q)

2r
(43)

Unlike the oligopoly game we have investigated above, the planner’s problem yields
five steady state points:

Proposition 13 The stationary points of the system are:

PSP1 = (SSP1, bSP1, qSP1, kSP1)= (0,0, σ,0),

PSP2 = (SSP2, bSP2, qSP2, kSP2)=
(

0,0, qSP2,
δ + ρ + η

N

)
,

PSP3 = (SSP3, bSP3, qSP3, kSP3)=
(

0,0, qSP3,
δ + ρ + η

N

)
,

PSP4 = (SSP4, bSP4, qSP4, kSP4)=
(

2rηρ(ρ + δ)

δN
,bSP4,

bSP4

ρ + δ
,
η

N

)
,

PSP5 = (SSP5, bSP5, qSP5, kSP5)=
(

2rηρ(ρ + δ)

δN
,bSP5,

bSP5

ρ + δ
,
η

N

)
,

where

qSP2 =
√
Nσ −√Nσ 2 − 8r(ρ + δ+ η)ρ

2
√
N

qSP3 =
√
Nσ +√Nσ 2 − 8r(ρ + δ+ η)ρ

2
√
N
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Fig. 2 The five steady state
points in the space (k, q, S)

bSP4 = (ρ + δ)(
√
Nσ −√Nσ 2 − 8rηρ)

2
√
N

bSP5 = (ρ + δ)(
√
Nσ +√Nσ 2 − 8rηρ)

2
√
N

Proof Imposing stationarity on the R&D effort yields

k = q(σ − q)

2rρ
(44)

which can be plugged into q̇ = 0 to obtain the following solutions:

qSP1 = σ ; qSP2,3 =
√
Nσ ∓√Nσ 2 − 8r(ρ + δ+ η)ρ

2
√
N

(45)

with qSP2,3 ∈ R+ for σ >
√

8r(ρ + δ+ η)ρ/N . This in turns implies kSP2,3 = (δ+
ρ+η)/N . The corresponding state coordinates are S = 0, b= 0. On the other hand,
if b = 0, ḃ = 0 in k = η/N and plugging this expression into k̇ = 0, we obtain
qSP4,5. Consequently, q̇ = 0 yields bSP4,5 and finally Ṡ = 0 produces SSP4,5. �

Figure 2 locates the five steady state points emerging under social planning in
three dimensions, in the space (k, q, S). Note that the equilibrium points PSP4 and
PSP5 entail a positive amount of pollution and therefore do not belong to the control
plane. The existence of the fourth and fifth solutions depends on the fact that the
dynamics of the output level (42) depends on b, denoting that the planner indeed
takes into account the environmental impact of the production technology when
choosing the output level.

The Jacobian matrix is:
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J =

⎛

⎜⎜⎜
⎝

−δ q b 0
0 η−Nk 0 −Nb
0 1 ρ + δ + η−Nk −N(q − σ)

0 0
1

2r
(2q − σ) ρ

⎞

⎟⎟⎟
⎠
. (46)

By repeating a procedure analogous to the one carried out to produce Proposition 4,
we can prove that:

Proposition 14 PSP1, PSP2, PSP3, PSP4 and PSP5 are saddle points.

Next we are going to evaluate the profits and the social welfare levels at each
equilibrium point.

π(PSP1) = 0,

π(PSP2) = π(PSP3)= r

N

(
ρ2 − (δ + η)2

)
, (47)

π(PSP4) = π(PSP5)= ηr

N
(2ρ − η).

Proposition 15

1. If ρ ∈ (δ+η,∞), then the profits π(PSP2), π(PSP3), π(PSP4) and π(PSP5) are
positive;

2. if ρ ∈ (δ + η, δ + 2η), then π(PSP2)= π(PSP3) < π(PSP4)= π(PSP5).

The social welfare associated to the steady states is computed as follows:

SW(PSP i)= π(PSP i)+ q2
SP i

2
− SSP i, i = 1, . . . ,5, (48)

and yields, respectively:

SW1 = SW(PSP1)= σ 2

2
,

SW2 = SW(PSP2)

= σ 2

4
− σ

√
σ 2N − 8r(ρ + δ + η)ρ

4
√
N

− r(δ + η)(δ + η+ ρ)

N
,

SW3 = SW(PSP3) (49)

= σ 2

4
+ σ

√
σ 2N − 8r(ρ + δ + η)ρ

4
√
N

− r(δ + η)(δ + η+ ρ)

N
,

SW4 = SW(PSP4)= σ 2

4
− σ

√
σ 2N − 8rηρ

4
√
N

− rη[2ρ2 + δ(η+ ρ)]
δN

,

SW5 = SW(PSP5)= σ 2

4
+ σ

√
σ 2N − 8rηρ

4
√
N

− rη[2ρ2 + δ(η+ ρ)]
δN

.
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Proposition 16

1. SW1 > SW5 > SW4 and SW3 > SW2 over the whole admissible range of param-
eters;

2. if ρ ∈ (δ + η, δ + 2η) and δ > 2η, then SW5 > SW3.

The steady state replicating the perfectly competitive outcome of the static model
would look like the most desirable one, since the related level of social welfare
exceeds all the remaining ones. However, it remains out of reach for all b0 > 0.12

Additionally, there exists a subset of the admissible range of parameters in which
the steady state PSP5 is both privately and socially preferable to all the steady state
allocations arising from the open-loop Nash game among unregulated firms. With
this in mind, we turn now our attention to the design of a Pigouvian tax/subsidy that
may adjust firms’ incentives so as to drive them to reproduce PSP1.

5 Effects of a Pigouvian Taxation

In this section, a Pigouvian tax rate θ > 0 is introduced, with taxation taking the
form of a linear function of the environmental externality produced by the industry.
We are going to investigate the role of θ as an incentive for firms to adjust their
production activity in order to reach the social optimum, but we are not going to take
into account the effect of the revenue from this tax. In fact, we may assume that the
industry under consideration is negligible with respect to the whole economy, hence
the income effect of the Pigouvian tax revenue does not alter the market demand
structure.

Such a taxation affects each current-value Hamiltonian function, which now
writes as:

Hi (·)=
(

σ −
n∑

j=1

qj

)

qi − rk2
i − θS + λiṠ +μii ḃi +

∑

j =i
μij ḃj . (50)

As in Benchekroun and Long (1998, 2002), our objective here is to investigate
whether this Pigouvian tax rate can be designed so as to reproduce the same so-
cial welfare level characterising the first best (that the planner himself would be, in
general, unable to attain). This assumption leaves the FOCs (5) and (6) unchanged,
whereas the adjoint equations (7) become:

λ̇i (t)= (ρ + δ)λi(t)+ θ. (51)

12That is, the equivalent of Remark 5 holds here. The proof of this fact follows the same lines as
for the Cournot equilibrium of the open-loop game among firms. The details have been omitted for
brevity.
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The state-control system is as follows:

Ṡ = Nbq − δS (52)

ḃ = b(η− k) (53)

q̇ = [(N + 1)q − σ ][ρ + δ + η− k] + θb

N + 1
(54)

k̇ = ρk− q[σ − (N + 1)q]
2r

(55)

As a consequence of taxation, firms’ cost structure is modified to account for pol-
lution, and therefore q̇ depends on θb. As a consequence, also k̇ depends on θb.
Therefore,

dq

dk
= 2r[((N + 1)q − σ)(ρ + δ + η− k)+ θb]

(N + 1)[2rρk − q(σ − (N + 1)q)] (56)

and the slope of the Nash trajectory in the control plane becomes sensitive to pollu-
tion thanks to the Pigouvian tax rate.

Also in this case, multiple equilibrium points appear. Provided that the market is
large enough, σ > 2

√
2(1 +N)rρ(ρ + δ + η), we obtain three steady states corre-

sponding to no pollution:

(S1, b1, q1, k1) =
(

0,0,
σ

N + 1
,0

)
;

(S2, b2, q2, k2) =
(

0,0,
σ −√σ 2 − 8(1 +N)rρ(ρ + δ + η)

2(1 +N)
,ρ + δ + η

)
; (57)

(S3, b3, q3, k3) =
(

0,0,
σ +√σ 2 − 8(1 +N)rρ(ρ + δ + η)

2(1 +N)
,ρ + δ + η

)
.

Moreover, as in the social planning case, two further equilibria with positive stocks
of pollution exist:

(S4, b4, q4, k4) =
(

2ηNrρ(δ + ρ)

δθ
,
(δ + ρ)(σ −√σ 2 − 8η(1 +N)rρ)

2θ
,

4ηrρ

σ −√σ 2 − 8η(1 +N)rρ
,η

)
; (58)

(S5, b5, q5, k5) =
(

2ηNrρ(δ + ρ)

δθ
,
(δ + ρ)(σ +√σ 2 − 8η(1 +N)rρ)

2θ
,

4ηrρ

σ +√σ 2 − 8η(1 +N)rρ
,η

)
. (59)
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The steady states (58) and (59) depend on the Pigouvian tax rate: in particular, notice
that qθ4 > qθ5 and that the associated steady state levels of pollution are decreasing
in θ .

At this stage, it is worth carrying out a comparative analysis of the social welfare
equilibrium levels again. Let qθi , Sθi , πθi and SWθ

i be, respectively, the i-th steady
state values in the present case, the levels of social welfare SWθ

i is computed by the
following formula:

SWθ
i = (Nqθi )

2

2
+Nπθi − Sθi . (60)

Evaluating (60) at the two steady states affected by the tax rate, we have:

SWθ
4 = ηNr

[
η

(
− 8Nrρ2

(σ −√σ 2 − 8(1 +N)ηrρ)2
− 1

)

+ 2ρ

(
2σ

σ −√σ 2 − 8(1 +N)ηrρ
− δ + ρ

δθ

)]
;

SWθ
5 = ηNr

[
η

(
− 8Nrρ2

(σ +√σ 2 − 8(1 +N)ηrρ)2
− 1

)

+ 2ρ

(
2σ

σ +√σ 2 − 8(1 +N)ηrρ
− δ + ρ

δθ

)]
,

(61)

so SWθ
4 > SWθ

5 irrespective of all the parameter values.
Now we compare SWθ

4 with the maximum social welfare level that would be

obtained under social planning case, i.e. SW1 = σ 2

2 , in order to derive the threshold
values of the tax rate that allows to reach SW1 under oligopolistic competition.

If we consider SWθ
4 as a function of θ ∈ (0,∞), we can stress that it takes nega-

tive values when θ is close to zero:

lim
θ→∞ SWθ

4

= 2ηNr[4ηrρ(η+ ηN − ρN)− (2ρ − η)σ (σ −√σ 2 − 8(1 +N)ηrρ)]
(σ −√σ 2 − 8(1 +N)ηrρ)2

. (62)

Moreover, SWθ
4 is strictly increasing, consequently admitting a horizontal asymp-

tote, whose level is positive if ρ ∈ ( η2 , η(1+N)
N

). Call K := K(η, r, ρ,N,σ ) such a
positive level.

If K > σ 2

2 , then the optimal tax rate θ∗ entailing the identity SW1 = SWθ∗
4 is

given by:

θ∗ = 4ηNrρ(δ+ ρ)

δ(2K − σ 2)
. (63)
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An analogous procedure can be carried out with SWθ
5, where it can be easily ascer-

tained that the tax rate θ∗∗ such that SW1 = SWθ∗∗
5 exceeds θ∗ and the inequality

with respect to the related externality levels is inverted, i.e. Sθ
∗

4 > Sθ
∗∗

5 . In other
words, the tax rate that allows to reproduce the social welfare SW1 is higher and
corresponds to a higher level of output and pollution.

This seemingly counterintuitive fact relies on the identity leading to the value
(63):

SWθ
4,5 = πθ4,5 + CSθ4,5 − Sθ4,5 = σ 2

2
, (64)

implying

θ = 4ηNrρ(δ + ρ)

δ[2(πθ4,5 + CSθ4,5)− σ 2] . (65)

Thus, inequality qθ4 > qθ5 affects the denominator of the previous relation, because
π4 +CS4 > π5 +CS5. Hence, the first best social welfare can be obtained by moving
along two different paths: either with a larger quantity and a lower price but a higher
externality level, or conversely with a smaller quantity and a higher price but a lower
externality.13

5.1 An Interpretation of the Pigouvian Tax

The remarkable feature of the latter result is that, starting form a situation where the
command optimum (point PSP1) reproducing the perfectly competitive outcome is
not, in general, attainable under planning except in the uninteresting case where the
productive technology is completely green at the outset, it is nonetheless true that
there exist an optimal stationary industrial policy whereby the regulator can drive
profit-maximising firms to yield the same steady state welfare level associated with
the first best, although of course at the price of a different surplus allocation and
environmental externality. If the regulator is interested in the size of the total pie but
not in the relative size of its slices, this is a price that he might well be willing to
pay.

We can also provide further interpretation of θ : (51) implies that the presence
of a Pigouvian taxation induces firms to shrink output levels as compared to the
unregulated setting, whenever λi(0) < 0. That is, the policy maker, being aware of

13Note that the corresponding steady state profits are independent of θ :

πθ4,5 = δσ (σ ± √
Ω)− 2η(N + 1)rΥ

2δ(N + 1)2

where Ω = σ 2 − 8ηρ(N + 1)r and Υ = 2ρ2(N + 1)N + δ[η(N + 1)+ 2ρN2]. There exist admis-
sible parameter regions where the above profits are strictly positive.
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the tradeoff between the price effect and the external effect implied by any change
in output, is willing to accept an increase in price (as a result of the related higher
degree of quasi-collusion) for the sake of reducing the environmental externality.

Furthermore, a direct comparison between (7) and (51) shows that the former
admits the nil solution, whereas the latter does not, meaning that for every θ > 0 no
degenerate solution exists. In other words, no firm is allowed to attach a nil shadow
price to the pollution stock, so all of them must take its accumulation dynamics
into account. If we call λ∗

i (t) the solution to (7) and λθi (t) the solution to (51),
and assume equal initial conditions, i.e. in both cases the i-th firm assigns the same
shadow price to pollution at time t = 0, solving the two equations leads us to deduce
that θ corresponds to the following ratio:

θ = (ρ + δ)
λθi (t)− λ∗

i (t)

e(ρ+δ)t − 1
. (66)

Equation (66) highlights that the Pigouvian tax not only compels all firms to take
into account the pollution accumulation, but is also proportional to the difference
between the shadow prices respectively with and without taxation at each instant of
time. Substantially, it provides an instantaneous measure of how much more weight
firms are obliged to attribute to pollution when they are taxed.

6 Concluding Remarks

We have revisited the issue of the incentive for firms to carry out R&D efforts aimed
at introducing environmental-friendly technologies. Contrary to the acquired view
establishing that such an incentive is lacking due to the fact that firms fail to in-
ternalise the environmental externality, the dynamic approach we have adopted in
the foregoing analysis shows that firms do have an R&D incentive in this direction
throughout the game, although it may indeed vanish in one specific steady state,
which portrays the equilibrium outcome of the corresponding static game. Such an
incentive has no altruistic nature, being associated with a quasi collusive decision
on output levels whereby any environmentally-oriented R&D is accompanied by a
price increase.

Moreover, we have investigated the behaviour of the model under the assumption
that a benevolent planner controls production and R&D, showing that the perfectly
competitive outcome with marginal cost pricing and a totally clean technology is one
of the possible steady states of the system, but is feasible only if initial conditions
are such that the environmental externality is not an issue from the very outset.

Yet, as a (partial) remedy, we have found that there exists a feasible stationary
Pigouvian tax rate able to induce profit-maximising firms to follow a path leading
to the very same aggregate steady state welfare as in the first best.

The foregoing analysis can be extended in several directions, to examine feed-
back solutions, the implications of international trade with transboundary pollution
and uncertainty affecting both the accumulation of pollution and the R&D outcome,
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all of these issues to be nested into a general equilibrium approach. These extensions
are left for future research.
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Appendix: List of Symbols

• N : number of oligopolistic firms;
• qi(t): i-th firm’s output at time t ;
• Q−i (t): aggregate output of all firms except the i-th one at time t ;
• Q(t): aggregate output of all firms at time t ;
• ki(t): R&D effort level of the i-th firm at time t ;
• p(t) = a −Q(t): inverse market demand function at time t , where a > 0 is the

related reservation price;
• Ci = cqi(t): production cost function for the i-th firm at time t , where c > 0 is

the related marginal cost;
• bi(t): marginal contribution of the i-th firm to the stock of pollution at time t ;
• S(t): aggregate stock of pollution at time t ;
• Γi(t) = rki(t)

2: R&D cost function for the i-th firm at time t , weighted by the
constant r > 0;

• πi(t)= (p(t)− c)qi(t)− Γi(t): profit function for the i-th firm at time t ;
• η > 0: regeneration rate for the marginal contribution of firms over time;
• δ > 0: decay rate for the stock of pollution over time;
• ρ > 0: intertemporal discount rate of the market;
• σ = a − c > 0: market dimension parameter;
• λi(t), μii , μij : shadow prices attached by firms to all the dynamic constraints of

the model;
• CS: consumer surplus;
• SW: social welfare.
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Utmost Fear Hypothesis Explores Green
Technology Driven Energy for Sustainable
Growth

Chihiro Watanabe and Jae-Ho Shin

1 Introduction

Japan constructed a sophisticated co-evolutionary dynamism between innovation
and institutional systems by transforming external crises into a springboard for new
innovation. This can largely be attributed to the unique features of the nation to
have a strong motivation to overcoming fear based on xenophobia and uncertainty
avoidance as well as abundant curiosity, assimilation proficiency, and thoroughness
in learning and absorption (Hofstedo 1991; Watanabe and Zhao 2006).

Such explicit dynamism was typically demonstrated by technology substitution
for energy in the 1970s (Watanabe 1999). This accomplishment can largely be at-
tributed to similar substitution efforts in the 1960s which resulted in technology
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Fig. 1 Trends in technology substitution for production factors in the Japanese manufacturing
industry (1955–1997)—Allen partial elasticity of substitution. Source: Watanabe (1999)

Fig. 2 Energy consumption per GDP in 40 countries (2004). Source: IEA (2008a)

substitution for labor leading to world top-level labor saving and automation tech-
nologies (Shin 2009).

Supported by institutional systems for innovation, technology substitution for
scarce resources functioned well in Japan typically in technology substituted for
energy started from 1973 as demonstrated in Fig. 1 (Watanabe 1996; IEA 2008a).
Figure 1 clearly illustrates complementary relationship between energy and technol-
ogy before the first energy crisis in 1973 has changed to substitution after the crisis.

These cumulative technology substitution efforts subsequently enabled Japan to
achieve a high-technology miracle in the 1980s.

Consequently, Japan demonstrates the world’s highest energy efficiency as illus-
trated in Fig. 2. Furthermore, technology substitution for scarce resources led Japan
demonstrates world top level of manufacturing technology.

Japan’s unique institutional systems enabled conspicuous energy efficiency im-
provement in energy dependent industry in Japan as demonstrated in Fig. 3.

Thus, Japan constructed a sophisticated co-evolutionary dynamism between in-
novation and institutional systems by transforming external crises into a springboard
for new innovation as illustrated in Fig. 4 which can largely be attributed to Japan’s
unique features of the nation to have (i) a strong motivation to overcoming fear
based on xenophobia and uncertainty avoidance, (ii) while abundant curiosity, as-
similation proficiency, and thoroughness in learning and absorption (Hofstedo 1991;
Watanabe and Zhao 2006).

This unique institutional system led to high level of MPT (Marginal Productivity
of Technology) leveraging conspicuously high level of elasticity of technology sub-
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Fig. 3 Trend in unit energy consumption in the Japanese manufacturing industry (1965–
1998)—Index: 1973 = 100

Fig. 4 Japan’s notable dynamism in transforming external crises to a springboard for new innova-
tion

stitution for constrained production factor X (T/X) leading to a shift from energy
to technology (T/E) in the face of the energy crises, and productivity of technology
increase (Y/T ) which generate notable energy productivity as a multiplier effect
of these accomplishment (Y/E = (T /E)× (Y/T )). Enhanced energy productivity
relaxed the energy constraints and enabled sustainable growth which again induced
higher MPT leading to constructing a virtuous cycle between foregoing improve-
ment as illustrated in Fig. 4.

While the dramatic increase in oil prices in the mid-2008 has signaled the pos-
sibility of a paradigm shift to a post-oil society, and not a few works demonstrated
entrepreneurial strategies toward such a society (e.g., Bell 1973), none has identi-
fied the possible impacts of the sequel that such utmost fear ever experienced might
provide even after overcoming the fear.

By applying Japan’s notable dynamism, this paper attempted to identify a pos-
sible inducement that utmost fear may transform crises into a springboard for new
innovation.

In line with the increasing significance of production, diffusion and consump-
tion integration, and subsequent significance of the gratification of consumption for
constructing a sustainable development dynamism, by applying a habit persistence
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hypothesis (Modigliani 1968) in which utmost gratification of consumption plays
a decisive role in consumption behavior, an utmost fear hypothesis was developed.
Given the unique features of the Japanese nation to have a strong motivation to over-
coming xenophobia and uncertainty avoidance, Japan’s innovation endeavor is very
sensitive to such an utmost fear.

An empirical analysis based on the experience of a dramatic increase in oil prices
was then conducted assuming photovoltaic solar cell (PV) development which is an-
ticipated to play a leading role as technology-driven energy substituting for fossil
energy (Watanabe et al. 2002) since it is a sophisticated renewable energy genera-
tion system by converting solar radiation into direct current electricity using semi-
conductors and transforming customers into producers of eco-friendly energy.

Despite a locational disadvantage as a mid-latitude country, Japan has taken a
leading role in world PV development. Exceeding the level of the US in 1999,
Japan maintained the world leading position in PV development before transfer-
ring this position to Germany in 2007 and then to China. Three main factors have
been critical to the successful development of PV technology in Japan (Watan-
abe et al. 2002). First, like semiconductors, PV technology is central to a com-
plex web of related technologies and can therefore benefit greatly from learning
effects. Second, because of the interdisciplinary nature of PV development, tech-
nology spillover benefits are high, in turn further stimulating learning effects. Third,
because of standalone, flexibility with respect to size, application and portability as
well as multi-generational technological development, PV technology incorporates
self-propagating development in its functionality similar to mobile phone (Watan-
abe et al. 2009). All corresponds to Japan’s explicit learning and assimilation ability
based on abundant curiosity, assimilation proficiency, and thoroughness in learn-
ing and absorption. Consequently, PV can be considered a crystal of institutional
innovation suits to Japan’s institutional systems (Watanabe et al. 2011).

On the basis of an empirical analysis on the development trajectory in Japan’s PV
development over the last 3 decades and also simulation analysis for the next two
decades based on the experience of a dramatic increase in oil prices as US$147/b in
July 2008, by utilizing the Bi-logistic growth model and Bass model, it was demon-
strated that utmost fear plays a role similar to utmost gratification in consumption in
leveraging a shift from resistance of innovation to supra-functionality development
which incorporates social, cultural, aspirational, and emotional needs beyond eco-
nomic value (McDonagh 2008) aiming at establishing a non-oil dependent resilient
society.

In the current environment of simultaneous global economic stagnation, and
given increasing concern regarding Japan’s model for transforming a crisis into a
springboard for new innovation, the foregoing analysis provides an important sug-
gestion to firms with respect to their entrepreneurial strategy under open innovation
in a post-oil society. Japan’s March 11 catastrophe accelerates this demand.

Section 2 reviews utmost fear hypothesis leveraging a new innovation. Sec-
tion 3 analyzes Japan’s PV development trajectory. An empirical analysis aiming at
demonstrating the utmost fear hypothesis is introduced in Sect. 4. Section 5 briefly
summarizes the new findings, policy implications and the focus of the future works.
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Fig. 5 Utmost fear hypothesis in Japan’s PV development

2 Utmost Fear Hypothesis Leveraging a New Innovation

As reviewed in the preceding section, endogenous source of self-propagating func-
tionality development (FD) can be expected by habit persistence hypothesis in that
utmost gratitude of consumption plays a decisive role. Utmost fear like the dramatic
increase in oil prices may play a similar role and leverages a shift from resistance
of innovation (Bauer 1995) to supra-functionality (McDonagh 2008). Aiming at
demonstrating this hypothetical view, an empirical analysis taking Japan’s PV de-
velopment in corresponds to the trend in oil prices was conducted.

Figure 5 illustrates the scheme of utmost fear hypothesis in Japan’s PV devel-
opment characterized by its unique feature of the nation sensitive to utmost fear
ever experienced while incorporating explicit comparative advantage in PV devel-
opment.

As mentioned earlier, Japan’s institutional systems incorporate strong motivation
to overcoming fear based on xenophobia and uncertainty avoidance which react
sensitively to provide necessary countermeasures against signals to the possibility
of a paradigm shift to a post-oil society. In order to provide necessary countermea-
sures against such signals, its unique features with abundant curiosity, assimilation
proficiency and thoroughness in learning and absorption inevitably look for such in-
stitutional innovation as beneficiating from learning effects and spillover technology
with self-propagating development nature. Since PV satisfies these requirements as
a crystal of institutional innovation, high priority endeavor to its development should
be natural consequence prompting an utmost fear hypothesis as illustrated in Fig. 5.
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Fig. 6 Industrial network induced by PV development. a IPP: Independent Power Producer.
Source: Authors’ elaboration based on METI (Ministry of Economy and Industry) (2008)

3 PV Development Trajectory

Figure 6 illustrates the industrial networks induced by PV development in Japan.
Figure 6 demonstrates that Japan’s PV research institutes as well as makers of rele-
vant industrial chain have established a comprehensive industrial network enabling
Japan the leading PV development role in the global market.

Such a comprehensive industrial network can be attributed to government-
industry joint work in overcoming Japan’s fatal constraints in energy supply. The
scarcity of natural conventional energy resources in Japan necessitates to accelerate
the development and introduction of technology driven energy as PV.

Given the public nature of securing energy and risks and uncertainty indispens-
able for innovation, the Japanese government took initiative in endeavoring PV de-
velopment and dissemination. Figure 7 demonstrates Japan’s PV development tra-
jectory over the last 3 decades.

Starting from the Sunshine Project undertaken immediately after the first en-
ergy crisis in 1973, successive efforts encompassing such broad approach as silicon
(crystal and thin film), compound (mono crystal and poly crystal) and organic (pig-
ment and nano-type) have been sustained aiming at developing next generation PV
system. Joint work between the government, primarily national corporation NEDO
(New Energy and Industrial Technology Development Organization) as well as gov-
ernment research institutes, and industry, primarily initiated by R&D consortium
PVTECH, has been accelerated under the New Sunshine Program established in
1993 toward the development of the next generation PV system.
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Fig. 7 Japan’s PV development trajectory (1974–2008). aCIS: Copper-Indium-Diselenide com-
pound PV. Source: Authors’ elaboration based on METI (Ministry of Economy and Industry)
(2009)

Table 1 and Fig. 8 review trends in PV development in the world over the period
1976–2007.

The Table and Figure demonstrate Japan’s intensive endeavor in PV development
as prospecting technology driven energy (Watanabe 1995, 1996; Watanabe et al.
2000; Watanabe and Asgari 2004). Japan exceeded its PV development level that
of the US in 1999 and took the world leading position in this development in the
world. However, Germany accelerated PV development from 2007 and since then
the world leading position shifted from Japan to Europe and then to China.

On the basis of these trends in the world PV development, Table 2 and Fig. 9
demonstrate trends in cumulative PV development in the world over the period
1976–2007.

The Table and Figure demonstrate Japan’s leading position in cumulative PV
development since exceeding that of the US in 2000.
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Table 1 Trends in PV
development in the world
(1976–2007): MW

Source: PV Energy System
Inc.: PV News (Monthly
Issue)

Year Japan USA Europe Others Total

1976 0.01 0.32 0 0 0.33

1977 0.03 0.42 0 0 0.45

1978 0.06 0.84 0 0 0.90

1979 0.1 1.2 0 0 1.3

1980 0.3 2.5 0.3 0 3.1

1981 1.0 3.5 0.8 0 5.3

1982 2.1 5.2 1.4 0.1 8.8

1983 5.0 8.2 3.3 0.3 16.8

1984 8.9 8.0 3.6 0.8 21.3

1985 10.1 7.7 3.4 1.4 22.6

1986 12.8 7.1 4.0 2.3 26.2

1987 13.2 8.7 4.5 2.8 29.2

1988 12.8 11.1 6.7 3.0 33.6

1989 14.2 14.1 7.9 4.0 40.2

1990 16.8 14.8 10.2 4.7 46.5

1991 19.8 17.1 13.4 5.0 55.3

1992 18.8 18.1 16.4 4.6 57.9

1993 16.7 22.4 16.6 4.4 60.1

1994 16.5 25.6 21.7 5.6 69.4

1995 17.4 34.8 21.1 6.4 79.7

1996 21.2 38.9 18.8 9.8 88.7

1997 35.0 51.0 30.4 9.4 125.8

1998 49.0 53.7 33.5 18.7 154.9

1999 80.0 60.8 40.0 20.5 201.3

2000 128.6 75.0 60.7 23.4 287.7

2001 171.2 100.3 86.4 32.6 390.5

2002 251.1 120.6 135.1 55.1 561.9

2003 363.9 103.0 193.4 83.8 744.1

2004 602.0 139.0 314.0 140.0 1195.0

2005 832.6 154.0 470.0 302.0 1758.6

2006 927.5 201.6 678.3 714.0 2521.4

2007 920.0 266.1 1062.8 1484.0 3732.9

Given the phased PV development with generations as demonstrated in Fig. 7,
aiming at tracing its development by phases, on the basis of the trend in cumulative
PV development in Japan, Table 3 analyzes the composition of Japan’s PV develop-
ment trajectory over the period 1976–2007 by utilizing the Bi-logistic growth model.
Figure 10 illustrates the result of this analysis and demonstrates the PV development
trajectory by decomposing phases 1 (Y1) and 2 (Y2) trajectories depending primarily



Utmost Fear Hypothesis Explores Green Technology Driven Energy 199

Fig. 8 Trends in PV development in Japan, the USA and Europe

on crystalline silicon based technology and on thin-film silicon technology, respec-
tively.

Looking at the Table and Figure we note that Y1 reaches its carrying capacity
(upper ceiling) with 500 MW level. Y1 changed from increase diffusion velocity to
its decrease at inflection point in 2003 with 250 MW level. While Y2 reaches its
carrying capacity with 10,000 MW, Y2 changes from increase diffusion velocity to
its decrease at inflection point in 2009 with 5,000 MW level.

4 Utmost Fear Hypothesis

4.1 Optimal Functionality Development Dynamics

(1) Functionality Development Trajectory in Japan’s PV Figure 11 demon-
strates estimation of Japan’s two phases of PV development trajectory over the pe-
riod 1976–2007 analyzed by utilizing the Bi-logistic growth model as demonstrated
in Table 3 and Fig. 10.

This phased development trajectory with generation suggests the self-developing
mechanism of PV development as illustrated in Fig. 7.

(2) Optimal FD On the basis of the foregoing analyzes, optimal functionality de-
velopment (FD) trajectory in Japan’s PV development was analyzed. Figure 12 illus-
trates scheme of the identification of optimal FD trajectory (see details Appendix).

(3) Optimal FD Dynamics Leading to Supra-functionality As demonstrated in
the preceding analysis, similar to mobile phones (Watanabe et al. 2009, 2011), PV
incorporates self-propagating mechanisms in its development trajectory, and firms
make every effort in maintaining sustainable FD in the “Innofumption (innovation
through diffusion) dynamism,” optimal FD trajectory should be endeavored in cor-
respond to maximizing the gratification of consumption. With such understanding,



200 C. Watanabe and J.-H. Shin

Table 2 Trends in
cumulative PV development
in the World (1976–2007):
MW

Original source: PV Energy
System Inc.: PV News
(Monthly Issue)

Year Japan USA Europe Others Total

1976 0.01 0.32 0 0 0.33

1977 0.04 0.74 0 0 0.78

1978 0.10 1.58 0 0 1.68

1979 0.2 2.8 0 0 3.0

1980 0.5 5.3 0.3 0 6.1

1981 1.5 8.8 1.1 0 11.4

1982 3.6 14.0 2.5 0.1 20.2

1983 8.6 22.2 5.8 0.4 37.0

1984 17.5 30.2 9.4 1.2 58.3

1985 27.6 37.9 12.8 2.6 80.9

1986 40.4 45.0 16.8 4.9 107.1

1987 53.6 53.7 21.3 7.7 136.3

1988 66.4 64.8 28.0 10.7 169.9

1989 80.6 78.9 35.9 14.7 210.1

1990 97.4 93.7 46.1 19.4 256.6

1991 117.2 110.8 59.5 24.4 311.9

1992 136.0 128.9 75.9 29.0 369.8

1993 152.7 151.3 92.5 33.4 429.9

1994 169.2 177.0 114.2 39.0 499.4

1995 186.6 211.7 135.3 45.4 579.0

1996 207.8 250.6 154.1 55.2 667.7

1997 242.8 301.6 184.5 64.6 793.5

1998 291.8 355.3 218.0 83.3 948.4

1999 371.8 416.1 258.0 103.8 1149.7

2000 500.4 491.0 318.7 127.2 1437.3

2001 671.6 591.4 405.0 159.8 1827.8

2002 922.7 712.0 540.1 214.9 2389.7

2003 1286.6 815.0 733.4 298.7 3133.7

2004 1888.6 954.0 1047.4 438.7 4328.7

2005 2721.2 1108.0 1517.4 740.7 6087.3

2006 3648.7 1309.6 2195.7 1454.7 8608.7

2007 4568.7 1575.7 3258.5 2938.7 12341.6

PV development trajectory under certain investment intensity (cost minimum) that
maximizes utility function (utility maximum) leading to utmost gratification of con-
sumption (FD maximum) was analyzed based on optimal theory.

Figure 13 compares trend in actual level of FD in Japan’s PV development trajec-
tory over the last decade with that of optimal level of FD estimated by the foregoing
optimal dynamics analysis.
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Fig. 9 Trends in cumulative PV development in Japan, the USA and Europe (1976–2007): MW

Table 3 Estimation of Japan’s PV diffusion by the Bi-logistic growth model (1976–2007): MW.
Model: Y (t)= Y1(t)+ Y2(t)= N1

1+b1·e−a1 t
+ N2

1+b2·e−a2 t

Parameter Estimate t-value adj. R2

N1 0.5 × 103 34.62 0.999

N2 10.0 × 103 713.21

a1 4.58 × 10−1 12.73

b1 26.0 × 105 3.60

a2 3.98 × 10−1 41.34

b2 4.59 × 105 3.59

Sub trajectory Inflection point Sub trajectory Rate of obsolescence

(monthly) ρ

Y1 t#1 = lnb1
a1

28.9 (2003) 1/(28.9 × 12)= 0.003

Y2 t#2 = lnb2
a2

34.5 (2009) 1/(34.5 × 12)= 0.002

Japan’s PV development trajectory over the last decade demonstrates this dynam-
ics suggesting a possibility of follower (optimal level) substitutes for leader (actual
level) in open innovation. Among new concept PV systems are expected to grow,
the most promising is dye-sensitized solar cells. Their early-stage products will be
introduced into markets in 2008.

In 2006, NEDO (New Energy and Industrial Development Organization) has
started public offering of PV field test. Its main purpose is to encourage the improve-
ment of the necessary performance and lower cost for the full-fledged diffusion of
PV.

(4) Dynamism Leading to Supra-functionality Dynamism leading to supra-
functionality of Japan’s MP (mobile phone), Web and PV can be demonstrated
in Fig. 14. This Figure suggests that new FD frontier (e-mail transmission, Really
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Fig. 10 Trends in diffusion trajectory of PV development in Japan (1976–2007): MW

Fig. 11 Estimation of Japan’s PV development trajectory by the Bi-logistic growth model
(1976–2007): MW

Simple Syndication (RSS), and next generation PV system (NGPVS), respectively)
which instills in users an “exciting story on their own initiatives as heroes/heroines”
thrills them with gratification beyond economic value. Sky Walker has incorporated
new social, cultural and aspirational value of MP. Similar to MP, Web and PV also
demonstrates that RSS (Really Simple Syndication) and NGPVS (Next Generation
PV System) incorporate new FD frontier depicting “exciting story on their own ini-
tiatives as heroes/heroines.”

Based on this Figure, MP e-mail transmission by Sky Walker suggesting supra-
functionality substituted for resistance to new innovation and exploring new FD
frontier leads to instill customers through mew communication community. Web
also demonstrates supra-functionality through RSS 2.0, which enabling new FD
frontier to encourage user participation embraced by Web publisher.

Similarly, the concept of supra-functionality in PV can be illustrated in Fig. 15.
This Figure demonstrates that in line with the advancement of technology, Japan’s
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Fig. 12 Scheme of the identification of optimal FD trajectory

Fig. 13 Comparison of optimal and actual levels of FD in Japan’s PV development trajec-
tory (1976–2007). aFD#: Utmost FD level: Level of FD at its emergence (Rogers, Mahajan
and Moore). bTrajectory that satisfy investment intensity maximizing utility, cost minimum and
FD maximum and depicted by the following equations (see Appendix) (Watanabe et al. 2011):
FD∗ = a

2·(a+ρ)·ρ · (−a + (a2 + 4 · (a+ρ)·ρ·(a+1)
a

)1/2) where a and ρ: velocity of diffusion and dis-
count coefficient (rate of obsolescence of technology), respectively. Y1(a,ρ) = Y1(0.46,0.003)
and Y2(a,ρ)= Y2(0.40,0.002) (see Table 3)

PV development trajectory has been shifting from suppliers initiative to users initia-
tive, and from economic value to social, cultural and Aspirational value correspond-
ingly. Consequently, supra-functionality substituted for resistance to innovation in
2006 and stimulated by preceding innovation, new FD frontier was incorporated in
PV in 2006 instilling users “exciting story,” similar to Sky Walker in MP.

4.2 PV Development Inducement Against Utmost Fear

(1) Trends in Oil Prices (1972–2008) International oil prices demonstrated its
peak level US$40/b in 1980 as a consequence of the 2nd oil crisis in 1979 as demon-
strated in Fig. 16. While they changed to declining trend due to glut circumstances
in the 1980s and the 1990s, they changed to dramatic increase from 2004. They
recorded historical highest level as US$137/b in mid-2008 and changed to decline
as demonstrated in Fig. 17.

(2) Prospects of Oil Prices (2009–2030) While international oil prices changed
to decline with the peak in mid-2008, they are anticipated to change to increasing
trend again in long run. IEA estimated that they will increase to 200 US$/b in 2030
as illustrated in Fig. 18 and Table 4.
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Fig. 14 Dynamism leading to supra-functionality of MP, Web and PV in Japan

Fig. 15 Supra-functionality in PV development

(3) Possible PV Development Trajectories (1976–2030) Given the sensitive na-
ture of PV development as an oil-alternative energy sensitive to oil prices, such an
increase in oil prices inevitably accelerates PV development as has been broadly
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Fig. 16 Trend in oil prices (1960–2008): current prices (US$/b). aPrices in 2008 is based on the
average of monthly statistics between January and November 2008. Source: CIF import prices over
the period 1960–1975 and International oil prices by WTI (West Texas Intermediate) (IEA 2008b)
over the period 1976–2008

Fig. 17 Trend in oil prices (Jan. 1986–Nov. 2008): current prices (US$/b). Source: International
oil prices by WTI (West Texas Intermediate)

demonstrated by dramatic increase in PV development after the dramatic hike in oil
prices in mid-2008.

Based on this correlation, Fig. 19 provides possible scenario of Japan’s PV de-
velopment toward 2030. On the basis of the estimate of PV development trajectory
over the period 1976–2007 by means of Bi-logistic growth model as demonstrated
in Table 3, PV development estimate scenario over the period 2008–2030 induced
by oil prices increase were estimated with 20%, 30%, 50%, and 60% higher increase
than the estimate by the Bi-logistic growth model without taking into account of the
utmost fear effect.

On the basis of the foregoing scenario, with the possible estimate of the increase
in oil prices as 5 US$/b p.a. increase from 2009 as illustrated in Fig. 19 (this estimate
is lower than that of IEA), comparative analysis of the inducing impacts of oil prices
increase on the advancement of Japan’s PV was attempted, Table 5 summarizes the
result of the analysis.

Table 5 compares inducing impacts of oil prices increase on the advancement
of PV between direct impact and comprehensive impacts with utmost fear. While
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Fig. 18 Prospect of international oil prices (1976–2030). Source: Author’s estimation scenario
based on World Energy Outlook 2008 (Watanabe 1996)

Table 4 Prospect of international crude oil prices (2007–2030): US$/b

2007 2010 2015 2020 2025 2030

Current prices 69.0 107.3 120.3 148.2 175.1 206.4

2007 fixed prices 69.0 100.0 100.0 110.0 116.0 122.0

Source: World Energy Forecast 2008 (IEA 2008a)

Fig. 19 Prospects of PV development in Japan (1986–2030)a. aEstimate based on the Bi-logistic
growth model over the period 1976–2007; estimate scenario over the period 2008–2030 are 20%,
30%, 50%, and 60% p.a. higher increase than the estimate by the Bi-logistic growth model, respec-
tively. Source: Authors’ estimation scenario based on World Energy Outlook 2008 (IEA 2008a)

the former simply analyzes the correlation between oil prices and PV development,
the latter analyzes the impacts of the “utmost fear ever experienced” by taking the
impacts of the balance between the highest level and the level in respective year.
Table 5 clearly indicates that comprehensive impacts with utmost fear demonstrate
statistical significance.
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Table 5 then compare statistical significance between 6 scenario estimated with
respect to possible accelerated PV development as a consequence of oil prices in-
crease as estimated in Fig. 19 and indicates that 60% increase p.a. scenario with
highest F value demonstrates statistically most significant.

These analyzes demonstrate that dramatic hike in oil prices induces accelerated
PV development as a reaction to utmost fear and a dramatic increase in oil prices
as US$137/b experienced in July 2008 induces dramatic acceleration of Japan’s PV
development as 5 times higher level than that of 2008 in 2015.

(4) Effects of Utmost Fear in Inducing PV Development On the basis of the
result of the foregoing empirical analysis, effects of utmost fear in inducing PV
development were analyzed.

PV production X can largely be attributed to the inducement of international oil
prices P as follows:

X = F(P ) (1)

Given that g and ρ indicate initial increase rate of X and rate of obsolescence of
cumulative stock of PV Y , respectively, Y can be depicted as follows:

Y ≈ X

g+ ρ
(2)

Provided that g+ ρ ≡A is stable, (2) can be rewritten as follows:

Y ≈ X

A
(3)

Taylor expansion of (1) to the first term

lnX = a + b1 lnP (4)

lnAY = a + b1 lnP (4′)
lnY = (a − lnA)+ b1 lnP ≡ a1 + b1 lnP (4′′)

where a, b1, and a1 (= a − lnA): coefficients.
Following habit persistent hypothesis in consumption theory, comprehensive im-

pacts of Y increase with utmost fear can be depicted as follows:

lnY = a2 + b2 ln
(
P ∗ − P

)
(5)

where P ∗: utmost highest prices of oil; and a1, b1: coefficients.
Price elasticity to cumulative PV stock can be developed from (4′) and (5) as

follows:1

1From (5), under P ∗ � P condition,

lnY = a2 + b2 lnP ∗
(

1 − P

P ∗

)
≈ a2 + b2 lnP ∗ − b2

P

P ∗ = a′
2 − b′

2P

where a′
2 = a2 + b2 lnP ∗, and b′

2 = b2
P ∗

d lnY

dP
= −b′

2,
d lnY

d lnP
= d lnY

dP
P = −b′

2P = −b2
P

P ∗
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Fig. 20 Elasticity of oil prices to PV development in comprehensive impacts with utmost fear
(1986–2015)

Fig. 21 Elasticity of oil prices to PV development in comprehensive impacts with utmost fear
(1986–2015)

ε1 ≡ ∂ lnY

∂ lnP
= b1 for direct impact (6)

ε2 ≡ ∂ lnY

∂ lnP
= −b2

P

P ∗ for comprehensive impacts with utmost fear (7)

On the basis of equations (6) and (7), both elasticity of oil prices to PV devel-
opment in direct impact (DI) and comprehensive impacts with utmost fear (CIUF)
were compared.

Figures 20 and 21 demonstrate the result of the comparison. Looking at the Fig-
ures we note that CIUF proves extremely lower elasticity of oil prices to PV de-
velopment demonstrating consistent PV development independent from oil prices
decrease (explicit ratchet effect).

(5) Impacts of Oil Prices Increase in Inducing PV Development Endeavors
Such inducement can be demonstrated by significant correlation between oil prices
and number of PV endeavors measured by number of PV development projects.
Such endeavors enable substitution of supra-functionality PV for resistance to its
introduction.

Figure 22 demonstrates trends in number of PV endeavors by means of number
of PV development projects appeared in monthly issue of PV News over the period
1997–2008.

Table 6 summarizes the result of the correlation analysis between oil prices and
number of PV development in Japan and also in abroad over the period 1997–2008.
Table 6 indicates statistically significance demonstrating that oil prices increase def-
initely induces PV development endeavors both in Japan and in abroad.
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Fig. 22 Trends in number of PV endeavors (Jul. 1997–Oct. 2008)a. aNumber of projects endeav-
oring to PV development introduced by PV News (see details in Appendix). Source: PV News (PV
Energy System Inc., monthly issue)

Table 6 Impacts of oil prices increase in inducing PV development endeavors in Japan and abroad
(Jul. 1997–Oct. 2008): 3 months moving average

adj. R2 DW

lnNJapan = 2.839 + 0.118D1 lnP + 0.146D2 lnP + 0.198D3 lnP + 0.168D4 0.881 1.47

(39.96) (5.14) (7.81) (12.37) (13.47)

lnNabroad = 1.010 + 0.467D1 lnP + 0.533D2 lnP + 0.600D3 lnP + 0.183D4 0.975 1.10

(13.36) (19.11) (26.90) (35.32) (13.77)

lnNtotal = 2.821 + 0.260D1 lnP + 0.302D2 lnP + 0.361D3 lnP + 0.123D4 0.977 1.39

(62.38) (7.79) (25.49) (35.51) (15.57)

where N Japan, N abroad, and N total: number of projects endeavoring to PV development in Japan,
abroad, and World total, respectively introduced by PV News; P : international oil prices (US$/bbl
at current prices) by WTI (West Texas Intermediate); and Di (i = 1–4): dummy variables with
following classifications:

Dummy variables Aug. 1997–Mar. 2002 Apr. 2002–Feb. 2007 Mar. 2007–Sep. 2009

D1 1 0 0

D2 0 1 0

D3 0 0 1

Prompted by these observations, the following analysis demonstrates PV devel-
opment endeavors among Japan, abroad and total over the period 1997–2008:

N =AebiDi t (i = 1–3) (8)

lnN = lnA+ biDit (8′)

where N : PV development endeavors; A and bi : coefficients; Di : dummy variable;
and t : time trend.
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Table 7 Impacts of PV development endeavors in Japan and abroad (Jul. 1997–Oct. 2008):
3 months moving average

adj. R2 DW

lnNJapan = 3.117 + 0.0028D1t + 0.0032D2t + 0.0050D3t + 0.176D4 0.883 1.40

(157.05) (5.10) (13.70) (25.06) (14.09)

lnNabroad = 2.202 + 0.008D1t + 0.010D2t + 0.012D3t + 0.172D4 0.978 1.00

(112.94) (13.87) (43.89) (62.72) (14.01)

lnNtotal = 3.492 + 0.004D1t + 0.006D2t + 0.008D3t + 0.121D4 0.973 1.06

(262.36) (10.44) (35.34) (56.87) (14.18)

where N Japan, N abroad, and N total: number of projects endeavoring to PV development in Japan,
abroad, and World total, respectively introduced by PV News; and Di (i = 1–4): dummy variables
with following classifications:

Dummy variables Aug. 1997–Mar. 2002 Apr. 2002–Feb. 2007 Mar. 2007–Sep. 2009

D1 1 0 0

D2 0 1 0

D3 0 0 1

Table 8 Increase rate of PV development endeavors in Japan and abroad (Jul. 1997–Oct. 2008):
3 months moving average

D1 (97/8–02/3) D2 (02/4–07/2) D3 (07/3–08/10) D3/D2 increase

Japan 3.3 3.8 6.0 60%

Abroad 9.6 12 14.4 20%

Total 4.8 7.2 9.6 33%

Equation (8′) can be developed as following equation (9):

!N

N
= biDi (9)

Based on (9), increase rate of PV development endeavors can be identified. Ta-
ble 7 demonstrates the significant impacts of PV development endeavors and dra-
matic increase trend.

On the basis of correlation analysis in Table 7, dramatic increase rate can be
identified as summarized in Table 8.

Table 8 demonstrates a conspicuous increase rate of PV development endeavors
and also this suggests that Japan’s distinguished efforts for new innovation toward
a post-oil society. Furthermore, Japan accomplished the highest increase rate of PV
development endeavors compared to aboard and total.

Consequently, Japan’s innovation toward PV development is further anticipated.
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5 Conclusion

In light of the increasing concern regarding Japan’s model for transforming a crisis
into a spring board for new innovation in the current environment of simultaneous
global economic stagnation and also a signal of the possibility of a paradigm shift to
a post-oil society triggered by the dramatic increase in oil prices in mid-2008, this
paper attempted to identify a new entrepreneurial strategy toward such a society by
applying Japan’s notable dynamism.

Given increasing concern on Japan’s model for transforming a crisis into a
springboard for new innovation particularly in the current environment of global
economic stagnation, identification of innovation dynamism toward a post-oil soci-
ety based on this approach is Japan’s significant contribution to the global commu-
nity.

Based on the review of Japan’s notable dynamism in transforming a crisis into
a springboard for new innovation and also the increasing significance of produc-
tion, diffusion and consumption integration, utmost fear hypothesis leveraging the
new innovation toward a post-oil society was examined by means of an empirical
analysis on the development trajectory in Japan’s PV development.

Noteworthy findings obtained include:

(i) Japan constructed a sophisticated co-evolutionary dynamism between innova-
tion and institutional systems by transforming external crises into a springboard
for new innovation.

(ii) This was typically demonstrated by technology substitution for energy in the
1970s enabling Japan to achieve a high-technology miracle in the 1980s.

(iii) This can be attributed to the unique features of the nation to have a strong
motivation to overcoming fear based on xenophobia and uncertainty avoidance
as well as abundant curiosity, assimilation proficiency, and thoroughness in
learning and absorption.

(iv) Since the dramatic increase in oil prices has signaled the possibility of a
paradigm shift to a post-oil society, a new entrepreneurial strategy toward such
a society is strongly expected.

(v) By applying a habit persistence hypothesis in which utmost gratification of
consumption plays a decisive role in consumption, an utmost fear hypothesis
was demonstrated.

(vi) Utmost fear plays a similar role to utmost gratification in leveraging a shift
from resistance of innovation to supra-functionality development aiming at es-
tablishing a non-oil dependent resilient society.

These findings suggest the following policy implications suggestive to firms with
respect to their entrepreneurial strategy under open innovation in a post-oil society:

(i) Utmost fear plays a similar role to utmost gratification in leveraging a shift
from resistance of innovation to supra-functionality development aiming at es-
tablishing a non-oil dependent resilient society.

(ii) Japan’s notable model in transforming external crises into a springboard for
new innovation should be broadly applied.
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(iii) Technology substitution for constraints should be pursued in the scope of the
integration between production, diffusion and consumption function.

(iv) Utmost functionality development should be endeavored aiming at supra-
functionality substitution for resistance of innovation.

(v) Utmost fear hypothesis should be applied for leveraging new innovation toward
a post-oil society.

(vi) PV development should be accelerated for new institutional innovation in a
post-oil society.

Further works should focus on the establishment of introduction and application
of utmost fear hypothesis in broader fields.

Appendix: Optimal Functionality Development in Response to
Utmost Fear

(1) Model Construction MP (mobile phone), Web and PV (photovoltaic) in
Japan,

(2) Optimal Control Problem for Functionality Development
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(3) Utility Function (Integrated Logarithmic Consumption Index)2)

(4) Hamiltonian System
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Transition Towards Renewable Energy
Supply—A System Dynamics Approach

Bo Hu, Armin Leopold, and Stefan Pickl

1 Introduction

There is no doubt that the resources which are daily consumed by modern industrial
nations, like fossil fuels of different kinds or the storage capacity of atmosphere for
CO2 and other greenhouse gases, are finite. Also indisputable is that all national
economies, the developed ones in particular, are all facing the need for substantial
energy transitions. However, there seems to be no consensus about how to shape the
structural conditions for this transition.

The electricity portfolio of the future will not focus any more on the two main
categories of electricity, the base load and the peak load. The challenge that lies in
store is to combine dispatchable, conventional (oil, coal and gas) and renewable but
non-dispatchable (wind and photovoltaic) electricity power stations to a sustainable
and reliable electricity supply portfolio.

In Germany the surely necessary target to reduce Greenhouse Gas emissions by
about 40% in 2020 compared to 1990 is considered to be challenging, especially
in combination with the decision to phase out nuclear power supply in 2022. The
decision is strongly supported by the public. It should be assumed, however, that no
substantial income loss or even economic down turn will be accepted in the context
of the energy transition.

According to statistical data by the German Federal Ministry of Economics and
Technology (BMWT 2011) wind and photovoltaic in Germany provide more than
23% of the capacity but less than 8% of the production in 2009 (Fig. 1). Moreover,
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Fig. 1 Wind and photovoltaic in Germany provide more than 23% of the capacity but less than
8% of the electricity production in 2009 (see BMWT 2011) (color figure online)

despite the high potential of 380 GW of wind and photovoltaic production capacity
of electricity in Germany (p. 63 in Umweltbundesamt 2010) both are not capable
to deliver dispatchable or even continuous power supply. Nevertheless, due to the
nature of wind and solar power there often exists a kind of temporarily electricity
surplus. Therefore, along with 150 GW wind and photovoltaic and 65 GW dispatch-
able (including bio mass and hydro power) capacity in 2025, pumped storage power
plants with a capacity of 30 GW and a electricity production of 10 TWh in Nor-
way are seen to be a central part of the energy plan for Germany presented by the
German Advisory Council on Environment (pp. 47–54 in SRU 2010).

Pumped storage is by far not the only way to store electrical energy and to
turn the intermittent renewable sources into dispatchable ones (see, e.g., Chen et
al. 2009). Especially with respect to the possible environmental impacts and costs
of the necessary transnational high-voltage transmission cables and huge water stor-
age reservoirs in Norway the conversion of renewable electricity into chemical fuels
is a considerable alternative. Methane or hydrogen can be produced with the help
of the Sabatier or electrolysis processes (see, e.g., Kolic and Clifford 1969; Lunde
and Kester 1972). Hydrogen can be then converted together with CO2 to synthetic
natural gas (SNG). However, it has to be mentioned that because of the energy con-
version processes only 30% to 40% of the originally generated wind power will
reach the end consumer (see p. 18 in Sterner et al. 2011). Nevertheless, the main
advantage of SNG is the fact that it can be directly stored and transported using
existing gas supply systems.

In July 2010 Germany’s Umweltbundesamt published a study which strengthens
the role of chemical storage systems based on “eE-methane” or “eE-hydrogen” pro-
duced by renewable electricity (p. 37 in Umweltbundesamt 2010). In Germany the
wind power stations are mainly located in the north while the large electricity con-
sumers are located mainly in central and southern Germany. To reduce the load of
the high-voltage transmissions cables in Germany renewable electricity can be used
to produce methane or SNG which can be then transported via the already existing
widely distributed gas pipeline system. Nowadays it is possible to enrich the natural
gas with up to 10% methane according the latest regulation changes in the German
electricity and natural gas supply law (Deutscher Bundestag 2005).



Transition Towards Renewable Energy Supply 219

Fig. 2 Electricity is
delivered from the grid (color
figure online)

Based on our previous research in the area of emissions trading under uncertain-
ties we are developing System Dynamics models which should depict the develop-
ment of the energy market in a highly aggregated form and can be used to compare
different possible pathways of the impeding energy transition. We use System Dy-
namics with the intention to make the modeling process more understandable while
approaching the politically active public and to provide a transparent decision sup-
port method in regard to different energy concepts.

The preliminary results of the simulation runs using this model show that the
SRU concept will only achieve 33% GHG mitigation in 2025 compared to 1990,
despite the high costs due to planned huge storage capacity. A more effective GHG
mitigation of about 40% can be achieved at lower cost by making use of higher wind
and photovoltaic capacities in combination with the capability to produce synthetic
natural gas using excess electricity from wind and solar energy.

In the following, we first introduce our System Dynamics model step by step
using a serial of Stock-and-Flow diagrams in Sect. 2. In Sect. 3 we present and
discuss some preliminary results of the simulations.

2 A System Dynamics Model for Electricity Supply

A System Dynamics model consists mainly of a number of interconnected stock and
flow variables. A “stock is an accumulation, or integration, or level, to choose ter-
minology from different fields. [A] flow changes the amount in [a] stock” (Forrester
2009). As shown in Fig. 2, electricity is delivered for Consumption from the
Grid. Both are implemented as stock variables in our model and denoted as rectan-
gles. The time specific consumption, Load, which is a flow variable and denoted as
a hexagon, can be characterized not only by the Year Load but also by the Load
Profile (in an hourly resolution). Notice that electricity cannot be stored without
special facilities. The stock Grid has thus to be reset to zero at the beginning of
each time step of the simulation.

Figure 3 depicts the Dispatchable power generation mainly using Chemi-
cal Fuel (or hydro power and geothermal power sources) on the one hand and
non-dispatchable power generation using wind and photovoltaic (WDPV) energy on
the other hand. The installed capacities are given by Dispatchable Capacity
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Fig. 3 Wind and
photovoltaic as well as power
plants using chemical fuels
feed the grid (color figure
online)

and WDPV Capacity respectively. WDPV Profile specifies the real wind and
solar power generation in an hourly resolution. The Net Load or residual load
is given by the difference of Load and WDPV. According to the notation we used
in this work a blue and opaque arrow (f. i. from Net Load to Dispatchable)
means a positive or concordant influence, whilst a red and transparent arrow (f. i.
from WDPV to Net Load) depicts a negative or an opposite effect.

Notice that Net Load may sometimes be negative. The higher the WDPV Ca-
pacity, the more often Net Load is negative, and the more it makes sense to
have the possibility to store electricity f. i. using pumped storage, as shown in
Fig. 4. A storage system and its state are characterized by Maximal Storage,
Maximal Storage Power and Storage Efficiency as well as Stored
Electricity. As long as Net Load < 0 and Filling Level < 1 the stor-
age is activated or Do Store > 0. Additionally, the storage is also activated if
Filling Level < Threshold.

The stored electricity can be called up to provide grid stability when Net Load
exceeds nearly the maximal Dispatchable Capacity. The Call Power is
limited by Maximal Call Power. Additionally, the call function is character-
ized by Call Efficiency and a Loss of Stored Electricity caused by
a technology specific Loss Rate has to be taken into account (Fig. 5).

As an alternative to storage, electricity can also be used to produce synthetic
natural gas (SNG), as shown in Fig. 6. Depending on SNG Capacity and SNG
Efficiency the net consumption of Chemical Fuel can be reduced.

Several additional parameters are used to complete the model (Fig. 7). First of all,
the initial filling level of the storage is given by Ini S. The stability of electricity
supply can be tested using Stress Testing which reduces WDPV and increases
Load at the same time. The specific costs for fossil fuel and CO2 emission permits
are given by Fuel M (e/MWh) and CO2 M (e/tonCO2). The specific investment
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Fig. 4 Electricity can be stored f. i. using pumped storages (color figure online)

costs for storage are given by Storage M (Be/GWh), whilst the ones for WDPV,
SNG and dispatchable power are given by WDPV M, Dispatchable M and SNG
M (Be/GW).

3 Results of Simulations and Discussion

The Stock and Flow model discussed in Sect. 2 represents an integral equation sys-
tem which can be solved using computational methods. In this way different elec-
tricity supply concepts can be presented by this model using different parameters
and compared with each other regarding their reliability and resource consumption.
To do this we first enter the characterizing key parameters of each concept, like
WDPV Capacity, SNG Capacity and so on, and try to find the minimal Dis-
patchable Capacity which still provides reliable electricity supply under a
given Load Profile and WDPV Profile for an entire year. A concept is con-
sidered as reliable if the cumulative energy shortage is less than 2.6 TWh during the
entire year or 0.3 GW in average. Shortages are displayed in red color in the graph
on the right side of our interactive user interface (Fig. 8). Notice that possible excess
electricity occurring at another point of time does not offset the cumulative shortage
in the calculation. In this way different concepts to be compared with each other are
dimensioned on the same reliability level. The total production cost which includes
investment, operating, fuel costs and emission permits is then calculated for each of
the concepts.
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Fig. 5 High call power is necessary to compensate Net Load using stored electricity (color figure
online)

Fig. 6 One alternative option to pumped storage is to produce synthetic natural chemical fuels
(color figure online)
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Fig. 7 Additional scenario parameters are included (color figure online)

Fig. 8 Interactive user interface for simulations using Vensim PLE (Ventana Systems 2009) (color
figure online)

Table 1 shows the parameters used for the simulations and the scenario-
independent results of six different concepts for electricity supply. All six con-
cepts are considered under three different price scenarios: (I) The prices of fuel and
CO2 permits remain the same, the annual interest rate for investment amounts to
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Table 1 Parameters used for the simulations and scenario-independent results. Data sources for
the estimated specific costs in the first column: BMWT (2011), Groscurth and Bode (2009), Reina
(2008), SRU (2010), Sterner (2009), Umweltbundesamt (2010)

Spec. Costs Concept (2025) Cnv Rnw SRU SNG Rnw+ SNG+

Year Load TWh/a 560 560 560 560 560 560

1.0 Be/GW Dispatchable Cap. GW 82 74 60 74 72 72

1.8 Be/GW WDPV Capacity GW 36 150 150 150 200 200

0.8 Be/GW Storage Power GW 7 7 37 7 7 7

0.8 Be/GW Call Power GW 7 7 37 7 7 7

0.1 Be/GWh Max. Storage GWh 38 38 5500 38 38 38

1.6 Be/GW SNG Capacity GW 0 0 0 10 0 20

CO2 Mitigation % 6.5% 31.2% 31.3% 31.7% 38.4% 39.8%

Shortage GW 0.296 0.299 0.298 0.298 0.296 0.298

Operation B Euro/a 5.8 8.1 9.9 8.4 9.3 9.9

Invest M B Euro 21.9 219.1 307.8 235.1 307.1 339.1

Table 2 Comparative simulations between six different concepts and three price scenarios for
2025

Spec. Costs Concept (2025) Cnv Rnw SRU SNG Rnw+ SNG+

50 e/MWh_e Fuel Cost B Euro/a 25.47 18.72 18.71 18.60 16.78 16.39

25 e/tonCO2 CO2 Cost B Euro/a 6.37 4.68 4.68 4.65 4.19 4.10

7.26% Capital Cost B Euro/a 11.5 25.8 32.2 27.0 32.2 34.5

Scenario I Sum B Euro/a 49.2 57.3 65.5 58.6 62.4 64.9

e/MWh 88 102 117 105 112 116

100 e/MWh_e Fuel Cost B Euro/a 50.94 37.44 37.42 37.20 33.56 32.78

100 e/tonCO2 CO2 Cost B Euro/a 25.47 18.72 18.71 18.60 16.78 16.39

7.26% Capital Cost B Euro/a 11.5 25.8 32.2 27.0 32.2 34.5

Scenario II Sum B Euro/a 93.7 90.1 98.2 91.2 91.8 93.6

e/MWh 167 161 175 163 164 167

100 e/MWh_e Fuel Cost B Euro/a 50.94 37.44 37.42 37.20 33.56 32.78

100 e/tonCO2 CO2 Cost B Euro/a 25.47 18.72 18.71 18.60 16.78 16.39

10.61% Capital Cost B Euro/a 16.8 37.7 47.1 39.4 47.1 50.5

Scenario III Sum B Euro/a 99.0 102.0 113.1 103.6 106.7 109.5

e/MWh 177 182 202 185 190 196

6%; (II) Doubling of the fuel price and quadrupling of the price of CO2 permits;
(III) A higher annual interest rate of 10% on the basis of scenario II.

As shown in Table 2, it is obvious that the portfolio concept “Cnv” (“conven-
tional”) which does not include further expansion of renewable electricity supply
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Fig. 9 SNG by its own is
still far from achieving
profitability (color figure
online)

cannot provide the necessary CO2 mitigation. It is thus not acceptable though it is
the cheapest one in two of three scenarios. By contrast, the concept by SRU is the
most costly one in all three scenarios because of its huge planned storage capacity.
In spite of this it brings hardly any advantages in CO2 mitigation compared to our
reference concept “Rnw” (“renewable”). Both concepts fail to achieve the goal of
40% reduction. Even the concept “SNG” including SNG capacity misses the goal.

According to our simulations a combination of higher installed capacity of wind
and solar power (“Rnw+”) and synthesized natural gas production (“SNG+”) seems
to be the only concept which may achieve the goal of 40% CO2 mitigation in 2025.

However, it has to be pointed out that from today’s point of view the SNG as
a single component is still far away from the profitable zone. It is hardly surpris-
ing that the profitability of SNG does not only depend on the specific investment
costs and the conversion efficiency but also strongly on the utilization (therefore on
installed wind and solar power capacity) and on the prices of fuel and emission per-
mits, as shown in Fig. 9, since SNG technology is intended to convert exceed wind
or solar powered electricity into chemical fuel to save fossil fuel and CO2 emissions.

4 Conclusions

In this paper we describe the dynamics of the electricity supply in Germany us-
ing a System Dynamics model which focuses on the capacity of the four following
subsystems: dispatchable conventional and non-dispatchable renewable (wind and
photovoltaic) electricity supply, pumped storage in Norway as well as the produc-
tion of synthetic natural gas (SNG) using excess (renewable) electricity. This model
provides a transparent decision support method regarding the total cost and the GHG
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mitigation of different electricity supply concepts which are all dimensioned on the
same reliability level.

Our simulations using different prices for energy and emission permits for the
year 2025 show that a concept presented by the German Advisory Council on En-
vironment (SRU) will only achieve about 31% GHG mitigation in 2025 compared
to 1990, despite the huge costs due to the necessary storage capacity of 5500 GWh
in Norway and the transport capacity of 30 GW between Norway and Germany.
A more effective GHG mitigation of about 40% can be achieved at lower cost thanks
to higher wind and photovoltaic capacities of 200 GW in combination with the ca-
pacity of 20 GW of the production of synthetic natural gas using excess electricity
from wind and solar energy.
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