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Introduction

M 
y appreciation for econometrics grew out of my interest in trying to 
figure out how the world works. I discovered that empirical tech-

niques tailored to specific circumstances could help explain all sorts of eco-
nomic outcomes. As I came to understand how the theoretical structure of 
economics combines with information contained in real-world data, I began 
to see observed phenomena in a different light. I’d often ask myself ques-
tions about my observations. Could I determine whether the outcomes were 
random and simply appeared to be related? If I believed that two or more 
things I observed had a logical connection, could I use data to test my asser-
tions? Increasingly, I found myself relying on the tools of econometrics to 
answer these types of questions.

I’ve written Econometrics For Dummies to help you get the most out of your 
economics education. By now, your classes have taught you some economic 
theory, but you’re craving more precision in the predicted outcomes of 
those theories. Perhaps you’re even questioning whether the theories are 
consistent with what you observe in the real world. I find that one of the 
most attractive characteristics of properly applied econometrics is that it’s 
“school of thought neutral.” In other words, you can adapt an econometric 
approach to a variety of initial assumptions and check the results for consis-
tency. By using econometrics carefully and conscientiously, you can get the 
data to speak. But you better learn the language if you hope to understand 
what it’s saying!

About This Book
Econometrics For Dummies provides you with a short and simple version 
of a first-semester course in econometrics. I don’t cite the seminal work or 
anything from the large collection of econometric theory papers published in 
scholarly journals. The organization of topics may have some resemblance 
to traditional econometrics textbooks, but my goal is to present the material 
in a more straightforward manner. Even if you’re taking a second-semester 
(advanced) econometrics course or a graduate course, you may find this 
book to be a useful, one-stop, nuts-and-bolts resource.

Of course, some technical sophistication is essential in econometrics. 
Besides, you’ve taken introductory economics, statistics, and maybe even 
intermediate economic theory, so now you’re ready to show off your techni-
cal prowess. But wait a minute! Sometimes, with all the technical skills being 
mastered in learning econometrics, students fail to appreciate the insights 
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from the simplicity. In fact, you may even forget why you’re approaching a 
problem with a particular technique. That’s where this book can help.

Please note that I have tried to remain consistent with my terminology 
throughout the book, but econometricians sometimes have several differ-
ent words for the same thing. Also, note that I use the statistical software 
STATA 12.1 throughout, but sometimes I refer to it simply as econometrics 
software or just STATA.

Foolish Assumptions
If you’re following the normal course of action, you take an econometrics 
course after you complete courses on principles of microeconomics, prin-
ciples of macroeconomics, and statistics. In some cases, depending on the 
school, you may also be required to complete intermediate economic theory 
courses before taking econometrics. I cover the topics in a way that accom-
modates some variation in preexisting knowledge, but I’ve had to make the 
following assumptions about you:

 ✓ You’re a college student taking your first econometrics class taught in a 
traditional manner — emphasizing a combination of theoretical proofs 
and practical applications.

 ✓ Or you’re a graduate student (or are taking an advanced undergradu-
ate econometrics class) and would like to refresh your memory of basic 
econometric concepts so you can feel more comfortable with the transi-
tion into advanced material.

 ✓ You remember basic algebra, principles of economics, and statistics. I 
review the concepts from your statistics course that are most important 
for econometrics, but I also assume that a quick overview is all you need 
to get up to speed (and you can skip it if you’re ready to dig right in).

 ✓ Numbers, equations, and Greek letters don’t intimidate you. I know that 
on the surface using the so-called dismal science with quantitative meth-
ods isn’t exactly the most attractive combination of topics. By this point 
in your studies, however, I’m sure you’re over the fear people often have 
at the mere mention of these subjects.

 ✓ You’ll be using some econometrics software in your class and are willing 
to adapt my examples in STATA to the software you’re using (although 
chances are high you’re using STATA in your class anyway).
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Icons Used in This Book
Throughout the book, you may notice several different icons along the left 
margin. I use them to grab your attention and make the book easier to read. 
Each icon has an important function.

 If you see this icon, it means I’m applying the techniques of a particular chapter 
or section with STATA. I briefly summarize the data I’m using to produce the 
output, show you how to format the data or create the variables required for 
the analysis, and point you to the most important components of the output.

 I use this icon to signal that the information that follows is essential for your 
success in applying econometric analysis. To the extent possible, I explain 
these important, big-picture ideas in a nontechnical manner. However, keep 
in mind that this book is about econometrics, and therefore some technical 
sophistication may be required for even the most basic principles.

 This icon appears next to information that’s interesting but not essential for 
your understanding of the main ideas. You’re welcome to skip these para-
graphs, but if your econometrics class is more theory based (something that 
usually depends on the professor’s preferences), you may need to spend more 
time with this material.

 I use this icon to indicate shortcuts that can save you time or provide alterna-
tive ways of thinking about a concept.

 

This icon flags information that helps you steer away from misconceptions, 
common pitfalls, and inappropriate applications of a particular econometric 
technique.

Beyond the Book
You may not always have your e-reader or a copy of this book handy, but 
I’m guessing you have almost constant access to the Internet courtesy of 
a smartphone or tablet. That’s why I include a wealth of accessible-from-
anywhere additional information at www.dummies.com.

In need of some of the most useful formulas in econometrics? Looking for a 
breakdown of how you can give your econometric model some flexibility? 
Head to www.dummies.com/cheatsheet/econometrics to access this 
book’s helpful e-Cheat Sheet, which covers these topics and more.

http://www.dummies.com
http://www.dummies.com/cheatsheet/econometrics
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But that’s not all. Because econometrics is synonymous with forecasting in 
some fields, I’ve put a bonus chapter online at www.dummies.com/extras/
econometrics. It’s all about helping you hone your forecasting skills so you 
can select the right method to predict an outcome based on the information 
you have and later vet the accuracy of your forecast.

Where to Go from Here
Unlike most books, you don’t need to start at the beginning and read through 
to the end in order to gain an understanding of fundamental econometric 
concepts. Simply turn to the topic that most interests you. Are you struggling 
with the intuition or justification for a particular type of econometric model? 
Do you think that a specific econometric tool will help you reveal more 
insights from your data? You can find that topic in the table of contents or 
the index and then jump right to it.

Maybe you’re not puzzled and are simply curious about the various tools 
econometrics has to offer for data analysis. Feel free to browse through 
the chapters. Maybe an interesting paragraph or a fascinating equation will 
catch your eye and give you ideas about approaching a problem — hey, it’s 
possible!

If your statistics knowledge is rusty, I recommend you begin with the first 
couple chapters. On the other hand, if your experience with statistics wasn’t 
a good one, you’d like to avoid disturbing flashbacks, and you’re confident 
in your ability to catch on quickly, then by all means start at any other point. 
No matter where you start, you’ll never look at data the same way after learn-
ing econometrics (for better or for worse!).

http://www.dummies.com/extras/econometrics
http://www.dummies.com/extras/econometrics


Part I
Getting Started with 

Econometrics

 For Dummies can help you get started with lots of subjects. Visit www.dummies.com 
to learn more and do more with For Dummies.

http://www.dummies.com


In this part . . .
 ✓ Get familiar with the approach economists use when investi-

gating empirical issues — not controlled experiments that 
never seem to contradict standard statistical assumptions.

 ✓ Find out the basic commands you need to work with data files 
in STATA 12.1, a popular form of econometric software, and 
discover the syntax structure for executing estimation 
commands.

 ✓ Review the probability concepts that are most relevant for your 
study of econometrics: topics that focus on the properties of 
probability distributions and their use in calculating descriptive 
statistics of random variables.

 ✓ Reinforce your knowledge of statistical inference so you can 
be better equipped to use surveys and other forms of sample 
data to test your hypotheses and draw conclusions.



Chapter 1

Econometrics: The Economist’s 
Approach to Statistical Analysis

In This Chapter
▶ Discovering the goals of econometric analysis
▶ Understanding the approach and methodology of econometrics
▶ Getting familiar with econometrics software

W 
elcome to the study of econometrics! The Econometric Society, 
founded in 1930, defines econometrics as a field based on a 

 “theoretical-quantitative and empirical-quantitative approach to economic 
problems.” This mouthful means that, at times, econometricians are math-
ematicians and use complex algorithms and analytical tools to derive vari-
ous estimation and testing procedures. At other times, econometricians are 
applied economists using the tools developed by theoretical econometricians 
to examine economic phenomena.

In this chapter, you see that a distinguishing feature of econometrics is its 
development of techniques designed to deal with data that aren’t derived 
from controlled experiments and, therefore, situations that violate many 
of the standard statistical assumptions. You also begin to understand that, 
under these circumstances, obtaining good quantitative results depends on 
using reliable and adequate data as well as sound economic theory.

And because computers and econometric software are now commonly used 
in introductory econometrics courses, I also devote a section of this chapter 
to introducing basic commands in STATA (version 12.1), a popular economet-
rics software program. This software allows you to immediately apply theo-
retical concepts and enhance your understanding of the material.
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Evaluating Economic Relationships
Economics provides the theoretical tools you use to evaluate economic rela-
tionships and make qualitative predictions of economic phenomena using 
the ceteris paribus assumption. You may recall from your previous courses 
that the ceteris paribus assumption means that you’re keeping everything else 
constant. Two examples among numerous possibilities are:

 ✓ In microeconomic theory, you’d expect economic profits in a competi-
tive market to induce more firms to enter that market, ceteris paribus.

 ✓ In macroeconomic theory, you’d expect higher interest rates to reduce 
investment spending, ceteris paribus.

 Econometrics ties into economic theory by providing the tools necessary 
to quantify the qualitative statements you (or others) make using theory. 
Unknown or assumed relationships from abstract theory can be quantified 
using real-world data and the techniques developed by econometricians.

The following section explains how econometrics helps characterize the 
future and describe economic phenomena quantitatively, and then I clarify 
why an econometrician must always make sensible assumptions.

Using economic theory to describe  
outcomes and make predictions
One of the characteristics that differentiate applied research in econometrics 
from other applications of statistical analysis is a theoretical structure sup-
porting the empirical work.

 Econometrics is typically used to explain how factors affect some outcome 
of interest or to predict future events. Regardless of the primary objective, 
your econometric study should be linked to an economic model. Your model 
should consist of an outcome of interest (dependent variable, Y) and causal 
factors (independent variables, Xs) that are theoretically or logically con-
nected to the outcome.

Relying on sensible assumptions
A variation of a famous joke about economists goes as follows: A physicist, 
a chemist, and an economist are stranded on an island with nothing to eat. 
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A can of soup washes ashore. The physicist says, “Let’s smash the can open 
with a rock.” The chemist says, “Let’s build a fire and heat the can first.” The 
economist says, “Let’s assume that we have a can opener. . . .” Despite the 
joke, making assumptions about reality can help you construct logical argu-
ments and predict outcomes when specific preexisting conditions apply. In 
econometrics, however, making assumptions without checking the feasibility 
of their reality can be dangerous.

 Making too many assumptions about preexisting conditions, functional form, 
and statistical properties can lead to biased results and can undermine the 
estimation accuracy you’re trying to accomplish. Although you have to make 
some assumptions to perform your econometric work, you should test most 
of them and be honest about any potential effects on your results from those 
you can’t test.

 Testing predictions from economic theory or logical reasoning is rarely a 
straightforward procedure. Observed data don’t tend to be generated from 
a controlled experiment, so testing economic theory is challenging in econo-
metric work because of the difficulty in ensuring that the ceteris paribus (all 
else constant) assumption holds. Consequently, in applying econometrics, 
you need to give considerable attention to the control (independent) vari-
ables you include in the analysis to simulate (as closely as possible) the 
ceteris paribus situation.

Applying Statistical Methods  
to Economic Problems

Most econometrics textbooks assume you’ve learned all the statistics neces-
sary to begin building econometric models, estimating, and testing hypotheses. 
However, I’ve discovered that my students always appreciate a review of the 
statistical concepts that are most important to succeeding with econometrics. 
Specifically, you need to be comfortable with probability distributions, the cal-
culation of descriptive statistics, and hypothesis tests. (If your skills are rusty 
in these areas, make sure you read the material in Chapters 2 and 3.)

Your ability to accurately quantify economic relationships depends not only 
on your econometric model-building skills but also on the quality of the data 
you’re using for analysis and your capacity to adopt the appropriate strate-
gies for estimating models that are likely to violate a statistical assumption. 
The data must be derived from a reliable collection process, but you should 
also be aware of any additional limitations or challenges. They may include, 
but aren’t limited to
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 ✓ Aggregation of data: Information that may have originated at a house-
hold, individual, or firm level is being measured at a city, county, state, 
or country level in your data.

 ✓ Statistically correlated but economically irrelevant variables: Some 
datasets contain an abundance of information, but many of the variables 
may have nothing to do with the economic question you’re hoping to 
address.

 ✓ Qualitative data: Rich datasets typically include qualitative variables 
(geographic information, race, and so on), but this information requires 
special treatment before you can use it in an econometric model.

 ✓ Classical linear regression model (CLRM) assumption failure: The legit-
imacy of your econometric approach always rests on a set of statistical 
assumptions, but you’re likely to find that at least one of these assump-
tions doesn’t hold (meaning it isn’t true for your data).

 Econometricians differentiate themselves from statisticians by emphasizing 
violations of statistical assumptions that are often taken for granted. The most 
common technique for estimating an econometric model is ordinary least 
squares (OLS), which I cover in Chapter 5. However, as I explain in Chapters 6 
and 7, a number of CLRM assumptions must hold in order for the OLS tech-
nique to provide reliable estimates. In practice, the assumptions that are most 
likely to fail depend on your data and specific application. (In Chapters 10, 11, 
and 12, you see how to identify and deal with the most common assumption 
violations.)

In the following sections, I describe how familiarity with certain characteris-
tics of your data can help you build better econometric models. In particular, 
you should pay attention to the structure of your data, the way in which vari-
ables are measured, and how quantitative data can be complemented with 
qualitative information.

Recognizing the importance of data type, 
frequency, and aggregation
The data that you use to estimate and test your econometric model is typi-
cally classified into one of three possible types (for further details on each 
type, see Chapter 4):

 ✓ Cross sectional: This type of data consists of measurements for indi-
vidual observations (persons, households, firms, counties, states, coun-
tries, or whatever) at a given point in time.
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 ✓ Time series: This type of data consists of measurements on one or more 
variables (such as gross domestic product, interest rates, or unemploy-
ment rates) over time in a given space (like a specific country or state).

 ✓ Panel or longitudinal: This type of data consists of a time series for 
each cross-sectional unit in the sample. The data contains measure-
ments for individual observations (persons, households, firms, counties, 
states, countries, and so on) over a period of time (days, months, quar-
ters, or years).

 The type of data you’re using may influence how you estimate your economet-
ric model. In particular, specialized techniques are usually required to deal 
with time-series and panel data. I cover time-series techniques in Chapter 12, 
and I discuss panel techniques in Chapters 16 and 17.

 You can anticipate common econometric problems because certain CLRM 
assumption failures are more likely with particular types of data. Two typi-
cal cases of CLRM assumption failures involve heteroskedasticity (which 
occurs frequently in models using cross-sectional data) and autocorrelation 
(which tends to be present in models using time-series data). For the full 
scoop on hetero skedasticity and autocorrelation, turn to Chapters 11 and 12, 
 respectively.

In addition to knowing the type of data you’re working with, make sure you’re 
always aware of the following information:

 ✓ The level of aggregation used in measuring the variables: The level of 
aggregation refers to the unit of analysis when information is acquired 
for the data. In other words, the variable measurements may originate at 
a lower level of aggregation (like an individual, household, or firm) or at 
a higher level of aggregation (like a city, county, or state).

 ✓ The frequency with which the data is captured: The frequency refers 
to the rate at which measurements are obtained. Time-series data may 
be captured at a higher frequency (like hourly, daily, or weekly) or at 
lower frequency (like monthly, quarterly, or yearly).

 All the data in the world won’t allow you to produce convincing results if 
the level of aggregation or frequency isn’t appropriate for your problem. For 
example, if you’re interested in determining how spending per pupil affects 
academic achievement, state-level data probably won’t be appropriate 
because spending and pupil characteristics have so much variation across 
cities within states that your results are likely to be misleading.



12 Part I: Getting Started with Econometrics 

Avoiding the data-mining trap
As you acquire more data-analysis tools, you may be inclined to search the 
data for relationships between variables. You can use your knowledge of sta-
tistics to find models that fit your data quite well. However, this practice is 
known as data mining, and you don’t want to be seduced by it!

 Although data mining can be useful in fields where the underlying mechanism 
generating the outcomes isn’t important, most economists don’t view this 
approach favorably. In econometrics, building a model that makes sense and 
is reproducible by others is far more important than searching for a model 
that has a perfect fit. I reinforce the importance of building sensible models in 
Chapter 4 and provide some specific examples of common economic models 
in Chapter 8.

Incorporating quantitative and  
qualitative information
Economic outcomes can be affected by both quantitative (numeric) and 
qualitative (non-numeric) factors. Generally, quantitative information has a 
straightforward application and interpretation in econometric models.

Qualitative variables are associated with characteristics that have no natural 
numeric representation, although your raw data may code qualitative charac-
teristics with a numeric value. For example, a U.S. region may be coded with 
a 1 for West, 2 for South, 3 for Midwest, and 4 for Northeast. However, the 
assignment of the specific values is arbitrary and carries no special signifi-
cance. In order to utilize the information contained in qualitative variables, 
you’ll usually convert them into dummy variables — dichotomous variables 
that take on a value of 1 if a particular characteristic is present and 0 other-
wise. I illustrate the use of dummy variables as independent variables in an 
econometric model in Chapter 9.

Sometimes the economic outcome itself is qualitative or contains restricted 
values. For example, your dependent variable could measure whether or not 
a firm fails (goes bankrupt) in a given year using various firm characteris-
tics as independent variables. Although standard techniques are sometimes 
acceptable with qualitative and noncontinuous dependent variables, usually 
they result in assumption violations and require an alternative econometric 
approach. Flip to Chapters 13 and 14 to discover the appropriate techniques 
for situations when your dependent variable isn’t continuous.
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Using Econometric Software:  
An Introduction to STATA

Specialized software makes the application of econometric techniques possi-
ble for anyone who’s not a computer programming genius. Keep in mind that 
several good software options are available to you and that, as a good econo-
mist, you should weigh the cost and benefits of each. Of course, the type of 
software you ultimately end up working with in your introductory economet-
rics course depends on what your professor uses for his research or finds to 
be the easiest to integrate into the course. I rely on STATA extensively in my 
academic research and use it exclusively in my econometrics courses, but 
your professor may employ EVIEWS, SAS, or some other program.

Because I find STATA to be the best software, it’s what I use exclusively in 
this book. It provides an excellent combination of a user-friendly interface, 
consistent structure in syntax, and simple commands to implement all the 
techniques you learn about in econometrics, and it’s available for a variety of 
platforms or operating systems.

STATA can be used as a point-and-click software (like you would use Excel or 
most other software these days). With point-and-click, you can use the icons 
and menu bar at the top to execute tasks. However, over time, you’re likely 
to prefer using STATA as a command-driven program because it’s faster and 
easier. When used in this manner, you perform tasks by providing STATA 
with specific syntax on the command line (using lowercase letters for the 
commands). In this chapter, I explain both methods, but in the later chapters, 
I rely almost exclusively on the command-driven approach.

The following sections show you some STATA commands that allow you to 
get started with the software. (Note that I introduce STATA commands as 
needed in other chapters.)

 My coverage of STATA is not exhaustive. The supporting documentation con-
sists of a User’s Guide and several Reference manuals (thousands of pages), so 
clearly I can’t cover every facet of STATA that you may use in econometrics. 
However, if you run into an obstacle, the manuals are easy to use and provide 
good examples. With STATA running on your computer, you also have access 
to the Help menu and online documentation.
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Getting acquainted with STATA
In this section of the chapter, I show you how to open data files, log your 
modifications to data, and save your data files.

Creating and saving STATA datasets
In order to begin doing any exploratory data analysis or econometric work, 
you need a dataset that’s in STATA format (*.dta). If you’re downloading data 
from an online source, you may be able to obtain the data in STATA format. 
Many econometrics textbooks also give you access to data files in STATA 
format. In addition, the STATA program is preloaded with examples that you 
can use to familiarize yourself with the basic commands.

 After opening STATA, you can access the sample datasets by selecting File ➪ 
Example Datasets… If you want to open any other dataset that’s already in 
STATA format, select File ➪ Open and then choose the file you want to work 
with. On the command line, you can open a STATA dataset by typing “use file-
name” and hitting return.

If you’re inputting data manually or downloading it in a non-STATA format, 
then you can use one of two methods to read it into STATA:

 ✓ Select File ➪ Import: This option can be used if the data is in Excel, SAS 
XPORT, or Text format. You select the appropriate format of your raw 
data, and then you’re prompted to select the file you’d like to import 
into STATA.

 ✓ Select Data ➪ Data Editor: This option opens an editor that resembles a 
spreadsheet. You can paste columns of data into the editor or input data 
manually.

 If you import a dataset that wasn’t originally in STATA format, you need to 
save the dataset in STATA format in order to use it again, particularly if you 
inputted data through the editor and want to avoid replicating all your efforts. 
Also, if you made any changes to an existing STATA dataset and want to retain 
those changes, you need to save the revised dataset. I recommend you select 
File ➪ Save As (or type “save new filename” on the command line) and choose 
a new name for the modified file. That way if you accidentally delete a variable 
or drop observations, you can always go back to the original data file.

Viewing data
Before you begin doing econometric analysis, make sure you’re familiar with 
your data. After all, you don’t want to estimate an econometric model with 
data that’s mostly incomplete or full of errors.
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In version 12.1 of STATA, the default setting allows you to open a dataset 
as large as 64 megabytes (MB) and containing up to 5,000 variables. If your 
dataset is larger than 64MB, you need to increase the memory allocated to 
STATA by typing “set memory #m” on the command line, where # is the size 
of your dataset in MB. Similarly, if your dataset contains more than 5,000 vari-
ables, you need to type “set maxvar #” on the command line, with # being the 
number of variables in your dataset.

The Data tab in the menu bar contains most of the elements you need in 
order to get acquainted with your data. After opening a STATA dataset, you’ll 
regularly use the following commands:

 ✓ Select Data ➪ Describe data ➪ Describe data in memory or type 
“describe” on the command line and hit return: STATA shows you how 
many observations and variables are contained in the dataset. In addi-
tion, it lists the names and types (numeric or string) of all the variables.

 ✓ Select Data ➪ Describe data ➪ Summary statistics or type “summarize” 
on the command line and hit return: With this command, STATA provides 
you with basic descriptive measures for all the numeric variables in your 
dataset. Specifically, you get the number of observations with nonmissing 
values, mean, standard deviation, minimum value, and maximum value 
for each variable. Note: The string variables contain letters, names, or 
phrases, so no mean or standard deviation can be calculated for them.

In Figure 1-1, I use the “describe” and “summarize” commands to view the 
fundamental characteristics of my dataset.

 The Data tab or “describe” and “summarize” commands provide the basic 
information you use for your econometric analysis. Examine the tables con-
taining the descriptive information and make sure that all the values are sensi-
ble. In other words, make sure that the minimum, maximum, and mean values 
are feasible for each variable in your dataset.

 You can also use the “list” command on occasion, but be careful with it 
because it displays the value for every variable and every observation. In 
other words, it displays the entire dataset. With a large dataset (thousands 
of observations and dozens of variables), this list isn’t likely to help you find 
errors unless you refine the list to a specific observation using an “if” state-
ment or by subscripting (I discuss this in the later “Creating new variables” 
section).
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Figure 1-1: 
Examining 

data two 
ways in 
STATA.

 

Keep in mind that the results section of STATA, by default, displays approxi-
mately one page of output. STATA then prompts you with the “-more-” 
 message. Hitting the return key allows you to see an additional line of output, 
and hitting the spacebar shows another page of output. If you don’t want 
STATA to pause for “-more-” messages, type “set more off” on the command 
line. Subsequent output is then displayed in its entirety.

Interpreting error messages
If you make a mistake with a command, STATA responds with an error mes-
sage and code. The error message contains a brief description of the mistake, 
and the code has the format r(#), where # represents some number. Reading 
the error message and carefully examining the command that resulted in 
the error usually helps you arrive at a solution. If not, the codes, known as 
a return codes, are stored in STATA, and clicking on the code allows you to 
obtain a more detailed description of the error.

 The outcome of a command can be identified quickly by looking at the colors 
of the text in the results area (the middle portion of STATA’s interface). If you 
see the color red, it means something has gone wrong and you should correct 
your mistake before moving on.
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Stopping STATA
When you occasionally want to terminate a process in STATA, you can just 
click the Break button on the toolbar (right below the menu bar). Stopping 
STATA may be appropriate if an estimation procedure doesn’t converge to 
a result or you change your mind about the command you’d like to execute 
and don’t want to wait until the process is complete. After you stop STATA, 
your data remains in memory, and you can continue with any command.

In Figure 1-2, I use the “list” command to see each observation in the data-
set. However, after I see a few of the observations, I decide that I don’t need 
to see more observations one by one. I click the Break button to stop the 
command.

Preserving your work
 Saving your commands and resulting output in a log file is one of the most 

essential things you can get into the habit of doing while using STATA. You can 
do it by selecting File ➪ Log ➪ Begin… from the menu bar and then assigning 
the file a name or by typing “log using filename” on the command line and hit-
ting return. After you complete the work you want to save, select File ➪ Log ➪ 
Close or type “log close” on the command line and hit return. Your log files are 
given a .smcl file extension.

 

Figure 1-2: 
The break 

action in 
STATA.
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In Figure 1-3, I open a log file, execute a “summarize” command, and close the 
log file. I can examine the contents of the log file by selecting File ➪ View… 
from the menu bar and then choosing my log file.

 

Figure 1-3: 
Saving 

log files in 
STATA.

 

Using STATA’s viewer, you can always go back to your log file to see how you 
modified the data or any statistical estimates you may have previously calcu-
lated. You can also copy and paste from your log file to any other file, or you 
can simply print your log file.

 

Don’t forget to close your log file when you’re done with the work you want to 
retain. Otherwise, everything you do in STATA continues to be written to the 
log file you opened, which may create an unnecessarily huge file.

Creating new variables
After you compile your data, you’ll likely want to create new variables for the 
analysis. Your econometric model may specify that a variable should be mea-
sured in logs, or you may need to use a squared term for a quadratic function 
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(I cover these types of econometric models in Chapter 8). Your data may also 
contain qualitative variables that you want to convert into dummy variables 
(turn to Chapter 9 for guidance on using dummy variables). These examples 
are just a couple of the many instances in which creating a new variable is in 
your best interest.

 You can create new variables in STATA by selecting Data ➪ Create or change 
data ➪ Create new variable from the menu bar or by typing “generate new 
variable = exp [if] [in]” on the command line, where new variable is the name 
you choose to assign the new variable, exp specifies how the new variable is 
created, and the terms in brackets are optional expressions that can be used 
to restrict the subsample over which you’d like to define the new variable.

A number of arithmetic, relational, and logical operators have been pro-
grammed into STATA and can be used to create new variables. You can browse 
through them in the STATA manuals or the electronic documentation.

 

I recommend using the “summarize” command after you create new variables. 
Doing so allows you to confirm that your new variable doesn’t contain errors 
and that its values are in line with what you intended.

Estimating, testing, and predicting
After you collect your data and create any additional variables necessary 
for analysis, you’re ready to estimate your econometric model and perform 
hypothesis tests.

 The appropriate estimation technique depends on the nature of your econo-
metric model. All the model estimation commands can be found by selecting 
Statistics from the menu bar. If you use the command line, you use similar 
syntax for all estimation techniques; the syntax is “command variable1  
variable2 . . . [if] [in] [weight] [, options]” followed by hitting return, where  
variable1 is the dependent variable in your model.

In Figure 1-4, I estimate a multiple regression model using a sample of work-
ers. The natural log of the hourly wage (lnwage) is my dependent variable, 
and I use years of work experience (ttl_exp), years with the same employer 
(tenure), and a dummy variable indicating whether the individual graduated 
from college (collgrad) as my independent variables. I also estimate the same 
model using the subsample of nonunionized workers.
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Figure 1-4: 
A STATA 

regression 
estimation.

 

STATA also has a number of postestimation commands for hypothesis test-
ing, obtaining residuals, and predicting the dependent variable. You can 
explore them in the STATA manuals or electronic documentation. However, 
throughout the book, I also provide several examples of postestimation com-
mands alongside the relevant econometric model estimates.



Chapter 2

Getting the Hang of Probability
In This Chapter
▶ Reviewing the basics of probability theory
▶ Understanding probability density functions for discrete and continuous  

random variables
▶ Finding the relationship between two random variables

T 
he purpose of this chapter is to review some fundamental concepts of 
probability theory that are essential to moving forward with your under-

standing of econometrics. These topics center on the properties of probabil-
ity distributions and their use in calculating descriptive measures of random 
variables. Other topics are either less important for econometrics or are 
covered as necessary in the relevant chapters of this book. (If you find that 
your probability skills are rustier than you expected, consult Statistics For 
Dummies [by Deborah J. Rumsey; John Wiley & Sons, Inc.] and a good statis-
tics or probability textbook.)

In this chapter you get a refresher on the properties of probability distribu-
tions for both discrete and continuous random variables. Then you find out 
how you can use information from probability distributions to calculate mea-
sures of central tendency, dispersion, and correlation.

Reviewing Random Variables and 
Probability Distributions

Because one of the objectives of econometrics is to explain seemingly random 
events, the building blocks naturally rely on some probability theory.

 

Random events are uncertain outcomes from an experiment. When you take 
those outcomes and describe them numerically, you create random variables. 
So a random variable measures something that has an uncertain value.
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In economics, you’re typically concerned with outcomes that have uncertain 
values. These random variables include things like output, demand, profit, 
wages, and so on. The precise random variable you’re interested in depends 
on your problem or research question.

 Random variables can be discrete or continuous. A discrete random variable is 
one that can be described by integers (whole numbers), so the outcomes are 
countable. A continuous random variable, on the other hand, can have any real 
value, so the outcomes are infinite and not countable.

Suppose I’m interested in the number of jobs (full time or part time) indi-
viduals held over the past year, and I obtain this information for all potential 
workers. The outcome for each worker is an integer value, like 0, 1, 2, and so 
on. Individuals either had one or more jobs or they had no jobs; no one had 
a fraction of a job. Because the outcomes are countable whole numbers, this 
problem uses a discrete random variable. If, however, I was interested in the 
wages earned by these individuals, then I’d be talking about a continuous 
random variable. Possible wages can be zero and whole numbers but also 
fractions (like $9.42 per hour).

In the following sections, I introduce various functions that describe prob-
ability for discrete and continuous random variables.

Looking at all possibilities: Probability 
density function (PDF)
A probability density function (PDF) shows the probabilities of a random vari-
able for all its possible values. The probabilities associated with specific 
values (or events) from a random variable must adhere to the properties  
0 ≤ f(X) ≤ 1 and , where Xj represents the possible values (out-
comes) of random variable X. In other words, the chances of any random 
event occurring must be anywhere from impossible (probability of 0) to cer-
tain (probability of 1), and the sum of the probabilities for all events must be 
1 (or 100 percent).

The PDF for discrete random variables
 If you’re observing a discrete random variable, the PDF can be described in 

a table or graph. To construct a table, you set up one column with the pos-
sible values of your random variable and one column with the probability that 
they’ll occur. In a graphical depiction of the PDF (a bar graph), you’d place the 
possible values of the random variable on the horizontal axis, and the height 
of the vertical bars at each value show the probability that they occur.

Suppose I perform an experiment that consists of tossing three coins at the 
same time. I’m interested in the number of times they land heads up, so I call the 
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number of heads observed random variable X. In Table 2-1, I list the possible out-
comes for this experiment and the values for X generated from the process.

Table 2-1 Outcomes from Tossing Three Coins
Outcome First Coin Second 

Coin
Third Coin Number of 

Heads, X
1 T T T 0
2 T T H 1
3 T H T 1
4 H T T 1
5 T H H 2
6 H H T 2
7 H T H 2
8 H H H 3

Out of eight possible outcomes, you get 0 heads in one outcome, 1 head in 
three outcomes, 2 heads in three outcomes, and 3 heads in one outcome. You 
can summarize the information in Table 2-1 with a tabular or graphical depic-
tion of the PDF for X. In Table 2-1, you see 8 total outcomes and four possible 
values for X: 0, 1, 2, and 3. This information allows you to calculate the prob-
ability associated with each X value. For example, X = 0 occurs only once, so 
f(X = 0) = 1⁄8 = 0.125. In Table 2-2, I calculate the probabilities for the other X 
values and show a tabular form of the PDF. In Figure 2-1, I show a graphical 
version.

Table 2-2 Probability Density Function,  
 3-Coin-Toss Experiment
X f(X)
0

1

2

3
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 Note that the probabilities in the right-hand column add up to 1. The total 
probabilities for any experiment must always equal 1.

 

Figure 2-1: 
Example of 

a probability 
density 

function 
graph for 

a discrete 
random 
variable 

(3-coin-toss 
experi-
ment).

 

The PDF for continuous random variables
 If you’re observing a continuous random variable, the PDF can be described 

in a function or graph. The function shows how the random variable behaves 
over any possible range of values. In a graphical depiction of the PDF, the 
possible values of the random variable are on the horizontal axis, and a curve 
(without any bars or breaks) is somewhere above the axis.

The most common continuous PDF is that of a normally distributed random 
variable. The graphical depiction of this PDF is shown in Figure 2-2.

 

Figure 2-2: 
A graphical 
depiction of 
a probability 

density 
function for 
a normally 
distributed 

random 
variable. 

Regardless of the values of the mean (μX) and standard deviation (σX), the total 
density (area) under the curve is equal to 1. In addition, about 68 percent of 
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the density is within one standard deviation, about 95 percent of the density is 
within two standard deviations, and about 99.7 percent of the density is within 
three standard deviations.

 

Because a continuous random variable can take on infinitely many values, the 
probability that a specific value occurs is zero!

An example can help illustrate this point. Suppose I randomly choose one of 
my econometrics students. What is the probability that the student will be 
exactly 21 years of age? Answer: essentially zero. The reason is that student 
would have to be randomly selected at the precise day, hour, minute, second, 
and fraction of a second that he or she was born 21 years ago. That would 
be virtually impossible. There would, however, be some chance of randomly 
selecting a student who’s between the ages of 20 and 22.

 Probabilities with continuous random variables are measured over intervals. 
Mathematically, this probability measurement is expressed as f(Xa ≤ X ≤ Xb), 
where Xa and Xb are possible values that can be taken by the random variable 
X. I illustrate this graphically in Figure 2-3.

 

Figure 2-3:  
A con-

tinuous 
probability 

density 
function 

where the 
shaded area 

represents 
the prob-
ability of 

observing 
a value 

between Xa 
and Xb.

 

Summing up the probabilities: Cumulative 
density function (CDF)
The cumulative density function (CDF) of a random variable X is the sum 
or accrual of probabilities up to some value. It shows how the sum of the 
probabilities approaches 1, which sometimes occurs at a constant rate and 
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sometimes occurs at a changing rate. In the following sections, I tell you how 
to find the CDF for discrete and random variables, and I show you how to 
describe it using a table, function, or graph.

The CDF for discrete random variables
For a discrete random variable, the CDF is equivalent to F(Xj) = f (X ≤ Xj), 
where f(X) is the probability density function (see the preceding section for 
details).

 If you’re observing a discrete random variable, the CDF can be described in a 
table or graph. To construct a table, put the possible values of your random 
variable in one column, the probability that they will occur in another column, 
and the sums of the probabilities up to any given value in a third column. In a 
graphical depiction of the CDF, you place the possible values of the random 
variable on the horizontal axis, and the height of a horizontal line at each 
value shows the probability of that value summed with the probabilities of all 
smaller values.

Suppose I perform an experiment that consists of tossing two coins at the same 
time. I’m interested in the number of times the coin lands heads up, so I des-
ignate the number of heads observed as my random variable X. In Table 2-3, 
I illustrate the possible outcomes for this experiment and the values for X gen-
erated from the process.

Table 2-3 Outcomes from Tossing Two Coins
Outcome First Coin Second Coin Number of 

Heads, X
1 T T 0
2 T H 1
3 H T 1
4 H H 2

You can summarize the information in Table 2-3 with a table or graph of the 
CDF for X. In Table 2-4, I show a tabular form of the CDF. Recall that the PDF, 
f(X), represents the probability of a given random event, and the CDF, F(X), is 
the sum of the probabilities up to any random value. For example, f(X = 1) = 
2⁄4 = 0.50 and F(X = 1) = 1⁄4 + 1⁄2 = 3⁄4 = 0.75. In Figure 2-4, I show the same informa-
tion graphically.
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Table 2-4 Cumulative Density Function Table,  
 Two-Coin-Toss Experiment
X f(X) F(X)
0 0.25 0.25
1 0.50 0.75
2 0.25 1

 

Figure 2-4: 
An example 

of a cumula-
tive density 

function 
graph for 

a discrete 
random 
variable 

(two-coin-
toss 

experiment).
 

The CDF for continuous random variables
Get ready for some calculus! (I can hear the cheers from here.) The CDF is a 
sum of probabilities, and for a continuous function, finding a sum means inte-
gration. Integration is a calculus procedure that allows you to find densities 
under nonlinear functions. For a continuous random variable, the CDF is 

 where f(X) is the probability density function (see the earlier 

section “Looking at all possibilities: Probability density function [PDF]” for 
details).

 If you’re observing a continuous random variable, the CDF can be described 
in a function or graph. The function shows how the random variable behaves 
over any possible range of values. In Figure 2-5, I display the CDF for a nor-
mally distributed random variable.

The precise shape of the CDF depends on the mean and variance (the square 
of the standard deviation) of your random variable. A smaller mean shifts the 
curve to the left, and a larger mean shifts the curve to the right. A smaller vari-
ance makes the curve steeper, whereas a larger variance makes the curve flatter.
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Figure 2-5: 
A graphical 
depiction of 

a cumula-
tive density 
function for 
a normally 
distributed 

random 
variable. 

Putting variable information together: 
Bivariate or joint probability density
Because one primary objective of econometrics is to examine relationships 
between variables, you need to be familiar with probabilities that combine 
information on two variables.

 A bivariate or joint probability density provides the relative frequencies 
(or chances) that events with more than one random variable will occur. 
Generally, this information is shown in a table.

For two random variables, X and Y, you’re already familiar with the notation 
for joint probabilities from your statistics class, which uses the intersection 
term, ∩, like this: P(X = a ∩ Y = b).

The variables a and b are possible values for the random variable. However, 
in econometrics, you likely need to become familiar with this mathematical 
notation for joint probabilities: f(X, Y). In this notation, the comma is used 
instead of the intersection operator.

In Table 2-5, I provide an example of a joint probability table for random vari-
ables X and Y. The column headings in the middle of the first row list the X 
values (1, 2, and 3), and the first column lists the Y values (1, 2, 3, and 4). The 
values contained in the middle of Table 2-5 represent the joint or intersection 
probabilities. For example, the probability X equals 3 (see column 3) and Y 
equals 2 (row 2) is 0.10. In your econometrics class, the mathematical nota-
tion used to express this is likely to look like f(X = 3, Y = 2) = 0.10.
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Table 2-5 Joint Probability Table
Y X f (Y)

1 2 3
1 0.25 0 0.10 0.35
2 0.05 0.05 0 .10 0.20
3 0 0.05 0.20 0.25
4 0 0 0.20 0.20
f(X) 0.30 0.10 0.60 1.00

You can also see that the column sums, f(X), contain the marginal or uncondi-
tional probabilities for random variable X and the row sums, f(Y), contain the 
same information for random variable Y. For example, f(Y = 3) = 0.25; that is, 
the probability that Y equals 3 is 0.25.

Predicting the future using what you 
know: Conditional probability density
Prediction in econometrics involves some prior knowledge. For example, 
you may attempt to predict how many “likes” your status update will get on 
Facebook given the number of “friends” you have and time of day you posted. 
In order to do so, you’ll want to be familiar with conditional probabilities.

 

Conditional probabilities calculate the chance that a specific value for a 
random variable will occur given that another random variable has already 
taken a value.

Calculating conditional probability density
Conditional probabilities use two variables, so you’ll need the joint and mar-
ginal probabilities (see the preceding section). Typically, this information is 
displayed in a table. The joint probabilities for random variables X and Y are 
shown in the middle rows and columns of Table 2-5, and the marginal probabil-
ities are on the outside row for variable X and outside column for variable Y.

You can calculate conditional probabilities using the following formula:
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It reads, the probability of Y given X equals the probability of Y and X divided 
by the probability of X.

Suppose you’re interested in calculating a specific conditional probability 
using Table 2-5; the probability that Y equals 1 given that X equals 3. Using 
this formula and plugging in the probabilities from Table 2-5, your answer 
would be

 The numerator in your calculation of a conditional probability is a joint prob-
ability, so it doesn’t matter if you write it as Y and X or X and Y.

Checking for statistical independence
Regardless of the strength of your theory and the appeal of your common 
sense, in econometrics you’ll ultimately want to examine the statistical rela-
tionship between variables. You may first want to determine if any relation-
ship exists at all.

Events are said to be independent if one event has no statistical relationship 
with the other event. One way you can determine statistical independence 
is by observing that the probability of one event is unaffected by the occur-
rence of another event.

If f(Y|X) = f(Y), then the events are statistically independent; that is, the 
events are independent if the conditional and unconditional probabilities are 
equal. If f(Y|X) ≠ f(Y) (meaning the conditional and unconditional probabili-
ties are not equal), then they are dependent.

Using Table 2-5, I can calculate the probability that Y equals 4 given that X 
equals 3, as follows:

I can also calculate the probability that Y equals 4 by summing the values in 
row 4: f(Y = 4) = 0 + 0 + 0.20 = 0.20.

Because the values (the conditional and unconditional probabilities) are 
unequal, I conclude that X and Y are dependent.
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Understanding Summary Characteristics 
of Random Variables

When you want to describe the distribution of a random variable with num-
bers, you need to calculate the summary measures (or moments). The two 
most commonly reported measures are the expected value (or mean) and the 
variance. When you’re examining two random variables simultaneously, the 
covariance or correlation is frequently reported.

Making generalizations with  
expected value or mean
The expected value (or mean) of a random variable provides a measure of 
central tendency, which means that it provides one measurement of where 
the data tends to cluster.

 

The expected value is the average of a random variable. If you have a discrete 
random variable, you can calculate the expected value with the equation 

 , where X represents the different possible values for the 

 random variable, and f(X) is the probability that each value will occur.

 Expected value is like the mean, so you can use μX instead of E(X) to symbol-
ize it.

If you have a continuous random variable, then you calculate the expected 
value with this equation:

Although you may need to recognize the difference between discrete and 
continuous random variables, you probably won’t need to perform manual 
calculations of expected value for continuous random variables. You should, 
however, know how to perform manual calculations for a discrete random 
variable.

Suppose I’m examining random variable X with the probability distribution 
shown in the first two columns of Table 2-6. I can find the expected value by 
multiplying each possible value for X by its probability of occurring and then 
adding those values. I show this operation in the third column, which gives 
me E(X) = 1.5.
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Table 2-6 Expected Value of a Random Variable
X Probability (f(X)) X · f(X)
0 0.125 0
1 0.375 0.375
2 0.375 0.750
3 0.125 0.375
Total: 1 1.5

 If you’re manipulating equations containing an expected value operator, you’ll 
find the following five properties useful:

 ✓ The expected value of a constant is just the constant itself: E(a) = a

 ✓ The expected value of two random variables added together is equal to 
the sum of each of their expected values: E(X + Y) = E(X) + E(Y)

 ✓ The expected value of a random variable multiplied by a constant is 
equal to the constant multiplied by the expected value of the random 
variable: E(aX) = aE(X)

 ✓ If X and Y are independent random variables, then the expected value of 
their product is equal to the product of their expected values: E(XY) = 
E(X)E(Y)

 ✓ If X and Y are independent random variables, then the expected value of 

  their ratio is equal to the ratio of their expected values: 

Suppose I create a random variable W defined by W = 5 + 2X + XY, where the 
random variable X has an expected value equal to 3, the random variable Y 
has an expected value equal to 10, and they’re independent random variables. 
Using the expected-value properties, I calculate the expected value of W as
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Measuring variance and standard deviation
The variance of a random variable provides a measure of dispersion. 
Measures of dispersion offer a quantitative value of the diversity in the data. 
The variance increases the value of dispersion exponentially as measure-
ments deviate from the mean. The variance is used to produce other summary 
measures, including the standard deviation, which is the square root of the 
variance. The standard deviation is a commonly quoted measure of disper-
sion because its values are on the same scale as the variable being measured.

 The variance is the average squared difference between the value of a random 
variable and its mean. If your random variable is discrete, you can calculate 

 the variance as , where X represents the 

 different possible values for your random variable, E(X) is the mean of your 
random variable, and f(X) is the probability that each value will occur.

 You can also write the variance formula this way: .

If your random variable is continuous, then you calculate the variance with 
.

You’ll probably be required to recognize the difference between discrete 
and continuous random variables, but you’ll probably only need to perform 
manual calculations for discrete random variables.

Suppose I’m examining random variable X with the probability distribution 
shown in the first two columns of Table 2-7. First, I calculate the mean by 
taking each possible value for X, multiplying them by their probability of 
occurring (shown in column 2), and then adding these values. I show this 
operation in the third column, which gives me E(X) = μX = 1.5. Second, I 
square the difference between each value of X and its mean, multiply by the 
probability the X value occurs, and add those numbers. I show this final step 
in the fourth column, which gives me Var(X) = 0.75.

Table 2-7 Variance of a Random Variable
X f(X) X · f(X) (X – μX) 2f(X)
0 0.125 0 (0 – 1.5)2(0.125) = 0.281
1 0.375 0.375 (1 – 1.5)2(0.375) = 0.094
2 0.375 0.750 (2 – 1.5)2(0.375) = 0.094
3 0.125 0.375 (3 – 1.5)2(0.125) = 0.281
Total: 1 1.5 0.75
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 The following properties are helpful if you’re manipulating equations contain-
ing a variance operator:

 ✓ The variance of a constant is zero: Var(a) = 0

 ✓ The variance of a constant added to a random variable is equal to the 
variance of the random variable: Var(a + X) = Var(X)

 ✓ The variance of a random variable multiplied by a constant is equal to 
the constant squared multiplied by the variance of the random variable: 
Var(aX) = a2Var(X)

 ✓ The variance of two random variables added together is equal to the 
variance of one plus the variance of the other plus two times the covari-
ance of the two variables: Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

 ✓ The variance of one random variable subtracted from another random 
variable is equal to the variance of one plus the variance of the other 
minus two times the covariance of the two variables: Var(X – Y) =  
Var(X) + Var(Y) – 2Cov(X, Y)

 If two random variables are independent, then their covariance is zero. 
Covariance measures how two variables are related, so three outcomes are 
possible: The covariance is positive if the two variables have a direct relation-
ship, the covariance is negative if the two variables have an inverse relation-
ship, and the covariance is zero (or close to it) if there’s no clear relationship 
between the two variables (see the following section “Looking at relationships 
with covariance and correlation” for a discussion of this topic).

Suppose I create a random variable W defined by W = 3 + X – Y, where the 
random variable X has a variance equal to 16, the random variable Y has a 
variance equal to 25, and the covariance of variables X and Y is –4. Using the 
variance properties, I calculate the variance of W as

 You can calculate the standard deviation by taking the square root of the 
 variance. The calculation can be described by  or . 

Although mathematical manipulations and distributions are usually based on 
the variance measure, the standard deviation is commonly reported in statis-
tics and econometrics because it’s measured in the same units as the random 
variable. In the previous example, the Var(W) = 49, so the sd(W) = 7.
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Looking at relationships with  
covariance and correlation
When you start considering two random variables at the same time, you want to 
be able to summarize their relationship. Covariance and correlation are the most 
common measures used to summarize how two random variables are related.

Figuring out which way they’re going: Covariance
 Covariance uses the difference between the value of each random variable 

and its mean to determine how they vary with one another. You can calculate 
the covariance of two random variables, X and Y, as

where X and Y represent the different possible values for your two discrete 
random variables, E(X) is the mean of random variable X, E(Y) is the mean 
of random variable Y, and f(X, Y) is the joint probability that each value 
will occur (see the earlier section “Putting variable information together: 
Bivariate or joint probability density” if you need a refresher on these types 
of probabilities).

 You can also write the covariance formula as 
 

 or . If the random variables are continuous, the 

 covariance is calculated using the formula

 .

In Table 2-8, I provide an example of a joint probability table for random vari-
ables X and Y.

Table 2-8 Joint Probability Table
Y X f(Y)

1 2 3
1 0.25 0 0.10 0.35
2 0.05 0.05 0.10 0.20
3 0 0.05 0.20 0.25
4 0 0 0.20 0.20
f(X) 0.30 0.10 0.60 1.00
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Using the information in Table 2-8 for random variables X and Y, you can cal-
culate their covariance with the following steps:

 1. Calculate the expected value or mean, μX, of X. In this step, you mul-
tiply each X value in the column headings by its respective probability 
(f(X)) in the last row and sum the values.

  μX = (1)(0.30) + (2)(0.10) + (3)(0.60) = 2.3

 2. Calculate the expected value or mean, μY, of Y. In this step, you multi-
ply each Y value in the first column by its respective probability (f(Y)) in 
the last column and sum the values.

  μY = (1)(0.35) + (2)(0.20) + (3)(0.25) + (4)(0.20) = 2.3

 3. Calculate the covariance of X and Y. In this step, you multiply each X 
and Y value by its respective joint probability (f(X,Y)) in the inner cells 
of the table and sum the values. Then you subtract the product of the 
means of X and Y calculated in Steps 1 and 2.

 

 Unlike variance (which can only be a positive number), covariance can be 
positive or negative. A positive value indicates that the two variables tend to 
move in the same direction; when one goes up, the other one goes up. A nega-
tive value indicates that the two variables tend to move in opposite directions; 
when one goes up, the other goes down.

 If you’re manipulating equations containing a covariance operator, the follow-
ing properties help you:

 ✓ The covariance of two independent random variables is zero: Cov(X, Y) = 0 
if f(X|Y) = f(X) or f(X, Y) = f(X)f(Y)

 ✓ The covariance of two random variables multiplied by a constant is 
equal to the product of the constant times the covariance of the random 
variables: Cov(aX, bY) = abCov(X, Y)

 ✓ The covariance of a random variable times itself is equal to the variance 
of the random variable: Cov(X, X) = Var(X)
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 The magnitude of the covariance is influenced greatly by the units of measure-
ment. Therefore, you can use covariance to determine the direction of the rela-
tionship between two variables (positive or negative), but you shouldn’t use 
covariance to determine the strength of the relationship.

Gauging just how strong the relationship is: Correlation
A measure related to covariance known as the correlation coefficient can be 
used to measure the strength of the relationship between two variables.

 The correlation between two random variables is the ratio between their vari-
ance and the product of their standard deviations (see the previous section 
“Measuring variance and standard deviation” if you need to review these cal-
culations). The correlation coefficient, therefore, is defined as

 
or

 

The sign of the resulting value is the same as the covariance (positive or 
negative) and must be between –1 and +1.

A value of –1 indicates a perfectly negative relationship, and a value of +1 
implies a perfectly positive relationship. In Figure 2-6, I show one graph with a 
perfect negative relationship and one graph with a perfect positive relationship.

 

Figure 2-6: 
Two random 

variables 
with a 

perfect pos-
itive (a) and 
negative (b) 
relationship.

 

You’re unlikely to encounter situations where a perfect relationship exists 
between two variables. Typically, the relationships you see will look like 
those in Figure 2-7.

The more difficult identifying a clear positive or negative relationship 
becomes, the closer the correlation coefficient gets to zero. In Figure 2-8, 
I show a random dispersion of values for X and Y. When you see something 
like this, your correlation coefficient is zero (or very close to zero).
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Figure 2-7: 
Two random 

variables 
with an 

imperfect 
positive (a) 
and nega-

tive (b) 
relationship.

 

 

Figure 2-8: 
Two random 

variables 
exhibiting 

no relation-
ship.

 

 Correlation coefficients identify linear relationships, but they can be mislead-
ing if the relationship between two variables is nonlinear.

In Figure 2-9, I show two variables that clearly have a nonlinear relationship.

 

Figure 2-9: 
Two random 

variables 
exhibiting 

a nonlinear 
relationship.

 

If you calculate the correlation coefficient in a situation like this, you get a 
value of zero (or close to zero). However, you shouldn’t ignore relationships 
simply because they aren’t linear. Instead, use other techniques to identify 
relationships like the one in Figure 2-9 (which I cover in Chapter 8).



Chapter 3

Making Inferences and 
Testing Hypotheses

In This Chapter
▶ Utilizing sample data and estimating descriptive measures
▶ Understanding sampling distributions and the central limit theorem
▶ Reviewing the characteristics of common probability distributions
▶ Using probability distributions for interval estimation and hypothesis testing

O 
ne goal of both statistics and econometrics is to develop concepts  
that can be used to make predictions and forecasts with data. As a  

student, you typically use surveys and other forms of sample data to test 
your hypotheses and draw conclusions, and to do so, you need to understand 
how statistical inference works.

Statistical inference and hypothesis testing focus on the process of  
making generalizations for a population from sample information. Although 
econometrics courses cover inference procedures, you need to understand 
the foundational concepts covered in this chapter to fully grasp and  
appreciate those techniques.

This chapter reviews characteristics of well-known probability distributions 
and some fundamental concepts of statistical inference. If you find your 
statistics background isn’t strong enough to go through this chapter relatively 
quickly, then I recommend that you consult Statistics For Dummies (by 
Deborah Rumsey; John Wiley & Sons, Inc.) and a good statistics textbook.
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Getting to Know Your Data with 
Descriptive Statistics

Descriptive statistics are measurements that can be used to summarize your 
sample data and, subsequently, make predictions about your population of 
interest.

 When descriptive measures are calculated using population data, those values 
are called parameters. When you calculate descriptive measures using sample 
data, the values are called estimators (or statistics).

In the following sections, I tell you how to calculate the most common 
descriptive measures used in econometrics. (The calculation of population 
parameters using probability density information is explained in Chapter 2.) 
I also help you determine whether a particular estimator is good.

Calculating parameters and estimators
When you collect a random sample of data and calculate a statistic with  
that data, you’re producing a point estimate, which is a single estimate of a 
population parameter.

You could estimate many population parameters with sample data, but here 
I show you how to calculate the most popular statistics: mean, variance, 
standard deviation, covariance, and correlation. The following list indicates 
how each parameter and its corresponding estimator is calculated. (If you’re 
having trouble remembering what each of these is designed to measure, flip 
to Chapter 2.)

 ✓ Mean (average): The mean is the simple average of the random variable, 
X. The population mean for X is 

   

  where Xi represents the individual measurements and N is the size of the 
population. The sample mean is 

   

  The difference between the sample and population mean is that that the 
sample mean uses the sample size n instead of the population size N.
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 ✓ Variance: The variance is the average of the squared differences from 
the mean. The population variance for a random variable X is 

   

  where Xi represents the individual measurements, μx is the population 
mean, and N is the size of the population. The sample variance is 

   

  Note that the denominator for the sample variance not only uses the 
sample size n but also subtracts 1 from that number. This change is 
known as a degrees of freedom adjustment. Degrees of freedom adjustments 
are usually important in proving that estimators are unbiased. This 
concept is discussed in the following section, “Determining whether an 
estimator is good.”

 ✓ Standard deviation: The standard deviation measures how spread out 
the random variable is, on average, from the mean. The standard  
deviation is the square root of the variance, so the population  
standard deviation for random variable X is 

   

  and the sample standard deviation is 

   

 ✓ Covariance: The covariance measures how much two random variables 
change together. The population covariance between two random  
variables X and Y is 

   

  where Xi represents the individual X values, Yi represents the individual 
Y values, and N is the total number of measurements in the population. 
The sample covariance is 

   

  where  is the sample mean of X,  is the sample mean of Y, and n is the 
sample size.
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 ✓ Correlation: The correlation refers to the relationship between two 
random variables or sets of data. The population correlation coefficient 
between two random variables X and Y is 

   

  where σXY is the population covariance, σX is the population standard 
deviation of X, and σY is the population standard deviation of Y. The 
sample correlation coefficient is 

   

  where sXY is the sample covariance, sX is the sample standard deviation 
of X, and sY is the sample standard deviation of Y.

Now, try working with some numbers. In Table 3-1, I show five observations  
of hamburger sales and prices. Use the formulas to calculate the mean,  
variance, standard deviation, covariance, and correlation.

Table 3-1 Hamburger Prices and Sales
Hamburger Sales (in units), Y Hamburger Price (in $), X
100 1
80 2
63 3
45 4
21 5

 You can use computer software, such as STATA, to calculate descriptive  
statistics from the data in Table 3-1. By typing “sum” on the command line, 
you get the descriptive statistics for all the variables in your dataset. If you 
want the correlation between two variables, select Statistics ➪ Summaries, 
tables, and tests ➪ Summary and descriptive statistics ➪ Correlations and 
covariances from the menu bar. Or you can enter “corr variable1 variable2” on 
the command line. In your command, replace variable1 and variable2 with the 
actual names you’ve given the variables in your dataset. You can get covari-
ance by adding an option to the correlation command; type “corr variable1 
variable2, cov” on the command line. I execute these commands and show you 
STATA’s output in Figure 3-1.
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Figure 3-1: 
STATA 

output for 
descriptive 

statistics, 
correlation, 

and  
covariance.

 

You should verify that your manual calculations of these measures are  
consistent with STATA’s output.

 Summarizing data with descriptive statistics is a relatively simple procedure, 
but make sure you examine the values carefully. You can use descriptive  
measures to ensure that your sample contains measurements that are realistic. 
For example, if your population of interest is college graduates, you wouldn’t 
expect your random sample from that group to have an average age of 21. 
Careful attention to these details provides more credibility in your data and 
the subsequent inferences you make.

Determining whether an estimator is good
 Statisticians and econometricians typically require the estimators they use for 

inference and prediction to have certain desirable properties.

For statisticians, unbiasedness and efficiency are the two most-desirable 
properties an estimator can have. An estimator is unbiased if, in repeated 
estimations using the method, the mean value of the estimator coincides with 
the true parameter value. An estimator is efficient if it achieves the smallest 
variance among estimators of its kind. In some instances, statisticians and 
econometricians spend a considerable amount of time proving that a  
particular estimator is unbiased and efficient.
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Sometimes statisticians and econometricians are unable to prove that an  
estimator is unbiased. In that case, they usually settle for consistency. An 
estimator is consistent if it approaches the true parameter value as the 
sample size gets larger and larger. For this reason, consistency is known as 
an asymptotic property for an estimator; that is, it gradually approaches the 
true parameter value as the sample size approaches infinity.

In practical situations (that is, when you’re working with data and not just 
doing a theoretical exercise), knowing when an estimator has these desirable 
properties is good, but you don’t need to prove them on your own. You 
simply want to know the result of the proof (if it exists) and the assumptions 
needed to carry it out.

Laying the Groundwork of Prediction 
with the Normal and Standard  
Normal Distributions

To fully grasp prediction and hypothesis testing in econometrics, you need 
to know the properties of the normal distribution and remember how to work 
with normally distributed random variables.

Recognizing usual variables:  
Normal distribution
A random variable with a normal distribution has a probability density  
function that is continuous, symmetrical, and bell-shaped. Although many 
random variables can have a bell-shaped distribution, the density function of 
a normal distribution is precisely

The estimator linearity property
Besides unbiasedness and efficiency, an 
additional desirable property for some 
estimators is linearity. An estimator has this 
property if a statistic is a linear function of the 
sample observations.

This property isn’t present for all estimators, 
and certainly some estimators are desirable 

(efficient and either unbiased or consistent) 
without being linear. The linearity property, 
however, can be convenient when you’re 
using algebraic manipulations to create new 
variables or prove other estimator properties.
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where μX represents the mean of the normally distributed random variable X, 
σX is the standard deviation, and  represents the variance of the normally 
distributed random variable.

 A shorthand way of indicating that a random variable, X, has a normal  
distribution is to write .

I show a generic normal distribution in Figure 3-2. A distinctive feature of a 
normal distribution is the probability (or density) associated with specific 
segments of the distribution. I divide the normal distribution in Figure 3-2 
into the most common intervals (or segments): one, two, and three standard 
deviations from the mean.

 

Figure 3-2: 
A random 

variable 
with a 

normal dis-
tribution.

 

As I illustrate in Figure 3-2, with a normally distributed random variable, 
approximately 68 percent of the measurements are within one standard 
deviation of the mean, 95 percent are within two standard deviations, and 
99.7 percent are within three standard deviations.

Suppose you have data for the entire population of individuals living in  
retirement homes. You discover that the average age of these individuals is 
70, the variance is 9 (standard deviation, ), and the distribution of 
their age is normal. Using shorthand, you could simply write this information 
as X ~ N(70, 9). If you randomly select one person from this population, what 
are the chances that he or she is more than 76 years of age?
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Using the density from a normal distribution, you know that approximately 
95 percent of the measurements are between 64 and 76 (70 – 2σX < X < 70 
+ 2σX) (notice that 6 is equal to two standard deviations). The remaining 5 
percent are individuals who are less than 64 years of age or more than 76. 
Because a normal distribution is symmetrical, you can conclude that you 
have about a 2.5 percent (5% ÷ 2 = 2.5%) chance that you randomly select 
somebody who is more than 76 years of age.

 If a random variable is a linear combination of another normally distributed 
random variable(s), it also has a normal distribution.

Suppose I have two random variables described by these terms:

 

In other words, random variable X has a normal distribution with a mean of 
μX and variance of , and random variable Y has a normal distribution with 
a mean of μY and a variance of . If I create a new random variable, W, as 
the following linear combination of X and Y, W = aX + bY, then W also has a 
normal distribution. Additionally, using expected value and variance properties 
(I discuss these in Chapter 2), I can describe my new random variable with 
this shorthand notation: .

Putting variables on the same scale: 
Standard normal distribution (Z)
A specific version of a normally distributed random variable is the standard 
normal.

 A standard normal distribution is a normal distribution with a mean of 0 and 
a variance of 1. It’s useful because you can convert any normally distributed 
random variable to the same scale, which allows you to easily and quickly  
calculate and compare probabilities.

Typically, the letter Z is used to denote a standard normal, so the standard 
normal distribution is usually shown in shorthand as Z ~ N(0, 1).

You can obtain a standard normal random variable by applying the following 
linear transformation to any normally distributed random variable:
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where X is a normally distributed random variable with mean μX and standard 
deviation σX.

Suppose you’re working with population data for individuals living in  
retirement homes. The average age of these individuals is 70, the variance 
is 9, and the distribution of their age is normal; that is, X ~ N(70, 9). If you 
randomly select one person from this population, what are the chances that 
he or she is more than 75 years of age? You can figure out this probability by 
using the normal probability density function (see Chapter 2) and applying 
integral calculus, but fortunately the standard normal distribution simplifies 
the problem. Instead, you simply convert the X value of 75 to a Z value and 
use the standard normal probability table (Table A-1 in the appendix) to look 
up the density in that part of the distribution. Using the formula for Z and the 
standard normal probability table, you get

This answer tells you that you have a 4.75 percent chance of selecting  
somebody from the population who’s more than 75 years of age.

 The other popular continuous probability distributions — chi-squared (χ2), t, 
and F — are based on the normal or standard normal distributions. I discuss 
those distributions in the later section “Defining the chi-squared (χ2), t, and F 
distributions.”

Working with Parts of the Population: 
Sampling Distributions

Many random variables don’t have a normal distribution. So why is the 
normal distribution so popular? The answer has to do with sampling  
distributions.

 A sampling distribution is a probability distribution (or density) of a statistic 
when random samples of size n are repeatedly drawn from a population. It is 
not the distribution of your sample measurements.

A population parameter can be estimated with a statistic using sample data. 
For example, if you calculate a mean, median, variance, and so on using 
a random sample from your population, presumably you are using those 
figures as estimates of their population (true) or parameter values. Now 
imagine that you sample your population numerous times and calculate 
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these statistics for every sample that you draw. The values of these statistics 
change because the measurements in your sample change. The probability 
distribution of these values is a sampling distribution.

In the following sections, I explain how the sampling distribution of the mean 
is used to derive the properties of the central limit theorem and how this 
ends up forming the foundation for probability distributions commonly used 
in statistics and econometrics.

Simulating and using the  
central limit theorem
One sampling distribution with very desirable characteristics is the  
distribution of sample means.

 One of the most important concepts in statistics, the central limit theorem 
(CLT) utilizes the distribution of sample means. The CLT states that if random 
samples of n observations are drawn from a population with mean μX and  
variance , then when n is large, the distribution of the sample mean  is

 approximately normally distributed with mean  and variance .

I can write it more simply as .

You may be wondering how big exactly n must be in order to be considered 
large. How many observations are required to obtain a normal distribution 
for the sample mean? The answer depends on the shape of the source  
population distribution. Figure 3-3 shows you a graphical illustration of the 
CLT’s result, which the following points summarize:

 ✓ When the probability distribution of X is normal, the distribution of  is 
exactly normally distributed regardless of sample size.

 ✓ When the probability distribution of X is symmetrical, the CLT applies 
very well to small sample sizes (often as small as 10 ≤ n ≤ 25).

 ✓ When the distribution of X is asymmetrical, the approximation to a 
normal distribution becomes more accurate as n becomes large.

 You’re not likely to know exactly how your population data is distributed. 
Consequently, bigger is better, because it ensures a more accurate  
approximation to the normal distribution. With a large sample size, you  
don’t need a population with a normal distribution for your sample means  
to have a normal distribution.
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Figure 3-3: 
The central 

limit theo-
rem (CLT) at 

work with 
different 

population 
distribu-

tions.
 

 With the result of the CLT, you can convert the distribution of a sample mean 
to a standard normal. Because the CLT tells you that 

 

and any normally distributed variable can be converted to a standard 
normal, then Z is defined as

 

 Generally, a good convergence of the sample mean distribution to a normal 
distribution can be achieved with a sample size of 25 or more. If you’re  
planning to simultaneously analyze numerous variables, as is typical in  
econometrics, you want to use many more observations.

Defining the chi-squared (χ2), t,  
and F distributions
In econometrics, you use the chi-squared (χ2), t, and F distributions extensively. 
The following sections review the logic of their derivation and their basic 
characteristics to help you understand when and how to use them.
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The chi-squared distribution
The chi-squared distribution is useful for comparing estimated variance 
values from a sample to those values based on theoretical assumptions. 
Therefore, it’s typically used to develop confidence intervals and hypothesis 
tests for population variance. First, however, you should familiarize yourself 
with the characteristics of a chi-squared distribution.

 The χ2 distribution is a squared standard normal random variable, so it takes 
only nonnegative values and tends to be right-skewed. The extent of its  
skewness depends on the degrees of freedom or number of observations. The 
higher the degrees of freedom (more observations), the less skewed (more 
symmetrical) the chi-squared distribution.

I illustrate a few chi-squared distributions in Figure 3-4, where df1, df2, and 
df3 indicate increasing degrees of freedom.

 

Figure 3-4: 
Chi-squared 
distributions 
with various 

degrees of 
freedom.

 

The chi-squared distribution is typically used with variance estimates and 
rests on the idea that you begin with a normally distributed random variable,
such as . With sample data, you estimate the variance of this 
random variable with

where  is the sample mean and n is the sample size. If you algebraically 
manipulate this formula, you arrive at the chi-squared distribution:
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The last step, in which you divide both sides by the known (or assumed) 
population variance, is what standardizes your sample variance to a common 
scale known as chi-squared.

You can find the densities for various parts of the chi-squared distribution in 
Table A-3 of the appendix.

The t distribution
You probably used the t distribution extensively when dealing with means in 
your statistics class, but in econometrics you also use it for regression  
coefficients. Before you find out how that works, you should know how the  
t distribution is derived and its basic properties.

 The t distribution is derived from a ratio of a standard normal random variable 
and the square root of a χ2 random variable. It’s bell-shaped, symmetrical 
around zero, and approaches a normal distribution, as the degrees of freedom 
(number of observations) increases.

I show how the t distribution changes with degrees of freedom in Figure 3-5.  
The df1, df2, and df3 indicate increasing degrees of freedom (or observations).  
As the sample size approaches the population size, the t distribution 
approaches the standard normal.

 

Figure 3-5:  
The  

t distribution 
with various 

degrees of 
freedom.

 

If you have a normally distributed sample mean, such as 

 

then you can convert it to a standard normal by 
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Similarly, if you have a squared normal, such as the sample variance , you 
can convert it to a chi-squared by 

 

When you take the ratio of the standard normal to the square root of your 
chi-squared distribution, you end up with a t distribution:

You can find the densities for various parts of the t distribution in Table A-2 
of the appendix.

The F distribution
You probably used the F distribution in your statistics class to compare 
variances of two different normal distributions. In econometrics, you have a 
similar use for the F distribution. You’ll find that the F distribution is easier 
to use if you’re familiar with some of its characteristics, so I discuss those in 
this section.

 The F distribution is derived from a ratio of a two χ2 distributions divided 
by their respective degrees of freedom. The F distribution tends to be right-
skewed, with the amount of skewness depending on the degrees of freedom. 
As the degrees of freedom in the numerator and denominator increase, the F 
distribution approaches a normal distribution.

I show how the F distribution changes with your degrees of freedom in  
Figure 3-6. The df1df1, df2df2, and df3df3 indicate increasing degrees of  
freedom (or observations) in both the numerator and denominator. Although 
the skewness of the F distribution decreases when either the numerator or 
denominator degrees of freedom increase, it approaches a normal distribution 
when both become large.
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Figure 3-6:  
The  

F distribution 
with various 

degrees of 
freedom.

 

If X and Y are two normally distributed random variables, then the squared 
deviations of the X and Y values from their mean have a chi-squared 
distribution (  and ). When you take the 

ratio of the chi-squared distributions and divide each by its degrees of  
freedom, you end up with an F distribution:

You can find the densities for various parts of the F distribution in Table A-4 
of the appendix.

Making Inferences and Testing 
Hypotheses with Probability 
Distributions

When you want to test a theory (or an assumption) about the value of a  
population parameter, you perform some type of hypothesis test. In most 
cases, you use one of the four most common probability distributions to  
perform your test: the Z (standard normal), t, χ2, or F distributions.
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Performing a hypothesis test
 When you test an assumption or prior belief about a population parameter 

(such as a mean, variance, or regression coefficient), the assumption is  
typically labeled your null hypothesis (H0). You test it against an alternative 
hypothesis (H1). Hypothesis tests can be either one-tailed (right or left) or 
two-tailed (both left and right). At the conclusion of your hypothesis test, you 
either reject the null hypothesis or fail to reject the null hypothesis. (You rarely 
hear an econometrician or statistician refer to “accepting” a hypothesis.)

To perform a hypothesis test, follow these steps:

 1. Estimate the population parameter using your sample data.

  This step can be accomplished with point estimation. A point estimate is 
a single estimate of your parameter of interest.

 2. Determine the appropriate distribution.

  Estimators usually follow one of the well-known continuous probability 
distributions (the Z, t, chi-squared, or F). In Table 3-2, I summarize how 
you choose the appropriate distribution.

 3. Calculate an interval estimate or test statistic.

  If you decide to use the confidence interval approach to test your  
hypothesis, then you need to calculate an interval estimate of your 
population parameter (I provide more details and an example of interval 
estimation in the section “The confidence interval approach”).

  If you use the test of significance approach to test your hypothesis, then 
you calculate the appropriate test statistic (I review the formulas  
for common test statistics in the section “The test of significance 
approach”). Regardless of whether you decide to use the confidence 
interval or test of significance, you need your point estimate from Step 1 
and the distribution you chose in Step 2.

 4. Determine the hypothesis test outcome.

  After you complete Step 3, you determine whether you reject or fail to 
reject the null hypothesis based on some predetermined level of  
significance (α) or confidence (1 – α). The most common values for α 
are 0.01, 0.05, and 0.10 (or 1 percent, 5 percent, and 10 percent). See the 
sidebar “A note on levels of significance and p-values” for more detail.
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Table 3-2 Probability Distributions for  
 Various Hypothesis Tests
Purpose of 
Test

Sample Type Typical Null 
Hypothesis, H0

Appropriate 
Distribution

Value of one 
mean

One random sample 
with known population 
variance

H0: μX = c Z

Value of one 
mean

One random sample 
with unknown  
population variance

H0: μX = c t

Value of one  
variance

One random sample χ2

Comparing 
two means

Two random and  
independent samples 
with unknown  
population variances

H0: μX – μY = 0 t

Comparing 
two means

One paired sample with 
unknown population 
variances

H0: μX – μY = 0 t

Comparing 
two vari-
ances

Two random and  
independent samples 
drawn from a normal 
population

 or F

In Table 3-2, treat c as a number representing a hypothesized value. The list 
of hypotheses in Table 3-2 isn’t exhaustive, but it should remind you of the 
types of tests encountered in your statistics course. If you’re comfortable 
with these scenarios, then you’re well prepared for other tests that you’ll 
encounter in econometrics.
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The confidence interval approach
When you use the confidence interval approach to hypothesis testing, you 
calculate a lower limit and an upper limit for a random interval and attach 
some likelihood that the interval contains the true parameter value. If you’re 
testing a hypothesis, the values of your estimated interval relative to the 
assumed value of the parameter determine whether you reject the null 
hypothesis or do not reject the null hypothesis.

In your statistics class, you likely saw a number of different formulas for 
confidence intervals. The formula you choose depends on the purpose of the 
hypothesis test (testing a population mean, a population variance, and so 
on). Figure 3-7 illustrates the general concept of using confidence intervals 
for hypothesis testing.

 

Figure 3-7: 
Confidence 

interval 
used for 

hypothesis 
testing.

 

 If the hypothesized value for your parameter of interest is in the critical 
region, you reject the null hypothesis. If it’s in the confidence interval, you fail 
to reject the null hypothesis.

You should feel comfortable using confidence intervals before moving  
forward with other material in econometrics, so be sure to review that  
material in your statistics text if necessary.

 You can say that your confidence interval has a 1 – α probability of containing the 
true parameter value. However, you shouldn’t say that the parameter value 
has a 1 – α probability of being contained within the interval. The interval is 
random because it depends on random estimators, but the parameter (even 
though not known) is fixed and nonrandom.
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The test of significance approach
With the test of significance approach, you calculate a test statistic and then 
compare that calculated value to the critical value from one of the probability 
distributions (Z, t, χ2, or F) to determine the outcome of your hypothesis test.

Which formula you choose for your test (and you should know a few from 
statistics) depends on the purpose of the hypothesis test (such as testing a 
population mean or a population variance). Figure 3-8 illustrates the general 
concept of using a test statistic for hypothesis testing.

 

Figure 3-8: 
Test statis-
tic used for 
hypothesis 

testing in 
one-tailed 

and two-
tailed tests.

 

 If your calculated test statistic is in the critical region, you reject the null 
hypothesis, and you can also say that your test is statistically significant. If 
your calculated test statistic is not in the critical region, you fail to reject the 
null hypothesis, and you say that your test is statistically insignificant.

Be sure to review test statistics and the test of significance approach to 
hypothesis testing more before moving forward if you’re not comfortable 
with it.
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A note on levels of significance and p-values
In some cases, you perform a hypothesis test with a predetermined level of significance (α) 
or confidence (1 – α). In other cases, you report the p-value of your test and allow whoever’s 
examining your output to determine the outcome of the test.

If you don’t feel that setting a predetermined level of significance is appropriate, you should report 
the p-value of the test instead. The p-value is the lowest level of significance at which you could 
reject the null hypothesis given your calculated test statistic. Your econometrics software typically 
calculates these values for you when you do any type of hypothesis test. I show a graphical 
depiction of a p-value in the following figure.

The most common predetermined levels of significance are 1 percent, 5 percent, and 10 percent 
(or α = 0.01, α = 0.05, and α = 0.10), but there’s nothing sacred about these values.

Any value for α leaves you susceptible to type I and type II errors. A type I error occurs when 
you reject a null hypothesis that is in fact true. A type II error results when you fail to reject a null 
hypothesis that is in fact false. The table summarizes these types of errors:

H0 True H0 False
Reject H0 Type I error Correct
Do not reject Correct Type II error

When you increase the value of α, then you increase the chance of rejecting your null hypothesis. 
Because you don’t know whether that hypothesis is true or false, you’re increasing the chance of 
committing a type I error.

When you reduce the value of α, you increase the chance of failing to reject your null hypothesis. 
You don’t know whether that hypothesis is true or false, so you’re increasing the chance of 
committing a type II error.

One reason for reporting p-values is to allow people examining your output to apply their own 
tolerance for committing type I and type II errors. This divulgence relieves you from criticism of 
applying some arbitrary value for α and passes the burden on to the reader.



Part II
Building the Classical Linear 

Regression Model

 Cramming for an exam? Visit www.dummies.com/extras/econometrics for 
an at-a-glance guide to defining a regression model.

http://www.dummies.com/extras/econometrics


In this part . . .
 ✓ Recognize how econometric techniques help you make esti-

mates about economic relationships by relating economic 
 theory to econometric models.

 ✓ Grasp the fundamental ideas behind the most common tech-
nique used to quantify economic relationships: the ordinary 
least squares (OLS) technique, also known as regression 
analysis.

 ✓ Estimate simple regression models by hand and on the com-
puter and interpret the results of regression analysis with the 
help of econometric software.

 ✓ Get acquainted with the assumptions of the classical linear 
regression model (CLRM) that define a “standard situation” 
in econometrics and understand their role in proving the 
Gauss-Markov theorem.

 ✓ Find out precisely how a normal distribution is used in econo-
metrics and the importance of the normality assumption for 
tests of statistical significance and calculations of forecast 
error.



Chapter 4

Understanding the Objectives 
of Regression Analysis

In This Chapter
▶ Understanding the difference between correlation and causality
▶ Building econometric models and making a case for causality
▶ Working with different types of economic data

E 
conometric techniques help you make estimates about economic  
relationships. For example, you can use your knowledge of economic 

theory to predict that having more disposable income leads to increased 
consumption for normal goods, but you need econometrics to determine 
how much consumption rises for a given increase in income. In other words, 
the wisdom you acquired in your introductory and intermediate economics 
courses helps you form hypotheses about the direction (positive or negative 
signs) of various relationships, but econometrics assists you in estimating 
their magnitude.

The purpose of this chapter is twofold: to provide you with an overview of 
the most common technique used to quantify economic relationships, called 
regression analysis, and to explain how to organize the data you’ll use for 
your analysis.

 In order to apply econometrics effectively, you need some background in both 
economics and statistics. If you need a refresher of economic theory, check 
out Economics For Dummies by Sean Masaki Flynn (John Wiley & Sons, Inc.). 
For a review of the relevant statistical concepts, refer to Chapters 2 and 3 of 
this book.
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Making a Case for Causality
Econometrics is typically used for one of the following objectives:

 ✓ Predicting or forecasting future events

 ✓ Explaining how one or more factors affect some outcome of interest

Although some econometrics problems have both objectives, in most cases 
you use econometric tools for one aim or the other.

Regardless of the objective for using econometrics, econometric studies  
generally have one characteristic in common: the specification of a model. 
Model specification consists of selecting an outcome of interest or dependent 
variable (typically labeled as Y) and one or more independent factors (or explan-
atory variables, usually labeled with Xs). In addition, model specification 
also, refers to choosing an appropriate functional form (a topic that I discuss 
in Chapter 8).

 Independent variables are the factors that cause changes in your dependent 
variable, not the other way around. Because most situations in economics 
(and in some business fields like marketing and accounting) involve cause-and-
effect scenarios, applied work in econometrics pays careful attention to 
the variables chosen to be dependent and independent. If the relationship 
between cause variables and effect variables isn’t obvious, you should  
utilize your common sense and knowledge of economics to justify the causal 
assumptions of your model.

Justifying your model means that you should be able to explain why it makes 
sense to think of your dependent variable as being caused by the independent 
variables you’ve selected. In some cases, that connection may be obvious, 
but in other cases you may need to provide a detailed explanation. For 
example, if you have state data and your dependent variable is the average 
amount of time unemployed workers are without a job, you’d want to include 
independent variables that capture the skill traits of workers and other state 
characteristics that may influence unemployment spell length. Average  
education and work experience levels are characteristics that, according 
to human capital theory, should help workers reduce the amount of time 
they’re unemployed. These are justifiable independent variables and won’t 
require much explanation because of their direct connection with the out-
come of interest. On the other hand, state policies, such as welfare assistance 
and unemployment insurance, have a less obvious connection. Nevertheless, 
they’re likely to influence worker decision making and be important causal 
factors. It’s likely, however, that you’ll need to invest more time explaining 
how they’re related to the outcome and why their inclusion among the inde-
pendent variables makes sense.
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Keep in mind that regression analysis identifies the direction (sign ±) and 
strength (magnitude) of the relationship between the variables in your 
model. But the strength of the statistical relationship does not imply causality. 
Figure 4-1 shows the scatter plot of monthly ice cream production in the 
United States and drowning deaths in Florida single residence pools in 2006. 
You can see that drowning and ice cream production have a strong positive 
relationship (trend line is upward sloping, so both variables move in the 
same direction [deaths increase, ice cream increase]), but you don’t have 
a strong case for one causing the other simply because they’re correlated 
(ice cream affects drowning?). It’s simply an example of spurious correlation, 
which occurs when two variables coincidentally have a statistical relationship 
(positive or negative) but one doesn’t cause the other.

 

Figure 4-1: 
Scatter plot 

and linear 
trend line 

of monthly 
ice cream 

production 
and monthly 

drowning 
deaths.

 

 Causation cannot be proven by statistical results. Your results can be used 
to support a hypothesis of causality, but only after you’ve developed a model 
that is well grounded in economic theory and/or good common sense.

Getting Acquainted with the Population 
Regression Function (PRF)

Before you begin with regression analysis, you need to identify the population 
regression function (PRF). The PRF defines reality (or your perception of it) as 
it relates to your topic of interest. To identify it, you need to determine your 
dependent and independent variables (and how they’ll be measured) as well 
as the mathematical function describing how the variables are related.



64 Part II: Building the Classical Linear Regression Model 

Setting up the PRF model
After you narrow down your topic or question of interest, you’re ready to 
develop your model using the following steps:

 1. Provide the general mathematical specification of your model.

  The general specification denotes your dependent variable and all 
the independent (or explanatory) variables that you believe affect the 
dependent variable in your population of interest.

  Suppose that three variables affect the dependent variable. The general 
specification will look something like Y = f(X1,X2,X3), where Y is the depen-
dent variable and the Xs represent the independent variables, which you 
believe directly affect (or cause) fluctuations in the Y variable.

  Unless the reasoning is obvious, provide some justification for the  
variables chosen as independent variables and for the functional form of 
the specification (see Step 2). Doing so helps you avoid misspecification, 
which occurs if you omit important variables or include irrelevant  
variables (I cover the details of misspecification issues in Chapter 8).

 2. Derive the econometric specification of your model.

  In this step, you take the variables identified in Step 1 and develop a 
function that can be used to calculate econometric results. This functional 
form is known as the population regression function (PRF). In this step, 
you’re also acknowledging that the relationship you hypothesized in 
Step 1 is expected to exist when you look at the average of the data; not 
for every single observation.

  Assume you have reason to believe that the model is linear. It will look 
like this: E(Y|X1,X2,X3) = β0 + β1X1 +β2X2 + β3X3.

  In this function, the conditional mean operator E(Y|X1,X2,X3) indicates 
that the relationship is expected to hold, on average, for given values of 
the independent variables. The intercept term β0, also called the  
constant, is the expected mean value of Y when all Xs are equal to 
zero. The other βs represent the partial slopes (effects). These partial 
slopes tell you how much your dependent variable changes when you 
change the independent variable by one unit but hold the value of the 
other independent variables constant. (This idea of changing one thing 
and keeping the rest the same is the ceteris paribus, or all else equal, 
condition that you’re familiar with from your introductory economics 
courses.)

  Depending on the particular phenomenon you’re analyzing, a nonlinear 
relationship using squared terms, logs, or another method instead of  
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the linear function E(Y|X1,X2,X3) = β0 + β1X1 +β2X2 + β3X3 may be more 
appropriate (these alternatives are described in Chapter 8).

  The specification you choose is assumed to describe the “true”  
relationship, so be sure to justify it using sound economic theory and 
common sense.

 3. Specify the random nature of your model.

  This step clarifies that the relationship you’ve assumed in Steps 1 and 2 
holds on average but may contain errors when a specific observation is 
chosen at random from the population. This is known as the stochastic 
population regression function and is written as Yi = β0 + β1X1i + β2X2i + 
β3X3i + εi, where the i subscripts denote any randomly chosen observa-
tion and εi represents the stochastic (or random) error term associated 
with that observation. Note that stochastic is simply statistics jargon for 
random.

  Regardless of how you choose to represent the PRF, the random error 
term represents the difference between the observed value of your 
dependent variable and the conditional mean of the dependent variable 
derived from your model. This value is positive if the observed value is 
above the conditional mean and negative if it is below.

 The random error can result from one or more of the following factors:

 ✓ Insufficient or incorrectly measured data

 ✓ A lack of theoretical insights to fully account for all the factors that 
affect the dependent variable

 ✓ Applying an incorrect functional form; for example, assuming the  
relationship is linear when it’s quadratic

 ✓ Unobservable characteristics

 ✓ Unpredictable elements of behavior

 If you have several explanatory variables, you can save time by writing the 
econometric model using some mathematical shorthand. With algebraic  
notation, it would look like one of the following two functions:
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Walking through an example
This section is all about illustrating the steps used to develop the population 
regression function with an example. Suppose you’re interested in explaining 
the variation in exam scores for an entire group of econometrics students. 
Economic theory suggests that input will have a positive effect on output. In 
this case, common sense suggests that study hours are an appropriate input 
and exam scores be used as an output, so the general model is S = f(H), where 
S is exam score and H is study hours (number of hours students spent studying).

The art of econometrics is the way you use additional insights to specify  
the econometric model. Often those theoretical insights are vague or don’t 
exist at all, so some experimentation may be required. For simplicity, assume 
in this case that the relationship is linear. Then the PRF is E(S|H) = β0 + β1H 
and the stochastic PRF is Si = β0 + β1H1 + εi.

Table 4-1 contains the population data of exam scores and study hours for 
my econometrics students.

Table 4-1 Study Hours and Individual Exam Scores  
 for Population of Econometrics Students
Study Hours, H Scores, S
1 25, 30, 35, 40, 45
2 35, 40, 44, 50, 55, 58
3 49, 54, 60, 64, 68
4 50, 63, 65, 73, 78, 83, 85
5 72, 77, 80, 86, 88, 95

Using the data in Table 4-1, you can calculate the conditional means (the 
average exam score for each level of study hours) and the resulting PRF. The 
conditional means are as follows:
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 The PRF must pass through the conditional means, so those values can be 
used to calculate the slope.

On average, the students increase their exam scores by 12 points for every 
additional hour of studying. You can determine the intercept value (value of 
S when H = 0) by extrapolating back to zero study hours, and then you can 
write the PRF as E(S|H) = 23 +12H.

Figure 4-2 illustrates the data, conditional means, and PRF. You can write  
the stochastic version of the PRF in Figure 4-2 as Si = 23 +12Hi +εi. This  
representation emphasizes that the observed value for your dependent 
variable from an observation picked at random is likely to be different from 
the conditional mean for that group. Some students earn scores above the 
conditional mean (positive random error) and some below (negative random 
error).

 

Figure 4-2: 
Population 
regression 

function 
with  

scatter plot 
of individual 

population 
observations.

 

 In most applications, you won’t have population data. Consequently, you’ll 
need to make some sensible assumptions about the model and work with 
sample data to estimate your PRF. Because sample data may contain only one 
Y value for a given X value, calculating conditional means makes no sense and 
you’ll need to use a different technique. That’s where Chapter 5 comes to the 
rescue. Head there for details on estimating regression functions using sample 
data.
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Collecting and Organizing Data  
for Regression Analysis

After you develop the econometric model and population regression  
function that you’d like to estimate (as I describe in the earlier section 
“Getting Acquainted with the Population Regression Function (PRF)”), you 
must compile the data and prepare it for regression analysis. In general, 
you’ll utilize one of four types of data:

 ✓ Cross-sectional

 ✓ Time series

 ✓ Panel (longitudinal)

 ✓ Pooled cross-sectional

I cover each of these types of data in more detail in the following sections.

 Although most econometric techniques can be applied to any data structure, 
some situations require specialized techniques that allow you to deal with 
special features of the data. Chapter 12 addresses issues that arise mainly 
when you use time-series data; Chapters 16 and 17 cover methods that can be 
applied when you use panel (longitudinal) data.

Taking a snapshot: Cross-sectional data
Cross-sectional data contains measurements for individual observations  
(persons, households, firms, counties, states, countries, or what have you) 
at a given point in time.

A linear regression function using cross-sectional data is typically written 
this way: .

The i subscripts represent the individual units providing the measurements 
for each variable.

You can use these types of models for testing microeconomic hypotheses, 
so they tend to be popular in labor economics, industrial organization, urban 
economics, and other micro-based fields.
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 When using cross-sectional data, you assume that the observations represent 
a random draw from your population of interest. Sometimes the data for the 
individual observations must be collected over a period of days or weeks, but 
you can usually ignore these timing differences with cross-sectional data.

Table 4-2 shows how you organize cross-sectional data in preparation for 
estimating your econometric model. Note: Econometric software programs 
typically require that the variables be aligned in columns, with the  
observations (or measurements) following in rows.

Table 4-2 Cross-Sectional Data for a Random Sample  
 of Movies Released in 2009
i Title Box Office 

Revenue 
(in $mil)

Viewer 
Approval 
Rating

Budget 
(in $mil)

1 Crazy Heart 39 91 7

2 A Serious Man 9 89 7

3 A Single Man 9 86 7

4 An Education 13 94 7.5

5 Sunshine Cleaning 12 71 8

¦ ¦ ¦ ¦ ¦

115 Harry Potter and the  
Half-Blood Prince

302 83 250

Source: www.imdb.com and www.rottentomatoes.com

In order to save space, I skip from the fifth observation in the data to the last 
observation (a procedure that I replicate in some other tables). All of the 
other observations have the same structure, so keep in mind that this  
dataset contains a total of 115 observations. 

 Cross-sectional data is typically collected through surveys. The most popular 
cross-sectional datasets include the Current Population Survey (CPS), the 
American Community Survey (ACS), and extracts from the decennial census. 
If your research question is highly specialized, you may need to devise your 
own survey and collect the cross-sectional data needed for your analysis.

http://www.imdb.com
http://www.rottentomatoes.com
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Looking at the past to explain  
the present: Time-series data
Time-series data contains measurements on one or more variables (such as 
gross domestic product, interest rates, or unemployment rates) over time in 
a given space (like a specific country or state).

A linear regression function using time series data is generically written as

where the t subscripts represent the period of time in which the measurement 
was observed.

You can utilize these models for identifying trends and examining seasonal 
adjustments, so their use tends to be most popular among macroeconomists 
(I cover these types of econometric models in Chapter 15).

 Patterns in time-series data can convey important information, so make sure 
your data is organized in chronological order. Also, when ordering the data, 
pay particular attention to the frequency with which it was collected. Typical 
frequencies are daily, weekly, monthly, quarterly, or yearly. You’ll be able to 
use the ordering of the data to identify trends and the frequency to examine 
changes that are unique to specific periods (election year, holidays, and so on).

Table 4-3 shows how to organize time-series data concerning labor force  
statistics in preparation for estimating your econometric model. The  
variables should be aligned in columns with a measurement for each unit of 
time. The observations (or measurements) follow chronologically in rows.

Table 4-3 Monthly Time-Series Data
t Year Month Unemployment 

Rate
Underemployment 
Rate

1 2002 January 5.7 9.5
2 2002 February 5.7 9.5
¦ ¦ ¦ ¦ ¦
12 2002 December 6.0 9.8
13 2003 January 5.8 10.0
¦ ¦ ¦ ¦ ¦
120 2011 December 8.5 15.2
Source: www.bls.gov

http://www.bls.gov
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 Time-series data can be compiled by businesses, but the most popular series 
are typically collected by government agencies. The Federal Reserve, Census 
Bureau, Department of Commerce, Department of Energy, and Bureau of 
Labor Statistics are all excellent sources for time-series data.

Combining the dimensions of space and 
time: Panel or longitudinal data
Panel data (also referred to as longitudinal data) contains a time series for 
each cross-sectional unit in the sample. The data contains measurements 
for individual observations (persons, households, firms, counties, states, 
countries, or other) over a period of time (days, months, quarters, or years). 
Consequently, panel data contains both cross-sectional and time-series  
characteristics.

A linear regression function using panel data is generically written this way:

The i subscripts represent the individual units, and the t subscripts represent 
the period of time in which the measurement was observed.

You can use these models to control for numerous characteristics (both 
observed and unobserved) of the cross-sectional units as well as lags and 
trends that may be present over time. Consequently, both microeconomists 
and macroeconomists use this type of data. (You can learn about specific 
types of panel econometric models in Chapter 17.)

 The collection of panel data begins with a random, cross-sectional draw from 
your population of interest. Then the same cross-sectional units are followed 
over a period of time with some predetermined frequency.

Table 4-4 shows how you’d organize panel data (in this case concerning the 
same 50 Major League Baseball players in 2003 and 2004) in preparation for 
estimating your econometric model. Your variables should be aligned in  
columns, with the observations (or measurements) in rows. The observations 
should be ordered so that data collected over time is adjacent to each of 
your cross-sectional units.
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Table 4-4 Panel Data
Obs i t Name Year Batting 

Average
Years in 
MLB

1 1 1 Carlos 
Baerga

2003 0.343 14

2 1 2 Carlos 
Baerga

2004 0.235 15

3 2 1 Tony Clark 2003 0.232 9
4 2 2 Tony Clark 2004 0.221 10
¦ ¦ ¦ ¦ ¦ ¦
99 50 1 Todd Zeile 2003 0.257 15
100 50 2 Todd Zeile 2004 0.233 16
Source: www.seanlahman.com

 Panel data is typically collected through surveys. The most popular panel 
datasets include the National Longitudinal Survey (NLS), the Panel Study of 
Income Dynamics (PSID), and the Survey of Income and Program Participation 
(SIPP).

Joining multiple snapshots:  
Pooled cross-sectional data
If a cross sectional survey collects the same information on multiple occasions 
from different individual units, you can combine the data to create a pooled 
cross section. A pooled cross section combines independent cross-sectional 
data that has been collected over time.

 The advantage of pooled cross-sectional data is that more observations tend 
to improve the accuracy of econometric estimates and the added time  
element allows you to explore both static and dynamic elements (I discuss 
some applications using pooled cross-sectional data in Chapter 16).

 Simply because your dataset contains both a cross-sectional and time-series 
component doesn’t make it a panel dataset. In some cases, you may be able to 
increase the number of observations for your analysis by combining randomly 
sampled cross sections of individuals collected in different points in time, but 
it isn’t a panel dataset unless the same individual units are observed in each 
subsequent time period.

http://www.seanlahman.com
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Treat pooled cross-sectional data simply as a larger version of a cross- 
sectional dataset, because the data lacks the special feature of observing  
the same cross-sectional unit on multiple occasions. In Table 4-5, you’re 
working with pooled cross section data for a random sample of Major League 
Baseball players: 50 players from 2005 and 50 players from 2006. The table 
shows how you would organize a pooled cross section by year in preparation 
for estimating your econometric model.

Table 4-5 Pooled Cross Section Data
Obs i t Name Year Batting 

Average
Years in 
MLB

1 1 1 Moises Alou 2005 0.321 16
2 2 1 Paul Bako 2005 0.250 8
¦ ¦ ¦ ¦ ¦ ¦ ¦
50 50 1 Eric Young 2005 0.275 14
51 51 2 Sandy Alomar 2006 0.217 19
52 52 2 Geoff Blum 2006 0.254 8
¦ ¦ ¦ ¦ ¦ ¦ ¦
100 100 2 Preston 

Wilson
2006 0.269 9

Source: www.seanlahman.com

 You’ll want to keep track of the time period in which you collected data for 
each individual unit.

In addition to increasing your observations, a pooled cross section allows 
you to identify changes over time (on average across all individual units) and 
observe policy analysis across different time periods. To accomplish this, 
keep any variables that track the time component.

http://www.seanlahman.com
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Chapter 5

Going Beyond Ordinary with the 
Ordinary Least Squares Technique
In This Chapter
▶ Getting acquainted with the least squares principle
▶ Pinpointing the residuals
▶ Estimating regression coefficients
▶ Interpreting the magnitude of regression coefficients
▶ Measuring the overall regression fit

R 
egression analysis refers to techniques that allow you to estimate  
economic relationships using data. The method used most frequently  

is commonly known as ordinary least squares (OLS). In this chapter, you  
discover how to estimate simple regression models with manual calculations 
and computer calculations. You also find out how to interpret simple and 
multiple regression models using output from STATA.

 Although the OLS technique is popular and relatively simple (in comparison 
to other available methods), the application of it through manual calculations 
can become quite complicated when you start adding more independent 
(explanatory) variables to your regression model. You can improve your 
understanding of the OLS technique by working through the algebraic  
manipulations you see throughout this chapter, but you must also learn how 
to apply OLS using STATA with realistic models and real-world data. (For 
more information on this software, see Chapter 1.)

Note: In this chapter I assume that you grasp the fundamental difference 
between parameters and estimates/statistics (see Chapter 3 for a review of 
these topics). I also assume that you’ve thought about your need to perform 
regression analysis (the goals of which I cover in Chapter 4).
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Defining and Justifying the  
Least Squares Principle

When you need to estimate a sample regression function (SRF), the most 
common econometric method is the ordinary least squares (OLS) technique, 
which uses the least squares principle to fit a prespecified regression  
function through your sample data. The least squares principle states that the 
SRF should be constructed (with the constant and slope values) so that the 
sum of the squared distance between the observed values of your dependent 
variable and the values estimated from your SRF is minimized (the smallest 
possible value).

 Although sometimes alternative methods to OLS are necessary, in most  
situations, OLS remains the most popular technique for estimating regressions 
for the following three reasons:

 ✓ Using OLS is easier than the alternatives. Other techniques, including 
generalized method of moments (GMM) and maximum likelihood (ML) 
estimation, can be used to estimate regression functions, but they require 
more mathematical sophistication and more computing power. These 
days you’ll probably always have all the computing power you need, but 
historically it did limit the popularity of other techniques relative to OLS.

 ✓ OLS is sensible. By using squared residuals, you can avoid positive and 
negative residuals canceling each other out and find a regression line 
that’s as close as possible to the observed data points.

 ✓ OLS results have desirable characteristics. A desirable attribute of any 
estimator is for it to be a good predictor. When you use OLS, the  
following helpful numerical properties are associated with the results:

	 •	The	regression	line	always	passes	through	the	sample	means	of	Y 
and X or .

	 •	The	mean	of	the	estimated	(predicted)	Y value is equal to the 
  mean value of the actual Y or .

	 •	The	mean	of	the	residuals	is	zero,	or	 .

	 •	The	residuals	are	uncorrelated	with	the	predicted	Y, or .

	 •	The	residuals	are	uncorrelated	with	observed	values	of	the	

  independent variable, or .

 The OLS properties are used for various proofs in econometrics, but they also 
illustrate that your predictions will be perfect, on average. This conclusion fol-
lows from the regression line passing through the sample means, the mean of 
your predictions equaling the mean of your data values, and from the fact that 
your average residual will be zero.
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Estimating the Regression  
Function and the Residuals

The regression function is usually expressed mathematically in one of the  
following ways:

 ✓ Basic notation: 

 ✓ Summation notation: 

 ✓ Matrix notation (which I don’t use in this book): 

The Y variable represents the outcome you’re interested in, called the  
dependent variable, and the Xs represent all the independent (or explanatory) 
variables (turn to Chapters 4 and 8 for information on how you go about 
determining which variables to include). Your objective now is to estimate 
the population regression function (PRF) using your sample data.

When working on real-world econometric problems, you usually specify 
a PRF with a dependent variable and several independent variables. For 
example, suppose you’re interested in the number of hamburgers purchased 
during the lunch hour at school cafeterias. Microeconomic theory suggests 
that sales should be influenced by the price of the hamburgers along with 
other factors, such as the price of other food items, the price of soft drinks, 
and so on. With that in mind, you may want to specify your PRF using  
hamburger sales as the dependent variable and all other relevant factors as 
the independent variables.

To visualize the OLS regression and get a basic understanding of the  
fundamental concept, assume now that the dependent variable (hamburger 
sales) is influenced by only one explanatory variable (the price of hamburgers). 
The sample regression function (SRF) is expressed as , where 
Y is hamburger sales and X is the price. In this case, the SRF is a line, with the 
value for  estimating the intercept and  estimating the value of the slope.

 Notice how the mathematical representation of the SRF uses hats (^) above 
the coefficients and error term. I use this symbol to denote that these  
numbers are estimates of their true population values, but keep in mind that 
some textbooks use English (Latin) letters to represent sample regression 
coefficients and other estimates.
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Obtaining Estimates of the  
Regression Parameters

Before you start estimating regression coefficients using mathematical tools, 
you can get a good idea of the relationship between the intercept, slope, and 
the residuals by examining the components of the sample regression func-
tion graphically. Figure 5-1 shows a scatter plot of Y and X values, the sample 
regression line (SRL) containing the estimated (or predicted) Y values, and 
the estimated errors.

 

Figure 5-1: 
Graphical 
depiction 

of a simple 
regression 

with one 
independent 

variable.
 

The regression line superimposed on the scatter plot in Figure 5-1 was 
derived using the ordinary least squares (OLS) technique. You can imagine 
sketching a random line through the points, calculating the sum of squared 
residuals (distance from the observed values — the diamonds — to the line), 
and moving the line and repeating this process until you find a line placement  
that achieves the smallest possible value for that sum. The problem is that 
you can make infinitely small adjustments to the line placement, which 
means you’d be sketching lines forever trying to find that magical value. 
Fortunately, a mathematical solution to this problem exists. Simply determine 
the formulas necessary to find the coefficient values and then calculate, as 
explained in the following sections. You get a regression line based on  
estimates that are great — in fact, they’re perfect, on average.
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Finding the formulas necessary to  
produce optimal coefficient values
Changes to a regression line also change the residuals (distance from the 
observed values to the line). The more appropriate the values you choose 
for the intercept and slope of that line, the smaller the squared residuals. If 
the value of the regression coefficients is inappropriately large or small, the 
squared residuals will be too large. 

Figure 5-2 illustrates how the sum of squared residuals can respond to 
changes in coefficient values. The coefficient value is measured along the 
horizontal axis, and the sum of squared residuals is represented by the  
vertical axis. If the value of the regression coefficient is too low, the line 
won’t have a good fit and the sum of squared residuals will be high. The same 
outcome occurs if the value of the regression coefficient is too high. Note: 
Your regression may consist of several coefficients (an intercept and slope 
coefficients), so this graph is a two-dimensional simplification.

 

Figure 5-2: 
An optimal 

set of coeffi-
cient values 

achieves 
the small-
est sum of 

squared 
residuals.

 

The objective of OLS is to produce those optimal regression coefficients. 
Because the coefficients have an infinite number of possible values, you can’t 
rely on eyeballing it. Math to the rescue!

You can write the objective of OLS this way:

which can be rewritten as
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where  is the estimated (or predicted) Y value from the regression. The final 
step in setting up the derivation of the regression coefficients is to substitute 
the equation of the SRL for the predicted Y values to obtain

From here, you can use calculus to differentiate this equation with respect to 
the first regression coefficient (β0) and set it equal to zero; then differentiate 
with respect to the other regression coefficient (β1) and set it to zero. The 
result is two equations with two unknowns. Using algebra, you can then solve 
for the two regression coefficients.

 The calculus and somewhat complicated algebraic manipulations result in 
easy-to-use formulas for calculating the regression coefficients (estimates of 
the slope and intercept). Calculate the slope first with 

Then calculate the intercept with .

As you can see from the formulas, you need to first use the sample data to 
calculate the mean of the dependent variable ( ) and the mean of the inde-
pendent variable ( ).

Calculating the estimated  
regression coefficients
After you have the formulas for the coefficients that achieve the smallest sum 
of squared residuals, you’re ready to start calculating either by hand or by 
using computer software. I cover both methods in the following sections.

 Man and machine can produce the same results, but the machines allow you 
to produce results much more quickly.

Doing the math by hand
 If you’re going to be performing OLS estimation calculations by hand, I 

strongly recommend using a table to keep yourself organized. You’re less 
likely to make mistakes this way.

Table 5-1 contains sample (or raw) data on hamburger sales (Y) and price (X) 
at five different school cafeterias (i). Each variable is housed in a column, and 
each observation is located in a row. Columns 1, 2, and 3 contain your sample 
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data, and Columns 4, 5, 6, and 7 contain the intermediate calculations you 
use to arrive at the OLS regression coefficients.

Table 5-1 Calculation of Estimated Regression Coefficients
(1)

i

(2)

Yi

(3)

Xi

(4) (5) (6) (7)

1 100 1 38.2 –2 4 –76.4
2 80 2 18.2 –1 1 –18.2
3 63 3 1.2 0 0 0
4 45 4 –16.8 1 1 –16.8
5 21 5 –40.8 2 4 –81.6
Sum: 309 15 0 0 10 –193
Mean: 61.8 3

Using Table 5-1, you can estimate the following regression coefficients:

The resulting SRF or equation of the line is .

 When you’re computing regression coefficients by hand, you can use the 
 properties  and  to check your calculations. Alternatively, as shown 

in Figure 5-3, you can use STATA to estimate the regression coefficients and 
simply check your final answer.

 

Figure 5-3: 
STATA 

results using 
the OLS 

regression 
technique.
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 As you work through your table, periodically pause to make sure your  
intermediate calculations are correct. I’m sure you recall from statistics that 
the sum of deviations from the mean must be equal to zero. Then, you know 
that a zero must appear at the bottom of Columns 4 and 5. Always make sure 
you meet this requirement before you continue with your final calculations.

Computing on the computer
When you want to perform a regression with several independent variables, 
the formulas for calculating the regression coefficients become increasingly 
complex and typically require matrix algebra. Of course, more observations 
(sample points) also make manual calculations tedious. You’ll want to let 
computer software do the heavy lifting for you in these cases.

 Econometric software is not only useful with a simple regression model but 
also absolutely essential when you include additional independent variables 
and/or use data with numerous observations. STATA, one of the most popular 
econometrics software programs, can immediately produce the regression 
results you seek.

In order to truly appreciate the capability of the computer and the specialized 
software to generate regression results, take a look at a multiple regression 
(a regression model that contains more than one explanatory variable).

A movie studio is interested in gaining a better understanding of movie  
success. The studio execs provide you with a dataset containing 580  
observations (movies). For each movie, you’re given its box office revenue 
(in millions of dollars) and a measure of film quality through viewer approval 
(measured on a scale that can go from 0 to 100 percent viewer approval) and 
its budget (in millions of dollars). Table 5-2 provides a snapshot of the data 
for 10 of the 580 movies.

Table 5-2 First Ten Observations in Movie Dataset
Observation Title Box Office 

Revenue 
(in mil $)

Viewer 
Approval 
Rating

Budget 
(in mil $)

1 Fireproof 33 40 0.5
2 Transamerica 9 76 1
3 The Lives of 

Others
11 93 2

4 The Visitor 9 90 4
5 The Gospel 16 32 5
6 The Wrestler 26 98 6
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Observation Title Box Office 
Revenue 
(in mil $)

Viewer 
Approval 
Rating

Budget 
(in mil $)

7 Akeelah and the 
Bee

19 83 6

8 Thank You for 
Smoking

25 86 6.5

9 Friends with 
Money

13 71 6.5

10 Crash 55 76 6.5
Source: www.imdb.com and www.rottentomatoes.com 

You use the complete dataset (containing all 580 observations) to perform an 
econometric analysis. With your understanding of economic theory, you deter-
mine that movie revenue is likely to depend on the quality of the film as per-
ceived by moviegoers along with the studio’s efforts to use well-known actors, 
cutting-edge special effects, exotic locations, and so on. Given the available 
data, you determine that both viewer ratings and the film’s budget are sensible 
explanatory variables.

You use the OLS technique to produce the results, but because of the 
number of explanatory variables and observations, you want to rely  
exclusively on the computer for the calculations.

 Using two X variables (X1 is viewer approval rating and X2 is budget), you can 
quickly obtain the multiple regression results in Figure 5-4.

 

Figure 5-4: 
STATA 

multiple 
regression 
output for 
the movie 

revenue 
example.
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With these results, you’re now prepared to provide the movie studio with 
some insights into film success — provided you know how to interpret the 
output. I explain how to do just that in the next section.

Interpreting Regression Coefficients
In most cases, you estimate a regression with the hope of gaining insight into 
the behavior of some phenomenon that interests you. The primary strength 
of regression analysis is being able to identify what factors affect that  
phenomenon and the magnitude of their effect. This information is powerful. 
Use it! The following sections explain how.

Seeing what regression  
coefficients have to say
Slope coefficients tell you the estimated direction of the impacts (positive/
increase or negative/decrease) that your independent variables have on your 
dependent variable. They also tell you by how much your dependent variable  
changes (value or magnitude) when one of your independent variables 
increases or decreases.

The slope coefficient measures the change in your dependent variable for 
a 1-unit change in your explanatory variable. Suppose you calculate the  
following regression results using data on hamburger sales and prices from 
school cafeterias.

The slope coefficient is –19.3, which implies that a 1-unit increase in X is  
associated with a 19.3-unit decrease in Y. More specifically, the slope in this 
example implies that a $1 increase in the price of hamburgers results in 
about 19 fewer hamburgers being sold. The literal interpretation of the  
intercept coefficient is the value of the dependent variable when the explanatory 
variables are all equal to zero. In the hamburger sales example, you would 
estimate hamburger consumption to be about 120 (119.7 ≈ 120) units if the 
school cafeterias were serving them for free or price was zero dollars.
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Ignoring the intercept term in real-world scenarios
Problems in econometrics textbooks may ask 
you about the intercept term, but it’s usually 
ignored in applied work, because situations 
where all of the explanatory variables equal 
zero are unlikely to occur. In applied situations, 
you’re estimating regressions with two or more 
explanatory variables. If you want to obtain 

an accurate estimate of a variable’s marginal 
effect on your dependent variable, then you 
need to make sure you adequately control 
for other factors that may simultaneously 
affect your variable of interest. Ignoring other 
variables can result in biased regression results 
(a topic I cover later in Chapter 8).

 When you estimate a regression model with two or more independent  
(explanatory) variables, you have a multiple regression and the coefficients are 
called partial slope coefficients. Partial slope coefficients provide an estimate 
of the change in the dependent variable for a 1-unit change in the explanatory 
variable, assuming the value of all other variables in the regression model 
hold constant. The goal here is to disentangle the effects that numerous  
variables may have on the outcome of interest and isolate their impact.

If you refer to the preceding section’s example of estimating movie revenue, 
you can see an interpretation of coefficients in the multiple regression. The 
STATA results ( ) shown in Figure 5-4 suggest that 
a percentage-point increase in the viewer rating increases movie revenue by 
$0.41 million ( ) (or $410,000), holding movie budget constant. Also, a 
$1 million increase in the movie budget increases film revenue by $1.11 mil-
lion ( ) (or $1,110,000), holding viewer rating constant.

 When interpreting the results of multiple regressions, make sure you’re using 
the units in which the variables are measured. For example, if X1 represents 
viewer ratings and viewer ratings are measured as a percentage, you need to 
remember that a percentage point is 1 unit. People looking at your work may 
not know (or may not remember) how the variables are measured, so without 
the appropriate units, any value is difficult (if not impossible) to interpret 
accurately. Note: Because the variables used in your regression analysis aren’t 
likely to all be measured in the same units, try to avoid comparing coefficient 
values for different variables.
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Standardizing regression coefficients
Comparing coefficient values is not as straightforward as you may first think. 
Here are a few reasons why:

 ✓ In standard OLS regression, the coefficient with the largest magnitude is 
not necessarily associated with “the most important” variable.

 ✓ Coefficient magnitudes can be affected by changing the units of  
measurement; in other words, scale matters.

 ✓ Even variables measured on similar scales can have different amounts of 
variability.

For some variables, a unit change may represent a large amount, whereas it 
may be of marginal importance for other variables. Suppose you’re examining 
the success of college students through their grade point averages. You may 
hypothesize that high school grade point average (GPA) and SAT score  
helps you predict college success. If you estimate a multiple regression, the 
coefficient for SAT score is much smaller than the coefficient for GPA. The 
reason is not because SAT has a smaller impact (even though it may) but 
because a 1-unit change in SAT score is insignificant in comparison to a 1-unit 
change in GPA.

If you want to compare coefficient magnitudes in a multiple regression, you 
need to calculate the standardized regression coefficients. You can do so in 
two ways:

 ✓ Calculating a Z-score for every variable of every observation and then 
performing OLS with the Z values rather than the raw data

 ✓ Obtaining the OLS regression coefficients using the raw data and then 
  multiplying each coefficient by 

Start by modifying the original SRF: .

Then subtract the average value of each variable from every observation to 
get this equation:
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Notice that the constant drops out from the right-hand side of the equation 
because you’re basically subtracting 1 from 1. Next, divide both sides by the 
estimated standard deviation of the dependent variable:

The preceding equation takes advantage of one of the desirable OLS properties, 
namely that the average residual is zero (for the rest of the desirable OLS 
properties, see the earlier section “Defining and Justifying the Least Squares 
Principle”). A little mathematical manipulation ensures that you’re still  
performing the same operation to both sides of the equation, which allows 
you to arrive at the final step , where you’ve 

defined the standardized regression coefficients as .

 Standardized regression coefficients are also known as beta coefficients. This 
convention can be confusing, because the Greek letter beta is also used for the 
regular OLS coefficients. Unfortunately, this terminology has been commonly 
adopted by econometricians and most textbooks.

 In practice, you rely on the econometrics software to calculate the standardized 
regression coefficients. For instance, in the movie revenue example, you select 
Statistics ➪ Linear models and related ➪ Linear regression from the menu 
bar or type “regress Y X1 X2, beta” on the STATA command line to produce 
the results shown in Figure 5-5.

 

Figure 5-5: 
STATA 

output with 
standard-

ized (or 
beta) coef-

ficients and 
regular OLS 
coefficients.

 

 Regular OLS coefficients and standardized regression coefficients do not have 
the same meaning. The standardized regression coefficient estimates the  
standard deviation change in your dependent variable for a 1-standard-deviation 
change in the independent variable, holding other variables constant.
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Using the results from Figure 5-5 (column labeled beta), you can say that a 
1-standard-deviation increase in viewer ratings increases revenue by 0.15 
standard deviations if you hold the film budget constant. A 1-standard- 
deviation increase in film budget increases movie revenue by 0.69 standard 
deviations, holding viewer ratings constant. Because you’re now using a  
standard deviation change for all the explanatory variables, you can compare 
the beta coefficients. Consequently, you can also say that the impact of 
movie budget on revenue is about five times larger than that of viewer ratings.

Measuring Goodness of Fit
After you’ve estimated a regression, you need to be able to gauge how well 
that regression fits the data. In most settings, a measure of fit compares the 
predicted values of the dependent variable, which you get by using the  
estimated regression function, to the actual values of the dependent variable 
in the data.

To properly measure goodness of fit, you first need to break down, or  
decompose, the variation in the dependent variable into explained and  
unexplained (or residual) parts. Then (in most cases) you can go about using 
the coefficient of determination, also known as R-squared, to determine fit. 
However, R-squared doesn’t always indicate the quality of what the regression 
is telling you. In this section I walk you through each step of measurement.

Decomposing variance
If the value of the dependent variable were similar for every observation 
(regardless of the values of other variables), then a prediction equal to the 
average value would be sensible and you’d have no reason to complicate 
your life with regression analysis. But the very reason you perform  
regression analysis is because quite a bit of variation can exist between one 
observed value and another. Using economic theory and common sense, you 
develop a regression model that (hopefully) helps you explain why some of 
that variation exists.

The variation in your dependent variable can be decomposed, or separated, 
into different pieces. In econometrics, decomposing variance means that you 
take all the variation in your dependent variable and separate it into a part 
that’s explained by your regression and a part that remains unexplained.

Figure 5-6 illustrates some sample data points: the mean value of the  
dependent variable (at the dashed horizontal line), an observed Y value (at 
the dot), and the estimated regression line. You can see how variation in the 
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dependent variable (the difference between the observed Y value and the 
mean value) can be decomposed into two parts; One is the contribution of 
your regression analysis in explaining this variation (the difference between 
the regression line and the mean value) and the other part is unexplained 
or residual variation (the difference between the observed Y value and the 
regression line).

 

Figure 5-6: 
The varia-
tion in the 

dependent 
variable can 

be decom-
posed into 
explained 
and unex-

plained (or 
residual) 

parts.
 

Consider one randomly chosen observation so you can examine the variation 
of the observed value from its mean. The distance of an observation from its 
mean can be characterized by .

The left-hand-side is the total difference, but some of that difference is 
explained by the regression (or independent variable). The independent  
variable’s influence on variation is the first component on the right-hand-side 
of the equation. The second component is what remains unexplained. It’s 
what you already know as the residual, which means you can rewrite the 
equation as .

The decomposition of variation into explained and residual components for 
one observation must be extended to the entire sample in order to provide a 
measure of overall fit.

Measuring proportion of variance with R2

 The measure of fit most commonly used with OLS regression is the coefficient 
of determination, which is more commonly known as R-squared. R-squared 
measures the proportion of variation in the dependent variable that’s 
explained by variation in the independent variables. Because it’s a ratio, its 
value must be between 0 and 1.
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You calculate R-squared by generalizing the decomposition in  
so that it includes all the observations in the data. In order to avoid positive 
and negative residuals from canceling each other out, you must square both 
sides of the equation and then apply summation to include all the observations.

This manipulation of summing and squaring plus a few algebraic steps  
ultimately provide a measure for each component of variance, as seen in the 
following equation:

The left-hand-side is called the total sum of squares (TSS), and the right-hand 
side is the sum of the explained sum of squares (ESS) and residual sum of 
squares (RSS). If you write this equation out and perform one additional  
algebraic manipulation, you end up with the formula for the R-squared value.

 The ratio on the left-hand side measures the explained variation as a fraction 
of the total and is, therefore, the R-squared value.

Because the OLS technique seeks to minimize the RSS, it’s essentially fitting 
the line (or function) that maximizes the R-squared value.

Returning to the movie revenue example and the regression results in  
Figure 5-4, you see that the R-squared value is included in any standard 
regression output. With the reported value of 0.5180, you can say that 51.8 
percent of the variation in movie revenue is explained by viewer ratings and 
film budget.

Adjusting the goodness of  
fit in multiple regression
A surefire way to increase R-squared (or regression fit) is to add more  
explanatory variables to the model. If you examine the following formula for 
the R-squared value, you can see why this is the case.
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Suppose you begin with a model that has one explanatory variable. The regres-
sion produces certain values for the residuals (RSS) and, consequently, some 
R-squared value. Now, imagine that you add another explanatory variable to 
the model. This new explanatory variable can help you explain more of the 
variation in the dependent variable (RSS decreases) or be of no use at all (RSS 
remains the same). It can’t, however, take away any ability that the first explan-
atory variable has in explaining variation in the dependent variable.

 If you increase the number of explanatory variables in a regression model, 
your R-squared value increases or remains the same (if the additional  
variable has no impact on the dependent variable), but it can never cause 
your R-squared value to decrease.

You may be tempted to continue adding more variables and, as a result, 
increase the R-squared value. However, doing so has a cost. When you add 
more variables, you lose degrees of freedom (the number of observations 
above and beyond the number of estimated coefficients). Fewer degrees of 
freedom make your estimates less reliable (for more on this topic, turn to 
Chapter 6). This issue is addressed with adjusted R-squared, which is defined as

where RSS is the residual sum of squares, TSS is the total sum of squares, n is 
the number of observations, and p is the number of independent variables in 
the model.

 When additional variables are added to the regression, adjusted R-squared 
can increase, remain the same, and even decrease depending on whether 
the increase in R-squared is large enough to outweigh the loss in degrees of 
freedom (increase in p). If it is, the adjusted R-squared value increases. If not, 
adjusted R-squared remains the same or decreases.

Because the adjusted R-squared equation includes the degrees of freedom 
“penalty” for additional explanatory variables, sometimes researchers  
compare the fit of various models with the adjusted R-squared rather than 
the unadjusted R-squared.

 In order to compare two models on the basis of R-squared (adjusted or not), 
the dependent variable and sample size must be the same.
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Evaluating fit versus quality
Although regression fit is important and R-squared is a commonly reported 
result, it is only one measure of regression quality.

 Here are a few reasons why you shouldn’t use R-squared (adjusted or not) as 
the only measure of your regression’s quality:

 ✓ A regression may have a high R-squared but have no meaningful  
interpretation because the model equation isn’t supported by economic 
theory or common sense.

 ✓ Using a small dataset or one that includes inaccuracies can lead to a 
high R-squared value but deceptive results.

 ✓ Obsessing over R-squared may cause you to overlook important  
econometric problems.

 In economic settings, a high R-squared (close to 1) is more likely to indicate 
that something is wrong with the regression instead of showing that it’s of 
high quality.

High R-squared values may be associated with regressions that violate 
assumptions (which I cover in Chapter 6) and/or have nonsensical results 
(coefficients with the wrong sign, unbelievable magnitudes, and so on.). 
When evaluating regression quality, give these outcomes more weight than 
the R-squared.



Chapter 6

Assumptions of OLS Estimation 
and the Gauss-Markov Theorem

In This Chapter
▶ Defining the assumptions of ordinary least squares (OLS) regression
▶ Illustrating the difference between good and bad statistical estimates
▶ Understanding the role of each OLS assumption in proving the Gauss-Markov theorem

E 
conometricians seek to find the best way to estimate economic  
relationships. That best method depends on what they think the  

relationship is between the variables and on what type of data is being  
utilized for the analysis. In this chapter, I discuss the assumptions of the 
most basic technique used in applied econometrics, the ordinary least 
squares (OLS) technique, and explain how the assumptions are important in 
producing reliable results.

OLS is the most popular method of performing regression analysis because 
in standard situations, its results are optimal. In this chapter, you discover 
exactly which assumptions define a standard situation in econometrics and 
which characteristics classify an estimation technique as optimal. You also 
find out the role of technical assumptions in showing that OLS achieves 
those criteria. (Note: I’m assuming you already have a basic understanding of 
regression mechanics and are familiar with how to interpret OLS results, but 
if you need to review these concepts, you can turn to Chapter 5.)

Characterizing the OLS Assumptions
 When deciding whether OLS is the best technique for your estimation problem, 

some requirements must be met. They’re called the OLS assumptions or the 
classical linear regression model (CLRM). Here’s the complete set:
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 ✓ The model is linear in parameters and has an additive error term.

 ✓ The values for the independent variables are derived from a random 
sample of the population and contain variability.

 ✓ No independent variable is a perfect linear function of any other  
independent variable(s) (no perfect collinearity).

 ✓ The model is correctly specified and the error term has a zero  
conditional mean.

 ✓ The error term has a constant variance (no heteroskedasticity).

 ✓ The values of the error term aren’t correlated with each other (no  
autocorrelation or no serial correlation).

If you encounter a situation where one (or more) of the CLRM assumptions 
fails, then OLS may not be the best estimation technique. When that occurs, 
econometricians typically propose some precise modification to the OLS 
technique or offer a completely different alternative.

In applied situations, some assumptions are violated more frequently than 
others. I devote entire chapters to a discussion of the methods used to 
detect when those specific assumptions fail and how to proceed if they do. 
Specifically, I tackle collinearity in Chapter 10, heteroskedasticity in Chapter 11,  
and autocorrelation in Chapter 12. In the following sections, however, I 
explain the facets of the CLRM so you know exactly what you’re assuming 
about your model and/or dataset when you use OLS estimation.

Linearity in parameters and additive error
When a model is linear in parameters and has an additive error term, it  
typically means that you can write the population regression function (PRF) 
as Yi = β0 + β1Xi1 + β2Xi2 + … + βpXip + εi, where Y is your dependent variable, 
the Xs are your independent variables, the βs are your partial slope coefficients 
(parameters of interest), and ε is your random error term.

 A model doesn’t have to be a linear function in order to satisfy the linear in 
parameters assumption. A couple examples of nonlinear functions that are 
linear in parameters include

 ✓ 

 ✓ 

You can estimate these types of models using the OLS technique.
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 However, you can’t use OLS to estimate a model that isn’t linear in parameters, 
like the function .

When the parameters (βs) you’re trying estimate are in the exponents of  
the function, OLS can’t be used. In some cases, you can perform a log  
transformation to linearize the function and then use OLS (I discuss this topic 
in Chapter 8). However, in many scenarios, the log transformation may not 
work or won’t be feasible.

Other techniques, such as maximum likelihood (ML) estimation, can be used 
when the function you need to estimate is not linear in parameters. Specific 
examples of models that are nonlinear in parameters and the use of ML  
estimation are discussed at length in Chapters 13 and 14.

Random sampling and variability
 Strictly speaking, the CLRM assumes that the values of the independent  

variables are fixed in repeated random samples. In other words, every sample 
from a given population is assumed to contain the same values for the  
independent variables even though the values of the dependent variable 
change from sample to sample. This assumption can be, and is often, weak-
ened. The more common version of the assumption is that the values of the 
independent variable are random from sample to sample but independent of 
the error term. The weaker version is equivalent asymptotically (with large 
samples) because the likelihood that you’re missing relevant values for the 
independent variables decreases as the sample size increases.

You need variation in the independent variable to estimate its regression 
coefficient. If it has no variation, the coefficient for that variable is undefined.

 This assumption isn’t likely to hold when you use lagged values of your  
dependent variable as an independent variable (autoregression; see Chapter 15 
for details on this topic) or when the value of your dependent variable  
simultaneously affects the value of one (or more) of your independent variables 
(simultaneous equations). Therefore, OLS is inappropriate in these situations. 
You must modify it or use something else anytime one or more assumptions 
don’t hold.
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Imperfect linear relationships among  
the independent variables
In econometrics, you want to avoid using data in situations where two (or 
more) of your independent variables have exact relative movements. When 
changes in the value of one independent variable are matched by a relative 
movement (positive or negative) in one or more of your other independent 
variables, you have a multicollinearity (or perfect collinearity) problem and 
you can’t estimate the model with those variables included in the regression. 

For example, suppose I have a dataset with five observations and two  
variables (X1 and X2). The values for X1 are 2, 5, 6, 10, and 12, and the values 
for X2 are 7, 13, 15, 23, and 27. These two variables exhibit perfect collinearity 
because X2 = 2X1 + 3. This is one type of linear function, but there are many 
possibilities.

 You can have a multicollinearity problem even if the units of measurement for 
the variables are quite different. The relative relationship is what causes  
multicollinearity, not the absolute relationship.

A perfect collinear relationship between two independent variables, X1 and 
X2, could be expressed as X2 = α0 + α1X1, where α1 captures the relative co-
movement of the two variables.

 Usually, multicollinearity with more than two variables occurs because you 
create new variables and fail to account for their relationship when including 
them in your regression model. Be careful not to create variables that are  
perfect linear functions of other variables.

Suppose I want to explain earnings differentials among workers in a population 
where individuals attend school or work (they’re never unemployed or  
without work). I want to use workers’ wages as my dependent variable with 
age (X1), years of education (X2), and years of work experience (X3) as the 
independent variables. Because individuals work immediately when they 
finish school in the population, I create a work experience variable by  
subtracting 6 (the assumed age when they started school) and their years of 
education from their age. So their work experience is X3 = X1 – X2 – 6.

This equation expresses a perfect collinear relationship, because when age 
increases, so does experience (holding other variables constant). Similarly,  
if years of education increase, then experience decreases (holding other  
variables constant). Avoid creating these types of variables unless you plan 
on using the newly created variable in place of one of the others. For example, 
you may want to use the experience variable instead of age in the regression.
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 If you have perfect collinearity, the software program you use to calculate 
regression results can’t estimate the regression coefficients. The reason for 
this is that perfect collinearity causes you to lose linear independence and the 
computer can’t identify the unique effect of each variable because they move 
in unison with one another.

 If you don’t have perfect collinearity, you’re not out of the woods just yet. High 
collinearity, which occurs when there’s a strong relationship (as opposed to a 
perfect relationship) between two or more independent variables, can also be 
problematic. In applied cases, high collinearity is much more common than 
perfect collinearity. I discuss this issue in Chapter 10.

Error term has a zero conditional  
mean; correct specification
Your error term has a zero conditional mean when, for any given value for 
independent variable(s), the average value of the error is zero. (Reminder: 
The error term is the difference between the actual value of the dependent 
variable and the value from the population regression function.)You can 
write this mathematically as E(ε|Xi) = 0.

 If the conditional mean of the error is zero, that implies that no relationship (or 
correlation) can exist between the error term and the X values. The assump-
tion that E(ε|Xi) = 0 is one of the CLRM assumptions that may fail if you have

 ✓ Misspecification: This occurs when you fail to include a relevant  
independent variable or you use an incorrect functional form. 
Specification issues are addressed in detail in Chapter 8.

 ✓ A restricted dependent variable: In other words, you’re using a  
qualitative or limited dependent variable. For example, you may be 
interested in modeling the outcome of a yes/no response from a survey 
(qualitative data measured with a 1 or 0 value), or you may want to 
explain injury rates on professional football teams (limited data  
measured on a percent scale from 0 to 100). Qualitative dependent  
variables are discussed in Chapter 13, and limited dependent variables 
are examined in Chapter14.

Figure 6-1 provides a comparison of a situation when the E(ε|Xi) = 0 assumption 
holds and when it fails. The graph on the left side of Figure 6-1 illustrates a 
situation where the mean of the error is zero at any X value. However, the 
graph on the right side of Figure 6-1 displays a scenario in which the mean of 
the error is not zero at all X values.
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Figure 6-1: 
Regression 

function 
with a zero 
conditional 
mean error 

term (a) 
and with 

a nonzero 
conditional 

mean (b).
 

 Sometimes the assumption E(ε|Xi) = 0 is confused with the notion that the 
average residual (estimated error) is zero . Even if the overall mean 
of the residual is zero , the conditional mean of the error E(ε|Xi) 
may not be zero.

Error term has a constant variance
 The CLRM also relies on the variance of the error term being constant. 

Homoskedasticity refers to a situation in which the error has the same 
variance regardless of the value(s) taken by the independent variable(s). 
Econometricians usually express homoskedasticity as . In 
Figure 6-2, I show the regression of a model satisfying the CLRM assumptions 
and a graphical depiction of homoskedasticity. Notice when the error term is 
homoskedastic, the dispersion of the error remains the same over the range of 
observations.

 

Figure 6-2: 
A model 

with a 
constant 

(homoske-
dastic) error 

variance.
 

 If the error term is heteroskedastic, the dispersion changes over the range of 
observations. Heteroskedasticity occurs when the variance of the error term 
changes in response to a change in the value(s) of the independent variable(s). 
Econometricians typically express heteroskedasticity as .
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In Figure 6-3, I graph a situation where heteroskedasticity is present. The  
pattern depicted in Figure 6-3 is only one among many possible patterns. Any 
error variance that doesn’t resemble that shown in Figure 6-2 is likely to be 
heteroskedastic.

 

Figure 6-3: 
A model 

with a 
changing 

(hetero-
skedastic) 

error 
 variance.

 

 Heteroskedasticity is a common problem for OLS regression estimation,  
especially with cross-sectional and panel data. You usually have no way of 
knowing in advance if it’s going to be present, but there are several tests 
to check for it and several ways to correct if you find evidence of it in your 
regression. Turn to Chapter 11 for the full scoop on these heteroskedasticity 
topics.

Correlation of error observations is zero
 The observations are assumed to be randomly drawn, so the error values 

should be independent and not related to one another. If the errors have a 
relationship, then you have autocorrelation (or serial correlation) and have 
violated a CLRM assumption. Here’s what it looks like when the assumption 
holds:

and when it fails:

where ε represents the error term, while the t and s subscripts identify the 
time period in which the error is observed.

In Figure 6-4, I use time-series data to show a scatter plot of the possible 
error values in t and t – 1. In this figure, the assumption of no autocorrelation 
holds (Cov(εt, εs) = 0). How can you tell? Well, when no autocorrelation exists, 
you can’t see a clear relationship between the error values.
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Figure 6-4: 
A model 
with no 

auto-
correlation.

 

If autocorrelation does exist, you may find that it’s positive (Cov(εt, εs) > 0),  
as in the example in Figure 6-5. When you have positive autocorrelation,  
positive error values tend to be followed by other positive errors, and vice 
versa.

 

Figure 6-5: 
A model 

with positive  
auto-

correlation.
 

Another possibility is negative autocorrelation (Cov(εt, εs) < 0), like the case 
in Figure 6-6. When you have negative autocorrelation, a positive error value 
tends to followed by negative errors, and vice versa.

 

Figure 6-6: 
A model 

with 
negative 

auto- 
correlation.
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 Autocorrelation can be quite common when you’re estimating models with 
time-series data, because when observations are collected over time, they’re 
unlikely to be independent from one another. In other words, if something 
occurs today, its influence isn’t likely to be completely absorbed today. (For 
more details on autocorrelation, see Chapter 12.)

Relying on the CLRM Assumptions:  
The Gauss-Markov Theorem

Most theorems in statistics and mathematics rely on a set of assumptions, 
and the Gauss-Markov theorem is no different. It relies on the CLRM  
assumptions I walk you through earlier in this chapter. 

 The Gauss-Markov theorem states that the ordinary least squares (OLS)  
estimators are the best linear unbiased estimators (BLUE) given the  
assumptions of the classical linear regression model (CLRM).

The following material shows how each component of the Gauss-Markov  
theorem is derived. I devote one section to each of the first three letters in 
BLUE (best, linear, and unbiased), although not in that order.

Proving the Gauss-Markov theorem
To understand why OLS is best in some situations, you may find it useful to 
see how each component of the Gauss-Markov theorem is derived. The  
following sections illustrate each part of the theorem’s proof using a simple 
regression model (with one independent variable). In each part of the proof, 
I draw your attention to the importance of at least one of the CLRM assumptions.

 In graduate econometrics courses, the proof of the Gauss-Markov theorem 
is often extended to the multivariate case. You need to be comfortable with 
matrix algebra before you go there.

Linearity of OLS
In the sample regression function (SRF) , the estimators are  
calculated with the following formulas
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If you don’t recall how these formulas are derived, you can refresh your 
memory in Chapter 5.

The proof of the linearity property can be simplified by defining

I begin by working with  and substituting with ci to get

The ci can be treated as constants because, according to one of the CLRM 
assumptions, the X values in repeated random sampling are the same. 
Consequently,  is a linear combination of the observed Y values.

I proceed in a similar fashion with  and substitute for  to get

Using ci, I simplify this to

and with one more algebraic step, I arrive at

which shows that  is also a linear function of the Y values.

 In the sample regression function , the  terms are linear  
estimators because they are linear combinations of the observed values for 
the dependent variable (Yi).

Expected value of OLS coefficients
In the sample regression function (SRF) , the estimators are  
calculated with the following formulas:
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If you take  and substitute the population regression function (PRF) for Yi, 
you get

After several algebraic manipulations, you can arrive at

Then apply the expectations operator to both sides:

and using expected value properties (see Chapter 2), work through the fol-
lowing steps:

The CLRM assumption that the conditional mean of the error is zero implies 
that no relationship exists between the error term and the X values, so 
Cov(ε, X) = 0. Therefore, the slope coefficient  is unbiased because .
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Now you can work with the intercept term and begin with this formula:

Using the property that the regression line must pass through the means of X 
and Y, substitute for  and get

Then you can apply the expectations operator to both sides:

and after a few algebraic manipulations, you get

You simplify this expression by using the fact that  and  
to complete the proof:

 In the sample regression function , the  terms are unbiased 
because on average they equal their true parameter values;  

 and .

In Figure 6-7, you can see the difference between a biased and an unbiased 
estimator of regression coefficients.

 

Figure 6-7: 
Distribution 

of coef-
ficient 

estimates 
for a biased 

and  
unbiased 

estimator.
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 If an estimator is unbiased, it doesn’t mean . Instead, it means that 
 . You can see in Figure 6-7 that the estimated coefficients from some 
 random sample are not likely to equal their true value. However, on average, 

the estimates equal the true value.

Variance of OLS coefficients
In the sample regression function (SRF) , the estimators are  
calculated with the following formulas:

The OLS estimators are linear functions of the observed values, so you can 
write their formulas this way:

where 

for . I focus on the slope term  and define an alternative estimator:

where wi doesn’t necessarily equal ci. I substitute the SRF into this equation 
and apply the variance operator to both sides and get

Here, utilize the CLRM assumption that X is fixed in repeated samples and the 
property that X is not correlated with the error term to get
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Using the CLRM assumptions of homoskedasticity (constant variance) and 
no autocorrelation (no correlation among the error values), you can write the 
variance of  as

After several algebraic steps, you can rewrite the variance of  as

If you let

then

If you allow wi ≠ ci so that the estimator is something other than OLS, 
then .

 In the sample regression function , the  terms are efficient (in 
other words, best) because their variance is the smallest among all such  
estimators.

In Figure 6-8, I illustrate the difference between a more efficient and less  
efficient estimator.

 The variance of your OLS estimators is influenced by a three factors:

 ✓ The variance of the error term, : The larger the variance of the error, 
the larger the variance of the OLS estimates and vice versa (holding 
everything else constant).

 ✓ The variance of X, : The larger the sample variance of X, the 
  smaller the variance of the OLS estimates and vice versa (holding every-

thing else constant).
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 ✓ Multicollinearity: As the correlation between two or more independent 
variables approaches 1, the variance of the OLS estimates becomes 
increasingly large and approaches infinity.

 

Figure 6-8: 
Distribution 

of coef-
ficient 

estimates 
for two 

unbiased 
estima-

tors with 
different 

variance.
 

 The efficiency characteristic of an estimator is not only relevant with unbiased 
estimators. Even if an estimator is biased, more efficiency (less variance) can 
be valuable if the bias is small.

In Figure 6-9, I illustrate an unbiased estimator that isn’t very efficient and a 
biased estimator that is much more efficient.

 

Figure 6-9: 
Distribution 

of coef-
ficients for 

an unbiased 
estimator  

with a 
large vari-
ance and 
a biased 

estimator 
with a small 

variance.
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Even though the estimator β+ in Figure 6-9 is biased, you’d have a better 
chance of producing an estimate that is close to the true value with β+ than 
you’d have with . In some cases, econometricians have to weigh the cost of 
using a biased estimator against the benefits of using a more efficient estimator.

 In practice, you’re probably going to get only one sample to estimate your 
regression coefficients. In that case, you want to maximize your chances of 
producing an estimate that’s close to the true parameter value. A more  
efficient estimator increases the probability that an estimate from a single 
sample is close to the true value.

OLS coefficients: Best when BLUE
 Given the assumptions of the CLRM, the OLS estimators (or coefficients) are 

best linear unbiased estimators (BLUE).

 ✓ Best means achieving the smallest possible variance among all similar 
estimators.

 ✓ Linear indicates that the estimates are derived using linear combinations 
of the data values.

 ✓ Unbiased means the estimators (coefficients) on average equal their true 
parameter values.

When you put all these pieces together, you have the Gauss-Markov theorem.

When judging how good or bad an estimator is, econometricians usually  
evaluate the amount of bias and variance of that estimator. The BLUE  
property of OLS estimators is viewed as the gold standard. When a CLRM 
assumption fails (which happens regularly in applied situations), you either 
have to adjust OLS for that failure or use an entirely different estimation  
technique.

 Econometricians have devised methods to deal with failures of the CLRM 
assumptions, but they aren’t always successful in proving that the alternative 
method produces a BLUE. In those cases, they usually settle for an asymptotic 
property known as consistency. Estimators are consistent if, as the sample size 
approaches infinity, the variance of the estimator gets smaller and the value of 
the estimator approaches the true population parameter value.
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Summarizing the Gauss-Markov theorem
Each part of the Gauss-Markov theorem relies on at least one CLRM  
assumption. In Table 6-1, I list the CLRM assumptions required to show that 
OLS estimators are BLUE. I also indicate their use in proving each part of the 
theorem, typical violations, and in which chapter I cover specific violations 
of CLRM assumptions.

Table 6-1 Summary of Gauss-Markov Assumptions
Assumption Expression Used to 

Prove OLS 
Estimators 
Are

Common 
Violations

Chapter 
Covering 
Assumption 
Violation

Linearity in model 
parameters

Yi = β0 + β1Xi1 + 
β2Xi2 + … βpXip + εi

Linear

Unbiased

Misspecification 8

Observations 
of independent 
variable(s) are 
fixed in repeated 
samples

N/A Linear

Unbiased

Best

Autoregression 15

No perfect  
collinearity

Best High collinearity 10

Conditional mean 
of the error is zero

Unbiased Misspecification 10

Error has a con-
stant variance 
(homoskedasticity)

Best Cross-sectional 
data

11

Error observa-
tions are not 
correlated (no 
autocorrelation)

Cov (εt, εs) = 0, t ≠ s Best Time-series data 12
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Chapter 7

The Normality Assumption and 
Inference with OLS

In This Chapter
▶ Understanding what the normal distribution implies
▶ Deriving hypothesis testing procedures for regression coefficients
▶ Determining whether regression results are statistically significant
▶ Using the normal distribution to determine forecast/prediction error

W 
hen you use ordinary least squares (OLS) regression for hypothesis 
testing and/or prediction and forecasting, you always assume that 

the distribution of the unobserved error is normal. However, the idea of 
assuming a normal distribution is often misunderstood. That’s what this 
chapter clears up. It helps you understand precisely how a normal distribution 
is used in econometrics and the importance of the normality assumption for 
tests of statistical significance and calculations of forecast error. You also get 
to check out some example scenarios in which the assumption is likely to be 
reasonable and others for which it’s likely to fail.

Note: In this chapter, I assume that you already have a basic understanding 
of regression mechanics and are familiar with interpretation of OLS results. 
If you need to review these concepts, please refer to Chapter 5.

Describing the Role of the  
Normality Assumption

The normality assumption in econometrics (and in the context of OLS  
specifically) doesn’t imply that all variables used in the analysis are  
expected to be normally distributed. Instead, the assumption focuses on  
the distribution of the error term, ε. (That little error term is of critical  
importance in econometrics. As Chapter 6 explains, you need several 
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assumptions about it to prove that the OLS estimators are unbiased and  
efficient, per the Gauss-Markov theorem.)

 The normality assumption in econometrics states that, for any given X value, 
the error term follows a normal distribution with a zero mean and constant 
variance. This assumption is written in mathematical notation as

Two of the classical linear regression model (CLRM) assumptions (covered 
in Chapter 6) are that the conditional mean of the error is zero and that the 
error term has a constant variance (homoskedasticity). Those assumptions 
are also included in the normality assumption.

 Another important characteristic of the normality assumption is that it isn’t 
required for performing OLS estimation. It’s necessary only when you want to 
produce confidence intervals and/or perform hypothesis tests with your OLS 
estimates.

In Figure 7-1, you can see a graphical depiction of the normality assumption.

 

Figure 7-1:  
The  

normality 
assumption 

of OLS.
 

 The error term contains the influence of many different forces (random  
variables) that affect your dependent variable (Y) and aren’t captured by your 
independent variables (Xs). The central limit theorem indicates that the sum 
or mean of random variables is normally distributed as long as many random 
variables are present and the influence of any one random variable is small 
(check out Chapter 3 if you need to review the central limit theorem and its 
implications).
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 In some applications, the assumption of a normal distribution for the error 
term may be difficult to justify. These situations typically involve a dependent 
variable (Y) that has limited or highly skewed values. A limited dependent  
variable is one whose potential values are restricted, which can result from 
natural limits or artificial constraints on the variable. For example, the number 
of times an individual votes in a six-year period takes on a limited number of 
integer values and is zero for a large fraction of individuals. Variables like 
wages and prices tend to be highly skewed or may also have limited values 
with minimum wages, floors, ceilings, and so on. In some cases, you can use log 
values to obtain a distribution that’s approximately normal. Econometricians 
have also shown that with large sample sizes, normality is not a major issue 
because the OLS estimators are approximately normal even if the errors are 
not normal.

In the following sections, you find out how the normality of the error term  
is passed on to the OLS estimators. Additionally, I show you how the  
assumption of a normal distribution for the error term subsequently allows 
you to produce statistics that use other popular probability distributions.

The error term and the sampling  
distribution of OLS coefficients
In a simple regression model (with one independent or X variable), you  
calculate the OLS coefficients using these formulas:

and

In Chapter 6, I illustrate the following derivation:
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which shows that the estimated slope term is a linear function of the error 
term (ε). Because the intercept term is a linear function of the slope term, 
it also follows that the intercept term is a linear function of the error term. 
Therefore, all OLS coefficients are a linear function of the error term. The 
error term is assumed to be normally distributed, which implies that the 
estimates of your  terms also follow a normal distribution. This last point is 
derived from a property of normally distributed random variables that you 
may have discussed in your statistics class; that is, a linear combination of a 
normally distributed random variable results in another normally distributed 
random variable.

 A linear function of a normally distributed random variable is itself normally  
distributed. If you assume that the error term is normally distributed 

 ( ), then that implies that the OLS estimators are normally 
 distributed ( ).

In Figure 7-2, I illustrate a normally distributed OLS estimator.

 

Figure 7-2: 
Distribution 

of OLS  
estimator 
when the 

error term 
follows a 

normal  
distribution.

 

Every sample that’s randomly drawn from some population is likely to yield 
different values for your OLS coefficients (  terms). If you assume that the 
error term has a normal distribution, you’re also assuming that the sampling 
distribution of the coefficients looks like Figure 7-2.

 I use a model with one independent variable (univariate) to keep the algebra 
manageable, but with matrix algebra I can extend the model in Figure 7-2 to 
show many independent variables (multivariate).

Revisiting the standard  
normal distribution
Any normally distributed random variable can be converted to a standard 
normal. When you convert a normal random variable with mean (μ) and 
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variance (σ 2) to a standard normal, those parameters are shifted so that the 
mean is 0 and the variance is 1.

The generic formula to convert a normally distributed random variable (RV) 
to a standard normal (Z) is

where RV is any normally distributed random variable, E(RV) is the expected 
value or mean of the random variable, and SD(RV) is the standard deviation 
of the random variable.

 The distribution of your OLS coefficients ( s) is normal; in mathematical  
notation . Consequently, the standard normal distribution for 
OLS estimators can be defined as

where the standard deviation of the estimator ( ) is a function of the  
variation in the X values and the variance of the error term ( ). I provide 
more details about the variance of the error in Chapter 6. 

 In order to apply the standard normal distribution to OLS estimators, you 
need to know the true value of the error term’s variance. In an econometrics 
class, this value may be provided. In practice, the true variance of the error 
isn’t known, which means you need to estimate it. I explain the procedure for 
performing this calculation in the next section.

Deriving a chi-squared distribution  
from the random error
The OLS coefficients (the  terms) have a sampling distribution because 
randomly drawn samples from a population of interest yield different values 
for the dependent variable (Y). These different values change your estimated 
intercept and slope coefficients from sample to sample.

The assumption that the error term is normally distributed also implies that 
the sampling distributions of your s are also normally distributed. However, 
in order to work with any normally distributed random variable, you must 
know its mean and variance. For the OLS coefficients, this information is usu-
ally written as .
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The variance of an estimator provides a measure of how much the estimator 
is likely to change from one sample to another. For the OLS estimators in a 
model with one independent variable, the variances are

 In practice, the true variance of the error ( ) isn’t known, but you can  
estimate it by calculating the variance of the regression or mean square error 
(MSE). Here’s the formula:

The number of independent variables are represented by p, and n – p – 1 is 
known as the residual degrees of freedom.

The square root of this value is known as the standard error of the regression, 
or root mean square error (RMSE):

 As you would when calculating the sample variance of any random variable, 
you must divide by the degrees of freedom. The degrees of freedom represent 
the number of independent values used when producing the variance estimate; 
in other words, it’s the number of observations minus the number of estimates 
that must be produced before the sample variance is calculated. In the case of 
a residual variance, you first need to estimate the regression function before 
you can calculate each residual. That means you lose degrees of freedom p 
plus the intercept (or constant).
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 If you replace the known error variance ( ) in the calculation of  and  
with the estimated (or residual) variance ( ), you get the estimated vari-
ances of the OLS coefficients

and

The square root of these estimated variances ( ) provides the  
standard errors of the coefficients.

In Table 7-1, data for the dependent variable (Y) and the independent  
variable (X) are in the first two columns. With these values and the OLS  
technique, you can obtain the sample regression function .  
(If you need to review these calculations, I calculate the OLS coefficients 
using the same data in Chapter 5.)

Table 7-1 Calculation of Coefficient Standard Errors
(1)
i

(2)
 Yi

(3)
 Xi

(4)
 Xi

2

(5) (6)
  

(7)
  

(8)
  

1 100 1 1 4 100.4 –0.4 0.16
2 80 2 4 1 81.1 –1.1 1.21
3 63 3 9 0 61.8 1.2 1.44
4 45 4 16 1 42.5 2.5 6.25
5 21 5 25 4 23.2 –2.2 4.84
Sum: 309 15 55 10 309 0 13 .9
Mean: 61 .8 3
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Beginning with Column 4 of Table 7-1, proceed with the intermediate steps to 
calculate the standard errors of the coefficients. Using the work in the table, 
you can obtain the MSE:

The numerator is derived using the values in Table 7-1, and the denominator 
is calculated by using the number of observations (5) for n and the number 
of X variables (1) for p. After you have the MSE, you can obtain the estimated 
variances of the coefficients:

Then you find the standard errors of the coefficients:

 Using the “regress” command in STATA, I can quickly produce the OLS results, 
which you see in Figure 7-3. STATA (and most econometrics software packages) 
includes the coefficients, MSE, RMSE, and standard errors of the coefficients.

 

Figure 7-3: 
STATA 

OLS output 
includes 

the MSE, 
RMSE, and 
coefficient 

standard 
errors.
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 The variance of the error ( ) is a parameter. In other words, there’s some 
true, but unknown, value for this in the population as a whole. The MSE, how-
ever, is an estimate of the error variance. Like all estimators, you never know 
exactly what value will be derived, because it varies from sample to sample. 
The assumption that the error is normally distributed implies that the MSE 
and the estimated variances of the coefficients are the square of a normal, so 
they have a chi-squared (χ2) distribution with n – p – 1 degrees of freedom.

OLS standard errors and the t-distribution
When you assume that the error term is normally distributed, that translates 
into a normal distribution of your OLS estimators. You could express this as

Consequently, each of your OLS estimators can be transformed to a standard 
normal. In other words,

 In practice, the standard deviation of the estimator isn’t known, so you use its 
estimate (the standard error). When you replace the standard deviation of the 
estimator ( ) with the standard error ( ), the appropriate probability 

 distribution becomes t instead of standard normal. This can be written as

 The reason  has a t-distribution is because the numerator is a normal 

 distribution while the parameter  in the denominator is replaced by the 
estimator . This estimator is derived from , so it has a square root of a 
chi-squared distribution. The degrees of freedom (n – p – 1) for this t-distribution 
come from the standard error estimate in the denominator.

Testing the Significance of Individual 
Regression Coefficients

After you estimate a regression and have your OLS estimates, you want to 
know what conclusions can be drawn from your results. At the very start  
of the process, you selected the variables in your model based on your 
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knowledge of economic theory along with a healthy dose of common sense, 
and now that you’ve obtained results, what do they suggest about your 
hypothesized relationships? What is the probability that results like the ones 
you produced were the result of chance? In order to address these questions, 
you need to test the individual significance of your regression coefficients.

 A regression coefficient is statistically significant (meaning the results didn’t 
happen just by chance) if you can provide solid evidence that the true 
parameter value isn’t zero. In order to provide strong evidence that the true 
parameter value isn’t zero, you need to show that it’s highly unlikely that the 
X variable associated with that coefficient has no effect on your dependent (Y) 
variable.

The most common test of statistical significance for the OLS coefficients is 
the following two-sided test: H0: βk = 0 and H1: βk ≠ 0 where H0 represents the 
null hypothesis that the true parameter value is zero and H1 is the alternative 
hypothesis. Although this two-sided test (using zero as the hypothesized 
value) is the most common hypothesis test for regression coefficients, any 
value can be used (if you’re having trouble recalling these concepts from 
your statistics class, you can go to Chapter 3 for an overview).

Sometimes you may be interested in performing a one-sided test, such as

H0: βk ≤ 0 H1: βk > 0

or

H0: βk ≥ 0 H1: βk < 0

In economics, theory may rule out some numerical possibilities and imply 
that the relationship (slope coefficient) has a particular sign (positive or 
negative). For example, income should always have some positive effect on 
consumption. If you’re only interested in rejecting a null hypothesis if the  
evidence goes in a particular direction, then a one-sided test is appropriate.

 You can’t determine the importance of a variable or the magnitude of its effect 
by the statistical significance of the coefficient. Some coefficients that are 
highly statistically significant may be of little importance, so keep in mind 
that statistical significance provides only evidence of a positive or negative 
effect. For magnitude and importance, you want to focus on the value of the 
coefficient and perhaps calculate the standardized regression coefficient (see 
Chapter 5 for a discussion of this).

 Interpreting the meaning of your coefficient estimates helps you determine 
economic significance. Do the coefficients represent unit changes? Percent 
changes? Are some of the variables measures in hundreds or thousands? Keep 
these things in mind, provide a verbal description of your results, and make 
the connection to the economic theory that motivated your estimation in 
order to drive home economic significance.
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In the following sections, I guide you through two approaches that can be 
chosen for hypothesis testing and show you how statistical significance is 
determined from your results.

Picking an approach
You can report the statistical significance of your coefficients (the result of 
your hypothesis test) with either the confidence interval approach or the test 
of significance approach. The former provides you with a range of possible 
values for your estimator in repeated sampling, and the latter gives you a test 
statistic that’s used to determine the likelihood of your hypothesis.

Confidence interval approach
A confidence interval provides a range (lower and upper limit) of values that 
would contain the true value (parameter) a certain percentage of time. If you 
need to review the concept of a confidence interval, I discuss the details in 
Chapter 3.

 The confidence interval for a regression coefficient is given by

where 1 – α is the level of confidence,  is the estimated coefficient,  is 
the standard error of the coefficient, and  is the appropriate t value. 
You can find the t value by using the t-distribution table in the Appendix and 
choosing n – p – 1 as your degrees of freedom (if your recollection of the 
t-distribution is foggy, you can visit Chapter 3).

Suppose your estimated slope coefficient is –19.3, its standard error is 0.6807, 
and the degrees of freedom are 3. With this information you can calculate a 
95 percent confidence interval as follows:

f(–19.3 – (3.182)(0.6807) ≤ β1 ≤ –19.3 + (3.182)(0.6807)) = 1 – 0.05

where the value 3.182 is pulled from the t table in the Appendix by going to 
the row with 3 degrees of freedom (n – p – 1 = 5 – 1 – 1 = 3) and 0.025 tail  
density (α/2 = 0.05/2 = 0.025).

f(–21.47 ≤ β1 ≤ –17.13) = 0.95

Therefore, you can be confident that, in repeated samples, your estimated 
coefficient will fall between –21.47 and –17.13 95 percent of the time. The 
calculation of a 95 percent confidence interval is a conventional norm (and 
STATA chooses it as the default), but other common confidence intervals are 
90 and 99 percent.
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Similarly, a confidence interval can be calculated for the intercept (β0) or 
any other coefficient (βk) using the same formula. In your STATA output, as 
shown in Figure 7-3, you’ll find the confidence intervals to the right of the 
estimated coefficients, standard errors, and t-statistics.

 If the hypothesized value is not contained in your calculated confidence  
interval, then your coefficient is statistically significant (meaning you can 
reject the null hypothesis).

Test of significance approach
The test of significance is the most common approach econometricians use 
to test hypotheses about coefficients. For individual coefficients, a t-test is 
typically performed.

 You can conduct a t-test for any of your coefficients with the following steps:

 1. Estimate the coefficient ( ) and standard error ( ).

 2. Calculate the t-statistic with the formula , where  is the 

  hypothesized value of the coefficient (usually zero).

 3. Determine the level of significance  at which you want to perform 
the test and obtain the critical t value from the t-distribution table.

  Recall that a critical t-value is the reference value chosen from the  
t-distribution (table) at the appropriate level of significance and degrees 
of freedom (you can find the t table in the Appendix).

 4. Compare your t-statistic to your critical t and reject the null hypothesis 
(or consider your coefficient statistically significant) if you’re in the 
critical region. 

  See Chapter 3 if you need to review the concept of a critical region.

As in the preceding section, suppose your estimated slope coefficient is 
–19.3, its standard error is 0.6807, and the degrees of freedom are 3. In order 
to perform a two-tailed test of significance (which assumes that the true 
value of the coefficient is zero) at the 5 percent level (meaning a 95 percent 
confidence level), you must calculate the t-statistic as follows:

Next, you want to compare the calculated t (–28.35) to the critical t from the 
table (3.182). For a two-sided test, the critical value is on both the left and 
right side of the distribution, so the critical region is defined by values less 
than –3.182 and greater than +3.182. Your t-statistic is in the critical region, so 
the variable associated with that coefficient is statistically significant at the 5 
percent level.
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 One quick way of examining t-statistics in regression output, such as that in 
Figure 7-3, is to see if their absolute value is greater than 2. As a rule of thumb, 
t-statistics with an absolute value greater than 2 indicate that the variable is 
statistically significant.

Choosing the level of significance  
and p-values
The 10, 5, and 1 percent levels of significance are the most common for  
testing the statistical significance of individual regression coefficients. 
However, any level of significance chosen for a confidence interval or test of 
significance exposes you to type I and type II errors.

A type I error is rejecting a hypothesis that’s true, and a type II error is failing 
to reject a hypothesis that’s false. If you choose a higher level of significance, 
you increase the chances of committing a type I error. And if you choose a 
lower level of significance, you increase the chances of committing a type II 
error.

 Researchers may pass on the burden of committing type I or type II errors to 
readers by doing one of two things:

 ✓ Present regression results in a table with asterisks next to the  
coefficients of each variable. Usually, one asterisk (*) indicates that 
the coefficient is significant at the 10 percent level, two asterisks (**) 
indicate significance at the 5 percent level, and three asterisks (***) are 
used if it’s significant at the 1 percent level.

 ✓ Report the p-value associated with the calculated t-statistic. The 
p-value is the lowest level of significance at which the null hypothesis 
could be rejected and is probably the most useful way of summarizing the 
strength (or weakness) of a statistical significance test. Econometrics 
software programs routinely report p-values for each estimated  
coefficient.

Analyzing Variance to Determine  
Overall or Joint Significance

Because so many independent variables (Xs) can simultaneously affect your 
dependent variable (Y), fully observing and accounting for all of them in a 
regression model is impossible. Some cases may have many unobservable 
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characteristics, which leads to a relatively low R-squared value. However, 
that doesn’t mean that what you’ve explained is inconsequential or  
unimportant. You can use tests of overall (or joint) significance to determine 
if the variation in your Y variable explained by all (or some subset) of your 
variables is nontrivial. The following sections illustrate how you use variance 
calculations to produce F-statistics that allow you to perform hypothesis 
tests of overall and joint significance.

Normality, variance, and  
the F distribution
One reason why you perform regression analysis is to help you explain  
variation in some outcome of interest, and that outcome is your dependent 
(Y) variable.

After you introduce some independent variables and estimate a regression, 
you can identify other components of variance; namely, those parts of the 
total variance in Y that can be explained by variation in the Xs you added to 
the regression model or that remain unexplained (this concept is discussed 
in more detail in Chapter 5). The normality assumption also ensures that 
these variances have a chi-squared distribution. In other words, the explained 
and unexplained variations from a regression model have a chi-squared  
distribution under the assumption that the conditional distribution of Y is 
normal ( ), which is equivalent to assuming 
that the error term is normally distributed ( ).

 In order to see how changes to your model affect explained variation, you 
want to compare the different components of variance. You can do so by  
calculating the ratio of the variances and, as a result, generating an 
F-distribution that allows you to draw some conclusions about the likelihood 
that your model has a significant impact on the components of variance.

The reported F-statistic from OLS
The R-squared value is a measure of overall fit for a regression model, but 
it doesn’t tell you whether the amount of explained variation is statistically 
significant (in Chapter 5, I discuss how you calculate and interpret the 
R-squared). This situation is similar to individual regression coefficients, 
because you don’t know by simply looking at the value of a regression  
coefficient whether it’s statistically significant.
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 Despite a low R-squared value, your model may explain a significant amount of 
variation in your dependent variable. The opposite may also be true; a high 
R-squared value may not be statistically significantly different from zero.

The null and alternative hypotheses to test for a regression model’s overall 
significance are

H0: β1 = β2 = . . . = βp = 0

H1: H0 is not true

 Overall significance only examines the impact of the slope coefficients (not 
the intercept term) and is tested using the following F-statistic:

In this equation, the explained sum of squares is , and the 
residual sum of squares is .

The number of sample observations is n, and p is the number of independent 
variables in the regression model. The degrees of freedom are p in the  
numerator and n – p – 1 in the denominator.

With some algebraic manipulation, the F-statistic of overall significance can 
also be written using the R-squared values as follows:

 I have a small dataset on demand (or sales) for a good (qtydemX), the price of 
that good (priceX), and the price of a related good (priceY). In Figure 7-4, I  
use the “list” command in STATA to show you the values for the individual 
observations. In addition, Figure 7-4 displays STATA’s regression output 
which, by default, includes the F-test for overall significance. In this example, 
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the F-statistic is 5.03 and the p-value is 0.055, so I can reject the hypothesis 
that the independent variables have no collective influence on the dependent 
variable at the 5.5 percent level of significance (or with 94.5 percent confidence). 
Note: All econometrics software packages, as part of the standard regression  
output, display the sum of squares (explained, residual, and total), the 
F-statistic, and the p-value associated with the test of overall significance.

 

Figure 7-4: 
The analysis 

of variance 
(ANOVA) 

section of 
STATA’s 

regres-
sion output 

contains the 
measures 

needed 
for the 

F-statistic.
 

 In models with numerous independent variables, many of the variables can be 
individually statistically insignificant. Remember that individual significance 
doesn’t rule out the possibility that they’re collectively significant. Some  
variables, in combination with others, can have a strong collective influence 
even though their individual impact is small.
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Slope coefficients and the relationship 
between t and F
If the degrees of freedom in the numerator of an F-value equal 1, then the 
square of a t-distribution approximately equals an F-distribution. In the 
context of regression analysis, this implies  if p = 1.

 In a simple regression model (with one independent variable), the t-test of  
significance for the slope coefficient is the same as the F-test for overall  
significance.

If you have one independent variable, the null hypothesis for the test of  
individual significance (t-test) is H0: β1 = 0. But this is also the test of overall  
significance (F-test) because the entire model’s influence on your dependent 
variable rests on the influence of one variable.

 Figure 7-5 shows STATA output for a simple regression model where the 
demand (or sales) for a good is the dependent variable (qtydemX) and the 
price of that good is the independent variable (priceX).

 

Figure 7-5: 
In a simple 
regression 
model, the 
p-value for 
overall sig-
nificance is 
identical to 
the p-value 

for the slope 
coefficient.

 

The t-test for the slope coefficient and the F-test shown in Figure 7-5 produce 
the same result. Both have a p-value of 0.055. In models with only one  
independent variable, the t-test and F-test always produce the same p-value.
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Joint significance for subsets of variables
In addition to testing for overall significance, the F-test can be useful in other 
situations. The most common is to examine the joint significance of a subset 
of variables in a regression model that includes several independent variables.

 Testing the joint significance of a subset of variables in a regression model is 
accomplished by generalizing the F-test of overall significance to

where RSSr is the RSS for the restricted model (the model with fewer  
independent variables), RSSur is the RSS for the unrestricted model (the model 
with more independent variables), n is the number of sample measurements, 
p is the number of independent variables in the unrestricted model, and q is 
the number of independent variables contained in your unrestricted model 
that are not contained in your restricted model.

The F-test of overall significance is a special case of the more general test. In 
that case, q = p because the restricted model contains no independent  
variables in a test of overall significance.

 Suppose you’re interested in explaining variation in movie box office revenue. 
You develop a model using the movie’s budget, critic reviews, and MPAA 
rating as independent variables. You use the MPAA ratings to generate three 
dummy variables indicating whether the movie received a PG, PG-13, or R 
rating (see Chapter 9 for an in-depth discussion of dummy variables). The 
model can be estimated without the ratings dummies (restricted) and with the 
ratings variables (unrestricted). Figure 7-6 shows the results produced from 
estimating both the restricted and unrestricted models using STATA.

You can use the results in Figure 7-6 to test the statistical significance of 
MPAA ratings in affecting movie revenue. The t-statistics suggest that none 
of the ratings have an individually significant impact on revenue. But do they 
have an impact collectively? To answer this question, calculate the following 
F-statistic:

The critical value on the F-distribution is F.05,3,574 = 2.62, so you don’t have 
enough evidence to claim that MPAA ratings are collectively significant at the 
5 percent level.
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Figure 7-6: 
STATA 

estimates of 
a restricted 

and unre-
stricted 

model 
of movie 
 revenue.

 

 In STATA, you can test the significance of subsets of your independent  
variables in fewer steps. Specifically, you can estimate your unrestricted 
model and then use the “test var1 var2…” command to perform the F-test. 
Doing so with my sample of movies has the results in Figure 7-7.

The benefits of using STATA for this calculation are enhanced accuracy, 
faster calculations, and a reported p-value for the test. The result in  
Figure 7-7 suggests that you can reject the hypothesis that MPAA ratings 
have no collective impact on movie revenue at the 8 percent (0.0802) level of 
significance.
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Figure 7-7: 
STATA 

regression 
output fol-

lowed by a 
joint test of 

statistical 
significance 

for a sub-
set of the 

independent 
variables.

 

Applying Forecast Error  
to OLS Predictions

After you apply the OLS technique to estimate your regression function, the 
results can be used to make predictions about the dependent variable. Your 
predictions won’t be perfect, so when you’re using regression for forecasting, 
you need to provide some measure of accuracy. In the subsequent sections, 
you apply regression results to make predictions, figure out how much  
variability your predictions will have, and use estimated prediction error to 
produce forecast confidence intervals.

Mean prediction and forecast error
The population regression function (PRF) passes through the conditional 
means of the dependent variable (Y). For a simple regression model, the  
conditional mean for a specific value of the independent variable (X0) is

E(Y|X0) = β0 + β1X0
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 In practice, you estimate the conditional mean for a specific X value using 
your sample regression function (SRF)  by plugging in any poten-
tial value of your independent variable for X0. The resulting  is known as the 
mean prediction.

 If you apply the expected value operator to both sides of the SRF, you get

With the classical linear regression model (CLRM) assumptions, the  
estimated regression coefficients are unbiased (see Chapter 6 for a  
description and proof of this result). If the coefficients are unbiased, then 

 and .

 The predicted value of the dependent variable from your SRF ( ) is an unbiased 
estimator of the true conditional mean (E(Y|X)), but this estimation only 
proves that the two are equal on average. Any particular prediction you  
produce from a SRF is likely to contain forecast error (the difference between 
the true conditional mean and the predicted value) even though, on average, 
the forecast error is zero.

Variance of mean prediction
The variance of an estimate (or prediction) provides a numerical value that 
describes how much a prediction changes from one sample to another. 

 Given that your mean prediction from a SRF contains forecast error, you want 
to know how much variability your prediction contains. The less variability, 
the more reliable your forecast.

In applied situations, you’re likely to get only one sample (or opportunity) 
to make a prediction. A smaller variance for your prediction increases the 
chances that your forecast is close to the true value and decreases the 
chances of having a large forecast error.

In order to derive the variance of the mean prediction, begin with the SRF at 
a specific X value and apply the variance operator to get
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Using the variance properties, you can rewrite the variance of the mean  
prediction as

The covariance of the estimated regression coefficients is

If you substitute this and the components of  and  into the 
variance equation, you have

Note: See the earlier section “Deriving a chi-squared distribution from the 
random error” if you don’t know how to calculate the variance of the  
coefficients.

After several algebraic steps, you can reduce this equation to

where  represents the variance of the error term.

 In practice, you don’t know the true variance of the error, so you can calculate 
the estimated variance of the mean prediction using

where  is the variance of the residuals or estimated variance of the error 
(see the earlier section “Deriving a chi-squared distribution from the random 
error” if you need help calculating the variance of the residuals).
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 The variance of your prediction is smallest near the mean value of your  
independent variable(s). If you make predictions using values for your  
independent variable(s) that deviate from their mean, the variance of your 
prediction increases exponentially.

All predictions are not the same:  
The prediction confidence interval
If you’re able to calculate the variance of a parameter prediction and you 
know the distribution of the parameter, then you can construct a confidence 
interval.

 For the mean prediction of a dependent variable in a regression model, the 
confidence interval is defined as , where  is the standard 
error of the mean prediction.

A unique characteristic of this confidence interval is the changing standard 
error of the prediction; smallest at the mean value of X and increasing  
exponentially as X deviates from the mean.

 The assumption that the error term follows a normal distribution ensures that 
the OLS estimators (  terms) are also normally distributed (see the earlier 
section “Describing the Role of the Normality Assumption” if you can’t recall 
how this works). The mean prediction ( ) is a linear function of the estimators, 
so it also has a normal distribution. The t-distribution is used to construct the 
confidence interval because you rely on the estimated variance of the error 
to calculate the variance of the prediction rather than the true variance of the 
error.

 The nature of the confidence interval for the OLS mean prediction is best 
illustrated with econometrics software. In STATA, I use the pull-down menu in 
Graphics and then click on Twoway graph. A small window opens in which I 
choose Create followed by Linear prediction w/CI. Figure 7-8 shows the  
resulting graph. It contains all the mean predictions (the regression line) and 
the confidence interval (the shaded area).



134 Part II: Building the Classical Linear Regression Model 

 

Figure 7-8: 
The graph-
ing tools in 
STATA can 
be used to 

show the 
OLS predic-

tion and 
confidence 

interval.
 

Notice that the area of the confidence interval for your prediction is smallest 
at the average X value and increases exponentially as you move away from 
the mean in either direction.



Part III
Working with the Classical 

Regression Model

 Refresh your grasp on the flexibility of the classical linear regression model by 
 checking out the breakdown I provide at www.dummies.com/extras/ 
econometrics.

http://www.dummies.com/extras/econometrics
http://www.dummies.com/extras/econometrics


In this part . . .
 ✓ Model nonlinear relationships and estimate functions with 

 traditional techniques.
 ✓ Examine specification issues, determine the best approach for 

dealing with them when they occur, and strengthen faith in 
your results.

 ✓ Discover how to turn qualitative data into quantitative data that 
you can use as independent (or explanatory) variables.

 ✓ Estimate the impact of qualitative characteristics on quantita-
tive outcomes.



Chapter 8

Functional Form, Specification, 
and Structural Stability

In This Chapter
▶ Understanding how to use and interpret nonlinear regression functions
▶ Transforming common nonlinear functions in economics into linear functions
▶ Testing for specification issues and checking the reliability of your results

Y 
ou typically choose the dependent variable in a particular analysis 
based on the economic question or puzzle that you’re interested in 

exploring and your prior knowledge of economic theory. However, you have 
to think about several additional questions to determine whether you have a 
good econometric model. In particular, you need to ask:

 ✓ What independent variables or factors are likely to affect my outcome or 
variable of interest (dependent variable)?

 ✓ Do I expect the variables to have a linear (that is, constant or straight-line) 
impact on the dependent variable, or are some of them likely to have a 
nonlinear effect?

Your answers to these questions address what econometricians call  
specification issues. The best ways to deal with specification issues for an 
individual problem can be controversial and far from obvious, but you aren’t 
without help. In this chapter, I show you some strategies that help you 
address these questions carefully and, consequently, make your results  
more convincing. I also expose you to various paths and criteria that can be 
considered in approaching these questions systematically and formulating 
your econometric model.
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Employing Alternative Functions
Because economic relationships are rarely linear, you may want to allow 
your econometric model to have some flexibility. Linear functions are the 
easiest to interpret, but they also impose restrictions on the nature of the rela-
tionship between your dependent (Y) and independent (X) variables insofar 
as they force the effect of the X variable(s) on the Y variable to be constant 
over all values of X. One way you can allow for more flexibility in the effect of 
the independent variable(s) is by specifying your econometric model using  
polynomials; that is, as a nonlinear function. In this section, I show you  
different ways that you can use polynomials.

Quadratic function: Best for finding  
minimums and maximums
With a quadratic function, you allow the effect of the independent variable 
(X) on the dependent variable to change. As the value of X increases, the 
impact of the dependent variable increases or decreases.

 The mathematical representation of an econometric model with a quadratic 
function is .

If you estimate this type of regression, several outcomes are possible for 
your coefficients. However, the two most common results are as follows:

 ✓  and 

 ✓  and 

If  and  in the estimated regression  are both  
positive, then your estimated regression line looks like the one shown in 
Figure 8-1a. If  is positive and  is negative in the estimated regression

, then Figure 8-1b is an approximate depiction of the 
regression curve.

 A total variable cost (TVC) or total cost (TC) curve may display the shape 
shown in Figure 8-1a, whereas a short-run total product (TP) curve is likely  
to display the sort of behavior shown in Figure 8-1b if marginal product is 
diminishing at any level of input. (These concepts were covered in your  
microeconomics course. Check out Economics For Dummies, by Sean Masaki 
Flynn [Wiley], if you need a refresher.)
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Figure 8-1: 
A quadratic 

function 
with an 

increasing 
slope (a) 

and with a 
decreasing 

slope (b).
 

Cubic functions: Good for inflexion
Like when using a quadratic function, with a cubic function, you allow the 
effect of the independent variable (X) on the dependent variable (Y) to change. 
As the value of X increases (or decreases), the impact of the dependent vari-
able may increase or decrease. However, unlike a quadratic function, this rela-
tionship changes at some unique value of X. In other words, at some specific 
point, a decreasing effect becomes increasing or an increasing effect becomes 
decreasing. The point at which this occurs is called the inflexion point.

 The mathematical representation of an econometric model with a cubic func-
tion is . If you estimate this type of regression, 
numerous outcomes are possible for your coefficients. However, the two most 
common results lead to either of the following curves:

 ✓ A decreasing slope followed by an increasing slope, as shown in  
Figure 8-2a

 ✓ An increasing slope followed by a decreasing slope, as shown in  
Figure 8-2b

 

Figure 8-2: 
A cubic 

function with 
a decreas-

ing and then 
increasing 

slope (a) 
and with an 
increasing 

and then 
decreasing 

slope (b).
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 Among many other possibilities, Figure 8-2a depicts the potential shape of a 
total variable cost (TVC) or total cost (TC) curve. Figure 8-2b approximates  
a short-run total product (TP) curve if initially marginal productivity is 
increasing and then it diminishes.

Inverse function: Limiting the value  
of the dependent variable
If you believe that the outcome (dependent variable) you’re modeling is  
likely to approach some value asymptotically (as X approaches zero or  
infinity), then an inverse function may be the way to go. Inverse functions  
can be useful if you’re trying to estimate a Phillips curve (the inverse  
relationship between inflation and unemployment rates) or a demand function 
(the inverse relationship between price and quantity demanded), among 
other economic phenomena where the variables are related inversely.

 Here is the mathematical representation of an inverse function econometric 
 model: 

If you estimate this type of regression, you’re likely to see one of the following 
three outcomes (which I also show you in Figure 8-3):

 ✓  and . The graph in Figure 8-3a shows an inverse function with 
Y approaching positive infinity as X approaches zero and Y approaching 

   as X approaches infinity.

 ✓  and . The graph in Figure 8-3b depicts an inverse function with 
Y approaching positive infinity as X approaches zero and Y approaching 

  some negative value  as X approaches infinity.

 ✓  and . The graph in Figure 8-3c shows an inverse function with 
  Y approaching some positive value  as X approaches positive infinity  
  and Y approaching negative infinity as X approaches zero.

 

Figure 8-3:  
Three 

graphical 
represen-
tations of 

inverse 
functions.
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Giving Linearity to Nonlinear Models
In some cases, the models you’re working with aren’t linear in parameters. 
Examples include Cobb-Douglas production functions and constant-elasticity 
demand curves that you worked with in your microeconomics class. In other 
cases, you may be working with models in which the variables used in the 
analysis cause the normality assumption of OLS to fail (I cover this assumption 
in Chapter 7). This failure typically occurs when the variables are measured 
in dollars or some other large scale (like population figures). For both of 
these cases, log transformations may come to the rescue. I break down the 
different options available in the following sections.

Working both sides to keep elasticity  
constant: The log-log model
Using natural logs for variables on both sides of your econometric specification 
is called a log-log model. This model is handy when the relationship is  
nonlinear in parameters, because the log transformation generates the 
desired linearity in parameters (you may recall that linearity in parameters is 
one of the OLS assumptions; if not, flip to Chapter 6).

In principle, any log transformation (natural or not) can be used to transform 
a model that’s nonlinear in parameters into a linear one. All log transformations 
generate similar results, but the convention in applied econometric work is 
to use the natural log. The practical advantage of the natural log is that the 
interpretation of the regression coefficients is straightforward (a topic that I 
discuss later in this section).

Consider the demand function Q = αPβ where Q is the quantity demanded, α 
is a shifting parameter, P is the price of the good, and the parameter β is less 
than zero for a downward-sloping demand curve. If β= –1, you can recognize 
the function as a specific type of demand curve with elasticity equal to –1 at 
all points; that is, you have a unitary elastic demand curve.

A demand curve of the form Q = αPβ has a constant elasticity (equal to –β), 
but the value of that elasticity may not be known. Using data, you can estimate 
the parameters (α and β), but you must transform the function in order to 
make estimates using the OLS technique.

 If your model is not linear in parameters, sometimes a log transformation 
achieves linearity.
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A generic form of a constant elasticity model can be represented by

If you take the natural log of both sides, you end up with

ln Yi = ln(α) + βln Xi

You treat ln(α) as the intercept. You end up with the following model:

ln Yi = β0 + β1ln Xi

You can estimate this model with OLS by simply using natural log values for 
the variables instead of their original scale.

 After estimating a log-log model, such as the one in this example, the coeffi-
cients can be used to determine the impact of your independent variables (X) 
on your dependent variable (Y). The coefficients in a log-log model represent 
the elasticity of your Y variable with respect to your X variable. In other words, 
the coefficient is the estimated percent change in your dependent variable for 
a percent change in your independent variable.

 Using calculus with a simple log-log model, you can show how the coefficients 
should be interpreted. Begin with the model ln Y = β0 + β1ln X and differentiate 

 it to obtain . The term on the right-hand side ( ) is the percent 
 change in X, and the term on the left-hand side ( ) is the percent change in 

Y, so β1 measures the elasticity.

Suppose you obtain the estimates , where Y is sales and 
X is price. The elasticity is –0.85, so a 1 percent increase in the price is associ-
ated with a 0.85 percent decrease in quantity demanded (sales), on average.

If you estimate a log-log regression, a few outcomes for the coefficient on X 
(β1) produce the most likely relationships:

 ✓ : Figure 8-4a shows this log-log function in which the impact of 
the independent variable is positive and becomes larger as its value 
increases.

 ✓ : Figure 8-4b shows a log-log function in which the impact of 
the independent variable is positive but becomes smaller as its value 
increases.

 ✓ : Figure 8-4c shows a log-log function where the impact of the 
dependent variable is negative.
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Figure 8-4:  
Three 

depictions 
of a log-log 

function.
 

 Although regression coefficients are sometimes referred to as partial-slope 
coefficients, in a log-log model the coefficients don’t represent the slope (or 
unit change in your Y variable for a unit change in your X variable).

Making investments and calculating  
rates of return: The log-linear model
If you use natural log values for your dependent variable (Y) and keep your 
independent variables (X) in their original scale, the econometric specification 
is called a log-linear model. These models are typically used when you think 
the variables may have an exponential growth relationship, For example, if I 
put some cash in a saving account, I expect to see the effect of compounding  
interest with an exponential growth of my money! The original model in 
these types of scenarios isn’t linear in parameters, but a log transformation 
generates the desired linearity (see Chapter 6 for more on this standard OLS 
assumption).

Consider the following model of value in a savings fund that depends on your 
initial investment, your return, and the length of time in which the funds are 
invested: Yt = Y0(1 + r)t, where Yt represents the value of the fund at time t, Y0 
is the initial investment in the savings fund, and r is the growth rate.

 Labor economists are also interested in similar functions because individuals 
usually have some initial earning power that can be supplemented with  
investments in skill acquisition. These human capital functions deal with the 
amount of money an individual can expect to earn depending on his or her  
initial abilities and investments in education, training, experience, and so on. 

 A generic exponential growth function can be written as Y = Y0(1 + r)X, where 
the value of Y for a given X can be derived only if the growth rate (r) is known. 
The growth rate can be estimated, but a log transformation must be used to 
estimate using OLS.
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If you begin with an exponential growth model and take the log of both sides, 
you end up with ln Y = ln Y0 + Xln (1 + r), where ln Y0 is the unknown constant 
and ln (1 + r) is the unknown growth rate plus 1 (in natural log form). You end 
up with the following model:

ln Y = β0 + β1X

You can estimate this model with OLS by simply using natural log values  
for the dependent variable (Y) and the original scale for the independent  
variables (X). It’s known as a log-linear model.

 After estimating a log-linear model, the coefficients can be used to determine 
the impact of your independent variables (X) on your dependent variable (Y). 
The coefficients in a log-linear model represent the estimated percent change 
in your dependent variable for a unit change in your independent variable. The 
coefficient β1 provides the instantaneous rate of growth.

 Using calculus with a simple log-linear model, you can show how the coefficients 
should be interpreted. Begin with the model ln Y = β0 + β1X and differentiate it

 to obtain . The term on the right-hand-side (δX) is the unit-change 
 in X, and the term on the left-hand-side ( ) is the percent change in Y, so β1

 provides the instantaneous rate of growth for Y associated with a unit change  
in X.

 The compounded growth rate is considered to be a more accurate estimate of 
the impact of X. After estimating a log-linear model, you can calculate the  
compounded growth rate (r) as .

Suppose you obtain the estimated regression , where Y is 
an individual’s wage and X is her years of education. The 0.08 value for β1 
indicates that the instantaneous return for an additional year of education 
is 8 percent and the compounded return is 8.3 percent (e0.08 – 1 = 0.083).

If you estimate a log-linear regression, a couple outcomes for the coefficient 
on X (β1) produce the most likely relationships:

 ✓ β1 > 0: This log-linear function illustrates a positive impact from the  
independent variable, as shown in Figure 8-5a.

 ✓ β1 < 0: This log-linear function depicts a negative impact from the  
independent variable, as shown in Figure 8-5b.
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Figure 8-5: 
Two  

depictions  
of a log- 

linear 
function.

 

 Regression coefficients in a log-linear model don’t represent the slope.

Decreasing the change of the dependent 
variable: The linear-log model
If you use natural log values for your independent variables (X) and keep 
your dependent variable (Y) in its original scale, the econometric specification 
is called a linear-log model (basically the mirror image of the log-linear model 
discussed earlier in this chapter). These models are typically used when the 
impact of your independent variable on your dependent variable decreases 
as the value of your independent variable increases. The behavior of the 
function is similar to a quadratic, but it’s different in that it never reaches a 
maximum or minimum Y value.

The original model is not linear in parameters, but a log transformation  
generates the desired linearity. (Recall that linearity in parameters is one of 
the OLS assumptions, which I discuss in Chapter 6.)

Consider the following model of consumption spending, which depends on 
some autonomous consumption and income:

Y = β0 + β1ln X

where Y represents consumption spending, β0 is autonomous consumption 
(consumption that doesn’t depend on income), X is income, and β1 is the  
estimated effect of income on consumption.

I suspect that you’re familiar with the relationship between income and  
consumption. In your principles of economics courses, you probably referred 
to it as an Engel curve. You may not have seen the mathematical function 
behind it, but you’ve seen the graphical depiction.
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 The estimation of consumption functions isn’t the only use of linear-log  
functions. Economists tend to use these functions anytime that the unit 
changes in the dependent variable are likely to be less than the unit changes 
in the independent variables.

If you begin with a function of the form , where the value of Y for a 
given X can be derived only if the impact (β1) is known, then you can estimate 
the impact using OLS only if you use a log transformation. If you take the nat-
ural log of both sides, you end up with Y = β0 + β1ln X where β0 is the unknown 
constant and β1 is the unknown impact of X. You can estimate this with OLS 
by simply using natural log values for the independent variable (X) and the 
original scale for the dependent variable (Y).

 After estimating a linear-log model, the coefficients can be used to determine 
the impact of your independent variables (X) on your dependent variable (Y). 
The coefficients in a linear-log model represent the estimated unit change in 
your dependent variable for a percentage change in your independent variable.

 Using calculus with a simple linear-log model, you can see how the coefficients 
should be interpreted. Begin with the model Y = β0 + β1ln X and differentiate 

 it to obtain . The term on the right-hand-side ( ) is the percent 
 change in X, and the term on the left-hand-side (δY) is the unit change in Y.

In economics, many situations are characterized by diminishing marginal 
returns. The linear-log model usually works well in situations where the effect 
of X on Y always retains the same sign (positive or negative) but its impact 
decreases.

Suppose, using a random sample of schools districts, you obtain the following 
regression estimates:

where Y is the average math SAT score and X is the expenditure per student.  
The estimated coefficient  implies that a 1 percent increase in  
expenditure per student increases the average math SAT score by 0.65 points.

If you estimate a linear-log regression, a couple outcomes for the coefficient 
on X (β1) produce the most likely relationships:

 ✓ β1 > 0: Figure 8-6a shows a linear-log function where the impact of the 
independent variable is positive.

 ✓ β1 < 0: Figure 8-6b shows a linear-log function where the impact of the 
independent variable is negative.
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Figure 8-6: 
Possible 

depictions 
of a linear-

log function.
 

 As with log-log and log-linear models, the regression coefficients in linear-log 
models don’t represent slope.

Checking for Misspecification
The art of econometrics lies in finding the appropriate specification or  
functional form to model your particular outcome of interest. The choices 
made regarding functional form and the selection of independent variables 
should be based on economic theory and common sense. However, in many 
cases, the theory can be vague about the specific elements of a model’s 
specification.

Given the uncertainty that you face when settling on the model and determin-
ing the results you’ll present in applied econometrics, you have to consider 
the impact of excluding variables, using inappropriate variables, or choosing 
the wrong functional form.

Too many or too few: Selecting  
independent variables
One of the most important decisions you make when specifying your  
econometric model is which variables to include as independent variables. In 
the following sections, you find out what problems can occur if you include 
too few or too many independent variables in your model, and you see how 
this misspecification affects your results.

Omitting relevant variables
If a variable that belongs in the model is excluded from the estimated  
regression function, the model is misspecified and may cause bias in the  
estimated coefficients.
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 You have an omitted variable bias if an excluded variable has some effect 
(positive or negative) on your dependent variable and it’s correlated with at 
least one of your independent variables.

The mathematical nature of specification bias can be expressed using a 
simple model. Suppose the true population model is given by

Yi = β0 + β1Xi1 + β2Xi2 + εi

where X1 and X2 are the two variables that affect Y. But due to ignorance or 
lack of data, instead you estimate this regression:

which omits X2 from the independent variables. The expected value of  in 
this situation is

But this equation violates the Gauss-Markov theorem because  
(I discuss the components of the Gauss-Markov theorem in Chapter 6). The 
magnitude of the bias can be expressed as

where β2 if the effect of X2 on Y and δ1 is the slope from this regression:

which captures the correlation (positive or negative) between the included 
and excluded variable(s).

I summarize the direction of omitted variable bias in Table 8-1.

Table 8-1 Summary of Omitted Variable Bias
Impact of Omitted Variable on 
Dependent Variable

Correlation between Included and 
Omitted Variable:
Positive Negative

Positive Positive bias Negative bias
Negative Negative bias Positive bias
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 In practice, you’re likely to have some omitted variable bias because it’s 
impossible to control for everything that affects your dependent variable. 
However, you can increase your chances of minimizing omitted variable bias 
by avoiding simple regression models (with one independent variable) and 
including the variables that are likely to be the most important theoretically 
(and possibly, but not necessarily statistically) in explaining the dependent 
variable.

Including irrelevant variables
 If a variable doesn’t belong in the model and is included in the estimated 

regression function, the model is overspecified. If you overspecify the  
regression model by including an irrelevant variable, the estimated coefficients 
remain unbiased. However, it has an undesirable effect of increasing the  
standard errors of your coefficients.

In a simple regression model (with one independent variable), the estimated 
standard error of the regression coefficient for X is

where  is the estimated variance of the error and  is the total 
variation in X.

If you include additional independent variables in the model, the estimated 
standard error for any given regression coefficient is given by

where  is the R-squared from the regression of Xk on the other independent 
variables or Xs. Because , the numerator decreases. An irrelevant 
variable doesn’t help explain any of the variation in Y, so without an offsetting 
decrease in , the standard error increases.

 Just because your estimated coefficient isn’t statistically significant doesn’t 
make it irrelevant. A well-specified model usually includes some variables that 
are statistically significant and some that aren’t. Additionally, variables that 
aren’t statistically significant can contribute enough explained variation to 
have no detrimental impact on the standard errors.
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Sensitivity isn’t a virtue: Examining  
misspecification with results stability
There’s no substitute for sound economic theory and good common sense in 
specifying an econometric model. However, the existence of contesting  
theories in economics often means you can estimate a relationship in more 
than one way. The following sections show you how to utilize some conventional 
tests in econometrics to help you refine your model’s specification.

Performing a RESET to test the severity of specification issues
Although your econometric model isn’t likely to be perfectly specified, that 
doesn’t imply that specification is a serious issue with your model. A  
statistical test can be used to examine the severity of certain specification 
issues.

 Ramsey’s regression specification error test (RESET) can be used to detect 
specification issues related to omitted variables and certain functional forms. 
The test is conducted by adding a quartic function of the fitted values of your 
dependent variable ( , , and ) to your original regression and then  
testing the joint significance of the coefficients for the added variables.

 The logic of using a quartic of your fitted values is that they serve as proxies 
for variables that may have been omitted. Because the proxies are essentially 
nonlinear functions of your Xs, RESET is also testing misspecification from 
functional form. The function of your fitted values doesn’t have to be limited 
to a quartic, but this structure has proven useful and is the most common in 
practice.

You can perform a RESET in three steps:

 1. Estimate the model you want to test for specification error.

  For example, you may decide to use .

 2. Obtain the fitted values after estimating your model and estimate.

   

 3. Test the joint significance of the coefficients on the fitted values of Yi 
terms, α, γ, and δ using an F-statistic.

  See Chapter 7 for details on testing joint significance for a subset of  
variables in a regression model.

 Most econometrics software packages have commands that conduct a RESET 
and save you time. For example, in STATA, after estimating your original 
model, you can type “estat ovtest” to perform the test.
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 A RESET allows you to identify whether misspecification is a serious problem 
with your model, but it doesn’t allow you to determine the source. If your 
RESET result doesn’t reject your specification, you can use it to support your 
claim that specification isn’t a major problem with your model. However, a 
RESET result that rejects the specification of your model can’t be used to 
address any particular specification problem.

Using the Chow test to determine structural stability
Sometimes specification issues arise because the parameters of the model 
either aren’t stable or they change. For example, the marginal propensity to 
save may change in response to a new capital gains tax, or the returns to  
education could vary by race and/or gender.

You can use a Chow test to check the structural stability of your model. 
Here’s how to conduct a Chow test for structural stability between any two 
groups (A and B) in just three steps:

 1. Estimate your model combining all data and obtain the residual sum 
of squares (RSSr) with degrees of freedom n – p – 1.

  This is considered the restricted RSS because the model restricts the 
parameters to be the same for the two groups.

 2. Estimate your model separately for each group and obtain the residual 
sum of squares for group A, RSSur,A, with degrees of freedom nA – p – 1 
and the residual sum of squares for group B, RSSur,B, with degrees of 
freedom nB – p – 1.

  These are considered the unrestricted RSS because the model doesn’t 
restrict the parameters to be the same for the two groups.

 3. Compute the F-statistic by using this formula: 

  

 The null hypothesis for the Chow test is structural stability. The larger the 
F-statistic, the more evidence you have against structural stability and the 
more likely the coefficients are to vary from group to group.

The result of the F-statistic for the Chow test assumes homoskedasticity (see 
Chapter 6 for a discussion of homoskedasticity). Assuming homoskedasticity 
holds, a large F-statistic only informs you that the parameters vary between 
the groups, but it doesn’t tell you which specific parameter(s) is (are) the 
source(s) of the structural break.
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 If structural stability is rejected in your Chow test, then you must obtain  
coefficient estimates for different time periods or different groups of cross-
sectional units. If structural stability isn’t rejected, one regression is  
appropriate in estimating the relationship.

Conducting robustness/sensitivity analysis
One of the most common practices in applied econometrics is the use of 
robustness analysis to check for specification issues. Robustness refers to 
the sensitivity of the estimated coefficients when you make changes to your 
model’s specification.

 Performing robustness/sensitivity analysis requires that you determine which 
independent variables are of primary interest (also known as core variables) 
for your empirical investigation. Then you estimate numerous regressions 
with your core variables, but experiment with various combinations of other 
control variables. If the coefficients of your core variables aren’t sensitive 
(maintain the same sign with similar magnitudes and levels of significance), 
then the coefficients are considered robust. Note: Misspecification is considered 
to be less problematic when your results are robust.

Some econometrics software programs have specific commands that allow 
you to perform robustness analysis more quickly. For example, in STATA, 
you can download the “rcheck” and/or “checkrob” programs to automatically  
perform regressions with various combinations of your independent variables. 
Note: Don’t confuse these robustness checks with the “, robust” regression 
option in STATA. The “, robust” option is useful, but it’s not designed to 
address specification issues; instead, it helps you deal with heteroskedasticity 
(something I discuss at length in Chapter 11). 

 Robustness analysis requires that you be cautious about which non-core 
independent variables are considered for exclusion/inclusion in the various 
regressions that will examine sensitivity. Some variables, despite not being 
of primary interest (that is, despite not being core), are likely to be essential 
control variables that would be included in any analysis of your outcome of 
interest (you should rely on economic theory and your common sense here). 
Removing those variables can result in more serious misspecification and 
cause your core coefficients to appear sensitive.



Chapter 9

Regression with Dummy 
Explanatory Variables

In This Chapter
▶ Converting qualitative information into quantitative data
▶ Estimating differences in means between two groups with regression analysis
▶ Performing regression analysis using qualitative and quantitative data simultaneously
▶ Testing for joint significance

Q 
uantitative variables such as years of experience, costs, and prices 
aren’t the only variables that can have a major influence on the  

dependent variable in a regression model. Qualitative variables — think 
gender, race, season of the year, and geographical location — can too. In this 
chapter, I explain how qualitative variables can be used as independent (or 
explanatory) variables just as readily as quantitative variables in traditional 
ordinary least squares (OLS) regression. I also show you all the common 
ways in which qualitative variables are used in econometric analysis and 
help you figure out how to interpret the coefficient estimates.

Numbers Please! Quantifying  
Qualitative Information

Estimating an econometric model requires that all the information be  
quantified. In other words, numbers must be used to characterize both your 
quantitative and qualitative variables. Quantitative variables are typically 
coded with numeric values in the raw data, but qualitative variables are likely 
to require you to perform some quantification manipulation. In this section 
you find out how to quantify variables when working with two groups or with 
multiple groups.
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Defining a dummy variable when you  
have only two possible characteristics
In many cases, the qualitative characteristics you want to include in your 
econometric analysis have two groups (or categories). In general, you have 
two groups when sample observations have a “this” or “that” option. For 
example, in most surveys, gender is classified as either male or female.

 If a qualitative characteristic has two groups, you need to create one dummy 
variable in order to quantitatively capture that attribute. The dummy variable 
takes the value of 1 if one of the two characteristics is present and 0 if the 
other characteristic is observed. The group that’s identified (or assigned) 0 
values for the created dummy variable is called your reference or base group.

Table 9-1 illustrates how you can create a dummy variable from your original 
data. Column 1 contains the movie title, and Column 2 contains the lead 
actor’s name. Column 3 isn’t part of the original data, but I create the variable 
Female using the information in Column 2. The variable Female is a dummy 
variable equal to 1 if the lead actor is female and equal to 0 if the lead actor  
is male. Notice that only one dummy variable is needed to capture two  
possibilities (in this case, male and female).

Table 9-1 Representing Actor Gender with a Dummy Variable
1

Title

2

Lead

3

Female
Fireproof Kirk Cameron 0
Transamerica Felicity Huffman 1
The Wrestler Mickey Rourke 0
Akeelah and the Bee Keke Palmer 1
The Last King of 
Scotland

James McAvoy 0

Source: www.imdb.com

 Your econometric results aren’t affected by which group you decide to assign 
a 1 and which group you assign a 0 in your dummy variable.
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Juggling multiple characteristics  
with dummy variables
In some cases, the qualitative characteristics you want to include in your 
econometric analysis have more than two groups (or categories). In general, 
you work with several groups when sample observations are classified into 
one of many possibilities. For example, a firm may be located in the West, 
Midwest, South, or Northeast region of the country.

 In order to quantitatively capture a qualitative attribute with numerous 
groups (or possibilities), you need to create dummy variables for each group 
minus 1. The dummy variable takes the value of 1 if a particular characteristic 
is present and 0 otherwise. In other words, if you have J groups, you need J – 1 
dummy variables with 1s and 0s to capture all the qualitative information. The 
group that does not have a dummy variable is identified when all the other 
dummy values are 0, and it’s called your reference or base group.

To see what I mean, check out Table 9-2. With this data, you can create the 
dummy variables you need from a qualitative variable with several groups. 
Column 1 contains the movie title, and Column 2 contains the MPAA rating 
(G, PG, PG13, or R). Columns 3, 4, and 5 aren’t part of the original data, but 
I create them using the information of MPAA rating in Column 2. Notice that 
the number of dummy variables I need is one less (three) than the number of 
possible outcomes for the qualitative characteristic (in this case, four: G, PG, 
PG13, and R).

Table 9-2 Representing MPAA Ratings with Dummy Variables
1

Title

2

MPAA 
Rating

3

PG

4

PG13

5

R

Fireproof PG 1 0 0
Transamerica R 0 0 1
The Visitor PG13 0 1 0
Crash R 0 0 1
Herbie: Fully 
Loaded

G 0 0 0

Source: www.imdb.com
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 The group you choose to assign a 0 all the way across doesn’t affect your 
econometric results. Those observations (in this example, G-rated movies like 
Herbie: Fully Loaded) are important to include and do affect the overall results, 
because they are all part of the reference group. It doesn’t matter, however, 
which type of movie is chosen to be the reference group.

Finding Average Differences  
by Using a Dummy Variable

You should recall from your statistics course how to conduct the t-test to 
examine the differences in means between two groups. (If not, I provide a 
refresher on this technique in Chapter 3.) But what you may not know is that 
you can use dummy variables and regression analysis to obtain the same 
results as the t-test. The following sections clarify how.

Specification
Even though your econometric model is likely to include both quantitative 
and qualitative characteristics, I begin with a model that only uses a dummy 
variable to capture qualitative characteristics and ignores other potential 
independent variables. This process amounts to identifying differences in 
means for groups identified by the dummy variable(s), but it’s a useful  
building block to understanding more realistic models that combine qualitative 
characteristics with quantitative variables.

 If the qualitative characteristic that you’d like to use as an independent variable  
contains only two groups (as discussed in the earlier section “Defining a 
dummy variable when you have only two possible characteristics”), then an 
econometric model with a single dummy variable as the only explanatory  
variable can be expressed as

Yi = β0 + β1Di + εi

where Y is the dependent variable, β0 is the intercept (or constant) term, and 
β1 is the impact of the characteristic represented by the dummy variable (D). 
Di = 1 if the specific qualitative characteristic is present and Di = 0 if not.

 If the qualitative characteristic you’d like to use as an independent variable 
has more than two groups (as in the earlier section “Juggling multiple  
characteristics with dummy variables”), then the econometric model must 
include J – 1 variables to fully capture the possibilities. Suppose you’d like to 
use a variable with a qualitative characteristic containing four possible outcomes 
{A, B, C, and D}. The basic econometric model to capture a qualitative  
characteristic is expressed as
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Yi = β0 + β1DiB + β2DiC + β3DiD + εi

where DiB = 1 if the observation belongs to group B, DiC = 1 if the observation 
belongs to group C, DiD = 1 if the observation belongs to group D, and  
DiB = DiC = DiD = 0 if the observation is in group A. By using this equation, you 
implicitly assign group A as the reference or base group in any two-group 
comparison.

Interpretation
One useful way of seeing the role of a dummy variable in an econometric 
model is to interpret the results of a regression using a dummy variable as 
the only independent variable.

An estimated regression with a dummy variable is generally written as 
, where the  terms represent the estimated parameters. Because 

D can only be 0 or 1 for any given observation,  if Di = 0, and  
if Di = 1.

 The predicted Y value ( ) from a regression represents the estimate of the 
conditional mean ( ). A dummy variable only has two values, so you 
get two predicted Y values. Therefore, the predicted Y values are equal to the 
sample means for each group.

 To help illustrate the point, I’ve estimated a model with a dummy variable by 
using STATA and data collected from hundreds of movies. I used information 
on lead characters to create a dummy variable Female that is equal to 1 if the 
lead actor is a female and 0 otherwise. Figure 9-1 contains the STATA output 
from my regression using gross box office revenue (measured in millions of 
dollars) as my dependent variable and Female as my independent variable. 
The results in Figure 9-1 imply that, on average, revenue for a movie with a 
female lead is about $16 million less than a movie with a male lead.

 If I simply calculate the average revenue for movies with a male lead and 
movies with a female lead, the difference is perfectly consistent, as you can 
see in Figure 9-2. In this figure, you can see that the average revenue is about 
$63 million overall (group “combined”). However, the average revenue is 
$67.9 million for movies with male leads (group 0) (the value of the intercept 
in Figure 9-1), whereas the average revenue is $51.5 million for movies with 
female leads (group 1). The difference in revenue between the two groups is 
precisely the value of the coefficient for the dummy variable in Figure 9-1. In 
addition, the reported t-statistic (with a value of 2.44) is identical in Figures 9-1 
and 9-2.
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Figure 9-1: 
STATA 

regression 
output with 

a dummy 
variable 

as the only 
independent 

variable.
 

 

Figure 9-2: 
STATA 
output 

containing 
means for 

two groups 
and t-test 
for differ-
ences in 

means.
 

 You can also estimate a model with dummy variables when the qualitative 
characteristic has more than two groups. Consider the example shown in 
Figure 9-3, which uses information on MPAA ratings (G, PG, PG13, and R) to 
create dummy variables for three of the four groups. Figure 9-3 contains the 
STATA output from my regression using gross box-office revenue (measured 
in millions of dollars) as my dependent variable and the dummy variables as 
my independent variables. Figure 9-3 illustrates that, on average, movies with 
PG, PG13, and R ratings earn less revenue than G-rated movies. None of the 
coefficients, however, are statistically significant (I cover statistical signifi-
cance in Chapter 7). This implies that it’s possible for the revenue of movies 
in the various rating categories to be identical to the revenue of movies in the 
reference group (G-rated movies).
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Figure 9-3: 
STATA 

regression 
output using 
a qualitative 
independent 

variable 
with more 

than two 
groups.

 

Combining Quantitative and Qualitative 
Data in the Regression Model

Regression analysis allows you to simultaneously utilize qualitative and  
quantitative information. You can use dummy variables alone to estimate  
differences in means between groups. But because many characteristics may 
vary between groups, it’s usually important to use the power of regression 
analysis so you can concurrently consider the impact of quantitative  
characteristics. In the following sections, I explain how to use both dummy 
variables (as qualitative variables) and quantitative variables together in a 
single regression model.

Specification
 A useful way to utilize qualitative characteristics in econometrics is to  

combine them with quantitative variables in a regression. If the qualitative 
characteristic that you’d like to use as an independent variable contains only 
two groups, then one dummy variable is used in the econometric model along 
with any quantitative variables that should be included in the model.

An econometric model with one dummy variable and one quantitative  
variable can be expressed as

Yi = β0 + β1Di + β2Xi + εi
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where Di = 1 if the specific qualitative characteristic is present and Di = 0  
otherwise, and X is the usual quantitative variable used in Chapters 5 and 8.

 If the qualitative characteristic you’d like to use as an independent variable 
has more than two groups (say J groups), then the econometric model must 
include J – 1 variables to fully capture the possibilities for the qualitative 
characteristic plus the quantitative variables you’re including as independent 
variables. An econometric model with a qualitative characteristic containing 
four possible outcomes (such as the four MPAA ratings used previously) and a 
quantitative variable is expressed as

Yi = β0 + β1DiB + β2DiC + β3DiD + β4Xi + εi

where DiB = 1 if the observation belongs to group B, DiC = 1 if the observation 
belongs to group C, DiD = 1 if the observation belongs to group D, and DiB = 
DiC = DiD = 0 if the observation is in group A. (X is the quantitative variable.) 
Tada! You’ve just implicitly assigned group A as the reference or base group 
in any two-group comparison.

Interpretation
An estimated regression with one quantitative and one dummy variable 
is generally written as , where the s represent the 
 estimated parameters, D can be 0 or 1 for any given observation, and X 
is any numeric value. The predicted Y value is  if Di = 0, and 

 if Di = 1.

 The coefficient for your dummy variable(s) in a regression containing a  
quantitative variable shifts the regression function up (if the coefficient is 
positive) or down (if the coefficient is negative). The same holds true when 
there’s more than one dummy variable.

Figure 9-4 shows a graphical depiction of the resulting regression when the 
model contains one dummy variable to capture a qualitative characteristic 
and one quantitative variable.
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Figure 9-4: 
A regres-
sion with 

one quan-
titative 

and one 
qualitative 

variable.
 

 You can use STATA to estimate a model with a quantitative and dummy  
variable. Figure 9-5 contains the STATA output from a regression using gross 
box-office revenue (measured in millions of dollars) as the dependent variable. 
The dummy variable Female (which equals 1 if the lead actor is a female and 
0 otherwise) and the quantitative variable movie budget are the independent 
variables. The results in Figure 9-5 suggest that, holding gender of lead actor 
constant, every additional dollar in the movie’s budget is associated with an 
additional $1.13 in revenue. Also, holding movie budget constant, a female 
lead actor has no statistically significant effect on movie revenue because the 
t-statistic for the Female coefficient doesn’t meet conventionally accepted 
standards of statistical significance with a p-value of 0.545.

 

Figure 9-5: 
STATA 

regression 
output using 

one quan-
titative and 
one dummy 

variable.
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Interacting Quantitative and  
Qualitative Variables

Interacting qualitative or dummy variables with quantitative variables 
provides enough flexibility to detect differences between groups overall 
and differences that may vary depending on the value of the quantitative 
variable(s). The next sections show you what an interacted econometric 
model looks like and demonstrate how to apply the model.

Specification
You can use dummy variables as standalone independent variables, but you 
can also interact them with your quantitative variables to allow for more  
flexibility in your estimated regression function.

 The product of two independent variables is known as an interaction term. If 
the qualitative characteristic that you’d like to use as an independent variable 
contains only two groups, then independent variables in your interacted 
model can include one dummy variable, any quantitative variables that should 
be included in the model, and the product of your dummy variable with at 
least one quantitative variable.

An interacted econometric model can be expressed as

Yi = β0 + β1Di + β2Xi + β3(DX)i + εi

where Di = 1 if the specific qualitative characteristic is present and Di = 0  
otherwise, X is the quantitative variable, and DX is the interaction term 
(product of the dummy and quantitative variable for any given observation).

Interpretation
An estimated regression with independent variables that include one dummy, 
one quantitative, and one interaction variable is generally written as

where the s represent the estimated parameters, D can be 0 or 1  
for any given observation, X can be any numeric value, and DX is the
product of D and X. The predicted Y value is  if Di = 0, and 

 if Di = 1.
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 The inclusion of an interaction term in your econometric model allows the 
regression function to have a different intercept and slope for each group 
identified by your dummy variables. The coefficient for your dummy 
variable(s) in a regression shifts the intercept, and the coefficient for your 
interaction term changes the slope (which is the impact of your quantitative 
variable).

When you estimate a model with a dummy variable, a quantitative variable, 
and an interaction term with the dummy and quantitative variables, you end 
up with one of four possible outcomes:

 ✓ One regression line: The dummy and interaction coefficients are zero 
(meaning they’re not statistically significant).

 ✓ Two regression lines with different intercepts but the same slope: 
The coefficient for the dummy variable is significant, but the interaction 
coefficient is zero (or not statistically significant).

 ✓ Two regression lines with the same intercept but different slopes: The 
dummy coefficient is zero (or not statistically significant), but the inter-
action coefficient is significant.

 ✓ Two regression lines with different intercepts and slopes: The dummy 
coefficient and the interaction coefficient are both significant.

Figure 9-6 shows a graphical depiction of the resulting regression with an 
insignificant dummy coefficient but a significant interaction coefficient. Note: 
The dummy coefficient isn’t significantly different from zero.

 

Figure 9-6: 
A regres-

sion with an 
interacted 

quantitative 
and dummy 

variable.
 

Figure 9-7 shows a graphical depiction of the resulting regression with  
significant dummy and interaction coefficients. In this graph, all coefficients 
differ significantly from zero.
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Figure 9-7: 
A regres-

sion with an 
interacted 

quantitative 
and dummy 

variable.
 

 If you want to estimate a model with a dummy variable, a quantitative variable,  
and an interacted variable, try using STATA. Figure 9-8 contains the STATA 
output from my regression using gross box office revenue (measured in  
millions of dollars) as my dependent variable. One independent variable is the 
dummy variable labeled Female (which equals 1 if the lead actor is a female 
and 0 otherwise). The other independent variable is the quantitative measure-
ment of the movie budget (labeled budget_mil). I create a third variable that is 
the interaction of my dummy and quantitative variables labeled budgetXFemale. 
The results in Figure 9-8 suggest that every additional dollar in the movie’s 
budget is associated with an additional $1.17 in revenue if the lead actor is 
male and $0.84 (1.17 – 0.33 = 0.84) if the lead actor is female. Also, when movie 
budget is zero (or very low), a female lead actor is associated with revenue 
that is $15.45 million higher, on average.

However, the interaction term estimates that as the movie budget increases, 
the difference in revenue between movies with female leads and those with
male leads declines. If a movie’s budget is more than $52 million ( ), 
then the revenue will be greater, on average, with a male lead. The average 
budget for movies in the sample is $47 million. Therefore, low-budget movies 
tend to earn more revenue with a female lead, and high-budget movies  
generally earn more revenue with a male lead.
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Figure 9-8: 
STATA out-

put showing 
creation of 
interaction 
term from 

original data 
and regres-
sion results 

using a 
quantitative 

variable 
interacted 

with a 
dummy  

variable.
 

Interacting Two (or More) Qualitative 
Characteristics

Interacting two qualitative or dummy variables with each other allows you 
to detect differences between various combinations of groups. With dummy 
variables in an econometric model, you can estimate the impact of qualitative 
characteristics independently, but interacting them provides an opportunity to 
identify how the presence of multiple characteristics simultaneously affects 
your dependent variable. In the following sections, I show you how it’s done.

Specification
You can interact dummy variables with each other if you have reason to 
believe that the simultaneous presence of two (or more) characteristics has 
an additional influence on your dependent variable.

 If the qualitative characteristics that you want to use as independent variables 
require two (or more) sets of dummy variables, then independent variables 
in your interacted model can include dummy variables, any quantitative  
variables that should be included in the model, and the product of two 
(or more) dummy variables.
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An econometric model with interacted qualitative characteristics can be 
expressed as

Yi = β0 + β1Xi + β2DiA + β3DiB + β4(DADB)i + εi

where X is the quantitative variable, DA and DB represent the specific  
qualitative characteristics, and DADB is the interaction term (product of the 
two dummy variables for any given observation).

As an example of a situation where the inclusion of an interaction term would 
be valuable, suppose you’re interested in modeling hourly wages to examine  
discrimination in the labor market. For a sound theoretical model, you 
include controls for gender and race. Both of these qualitative characteristics 
would be included in my model as separate dummy variables. However, 
gender and race could have a combined effect (for example, being both 
female and non-white) that either magnifies or dampens their individual 
impact, so you need an interaction term.

Interpretation
An estimated regression with independent variables that include a quantitative 
variable, at least two dummy variables, and an interaction of dummy variables 
is generally written as

where the  terms represent the estimated parameters, X can be any numeric 
value, DiA and DiB can be 0 or 1 for any given observation, and (DADB)i is the 
product of DiA and DiB.

The predicted Y value depends on X and four possible combinations of the 
dummy variables:

 ✓  if DiA = 0 and DiB = 0

 ✓  if DiA = 1 and DiB = 0

 ✓  if DiA = 0 and DiB = 1

 ✓  if DiA = 1 and DiB = 1.

 The inclusion of interacted dummy variables in your econometric model 
allows the regression function to have different intercepts for each combination 
of qualitative attributes. The coefficients for your dummy variables and their 
interaction shift the intercept by the estimated magnitude.
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If you estimate a model with two dummy variables and an interaction 
between the two characteristics, you end up with one of four possible  
outcomes:

 ✓ One regression line: The dummy and dummy interaction coefficients are 
zero (or not statistically significant).

 ✓ Two regression lines: The coefficient for one dummy variable is  
significant, but the other dummy coefficient and the interaction coefficient 
are zero (or not statistically significant).

 ✓ Three regression lines: The dummy coefficients are both significant, but 
the interaction coefficient is zero (not statistically significant).

 ✓ Four regression lines: The dummy coefficients and the interaction coef-
ficients are all significant.

Figure 9-9 shows a graphical depiction of the resulting regression of an 
econometric model with a quantitative variable (X), two significant dummy 
coefficients, and a significant interacted dummy coefficient.

 

Figure 9-9: 
A regres-

sion with a 
quantitative 

variable 
and two 

interacted 
dummy  

variables
 

 Using data collected from movies, I used STATA to estimate a model with a 
quantitative variable, two dummy variables, and a variable interacting my two 
dummy variables. Figure 9-10 contains the STATA output from my regression 
using gross box-office revenue (measured in millions of dollars) as my  
dependent variable. The movie budget is my quantitative independent variable. 
As independent variables, I also include the dummy variables Female (which 
equals 1 if the lead actor is a female and 0 otherwise) and Over40 (which equals 
1 if the lead actor’s age is over 40 years and 0 otherwise) along with the  
interaction of those variables, FemXOver40.

The results in Figure 9-10 suggest that every additional dollar in the movie’s 
budget is associated with an additional $1.14 in revenue if the lead actor is 
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male and no more than 40 years of age. The actor’s gender doesn’t appear to 
have a statistically significant effect (p-value is 0.774), but age is significant 
at the 9.4 percent level of significance (the p-value is 0.094). On average, if 
a lead actor is over 40 years of age, movie revenue is $8.7 million less than 
those movies with a lead actor no more than 40 years of age. The interaction 
variable FemXOver40 isn’t significant (p-value is 0.206), so movie revenue 
doesn’t appear to be affected by having a lead character who is both female 
and over the age 40.

 

Figure 9-10: 
STATA 
regres-

sion output 
using two 
interacted 

dummy vari-
ables.

 

Segregate and Integrate:  
Testing for Significance

When using J – 1 dummy variables to represent a qualitative characteristic 
that has multiple possible outcomes (as discussed in the earlier section 
“Juggling multiple characteristics with dummy variables”), you have to take 
into account the collective significance of those variables. Their effect can 
be collectively significant even if they are individually insignificant (I discuss 
the difference between individual and joint significance in Chapter 7). In the 
following sections you find out two ways to determine whether your dummy 
variables have joint significance.

Revisiting the F-test for joint significance
Testing the joint significance of a group of dummy variables in a regression 
model is accomplished by generalizing the F-test of overall significance to
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where RSSr is the residual sum of squares for the restricted model (the model 
excluding the dummy variables), RSSur is the residual sum of squares for 
the unrestricted model (the model including the dummy variables), n is the 
number of sample measurements, p is the number of independent variables 
in the unrestricted model, and q is the number of dummy variables variables 
added in your unrestricted model that are not contained in your restricted 
model.

 Figure 9-11 contains STATA output where I estimate a movie revenue model 
with independent variables that include two quantitative variables (budget 
and viewer ratings), a dummy variable identifying whether the lead actor is 
female, a dummy variable indicating whether the lead actor is over 40 years of 
age, and three dummy variables identifying the movie’s genre (action/horror, 
drama, and romantic comedy, with the comedy genre used as the reference 
group).

The results in Figure 9-11 suggest that every additional dollar in the movie’s 
budget is associated with an additional $1.08 in revenue, holding other  
factors constant. Viewer ratings (crit) also have a positive effect on revenue, 
holding other factors constant. The actor’s gender (p-value = 0.407) and age 
(p-value = 0.178) don’t appear to have a statistically significant effect. When 
the qualitative characteristics for genre are considered, only the drama genre 
has an individually significant effect, whereas horror and romance have  
insignificant p-values. However, the F-test suggests that genre, overall, is 
highly statistically significant (p-value = 0.0000, which is less than 0.01 or 1 
percent).

Revisiting the Chow test
If you suspect that the parameters of your model vary depending on the 
group (or type of observations) being analyzed, you can test the hypothesis 
that the structure is stable using the Chow test, which I introduce you to in 
Chapter 8.

 Using a dummy variable and interaction terms, a test of joint significance can 
be equivalent to performing a Chow test. The dummy variable approach to a 
Chow test is conducted by applying the following steps:

 1. Create a dummy variable (D) that identifies any two groups suspected 
of a structural break.

  For example, D = 1 if the observation belongs to group A and D = 0 if the 
observation belongs to group B.
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 2. Create interaction variables with your dummy variable and every 
other variable in your model.

 3. Estimate the regression model that includes the quantitative, dummy, 
and interaction variables.

 4. Test the joint significance of the dummy variable identifying the two 
groups and all the interaction terms that include this dummy variable.

 

Figure 9-11: 
STATA 

regression 
output with 

F-test of 
significance 

for a group 
of dummy 
variables 
capturing 

one  
qualitative 
character-

istic.
 

In order to illustrate the equivalence of the Chow test and the dummy  
variable approach to testing for a structural break, begin with

Yi = β0 + β1Xi + εi

where Y is the movie revenue (in millions of dollars) and X is movie budget 
(also in millions of dollars), using all observations to estimate the model (the 
restricted model). Then estimate the model separately for movies with a 
female lead and those with a male lead (two unrestricted models). Use these 
regression results to calculate the Chow F-test.
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 Figure 9-12 contains the STATA output needed for performing a Chow test — 
the restricted regression with all movies and the two unrestricted regressions 
(one using the sample of movies with female leads and one using the sample 
of movies with male leads).

 

Figure 9-12: 
STATA 

regression 
output of 

restricted 
regression 
(all obser-

vations) 
and two 

unrestricted 
regressions 

(female 
sample 

and male 
sample).
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The results can be used to produce the following F-statistic:

Note: The specific components of the F-statistic for the Chow test are  
discussed in Chapter 8.

 Figure 9-13 contains the STATA output with the dummy variable approach to 
the Chow test. Notice that the F-statistic for joint significance of the dummy 
variable identifying female leads and its interaction with the other variable in 
the model (budget) is identical to the F-statistic from the Chow test. In this 
case, the evidence points to rejecting the hypothesis of structural stability.

 

Figure 9-13: 
STATA 

regression 
output of 

dummy 
variable 

interacted 
model 

with F-test 
of joint 

 significance.
 

 The advantage of the dummy variable approach to testing for structural  
stability is that it allows you to identify the source of the difference between 
the groups. In other words, the F-test (covered in the preceding section) 
allows you to identify an overall structural break, but the significance of the 
individual coefficients allows you to identify whether the difference is  
primarily in the intercept, slope, or both. The disadvantage of the dummy  
variable approach is that it may not be practical if you’re working with  
numerous independent variables.



Part IV
Violations of Classical 

Regression Model Assumptions

 For a veritable crash course in econometrics basics, including an easily absorbed 
rundown of the three most common estimation problems, access this book’s e-Cheat 
Sheet at www.dummies.com/extras/econometrics.

http://www.dummies.com/extras/econometrics


In this part . . .
 ✓ Understand the nature of the most commonly violated assump-

tions of the classical linear regression model (CLRM): multi-
collinearity, heteroskedasticity, and autocorrelation.

 ✓ Use standard procedures to evaluate the severity of assump-
tion violations in your model.

 ✓ Evaluate the consequences of common estimation 
problems.

 ✓ Apply remedies to address multicollinearity, heteroskedasticity, 
and autocorrelation.



Chapter 10

Multicollinearity
In This Chapter
▶ Defining multicollinearity and describing its consequences
▶ Discovering multicollinearity issues in your regressions
▶ Fixing multicollinearity problems

M 
ulticollinearity arises when a linear relationship exists between two or 
more independent variables in a regression model. In practice, you 

rarely encounter perfect multicollinearity, but high multicollinearity is quite 
common and can cause substantial problems for your regression analysis. 
Never fear, though. In this chapter, I help you identify when multicollinearity 
becomes harmful and the options available to address the problem.

Distinguishing between the  
Types of Multicollinearity

Two types of multicollinearity exist:

 ✓ Perfect multicollinearity occurs when two or more independent variables 
in a regression model exhibit a deterministic (perfectly predictable or 
containing no randomness) linear relationship. When perfectly collinear 
variables are included as independent variables, you can’t use the  
OLS technique to estimate the value of the parameters (βs). Perfect 
multicollinearity therefore violates one of the classical linear regression 
model (CLRM) assumptions that I tell you all about in Chapter 6. 

 ✓ High multicollinearity results from a linear relationship between your 
independent variables with a high degree of correlation but aren’t com-
pletely deterministic (in other words, they don’t have perfect correla-
tion). It’s much more common than its perfect counterpart and can be 
equally problematic when it comes to estimating an econometric model.
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 In practice, perfect multicollinearity is uncommon and can be avoided with 
careful attention to the model’s independent variables. However, high  
multicollinearity is quite common and can create severe estimation problems. 
For this reason, when econometricians point to a multicollinearity issue, 
they’re typically referring to high multicollinearity rather than perfect  
multicollinearity.

The following sections further illustrate the differences between perfect and 
high multicollinearity so that you can readily spot them — and prevent them.

Pinpointing perfect multicollinearity
Getting a grasp on perfect multicollinearity is easier if you can picture an 
econometric model that uses two independent variables, such as the  
following:

Yi = β0 + β1Xi1 + β2Xi2 + εi

Suppose that, in this model,

Xi2 = α0 + α1Xi1

where the αs are constants. By substitution, you obtain

Yi = β0 + β1Xi1 + β2(α0 + α1Xi1) + εi

which indicates that the model collapses and can’t be estimated as originally 
specified.

 The result of perfect multicollinearity is that you can’t obtain any structural 
inferences about the original model using sample data for estimation.  
In a model with perfect multicollinearity, your regression coefficients are  
indeterminate and their standard errors are infinite.

 Perfect multicollinearity usually occurs when data has been constructed or 
manipulated by the researcher. For example, you have perfect multicollinearity  
if you include a dummy variable for every possible group or category of a 
qualitative characteristic instead of including a variable for all but one of the 
groups (I illustrate how to use dummy variables in Chapter 9).

 In Figure 10-1, I use STATA to create a variable that is a linear combination of 
another variable. Then I plot the graph of the two variables and include both 
of them as independent variables in a regression model. Notice, however, that 
the results do not contain parameter estimates for both variables. Obtaining 
individual regression coefficients for every variable is impossible if you have 
perfect multicollinearity.
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Figure 10-1: 
STATA 
estima-

tion in the 
presence 
of perfect 
multicol-
linearity.
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Most econometric software programs identify perfect multicollinearity and 
drop one (or more) variables prior to providing the estimation results, taking 
care of the problem for you. The good news is that you can avoid perfect 
multicollinearity by exhibiting some care in creating variables and carefully 
choosing which ones to include as independent variables.

Zeroing in on high multicollinearity
You can describe an approximate linear relationship, which characterizes 
high multicollinearity, as follows:

Xi2 = α0 + α1Xi1 + ui

where the Xs are independent variables in a regression model and u represents 
a random error term (which is the component that differentiates high  
multicollinearity from perfect multicollinearity). Therefore, the difference 
between perfect and high multicollinearity is that some variation in the 
independent variable is not explained by variation in the other independent 
variable(s).

 The stronger the relationship between the independent variables, the more 
likely you are to have estimation problems with your model.

Strong linear relationships resulting in high multicollinearity can sometimes 
catch you by surprise, but these three situations tend to be particularly  
problematic:

 ✓ You use variables that are lagged values of one another. For example, 
one independent variable is an individual’s income in the current year, 
and another independent variable measures an individual’s income in 
the previous year. These values may be completely different for some 
observations, but for most observations the two are closely related.

 ✓ You use variables that share a common time trend component. For 
example, you use yearly values for GDP (gross domestic product) and 
the DJIA (Dow Jones Industrial Average) as independent variables in a 
regression model. The value for these measurements tends to increase 
(with occasional decreases) and generally move in the same direction 
over time.

 ✓ You use variables that capture similar phenomena. For example, your 
independent variables to explain crime across cities may be unemployment 
rates, average income, and poverty rates. These variables aren’t likely to 
be perfectly correlated, but they’re probably highly correlated.
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Technically, the presence of high multicollinearity doesn’t violate any CLRM 
assumptions. Consequently, OLS estimates can be obtained and are BLUE 
(best linear unbiased estimators) with high multicollinearity.

 Although OLS estimators remain BLUE in the presence of high multicollinearity, 
it reinforces a desirable repeated sampling property. In practice, you probably 
don’t have an opportunity to utilize multiple samples, so you want any given 
sample to produce sensible and reliable results. With high multicollinearity, 
the OLS estimates still have the smallest variance, but smallest is a relative 
concept and doesn’t ensure that the variances are actually small. In fact, the 
larger variances (and standard errors) of the OLS estimators are the main 
reason to avoid high multicollinearity.

The typical consequences of high multicollinearity include the following:

 ✓ Larger standard errors and insignificant t-statistics: The estimated  
variance of a coefficient in a multiple regression is 

  

  where  is the mean squared error (MSE) and  is the R-squared value 
from regressing Xk on the other Xs. Higher multicollinearity results in a 
larger , which increases the standard error of the coefficient. Figure 10-2 
illustrates the effect of multicollinearity on the variance (or standard 
error) of a coefficient.

  Because the t-statistic associated with a coefficient is the ratio of 

  the estimated coefficient to the standard error ( ), high 

  multicollinearity also tends to result in insignificant t-statistics.

 ✓ Coefficient estimates that are sensitive to changes in specification: 
If the independent variables are highly collinear, the estimates must 
emphasize small differences in the variables in order to assign an  
independent effect to each of them. Adding or removing variables from 
the model can change the nature of the small differences and drastically 
change your coefficient estimates. In other words, your results aren’t 
robust (a topic that you can learn about in Chapter 8).

 ✓ Nonsensical coefficient signs and magnitudes: With higher  
multicollinearity, the variance of the estimated coefficients increases, 
which in turn increases the chances of obtaining coefficient estimates 
with extreme values. Consequently, these estimates may have  
unbelievably large magnitudes and/or signs that counter the expected 
relationship between the independent and dependent variables.  
Figure 10-3 illustrates how the sampling distribution of the estimated 
coefficients is affected by multicollinearity. 
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Figure 10-2:  
The  

variance 
of βk as a 

function of 
the multicol-

linearity 
between 

Xk and the 
other inde-

pendent 
variables.

 

 

Figure 10-3: 
Effect of 
multicol-

linearity on 
variance of 

estimated 
coefficients.

 

 When two (or more) variables exhibit high multicollinearity, there’s more 
uncertainty as to which variable should be credited with explaining variation 
in the dependent variable. For this reason, a high R-squared value combined 
with many statistically insignificant coefficients is a common consequence of 
high multicollinearity.

Rules of Thumb for Identifying 
Multicollinearity

Because high multicollinearity doesn’t violate a CLRM assumption and is a 
sample-specific issue, researchers typically choose from a couple popular 
alternatives to measure the degree or severity of multicollinearity.
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You don’t use formal statistical tests to detect multicollinearity. Instead,  
you use one or two sample measurements as indicators of a potential  
multicollinearity problem. The two most common are pairwise correlation 
coefficients and variance inflation factors, and I explain how to use them in 
the following sections.

Pairwise correlation coefficients
One way in which you can check for multicollinearity is by calculating the 
pairwise correlation coefficient, which is the value of sample correlation 
(something you can review in Chapter 2), for every pair of independent  
variables.

 The sample correlation coefficient measures the linear association between 
any two independent variables, Xk and Xj. You calculate a sample correlation 
coefficient with this equation: 

 

where  is the sample mean of Xk,  is the sample mean of Xj, skj is the 
 covariance between Xk and Xj, sk is the sample standard deviation of Xk, and 
sj is the sample standard deviation of Xj.

 As a rule of thumb, correlation coefficients around 0.8 or above may signal a 
multicollinearity problem.

 To see how to calculate pairwise correlation coefficients, you can start with 
data from Major League Baseball players. Say you estimate a model with the 
natural log of the player’s contract value as the dependent variable and  
several player characteristics as independent variables. The independent  
variables include three-year averages for the player’s weighted measure 
of singles, doubles, triples, and home runs known as slugging percentage 
(slg_3_avg); their ability to get on base by any means, including walks, known 
as on-base-percentage (obp_3_avg); the frequency with which they help their 
teammates score runs known as runs-batted-in (rbi_3_avg); stolen bases 
(sb_3_avg); at-bats (ab_3_avg); errors (e_3_avg); the player’s age; and the 
player’s tenure (years) with the current team. Figure 10-4 shows STATA’s 
regression output and the correlation matrix of the independent variables.  
The correlation matrix contains the correlation coefficients for each pair of 
independent variables.
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Figure 10-4: 
STATA 

regression 
output and 
correlation 

matrix for 
independent 

variables.
 

The correlation between slugging percentage and on-base-percentage and 
between runs-batted-in and at-bats are both near the 0.8 rule of thumb value. 
Additionally, the correlation between slugging percentage and runs-batted-in 
is also quite high.

 Of course, before you officially determine that you have a multicollinearity 
problem due to a correlation coefficient near 0.8 or above, you should check 
your results for evidence of multicollinearity (insignificant t-statistics, sensitive 
coefficient estimates, and nonsensical coefficient signs and values). Also, keep 
in mind that low pairwise correlation coefficients don’t necessarily indicate 
that you’re clear of multicollinearity issues. The value of your independent 
variable could be determined by a linear combination of several other  
independent variables. The pairwise correlation coefficients only identify the 
linear relationship of a variable with one other variable.
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Auxiliary regression and the variance 
inflation factor (VIF)
Calculating the variance inflation factor (VIF) for every independent variable is 
another way to check for multicollinearity. VIF measures the linear association 
between an independent variable and all the other independent variables.

 A VIF for any given independent variable is calculated by 

 

where  is the R-squared value obtained by regressing independent variable 
Xk on all the other independent variables in the model.

Most econometric software programs have a command that you can execute 
after estimating a regression to obtain the VIFs for each independent variable. 
However, if you need to calculate the VIFs individually, just follow these 
steps:

 1. Determine the econometric model and obtain the OLS estimates.

  For example, your model may be something like:

  Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi

 2. Estimate auxiliary regressions by regressing each independent  
variable on the other independent variables and obtain the R-squared 
of each auxiliary regression.

  For example, using the model in Step 1, you estimate the auxiliary 
regressions

  Xi1 = α0 + α1Xi2 + α2Xi3 + ui1

  Xi2 = δ0 + δ1Xi1 + δ2Xi3 + ui3

  Xi3 = γ0 + γ1Xi1 + γ2Xi2 + ui3

  to obtain , , and .

 3. Obtain the VIF for each independent variable with the formula 
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 As a rule of thumb, VIFs greater than 10 signal a highly likely multicollinearity 
problem, and VIFs between 5 and 10 signal a somewhat likely multicollinearity 
issue.

 Time to put VIFs into practice. Using the same example from the last section, 
say you estimate a model with the natural log of an MLB player’s contract 
value as the dependent variable and several player characteristics as  
independent variables. Again, use three-year averages for the player’s slugging 
percentage (slg_3_avg), on-base-percentage (obp_3_avg), runs-batted-in 
(rbi_3_avg), stolen bases (sb_3_avg), at-bats (ab_3_avg), errors (e_3_avg), the 
player’s age, and the player’s tenure with the current team as independent 
variables. Figure 10-5 shows STATA’s regression output followed by a table of 
VIFs. STATA internally calculates the auxiliary regressions and produces the 
VIF for every independent variable in the model.

 

Figure 10-5: 
STATA 

regression 
output and 

variance 
inflations 

factors 
(VIFs).

 

The VIF for runs-batted-in (VIF = 9.75) suggests a very good chance of a  
multicollinearity problem. This suspicion is complemented by the surprising 
result that slugging percentage and on-base-percentage (two characteristics 
that are important in measuring the offensive contributions of a baseball 
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player and should have a positive impact on their salary) are statistically 
insignificant. The high VIF, combined with this unexpected result, should 
lead you to suspect that high multicollinearity is problematic.

 Before announcing to the world that you have a multicollinearity problem due 
to a high VIF, be sure to check your results for evidence of multicollinearity 
(insignificant t-statistics, sensitive or nonsensical coefficient estimates, and 
nonsensical coefficient signs and values). A high VIF is only an indicator of 
potential multicollinearity, but it may not result in a large variance for the  
estimator if the variance of the independent variable is also large.

Knowing When and How to Resolve 
Multicollinearity Issues

Resolving high multicollinearity may only fix issues that are unique to a 
specific sample. In other words, mitigating high multicollinearity in one case 
doesn’t necessarily lead to a solution in another similar case. Furthermore, 
you need to be careful that your efforts to resolve high multicollinearity don’t 
lead to other serious problems (violations of CLRM assumptions).

 Your success in resolving high multicollinearity depends on its complexity 
and severity in the sample you’re using for econometric analysis. A successful 
resolution to high multicollinearity likely requires some experimentation with 
a few different potential solutions while keeping in mind that the solutions to 
multicollinearity can cause more severe problems in other areas.

But how do you know when to proceed with pursuing a resolution? Well, 
follow these guidelines:

 ✓ If the primary purpose of your study is to estimate a model for  
prediction or forecasting, then the best solution may be to do nothing.

 ✓ If you want to obtain reliable estimates of the individual parameters 
in the model, you need to be more concerned with multicollinearity. 
(But you shouldn’t modify your model if the t-statistics of the suspect 
variable(s) are greater than 2 and the coefficient signs and magnitudes 
make economic sense.)

 When considering various resolutions to multicollinearity, I advise taking a 
holistic approach that considers the benefits of eliminating high correlation 
between the independent variables against the costs of addressing an issue 
that’s specific to the sample you’re using rather than the population of  
interest. If you’ve done this and decided that resolving the multicollinearity 
issue is your best option, then you have a few ways of proceeding. You can
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 ✓ Acquire more data.

 ✓ Apply a new model.

 ✓ Cut the problem variable loose.

I discuss these options in the following sections.

Get more data
 Gathering additional data can not only improve the efficiency (in other words, 

reduce the variance) of your estimates but also help with multicollinearity 
issues. How so? Well, high multicollinearity may be unique to your sample, 
so the acquisition of additional data is a potential solution. Additional data 
can be compiled by acquiring more observations for an existing sample or by 
appending the data with a new sample.

If you’re using cross-sectional data (covered in Chapter 4), you may be able 
to obtain more data by returning to your population of interest immediately 
or after a period of time (thereby creating a pooled cross section). Another 
way to increase the number of observations with cross-sectional or panel 
data is to reduce the level of aggregation. For example, rather than using 
country-level data, you could consider state-, county-, city-, household-, or 
individual-level data.

If you’re working with time-series data (also covered in Chapter 4), you can 
increase the number of observations by increasing the frequency of the data. 
For example, instead of using yearly data, you could consider quarterly, 
monthly, daily, or even hourly data. Of course, you have to consider whether 
increasing the frequency is appropriate or possible. In the United States, 
for example, employment data is tabulated on a monthly basis, so obtaining 
these figures on an hourly basis is impossible.

 The collection of additional data may be costly or could inadvertently result in 
a change of your population, so don’t automatically assume a “more is better” 
mentality when building your database.

Use a new model
In some cases, you may be able to rethink your theoretical model or the way 
in which you expect your independent variables to influence your dependent 
variable in order to address a multicollinearity issue.
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 Respecifying the econometric model can address a multicollinearity issue by 
transforming highly correlated independent variables. The most common 
ways of accomplishing it are through log transformations, reciprocal functions, 
first-differencing, and combining collinear independent variables.

In Chapter 8, I discuss various forms of log transformations (log-log, log- 
linear, and linear-log) and reciprocal functions. Because those transformations 
are nonlinear, independent variables that exhibited a linear relationship may 
no longer do so after respecification. I address the other two options in the 
next sections.

 In some cases, high multicollinearity may persist even after respecifying the 
model. However, a more serious concern is resolving a multicollinearity issue 
with an increased chance of committing specification bias.

First-differencing
First-differencing is a technique that can be used with data that has a time 
component. In other words, its use is limited to models utilizing time-series 
or panel data. For instance, suppose you observe each cross-sectional unit i 
(a country, or state, or household, or whatever) in more than one time period 
(t). A basic econometric model would have the form

where the i and t subscripts represent the cross-sectional unit and time 
period, respectively. If you subtract the previous period’s values of your 
variables from the values in the current period for each cross-sectional unit, 
you’d have

or

where Δ represents the change from period t – 1 to period t. This equation is 
called the first-differenced equation, and when you obtain estimates for the βs 
using OLS, they’re called first-differenced estimators.

 If you’re planning to use first-differencing, make sure your variables have  
variation over time. If not, ΔXik = 0 and you can’t estimate the model using OLS.
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 The first-differencing technique has its costs:

 ✓ Losing observations: In order to calculate the change in a variable, you 
need to sacrifice one time period.

 ✓ Losing variation in your independent variables: This loss in variation 
can result in insignificant coefficients, even with the multicollinearity 
issues resolved.

 ✓ Changing the specification (possibly resulting in misspecification 
bias): Modeling wage levels, for example, isn’t the same as modeling 
changes in wages.

The composite index variable
You can create a composite index variable by combining collinear variables 
that measure similar characteristics. Suppose you have two highly collinear 
and related variables X1 and X2. You can create an index variable (X3) with a 
linear combination of related variables such as Xi3 = aXi1 + bXi2 where a and 
b are constants. If the index variable is a weighted average of X1 and X2, then 
a + b = 1.

The consumer price index (CPI) is an example of a composite index variable. 
Applied econometricians often include the CPI as an independent variable in 
a model rather than numerous variables measuring prices of various goods. 
This avoids the high multicollinearity that would be likely if prices of goods 
were included as separate variables.

 When you combine variables into an index, their association should make 
sense. For example, in a model using independent variables measured at the 
city-level, unemployment rates and poverty rates can be combined into an 
“economic conditions” variable. This type of procedure consolidates the  
collinear variables and creates a more parsimonious model.

 Never combine variables into an index that would, individually, be expected to 
have opposite signs. Doing so makes interpretation difficult, if not impossible. 
It could even make the coefficient insignificant as the variables end up working 
against each other.

Expel the problem variable(s)
Dropping highly collinear independent variables from your model is one way 
to address high multicollinearity. Of course, anytime you drop a variable 
from an econometric model, you run the risk of committing a specification 
error. If variables are redundant, however, then dropping a variable improves 
an overspecified model.
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 In cases of severely high multicollinearity (correlation coefficients greater 
than 0.9), you don’t have to follow any statistical rationale for choosing to 
drop one variable over another. If you’re using VIFs to detect multicollinearity, 
a variable with a VIF greater than 10 is usually the most likely to be dropped. 
In either case, however, you should try to retain the variable(s) with the stron-
gest theoretical justification.

If it’s not clear which variable should be dropped or if the severity of  
multicollinearity is questionable, then you need to weigh the cost and benefit 
of dropping a variable from the model.

 The cost of dropping a variable is that you’re effectively forcing the coefficient 
of the variable to be zero. If the effect of the variable isn’t actually zero and 
the variable isn’t completely redundant, you’ve created a specification bias. 
I discuss specification issues and the amount of bias created by omitting a  
relevant variable in Chapter 8.

In some cases, the benefit of reduced variability in the other coefficients 
more than compensates for any bias that’s been introduced by dropping a 
variable. You can evaluate it by examining the mean square error (MSE).  
A smaller MSE usually signals that the statistical benefits of dropping the  
variable exceed the costs of specification bias.

 The most practical advice I can provide about dropping a variable to resolve 
a multicollinearity issue is to save it as a last resort and place theoretical  
considerations above purely statistical justifications.

To see the effects of dropping a variable, consider the results from a model  
of baseball player salaries (refer to Figure 10-5). The VIF for runs-batted-in  
is quite high, and theoretically important variables are statistically insig-
nificant. For example, slugging percentage, on-base-percentage, and at-bats 
(characteristics that are important in measuring the offensive contributions 
of a baseball player and should have a positive impact on their salary) are 
statistically insignificant. The high VIFs, combined with unexpected results, 
would lead any econometrician to suspect that the model may be overspeci-
fied and therefore may benefit from dropping a variable.

 In Figure 10-6, I re-estimate the model of baseball player salaries after dropping 
the variable with the highest VIF (runs-batted-in). In comparison to Figure 10-5, 
the results in Figure 10-6 make much more sense. Slugging percentage and 
at-bats now have the expected significance and the appropriate (positive) 
magnitude. On-base-percentage remains statistically insignificant, but the VIFs 
don’t show any indication that the lack of statistical significance is due to high 
multicollinearity. The model now simply identifies the relevant variables in 
baseball salary determination with more accuracy.
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The main takeaway here is that 

 ✓ The results no longer contain unreasonably large coefficients that are 
statistically insignificant. Some coefficients remain insignificant, but they 
also have small magnitudes.

 ✓ The variable believed to be one of the most important performance 
measures in baseball (slugging percentage) is significant after the high 
multicollinearity is addressed. This is another sensible outcome.

 ✓ My original results in Figure 10-5 didn’t contain coefficients with strange 
signs, even though it’s definitely possible with high multicollinearity.

 

Figure 10-6: 
STATA 

regression 
output with 
VIF values 

for each 
independent 

variable.
 



Chapter 11

Heteroskedasticity
In This Chapter
▶ Understanding the difference between homoskedasticity and heteroskedasticity
▶ Uncovering the consequences of heteroskedasticity
▶ Identifying harmful heteroskedasticity
▶ Fixing heteroskedasticity problems

A 
s I explain in Chapter 6, a critical assumption of the classical linear 
regression model is homoskedasticity — that the variance of the error 

term is constant over various values of the independent variables. However, 
this assumption may not always hold. When it doesn’t happen, you have  
heteroskedasticity. This chapter shows you how to determine whether you 
have heteroskedasticity in a particular application and what you can do to 
remedy it if you do.

Distinguishing between Homoskedastic 
and Heteroskedastic Disturbances

The error term is the most important component of the classical linear 
regression model (CLRM). Most of the CLRM assumptions that allow  
econometricians to prove the desirable properties of the OLS estimators (the 
Gauss-Markov theorem) directly involve characteristics about the error term 
(or disturbances). One of the CLRM assumptions deals with the conditional 
variance of the error term; namely, that the variance of the error term is 
constant (homoskedastic). In the following sections, I describe the difference 
between homoskedasticity and heteroskedasticity and illustrate the  
consequences of heteroskedasticity on OLS.
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Homoskedastic error versus  
heteroskedastic error

 CLRM relies on the error term variance being constant. Enter the term homoske-
dasticity, which refers to a situation where the error has the same variance regard-
less of the value(s) taken by the independent variable(s). Econometricians usually 
express homoskedasticity as , 
where Xi represents a vector of values for each individual and for all the indepen-
dent variables.

As you can see in Figure 11-1, when the error term is homoskedastic, the 
dispersion of the error remains the same over the range of observations and 
regardless of functional form.

 

Figure 11-1: 
Model with 
a constant 
(homoske-

dastic) error 
variance.

 

 In many situations, however, the error term doesn’t have a constant  
variance, leading to heteroskedasticity — when the variance of the error 
term changes in response to a change in the value(s) of the independent 
variable(s). Econometricians typically express heteroskedasticity as 

.

If the error term is heteroskedastic, the dispersion of the error changes over 
the range of observations, as shown in Figure 11-2. The heteroskedasticity 
patterns depicted in Figure 11-2 are only a couple among many possible  
patterns. Any error variance that doesn’t resemble that in Figure 11-1 is likely 
to be heteroskedastic.

 If you recall that homogeneous means uniform or identical, whereas heterogeneous 
is defined as assorted or different, you may have an easier time remembering 
the concept of heteroskedasticity forever. Lucky you!
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Figure 11-2: 
Models with 

a changing 
(heteroske-

dastic) error 
variance.

 

The consequences of heteroskedasticity
Heteroskedasticity violates one of the CLRM assumptions. When an  
assumption of the CLRM is violated, the OLS estimators may no longer be 
BLUE (best linear unbiased estimators).

 Specifically, in the presence of heteroskedasticity, the OLS estimators may 
not be efficient (achieve the smallest variance). In addition, the estimated 
standard errors of the coefficients will be biased, which results in unreliable 
hypothesis tests (t-statistics). The OLS estimates, however, remain unbiased.

Under the assumption of homoskedasticity, in a model with one independent 
variable (Yi = β0 + β1Xi + εi), the variance of the estimated slope coefficient is

where  is the homoskedastic variance of the error and .

However, without the homoskedasticity assumption, the variance of β1 is

where  is the heteroskedastic variance of the error.

Therefore, if you fail to appropriately account for heteroskedasticity in its 
presence, you improperly calculate the variances and standard errors of the 
coefficients. The t-statistic for coefficients is calculated with
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Therefore, any bias in the calculation of the standard errors is passed on to 
your t-statistics and conclusions about statistical significance.

 Heteroskedasticity is a common problem for OLS regression estimation,  
especially with cross-sectional and panel data. (I tell you all about these two 
types of data in Chapter 4.) However, you usually have no way to know in 
advance if it’s going to be present, and theory is rarely useful in anticipating 
its presence.

Detecting Heteroskedasticity  
with Residual Analysis

The challenge to identifying heteroskedasticity is that you can only know  
if you have the entire population corresponding to the chosen independent  
variables (Xs). In practice, you’ll be using a sample with only a limited 
number of observations for a particular X. Consequently, in applied situations 
the detection of heteroskedasticity relies on your intuition, prior empirical 
work, educated guesswork, or even sheer speculation.

Fortunately, a number of well-established techniques can guide you through 
the detection process. They involve both visual inspections and formal  
statistical tests, as you discover in the next sections.

Examining the residuals in graph form
An informal way of checking for heteroskedasticity is with a graphical  
examination of the residuals.

 If you want to use graphs for an examination of heteroskedasticity, you first 
choose an independent variable that’s likely to be responsible for the  
heteroskedasticity. Then you can construct a scatter diagram with the chosen 
independent variable and the squared residuals from your OLS regression.

Figure 11-3 illustrates the typical pattern of the residuals if the error term is 
homoskedastic.

Figure 11-4 exhibits the potential existence of heteroskedasticity with various  
relationships between the residual variance (squared residuals) and the 
values of the independent variable X. Each graph represents a specific 
example, but the possible heteroskedasticity patterns are limitless because 
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the core problem in this case is the changing of the residual variances as the 
value of the independent variable X changes.

 

Figure 11-3: 
Squared 

residuals 
displaying 

evidence of 
homoske-

dasticity 
with respect 

to inde-
pendent 

variable X.
 

 

Figure 11-4: 
Squared 
residual 

suggesting 
heteroske-

dasticity 
with various 

patterns.
 

 Graphical examinations don’t provide evidence of homoskedasticity or  
heteroskedasticity. They merely suggest independent variables that may be 
related to the variability of the error term.

 You can use the graphical result comparing the squared residuals to an  
independent variable to set up additional (formal) tests of heteroskedasticity.
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Brushing up on the Breusch-Pagan test
 The Breusch-Pagan (BP) test is one of the most common tests for  

heteroskedasticity. It begins by allowing the heteroskedasticity process to 
be a function of one or more of your independent variables, and it’s usually 
applied by assuming that heteroskedasticity may be a linear function of all 
the independent variables in the model. This assumption can be expressed as 

.

 The values for  aren’t known in practice, so the  are calculated from the 
residuals and used as proxies for . Generally, the BP test is based on the  
estimation of .

Alternatively, a BP test can be performed by estimating  where  
represents the predicted values from .

 Here’s how to perform a BP test:

 1. Estimate your model, , using OLS.

 2. Obtain the predicted Y values ( ) after estimating the model.

 3. Estimate the auxiliary regression, , using OLS.

 4. Retain the R-squared value  from this auxiliary regression.

 5. Calculate the F-statistic, , or the chi-squared statistic, 

  .

The degrees of freedom for the F-test are equal to 1 in the numerator and  
n – 2 in the denominator. The degrees of freedom for the chi-squared test  
are equal to 1. If either of these test statistics is significant, then you have 
evidence of heteroskedasticity. If not, you fail to reject the null hypothesis of 
homoskedasticity.

 To show you how the BP test works, I use some data about Major League 
Baseball players. First, I estimate a model with the natural log of the player’s 
contract value as the dependent variable and several player characteristics as 
independent variables, including three-year averages for the player’s  
slugging percentage and at-bats, the player’s age, and the player’s tenure with 
the current team. Then I run the BP test in STATA, which retains the predicted 
Y values, estimates the auxiliary regression internally, and reports the  
chi-squared test. I can also request that STATA conduct the F-test version of 
the test. In Figure 11-5, I show both results, and they’re consistent in rejecting 
the null hypothesis of homoskedasticity. Therefore, the statistical evidence 
implies that heteroskedasticity is present.
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Figure 11-5: 
STATA out-

put of OLS 
regression 

followed by 
a Breusch-
Pagan test 
for hetero-

skedasticity.
 

 A weakness of the BP test is that it assumes the heteroskedasticity is a  
linear function of the independent variables. Failing to find evidence of  
heteroskedasticity with the BP doesn’t rule out a nonlinear relationship 
between the independent variable(s) and the error variance. Additionally,  
the BP test isn’t useful for determining how to correct or adjust the model for 
heteroskedasticity.

Getting acquainted with the White test
Another extremely common test for heteroskedasticity is the White test, 
which begins by allowing the heteroskedasticity process to be a function of 
one or more of your independent variables. It’s similar to the Breusch-Pagan 
test (see the preceding section), but the White test allows the independent 
variable to have a nonlinear and interactive effect on the error variance.

 Typically, you apply the White test by assuming that heteroskedasticity may 
be a linear function of all the independent variables, a function of their 
squared values, and a function of their cross products (XkXj for k ≠ j).

 As in the Breusch-Pagan test, because the values for  aren’t known in prac-
tice, the  are calculated from the residuals and used as proxies for . The 
White test is based on the estimation of the following:
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Alternatively, a White test can be performed by estimating  
where  represents the predicted values from  .

 Follow these five steps to perform a White test:

 1. Estimate your model, , using OLS.

 2. Obtain the predicted Y values ( ) after estimating your model.

 3. Estimate the model  using OLS.

 4. Retain the R-squared value ( ) from this regression.

 5. Calculate the F-statistic, , or the chi-squared statistic, 

  .

The degrees of freedom for the F-test are equal to 2 in the numerator and  
n – 3 in the denominator. The degrees of freedom for the chi-squared test  
are 2. If either of these test statistics is significant, then you have evidence  
of heteroskedasticity. If not, you fail to reject the null hypothesis of  
homoskedasticity.

 Imagine that you’re estimating a model with the natural log of Major League 
Baseball players’ contract value as the dependent variable and several player 
characteristics as independent variables. (See the preceding section for more 
detail.) When you plug this information into STATA (which lets you run a 
White test via a specialized command), the program retains the predicted  
Y values, estimates the auxiliary regression internally, and reports the  
chi-squared test. Figure 11-6 shows the resulting output, which suggests you 
should reject the homoskedasticity hypothesis.

 Although the White test provides a flexible functional form that’s useful for 
identifying nearly any pattern of heteroskedasticity, it’s not useful for  
determining how to correct or adjust the model for heteroskedasticity.
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Figure 11-6: 
STATA out-

put of OLS 
regression 

followed by 
a White test 

for hetero-
skedasticity.

 

Trying out the Goldfeld-Quandt test
 The Goldfeld-Quandt (GQ) test begins by assuming that a defining point exists 

and can be used to differentiate the variance of the error term. Sample  
observations are divided into two groups, and evidence of heteroskedasticity  
is based on a comparison of the residual sum of squares (RSS) using the 
F-statistic.

The assumption is that the researcher can determine the appropriate criteria 
to separate the sample. Typically, a predetermined value for one of the  
independent variables is used as a threshold, which places some observations 
in Group A and the other observations in Group B.

 Most econometrics software doesn’t let you perform a GQ test automatically, 
but you can use software to conduct this test by taking these simple steps:

 1. Estimate your model separately for each group and obtain the  
residual sum of squares for Group A (RSSA) and the residual sum of 
squares for Group B (RSSB).

 2. Compute the F-statistic by 

  

The null hypothesis for the GQ test is homoskedasticity. The larger the 
F-statistic, the more evidence you’ll have against the homoskedasticity 
assumption and the more likely you have heteroskedasticity (different  
variance for the two groups).



200 Part IV: Violations of Classical Regression Model Assumptions 

 Assume for a moment that you’re estimating a model with the natural log  
of Major League Baseball players’ contract value as the dependent variable 
and several player characteristics as independent variables. Three-year  
averages for slugging percentages (slg_3_avg) and at-bats (ab_3_avg), age, and 
tenure (the number of years a player has been with his current team) are the 
independent variables. You can arbitrarily divide the sample by the average 
number of at-bats. Players in Group A have below-average at-bats, and players 
in Group B have above-average at-bats. The F-statistic in Figure 11-7, which 
shows the process of performing a GQ test in STATA, suggests that the  
difference in the RSS for the two groups is marginally significant in a one-tailed 
test (p-value = 0.0730).

 

Figure 11-7: 
STATA out-

put of OLS 
regression 

followed by 
a Goldfeld-

Quandt test 
for hetero-

skedasticity.
 

 A weakness of the GQ test is that the result is dependent on the criteria 
chosen for separating the sample measurements into their respective  
groups. This process is often quite arbitrary, so failing to find evidence of  
heteroskedasticity in one test doesn’t rule it out with different criteria used  
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for separating the sample. Consequently, the GQ test doesn’t provide any 
guidance for correcting or adjusting the model for heteroskedasticity, which is 
one reason why applied econometricians typically don’t rely on it in order to 
test for heteroskedasticity.

Conducting the Park test
 The Park test begins by assuming a specific model of the heteroskedastic  

process. Specifically, it assumes that the heteroskedasticity may be proportional 
to some power of an independent variable (Xk) in the model. This assumption 
can be expressed as .

You can obtain a linearized version of the Park model by using a log  
transformation:

Because the values for  aren’t known in practice, your  are calculated 
from the residuals and used as proxies for .

 Most econometrics software programs don’t have commands that allow you 
to automatically perform a Park test. However, you can perform the test by 
following these steps:

 1. Estimate the model  using OLS.

 2. Obtain the squared residuals, , after estimating your model.

 3. Estimate the model  using OLS.

 4. Examine the statistical significance of α using the t-statistic: .

The value of γ from estimating the regression  is an 
estimate of the constant (homoskedastic) portion of the error variance. 
Consequently, if the estimate of the α coefficient is statistically significant, 
then you have evidence of heteroskedasticity. If not, you fail to reject the null 
hypothesis of homoskedasticity.

 Using data from Major League Baseball players once again, you can estimate 
a model with the natural log of the player’s contract value as the dependent 
variable and several player characteristics as independent variables. The 
independent variables include three-year averages for the player’s slugging 
percentage (slg_3_avg) and at-bats (ab_3_avg), the player’s age, and the  
player’s tenure (years) with the current team. In Figure 11-8, I illustrate the 
step-by-step process of performing a Park test in STATA. My assumption is 
that if there’s heteroskedasticity, then at-bats is the variable responsible for 
it. In this case, the coefficient for the variable lnabavg (using the natural log of 
ab_3_avg as specified by the Park test) is statistically significant with a p-value 
of 0.03. Therefore, I’d reject the hypothesis of homoskedasticity.
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Figure 11-8: 
STATA out-

put of OLS 
regression 
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 The Park test’s weakness is that it assumes the heteroskedasticity has a  
particular functional form. Furthermore, identifying heteroskedasticity with 
one independent variable doesn’t rule out the fact that other variables may 
also play a role.

 Although discussions of the Park test are still common in many econometrics 
textbooks, applied econometricians typically rely on other alternatives to test 
for heteroskedasticity, such as the Breusch-Pagan or White tests.
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Correcting Your Regression Model for  
the Presence of Heteroskedasticity

After you determine that heteroskedasticity is likely, you can modify the  
estimation of your econometric model to obtain accurate standard errors. 
The two most common solutions to heteroskedasticity are weighted least 
squares and robust standard errors. I tell you all about both solutions in the 
following sections.

Weighted least squares (WLS)
 The weighted least squares (WLS) technique transforms the original  

(heteroskedastic) model into a homoskedastic one by using information about 
the nature of the heteroskedasticity. The goal of the WLS transformation is to 
make the error term in the original econometric model homoskedastic. First, 
you assume that the heteroskedasticity is determined proportionally from 
some function of the independent variables. Then you use knowledge of this 
relationship to divide both sides of the original model by the component of 
heteroskedasticity that give the error term a constant variance.

Suppose your original model takes the form  and 
that the variance of the error term is defined by , where 
Xi is a vector of some or all of the independent variables and h(Xi)  
represents the portion of the error variance that’s unique to each observation 
and is some function of the independent variables. Notice that this violates 
the assumption of homoskedasticity because the error isn’t constant and 
depends on the value of h(Xi), which changes as the value of any independent 
variable changes.

Because the variance of the error is , you can generate a homoske-
dastic variance by dividing both sides of the original model by . This 
results in

which satisfies the homoskedasticity assumption because
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The β*s are the WLS estimators and are a specific type of generalized least 
squares (GLS) estimator (In this case, the GLS estimator is used to correct  
for heteroskedasticity, but you can also use a GLS estimator to address  
autocorrelation issues, as I explain in Chapter 12).

 The objective of OLS is . However, for WLS,

 the objective is  so  are the 
weights.

 In practice, knowing the exact functional form of h(Xi) is impossible. In applied 
settings, you can assume a functional form and estimate each hi. That is, you 
use  values for weighting in the GLS transformation instead of hi. Estimators 
using this procedure are known as feasible generalized least squares (FGLS) 
estimators.

The exponential function is the most common approach to modeling hetero-
skedasticity. This approach assumes that

which implies

and

In practice, you replace the unobserved error, ε, with the OLS residual.

You can use WLS with a FGLS procedure by applying the following steps:

 1. Estimate the original model, , and obtain 
the residuals, .

 2. Square the residuals and take their natural log to generate .

 3. Estimate the regression  or 
   and obtain the fitted values: 
  .

 4. Take the inverse natural log of the fitted residuals  to obtain .
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 5. Estimate the regression  by WLS using  
as weights.

 If the proposed model of heteroskedasticity, , is misspecified, then 
WLS may not be more efficient than OLS. The problem is that misspecification 
of the heteroskedasticity is difficult to identify.

 Using data from Major League Baseball players, you can estimate a model 
using the natural log of the player’s contract value as the dependent variable 
and several player characteristics as independent variables, including 3-year 
averages for slugging percentages and at-bats, player age, and player tenure 
on his current team. You can use STATA to perform WLS by using a standard 
FGLS procedure. Figure 11-9 shows the resulting output. As you can see, the 
WLS estimates are similar to the OLS estimates, but they’re not identical. All 
the coefficients have the same sign before and after the heteroskedasticity 
correction. In this example, all the coefficients that were statistically significant 
with OLS remain significant with WLS. However, the effect of tenure is  
marginally significant with WLS but wasn’t significant with OLS.

 If your WLS coefficients are drastically different from the OLS coefficients, 
you should be concerned that the primary issue isn’t heteroskedasticity. A 
large difference between OLS and WLS coefficients is more likely to imply that 
the model suffers from functional form specification bias (you can turn to 
Chapter 8 for more details about this type of bias).

Robust standard errors (also known as 
White-corrected standard errors)

 The calculation of robust standard errors is the most popular remedy for  
heteroskedasticity. It uses the OLS coefficient estimates but adjusts the OLS 
standard errors for heteroskedasticity without transforming the model being 
estimated. The robust standard errors are also known as White-corrected  
standard errors and heteroskedasticity-corrected standard errors. The strength 
of this method is that it’s able to deal with heteroskedasticity without making 
assumptions about the functional form of heteroskedasticity.
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Figure 11-9:  
Using 

STATA to 
produce 

weighted 
least 

squares 
(WLS)  

estimates.
 



207 Chapter 11: Heteroskedasticity

 In a model with one independent variable and homoskedasticity, the variance 
 of the estimator can be reduced to . However, with 
 heteroskedasticity, the variance of the estimator is .

 In the real world, the  terms aren’t directly observable. In applied settings, 
the squared residuals ( ) are used as estimates of . Using these values to 
estimate standard errors of the OLS estimators produces the robust standard 
errors.

In a model with one independent variable, the robust standard error is

Generalizing this result to a multiple regression model, the robust standard 
error is

where the  are the residuals obtained from the auxiliary regression of Xj on 
all the other independent variables.

Here’s how to calculate robust standard errors:

 1. Estimate your original multivariate model, ,  
and obtain the squared residuals, .

 2. Estimate p auxiliary regressions of each independent variable on all 
the other independent variables and retain all p squared residuals  
( ).

 3. For any independent variable, calculate the robust standard errors:

  

 Most econometrics software programs allow you to produce the robust  
standard errors with a simple command that instantaneously performs all the 
preceding steps.

 The use of robust standard errors to compute t-statistics, confidence intervals, 
and p-values relies on asymptotic properties. That is, the reliability of  
hypothesis testing using robust standard errors improves with larger sample 
sizes.
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 To see what I mean, imagine that you’re working again with the same data for 
MLB players. (See the preceding sections for more detail.) Using STATA to 
obtain robust standard errors, you simply need to utilize the “robust” option 
with the basic “regress” command. 

Figure 11-10 shows the standard results along with the robust standard 
errors. Notice that both sets of results have identical coefficients. However, 
the robust standard errors change the t-statistics, confidence intervals, and 
p-values for the coefficients. Some of the standard errors increase with the 
heteroskedasticity correction and others decrease. In this example, all the 
coefficients that were originally significant remain significant with the  
heteroskedasticity correction. However, the effect of tenure was originally 
insignificant, but is marginally significant using the robust standard error. 
Note: The goal isn’t to make all coefficients statistically significant, but to 
obtain more accurate standard errors in the presence of heteroskedasticity. 
If some standard errors increase to the point of making some coefficients 
insignificant that were previously significant, then you should accept this as 
part of your correction and more legitimate results.

 

Figure 11-10:  
Using 

STATA to 
produce 

robust 
(heteroske-

dasticity-
corrected) 

standard 
errors.

 

Numerous versions of robust standard errors exist for the purpose of 
improving the statistical properties of the heteroskedasticity correction. 
Applied econometricians usually rely on any version calculated by their 
econometrics software, though, because no form of robust standard error is 
preferred above all others.
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Autocorrelation
In This Chapter
▶ Examining autocorrelation patterns
▶ Revealing the consequences of autocorrelation
▶ Testing for autocorrelation
▶ Correcting econometric models when autocorrelation is present

A 
utocorrelation, also known as serial correlation, may exist in a regression 
model when the order of the observations in the data is relevant or 

important. In other words, with time-series (and sometimes panel or logitudinal) 
data, autocorrelation is a concern. When a regression model is estimated 
using data of this nature, the value of the error in one period may be related 
to the value of the error in another period (autocorrelation), which results in 
a violation of a classical linear regression model (CLRM) assumption. (I tell 
you all about these in Chapter 6.)

In this chapter, you discover exactly why autocorrelation is problematic, how 
to identify different autocorrelation patterns, and how to modify a standard 
regression model in the presence of autocorrelation.

Examining Patterns of Autocorrelation
As I explain in Chapter 6, most of the CLRM assumptions that allow  
econometricians to prove the desirable properties of the OLS estimators (the 
Gauss-Markov theorem) directly involve characteristics of the error term. 
One of the CLRM assumptions deals with the relationship between values of 
the error term. Specifically, the CLRM assumes there’s no autocorrelation. 
No autocorrelation refers to a situation in which no identifiable relationship 
exists between the values of the error term. Econometricians express no 
autocorrelation as Cov(εt, εs) = 0 or Corr(εt, εs) = 0 for all t ≠ s.
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Figure 12-1 shows the regression of a model satisfying the CLRM assumption 
of no autocorrelation. As you can see, when the error term exhibits no  
autocorrelation, the positive and negative error values are random.

 

Figure 12-1: 
A model 
with no 

auto- 
correlation.

 

When autocorrelation does occur, it takes either positive or negative form. 
Of course, autocorrelation can be incorrectly identified as well. The following 
sections explain how to distinguish between positive and negative correlation 
as well as how to avoid falsely stating that autocorrelation exists.

Positive versus negative autocorrelation
If autocorrelation is present, positive autocorrelation is the most likely  
outcome. Positive autocorrelation occurs when an error of a given sign tends 
to be followed by an error of the same sign. For example, positive errors are 
usually followed by positive errors, and negative errors are usually followed 
by negative errors.

 Positive autocorrelation is expressed as Corr(εt, εs) > 0 for all t ≠ s.

The positive autocorrelation depicted in Figure 12-2 is only one among 
several possible patterns. An error term with a sequencing of positive and 
negative error values usually indicates positive autocorrelation. Sequencing 
refers to a situation where most positive errors are followed or preceded by 
additional positive errors or when negative errors are followed or preceded 
by other negative errors. 

Although unlikely, negative autocorrelation is also possible. Negative  
autocorrelation occurs when an error of a given sign tends to be followed  
by an error of the opposite sign. For instance, positive errors are usually  
followed by negative errors and negative errors are usually followed by  
positive errors.
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Figure 12-2: 
A model 

with positive 
auto- 

correlation.
 

 Negative autocorrelation is expressed as Corr(εt, εs) < 0 for all t ≠ s.

Figure 12-3 illustrates the typical pattern of negative autocorrelation. An 
error term with a switching of positive and negative error values usually 
indicates negative autocorrelation. A switching pattern is the opposite of 
sequencing, so most positive errors tend to be followed or preceded by  
negative errors and vice versa.

 

Figure 12-3:  
A model 

with 
negative 

auto- 
correlation.

 

 Whether you have positive or negative autocorrelation, in the presence of 
autocorrelation, the OLS estimators may not be efficient (that is, they may not 
achieve the smallest variance). In addition, the estimated standard errors of 
the coefficients are biased, which results in unreliable hypothesis tests  
(t-statistics). The OLS estimates, however, remain unbiased.
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Misspecification and autocorrelation
 When you’re drawing conclusions about autocorrelation using the error pattern, 

all other CLRM assumptions must hold, especially the assumption that the 
model is correctly specified. If a model isn’t correctly specified, you may  
mistakenly identify the model as suffering from autocorrelation.

To see what I mean, take a look at Figure 12-4, which illustrates a scenario 
where the model has been inappropriately specified as linear when the  
relationship is nonlinear. The misspecification shown here would end up  
producing an error pattern that resembles positive autocorrelation.

 

Figure 12-4: 
A misspeci-

fied model 
can have 

a residual 
pattern that 

gives the 
appearance 
of autocor-

relation.
 

 I advise you to perform misspecification checks (like the ones covered in 
Chapter 8) if there’s evidence of autocorrelation and you’re uncertain about 
the accuracy of the specification. Misspecification is a more serious issue than 
autocorrelation because you can’t prove the OLS estimators to be unbiased if 
the model isn’t correctly specified.

Illustrating the Effect of  
Autoregressive Errors

You tend to encounter autocorrelated errors in time-series models where 
the goal is to describe the path of a variable Y in terms of contemporaneous 
(and/or lagged) factors X. A time-series model has the form
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where εt represents a random shock that occurs at time t. It’s entirely  
plausible that individuals (or firms, or households, or what have you) don’t 
react to that shock completely in the period in which it occurs. In this case, 
the error term is correlated such that Corr(εt, εs) ≠ 0.

 Knowledge that the error term is correlated is too general to be of any use. In 
order to determine the precise consequences of autocorrelation, a more  
specific pattern to the autocorrelation must be assumed. Typically,  
autocorrelation is assumed to be represented by a first-order autoregression; 
also known as an AR(1). In general, an autoregressive process occurs any time 
the value for a variable in one period can be modeled as a function of values  
of the same variable in previous periods. In the specific case of autocorrelation, 
the random variable displaying this characteristic is the error term.

In an AR(1), the model  has an error term of the 
form

where ρ represents the relationship between the error terms in period t and 
t – 1 and ut is a random error that satisfies the CLRM assumptions; namely 

, , and  for all t ≠ s. This equation 
also assumes that –1 < ρ < 1, which is known as the stationarity assumption 
(I explain the importance of this assumption in the next section). If ρ = 0, 
there’s no autocorrelation and the original model satisfies the CLRM  
assumption.

 Autocorrelation processes can be more elaborate than an AR(1); for example, 
an AR(2), AR(3), or AR(4) is possible with quarterly time series, and an AR(12) 
can be observed with monthly data. The number inside the parentheses  
represents the number of lags of the error term that are correlated with the 
current value. These patterns, however, are far less common than an AR(1) 
and don’t change the fundamental point that autocorrelated errors cause bias 
in the standard errors and t-statistics.

 You can prove the zero conditional mean for an AR(1) error by repetitive  
substitution into  as follows:

By continuing to substitute the autoregressive process and organizing the 
right-hand side in ascending order of the power of u, you obtain
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Since E(ut) = 0, then E(εt) = 0.

 The variance of an AR(1) error depends on the relationship between the error 
in period t and the error in period t – 1. OLS doesn’t appropriately account for 
this, so the resulting standard errors will be biased.

After repetitive substitution, you can express the variance properties of an 
AR(1) error term as

 The stationarity assumption ( ) is necessary to constrain the variance 
from becoming an infinite value.

 The stationary assumption implies that , because  
ρs → 0 as s → ∞. Using the result that  allows you to 
form the following simple expression for the variance of εt:

Using the CLRM assumptions for ut allows you to reduce the variance of εt to

 OLS assumes no autocorrelation; that is, ρ = 0 in the expression . 

 Consequently, in the presence of autocorrelation, the estimated variances and 
standard errors from OLS are underestimated.

Analyzing Residuals to Test  
for Autocorrelation

Serial correlation in the error term (autocorrelation) is a common problem 
for OLS regression estimation, especially with time-series and panel data. 
However, you usually have no way of knowing in advance if it’s going to 
be present, and theory doesn’t usually help you anticipate its presence. 
Consequently, you have to inspect your residuals to determine if they’re 
characterized by autocorrelation. You can either inspect your residuals  
visually or conduct one of three special tests, which I explain in the following 
sections.
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Taking the visual route: Graphical  
inspection of residuals

 Looking over your residuals visually is an easy, informal way of checking for 
autocorrelation, but it should only be used as a complement, and not a  
substitute, for formal statistical tests of autocorrelation. Graphical examinations 
of residuals don’t provide conclusive evidence of the existence or nonexistence 
of autocorrelation. If you truly suspect autocorrelation, consider conducting 
one of the more formal statistical tests covered in the following three sections.

 Using graphs for an examination of autocorrelation requires that you retain 
your OLS residuals and sort the data chronologically. Then you construct a 
scatter diagram, with the variable capturing your units of time on the  
horizontal axis and the residual values from your OLS regression along the 
vertical axis.

Figure 12-5a illustrates the typical pattern of the residuals if the error term 
isn’t plagued by autocorrelation, Figure 12-5b exhibits the potential existence 
of positive autocorrelation, and Figure 12-5c displays negative autocorrelation.

Using the normal distribution to identify 
residual sequences: The run test
The run test, also known as the Geary test, uses the sequences of positive and 
negative residuals to test the hypothesis of no autocorrelation. You want to 
use the run test if you’re uncertain about the nature of the autoregressive  
process, because no assumptions about the number of lags or fixed parameters 
(ρ values) describing the autocorrelation are necessary to perform the test.
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Figure 12-5: 
Residuals 
displaying 

a) no auto-
correlation, 

b) positive 
auto- 

correlation, 
 and c) 

negative 
auto- 

correlation.
 

 A run is defined as a sequence of positive or negative residuals. The hypothesis 
of no autocorrelation isn’t sustainable if the residuals have too many or too 
few runs.

The most common version of the test assumes that runs are distributed  
normally. If the assumption of no autocorrelation is sustainable, with  
95 percent confidence, then the number of runs should be between

μr ± 1.96σr
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where μr is the expected number of runs and σr is the standard deviation. 
These values are calculated by

and

where r is the number of observed runs (sequences of residuals with one 
given sign, positive or negative), T1 is the number of positive residuals, T2 is 
the number of negative residuals, and T is the total number of observations.

To put the run test to work, suppose you have a dataset with 32 observations 
sorted chronologically and, after estimating your model using OLS, the signs 
of the residuals from the first to the last observation are as follows (note that 
each run is enclosed in parentheses):

[(– – – – – – – –)(+ + + + + + + + + + + + +)(–)(+)(– – – – – – – – –)]

So you have T = 32, T1 = 14, T2 = 18, and r = 5. Using that information, you can 
calculate

and

The 95 percent confidence interval is 16.75 ± (1.96)(2.74), which implies that 
you can expect the number of runs to be somewhere between 11 and 22. 
Because the number of runs observed (r = 5) is outside the interval [11, 22], 
it’s unlikely to be a random pattern and the hypothesis of no autocorrelation 
is rejected. More specifically, in this example, the number of observed runs 
is less than the lower bound of the confidence interval, so there’s evidence of 
positive autocorrelation.

 If the number of observed runs is below the expected interval, it’s evidence  
of positive autocorrelation. On the other hand, if the number of runs exceeds 
the upper bound of the expected interval, it provides evidence of negative 
autocorrelation.
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 In Figure 12-6, I illustrate the step-by-step process of performing a run test in 
STATA, using yearly sales and inventory data from 1950 to 1991. Prior to  
performing any time-series operation, I specify which variable captures the 
time component using the “tsset” command. (Doing so keeps the data  
organized internally and allows me to perform operations that rely on the 
order of the data.) 

The results in Figure 12-6 place the 95 percent confidence interval for the 
number of runs in between 16 and 26. Because I have only 11 runs (r = 11), 
the null hypothesis of no autocorrelation is rejected in favor of positive  
autocorrelation because 11 is less than the lower limit of 16 here. The  
calculated Z-statistic is less than –1.96, so it’s consistent with the confidence 
interval result.

 

Figure 12-6: 
STATA  

output with 
a run test 
for auto- 

correlation.
 

 The strength of the run test is that it doesn’t impose restrictions on the  
process generating autocorrelation; AR(1), AR(2), and so on are all possible. 
This strength, however, is also a weakness. Detection of autocorrelation  
without any indication of the process doesn’t provide any guidance to correct 
the problem.
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Detecting autocorrelation of an AR(1) 
process: The Durbin-Watson test
The Durbin-Watson (DW) test begins by assuming that if autocorrelation is 
present, then it can be described by an AR(1) process. Consequently, you use 
the DW test if the autoregressive process is such that the value of the error in 
period t depends on its value in period t – 1.

 In a model such as , an AR(1) error term is 
described by . The actual value of ρ isn’t known, so the DW test 
uses the estimated correlation between the residual in period t and the  
residual in period t – 1 to test for autocorrelation. The value produced by the 
DW test is called a d statistic and is calculated as follows:

where T represents the last observation in the time series.

Unlike other statistical tests (Z, t, χ2, or F), the DW test has no unique critical 
value defining the point at which you reject the null hypothesis of no auto-
correlation. However, it does have a zone of indecision defined by a lower 
bound (dL) and upper bound (du) that depend on the number of observations 
in the sample and the number of estimated coefficients (p + 1) in the original 
model. Figure 12-7 illustrates how you can use the calculated d statistic to 
draw conclusions about autocorrelation.

 

Figure 12-7: 
Graphical 
depiction 

of Durbin-
Watson 

autocorrela-
tion test.
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 The closer d is to 2, the stronger the evidence of no autocorrelation. However, 
the closer d is to 0, the more likely it is that no autocorrelation is rejected in 
favor of positive autocorrelation. If d is closer to 4, then no autocorrelation is 
rejected in favor of negative autocorrelation.

 Imagine you have some yearly sales and inventory data from 1950 to 1991 that 
you want to analyze in STATA by using the DW d test. (Remember to use the 
“tsset” command to help you keep the data organized.) The d statistic of 1.4 
in Figure 12-8 must be compared to the dL and dU or 4 – dU and 4 – dL values. 
Using the DW d-statistic table in the appendix, where the number of coefficients 
is 2 and the number of observations is 42, you can see that the approximate 
values for dL and dU are 1.391 and 1.600. This implies that the calculated  
d-statistic (from STATA output d = 1.37) rejects no autocorrelation in favor of 
positive autocorrelation, but it’s on the border of the indecision zone.

Meet the AR(1) autocorrelation  
detector extraordinaire: The DW d statistic

In order to show why the DW d statistic is 
reasonable for detecting AR(1) autocorrelation, 
take the formula for the d statistic and expand 
the equation to

  

If you focus on the last term, you can see that 
it’s the ratio of the covariance to the variance. 
If you work with the covariance term, you can 
redefine the numerator as

  

The variance of ε is 

   

Consequently, by substituting this into the last 
term with the appropriate sample estimates and 
reducing the first two terms, you can rewrite 
the d statistic as

   

This approximation holds because the first two 
terms differ from 1 through the exclusion of 

 and  from the first and second numerator 
summations, respectively. If there’s no 
autocorrelation,  and d ≈ 2.
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Figure 12-8: 
STATA 

time-series 
OLS output 
followed by 
the calcula-

tion of the 
Durbin-

Watson d 
statistic.

 

 The DW d-statistic is the most popular test for autocorrelation, but it’s limited 
to identifying AR(1) autocorrelation. It’s a good initial test, but additional  
testing may be required to rule out other forms of autocorrelation. 
Furthermore, a d-statistic that ends up in the indecision zone requires an  
alternative test to achieve a more conclusive result.

Detecting autocorrelation of an AR(q) 
process: The Breusch-Godfrey test
The Breusch-Godfrey (BG) test begins by assuming that if autocorrelation is 
present, then it can be described by an AR(q) process. You want to use a BG 
test if the autoregressive process is such that the value of the error in period 
t depends on its value in period t – 1, through t – q, where q is some number 
greater than or equal to 1 and less than the total number of periods in your 
data (a special case of this test with q = 1 is known as Durbin’s alternative  
statistic).

 In a model such as , AR(q) autocorrelation is 
described by , where 1 ≤ q < T. The BG test 
uses the estimated correlation between the residual in period t with the  
residuals in periods t – 1 through t – q to test for autocorrelation.
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 Generally, the BG test is based on the estimation of 
. 

You can perform a BG test by following these steps:

 1. Estimate the model  using OLS.

 2. Obtain the residual values, , after estimating your model.

 3. Estimate the auxiliary regression 
 using OLS.

 4. Retain the R-squared value, , from this regression.

 5. Calculate the F-statistic for joint significance of , , . . . , and  or 
the chi-squared statistic  with q degrees of freedom.

If the F or chi-squared test statistics are significant, then you have evidence  
of autocorrelation. If not, you fail to reject the null hypothesis of no  
autocorrelation, which is .

 Figure 12-9 illustrates the step-by-step process of performing a BG test in 
STATA using yearly sales and inventory data from 1950 to 1991. The results  
in Figure 12-11 show the results of my BG test for AR(1) and AR(2)  
autocorrelation. Any autoregressive order can be tested using the lags option 
and each is tested separately. In this case, the outcome rejects no autocorrelation 
in favor of an AR(1) but not an AR(2).

 

Figure 12-9: 
STATA 

time-series 
OLS output 

and the 
Breusch-

Godfrey 
(BG) test.
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Remedying Harmful Autocorrelation
After you determine that autocorrelation is likely, you need to modify the 
estimation of your econometric model to obtain accurate results. The two 
most common solutions to autocorrelation are feasible generalized least 
squares (FGLS) and serial correlation robust standard errors.

Feasible generalized least squares (FGLS)
FGLS estimation has several names, depending on the precise method used 
to modify the estimation of the econometric model. The two FGLS techniques 
used to address AR(1) autocorrelation are:

 ✓ The Cochrane-Orcutt (CO) transformation

 ✓ The Prais-Winsten (PW) transformation

For other forms of FGLS estimation used to address heteroskedasticity, see 
Chapter 11.

 The CO and PW techniques transform the original model with autocorrelation 
into one without autocorrelation. So the goal of the CO and PW transformations 
is to make the error term in the original econometric model uncorrelated. 
First, you assume that the autocorrelation is determined by an AR(1) process. 
Then you use knowledge of this relationship to perform a quasi-differencing 
that results in an uncorrelated error term. Quasi-differencing subtracts the 
previous value of each variable scaled by the autocorrelation parameter, ρ 
(as opposed to differencing, discussed in Chapter 17, where the subtraction 
merely differences the previous from the current value).

 If the proposed AR(1) model of autocorrelation, , isn’t correct, 
then you have no guarantee of getting more accurate standard errors with 
FGLS than OLS. Here’s how to apply either the CO or PW technique:

 1. Estimate your original model, , and 
obtain the residuals .

 2. Use the residuals to estimate  by performing one of the following  
calculations:

	 •	

  This calculation can be used in large samples but may have  
significant error in smaller samples.
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	 •	  

  This calculation, known as Thiel’s estimator, can be used with 
smaller samples.

	 •	Estimate	  and obtain  from the regression.

  This method is the most common for estimating ρ but is  
recommended only with larger samples.

  In practice, knowing the exact value of ρ is impossible. In applied  
settings, you use the estimated value for ρ (that is, ) to transform the 
model.

 3. Estimate the quasi-differenced CO or PW regression using  in place 
of ρ.

Now that you know the basic steps, try applying them to first find the CO 
transformation. Suppose your original model takes the form

and that the error term is defined by

where ut satisfies the CLRM assumptions such that , 
, and . Notice that the model for Y violates the 

assumption of no autocorrelation because the errors in period t and t – 1 are 
correlated.

If the model for Y holds true in period t, it should also hold in t – 1, so

Multiply both sides of Yt – 1 by ρ and subtract from the original model to 
obtain the quasi-differenced model:

Because , you can substitute for εt and get

The β*s are the CO estimators. , so this model satisfies all of the CLRM 
assumptions. Notice, however, that one observation is lost because the first 
observation doesn’t have an antecedent.
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The PW transformation maintains the CO structure with the exception of the 
first observation. In order to avoid the loss of the first observation, you can 
transform the Y, X, and ε values as follows:

You can show that the error term in the first period also satisfies the CLRM 
assumptions, because

and

In large samples, the difference between the CO and PW estimates is usually 
small. In small samples, however, the difference between CO and PW estimates 
can be significant.

 Most econometrics software programs allow you to perform FGLS to correct 
for autocorrelation by utilizing a specialized command. In STATA, you specify 
which variable captures the time component by using the “tsset” command 
in order to keep the data internally organized so you can perform operations 
that rely on the order of the data. Figure 12-10a illustrates how to use STATA 
to estimate a CO transformation using yearly sales and inventory data;  
Figure 12-10b shows the PW results. (Note: The PW is the standard AR(1)  
transformation in STATA, but the CO transformation can be utilized as an 
option to the “prais” command.) The CO and PW results are similar but not 
identical. The difference is due to the use of all 42 observations in the PW  
estimation compared to the loss of the first observation (T = 41) in the CO 
estimation. Both results can be compared to the OLS results (in Figure 12-9), 
which underestimate the standard errors and lead to larger t-statistics and 
higher levels of statistical significance.

Serial correlation robust standard errors
Estimating the model using OLS and adjusting the standard errors for  
autocorrelation has become more popular than other correction methods. 
There are two reasons for this: (1) The serial correlation robust standard 
errors can adjust the results in the presence of a basic AR(1) process or a 
more complex AR(q) process, and (2) only the biased portion of the results 
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(the standard errors) are adjusted, while the unbiased estimates (the  
coefficients) are untouched, so no model transformation is required.

 

Figure 12-10: 
 a) STATA 

time-series 
Cochrane-
Orcutt (CO) 
FGLS esti-
mates and 
b) STATA 

time-series 
Prais-

Winsten 
(PW) FGLS 
estimates.
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 Adjusting the OLS standard errors for autocorrelation produces serial  
correlation robust standard errors. These are also referred to as Newey-West 
(NW) standard errors. The strength of this method is that it’s able to  
simultaneously deal with higher-order autocorrelation (AR(q)) and  
heteroskedasticity.

 The variances and covariances of the errors can be shown in a matrix known 
as the error covariance matrix. This can be expressed as

The diagonals represent the error variance, and the off-diagonals are the 
covariance values. Under the assumption of homoskedasticity, the diagonals 
have the same value; if there’s no autocorrelation, then the off-diagonals are 
all zero.

The serial correlation robust standard errors can be calculated by applying 
the following steps:

 1. Estimate your original model  and obtain 
the residuals: .

 2. Estimate the auxiliary regression  and 
retain the residuals: .

 3. Find the intermediate adjustment factor, , and decide how 
much serial correlation (the number of lags) you’re going to allow.

  A Breusch-Godfrey test (see the earlier related section) can be useful in 
making this determination.

 4. Obtain the error variance adjustment factor, 

  
, where g represents the number of lags determined in 

  Step 3.

 5. Calculate the serial correlation robust standard error.

  It’s also known as the heteroskedasticity-autocorrelation-corrected (HAC) 
standard error because the calculation simultaneously adjusts the  
standard error for heteroskedasticity (covered in Chapter 11) and  
autocorrelation. For variable X1,
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 6. Repeat Steps 2 through 5 for independent variables X2 through Xp.

 Fortunately, most econometrics software programs allow you to obtain  
serial correlation robust standard errors with a specialized command that 
instantaneously performs all the steps. The command that achieves this  
function in STATA is the “tsset” command combined with the “newey” option 
of “regress”. In Figure 12-11, I illustrate how you estimate the OLS coefficients 
with the serial correlation robust standard errors using yearly sales and  
inventory data. The figure shows the standard OLS results along with the 
robust standard errors. Notice that both sets of results have identical  
coefficients. However, the serial correlation robust (NW) standard errors 
change the t-statistics, confidence intervals, and p-values for the coefficients.

 

Figure 12-11:  
Using 

STATA to 
estimate a 

time-series 
model with 

serial corre-
lation robust 

(Newey-
West) 

standard 
errors.

 



Part V
Discrete and Restricted 
Dependent Variables in 

Econometrics

 Check out www.dummies.com/extras/econometrics for a refresher of how 
discrete and restricted dependent variables work before heading into your next exam.

http://www.dummies.com/extras/econometrics


In this part . . .
 ✓ Model economic outcomes that are qualitative or have limited 

values to address questions such as “What distinguishes a job 
applicant who gets hired from one who doesn’t?”

 ✓ Discover how to use maximum likelihood (ML) estimation as an 
alternative to the OLS technique so you can choose values for 
your estimated parameter(s) that maximize the probability of 
observing the values contained in your data sample.

 ✓ Deal with limited dependent variables, namely censored 
dependent variables and truncated dependent variables, to 
prevent one or more of the traditional regression model 
assumptions from failing.

 ✓ Find out how to implement econometric techniques to modify 
traditional regression analysis in the presence of limited depen-
dent variables with the help of econometric software.



Chapter 13

Qualitative Dependent Variables
In This Chapter
▶ Modeling qualitative outcomes
▶ Estimating a linear probability model
▶ Revealing the limitations of the linear probability model
▶ Estimating and interpreting probit and logit models

W 
hat distinguishes a job applicant who gets hired from one who 
doesn’t? What influences whether an individual’s loan application 

gets approved or rejected? How does a commuter decide between using a 
car and using some alternative form of transportation to reach work? These 
questions all concern qualitative outcomes that either occur or do not occur. 
The outcomes are dichotomous (meaning only two outcomes are possible) 
and not continuous or normally distributed. For this reason, these models 
are also known as dummy dependent variable models. If you want to model 
qualitative outcomes of this nature and use regression analysis, you can  
use traditional ordinary least squares (OLS), but you’ll likely need special 
econometric techniques to properly model the outcome of interest.

In this chapter, I show you the econometric techniques most commonly 
used when the dependent variable is qualitative. These techniques can be 
quantitatively burdensome and practically impossible without a computer, 
so I focus on explaining the structure of the models and interpretation of the 
computer output.

Modeling Discrete Outcomes with the 
Linear Probability Model (LPM)

If your outcome of interest is dichotomous (can take only two possible out-
comes rather than an infinite number of possibilities), then you can create a 
dummy variable to capture the qualitative characteristic. Using the ordinary 
least squares (OLS) technique to estimate a model with a dummy dependent 
variable is known as creating a linear probability model, or LPM.
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In Figure 13-1, I illustrate the concept of fitting a line with a qualitative  
dependent variable. Fitting the relationship between Y and X when Y is a 
dummy variable produces the conditional probability that Y = 1. I tell you 
about conditional probabilities and how to interpret the results of estimating 
LPM with OLS in the following sections.

 

Figure 13-1: 
A linear 

relation-
ship with a 
qualitative 

(or dummy) 
dependent 

variable.
 

Estimating LPM with OLS
A basic LPM can be expressed as 

Yi = β0 + β1Xi + εi

where Y, the dependent variable, is a dummy variable that is equal to 1 if a 
particular outcome is observed and 0 otherwise (in Chapter 9 I discuss how 
dummy variables can be defined, but that chapter focuses on their use as 
independent variables). Additionally, X is the independent variable, and ε 
represents that random error term. Without the error term, the left-hand side 
of a linear model is the conditional mean. However, because the conditional 
mean in an LPM can only take one of two possible values, the resulting  
binomial probability distribution is shown in Table 13-1 (notice that summing 
the probabilities of each outcome is equal to 1, as 1 – Pi + Pi = 1).

Table 13-1 Binomial Probability Distribution  
 for the Dependent Variable
Y f(Y)
0 1 – Pi

1 Pi
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Using the possible values for the dependent variable and the probabilities 
that they occur gives you the expected value of Y as follows:

E(Y) = 0(1 – Pi) + 1(Pi) = Pi = Pr(Y = 1)

The unconditional mean of the dependent variable is the fraction of times (or 
probability) that the outcome is observed.

 If the dependent variable is assumed to be a function of X such that 
, then the  represents the conditional probability of 

observing the outcome given the value of the independent variable; in other 
words, .

In Figure 13-2, I illustrate how the regression line can be used to obtain the 
conditional probability that the outcome of interest is observed.

 

Figure 13-2:  
The  

conditional 
probabilities 
of observing 
an outcome 

using the 
function 
from the 

LPM.
 

With sample data, you can estimate the function using OLS. The predicted 
values of the dependent variable  from the regression are estimates of 
the conditional probabilities .

 Time for an example that uses some real-life data. Say you have data from 
20 Major League Baseball (MLB) players to estimate an LPM. The dependent 
variable captures whether a player was released or retained by his team at 
the end of the season. The dependent variable Y (plexit) is 1 if the player was 
released and 0 if the player was retained. The independent variable X is the 
player’s three-year slugging average (slg_3_avg). Figure 13-3 shows the STATA 
results. Notice that the results in Figure 13-3 are obtained by using the standard 
“regress” command in STATA. In other words, the OLS technique is used with 
the dependent variable representing a qualitative outcome measured with 
a dummy variable rather than a continuous quantitative variable. The same 
command that’s used to obtain the predicted values of the dependent variable 
(“predict”) can be used to calculate the predicted probabilities.
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Figure 13-3: 
STATA 

estimation 
of a linear 

probability 
model (LPM) 

with the 
predicted 

probabilities.
 

Interpreting your results
In the LPM, like any model estimated using OLS, the regression coefficients 
represent the effect of the independent variable(s) on the dependent variable.

 The  terms in an LPM estimate the impact on the predicted probability for a 
unit-change in the independent variable(s). The predicted probability is the 
chance of observing the outcome defined with a value of 1 in the dichotomous 
dependent variable.
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Using the results in Figure 13-3, you can write the estimated LPM equation 
as . This equation implies that if a player’s slugging percentage 
increases by 0.1, the probability of his being fired by his team decreases by 
0.31 (3.1 × 0.1 = 0.31 or 31 percent).

 Although OLS estimation always produces the typical R-squared measure of 
fit, its interpretation is less meaningful when all the values of the dependent 
variable are at 0 or 1. The R-squared value may be low even if the model  
predicts very accurate probabilities. You can obtain more appropriate  
measures of fit for an LPM by comparing the model’s predicted probabilities 
to the observed Y values. In the case of an LPM (or any model where the 
dependent variable is dichotomous), more appropriate measures of fit  
capture the fraction of times the model predicts accurately.

 Before you can calculate a measure of fit, you first need to determine what can 
be considered an accurate prediction from the model. Then you need a rule 
for aggregating the accurate predictions to provide an overall goodness-of-fit 
measure.

Because no measure of fit is universally accepted, I can best demonstrate 
these steps using the results from the model estimated in Figure 13-3 to  
calculate the percentage accurately predicted using four different  
methodologies. Figure 13-4 lists the actual Y values and the predicted  
probabilities from estimating the LPM illustrated in Figure 13-3.

 

Figure 13-4:  
The 

observed 
Y values 

and LPM 
predicted 

probabilities.
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Using the LPM predictions in Figure 13-4, you can estimate the following four 
measures of fit, which are the four most common approaches. How they’re 
applied varies, but typically (when working independently on a project or 
research paper) you should report at least two of these measures.

 ✓ If you use these two criteria: 

	 •	Accurate	prediction	defined	as	(a)	  and Y = 1 or (b)  
and Y = 0 (that is, using a simple 50-50 chance as the cutoff)

	 •	Accurate	predictions	aggregated	by	calculating	the	total	number	 
of accurate predictions as a percentage of the total number of 
observations

  Then you obtain . Note: From Figure 13-4, five 
  observations satisfy the definition of an accurate prediction for category 

(a), and 11 observations are classified into category (b).

 ✓ Using these criteria: 

	 •	Accurate	prediction	defined	as	(a)	  and Y = 1 or (b) 
 and Y = 0 (that is, using the average value of the  

dependent variable, in this case 0.4, as the cutoff point)

	 •	Accurate	predictions	aggregated	by	calculating	the	total	number	 
of accurate predictions as a percentage of the total number of 
observations

  You obtain . Note: From Figure 13-4, seven observations 
  satisfy the definition of an accurate prediction for category (a), and eight 

observations are classified into category (b).

 ✓ Using these criteria:

	 •	Accurate	prediction	defined	as	  and Y = 1 or  and  
Y = 0 (that is, using a simple 50-50 chance as the cutoff)

	 •	Accurate	predictions	aggregated	by	calculating	the	percent	of	
accurate predictions in each group (for Y = 0 and Y = 1) and  
weighting the percent of observations in each group

  You obtain . Note: From Figure 13-4, five out 
  of eight observations satisfy the definition of an accurate prediction for 

category (a), but they’re given a 40 percent weight because Y = 1 for 40 
percent of the total observations. Similarly, 11 out of 12 observations 
are classified into category (b), but they’re given a 60 percent weight 
because Y = 0 for 60 percent of the total observations.
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 ✓ Using these criteria:

	 •	Accurate	prediction	defined	as	  and Y = 1 or  
and Y = 0 (that is, using the average value of the dependent  
variable, in this case 0.4, as the cutoff point)

	 •	Accurate	predictions	aggregated	by	calculating	the	percent	of	
accurate predictions in each group (for Y = 0 and Y = 1) and  
weighting the percent of observations in each group

  You obtain . Note: From Figure 13-4, seven 
  out of eight observations satisfy the definition of an accurate prediction 

for category (a), but they’re given a 40 percent weight because Y = 1 for 
40 percent of the total observations. Similarly, 8 out of 12 observations 
are classified into category (b), but these are given a 60 percent weight 
because Y = 0 for 60 percent of the total observations.

All four of these methods of obtaining the fraction of accurate predictions 
provide a reasonable alternative to the R-squared value with qualitative 
dependent variable models.

Presenting the Three Main LPM Problems
LPMs aren’t perfect. Three specific problems can arise:

 ✓ Non-normality of the error term

 ✓ Heteroskedastic errors

 ✓ Potentially nonsensical predictions

The following sections describe how these problems arise — as well as their 
consequences — in detail.

Non-normality of the error term
The assumption that the error is normally distributed is critical for performing 
hypothesis tests after estimating your econometric model. (I discuss the  
normality assumption and its role in OLS estimation in Chapter 7).

 The error term of an LPM has a binomial distribution instead of a normal  
distribution. It implies that the traditional t-tests for individual significance 
and F-tests for overall significance are invalid.
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As you can see in Figure 13-5, the error term in an LPM has one of two  
possible values for a given X value. One possible value for the error (if Y = 1) 
is given by A, and the other possible value for the error (if Y = 0) is given  
by B. Consequently, it’s impossible for the error term to have a normal  
distribution.

 

Figure 13-5: 
The error 
term in a 

linear prob-
ability model 

(LPM).
 

Heteroskedasticity
The classical linear regression model (CLRM) assumes that the error term 
is homoskedastic. The assumption of homoskedasticity is required to prove 
that the OLS estimators are efficient (or best). The proof that OLS estimators 
are efficient is an important component of the Gauss-Markov theorem (which 
I show in Chapter 6). The presence of heteroskedasticity can cause the 
Gauss-Markov theorem to be violated and lead to other undesirable  
characteristics for the OLS estimators.

 The error term in an LPM is heteroskedastic because the variance isn’t  
constant. Instead, the variance of an LPM error term depends on the value of 
the independent variable(s).
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 Using the structure of the LPM, I can characterize the variance of its error 
term as follows

Because the variance of the error depends on the value of X, it exhibits  
heteroskedasticity rather than homoskedasticity. (For more on the problems 
with heteroskedasticity, see Chapter 11.)

Unbounded predicted probabilities
 The most basic probability law states that the probability of an event occurring 

must be contained within the interval [0,1]. But the nature of an LPM is such 
that it doesn’t ensure this fundamental law of probability is satisfied. Although 
most of the predicted probabilities from an LPM have sensible values 
(between 0 and 1), some predicted probabilities may have nonsensical values 
that are less than 0 or greater than 1.

To see what I mean, take a look at Figure 13-6 and focus your attention on the 
segments of the regression line where the conditional probability is greater 
than 1 or less than 0. When the dependent variable is continuous, you don’t 
have to worry about unbounded values for the conditional means. However, 
dichotomous variables are problematic because the conditional means  
represent conditional probabilities. Interpreting probabilities that aren’t 
bounded by 0 and 1 is difficult.
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Figure 13-6: 
An LPM 

doesn’t con-
strain the 

conditional 
probabilities 
to be within 

0 and 1.
 

You can see an example of this problem with actual data in Figure 13-4. Most 
of the estimated probabilities from my LPM estimation are contained within 
the [0,1] interval, but the predicted probability for the seventh observation is 
negative. Unfortunately, nothing in the estimation of an LPM ensures that all 
the predicted probabilities stay within reasonable values.

Specifying Appropriate Nonlinear 
Functions: The Probit and Logit Models

If your outcome of interest is qualitative, you use a dummy dependent variable 
and estimate the probability that the outcome (Y = 1) occurs using your 
econometric model. Although OLS can be used to estimate a model with 
a qualitative dependent variable, doing so would result in an error term 
that’s heteroskedastic and isn’t normally distributed. (See Chapter 7 for 
the scoop on the normality assumption and Chapter 11 for information on 
 heteroskedasticity.)

 The most obvious problem with estimating a dummy dependent variable 
model using OLS is that the predicted probabilities aren’t guaranteed to be 
within the [0,1] interval. OLS can’t be modified to fully address this issue 
because nonlinearity in parameters is required in order to guarantee that all 
predicted probabilities have sensible values. Consequently, an alternative 
specification must be used. Econometricians choose either the probit or the 
logit function.

With a probit or logit function, the conditional probabilities are nonlinearly 
related to the independent variable(s). Additionally, both functions have  
the characteristic of approaching 0 and 1 gradually (asymptotically), so the 
predicted probabilities are always sensible.
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In Figure 13-7, I illustrate the conditional probabilities from an OLS (also 
known as the linear probability model LPM), a probit, and a logit model.

 

Figure 13-7: 
A typi-

cal probit 
and logit 
model of 

conditional 
probabilities 

compared 
to a linear 

probability  
model  (LPM).

 

Working from the standard normal  
CDF: The probit model
The probit model is based on the standard normal cumulative density  
function (CDF), which is defined as

where Z is a standardized normal variable (if you need to review standard 
normal variables, the topic is discussed in Chapter 3) and e is the base of the 
natural log (the value 2.71828 . . .).

In a probit model, the standard normal CDF replaces the linear function, so 
you estimate

The β terms can’t be estimated using OLS, so you need to use a technique 
known as maximum likelihood (ML). I explain the ML technique in the later 
“Using Maximum Likelihood (ML) Estimation” section.

 For any given X, the probit model provides the Z value for the observation. 
The standard normal PDF or CDF can then be used to obtain the probability 
that Y = 1 for that observation.
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Figure 13-8 shows how to go about finding the probability for any given 
observation.

 

Figure 13-8: 
The  

standard 
normal 

probability 
density 

function 
(PDF) and 

cumulative 
density 

function 
(CDF) in 
a probit 
model.

 

After estimating a probit model, most econometric software can calculate the 
predicted probabilities for all sample observations. Head to the later section 
“Interpreting Probit and Logit Estimates” for more on this topic.

Basing off of the logistic  
CDF: The logit model
The logit model is based on the logistic cumulative density function (CDF), 
defined as

where G is a logistic random variable and e is the base of the natural log (the 
value 2.71828 . . .).

The logistic distribution may be unfamiliar to you, but it’s similar to a  
standard normal. However, it does have less density within one standard 
deviation of the mean than a standard normal distribution. Figure 13-9  
illustrates the difference between the standard normal and the logistic  
distributions.
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Figure 13-9: 
The logistic 
probability 

density 
function 

(PDF) com-
pared to the 

standard 
normal 

probability 
density 

function 
(PDF).

 

In a logit model, the logistic CDF replaces the linear function so that you  
estimate

Note: You can’t use OLS to estimate the βs; instead, you have to use the  
maximum likelihood (ML) technique, which I tell you more about in the  
following section.

 For any given X, the logit model provides the value for the observation that 
can be used with the logistic CDF to find the probability that Y = 1 for that 
observation.

In Figure 13-10, I illustrate how you find the probability for any given  
observation.

 

Figure 13-10:  
The logistic 
probability 

density 
function 

(PDF) and 
cumulative 

density 
function 

(CDF) in a 
logit model.
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When you have your logit model estimated, you can use econometric  
software such as STATA to calculate the predicted probabilities for all your 
sample observations. I explain how in the later “Interpreting Probit and Logit 
Estimates” section.

Using Maximum Likelihood (ML) 
Estimation

Probit and logit functions are both nonlinear in parameters, so OLS can’t  
be used to estimate the βs. Instead, you have to use a technique known as 
maximum likelihood (ML) estimation.

 The objective of maximum likelihood (ML) estimation is to choose values  
for the estimated parameters (βs) that would maximize the probability of 
observing the Y values in the sample with the given X values. This probability 
is summarized in what is called the likelihood function. I explain how to  
construct this function — and how to make it more manageable — in the next 
sections.

Constructing the likelihood function
The likelihood function, which calculates the joint probability of observing 
all the values of the dependent variable, assumes that each observation is 
drawn randomly and independently from the population. If the values of the 
dependent variable are random and independent, then you can find the  
joint probability of observing all the values simultaneously by multiplying the 
individual density functions.

 Assuming that each observed value of the dependent variable is random and 
independent, the likelihood function is

where Π is the product (multiplication) operator. You can rewrite this  
equation as
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where P represents the probability that Y = 1, (1 – P) is the probability that 
Y = 0, and F can represent that standard normal or logistic CDF; in the probit 
and logit models, these are the assumed probability distributions.

The log transformation and ML estimates
In order to make the likelihood function more manageable, the optimization 
is performed using a natural log transformation of the likelihood function.  
You can justify it mathematically because log transformations are a type 
of monotonic transformation. In other words, for any function f(X) and log 
transformation g(X), f(X1) > f(X2) → g(X1) > g(X2). Therefore, the optimizing 
solution for the likelihood function is the same as the log likelihood function.

From the likelihood function L, using a natural log transformation I can write 
the estimated log likelihood function as

where F denotes either the standard normal CDF (for the probit model) or 
the logistic CDF (for the logit model). Finding the optimal values for the  
terms requires solving the following first-order conditions

 ✓ 

 ✓ 

 ML estimation is computationally intense because the first-order conditions 
for maximization don’t have a simple algebraic representation. Econometric 
software relies on numerical optimization by searching for the values of the s  
that achieve the largest possible value of the log likelihood function, which 
means that a process of iteration (a repeated sequence of gradually improving 
solutions) is required to estimate the coefficients.

The econometric software searches (uses an iterative process) until it finds 
the values for all the s that simultaneously maximize the likelihood of 
obtaining the observed values of the dependent variable. I illustrate the  
software’s optimization procedure for ML estimation in Figure 13-11.
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Figure 13-11: 
Maximum 
likelihood 
(ML) esti-

mation 
achieved 

with 
numerical 

optimization.
 

Interpreting Probit and Logit Estimates
As you may expect, the nonlinearity of the probit and logit functions makes 
interpreting the results difficult.

 ✓ Interpreting a probit model: In a probit model, the value of  
provides the estimated Z (standard normal) value for observation i. 
Sometimes the  values are referred to as probability units or  
probits. You can use these values to obtain the predicted probability  
for each observation (I explain how to convert these values into  
probabilities that you can review in the earlier section “Working from 
the standard normal CDF: The probit model”). Most econometric  
software calculates all of the predicted probabilities with a single  
command.

 ✓ Interpreting a logit model: In a logit model, the value of   
provides the estimated G (logistic) value for observation i. Sometimes 
the  values are referred to as logistic units or logits. You can use 
these values to obtain the predicted probability for each observation (to 
see how to convert these values into probabilities, refer to the earlier 
“Basing off of the logistic CDF: The logit model” section of this chapter). 
As with the probit model, most econometric software also calculates 
predicted probabilities from a logit model with a simple command.

 I used data from 20 Major League Baseball (MLB) players to estimate probit 
and logit models. The dependent variable captures whether a player was 
released or retained by his team at the end of the season. The dependent  
variable Y (plexit) = 1 if the player was released and Y (plexit) = 0 if the player 
was retained. The independent variable X is the player’s 3-year slugging  
average (slg_3_avg). Figures 13-12 and 13-13 show the STATA probit and 
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logit results, respectively. The results in Figures 13-12 and 13-13 are obtained 
by using the “probit” and “logit” commands in STATA. The iterations in the 
output show how the ML technique is searching for the coefficient estimates 
that can maximize the log likelihood. You can use the “predict” command with 
the p option to obtain the predicted probabilities.

 

Figure 13-12: 
STATA 

probit 
results and 

predicted 
probabilities.
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Figure 13-13: 
STATA logit 
results and 

predicted 
probabilities.

 

 Probit and logit estimation always produces a Pseudo R-squared measure of 

 fit. It’s calculated by , where lnLur is the log likelihood for the 

 estimated model and lnL0 is the log likelihood in the model with only an  
intercept. It’s comparable to the R-squared value in OLS regression, but other 
measures are usually preferred for evaluating fit when the dependent variable 
is a dummy (dichotomous).
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 You can obtain more appropriate measures of fit for probit and logit models 
by comparing the model’s predicted probabilities to the observed Y values. 
Appropriate measures of fit typically capture the fraction of times the model 
accurately predicts the outcome.

 When you have to calculate a measure of fit using the predicted probabilities, 
start by determining how you define an accurate prediction from the model. 
Then set up a rule for aggregating the accurate predictions to provide an  
overall goodness-of-fit measure. No single measure of fit is universally 
accepted, but in the earlier section “Modeling Discrete Outcomes with the 
Linear Probability Model (LPM)” of this chapter, I use four different methodol-
ogies to calculate the percent accurately predicted. You can apply the same mea-
sures of fit used for the LPM to the probit and logit models. With a qualitative  
dependent variable, measures of the fraction of accurate predictions provide 
a reasonable alternative to the R-squared and Pseudo R-squared values. If 
you’re not sure about which method (probit or logit) to use in a specific  
situation, you may want to compare these measures of fit to make your  
decision. Usually, however, the decision to go with one over the other is  
determined by norms in a particular area of research.

In the sections that follow, you continue working with output from probit  
and logit models. In particular, the coefficients from these models require 
special attention because the nonlinearity of the functions makes coefficient 
interpretation more complex.

Probit coefficients
When you estimate a probit function, keep in mind that the model is  
nonlinear and the coefficients can’t be interpreted as partial-slope coefficients.

 The coefficient(s) produced by estimating a probit model provide the 
change in the Z (standard normal) value for a unit change in the independent 
variable(s). Because the probit is derived from the standard normal distribution 
(a nonlinear function), you need calculus in order to obtain the impact of the 
independent variable(s) on the probability of observing the outcome. These 
influences are known as marginal effects.

 You can see how marginal effects are calculated by looking at the probit  
specification. The standard probit model has the following form:

where F represents the standard normal CDF. Using calculus to obtain the 
slope (change in Y for a change in X), you get
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where f is the standard normal PDF.

 You can estimate the marginal effect without calculus by using the estimated 
function and changing the value of X by unit. For example, suppose the  
estimated probit function is  and X = 10. This becomes 
F(0.8), so using the standard normal CDF, the predicted probability at Z = 0.8 
is 0.79. If you increase the value of X by one unit to X = 11, the predicted  
probability becomes F(1.2) = 0.88. Therefore, the estimated marginal effect is 
0.88 – 0.79 = 0.09.

 Even better than that trick is the fact that most econometric software that’s 
equipped to estimate probit models can also calculate the marginal effects, as 
you can see in Figure 13-14, which uses the probit model from Figure 13-12 to 
illustrate how to obtain precise marginal effects. The results in Figure 13-14 
are obtained by using the “probit” command in STATA followed by the “mfx” 
command. In other words, STATA uses the estimated coefficients and performs 
the calculus required to obtain the marginal effects. The results imply that if 
a player’s slugging percentage increases by 0.1, the probability of that player 
being fired by his team decreases by 0.37 (3.7 × 0.1 = 0.37).

 

Figure 13-14: 
STATA 

probit 
results with 

estimated 
marginal 

effects.
 

 Keep in mind that estimating marginal effects using discrete unit changes is 
only an estimation and not perfectly precise. The reason for this is that the 
nonlinearity implies that the marginal effects change continuously along the 
estimated function.
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Logit coefficients
You shouldn’t interpret coefficients from your logit estimation as partial 
slope coefficients, because the model is nonlinear.

 The coefficient(s) produced by estimating a logit model provide the change  
in the G (logistic) value for a unit change in the independent variable(s). 
Because the logit is derived from the logistic distribution (a nonlinear  
function), you have to use calculus to figure out the impact of the independent 
variable(s) on the probability of observing the outcome (that is, the marginal 
effects).

 By beginning with the logit specification, I can show how the marginal effects 
are calculated. The standard logit model has the following form:

where F represents the logistic CDF. Using calculus to obtain the slope 
(change in Y for a change in X), I get

where e is the base of the natural log (the value 2.71828 . . .).

 To estimate the marginal effect without calculus, use the estimated function 
and change the value of X by one unit. For example, suppose the estimated 
logit function is 

 

and X = 18. It becomes F(–2.1 + 0.2(18)) = F(1.5), so using the logistic CDF, the 
predicted probability is 

If you increase the value of X by one unit to X = 19, the predicted probability 
becomes 

Therefore, the estimated marginal effect is 0.85 – 0.82 = 0.03.
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 Using my logit model from Figure 13-13, in Figure 13-15 I show how you obtain 
precise marginal effects. I got the results in Figure 13-15 by using the “logit” 
command in STATA followed by the “mfx” command. In other words, STATA 
uses the estimated coefficients and performs the calculus required to obtain 
the marginal effects. The results imply that if a player’s slugging percentage  
increases by 0.1, the probability of being released (fired) by his team 
decreases by 0.39 (3.9 × 0.1 = 0.39).

 

Figure 13-15: 
STATA logit 
results with 

estimated 
marginal 

effects.
 

 Keep in mind that estimating marginal effects using discrete unit changes is 
only an estimation and not perfectly precise. The nonlinearity implies that the 
marginal effects change continuously along the estimated function.



Chapter 14

Limited Dependent Variable Models
In This Chapter
▶ Exploring censored and truncated variables
▶ Understanding and dealing with selection issues

L 
imited dependent variables are usually quantitative but have restricted 
values. You must pay particular attention to these types of situations 

because missing or constrained values for the dependent variable cause one 
or more traditional regression model assumptions to fail. Here are two exam-
ples of scenarios that result in limited dependent variables:

 ✓ You want to model the labor market using wages as the dependent vari-
able, but only positive wages are observed, because when the wage is 
too low, individuals drop out of the labor force or the wage doesn’t meet 
the legal minimum wage.

 ✓ You want to model demand for basketball games using ticket sales as 
the dependent variable, but sales reach a maximum at the arena’s capac-
ity (even if demand exceeds the sell-out capacity).

The restricted data available for outcomes makes using traditional regression 
analysis difficult. Fortunately, you can use econometric techniques to modify 
traditional regression analysis in the presence of limited dependent vari-
ables. In this chapter, get ready to see some practical examples, find out how 
to implement the techniques using STATA, and interpret your results.

The Nitty-Gritty of Limited  
Dependent Variables

Limited dependent variables arise when some minimum threshold value 
must be reached before the values of the dependent variable are observed 
and/or when some maximum threshold value restricts the observed values of 
the dependent variable.

A limited dependent variable causes the standard model to become

Yi
* = β0 + β1Xi + εi
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where restricted values don’t allow you to always observe Y*. Specifically, you 
observe Yi

* = max(Yi
*, a) if the dependent variable is limited by a lower threshold 

and/or Yi
* = min(Yi

*, b) if the dependent variable is limited by an upper thresh-
old. Because the ordinary least squares (OLS) technique estimates the model 
without accounting for the missing data or the values that are at the threshold 
(rather than their actual values), the resulting estimated coefficients are biased.

 Situations where the dependent variable is discrete (meaning it has a finite 
number of possible outcomes) or where measurement of the dependent 
variable takes place while the process is still ongoing (like the amount of 
time unemployed) are also problematic for OLS estimation. A number of 
techniques (multinomial probit, multinomial logit, ordered probit, ordered 
logit, Poisson, negative binomial, and duration models) can be used for these 
scenarios, but treatment of these topics is usually reserved for advanced or 
graduate-level econometrics courses.

A limited dependent variable results in either a censored sample or a trun-
cated sample. In other words, censored and truncated dependent variables 
are the two types of specific limited dependent variables you’ll encounter.

Censored dependent variables
 With a censored dependent variable, information is lost because some of the 

actual values for the dependent variable are limited to a minimum and/or 
maximum threshold value.

Typical examples of censored dependent variables include

 ✓ The number of hours worked in a week: Hours may be constrained by 
firms wanting to avoid payment of overtime rates even though employ-
ees may want to work more hours.

 ✓ Income earned: Income can be capped in survey data to maintain 
respondent confidentiality.

 ✓ Sale of tickets to concerts and sporting events: Ticket sales can be lim-
ited by stadium capacity.

 ✓ Exam scores: Exams scores may be limited to a range of 0 to 100, even 
though people receiving the minimum or maximum score aren’t likely to 
be of exactly equal ability.

In Figure 14-1, I illustrate a situation with a censored dependent variable. 
The dots represent actual and observed values, and the asterisks represent 
values that would have corresponded to the observations but aren’t actually 
observed. The empty circles indicate values that are observed but censored. 
Without censoring, their values would be at the * points.

Using data where the dependent variable captures a combination of actual 
values and values that are observed but limited to a threshold (censored), you 
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can see a violation of the classical linear regression model (CLRM) assumption. 
Specifically, the conditional mean of the error isn’t zero. In addition, the value 
of the error is correlated with the value of the independent variable.

 

Figure 14-1: 
A regres-

sion model 
in the pres-

ence of a 
censored 

dependent 
variable.

 

Truncated dependent variables
 With a truncated dependent variable, information is lost because some of the 

values for the variables are missing (meaning they aren’t observed if they 
are above or below some threshold). Sometimes observations included in 
the sample have missing values for both the independent and dependent 
variables, and in other cases only the values for the dependent variable are 
 missing.

A common scenario resulting in truncation is nonrandom sample selection, when 
some measurements from the population are less (or more) likely to be included 
in the sample than others. For example, researchers may be interested in the 
impact of a public program and only include individuals below the poverty line 
in the sample. The other typical scenario is when individual observations are 
included in a sample through self-selection, when the sample is essentially choos-
ing itself rather than being determined by the researcher through randomiza-
tion. For example, a dataset may include wages earned from work, but wages will 
be missing for people who have chosen to stay out of the labor force.

In Figure 14-2, I illustrate a situation with a truncated dependent variable. 
The dot indicates actual and observed values; the asterisk represents values 
that would have corresponded to the sample observations but aren’t actually 
observed. Using the data where some values of the dependent variable aren’t 
observed (truncated), you can see that the conditional mean of the error isn’t 
zero (which violates a CLRM assumption). In addition, the value of the error 
is correlated with the value of the independent variable.
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Figure 14-2: 
A regres-

sion model 
in the pres-

ence of a 
truncated 

dependent 
variable.

 

 The primary difference between a truncated and a censored variable is that 
the value of a truncated variable isn’t observed at all. However, a value is 
observed for a censored variable, but it’s suppressed for some observations 
at the threshold point.

 Censored and truncated dependent variables lead to similar problems (biased 
coefficients), but the solution to the problem isn’t the same in both scenarios. 
Properly identifying the dependent variable as censored or truncated helps 
you determine how to modify the estimation procedure in order to deal with 
the limited values of the dependent variable.

Modifying Regression Analysis for 
Limited Dependent Variables

Although you can deal with limited dependent variables in several ways 
depending on the nature of the data generating process, the most common 
are the Tobit, truncated normal, and Heckman selection models. I tell you all 
about these models in the following sections.

Tobin’s Tobit
 The Tobit model is best for when the dependent variable is censored (I give you 

the specifics on censored dependent variables in the earlier related section).

If you use OLS estimation with the observed data as if they’re all uncensored 
values, you get biased coefficients. To avoid them, the estimation procedure 
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must properly account for the censoring of the dependent variable. Maximum 
likelihood (ML) estimation does so.

Suppose you have the following model with upper-limit censoring (the most 
common type):

In the final equation, b is the maximum (censored) value of the dependent 
variable observed in the sample data. Using the probability of censorship, 
estimation is accomplished with ML rather than OLS. The log likelihood func-
tion that’s maximized is

where F denotes the standard normal CDF and f is the standard normal PDF 
(I cover the ML estimation technique in detail in Chapter 13). The coefficients 
estimated using this procedure represent the marginal effects (the impact on 
the dependent variable for a unit change in the independent variable) for the 
whole population. In that sense, ML estimation achieves the same outcome as 
OLS estimation. The difference, however, is that the ML technique can accom-
modate complex, nonlinear functions and produce estimates in situations 
where the solutions can’t be expressed through simple algebraic formulas.

 Most econometric software is equipped to estimate Tobit models. In Figure 14-3,  
I use data from a sample of workers (aged 18 – 64) to estimate how age affects 
the number of hours worked in a week. The sample contains censored observa-
tions because, although some individuals worked more than 40 hours in a week, 
40 was the maximum workers could report. I got the results shown in Figure 14-3  
by using the “tobit” command in STATA. (You can define the minimum and/or 
maximum threshold values at which the censoring occurs by using the options 
“ll” or “ul”). The bottom portion of the output (below the estimated coefficients) 
shows you how many observations have censored values.

Tobit estimation produces a likelihood ratio chi-squared statistic. It’s analogous 
to the F-statistic in OLS, and it tests the null hypothesis that the estimated model 
doesn’t produce a higher likelihood than a model with only a constant term.

You can interpret the resulting coefficients from Tobit estimation in the same 
manner as traditional marginal effects from OLS; an additional year of age 
increases the number of hours worked in a week by 0.299, on average.
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Figure 14-3: 
STATA 

output from 
estimating a 
Tobit model.

 

In Figure 14-4, I estimate the same model that I use in Figure 14-3 but with OLS 
rather than the Tobit technique. If you ignore the censoring and estimate the 
model using OLS, the coefficients will be biased toward finding no relationship 
(smaller coefficients/effects). The p-values suggest that age is statistically sig-
nificant, but the estimated effect is much smaller. The Tobit results (Figure 14-3) 
imply that an additional year of age increases the number of hours worked in 
a week by 0.299, on average. On the other hand, the OLS results (Figure 14-4) 
imply that hours worked increase by only 0.084 per week, on average.

 

Figure 14-4: 
STATA 

output using 
OLS to 

estimate a 
model that 
should be 
estimated 
with Tobit.

 

Truncated regression
 Truncated regression applies the CLRM assumption of normality (which I tell 

you all about in Chapter 7), but it accounts for the drawing of observations 
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from a restricted segment of the normal distribution. You can rely on it when 
the values for the dependent and independent variables are missing for part of 
the distribution (meaning they’re above and/or below some threshold value).

When it comes to estimation, you can’t apply OLS estimation to the observed 
data as if it’s representative of the entire population. If you do, you’ll wind up 
with biased coefficients. Instead, you need to use maximum likelihood (ML) 
estimation so you can properly account for the truncation by rescaling the 
normal distribution so that the cumulative probabilities add up to one over 
the restricted area. (For the full scoop on ML estimation, see Chapter 13.)

Imagine you have the following model with upper-limit truncation (the most 
common type of truncation you’ll see):

The dot (·) represents a missing value at and above the truncation point. Using 
a rescaling of the normal distribution, estimation is accomplished with ML 
rather than OLS. The log likelihood function that’s maximized is

where F denotes the standard normal CDF. The coefficients estimated using 
this procedure represent the marginal effects (the impact on the dependent 
variable for a unit change in the independent variable) for the whole population.

 Figure 14-5 illustrates how to use STATA software to estimate a truncated normal 
regression model. In this case, I use data from a sample of workers to estimate how 
age affects the number of hours worked in a week. The sample is truncated because 
it includes only those individuals who worked full time (at least 35 hours in a week) 
and excludes those who worked part time. To get the results you see here, which 
show you how many observations are at the truncation point, I use the “truncreg” 
command in STATA. (To define the minimum and/or maximum threshold values at 
which the truncation occurs, you can use the “ll” or “ul” options.)

As with Tobit estimation, the resulting coefficients from the truncated normal 
estimation can be interpreted in the same manner as traditional marginal 
effects from OLS. In Figure 14-5, the estimated effect of an additional year of age 
is an increase of 0.243 hours worked per week, on average. Truncated normal 
estimation also produces a chi-squared statistic, which is like the F-statistic 
in OLS. It confirms or rejects the null hypothesis that the estimated model 
doesn’t produce a higher likelihood than a model with only a constant term.
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Figure 14-5: 
STATA 

output from 
estimating 

a truncated 
normal 
model.

 

Don’t ignore the truncation and estimate the model using OLS or the coef-
ficients will be biased toward finding no relationship (smaller coefficients/
effects). I illustrate this in Figure 14-6, where I estimate the same model that 
I use in Figure 14-5 but using OLS instead of the truncated normal technique. 
Although age is statistically significant in both cases (p-values less than 0.10), 
notice that its estimated effect is much smaller in Figure 14-6 in comparison 
to Figure 14-5. The truncated normal regression results (Figure 14-5) imply 
that an additional year of age increases the number of hours worked in a 
week by 0.243, on average. On the other hand, the OLS results (Figure 14-6) 
imply that hours worked increase by only 0.044 per week, on average.

Oh, what the heck if I self select? 
Heckman’s selection bias correction

 Turn to the Heckman selection model when the dependent variable is trun-
cated but the values for the independent variables are observed. (I describe 
truncated dependent variables in the earlier related section.)
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Figure 14-6: 
STATA 

output using 
OLS to 

estimate a 
model that 
should be 
estimated 

using 
truncated 

normal 
regression.

 

Again, assume you’re working with the following model:

with self-selection defined by

Using the joint distribution of ε and u, you can accomplish the estimation 
required with the ML technique described in Chapter 13. (Why not use OLS 
estimation? Because that technique doesn’t suitably account for the self-
selection of observations into the estimation sample.)

The log likelihood function that’s maximized is
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where F denotes the standard normal CDF. In a Heckman model, the vari-
ables that influence truncation usually aren’t identical to those that influence 
the value of the dependent variable (in contrast to the Tobit model, where 
they’re assumed to be the same). The log likelihood function is also similar 
to the truncated normal, but values for the independent variables are observ-
able (unlike the truncated normal). In other words, a Heckman model can 
improve your estimates over the truncated normal and Tobit techniques by 
using information from variables that influence whether or not your depen-
dent variable is observed. The coefficients estimated using this procedure 
represent the marginal effects (the impact on the dependent variable for a 
unit change in the independent variable) for the whole population.

 Although ML estimation is the most efficient way of estimating a selection 
model, the joint (bivariate normality) distributional assumptions are restric-
tive, and sometimes optimization of the likelihood function fails to converge.

An alternative to ML estimation of a selection model is to use the Heckit 
model. It can be accomplished by following these steps:

 1. Estimate the selection equation  with a 
probit model (I discuss the details of probit models in Chapter 13).

 2. Compute the inverse Mills ratio:

  

  where f is the standard normal PDF and F is the standard normal CDF.

 3. Estimate the model  using the selected sample.

 Your selection equation (the part of the model that predicts truncation) 
should include all the independent variables used to explain variation in the 
value of the dependent variable plus some additional variables that only influ-
ence the chances of truncation and not the level of the dependent variable. In 
other words, the X variables should be a subset of the W variables.

 Lucky for you, most econometric software can estimate Heckman models. 
Figure 14-7 shows STATA outputs that use data from a sample of females to 
estimate how age affects hourly wages (the natural log of hourly wages is the 
dependent variable). I obtained the results by using the “heckman” command 
in STATA. Note that the “select” option is required to define the selection 
equation. In order to obtain the alternative Heckit estimates, you can use the 
“twostep” option. The output shows you how many observations have unob-
served values for the dependent variable and how each of the variables 
affects the selection process.
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Figure 14-7: 
STATA 

output from 
estimating 

a Heckman 
selection 

model.
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Again, you can interpret the resulting coefficients from the estimation of a 
Heckman selection model the same way as traditional marginal effects from 
OLS. In Figure 14-7, an additional year of age is associated with a 1.06 percent 
increase in the hourly wage, on average (keep in mind that this interpretation 
uses the fact that the dependent variable is measured in logs). Estimation of a 
Heckman selection model also produces a chi-squared statistic, which is simi-
lar to the F-statistic in OLS and tests the null hypothesis that estimated model 
doesn’t produce a higher likelihood than a model with only a constant term.

In a selection model, the direction of bias from using OLS depends on the 
nature of the selection process. In Figure 14-8, I estimate the same model 
from Figure 14-7, but I use OLS instead of the Heckman technique. In 
this particular example, the selection doesn’t produce a large bias in the 
 coefficients. The Heckman results suggest that an additional year of age 
increases hourly earnings, on average, by 1.06 percent while the OLS results 
imply a 1.07 percent increase.

 

Figure 14-8: 
STATA 
output 

using OLS 
to estimate 

a model 
that should 

use the 
Heckman 

technique.
 



Part VI
Extending the Basic 
Econometric Model

 If you’re interested in discovering econometric methods of forecasting, you’ll love the 
free bonus chapter I provide at www.dummies.com/extras/econometrics.

http://www.dummies.com/extras/econometrics


In this part . . .
 ✓ Use time-series data for static models (where the dependent 

variable reacts instantaneously to changes in the independent 
variable) and dynamic models (where the dependent variable 
doesn’t react fully to a change in the independent variable 
 during the period in which the change occurs).

 ✓ Modify traditional econometric estimation techniques to handle 
pooled cross-sectional data (data that has been collected over 
time) and discover how analyzing pooled cross-sections can 
be useful in evaluating policy changes that occur at a specific 
point in time.

 ✓ Analyze important economic questions that can’t be addressed 
using data that are exclusively cross sectional or time series by 
turning to panel data (data that features identical cross-sectional 
units included in each time period that data are collected).
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Static and Dynamic Models
In This Chapter
▶ Recognizing the difference between static and dynamic models
▶ Identifying and eliminating time trends
▶ Spotting seasonal patterns in data

W 
ith time-series data, you obtain measurements on one or more vari-
ables captured over time in a given space (a specific country, state, 

and so on). In some cases, this leads to econometric models with unique 
characteristics. In this chapter, I provide some examples of regression 
models using time-series data, and I discuss models that are similar to those 
used with cross-sectional data (static models) and others that are unique to 
time-series applications (dynamic models). I also show you how time-series 
models can be used to estimate trends and seasonality.

Using Contemporaneous and Lagged 
Variables in Regression Analysis

 When you’re using time-series data, you can assume that the independent 
variables have a contemporaneous (static) or lagged (dynamic) effect on your 
dependent variable. It depends on how your econometric model assumes that 
the dependent variable will react:

 ✓ If it reacts instantaneously to changes in the independent variable(s), 
then your model is static and will estimate a contemporaneous relation-
ship at time t.

 ✓ If it doesn’t react fully to a change in the independent variable(s) during 
the period in which the change occurs, then your model is dynamic and 
will estimate both a contemporaneous relationship at time t and lagged 
relationship at time t – 1.

You can specify a generic static model as Yt = β0 + β1Xt +εt, where the t sub-
scripts denote the importance of the chronological ordering of observations.
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A generic dynamic model is a distributed lag model. You can specify it as

Yt = α + δ0Xt + δ1Xt – 1+ δ2Xt – 2 + … + δrXt – r + εt

where the t subscripts denote the time period and r denotes the maximum 
number of lags (the maximum number of periods it takes for the dependent 
variable to fully absorb changes in the independent variables).

In the distributed lag model, Yt = α + δ0Xt + δ1Xt – 1 + δ2Xt – 2 + … + δrXt – r + εt,  
δ0 captures the immediate impact of a one-unit increase in the independent 
variable. This term is known as the impact multiplier, or short-run propensity. 
The long-run increase in the dependent variable due to a one-time, perma-
nent increase in the independent variable is δ0 + δ1 + δ2 + … + δr. It’s called the 
long-run propensity.

The following sections zero in on the dynamic model to show you some of 
the inherent problems in the model and how you can test and correct for 
autocorrelation in the model.

Examining problems with dynamic models
 In practice, distributed lag models can be plagued by estimation problems. 

The two most common issues are high multicollinearity and the loss of 
degrees of freedom. You’d expect the lag coefficients to steadily decline as the 
change in the independent variables is gradually absorbed by the dependent 
variable, but high multicollinearity usually causes the coefficient estimates 
to display erratic behavior. Furthermore, losing degrees of freedom for each 
additional lag increases the standard errors and reduces the chances of find-
ing statistically significant coefficients.

 A common solution to the estimation issues associated with distributed lag 
models is to replace the lagged values of the independent variable with a 
lagged value of the dependent variable. This type of dynamic model is known 
as an autoregressive model.

A simple autoregressive model can be expressed as Yt = α + δXt + γYt – 1 + εt, 
where the dependent variable (Yt) is assumed to be influenced by the con-
temporaneous (current) value of the independent variable (Xt) and the lagged 
(previous) value of the dependent variable (Yt – 1).

 Using the assumption that the same model holds in previous periods, I can 
show that the autoregressive model is equivalent to the distributed lag model. 
My model in the current period is Yt = α + δXt + γYt – 1 + εt, so in the previous 
period my autoregressive model would be Yt – 1 = α + δXt – 1 + γYt – 2 + εt – 1. I can 
now substitute for Yt – 1 and get either
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Yt = α + δXt + γ (α + δXt – 1 + γYt – 2 + εt – 1) + εt 

or 

Yt = (α + γα) + δXt + γδXt – 1 + γ 2Yt – 2 + (γεt – 1 + εt) 

Through recursive substitution, I end up with

Yt = α* + δXt + γδXt – 1 + γ 2δXt – 2 + γ 3δXt – 3 + … + γ rδXt – r + εt
* 

which allows me to directly compare the coefficients in the distributed lag 
model to those of the autoregressive model. The resulting comparison is δ1 
= γδ, δ2 = γ 2δ, δ3 = γ 3δ, ..., δr = γ rδ. Consequently, any value for γ between 0 and 
1 ensures a steadily declining effect for changes in the independent variable 
that occurred in the more distant past.

 In Figure 15-1, I use STATA to estimate both an autoregressive model (15-1a) 
and a distributed lag model (Figure 15-1b) with the same dependent variable, 
Yt, inventories. The data consists of yearly sales and inventory data from 1950 
to 1991. Prior to performing any time-series operation, I have to specify which 
variable captures the time component using the “tsset” command. That com-
mand keeps the data internally organized and allows me to perform lag opera-
tions that rely on the order of the data.

 

Figure 15-1: 
STATA 

output of (a) 
autoregres-
sive and (b) 
distributed 

lag models.
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The results first show the estimates from the autoregressive model. Using 
those estimates, I can calculate the distributed lag coefficients and write the 
autoregressive results in distributed lag format as

δ1 = γδ = (0.18)(1.29) = 0.232

δ2 = γ 2δ = (0.18)2(1.29) = 0.042

δ3 = γ 3δ = (0.18)3(1.29) = 0.008

δ4 = γ 4δ = (0.18)4(1.29) = 0.001

Notice, however, that these results aren’t consistent with the distributed 
lag estimates from STATA because, for example, δ1 = 0.232 in the autoregres-
sive model while δ1 = 0.418 in the distributed lag model. The distributed lag 
estimates (Figure 15-1b) suffer from unpredictable shifts in the parameter 
estimates because they’re plagued by high collinearity. Therefore, when esti-
mating dynamic models, applied econometricians prefer the autoregressive 
model (Figure 15-1a) to the distributed lag model.

Testing and correcting for autocorrelation 
in dynamic models
Autocorrelation occurs when the error term is serially correlated, which 
means that the error term in one period is correlated with the error term 
in another period. (I provide a more precise definition of autocorrelation in 
Chapter 12).

 Autocorrelation is a typical problem that arises with time-series data. In its 
presence, the standard errors are likely to be biased, and the resulting mea-
sures of statistical significance aren’t reliable (I suggest some solutions to this 
issue in Chapter 12). However, in dynamic models of the form Yt = α + δXt + 
γYt – 1 + εt, the problem of autocorrelation is more common and more serious. 
Autocorrelation in a dynamic model causes the OLS coefficients to be biased.

 I can show the source of bias in a dynamic model with autocorrelation εt =  
ρεt – 1 + ut by substituting the autocorrelation process into the model, so  
Yt = α + δXt + γYt – 1 + ρεt – 1 + ut. If I lag the original model by one period, I have 
Yt – 1 = α + δXt – 1 + γYt – 2 + εt – 1. Consequently, I find that a change in εt – 1 causes 
both εt and Yt – 1 to change. Because Yt – 1 is an independent variable in the 
original model, its relationship (correlation) with εt is problematic because it 
violates a classical linear regression model (CLRM) assumption that the value 
of the error term and independent variables isn’t correlated. 

Because econometricians view biased coefficients to be more problematic 
than biased standard errors, testing for autocorrelation is essential if you’re 
estimating a dynamic model. Turn to the Breusch-Godfrey test in this scenario. 
(I provide step-by-step instructions for performing this test in Chapter 12.) If 
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you find evidence of autocorrelation, you can perform the preferred method 
of autocorrelation correction with dynamic models: feasible generalized least 
squares (FGLS). You can find the details of this procedure in Chapter 12.

 Avoid using the Durbin-Watson d statistic when you’re estimating a dynamic 
time-series model. Although it’s a common test for autocorrelation in static 
time-series models, if you try to use it in a dynamic time series model, you’re 
more likely to find no evidence of autocorrelation even in its presence. In a 
dynamic model, the Durbin-Watson d statistic is biased toward 2 (that is, find-
ing no autocorrelation).

Projecting Time Trends with OLS
Most economic time series grow over time, but sometimes time series actu-
ally decline over time. In either case, you’re looking at a time trend.

 The most common models capturing time trends are either linear or exponen-
tial. If the dependent variable has a relatively steady increase over time, your 
best bet is to model the relationship with a linear time trend. However, if the 
growth rate is fairly steady (while the rate at which the value of the dependent 
variable changes isn’t constant), then you need to model the relationship with 
an exponential time trend.

 ✓ A linear time trend has the form Yt = α0 + α1t + εt, where t is the time 
trend variable (usually a sequential numbering of the time periods 
beginning with a value of 1) and α1 is the time trend coefficient and rep-
resents the rate at which the value of the dependent variable changes, 
on average, in each subsequent time period. If α1 is positive, then the 
dependent variable increases over time. If α1 is negative, then the depen-
dent variable decreases over time.

 ✓ You can express an exponential time trend as ln Yt = α0 +α1t + εt, where t is 
the time trend variable and α1 is the time trend coefficient and represents 
the rate at which the growth of the dependent variable changes, on aver-
age, in each subsequent time period. If α1 is positive, then the dependent 
variable’s growth rate is positive over time. If α1 is negative, then the 
dependent variable’s growth rate is negative over time. (I provide addi-
tional details about these types of exponential functions in Chapter 8.)

 In Figure 15-2, I use STATA to graph yearly inventories from 1950 to 1991 and 
estimate a time trend model. Most datasets don’t contain a time variable, so 
you can do as I do here and sort the data using the variable that captures the 
sequencing of observations (year) and create the time variable. Given the 
depiction of the time series in Figure 15-2, applying the exponential time trend 
model is most appropriate in this case. The estimated value of 0.07 for α1 
implies that, on average, inventories have grown at a rate of approximately  
7 percent per year.
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Figure 15-2: 
STATA 
yearly 

time-series 
graph and 

output from 
estimating 

a time trend 
model.

 

In my example, creating the trend variable is a straightforward procedure 
because there’s only one time variable. But in some cases, multiple time vari-
ables exist. For example, with monthly data that spans several years, the data 
is likely to contain a year and month variable. In that case, you’d want to sort 
by both year and month before you create the trend variable.

 When dealing with observations measured over multiple time periods, the 
value of the trend variable should always represent the order of the observa-
tion in a chronological sequence.
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 If you’d like to avoid using a log transformation of your dependent variable (per-
haps it doesn’t seem appropriate with the other factors that you’ve included in 
the model as independent variables), then a quadratic time trend can also work 
well in situations where the time trend isn’t linear. Although higher order poly-
nomials could be used for your time trend, they aren’t popular among applied 
econometricians because they’re difficult to justify theoretically and typically 
consume additional degrees of freedom without significantly increasing the 
explanatory power.

In the following subsections, you extend your ability to use time trends in 
econometric models. Specifically, you see how time trends can be used to 
mitigate problems of spurious correlation and how trend coefficients can be 
used to detrend time-series data.

Spurious correlation and time series
The change/trend (positive or negative) of values over time isn’t necessarily 
unique to your dependent variable. In general, all time-series variables (including 
your independent variables) are susceptible to this tendency. The consequence 
of failing to properly account for this common trend component is that you’ll 
overstate the explanatory power of your independent variables.

 If your regression model contains dependent and independent variables 
that are trending, then you end up with a spurious correlation problem. Using 
regression results when spurious correlation is present leads to erroneous 
conclusions about the causal effect of the independent variable(s).

Consider the model

Yt = β0 + β1Xt1 + β2Xt2 + … + βpXtp + εt

where you believe that X directly causes Y. If, however, both X and Y exhibit 
an upward (or downward) trend for reasons unrelated to the relationship they 
have with each other, the results appear to show that X has a strong effect on Y.

If time significantly explains variation in the dependent variable and is also cor-
related with your independent variable, then you’ve excluded a relevant variable 
from your model and have introduced bias into your estimated coefficients.

 Adding some form of time trend component (linear, quadratic, or exponen-
tial) to your regression takes care of the spurious correlation problem. The 
time trend now picks up the co-movement of your variables and allows you to 
make more convincing arguments about their causal relationship.

For example, if you have a situation where unobserved factors are causing 
your dependent and independent variables to increase (or decrease) over 
time, then you should estimate a model like this:

Yt = β0 + β1Xt1 + β2Xt2 + … + βpXtp + λt + εt
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where X represents your independent variable and t is a trend variable (a 
sequential numbering of the time periods beginning with a value of 1). In this 
model, suppose I initially use U.S. GDP as the Y variable and my age as the 
only X variable. I find a positive relationship between my age and GDP, giving 
the appearance that my increasing age causes GDP growth. This occurs 
because both increase over time. If I include the time trend variable, t, then 
the explanatory power of my age disappears.

 Including a trend variable doesn’t always reduce the explanatory power of other 
independent variables. If your dependent variable trends in one direction and 
your independent variable trends in the other direction, then the inclusion of 
the trend variable may increase the significance of your independent variable.

Detrending time-series data
If you remove trending patterns from the data, that data is considered trend-
adjusted or detrended. The main point of estimating a regression model with 
detrended data is to derive the explanatory power of the other independent 
variables.

 If you want to obtain a goodness-of-fit measure that isolates the influence of 
your independent variables, you need to estimate your model with detrended 
values for both your dependent and independent variables.

Here’s how to obtain the goodness-of-fit, or R-squared, net of trend effects:

 1. Regress your dependent variable on the trend variable to obtain the 
estimated function  and retain the residuals from this 
regression.

 2. Regress each of your independent variables on the trend variable to 
obtain the estimated functions , where k repre-
sents a specific independent variable, and retain the residuals from 
all k of these regressions.

 3. Regress the residuals obtained in Step 1 ( ) on the residuals obtained 
in Step 2 ( ) to estimate .

  The R-squared from this regression provides a better of measure of fit 
when the time series exhibits extensive trending.

The traditional R-squared can be overinflated when the data contains sig-
nificant trending. Under these circumstances, you can find an alternative 
R-squared value by estimating a regression with detrended data.

 In Figure 15-3, I use STATA to estimate the impact of yearly sales on inventories 
from 1950 to 1991. First I estimate the model with the raw data. Then I estimate 
the model with detrended data. Detrending the data has a small effect on the 
results in Figure 15-3. As expected, the R-squared is smaller after the data is 
detrended (0.9936 compared to 0.9992), but the difference isn’t large. In this 
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case, the result implies that the independent variable’s ability to explain varia-
tion in the dependent variable isn’t being highly overstated by trending.

 

Figure 15-3: 
STATA 

time-series 
output from 
estimating 

a detrended 
model.
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 In your primary econometric results, report the estimates from the model with 
the raw data and trend variable(s), not the detrended data.

Using OLS for Seasonal Adjustments
The higher the frequency of an economic time series, the more likely it is 
to display seasonal patterns. For example, retail sales figures often exhibit 
a significant increase around the winter holidays. When you’re dealing with 
quarterly data, this increase is likely to be reflected with larger values in the 
fourth quarter of each year. However, with monthly data, the change is more 
evident with even sharper increases in sales during the months of November 
and December.

 The most common models capturing seasonal patterns include dummy vari-
ables representing the frequency with which the data were collected (usually 
quarter or month dummies).

A typical seasonal pattern is modeled with the specification Yt = α0 + α1S1 + 
α2S2 + … + εt.

where S variables are your season dummy variables (flip to Chapter 9 for 
more on dummy variables) and the various α are the season coefficients rep-
resenting the impact of each season, on average, on the dependent variable. 
If an α is positive, then the dependent variable increases during that season. 
If an α is negative, then the dependent variable decreases during that season.

 In Figure 15-4, I use STATA to graph the log of monthly souvenir sales from 
1987 to 1993 and estimate a seasonal pattern model. The dummy variables 
capturing the month of each observation have already been created. Given the 
depiction of the time series here, I can deduce that December will have signifi-
cantly larger sales figures in comparison to other months. Using January as 
the reference month, several months have significantly larger sales figures. In 
comparison to January, sales are 74 percent larger in March and increase by 
more than 200 percent, on average, in December.

In the following sections, I explain how you can estimate the effect of sea-
sonal variation on your dependent variable and then tell you how to remove 
seasonal patterns from your time-series data.

Estimating seasonality effects
Seasonality effects can be correlated with both your dependent and inde-
pendent variables. In order to avoid confounding the seasonality effects with 
those of your independent variables, you need to explicitly control for the 
season in which the measurement is observed.



277 Chapter 15: Static and Dynamic Models

 

Figure 15-4: 
STATA 

monthly 
time-series 
graph and 

output from 
estimating 
a seasonal 

pattern 
model.

 

 If you include dummy variables for seasons along with the other relevant inde-
pendent variables, you can simultaneously obtain better estimates of both 
seasonality and the effects of the other independent variables.

Consider the model Yt = β0 + β1Xt1 + β2Xt2 + … + βpXtp + εt for a situation in 
which you believe that X directly causes Y. If, however, both X and Y are 
affected by seasonal trends for reasons unrelated to the relationship they 
have with each other, then X appears to have a strong effect on Y.

If seasonality significantly explains variation in the dependent variable and 
is also correlated with your independent variable, then you’ve excluded rele-
vant variables from your model and have introduced bias into your estimated 
coefficients.
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 Adding season dummy variables to your regression allows you to pick up the 
seasonal co-movement of your variables and therefore make more convincing 
arguments about the causal relationship between your independent variables 
(Xs) and dependent variable (Y).

If you have a situation where seasonal effects are likely, then you should esti-
mate a model like

Yt = β0 + β1Xt1 + β2Xt2 + … + βpXtp + λ1S1 + λ2S2 + … + εt

where X represents your independent variable and S is your season dummy 
variable.

Deseasonalizing time-series data
In many cases, seasonal patterns are removed from time-series data when 
they’re released on public databases. Data that has been stripped of its sea-
sonal patterns is referred to as seasonally adjusted or deseasonalized data.

 In order to obtain a goodness-of-fit measure that isolates the influence of your 
independent variables, you must estimate your model with deseasonalized 
values for both your dependent and independent variables. Here’s how to do 
just that:

 1. Regress your dependent variable on the seasonal dummy variables to 
obtain the estimated function  and retain 
the residuals from this regression.

 2. Regress each of your independent variables on the seasonal dummy vari-
ables to obtain the estimated functions ,  
where k represents a specific independent variable, and retain the resid-
uals from all k of these regressions.

 3. Regress the residuals obtained in Step 1 ( ) on the residuals obtained 
in Step 2 ( ) to estimate .

  The R-squared from this regression provides a better measure of fit 
when the time series exhibits considerable seasonality.

The traditional R-squared can be overinflated when the data contains sig-
nificant seasonal patterns. If you encounter this situation, simply estimate a 
regression with deseasonalized data to find an alternative R-squared value.

 Figure 15-5 uses STATA to estimate the impact of log monthly unemployment 
and a time trend on the log of souvenir sales between 1987 and 1993. I first esti-
mate the model with the raw data, and then I estimate the model with deseason-
alized data. I exclude the output for the intermediate steps to save space. As 
expected, the R-squared is smaller after the data is deseasonalized (0.9106 
compared to 0.9539), but the difference isn’t big. The coefficient estimates for 
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the unemployment and trend variables are similar in both regressions, so the 
results imply that the role of the independent variables isn’t affected by sea-
sonal patterns.

 

Figure 15-5: 
STATA 

time-series 
output from 

estimating a 
deseasonal-

ized model.
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 Econometricians mainly estimate the regression model with deseasonalized 
data to derive the explanatory power of the other independent variables. Your 
primary econometric results, however, should report the estimates from the 
model with the raw data and season dummy variables.



Chapter 16

Diving into Pooled  
Cross-Section Analysis

In This Chapter
▶ Understanding the nature of pooled cross-sectional data
▶ Revealing the flexibility of pooled cross-section econometric analysis
▶ Estimating treatment or policy effects using the difference-in-difference estimator

A 
 pooled cross section combines independent cross-sectional data that 
has been collected over time. For example, the Current Population 

Survey collects independent cross-sectional data by surveying 60,000 randomly 
selected households in the United States each month. Combining or merging  
CPS data collected over many years into one dataset gives you a pooled 
cross section.

The advantage of pooled cross-sectional data is that more observations 
tend to improve the accuracy of econometric estimates, and the added time 
element allows you to explore dynamic adjustment (how your outcome of 
interest, or Y variable, responds to factors as they change over time). In this 
chapter, I show you how you can modify traditional econometric estimation 
techniques to handle pooled cross-sectional data and how this type of  
analysis can be particularly useful in examining changing relationships 
between variables and evaluating policy changes that occur at a specific 
point in time.

Adding a Dynamic Time  
Element to the Mix

Unlike typical cross-section analysis, which imposes a static nature to your 
models, a pooled cross section allows you to incorporate a dynamic time  
element. You can do this with a pooled cross section because cross-sectional 
units are observed in two or more periods.
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Typically, pooled cross sections contain many more cross-sectional  
observations than the number of time periods being pooled. Consequently, 
the models usually resemble cross-sectional analysis with possible  
heteroskedasticity corrections (I cover heteroskedasticity in Chapter 11). 
Because the time gap between the collection of cross-sectional units is  
usually large (anywhere from one year to several years apart), autocorrelation 
and other time-series issues tend to be ignored (for details on autocorrelation, 
see Chapter 12).

It’s not uncommon to confuse a pooled cross section with a panel dataset. 
Both contain cross-sectional measurements in multiple periods, but in a 
panel dataset the same cross-sectional units are included in each time period 
rather than being randomly selected in each period.

In the following sections, you see how pooled cross-sectional data can allow 
you to identify more complex relationships between your dependent and 
independent variables. In addition, I show you how to construct and  
estimate models that allow you to fully exploit the richness of pooled  
cross-sectional data.

Examining intercepts and/or slopes  
that change over time
With pooled cross-sectional data, the population distribution from which the 
random samples are drawn may change over time.

 If you use a pooled cross section, you’ll want to examine potential time effects. 
If you ignore these time effects, you may obtain biased estimates of your 
regression coefficients.

One possibility is that a changing population distribution results in different 
intercepts and/or slopes over time. In Figure 16-1, I illustrate how accounting 
for a changing intercept may be important with pooled cross-sectional data. 
If you don’t account for time effects, you obtain the sample regression line 
1A (with a biased estimate of the intercept). However, accounting for time 
allows you to identify lines 1B and 1C.

Time can also influence the impact of your independent variable on the 
dependent variable by altering the magnitude of the slope, as I show in  
Figure 16-2. If you ignore time effects, you’ll end up with line 2A. Regression 
line 2A has heteroskedasticity (a topic I discuss in Chapter 11) and, more 
importantly, a biased estimate of the slope (impact of the independent  
variable). By accounting for time effects, you can identify lines 2B and 2C, 
which appropriately estimate the slope.
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Figure 16-1: 
A pooled 

cross  
section with 

different 
intercepts.

 

 

Figure 16-2: 
A pooled 

cross  
section with 

different 
slopes.

 

Incorporating time dummy variables
You can account for a changing distribution of the population over time by 
using time-period dummy variables. Specifically, you can say that these  
variables take on a value of 1 for a given time period and 0 otherwise. (For 
the scoop on regular dummy variables, turn to Chapter 9.) Including dummy 
variables in your model for each time period, except the reference period 
(usually the first or last period of the pooled cross sections), allows you to 
identify changing parameter values.

 You can tell whether the population distribution has changed by observing 
different intercepts and/or slopes. 
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The basic model utilizing pooled cross-sectional data is specified as

Yi = β0 + β1Xi1 + β2Xi2 + … + δ1Ri1 + δ2Ri2 + … + εi

where R represents the time period (1,2, …) from which the cross-sectional 
observation was drawn. By examining the statistical significance of the  
estimated δ (or ) terms, you can identify any shifts (whether up or down) in 
the relationship for a given period.

Adding time-period dummy variables interacted with the other independent 
variables allows you to identify both changing intercepts and slopes. If you 
have cross sections for two time periods — a quite common scenario — your 
model with dummies and interactions would be specified as

Yi = β0 + β1Xi1 + β2Xi2 + … + δ0Ri + δ1(X1 · R)i + δ2(X2 · R)i + … + εi

where (Xk · R) represents the interaction of the independent X variable with 
the time period dummy variable. If you find that  is statistically significant, 
you have evidence that the function has shifted from one time period to the 
next. If any of the , , and so on are statistically significant, then the  
relationship between a particular X variable and the dependent variable 
changes over time.

 If you’re interested in any distributional change that may have occurred in 
your population of interest between time periods, you can perform an F-test 
of joint significance for all the δ (δ0, δ1, δ2, …) parameters (I discuss tests of 
joint significance in Chapter 7). Essentially, this test identifies whether the 
time period has a collective influence on the intercept and/or impact of the 
independent variables. It’s equivalent to performing a Chow test for structural 
stability (I cover the Chow test in Chapter 8).

 In Figure 16-3, I illustrate how you can create a pooled cross section in STATA. 
The data is compiled using two random samples of workers from the Current 
Population Survey (CPS) in 2010 and 2011. After you collect multiple cross 
sections with the same variables, especially one that captures the time period 
from which the cross section was drawn, you can use the “append” command 
in STATA to pool the cross sections. For males between the ages of 16 and 25, 
I’m interested in the impact of age on labor force participation. I use STATA to 
estimate a model using a time period dummy variable and its interaction with 
the age variable.

For ease of interpretation, I estimate a linear probability model (flip to 
Chapter 13 for full details on this type of model). The results suggest that 
young males were about 40 percent more likely to be in the labor force in 
2011 compared to 2010. This has shifted the labor force participation rate  
up. In addition, the interaction coefficient implies that the relationship 
between age and labor-force participation has changed; an additional year 
of age is associated with 0.07 probability (7 percent) increase of labor force 
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participation in 2010, but a 0.05 (0.07 – 0.02) probability (5 percent) increase 
in 2011. The F-test of joint significance for the time dummy variable and its 
interaction with the age variable is equivalent to a Chow test. In this case,  
the result rejects the null hypothesis of structural stability (F = 70.47,  
p-value < 0.01), so the relationship between the dependent and independent 
variables changed significantly over the time span covered by the data.

 

Figure 16-3: 
A STATA 

regression 
output with 

pooled 
cross-

sectional 
data and 

time-period 
controls.

 

Using Experiments to Estimate Policy 
Effects with Pooled Cross Sections

Empirical researchers in the areas of labor, health, development, and other 
fields of economics are increasingly relying on pooled cross-sectional data 
for their analyses. Generally, if your interests are in any area of economics 
where policy evaluation is important, you’ll probably want to introduce a 
time element into your analysis.

 Measuring variables over a period of time and from a randomly selected group 
of observations enables you to quantify before and after outcomes. Then you 
can estimate the impact of policies that were implemented at some point in 
between the first period and the last period you observe the variables.
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Experiments allow researchers to observe the impact of specific conditions 
by manipulating an independent variable. Because economists are often 
interested in how policies affect economic outcomes, experiments can be 
useful mechanisms to quantify policy (or treatment) effects. Two types of 
experiments exist: true experiments and natural (also known as quasi)  
experiments. The next sections tell you more about each type.

Benefitting from random assignment:  
A true experiment

 In a true experiment, subjects are randomly assigned to two (or more) groups. 
One group from your population of interest is randomly assigned to the  
control group, and the remainder is assigned to the treatment group(s).  
With random assignment, you can estimate the policy (treatment) effect by 
calculating the average difference between the treatment and control groups, 
holding other independent influences constant.

The econometric specification to identify a treatment effect in a true  
experiment is

Yi = β0 + β1Xi + β2Gi + εi

where X captures the influence of factors unrelated to being in the treatment 
group and G is a dummy variable equal to 1 if the observation was subject  
to a specific policy (or treatment) and 0 otherwise. Consequently,  would 
estimate the average treatment (policy) effect on outcome Y.

 In the model Yi = β0 + β1Xi + β2Gi + εi, the expected value of the treatment is as 
follows:

Note: In a true experiment, the E(X) isn’t affected by selection into the treatment 
group because subjects are randomly assigned, so .

 If conditions of a true experiment are present, you can estimate policy effects 
by adding a dummy variable to your econometric model that identifies the 
group who is subject to the new policy. If you’re using a pooled cross section 
and a new policy was implemented in between the time the two cross sections 
were obtained, then a time period dummy can be used to identify the groups.
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Working with predetermined subject 
groups: A natural (or quasi) experiment

 In a natural (or quasi) experiment, subjects aren’t randomly assigned to  
treatment and control groups. Instead, membership of subjects into their 
respective groups is determined by conditions outside your control. If  
placement into a treatment group isn’t random, the estimation of policy  
(treatment) effects requires that you control for systematic differences 
between subjects in the control group and those in the treatment group.

In Figure 16-4, I illustrate a plausible scenario differentiating subjects from 
the control and treatment groups.

 

Figure 16-4: 
A natural 

experiment 
with treat-
ment and 

control 
groups.

 

Subjects are usually observed at specific points in time (Period 1 and Period 2) 
with the first observation period occurring before the policy change and the 
subsequent observation period occurring after the policy change.

Some of the difference between the treatment and control groups post-policy 
change is preexisting. Without the randomization of a true experiment,  
subjects with certain characteristics may be more likely to belong to the 
treatment or control group. Additionally, another component of the post-
policy change difference between the groups is a general trend.
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 In order to properly identify the policy effect, you need to difference out both 
preexisting differences between the groups and time-period effects. 
Consequently, the commonly accepted identification of policy effects is known 
as difference-in-difference (D-in-D).

In Figure 16-5, I decompose the difference between the treatment and control 
groups to illustrate the policy effect. Note that the policy effect must account 
for differences in the control and treatment groups as well as the impact of 
time itself.

 

Figure 16-5: 
A decom-

position of 
differences 
to find pol-
icy effect.

 

 You can estimate the policy effect directly with pooled cross-sectional data 
and an econometric model specified as

Yi = β0 + β1Gi + β2Ri + β3(G · R)i + εi

where G equals 1 if the subject is in the control group and 0 if it isn’t, R 
equals 1 if the subject was observed in the second period and 0 otherwise, 
and (G · R) is the interaction between G and R (I fill you in on interaction 
terms in Chapter 9). In this model, β3 is the D-in-D parameter capturing the 
policy effect.

In Table 16-1, I use the parameters from the model Yi = β0 + β1Gi + β2Ri + β3(G · 
R)i + εi to show how this specification identifies the policy (D-in-D) effect.
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Table 16-1 Difference-in-Difference Econometric Model
Before 
(Period 1)

After  
(Period 2)

After – Before 
(Period 2 – Period 1)

Control Group β0 β0 + β2 β2

Treatment Group β0 + β1 β0 +β1 + β2 + β3 β2 + β3

Treatment – Control β1 β1 + β3 β3

If you want to measure a policy effect, you can do so by estimating one 
econometric model and focusing on one coefficient ( ).

 In applied settings, you can modify the basic D-in-D econometric model to 
control for other characteristics that may vary systematically across subjects. 
In a typical scenario, your D-in-D model will have the form Yi = β0 + β1Gi + β2Ri 
+ β3(G · R)i + β4Xi + … + εi, where X represents additional control variables that 
augment the basic D-in-D model.

 In Figure 16-6, I illustrate how you can create a pooled cross section in STATA 
and estimate a D-in-D model. You collect multiple cross sections with the same 
variables, especially ones that capture the time period from which the cross 
section was drawn. Then you can use the “append” command in STATA to 
pool the cross sections. In this example, I look at the impact of increasing the 
minimum wage on labor-force participation for males between the ages of 16 
and 25. Using a pooled cross section of the Current Population Survey (CPS) 
from 2010 and 2011, I can identify a control group where there was no change 
in the minimum wage (the state of Indiana) and a treatment group where there 
was a change in the minimum wage (the state of Illinois).

I estimate a linear probability model so the results are easy to interpret. 
(Check out Chapter 13 for info on these models.) The results suggest that 
young males in Illinois and Indiana were about 6 percent more likely to be in 
the labor force in 2011 compared to 2010, holding other factors constant. The 
labor-force participation rate shifted up. In addition, for every additional year 
of age, young males in these states increase their probability of labor force 
participation by 0.08 (8 percent). Finally, the D-in-D estimator of –0.09 implies 
that the policy change (increased minimum wage in Illinois) was associated 
with a decrease in labor force participation among young men.



290 Part VI: Extending the Basic Econometric Model 

 

Figure 16-6: 
STATA 

output of a 
difference-

in-difference 
model.

 

Although the model in Figure 16-6 controls for age, the model could be 
expanded to control for other factors that may differ systematically between 
the years, including education, marital status, and many other potential char-
acteristics. However, that expansion wouldn’t change how you estimate the 
D-in-D (policy effect) or interpret the results.
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Panel Econometrics
In This Chapter
▶ Reducing bias by using panel data
▶ Understanding the difference between fixed effects and random effects estimation
▶ Using the Hausman test results to choose the appropriate panel model

L 
ike pooled cross-sectional data (which I cover in Chapter 16), panel (or 
longitudinal) data also includes both cross-sectional and time-series 

dimensions. The fundamental difference is that the identical cross-sectional 
units (individuals, firms, cities, countries, and so on) are included in each 
time period during which data are collected rather than randomly selecting  
a cross-sectional group in each time period. Examples of well-known 
panel datasets include the National Longitudinal Surveys (NLS), the Panel 
Study of Income Dynamics (PSID), and the Survey of Income and Program 
Participation (SIPP).

In this chapter, you discover how panel econometric analysis helps you deal 
with the elusive omitted variable problem that can be present in both  
cross-sectional and time-series regression analysis. You also see how  
software can be used to implement these procedures and appropriately deal 
with the special challenges that arise with panel-data analysis.

Estimating the Uniqueness  
of Each Individual Unit

 One of the strengths of panel data is that it permits analysis of important  
economic questions that can’t be addressed using data that are exclusively 
cross sectional or time series. By utilizing repeated information on the  
individual entities being investigated, you can control for the effects of some 
missing or unobserved variables. The things you don’t observe can be  
important factors determining your outcome of interest, so dealing with this 
form of omitted variable bias can be a huge benefit of panel data.
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An observable variable can be something like age, education, or anything 
that’s typically identified in surveys. An unobservable variable can be an 
individual’s work ethic, natural ability, or any information that’s not easily 
obtained when data is collected.

Suppose the model that explains your outcome of interest is

Yit = β0 + β1Xit + β2wit + εit

where i = 1,…, n represents the cross-sectional unit beginning with the first 
individual unit (1) and proceeding to the last (n), t = 1,…, T captures the time 
period in which the subject is observed beginning with the first time period 
(1) and proceeding to the last (T), X is an observable independent variable, 
and w is an unobservable independent variable.

 The danger with combining panel data and OLS estimation is that you may 
end up with results containing heterogeneity bias. This bias occurs if you 
ignore characteristics that are unique to your cross-sectional units (relegate 
those things to the error term) and they’re correlated with any of your  
independent variables (see Chapter 8 for a deeper look at omitted variable 
bias). The direction of the bias can be difficult to predict and is usually 
revealed only after you’ve appropriately handled systematic differences 
between your cross-sectional units (individual heterogeneity).

In Figures 17-1, 17-2, and 17-3, I illustrate some examples of heterogeneity 
bias resulting from ignoring individual fixed effects. In each of the figures, the 
slopes of lines A, B, and C represent the estimated impact of X on Y.  
However, in order to properly identify these lines, you need to account for 
the individual units that are represented in the panel data. If the panel is 
treated like a pooled cross section and you don’t take measures to control 
for individual fixed effects, you run the risk of obtaining biased estimates 
of the relationship between X and Y. The lines labeled with a D identify the 
pooled (and biased) OLS estimates.

 ✓ In Figure 17-1, the pooled OLS estimate (line D) results in an overestimate 
of the impact of X on Y, as illustrated by the parallel lines A, B, and C.

 ✓ In Figure 17-2, the pooled OLS estimate (line D) results in an underestimate 
of the impact of X on Y, as illustrated by the parallel lines A, B, and C.

 ✓ In Figure 17-3, the pooled OLS results (line D) generate a negative  
estimated impact of X on Y when, as illustrated by the parallel lines A, B, 
and C, the effect is actually positive.
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Figure 17-1:  
OLS esti-

mates 
produce 

a steeper 
slope by 
ignoring 

individual 
fixed effects.

 

 

Figure 17-2:  
OLS esti-

mates 
produce a 

flatter slope 
by ignoring 

individual 
fixed effects.

 

 

Figure 17-3: 
OLS esti-

mates are in 
the wrong 

direction 
because 

individual 
fixed effects 
are ignored.
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The existence of unobservable factors that consistently impact your outcome 
of interest (Y variable) is likely with panel data, which means you need to 
consider using one of three estimation methods (I tell you about each one in 
the following sections):

 ✓ First difference (FD) transformation

 ✓ Dummy variable (DV) regression

 ✓ The fixed effects (FE) estimator (the method most commonly used by 
applied econometricians)

First difference (FD) transformation
With panel data, you can deal with unobservable variables by applying a first 
difference (FD) to the data. To transform the data into an FD, you subtract 
the previous value of a variable from the current value of that variable for a 
particular cross-sectional unit and repeat the process for all variables in the 
analysis.

 After you perform an FD transformation, you can estimate the model using 
OLS with all the first-differenced data. Doing so eliminates (differences out) 
any fixed effects associated with the cross-sectional units, even if those  
characteristics aren’t observable. Repeated observations for the same entities 
allow you to get rid of the effect of unobservable factors only if those  
characteristics are constant over time for each entity.

 In order to use the FD approach, I rely on a couple of assumptions. First, I 
assume that the values for the unobserved variable remain constant through 
time for a given subject, but vary across subjects; , which means 
that wit is equal to wi for all values of t. Second, I assume that the model 
doesn’t change over time; Yit = β0 + β1Xit + β2wit + εit and Yit – 1 = δ0 + β1Xit – 1 +  
β2wit – 1 + εit – 1. After I establish these two assumptions, I can take the first 
 difference (FD) of individual observations over time and obtain

where Δ denotes change and the unobserved variable (w) has been differenced 
away.

Dummy variable (DV) regression
If you have panel data, the simplest approach in estimating your model is 
to pool all the years of data and apply ordinary least squares (OLS) so that 
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you’re essentially ignoring the panel nature of the data. (I explain model 
estimation with pooled cross-sectional data in Chapter 16.) In that case, your 
model would look something like

Yit = β0 + β1Xit + vit

where vit = wi + εit. The vit term is known as the composite error because it 
contains individual fixed effects and an idiosyncratic error. The individual 
fixed effects are unobservable factors associated with the individual subjects, 
whereas the idiosyncratic error represents a truly random element associated 
with a particular subject at a specific point in time.

 One way to account for individual fixed effects is by using the dummy variable 
(DV) regression. You apply this approach by including dummy variables in 
your model for each cross-sectional unit, making it a straightforward extension 
to the basic use of dummy variables that I cover in Chapter 9.

 Panel data is a necessary prerequisite for estimating a DV model. With  
cross-sectional data, this approach leads you to defining a dummy variable for 
every observation. Consequently, you exhaust all your degrees of freedom and 
end up with meaningless results.

 A model that explicitly accounts for individual fixed effects can be specified as 
, where αi0 is a unique intercept for each individual (the ith 

cross-sectional unit). More generally, a DV model can be represented as 

 

where A = 1 for any observation that pertains to individual i and 0 otherwise.

 If your data contains a large number of individuals (cross-sectional units), 
which is quite common with panel data, then the DV approach can be  
computationally burdensome (even for a computer) and impractical. A 
better alternative to this approach is the fixed effects (FE) estimator, which I 
describe in the next section.

Fixed effects (FE) estimator
 The most common method of dealing with fixed effects of cross-sectional units 

is known as the fixed effects (FE) estimator. FE estimation is applied by time 
demeaning the data. In other words, you calculate the average value of a  
variable over time for each cross-sectional unit and subtract this mean from 
all observed values of a given cross-sectional unit, repeating the procedure 
for all the cross-sectional units. Demeaning deals with unobservable factors 
because it takes out any component that is constant over time. By assumption, 
that would be the entire amount of the unobservable variable.
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Because the FE estimator is the most common method for dealing with 
individual fixed effects among applied econometricians, most econometrics 
software packages have a specific command that automatically performs the 
demeaning transformation of the data, properly calculates the degrees of 
freedom, and appropriately adjusts the standard errors.

 For FE estimation, you must first specify the model as

where 

and β1 is known as the fixed effects estimator (or within estimator). The  
unobservable variable (w) has been demeaned away because the values are 
assumed constant over time. Finally, I place the ~ above the other variables 
to note they’ve been transformed into their time-demeaned versions (also 
called the within transformation).

 You may be tempted to calculate the degrees of freedom with FE estimation 
using the traditional (OLS) calculation (total number of observations minus 
the number of estimated parameters), but be careful! First, notice that you 
don’t have an intercept to work with. And remember that you lose one 
degree of freedom for each cross-sectional observation from demeaning. 
Consequently, the correct formula for calculating the degrees of freedom is  
nT – n – p, where n is the number of cross-sectional units, T is the number of 
time periods, and p is the number of independent variables.

 Typically, FE models also include time effect controls. You can add them by 
adding dummy variables for each time period in which cross-sectional  
observations were obtained. With time effects, you capture anything that may 
affect all cross-sectional units equally, on average, at a specific point in time.
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 In Figure 17-4, I illustrate how you estimate an FE model in STATA. The data 
consists of a sample of workers from the 1997 National Longitudinal Survey of 
Youth (NLSY). The same individuals are observed for ten years (1997–2006), 
but I use only those who were between 18 and 25 years of age at the time of 
the first interview (1997). In order to utilize STATA’s panel econometrics  
tools, I first use the “xtset” command to declare the data as panel and tag the 
variables that identify cross-sectional units and time periods. After I execute 
the “xtset” command, STATA can make any calculations relevant for estimation, 
including the time demeaning necessary for FE. For my subsample of workers, 
I’m interested in the impact of education on the natural log of wages. I use 
STATA to estimate OLS and FE models. For the FE model, I have to use the 
“xtreg” command and specify the “fe” option rather than use the standard 
“regress” or “reg” commands.

 

Figure 17-4:  
Using panel 

data to 
estimate 

an OLS and 
FE model in 

STATA.
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As you can see in Figure 17-4, the impact of education is larger with FE than 
with OLS. An additional year of education increases wages by 4 percent with 
the OLS estimates and increases wages by 8.7 percent with the FE estimates 
(I discuss the interpretation of coefficients with the log-linear specification in 
Chapter 8). Consequently, the OLS results underestimate the impact of  
education by ignoring unobserved individual heterogeneity.

Increasing the Efficiency of Estimation 
with Random Effects

If you have panel data, your econometric model can explicitly estimate the 
unobserved effects associated with your cross-sectional unit using the fixed 
effects (FE) model: Yit = β0 + β1Xit + β2wit + εit, where wit = wi are unobserved 
characteristics for each cross-sectional unit that don’t vary over time. (I 
explain how to estimate this model in the preceding section.) On the other 
hand, your econometric model can allow all unobserved effects to be relegated 
to the error term by specifying the model as 

Yit = β0 + β1Xit + vit 

where vit = wi + εit. This approach is known as the random effects (RE) model 
and is the focus of this section.

 With panel data, the advantage of the RE model over the FE model is more 
efficient estimates of the regression parameters. The RE technique doesn’t 
estimate the fixed effects separately for each cross-sectional unit, so you get 
fewer estimated parameters, increased degrees of freedom, and smaller  
standard errors.

The composite error term and assumptions 
of random effects model
As with other types of estimation methods, the legitimacy of using the RE 
technique to estimate your model Yit = β0 + β1Xit + vit rests on the characteristics 
of its error term vit = wi + εit. The error term in a RE model is known as the 
composite error term because it combines two components. This term was 
also used in the previous section (where you learn about the fixed effects 
model), but the random effects model requires that you pay more attention 
to the specific components of the error term: 
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 ✓ The unobserved effects associated with each particular cross-sectional 
unit (wi)

 ✓ A completely random element that isn’t associated with the cross- 
sectional units (εit)

 A critical assumption of the RE model is that the unobserved individual effect 
(wi) isn’t correlated with the independent variable(s); Cov(Xit, wi) = 0. If the 
individual effect is correlated with the independent variable(s), then the RE 
estimate is biased.

 The assumption that the individual effects aren’t correlated with the independent 
variable(s) doesn’t imply that the individual effects are identical for every 
observation. Rather, it implies that their values are random (some negative  
and some positive) with no association with the observed values of the 
independent variable(s). Therefore, the individual effects are appropriately 
captured by the intercept term; . In addition, for the homoske-
dasticity assumption to hold, you must also impose a constant variance on the 
individual effects;  (I cover the homoskedasticity assumption 
in detail in Chapter 11).

The random effects (RE) estimator
If you have panel data and believe that variable Y depends on variable X, 
then you may be tempted to estimate the model Yit = β0 + β1Xit + vit using 
OLS. However, your results would be flawed because OLS ignores the unique 
nature of the error term. The composite error term (vit) is vit = wi + εit. 
Although εit satisfies the classical linear regression model (CLRM) assumptions, 
the inclusion of wi in the composite error results in a CLRM assumption  
violation. (For a refresher on the CLRM assumptions, see Chapters 6 and 7.)

 If you relegate the individual effects (wi) to the error term, you create positive 
serial correlation in the composite error. It occurs because individual  
cross-sectional units with positive errors in one period are also likely to have 
positive errors in other periods, and vice versa. As a result, RE estimation 
requires feasible generalized least squares (FGLS) rather than OLS to  
appropriately eliminate serial correlation in the error term and to produce the 
correct standard errors and test statistics. (To find out more about FGLS, turn 
to Chapter 12.)

 The serial correlation in the composite error of a RE model is
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where  and . The generalized least squares (GLS) 
transformation is performed by first defining the parameter

where T is the number of time periods in the panel and 0 ≤ λ ≤ 1. Then λ is 
used to produce the GLS transformation

where 

The transformed error term no longer contains serial correlation.

In practice, the value of λ isn’t known, so the transformation relies on its 
estimate ( ). Replacing λ with  results in the FGLS random effects estimator. 
Econometric software usually supports RE estimation by internally calculating 

 and automatically producing the estimated β terms.

 In an RE model, your independent variables can include individual characteristics 
that don’t vary over time (such as gender and race) because they won’t be  
differenced away as they are in the FE model. In addition, RE models are also 
likely to include time-effect controls — added dummy variables for each time 
period in which cross-sectional observations were obtained. With time effects, 
you capture anything that may affect all cross-sectional units equally, on aver-
age, at a specific point in time.

 In Figure 17-5, I illustrate how you estimate an RE model in STATA using data 
on a sample of workers from the 1997 National Longitudinal Survey of Youth 
(NLSY). Specifically, I’m focusing on those individuals who were between 
18 and 25 years of age at the time of the first interview. To make sure I can 
use the STATA panel econometrics tools, I first use the “xtset” command to 
declare the data as panel and tag the variables that identify cross-sectional 
units and time periods. I execute the “xtset” command, and then STATA can 



301 Chapter 17: Panel Econometrics

internally perform any calculations relevant for estimation, including adjustments 
for serial correlation necessary for RE. For my subsample of workers, I want to 
know the impact of education on the natural log of wages. I use STATA to  
estimate OLS and RE models. For the RE model, I must use the “xtreg” command 
and specify the “re” option instead of using the standard “regress” or “reg” 
commands.

 

Figure 17-5:  
Using panel 

data to 
estimate 

an OLS and 
RE model in 

STATA.
 

Figure 17-5 clearly shows that the impact of education is larger with RE than 
with OLS. An additional year of education increases wages by 4 percent with 
the OLS estimates but increases wages by 5.7 percent with the RE estimates 
(I discuss the interpretation of coefficients with the log-linear specification  
in Chapter 8). Consequently, the OLS results underestimate the impact of 
education by ignoring serial correlation in the error term.
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Testing Efficiency against Consistency 
with the Hausman Test

In practice, data can always surprise you with a failure of what appear to be 
even the most rational assumptions. Additionally, you may not even be able 
to make a strong case for the sensibility of an assumption. A particularly 
good example of this is assuming the individual fixed effects in an RE model 
aren’t correlated with the independent variable(s). For example, in a wage 
model, you may include an individual’s education as an independent variable 
along with other measurable human capital and specific job traits while 
relegating the unobserved individual characteristics to the error term. This 
approach may be sensible, but it’s also possible that natural ability, work 
ethic, and other individual fixed effects are correlated with occupational 
choices and the tendency to acquire human capital.

 The RE model produces more efficient estimates than the FE model. However, 
if individual fixed effects are correlated with the independent variable(s),  
then the RE estimates will be biased. In that case, the FE estimates would be 
preferred. The Hausman test checks the RE assumptions and helps you decide 
between RE and FE estimation.

 A Hausman test examines differences in the estimated parameters, and the 
result is used to determine whether the RE and FE estimates are significantly 
different. The null hypothesis of the Hausman test is that if the assumptions of 
the RE model hold, then the RE model produces the same estimated  
parameters as the FE model but they’re better (meaning they have more  
efficiency or smaller standard errors). If the RE assumptions don’t hold, then 
the estimated parameters are significantly different and the RE estimates  
contain bias. This result is the alternative hypothesis of the Hausman test. If 
you fail to reject the null hypothesis in a Hausman test, you use the RE estimates. 
On the other hand, if you reject the null hypothesis in a Hausman test, using 
the FE estimates as the alternative hypothesis implies that the FE estimates 
are consistent.

 If heteroskedasticity is present, the Hausman test results could be misleading. 
The solution involves estimating an auxiliary regression that includes all the 
variables from your original model with an additional set of variables (defined 
as time averages of all your time-varying independent variables). After  
estimating this auxiliary regression, you perform a joint test of significance on 
the coefficients of those additional variables (I cover joint hypothesis tests 
for subsets of independent variables in Chapter 7). If you fail to reject the null 
hypothesis that the coefficients are simultaneously zero, then you use the RE 
estimates. If you reject the null hypothesis, you use the FE estimates.
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In a model with one independent variable, the Hausman test statistic is 
defined as

where  is the estimated coefficient for the independent variable,  is the 
estimated variance of the coefficient, and FE and RE subscripts denote the 
values were obtained, respectively, by fixed effects and random effects  
estimation. The distribution of the test statistic is chi-squared with 1 degree 
of freedom. The general idea can be extended to models with more than one 
independent variable (p degrees of freedom), but that requires matrix  
algebra. Fortunately, STATA (and some other econometric software) allows 
you to perform a Hausman test without any manual calculations or matrix 
operations.

 To see a Hausman test run on real data, check out Figure 17-6. In this case, I 
took data from the 1997 National Longitudinal Survey of Youth (NLSY) and 
used STATA’s “xtset” command in order to classify the data as panel and tag 
the variables identifying cross-sectional units and time periods. Now I can use 
STATA to estimate FE and RE models to better gauge the impact of education 
on the natural log of wages. As you can see in Figure 17-6, the impact of  
education is larger with FE than with RE. A difference in the estimated  
coefficients, however, isn’t enough to ensure that I should rely on the FE  
estimates. I also need to take into account the standard errors of the estimates. 
The Hausman test accounts for both differences in the estimated parameters 
and their standard errors. In this case, it confirms that I should reject the 
assumptions of the RE model (with a large chi-squared value and low p-value) 
and use the FE estimates.
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Figure 17-6:  
Using 

STATA to 
perform a 
Hausman 
test after 

estimating 
FE and RE 

models.
 



Part VII
The Part of Tens

 Visit www.dummies.com/extras/econometrics to discover ten practical 
applications of what you’re spending so much time studying. You may be intrigued — 
and even motivated — by what you see.

http://www.dummies.com/extras/econometrics


In this part . . .
 ✓ Understand the core components of an econometrics project, 

whether that project is a 15- to 30-page paper, a presentation, 
or a combination of a paper and a presentation.

 ✓ Keep the basic elements of sound econometric analysis in mind 
so you can avoid committing the most common mistakes in 
applied econometrics.



Chapter 18

Ten Components of a Good 
Econometrics Research Project

In This Chapter
▶ Choosing an interesting econometrics topic
▶ Setting up your work in the appropriate context
▶ Determining the model and complementary tests
▶ Using the results to tell a story

I 
n some econometrics courses, a research project may consist of  
writing a paper that’s anywhere from 15 to 30 pages in length (including 

references, tables, and graphs). In other cases, your econometrics professor 
may expect you to give a presentation on a research topic in combination 
with (or instead of) writing a paper. No matter what the specifics of your 
class assignment, you’ll probably be expected to come up with a topic,  
collect data, use econometrics software to complete the analysis, and interpret 
your findings. That sounds like a lot, but this chapter breaks down the ten 
components you need to include in any econometrics research project.

Introducing Your Topic and Posing  
the Primary Question of Interest

The first paragraphs of your research paper should provide an interesting 
description of your topic. This section is important because it either  
captures your readers’ attention or bores them right from the start.

 Econometrics uses models and data for the purpose of shedding light on  
economic puzzles. When you choose a topic and write an explanation of it, 
make sure you’re clear about the purpose of your study and how it’s important 
beyond the exhibition of your quantitative skills.
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The introductory section of your research project should include the  
following two components, in this order:

 ✓ Explanation of the topic: Provide some interesting background  
information about your topic and then describe the question that’s 
addressed by the research.

 ✓ Description of your approach: Provide a clear description of your  
population of interest and how it’s represented in your sample data. 
Also, describe how you analyze the data and why you chose the 
approach you describe. Keep this description brief, because you discuss 
the details of the empirical approach and specific data issues in  
subsequent sections of the research project.

Discussing the Relevance and 
Importance of Your Topic

The introductory section of the paper should also motivate the subject so 
that readers appreciate the importance of the topic and your findings.

 The first paragraph of your introductory section should provide a basic 
explanation of your research question to spark the reader’s interest (see the 
preceding section), and you should follow it up in the second paragraph with 
a more profound argument for the importance and relevance of the topic. 
For example, does your work challenge a long-held belief in economics and 
is, therefore, grounded in theory? Is the research question new, based on 
your interests, and empirically driven? Do the results have potential policy 
implications? If you can’t answer “yes” to at least one of these questions, then 
you’ll need to carefully explain why the use of econometrics is essential to 
addressing your research question. This section of your research is important 
because it gets readers to understand the importance of the topic and care 
about your results.

Reviewing the Existing Literature
Other researchers are likely to have examined the topic of your paper (or 
something closely related), so one section of your paper should review other 
research on the topic. The length of this section depends on the amount of 
previous research that’s been completed on your topic, but you should plan 
on about two to four pages of literature review. This section should be  
placed immediately after introducing the topic and briefly describing your 
contribution in the introduction, but before you begin getting into the details 
of your model and data.
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 In your literature-review section, focus on summarizing, highlighting the 
strengths, and pointing out the weaknesses of prior research. Unless the goal 
of your work is to replicate or update an existing study with new data, you 
probably want to focus on one of the weaknesses in the prior literature that 
you intend your own econometric work to address.

 In your literature review, refrain from using Internet, newspaper, or magazine 
sources. Instead, keep the focus of your reading and review of papers to those 
published in scholarly journals. Save the popular press sources, such as  
newspaper and magazine articles, for motivating the topic (in the introductory 
section) or providing closure (in the concluding section).

 Here are some sources for finding other econometricians’ work you can  
reference:

 ✓ Google Scholar (scholar.google.com) lets you search by keyword.

 ✓ Social Science Research Network (www.ssrn.com) contains a repository 
of working papers with the latest research findings.

 ✓ Websites of economics journals that are likely to have published papers 
on your topic may offer free articles.

 ✓ Economic Journals on the web (http://www.oswego.edu/~economic/ 
journals.htm) provides a list of economic journals.

 ✓ EconLit (www.aeaweb.org/econlit/) lists sources of economic 
research and is available through most electronic resources of  
university libraries.

Describing the Conceptual  
or Theoretical Framework

One of the characteristics that differentiates applied research in econometrics 
from other applications of statistical analysis is a theoretical structure  
supporting the empirical work. In other words, the theoretical structure from 
your knowledge of economics is emphasized in econometrics (and should 
justify the connection between your dependent and independent variables) 
rather than focus only on the statistical fit between variables.

 By tapping into your vast stores of common sense and using solid economic 
theory, you can come to methodical conclusions about which variables are 
independent and can be used to explain your outcome of interest. When 
explaining the theoretical structure of your analysis, be sure to clearly explain 
the rationale behind the variables you use.

http://scholar.google.com/
http://www.ssrn.com
http://www.oswego.edu/~economic/journals.htm
http://www.oswego.edu/~economic/journals.htm
http://www.aeaweb.org/econlit/
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Using a theoretical framework before estimating models (the mathematical 
functions representing the relationship between your variables) means that 
you should think carefully about the process generating your outcome of 
interest. In particular, you should provide justification for the variables that 
you’re including in the analysis. Models that provide this rationale are  
considered to be well specified (you can learn more about model specification 
by turning to Chapter 8).

Explaining Your Econometric Model
After you develop the theoretical structure of your model, you need to  
connect that with your empirical approach (that is, your method of statistical 
analysis and observation), which is formally known as your econometric 
model.

 Economic theory guides your choice of dependent and independent variables. 
At this point, however, you should explain and justify any specification  
characteristics of the econometric model (logs, quadratic functions, qualitative 
dependent variables, and so on) that aren’t directly addressed by the  
conceptual framework. This can be achieved with intuition, scatter plots, and/
or conventions derived by researchers in previously published work. Also, be 
sure to explain any notation that may not be familiar to readers and define the 
elements of the model (specific variables and any transformations).

 You can help your readers follow your analysis if you highlight the  
components of the model that specifically address your research question. 
If there are contesting theories (economists may have different views about 
which variables should be included in the analysis and/or how they’re related 
to each other), then you should explain whether this implies that you could 
end up with different estimates of the relationship between the variables in 
one model or if you should estimate more than one model.

Discussing the Estimation Method(s)
Because estimation usually assumes that certain statistical conditions 
hold, going from your econometric model to estimation may not be entirely 
straightforward.

 Estimation problems arising from a failure of one (or more) of the classical 
linear regression model (CLRM) assumptions are common in applied  
econometric research. (I introduce you to these assumptions in Chapter 6.) 
If the empirical model has potential problems — such as multicollinearity 
or heteroskedasticity — you should describe the source, discuss how your 
results may be affected, and explain how you’ll address the complications.
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Most estimation problems have universally accepted solutions (for example, 
using maximum likelihood to estimate a probit model with a qualitative 
dependent variable), but you should plan on devoting at least one paragraph 
and up to a page to a discussion of the specific estimation methods used in 
your paper.

 It’s usually a good idea to estimate your model using OLS to obtain baseline 
results, even if you ultimately decide to use a different estimation technique. 
You may find that the results are similar and OLS is the easiest to interpret.

Providing a Detailed Description  
of Your Data

Your econometric results are only as good the data used to estimate your 
model(s).

 Give a thorough description of the data you use. Address these issues:

 ✓ How the dataset was acquired and its source(s)

 ✓ The nature of the data (cross sectional, time series, or panel)

 ✓ The time span covered by the data

 ✓ How and with what frequency the data was collected 

 ✓ The number of observations present

 ✓ Whether any observations were thrown out and why

 ✓ Summary statistics (means, standard deviations, and so on) for any  
variables used in your econometric model(s)

Approximately one paragraph of your research paper should describe the 
content of the data and convince readers that its use is sensible for your 
research question. In an additional paragraph or two, use quantitative  
summary statistics to persuade readers that the data is reliable and of high 
quality.

If this section of your research project adequately addresses these questions, 
readers will feel more comfortable about any subsequent conclusions that 
result from the econometric analysis.

 You can also use an appendix table (placed after your references) to list  
variable names, define variables, and list your data sources. This can save 
space in the body of your paper.
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Constructing Tables and Graphs  
to Display Your Results

Most econometric research projects involve estimating numerous variations 
of related models. After you choose which results are most important and 
relevant to addressing your research question, you need to organize them in 
a concise manner.

 A useful table typically contains estimates from several different yet related 
models. It can help convince readers that your results are robust, or it can 
lead into a discussion about why they’re sensitive to changes in specification 
(you can learn all about robustness and sensitivity analysis in Chapter 8). 
Although concise tables of the model estimates are no substitute for a good 
discussion of the results in the text, they allow readers to see all the variables 
and variations of your model while quickly assessing the results. Many of the 
papers that you use in your literature review contain good examples for  
structuring your tables.

 Never report your econometric results with a display of the output from your 
econometrics software. Instead, summarize your results in organized tables 
and/or graphs. A number of table-generating commands are available in 
STATA, including “estout,” “tabout,” and “outreg2.” The programs to execute 
these functions can be downloaded into your version of STATA by typing 
“findit command name” or “help command name” on the command line.

Interpreting the Reported Results
Readers may lose track of details regarding the specification of your  
econometric model, the scale of the variables, and other aspects that  
influence how your results should be interpreted.

 Reporting your econometric results is not enough; you also need to decipher 
the results for your readers. The most important element in the discussion 
of your results is the evaluation of statistical significance and magnitude for 
the primary variables of interest (the ones most important in addressing the 
research question). Some of your variables may be more difficult to understand 
(because, for example, they’re measured in logs, or the model is nonlinear), 
so you need to provide an interpretation of the coefficient estimates for your 
readers. This discussion should include an explanation of magnitude,  
directionality (positive/negative effects), statistical significance, and the  
relationship with the research question and theoretical hypotheses posed  
earlier in your paper.
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If you faced any additional issues when estimating your econometric model, 
you should also discuss these problems. Try to be specific about how your 
results may be affected and why you weren’t able to address these issues 
with your econometric methodology.

Summarizing What You Learned
The conclusion of your research project should synthesize your results and 
explain how they’re connected to your primary question.

 When you summarize your work, begin by explaining what you did in your 
analysis. Then discuss what you discovered and the implications of those  
discoveries. Finally, express some limitations of your research (without being 
too critical) and make some suggestions for future research on the topic.

 Be sure to avoid these common mistakes when drawing your conclusions:

 ✓ Focusing on variables with coefficients that are statistically significant 
even when the magnitude of their effect on the dependent variable is 
negligible (nearly no effect): After you establish that a variable is  
statistically significant, focus your attention on the coefficient. A  
variable’s impact is important if it is both statistically significant and 
associated with a significant magnitude. Sometimes variables have  
coefficients that are highly statistically significant, but there’s no  
economic significance associated with the result because, in an economic 
sense, the magnitude is close to zero or has no discernible impact.

 ✓ Ignoring variables with statistically insignificant coefficients: 
Sometimes the most important finding in a research project is that a 
variable doesn’t have a statistically significant coefficient. In some cases, 
economic theory or the prevailing wisdom has suggested that a specific 
relationship (positive or negative) would exist between your independent 
and dependent variables. If you discover that two variables have no  
statistically significant relationship, that finding itself is potentially 
important. It could suggest that the existing theory is flawed or that 
there are limitations with the empirical analysis of the research question. 
Either way, these results shouldn’t be immediately dismissed.
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Chapter 19

Ten Common Mistakes in  
Applied Econometrics

In This Chapter
▶ Remembering to use economic theory in econometric analysis
▶ Examining your analysis objectives
▶ Using the data appropriately and avoiding unnecessary complications
▶ Preventing conclusions that aren’t warranted by the results

I 
t’s no coincidence that you have to take introductory economics,  
intermediate economic theory, and statistics courses before taking 

econometrics courses. Avoiding mistakes when you do econometric analysis 
depends on your ability to apply knowledge you acquired before and during 
your econometrics class. However, when you’re focusing on the technical 
skills that you have to master to use econometrics, you may lose sight of 
some of the basic elements that characterize sound econometric analysis. 
You can use this chapter’s rundown of common pitfalls to help you improve 
your application of econometric analysis.

Failing to Use Your Common Sense  
and Knowledge of Economic Theory

One of the characteristics that differentiate applied research in econometrics 
from other applications of statistical analysis is the use of economic theory 
and common sense to motivate the connection between the independent and 
dependent variables.

 In econometrics, you should be able to make a strong case for the independent 
variables (Xs) causing changes in the dependent variable (Y). You need sound 
theory and good common sense to justify your approach. Doing so allows you 
to provide a sensible interpretation of your results in addition to the typical 
measures of statistical significance and fit. 
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If the relationship between your dependent and independent variables isn’t 
obvious, you need to explain the causal assumptions of your model.

Asking the Wrong Questions First
Getting obsessed with the technical details of estimating econometric models 
can be easy. However, you should always take a step back and ask yourself 
why you’re doing what you’re doing. Why will others find my topic interesting 
and important? Is the value of my dependent variable likely to be influenced 
by my independent variables in the same period, or should I be using lagged 
values for the independent variables? Can I explain why some variables are 
linear, others are in logs, and some are polynomials? You should ask yourself 
these types of questions before you estimate an econometric model, let  
alone before you deal with complications such as heteroskedasticity and 
autocorrelation.

 Conceptual questions are more important to ask than technical ones.

Ignoring the Work and  
Contributions of Others

 Failing to connect your work with that of others who have examined your 
research question or something closely related to it is a serious mistake. 
Understanding how others have dealt with similar issues can help you figure 
out which model to use, may yield refinements in your work, and allows  
readers to better understand the relevance of your topic.

In your literature review, focus on papers or segments of papers that are 
directly related to your work. Summarize the approach, data, and findings of 
other researchers. Finally, be clear about how your work fits in with what’s 
already been done by others, what’s been improved, and/or how new  
dimensions of the topic have been explored (I provide more details about 
this component of your work in Chapter 18).

Failing to Familiarize Yourself  
with the Data

Students often assume that the data they’re working with is complete for 
all variables and that the reported information is accurate. You can reduce 
your chances of getting unwelcome surprises in your results by doing some 
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exploratory work that includes descriptive statistics, line charts (for  
time-series data), frequency distributions, and even listings of some  
individual data values.

 A number of undesirable outcomes can result from failing to get familiar with 
your analysis data. These three examples are perhaps the most common:

 ✓ Variables you thought were measured continuously are actually in 
categories or groups. For example, in some surveys, respondents are 
asked about their education level. When the data is made available to 
researchers, this information may be converted into years of education 
or codes may be used to place individuals into education categories 
(high school graduate, two-year college degree, and so on). If it’s the 
latter, you need to create dummy variables before proceeding with 
estimation (you can learn how to deal with categorical data and create 
dummy variables in Chapter 9).

 ✓ Measurements that you believed were real values are actually missing 
values. In some datasets, missing values are given a code rather than left 
blank. For example, if a variable is measuring a respondent’s age, you 
may see 998 or 999 for some observations. In that case, 998 may indicate 
the respondent didn’t know the answer, and 999 may indicate that he or 
she refused to answer the question; you’d need to read the data code-
book to find the precise meaning of such values (if the codebook isn’t 
readily available, you may need to contact the data provider directly). In 
either case, the value should be treated as missing and recoded as such 
before you perform any estimation.

 ✓ Data values that appear perfectly legitimate are actually censored 
values. In some surveys, respondent confidentiality is maintained by 
limiting the value of certain variables. Respondent income, for example, 
may be “top-coded” at some value. If the respondent’s income is above 
the limiting value, then the response is simply assigned the limiting 
value (you can find out how to deal with this type of data in your econo-
metric analysis by reading Chapter 14).

Making It Too Complicated
The art of econometrics lies in finding the appropriate specification or  
functional form to model your particular outcome of interest. In many cases, 
however, theory can be vague about the specific elements of a model’s  
specification.

 Given the uncertainty of choosing the “perfect” specification, many applied 
econometricians make the mistake of overspecifying their models (meaning 
they include numerous irrelevant variables) or favor complicated estimation 
methods over more straightforward techniques. It can result in undesirable 
estimator properties and difficulty interpreting the meaning of the results.
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Overspecification by including too many irrelevant variables in a regression 
model increases the standard errors of your coefficients and reduces the 
chances you’ll find statistical significance. If theory and common sense aren’t 
fairly conclusive about the hypothesized effect of a variable, it’s probably 
best to refrain from including it. Overspecification can also manifest itself 
with complicated functional forms that aren’t necessary to deal with  
theoretical concerns or data issues. Some functions may be more difficult 
to interpret and distract readers from the main point of the econometric 
analysis. Consequently, additional sophistication in your model should be 
introduced as necessary and not simply to exhibit your econometric skills. 
(I provide more details about overspecification in Chapter 8.)

Being Inflexible to Real-World 
Complications

The solutions or predictions derived by using economic theories use logical 
deduction and/or mathematical proof that usually rely on the ceteris paribus 
(all else constant) assumption. The data you use to test economic hypotheses, 
however, are derived from a world where agents (individuals, firms, or what 
have you) are engaged with their surrounding environment in ways that 
aren’t likely to satisfy the ceteris paribus assumption because many of the 
variables defining their specific circumstances vary considerably from one 
observation to another.

 Don’t give up on a research question or a dataset because you can’t obtain 
data for all the variables that you think are required to test a hypothesis. If 
you apply that criterion, no research question is ever appropriate and no 
dataset is ever good enough. In all likelihood, you’ll need to use some  
proxies (variables that approximately measure what you’d ideally like to  
capture) and use econometric techniques to deal with any estimation issues 
(you can obtain some tips on how to describe your data in Chapter 19).

Typically, the data you acquire won’t contain all the information structured 
in a way proposed by the theoretical model. Use proxies that seem  
appropriate and that others would find acceptable. Also, avoid forcing a  
particular dataset into estimation that isn’t appropriate for the research 
question — for example, using aggregate, state-level data when the theory 
applies to individuals or using cross-sectional data when a time element is 
part of your story.
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Looking the Other Way When  
You See Bizarre Results

 Most econometric research projects contain estimation results for numerous 
variations of related models. You want to focus on your primary variables of 
interest (core variables), but make sure you examine all of your results. That 
means don’t ignore unreasonable results (mostly insignificant estimates,  
coefficients with the wrong sign, and magnitudes that are too large) and  
proceed to reporting and interpretation. If some results don’t pass a common-
sense test, then the statistical tests are likely to be meaningless and may even 
indicate that you’ve made a mistake with your variables, the estimation  
technique, or both.

Address any estimation problems that lead to perverse results before you 
draw conclusions about your results. You should check the accuracy of your 
data, the completeness of the information, the construction of your variables, 
and the specification of your model (you can turn to Chapter 8 for more on 
specification issues). Correcting for estimation issues that are adversely 
affecting other estimates can drastically change your conclusions.

Obsessing over Measures of Fit  
and Statistical Significance

After you estimate an econometric model, focus your attention and guide  
the reader (if you’re writing a research paper) to the results that are most 
relevant in addressing your research question.

 The importance of your results shouldn’t be determined on the basis of fit 
(R-squared values) or statistical significance alone. Sure, statistically insignifi-
cant coefficients suggest that your independent variable isn’t likely to affect 
your dependent variable. However, if the lack of a relationship is new or unex-
pected, this finding may be significant! The importance of such a finding is 
that it may suggest that standard economic theory doesn’t hold.

The primary finding in many of the best papers using econometrics involves 
findings of statistical insignificance. For example, some researchers find 
that increases in the minimum wage aren’t related to changes in employment, 
despite the fact that many microeconomics textbooks use minimum wages as 
an example of a price floor that causes reductions in employment. In another 
area, some papers suggest that immigration doesn’t have a significant effect on 
wages of native-born workers, even though the theoretical examples in labor 
economics textbooks usually suggest that wages would fall.
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Forgetting about Economic Significance
You can use measures of statistical significance to determine which variables 
aren’t likely to have an effect on the dependent variable, but you can’t use 
them to determine which variables have a relevant effect.

 After you’ve established that a variable is statistically significant, don’t forget 
to focus your attention on the coefficient. Sometimes variables can have  
coefficients that are highly statistically significant even though no economic 
significance is associated with the result.

The most important element in the discussion of your results is the evaluation 
of statistical significance and magnitude for the primary variables of interest. 
If a variable has a statistically significant coefficient but the magnitude is too 
small to be of any importance, then you should be clear about its lack of  
economic significance.

Assuming Your Results Are Robust
In most cases, economic theory allows for a considerable amount of  
flexibility in determining the exact specification of the econometric model. 
You’ll want to see if minor adjustments change your results.

 Don’t assume that only one econometric model can apply to your research 
question and that the results won’t change with reasonable modifications to 
your specification. You want to perform robustness (or sensitivity) analysis to 
show that your model estimates aren’t sensitive (are robust) to slight  
variations in specification.

The validity of your data, variable selection, and model specification are all 
enhanced with successful robustness checks. If you’re not able to show any 
proof of this, readers will have doubts about your results and conclusions.



Appendix

Statistical Tables

T 
his appendix includes tables that are commonly used for various  
hypothesis tests in econometric analysis. Hypothesis test results rely on 

a comparison of an appropriate test statistic with the critical value from a 
statistical table.

The Standard Normal Distribution
The standard normal table shows the right-tail probability (density) at  
various points along the standard normal distribution.

Table A-1 The Standard Normal Distribution
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

(continued)
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Table A-1 (continued)
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

t-Distribution
The t table shows the value associated with each one-tail and two-tail  
probability (α) for various degrees of freedom (df).

Table A-2 The t-Distribution
df \ 0.10

0.20

0.05

0.10

0.025

0.05

0.01

0.02

0.005

0.01
1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36



323 Appendix: Statistical Tables

df \ 0.10

0.20

0.05

0.10

0.025

0.05

0.01

0.02

0.005

0.01
9 1.38 1.83 2.26 2.82 3.25
10 1.37 1.81 2.23 2.76 3.17
11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
26 1.31 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76
30 1.31 1.70 2.04 2.46 2.75
40 1.30 1.68 2.02 2.42 2.70
60 1.30 1.67 2.00 2.39 2.66
120 1.29 1.66 1.98 2.36 2.62
∞ 1.28 1.64 1.96 2.33 2.58

Chi-Squared Distribution
The chi-squared table shows the value associated with each right-tail  
probability (α) for various degrees of freedom (df).
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Table A-3 The Chi-Squared Distribution
df \ 0.10 0.05 0.025 0.01 0.005
1 2.706 3.841 5.024 6.635 7.879
2 4.605 5.991 7.378 9.21 10.597
3 6.251 7.815 9.348 11.345 12.838
4 7.779 9.488 11.143 13.277 14.86
5 9.236 11.07 12.833 15.086 16.75
6 10.645 12.592 14.449 16.812 18.548
7 12.017 14.067 16.013 18.475 20.278
8 13.362 15.507 17.535 20.09 21.955
9 14.684 16.919 19.023 21.666 23.589
10 15.987 18.307 20.483 23.209 25.188
11 17.275 19.675 21.92 24.725 26.757
12 18.549 21.026 23.337 26.217 28.3
13 19.812 22.362 24.736 27.688 29.819
14 21.064 23.685 26.119 29.141 31.319
15 22.307 24.996 27.488 30.578 32.801
16 23.542 26.296 28.845 32 34.267
17 24.769 27.587 30.191 33.409 35.718
18 25.989 28.869 31.526 34.805 37.156
19 27.204 30.144 32.852 36.191 38.582
20 28.412 31.41 34.17 37.566 39.997
21 29.615 32.671 35.479 38.932 41.401
22 30.813 33.924 36.781 40.289 42.796
23 32.007 35.172 38.076 41.638 44.181
24 33.196 36.415 39.364 42.98 45.559
25 34.382 37.652 40.646 44.314 46.928
30 40.256 43.773 46.979 50.892 53.672
40 51.805 55.758 59.342 63.691 66.766
50 63.167 67.505 71.42 76.154 79.49
60 74.397 79.082 83.298 88.379 91.952
70 85.527 90.531 95.023 100.425 104.215
80 96.578 101.879 106.629 112.329 116.321
90 107.565 113.145 118.136 124.116 128.299
100 118.498 124.342 129.561 135.807 140.169
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F-Distribution
The F table shows the right-tail critical F-values at the 5 percent level of  
significance for a specific number of degrees of freedom in the numerator 
(dfn) and denominator (dfd). Note: This table is a highly abridged version  
of an F table; your econometrics textbook should have a more complete  
version.

Table A-4 The F-Distribution (  = 0 .05)
dfd\ dfn 10 20 30 40 60 120
10 2.98 2.77 2.70 2.66 2.62 2.58 2.54
20 2.35 2.12 2.04 1.99 1.95 1.90 1.84
30 2.16 1.93 1.84 1.79 1.74 1.68 1.62
40 2.08 1.84 1.74 1.69 1.64 1.58 1.51
60 1.99 1.75 1.65 1.59 1.53 1.47 1.39
120 1.91 1.66 1.55 1.50 1.43 1.35 1.25
∞ 1.83 1.57 1.46 1.39 1.32 1.22 1.00

Durbin-Watson d-Statistic
The Durbin-Watson d table shows the lower and upper bound values at  
the 5 percent level of significance for a specific number of estimated  
coefficients (independent variables plus the intercept, p + 1) and time  
periods (observations, T) in the data.

Table A-5 Durbin-Watson d-Statistic (  = 0 .05)
p + 1 2 3 4 5
T dl du dl du dl du dl du

25 1.2879 1.4537 1.2063 1.5495 1.1228 1.6540 1.0381 1.7666
26 1.3022 1.4614 1.2236 1.5528 1.1432 1.6523 1.0616 1.7591
27 1.3157 1.4688 1.2399 1.5562 1.1624 1.6510 1.0836 1.7527
28 1.3284 1.4759 1.2553 1.5596 1.1805 1.6503 1.1044 1.7473
29 1.3405 1.4828 1.2699 1.5631 1.1976 1.6499 1.1241 1.7426
30 1.3520 1.4894 1.2837 1.5666 1.2138 1.6498 1.1426 1.7386

(continued)
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Table A-5 (continued)
p + 1 2 3 4 5
T dl du dl du dl du dl du

31 1.3630 1.4957 1.2969 1.5701 1.2292 1.6500 1.1602 1.7352
32 1.3734 1.5019 1.3093 1.5736 1.2437 1.6505 1.1769 1.7323
33 1.3834 1.5078 1.3212 1.5770 1.2576 1.6511 1.1927 1.7298
34 1.3929 1.5136 1.3325 1.5805 1.2707 1.6519 1.2078 1.7277
35 1.4019 1.5191 1.3433 1.5838 1.2833 1.6528 1.2221 1.7259
36 1.4107 1.5245 1.3537 1.5872 1.2953 1.6539 1.2358 1.7245
37 1.4190 1.5297 1.3635 1.5904 1.3068 1.6550 1.2489 1.7233
38 1.4270 1.5348 1.3730 1.5937 1.3177 1.6563 1.2614 1.7223
39 1.4347 1.5396 1.3821 1.5969 1.3283 1.6575 1.2734 1.7215
40 1.4421 1.5444 1.3908 1.6000 1.3384 1.6589 1.2848 1.7209
41 1.4493 1.5490 1.3992 1.6031 1.3480 1.6603 1.2958 1.7205
42 1.4562 1.5534 1.4073 1.6061 1.3573 1.6617 1.3064 1.7202
43 1.4628 1.5577 1.4151 1.6091 1.3663 1.6632 1.3166 1.7200
44 1.4692 1.5619 1.4226 1.6120 1.3749 1.6647 1.3263 1.7200
45 1.4754 1.5660 1.4298 1.6148 1.3832 1.6662 1.3357 1.7200
46 1.4814 1.5700 1.4368 1.6176 1.3912 1.6677 1.3448 1.7201
47 1.4872 1.5739 1.4435 1.6204 1.3989 1.6692 1.3535 1.7203
48 1.4928 1.5776 1.4500 1.6231 1.4064 1.6708 1.3619 1.7206
49 1.4982 1.5813 1.4564 1.6257 1.4136 1.6723 1.3701 1.7210
50 1.5035 1.5849 1.4625 1.6283 1.4206 1.6739 1.3779 1.7214



Index
• A •
additive error, linearity in parameters and, 

94–95
aggregation of data, 10
aggregation level used in measuring 

variables, 11
alternative hypothesis, 54
American Community Survey (ACS), 69
AR(q) process, detecting autocorrelation 

of (Breusch-Godfrey test), 221–223
AR(1) process, detecting autocorrelation 

of, 219–222
assumptions

ceteris paribus, 8, 9, 64, 318
CLRM, 10, 93–94, 97

no autocorrelation, 209–210
linear in parameters, 94–95
normality, 111–114
relying on sensible, 8–9
stationarity, 213–214
of this book, 2

asymptotic property, consistency as, 44
autocorrelation (serial correlation)

AR(1) process, 219–222
AR(q) process (Breusch-Godfrey test), 

221–223
autoregressive errors, 212–214
CLRM assumption of no autocorrelation, 

209–210
d statistic, 220–221
described, 99–101
Durbin-Watson test, 219–221
in dynamic models, 270
examining patterns of, 209–212
misspecification and, 212
negative, 100, 210–211
positive, 100, 210–211
remedying harmful, 223–228
residual analysis, 214–215
stationarity assumption, 213–214

autoregression, first-order, 213
autoregressive errors, 212–214
autoregressive models, 268–270
auxiliary regressions, variance inflation 

factor (VIF) and, 183–185

• B •
base group, 154
bell-shaped probability density function, 44
beta coefficients, 87, 88
bias

heterogeneity, 292
omitted variable, 148–149

binomial probability distribution for the 
dependent variable, 232–233

bivariate probability density, 28–29
bizarre results, looking the other way when 

you see, 319
BLUE (best linear unbiased estimators), 

101, 108
Break button, in STATA, 17
Breusch-Godfrey (BG) test, 221–223, 270
Breusch-Pagan (BP) test, 196–197
Bureau of Labor Statistics, 71

• C •
causation, statistical results cannot 

prove, 63
CDF (cumulative density function)

for continuous random variables, 27
for discrete random variables, 26–27
probit model, 241–245
shape of, 27

censored dependent variables, 254–255
census, 69
Census Bureau, 71
central limit theorem (CLT), 48–49, 112
ceteris paribus assumption, 8, 9, 64, 318



328 Econometrics For Dummies 

chi-squared distribution
deriving from the random error, 115–119
description and uses, 49–51
table, 323–325

Chow test
to determine structural stability, 151–152
dummy variable approach to, 169–172

chronological order, time-series data, 70
classical linear regression model (CLRM)

assumptions, 10, 93–94, 97
autocorrelation (serial correlation), 

99–101, 209–210
error term with constant variance, 98
error term with a zero conditional mean, 

97–98
Gauss-Markov theorem, 101, 103, 105, 

106, 108, 109
random sampling and variability, 95
stationarity assumption, 213–214
zero correlation of error observations, 

99–101
Cobb-Douglas production functions, 141
Cochrane-Orcutt (CO) transformation, 

223, 226
coefficient estimates, sensitivity to 

changes in specification, 179
coefficients

logit, 251–252
OLS

best linear unbiased estimators 
(BLUE), 108

deriving a chi-squared distribution from 
the random error, 115–119

error term and sampling distribution of, 
113–114

expected value of, 102–105
variance of, 105–108
WLS coefficients and, 205

probit, 249–251
regression. See regression coefficients
slope

regression analysis, 84, 85
relationship between t and F, 127
t-test of significance for, 127

standard errors of the, chi-squared 
distribution, 117–118

variables with statistically 
insignificant, 313

collinearity
high, 97
perfect, 96–97

common sense, failing to use your, 315
composite error, defined, 295
composite error term, 298–299
composite index variable, 188
compounded growth rate, 144–145
conditional mean operator, 64
conditional probabilities, 29–30, 233
confidence interval approach, hypotheses 

testing, 54, 56
confidence intervals

prediction, 133–134
regression coefficients, 121–122

consistent estimators, 44, 108
constant

expected value of, 32
population regression function (PRF), 64
variance of, 34

constant variance (homoskedasticity)
Chow test

to determine structural stability, 151–152
dummy variable approach to, 169–172

defined, 192
error term in classical linear regression 

model (CLRM), 98, 106
Goldfeld-Quandt (GQ) test, 199
heteroskedasticity distinguished from, 

191–194
normality assumption, 112
variance of the estimated slope 

coefficient, 193
weighted least squares (WLS) technique, 

203–205
constant-elasticity demand curves, 141
consumer price index (CPI), as composite 

index variable, 188
consumption spending, linear-log model, 

145–146
contemporaneous variables, 267
continuous probability density function, 

44, 47
continuous random variables

cumulative density function (CDF), 27
defined, 22
expected value, 31
probability density function (PDF), 24–25
variance, 33
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core variables, 152
correlation

described, 42
introduction to, 35, 37, 38
random variables, 37
serial. See autocorrelation
spurious, 63
spurious time-series data, 273–274

correlation coefficients
pairwise, 181–182
zero (or very close to zero), 37–38

correlation matrix, 181–182
covariance

calculating, 34, 35
described, 41
positive or negative, 36–38

CPI (consumer price index), as composite 
index variable, 188

critical t value, 122
cross-section analysis, pooled, 281–290
cross-sectional data

defined, 10
pooled, 72–73
regression analysis, 68–69

cubic functions, 139–140
cumulative density function (CDF)

for continuous random variables, 27
for discrete random variables, 26–27
probit model, 241–245
shape of, 27

Current Population Survey (CPS), 69

• D •
d statistic, 220–221, 271
data

collecting and organizing, for regression 
analysis, 68–73

cross-sectional, 68–69
detailed description of, in research 

project, 311
failing to familiarize yourself with the, 

316–317
panel (longitudinal), 71–72
pooled cross-sectional, 72–73, 281–290
time-series, 70–71
trend-adjusted, 274–276

types of, 10–11, 68
values that appear legitimate but are 

actually censored, 317
data mining, 12
decomposing variance, 88–89
decomposition of differences to find policy 

effect, 288
degrees of freedom

adjusting the goodness of fit, 91
chi-squared distribution, 50, 116
described, 41
F distribution, 52–53

Department of Commerce, 71
Department of Energy, 71
dependent variables

censored, 254–255
decomposing variance, 88–89
impact of omitted variable on, 148–149
inverse function, 140
limited

censored, 254–255
modifying regression analysis for, 

256–264
normality assumption, 113
overview, 253
Tobit model, 256–258
truncated regression, 255–256, 258–262

linear-log model, 145–147
ordinary least squares (OLS) technique, 77
PRF model, 65

descriptive statistics
calculating parameters and estimators, 

40–43
determining whether an estimator is 

good, 43–44
STATA software, 42–43

deseasonalizing time-series data, 278–280
deterministic linear relationship, perfect 

multicollinearity, 175
detrending time-series data, 274–276
difference-in-difference, 288–290
discrete dependent variables, 254
discrete random variables

cumulative density function (CDF) for, 
26–27

defined, 22
expected value, 31
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discrete random variables (continued)
probability density function (PDF) for, 

22–24
variance, 33

dispersion, measures of, 33
distributed lag model, 268–270
distribution of sample means, 48. See 

also chi-squared distribution; normal 
distribution; sampling distributions; 
t-distribution

dummy dependent variable models, 
231. See also qualitative dependent 
variables

dummy variable (DV) regression, 294–295
dummy variables

defined, 12
finding average differences by using, 

156–158
interacting quantitative variables and, 

162–165
juggling multiple characteristics with, 

155–156
need to create, 317
with only two possible characteristics, 

154
pooled cross-sectional data, 283–285

Durbin’s alternative statistic, 221–223
Durbin-Watson d-Statistic, table, 325
Durbin-Watson test, 219–221, 271
dynamic models

distributed lag model, 268
problems with, 268–270
testing and correcting for autocorrelation 

in, 270–271

• E •
EconLit website, 309
econometric models. See model(s)
The Econometric Society, 7
econometrics research project

conceptual or theoretical framework, 309
detailed description of data, 311

discussing the relevance and importance 
of the topic, 308

estimation method(s), 310–311
explaining your econometric model, 310
interpreting the reported results, 312–313
introducing the topic and posing the 

research question, 307–308
literature review, 308–309
summarizing the results, 313
tables and graphs, 312

economic journals, on the web, 309
economic theory

describing outcomes and making 
predictions with, 8

econometrics and, 8
failing to use your knowledge of, 315

Economics For Dummies (Flynn), 61, 138
economics journals, websites of, 309
education, FE model, 297–298
efficient estimators, 43
elasticity, constant, log-log model, 141
Engel curve, 145
error

composite, 295
forecast, applying to OLS predictions, 130
idiosyncratic, 295
linearity in parameters, and additive 

error, 94
random, regression analysis, 65, 67
type I, 58, 123
type II, 58, 123

error covariance matrix, 227
error messages, STATA, 16
error term

composite, 298–299
normality assumption, 111–114
zero conditional mean, 97–98

estimation
discussing in research project, 310–311
point, 54
in STATA, 19

estimators
calculating, 40–43
consistency, 44
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defined, 40
desirable properties, 43–44
linearity, 44
OLS

heteroskedasticity and, 238
standard errors and the t-distribution, 

119
standard normal distribution, 114–115
variance of, 107

expected value (or mean), 31–32
experiments

cumulative density function table, two-
coin-toss experiment, 26–27

to estimate policy effects with pooled 
cross sections, 285–286

natural (quasi), 287–290
probability density function, 3-coin-toss 

experiment, 23–24
true, random assignment, 286

explained sum of squares (ESS), 90
exponential growth, log-linear model, 144
exponential time trend, 271

• F •
FD (first difference) transformation, 294
F-distribution (F-statistic)

Chow test, 151–152
derivation and basic properties, 52–53
Goldfeld-Quandt (GQ) test, 199–200
for joint significance, 168–169
joint significance for subsets of variables, 

128–130
normality assumption, 124–126
table, 325–326
White test, 198

feasible generalized least squares (FGLS)
Cochrane-Orcutt and Prais-Winsten 

transformations, 223
random effects (RE) estimator, 299
weighted least squares (WLS) technique, 

204, 205
Federal Reserve, 71

FGLS. See feasible generalized least 
squares

first difference (FD) transformation, 294
first-differenced equation, 187
first-differenced estimators, 187
first-differencing, 187–188
first-order autoregression, 213
fixed effects, individual, 292, 293, 295, 

296, 302
fixed effects estimator (within estimator), 

295–298
fixed effects (FE) model, 298–299
Flynn, Sean Masaki (Economics For 

Dummies), 61, 138
forecast error, applying to OLS predictions, 

130, 131
forecasting. See prediction(s)
frequency of data

explained, 11
time-series data, 70

functions
cubic, 139–140
inverse, 140
quadratic, 138–139

• G •
Gauss-Markov theorem

BLUE (best linear unbiased estimators), 
101, 108

CLRM assumptions, 101, 103, 105, 106, 
108, 109

expected value of OLS coefficients, 
102–105

linearity of OLS, 101–102
omitted variable bias, 148
proving, 101–108
summary of assumptions, 109

Geary test (run test), 215–218
general mathematical specification of your 

model, 64
generalized least squares (GLS) 

estimator, 204
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generalized method of moments (GMM) 
technique, 76

GLS (generalized least squares) 
estimator, 204

Goldfeld-Quandt (GQ) test, 199–201
goodness of fit

adjusting, in multiple regression, 90–91
measuring, 88–90

Google Scholar, 309
graphical examination of residuals, 194–195
graphs, research project, 312
growth rate

compounded, 144–145
exponential time trend, 271
instantaneous, 144

• H •
HAC (heteroskedasticity-autocorrelation-

corrected) standard error. See serial 
correlation robust standard errors

Hausman test, 302–304
Heckman selection model, 260–264
heterogeneity bias, 292
heteroskedasticity

Breusch-Pagan (BP) test, 196–197
consequences of, 193–194
correcting regression model for the 

presence of, 203–208
detecting, with residual analysis, 194–195
distinguishing between homoskedastic 

and heteroskedastic disturbances, 
191–194

Goldfeld-Quandt (GQ) test, 199–201
Hausman test, 302
linear probability model (LPM), 238–239
Park test, 201–202
robust standard errors (White-corrected 

standard errors), 205–208
White test, 197–199

heteroskedasticity-autocorrelation-
corrected (HAC) standard error. See 
serial correlation robust standard 
errors

heteroskedasticity-corrected standard 
errors (robust standard errors), 
205–208

high collinearity, 97
high multicollinearity

described, 175, 176
expelling the problem variable(s), 188–190
gathering additional data, 186
resolving, 185–188
zeroing in on, 178–180

homoskedasticity (constant variance). 
See also heteroskedasticity

Chow test
to determine structural stability, 151–152
dummy variable approach to, 169–172

defined, 192
error term in classical linear regression 

model (CLRM), 98, 106
Goldfeld-Quandt (GQ) test, 199
heteroskedasticity distinguished from, 

191–194
normality assumption, 112
variance of the estimated slope 

coefficient, 193
weighted least squares (WLS) technique, 

203–205
human capital functions, 143
hypotheses testing

explained, 53
performing a hypothesis test, 54–55
probability distributions, 53–55

• I •
icons used in this book, 3
idiosyncratic error, 295
impact multiplier, 268
independence, statistical, checking for, 30
independent variables

common time trend component, 178
decomposing variance, 89
described, 62
imperfect linear relationships among, 

96–97
including irrelevant variables, 149



333333 Index

multicollinearity issues
first-differencing technique, 187–188
high multicollinearity, 178–180
pairwise correlation coefficient, 181–182
resolving multicollinearity issues, 185–186
variance inflation factor (VIF), 183–185

selecting, 147–149
that capture similar phenomena, 178–179

individual fixed effects, 292, 293, 295, 296, 302
inferences

foundational concepts, 39
making, with probability distributions, 53

inflexion point, 139
instantaneous rate of growth, 144
interacted econometric model, 162–166
interacting

quantitative and qualitative variables 
(interacted econometric model), 
162–166

two (or more) qualitative characteristics, 
165–168

interaction term, 162–166
intercept(s)

ordinary least squares (OLS) technique, 
78–80

pooled cross-sectional data, 282–283
intercept term

Gauss-Markov theorem, 104
ignoring, in real-world scenarios, 85
OLS coefficients, 114

inverse function, 140
investments, calculating rates of return, 

143–145
irrelevant variables, including, 149

• J •
joint probability

density, 28–29
likelihood function, 244–245
mathematical notation, 28–29

joint significance
F-test, 168–169
subsets of variables, 128–130
tests of, 123–124

justifying your model, 62

• L •
lagged variables

high multicollinearity, 178
in regression analysis, 267–268

least squares principle, defining and 
justifying, 76

likelihood function, 244–245
limited dependent variables

censored, 254–255
modifying regression analysis for, 256–264
normality assumption, 113
overview, 253
Tobit model, 256–258
truncated regression, 255–256, 258–262

linear estimators (coefficients), 108. See 
also coefficients

linear in parameters assumption, 94–95
linear probability model (LPM)

estimating with OLS, 232–237
heteroskedasticity, 238–239
problems, 237–240
unbounded predicted probabilities, 

239–240
linear time trend, 271
linearity

of estimators as desirable property, 44
Gauss-Markov theorem, 101–102
in parameters, and additive error, 94

linear-log model, 145–147
literature review, 308–309
log transformation, OLS technique, 95
logistic units (logits), 246
logit coefficients, 251–252
logit model, 240, 242–244, 246
log-linear model, 143–145
log-log model, 141–143
longitudinal data (panel data)

defined, 11
dummy variable (DV) regression, 294–295
first difference (FD) transformation, 294
fixed effects (FE) model, 298–299
Hausman test, 302–304
increasing the efficiency of estimation 

with random effects, 298–301
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longitudinal data (panel data) (continued)
pooled cross-sectional data compared to, 

71–72
random effects (RE) estimator, 299–301
uniqueness of each individual unit, 

291–294
long-run propensity, distributed lag 

model, 268
LPM (linear probability model)

estimating with OLS, 232–237
heteroskedasticity, 238–239
problems, 237–240
unbounded predicted probabilities, 

239–240

• M •
macroeconomic theory, 8
marginal effects

Heckman selection model, 262
probit model, 249–252
Tobit model, 257
truncated regression, 259

marginal probabilities, 29
maximum likelihood (ML) estimation, 76, 

95, 241, 244–246
mean (average), defined, 40
mean prediction

and forecast error, 130–131
variance of, 131–133

mean square error (MSE)
chi-squared distribution, 116, 118, 119
dropping a variable, 189

microeconomic theory, 8
misspecification. See also 

overspecification; specification issues
autocorrelation and, 212
checking for, 147–149
described, 97

mistakes in econometric analysis, ten 
common, 315–320

asking the wrong questions first, 316
assuming your results are robust, 320
being inflexible to real-world 

complications, 318

failing to familiarize yourself with the 
data, 316–317

failing to use common sense and 
knowledge of economic theory, 315

forgetting about economic significance, 320
ignoring the work and contributions of 

others, 316
looking the other way when you see 

bizarre results, 319
making it too complicated, 317–318
obsessing over measures of fit and 

statistical significance, 319
model(s). See also specific models

dummy dependent variable, 231. See also 
qualitative dependent variables

dynamic, 268–271
fixed effects (FE), 298–299
general mathematical specification of 

your, 64
Heckman selection, 260–264
justifying your, 62
linear-log, 145–147
logit, 240, 242–244, 246
log-linear, 143
log-log, 141–143
nonlinear, giving linearity to, 141–147
probit, 240–242, 246–252
specification, 62
Tobit, 256–258

MSE (mean square error)
chi-squared distribution, 116, 118, 119
dropping a variable, 189

multicollinearity
auxiliary regression and the variance 

inflation factor (VIF), 183–185
described, 175
distinguishing between types of, 175–180
high

described, 175, 176
expelling the problem variable(s), 

188–190
gathering additional data, 186
resolving, 185–188
zeroing in on, 178–180
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imperfect linear relationships among 
independent variables, 96

pairwise correlation coefficient, 181–182
rules of thumb for identifying, 180–181
variance of OLS estimators, 107

multiple regression
adjusting the goodness of fit in, 90–91
ordinary least squares (OLS) technique, 82

• N •
National Longitudinal Surveys (NLS),  

72, 291
natural experiment (quasi experiment), 

287–290
natural log transformation of the likelihood 

function, 245–246
negative autocorrelation, 210–211
Newey-West (NW) standard errors (serial 

correlation robust standard errors), 
223, 225–228

NLS (National Longitudinal Surveys), 72, 291
nonlinear models, giving linearity to, 

141–147
nonlinearity

identifying, 38
in parameters, 240

non-normality of the error term, 237–238
nonrandom sample selection, truncation, 255
nonsensical coefficient signs and 

magnitudes, 179, 185
normal distribution. See also normality 

assumption
density function of, 44–45
random variables with, 45
shorthand way of indicating, 45
standard

defined and explained, 46–47
OLS estimators, 114–115
table, 321

normality assumption
describing role of, 111–113
error term, 111–113
F-distribution, 124–126
homoskedasticity, 112

linear probability model (LPM), 237
mathematical notation, 112
sampling distribution of OLS coefficients, 

113–114
null hypothesis, 54

• O •
observable variables, 292
OLS (ordinary least squares) assumptions, 

93–94
OLS coefficients

best linear unbiased estimators 
(BLUE), 108

deriving a chi-squared distribution from 
the random error, 115–119

error term and sampling distribution of, 
113–114

expected value of, 102–105
variance of, 105–108
WLS coefficients and, 205

OLS estimation
heterogeneity bias, 292–293
heteroskedasticity and, 193

OLS estimators
heteroskedasticity and, 238
standard errors and the t-distribution, 

119
standard normal distribution, 114–115
variance of, 107

OLS standard errors, t-distribution and, 
119–121

OLS (ordinary least squares) technique. 
See also OLS coefficients; OLS 
estimators

applying forecast error to OLS 
predictions, 130

desirable characteristics of, 76
as easier than alternative techniques, 76
estimates of the regression parameters, 78
estimating LPM with, 232–237
estimating the regression function and 

the residuals, 77
formulas necessary to produce optimal 

coefficient values, 79–80
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OLS (ordinary least squares) technique 
(continued)

Gauss-Markov theorem, 101
heteroskedasticity, 99
interpreting regression coefficients, 84–88
least squares principle, 76
linearity in parameters, 95
measuring goodness of fit, 88–89
measuring proportion of variance with 

R-squared, 89–90
as most common technique, 10
normality assumption, 111–113
overview, 75
prediction confidence interval, 133–134
projecting time trends with, 271–273
reported F-statistic from, 124–126
for seasonal adjustments, 276–278
as sensible, 76
standardizing regression coefficients 

(beta coefficients), 86–88
omitted variable bias, 148–149
one-tailed hypothesis tests, 54
overall significance, tests of, 123–125
overspecification, 317–318. See also 

misspecification; specification issues
overspecified regression model, 149, 188

• P •
pairwise correlation coefficients, 181–182
panel data (longitudinal data)

defined, 11
dummy variable (DV) regression, 294–295
first difference (FD) transformation, 294
fixed effects (FE) model, 298–299
Hausman test, 302–304
increasing the efficiency of estimation 

with random effects, 298–301
pooled cross-sectional data compared to, 

71–72
random effects (RE) estimator, 299–301
uniqueness of each individual unit, 

291–294
Panel Study of Income Dynamics (PSID), 

72, 291

parameters
calculating, 40–43
defined, 40

Park test, 201–202
partial-slope coefficients, log-log model, 143
perfect collinearity, 96–97
perfect multicollinearity, 175, 176, 178
point estimate

defined, 40
hypotheses testing, 54

policy effects, experiments to estimate, 
with pooled cross sections, 285–286

polynomials, 138
pooled cross-section analysis, 281–290
pooled cross-sectional data

described, 72–73
estimating policy effects with, 285–286
intercepts and/or slopes, 282–283
time dummy variables, 283–285

population covariance, 41, 42
population mean, 40–41
population parameters

calculating, 40
sampling distributions, 47, 53, 54
testing hypotheses, 53, 54

population regression function (PRF)
an example, 66–67
identifying, 63–67
linearity in parameters, 94
mean prediction and forecast error, 

130–131
ordinary least squares technique, 77
stochastic, 65

population standard deviation, 41
population variance, 41
positive autocorrelation, 210–211
Prais-Winsten (PW) transformation, 

223, 226
predicted probabilities, unbounded, 

239–240
prediction(s)

applying forecast error to OLS 
predictions, 130

econometrics used in making, 8
mean and forecast error, 130–131
variance of mean, 131–133
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prediction confidence interval, 133–134
probability

conditional, 29–30, 233
linear probability model (LPM)

estimating with OLS, 232–237
heteroskedasticity, 238–239
problems, 237–240
unbounded predicted probabilities, 

239–240
random variables and, 21–22
unconditional, 29, 30

probability density function (PDF)
for continuous random variables, 24–25
defined, 22–25
for discrete random variables, 22–24
probit model, 242

probability distribution (density), sampling 
distribution, 47–48

probability units (probits), 246
probit coefficients, 249–251
probit model, 240–242, 246–252
proxies, 150, 318
pseudo R-squared measure of fit, 248–249
PSID (Panel Study of Income Dynamics), 

72, 291
p-values, levels of significance and, 58, 123

• Q •
quadratic functions, 138–139
qualitative data

defined, 10
combining quantitative and, in regression 

model, 159
quantifying, 153–156

qualitative dependent variables
described, 231
linear probability model (LPM). See linear 

probability model
logit function. See logit coefficients; logit 

model
maximum likelihood (ML) estimation, 

241, 244–246
probit function. See probit coefficients; 

probit model

qualitative variables
incorporating quantitative information 

and, 12, 19
interacting quantitative variables  

and, 162
quantifying qualitative information, 153

quantifying qualitative information,  
153–156

quantitative information, 12
quasi (natural) experiments, 287–290
quasi-differencing, 223

• R •
random assignment, true experiment, 286
random effects (RE) estimator, 299–301
random effects (RE) model, increasing the 

efficiency of estimation with, 298–301
random error

deriving a chi-squared distribution from, 
115–119

regression analysis, 65, 67
random sampling, variability and, 95
random variables

bivariate or joint probability density, 28–29
continuous

cumulative density function (CDF), 27
defined, 22
expected value, 31
probability density function (PDF), 24–25
variance, 33

correlation between, 37
covariance and correlation, 35–37
discrete

cumulative density function (CDF) for, 
26–27

defined, 22
expected value, 31
probability density function (PDF) for, 

22–24
variance, 33

expected value, 31–32
introduction to, 21–22
nonlinear relationship, 38
normal distribution, 44–46
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random variables (continued)
OLS estimators, 114–115
variance and standard deviation, 33–34

rates of return, calculating, log-linear 
model, 143–145

reference group, 154
reference period, 283
regression analysis. See also classical 

linear regression model (CLRM); 
ordinary least squares (OLS) 
technique

causality and, 63
collecting and organizing data for, 68–73
combining quantitative and qualitative 

data, 159–161
contemporaneous and lagged variables 

in, 267–276
correcting for the presence of 

heteroskedasticity, 203–207
cross-sectional data, 68–69
decomposing variance, 88–89
modifying for limited dependent 

variables, 256–264
panel (longitudinal) data, 71–72
pooled cross-sectional data, 72–73
population regression function (PRF), 

63–67
time-series data, 70–71
truncated regression, 258–262

regression coefficients
calculation of estimated, 80–81
interpreting, 84–88
linear-log model, 146–147
omitting relevant variables, 147–149
ordinary least squares (OLS) technique, 

79–80
standardizing, 86–88
statistically significant, 119–123

confidence interval approach, 121–122
test of significance approach, 122–123

regression function, estimating, 77
regression line, ordinary least squares 

(OLS) technique, 78, 79
regression models. See regression analysis
regression parameters, obtaining estimates 

of the, 78

repeated sampling property, 179
reported F-statistic from OLS, 124–126
research project. See econometrics 

research project
RESET (regression specification error test), 

150–151
residual sum of squares (RSS), 90, 91, 125, 

151, 169, 199
residuals (residual analysis)

autocorrelation and, 214–215
detecting heteroskedasticity with, 194–195
run test (Geary test), 215–218

restricted dependent variables, 97
RMSE (root mean squared error), 116
robust standard errors

heteroskedasticity, 205–208
serial correlation, 223, 225–228

robustness/sensitivity analysis, 152
root mean squared error (RMSE), 116
R-squared (R2)

adjusting the goodness of fit, 90–91
detrended data, 274
measuring proportion of variance with, 

89–90
obsessing over, 319
reasons not to use as only measure of 

regression’s quality, 92
reported F-statistic from OLS, 124–126

RSS (residual sum of squares), 90, 91, 125, 
151, 169, 199

Rumsey, Deborah (Statistics For  
Dummies), 39

run test (Geary test), 215–218

• S •
sample correlation coefficient, 42
sample covariance, 41, 42
sample means

distribution of, 48
population mean, 40, 41

sample regression function (SRF)
calculation of estimated regression 

coefficients, 81–82
expected value of OLS coefficients, 

102–105
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mean prediction and forecast error, 131
ordinary least squares (OLS) technique, 

76–78
sample regression line (SRL), 78
sample sizes, normality assumption, 113
sample standard deviation, 41
sample variance, 41
sampling distributions, 47–48
seasonal adjustments

deseasonalizing time-series data, 278–280
OLS technique for, 276–278

self-selection
Heckman selection model, 260–264
truncation, 255

sensitivity, 152
sequencing of positive and negative error 

values, 210, 211
serial correlation (autocorrelation)

AR(1) process, 219–222
AR(q) process (Breusch-Godfrey test), 

221–223
autoregressive errors, 212–214
CLRM assumption of no autocorrelation, 

209–210
d statistic, 220–221
described, 99–101
Durbin-Watson test, 219–221
in dynamic models, 270
examining patterns of, 209–212
misspecification and, 212
negative, 100, 210–211
positive, 100, 210–211
remedying harmful, 223–228
residual analysis, 214–215
stationarity assumption, 213–214

serial correlation robust standard errors, 
223, 225–228

short-run propensity, distributed lag 
model, 268

significance, test of, 54, 57–58
simultaneous equations, 95
SIPP (Survey of Income and Program 

Participation), 72, 291
skewness, chi-squared distribution, 50

slope coefficients
regression analysis, 84, 85
relationship between t and F, 127
t-test of significance for, 127

slopes, pooled cross-sectional data, 282–283
Social Science Research Network, 309
software, econometric, 7. See also STATA

ordinary least squares (OLS) technique, 
82–83

specification bias, 148
specification issues. See also 

overspecification
checking for misspecification, 147–149
Chow test, 151–152
described, 137
misspecification, 97
RESET (regression specification error 

test), 150
spurious correlation, 63, 273–274
squared residuals, ordinary least squares 

(OLS) technique, 76, 78–80
squared standard normal distribution, 50
standard deviation

described, 41
measuring variance and, 33–34

standard errors
of the coefficients, chi-squared 

distribution, 117–118
high multicollinearity, 179
prediction confidence interval, 133–134
of the regression, chi-squared 

distribution, 116
robust (White-corrected standard 

errors), 205–208
standard normal distribution

defined and explained, 46–47
OLS estimators, 114–115
table, 321

standard situation, defined, 93
STATA

analysis of variance (ANOVA), 126
autoregressive and distributed lag 

models, 269–270
Breusch-Godfrey (BG) test, 222
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STATA (continued)
Breusch-Pagan (BP) test, 196–197
calculation of estimated regression 

coefficients, 82
Chow test and F-test for joint significance, 

169–172
colors of text in the results area, 16
combining quantitative and qualitative 

data, 161
as command-driven program, 13
confidence interval for the OLS mean 

prediction, 133–134
creating new variables, 18–19
creating and saving datasets, 14
d statistic, 221
descriptive statistics, 42–43
deseasonalized model, 278–279
detrended data, 274
difference-in-difference model, 289–290
documentation, 13
error messages, 16
estimating, testing, and predicting in, 

19–20
estimating a model with dummy variable, 

quantitative variable, and interacted 
variable, 164–165

FE model, 297–298
Goldfeld-Quandt (GQ) test, 200–201
Hausman test, 303–304
Heckman selection model, 262–264
importing data in non-STATA format, 14
logit results with estimated marginal 

effects, 252
Park test, 202
perfect multicollinearity, 176–177
as point-and-click software, 13
pooled cross section, 284
probit and logit results, 246–248, 250
random effects (RE) model, 300–301
“regress” command” for OLS results, 118
regression output and correlation matrix 

for independent variables, 182
regression output with dummy variable 

as the only independent variable, 158
regression output with VIF values for 

each independent variable, 189, 190

regression with a quantitative variable and 
two interacted dummy variables, 167

RESET (regression specification error 
test), 150

robust standard errors, 208
robustness/sensitivity analysis, 152
run test for auto-correlation, 218
saving your commands and output, 17–18
seasonal adjustments, 276, 277
serial correlation robust (Newey-West) 

standard errors, 228
significance of subsets of independent 

variables, 129–130
size of dataset, 15
stopping, 17
table-generating commands, 312
time trend model, 271–272
Tobit model, 257, 258
truncated regression, 259–261
viewing data, 14–16
weighted least squares (WLS) estimates, 

205, 206
White test, 198
“xtset” command,” 303

stationarity assumption, 213
statistical independence, checking for, 30
statistical insignificance, obsessing over 

findings of, 319
statistical significance

forgetting about, 320
obsessing over, 319

statistical tables, 321–326
statistically insignificant coefficients, 

ignoring variables with, 313
statistically insignificant test, 57
statistically significant regression 

coefficients, 120
statistically significant test, 57
statisticians, econometricians 

distinguished from, 10
Statistics For Dummies (Rumsey), 21, 39
stochastic population regression 

function, 65
strong relationship, 97
structural stability, Chow test, 151–152
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summarizing the results of a research 
project, 313

summary measures (or moments), 31
Survey of Income and Program 

Participation (SIPP), 72, 291
surveys

cross-sectional data collected through, 69
panel data collected through, 72

switching of positive and negative error 
values, 211

symmetrical probability density function, 
44, 46

• T •
tables, statistical, 312, 321–326
t-distribution (t-statistics or test)

derivation and basic properties, 51–52
high multicollinearity, 179
OLS standard errors and, 119–121
p-values associated with, 123
slope coefficients, 127
table, 322–323
test of significance approach, 122–123

ten common mistakes in econometric 
analysis, 315–320

asking the wrong questions first, 316
assuming your results are robust, 320
being inflexible to real-world 

complications, 318
failing to familiarize yourself with the 

data, 316–317
failing to use common sense and 

knowledge of economic theory, 315
forgetting about economic 

significance, 320
ignoring the work and contributions of 

others, 316
looking the other way when you see 

bizarre results, 319
making it too complicated, 317–318
obsessing over measures of fit and 

statistical significance, 319
test of significance approach, 54, 57–58, 

122–123
theoretical framework, description of, 309

theory, economic
describing outcomes and making 

predictions with, 8
econometrics and, 8
failing to use your knowledge of, 315

time demeaning the data, FE estimation, 
295–298

time effects, FE models, 296–297
time trends, 271–273
time-effect controls, 300
time-period dummy variables, pooled 

cross-sectional data, 283–285
time-series data

autocorrelation, 101, 212–214, 270
defined, 11
deseasonalizing, 278–280
detrending, 274–276
first-differencing, 187–188
gathering additional data, 186
introduction to, 70–71
spurious correlation problem, 273–274

Tobit model, 256–258
total sum of squares (TSS), 90, 91
transformation

Cochrane-Orcutt (CO), 223, 226
FD (first difference), 294
first difference (FD), 294
log, OLS technique, 95
natural log, of the likelihood function, 

245–246
Prais-Winsten (PW), 223, 226
within, 296

treatment (policy) effects, 285–286
trend-adjusted data, 274–276
true experiment, random assignment, 286
truncated dependent variables, 255–256
truncated regression, 258–262
two-tailed hypothesis tests, 54
type I error, 58, 123
type II error, 58, 123
types of data, 10–11

• U•
unbiased estimators (coefficients), 43, 108
unbounded predicted probabilities, 239–240
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unconditional probabilities, 29, 30
unobservable variables, 292, 294–296

• V •
variability, random sampling and, 95
variables

aggregation level in measuring, 11
composite index, 188
core, 152
creating new, in STATA, 18–19
dummy. See dummy variables
observable, 292
proxies, 150, 318
qualitative. See qualitative variables
random. See random variables
statistically correlated but economically 

irrelevant, 10
unobservable, 292, 294–296

variance
chi-squared distribution, 50–51
constant. See homoskedasticity
decomposing, 88–89
defined, 41
determining overall or joint significance, 

123–127
of error term, 106
F-distribution and normality assumption, 

124

of mean prediction, 131–133
measuring, 33–34
measuring proportion of, with R2, 89–90
OLS coefficients, 105
of the regression, calculating, 116
of X, 106

variance inflation factor (VIF)
auxiliary regression and, 183–185
dropping highly collinear independent 

variables, 189

• W •
websites, 309
weighted least squares (WLS) technique, 

203–205
White test, 197–199
White-corrected standard errors (robust 

standard errors), 205–208
within estimator (fixed effects estimator), 

296
within transformation, 296

• Z •
zero conditional mean error, 97–98
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