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Preface

This book is based on lectures regularly taught in the fourth and fifth years
graduate courses in transport phenomena and chemical reactor modeling,
and in a post graduate course in modern reactor modeling at the Norwegian
University of Science and Technology, Department of Chemical Engineering,
Trondheim, Norway. The objective of the book is to present the fundamentals
of the single-fluid and multi-fluid models for the analysis of single- and mul-
tiphase reactive flows in chemical reactors with a chemical reactor engineer-
ing rather than mathematical bias. Organized into 12 chapters, it combines
theoretical aspects and practical applications and covers some of the recent
research in several areas of chemical reactor engineering. This book contains
a survey of the modern literature in the field of chemical reactor modeling.

I hope this book can serve as a guide for my future Ph.D. students, as
well as other interested scientists, to get a thorough introduction to this field
of research without spending too much of their invaluable time searching for
and reading a large number of books and papers.

Comments on the contents of the book:
In chap 1 a survey of the elements of transport phenomena for single phase

multicomponent mixtures is given. This theory serves as basis for the devel-
opment of most chemical engineering models as well as the multiphase flow
concepts to be presented in the following chapters. The first part of the chapter
considers laminar single phase flows for multicomponent mixtures. In the sec-
ond part of the chapter the governing equations are applied to turbulent
flows.

Chapter 2 contains a summary of the basic concepts of kinetic theory of
dilute and dense gases. This theory serves as basis for the development of the
continuum scale conservation equations by averaging the governing equations
determining the discrete molecular scale phenomena. This method is an al-
ternative to, or rather both a verification and an extension of, the continuum
approach described in chap 1. These kinetic theory concepts also determine
the basis for a group of models used describing granular flows, further out-
lined in chap 4. A pedagogical advice basically for the students intending
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to obtain their very first overview of the content of reactor modeling on the
graduate level may concentrate on the continuum formulations first and, if
strictly needed, go back to the chapters that are dealing with kinetic theory
(i.e., chaps 2 and 4) after they feel confident with the continuum modeling
concepts.

Chapter 3 contains a survey of a large number of books and journal pa-
pers dealing with the basic theory of multi-fluid flow modeling. Emphasis
is placed on applying the multi-fluid model framework to describe reactive
flows. This is perhaps the main contribution in this book, as there exist no
textbook on reactive multiphase flow modeling intended for reactor engineers.
In the more advanced textbooks the basic multicomponent multiphase the-
ory is introduced in a rather mathematical context, thus there is a need for a
less demanding presentation easily accessible for chemical reaction engineering
students.

Chapter 4 contains a summary of the basic theory of granular flow. These
concepts have been adopted describing particulate flows in fluidized bed re-
actors. The theory was primarily used for dense bed reactors, but modified
closures of this type have been employed for more dilute flows as well. Com-
pared to the continuum theory presented in the third chapter, the granular
theory is considered more complex. The main purpose of introducing this the-
ory, in the context of reactor modeling, is to improve the description of the
particle (e.g., catalyst) transport and distribution in the reactor system.

In chap 5 an outline of the basic theory of the required closure laws and
constitutive equations is provided. The first section presents the closures re-
lated to averaged of products (i.e., the analogous to turbulence type of clo-
sures). The following sections describe models for the interfacial transport
phenomena occurring in multiphase reactive systems. An overview of the im-
portant models for the different forces acting on a single particle, bubble or
droplet is given. Model modifications due to swarm or cluster effects are dis-
cussed. The standard theories for interfacial heat and mass transfer are exam-
ined. In the last section the literature controversy originating from the fact
that with the present level of knowledge, there is no general mathematical
theory available to determine whether the 3D multi-fluid model is well posed
as an initial-boundary value problem, is examined.

In chap 6 the derivation of the classical reactor models is examined starting
out from the microscopic heat and species mass balances. In chemical reac-
tor engineering the idealized models like the plug flow reactor (PFR) - and
continuous stirred tank reactor (CSTR) models are well known from basic
courses in chemical reaction engineering. For non-ideal flows the dispersion
models (DMs) are frequently used. These standard models are deduced from
the microscopic heat and species mass balances employing a cross-sectional
area averaging procedure. Similar, but not identical, models can be obtained
by simplifying the governing microscopic transport equations.

In chap 7 a brief summary of the agitation and fluid mixing technology is
given. The main emphasis is placed on examining the modern strategies used
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to model the momentum transfer from the impeller to the fluid. The meth-
ods are sketched and the basic equations are listed. A few model simulation
examples are presented.

In chap 8 the basic bubble column constructions and the principles of
operation of these reactors are described. The classical models for two- and
three phase simple bubble column reactors are defined based on heat and
species mass balances. The state of the art on fluid dynamic modeling of
bubble column reactors is then summarized including a few simulations of
reactive flows.

In chap 9 an outline of the basic theory of the population balance equation
is provided. Three different modeling frameworks are defined, the macroscopic
formulation, the microscopic continuum - and kinetic theory formulations. The
macroscopic model is formulated directly on the macroscopic scales, enabling
a suitable framework for practical engineering calculations. In this framework
a simple and inaccurate numerical discretization scheme has become an inte-
grated part of most closure laws. Since the numerical discretization schemes
cannot be split from the physical closure laws in a trivial manner, the more
popular closures for bubble coalescence and breakage rates are discussed in this
chapter as well. The more rigorous microscopic formulations are presented and
future reactor analysis should preferably be based on these concepts, enabling
more accurate closure laws to be formulated and more optimized solution
methods to be used. The status on population balance modeling of bubble
coalescence and breakage phenomena is summarized.

Chapter 10 contains a literature survey of the basic fluidized bed reactor
designs, principles of operation and modeling. The classical two- and three
phase fluidized bed models for bubbling beds are defined based on heat and
species mass balances. The fluid dynamic models are based on kinetic theory
of granular flow. A reactive flow simulation of a particular sorption enhanced
steam reforming process is assessed.

In chap 11 an overview of the basic designs, principles of operation, and
modeling of fixed packed bed reactors is presented. The basic theory is ap-
plied to describe the performance of particular chemical processes operated
in fixed packed bed reactors. That is, porous media reactive flow model simu-
lations of particular packed bed sorption enhanced steam reforming processes
are assessed.

In chap 12 a group of finite volume solution algorithms for solving the
multi-fluid model equations is described. The basic single phase finite volume
method solution strategies, spatial discretization schemes, and ODE solution
methods in time are examined. The selected multiphase algorithms are ex-
tended versions of the single-phase SIMPLE-like algorithms. However, alter-
native algorithms can be found in the literature. Some of these methods are
briefly outlined in this chapter. Moreover, several numerical methods for solv-
ing the population balance equation for dispersed flows are outlined. Finally,
several solution methods for the resulting algebraic discretization equations
are mentioned.
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The book may be used as a reference book of the multi-fluid theory, or for
teaching purposes at different educational levels. For example, at the graduate
level, an introductory graduate course in single phase transport phenomena
can be based on chap 1 (and parts of chap 2). Suitable numerical solution
methods for the governing single phase equations can be found in chapter 12.
An introduction to reactor modeling can be based on chaps 6-11. The material
in chapters 2,3,4,5 and the multiphase parts of chap 12 may be better suited
at the post graduate level. Taking these three courses in sequence, I hope the
PhD students get the necessary knowledge to give future contributions in this
field of science.

I have received a great deal of help from numerous persons, over the nearly
twenty years association with this subject, in formulating and revising my
views on both reactor modeling and chemical reactor engineering. I would
like to acknowledge the inspiring discussions I have had with the colleagues
at NTNU during my work on this book. I am particularly incepted to the
present and former members of the staff at the Chemical Engineering De-
partment at NTNU. In addition, I wish to thank the PhD students that have
taken my graduate subjects and thus read the lecture notes carefully and
supplied me with constructive criticisms (among other comments) and sug-
gestions for further improvements on the text. It is fair to mention that my
students, especially Dr ing Carlos A Dorao, MSc H̊avard Lindborg, MSc Hans
Kristian Rusten and MSc Cecilie Gotaas Johnsen, have contributed to this
book in many ways. This includes technical contributions either in a direct
or indirect way, and reading parts of the draft manuscript. I must also thank
Associate Professor Maria Fernandino for her valuable suggestions and com-
ments regarding chapter 2. Finally, my thoughts are due to my wife, Jana, who
strongly believes quality is better than quantity. Her reviews and criticism of
the contents surely improved the book.

Trondheim, November 2007 Hugo A. Jakobsen



Nomenclature

Latin Letters
A Hamaker constant (J)
A chemical component in general reaction
A empirical model parameter (−)
A macroscopic surface area defining the control volume (m2)
A model parameter (−)
A shorthand notation for advective term
a coefficient in the FVM discretization equation
a non-linear function in PDE classification theory
a stoichiometric coefficients in general reaction (−)
A(t, r) generalized variable dependent on time and space
A0 catchment area (m2)
A0 valve opening area (m2)
a0 parameter in prescribed velocity profile in laminar boundary layer

theory (−)
A1 surface of phase 1 in two phase system (m2)
a1 parameter in prescribed velocity profile in laminar boundary layer

theory (−)
A2 surface of phase 2 in two phase system (m2)
a2 parameter in prescribed velocity profile in laminar boundary layer

theory (−)
a3 parameter in prescribed velocity profile in laminar boundary layer

theory (−)
aC(x̃, r̃;x′, r′,Y, t) coalescence frequency or the fraction of particle pairs of

states (x̃, r̃) and (x′, r′) that coalesce per unit time (1/s)
Ah heat exchange surface of reactor (m2)
AI interface area (m2)
aI interfacial area density denoting the interface area per unit volume

(m2/m3)
ai coefficient in generic algebraic equation in TDMA outline
ai constants in MWR approximation of the solution
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AP projected area, average projected area of particle area distribution on
a plane normal to the flow (m2)

Ar chemical affinity of reaction r (J/mol)
AS particle surface, average surface calculated from a particle surface

distribution (m2)
aij coefficients in algebraic system matrix A
B baffle width (m)
B chemical component in general reaction
B coefficient consisting of inverted Maxwell-Stefan diffusivities (s/m2)
B displacement factor (−)
B model parameter (−)
B model parameter in logarithmic velocity profile (−)
b constant of integration in laminar boundary layer theory (−)
b constant term in the FVM discretization equation
b impact parameter (m)
b non-linear function in PDE classification theory
b stoichiometric coefficients in general reaction (−)
B(x, r,Y, t) net birth term in population balance equation
B0 permeability (m2)
bB(x, r,Y, t) particle breakup frequency (s−1)
bi coefficient in generic algebraic equation in TDMA outline
bk total breakage rate of bubbles of group k in multi-group model
BB,i birth rate due to breakup in bubble class i ( 1

s m3 )
BCi

birth rate due to coalescence in bubble class i ( 1
s m3 )

Bdd(x) Kolmogorov second order velocity structure function (m2/s2)
C chemical component in general reaction
C clearance of turbulent impeller from the tank bottom (m)
C constant in velocity structure function formula, C = 27

55Γ ( 1
3 )Ck ≈ 2.0

(−)
C laminar impeller wall clearance (m)
C model parameter (−)
C shorthand notation notation for convective term
C universal constant in the Kolmogorov two-third-law (−)
c mole concentration of species (mol/m3)
c non-linear function in PDE classification theory
c parameter in relation for the modulus of elasticity of the particulate

phase (−)
c speed of electromagnetic radiation propagation in a medium (m/s)
c stoichiometric coefficients in general reaction (−)
c∗ mole concentration scale in turbulent boundary layer theory (−)
c+ dimensionless mole concentration in turbulent boundary layer theory

(−)
CM

L Magnus lift force coefficient (−)
CS

L Saffman lift force coefficient (−)
CT

L slanted wake transversal lift force coefficient (−)



Nomenclature XIII

C0 model coefficient (−)
Cμ k-ε turbulence model parameter (−)
Cω empirical model constant (−)
Cb empirical parameter in two-phase k-ε turbulence model (−)
Cc molar concentration of species c in mixture (kmol/m3)
CD k-ε turbulence model parameter (−)
CD drag coefficient (−)
CE empirical constant in LES model (−)
Cf (fVij

) surface area increase coefficient (−)
Cf friction factor (−)
ci coefficient in generic algebraic equation in TDMA outline
CK kinetic-energy velocity correction factor (−)
Ck constant in the Kolmogorov five-third-law (−)
CL lift force (net) coefficient (−)
CM momentum velocity correction factor (−)
CP specific heat at constant pressure (J/kgK)
Cp laminar impeller off bottom clearance (m)
CS Smagorinsky constant (−)
CS speed of sound (m/s)
CV specific heat at constant volume (J/kgK)
CV virtual - or added mass force coefficient (−)
c0 speed of light in the medium. In a vacuum c0 = 2.998 × 108 (m/s)
Cε3 model parameter (−)
Cε1 k-ε turbulence model parameter (−)
Cε2 k-ε turbulence model parameter (−)
Ckl rate of coalescence of bubbles of groups g and k in multi-group model
CW1 empirical wall lift force coefficient (−)
CW2 empirical wall lift force coefficient (−)
Cwb bubble wall friction force coefficient (−)
Ca Capillary number, Ca = We/ReP (−)
CFL Courant number, used in the Courant-Friedrichs-Lewy necessary sta-

bility condition for hyperbolic equations
D auxiliary factor in multiphase fractional step method implementation
D bubble deformation factor (−)
D chemical component in general reaction
D diameter (m)
D impeller diameter (m)
D mass diffusion coefficient or diffusivity, binary or multicomponent

systems (m2/s)
D model parameter (−)
D shorthand notation notation for diffusive term
d non-linear function in PDE classification theory
d particle diameter (m)
d stoichiometric coefficients in general reaction (−)
d′ diameter of daughter particle (m)
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d′′ diameter of the smallest daughter particle (m)
D′

s effective mass based diffusion coefficient in the explicit expression for
the Maxwell-Stefan flux (m2/s)

D′
sm effective diffusion coefficient of species s in Wilke mass flux (m2/s)

D(x, r,Y, t) net death term in population balance equation
d(i) diameter of particle in class, group or phase i (m)
dŜ entropy of mixture (J/K)
Dt

gp gas-particle turbulent dispersion coefficient (m2/s)
dA surface average diameter (m)
da major axis of an ellipsoidal bubble (m)
db minor axis of an ellipsoidal bubble (m)
dc critical bubble diameter (m)
dD drag diameter (m)
de equivalent bubble diameter (m)
Dh hydraulic diameter (m)
dH maximum horizontal dimension of a deformable particle (m)
di coefficient in generic algebraic equation in TDMA outline
di diameter of particle in interval i (m)
dr reactor diameter (m)
Ds effective diffusion coefficient for species s in explicit Maxwell-Stefan

flux expression (m2/s)
dS Sauter mean diameter (m)
De

s effective diffusivity of species s in explicit expression for the dusty gas
model flux (m2/s)

DT
s multicomponent thermal diffusion coefficients (kg/ms)

dV maximum vertical dimension of a deformable particle (m)
dV volume average - or equivalent particle diameter (m)
d12 distance between the centers of two hard spheres at collision (m)
deff effective bubble diameter (m)
dmax maximum stable fluid particle(m)
DB,i death rate due to breakup in bubble class i ( 1

s m3 )
DCi

death rate due to coalescence in bubble class i ( 1
s m3 )

de,0 initial equivalent bubble diameter just above the distributor (m)
dmax fixed maximum particle size (m)
dmin fixed minimum particle size (m)
Dsm Wilke effective diffusion coefficient for species s (m2/s)
Dsr Fick’s law binary diffusivity for the species s and r mixture (m2/s)
Da Damköhler number (−)
da infinitesimal area on the sphere of influence denoting the face of the

collision cylinder (in kinetic theory) (m2)
da infinitesimal surface element (m2)
DaI Damköhler number, DaI = lr/u (−)
dAp differential area used to define the radiation intensity, dAp = da cos θ

(m2)
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DEN auxiliary parameter (denominator) in kinetic expression for steam
reforming

dl element of arc length (m)
dl hight of collision cylinder (in kinetic theory) (m)
dm/dt mass change rate (kg/s)
ds arc length (m)
dt infinitesimal increment in time (s)
dv infinitesimal volume element (m3)
dx infinitesimal increment in x-coordinate direction (m)
dy infinitesimal increment in y-coordinate direction (m)
dz infinitesimal increment in z-coordinate direction (m)
E empirical wall law model parameter (−)
E energy of each photon (J)
E generalized total energy of a given system in classical mechanics
E heat flux emitted by a real surface (W/m2)
E total emissive power of thermal radiation (W/m2)
e non-linear function in PDE classification theory
e thermal internal energy per unit mass of mixture (J/kg)
e(λ) kinetic energy of eddy with size λ (J)
e(di, λ) turbulent kinetic energy of an individual eddy of size λ breaking a

bubble of size di (J)
E(k, t) three dimensional energy spectrum per unit mass (m3/s2)
E(t) contact time distribution function in penetration theory (s−1)
E(t) normalized element age distribution function in surface renewal theory

(s−1)
EΓ

k interfacial energy transfer due to phase change (J/m3s)
EE

k interfacial heat transfer (J/m3s)
EW

k interfacial work by viscous and pressure forces (J/m3s)
Eλ(λ) spectral emissive power of thermal radiation (W/m2 μm)
Eeddies(λ) energy of discrete eddies of size λ ( J

m3[m] )
Espectra(λ) energy of eddy wave function for eddies of size between λ and

λ + dλ ( J
m3[m] )

Etotal total energy associated with the center of mass of a thermodynamic
system (J)

Etotal total energy content within an arbitrary volume V in the system (J)
Ea activation energy of sorbent (J/kmol)
Eb total thermal radiative power emitted by a blackbody (W/m2)
Ec(k) scalar spectrum in wave number space
Ei internal energy associated with the center of mass of a thermodynamic

system (J)
Ek kinetic energy associated with the center of mass of a thermodynamic

system (J)
Ep potential energy associated with the center of mass of a thermody-

namic system (J)
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Ep scalar potential energy function or potential (J)
Ep(q̇, t) generalized potential energy of a given system in Lagrangian mechanics
Es(d) minimum energy required to deform a bubble of size d (J)
es(di, dj) increase of bubble surface energy required breaking the parent bub-

ble di into a daughter bubble dj and a second corresponding daughter
bubble (J)

ET total kinetic energy of the macroscopic fluid motion (J)
Eλ,b spectral thermal radiative power emitted by a blackbody (W/m2 μm)
ETotal total energy of two colliding particles (J)
Ek,fluid kinetic energy (KE) of fluid surounding a particle in virtual mass

force analysis (J)
Eo Eötvös number (−)
f(t,x) longitudinal autocorrelation function (−)
F dimensionless drag coefficient (−)
F mass flux component in FVM discretization
F model parameter (−)
F net flux of property ψ in elementary kinetic theory
f continuous number density probability in least squares method outline
f dimensionless constant in turbulent viscosity model (−)
f friction factor (−)
f non-linear function in PDE classification theory
f surface force component (N)
f wave frequency associated with Taylor hypothesis (radians/s)
f(...) distribution function in Hamiltonian mechanics
f(...) single distribution function in kinetic theory
f(x) quadratic function in CG definition
f(ζ, η) function defining a curve on a given surface, expressed in the curvi-

linear coordinates
f(m, r, t) particle distribution function with particle mass as inner coordinate

( 1
m3[kg] )

f(t, r) general scalar, vector or tensor valued function
F (x, y) explicit function defining a surface in 3D space, expressed in Cartesian

coordinates
f(x, y, z) implicit function defining a surface in 3D space, expressed in Carte-

sian coordinates
f (1)(r, c, r1, c1, t) single distribution function in kinetic theory, f ≡ f (1)

f (1)(x, r, t) single number distribution function denoting the number of par-
ticles per unit volume of the particle phase space at time t (general)

f (1)(d, r, t) average single particle number density function using particle di-
ameter as inner coordinate ( 1

[m]m3 )
f (1)(d, t) volume average particle number density probability with d as inner

coordinate ( 1
m3[m] )

f (2)(r, c, r1, c1, t) pair distribution function in kinetic theory
f1 distribution function for molecule 1 in kinetic theory
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f2 distribution function for molecule 2 in kinetic theory
fλ number density of eddies of size between λ and λ + dλ ( 1

m3s[m] )
fb area (volume) fraction of bed gas taken by bubble phase gas (m2)
fe area (volume) fraction of bed gas taken by emulsion phase gas (m2)
f0

i fugacity of species i in the mixture at the standard state (Pa)
fk auxiliary factor in PEA implementation
Fs molar flow rate of species s (mol/s)
fw bubble wake fraction (−)
fD Darcy friction factor (−)
fF Fanning friction factor (−)
Fin,ψ total inflow of property ψ into the calculation domain, used in conver-

gence criterion
fsr proportionality or friction coefficient (kg/m3s)
fVij

breakage volume fraction, fVij
= d3

j/d
3
i (−)

ff fouling factor (Km2/W )
Fr Froude Number, Fr = v2/gL (−)
g(t,x) transverse autocorrelation function (−)
G auxiliary factor in multiphase fractional step method implementation
G non-dimansional shear rate (−)
G particle growth rate (m/s)
G specific Gibbs free energy expressed in terms of mole (J/kg)
G total irradiation of thermal radiation (W/m2)
g acceleration of gravity (m/s2)
g magnitude of the relative velocity vector (m/s)
g non-linear function in PDE classification theory
g source term in least squares method outline
G0 modulus of elasticity of the particulate phase (kg/ms2)
Gλ(λ) spectral irradiation of thermal radiation (W/m2 μm)
gI interface Gibbs free energy per unit mass (J/kg)
gk Gibbs free energy per unit mass (J/kg)
gαβ metric tensor
Gr Grashof number, Gr = l3Δρg/ρν2 (−)
H H-property function in the Boltzmann H-theorem
H liquid hight in standard turbulent stirred tank (m)
H specific enthalpy, mixture enthalpy per unit mass expressed in terms

of temperature, pressure and the mass fractions of the species in the
mixture (J/kg)

H stagnation enthalpy (J/kg)
H wall distance in square duct (m)
h Plank’s constant = 6.6262 × 10−34 (Js)
h film thickness (m)
h grid spacing (m)
h grid spacing in multigrid method outline
h head in head form of energy balance (m)
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h specific enthalpy, mixture enthalpy per unit mass expressed in terms
of temperature, pressure and the mass fractions of the species in the
mixture, a fluid dynamic quantity (J/kg)

H(p,q, t) Hamiltonian function in Hamiltonian mechanics
h(ReP ) dimensionless function in particle drag expression (−)
hΓ

k interfacial heat transfer due to phase change (J/m3s)
h* specific enthalpy of ideal gas mixture (J/kg)
hcond, conv

k combined convective heat transfer coefficient accounting for con-
ductive and convective heat transfer (W/m2K)

hcond
k convective heat transfer coefficient accounting for conductive heat

transfer (W/m2K)
hexcess specific mixture excess enthalpy (J/kg)
hexcess specific residual enthalpy of mixture (J/kg)
hideal mixture specific mixture enthalpy expressed in terms of enthalpies of pure

real fluids (J/kg)
hrad heat transfer coefficient accounting for radiantion transfer (W/m2K)
h0 initial film thickness (m)
hα Lamé coefficients, metric coefficients, or scale factors
hC effective swept volume rate (m3/s)
hc specific enthalpy associated with chemical species/component c (J/kg)
hf final film thickness (m)
HI mean surface curvature (m−1)
hI interface enthalpy per unit mass (J/kg)
hk enthalpy per unit mass (J/kg)
hv volumetric heat transfer coefficient (Jm−3K−1)
hcd interfacial heat transfer coefficient
HGL suspension height (m)
hgp gas to particle heat transfer coefficient (Jm−2K−1)
I integral
I turbulence intensity (−)
Ie total intensity of emitted thermal radiation (W/m2)
Ii particle size interval (m)
Ii total intensity of incident thermal radiation (W/m2)
IR relative turbulence intensity (−)
Iλ,b spectral radiation intensity of blackbody emission (W/m2 srμm)
Iλ,e(λ, θ, φ) spectral intensity of emitted thermal radiation (W/m2 srμm)
Iλ,i(λ, θ, φ) spectral intensity of incident thermal radiation (W/m2 srμm)
J(ff) approximate collision term in the Boltzmann equation as given by the

Enskog expansion
J Jacobian determinant
J total radiosity of thermal radiation (W/m2)
JΓ

k,s interfacial species mass transfer due to phase change (kg/m3s)
Jj

k,s interfacial species mass transfer due to ordinary diffusion (kg/m3s)
Jλ(λ) spectral radiosity of thermal radiation (W/m2 μm)



Nomenclature XIX

K equilibrium constant
K generalized proportionality coefficient in the interfacial transfer flux

relation
K model parameter (−)
K number of FEM elements that constitute a part of the domain
K parameter in bubble size model for bubbling beds (−)
K permeability constant in the Davidson-Harrison model characteristic

of the particles and the fluidizing fluid (m3s/kg)
k Boltzmann constant (J/K)
k constant in capture kinetics (1/s)
k mean turbulent kinetic energy per unit mass (m2/s2)
k parameter in cyclone pressure drop relation (−)
k reaction rate constant
k thermal conductivity (W/mK)
k wave number (m−1)
K ′′ model parameter (−)
K ′′′ model parameter (−)
K(t− τ) kernel function in history force expression (−)
Kcoll

p collisional diffusion coefficient (m2/s)
Kt

p particle turbulent (or kinetic) diffusion coefficient (m2/s)
k0 wave number for the integral scale of turbulence (m−1)
K1 empirical parameter in drag coefficient parameterization (−)
K2 empirical parameter in drag coefficient parameterization (−)
K3 empirical parameter in drag coefficient parameterization (−)
kdilute conductivity parameter for the dilute limit in granular theory (kg/ms)
kC cutoff wave number in LES (m−1)
kd viscous Cutoff wave number in LES (m−1)
KG overall gas-side mass transfer coefficient (m/s)
Kg empirical parameter in breakage kernel closure (−)
KL overall liquid-side mass transfer coefficient (m/s)
kp mass transfer coefficient associated with a pressure driving force

(mmole/Js)
kp turbulent kinetic energy analogue of the particulate phase (m2/s2)
Kr overall rate coefficient (kg/m3)
kbc bubble-cloud mass interchange coefficient (m3/m3s)
kc,s interfacial mass transfer coefficient (m/s)
Keq chemical reaction equilibrium constant
kgp gas-particle fluctuation covariance (m2/s2)
kgp gas-particle fluctuation kinetic energy (covariance) (m2/s2)
kp,kin kinetic thermal conductivities of the particle phase (W/mK)
kp,m molecular thermal conductivities of the particle phase (W/mK)
kSGS,t sub-grid scale kinetic energy per unit mass in LES (m2/s)
Kn Knudsen number (−)
L height (m)
L length of reactor (m)
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L length scale of turbulence, or integral length scale of turbulence (m)
L length scale, characteristic length (m)
l mixing length (m)
l turbulence length scale (m)
l upper horizontal boundary in laminar boundary momentum balance

analysis (m)
L(q̇,q, t) Lagrangian function in Lagrangian mechanics
Lc integral scale of scalar segregation (m)
LD height of solids in downcomer (m)
le eddy size in the inertial subrange of the turbulence energy spectrum

(m)
lI line formed by the intersection of AI(t) with A(t) (m)
lj interfacial transport length for interface j (m)
lS Smagorinsky lengthscale (m)
lW intersection of CV wall interface with the cross sectional plane (m)
LTotal total angular momentum of two colliding particles (kgm2/s)
lk,s film thickness on the phase k side of the interface (m)
Lmf hight of the fixed bed at minimum fluidization conditions (m)
lW,k(t, z) closed curve of phase k in the cross section plane (m)
Le Lewis number, Le = α/D (−)
M mass (kg)
M total mass of mixture in CV (kg)
M total mass of particulate system (kg)
m empirical model parameter (−)
m1 parameter in Davidson-Harrison two-phase model (−)
m2 parameter in Davidson-Harrison two-phase model (−)
Mc mass of species c (kg)
mc mass of fluid enclosed in the volume of the particle in the pressure

gradient force (kg)
mc total mass associated with the center of mass of a binary particle

sustem (kg)
mg mass of particles in group g (kg)
MI net interface property term
mi mass of one particle of type i (kg)
mp mass of a single particle (kg)
mV virtual mass of a particle in virtual mass force analysis (kg)
Min,mass total inflow of mass into the calculation domain, used in convergence

criterion
Mwc

molecular weight of species c (kg/kmol)
Ma Mach Number, Ma = v/CS (−)
Mo Morton number (−)
MTKE mean turbulent kinetic energy per unit mass, coincides with the k

quantity (m2/s2)
N impeller stirring rate (RPM)
N number of experiments, or realizations
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N number of particles contained in a given system in classical mechanics
N total number of species in a mixture
n empirical model parameter (−)
n number density (number of particles/m3)
n number of basis functions used in MWR solution approximation

function
n number of equations in matrix system, or number of unknowns in

algebraic equation system
n number of moles (mol)
n1 parameter in capture kinetics (−)
n2 parameter in capture kinetics (−)
Na Avogadro’s number
Ni number density of particles in the size interval i (1/m3)
ni number density of particles in size class i ( 1

m3 )
NP particle number density (Number/m3)
Np Newton number, Np = P/ρN3D5 (−)
NQ pumping number (−)
Ns moles of species s (mol)
Nu Nusselt number, Nu = hl/k (−)
O origo, an arbitrary reference point in space
P impeller power consumption (W )
P wave period associated with Taylor hypothesis (s)
p function in MWR example
p laminar impeller pitch (m)
p pressure (Pa)
p′k,I temporal deviation between the instantaneous pressure and the inter-

facial mean pressure variable (Pa)
p(μ) probability density (−)
p(ξ, r,vξ, c, t) extended distribution function in kinetic theory
P (r, c, t) normalized distribution function, or probability density function
p(x, r, c, t) advanced particle distribution function ( 1

[x](r)m )
pB

C coalescence probability due to buoyancy processes (−)
pT

C coalescence probability due to turbulence processes (−)
p
(1)
i (m, r, c, ωc, T, t) advance particle distribution function with multiple inner

coordinates ( 1
[kg,K](m/s)(r)m )

pLS
C coalescence probability due to laminar shear (−)
p0 constant in FEM example
pkin kinetic pressure in granular theory (N/m2)
Pb term in k-ε turbulence model which represents the energy production

rate per unit volume due to bubble motion (J/m3s)
pB(di, λj) breakage probability function, determining the efficiency of the

eddy-bubble collisions (−)
pB(di : dj , λ) breakage probability function (−)
pC coalescence probability (−)



XXII Nomenclature

pe(di, λ) normalized distribution function used to describe the turbulent ki-
netic energy distribution of eddies of size λ (−)

Pi auxiliary coefficient in TDMA outline
Pk term in k-ε turbulence model which represents the energy production

rate per unit volume due to fluid shear (J/m3s)
PS pressure scale, or surface pressure (Pa)
PC,kl probability of coalescence of bubbles of groups g and k in multi-group

model
pp,crit critical state frictional pressure for particle phase (Pa)
pp,fric frictional pressure for particle phase (Pa)
Pe Péclet number, Pe = vz,avl/D = RePr (−)
Pr Prandtl Number, Pr = μCP /k (−)
Q heat (J)
Q impeller pumping capacity (m3/s)
q mass of CO2 adsorbed divided by mass adsorbent (−)
q number of components/species in the mixture (−)
q number of independent reactions
qrad total radiation heat transfer flux (W/m2)
qλ(λ) spectral heat transfer flux (W/m2μm)
Qb volumetric gas flow rate in bubble phase (m3/s)
Qi auxiliary coefficient in TDMA outline
Qij Eulerian correlation function which represents a normalized velocity

correlation tensor (−)
R impeller radius (−)
R radius of pipe, tube or sphere (m)
R radius of riser (m)
R residual error
R universal gas constant (J/molK)
r characteristic chemical reaction rate (s−1)
r model parameter (−)
r radial coordinate in the Cylindrical and spherical coordinate systems

(m)
r smoothness monitor in TVD schemes
r0 range of interaction defining a particle collision (m)
Rb radius of bubble (m)
rb bubble radius (m)
Rc radius of cloud (m)
Rc rate of generation of species c by chemical reaction per unit volume

(kg/m3s)
rc radius of core (m)
Rd radius of the liquid disk between two coalescing bubbles (m)
RL(s) auto-covariance (m2/s2)
Rn radius of curvature at the nose of the gas bubble (m)
Rr reactor radius (m)
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rr rate of generation for reaction r defined independent of species, pro-
portional to the extent of reaction (mol/m3s)

Rs dimensionless energy source due to mean force acting on particles in
granular flow (−)

rs mass rate of production of species s due to homogeneous chemical
reaction (kg/m3s)

rAB linear correlation coefficient (−)
rad sorption rate (kmol/kgs)
rij equivalent bubble radius (m)
Rij(t,x) two-point correlation tensor (m2/s2)
Rnk,s

volumetric species mass transfer rate (kg/m3s)
RQk

volumetric heat transfer rate (W/m3)
RQI,λ

volumetric heat transfer rate due to condensation/vaporization
(W/m3)

Re Reynolds Number, Re = ρvL/μ (−)
Reκ shear Reynolds number (−)
ReΩ rotation Reynolds number (−)
S action integral in classical or Lagrangian mechanics
S imaginary surface in phase space enclosing Ω, used in classical

mechanics
S specific entropy of mixture (J/kg K)
s average surface renewal rate (s−1)
s model parameter (−)
s specific entropy of mixture (J/kg K)
s time variable used calculating the autocorrelation, s = t′ − t. Time

difference between the two time instants at which the values of the
time dependent velocity fluctuations are measured (s)

Sψ generalized source term
sA(ψ, g) scattering cross section expressed in terms of k (m2)
SI perimeter (m)
sI interface entropy per unit mass (J/kgK)
Sk momentum source term of phase k (kg/m2 s2)
sk entropy per unit mass (J/kgK)
SW perimeter of the wall (m)
SC,ψ constant part of the linearized source term in FVM discretization
SP,ψ constant part of the linearized source term in FVM discretization
Sc Schmidt Number, Sc = μ/ρD (−)
Sh Sherwood number, Sh = kcl/D (−)
St Stanton number for heat, Sth = h/(CP ρvz,av) = Nu

RePr (−)
St Stanton number for mass, Stm = kc/vz,av (−)
T diameter of standard turbulent stirred tank (m)
T temperature (K)
T time period over which time averaging is performed (s)
t time coordinate (s)
T (q̇,q) generalized kinetic energy in Lagrangian mechanics
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T ∗ temperature scale in turbulent boundary layer theory (−)
T+ dimensionless temperature in turbulent boundary layer theory (−)
TShaft shaft torque (W )
tb breakage time (s)
tb bubble breakage time (s)
tmax time between the first contact and the time when the film area between

two colliding bubbles reaches its maximum value (s)
te contact time in surface renewal and penetration theories (s)
U overall heat transfer coefficient (J/m2sK)
ub average rise velocity of bubbles in a freely bubbling bed (m/s)
ub average rise velocity of bubbles in bubbling bed (m/s)
ue interstitial gas velocity in the emulsion phase (m/s)
ubl,rise rise velocity of a single bubble in a liquid (m/s)
ubr,0 ideal rise velocity of a single bubble in fluidized bed (m/s)
Umf superficial gas velocity at minimum fluidization conditions (m3m−2s−1)
V arbitrary macroscopic control volume fixed in space (m3)
V combined abstract volume V = Vx + Vr

V speed of fluid flow; V =| v | (m/s)
V tank volume (m3)
V volume (m3)
V volume over which volume averaging is performed (m3)
v Kolmogorov micro velocity scale (m/s)
v flow of gas through a bubble in bubbling bed
v represents all admissible functions in the space X(Ω) of admissible

functions in least squares method outline
v speed of flow (m/s)
v+ dimensionless velocity (−)
vS superficial velocity in tubular reactor (m/s)
V1 volume region of phase 1 in two phase system (m3)
V2 volume region of phase 2 in two phase system (m3)
v∞ terminal velocity (m/s)
v* friction velocity (m/s)
vbreakage characteristic velocity of the bubble breakage process (m/s)
vrms root-mean-square of the fluctuating velocity components, rms-velocity

(m/s)
Vb bubble volume (m3)
Vb volume of bubble phase (m3)
Vc volume of cloud phase (m3)
Vi volume of a particle in class, group or phase i (m3)
Vp volume of a single particle, or average of particle volume distribution

(m3)
Vr volume in physical space
Vr volume of gas in bubbling bed (m3)
vt impeller tip speed (m/s)
Vw bubble wake volume (m3)
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Vx abstract volume in internal property space
vequa equatorial speed parameter used in experimental data analysis (m/s)
vslip fluid-particle velocity slip (m/s)
Vb,i volume of bubble or particle in class i (m3)
Vbs volume of solids in bubble phase (m3)
Vcs volume of solids in cloud phase (m3)
Ves volume of solids in emulsion phase (m3)
vz,max maximum velocity at the center of a pipe (m/s)
W impeller blade width (m)
W weighting function in MWR discretization
Ws solid feeding rate (kg/s)
We Weber number, We = ρv2L/σ (−)
x coordinate in Cartesian coordinate system (m)
x fractional conversion of capture reaction (−)
X(Ω) space of admissible functions, used in least squares method outline
xi pivotal points in Ii

Xk phase indicator function
xs mole fraction of species s in gas or liquid mixture (−)
Xgkl intergroup transfer matrix in multi-group method distributing the

mass from groups k and l to group g in the coalescence process
Xgk matrix in multi-group method distributing the mass from the number

of group k bubbles broken to the number of group g bubbles formed
in the breakage process

y coordinate in Cartesian coordinate system (m)
y distance from wall (m)
y+ distance from a wall measured in viscous lengths, or Reynolds number

(−)
y0 distance between the wall and the particle (m)
Z reactor height (m)
z coordinate in Cartesian coordinate system (m)
z position above the distributor (m)
Zs−r collision frequency for one molecule of species type s colliding with

target molecules of type r (s−1)
Zsr collision density, the number of collisions between pairs of molecules

s and r (m−3s−1)
〈ωk〉ΓAI

interfacial mass flux weighted species mass fraction (−)
〈hk〉ΓAI

interfacial mass flux weighted heat transfer (J/kg)
〈Hs〉AI

surface average modified Henry’s law constant for species s in the
mixture (−)

〈kc〉L length average mass transfer coefficient (m/s)
〈Ni〉te average mass transfer rate in surface renewal and penetration theories

(mol/m2s)
〈vrel

n,k〉AI
normal interface velocity due to phase change (m/s)

Ǧs partial mass Gibbs free energy for species s (J/kg)
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Ȟc partial specific enthalpy of species c in the mixture (J/kg)
ȟc partial specific enthalpy of species c in the mixture, a fluid dynamic

quantity (J/kg)
ṁ total mass flow rate (kg/s)
ṁk interface mass transfer rate (kg/m2s)
ṁs mass flow rate of species s (kg/s)
Q̇ rate of heat added to the control volume V (J/s)
Q̇cond, conv

k combined convective heat transfer rate due to conduction and con-
vection (W )

Q̇cond
k convective heat transfer rate due to conduction (W )

Q̇rad radiation heat transfer rate (W )
Q̇λ spectral radiant heat transfer rate (W/μm)
Ẇ rate of work done on the control volume V (J/s)
dm
dt particle growth rate related to mass change by condensation, evapo-

ration and dissolution (kg/s)
�
G Gibbs free energy expressed in terms of mole (J)
D̂sr symmetric Fickian multicomponent diffusivity for the s and r pair of

gases [17] [18] (m2/s)
Ĉsk multicomponent inverse diffusivities (s/m2)
F̂ Helmholtz energy (J)
f̂i fugacity of species i in the mixture (Pa)
Ĝ Gibbs free energy (J)
Ĝ Gibbs free energy expressed in terms of mass (J)
Ĥ total mixture enthalpy (or enthalpy) expressed in terms of tempera-

ture, pressure and the masses of the various species in the mixture
(J); or enthalpy expressed in terms of temperature, pressure and the
mole numbers of the various species in the mixture (J)

ĥ total mixture enthalpy (or enthalpy) expressed in terms of tempera-
ture, pressure and the masses of the various species in the mixture,
a fluid dynamic quantity (J); or enthalpy expressed in terms of tem-
perature, pressure and the mole numbers of the various species in the
mixture, a fluid dynamic quantity (J)

T̂ non-dimensional temperature (−)
p̂k,I deviation between the local instantaneous pressure and the interfacial

area averaged pressure (Pa)
ai activity of species i in the mixture (−)
fpure

i fugacity of pure species i (Pa)
D̃e

sK effective Knudsen diffusivity of species s in porous medium (m2/s)
D̃e

sr effective bulk diffusivity of binary pair s−r in porous medium (m2/s)
D̃sk Maxwell-Stefan diffusivities (m2/s)
˜Cij residual stress tensor in LES (Pa)
˜Lij Leonard stress tensor in LES (Pa)
˜Rij residual stress tensor in LES (Pa)
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˜Sij the large scale strain-rate tensor in LES (m2/s)
A FEM characteristic matrix
A system matrix
D diagonal matrix containing interfacial coupling terms
Dsr generalized non-symmetric Fickian multicomponent diffusivity for the

s and r pair of gases [16] [39] [3] (m2/s)
I source term in generalized Boltzmann type of equation representing

the effects of particle coalescence, breakage and collisions
J (ψ(c)) collision term in the Boltzmann equation
Dsr generalized non-symmetric multi-component Fickian mass diffusion

coefficients (m2/s)
A A : X×X, a symmetric, continuous bilinear form, used in least squares

method outline
A chemical reaction formula matrix (−)
F F : X, a continuous linear form, used in least squares method outline
J (f ; g) norm equivalent functional in least squares method outline
L lower triangular matrix
M preconditioner in Krylov subspace methods outline
P process
R space domain
U upper triangular matrix
ē(di, λ) mean turbulent kinetic energy of an eddy of size λ breaking a bubble

of size di (J)
Ḡs partial molar Gibbs free energy for species s (J/mol)
p̄ mean pressure, defined as the mean value of the normal stresses across

any three orthogonal planes (Pa)
v̄λ average velocity of eddies of size λ (m/s)
v̄drops mean turbulent droplet velocity (m/s)
v̄c continuous phase circulation velocity (m/s)
v̄r,di

average rise velocity of particle of size class i (m/s)
v̄rel,t,ij length of relative velocity between a pair of unlike bubbles (m/s)
v̄t,d average speed of particles of size d due to turbulence (m/s)
v̄t,i mean turbulent bubble velocity (m/s)
dvc

dr average shear rate for the continuous phase (1/s)
d̃ diameter of complementary daughter particle (m)
p̃′g fluctuation pressure component of the undisturbed flow (Pa)
p̃g local instantaneous pressure of the undisturbed flow (Pa)
CC symmetrical, traceless and non-divergent tensor in Enskog expansion
A turbulence anisotropy tensor in extended k-ε model (−)
B tensor function in Enskog expansion
e unit tensor with components eij

eI unit interface tensor
P pressure tensor (Pa)
pcoll collisional pressure tensor (Pa)
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pkin kinetic pressure tensor (Pa)
T total stress tensor (Pa); T = pe + σ
˜Tg total stress tensor of the undisturbed flow (Pa)
gαβ local metric tensor
Kαβ curvature tensor (m−1)
G specific molar Gibbs free energy expressed in terms of mole (J/kmol)
H specific molar enthalpy, mixture enthalpy per unit mole expressed in

terms of temperature, pressure and the mole fractions of the species
in the mixture (J/mol)

h specific molar enthalpy, mixture enthalpy per unit mole expressed in
terms of temperature, pressure and the mole fractions of the species
in the mixture, a fluid dynamic quantity (J/mol)

F̄l interfacial coupling term in two-phase k-ε turbulence model (N/m3)
〈nk,s〉AI

surface average combined species mass transfer flux (kg/m2s)
〈v〉Ni

number average velocity representative for particle size class i (m/s)
Mk interfacial momentum transfer to phase k
P(p,q, t) a set of generalized momenta in Hamiltonian mechanics
Q(p,q, t) a set of generalized coordinates in Hamiltonian mechanics
q̇ generalized velocities in Lagrangian Mechanics
C vector function in Enskog expansion
A vector function in Enskog expansion
a acceleration of a single particle (m/s2)
aξ generalized acceleration vector in property space
B general vector or tensor valued function
b constant vector in algebraic equation system
b element-abundance vector (mole)
C peculiar velocity (m/s)
c velocity of a single particle, or velocity of a collection of mono-atomic

gas molecules (m/s)
d generalized diffusional driving force (m−1)
e error vector in multigrid method outline
e unit vector with components ei in the i (i = 1, 2,3) directions
F incident particle number flux or intensity (number/m2 s)
F net force acting on a single particle (N)
f FEM characteristic vector
f sum of forces acting on the mixture in the control volume (N)
FW

L,d wall lift force acting on a collection of dispersed particles per unit
mixture volume (N/m3)

FI surface force per unit area (N/m2)
Fk generalized drag force per unit mixture volume (N/m3)
FL lift force acting on a collection of particles per unit mixture volume

(N/m3)
FP net force acting on a collection of particles per unit mixture volume

(N/m3)
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fS total hydrodynamic surface force exerted by a fluid on a particle (N)
FV virtual mass force acting on a colliction of particles per unit mixture

volume (N/m3)
fW net wall interaction force acting on a single particle (N)
fBuo buoyancy force on a single particle (N)
fB Basset history force acting on a single particle (N)
fD steady drag force acting on a single particle (N)
fE body forces (except gravity) acting on a single particle (N)
fG body force due to gravity acting on a single particle (N)
fhp hydrostatic pressure force acting on a single particle (N)
FL,V combined lift-virtual mass force acting on a collection of particles per

unit mixture volume (N/m3)
fL lift force acting on a single particle (N)
fpg pressure gradient force acting on a single particle (N)
fp force due to external pressure gradient acting on a single particle (N)
FTD turbulent dispersion force per unit volume (N/m3)
fV virtual- or added mass force acting on a single particle (N)
G velocity of the center of mass expressed in the laboratory frame (m/s)
g external force per unit mass, or gravity force per unit mass (m/s2)
g relative particle velocity (m/s)
gα tangent basis vectors in orthogonal coordinate systems
Gc velocity of the center of mass expressed in the center of mass frame

(m/s)
H angular momentum vector for a system (kgm2/s)
h angular momentum vector for a particle (kgm2/s)
Ik generalized interfacial transfer flux
J Jacobian
J local instantaneous diffusive flux of the generalized quantity ψ
J∗

s instantaneous diffusive molar flux of species s in mixture (mol/m2s)
jm volumetric flux of the mixture (m3/m2s)
JS molecular entropy flux (J/m2sK)
js instantaneous diffusive mass flux of species s in mixture (kg/m2s)
J12 impulse of the force exerted by particle 1 on particle 2 (kgm/s)
jgc multi-component mass diffusion flux due to external force (kg/m2s)
joc ordinary multi-component mass diffusion flux (kg/m2s)
jpc pressure gradient induced multi-component mass diffusion flux

(kg/m2s)
jTc temperature gradient induced multi-component mass diffusion flux

(kg/m2s)
JV d volumetric flux of the dispersed phase relative to the velocity of the

volume centre of the mixture (m3/m2s)
k unit vector of the apse-line
MΓ

k interfacial momentum transfer due to phase change (N/m3)
MT

k interfacial momentum transfer caused by stresses (N/m3)
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mc instantaneous mass flux of molecules of species of type c with respect
to stationary coordinate axes (kg/m2s)

Mσ
I net surface tension force term (N/m2)

Mk,l interfacial momentum exchange between phases k and l (kg/m2 s2)
Msr momentum transferred from species r to s per collision (kgm/

s, collision)
n outwardly directed unit normal vector
n species-abundance vector (mole)
NI unit vector normal to lI(t) that is both tangent to and outwardly

directed with respect to AI(t)
Ns combined molar flux of species s in gas or liquid mixture (mol/m2s)
ns combined mass flux of species s in gas or liquid mixture (kg/m2s)
P momentum associated with a macroscopic CV (kgm/s)
p generalized momenta in Hamiltonian mechanics
pm search direction in m-th iteration in Krylov subspace methods outline
Psr diffusive force per unit volume exerted by species r on species s

(N/m3)
q generalized coordinates in Lagrangian and Hamiltonian mechanics
q heat flux vector (W/m2)
qrad total radiant energy flux arriving at a surface element (W/m2)
qc ordinary conductive heat flux, defined by Fourier’s law (W/m2)
qd energy flux resulting from inter-diffusion of the chemical species

(W/m2)
qr radiative heat flux (W/m2)
qx Dufour energy flux resulting from a temperature gradient induced by

mass diffusion of chemical species (W/m2)
qI interface heat flux per unit length (J/m)
qV volumetric radiant energy flux (W/m3)
qcoll collisional granular heat flux (kg/s3)
qkin kinetic granular heat flux (kg/s3)
qAS

radiant surface energy flux (W/m2)
r position vector, locating a point in space (m)
r residual vector
rc definition of the center of mass point (m)
rc position vector denoting the location of the center of mass (m)
ri particle coordinates in Newtonian Mechanics (m)
rp particle position vector, locating the center of mass (m)
T total torque applied to fluid mass in control volume (Nm)
t torque on a single sphere (Nm)
t unit tangent vector
t(k) tangent surface vector
TThrust propulsive force developed by a jet-propeller motor (N)
u control volume surface velocity arising from the motion of the moving

grid (m/s)
u generalized velocity in classical mechanics
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u velocity of the control surface with respect to the coordinate reference
frame (m/s)

v local instantaneous mixture velocity, mass average velocity (m/s)
v′

d,s modified mass diffusion velocity for species s (m/s)
v∗

s species velocity of molecules of species s generated by chemical reaction
(m/s)

vdrift fluid particle drift velocity (m/s)
vc instantaneous number mean velocity of molecules of species type c

with respect to stationary coordinate axes (m/s)
vI interface velocity (m/s)
vi mass average velocity of particle class i (m/s)
vi surface average velocity of particle class i (m/s)
vr external coordinate velocity (m/s)
vx internal coordinate velocity
vslip,d slip velocity for dispersed phase d (relative to the continuous phase c)

(m/s)
vξ generalized velocity vector in property space
vc,d instantaneous diffusion velocity for species c, relative to the local mo-

tion of the mixture stream (m/s)
vi,di

size average velocity of particle class i (m/s)
vi,ni

number average velocity of particle class i (m/s)
vi,Vi

volume average velocity of particle class i (m/s)
vMk diffusion velocity of phase k, the velocity of phase k relative to the

velocity of the mass center of the mixture (m/s)
vrel relative velocity between particles or phases (m/s)
vrk relative velocity between dispersed phase k and continuous phase c

(m/s)
vV k drift velocity of phase k, the velocity of phase k relative to the velocity

of the volume center of the mixture (m/s)
w velocity of the fluid at the control surface with respect to the control

surface (m/s)
x internal property vector
x position vector defining the separation of two points in space (m)
x three coordinates in an arbitrary coordinate system fixed in space
x true solution of matrix system: Ax = b
x vector of unknowns in algebraic equation system
xν intermediate solution of matrix system: Axν = b after ν iterations
ximproved,ν corrected or improved solution in multigrid method outline
xm approximate solution in m-th iteration in Krylov subspace methods

outline
Y vector representing the continuous phase variables
dc an infinitesimal element in a hypothetical velocity space containing

the velocity c
dr an infinitesimal spatial space containing the point r
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Greek Letters
α(T ) total, hemispherical absorbtivity of a surface (−)
αsr Onsager phenomenological coefficients (kgs/m3)
α absorptivity, α = Gabs/G (−)
α isothermal compressibility (Pa−1)
α ratio of CO2-acceptor to catalyst mass
α thermal diffusivity of conducting medium (m2/s)
α∗ parameter in relation for the modulus of elasticity of the particulate

phase (−)
αk instantaneous volume fraction of phase k (−)
αm auxiliary factor at iteration m in Krylov subspace methods outline
αP relaxation factor in FVM discretization
αλ,θ(λ, θ, φ, T ) spectral, directional absorbtivity of a surface (−)
αλ(λ, T ) spectral, hemispherical absorbtivity of a surface (−)
β bulk expansion coefficient (K−1)
β constant in time-splitting method
β empirical parameter (β ≈ 2.0) in the Kuboi mean square droplet ve-

locity relation (−)
β interfacial friction coefficient
βk time fraction (−)
βm auxiliary factor at iteration m in Krylov subspace methods outline
χ Enskog free volume correction function
χ energy ratio, χ = e(di,λ)

ē(di,λ) (−)
Δh̄vap

lg,s latent heat of vaporization of pure species s in the multicomponent
mixture (J/mol)

ΔE translational energy change during an inelastic collision (kgm2/s2)
Δhvap

lg,mix latent heat of vaporization of the multicomponent mixture (J/kg)
ΔL bubbling bed expansion (m)
ΔpC pressure drop through cyclone (Pa)
ΔpD pressure drop across downcomer (Pa)
Δpf pressure drop due to friction (Pa)
ΔpR pressure drop across riser (Pa)
ΔpCD pressure drop through the solids flow control devices (Pa)
δQ differential energy transfer to the thermodynamic system (J). The δ

symbol is used to indicate that the integration of δQ which is not a
state function is dependent on the path.

Δt time increment (s)
Δtcoal coalescence time interval (s)
Δtcol collision time interval (s)
δv turbulence velocity scale (m/s)
δW differential work done on the thermodynamic system (J). The δ sym-

bol is used to indicate that the integration of δW which is not a state
function is dependent on the path.

Δ filter width in LES (m)
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δ boundary layer thickness (m)
δ redundancy corrector in population balance
δc concentration boundary layer thickness (m)
δI(r − r′) Dirac delta function which is zero everywhere except when r = r′,

infinite on interface, and integral unity
δv length scale characterizing the inner layer in turbulent boundary layers

(m)
δij Kronecker delta
δT thermal boundary layer thickness (m)
ε(T ) hemispherical, total emissivity of a surface (−)
ε parameter in least squares method minimization statement
ε ratio of eddy size to the bubble size, ε = λ/di (−)
ε represent small threshold value in convergence criterion
ε surface roughness of pipe (m)
εσI net surface energy associated with surface tension (J/m2s)
ελ,θ(λ, θ, φ, T ) spectral, directional emissivity of a surface (−)
ελ(λ, T ) hemispherical, spectral emissivity of a surface (−)
εθ(θ, φ, T ) total, directional emissivity of a surface (−)
η Kolmogorov micro length scale (m)
η parameter called a surface coordinate or curvilinear coordinate of a

point on a surface
Γ boundary of the domain Ω
Γ mean flux of molecules in elementary kinetic theory (number/m2s)
Γ phase space symbol in classical mechanics
γ energy dissipation rate term in the granular temperature equation

(kg/ms3)
γ particle volume fraction (−)
Γ (z) gamma function, a special function in advanced mathematics defined

by means of an improper integral.
γb volume fraction of solids in bubble phase with respect to the bubble

volume (−)
γc composition expansion coefficient associated with species c (−)
γc volume fraction of solids in cloud phase with respect to the bubble

volume (−)
γe volume fraction of solids in emulsion phase with respect to the bubble

volume (−)
γi activity coefficient for species i
Γk average interface mass transfer rate from phase k due to phase change

(kg/m3s)
γk average occurrence of phase k (−)
ΓL Lagrangian integral time scale (s)
Γψ general diffusion coefficient in FVM discretization
κ curvature (m−1)
κ magnitude of fluid shear (1/s)
κ von Kàrmàn constant (−)
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κ wavenumber associated with Taylor hypothesis (radians/m)
Λ coefficient in the Zehner and Schlünder model for the convective heat

transfer (−)
Λ particle size ratio in bubble breakage kernel closure, Λ = dc/d (−)
λ dimensionless constant in bubble size model (−)
λ distance between two points in the flow where the second order velocity

structure function is depends on λ and ε only (m)
λ eddy size ([m])
λ length of electromagnetic radiation wave in a medium (m)
λ thermal conductivity of dilute gas (W/mK)
λ wavelength associated with Taylor hypothesis (m)
λd slip parameter for wall boundary condition in granular theory (m)
Λf (t) Eulerian longitudinal integral length scale (m)
λf (t) Eulerian longitudinal Taylor micro length scale, or longitudinal Taylor

microscale (m)
Λg(t) Eulerian transverse integral length scale (m)
λg(t) Eulerian transverse Taylor micro length scale, or transverse Taylor

microscale (m)
〈εG〉global effective global specific energy dissipation rate (m2s−3)
μ mixture dynamic viscosity, or first viscosity coefficient (kg/ms)
μ particular realization of the process P
μ reduced mass (kg)
μ specific realization involved in ensemble averaging
μdilute viscosity parameter for the dilute limit in granular theory (kg/ms)
μB mixture bulk viscosity, dilatational or second viscosity coefficient

(kg/ms)
μc specific chemical potential of species c (J/kg)
μj j-th moment of the population density function
μn n-th moment
μs partial mass Gibbs free energy for species s (J/kg)
μt dynamic turbulent viscosity, or eddy viscosity (kg/ms)
μB,d bulk viscosity parameter in granular theory (kg/ms)
μp,crit critical state frictional viscosity for particle phase (kg/ms)
μp,fric frictional viscosity for particle phase (kg/ms)
ν frequency of electromagnetic radiation wave (s−1)
ν mixture kinematic viscosity (m2/s)
ν(x′, r′,Y, t) average number of particles formed in the breakup processes

(−)
νt

gp gas-particle turbulent viscosity (m2/s)
νcoll

p collisional viscosity of particule phase (m2/s)
νt

p turbulent (or kinetic) viscosity of particule phase (m2/s)
νc,r stoichiometric coefficient for element c in reaction r, negative for re-

actants, positive for products (−)
νSGS,t sub-grid kinematic viscosity in LES (m2/s)
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Ω(ψ) net source term denoting the loss of the property ψ caused by inelastic
collisions

Ω calculation domain in MWR and FEM examples
Ω imaginary arbitrary volume in phase space, used in classical mechanics
Ω rotational speed, Ω =| Ω | (s−1)
ω angle between the velocity C and and the normal vector n in collision

cylinder analysis
ω angular velocity (rad/s)
ω rotational speed of the shaft (rad/s)
ω species mixture mass fraction (−)
ωT

B(di, λ) eddy-bubble collision probability density ( 1
sm3[m] )

ωT
B,λ(di, λ) eddy-bubble collision probability density, differential because it is

eddy-bubble interaction specific ( 1
sm3[m] )

ωα weight of the delta function centered at the characteristic particle size
dα

ΩShaft shaft angular velocity (rad/s)
ΩB macroscopic breakage rate ( 1

sm3 )
ΩB(di) total breakage rate for particles of size di ( 1

sm3 )
ΩC macroscopic coalescence rate (s−1m−3)
ωC bubble-bubble collision density ( 1

m3 s )
ωB

C buoyancy collision density ( 1
sm3 )

ωT
C collision density caused by turbulent motion and expressed in the

framework of a discrete numerical scheme ( 1
sm3 )

ωLS
C collision density due to laminar shear ( 1

sm3 )
Ωλ,1 collision integral for thermal conductivity in kinetic theory (−)
Ωμ,1 collision integral for viscosity in kinetic theory (−)
ωB(di,λj) eddy-bubble collision rate ( 1

sm3 )
ωC modified particle collision density ( 1

m3s[m][m] )
ΩD,11 collision integral for self-diffusion in kinetic theory (−)
ΩD,12 collision integral for diffusion in kinetic theory (−)
ωff modified particle collision density ( 1

m3s[m][m] )
ωf single particle collision density ( 1

s[m] )
Φ(f) presumed PDF (−)
Φviscous viscous dissipation function (s−2)
Φ perturbation function in Enskog expansion
Φ potential energy per unit mass (m2/s2)
φ blade attachment angle (◦) or (rad)
φ coefficient in the Zehner and Schlünder model for the convective heat

transfer (−)
φ local instantaneous source term of the generalized quantity ψ
φ polar coordinate
φ potential function in time-splitting method
φ unknown variable in TDMA outline
φ(r) limiter function in TVD schemes
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Φeff effective global energy dissipation function (s−2)
ΦI( y

δv
) non-dimensional function characteristic for the inner log-law or iner-

tial sub-layer (−)
φi fugacity coefficient for species i
Φo(y

δ ) non-dimensional function characteristic for the outer layer (−)
Φv( y

δv
) non-dimensional function characteristic for the viscous sub-layer (−)

Φtotal entropy production rate (J/m3sK)
φI,c rate of production of the quantity ψk per unit mass at each point on

AI

Πεg interaction term in εg model equation for gas phase (kg/ms4)
Πgp interaction term in kgp transport equation (kg/ms3)
Πkg interaction term in kg model equation for gas phase (kg/ms3)
ψ generalized conserved quantity
ψ microscopic molecular property of dilute gas (referred to a single

molecule) in elementary kinetic theory
ψ polar coordinate
ψ(r, c, t) a generalized physical function that denotes a property of the

molecules located at time t near r with a velocity near c
ρ instantaneous field mass density (kg/m3)
ρ spectral reflectivity, ρ = Gref/G (−)
ρL(s) autocorrelation coefficient (−)
ρp mass density of particle (kg)
σk k-ε turbulence model parameter (−)
σ Stefan-Boltzmann constant, = 5.67 × 10−8 (W/m2 K4)
σ′

AT
alternative total (scattering) collision cross section (m2)

σ1 collision diameter used in kinetic theory (m)
σA(Ω) differential scattering cross section (m2)
σI surface tension (N/m)
σs(d) surface restoring pressure of a bubble of size d (Pa)
σt(d) average deformation stress for bubbles of size d (Pa)
σε k-ε turbulence model parameter (−)
σAT

total scattering cross section (m2)
σA standard deviation, the squared root of the variance (−)
σ2

A variance, a statistical measure of the dispersion of data about the
mean (−)

τ Kolmogorov micro time scale (s)
τ average residence time of the elements in surface renewal theory (s)
τ time domain
τ time variable in history force expression (s)
τ tortuosity of porous medium (−)
τ transmissivity, τ = Gtrans/G (−)
τ c
p characteristic particle-particle collision time (s)
τ t
g time scale of large turbulent eddies in gas phase (s)
τ t
gp interaction time between particle motion and gas fluctuation or eddy

life time seen by a particle (s)
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τ1 collision time of molecules of type 1 (s)
τω time scale of scalar concentration fluctuations (s)
τb time constant associated with a bubble in k-ε turbulence model for

bubbly flow [93] (s)
τe eddy turnover time scale (s)
τL Lagrangian micro time scale, or Lagrangian microscale (s)
τgp particle relaxation time (s)
σ′

k,I temporal deviation between the instantaneous stress and the interfa-
cial mean stress variable (Pa)

θc mean circulation time in stirred tank (s)
θm mean mixing time in stirred tank (s)
θ granular temperature (m2/s2)
θ scattering angle
γ rate of deformation or rate of strain (s−1)
Υ function representing an expression in Boltzmann H-theorem relation
σW wall shear stress (Pa)
ε ensemble, consisting of a specific number of realizations μ
ε event space domain
ε maximum energy of attraction between a pair of molecules in kinetic

theory (J)
ε perturbation parameter in Enskog expansion
ε porosity of porous medium (−)
ε turbulent energy dissipation rate per unit mass (m2/s3)
εω scalar dissipation rate (s−1)
εb bed area occupied by bubble phase in bubbling bed (−)
εas solids volumetric concentration in annulus (−)
εcs solids volumetric concentration in core (−)
εgp dissipation rate of the gas-particle fluctuation covariance (m2/s3)
εijk permutation symbol, or alternating unit tensor (−)
εmf holdup of fluidized bed at minimum fluidization conditions (−)
εov gas holdup or overall void fraction (−)
εSGS SGS dissipation rate per unit mass in LES (m2/s3)
ϕi basis function used in MWR solution approximation function
λ vector of Lagrange multipliers
Ω solid angle (steradians, sr)
ψCollisional dense gas collisional transfer flux
ψKinetic dense gas kinetic transfer flux
̂ψk spatial deviation of the point variable ψk from the intrinsic volume

average value 〈ψk〉Vk

̂σk,I deviation between the local instantaneous stress and the interfacial
area averaged stress (Pa)

̂

̂ψk spatial deviation of the point variable ψk from the mass-weighted vol-
ume average value 〈ψk〉Xkρk

V
˜ψ MWR solution approximation function
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Ξ function representing an expression in Boltzmann H-theorem relation
ξ extent of reaction (mole)
ξ model parameter (−)
ξij ratio of the diameters of a pair of unlike bubbles di/dj (−)
ζ independent variable (−)
ζ parameter called a surface coordinate or curvilinear coordinate of a

point on a surface
b bubble phase
dχ differential plane angle
dξr extent of reaction for reaction r (mol)
〈εs〉A cross sectional averaged solid volumetric concentration (−)
˜σn

ij numerical stresses in LES (Pa)
˜σR

ij modeled residual stresses in LES (Pa)
Ω angular momentum tensor (N/m)
σ viscous stress tensor (Pa = N/m2)
σkin deviatoric kinetic pressure tensor in granular theory (N/m2)
σMm diffusion stress due to phase slip (N/m2)
σV m drift stress due to the phase slip (N/m2)
ζIeI fluxes of isotropic second order tensors
(−ΔH*

rA
) heat of reaction for reaction r defined with species A as basis

(J/mol)
ΔH*

c(T ) molar enthalpy at temperature T associated with species c (J/mol)
ΔH*

f,c standard molar heat of formation of species c (J/mol)
Ψ(t) variable defined by a volume integral
κ curvature vector (m−1)
Ω angular velocity or rate of rotation; Ω = 1

2∇× v (s−1)
ω vorticity vector; ω = 2Ω = ∇× v (s−1)
Φ(ψ) net flux denoting the transfer of the property ψ during a set of particle

collisions
Φ(r, t) flux vector
ψe FEM vector of nodal values of the solution
ϕI flux of the quantity ψI (per unit length of line) through lI(t)
ςI interface flux vector
ξ material coordinates
Superscripts
′ prime, denotes a pseudo-mixture quantity associated with the dusty

gas model
′ prime, denotes fluctuation quantity in conventional Reynolds (time)

averaging
′ prime, denotes sub-grid-scale or residual quantity in LES
′ prime, primed quantities refer to the final property values after a bi-

nary molecular collision in kinetic theory.
′ property of one of the particles colliding or breaking in PBE modeling
′ small correction of a variable in FVM discretization
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′′ double prime, fluctuation component of an instantaneous quantity
around it’s mean weighted value. Used in the time- and ensemble
averaging approaches.

∗ fractional step index, or intermediate value
∗ previous-iteration value of a variable, or provisional velocity value

based on a guessed (or outer iteration) pressure, in FVM discretization
∗ vector with properties after performing a rotation in space or reflection

with respect to a given plane, or a combination
0 Maxwellian state property
0 constant property value
ν iteration counter index
new fractional step iteration index indicating latest obtained value
˜ property of a complementary particle in PBE modeling
* asterisk denotes ideal gas state properties, or non-dimensional vari-

ables
c cloud phase
c ordinary
cr critical quantity
d diffusive
dry dry conditions
n old value at time t in FVM discretization
n + 1 new value at time t + Δt in FVM discretization
r radiative
s superficial
V volume average quantity
x mole fraction
Subscripts
0 inlet, or initial condition
ψ representing a general quantity
BI bubble induced quantity in k-ε turbulence model for bubbly flow [92]
crit critical or threshold value
eff effective, sum of molecular and turbulent contributions
in inlet condition
min minimum value
SI shear induced quantity in k-ε turbulence model for bubbly flow [92]
surr property of surroundings
sur surface
sys property of a simple subsystem
sys property of surroundings
A area
a ambient property
a annulus
ad adiabatic conditions
B breakage
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B neighbor at the bottom (in the negative z direction) in FVM dis-
cretization

b grid cell volume face between P and B in FVM discretization
b single bubble or bubble phase
C coalescence
c center of mass property
c cloud phase
c core
c index to identify a species/component in a binary or multicomponent

mixture
cap capture particle property
cat catalyst particle property
E neighbor node on the east side (in the positive x direction) in FVM

discretization
e element
e emulsion phase
e grid cell volume face between P and E in FVM discretization
eI interface average property in ensemble averaging procedure
g group index
I interface property
i particle of type i (kg)
k phase
L laboratory frame
m mixture property
mb minimum bubbling
mf minimum fluidization
N neighbor node on the north side (in the positive y direction) in FVM

discretization
n grid cell volume face between P and N in FVM discretization
n normal component of a vector
nb general neighbor grid node in FVM discretization
ov overall
P central grid node under consideration in FVM discretization
P index marking the first grid cell away from the wall
p particle
r relative
S neighbor node on the south side (in the negative y direction) in FVM

discretization
S surface
s grid cell volume face between P and S in FVM discretization
s solids phase or particle phase
s species in a binary or multicomponent mixture
T neighbor on the top (in the positive z direction) in FVM discretization
T time average quantity
t grid cell volume face between P and T in FVM discretization
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t tube
W neighbor on the west side (in the negative x direction) in FVM

discretization
W wall
w grid cell volume face between P and W in FVM discretization
x x-coordinate direction in Cartesian system (m)
y y-coordinate direction in Cartesian system (m)
z z-coordinate direction in Cartesian system (m)
Operators
(...) component vector
: multiplication sign, the scalar product (or double dot product) of two

tensors
[..., ...] Poisson bracket operator in classical mechanics
[...] square matrix
· multiplication sign, used for Scalar Product (or Dot Product) of two

vectors, Divergence of a Vector Field, and other vector/tensor opera-
tions.

ψ̈ second order partial derivative of quantity ψ with respect to time
δ denotes a variation about the motion of the system in Classical Me-

chanics
δ/δx generalized discretized spatial derivative
ψ̇ partial derivative of quantity ψ with respect to time
∂()
∂c gradient of () with respect to c
∂()
∂r gradient of () with respect to r
∂()
∂t partial time derivative, denoting the partial derivative of the quantity

() with respect to t, at constant x, y, z, (()/s)
D()
Dt substantial time derivative, material derivative, hydrodynamic deriva-

tive, derivative following the motion (()/s)
d()
dt total derivative operator
Dc()
Dct hypothetical substantial time derivative operator in phase space
dc()
dct hypothetical total time derivative operator in phase space
dI

dt material surface derivative (s−1)
〈...〉 general averaging operator
〈...〉ΓAI

mass flux weighted interfacial area average quantity
〈...〉Xkρk mass-weighted average
〈...〉A area averaging operator
〈...〉e ensemble averaging operator
〈...〉M Maxwellian averaging operator
〈...〉V volume averaging operator
〈...〉AI

interface area averaged quantity
〈ψk〉Xk

T Xk-weighted average of ψk over the entire time period T

〈ψk〉Xk

V intrinsic volume averaging operator
〈ψk〉Tk

time average of ψk over the accumulated time interval Tk
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〈ψk〉Vk
intrinsic volume averaging operator

L linear first order differential operator in least squares method outline
| ... | length of vector, magnitude of vector, or absolute value of scalar

variable
∇· divergence operator
∇ gradient operator, vector differential operator, also known as nabla or

del operator
∇I interface del or nabla operator
∇c() gradient of () with respect to c
∇r() gradient of () with respect to r

〈...〉f number weighted average quantity in external space
ψ overlines, time averaging operator
‖ • ‖2

Y (Ω) L2 norm used in least squares method outline
∂ partial derivative
Πi() product of all labeled variables in ()
× multiplication sign, vector product (or cross product) of two vectors
˜φ mesoscopic smoothly varying quantity in VOF
˜ψ tilde, filtering operator
covar(A,B) covariance between two variables, A and B
D linear differential operator in MWR example
div() divergence of a vector
G filtering function used in LES
grad() gradient of a scalar
Abbreviations
ADI Alternating Direction Implicit
ADM Axial Dispersion Model
ASMM Algebraic Slip Mixture Model
BBO Basset-Boussinesq-Osceen form of Newton’s second law
BC Bubble column
BCG Bi-Conjugate Gradient
BCGSTAB Bi-orthogonal Conjugate Gradient STABilized
BFBC Bubbling Fluidized Bed Combustion
CAFBC Circulating Atmospheric Fluidized Bed Combustor
CARPT Computer Automated Radioactive Particle Tracer
CBC Convection Boundedness Criterion
CC −NUMA Cache Coherent Non-Uniform Memory Access-machines
CDS Central Difference Scheme
CFB Circulating Fluidized Bed
CFBC Circulating Fluidized Bed Combustion
CFBG Circulating Fluidized Bed Gasification
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy
CG Conjugate Gradient
CGS Conjugate Gradient Squared
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COSMIC Conservative Operator Splitting for Multidimensions with Inher-
ent Consistancy

CRE Chemical Reaction (or Reactor) Engineering
CSF Continuous Surface Force
CSS Continuous Surface Stress
CSTR Continuous Stirred Tank Reactor model
DCS Deferred Correction Source
DM Dispersion Model
DQMOM Direct Quadrature Method of Moments
EI Embedded Interface
EOS Equation Of State
FBC Fluidized Bed Combustion
FCC Fluid Catalytic Cracking
FCT Flux Corrected Transport
FDM Finite Difference Method
FEM Finite Element Method
FL Flux Limiter
FVM Finite Volume Method
GCV Grid Cell Volume
GLL Gauss-Lobatto-Legendre collocation points
GMRES Generalized Minimal RESidual method
IGCC Integrated Gasification Combined Cycle
ILU Incomplete LU (ILU) -preconditioners in Krylov subspace methods

outline
IPSA Implicit Interphase Slip Algorithm
ISNAS Interpolation Scheme which is Non-oscillatory for Advected Scalars
LDA Laser Doppler Anemometry
LES Large Eddy Simulation
LS Level Set
LSM Least Squares Method
MAC Maker And Cell
MACHO Multidimensional Advective Conservative Hybrid Operator
MC Monotonic Centered
MinMod MinMod function
MPI Message Passing Interface
MUSCL Monotone Upwind Scheme for Conservative Laws
MUSIG MUltiple-SIze-Group
MWR Method of Weighted Residuals
NG Number of Groups
NIRV ANA Non-oscillatory, Integrally Restricted, Volume-Averaged Numer-

ical Advection
NUMA Non-Uniform Memory Access-machines
NV Normalized Variable
ODE Ordinary Differential Equations
PBE Population Balance Equation
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PBR Packed Bed Reactor
PDE Partial Differential Equations
PDF probability density function
PEA Partial Elimination Algorithm
PFR Plug Flow Reactor model
PISO Pressure Implicit with Splitting of Operators
PLIC Piecewise Linear Interface Construction
QMOM Quadrature Method of Moments
QUICK Quadratic Upwind Interpolation for Convective Kinematics
QUICKEST QUICK with Estimated Streaming Terms
RNG Re-Normalization-Group (RNG) theory
RTD Residence Time Distribution
SEM Spectral Element Method
SGS Sub-Grid-Scale
SHARP Simple High-Accuracy Resolution Program
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SIMPLEC SIMPLE Consistent
SIMPLER SIMPLE Revised
SLIC Simple Line Interface Calculation
SM Spectral Method
SMART Sharp and Monotone Algorithm for Realistic Transport
SOLA SOLution Algorithm
SOLA− V OF SOLution Algorithm for the Volume Of Fluid model
SOM Second Order Moments
SOR Successive Over-Relaxation
SUPERBEE SUPERBEE function
TDMA Tri-Diagonal Matrix Algorithm
TV D Total Variation Diminishing
UDS Upstream Differencing Scheme
ULTIMATE Universal Limiter for Transient Interpolation Modeling of Ad-

vective Transport Equations
ULTRA Universal Limiter for Tight Resolution and Accuracy
UTOPIA Uniformly Third-Order Polynomial Interpolation Algorithm
V OF Volume Of Fluid
CV Control Volume

Nomenclature



Contents

Part I Single Phase Flow

1 Single Phase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Basic Principles of Fluid Mechanics . . . . . . . . . . . . . . . . . . . . 3
1.2 Equations of Change for Multi-Component Mixtures . . . . . 8

1.2.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Transport of species mass . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Conservation of momentum . . . . . . . . . . . . . . . . . . . 24
1.2.4 Conservation of total energy . . . . . . . . . . . . . . . . . . 35
1.2.5 Some useful simplifications of the governing

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.2.6 Gross Scale Average Forms of the Governing

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.2.7 Dispersion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

1.3 Application of the Governing Equations to Turbulent Flow 99
1.3.1 Origin and Characteristics of Turbulence . . . . . . . 101
1.3.2 Statistical Turbulence Theory . . . . . . . . . . . . . . . . . 104
1.3.3 Reynolds Equations and Statistics . . . . . . . . . . . . . 117
1.3.4 Semi-Empirical Flow Analysis . . . . . . . . . . . . . . . . . 121
1.3.5 Reynolds Averaged Models . . . . . . . . . . . . . . . . . . . . 129
1.3.6 Large Eddy Simulation (LES) . . . . . . . . . . . . . . . . . 161

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

2 Elementary Kinetic Theory of Gases . . . . . . . . . . . . . . . . . . . . . 187
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
2.2 Elementary Concepts in Classical Machanics . . . . . . . . . . . . 193

2.2.1 Newtonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 194
2.2.2 Lagrangian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 197
2.2.3 Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . 201

2.3 Basic Concepts of Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . 207



XLVI Contents

2.3.1 Molecular Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
2.3.2 Phase Space, Distribution Function, Means and

Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
2.3.3 Flux Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
2.3.4 Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

2.4 The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
2.4.1 The Boltzmann Equation in the Limit of no

Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
2.4.2 Binary Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
2.4.3 Generalized Collision Term Formulation . . . . . . . . 243

2.5 The Equation of Change in Terms of Mean Molecular
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

2.6 The Governing Equations of Fluid Dynamics . . . . . . . . . . . . 249
2.7 The Boltzmann H-Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

2.7.1 The H-Theorem Formulation . . . . . . . . . . . . . . . . . . 252
2.7.2 The Maxwellian Velocity Distribution . . . . . . . . . . 254
2.7.3 The H-Theorem and Entropy . . . . . . . . . . . . . . . . . . 255

2.8 Solving the Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . 256
2.8.1 Equilibrium Flow - The Euler Equations . . . . . . . . 256
2.8.2 Gradient Perturbations - Navier Stokes Equations 258

2.9 Multicomponent Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
2.10 Mean Free Path Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
2.11 Extending the Kinetic Theory to Denser Gases . . . . . . . . . . 319
2.12 Governing Equations for Polydispersed Multiphase Systems 324

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Part II Multiphase Flow

3 Multiphase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
3.2 Modeling Concepts for Multiphase Flow . . . . . . . . . . . . . . . . 339

3.2.1 Averaged Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
3.2.2 High Resolution Methods . . . . . . . . . . . . . . . . . . . . . 344

3.3 Basic Principles and Derivation of Multi-Fluid Models . . . . 365
3.3.1 Local Instantaneous Transport Equations . . . . . . . 370
3.3.2 The Purpose of Averaging Procedures . . . . . . . . . . 393

3.4 Averaging Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
3.4.1 The Volume Averaging Procedure . . . . . . . . . . . . . . 397
3.4.2 The Time Averaging Procedure . . . . . . . . . . . . . . . . 419
3.4.3 The Ensemble Averaging Procedure . . . . . . . . . . . . 429
3.4.4 The Time After Volume Averaging Procedure . . . 441
3.4.5 The Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . 463



Contents XLVII

3.4.6 The Gross Scale Averaged Two-Phase Transport
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

3.4.7 Heterogeneous Dispersion Models . . . . . . . . . . . . . . 484
3.5 Mathematical Model Formulation Aspects . . . . . . . . . . . . . . 485

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

4 Flows of Granular Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
4.1 The Two-Fluid Granular Flow Model . . . . . . . . . . . . . . . . . . . 508

4.1.1 Collisional Rate of Change . . . . . . . . . . . . . . . . . . . . 509
4.1.2 Dynamics of Inelastic Binary Collisions . . . . . . . . . 514
4.1.3 Maxwell Transport Equation and Balance Laws . . 516
4.1.4 Transport Equation in Terms of Peculiar Velocity 520
4.1.5 Initial- and Boundary Conditions for the

Granular Phase Equations . . . . . . . . . . . . . . . . . . . . 530
4.2 Remarks on the Kinetic Theory of Granular Flows . . . . . . . 531

4.2.1 Granular Flow Closure Limitations . . . . . . . . . . . . . 534

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

5 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
5.1 Modeling of Multiphase Covariance Terms . . . . . . . . . . . . . . 545

5.1.1 Turbulence Modeling Analogues . . . . . . . . . . . . . . . 545
5.2 Interfacial Momentum Closure . . . . . . . . . . . . . . . . . . . . . . . . . 553

5.2.1 Drag force on a single rigid sphere in laminar flow 559
5.2.2 Lift forces on a single rigid sphere in laminar flow 564
5.2.3 Lift and drag on rigid spheres in turbulent flows . 569
5.2.4 Drag force on bubbles . . . . . . . . . . . . . . . . . . . . . . . . 572
5.2.5 Lift force on bubbles . . . . . . . . . . . . . . . . . . . . . . . . . 577
5.2.6 The Added mass or virtual mass force on a single

rigid sphere in potential flow . . . . . . . . . . . . . . . . . . 581
5.2.7 Interfacial Momentum Transfer Due to Phase

Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
5.3 Interfacial Heat and Mass Transfer Closures . . . . . . . . . . . . . 588

5.3.1 Approximate Interfacial Jump Conditions . . . . . . . 588
5.3.2 Fundamental Heat and Mass Transport Processes 597
5.3.3 Mass Transport Described by Fick’s law . . . . . . . . 599
5.3.4 Heat Transfer Described by Fourier’s Law . . . . . . . 604
5.3.5 Heat and Mass Transfer Coefficient Concepts . . . . 605
5.3.6 Heat Transfer by Radiation . . . . . . . . . . . . . . . . . . . 635

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657



XLVIII Contents

6 Chemical Reaction Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 659
6.1 Idealized Reactor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

6.1.1 Plug Flow Reactor Models . . . . . . . . . . . . . . . . . . . . 660
6.1.2 Batch and Continuous Stirred Tank Reactors . . . . 663

6.2 Simplified Reactor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
6.3 Chemical Reaction Equilibrium Calculations . . . . . . . . . . . . 666

6.3.1 Stoichiometric Formulation . . . . . . . . . . . . . . . . . . . 670
6.3.2 Non-stoichiometric formulation . . . . . . . . . . . . . . . . 674

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

7 Agitation and Fluid Mixing Technology . . . . . . . . . . . . . . . . . . 679
7.1 Tank Geometry and Impeller Design . . . . . . . . . . . . . . . . . . . 679
7.2 Fluid Shear Rates, Impeller Pumping Capacity

and Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
7.2.1 Fluid shear rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
7.2.2 Impeller Pumping Capacity . . . . . . . . . . . . . . . . . . . 686
7.2.3 Impeller Power Consumption . . . . . . . . . . . . . . . . . . 687
7.2.4 Fundamental Analysis of Impeller Power

Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
7.3 Turbulent Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

7.3.1 Studies on Turbulent Mixing . . . . . . . . . . . . . . . . . . 700
7.3.2 Flow Fields in Agitated Tanks . . . . . . . . . . . . . . . . . 703
7.3.3 Circulation and mixing times in turbulent

agitated tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
7.3.4 Turbulent Reactive Flow in Stirred Tank . . . . . . . 707

7.4 Heat Transfer in Stirred Tank Reactors . . . . . . . . . . . . . . . . . 714
7.5 Scale-up of Single Phase Non-Reactive Turbulent Stirred

Tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
7.6 Mixing of Multi-Phase Systems . . . . . . . . . . . . . . . . . . . . . . . . 717
7.7 Governing Equations in Relative and Absolute Frames . . . . 723

7.7.1 Governing Eulerian Flow Equations in the
Laboratory Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 723

7.7.2 Coriolis and Centrifugal Forces . . . . . . . . . . . . . . . . 724
7.7.3 Governing Eulerian Equations in a Rotating Frame 727

7.8 Impeller Modeling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 730
7.8.1 The Impeller Boundary Conditions (IBC) Method 730
7.8.2 The Snapshot (SS) Method . . . . . . . . . . . . . . . . . . . 731
7.8.3 The inner-outer (IO) method and the multiple

reference frame approach (MRF) . . . . . . . . . . . . . . 732
7.8.4 The Moving Deforming Mesh (MDM) Technique . 735
7.8.5 The Sliding Grid (SG) or Sliding Mesh (SM)

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
7.8.6 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737



Contents XLIX

7.9 Assessment of Multiple Rotating Reference Frame Model
Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

8 Bubble Column Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
8.1 Hydrodynamics of Simple Bubble Columns . . . . . . . . . . . . . . 757

8.1.1 Experimental Characterization of Cylindrical
Bubble Column Flow . . . . . . . . . . . . . . . . . . . . . . . . . 760

8.2 Types of Bubble Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
8.3 Applications of Bubble Columns in Chemical Processes . . . 766
8.4 Modeling of Bubble Column Reactors . . . . . . . . . . . . . . . . . . 767

8.4.1 Fluid Dynamic Modeling . . . . . . . . . . . . . . . . . . . . . 770
8.4.2 Numerical Schemes and Algorithms . . . . . . . . . . . . 791
8.4.3 Chemical Reaction Engineering . . . . . . . . . . . . . . . . 793
8.4.4 Multifluid Modeling Framework . . . . . . . . . . . . . . . 794

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797

9 The Population Balance Equation . . . . . . . . . . . . . . . . . . . . . . . 807
9.1 Three Alternative Population Balance Frameworks . . . . . . . 812

9.1.1 The Continuum Mechanical Approach . . . . . . . . . . 812
9.1.2 The Microscopic Continuum Mechanical

Population Balance Formulation . . . . . . . . . . . . . . . 835
9.1.3 The Statistical Mechanical Microscopic

Population Balance Formulation . . . . . . . . . . . . . . . 853

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

10 Fluidized Bed Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
10.1 Solids Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
10.2 Fluidization Regimes for Gas-Solid Suspension Flow . . . . . . 868
10.3 Reactor Design and Flow Characterization . . . . . . . . . . . . . . 872

10.3.1 Dense-Phase Fluidized Beds . . . . . . . . . . . . . . . . . . . 873
10.3.2 Lean-Phase Fluidized Beds . . . . . . . . . . . . . . . . . . . . 875
10.3.3 Various Types of Fluidized Beds . . . . . . . . . . . . . . . 880
10.3.4 Experimental Investigations . . . . . . . . . . . . . . . . . . . 880

10.4 Fluidized Bed Combustors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
10.5 Milestones in Fluidized Bed Reactor Technology . . . . . . . . . 888
10.6 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . 892
10.7 Chemical Reactor Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 893

10.7.1 Conventional Models for Bubbling Bed Reactors . 894
10.7.2 Turbulent Fluidized Beds . . . . . . . . . . . . . . . . . . . . . 911
10.7.3 Circulating Fluidized Beds . . . . . . . . . . . . . . . . . . . . 911
10.7.4 Simulating Bubbling Bed Combustors Using

Two-Fluid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 915



L Contents

10.7.5 Bubbling Bed Reactor Simulations Using
Two-Fluid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 928

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945

11 Packed Bed Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
11.1 Processes Operated in Packed Bed Reactors (PBRs) . . . . . . 953
11.2 Packed Bed Reactor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 954
11.3 Modeling and Simulation of Packed Bed Reactors . . . . . . . . 956

11.3.1 Fixed Bed Dispersion Models . . . . . . . . . . . . . . . . . . 957
11.3.2 Reactor Process Simulations . . . . . . . . . . . . . . . . . . 964

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983

12 Numerical Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
12.1 Limitations of Numerical Methods . . . . . . . . . . . . . . . . . . . . . 986
12.2 Building Blocks of a Numerical Solution Method . . . . . . . . . 987
12.3 Properties of Discretization Schemes . . . . . . . . . . . . . . . . . . . 989
12.4 Initial and Boundary Condition Requirements . . . . . . . . . . . 991
12.5 Discretization Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993

12.5.1 The Finite Difference Method . . . . . . . . . . . . . . . . . 993
12.5.2 The Finite Volume Method . . . . . . . . . . . . . . . . . . . 995
12.5.3 The Method of Weighted Residuals . . . . . . . . . . . . 995
12.5.4 The Finite Element Method . . . . . . . . . . . . . . . . . . . 1002

12.6 Basic Finite Volume Algorithms Used in Computational
Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008

12.7 Elements of the Finite Volume Method for Flow Simulations 1012
12.7.1 Numerical Approximation of Surface and Volume

Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014
12.7.2 Solving Unsteady Problems . . . . . . . . . . . . . . . . . . . 1017
12.7.3 Approximation of the Diffusive Transport Terms . 1022
12.7.4 Approximation of the Convective Transport Terms 1025
12.7.5 Brief Evaluation of Convection/Advection Schemes 1038

12.8 Implicit Upwind Discretization of the Scalar Transport
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038

12.9 Solution of the Momentum Equation . . . . . . . . . . . . . . . . . . . 1040
12.9.1 Discretization of the Momentum Equations . . . . . 1040
12.9.2 Numerical Conservation Properties . . . . . . . . . . . . . 1041
12.9.3 Choice of Variable Arrangement on the Grid . . . . 1043
12.9.4 Calculation of Pressure . . . . . . . . . . . . . . . . . . . . . . . 1044

12.10 Fractional Step Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
12.11 Finite Volume Methods for Multi-fluid Models . . . . . . . . . . . 1060

12.11.1 Special Challenges in Solving the Two-fluid
Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061



Contents LI

12.11.2 Explicit Fractional Step Algorithm for Solving
the Two-Fluid Model Equations Applied to
Bubble Column Flow . . . . . . . . . . . . . . . . . . . . . . . . . 1067

12.11.3 Implicit Fractional Step Method for Solving
the Two-Fluid Granular Flow Model Equations
Applied to Fluidized Bed Flow . . . . . . . . . . . . . . . . 1070

12.11.4 Solution of Multi-fluid Models . . . . . . . . . . . . . . . . . 1076
12.12 Numerical Solution of the Population Balance Equation . . 1077
12.13 Solution of Linear Equation Systems . . . . . . . . . . . . . . . . . . . 1092

12.13.1 Point-Iterative Methods . . . . . . . . . . . . . . . . . . . . . . 1092
12.13.2 The Tri-Diagonal Matrix Algorithm (TDMA) . . . 1093
12.13.3 Krylov Subspace Methods . . . . . . . . . . . . . . . . . . . . 1095
12.13.4 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098
12.13.5 Multigrid Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102
12.13.6 Parallelization and Performance Optimization . . . 1105

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109

Part III APPENDIX

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123

A Mathematical Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
A.1 Transport Theorem for a Single Phase Region . . . . . . . . . . . 1125

A.1.1 Leibnitz’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
A.1.2 Leibnitz Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126
A.1.3 Reynolds Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128

A.2 Gauss Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130
A.3 Surface Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131

A.3.1 Leibnitz Transport Theorem for a Surface . . . . . . . 1131
A.3.2 Gauss Theorem for a Surface . . . . . . . . . . . . . . . . . . 1132

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137

B Equation of Change for Temperature
for a Multicomponent System . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
B.1 The Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
B.2 Deriving the Equation of Change for Temperature . . . . . . . 1139

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145

C Trondheim Bubble Column Model . . . . . . . . . . . . . . . . . . . . . . . 1147
C.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
C.2 Tensor Transformation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . 1157

C.2.1 Curvilinear Coordinate Systems . . . . . . . . . . . . . . . 1158



LII Contents

C.2.2 The Tensor Concept . . . . . . . . . . . . . . . . . . . . . . . . . 1158
C.2.3 Coordinate Transformation Prerequisites . . . . . . . . 1160
C.2.4 Orthogonal Curvilinear Coordinate Systems and

Differential Operators . . . . . . . . . . . . . . . . . . . . . . . . 1162
C.2.5 Differential Operators in Cylindrical Coordinates 1165
C.2.6 Differential Operators Required for the Two-fluid

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169
C.3 Two-Fluid Equations in Cylindrical Coordinates . . . . . . . . . 1173
C.4 The 2D Axi-Symmetric Bubble Column Model . . . . . . . . . . 1176

C.4.1 Discretization of the Trondheim Bubble Column
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180

C.4.2 The Continuity Equation . . . . . . . . . . . . . . . . . . . . . 1185
C.4.3 The Generalized equation . . . . . . . . . . . . . . . . . . . . . 1187
C.4.4 The liquid phase radial momentum balance . . . . . 1190
C.4.5 The Liquid phase axial momentum balance . . . . . 1202
C.4.6 The gas phase radial momentum balance . . . . . . . 1211
C.4.7 The gas phase axial momentum balance . . . . . . . . 1221
C.4.8 The Turbulent Kinetic Energy . . . . . . . . . . . . . . . . . 1227
C.4.9 The Turbulent Kinetic Energy Dissipation Rate . 1230
C.4.10 The Volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . 1231
C.4.11 The Pressure-Velocity Correction Equations . . . . . 1234

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239



Part I

Single Phase Flow



1

Single Phase Flow

In this chapter the governing equations of change for single-phase reactive
mixtures are presented.

An introduction to the basic continuum mechanics notation is given first
ensuring that the fundamental principles are interpreted in an appropriate
manner. Then, the derivation of the rigorous balance equations for multi-
component fluid mixtures by use of the control volume approach is discussed.
Alongside a standard set of approximate constitutive equations is listed.
Thereafter several derived formulas, frequently also referred to by names like
simplified-, macroscopic-, design-, or engineering models, are examined. In the
latter context the primary aims are to explain how these formulas can be de-
duced from the fairly rigorous conservation equations, and to elucidate the
inherent assumptions. The governing equations are applied to turbulent flows
in the subsequent portion of sections in the chapter.

The theory of single phase materials is not only of principal importance an-
alyzing single phase reactor systems, it also serves as basis for the description
of multiphase flows.

1.1 Basic Principles of Fluid Mechanics

Fluid mechanics is the study of motions of gases and liquids. In the litera-
ture the subject is often divided into compressible and incompressible flows.
However, the strict mathematical definitions of these two types of flows are
not trivial. There is more to this than one may think, as will be discussed
in sect. 1.2.5. Meanwhile, considering physical properties rather than strict
mathematics, preliminary characterizations of these two classes of flows will
provide important ideas why this subdivision of fluid mechanics is useful.

The majority of chemical engineers have stronger theoretical background
in thermodynamics than fluid mechanics, so the vocabulary used in fluid me-
chanics literature may be a first barrier that one needs to pass. At this point,
we thus intend to remove a possible source of confusion that is common among

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 1,
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4 1 Single Phase Flow

chemical engineers. From a thermodynamic standpoint, gases and liquids have
quite different characteristics. In thermodynamics analyzes liquids are often
modeled as incompressible fluids. In this context, an incompressible fluid de-
notes a fluid having density that doesn’t change significantly due to pressure
variations (i.e., 1

ρ
∂ρ
∂p |T,ωc ≈ 0). Having this thermodynamic definition in mind,

one may be surprised to learn about an incompressible flow of a compressible
fluid in mechanics. However, incompressible fluids is a thermodynamical term,
whereas incompressible flow is a fluid mechanical term. As will be discussed in
sect. 1.2.5, the main criterion for incompressible flow is that the flow doesn’t
induce any significant fluid density changes. A criterion for such effects has
been developed in fluid mechanics. That is, the so-called Mach number (i.e.,
that can be interpreted as a measure of the relative density changes due to
flow effects) has to be low. Mathematical analyzes will be given at a later
stage after the basic tools, the governing equations, have been presented.

Typical characteristics of compressible flows are given next. Under certain
flow conditions density changes due to momentum (flow) effects must be con-
sidered in gas dynamics [168]. In practice, such compressible flows may be
divided into the following categories:

• Flows where fluid dynamic wave propagation within the fluid are impor-
tant.
These phenomena may be important for a restricted number of chemi-
cal reactor systems, as for example certain industrial multi-phase systems
operated in bubble column and fluidized bed reactors.

• Steady flow in which the fluid speed is of the same order of magnitude as
the speed of sound.
This situation hardly exist in chemical reactor systems. However, in an in-
dustrial chemical process plant there are many unit operations containing
flows belonging to this category.

• Convection driven by body forces, e.g., gravity, acting on fluid subject to
thermal expansion.
These phenomena are very important in the geophysical sciences, but may
be less important in the chemical industry.

• Large-scale convection of gases and liquids in the presence of body forces.
A lot of work has been done on this subject in the geophysical sciences,
but is not very important in the chemical industry.

Summarizing these results from fluid mechanics, a layman may erroneously
conclude that the flows in chemical reactors are incompressible. Notice, how-
ever, that the analyzes referred were all performed on non-reactive flow sys-
tems. In chemical reactors, on the other hand, we may be dealing with flow
situations where the densities of fluids vary both due to pressure and temper-
ature changes, chemical reactions and non-ideal mixing. From a thermody-
namic standpoint both compressible and incompressible fluids are considered
in reactor modeling. This indicates that a general reactor technology modeling
approach should be able to handle compressible flows.
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The traditional modeling framework describing reactive flow systems is
presented in the following. The basic conservation equations applied in most
reactor model analyzes are developed from the concept that the fluid is a
continuum. This means that a fluid is considered to be a matter which exhibits
no finer structure [168]. This model makes it possible to treat fluid properties
at a point in space and mathematically as continuous functions of space and
time. From the continuum viewpoint, fluid mechanics and solid mechanics
have much in common and the subject of both these sciences are traditionally
called continuum mechanics.

The basic assumptions in fluid mechanics are thus that for lengths and
time scales much larger than the characteristic molecular lengths and times,
the continuum representation provides a quantitative correct description of
the fluid dynamic behavior of the system. In general, the differential descrip-
tion is useful for processes where there is a wide separation of scales between
the smallest macroscopic scales of interest and the microscopic scales associ-
ated with the internal structure of the fluid. The mean free path which is of
the order of 10−7m for gases is commonly used as a suitable characteristic
dimension (see sect 2.10). The continuum model in gas dynamics is thus ex-
pected to fail when the model resolution is no longer very much larger than
the mean free path [168]. For liquids, a corresponding characteristic molecu-
lar dimension is not clearly defined but may be taken to be a distance equal
to several intermolecular spacings which are of the order of 10−10m. These
dimensions are so small that the continuum model is violated only in extreme
cases. For single phase flow systems in reactor technology, we are usually not
concerned with such extreme cases and the continuum approach is expected
to provide useful information of the reactor performance.

Note, however, that in reactor technology we are very often dealing with
dispersed and granular flows. Granular flow is referred to as flow of a powder
in a vacuum [58]. Traditionally, the continuum approach have been adopted
modeling these flows too. It might sometimes be useful to apply an alterna-
tive way of proceeding which is based on the results from elementary kinetic
theory of gases, where such results enhance our physical insight of reactor
performance. If this particulate view of matter is adopted we can, by use of
a statistical procedure average over a large number of molecules or particles,
derive a set of conservation equations which is analogue to the continuum
equations. In fact, the results from these two alternative approaches are vir-
tually identical. The latter method, which is more general in principle, is
however much more complex theoretically and has been limited by theoretical
difficulties to practically dilute gases. During the last decades several papers
have been published, even on multiphase flow, presenting ideas on how to ex-
tend the kinetic theory closures to more general flow situations. These ideas
are further discussed in later chaps. related to multiphase flows.

Keeping these basic assumptions in mind, the chemically reacting flu-
ids can quantitatively be described in terms two categories of the governing
equations [134]:
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1. Balance equations, which summarize the experience of the last three
centuries on the behavior of all forms of matter. The balance equations
express that for any fluid, in any state of motion, the quantities being
transported are balanced.

Experience have taught us that there are certain physical laws which
must be valid irrespective of the type of fluid mixture being considered.
These laws express the balance principles which impose constraints upon
the coexisting field variables describing instantaneous motions of a chem-
ically reacting fluid mixture. The term conservation equations usually
refers to the equations expressing the classical laws of the separate con-
servation of total mixture mass, momentum and total energy. Based on
the balance principle one can nevertheless formulate appropriate balance
equations for other physical quantities which are not necessary conserved.
Such equations are often called transport equations to imply that we
are dealing with non-conservable quantities. However, the conservation
equations can be formulated on a general form similar to the transport
equations.

In many practical situations it is common to formulate transport equations,
which are based purely on the balance principle and not on a physical law,
to determine how the pertinent non-conservative quantities vary in time
and space. Important examples:

• Transport of individual chemical species mass.
Note that each chemical element is conserved. This means that or-
dinary chemical reactions involving the elements are merely changing
partners, rather than being produced or destructed. Individual chemi-
cal species are however not really conserved since they can be generated
or consumed in chemical reactions, but one can nevertheless write an
appropriate balance equation or transport equation for each chemical
species [134].

• Transport of the total entropy of the mixture, based on the second law
of thermodynamics.

• Transport of the turbulent kinetic energy
• Transport of the turbulent dissipation rate
• Transport of the turbulent Reynolds stresses
• Transport of other covariances or turbulent moments
• Transport of probability density functions

Note that the conservation equations can be distinguished from the trans-
port equations since they do not contain any production or destruction
terms. Nevertheless, the conservation equations may contain terms on the
RHS expressing a divergence of fluxes related to transport phenomena.
The way in which these flux terms are divided into divergence of trans-
port fluxes or source terms is rather involved, but procedures exist based
on a number of requirements on the two types of terms which determine
this separation uniquely.
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The equations expressing these balance laws are, by themselves, insuf-
ficient to uniquely define the system, and statements on the material be-
havior are also required. Such statement are termed constitutive relations
or constitutive laws.

2. Constitutive equations, which quantitatively describe the physical proper-
ties of the fluids. The most important constitutive equations used in this
book are the Newton’s viscosity law, the Fourier’s law of heat conduction,
and the Fick’s law of mass diffusion. The equation of state and more em-
pirical relations for the physical properties of the fluid mixture also belong
to this group of equations.

To be able to formulate these continuum equations we need to apply cer-
tain mathematical theorems which are not expressing physical laws, but purely
based on geometrical aspects of the fluid motion [104] [11] [13] [168] [134].
These relations are called kinematic theorems. The most important example
of such a kinematic relation is the so-called Leibnitz formula for the deriva-
tive of an integral with variable limits. Leibnitz theorem, also known as the
generalized transport theorem, represents a generalization of the fundamental
Leibnitz formula. Note that in some physical sciences this transport theorem is
called the Reynolds transport theorem to distinguish the generalized theorem
from the original formula. A third variation is that a particular version of the
generalized Leibnitz theorem is refereed to as the Reynolds transport theo-
rem ([182], sect. 3.4). To avoid any confusion, the various kinematic theorems
applied are defined as we proceed deriving the governing equations.

Furthermore, for non-isothermal situations we need to be able to calcu-
late the thermodynamics of fluid dynamics. However, thermodynamics deals
with relatively permanent states, called equilibrium states, within uniform
fields of matter [7] [145] [42] [54]. Any changes are assumed to be extremely
slow. On the other hand, the fluid motions of interest in fluid mechanics are
not necessary slow. Nevertheless, it has been assumed that the classical ther-
modynamics can be directly applied to any flow system provided that an
instantaneous local thermodynamic state is considered and that the rates of
change are not too large [168]. A more common statement is that the ther-
modynamics require that the fluids are close to local equilibrium, but may
not be in global equilibrium. However, all systems are supposed to be relaxing
towards a state of global thermodynamic equilibrium.

The transport equations derived cannot be solved directly as they contain
unknown terms which have to be expressed in terms of the known dependent
variables, i.e., parameterized. A relation between observable effects and the
internal constitution of matter are described by constitutive equations or con-
stitutive laws. It is, however, hardly possible to formulate general expressions
for these constitutive laws. The principles of constitutive equations given by
Truesdell and Toupin [170] are considered to provide a rational means for
obtaining descriptions of classes of materials, without inadvertently neglect-
ing an important dependence. In reactor modeling practice only a limited
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number of guiding principles (if any) which are considered to be the most
fundamental and restrictive ones provided by continuum mechanics have been
applied. According to Aris [3] and Malvern [104], the correct work on consti-
tutive equations should consider the principles of consistency, coordinate in-
variance, isotropy, just setting, dimensional invariance, material indifference
and equiprescence. In addition, the set of model equations formulated should
be well-posed as an initial value problem [130]. These mathematical principles
are elaborated in chap 5 and sect 3.5 discussing multi-fluid models.

By use of the above mentioned framework and mathematical tools, and by
reasonable assumptions based on analysis of experimental data we are hope-
fully able to formulate proper models providing reasonable predictions of the
chemical reactor performance. In the following sects. the basic mathematical
and conceptual tools determining the general reactor technology fundamentals
are given and discussed.

1.2 Equations of Change for Multi-Component Mixtures

In this section the governing equations of change determining the behavior of
multi-component mixtures are formulated on the general vector form. These
fundamental balance equations can be transformed into any coordinate sys-
tem by use of rigorous mathematical formulas [11] [13] [3] [17] ensuring that
all the transport equations have the same physical meaning irrespective of
the particular coordinate system used to locate points in space. The gov-
erning balance equations, as defined in the elementary orthogonal coordinate
systems (e.g., Cartesian, cylindrical, spherical) commonly used in engineering
practice, are tabulated in many textbooks (e.g., [11] [13]) to ease the work of
the modelers. Nevertheless, it is still recommended to study this mathematical
theory to be able to understand these transformations and, if necessary, trans-
form the generalized equations into the body fitted non-orthogonal curvilinear
coordinate system lately being very popular treating complex geometries in
computational fluid dynamics (CFD). In general, however, the choice of coor-
dinate system to describe any particular flow problem is determined largely
by convenience.

There are also various ways that the physical laws (i.e., the laws of conser-
vation of mass, linear - and angular momentum, and energy) can be applied
describing the fluid behavior. It is usually distinguished between the system
approach and the control volume approach (e.g., [70] [184] [134] [2][185] [114]
[181]). In this context a system is defined as a collection of matter of fixed iden-
tity (i.e., a particular collection of atoms or molecules constituting a specified
portion of the material), which may move and interact with its surroundings.
A control volume (CV), on the other hand, is basically a volume in space
(a geometric entity, independent of mass). Different types of CVs have been
defined over the years, including some through which fluid may flow. In solid
mechanics the system approach is generally used to describe the motion of
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solid bodies because a given particle is easily identified. The control volume
approach is normally used in fluid mechanics since the identification of a par-
ticular system becomes a tedious task.

An issue of fundamental importance is that the physical laws determining
the fluid behavior are stated in terms of fluid systems, not control volumes. To
formulate the governing laws in a control volume approach we must re-phrase
the laws in an appropriate manner. In the integral formulation the Leibnitz-
or Reynolds transport theorem provides the relationship between the time
rate of change of an extensive property for a system and that for a control
volume. For differential equations a similar interrelation between the system
and control volume approaches is expressed through the substantial - or ma-
terial derivative operator. Hence it follows that by use of these mathematical
tools we may convert a system analysis to a control volume analysis.

One particular control volume definition might be confusing at first be-
cause it is interchangeable with a system as defined above (e.g., [134] [114]
[104]). Such a control volume is called a material control volume (a geomet-
ric entity, dependent on mass) since it always retains the material originally
present within its control surface (CS). The model framework for such an
analysis of motion of material control volumes is termed Lagrangian. This
is the familiar approach of particle and rigid body dynamics. An important
alternative control volume retains stationary enabling a description of the
material behavior at a fixed location. This framework is named Eulerian1.
The relationship between the system and control volume approaches can be
defined in terms of the material control volume representing a system. The
Reynolds theorem, for example, defines the relationship between the material
and Eulerian control volume descriptions.

To proceed formulating the governing equations, yet some important con-
siderations concerning when or for what flow situations it is favorable to apply
the alternative mathematical model frameworks are required. In general there
is no single best choice of frame valid for all flow situations, rather several
possibilities exist that can lead to the same useful predictions. Therefore,
as expected perhaps, for most flow problems this decision is often based on
convenience or level of detail sought. Nevertheless, in the context of reac-
tor simulations a brief evaluation considering the complexity and use of the
different control volumes might be given.

In continuum dynamics the balance principles and conservation laws can
be applied to the fluid contained in a control volume of arbitrary size, shape
and state of motion. Conceptually, the simplest control volume is perhaps
the Lagrangian or material one that moves at every point on its surface with
1 Note that according to Truesdell and Toupin [170] the material coordinates were

introduced by Euler in 1762, although they are now widely referred to as the
Lagrangian coordinates, while the spatial coordinates, often called Eulerian co-
ordinates, where introduced by Jean le Rond d’Alembert (1717-1783) in 1752.

Elaborate discussions of these coordinates are given by Malvern [104] (sect 4.3)
and Truesdell and Toupin [170] (pp. 326-327).
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the local fluid velocity, see Fig 1.1(B). However, while the balance principles
and conservation laws of fluid dynamics are readily stated for material control
volumes, they are not so readily used in this form. This is because the use
of Lagrangian material control volumes involve complex and computationally
expensive mathematics as the Lagrangian control volume moving through
space, may both change its volume and deform in shape. In this context,
control volumes with fixed surfaces through which the fluid flows, offer the
important advantage of involving simpler mathematics. Thus, most fluid dy-
namic reactor models are formulated using fixed (Eulerian) control volumes ,
see Fig 1.1(A). However, the most general type of control volumes is defined by
surfaces that are neither fixed nor moving with the local fluid velocity, that is,
the CV surfaces move with an arbitrary velocity. These generalized descrip-
tions are commonly referred to as mixed Lagrangian-Eulerian-, generalized
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Fig. 1.1. (A) Finite Eulerian control volume fixed in space with the fluid moving
through it. (B) Finite Lagrangian control volume moving with the fluid such that the
same fluid particles are always in the same control volume (i.e., a material control
volume). (C) Finite general Lagrangian control volume moving with an arbitrarily
velocity not necessarily equal to the fluid velocity. The solid line indicate the control
volume surface (CS) at time t, while the dashed line indicate the same CS at time
t + dt.
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Lagrangian- or arbitrary Lagrangian-Eulerian (ALE) methods [36] [37] , and
were first reported by Hirt et al. [68]. In this book this particular framework is
termed the general Lagrangian approach, see Fig 1.1(C). This approach also
involves quite complex mathematics and is thus hardly ever used in chemical
reactor analysis.

It is remarked that in the standard literature on fluid dynamics and trans-
port phenomena three different modeling frameworks, which are named in
a physical notation rather than in mathematical terms, have been followed
formulating the single phase balance equations [89]. These are: (1) The in-
finitesimal particle approach [89] [66] [144] [3] [2]. In this case a differen-
tial cubical fluid particle is considered as it moves through space relative
to some fixed coordinate system. By applying the balance principle to this
Lagrangian control volume the conservation equations for mass, momentum
and energy are obtained. The value of a given property at a fixed position r
and time t coincides with the value appropriate to the particle which is at r at
time t. The substantial derivative operator establishes a connection between
the Lagrangian and Eulerian frameworks. (2) The infinitesimal control vol-
ume approach [11] [13] [2]. In this method one considers a differential cubical
volume element fixed in space, through which a fluid is flowing. By apply-
ing the balance principle to this Eulerian control volume the conservation
equations for mass, momentum and energy are achieved. (3) The the finite
control volume approach [104] [12] [32] [168] [2]. In this approach a control
volume of finite size is considered. This control volume can have any arbi-
trary shape and is either fixed in space or moves through space relative to
some fixed coordinate system. By applying the balance principle to the finite
control volume the conservation equations for mass, momentum and energy
are written on the integral form. The Leibnitz theorem is used to define the
time rate of change. The Gauss’s theorem is used to relate the surface and
volume integrals, resulting in an equation involving only volume integrals. It
is then argued that the conditions must be satisfied for the integrand, since
the integration is arbitrary.

Needless to say, the three approaches (1)-(3) give rise to identical results,
the governing equations. However, it is not always clear which approach is
being followed. There is also a subtle difference between the integral and dif-
ferential forms of the governing flow equations [2]. The integral form of the
equations allows for the presence of discontinuities inside the control volume
(there is no inherent mathematical reason to assume otherwise). However, the
differential form of the governing equations assumes the flow properties are
differentiable, hence continuous. This consideration becomes of particular im-
portance when calculating a flow with real discontinuities, such as shock waves
and interfaces. In this book the finite control volume approach is applied for
single phase flows because it coincides with the method adopted formulating
the multi-fluid models (e.g., [182] [73] [39] [152] [148] [43]) in the subsequent
chapters of this book.
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To establish the integral form of the basic conservation laws for mass,
momentum and energy, the fundamental approach is to start out from a sys-
tem analysis and then transform the balance equations into a control volume
analysis by use of the transport theorem. However, to achieve a more compact
presentation of this theory it is customary to start out from a generic Eulerian
form of the governing equations. That is, the material control volume analysis
is disregarded.

The balance principle applied to an Eulerian CV is thus by definition
expressed as a balance of accumulation, net inflow by convection and diffusion
and volumetric production.

The Eulerian transport equations can be cast in the generalized form:
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where ( ) applies to mass, momentum, energy, entropy, etc.
Therefore, as basis we formulate the generalized form of the local instanta-

neous transport equation for the mixture mass, component mass, momentum,
energy and entropy in a fixed control volume (CV) on microscopic scales, as
illustrated in Fig. 1.1.

This approach thus consider the conservation law of the quantity ψ within
the fixed macroscopic volume V bounded by the fixed macroscopic surface
area A.

∂

∂t

∫

V

(ρψ) dv = −
∫

A

(ρvψ) · n da−
∫

A

J · n da +
∫

V

φdv (1.1)

The n is the outward directed normal unit vector to the surface of the
control volume, v is the fluid velocity, ρ is the mixture density, ψ is the
conserved quantity, J is the diffusive flux and φ is the source term.

The transient term in (1.1) can be manipulated as the order in which the
partial time derivation and the integration is performed can be reversed. The
convective and diffusive transport terms in (1.1) can be rewritten as a volume
integral using Gauss’ theorem (App. A).

Equation (1.1) can then be assembled in a single volume integral:
∫

V

(

∂(ρψ)
∂t

+ ∇ · (ρvψ) + ∇ · J − φ

)

dv = 0 (1.2)

Equation (1.2) must be satisfied for any macroscopic volume V , thus the
expressions inside the volume integral must be equal to zero.
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A generic local instantaneous equation for a general conserved quantity ψ,
where J represents the diffusive fluxes and φ the sources of ψ, can be expressed
as:

∂(ρψ)
∂t

+ ∇ · (ρvψ) + ∇ · J − φ = 0 (1.3)

The values for ψ, J and φ for the different balances are listed in Table 1.1
(e.g., [11] [13] [32] [89]).

Table 1.1. The definitions of ψ, J and φ for the different balance equations.

Balance
Principle ψ J φ

Total mass 1 0 0
Component mass ωc jc Rc

Momentum v T
N
∑

c=1
ρcgc

Energy e+ 1
2v

2 T · v +q
N
∑

c=1
ρc(gc · vc)

where

e is the internal energy of the multicomponent system,
gc is the external forces per unit mass of component c,
jc is the molecular (diffusive) flux of component c,
N is the total number of species,
q is the multi-component energy flux vector,
q is the number of independent reactions,
Rc is the rate of generation of species c by chemical reaction.

Rc =
∑q

r=1 Rr,c where Rr,c = R′
r,cMwc

( kg
m3s ) and R′

r,c ( mol
m3s ),

T is the total stress tensor (i.e., T = pe + σ),
ωc is the mass fraction of component c,
σ is the viscous stress tensor.

Note that the momentum and energy equations for mixtures and pure fluids
differ in their last terms (e.g., [11] [12] [13] [169]), where ρg has been replaced
by

∑N
c=1 ρcgc in the momentum equation and ρ(g · v) has been replaced by

∑N
c=1 ρc(gc ·vc) in the energy equation, respectively. In the mixture equations

account are taken of the fact that each chemical species present may be acted
on by a different external force per unit mass gc.

However, for the less experienced readers such a list of equations may not
provide sufficient knowledge of the physical phenomena involved. Hence for
that reason in the following sub-sections the governing equations are derived
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again from scratch utilizing the advantages of the different descriptions to
improve the elementary understanding of the physical phenomena and the
basic modeling principles.

A this point a few mathematical prerequisites are required before the
derivation of the equations of change can be discussed. First, the three kinds
of time derivatives involved in this task are defined. Secondly, the transport
theorem is introduced.

Let ψ = ψ(t, r) be a general scalar, vector or tensor function. By the partial
time derivative, ∂ψ/∂t, we mean the partial of ψ with respect to t, holding
the independent space coordinate variables constant: ∂ψ/∂t = ∂ψ/∂t|r.

In Cartesian coordinates2 the total time derivative of ψ is defined by:

dψ

dt
=

∂ψ

∂t
|x,y,z +

∂ψ

∂x

dx

dt
|y,z,t +

∂ψ

∂y

dy

dt
|x,z,t +

∂ψ

∂z

dz

dt
|x,y,t (1.4)

in which dx/dt, dy/dt and dz/dt are the components of the arbitrary velocity
of a given particle as seen by an observer in a framework not necessary moving
along with the fluid. The vector form is

Dψ

Dt
=

∂ψ

∂t
+ vS · ∇ψ (1.5)

where ∇ is the gradient operator and vS denotes the arbitrary velocity.
In Cartesian coordinates the substantial time derivative, D/Dt, is given by

Dψ

Dt
=

∂ψ

∂t
+ vx

∂ψ

∂x
+ vy

∂ψ

∂y
+ vz

∂ψ

∂z
(1.6)

in which vx, vy and vz are the components of the velocity of a given particle
as seen by an observer in a framework moving along with the fluid. The
substantial time derivative is a special kind of total time derivative and is
sometimes more logically called the total derivative following the motion. In
(1.6) the last three terms on the right hand side are called the convective
derivative, since they vanish if the velocity is zero or if ψ has no spatial
change. The first term on the right hand side is called the local derivative.
The vector form is given by

Dψ

Dt
=

∂ψ

∂t
+ v · ∇ψ (1.7)

where ∇ is the gradient operator.
To establish the relationship between the system and control volume rep-

resentations we need to evaluate the rate of change of integrals of scalar and
vector functions over a moving material volume occupied by fluid. Consider
thus a material volume V (t) bounded by a smooth closed surface A(t) whose

2 In the Cartesian coordinate system the independent space coordinates are x, y
and z.



1.2 Equations of Change for Multi-Component Mixtures 15

points at time t move with the material velocity v = v(r, t) where r ∈ A. The
material time derivative of the integral of a scalar function f(r, t) over the
time-varying material volume V (t) is given by the transport theorem.

D

Dt

∫

V (t)

f(r, t) dv =
∫

V

∂f(r, t)
∂t

dv +
∫

A

f(r, t) (v · n) da (1.8)

The volume integral on the RHS is defined over a control volume V fixed in
space, which coincides with the moving material volume V (t) at the considered
instant, t, in time. Similarly, the fixed control surface A coincides at time t
with the closed surface A(t) bounding the material volume V (t). In the surface
integral, n denotes the unit outward normal to the surface A(t) at time t, and
v is the material velocity of points of the boundary A(t). The first term on
the RHS of (1.8) is the partial time derivative of the volume integral. The
boundary integral represents the flux of the scalar quantity f across the fixed
boundary of the control volume V .

Noting that by use of the Gauss theorem (App A) yields:
∫

A

f(r, t) (v · n) da =
∫

V

∇ · (fv) dV (1.9)

one obtains the familiar form of the transport theorem

D

Dt

∫

V (t)

f(r, t) dv =
∫

V

[

∂f(r, t)
∂t

+ ∇ · (fv)
]

dv (1.10)

The transient term on the RHS might be manipulated as the order in which
the partial time derivation and the integration is performed can be reversed.

Similar forms of the transport theorem hold for the material derivative of
the volume integral for vector and tensor quantities.

1.2.1 Conservation of mass

The continuity equation for a mixture formulated in terms of the mass av-
eraged mixture velocity has the same form as the continuity equation for
single-component systems.

System analysis

The fundamental conservation of mass law for a multi-component system can
be formulated employing the material Lagrangian framework (e.g., [11] [169]
[89] [13]).

The mixture mass M in a macroscopic material control volume V (t), is
given by:
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M =
∫

V (t)

ρ dv (1.11)

The mass conservation principle can then be formulated for the system
considering the material control volume V (t) which is moving in space and
bounded by a closed material surface A(t):

DM

Dt
=

D

Dt

∫

V (t)

ρ dv = 0 (1.12)

The transport theorem (1.10) enables the time rate of change of the ma-
terial volume integral (1.12) to be transformed into the Eulerian formulation.
Hence,

D

Dt

∫

V (t)

ρ dv =
∫

V

[

∂ρ

∂t
+ ∇ · (ρv)

]

dv = 0 (1.13)

Equation (1.13) must be satisfied for any macroscopic volume V , thus the
expressions inside the volume integral must be equal to zero. This result is
termed the equation of continuity for a mixture, and is given by:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.14)

The fact that the control volume was fixed in space leads by definition to the
specific differential form which is called the conservative or flux form.

Finite Eulerian control volume analysis

The mixture mass M in a macroscopic Eulerian control volume V , at time t
is given by:

M =
∫

V

ρdv (1.15)

In the Eulerian formulation the mass M can only be changed by con-
vection across the CV surface considering non-nuclear-active materials. The
conservation equation of mixture mass can thus be expressed like3:

∂M

∂t
= [

∂M

∂t
]Convection (1.16)

using a fractional time step notation for convenience.
The convective term is by definition given by:

[
∂M

∂t
]Convection = −

∫

A

(ρv) · n da (1.17)

3 The partial time derivation can be performed before the integration since the
integration limits are fixed and no longer depend on the independent variable, t.
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where n is the outward directed normal unit vector to the surface of the fixed
control volume.

The convective transport term in (1.17) can be transformed into a volume
integral using Gauss’ theorem (App A). The continuity equation (1.16), can
then be expressed as:

∫

V

[

∂ρ

∂t
+ ∇ · (ρv)

]

dv = 0 (1.18)

Equation (1.18) must be satisfied for any macroscopic volume V , thus the
expressions inside the volume integral must be equal to zero. The resulting
differential equation coincides with (1.14), as expected.

Infinitesimal Eulerian control volume analysis

We end this subsection deriving the convective mass flux terms over an in-
finitesimal Eulerian control volume element, intending to provide improved
understanding of the physics and mathematical concepts involved. Note that
even though we consider convective mass fluxes only at this point, the math-
ematical flux concepts are general. That is, all convective and diffusive fluxes
can be derived in a similar manner.

As we adopt a Cartesian coordinate system, the velocity and density are
functions of (x, y, z) space and time t. In this (x, y, z) space we have placed an
infinitesimally control volume of sides dx, dy and dz fixed in space, with the
fluid moving through it as illustrated in Fig. 1.2. Consider the left and right
faces of the element which are perpendicular to the x axis. The area of these
faces is dy dz. The mass flow through the left face is (ρvx)dydz. Since the
velocity and density are functions of spatial location, the value of the mass
flux across the right face will be different from that across the left face. The
difference in mass flux between the two faces is [∂(ρvx)/∂x]dx. Thus, the mass
flow across the right face can be expressed as (ρvx +[∂(ρvx)/∂x]dx)dydz. In a
similar manner, the mass flow through both the bottom and top faces, which
are perpendicular to the y axis, is (ρvy)dxdz and (ρvy + [∂(ρvy)/∂y]dy)dxdz,
respectively. The mass flow through both the front and back faces, which are
perpendicular to the z axis, (ρvz)dxdy and (ρvz + [∂(ρvz)/∂z]dz)dxdy, re-
spectively. Note that vz, vy, and vz are positive, by convention, in the positive
x,y, and z directions, respectively. Hence, the arrows in Fig 1.2 show the con-
tributions to the inflow and outflow of mass through the sides of the fixed
element.

Net inflow in x direction:

(ρvx)dydz − [ρvx +
∂(ρvx)
∂x

dx]dydz = −∂(ρvx)
∂x

dxdydz (1.19)
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Fig. 1.2. A physical model of an infinitesimal Eulerian control volume fixed in
space indicating the convective mass fluxes through the various faces of the volume
element, used for derivation of the continuity equation.

Net inflow in y direction:

(ρvy)dxdz − [ρvy +
∂(ρvy)
∂y

dy]dxdz = −∂(ρvy)
∂y

dxdydz (1.20)

Net inflow in z direction:

(ρvz)dxdy − [ρvz +
∂(ρvz)
∂z

dz]dxdy = −∂(ρvz)
∂z

dxdydz (1.21)

Hence, the net mass flow into the element is given by

Net mass inflow = −[
∂(ρvx)
∂x

+
∂(ρvy)
∂y

+
∂(ρvz)
∂z

]dxdydz (1.22)

The mixture mass of fluid in the infinitesimally small element is ρ (dx dy
dz), and the time rate of increase or accumulation of mass inside the element
is given by

Time rate of mass increase =
∂ρ

∂t
dxdydz (1.23)

The physical principle that mass is conserved, when applied to the fixed
element in Fig. 1.2, can be expressed in words as follows: the net mass flow
into the element must equal the time rate of increase or accumulation of mass
inside the element. This statement can mathematically be expressed as
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∂ρ

∂t
dxdydz = −[

∂(ρvx)
∂x

+
∂(ρvy)
∂y

+
∂(ρvz)
∂z

]dxdydz (1.24)

or
∂ρ

∂t
= −[

∂(ρvx)
∂x

+
∂(ρvy)
∂y

+
∂(ρvz)
∂z

] (1.25)

In (1.25), the terms inside the brackets can be reformulated by use of
vector and tensor notations. By comparing the terms inside the brackets with
the mathematical definitions of the nabla or del operator, the vector product
between this nabla operator and the mass flux vector we recognize that these
terms can be written as ∇ · (ρv).

The mass balance equation, (1.25), written in Cartesian coordinates can
thus be rewritten in the general vector form as:

∂ρ

∂t
= −∇ · (ρv) (1.26)

We recall that the resulting equation is identical to the vector equation
(1.14) formulated earlier based on a more direct mathematical approach.

1.2.2 Transport of species mass

The concentration of the various species in a multi-component mixture may
be expressed in numerous ways. In this book the equations are formulated
in terms of mass fluxes, thus mass concentrations are used. However, the
equations could as well be formulated in terms of molar fluxes, and molar
concentrations as usually applied in basic textbooks in Chemical Engineering
(e.g., [11] [169] [13]). The mass concentration, ρc, is the mass of species c per
unit of volume of solution. The species c mass density relates to the familiar
molar concentration by the simple formula: Cc = ρc

Mwc
. Mwc

is the molecular
weight of species c. The mass fraction, ωc = ρc

ρ , is the mass concentration of
species c divided by the mixture mass density of the solution. The correspond-
ing mole fraction, xc = Cc

C , is the molar concentration of species c divided by
the total molar concentration of the solution.

The individual chemical species in a mixture moves at different velocities.
The vc denotes the velocity of the species c with respect to stationary coor-
dinate axes. Thus, for a mixture of N species, the local mass-average velocity
v is defined as:

v =

N
∑

c=1
ρcvc

N
∑

c=1
ρc

=

N
∑

c=1
ρcvc

ρ
=

N
∑

c=1

ωcvc (1.27)

where ρ =
N
∑

c=1
ρc is the mixture density.
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In flow systems, one is frequently interested in the velocity of a given
species with respect to v rather than with respect to stationary coordinates.
This leads to the definition of the diffusion velocities:

vc,d = vc − v (1.28)

These diffusion velocities indicate the motion of component c relative to the
local motion of the mixture stream.

The mass flux of species c is a vector quantity denoting the mass of species
c that passes through a unit area per unit time. The mass flux relative to
stationary coordinates is defined by:

mc = ρcvc (1.29)

where ρc is the mass concentration or density of species c.
The relative mass flux is defined as:

jc = ρc(vc − v) = ρcvc,d (1.30)

The convective mass flux is thus defined by:

ρcv = mc − jc (1.31)

For binary mixtures the diffusive mass flux jc of species c is normally approx-
imated by Fick’s first law :

jc = −ρDc∇ωc (1.32)

where the mass flux of species c is in the direction of decreasing concentra-
tion (which accounts for the minus sign). The quantity Dc is called the mass
diffusion coefficient or diffusivity and has generally dimensions (length)2

time .
The rigorous kinetic theory, described in sect. 2.9, shows that the net

species relative mass flux in a multi-component mixture will consist of three
contributions associated with the mechanical driving forces and an additional
contribution associated with the thermal driving force:

jc = joc + jpc + jgc + jTc = ρcvd,c (1.33)

as explained by Hirschfelder et al [67] and Bird et al. [11] [13].
The joc term denotes the ordinary concentration diffusion (i.e., multi-

component mass diffusion). In general, the concentration diffusion contribu-
tion to the mass flux depends on the concentration gradients of all the sub-
stances present. However, in most reactor systems, containing a solvent and
one or only a few solutes having relatively low concentrations, the binary form
of Fick’s law is considered a sufficient approximation of the diffusive fluxes.
Nevertheless, for many reactive systems of interest there are situations where a
multi-component closure (e.g., a Stefan-Maxwell equation formulated in terms
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of mass average velocities) should be considered [166]. The pressure diffusion
term jpc accounts for the fact that there may be a net movement of the c’th
species in a mixture if there is a pressure gradient imposed on the system. The
pressure diffusion effect is usually very small in chemical reactor systems as the
local pressure gradients are much smaller than the concentration gradients.
The pressure-diffusion proportionality coefficient is apparently much smaller
than the mass diffusion coefficient. The forced diffusion term jgc accounts for
the fact that there may be a net movement of the c-th species in a mixture
if there is an external force which is different for the individual species (e.g.,
electric field on an ionic system). This diffusion effect is seldom important in
chemical reactor systems as only the gravity field is considered in most cases.
The thermal-diffusion term jTc describes the tendency for species to diffuse
under the influence of a temperature gradient. The thermal-diffusion effect
(or Soret effect) is usually neglected in chemical reactor systems because the
thermal-diffusion coefficient is typically much smaller than the mass diffusion
coefficient.

In reactor modeling only the ordinary concentration diffusion term joc is
generally considered. The rigorous kinetic theory model derivation for multi-
component mixtures is outlined in chap 2. Meanwhile, the Fick’s law for binary
systems is used.

System analysis

For an individual species c in a multi-component mixture the species mass
balance principle postulates that the time rate of change of the mass of a
system of species c is equal to the rate at which the mass of c is produced by
homogeneous chemical reactions.

The species c mass in a macroscopic material control volume Vc(t) is
given by:

Mc =
∫

Vc(t)

ρc dv (1.34)

Let Vc(t) denote the material volume occupied by species c (see Fig. 1.1B), and
Rc denote the rate of production of species c per unit volume by homogeneous
chemical reactions. The species mass balance can thus be expressed as:

DMc

Dt
=

D

Dt

∫

Vc(t)

ρc dv =
∫

Vc(t)

Rc dv (1.35)

To transform the system balance into an Eulerian control volume balance
a particular form of the transport theorem applicable to single-phase systems
of species c is required [149]. Let f be any scalar, vector or tensor field. The
transport theorem for species c can be expressed as:
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D

Dt

∫

Vc(t)

f(r, t) dv =
∫

Vc

[

∂f(r, t)
∂t

+ ∇ · (fvc)
]

dv (1.36)

The transport theorem (1.36) enables the time rate of change in the species
mass balance (1.35) to be transformed into the Eulerian formulation. Hence,

∫

Vc

[

∂ρc

∂t
+ ∇ · (ρcvc) −Rc

]

dv = 0 (1.37)

Equation (1.37) must be satisfied for any macroscopic volume Vc, thus at each
point the differential mass balance for species c yields:

∂ρc

∂t
+ ∇ · (ρcvc) = Rc (1.38)

The species c total mass flux can be divided into the sum of convective and
diffusive fluxes in accordance with (1.30). The result is:

∂ρc

∂t
+ ∇ · (ρcv) + ∇ · jc = Rc (1.39)

This equation is the Eulerian species c mass balance equation.

Finite Eulerian control volume analysis

The species c mass in a fixed macroscopic volume Vc, is given by:

Mc =
∫

Vc

ρc dv (1.40)

The Eulerian (see Fig. 1.1A) transport equation for the species c mass can be
defined by:

∂Mc

∂t
= [

∂Mc

∂t
]Convection + [

∂Mc

∂t
]Relative mass fluxes + [

∂Mc

∂t
]Reactions (1.41)

The equation states that for non-nuclear-active mixtures the species c mass
Mc can only be changed by convection and relative mass fluxes across the CV
surface, and due to chemical reactions per unit volume.

The convective term can then be formulated as a surface integral, and
converted to a volume integral by use of Gauss’ theorem (App. A):

[
∂Mc

∂t
]Convection = −

∫

Ac

(ρcv) · n da = −
∫

Vc

∇ · (ρcv) dv (1.42)

The relative mass flux term denotes the net rate of component c mass
input per unit volume by concentration diffusion, pressure diffusion, forced
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diffusion and thermal diffusion can then be formulated as a surface integral,
and converted to a volume integral by use of Gauss’ theorem (App. A):

[
∂Mc

∂t
]Relative mass diffusion = −

∫

Ac

jc · n da = −
∫

Vc

∇ · jc dv (1.43)

The reaction rate term, denoting the net rate of species c mass input per
unit volume by chemical reactions is given by:

[
∂Mc

∂t
]Reactions =

∫

Vc

Rc dv (1.44)

The general form of the Eulerian transport equation for species c mass,
can the be formulated as:

∂Mc

∂t
= [

∂Mc

∂t
]Convection + [

∂Mc

∂t
]Relative mass fluxes + [

∂Mc

∂t
]Reactions

= −
∫

Vc

∇ · (ρcv) dv −
∫

Vc

∇ · jc dv +
∫

Vc

Rc dv
(1.45)

or with a little reformulation
∫

Vc

[

∂ρc

∂t
+ ∇ · (ρcv) + ∇ · jc −Rc

]

dv = 0 (1.46)

Equation (1.46) must be satisfied for any macroscopic volume Vc, thus the
expression inside the volume integral must be equal to zero. The resulting
differential species mass balance coincides with (1.39).

Introducing the well known Einstein summation notation (e.g., described
by [154]), the Cartesian form of the equation can be formulated

∂ρc

∂t
+

∂(ρcvi)
∂xi

+
∂jc,i

∂xi
= Rc (1.47)

where we have used the rigorous mathematical definitions of the Cartesian
operators (e.g., [11]).

The divergence of a vector is defined as:

div(jc) = ∇ · jc =
3

∑

i=1

∂jc,i

∂xi
=

∂jc,i

∂xi
=

∂jc,x

∂x
+

∂jc,y

∂y
+

∂jc,z

∂z
(1.48)

Similarly, the gradient of a scalar is defined as:

grad(ρ) = ∇ρ =
3

∑

i=1

∂ρ

∂xi
ei =

∂ρ

∂xi
ei =

∂ρ

∂x
ex +

∂ρ

∂y
ey +

∂ρ

∂z
ez (1.49)
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From these definitions we see that grad() is a vector while div() is a scalar
quantity.

The sum of the transport equations for all the N species in the mixture
equals the continuity equation:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.50)

where by definition the sum of the relative or diffusive mass fluxes vanishes:

N
∑

c=1

jc = 0 (1.51)

and, due to the mass conservation law, the sum of the reaction rate terms is
by definition zero:

N
∑

c=1

Rc = 0 (1.52)

Again, the fundamental principles are confirmed since (1.50) equals (1.14).

1.2.3 Conservation of momentum

The equation of motion is examined in this section.

System analysis

The momentum associated with a material control volume V (t) is defined by:

P =
∫

V (t)

ρv dv (1.53)

The basis for any derivation of the momentum equation is the relation
commonly known as Newton’s second law of motion which in the material
Lagrangian form (see Fig. 1.1B) expresses a proportionality between the ap-
plied forces and the resulting acceleration of a fluid particle with momentum
density, P, (e.g., [89]):

DP
Dt

=
D

Dt

∫

V (t)

(ρv) dv = f (1.54)

where f is the net force acting on the fluid in the control volume.
Again, the system balance can be transformed into an Eulerian control

volume balance by use of the transport theorem (1.10). Hence,
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D

Dt

∫

V (t)

(ρv) dv =
∫

V (t)

[

∂(ρv)
∂t

+ ∇ · (ρvv)
]

dv =
∫

V (t)

F dv (1.55)

where F is the net force per unit volume acting on the fluid within the control
volume. That is,

f =
∫

V (t)

F dv (1.56)

Preliminarily, we keep the force undefined as our main purpose in this para-
graph is to show the connection between the two formulations. The physical
forces will be considered shortly.

The relation (1.55) must be satisfied for any macroscopic volume V (t), so
at each point the differential momentum balance yields:

∂(ρv)
∂t

+ ∇ · (ρvv) = F (1.57)

This is the Eulerian control volume form of the momentum conservation equa-
tion.

Finite Eulerian control volume analysis

The mixture momentum associated with an Eulerian control volume V , at
time t, is given by:

P =
∫

V

(ρv) dv (1.58)

Hence, the Eulerian (see Fig. 1.1A) momentum balance equation is written
considering a fixed control volume V :

∂P
∂t

= [
∂P
∂t

]Convection + fForces

= [
∂P
∂t

]Convection + fBody Forces + fSurface Forces

(1.59)

The equation states that the momentum density ρv can only be changed
by convection across the CV surface and by the applied forces per unit volume
on the fluid particle. The force term consists of two groups of forces. The body
forces are due to external fields such as gravity or an applied electro-magnetic
potential and act on the entire volume of the fluid element. The surface forces
are applied by external stresses on the surfaces of the volume element.

The convective term can then be formulated as a surface integral (anal-
ogous to the mass flux formulation, Fig. 1.2), and converted to a volume
integral by use of Gauss’ theorem (App. A):

[
∂P
∂t

]Convection = −
∫

A

(ρvv) · n da = −
∫

V

∇ · (ρvv) dv (1.60)
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The last term is somewhat complicated containing a dyadic product, vv. To
be able to reformulate this expression into Cartesian coordinates we have to
apply rigorous mathematical algorithms.

Using the algorithm given by Bird et al [11] [13], the component form is
given by:

∇ · (ρvv) =
3

∑

i=1

ei
∂

∂xi
·

3
∑

j=1

3
∑

k=1

ejek(ρvjvk) =
3

∑

i=1

3
∑

j=1

3
∑

k=1

(ei · ej)ek
∂

∂xi
(ρvjvk)

=
3

∑

i=1

3
∑

j=1

3
∑

k=1

δijek
∂

∂xi
(ρvjvk) =

3
∑

k=1

ek

3
∑

i=1

∂

∂xi
(ρvivk)

(1.61)

hence the kth component of ∇ · (ρvv) is [∇ · (ρvv)]k =
3
∑

i=1

∂
∂xi

(ρvivk) where

ek is the unit vector in the k direction. The δij is the Kronecker delta defined
as:

δij =

{

1 if i = j, and

0 if i 
= j.
(1.62)

From the geometrical definition of the vector scalar- or dot product between
the unit vectors, we can write:

(ei · ej) = δij (1.63)

The body force terms on unit volume basis are usually formulated in terms
of the body forces per unit mass (e.g., [11] [169]):

fBody Forces = [
∂P
∂t

]Body Forces =
∫

V

N
∑

c=1

ρcgc dv (1.64)

where gc is the total sum of body forces per unit mass. In this term account
is taken of the fact that each chemical species present may be acted on by
different body forces per unit mass. Considering the gravitational body force
only, gc, becomes the vector acceleration of gravity which is the same for all
species.

The surface force terms per unit volume basis can be formulated as a
surface integral in terms of the total stress tensor T, and then converted to a
volume integral by use of Gauss’ theorem (App. A):

fSurface Forces = [
∂P
∂t

]Surface Forces = −
∫

A

T · n da = −
∫

V

∇ · T dv (1.65)

Stresses are the forces tending to produce deformation in a body, measured
as a force per unit area.
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The total stress tensor, T, is thus interpreted physically as the surface
forces per surface unit acting through the infinitesimal surface on the sur-
rounding fluid with normal unit vector n directed out of the CV. This means
that the total stress tensor by definition acts on the surrounding fluid. The
counteracting force on the fluid element (CV) is therefore expressed in terms
of the total stress tensor by introducing a minus sign in (1.65).

The physical interpretation of tensors are not always obvious. We will
therefore pay some attention to the definition of such a quantity in the hope
of improving our understanding.

From basic mathematics (e.g., [3]) we recall that a Cartesian vector, as
the velocity v, in three dimensions is a quantity with three components, vx,
vy and vz or

v =
3

∑

i=1

viei (1.66)

The vector v is regarded as an entity, just as the physical quantity it
represents is an entity. Similarly, a second order Cartesian tensor, as the stress
tensor, is defined as an entity having nine components:

T =
3

∑

i=1

Tiei =
3

∑

i=1

3
∑

j=1

Tijeiej (1.67)

Note that scalars and vectors can be looked upon as tensors of zero and
first order, respectively.

To proceed formulating the momentum equation we need a relation defin-
ing the total stress tensor in terms of the known dependent variables, a consti-
tutive relationship. In contrast to solids, a fluid tends to deform when subjected
to a shear stress. Proper constitutive laws have therefore traditionally been
obtained by establishing the stress-strain relationships (e.g., [11] [12] [13] [89]
[184] [104]), relating the total stress tensor T to the rate of deformation (some-
times called rate of strain, i.e., giving the name of this relation) of a fluid
element. However, the resistance to deformation is a property of the fluid.
For some fluids, Newtonian fluids, the viscosity is independent both of time
and the rate of deformation. For non-Newtonian fluids, on the other hand the
viscosity may be a function of the prehistory of the flow (i.e., a function both
of time and the rate of deformation).

The total stress tensor (i.e., force due to the stresses per surface unit,
sometimes called ‘traction’) has commonly been divided into two components;
the hydrostatic pressure, pe, and the viscous stress, σ, tensors ([11]):

T = pe + σ (1.68)

The first term on the right hand side denotes the pressure and is well
known from thermodynamics. Pressure is a type of stress that can act on
a fluid at rest. For an infinitesimally small fluid element, being in a state
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of local equilibrium, pressure acts equally in all directions. Characteristics
such as pressure that are the same in all directions are said to be isotropic.
Note, however, that this assumption is rigorously only justified for systems
consisting of spherical molecules or at very low densities. For other systems,
the pressure tensor may contain an anti-symmetric part [32]. Pressure is a
scalar quantity since it is not dependent on direction, and we need just one
number to describe it at any point in space and time.

The second term on the right hand side denotes the viscous stresses, which
exist when there are shearing motions in the fluid. The result of this stress is a
deformation of the fluid. When one portion of a fluid moves, the intermolecular
forces due to internal friction tend to drag adjacent fluid molecules in the same
direction. The strength of these intermolecular forces depend on the nature of
the fluid, and they determine the internal energy dissipation rate in the fluid
relaxing the system towards a state of global thermodynamic equilibrium.
Based on physical analysis, for example considering a conceptual cube, it has
been found that these viscous forces can act in any of the three Cartesian
directions on any of the three faces (as indicated in Fig. 1.3). This is one
of the mathematical characteristics of a tensor, thus the viscous stress is a
tensor with nine components. From a microscopic point of view one can say
that the pressure tensor results from the short-range interactions between
the molecules of the system, whereas the viscous term contain long-range
interactions in the system [32].

A lot of confusion is related to the fact that several similar, but not equal,
definitions of the total stress tensor have been observed in the literature.
The different definitions deviate due to the introduction of pre factors of −1
and/or 1

2 . In this book the definition of Bird et al. [11] [13] is used. There are
three reasons why the adopted convention is preferred. Firstly, this convention
is commonly used in chemical engineering. Secondly, in heat conduction de-
scribed by Fourier’s law it is customary to define the heat flux to be positive in
the direction of decreasing temperature, when the heat is moving in the pos-
itive space directions. Similarly, in species mass diffusion described by Fick’s
law the mass flux is defined as positive in the direction of decreasing concen-
tration, when the mass is moving in the positive space directions. Therefore
in a shear flow it seems natural to define the total stress tensor so that it is
positive in the direction of decreasing velocity. Thus, the laws for all three
transport phenomena are formulated with the same sign convention. Thirdly,
when the total stress tensor is divided into two parts, a pressure contribution
and a viscous contribution, both parts have the same sign. In this way, the
sign convention used here is in accordance with the sign convention normally
applied in thermodynamics. That is, compression is positive in both terms.

This generalized form of the so-called deformation law have been used for
most fluids, whereas the formulation of the σ term contains different expres-
sions accounting for the various properties of the fluids. Since the Newtonian
formulation is the simplest, and this law is satisfied by all gases and most
common fluids [184] this formulation has been implemented into the majority
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of the existing Computational Fluid Dynamic (CFD) program codes. When
the momentum equation appears without a specific stress law (not even di-
vided into pressure and viscous parts), it is known as Cauchy’s equation (e.g.,
[3] [104], p. 214).

The constitutive equation for a Newtonian fluid in vector form is formu-
lated by use of sophisticated tensor analysis (e.g., [11] [93] [184] [89] [2]). The
following expression for the viscous stress tensor is applied:

σ = −μ[∇v + (∇v)T ] + (
2
3
μ− μB)(∇ · v)e (1.69)

where μB is known as the bulk viscosity, dilatational viscosity or second vis-
cosity. The bulk viscosity is identically zero (shown by kinetic theory) for low
density mono atomic gases and is probably not too important in dense gases
and liquids (e.g., [11]). The bulk viscosity is usually negligible in combustion
processes [89]. Therefore, the parameter is set to zero for most reactor models
too. The quantity:

γ = ∇v + (∇v)T (1.70)

is defined as the rate of deformation (or rate of strain). Note, in some sciences
it is common practice to define this variable deviating from this definition by
a pre factor of 1

2 .
The component form of the dyadic product, ∇v, is given by:

∇v =
3

∑

i=1

3
∑

j=1

∂

∂xi
vjeiej (1.71)

The surface force term is then given by:

fSurface Forces = [
∂P
∂t

]Surface Forces = −
∫

V

∇ · T dv

= −
∫

V

∇ · (pe) dv −
∫

V

∇ · σ dv

= −
∫

V

∇p dv −
∫

V

∇ · σ dv

= −
∫

V

∇p dv +
∫

V

∇ · (μ[∇v + (∇v)T ]) dv

+
∫

V

∇[(μB − 2
3
μ)(∇ · v)] dv

(1.72)

Applying the tensor algorithm given by [11] [13], the component form is
given by
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∇ · T =
3

∑

i=1

ei
∂

∂xi
·

3
∑

j=1

3
∑

k=1

ejekTjk =
3

∑

i=1

3
∑

j=1

3
∑

k=1

(ei · ej)ek
∂

∂xi
Tjk

=
3

∑

i=1

3
∑

j=1

3
∑

k=1

δijek
∂

∂xi
Tjk =

3
∑

k=1

ek

3
∑

i=1

∂

∂xi
Tik

(1.73)

hence the jth component of ∇·T is [∇·T]j =
3
∑

i=1

∂Tij

∂xi
. Note that by convenience

we simply changed the index denoting the direction of the stress from k to j
in the mathematical operation above.

The total stress tensor written in Cartesian tensor notation is formulated:

Tij = pδij − μ(
∂vi

∂xj
+

∂vj

∂xi
) − (μB − 2

3
μ)

∂vk

∂xk
δij (1.74)

where Tij is the total stress acting in the positive jth direction on a face
normal to the i axis.

The total stress tensor is a symmetric tensor (i.e., Tij = Tji), and in
Cartesian coordinates it can thus be written:

Tij =

⎛

⎝

Txx Tyx Tzx

Txy Tyy Tzy

Txz Tyz Tzz

⎞

⎠ =

⎛

⎝

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

⎞

⎠ (1.75)

where the rows in the array correspond to the applied force (per surface unit)
in each coordinate direction. The surface forces acting in the x-direction on
the faces of the Cartesian fluid element, CV, are sketched Fig. 1.3.

As before, the convention used here is that Tij denotes the total stress in
the j direction exerted on a plane perpendicular to the i axis. Recall that the
shear stresses are related to the time rate of change of the shearing deforma-
tion of the fluid element, whereas the normal stresses are related to the time
rate of change of volume of the fluid element. As a result, both shear and nor-
mal stresses depend on velocity gradients in the flow. In most viscous flows,
normal stresses are much smaller than shear stresses and usually neglected.
The normal stresses may however become important when the normal velocity
gradients are very large.

The surface forces which act directly on the surface of the fluid element
are, as mentioned earlier, due to two sources only. The pressure distribution
acting on the surface, imposed by the outside fluid surrounding the fluid el-
ement, and the viscous shear and normal stresses distribution acting on the
surface imposed by outside fluid tugging or pushing on the surface by means
of friction [2].

Before we proceed explaining the physical mechanism of the surface
stresses, attention is put on the sign convention adopted regarding the di-
rection of the stresses on the control volume surface. Contrary to the more
common sign conventions applied for the surface stresses in standard litera-
ture on fluid mechanics (e.g., [184], pp. 65-72 [185], 225-230 [2], pp. 60-66), the
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Fig. 1.3. A sketch of a Cartesian fixed control volume showing the surface forces
acting on a moving fluid element. This Fig. is based on the illustrations of the surface
forces given in the textbooks on fluid mechanics by [184], pp. 65-72 [185], 225-230 [2],
pp. 60-66. However, contrary to the usual sign conventions applied in these books,
the sign convention used in this book for the total stress tensor follows the approach
given by Bird et al [11] [13]. Therefore, a pre factor of −1 have been introduced for
the forces in the Fig. Only the surface forces in the x-direction are shown.

sign convention used here for the total stress tensor follow the approach intro-
duced by [11] [13]. Therefore, a pre factor of −1 have been implemented for
the total stress tensor acting on the fluid element, in contrast to the standard
convention that positive stresses act on the fluid element surfaces.

By substitution of the given closures, the general form of the Eulerian
conservation equation for the momentum density, ρv, can be formulated as:

∂P
∂t

= [
∂P
∂t

]Convection + [
∂P
∂t

]Body Forces + [
∂P
∂t

]Surface Forces

= −
∫

V

∇ · (ρvv) dv +
∫

V

N
∑

c=1

ρcgc dv −
∫

V

∇p dv −
∫

V

∇ · σ dv (1.76)
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or with a little rearranging

∫

V

[

∂(ρv)
∂t

+ ∇ · (ρvv) + ∇p + ∇ · σ +
N

∑

c=1

ρcgc

]

dv = 0 (1.77)

Equation (1.77) must be satisfied for any macroscopic volume V , thus the
expression inside the volume integral must be equal to zero. The result is
known as the momentum equation:

∂(ρv)
∂t

= −∇ · (ρvv) −∇p−∇ · σ +
N

∑

c=1

ρcgc (1.78)

This relation coincides with (1.57) provided that the formulas for the forces
are substituted into the latter one.

The physical meaning of the terms in the momentum equation (1.78) is
inferred from the above modeling analysis. The term on the LHS denotes the
rate of accumulation of momentum within the control volume per unit volume;
the first term on the RHS denotes the net rate of momentum increase by
convection per unit volume; the second term on the RHS denotes the pressure
force acting on the control volume per unit volume; the third term on the RHS
denotes the viscous force acting on the control volume per unit volume; and
the fourth term on the RHS denotes the external body forces acting on the
control volume per unit volume.

Infinitesimal Eulerian control volume stress analysis

For somebody the physical meaning of the surface stresses might be intuitive
and best explained formulating a stress balance over an infinitesimal Eulerian
control volume.

Considering the surface forces in the x-direction exerted on the fluid ele-
ment as sketched in Fig. 1.3, the physical mechanisms of the various stresses
are described in the following.

At this point it may be informative to split the total stress tensor into
two contributions, the viscous normal stresses and the pressure (note, only
the net surface forces expressed in terms of the total stress tensor is indicated
in the Fig. 1.3). The pressure is imposed by the outside fluid surrounding the
fluid element, and is thus always defined positive acting on the fluid element.
Considering the face adhe, which is perpendicular to the x axis, both the
pressure and the viscous normal stresses act in the x - direction. The nega-
tive total stress tensor contains a negative pressure component that acts in
the negative direction of the axis (to the left). The pressure negative force,
−pdydz, acts in the direction out of the fluid element. Considering the face
bcgf the negative total stress tensor contains a negative pressure component
that acts in the positive direction of the axis (to the right). The negative



1.2 Equations of Change for Multi-Component Mixtures 33

pressure force, −[p + (∂p/∂x)dx]dydz, acts in the direction out of the fluid
element. The viscous stresses are defined in agreement with the convention
that negative viscous stresses act in the direction of decreasing velocity ([2],
pp. 60-66), and that an increase in all three components of velocity, vx, vy, and
vz, occur in the positive directions of the axes. The direction of the viscous
stresses acting on the adhe face can then be determined in the following way.
When vx increases in the positive x-direction, vx is lower just in front of the
face than on the face itself. This causes a retarding or dragging action on the
fluid element, which acts in the negative x-direction (to the left). The negative
total stress tensor contains a negative viscous stress component that acts in
the negative x-direction, −σxxdydz. Considering the viscous stresses acting
on the bcgf face, vx still increases in the positive x-direction. vx will now
be higher just outside the face than on the face itself. This causes a tugging
action (i.e., the fluid outside the CV moves outwards with a velocity higher
than the CV surface velocity and the intermolecular forces due to internal
friction in the fluid tend to drag adjacent fluid molecules out of the fluid ele-
ment in the same direction) on the fluid element, which tries to pull the fluid
element in the positive x -direction (to the right). The negative total stress
tensor contains a negative viscous stress component that acts in the positive
x-direction, −[σxx + (∂σxx/∂x)dx]dydz.

According to the conventions mentioned above, vx increases in the positive
y direction. Therefore, concentrating on face efgh, vx is higher just above the
face than on the face itself. This causes a tugging action on the fluid element,
which tries to pull the fluid element in the positive x -direction (to the right).
The negative total stress tensor contains a negative viscous stress component
that acts in the positive x-direction. Face efgh is a distance dy above face abcd.
The shear force in the x-direction on a face efgh is: −[σyx+(∂σyx/∂y)dy]dxdz.
In turn, concentrating on face abcd, vx is lower just beneath the face than on
the face itself. This causes a retarding or dragging action on the fluid element,
which acts in the negative x-direction (to the left). On the face abcd the only
force in the x-direction is that due to tangential (or shear) stresses −σyxdxdz.

The directions of all the other stresses can be justified in a similar way.
With the above physical interpretation in mind, considering the front faces

of a cubic CV, the surface force components due to the surface stresses are
([2] [184]:

fFront Surface Force,x = −Txxdydz − Tyxdxdz − Tzxdxdy
fFront Surface Force,y = −Txydydz − Tyydxdz − Tzydxdy
fFront Surface Force,z = −Txzdydz − Tyzdxdz − Tzzdxdy

(1.79)

For an element in equilibrium, these forces would be balanced by equal
and opposite forces on the back faces of the element. If the element is acceler-
ating, however, the front- and back- face stresses are different by differential
amounts.
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fBack Surface Force,x+dx

= −[Txx +
∂Txx

∂x
dx]dydz − [Tyx +

∂Tyx

∂y
dy]dxdz − [Tzx +

∂Tzx

∂z
dz]dxdy

fBack Surface Force,y+dy

= −[Txy +
∂Txy

∂x
dx]dydz − [Tyy +

∂Tyy

∂y
dy]dxdz − [Tzy +

∂Tzy

∂z
dz]dxdy

fBack Surface Force,z+dz

= −[Txz +
∂Txz

∂x
dx]dydz − [Tyz +

∂Tyz

∂y
dy]dxdz − [Tzz +

∂Tzz

∂z
dz]dxdy

(1.80)

A net surface force on the element can now be obtained using the relations
derived for the forces acting on the front and back faces. That is, the leftward
force on the left face is balanced by the rightward force on the right face,
leaving only the net rightward force on the right face. Similar force balances
can be formulated on the other four faces and for the other two axes directions,
so that the net force on the control volume in each direction is due to three
derivative terms:

fSurface Force,x = −fFront Surface Force,x + fBack Surface Force,x+dx

= −(
∂Txx

∂x
dx)dydz − (

∂Tyx

∂y
dy)dxdz − (

∂Tzx

∂z
dz)dxdy

fSurface Force,y = −fFront Surface Force,y + fBack Surface Force,y+dy

= −(
∂Txy

∂y
dx)dydz − (

∂Tyy

∂y
dy)dxdz − (

∂Tzy

∂z
dz)dxdy

fSurface Force,z = −fFront Surface Force,z + fBack Surface Force,z+dz

= −(
∂Txz

∂x
dx)dydz − (

∂Tyz

∂y
dy)dxdz − (

∂Tzz

∂z
dz)dxdy

or, on a unit volume basis, dividing by dx dy dz, yields:

FSurface Force,x = −∂Txx

∂x − ∂Tyx

∂y − ∂Tzx

∂z

FSurface Force,y = −∂Txy

∂x − ∂Tyy

∂y − ∂Tzy

∂z

FSurface Force,z = −∂Txz

∂x − ∂Tyz

∂y − ∂Tzz

∂z

(1.81)

which we note is equivalent to taking the divergence of the vector Tk, the k
component of the tensor T.
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Hence, the net surface force yields [11]:

FSurface Force,k = −∇ · Tk = −
3

∑

i=1

ei
∂

∂xi
·

3
∑

j=1

Tjkej = −
3

∑

i=1

3
∑

j=1

(ei · ej)
∂

∂xi
Tjk

= −
3

∑

i=1

3
∑

j=1

δij
∂Tjk

∂xi
= −

3
∑

i=1

∂Tik

∂xi
(1.82)

which is one of the total stress tensor components expressed in terms of the
upper row of the total stress tensor. Note that Tk denotes the tensor com-
ponent k (i.e., a vector) which in Cartesian coordinates may be x, y or z. To
avoid any misunderstanding in formulating of the components of the vectors
and tensors we have applied the index k denoting the direction of the stresses,
instead of j.

The vector form of the momentum equation, adopted in (1.65), can now
be obtained by comparing (1.82) and (1.73).

The components of the total stress tensor for Newtonian fluids in Cartesian
coordinates (x, y, z) are defined as (e.g., [11] [13]):

Txx = p + σxx = p− μ

[

2
∂vx

∂x
− 2

3
(∇ · v)

]

(1.83)

Tyy = p + σyy = p− μ

[

2
∂vy

∂y
− 2

3
(∇ · v)

]

(1.84)

Tzz = p + σzz = p− μ

[

2
∂vz

∂z
− 2

3
(∇ · v)

]

(1.85)

Txy = σxy = Tyx = σyx = −μ
[

∂vx

∂y
+

∂vy

∂x

]

(1.86)

Tyz = σyz = Tzy = σzy = −μ
[

∂vy

∂z
+

∂vz

∂y

]

(1.87)

Tzx = σzx = Txz = σxz = −μ
[

∂vz

∂x
+

∂vx

∂z

]

(1.88)

(∇ · v) =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
(1.89)

1.2.4 Conservation of total energy

The balance principle, that is well known from the previous discussion, under-
lie any fundamental formulation of the total energy balance or conservation
equation. Starting out from fluid dynamic theory the resulting partial differ-
ential equation contains unknown terms that need further consideration. We
need a sound procedure for the formulation of closure laws.
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Introductory it is noted that the constitutive relations we are assessing
have traditionally been investigated by researchers in thermodynamics rather
than fluid mechanics. This has the unfortunate consequence that the descrip-
tions of these constitutive relations, as found in most textbooks on chemical
reaction engineering, are vague as the conceptual vocabulary and nomencla-
ture adopted in thermodynamics are not necessarily identical with the corre-
sponding ones (i.e., if a true analogue exists at all) in fluid mechanics and visa
versa. In addition, the fact that many of the thermodynamic relations adopted
are developed under system restrictions very different from those under which
chemical reaction engineering systems are operated investigating the rate of
change of certain measurable physical quantities (e.g., species densities, tem-
perature, pressure, mixture density, etc.), naturally makes a novice suspicious.
The understanding is apparently improved as we grasp that thermodynamics
is a very broad field of science that can be split into several disciplines.

However, at this point in our presentation it is obvious that we need a com-
mon language for the researchers working on the edge between the two fields
of sciences (i.e., thermodynamics and fluid dynamics) to avoid any ambiguity.
Therefore, to make sure that non-experts can follow the principal discussion
in this paragraph, we define some basic thermodynamic concepts before we
proceed describing the energy balance closures.

The word thermodynamics, which comes from Greek, means the power
of heat [145]. The terms heat and energy are thus central to thermodynam-
ics. Thermodynamics is a branch of science that deals with the properties of
matter as related to change of temperature, where matter is anything that
occupies space (including vacuum). The state of the system is defined by the
set of values of all its primitive properties4. The succession of states through
which a system passes during a change of state is called a path. Thermodynam-
ics is based on a number of laws or postulates that enable the state of matter,
which is affected by a vast quantity of properties, to be expressed in terms of a
small number of properties. A property is defined as a quantity whose change
in a process depends on the end states (i.e., equilibrium states) only, or alter-
natively, whose change in a cycle is always zero. The concept of equilibrium is
fundamental to thermodynamics. Classical thermodynamics solely deals with
states of equilibrium5, whereas in the context of chemical reaction engineering

4 In thermodynamics one distinguishes between primitive properties and derived
properties. A primitive property is a characteristic quantity of the system which
can be determined by a test, i.e., a measurement ([145], p. 7). The outcome of
the measurement is the value of the property.

5 A thermodynamic system is in equilibrium when there is no change of inten-
sive variables within the system. An equilibrium state is a state that cannot
be changed without interactions with the environment. This definition includes
that of mechanical equilibrium, but is a more general one. A state of thermody-
namic equilibrium is a state of simultaneous chemical-, thermal-, and mechanical
equilibrium. In other words, thermodynamic equilibrium is the state of the simul-
taneous vanishing of all fluxes ([32], p. 267). A thermodynamic system is thus
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we are concerned with non-equilibrium situations in which momentum, heat
and mass are being transferred (i.e., irreversible processes6).

Thermodynamics for non-equilibrium processes is referred to as irreversible
thermodynamics. The scientific field of irreversible thermodynamics was estab-
lished during the early 1900’s7. There are three major reasons why irreversible
thermodynamics is important for non-equilibrium systems. In the first place
special attention is paid to the validity of the classical thermodynamic rela-
tions outside equilibrium (i.e., simple systems). In the second place the theory
gives a description of the coupled transport processes (i.e., the Onsager recip-
rocal relations). In the third place the theory quantifies the entropy that is
produced during transport. Irreversible thermodynamics can also be used to
assess the second law efficiency of how valuable energy resources are exploited.

The thermodynamics of irreversible processes should be set up from the
scratch as a continuum theory, treating the state parameters of the theory as
field variables [32]. This is also the way in which classical fluid mechanic the-
ory is formulated. Therefore, in the computational fluid dynamics literature,
the transport phenomena and the extensions of the classical thermodynamic
relations are both interpreted as closures of the fluid dynamic theory. The
validity of the thermodynamic relations for fluid dynamic systems has been
approached from the viewpoint of the kinetic theory of gases [13]. However,
any firm distinction between irreversible thermodynamics and fluid mechanics

in equilibrium when the intensive (macroscopic) variables that specify the state
of the system are uniform and do not change with time. This is a state at rest
(static system) as the inertia terms vanish in the momentum equation at mechan-
ical equilibrium. The mechanical equilibrium state is the condition in which the
acceleration, the total derivative of the velocity vector, vanishes ([32], p. 43).

6 In a reversible, cyclic process both the system and the surroundings are returned
exactly to their original conditions [187]. A reversible process is thus a process
during which the system is never away from equilibrium. In a reversible process
there are no irreversible dissipation of energy to heat as no driving forces exists.
It turns out that any reversible process is a hypothetical process, as one has failed
to invent a perpetual motion machine.

On the other hand, an irreversible process is one in which, even when the system
is cycled and thus returned to its original state, the surroundings is changed in
a permanent way. Using a real process to do work requires that some of the
energy is degraded. Velocity, temperature, and concentration gradients are always
associated with losses of work, since energy is irreversibly transferred to internal
energy through dissipation.

An irreversible process involves the natural movement of a system from a
non-equilibrium state to an equilibrium state without intervention, thus it is a
spontaneous process. Basically thermodynamics can tell us the direction in which
a process will occur, but can say nothing about the speed (rate) of the process.

7 Onsager might be counted as the founder of the field with his papers from in
1931 entitled Reciprocal relations in irreversible processes, Phys. Rev., vol. 37,
pp. 405-426; Phys. Rev., vol. 38, pp. 2265-2279.
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is difficult to define, as irreversible thermodynamics seems to overlap with
transport phenomena and kinetics in many ways.

For the purpose of thermodynamic analysis one usually focus on a finite
amount of matter (including vacuum), which is separated from its surround-
ings, and is called a system (e.g., [42] [54] [145]). In order to define a system one
must specify its boundaries and describe the contents within the boundaries.
Anything outside the boundary of the system is called the surroundings or
the environment. A closed system is one in which no mass crosses the system
boundaries. The amount of mass within the closed system is then constant,
ignoring the effects of relativity and nuclear activity. An open system is one
in which mass crosses the system boundaries. The system may gain or lose
mass or simply have some mass passing through it. The selection of a suitable
system for the application of the basic laws is quite flexible and is, in many
cases, a complex problem. Any analysis utilizing a fundamental law must fol-
low the designation of a specific system, and the difficulty of solution varies
greatly depending on the choice made. It has been mentioned that the mo-
bility of a fluid makes the identification of a particular system cumbersome.
Thus, in fluid mechanics we normally transform the fundamental physical
laws into a control volume formulation instead (i.e., in which the system may
change from instant to instant), and in this way the analysis of fluid flow is
greatly simplified. In particular, the non-material control-volume approaches
circumvent the difficulty of system identification. Nevertheless, it might seem
obvious that the fluid mechanical control volume has connexions to the ther-
modynamical system definitions. In general, it is convenient to imagine that
an open system in thermodynamics coincides with an Eulerian control vol-
ume in fluid mechanics. In a similar manner a closed system coincides with a
material Lagrangian control volume.

The concept in thermodynamics that describes what is happening to a
system, is a process. When a change of states takes place in a system, the
system is said to undergo a process. A process is completely specified by the
end states, the path and the interactions that take place at the boundary.

Another important aspect of thermodynamics is the relationship between
energy, heat and work. Energy describes a property that has a distinct value
for each state, thus being a state function. Work and heat on the other hand
are interactions and not properties. Hence, it is impossible to assign a value for
work or heat to any state. Work and heat depend on the details of the process
connecting to states. They can, therefore, be measured during a change of
state only. The interactions called heat and work differ from one another.
Work is an interaction which passes the test for equivalence of change in the
level of a weight. Heat, on the other hand, does not. Heat is an interaction
that may take place between two systems, each being in equilibrium but not
in mutual equilibrium. The ability to have an interaction between systems in
equilibrium is the main feature that distinguishes heat and work.

Thermodynamics also makes use of experimental facts. By experimen-
tal fact we mean an experiment that may be repeated many times, always
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yielding the same result. Generalizations and extensions of experimental facts
are known as laws or axioms. A law is formulated on the basis of all the ex-
perimental facts available without a single fact to contradict it. Of course,
if we were to find even a single experimental fact that contradicts the law
then we would have to modify the law or dispense with it altogether. Two
such thermodynamic laws of especial importance, the first and second laws
of thermodynamics, determine the main basis of modern thermodynamics. In
the succeeding paragraphs we will thus convert the pertinent laws of ther-
modynamics from the system approach to the control volume approach (for
further details, see e.g., [181], chap 6 and [114], chap 4).

To proceed supplementary knowledge of certain fundamental aspects of
classical thermodynamics is required, revealing that the first law of thermo-
dynamics leads to the law of conservation of total energy.

This field of thermodynamics was developed largely through the efforts of
J. W. Gibbs during the late 1800’s8. In two famous papers Gibbs was working
with the mathematical transformations of energy and entropy in fluids. These
transformations are subject to several constraints owing to the nature of state
functions ([42], p. 173). In these studies one considers systems with no internal
temperature gradients, rigid impermeable walls, and no external fields. These
restrictions are said to comprise what is referred to as simple systems. For such
simple systems the energy balance terms accounting for heat and work can be
transformed from extensive properties (i.e., properties that depend on the size
of the system) and expressed in terms of intensive properties (i.e., properties
that do not depend on the size of the system) like density, temperature, and
specific entropy. The set of thermodynamic variables used to specify the state
of a fluid is referred to as state variables. As all engineering processes involve
transition from one state (i.e., set of primitive property values) to another, one
has to relate the state functions to each other mathematically to determine
the changes in the state variables. It has been recognized that any transition
calculation procedure is independent of path as long as it simply relates state
properties.

The energy balance relates work, heat, and flow to the internal energy,
kinetic energy, and potential energy of the closed system:

dEtotal = d(Ei + Ek + Ep) = δQ + δW (1.90)

where Ei, Ek and Ep are the intensive internal, kinetic and potential energies
of the center of mass of the system. It is seen that classical thermodynamics
takes no account of the atomic structure of matter, but considers matter as a
continuum. In (1.90) the symbol d indicates a differential element of a state

8 Gibbs is counted as the founder of the field with his papers entitled ‘On the equi-
librium of heterogeneous substances’, Trans. Conn. Acad., vol. III, pp. 108-248,
1876; pp. 343-524, 1878.
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function9, and the symbol δ indicates a differential element of some quantity
which is not a state function.

Eliminating all surface forces except those that cause expansion or con-
traction, because a simple system has no gradients or shaft work (i.e., the
work of a turbine or a pump) and neglecting Ek and Ep changes by taking
the system’s center of mass as the frame of reference, the energy balance takes
a specific simple form. The energy balance yields

dEi = δQ + δW (1.91)

This relation is recognized from introductory subjects on thermodynamics.
Recall that in equilibrium thermodynamics a local formulation is generally
not needed, since the intensive state variables are independent of the space co-
ordinates. This fundamental formulation of the total energy balance is known
as the first law of thermodynamics for a closed system, which expresses the
fundamental physical principle that the total energy of the system, Etotal, is
conserved (a postulate).

Until this point we have limited our thermodynamic description to simple
(closed) systems. We now extend our analysis considering an open system. In
this case the material control volume framework might not be a convenient
choice for the fluid dynamic model formulation because of the computational
effort required to localize the control volume surface. The Eulerian control
volume description is often a better choice for this purpose.

System analysis

The total energy associated with a material control volume V (t) is defined
by:

Etotal =
∫

V (t)

ρ(e +
1
2
v2 + Φ) dv (1.92)

where e is the internal energy per unit mass. From a microscopic point of view
e represents the energy of thermal agitation as well as the energy due to the
short-range molecular interactions. Φ is the potential energy per unit mass,
and 1

2v
2 is the kinetic energy per unit mass.

Note that in the derivation of the kinetic energy term we have used the
scalar product of a vector with itself which is just the square of the magnitude
of the vector

9 From a thermodynamic point of view Etotal is a state function, thus the in-
tegration of dEtotal between two thermodynamic states gives a value which is
independent of the thermodynamic path taken by the system between the two
states. The situation is different when δQ and δW are integrated. The heat and
work effects, which involve energy transfer, depend on the path taken between the
two states, as a result of which the integrals of δQ and δW cannot be evaluated
without knowledge of the path [54].
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(v · v) = |v|2 = v2 (1.93)

In the material Lagrangian framework the total energy balance also known
as the first law of thermodynamics yields10:

DEtotal

Dt
= Q̇ + Ẇ (1.94)

where Q̇ and Ẇ are energy transfer functions (i.e., not energy functions).
In the moving system, it is assumed that the heat transfer to the element,

˙δQ, is determined by the various forms of conduction and radiation across the
CV surface. ˙δW denotes the work done on the fluid element due to surface
forces. The potential energy term, Φ, may be reformulated and treated as a
term denoting the work done on the fluid element due to body forces. We will
return to the derivation of the closure laws shortly.

Again, the system balance can be transformed into an Eulerian control
volume balance by use of the transport theorem (1.10). In short, the result
can be expressed as:

∫

V

[

∂(ρ(e + 1
2v

2 + Φ))
∂t

+ ∇ · (ρv(e +
1
2
v2 + Φ)) + ∇ · q + ∇ · (pv) + ∇ · (σ · v)

−∇ ·
N

∑

c=1

ρcvc,dΦc

]

dv = 0

(1.95)

The energy balance must be satisfied for any macroscopic control volume V ,
so at each point the differential Eulerian energy balance can be written as:

∂(ρ(e + 1
2v

2 + Φ))
∂t

= −∇ · (ρv(e +
1
2
v2 + Φ)) −∇ · q −∇ · (pv) −∇ · (σ · v) −∇ ·

N
∑

c=1

ρcvc,dΦc

(1.96)

This result is known as the total energy equation.
To solve the given energy equation the net energy flux q has to be replaced

by an appropriate multi-component heat flux closure. For single-component
fluids the energy flux closure contains the familiar heat conduction- and the
energy radiation fluxes. The rigorous kinetic theory of dilute gases shows that

10 For a simple thermodynamic system the change in total energy, dEtotal, is given
by the differential of Etotal, whereas for a fluid dynamic CV DEtotal

Dt
denotes the

substantial derivative operator applied on the total energy variable.
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for multi-component mixtures there are, in addition to the heat conduction-
and thermal radiation fluxes, two additional contributions associated with the
inter-diffusion of the different species in the mixture and a diffusion-thermo
effect. For dilute multi-component gas mixtures Hirschfelder et al [67] and
Bird et al [11] [13] proposed the following rigorous closure:

q = qc + qd + qx + qr (1.97)

It is well established in thermodynamics that heat flow is the result of
temperature variations, i.e., a temperature gradient. This can be expressed as
a proportionality between heat flux and temperature gradient, i.e., Fourier’s
law :

qc = −k∇T (1.98)

where the qc is the conductive heat flux vector denoting the rate of heat flow
per unit area. The flux of heat is in the direction of decreasing temperature
(which accounts for the minus sign). The quantity k is a transport coefficient,
i.e., the thermal conductivity, which in general has dimensions of heat per
time per length per degree.

The energy flux contribution resulting from the inter-diffusion of the var-
ious species is denoted by qd. This energy flux is defined by:

qd =
N

∑

c=1

ȟcρcvc,d =
N

∑

c=1

hc

Mwc

jc (1.99)

where hc is the partial molar enthalpy of species c.
A similar heat contribution is included implicitly within the e and h vari-

ables, thus occurring explicitly in the temperature equation.
However, the energy or heat flux contributions from these inter-diffusion

processes are in general believed to be small and omitted in most applications
(e.g., [148], p 816; [89], p 198; [11], p 566).

The diffusion-thermal effect or the Dufour energy flux qx describes the
tendency of a temperature gradient under the influence of mass diffusion of
chemical species. Onsager’s reciprocal relations for the thermodynamics of ir-
reversible processes imply that if temperature gives rise to diffusion velocities
(the thermal-diffusion effect or Soret effect), concentration gradients must
produce a heat flux. This reciprocal effect, known as the Dufour effect, pro-
vides an additional contribution to the heat flux [89].

For dilute gas mixtures we may employ the linearity postulate in irre-
versible thermodynamics to obtain the transport fluxes for heat and mass.
The fundamental theory is examined in chap 2 and we simply refer to the ex-
pressions (2.456) and (2.457). Moreover, a particular form of the generalized
Maxwell-Stefan equations, i.e., deduced from (2.298) in chap 2, is given by:

dr =
q

∑

k=1
k �=r

xrxk

D̃rk

(
DT

k

ρk
− DT

r

ρr
)∇ lnT +

q
∑

k=1
k �=r

xrxk

D̃rk

(
jk
ρk

− jr
ρr

), r = 1, 2, 3, ..., q

(1.100)
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When the expression for dr in (1.100) is substituted into (2.456), we get:

q −
q

∑

r=1

jrh̆r = − 1
T
α00∇T −

q
∑

r=1

(
cRTDT

r

ρr
)dr

= −
[

α00 +
q

∑

r=1

q
∑

k=1
k �=r

(
cRTDT

r

ρr
)
xrxk

D̃rk

(
DT

k

ρk
− DT

r

ρr
)
]

∇ lnT

−
q

∑

r=1

q
∑

k=1
k �=r

(
cRTDT

r

ρr
)
xrxk

D̃rk

(
jk
ρk

− jr
ρr

)

(1.101)

It is already mentioned that the thermal conductivity of a mixture is defined to
be the coefficient of proportionality between the heat flux and the temperature
gradient when there are no mass fluxes in the system. Hence it follows that
the quantity in brackets is the thermal conductivity k times the temperature
T . The closure equation for the net heat flux thus yields:

q = − k∇T +
q

∑

r=1

jrh̆r −
q

∑

r=1

q
∑

k=1
k �=r

(
cRTDT

r

ρr
)
xrxk

D̃rk

(
jk
ρk

− jr
ρr

) (1.102)

By comparison, we see that the Dufour term is given by:

qx = −
q

∑

r=1

q
∑

k=1
k �=r

(
cRTDT

r

ρr
)
xrxk

D̃rk

(
jk
ρk

− jr
ρr

) (1.103)

The Dufour term is usually small and can generally be neglected in reactor
analysis.

The radiative heat-flux qr is generally treated separately from the other
heat flux contributions because these physical phenomena are quite different
in nature and involve unacquainted mathematics. Besides, the radiative con-
tributions in the bulk of the fluid are limited because this flux is merely a
surface phenomenon. Nevertheless, the radiative losses from solid surfaces are
often significant in combustion and in particular chemical reactor processes. A
brief introduction to the theory of thermal radiation is presented in sect 5.3.6.

In summary, the heat transport by conduction is generally important in
reaction engineering applications. The thermal radiation flux is important in
particular cases. The multi-component mixture specific contributions to the
total energy flux are usually negligible.

Finite Eulerian control volume analysis

The conventional Eulerian form of the conservation equation for total energy
can be formulated11:
11 Alternative presentations of the derivation of the first law of thermodynamics for

open systems in the Eulerian CV framework on global scales are given by [47]
[54] [42].
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∂Etotal

∂t
= [

∂Etotal

∂t
]Convection + [

∂Etotal

∂t
]Heat + [

∂Etotal

∂t
]Work (1.104)

The convective term, denoting the net rate of total energy input per unit
volume by convection can then be formulated as a surface integral, and con-
verted to a volume integral by use of Gauss’ theorem (App. A):

[
∂Etotal

∂t
]Convection = −

∫

A

(ρ(e+
1
2
v2+Φ)v)·n da = −

∫

V

∇·(ρ(e+1
2
v2+Φ)v) dv

(1.105)
The heat term, denoting the net rate of total energy input per unit volume

by conduction and radiation can then be formulated as a surface integral, and
converted to a volume integral by use of Gauss’ theorem (App. A):

[
∂Etotal

∂t
]Heat = −

∫

A

(q · n) da = −
∫

V

(∇ · q) dv (1.106)

The work term, for a multi-component mixture is commonly divided into
two types, mechanical work and potential work (e.g., [32]):

[
∂Etotal

∂t
]Work = [

∂Etotal

∂t
]Mechanical Work + [

∂Etotal

∂t
]Potential Work (1.107)

The mechanical work term, denoting the net rate of work done on the fluid
per unit volume by surface stress forces can be formulated as a surface integral,
and converted to a volume integral by use of Gauss’ theorem (App. A):

[
∂Etotal

∂t
]Mechanical Work = −

∫

A

[(T · v) · n] da = −
∫

V

∇ · (T · v) dv

= −
∫

V

∇ · (pv) dv −
∫

V

∇ · (σ · v) dv
(1.108)

The potential work term, denotes the rate at which work is done on each of
the individual species c in the fluid per unit volume by the individual species
body forces, gc, due to the diffusion of the various components in external fields
such as an applied electro-magnetic potential. The term can be formulated as
a surface integral, and as before converted to a volume integral by use of
Gauss’ theorem (App. A):

[
∂Etotal

∂t
]Potential Work = −

∫

A

[(
N

∑

c=1

ρcvc,dΦc) · n] da = −
∫

V

∇ · (
N

∑

c=1

ρcvc,dΦc) dv

(1.109)
Note that the expected contribution due to the gravity field vanishes because
each species present is acted on by the same external force per unit mass, g.

The general form of the Eulerian conservation equation for total energy,
Etotal, can then be formulated
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∂Etotal

∂t
= [

∂Etotal

∂t
]Convection + [

∂Etotal

∂t
]Heat + [

∂Etotal

∂t
]Work

= −
∫

V

∇ · (ρ(e +
1
2
v2 + Φ)v) dv −

∫

V

(∇ · q) dv

−
∫

V

∇ · (pv) dv −
∫

V

∇ · (σ · v) dv −
∫

V

∇ · (
N

∑

c=1

ρcvc,dΦc) dv

(1.110)

or with a little rearranging (1.95) is obtained. Again, (1.95) must be satisfied
for any macroscopic volume V , thus (1.96) is re-produced as expected.

The final form of this equation, often used in the literature, is obtained
by introducing a transformation of the potential energy term, Φ. In general,
a force field is called conservative if it is the gradient of a scalar function.

Considering that the body forces gc are expressible in terms of the gradient
of a scalar function (i.e., gc = −∇Φc), then by use of the species continuity
equation (1.39), we get:

∂(ρΦ)
∂t

+ ∇ · (ρvΦ) + ∇ ·
N

∑

c=1

ρcvc,dΦc

=
∂

∂t
(

N
∑

c=1

ρcΦc) + ∇ · (
N

∑

c=1

ρcvcΦc)

=
N

∑

c=1

ρc[
∂Φc

∂t
+ vc · ∇Φc] +

N
∑

c=1

Φc[
∂ρc

∂t
+ ∇ · (ρcvc)]

=
N

∑

c=1

ρc[
∂Φc

∂t
− vc · gc] +

N
∑

c=1

Φc

q
∑

r=1

νc,rRr

(1.111)

The last term vanishes if the potential energy is conserved in a chemical
reaction (i.e.,

∑N
c=1 Φcνc,r = 0; r = 1,2, ..., q) [32]. This is the case if the prop-

erty of the particles, which is responsible for the interaction with a field of
force, is itself conserved. Examples for this case are the mass in a gravitational
field and the charge in an electrical field.

For conservative forces, which can be derived from a potential Φ being
independent of time, the terms reduce to

∂(ρΦ)
∂t

+ ∇ · (ρvΦ) + ∇ ·
N

∑

c=1

ρcvc,dΦc =
N

∑

c=1

ρc[−vc · gc] = −
N

∑

c=1

ρc(vc · gc)

(1.112)

The term, −
∑N

c=1 ρc(vc · gc), reduces to the term applied for one component
fluids, −ρ(v · g), when gc is the same for all species. The interested reader is
referred to de Groot and Mazur [32] for further discussion of these terms.
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Adopting this simplified formulation (i.e., (1.112)), the total energy equa-
tion, (1.96), may be transformed to the equation of internal- and kinetic [or
mechanical] energy

∂(ρ(e + 1
2v

2))
∂t

= −∇·(ρv(e+
1
2
v2))−∇·q+

N
∑

c=1

ρc(vc ·gc)−∇·(pv)−∇·(σ ·v)

(1.113)
The physical meaning of the terms in this equation can be inferred from

the above modeling analysis. The term on the LHS denotes the rate of ac-
cumulation of internal and kinetic energy within the control volume per unit
volume; the first term on the RHS denotes the net rate of of internal and
kinetic energy increase by convection per unit volume; the second term on
the RHS denotes the net rate of heat addition due to heat conduction, inter-
diffusion effects, Dufour effects and radiation per unit volume; the third term
on the RHS denotes the rate of work done on the fluid within the control
volume by external body forces per unit volume; the fourth term on the RHS
denotes the rate of work done on the fluid within the control volume by the
pressure forces per unit volume; and the fifth term on the RHS denotes the
rate of work done on the fluid within the control volume by the viscous forces
per unit volume.

In convectional chemical reactor modeling the kinetic and potential energy
terms are assumed to be negligible in comparison with the internal energy term
(e.g., [47]). Therefore, only the thermal energy equation is applied in reactor
models. Furthermore, the experimental studies on reaction kinetics provide
empirical data and correlations which chemical engineers intend to utilize as
far as possible. For numerical studies on chemical reactor performance, the
heat generation due to chemical reactions should then be expressed by an
explicit term in the energy equation. For real fluids this can be obtained by
reformulating the equation in terms of temperature or a suitable enthalpy
quantity. In the past the latter approach has seldom been used in reactor
technology. Furthermore, there are two possible ways to formulate the ther-
mal energy equation in terms of temperature. One approach is to relate the
internal energy, e, to temperature by use of a constitutive relation from ther-
modynamics including the definition of the specific heat capacity measured
at constant volume, CV . In the second approach we reformulate the energy
equation in terms of enthalpy, h, and thereafter relate the enthalpy to temper-
ature by use of another constitutive relation from thermodynamics including
the definition of the specific heat capacity measured at constant pressure, CP

(e.g., [7]). The second approach has conventionally been used in reactor tech-
nology. The heat of reaction can then be calculated from the standard heats
of formation tabulated for many chemical compounds.

To proceed in our model derivation, the equation for internal energy, e,
is obtained by subtracting the mechanical energy equation from the total
energy equation. The first step in this mathematical exercise, is to formulate
the equation for mechanical energy.
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Transport of kinetic energy

It is possible to derive the kinetic [mechanical] energy equation by forming
the scalar product of the local velocity, v, with the equation of motion (1.78).
The result is

v · ∂(ρv)
∂t

= −v · ∇ · (ρvv) − v · ∇ · T + v ·
N

∑

c=1

ρcgc (1.114)

or reformulated by use of some vector and tensor algebra

∂

∂t
(ρv · v) − ρv · ∂v

∂t
= −∇ · [ρv(v · v)] + ρvv : ∇v − v · ∇ · T + v ·

N
∑

c=1

ρcgc

= −∇ · [ρv(v · v)] + ρv · [(v · ∇)v] − v · ∇ · T

+ v ·
N

∑

c=1

ρcgc

(1.115)

where we have used following vector and tensor relations for the time deriva-
tive

∂

∂t
(ρv · v) = v · ∂(ρv)

∂t
+ ρv · ∂v

∂t
(1.116)

The vector and tensor differential operators that have been applied to the
symmetrical dyad product ρvv can be defined (e.g., [12], p. 574):

(ρvv : ∇v) = ∇ · [ρvv · v] − v · [∇ · (ρvv)] (1.117)

and the scalar product or double dot product of the two tensors occurring in
this relation can be reformulated in accordance with ([12], p. 569):

(ab : cd) = (a · d)(c · b)

by setting a = ρv, b = v, c = ∇, d = v we obtain

ρvv : ∇v = ρv · [(v · ∇)v] (1.118)

In the derivation we will also used the scalar product of a vector with itself
which we recall is just the square of the magnitude of the vector

(v · v) = |v|2 = v2 (1.119)

The scalar product of two vectors u and w is a scalar quantity defined by
(e.g., [11] [12]):

(u · w) = uw cosΦu,w (1.120)
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in which Φu,w is the angle between the vectors u and w. The scalar product
is thus the magnitude of w multiplied by the projection of u on w, or vice
versa.

By inserting all these relations into (1.115), we can write

∂

∂t
(ρv2) − ρv · [∂v

∂t
+ (v · ∇)v] = −∇ · [ρv2v] − v · ∇ · T + v ·

N
∑

c=1

ρcgc

(1.121)

The equation of motion (1.78) will now, with a little reformulation of the
terms, be reintroduced into the kinetic energy equation

v[
∂ρ

∂t
+ ∇ · (ρv)] + ρ[

∂v
∂t

+ v · ∇v] = −∇ · T +
N

∑

c=1

ρcgc

after forming the scalar product of the local velocity with the latter equation
which yields

ρv · [∂v
∂t

+ v · ∇v] = −v · ∇ · T + v ·
N

∑

c=1

ρcgc − v2[
∂ρ

∂t
+ ∇ · (ρv)] (1.122)

the final form of the kinetic energy equation is obtained

∂

∂t
(ρv2) = −∇ · [ρv2v] − 2v · ∇ · T + 2v ·

N
∑

c=1

ρcgc − v2[
∂ρ

∂t
+ ∇ · (ρv)]

A minor modification is obtained multiplying the above equation by 1/2:

∂

∂t
(ρ

1
2
v2) = −∇ · (ρ1

2
v2v) − v · ∇ · T + v ·

N
∑

c=1

ρcgc −
1
2
v2[

∂ρ

∂t
+ ∇ · (ρv)]

Moreover, by use of the continuity equation we obtain the form of the equation
of change for kinetic energy which is usually given in the literature (e.g., [32]):

∂

∂t
(ρ

1
2
v2) = −∇ · (ρ1

2
v2v) − v · ∇ · T + v ·

N
∑

c=1

ρcgc (1.123)

For convenience in subsequent discussions, we rewrite this equation in
accordance with [11] splitting up the total stress tensor into two pressure and
two viscous contributions.
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∂

∂t
(ρ

1
2
v2) = −∇ · (ρ1

2
v2v) −∇ · pv + p(∇ · v)

− (∇ · [σ · v]) + (σ : ∇v) + v ·
N

∑

c=1

ρcgc

(1.124)

At this point in the model derivation the physical meaning of some of
these terms is not clear, but will be appreciated shortly after the internal
energy equation has been investigated. Meanwhile, we proceed predicting the
physical interpretations that are not obvious. The term on the LHS denotes
the rate of accumulation of the kinetic energy within the control volume per
unit volume; the first term on the RHS denotes the net rate of increase of
kinetic energy by convection per unit volume; the second term on the RHS
denotes the rate of work done by the pressure of the surroundings on the fluid
within control volume; the third term on the RHS denotes the rate of reversible
conversion of the kinetic energy to internal energy. As will be shown shortly,
this term occurs with opposite sign in the equation for the internal energy;
the fourth term on the RHS denotes the rate of work done by viscous forces
on the fluid within the control volume; the fifth term on the RHS denotes the
rate of irreversible conversion of kinetic energy to internal energy12.

As will be shown shortly, this term occurs with opposite sign in the internal
energy equation; the sixth term on the RHS denotes the rate of work done by
external body forces on the fluid within the control volume.

Because of the terms (σ : ∇v) and p(∇ · v), the fluid may be heated
(or cooled) internally. Hence, an isothermal flow system (i.e., for a system

12 The viscous dissipation term (−σ : ∇v) is always positive for Newtonian fluids,
because it can be written as a sum of quadratic terms [11]:

(−σ : ∇v) = μΦviscous =
1

2
μ

∑

i

∑

j

[(
∂vi

∂xj
+

∂vj

∂xi
) − 2

3
(∇ · v)δij ]

2 (1.125)

in which i and j take on the values 1, 2, 3, the Cartesian coordinates xi become
x, y, z and the velocity components vi become vx, vy, vz.

The viscous dissipation function Φviscous, i.e., which we have defined by
μΦviscous = (−σ : ∇v), represents the rate at which the shear and deviatoric
normal stresses do work on the fluid in the CV. Φviscous may also be viewed as
the rate at which the internal energy of the fluid is increased due to viscous dis-
sipation. In accordance with irreversible thermodynamic theory this means that
in all flow systems there is a degradation of mechanical to thermal energy since
no real processes are reversible.

The (−σ : ∇v) term can cause considerable temperature rises in viscous high-
speed flow systems. In chemical reactor systems, however, this term is usually
very small and is generally neglected.

It is noted that an alternative definition of the dissipation function in which
the viscosity parameter is included is quite common [184] [185] [181]. In this case
the dissipation function coincides with the dissipation term.
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operating in an adiabatic mode having no external heat fluxes through the
boundaries,

∫

V,Global
∇ · q dv = 0) is a system in which the heat generated

(or absorbed) through these terms does not cause appreciable temperature
change.

Transport of internal energy

Now we are in the position of being able to subtract the mechanical energy
equation (1.124) from the total energy equation (1.113). The result is the
equation of internal [or thermal] energy.

∂(ρe)
∂t

= −∇ · (ρve) −∇ · q − p(∇ · v) − (σ : ∇v) +
N

∑

c=1

(jc · gc) (1.126)

The short-hand double dot product notation resembles (1.118) and is de-
fined by:

σ : ∇v = ∇ · (σ · v) − v · ∇ · σ (1.127)

The physical meaning of the terms in the internal energy equation can
be inferred from the modeling analysis above. The term on the LHS denotes
the rate of accumulation of the internal energy within the control volume per
unit volume; the first term on the RHS denotes the net rate of increase of
internal energy by convection per unit volume; the second term on the RHS
denotes rate of increase of internal energy by the heat flow (e.g., conduction,
inter-diffusion effects, Dufour effects and radiation) per unit volume; the third
term on the RHS denotes the reversible rate of increase of internal energy
by compression per unit volume; the fourth term on the RHS denotes the
irreversible rate of increase of internal energy by viscous dissipation per unit
volume; the fifth term on the RHS denotes the rate of work done by the
external body forces on the fluid mixture within the control volume. This
term is due to species mass diffusion as the various chemical species present
may be acted on by different external forces per unit mass gc. This term will
thus vanish for one component systems and if the external force on all species
is equal.

Comparing the mechanical energy equation (1.124) and thermal energy
equation (1.126), we note that the terms (σ : ∇v) and p(∇ · v) occur in both
equations. Since both terms have different signs in the two equations, they are
apparently describing the inter-conversion of mechanical and thermal energy.
The term p(∇ · v) is positive for those cases in which the fluid mixture is
expanding, but negative in other situations where the fluid mixture is con-
tracting. This term thus represents the reversible interchange processes. The
term (σ : ∇v), represents the irreversible degradation of mechanical energy
to heat.

The absolute value of energy is not a convenient quantity for our calcula-
tions (i.e., in practice this quantity is not possible to determine for all systems
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of interest), thus it is common in the study of thermodynamics to speak of
energy changes relative to a appropriately chosen reference condition or a base
state. Since we are focusing on the continuum scale changes in kinetic energy,
potential energy, and energies of reaction, a convenient reference state chosen
for determining the derived properties of any substance is the standard state of
formation where the elements of the substance are in their most stable form
at 25 ◦C and 1 bar. At this reference state the standard enthalpy of formation
for the elements is conveniently taken as zero. The standard enthalpy of for-
mation of a substance is defined as the enthalpy of that substance compared
to the enthalpies of the elements from which it is formed.

In a general context (e.g., [72], p 15), the rate of change of internal energy
for ideal mixtures within a control volume may consist of five components;
a sensible or thermal component which accounts for the translational, ro-
tational, and/or vibrational motion of the atoms/molecules comprising the
matter; a latent component which relates to intermolecular forces influencing
phase change between solid, liquid, and vapor states; a chemical component
which accounts for energy stored in chemical bounds between atoms; and a
nuclear component which accounts for binding forces in the nucleus. In this
chap. we will not consider any phase change or nuclear processes, only the
thermal - and chemical components are considered.

The equation of internal energy in terms of enthalpy

For many engineering applications it is convenient to reformulate the equation
of internal energy in terms of enthalpy or fluid temperature and heat capacity.
To be able to transform the internal energy equation into a suitable form we
need to apply some important thermodynamic relations which are discussed
step by step in the following paragraphs.

The first step is to formulate the equation of internal energy in terms of
enthalpy13. The enthalpy function is defined by (e.g., [89] [87]):

h = e +
p

ρ
(1.128)

Introducing this relation into the thermal energy equation (1.126), we
obtain the enthalpy equation

∂(ρh)
∂t

= −∇ · (ρvh) −∇ · q +
Dp

Dt
− (σ : ∇v) +

N
∑

c=1

(jc · gc) (1.129)

13 Enthalpy is a mathematical property defined for convenience in solving flow prob-
lems ([42], p. 48). Enthalpy is termed a convenience property because we have
specifically defined it to be useful in problems where irreversible heat flow and
pressure are manipulated ([42], p. 175).
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The physical meaning of the terms in the enthalpy equation can be iden-
tified from the above modeling analysis. The term on the LHS denotes the
rate of accumulation of enthalpy within the control volume per unit volume;
the first term on the RHS denotes the net rate of increase of enthalpy by
convection per unit volume; the second term on the RHS, that is already
known from the foregoing discussion, denotes the rate of increase of enthalpy
by the heat flow (e.g., conduction, inter-diffusion effects, Dufour effects and
radiation) per unit volume; the third term on the RHS denotes the rate of
work done by the pressure, which is induced by the surrounding fluid motion,
acting on the mixture within the control volume per unit volume; the last
two terms are already known from the foregoing discussion, nevertheless the
fourth term on the RHS denotes the irreversible rate of increase of enthalpy
by viscous dissipation per unit volume; the fifth term on the RHS denotes
the rate of work done by external body forces acting on the mixture within
control volume.

At this point we reiterate that the specific enthalpy of the mixture as
defined in (1.128), also include non-ideal mixing contributions that should be
calculated from a constitutive relation.

Two basic thermodynamic parameterizations may be formulated for the
specific enthalpy. First, for real gases (i.e., for pure components or mixtures)
and in principle also for liquids the specific enthalpy can be expressed in terms
of enthalpies of ideal gases and residual functions (i.e., h = h*−hresidual, where
the asterisk is used for ideal gas state, see e.g., [90], p. 115). The enthalpies
for ideal gases are only functions of temperature and composition and can be
found from the standard heats of formation or alternatively from standard
heat capacities tabulated for many chemical compounds. The residual func-
tion can be found from a suitable equation of state (EOS). In reactor modeling
we often assume that the gases are in an ideal gas state. For ideal gases the
residual function is zero and the ideal gas law is valid. For liquids, on the other
hand, the residual function becomes very large and often no suitable EOS is
available. Most EOS formulations which are fitted to experimental data can in
principle be applied for liquids too, but in many cases there are no experimen-
tal data available. Second, for real liquid mixtures the specific enthalpy can be
expressed in terms of enthalpies of pure real fluids and excess enthalpies (i.e.,
h = hideal mixture − hexcess, see e.g., [138], p. 400). The enthalpies for an ideal
mixture is given by the mole number averaged pure component values (i.e., in
some cases reformulated and given as the mass averaged component values).
The excess enthalpy can be found from models for activity coefficients. The
excess enthalpies (or heat of mixing) are negligible for many liquid systems. In
reactor modeling we often assume that the liquid phases are ideal mixtures.

Further details on these relations are given in many textbooks on ther-
modynamics (e.g., [125]) and will not be repeated here. However, before we
continue our derivation of the basic energy equation, the improved descrip-
tions of the thermodynamic variables that can be embedded in single - and
multiphase reactor models with limited costs are pointed out.
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For low pressures (a few atmospheres and lower) we can apply the ideal gas
model for gases and ideal mixture models for liquids. This formulation is very
common in reactor technology. In some cases at higher pressures, the pressure
effect on the gas phase is important. A suitable model for these systems is to
use an EOS for the gas phase, and an ideal mixture model for liquids. However,
in most situations at low pressures the liquid phase is more non-ideal than the
gas phases. Then we will rather apply the ideal gas law for the gas phase, and
excess properties for liquid mixtures. For polar mixtures at low to moderate
pressures we may apply a suitable EOS for gas phases, and excess properties
for liquid mixtures. All common models for excess properties are independent
of pressure, and cannot be used at higher pressures. The pressure effect on
the ideal (model part of the) mixture can be taken into account by the well
known Poynting factor. At very high pressures we may apply proper EOS
formulations for both gas and liquid mixtures, as the EOS formulations in
principle are valid for all pressures. For non-volatile electrolytes, we have to
apply a suitable EOS for gas phases and excess properties for liquid mixtures.
For such liquid systems a separate term is often added in the basic model to
account for the effects of ions. For very dilute solutions the Debye-Hückel law
may hold. For many electrolyte systems we can apply the ideal gas law for
the gas phase, as the accuracy reflected by the liquid phase models is low.

Internal energy equation in terms of temperature

The enthalpy is an extensive thermodynamic property (i.e., a property that
depends on the size or amount of the system). For an open system which can
exchange mass with its surroundings we can write [87] [13]:

Ĥ(T, p,M1,M2,M3, ...,MN ) =
N

∑

c=1

Mc(
∂Ĥ

∂Mc
)T,p,M ′ =

N
∑

c=1

McȞc (1.130)

or

MH(T, p, ω1, ω2, ω3, ..., ωN−1) =
N

∑

c=1

MωcȞc (1.131)

in which the Mc are the masses of the various species, M is the total mass
in the system given by the sum of the masses of all the species determining
the system, M =

∑N
c=1 Mc, and the ωc = Mk/M are the corresponding mass

fractions. Both Ĥ and H are understood to be functions of T , p, as well
as composition. The subscript M ′ stands for M1,M2, ...,Mc−1,Mc+1, ...,MN ,
and the subscript M stands for M1,M2,M3, ...,MN .

The introduction of the mass fraction variable in (1.131) induces a con-
straint on the system:

N
∑

c=1

ωc = 1 (1.132)
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In this section we just keep this relation in mind and present a survey of the
rather complicated mathematical derivation involved. A more rigorous model
derivation is given in App. B.

The complete differential of Ĥ(T, p,M1,M2,M3, ...,MN ) can then be ex-
pressed14:

dĤ = (
∂Ĥ

∂T
)p,MdT + (

∂Ĥ

∂p
)T,Mdp +

N
∑

c=1

ȞcdMc (1.133)

By use of the thermodynamic relations Ĥ = MH and Mc = ωcM , we get:

HdM + MdH = M [(
∂H

∂T
)p,ωdT + (

∂H

∂p
)T,ωdp] +

N
∑

c=1

[ȞcωcdM + ȞcMdωc]

(1.134)

and with the substitution of HdM =
N
∑

c=1
ωcȞcdM from (1.131), the above

relation can be rewritten as:

dH = (
∂H

∂T
)p,ωdT + (

∂H

∂p
)T,ωdp +

N
∑

c=1

Ȟcdωc (1.135)

The first term on the right hand side of (1.135) can be recognized as the
definition of the specific heat at constant pressure:

(
∂H

∂T
)p,ω = Cp (1.136)

To formulate a proper relation for the second term we have to adopt an-
other form of the Gibbs equation (i.e., an alternative form of (1.135)) and
some of the Maxwell relations (e.g., [87]). Since H is a state variable, different
pathways can be applied calculating the variation of this variable. Equivalent
to expressing the state variable H in terms of T , p and composition we can
express H in terms of S, p and composition:

dH = (
∂H

∂p
)S,ωdp + (

∂H

∂S
)p,ωdS +

N
∑

c=1

Ȟcdωc (1.137)

By use of suitable Maxwell relations, this relation can be reformulated:

dH = (
1
ρ
)dp + TdS +

N
∑

c=1

Ȟcdωc (1.138)

14 Changes in one thermodynamic state variable can be related to changes in other
state variables. The set of state functions that determines the simplest relationship
between these functions is termed a natural function.
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thus
(
∂H

∂p
)T,ω =

1
ρ

+ T (
∂S

∂p
)T,ω (1.139)

The second term on the right hand side of the equation is not easy to measure.
By use of another of Maxwell’s relations this term can be formulated in terms
of density and temperature:

(
∂H

∂p
)T,ω =

1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω (1.140)

Introducing these relations into the first formulation (1.135) we obtain

dH = CpdT + (
1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)dp +

N
∑

c=1

Ȟcdωc (1.141)

In fluid dynamics the corresponding relation is conventionally written as a
time rate of change, invoking the assumption of local instantaneous equi-
librium. In particular the thermodynamic properties for a flowing fluid are
assumed to be the same functions of temperature, pressure and composition
as that for a fluid at equilibrium, as explained in chap 2. It follows that
by use of the complete differential, the relation (1.141) can be transformed
into the Lagrangian framework considering the enthalpy property on the form
h[T (t, r), p(t, r), ω1(t, r), ω2(t, r), ω3(t, r), ..., ωN (t, r)]:

Dh

Dt
= Cp

DT

Dt
+ (

1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)

Dp

Dt
+

N
∑

c=1

ȟc
Dωc

Dt
(1.142)

Substituting the equation of thermal energy (1.129) and the species mass
transport equation (1.39) into the above equation yields the temperature equa-
tion15:

ρCp
DT

Dt
= −∇ · q − T

ρ
(
∂ρ

∂T
)p,ω

Dp

Dt
− (σ : ∇v) +

N
∑

c=1

(jc · gc)

+
N

∑

c=1

ȟc∇ · jc +
N

∑

c=1

(−ȟc)Rc

(1.143)

The last term in (1.143), denoting the heat of reaction, is seldom used in this
form. The term denoting the rate of transformation can be given by:
15 Recall that the relation,

∑N
c=1 ωc = 1, states that the weight fractions are linearly

dependent. A rigorous model derivation, as given in App. B, may be needed to
verify the given result.

There are two alternative paths available, either to formulate the complete
differentiation of the enthalpy function in terms of N − 1 species or in terms of
N species and the constraint that

∑N
c=1 ωc = 1 (e.g., [103], pp. 66-70).
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Rc =
q

∑

r=1

νc,rMwc
rr (1.144)

where rr denotes the chemical reaction rate of reaction r per unit volume.
Considering the general homogeneous reaction:

aA + bB → cC + dD

and suppose that initially there are nA0 moles of A, nB0 moles of B, etc.
The rate of change of moles on one chemical species is related to that of any
other by the stoichiometry of the reaction. Thus,

1
a

dnA

dt
=

1
b

dnB

dt
=

1
c

dnC

dt
=

1
d

dnD

dt
(1.145)

The reaction rate rc is defined by:

rC = νCr =
dnC

dt

1
V

where νC is the stoichiometric coefficient of species c. If c refers to a reactant,
νc is negative, and for a product νC is positive.

This relation shows that the rate divided by the stoichiometric coefficient
is independent of the choice of reactant or product. The ratio between the
reaction rate and the stoichiometric coefficient of anyone of the species can
be expressed:

r =
rC

νC
=

1
νC

dnC

dt

1
V

=
dξr

dt

1
V

= ρ
dξr

dt

1
M

(1.146)

where dξr is the extent of reaction for reaction r.
The reaction rate quantity r is proportional with the extent of reaction and

represents a useful way of maintaining consistency in reporting rate values,
since r must be the same for all chemical species participating in the reaction
(see [151], p. 38).

Introducing the rr variable (i.e., characterizing the reaction rate of any
reaction r), the term in the temperature equation (1.143) denoting the heat
of reaction can be reformulated:

−
N

∑

c=1

ȟcRc = −
N

∑

c=1

ȟc

q
∑

r=1

νc,rMwc
rr = −

q
∑

r=1

rr

N
∑

c=1

ȟcMwc
νc,r = −

q
∑

r=1

rr

N
∑

c=1

h̄cνc,r

(1.147)
where Mwc

· ȟc is equal to the partial molar enthalpy of component c. That is,
using the relation mc = Mwc

·nc, ȟc = ( ∂ĥ
∂mc

)T,p,m′ = 1
Mwc

( ∂ĥ
∂nc

)T,p,n′ = 1
Mwc

h̄c

(see App. B). nc is the number of moles of component c in the mixture, and
h̄c is the partial molar enthalpy of component c in the mixture.

In Chemical Engineering it has become common practice to reformulate
this term introducing the the heat or reaction quantity. The heat of reaction
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is always given per mole of the species which is the basis of calculation (e.g.,
species cref):

−
N

∑

c=1

h̄cνc,r = −νcref,r

N
∑

c=1

h̄c
νc,r

νcref,r
= νcref,r(−ΔH̄r,cref) (1.148)

thus

−
N

∑

c=1

ȟcRc = −
q

∑

r=1

rr

N
∑

c=1

h̄cνc,r =
q

∑

r=1

rr,cref(−ΔH̄r,cref) (1.149)

The thermal energy equation in terms of temperature thus yields:

ρCp
DT

Dt
= −∇ · q − T

ρ
(
∂ρ

∂T
)p,ω

Dp

Dt

− (σ : ∇v) +
N

∑

c=1

(jc · gc) +
N

∑

c=1

h̄c∇ · ( Jc

Mwc

) +
q

∑

r=1

rr,cref(−ΔH̄r,cref)
(1.150)

Note that at this point the enthalpy equation is no longer formulated on
conservative form.

It is important to identify the physical meaning of the terms in the tem-
perature equation. The term on the LHS denotes the rate of gain of heat
content per unit volume; the first term on the RHS denotes the rate of en-
ergy input by the heat flow (e.g., conduction and radiation) per unit volume;
the second term on the RHS denotes the rate of work done by pressure of
surroundings on the control volume per unit volume due to fluid motion; the
third term on the RHS denotes the irreversible rate of internal energy increase
per unit volume by viscous dissipation; the fourth term on the RHS denotes
the rate of work done by body forces on the control volume; the fifth term on
the RHS denotes an energy flux caused by inter-diffusion processes per unit
volume16; the sixth term on the RHS denotes the thermal energy release by
homogeneous chemical reactions per unit volume.

In the discussion above the specific enthalpies were expressed in the general
form:

nh =
N

∑

c=1

nch̄c (1.151)

where h(T (t, r), p(t, r), y1(t, r), y2(t, r), y3(t, r), ..., yN−1(t, r)) is the specific
molar enthalpy of the real mixture, and the partial molar enthalpy of com-
ponent c in a real mixture is h̄c(T (t, r), p(t, r), y1(t, r), y2(t, r), y3(t, r), ...,
16 This term can be reformulated by use of the vector differential operators for

differentiation of products into the difference between two terms (e.g., [11], p.
567 [89], p. 198 [134], p. 225):

∑N
c=1 ȟc∇ · jc =

∑N
c=1 ∇ · (ȟcjc) −

∑N
c=1 jc · ∇ȟc.

The first part of this term constitutes an additional component to q in binary
and multicomponent systems, as mentioned earlier.
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yN−1(t, r)). This formulation follows directly from the definition of the partial
specific enthalpies. The partial specific enthalpies have to be derived from a
differentiation of the specific enthalpies with respect to the mole number.

For an ideal mixture on the other hand, the calculations simplify consid-
erably (e.g., [138], p. 397):

nh = nh* =
N

∑

c=1

nch̄c =
N

∑

c=1

nch
*
c (1.152)

thus

h̄c = (
∂ĥ

∂nc
)T,p,n′ = (

∂(nh)
∂nc

)T,p,n′ = (
∂(nh*)
∂nc

)T,p,n′ = (
∂

∂nc
(

N
∑

c=1

nch
*
c))T,p,n′

= h*
c

(1.153)

where h̄c(T (t, r), p(t, r), y1(t, r), y2(t, r), y3(t, r), ..., yN−1(t, r)) denotes the par-
tial molar enthalpy quantity of component c in a mixture, whereas the
h*

c(T (t, r), p(t, r))-quantity is the molar enthalpy of component c in an ideal
mixture. We thus notice from the above derivation that for an ideal mixture
yields h̄c(T (t, r), p(t, r), y1(t, r), y2(t, r), y3(t, r), ..., yN−1(t, r)) =
h*

c(T (t, r), p(t, r)) = h̄c(T (t, r), p(t, r)). Moreover, the subscript n′ stands for
n1, ..., nc−1, nc+1, ..., nN , and the subscript n stands for n1, n2, n3, ..., nN .

To illustrate the manipulation needed to get the above equation into the
form used in practice, following the approach given by [47] and [64], pp. 259
and 273), we shall use the generalized reaction with species A as basis:

A +
b

a
B → c

a
C +

d

a
D

The heat of reaction is defined as (e.g., species A is chosen as basis (joules
per mole of A reacted)):

ΔH*
rA

=
c

a
h*

C +
d

a
h*

D − b

a
h*

B − h*
A (1.154)

and the relation to (1.143) is given by:

N
∑

c=1

(−ȟc)Rc = rA(−ΔH*
rA

) (1.155)

For an ideal gas the enthalpy is independent of p at a given T (as can be
verified by use of (1.140)). The heat of reaction at a particular temperature
and pressure is thus expressed in terms of the enthalpy of formation at the
reference temperature plus the change in enthalpy that results when the tem-
perature is raised from the reference temperature to another temperature
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ΔH*
c(T ) = ΔH*

f,c(Tref) +

T
∫

Tref

ΔC∗
p,c(T )dT (1.156)

where ΔH*
f,c(Tref) is the molar heat of formation of species c.

As an aside, a possible alternative to the classical reactor modeling ap-
proach which consist in solving the temperature equation, is to use the
enthalpy equation (1.129) in combination with the enthalpy-temperature re-
lation (1.141). It is generally assumed that the enthalpy for a flowing fluid
is the same function of temperature, pressure and composition as that for a
fluid at equilibrium. Hence it follows that the two model formulations (1.141)
and (1.142) are formally equivalent. As mentioned earlier, the transformation
of the thermodynamic relation can be achieved using the total or complete
differential for each independent operator at the time (i.e., illustrated using
Cartesian coordinates):

∂h

∂t
= (

∂h

∂T
)p,ω

∂T

∂t
+ (

∂h

∂p
)T,ω

∂p

∂t
+

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′

∂ωc

∂t
(1.157)

∂h

∂x
= (

∂h

∂T
)p,ω

∂T

∂x
+ (

∂h

∂p
)T,ω

∂p

∂x
+

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′

∂ωc

∂x
(1.158)

∂h

∂y
= (

∂h

∂T
)p,ω

∂T

∂y
+ (

∂h

∂p
)T,ω

∂p

∂y
+

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′

∂ωc

∂y
(1.159)

∂h

∂z
= (

∂h

∂T
)p,ω

∂T

∂z
+ (

∂h

∂p
)T,ω

∂p

∂z
+

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′

∂ωc

∂z
(1.160)

or alternatively in vector form:

∂h

∂t
+ v · ∇h = (

∂h

∂T
)p,ω

∂T

∂t
+ (

∂h

∂p
)T,ω

∂p

∂t
+

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′

∂ωc

∂t

+ v · [( ∂h
∂T

)p,ω∇T ] + v · [(∂h
∂p

)T,ω∇p]

+ v · [
N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′∇ωc]

= (
∂h

∂T
)p,ω

∂T

∂t
+ (

∂h

∂p
)T,ω

∂p

∂t
+

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′

∂ωc

∂t

+ (
∂h

∂T
)p,ωv · ∇T + (

∂h

∂p
)T,ωv · ∇p +

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′v · ∇ωc
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= (
∂h

∂T
)p,ω

DT

Dt
+ (

∂h

∂p
)T,ω

Dp

Dt
+

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′

Dωc

Dt

= CP
DT

Dt
+ (

1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)

Dp

Dt
+

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′

Dωc

Dt

(1.161)

The alternative procedure has the advantage of enabling the solution of an
equation on the flux form, whereas the temperature equation is formulated
on the advective form. Moreover, the enthalpy quantity is often representing
a well behaved smooth function whereas the temperature variable might os-
cillate and represent steep gradients. However, the method has the drawback
that in many cases the enthalpy variable has to be converted into temperature
at a sufficient number of discretization points and for every time step in the
solution process, since the boundary conditions used are normally expressed
in terms of temperature. Besides, the transformation formulas for non-ideal
reactive flow systems can be rather complex.

Transport of entropy

From the formal macroscopic statement of the second law of thermodynamics,
as developed from classical thermodynamics arguments, it is difficult to assign
a physical significance to entropy. Ultimately, you must reassure yourself that
entropy is defined mathematically, and like enthalpy, can be used to solve
problems even though our physical connexion with the property is occasionally
less than satisfying.

Historically, the concept of entropy as a state function was first intro-
duced on macroscopic scales as a means of tracking transformations of heat
into work in the context of heat engine design17 [54]. On microscopic scales
entropy has been interpreted as a measure of the molecular disorder of the
system. Its value is related to the number of microscopic states available at a
particular macroscopic state. From this point of view it is possible to appreci-
ate the manner in which generation of disorder results in lost work (e.q., [42],
chap. 3). The natural progression of real processes is from order to disorder,
from lower entropy to higher entropy. Entropy is thus closely associated with
probability. Nature spontaneously proceeds toward the states that have the
highest probabilities of existing. We can conclude that the driving force for a
spontaneous process is an increase in the entropy of the universe.

In irreversible thermodynamics entropy was introduced and discussed as a
result of a need for quantification of the degree of irreversibility of a process.
The theory thus explain the way in which the generation of disorder reflected
by entropy change results in conversion of potentially useful work energy into
practically useless thermal energy. In this discipline of thermodynamics the
continuum balance equation for entropy plays a central role [32]. This equation
expresses the fact that the entropy of a volume element changes with time for
17 A heat engine is a device which converts heat into work.
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two reasons. First it changes because entropy flows into the control volume,
second because there is an entropy source due to irreversible phenomena inside
the control volume. The entropy source is always a non-negative quantity, since
entropy can only be created, never destroyed. For reversible transformation
the entropy source vanishes.

To reduce the lost work in industrial process plants, the minimization
of entropy production rates in process equipment is suggested as a strategy
for future process design and optimization [81]. The method is based on the
hypothesis that the state of operation that has a minimum total entropy pro-
duction is characterized by equipartition of the local entropy production. In this
context we need to quantify the entropy sources of the various irreversible unit
operations that occur in the industrial system.

In fluid dynamics there is no specific use of the transport equation for en-
tropy other than being a physical condition indicating whether a constitutive
relation proposed has a sound physical basis or not (nevertheless, this may
be a constraint of great importance in many situations). In this connexion we
usually think of the second law of thermodynamics as providing an inequal-
ity, expressing the observation that irreversible phenomena lead to entropy
production.

However, even though the application of the entropy equation in chemical
reaction engineering is limited today, the understanding and physical inter-
pretations of terms in the equation may be important in future process design
and optimization18.

I view of the above evaluation, the formulation of the transport equation
for entropy is outlined in the following paragraphs. If for no other reason, it is
always advantageous to be a qualified debater governing the future direction
of useful research.

By combining the total energy balance with simple thermodynamic rela-
tions between state variables, a transport equation that must be satisfied by
the entropy density field ρs is obtained.

At this point, the simplest way to formulate this equation is to reformulate
the thermal energy equation written in terms of internal energy (i.e., (1.126))
or enthalpy (i.e., (1.129)) by use of the following thermodynamic relations
(e.g., [7] [134] [32]):

18 Kjelstrup and Bedeaux [81] speculate that the need in mechanical and chemical
engineering for more accurate modeling tools to enable process equipment de-
signs that waste less work will increase the use of irreversible thermodynamics
in the near future. Better and more efficient use of energy resources is also a
central future requirement. It may then no longer be sufficient to optimize the
first law efficiency solely. The second law may have to be taken into account as
well. Under future UN environmental protection conventions and protocols the
process industry may be forced to report on their annual entropy production. As
a political tool, economical benefits could also be given to those industries that
limit or reduce their entropy production.



62 1 Single Phase Flow

TdS = dE + pd(
1
ρ
) −

N
∑

c=1

μcdωc (1.162)

where S = S(E, ρ, ωc) or

TdS = dH − (
1
ρ
)dp−

N
∑

c=1

μcdωc (1.163)

where S = S(H, p, ωc), p is the equilibrium pressure, the functions μc is the
specific chemical potential of component c.

The specific chemical potentials refer to one unit of mass of the component
concerned, and is defined by:

μc = (
∂(ρe)
∂Mc

)S,V,M ′ for (c = 1, 2, 3, ..., N) (1.164)

It is then assumed that, although the total system is not in equilibrium,
there exists within small mass elements a state of local equilibrium, for which
the local entropy is the same function of E, ρ and ωc (or H, p and ωc) as
in real equilibrium for a fluid parcel. In particular we assume that the above
formulas remains valid written as a time rate of change for a mass element as
described earlier.

The continuum mechanical analogues of the fundamental thermodynamic
relations are written as:

T
Ds

Dt
=

De

Dt
+ p

D( 1
ρ )

Dt
−

N
∑

c=1

μc
Dωc

Dt
(1.165)

or after introducing the enthalpy quantity (1.128):

T
Ds

Dt
=

Dh

Dt
− 1

ρ

Dp

Dt
−

N
∑

c=1

μc
Dωc

Dt
(1.166)

Note that the hypothesis of local equilibrium can only be justified by virtue
of the validity of the conclusions derived from it.

Invoking these expressions and the transport equation for the species mass
balance into the corresponding formulations of the thermal energy equation
results in an explicit transport equation for the entropy density.

ρ
Ds

Dt
= − 1

T
∇ · q − 1

T
(σ : ∇v) +

1
T

N
∑

c=1

(jc · gc) +
1
T

N
∑

c=1

μcωc(
∂ρ

∂t
+ ∇ · (ρv))

+
1
T

N
∑

c=1

μc∇ · jc −
1
T

N
∑

c=1

μcRc (1.167)
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By use of the continuity equation the fourth term on the right hand side
vanishes. The term is retained in the equation for convenience of the multi-
phase analysis discussed in chap 3.3.

The last term in the equation above can be reformulated in terms of the
chemical affinities as follows

− 1
T

N
∑

c=1

μcRc =− 1
T

N
∑

c=1

μc

q
∑

r=1

νc,rrrMwc
=− 1

T

q
∑

r=1

rr

N
∑

c=1

νc,rMwc
μc =

1
T

q
∑

r=1

rrAr

(1.168)
The chemical affinities of the reactions r (= 1, ..., q) are defined by

Ar = −
N

∑

c=1

νc,rMwc
μc, (r = 1, ..., q) (1.169)

In irreversible thermodynamics the affinities act as the driving forces of the
reactions [87].

We can then reformulate the entropy equation into the general form of a
transport equation, which yields

ρ
Ds

Dt
= −∇ ·

⎛

⎜

⎜

⎝

q −
N
∑

c=1
μcjc

T

⎞

⎟

⎟

⎠

− 1
T 2

(q · ∇T ) +
1
T

N
∑

c=1

μcωc(
∂ρ

∂t
+ ∇ · (ρv))

− 1
T

N
∑

c=1

jc · (T∇(
μc

T
) − gc) −

1
T

(σ : ∇v) +
1
T

q
∑

r=1

Arrr

(1.170)

The entropy flux, Js, and the entropy production, Φtotal, are given by

Js =
q −

N
∑

c=1
μcjc

T
(1.171)

Φtotal = − 1
T 2

(q · ∇T ) +
1
T

N
∑

c=1

μcωc(
∂ρ

∂t
+ ∇ · (ρv)) − 1

T

N
∑

c=1

jc · (T∇(
μc

T
) − gc)

− 1
T

(σ : ∇v) +
1
T

q
∑

r=1

Arrr (1.172)

The entropy equation can now be used to express the Clausius’ form of the
second law of thermodynamics for open flow systems (e.g., [7] [145], p. 126).
The inequality expresses that irreversible phenomena (diffusive momentum
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transfer, energy transfer, mass transfer, and chemical reactions) lead to en-
tropy production (i.e., energy dissipation)

Φtotal ≥ 0 (1.173)

The way in which the separation of the terms of the right hand side of
the entropy equation into the divergence of a flux and a source term has been
achieved may at first sight seem to be to some extent arbitrary. The two groups
of terms must, however, satisfy a number of requirements which determine this
separation uniquely. First, one such requirement is that the entropy source
term Φtotal must be zero if the thermodynamic equilibrium conditions are
satisfied within the system. Another requirement the source term must satisfy
is that it should be invariant under a Galilean transformation (e.g., [147]),
since the notations of reversible and irreversible behavior must be invariant
under such a transformation. The terms included in the source term satisfy
this requirement [32].

The physical meaning of the terms (or group of terms) in the entropy
equation is not always obvious. However, the term on the LHS denotes the
rate of accumulation of entropy within the control volume per unit volume. On
the RHS the entropy flow terms included in Js show that for open systems
the entropy flow consists of two parts: one is the reduced heat flow q

T , the
other is connected with the diffusion flows of matter jc; Secondly, the entropy
production terms included in Φtotal demonstrates that the entropy production
contains four different contributions. (The third term on the RHS vanishes by
use of the continuity equation, but retained for the purpose of indicating
possible contributions from the interfacial mass transfer in multiphase flows,
discussed later). The first term in Φtotal arises from heat fluxes as conduction
and radiation, the third from diffusion, the fourth is connected to the gradients
of the velocity field, giving rise to viscous flow, and the fifth is due to chemical
reactions.

The structure of the expression for Φtotal is that of a bilinear form: it
consists of a sum of products of two factors. One of these factors in each term
is a flow quantity (heat flux q, mass diffusion flux jc, momentum flux expressed
by the viscous stress tensor σ, and chemical reaction rate rr). The other factor
in each term is related to a gradient of an intensive state variable (gradients of
temperature, chemical potential and velocity) and may contain the external
force gc or a difference of thermodynamic state variables, viz. the chemical
affinity Ar. These quantities which multiply the fluxes in the expression for
the entropy production are called thermodynamic forces or affinities.

Even if the entropy equation formulated in this section is not independent
of the other energy equations, the solution of this equation can provide some
useful information.

• The second law of thermodynamics set important constraints on appar-
ently possible physiochemical processes as for example minimum work to
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separate a mixture, maximum possible efficiency of various unit opera-
tions often applied in chemical engineering and minimum electrical energy
needed for production of various metals via electrolysis.

• This law may also provide a basis for process optimization analysis of engi-
neering devices involving simultaneous transport phenomena and chemical
reactions by use of the principle of minimum entropy production.

• The thermodynamic inequality may also guide the selection of general
constitutive laws governing the diffusion of momentum, energy, and species
mass in non-equilibrium chemical reacting mixtures.

Remarks on the governing equations

• We have shown that all the balance laws for Eulerian CVs can be cast in the
same standard form, applicable in any coordinate system. The coordinate
system is chosen to proceed with the solution for the problem in question
in a convenient way.

• Not all of the balance equations are independent of one another, thus the
set of equation used to solve particular problems is not solely a matter of
convenience. In chemical reactor modeling it is important to recall that
all chemical species mass balance equations or all chemical element con-
servation equations are not independent of the total mass conservation
equation. In a similar manner, the angular momentum and linear momen-
tum constraints are not independent for flow of a simple fluid19.
On a microscopic scale perspective the angular momentum equation is
an independent law [119]. In continuum mechanics the linear momentum
equation may be used to derive the angular momentum equation and they
are thus not independent. This statement is based on one condition. If the
angular momentum of the microscopic particles is randomly oriented, then
the vector sum for a large number of particles is zero. On the other hand,
if we imagine that the microscopic particles have their axes of rotation
aligned in a special direction, then the summation will give a net angular
momentum on the continuum level. If this were the case, we would need to
postulate a surface couple in addition to the surface force. Fortunately, in
common fluids the microscopic angular momentum is randomly oriented
and the couple does not exist. When this is true, we are able to show that
the total stress tensor Tij is symmetric. First we derive the angular mo-
mentum equation including a term for microscopic angular momentum.
Then we shall show that the existence of a net microscopic angular mo-
mentum implies that the stress tensor is anti-symmetric. Conversely, if
the net microscopic angular momentum vanishes, then the stress tensor
is symmetric and the angular momentum equation is identical with the
moment of the linear momentum equation.

19 A simple fluid is defined as a fluid that can be described by a linear velocity law,
a linear conduction law, and a state fixed by two thermodynamic variables [168].
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For a system the angular momentum conservation law is stated as follows:
The rate of change of the angular momentum of a material volume V (t) is
equal to the sum of the torques. Let the vector rj be the position of a point
on the Lagrangian control volume surface with respect to a fixed origin.
The relevant terms are formulated as follows [119] [134] [13]:
Angular momentum of material in element dv about origin: r × (ρv)dv

or ρεijkrjvk dv

Torque of body force about origin:
∑N

c=1 r×ρcgc dv or
∑N

c=1 εijkrjρcgk,cdv
Torque of surface force about origin: r × (T · n) da or εijkrjnpTpkda
Net microscopic angular momentum: n · Ωda or nkΩkida

where the alternating unit tensor or the permutation symbol, εijk =
(1/2)(i− j)(j − k)(k − i), is defined as:

εijk =

⎧

⎪

⎨

⎪

⎩

+1 if ijk = 123, 231, or 312,
−1 if ijk = 321, 132, or 213, and

0 if any two indices are alike.
(1.174)

Following Panton [119], in the last term an angular momentum tensor Ωki

is postulated, giving the transport of i-direction angular momentum across
a k-direction plane by microscopic processes.
The angular momentum law then takes the following form:

D

Dt

∫

V

ρεijkrjvkdv =
N

∑

c=1

∫

V

εijkrjρcgk,c dv +
∫

A

[εijkrjnpTpk + nkΩki] da

(1.175)
The left side is converted using Leibnitz’s and Gauss’s theorems, while
the last integral on the right-hand side is changed to a volume integral by
Gauss’s theorem. Since the region of integration is arbitrary, the integrands
must be equal:

εijk
∂

∂t
(ρrjvk) + εijk

∂

∂xp
(vpρrjvk) = εijk

∂

∂xp
(rjTpk) +

∂Ωki

∂xk

+
N

∑

c=1

εijkrjρcgk,c (1.176)

The equation for the position vector ri = xi is independent of time, and
its space derivative is ∂rj

∂xi
= δij . Using these facts, the equation above may

be rearranged to:

εijkrj [
∂

∂t
(ρvk)+

∂

∂xp
(ρvpvk)−

N
∑

c=1

ρcgk,c−
∂Tpk

∂xp
] = εijkTjk+

∂Ωki

∂xk
(1.177)

The term in brackets is the linear momentum equation and is equal to
zero. The term εijkTjk depends only on the anti-symmetric part of Tjk.
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Thus, we have

−εijkTjk =
∂Ωki

∂xk
(1.178)

If we assume that the net microscopic flux of angular momentum, Ωki, is
zero, then εijkTjk is zero and we have proved that Tjk is symmetric (see,
e.g., [104], p 215; [11], p 114; [185], sect 4.4; [181], app C; [134], sect 2.2.2).
Furthermore, a second consequence of this assumption is that the angular
momentum equation is exactly equal to r× the linear momentum equation.
In fluid mechanics the net microscopic flux of angular momentum is usually
ignored, thus the the linear- and angular momentum equations are not
independent (e.g., [149], sect 2.2.4 [13], sect 3.4; ). There is consensus in
the literature that the stress tensor for fluids is symmetric except for a class
of suspensions in which torques could be produced on each particle in the
carrier fluid by an external field [88] [104]. This means, in practice, that
for all chemical reactor systems of interest the stress tensor is symmetric.
The motion of such fluids can be determined by an Eulerian vector angular-
momentum balance equation on the form

∂

∂t

∫

V

r×(ρv) dv+
∫

A

r×ρv(v·n) da =
∫

A

r×(T·n) da+
N

∑

c=1

∫

V

r×(ρcgc) dv

(1.179)
which is particularly convenient for analyzing fluid flow in rotating turbo
machinery like compressors, turbines, cyclones, etc.
The total energy equation expressing the physical law of conservation of
total energy, can be reformulated into a set of energy transport equations
expressing balance laws for the various forms of energy (i.e., kinetic, poten-
tial and internal energy). It has been shown in this paper that the entropy
transport equation can be obtained from the energy balance equations,
thus it is not independent of these equations.
Note also that compared to the momentum equation, the equation of
change for kinetic energy and the equation for angular momentum do not
introduce additional unknowns, nor do they include new information.

• It is common practice when applying CFD to chemical reactor model-
ing, to solve a set of independent transport equations consisting of; upto
N − 1 species transport equations; the mixture continuity equation; and
the momentum equation and the internal (or thermal) energy equation
formulated in terms of temperature.
For flow situations where the kinetic energy and/or the potential energy
contributions become significant (e.g., high speed velocity flows within
electrical fields), we may benefit from solving the transport equations for
these variables as well.
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1.2.5 Some useful simplifications of the governing equations

In chemical engineering we are usually not using the governing equations
in their most fundamental forms, but apply suitable simplifications giving
sufficient predictions of the different process units with minimum costs.

The ability to establish such quantitative links between measures of reactor
performance and input and operating variables is essential in optimizing the
operating conditions, in determining proper reactor scale-up and design, and
in interpreting data in research and pilot-plant work.

Steady Flows

In many cases we consider steady flows. A steady flow is defined to be one for
which, at any fixed point in the flow field, all the flow variables are independent
of time. Thus, in all steady flow all partial derivatives with respect to time
vanish.

Incompressible-, Compressible- and Variable
Density Flows

The term incompressible flow is applied to any situation where changes in the
density of a fluid particle are negligible [119]. A mathematical definition is

1
ρ

Dρ

Dt
= 0 (1.180)

From the continuity equation we have

1
ρ

Dρ

Dt
= −∇ · v (1.181)

This shows that an alternative definition is that ∇ · v = 0 (the rate of
expansion is zero). An equivalent condition is to require that the fluid par-
ticles have constant volume, but not necessary constant shape. Furthermore,
the different fluid particles do not need to have the same density. The only
requirement is that the density of each individual fluid particle remain un-
changed. The incompressible flow limit is approached when the density is
constant along any streamline (i.e., Dρ

Dt = −ρ(∇ · v) ≈ 0). The resulting or
derived constant volume condition, which occur in flow situations where den-
sity changes can be neglected, has sometimes erroneously been used defining
incompressible flows in general. Such a procedure may lead to mathematical
inconsistencies. The main criterion for incompressible flow (as defined in the
non-reactive gas dynamics literature) is rather that the Mach number is low,
and that no significant density changes occur due to changes in temperature.
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In other cases the fluid velocity vector may be considered solenoidal20 even
though the mixture density is not constant.

Most chemical engineers relate the term incompressible flow to incompress-
ible fluid systems. For non-reactive ideal liquid mixtures operated at nearly
constant temperatures, the incompressible flow limit is obviously a reasonable
approximation in practice.

However, for compressible systems, the gas dynamics analysis may not
be that obvious although very important in the chemical process industry.
To learn more about gas dynamics we are characterizing three seemingly very
similar flow systems reflecting somewhat divergent behavior, starting out with
a relatively simple incompressible non-reacting adiabatic gas flow in a verti-
cal tube (i.e., representing an idealized design of chemical reactors), then we
expand our analysis to a non-adiabatic system, and finally a reactive mixture
is considered.

The first system constitutes a low Mach number internal gas flow with an
adiabatic wall, i.e., an incompressible flow [119].

For such a one-component flow problem where the viscous dissipation is
the only heat source, the density of the fluid is governed by the continuity
equation and a thermodynamic equation of state (EOS). In the present case
we write the EOS as

1
ρ

Dρ

Dt
= α

Dp

Dt
− β

DT

Dt
(1.182)

where the isothermal compressibility (e.g., [7] [138]) is:

α(p, T ) =
1
ρ

∂ρ

∂p
|T (1.183)

and the bulk expansion coefficient (e.g., [119] [138]) is:

β(p, T ) = −1
ρ

∂ρ

∂T
|P (1.184)

The functions α and β are thermodynamic variables that characterize the
fluid. Physically α and β always take non-zero values. The right hand side of
(1.182) is thus small only if the pressure and temperature changes are small
enough. In turn, the magnitudes of these variables are governed by dynamic
processes occurring in the flow field. The energy and momentum equations
will play a major role in fixing the pressure and temperature. The advantage
of writing the equation of state in the form (1.182) is that the flow field effects

20 A vector field v satisfying ∇·v = 0 is called solenoidal. A volume-preserving mo-
tion is called isochoric, i.e., a motion for which the density in the neighborhood of
any particle remains constant as the particle moves. The flow of an incompressible
fluid is necessarily isochoric, but there may also be isochoric flows of compressible
fluids [104] (p. 212).
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are isolated in Dp/Dt and DT/Dt while the thermodynamic character of the
fluid is isolated in α and β.

The governing equations determining the evolution of single-component
fluid flow are:

Thermodynamics:
1
ρ

Dρ

Dt
= α

Dp

Dt
− β

DT

Dt
(1.185)

with α = α(p, T ), β = β(p, T ), CP = CP (p, T ), μ = μ(p, T ), k = k(p, T ).
Continuity:

1
ρ

Dρ

Dt
= −∇ · v (1.186)

Momentum:
ρ
Dv
Dt

= −∇p−∇ · σ + ρg (1.187)

Net viscous stress:

∇ · σ = −∇ · {μ[∇v + (∇v)T ]} + ∇{(2
3
μ− μB)(∇ · v)} (1.188)

Energy:

ρCP
DT

Dt
= ∇ · (k∇T ) + μΦviscous + βT

Dp

Dt
(1.189)

The analysis rely on the boundary conditions specified. The boundary condi-
tions at the inlet are vi = (v0, 0, 0), T = T0 and ρ = ρ0. On the wall vi = 0 and
niqi = 0. That is, we have adopted the no-slip condition at the wall requiring
that the velocity is zero. Since the wall is said to be adiabatic, no heat enters
the flow through the walls. For the outlet several conditions are possible (e.g.,
zero gradients for fully developed flow, pressure boundary, free surface, etc.),
for convenience we may overlook their importance in this analysis.

The fluid flow problem requires the solution of all these equations. The
dependent variables are ρ, p, T and vi. The governing equations are all cou-
pled together. For instance, the momentum equation contains the density and
pressure variables, and the viscosity parameter. These quantities depend on
the local temperature. The temperature in turn is governed by the energy
equation, which contains the velocity in the advective and dissipation terms.
However, not all the terms in the equations have the same importance in
determining the flow solution.

To determine which terms are large and which are small, we cast the
equations into non-dimensional variables with scales that are governed by the
dynamics of the flow. The appropriate scales for non-dimensionalizing the
variables are usually found from the tube geometry (e.g., say, a characteristic
length L), the boundary conditions and from detailed analysis of the equations
that govern the flow [119].
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Most of the non-dimensional variables are then formed in a straightforward
manner:

x*
i = xi

L , t* = tv0
L , v*

i = vi

vo
, ρ* = ρ

ρ0
, α* = α

α0
, β* = β

β0
, C*

P = CP

CP0
,

μ* = μ
μ0

, k* = k
k0

and Fr = v2
0

|g|L .
Nevertheless, the temperature and pressure variables need further consid-

eration.
The pressure scale is usually found indirectly by substituting all the other

non-dimensional variable definitions into the momentum equation.
Accordingly, after substituting the dimensionless variables into the mo-

mentum equation, the non-dimensional pressure is defined as p* = p−p0
ρ0v2

0
. If

pS symbolizes the pressure scale, we write p* = p−p0
pS

= p−p0
ρ0v2

0
. Thus, when the

pressure changes in the flow are dominated by momentum effects, p* is the
proper non-dimensional pressure variable [119].

A further observation is that for incompressible flow, pressure plays the
role of a force in the momentum equation. Since the pressure variable occurs
only within a pressure gradient term in this equation, a reference level may
be substituted without any effect. That is, ∇(p− p0) = ∇p.

If we consider the thermal processes occurring in this problem, we expect
that heat (thermal energy) is generated in the flow field by viscous dissipation.
The heat will then be redistributed by conduction and carried to new places
by advection. In this case a suitable temperature scale is given by Tscale =
μ0v

2
0/k0, [119]. This is an estimate of the temperature rise that one can expect

because of viscous dissipation from a velocity gradient of order v0/L. Thus,
we define T * = T−Tref

Tscale
= T−T0

μ0v2
0/k0

= T−T0
Pr v2

0/CP0
. In the latter term, the Prandtl

number (Pr = μ0CP0/k0) has been introduced.
After all the non-dimensional variables are substituted into the equations,

several non-dimensional groups occur21: Re = ρ0Lv0
μ0

, Pr = μ0CP0
k0

, γ0 = CP0
CV 0

,

Fr = v2
0

|g|L , Ma = vo

CS
, A = α0ρ0CP0T0 and B = β0T0.

For any given flow problem these parameters have specific fixed values. If
they are large or small, they magnify or diminish the effect of the terms in
which they appear as coefficients. In non-dimensional variables the equations
are written as:

Thermodynamics:

1
ρ*

Dρ*

Dt*
= γ0Ma2[α*Dp*

Dt*
− PrBβ*

A

DT *

Dt*
] (1.190)

The thermodynamic functions α*, β*, μ*, k* and C*
P are still undetermined.

21 In formulating these non-dimensional parameters we have used the expression
for the speed of sound of an ideal gas (e.g., [119] [136], app. 4), C2

S = γ0
ρ0α0

. The

details of the substitution are also simplified by noting that; Ma2 =
v2
0

C2
S

=
v2
0ρ0α0

γ0
,

and that;
v2
0

CP0T0
= Ma2γ0

A
.
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Continuity:
1
ρ*

Dρ*

Dt*
= −∇* · v* (1.191)

Momentum:

ρ*Dv*

Dt*
= −∇*p* −∇* · σ* + ρ* g

Fr|g| (1.192)

Viscous stress:

∇* · σ* = − 1
Re

(∇* · {μ*[∇*v* + (∇*v*)T ]} + ∇*{(2
3
μ* − μ*

B)(∇* · v*)})
(1.193)

Energy:

ρ*C*
P

DT *

Dt*
=

1
Re

1
Pr

(∇* · (k*∇*T *) + μ*Φ*
viscous)

+ β*B(
1
Pr

+
γ0Ma2

A
T *)

Dp*

Dt*

(1.194)

where μ*Φ*
viscous = μ

μ0

Φviscous
v2
0/L

.

Sample inlet boundary conditions are v*
i = (1, 0, 0), T * = 0 and ρ* = 1, and

on the wall v*
i = 0 and niq

*
i = 0.

At this stage we can see that the incompressible flow limit results when
the right side of the non-dimensionalized form of the thermodynamic relation
(1.190) becomes small, that is, when Ma2 → 0. As a general rule of experience,
if Ma < 1/3, then the incompressible flow assumption will give a fair result
for external flows (e.g., [185], p. 221). When the non-dimensionalized term
Dρ*/Dt* = 0, the density of a fluid particle is constant. From this result it
follows that in the non-dimansionalized continuity equation the left side is
zero, so that ∇ · v* = 0. Terms containing ∇ · v* in the viscous stress and
dissipation relations become small, as does the term proceeded by Ma2 in the
energy equation.

For ideal gas dynamics it has been shown, by Taylor series expansions,
that all the thermodynamic fluid property functions are constants in the limit
of small Mach numbers [119] [185].

It is concluded that in this case the main criterion for incompressible flow
is that the Mach number is low (Ma → 0), denoting that all the velocities
are small compared to the speed of sound. That is, when the speed of sound
CS =

√

∂p
∂ρ |S appears in the compressible flow analysis, its role is not to tell

how fast waves travel, but to indicate how much density change accompanies
a certain pressure change due to the flow (e.g., [119] [134]).

Using the pressure scale, ρ0v
2
0 , a flow decelerated from v = v0 at one

location in the flow to v = 0 at another will undergo a pressure change Δp ∝
ρ0v

2
0 (neglecting viscosity). With these considerations the Mach number is

interpreted as follows [119]
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Ma2 =
v2
0

C2
S

= v2
0

∂ρ

∂p
|S =

ρ0v
2
0

ρ0

∂ρ

∂p
|S ≈ Δp

1
ρ0

Δρ

Δp
=

Δρ

ρ0
(1.195)

The parameter Ma2 is a measure of the size of density changes compared
to fluid density. As Ma2 → 0, density changes become only a small fraction
of the fluid density.

However, although Ma2 → 0 is required for incompressible flow, it is not
the only requirement. Some flows where Ma2 → 0 are low speed compressible
flows. However, in these cases density changes are usually caused by temper-
ature and/or mixture composition changes. For the present one-component
flow analysis such effects are not important as the wall boundary is consid-
ered adiabatic. There is then not enough heat generated by viscous dissipation
to cause large temperature changes.

The governing equations for incompressible flow derived based on dimen-
sional analysis yield [119]:

Thermodynamics:

Dρ*

Dt*
= 0 (1.196)

α* = β* = μ* = k* = C*
P = ρ* = 1

Continuity:

∇* · v* = 0 (1.197)
Momentum:

Dv*

Dt*
= − 1

ρ*
∇*p* +

1
Re

μ*∇2*v* +
g

Fr|g| (1.198)

Viscous stress:

∇* · σ* = − 1
Re

(∇* · {μ*[∇*v* + (∇*v*)T ]}

+ ∇*{(2
3
μ* − μ*

B)(∇* · v*)})

≈ 1
Re

μ*∇2*v*

(1.199)

Energy:

DT *

Dt*
=

1
Re

(
1
Pr

∇2*T * + μ*Φ*
viscous) + β* B

Pr

Dp*

Dt*
(1.200)

The boundary conditions at the inlet are v*
i = (1, 0, 0), T * = 0, p* = 0 and

ρ* = 1, and on the wall v*
i = 0 and niq

*
i = 0.



74 1 Single Phase Flow

Inspection of these equations reveals quite a lot about incompressible flow.
First of all, the density and all the thermodynamic coefficients are con-

stants. Secondly, when the density and the transport properties are constants,
the continuity and momentum equations are decoupled from the energy equa-
tion. This result is important, as it means that we may solve for the three
velocities and the pressure without regard for the energy equation or the tem-
perature. Third, for incompressible flows the pressure is determined by the
momentum equation. The pressure thus plays the role of a mechanical force
and not a thermodynamic variable. Fourth, another important fact about
incompressible flow is that only two parameters, the Reynolds number and
the Froude number occur in the equations. The Froude number, Fr, expresses
the importance of buoyancy compared to the other terms in the equation. The
Reynolds number indicates the size of the viscous force term relative to the
other terms. It is mentioned that compressible flows are often high Re flows,
thus they are often computed using the inviscid Euler (momentum) equations.

In the incompressible energy equation only derivatives of the temperature
variable occur. This means that in incompressible flow, only changes in tem-
perature with respect to some reference state are important. As with pressure,
the level of the reference temperature does not affect the solution. The actual
temperature in such a incompressible flow doesn’t change noticeably.

The second system constitutes a low Mach number internal gas flow with
non-adiabatic walls, i.e., a compressible gas flow [119].

In the foregoing discussion we have seen how the case Ma → 0 with an
adiabatic wall is an example of incompressible flow. In other instances there
is significant heat transfer through the wall. In this case we can isolate the
flow situation by imagining that the wall is held at some fixed temperature
TW that is different from T0. The non-dimensional scale for the temperature
is redefined, so we need to redo the analysis of the resulting dimensionless
equations. The problem now has a characteristic temperature scale, T0 −TW ,
which is a driving force for the conduction of heat from the wall into the
fluid. Since we expect that all temperatures will lie between these two values,
the proper non-dimensional temperature is: T̂ = T−T0

TW −T0
. The temperature

variable, T *, for the adiabatic wall problem is related to T̂ by the equation:
T * = TW −T0

T0

A
γ0PrMa2 T̂ . There is no change in the formulation for any of the

other variables, thus we can substitute the new temperature variable into the
governing equations and again let the Mach number approach zero.

The temperature variable does not appear in the continuity and momen-
tum equations, so the previous dimensionless equations obtained in the adi-
abatic wall analysis remain unchanged. The equation of state is revised by
substituting the new temperature variable. The EOS yields

1
ρ*

Dρ*

Dt*
= γ0Ma2α*Dp*

Dt*
−Bβ*(

TW − T0

T0
)
DT̂

Dt*
(1.201)
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When the new temperature variable is substituted into the energy equa-
tion, the equation changes to:

ρ*C*
P

DT̂

Dt*
=

1
PrRe

∇* · (k*∇*T̂ +
γ0Ma2

ARe
(

T0

TW − To
)μ*Φ*

viscous)

+
β*Bγ0Ma2

A
[

T0

TW − T0
+ T̂ ]

Dp*

Dt*

(1.202)

Sample inlet boundary conditions are v*
i = 0 and T̂ = 1 (or a known

function).
The limit Ma2 → 0 gives a low speed compressible flow where the ther-

modynamic state equation shows that the density changes occur only because
of the large variations in temperature:

1
ρ*

Dρ*

Dt*
= −Bβ*(

TW − T0

T0
)
DT̂

Dt*
(1.203)

The energy equation for the flow shows that advection and conduction
determine the temperature field:

ρ*C*
P

DT̂

Dt*
=

1
PrRe

∇* · (k*∇*T̂ ) (1.204)

The transport properties and the thermodynamic functions are not nec-
essarily constants this time, but depend (weakly) on temperature. The flow
is a low speed compressible flow as long as (T0 − TW )/T0 is finite. The con-
tinuity and momentum equations no longer simplify, but must be considered
with their temperature dependence. The complete set of equations is coupled
together through the transport properties and the density. These equations
apply to flows where the wall supplies significant heating to the fluid, i.e.,
problems of natural convection.

The further special case of small temperature differences will turn out to
be an incompressible flow. This flow is governed by the same equations as the
adiabatic case except that the energy equation is a little different. The energy
equation has only advection and conduction terms while in the adiabatic case
the energy equation also includes a viscous dissipation and a pressure term.

The third system constitutes a low Mach number internal gas flow of a
reactive mixture, i.e., a variable density flow [77].

In this book variable density flows are considered compressible in accor-
dance with the view of [119], i.e., even though the density variations are not
necessarily induced by pressure or compressibility effects, the terms variable
density flow and ’compressible flow’ are then equivalent phrases. This view
may not agree with all the textbooks of classical gas dynamics.

In reactor modeling we are dealing with flow situations where the mixture
density may vary both due to pressure and temperature changes, chemical
reactions and non-ideal mixing. For these flow situations, we must consider
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additional heat sources, changes in composition due to chemical reactions and
fluid mixing, and thereafter redo the non-dimensional scales and reanalyze the
resulting equations.

If we consider the physical processes occurring in this problem, we expect
that heat is generated in the flow field by the heat of reaction and boundary
temperatures at the wall and heating/cooling devices rather than viscous dissi-
pation (as for the first case). In many systems pressure changes are dominated
by chemistry rather than momentum effects, and density changes are caused
by changes in composition rather than pressure and temperature changes. An
extended thermodynamic state equation can be formulated assuming density
to be a function of P , T and ωc (e.g., [11] [13] [134] [115])

1
ρ

Dρ

Dt
= α

Dp

Dt
− β

DT

Dt
+

∑

c

γc
Dωc

Dt
(1.205)

where γc = 1
ρ

∂ρ
∂ωc

|P,T,ωs�=c
defines the dependence of fluid density upon

chemical composition, a composition expansion coefficient (e.g., [134], p. 320).
The state relation is not often used in this form in thermodynamics lit-

erature, but it is useful in flow analyzes. The chemistry and flow field effects
are isolated in Dωc/Dt, determined by solving additional species transport
equations. The thermodynamic character of the multi-component fluid is iso-
lated in γ (and α and β). All the thermodynamic quantities are in principle
functions of both temperature, pressure and composition.

An important question in reactive flow analysis is whether or not the
density changes due to non-ideal mixing and reaction have significant effects
on the flow. In many reactor systems both chemistry and flow scales are
important. The formulation of proper non-dimensional scales is thus a difficult
task. Therefore, in our subsequent analysis the pressure changes in the flow
are supposedly dominated by momentum effects as in non-reactive systems.

Analyzing chemical reactor flows the starting point is a list of the fairly
rigorous equations, as found in most textbooks (e.g., [11] [13] [89]), that should
govern the reactor modeling problem.

Thermodynamics:
1
ρ

Dρ

Dt
= α

Dp

Dt
− β

DT

Dt
+

∑

c

γc
Dωc

Dt
(1.206)

with α = α(p, T, ωc), β = β(p, T, ωc), CP = CP (p, T, ωc), μ = μ(p, T, ωc),
k = k(p, T, ωc) and γc = γ(p, T, ωc).

Continuity:
1
ρ

Dρ

Dt
= −∇ · v (1.207)

Momentum:

ρ
Dv
Dt

= −∇p−∇ · σ +
N

∑

c=1

ρcgc (1.208)



1.2 Equations of Change for Multi-Component Mixtures 77

Net viscous stress:

∇ · σ = −∇ · {μ[∇v + (∇v)T ]} + ∇{(2
3
μ− μB)(∇ · v)} (1.209)

Energy:

N
∑

c=1

ρcCp,ωc

DT

Dt
= −∇ · q − T

ρc
(
∂ρc

∂T
)p,ωc

Dp

Dt

− (σ : ∇v) +
N

∑

c=1

(jc · gc) +
N

∑

c=1

hc∇ · jc +
q

∑

r=1

(
Rr,c

Mwc

)(−ΔHrr,c)

(1.210)

Species mass:

ρ
Dωc

Dt
= ∇ · (ρDc∇ωc) + Rc (1.211)

with ρc = ρωc.
The reference boundary conditions at the inlet are vi = (v0, 0, 0), T = T0,

ρc = ρc,0 and ρ = ρ0, and on the wall vi = 0 and either adiabatic niqi = 0
or non-adiabatic thus T = TW .

Not all the terms in these equations have the same importance in deter-
mining the flow solution in chemical reactors. The only body force considered
in most reactor models, gi (per unit mass), is gravitation which is the same for
all chemical species, g. The model equations for momentum and energy can
then be simplified. In the momentum equation

∑N
c=1 ρcgc =

∑N
c=1 ρcg = ρg.

In the energy equation:
∑N

c=1(jc ·gc) =
∑N

c=1 jc ·g = 0. Furthermore, in most
multicomponent flows, the energy or heat flux contributions from the inter-
diffusion processes are in general believed to be small and omitted in most
applications,

∑N
c=1 hc∇ · jc ≈ 0 (e.g., [148], p. 816; [89], p. 198; [11], p. 566).

To determine which of the remaining terms are large and which are small,
we must again cast the equations into non-dimensional variables. For an ideal
gas system many of the non-dimensional variables can still be formed in a
straightforward manner using the boundary values. In this way we can, as in
the preceding examples, define x*

i = xi/L, t* = tv0/L, v*
i = vi/vo, ρ* = ρ/ρ0,

α* = α/α0, β* = β/β0, γ*
c = γc/γc,0, C*

P = CP /CP0, μ* = μ/μ0, k* = k/k0,
Fr = v2

0/|g|L, D*
c = Dc/Dc,0 and R*

c = Rc/Rc,0.
The temperature and pressure variables are more difficult to determine. If

we assume that the pressure changes in the flow are dominated by momentum
effects as in non-reactive systems, a proper non-dimensional pressure variable
may be: p* = p−p0

ρ0v2
0
. Considering the physical and chemical processes occurring

in this problem, one may expect that heat is generated in the flow field by
chemical reactions or heating devices, rather than by viscous dissipation. The
adiabatic temperature is an estimate of the maximum temperature (Tad =
T0 + (−ΔHR)ωc,0

CP0
) that can be obtained, due to the heat generated by reaction,

in a reactor operating at adiabatic conditions (e.g., [52], p. 409). Using this
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quantity the problem is supposed to have a characteristic scale Tad−T0, which
is a driving force for conduction of heat from the reactive zones into the bulk
fluid field. Thus, one may define: T * = T−Tref

Tscale
= T−T0

Tad−T0
. At this point one

may argue that for multiple reaction systems, we cannot estimate the exact
adiabatic temperature without solving the problem. This may, however, not
be important. In such cases one can use an estimate such as the maximum
possible adiabatic temperature based on only one (e.g., the most exothermic
one) reaction. Further discussion on this issue is given by [134] (p. 420) and
[4] (pp. 278-282 and 302).

After suitable non-dimensional variables are substituted into the equa-
tions, the following non-dimensional groups occur: Re = ρ0Lv0

μ0
, Pr = μ0CP0

k0
,

γ0 = CP0
CV 0

, Fr = v2
0

|g|L , Ma = vo

CS
, A = α0ρ0CP0T0, B = β0T0, Da = tflow

tchem
=

(L/v0)
(ρ0/Rc,0)

(i.e., a Damköhler number (e.g., [18] [134], pp. 426-427)), and

Q = (L/v0)
ρ0CP,0(Tad−T0)

q
∑

r=1
( Rr,c

Mwc
)(−ΔHrr,c) (i.e., a dimensionless heat of reaction

term referred to as a Damköhler number (e.g., [18] [134], p. 421).
The final form of the mathematical problem statement in non-dimensional

variables is as follows:

Thermodynamics:

1
ρ*

Dρ*

Dt*
= γ0Ma2[α*Dp*

Dt*
] −Bβ*(

Tad − T0

T0
)
DT *

Dt*
+

∑

c

γ*
cγc,0

Dωc

Dt*

(1.212)
Continuity:

1
ρ*

Dρ*

Dt*
= −∇* · v* (1.213)

Momentum:

ρ*Dv*

Dt*
= −∇*p* −∇* · σ* + ρ* g

Fr|g| (1.214)

Viscous stress:

∇* · σ* = − 1
Re

(∇* · {μ*[∇*v* + (∇*v*)T ]} + ∇*{(2
3
μ* − μ*

B)(∇* · v*)})
(1.215)

Energy:

ρ*C*
P

DT *

Dt*
=

1
Re

1
Pr

∇* · (k*∇*T *) +
γ0

A

Ma2

Re
(

T0

Tad − T0
)μ*Φ*

viscous

+ β*B
γ0Ma2

A
(

T0

Tad − T0
+ T *)

Dp*

Dt*
+ Q

(1.216)

where μ*Φ*
viscous = μ

μ0

Φviscous
v2
0/L

.
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Species mass:

ρ*Dωc

Dt*
=

1
Re

1
Sc

∇* · (ρ*D*
c∇*ωc) + DaR*

c (1.217)

The governing equations for low Mach number flow derived based on the
dimensional analysis can then be expressed as:

Thermodynamics:

1
ρ*

Dρ*

Dt*
= −Bβ*(

Tad − T0

T0
)
DT *

Dt*
+

∑

c

γ*
cγc,0

Dωc

Dt*
(1.218)

Continuity:
1
ρ*

Dρ*

Dt*
= −∇* · v* (1.219)

Momentum:

ρ*Dv*

Dt*
= −∇*p* −∇* · σ* + ρ* g

Fr|g| (1.220)

Viscous stress:

∇* · σ* = − 1
Re

(∇* · {μ*[∇*v* + (∇*v*)T ]} + ∇*{(2
3
μ* − μ*

B)(∇* · v*)})
(1.221)

Energy:

ρ*C*
P

DT *

Dt*
=

1
Re

1
Pr

∇* · (k*∇*T *) + Q (1.222)

Species mass:

ρ*Dωc

Dt*
=

1
Re

1
Sc

∇* · (ρ*D*
c∇*ωc) + DaR*

c (1.223)

A comparison of the two last mentioned sets of equations reveals the back-
ground for several classical reactor model simplifications. Most reactor systems
are low velocity flows so that the terms with a pre factor containing the Mach
number can be neglected. Then we see that the density is not significantly de-
pendent on the pressure changes due to the flow, and the viscous dissipation
and pressure terms in the temperature equation can be neglected. However,
the density and thermodynamic coefficients are not constants, but may be
functions of both temperature and mixture species composition. Therefore,
the gas flows occurring in chemical reactors can in general be characterized
as low velocity compressible flows.

Accordingly, a good starting point for the description of most chemical
reactor systems is the following set of simplified conservation equations written
in dimensionalized form:

Continuity:
1
ρ

Dρ

Dt
= −∇ · v (1.224)



80 1 Single Phase Flow

Momentum:
ρ
Dv
Dt

= −∇p−∇ · σ + ρg (1.225)

Net viscous stress:

∇ · σ = −∇ · {μ[∇v + (∇v)T ]} + ∇{(2
3
μ− μB)(∇ · v)} (1.226)

Energy:

N
∑

c=1

ρcCp,ωc

DT

Dt
= −∇ · q +

q
∑

r=1

(
Rr,c

Mwc

)(−ΔHrr,c) (1.227)

Species mass:

ρ
Dωc

Dt
= ∇ · (ρDc∇ωc) + Rc (1.228)

together with the corresponding thermodynamic constitutive relations:
Equation of state:

1
ρ

Dρ

Dt
≈ −βDT

Dt
+

∑

c

γc
Dωc

Dt
(1.229)

with α ≈ α(T, ωc), β ≈ β(T, ωc), CP ≈ CP (T, ωc), μ ≈ μ(T, ωc), k ≈
k(T, ωc) and γc ≈ γ(T, ωc).

Bernoulli equation

For one component fluids the Bernoulli equation for inviscid22 flow along a
streamline can either be formulated by direct application of Newton’s second
law to a fluid particle moving along a streamline [114] [10] or derived projecting
the generalized momentum equation (1.78) onto a streamline. Applying the
latter approach, the Navier-Stokes equation for non-viscous fluids becomes:

ρ
Dv
Dt

= −∇p + ρg (1.230)

Introducing vorticity23 into the acceleration term, using the vector identity
[184] [114]:

(v · ∇)v = ∇v2

2
− v × ω (1.231)

and let g = −gez. The result is

22 In an inviscid flow the fluid is treated as non-viscous and non-conducting.
23 The vorticity vector, ω, is a measure of rotational effects, being equal to twice

the local rate of rotation (angular velocity) of a fluid particle (i.e., ω = curl(v) =
rot(v) = ∇×v = 2Ω) [168]. Many flows have negligible vorticity, ω ≈ curl(v) ≈ 0,
and are appropriately called irrotational flows.
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ρ
∂v
∂t

+ ∇(p +
1
2
ρv2 + ρgz) = ρv × ω (1.232)

Again the LHS is the sum of the classical Euler terms of inviscid flow.
We restrict our attention to steady flow, so the Euler equation in vector form
becomes

∇p

ρ
+

1
2
∇v2 + g∇z = v × ω (1.233)

We next take the dot product of each term with a differential length ds
along a streamline. Hence,

∇p

ρ
· ds +

1
2
∇v2 · ds + g∇z · ds = v × ω · ds (1.234)

Since ds has a direction along the streamline, the vectors ds and v are
parallel. However, the vector v×ω is perpendicular to v, thus v×ω · ds = 0.

Furthermore, as the dot product of the gradient of a scalar and a differ-
ential length gives the differential change in the scalar in the direction of the
differential length, (1.234) becomes

dp

ρ
+

1
2
d(v2) + gdz = 0 (1.235)

where the changes in p, v and z are along the streamline. Integrating
(1.235) gives

∫

dp

ρ
+

v2

2
+ gz = Constant (1.236)

which indicates that the sum of the three terms on the LHS of the equa-
tion must retain a constant along a given streamline. The equation is also
valid for both compressible and incompressible inviscid flows. However, for
compressible fluids the variation in ρ with p must be specified before the first
term in (1.236) is evaluated. Compressible flow is not of primary concern at
this stage in the book, so we restrict the present analysis to incompressible
flows. For further studies on compressible flows, the reader may consult the
textbooks by [185] [114].

For inviscid, incompressible fluids (commonly called ideal fluids) (1.236)
yields,

p

ρ
+

v2

2
+ gz = Constant (1.237)

It is often convenient to write (1.237) between two points (1) and (2) along
a streamline and to express the equation in the head form by dividing each
term by g so that
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p1

ρg
+

v2
1

2g
+ z1 =

p2

ρg
+

v2
2

2g
+ z2 (1.238)

It is emphasized that the Bernoulli equation, derived from the Euler equa-
tion, is restricted to steady-, inviscid- and incompressible flow along a stream-
line.

For incompressible flows the same equation is valid even for viscous fluids
if the flow is irrotational. This is shown next, starting out from the Navier-
Stokes equation (1.78). If the fluid is incompressible, with constant μ and ρ,
the Navier-Stokes equation becomes

ρ
Dv
Dt

= −∇p + μ∇2v + ρg (1.239)

Introducing vorticity into both the acceleration and the viscous terms,
using the vector identity (1.231) for the acceleration and a similar one for the
viscous term [184, 11]:

∇2v = ∇(∇ · v) − curl(ω), (1.240)

the result is:

ρ
∂v
∂t

+ ∇(p +
1
2
ρv2 + ρgz) = ρv × ω − μcurl(ω) (1.241)

The LHS is the sum of the classical Euler terms of inviscid flow. The RHS
vanishes if the vorticity is zero, regardless of the value of viscosity. Thus, if
ω = 0 which is the classic assumption of irrotational flow, the steady mo-
mentum equation reduces to the Bernoulli equation for steady incompressible
flow:

∇(p +
1
2
ρv2 + ρgz) = 0 (1.242)

Under the given conditions, it is not necessary to integrate the equation along
a streamline. Therefore, the Bernoulli equation can be written:

p1

ρg
+

v2
1

2g
+ z1 =

p2

ρg
+

v2
2

2g
+ z2 (1.243)

between any two points in the flow field. Equation (1.243) is seemingly exactly
the same form as (1.238), but is not limited to application along a streamline.

It is emphasized that the Bernoulli equation (1.243), as derived from the
Navier-Stokes equation, is still restricted to steady-, irrotational- and incom-
pressible flow.

It may also be worthwhile noting that many more classical flow analysis
are based on similar simplifications24.

24 Inviscid, incompressible and irrotational flow fields are governed by Laplace’s
equation and are called potential flows, as the velocity in such flows can be ex-
pressed as the gradient of a scalar function called the velocity potential.
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Another equation that resembles the Bernoulli equation very much is de-
rived from the total energy balance [168]. For one component fluids the total
energy equation (1.96) can be written:

ρ
D

Dt
(e +

1
2
v2 + Φ) = −∇ · q − p∇ · v − v · ∇p−∇ · (σ · v) (1.244)

This equation can be reformulated by use of the continuity equation, to
obtain the following relationship:

p∇ · v = −p

ρ

Dρ

Dt
= ρ

D

Dt
(
p

ρ
) − Dp

Dt
(1.245)

which yields:

ρ
D

Dt
(e +

p

ρ
+

1
2
v2 + gz) = −∇ · q +

∂p

∂t
−∇ · (σ · v) (1.246)

where we have assumed that the only body force acting on the system is the
gravity force.

In process engineering the energy equation (1.246) is often expressed in
terms of enthalpy, h = e + p

ρ , hence25:

ρ
D

Dt
(h +

1
2
v2 + gz) = −∇ · q +

∂p

∂t
−∇ · (σ · v) (1.247)

Furthermore, if the flow is both steady and inviscid, the energy equation
(1.247) reduces to:

A difficulty performing potential flow analysis is that these models do not
satisfy the no-slip condition at a solid wall, which requires that both the normal
and tangential velocity components vanish. This is because the assumption of
irrotationality eliminates the second order velocity derivatives from the basic
equation leaving only first order derivatives, so that only one velocity condition
can be satisfied at a solid wall. In potential flow, then, we require only the normal
velocity to vanish at a wall and put no restriction on the tangential velocity, which
commonly slips at the wall. Apparently, at first sight potential solutions may not
seem very useful in viscous analysis, but in fact at high Reynolds numbers a
viscous flow past a solid body is primary a potential flow everywhere except close
to the body, where the velocity drops off sharply through a thin viscous boundary
layer to satisfy the no slip condition. In many cases, the boundary layer is so thin
that it does not really disturb the outer potential flow, which can be calculated
by the methods of classical fluid dynamics. This approximation has been applied
deriving expressions for many of the forces acting on solid and fluid particles (e.g.,
Magnus and Saffman lift forces) in dispersed flows.

25 As the essential function of pumps, compressors, and turbines is to change the
Bernoulli constant (h + 1

2
v2 + Φ) of a flow, one conclusion from this equation is

that such a device cannot operate without viscous forces and heat transfer in the
absence of unsteadiness.
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ρv · ∇(h +
1
2
v2 + gz) = 0 (1.248)

These inviscid flows are said to be reversible adiabatic or isentropic26.
For isentropic flow, the Gibb’s equation (e.g., see (1.138) and set dS = 0

and dωc = 0, for c = 1, N) gives dh = dp
ρ , and the energy equation (1.248)

becomes:

ρv · ∇(
p

ρ
+

v2

2
+ gz) = 0 (1.250)

That is, for incompressible flows the quantity (p
ρ + v2

2 + gz) has no variation
in the direction of v denoting a streamline. Therefore, under these conditions
integration yields,

p1

ρg
+

v2
1

2g
+ z1 =

p2

ρg
+

v2
2

2g
+ z2 (1.251)

This relation is seemingly identical to the classical Bernoulli equation (1.238)
along a given streamline. It is emphasized that the Bernoulli equation (1.251),
as derived from the energy balance (1.96), is restricted to steady-, incompre-
ssible- and isentropic flows.

From the former discussion we conclude that proper use of the various
forms of the Bernoulli equation requires close attention to the assumptions
used in their derivation.

In addition, real process units are neither completely inviscid, irrotational
or isentropic, thus several extended forms of the Bernoulli equation are used in
practice constituting various forms of energy balances containing loss and/or
work terms. Two extremely important variants of the original relation are
outlined in the following paragraphs.

For steady incompressible flow with one inlet and one outlet, both assumed
1D, the integral form of (1.246) reduces to a simple relation between the flow
at two cross section planes (1) and (2) as used in engineering calculations:

e1 +
p1

ρ
+

v2
1

2
+ gz1 = e2 +

p2

ρ
+

v2
2

2
+ gz2 − q + ws + wv (1.252)

26 The origin of this phrase is revealed analyzing the entropy equation. For isentropic
flows the entropy equation (1.167) for one component fluids reduces to:

Ds

Dt
= 0 (1.249)

where both the heat conduction, q, and the dissipation, μΦviscous, are neglected.
It is seen that for isentropic flows the entropy of a given fluid particle is con-

stant.
Further note that the terms adiabatic and isentropic are not synonymous.

By definition, an adiabatic flow has q = 0 everywhere within the flow field. By
virtue of the entropy equation (1.167), an adiabatic flow is isentropic only if the
dissipation μΦviscous is also zero.
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where q denotes the heat transferred to the fluid per unit mass, ws denotes
the shaft work performed by pumps, turbines, etc and wv denotes the viscous
work.

If we again divide through by g, we express the equation in the head
(length) form as:

e1
g

+
p1

ρg
+

v2
1

2g
+ z1 =

e2
g

+
p2

ρ
+

v2
2

2g
+ z2 −

q

g
+

ws

g
+

wv

g
(1.253)

Applying the steady energy equation to low speed liquid flow in pipes with
no shaft work and negligible viscous work, yields:

p1

ρg
+

v2
1

2g
+ z1 =

p2

ρg
+

v2
2

2g
+ z2 +

e2 − e1 − q

g
(1.254)

The last term on the RHS represents the loss of useful or available energy
that occurs in an incompressible fluid because of friction [185, 114].

With the given restrictions this equation is identical to the 1D mechanical
energy equation for the flow between the two points (1) and (2), as can be
derived directly from (1.124) [11, 102]:

p1

ρg
+

v2
1

2g
+ z1 =

p2

ρg
+

v2
2

2g
+ z2 +

Δpf

ρg
(1.255)

where Δpf denotes the pressure drop due to friction. Equation (1.255) is
sometimes referred to as the extended Bernoulli equation for viscous flows.

Anyhow, (1.255) is not properly closed yet as the pressure drop variable is
still undetermined. Therefore, before we can apply (1.255) we need to param-
eterize the losses in terms of known flow parameters in pipes, valves, fittings,
and other internal flow devices. Assuming that the viscous stress tensor re-
duces to a single shear stress component per unit wall surface (e.g., [102]
[185]), Δpf per unit cross sectional area can be related directly to the friction
drag force on the tube wall surface −σWπDL. That is, since the friction drag
force in a horizontal tube with a constant rate of flow is given by Δpf (π

4 )D2,
the wall shear stress yields:

−σW =
Δpf

π
4D

2

πDL
=

ΔpfD

4L
= μ(

dv

dy
)W (1.256)

or
Δpf = −4

L

D
σW (1.257)

where the distance between the two points (1) and (2) is denoted by L, and
the tube diameter is denoted by D.

Experience shows that the wall shear stress, −σW , is nearly proportional
to the kinetic energy, ρv2

2 . Hence, the pressure drop can be expressed
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Δpf ≈ 4fρ
L

D

v2

2
(1.258)

where f = −σW

ρ v2
2

is the Fanning friction factor which can be found from

friction factor charts as a function of both the Reynolds number and the
surface roughness of the tube. Such charts are given in most basic textbooks
on transport processes [102] [185]. Equation (1.258) is valid for duct flows of
any cross section (i.e., if the diameter D is replaced by the hydraulic diameter
Dh) and for laminar and turbulent flow. For other flow devices equivalent tube
friction lengths can be determined experimentally [102].

1.2.6 Gross Scale Average Forms of the Governing Equations

The microscopic transport equations are often considered too complex for
practical applications considering reactor optimization, scale-up and design.
In engineering practice integral averages of the equations over one, two or
three spatial directions are used reducing the model to that of an ideal reactor
model type.

It is, for example, very common in reactors to have flow predominantly in
one direction, say, z in a tubular reactor. The major gradients then occur in
that direction. For many cases the cross-sectional average transport equations
may thus be very useful.

A detailed derivation of the area-averaged single phase transport equations
is presented in the this section.

Area-Averaged Single Phase Transport Equations

The area averaging procedure that is examined in this section is based on the
theory given by [14] [33] [34] [35]. The primary aim is to provide the necessary
theorems to derive the cross-sectional averaged equations that coincide with
the conventional 1D chemical reactor model from first principles. To formulate
these theorems we chose to adopt the same concepts as are later used deriving
the corresponding multiphase equations in sect 3.4.6. Following the approach
of Delhaye and Achard we start out from an analysis of a small volume of
a pipe with variable cross-section area and deduce the limiting forms of the
Leibnitz’ and Gauss’ theorems for area considered valid in the limit Δz → 0.
For this reason it is emphasized that these theorems are actually derived for
a volume but reduces to an area formulation introducing certain simplifying
approximations.

Given a tube, axis Oz (unit vector ez) in which a volume V is cut by a fixed
cross section plane over area, A, as sketched in Fig. 1.4. The lateral dimensions
of the control volume extend to the conduit walls. In this notation, n, is the
outward directed unit vector normal to the surface of the control volume.
nl is the outward directed unit vector normal to the closed curve, lW (t, z),
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bounding the cross section plane. lW (t, z) is the intersection of the control
volume wall interface with the cross sectional plane.

The local instantaneous balance equation (1.3) is integrated over the cross
section area A limited by the pipe wall boundary lW (t, z). The pipe cross
section is not necessary uniform but it is assumed that there is no mass flow
through the pipe wall. The basic averaging problem is defined by:

∫

A(t,z)

∂(ρψ)
∂t

da +
∫

A(t,z)

∇ · (ρvψ)da +
∫

A(t,z)

∇ · Jda−
∫

A(t,z)

∑

c

ρcφcda = 0

(1.259)
To proceed we need to apply some particular forms of the Leibnitz rule and
of the Gauss theorems.

ez

nA2 = -ez

nA1 = ez

nl

nA 3

ΔSΔZ

dl

θ

θ

Α2

Α1

Α3

Fig. 1.4. Sketch of the control volume determining the basis for area-averaging of
the single phase equations. For the mathematical derivation of the limiting form of
the Leibnitz rule and of the Gauss theorem, note that nl ⊥ nA1 and Δz = Δs cos θ =
Δs(nA3 · nl)

.

For small Δz the Leibnitz theorem can be expressed as (see Fig 1.4):

d

dt

∫

A(t,z)

f(t, r)daΔz =
∫

A(t,z)

∂f(t, r)
∂t

daΔz +
∫

A1(t,z+Δz)

f(t, r)vA1 · nA1da

−
∫

A2(t,z)

f(t, r)vA2 · nA2da +
∫

l(t,z)

f(t, r)vA3 · nA3Δsdl

=
∫

A(t,z)

∂f(t, r)
∂t

daΔz +
∫

l(t,z)

f(t, r)vA3 · nA3

Δz

nA3 · nl
dl

(1.260)
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where we have considered the control volume surfaces at z = z and at z =
z + Δz to be stationary (i.e., vA1 = vA2 = 0). In certain physical situations
the outer boundary face (A3) may not be stationary.

Dividing by Δz, the equation can be slightly reformulated:

d

dt

∫

A(t,z)

f(t, r)da =
∫

A(t,z)

∂f(t, r)
∂t

da +
∫

l(t,z)

f(t, r)vA3 · nA3

dl

nA3 · nl
(1.261)

In the limit as Δz → 0:

d

dt

∫

A(t,z)

f(t, r)da =
∫

A(t,z)

∂f(t, r)
∂t

da +
∫

l(t,z)

f(t, r)vA3 · nA3

dl

nA3 · nl
(1.262)

In several papers the term on the left hand side in the above equation is refor-
mulated using the partial derivative operator rather than the total derivative
operator:

∂

∂t

∫

A(t,z)

f(t, r)da =
∫

A(t,z)

∂f(t, r)
∂t

da +
∫

l(t,z)

f(t, r)vA3 · nA3

dl

nA3 · nl
(1.263)

The justification of this reformulation is apparently related to the physical
interpretation of the mathematical operators used here. In this case the total
derivative notation is adopted for an operator determining the time derivation
at a fixed point in space, and not for a time derivative along a fluid particle
trajectory (see [182], p. 79 [183], p. 51 [82], p. 13).

In a slightly generalized notation the limiting form of the Leibnitz theorem
is given by:

∂

∂t

∫

A(t,z)

f(r, t)da =
∫

A(t,z)

∂f(r, t)
∂t

da +
∫

lW (t,z)

f(r, t)vW · nW
dl

nW · nl
(1.264)

where vW · nW is the displacement velocity of a point on the boundary face,
AW .

For a control volume varying in the space dimensions only, this relation
can be further simplified:

∂

∂t

∫

A(z)

f(r, t)da =
∫

A(z)

∂f(r, t)
∂t

da (1.265)

Similarly, for small Δz the Gauss theorem can be expressed as (see
Fig. 1.4):
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∫

A(t,z)

∇ · BdaΔz =
∫

A1(t,z+Δz)

nA1 · Bda +
∫

A2(t,z)

nA2 · Bda +
∫

l(t,z)

nA3 · BΔsdl

=
∫

A1(t,z+Δz)

ez ·Bda−
∫

A2(t,z)

ez · Bda +
∫

l(t,z)

nA3 · B
Δz dl

nA3 · nl

(1.266)

or
∫

A(t,z)

∇·Bda =
1
Δz

[
∫

A1(t,z+Δz)

ez ·Bda−
∫

A2(t,z)

ez ·Bda]+
∫

l(t,z)

nA3 ·B
dl

nA3 · nl

(1.267)
In the limit as Δz → 0

∫

A(t,z)

∇ · Bda =
∂

∂z

∫

A(t,z)

ez · Bda +
∫

l(t,z)

nA3 · B dl

nA3 · nl
(1.268)

In a slightly generalized notation the limiting form of the Gauss theorem
(where we let B be a vector or a tensor) is given by:

∫

A(t,z)

∇ · B da =
∂

∂z

∫

A(t,z)

ez · B da +
∫

lW (t,z)

nW · B dl

nW · nl
(1.269)

In the case of B being a vector, the component of the vector B on Oz is given
by ez · B = Bz.

If we take B = ez we obtain:
∫

A(t,z)

∇ · ezda =
∂

∂z

∫

A(t,z)

ez · ezda +
∫

l(t,z)

n · ez
dl

n · nl
(1.270)

which gives the following definition:

∂A(t, z)
∂z

= −
∫

l(t,z)

n · ez
dl

n · nl
(1.271)

Introducing these relations into the cross section area averaged equation
(1.259) yields:

∂

∂t

∫

A(t,z)

(ρψ)da +
∂

∂z

∫

A(t,z)

(ρvzψ)da +
∂

∂z

∫

A(t,z)

(ez · J) −
∑

c

∫

A(t,z)

(ρcφc)da

= −
∫

lW (t,z)

n · J dl

n · nl
+

∫

lW (t,z)

ρψnW · (vW − v)
dl

nW · nl

(1.272)
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where vz is the z-component of the velocity vector, v.
As we assume no mass flow through the pipe wall and adopt the no-slip

condition, the wall convection in the last term equals zero as nW ·(vW −v) = 0
at the wall.

The area averaging operator is defined by:

〈ψ〉A =
1
A

∫

A(t,z)

ψda (1.273)

If we apply (1.273) to the area averaged generic equation (1.272), the
generic equation can be expressed as follows in terms of area averaged quan-
tities:

∂(A〈ρψ〉A)
∂t

+
∂

∂z
(A〈ρvzψ〉A) +

∂

∂z
(A〈ez · J〉A) −

∑

c

A〈ρcφc〉A

= −
∫

lW (t,z)

n · J dl

n · nl

(1.274)

For each balance law, the values of ψ, J and φ defines the transported quantity,
the diffusion flux and the source term, respectively. v denotes the velocity
vector, T the total stress tensor, gc the net external body force per unit of
mass, e the internal energy per unit of mass, q the heat flux, s the entropy
per unit mass, h the enthalpy per unit mass, ωs the mass fraction of species
s, and T the temperature.

By means of these definitions, (1.274) gives the instantaneous area-
averaged equations for the balance of total mass, momentum, total energy,
and species mass.

Continuity Equation:
To achieve the mass balance the values of the generic quantities are defined
as specified in Table 1.1: ψ = 1, J = 0, and φc = 0.

∂(A〈ρ〉A)
∂t

+
∂

∂z
(A〈ρvz〉A) = 0 (1.275)

Momentum Equation:
To obtain the momentum balance the values of the generic quantities are
defined as specified in Table 1.1: ψ = v, J = T, and φc = gc.

∂(A〈ρv〉A)
∂t

+
∂

∂z
(A〈ρvzv〉A) +

∂

∂z
(A〈ez · T〉A)

=
∑

c

A〈ρcgc〉A −
∫

lW (t,z)

n · T dl

n · nl

(1.276)

If we split the total stress tensor T into a pressure term pe and a viscous
stress tensor σ term, the vector equation can be expressed as:
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∂(A〈ρv〉A)
∂t

+
∂

∂z
(A〈ρvzv〉A) +

∂

∂z
(A〈pez〉A)

+
∂

∂z
(A〈ez · σ〉A) =

∑

c

A〈ρcgc〉A −
∫

lW (t,z)

n · T dl

n · nl

(1.277)

The momentum equation of interest in 1D engineering analysis is nor-
mally the linear momentum equation in the axial direction. It is therefore
customary to project the terms in the equation along the tube axis. This
operation is done by taking the scalar vector product of all the terms in
(1.277) with the unit vector ez. The result is:

∂(A〈ρvz〉A)
∂t

+
∂

∂z
(A〈ρvzvz〉A) +

∂

∂z
(A〈p〉A)

+
∂

∂z
(A〈(ez · σ) · ez)〉A) =

∑

c

A〈ρcgc,z〉A −
∫

lW (t,z)

(n · T) · ez
dl

n · nl

(1.278)

It is noted that if the velocity is not constant but varies across the cross
sectional area, (1.273) can be used calculating the average of the product
occurring in the momentum equation:

〈v2
z〉A =

1
A

∫

A(t,z)

v2
zda (1.279)

To assess the physical deviation between the average of products and the
product of averages a momentum velocity correction factor can be de-
fined by CM = 〈vz〉2A/〈v2

z〉A. By use of the Hagen-Poiseuille law (1.353)
and the power law velocity profile (1.354) it follows that at steady state
CM has a value of about 0.95 for turbulent flow and 0.75 for laminar flow
[55]. In practice a value of 1 is used in turbulent flow so that 〈v2

z〉A is
simply replaced by the averaged bulk velocity 〈vz〉2A. On the other hand,
for laminar flows a correction factor is needed. For more precise calcula-
tions a simplified (not averaged!) 2D model is often considered for ideal
axisymmetric pipe flows [52, 69].
Moreover, it is frequently assumed that the pressure p is almost constant
along lW and approximated by an average wall pressure 〈p〉W . Therefore,
by use of the definition (1.271), (1.278 ) can be written as:

∂(A〈ρvz〉A)
∂t

+
∂

∂z
(A〈ρvzvz〉A) + A

∂〈p〉A
∂z

+
∂

∂z
(A〈σzz〉A)

=
∑

c

A〈ρcgc,z〉A −
∫

lW (t,z)

(n · σ) · ez
dl

n · nl
+ (〈p〉W − 〈p〉A)

∂A

∂z

(1.280)

A rough model closure can be achieved assuming that the averaged wall
pressure 〈p〉W is equal to the averaged pressure 〈p〉A. The equation can
then be slightly simplified:
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∂(A〈ρvz〉A)
∂t

+
∂

∂z
(A〈ρvzvz〉A) + A

∂〈p〉A
∂z

+
∂

∂z
(A〈σzz〉A)

=
∑

c

A〈ρcgc,z〉A −
∫

lW (t,z)

(n · σ) · ez
dl

n · nl

(1.281)

The last term on the RHS is the component of the averaged wall shear
stress in the z direction. The wall shear stress term is often rewritten as:

−
∫

lW (t,z)

(n · σ) · ez
dl

n · nl
= −〈(n · σ) · ez〉WSI (1.282)

where 〈(n ·σ) ·ez〉W is the perimenter averaged wall stress, and SI denotes
the perimenter which is defined by SI =

∫

lW (t,z)
dl

n·nl
. The averaged wall

shear stress is approximated by the expression for steady flow given by

−〈(n · σ) · ez〉lI
SI

A
≈− 1

2
f〈ρ〉A|〈vz〉A|〈vz〉A

SI

4A

= − 1
2
f〈ρ〉A|〈vz〉A|〈vz〉A

1
Dh

,
(1.283)

where Dh is the hydraulic diameter, and f is the Fanning friction factor
[180] [6] [74] [9] [82]. For fully developed flows in circular pipes and tubes
the friction factor has been determined experimentally and presented in a
so-called Moody diagram which can be found in most introductory text-
books on engineering fluid flows. The commonly used semi-empirical fric-
tion factor relations for pipe flows are [114, 13]:

f =

⎧

⎪

⎨

⎪

⎩

16
Re for Re < 2100,
0.0791
Re1/4 for 2100 ≤ Re < 105, and

1
(4.0 log(Re

√
f)−0.4)2

for 2300 < Re < 4 × 106.

(1.284)

in which the Reynolds number is defined by: Re = ρ〈vz〉Adr

μ .
Energy Equation

To achieve the energy balance the values of the generic quantities are
defined as specified in Table 1.1: ψ = (1

2v
2 + e), J = (q+ T ·v), φ = g ·v.

∂(A〈ρ(1
2v

2 + e)〉A)
∂t

+
∂

∂z
(A〈ρvz(

1
2
v2 + e)〉A)

+
∂

∂z
(A〈(T · v) · ez〉A) +

∂

∂z
(A〈q · ez〉A)

=
∑

c

A〈ρcgc · vc〉A −
∫

lW (t,z)

q · n dl

n · nl
−

∫

lW (t,z)

(T · v) · n dl

n · nl

(1.285)
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Quite often v · v = v2 ≈ v2
z when the flow is dominant in the z-direction.

This assumption is necessary in order to achieve a solvable set of equations
considering that (1.280) is used calculating 〈vz〉A.
In engineering calculations of process units it is often convenient to intro-
duce the enthalpy per unit of mass, i.e., h = e+ p

ρ , and rewrite the energy
equation as:

∂(A〈ρ(1
2v

2 + e)〉A)
∂t

+
∂

∂z
(A〈ρvz(

1
2
v2 + h)〉A)

+
∂

∂z
(A〈(σ · v) · ez〉A) +

∂

∂z
(A〈q · ez〉A)

=
∑

c

A〈ρcgc · vc〉A −
∫

lW (t,z)

q · n dl

n · nl

(1.286)

It is noted that there is no work associated with the wall stresses since
the velocity at the wall is zero (no-slip assumption) [25] [13].

Species Mass Balance
For the species mass balance the values of the generic quantities are de-
fined in accordance with Table 1.1: ψ = ωs, J = js, φ = Rs/ρc.

∂(A〈ρωs〉A)
∂t

+
∂

∂z
(A〈ρvzωs〉A) +

∂

∂z
(A〈ez · js〉A) = A〈Rs〉A (1.287)

The Governing Instantaneous Area Averaged Equations

To obtain a solvable set of equations the averages of products have to be
related to products of averages. One simple way of doing this operation is to
approximate the averages of products by the products of averages27. A closed
set of modeled instantaneous area averaged equations is listed below.

Continuity Equation:
The instantaneous area averaged continuity equation deduced from (1.275)
is expressed as:

∂

∂t

(

〈ρ〉A
)

+
1
A

∂

∂z

(

A〈ρ〉A〈vz〉A
)

= 0 (1.288)

Momentum Equation:
The instantaneous area averaged momentum equation deduced from
(1.280) is expressed as:

27 There are also other more sophisticated methods available to relate the average
of products to the products of average as discussed in chap 3.3. Nevertheless, the
conventional model formulation used in chemical reaction engineering is normally
derived in accordance with the procedure given in this section.
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∂

∂t

(

〈ρ〉A〈vz〉A
)

+
1
A

∂

∂z

(

A〈ρ〉A〈vz〉A〈vz〉A
)

= −∂〈p〉A
∂z

− 1
A

∂

∂z

(

A〈σzz〉A
)

+
∑

c

〈ρcgc,z〉A

− 1
2
f〈ρ〉A|〈vz〉A|〈vz〉A

SI

4A
+

1
A

(〈p〉W − 〈p〉A)
∂A

∂z

(1.289)

in which the last term is retained in case a more elaborated closure for
the wall pressure is required.

Energy Equation
The instantaneous area averaged energy equation deduced from (1.285) is
expressed as:

∂

∂t

(

〈ρ〉A(
1
2
〈v〉2A + 〈e〉A)

)

+
1
A

∂

∂z

(

A〈ρ〉A〈vz〉A(
1
2
〈v〉2A + 〈e〉A)

)

+
1
A

∂

∂z

(

A(〈T〉A · 〈v〉A) · ez

)

+
1
A

∂

∂z

(

A〈q · ez〉A
)

=
∑

c

〈ρc〉A〈gc〉A · 〈vc〉A − 〈n · q〉W
SI

A

(1.290)

To be able to apply the 1D equations one often has to estimate terms
that cannot be calculated directly without further empirical information,
or we might simply neglect the insignificant terms for each particular
application. The work associated with the term (〈T〉A · 〈v〉A) · ez can be
split into two contributions. In chemical reactor analysis (and many other
low Mach number flows in chemical engineering [13]) the viscous work
(〈σ〉A · 〈v〉A) · ez is normally neglectable relative to the pressure work
〈p〉A〈vz〉A.
The wall heat flux term can be approximated in terms of the convective
heat transfer coefficient:

−〈n · q〉W
SI

A
= −hW (〈T 〉A − 〈T 〉W )

SI

A
(1.291)

Alternatively, the wall heat transfer flux can be expressed in terms of an
overall heat transfer coefficient. For reactors with constant cross-sectional
area A the geometric factor reduces to SI

A = 2πRr

πR2
r

= 2
Rr

= 4
dr

. It is
understood that Rr and dr are the radius and diameter of the reactor
(tube).
Formulating the equation in terms of the enthalpy per unit of mass, h =
e + p

ρ , we obtain:
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∂

∂t

(

〈ρ〉A(
1
2
〈v〉2A + 〈e〉A)

)

+
1
A

∂

∂z

(

A〈ρ〉A〈vz〉A(
1
2
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Mechanical Energy Equation
The engineering mechanical energy equation is derived by multiplying
(1.289) with the averaged velocity 〈vz〉A. That is,

〈vz〉A
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∂
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]

(1.293)

After a little manipulation of the terms, we get:
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(1.294)

A more rigorous formulation of the mechanical energy equation might
be achieved by averaging the fundamental kinetic energy equation (1.124)
over the cross-section area. If the velocity is not constant but varies across
the cross sectional area we can use (1.273) to calculate the average of the
products occurring in the corresponding 1D kinetic energy equation:

〈v3
z〉A =

1
A

∫

A(t,z)

v3
zda (1.295)

Again, to assess the physical deviation between the average of products
and the product of averages a kinetic-energy velocity correction factor
can be defined by CK = 〈v3

z〉A/〈vz〉3A. By use of the Hagen-Poiseuille law
(1.353) and the power law velocity profile (1.354) it follows that at steady
state CK takes a value of about 0.95 for turbulent flow and 0.5 for laminar
flow [55]. In practice a value of 1 is used in turbulent flow so 〈v3

z〉A is simply
replaced by the averaged bulk velocity 〈vz〉3A.
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Internal Energy Equation
The instantaneous area averaged internal energy equation can be derived
by subtracting the mechanical energy equation (1.294) from the total en-
ergy equation (1.290). The result can be expressed as:
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in which the bulk viscous dissipation terms are neglected. In addition,
the work term given by the dot product between the species mass diffu-
sion flux and the body forces other than gravity is approximated by the
z-component of the actual term.

Enthalpy Equation
The instantaneous enthalpy balance can be derived from (1.296) by intro-
ducing the area averaged enthalpy per unit of mass: 〈h〉A = 〈e〉A + 〈p〉A

〈ρ〉A
.

The result is [74]:
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(1.297)

Temperature Equation
The instantaneous temperature equation can be derived from (1.297) by
use of the complete differential (1.142). The area averaged form of the
complete differential can be approximated as:
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(1.298)

After reformulating the terms on the LHS of (1.297) by use of the area av-
eraged continuity equation (1.288), we can eliminate the enthalpy quantity
by use of the given relation (1.298). The area averaged enthalpy balance
is then written as an equation for temperature:
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Species Mass Balance
The instantaneous species mass balance is deduced from (1.287) replacing
the average of products with the products of average:

∂(〈ρ〉A〈ωs〉A)
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∂

∂z
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= − 1
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∂
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(A〈Js,z〉A) + 〈Rs〉A

(1.300)

1.2.7 Dispersion Models

In chemical reaction engineering single phase reactors are often modeled by a
set of simplified 1D heat and species mass balances. In these cases the axial
velocity profile can be prescribed or calculate from the continuity equation.
The reactor pressure is frequently assumed constant or calculated from simple
relations deduced from the area averaged momentum equation. For gases the
density is normally calculated from the ideal gas law. Moreover, in situations
where the velocity profile is neither flat nor ideal the effects of radial convective
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mixing have been lumped into the dispersion coefficient. With these model
simplifications the semi-empirical correlations for the dispersion coefficients
will be system- and scale specific and far from general.

Axial Dispersion models

The axial dispersion model is developed based on the 1D form of the govern-
ing equations given in sect 1.2.6. However, the instantaneous area averaged
model equations are also Reynolds averaged to enable reactor simulations with
practicable time resolutions. For the time after area averaged models, the in-
stantaneous variables are decomposed and Reynolds averaged in the standard
way. If we drop the averaging signs, the basic 1D species mass balance deduced
from (1.300) is given by:

∂

∂t
(ρωs) +

∂

∂z
(ρvzωs) =

∂

∂z
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∂ωs

∂z
) + Rs (1.301)

and the corresponding heat or temperature equation deduced from (1.299)
yields:
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) + Rs(−ΔHRs

) +
4U
dr

(Tsur − T ) (1.302)

where Tsur is the temperature of the surroundings and U is an overall heat
transfer coefficient. In addition, the effective transport coefficients are included
as a reminder that the temporal covariances resulting from the Reynolds av-
eraging procedure are normally modeled adoping the gradient hypothesis and
the Boussinesq turbulent viscosity concept.

The initial conditions used for dynamics reactor simulations depend upon
the start-up procedure adopted in industry for each particular chemical pro-
cess. A possible set of initial conditions corresponds to uniform variable fields
given by the inlet values.

The initial condition at t = 0:

vz =vz,in

ρ =ρin

ωs =ωsin

T =Tin (1.303)

The proper choice of boundary conditions has been extensively discus-
sion in the literature. The conditions most frequently used those proposed by
Danckwerts [26].

The inlet boundary condition at z = 0:

vz,inρinωs,in =ρvzωs − ρDeff
dωs

dz
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ρinvz,incpTin =ρvzcpT − keff
dT

dz
(1.304)

The outlet boundary condition at z = L:

dωs

dz
=

dT

dz
= 0 (1.305)

Baerns et al [4], Froment and Bischoff [52] and Scott Fogler [48] discuss nu-
merous applications of this model in chemical reaction engineering.

1.3 Application of the Governing Equations
to Turbulent Flow

Most flows occurring in nature and engineering applications are said to be tur-
bulent. Still it is difficult to provide a complete definition of this phenomenon.

Hinze [66] presents the following definition: Turbulent fluid motion is an
irregular condition of flow in which the various quantities show a random
variation with time and space coordinates, so that statistically distinct average
values can be discerned.

Tennekes and Lumley [167] find it more appropriate to list the charac-
teristics of turbulent flow such as: Irregularity (or randomness), diffusivity,
large Reynolds numbers, three dimensional vorticity fluctuations and dissipa-
tion. Turbulence is not a feature of fluids, but of fluid flows thus a continuum
phenomenon.

In the modern theory of fluid dynamic systems the term turbulence is
accepted to mean a state of spatiotemporal chaos (e.g., [155], chap 5). That
is, the fluid exhibits chaos on all scales in both space and time. Chaos theory
involves the behavior of non-linear dynamical systems and their response to
initial and boundary conditions. Using such methods it can be shown that
although the solution of the Navier-Stokes is apparently random for turbulent
flows, its behavior presents some orderly structures. In addition, the numerical
solution of the Navier-Stokes equations is sometimes strongly dependent on
the initial conditions, thus even very small inaccuracies in the initial conditions
may be fatal providing completely erroneous results28.

28 The latter effect is often ‘nicely’ exemplified through poor weather forecasts.
Naturally, the meteorologists are not able to define exact initial conditions based
on their statistical analysis of the available weather observations. Consequently,
poor forecasts are likely to be predicted for those regions or those times where the
simulations are highly sensitive to the initial conditions. Fortunately, performing
a large number of simulations of the same forecast, in which every single one
of these simultaneous simulations is ran with small perturbations in the initial
conditions, can provide information on the reliability of the forecast produced by
use of an (ensemble) average model.
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To quantitatively describe turbulent flows, we usually turn to the basic
equations of fluid mechanics that describe the dynamics of the flow. This
seems plausible because the average size of the turbulent structures is large
in comparioson with the mean free path of the molecules of the fluid. In prin-
ciple, it is believed that single phase turbulent flows are exactly represented
by these three dimensional time dependent transport equations (e.g., [112]
[113] [66] [106] [121] [15], chap 10). Based on these equations three theoret-
ical methodologies have been suggested in the literature enabling numerical
analyzes of turbulent flows (for further details, see for example the textbook
of [121]). Those are the direct numerical simulation (DNS), the large eddy
simulation (LES), and the statistical approach. In DNS, the ‘un-averaged’
governing equations are solved to determine v(r, t) for one realization of the
flow. Statistical analysis of the resulting numerical data could theoretically
provide information such as turbulent fluctuations, the root-mean-square ve-
locity, the frequency and wavenumber spectra, and their mutual interaction.
However, although the existing numerical methods are capable of solving these
equations, the numerical solutions are also limited due to constraints in com-
puter time and storage since all length - and timescales in the flow have to be
resolved. DNS is thus extremely computationally expensive and restricted to
low Reynolds number flows as the computational cost increases rapidly with
increasing Reynolds numbers. In addition, these equations contain time and
space derivatives that require initial and boundary conditions for their solu-
tion. Although the governing equations may be applied directly to turbulent
flows, rarely do we have sufficient initial and boundary condition information
to resolve all turbulent scales down to the smallest eddy. Therefore, in prac-
tice, this approach is not very useful for chemical reactor analyzes. In LES,
the governing equations are solved for a filtered velocity field which is repre-
sentative of the larger scale turbulent motions. The equations solved usually
include a model for the influence of the smaller scale motions which are not re-
solved. However, the LES approach still provides information on the dynamics
and structure of turbulence on the larger scales. The filtering procedure is, of
course, introduced to reduce the computational costs, compared to the DNS
simulation approach. In practice, however, the method is still too computa-
tionally expensive for chemical reactor analyzes. Only a very limited number
of preliminary reactor flow LES simulations have been performed in academia
for research purposes so far, but the application of the LES concept (or LES
hybrids) is expected to increase in the near future as the computer capacity
continues to be improved. Therefore, the fundamental LES concepts are pre-
sented in the end of this chap. Consequently, in quantifying turbulent effects
one necessarily has to resort to the statistical Reynolds averaging approach.
The Reynolds averaged equations are solved to determine the mean veloc-
ity field, v(r, t). In the simplest versions of these approaches, the Reynolds
stresses are obtained from a turbulent viscosity model. In reactor model sim-
ulations the turbulent viscosity is either obtained from an algebraic relation
(such as the mixing length model) or from turbulence quantities such as k
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and ε for which modeled transport equations are solved. In a limited number
of papers, the Reynolds stress model is used, for which modeled transport
equations are solved for the Reynolds stresses, thus obviating the need for a
turbulent viscosity.

The aim of this sect. is not to provide a comprehensive review of turbulence
modeling, as can be found elsewhere (e.g., [66] [154] [106] [186] [139] [121]
[15]). The intension is rather to outline the essential ingredients involved in
single phase turbulence modeling, determining the basis theory for multiphase
turbulent modeling in the context of engineering practice discussed in the
subsequent chaps. in this book.

Although the main emphasis in this chap is put on the Reynolds aver-
aging approach, some results obtained using more fundamental statistical
approaches to turbulence are provided in an introductory paragraph. This
highly theoretical work, together with experimental validation, has for exam-
ple discovered the existence of a energy cascade mechanism, the characteristic
length and time scales, the return to isotropy principle, etc. These are features
of turbulence that could not be predicted by studying the conservation laws
alone.

In the first three paragraphs of this chap some of the important charac-
teristics of fluid turbulence are described. This includes the turbulence energy
spectrum and Fourier analysis in wave space. Some basic statistics for describ-
ing turbulence are also presented. The fourth paragraph gives a semi-empirical
analysis of turbulent boundary layer flows. In the fifth paragraph Reynolds
averaged models are discussed. In the last paragraph large eddy simulation
(LES) models are discussed.

1.3.1 Origin and Characteristics of Turbulence

In flows which are originally laminar, turbulence arises from instabilities at
large Reynolds numbers. Turbulence cannot maintain itself but depends on
its environment to obtain energy. A common source of energy for turbulent
velocity fluctuations in single phase flow is shear in the mean flow. Other
sources such as buoyancy is very important in the geophysical sciences. Thus,
if turbulence arrives in an environment where there is no shear or other main-
tenance mechanism, it decays, the Reynolds number decreases and the flow
tends to become laminar again. Mathematically, the details of transition from
laminar to turbulent flow are rather poorly understood (e.g., [38]). Much of
the theory of instabilities in laminar flows is linearized theory, valid for very
small disturbances. It cannot deal with the large fluctuation levels in turbu-
lent flow. On the other hand, almost all of the theory of turbulent flow is
asymptotic theory, fairly accurate at very high Reynolds numbers but inac-
curate and incomplete for Reynolds numbers at which the turbulence cannot
maintain itself. Experiments have shown that the transition from laminar to
turbulent flow is commonly initiated by a primary instability mechanism. The
primary instability produces secondary motions, which may become unstable
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themselves. A sequence of this nature generates intense localized disturbances,
which arise at random positions at random times. These spots grow rapidly
and merge with each other when they become large and numerous to form
a field of developed turbulent flow. Many wake flows on the other hand be-
come turbulent due to an instability that causes vortexes which subsequently
become unstable. The latter mechanisms are very important in multi-phase
flows.

Further discussions on the classical fluid dynamic stability theory can be
found elsewhere (e.g., [112], chap 1; [38]; [139], chap 15).

Modern theories and concepts describing the initial dynamic evolution
of fluid motions leading to the onset of turbulence, explaining experimental
observations of instability phenomena, are typically rather theoretical and
usually not considered by chemical reaction engineers. The interested reader is
referred to texts on chaos theory and non-linear dynamics (e.g., [155], chap 5).

Signature of Turbulence

Considering high resolution experimental data of velocity measured over a
certain time period, as shown in Fig. 1.5, a number of features of turbulence
stand out (e.g., [154], chap 2; [121]; [15], chap 1):

• The velocity varies in an irregular pattern, a characteristic signature of tur-
bulence. This quasi-randomness is what makes turbulence different from
other motions, like waves.

• The limited ability to find a statistically stable mean, or typical value,
suggest that turbulence is not completely random (e.g., [112], chap 2).
The interpretation that the fluctuations in the flow quantities are randomly
distributed has been modified with the discovery of orderly structures,
sometimes called coherent structures, within the flow. Coherent structures
within fluid flows, and the modeling of these phenomena, are further dis-
cussed by [70] [71].

• There is a measurable and definable intensity to the turbulence that shows
up as the small scale spread of velocity.
Such a bounded characteristic of the velocity means that we can use statis-
tics such as the variance or standard deviation to characterize the turbu-
lence intensity.

• There appears to be a wide variety of time scales of velocity variations
superimposed on top of each other.
For example, if we look closely at the high resolution experimental data
we see that the time period between each little peak in the velocity profile
has a certain characteristic small scale. The larger peaks seem to happen
at another somewhat larger scale. There will also be other variations that
indicate much larger time periods. If each of these time variations is as-
sociated with a different size turbulent eddy (i.e., the Taylor’s hypothesis
[164]), then we can conclude that we are seeing the signature of eddies
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having different sizes. In other words, we are observing evidence of the
spectrum of turbulence.
Perhaps an association to another physical phenomena which is more gen-
erally accepted, will help understanding this property of turbulence. The
turbulence spectrum is analogous to the spectrum of colors that appears
when you shine a light through a prism [164]. White light consists of many
colors (i.e., many wavelengths or frequencies) superimposed on one an-
other. The prism is a physical device that separates the colors. We could
measure the intensity of each color to learn the magnitude of its contri-
bution to the original light beam. We can performed a similar analysis
on a turbulent signal using mathematical rather than physical devices to
learn about the contribution of each different size eddy to the total tur-
bulence kinetic energy. Therefore, although the physical interpretation of
the experimental data may indicate a labyrinth of motions, turbulence
may be idealized as consisting of a variety of different sized eddies. In this
mathematical context, the eddies behave in a well-ordered manner when
displayed in the form of a spectrum.
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Fig. 1.5. A typical velocity signal recorded by a laser Doppler anemometer (LDA)
in a liquid flow at NTNU. 〈v〉 dentotes the time average of the velocity over the
time period displayed. The work was performed as a part of the strategic university
program (SUP) entitled ‘CFD Applied to Reactor ProcEss Technology (CARPET)’.
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1.3.2 Statistical Turbulence Theory

Introductory it is noted that the researchers developing the classical statisti-
cal turbulence theory were statisticians (statistical fluid mechanics), physicist
and meteorologists rather than chemical engineers. This has the unfortunate
consequence that the descriptions of this theory, as found in most textbooks
on turbulence and statistical fluid mechanics, are not easily understood by
chemical reaction engineers partly due to the unacquainted conceptual vo-
cabulary and mathematical nomenclature adopted in these books. Another
reason is language problems as much of the pertinent literature is not written
in English, and so the references given in the english-language literature are
often misleading as the original contents are neither precisely translated nor
interpreted.

At this point in our presentation it is thus obvious that we need to define
a common language for the researchers working on the edge between these
fields of science (i.e., fluid dynamics, statistics, meteorology and chemical en-
gineering) to avoid any ambiguity. However, the statistical turbulence theory
is rather involved mathematically and difficult to explain in only a few words.
Therefore, it is found more convenient to present a brief historical survey of
the main milestones and scientific concepts developed during the last century.
Emphasis is put on the physical interpretations of these concepts, avoiding
future developments of ill posed reactor model closures. The fundamental
theory is available elsewhere, for example in the books by [66] [8] [112] [113].
The classic papers on statistical turbulence theory have been collected in a
publication by [51]. An early review of the statistical theory of turbulence was
published by [40].

Turbulent motions are irregular and seemingly unpredictable. This is the
most spectacular characteristic which distinguishes turbulent flows from lami-
nar flows. The first scientific study of turbulence, performed by Reynolds [126],
relates to this difference. Reynolds did study flows through pipes of constant
diameter and by using the ‘method of color bands’ clearly established that
there are two fundamentally different flow regimes, laminar and turbulent
flows. Reynolds also determined the conditions under which transition took
place. This is now described in terms of the critical Reynolds number. The
Reynolds number used in modeling fluid flow is thus named after him.

Reynolds [127] provided the fundamental ideas about averaging and was
the first to accomplish the formulation of the governing equations for tur-
bulent flows in terms of mean and fluctuating flow quantities rather than
instantaneous quantities. Reynolds stated the mathematical rules for forming
mean values. That is, he suggested splitting a turbulent velocity field into its
mean and fluctuating components, and wrote down the equations of motion
for these two velocity quantities.

The decomposition of the instantaneous velocity variable into its mean
and fluctuation is thus referred to as Reynolds decomposition. This procedure
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is still the most common method of analyzing turbulent flows, and it is known
as Reynolds averaging.

According to the ideas of Boussinesq [19] [20], the first turbulent closures
was based on the gradient hypothesis and the coefficient of eddy viscosity.

The eddy concept was thus introduced. An eddy still eludes precise def-
inition, but in one interpretation it is conceived to be a turbulent motion,
localized within a region of a certain size, that is at least moderately coherent
over this region. The region of a large eddy can also contain smaller eddies.

In an early study Taylor [157] put forth the mixing length ideas based
on analogies with the discontinuous collisions between discrete entities that
have been studied in the kinetic theory of gases (i.e., about ten years before
Prandtl’s similar ideas were published [123], but the idea has been tradition-
ally attributed to Prandtl). However, logical difficulties arise considering the
mixing length concept because there are no discrete fluid particles in the tur-
bulent flow which retain their identity.

Later Taylor began to search for more suitable means for the the descrip-
tion of turbulence [165]. The statistical approach to the study of turbulence
was initiated by a paper by Taylor [158]. In the work of Taylor [158] on tur-
bulent transport the important role of the Lagrangian29 correlation function
(i.e., the one point time correlation) of the velocity field was first demon-
strated. Taylor showed that the turbulent diffusion of particles starting from
a point depends on the correlation between the velocity of a fluid particle
at any instant and that of the same particle after a certain correlation time
interval.

29 The adjective ‘Lagrangian’ is used to indicate that the correlation relates to mov-
ing fluid particles (e.g., [167], p. 46 [113], p. 539). The adjective ‘Eulerian’ is used
whenever correlations between two fixed points in a fixed frame of reference are
considered.

Unfortunately, not all texts describing the turbulence correlation functions are
using the same notation. Hinze ([66], p. 45) find it more logical to rename these
functions using the opposite notation. That is, considering the correlation between
the values of a velocity component in a given direction at a fixed point in the flow
field at two different instants t′ and t + t′, the resulting correlation was called
Eulerian as the measurements were performed at one fixed point in space.

Subsequent textbooks considering statistical turbulence theory adopt either of
the two notations possibly making some vagueness for the readers. The chemical
engineering textbooks of Baldyga and Bourne [5] on turbulent mixing, and the
interdisciplinary textbook of Biswas and Eswaran [15] on turbulent flow exper-
iments and modeling both use the notation introduced by Hinze. However, the
classical books (e.g., [167] [113]) and papers (e.g., Taylor’s papers) on statistical
turbulence theory use the other notation.

Therefore, to minimize the level of vagueness jumping from one notation to the
other, in this book we adopt the original notation induced by Taylor as defined
above.
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For a statistically stationary process, the simplest multi-time statistic
that can be considered is the auto-covariance (i.e., the one-point two-time
correlation ):

RL(s) = v′(t)v′(t + s) (1.306)

or, in normalized form, the autocorrelation coefficient (e.g., [167], sect. 6.4):

ρL(s) = v′(t)v′(t + s)/v′2(t) (1.307)

where v′(t) = v(t) − v(t) is the fluctuation.
Because we are working with stationary variables, the autocorrelation gives

no information on the origin of time, so that it can only depend on the time
difference: s. The autocorrelation coefficient is the correlation coefficient be-
tween the process at time t and t + s.

The Lagrangian integral time scale of the process is defined by:

ΓL =

∞
∫

0

ρL(s)ds (1.308)

The value of ΓL is a rough measure of the longest interval over which v(t) is
correlated with itself.

The microscale τL, which is defined by the curvature of the autocorrelation
coefficient at the origin (i.e., for s=0):

d2ρL

ds2
|s=0 =

−2
τ2
L

(1.309)

Expanding ρL in a Taylor series about the origin, we can write, for small s
([158]; see also [167], sect 6.4; [66], sect 1-8),

ρL(s) = 1 +
s2

2!
(
∂2ρL

∂s2
)|s=0 +

s4

4!
(
∂4ρL

∂s4
)|s=0 + ... = 1 − s2

τ2
L

+ O(s4) (1.310)

in which τL is the Lagrangian time scale which characterize the most rapid
changes of v1(t).

Richardson ([129], page 66) introduced the idea of the energy cascade.
Richardson’s view of the energy cascade is that the turbulence can be consid-
ered to be composed of eddies of different sizes, and the energy is transferred
from larger eddies to smaller eddies until it is drained out by viscous dissi-
pation. Richardson’s notation is that the large eddies are unstable and break
up, transferring their energy to somewhat smaller eddies. However, Richard-
son did forward these general ideas only in qualitative form and did not make
any deduction that could be formulated in precise mathematics.

In Taylor’s analysis of turbulent flow the velocity field is considered ran-
dom, in the sense that the variable does not have a unique value (i.e., the
same value every time an experiment is repeated under the same set of con-
ditions). Random functions of time in specific literature are also often called
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random processes. However, this does not mean that turbulence is a random
phenomena.

The idea that the correlation functions and other statistical moments of
the fluid mechanical fields must be recognized as the fundamental character-
istics of turbulence was first stated by Keller and Friedmann ([80]; see also
[8], sect 2.2; [112], chap 2), who proposed a general method of obtaining the
differential equations for the moments of arbitrary order for the description
of turbulent flow. The determination of all such moments is equivalent to the
determination of the corresponding probability distribution in the functional
space. The total infinite Friedmann-Keller system of equations for all possible
moments gives an analytical formulation of the problem of turbulence. How-
ever, analytical treatment of the problem is not feasible unless one confines
attention to the very simplest kinds of averaged quantities (i.e., involving one-
or two-point correlation functions). The desire to make practical calculations
of complex flows has led to the development of approximate methods which
make computer simulations of turbulent flows feasible. In one interpretation
the hypothesis adopted in these theories permits the closure of a set of equa-
tions representing a lower order approximations to the infinite Friedmann-
Keller system. A specific set of equations, the Reynolds equations, containing
only single point first and second order moments of the fluid mechanical field
is usually adopted. In statistical terms, the mean velocity and the Reynolds
stresses are the first and second moments of the Eulerian probability dis-
tribution function (PDF) of velocity. Such a method doesn’t provide much
information about the structure (spectrum) of turbulence and the dynam-
ics of interactions between the turbulent vortexes. The two-point correlations
(or moments) contain more information about the structure of turbulence.
Therefore, in the scientific literature it is implied that the methods employ-
ing the second-order two-point correlations (or even higher order functions)
constitutes the fundamental, statistical approach to turbulence, while restrict-
ing the complexity to the use of the second-order one-point correlations only
is considered an engineering approach. Nevertheless, the two-point structure
function information is essential for improving the engineering models includ-
ing second-order closures. In addition, the study of many physical phenom-
ena in reactor systems requires information on the turbulence structure (e.g.,
phase and species mixing, coalescence and breakage of fluid particles).

A statistical theory of turbulence which is applicable to continuous move-
ments and which satisfies the equations of motion was introduced by Taylor
[159, 160, 161] and [162, 163], and further developed by von Kàrmàn [178, 179].
Most of the fundamental ideas and concepts of the statistical turbulence the-
ory were presented in the series of papers published by Taylor in 1935. The
two-point correlation function is a central mathematical tool in this theory.
Considering the statistics of continuous random functions the complexity of
the probability density functions needed in a generalized flow situations was
found not tractable in practice. An idealized flow based on the assumption of
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statistical homogeneity greatly simplified the analysis. Taylor [159, 160, 161]
went further still and considered isotropic turbulence.

The velocity field is statistically homogeneous if all statistics are invariants
under a shift in position. If the field is also statistically invariant under rota-
tions and reflections of the coordinate system, then it is statistically isotropic.
In chemical reaction engineering these mathematical definitions are usually
somewhat relaxed, since turbulence is said to be isotropic if the individual
velocity fluctuations are equal in all the three space dimensions. Otherwise it
is said to be an-isotropic. Similarly, a flow field where turbulence levels do not
change from one point to another is called homogeneous.

Homogeneous isotropic turbulence is a mathematical idealization of real
turbulence, that was introduced by [159], allowing us to simplify the analysis of
turbulence considerably, and thus gain insight into its behavior. Nevertheless,
real turbulent flows do rarely approach homogeneity and isotropy. However,
by using the homogeneous and isotropic turbulence concept the mathemati-
cal problem simplifies considerably and it is possible to obtain many specific
mathematical results which explain several aspects of turbulent flows.

After Taylor’s work was reported, von Kàrmàn [178] noticed that the mean
values of the products of the velocities at two (or more points) were tensors.
The realization of van Kàrmàn [178] that the correlation is a tensor simplified
the analysis considerably because a know tensor in one coordinate system can
be transformed it into other coordinate systems simply by adopting the rules
of such transformations for second order tensors. For the purposes of simpli-
fication, von Kàrmàn also introduced the assumption of self-preservation of
the shape of the velocity product function during decay.

In the following we will consider some basic results of the statistics of such
a homogeneous isotropic turbulent field. The consequences of homogeneity
and isotropy for the correlation functions were worked out by von Kàrmàn
and Howarth [179] and the full derivations are available in classical books like
[66, 8, 112, 113].

The simplest statistic containing information on the spatial structure of
the random field is the two-point, one time auto-covariance:

Rij(t,x) = vi(r + x, t)vj(r, t) (1.311)

which is often referred to as the two-point correlation. For homogeneous
turbulence in particular the correlation tensor Rij(t,x) is a function of the
vector x defining the separation of the two points in space, but independent
of r. From this correlation tensor it is possible to define several integral length
scales.

According to von Kàrmàan and Howarth [179], a consequence of isotropy
is that Rij can be expressed in terms of two scalar functions f(t,x) and
g(t,x) identified as the longitudinal and transverse autocorrelation functions,
respectively. There are two distinct longitudinal length scales, Λf and λf ,
that can be defined from f , and there are also two corresponding transverse
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length scales Λg and λg, defined from g. The first of the Eulerian length scales
obtained from f(t,x) is the longitudinal integral scale:

Λf (t) =

∞
∫

0

f(t,x)dx (1.312)

Λf is a characteristic length of the larger eddies.
In isotropic turbulence, the transverse integral scale

Λg(t) =

∞
∫

0

g(t,x)dx (1.313)

is just half of Λf .
The second length scale obtained from f(t,x) is the longitudinal Taylor

microscale, λf .
As f(t,x) and g(t,x) are even functions of x because of isotropy (i.e.,

f(t,x) = f(−x, t), etc.), all the odd derivatives of f(t,x) and g(t,x) vanish
as x → 0. Therefore, Taylor series expressions for f(t,x) and g(t,x), around
x = 0, can be written as (e.g., [66], chap 1):

f(t,x) = 1 +
x2

2!
(
∂2f

∂x2
)|x=0 +

x4

4!
(
∂4f

∂x4
)|x=0 + ... = 1 − x2

λ2
f

+ O(x2) (1.314)

and

g(t,x) = 1 +
x2

2!
(
∂2g

∂x2
)|x=0 +

x4

4!
(
∂4g

∂x4
)|x=0 + ... = 1 − x2

λ2
g

+ O(x2) (1.315)

The Taylor microscale λf is now defined as a length scale which for a very
small x values gives:

f(t,x) ≈ 1 − x2

λ2
f

(1.316)

where
1
λ2

f

= −1
2
(
∂2f

∂x2
)|x=0 (1.317)

and

g(t,x) ≈ 1 − x2

λ2
g

(1.318)

where
1
λ2

g

= −1
2
(
∂2g

∂x2
)|x=0 (1.319)

It was shown by Taylor [159] that an analysis of the dissipation term occurring
within the turbulent kinetic energy balance equation (derived later in this
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chap) shows that in isotropic turbulence the energy dissipation rate is equal
to:

ε = 15ν(
∂v′1
∂x1

)2 (1.320)

Taylor re-formulated the expression for the length scale (see, e.g., [66],
sect. 1-6) such that

(
∂v′1
∂x1

)2 =
2v′2

λ2
f

=
2v2

rms

λ2
f

(1.321)

The turbulent velocity scale is often approximated by, vrms =
√

v′iv
′
i/3, the

root-mean-square of the fluctuating velocity components.
In isotropic turbulence, it was shown that λf ≈

√
2λg. It then follows that

the energy dissipation rate is given by:

ε = 15ν
v′2

λ2
g

(1.322)

The dissipation rate can be defined as:

ε = 15ν
v2
rms

λ2
g

= 30ν
v2
rms

λ2
f

(1.323)

Taylor [159] stated that λg can be regarded as a measure of the diameter
of the smallest eddies which are responsible for the dissipation of turbulent
energy. Pope ([121], p. 199) stated that this statement is incorrect, because
it incorrectly supposes that vrms is the characteristic velocity of the dissi-
pative eddies. The characteristic length scale of the smallest eddies are the
Kolmogorov scale, η = (ν3

ε )1/4 as will be further discussed shortly.
The Taylor microscale does not represent any distinct group of eddies, but

the ratios vrms
λg

and vrms
λg

are fair estimates of the rate of strain characterizing
viscous dissipation of energy (e.g., [5], p. 148).

Further details on this theory are given by Tennekes and Lumley ([167],
sect. 3.2), Hinze ([66], chap 1) and Pope ([121], p. 198).

According to Taylor [159] [160] [161], the properties of the Lagrangian
scales are similar to the Eulerian correlation scales. Although the statistical
turbulence theory is derived in terms of the Eulerian correlation functions,
accurate measurements of the Lagrangian scales and correlations are easier
and direct. In contrast, the measurements of Eulerian correlations requires
two probes simultaneously working at two different locations.

Taylor [164] thus suggested that turbulence might be considered “frozen”
in a wind field as it advects past a sensor. A physical interpretation of this
statement is that, if v̄ � v′, the fluctuations at a fixed point of the field may be
imagined to be caused by the whole turbulent flow field passing that point as



1.3 Application of the Governing Equations to Turbulent Flow 111

a “frozen” field (i.e., the probe is assumed to be within a large almost homoge-
neous eddy during the time interval of sampling). The velocity fluctuations at
that point will then be nearly identical to the instantaneous distribution of the
velocity v′ in a frame moving with the mean velocity (i.e., the probe follows
the mean flow). Accordingly, as can be shown mathematically, the average
wind speed could be used to translate Lagrangian turbulence measurements
as a function of time to their corresponding Eulerian measurements in space.

In mathematical terms, the frozen turbulence approximation, known as
Taylor’s hypothesis, refers to a simple mathematical relation between statisti-
cal temporal auto-covariances and spatial correlation functions approximately
valid for quasi-steady homogeneous turbulent flow.

If we can assume that the homogeneous turbulent field has a constant mean
velocity, v1, then we can express Taylor’s hypothesis of frozen turbulence as:

∂

∂t
= v1

∂

∂x1
(1.324)

The integral Lagrangian-Eulerian conversion relation yields:

Λ = v1ΓL (1.325)

and the corresponding microscale relation is:

λ = v1τL (1.326)

The mathematics involved is explained by several authors (e.g., [66], sect. 1-8;
[121], p. 223; [15], p. 205; [154], p. 5).

Experimentalists often rely on this hypothesis interpreting experimental
turbulence data. However, turbulence is not really “frozen”. The accuracy of
this approximation depends both upon the properties of the flow and on the
statistics being measured. Many experiments on complex turbulent flows have
shown that Taylor’s hypothesis can fail.

Taylor [159] also formulated a relation estimating the energy dissipation
rate in terms of the larger scales of turbulence. Taylor didn’t discuss the
detailed derivation of this relation, but it may be derived in the following
approximate manner ([167], p. 20). Assuming that the largest eddy sizes in
turbulent flows do most of the transport of momentum and other quantities,
these large eddies may be the relevant length scale in the analysis of the
interaction of the turbulence with the mean flow. The amount of turbulent
kinetic energy absorbed by the larger turbulent eddies per unit mass may then
be proportional to the square of the characteristic turbulent velocity scale of
the largest eddies, v′2 = vrms. The rate of energy transfer is assumed to be
proportional to v/L (i.e., the reciprocal of the time scale of the large eddies),
where L represents the size of the largest eddies. One may interpret the size
of the large, energy containing eddies as the integral scale of turbulence30,
30 The integral scales are those that correspond to the energy containing eddies,

which also form the large (but not necessarily the largest) scales of the turbulent
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Λ (e.g., [15], sect. 2.2.5 [106] [167]), which can be measured by statistical
methods. The rate of energy supply to the smaller scale eddies is thus of
order v2

rmsvrms/Λ. It can be shown that the production of the kinetic energy
of turbulence at the larger length scales (v3

rms/L) determines the rate of energy
dissipation, ε, at small length scales when the cascade of kinetic energy is in
some kind of equilibrium. Hence, the energy is dissipated at a rate ε and this
equals the supply rate. In accordance with Taylor [159], we can thus write:

ε ∼ v3
rms

Λ
(1.327)

This means that we can get an inviscid estimate for the dissipation rate from
the large scale dynamics which do not involve viscosity. This implies that only
a small fraction of the kinetic energy contained in the larger eddies is lost by
direct viscous dissipation effects.

Taylor [159] further speculated that there may exist very small scale eddies
which, though they play a very small part of diffusion, yet may be principal
agents in the dissipation of energy.

Unfortunately, the simplified engineering method doesn’t provide much
information about the structure of turbulence and the dynamics of the in-
teractions between the turbulent vortexes. The only structural information
extracted from the second moments in relation to the structure of turbulence
is the length scale, Λ, and the only information in relation to the dynam-
ics of turbulence is the time constant representing the eddy turnover time31,
τe ≈ Λ

vrms
≈ Λ

(Λε)1/3 = Λ2/3

ε1/3 .
Further contributions to the subject were made by Taylor in 1938. Two im-

portant consequences of the non-linearity of the Navier-Stokes equations were
identified: First, the skewness of the probability distribution of the difference
between the velocities at two points, and the existence of an interaction or
modulation between components of turbulence having different length scales.
Secondly, the Fourier transform of the correlation between two velocities is
an energy spectrum function in the sense that it describes the distribution
of kinetic energy over the various Fourier wave-number components of the
turbulence [164]. Taylor expressed in mathematical form the relation between
the correlation function and the 1D spectrum function.

field (e.g., [66], chap 1). The integral length scales also roughly correspond to the
distance over which the velocity fluctuations at one point are correlated with the
velocity at another point, and the integral time-scales correspond to the time-
intervals over which the velocity fluctuations at the same point are correlated.

31 τe can be interpreted as the time necessary to decrease significantly the size
of the structure having initially size Λ. Another interpretation is that it is the
time constant for the rate of kinetic energy dissipation when the cascade is in
dynamic equilibrium (steady state), and a third interpretation could be that it is
an estimate of a time necessary to transfer the kinetic energy from the scale Λ to
the scale of dissipation.
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The two-point one time correlation functions, in the form presented in the
preceding discussion, are not suitable for analyzing motions at different scales
and specifically they are not suitable for understanding relations between
movements of fluid characterized by different length and time scales. That is
why it is better to use the 3D Fourier transforms of two-point correlations
and to decompose them into waves of different frequencies or wave numbers.
Turbulence has by definition a 3D character so it is obvious that the spectrum
has to be 3D as well, to characterize turbulence properly. The 1D spectrum of
Taylor (see, e.g., [66]) oversimplifies the observed features of turbulence and
may give misleading interpretations of the 3D field (see also, [113], p. 18). The
differences and consequences of 1D and 3D spectrum analysis are discussed
by Hinze ([66], sects. 1-12 and 3-4) and Pope ([121], sect. 6.5).

In the early investigations of the energy cascade by Richardson [129] and
Taylor [159, 160, 161, 164], the transfer of energy to successively smaller scales
was identified as a phenomenon of prime importance, but the precise mecha-
nisms by which this transfer takes place was not identified or quantified. This
was further accomplished by the work of Kolmogorov [83, 84].

The theory of Kolmogorov [83] was stated in the form of three hypotheses.
The first hypothesis is apparently based on the homogeneous and isotropic
concepts of Taylor [159] [160] [161]. Although the large eddies are in general
anisotropic and affected by the boundaries of the flow, it was postulated by
Kolmogorov [83], and later validated experimentally, that the smaller scales
are less affected by the boundaries and thus demonstrate a certain degree
of isotropy. In Kolmogorov’s notation the orienting effect of the mean flow
is weakened with each eddy breaking down, due to the chaotic nature of
the energy transfer processes. The theory of locally isotropic turbulence thus
constitutes an important addition to the assumptions on the energy cascade.

Approximately stated Kolmogorov’s hypothesis of local isotropy yields
([83]; see also [121], p. 184): At sufficiently high Reynolds number, the small
scale turbulent motions are statistically isotropic.

The second hypothesis concerns the very smallest dissipative eddies. Kol-
mogorov’s [83] universal equilibrium theory of the isotropic small scale struc-
ture of turbulence is based on the assumption that when the Reynolds number
is sufficiently high, a range of high wave numbers is produced in which turbu-
lence is in both statistical- and dynamic equilibrium. The phrase ‘statistical
equilibrium’ denotes the postulate that the rate of energy transfer from the
large scales determines an almost constant rate of energy transfer through
the successively smaller scales until the energy is dissipated at the very small-
est scales. Hence, the net rate of energy transfer at all the scales within this
range of wave numbers is given by the dissipation rate. The phrase ‘dynamic
equilibrium’ denotes the postulate that the small eddies will evolve much
more rapidly than the large eddies which contain most of the energy. That is,
within a certain range of wave numbers, i.e., the universal equilibrium range
of wave numbers, the timescales τe,l ≈ l/vrms(l) are small compared with
τe ≈ Λ/vrms(Λ) so that the small eddies can adapt quickly to changes in
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the large scale conditions. In this wavenumber range turbulence may be con-
sidered statistically quasi-steady. This statistically quasi-steady equilibrium
state is said to be universal as turbulence in this wavenumber range is inde-
pendent of the large scale conditions, thus any change in the length- and time
scales of this part of turbulence can only be a result of the ‘local’ effect of the
parameters ε and ν.

Given these two parameters three unique length, velocity, and time scales
can be formed from dimensional analysis, i.e., the Kolmogorov microscales:

η = (
ν3

ε
)1/4 (1.328)

τ = (ν/ε)1/2 (1.329)

v = (νε)1/4 (1.330)

Approximately stated Kolmogorov’s first similarity hypothesis yields ([83];
see also [121], p. 185): In every turbulent flow at sufficiently high Reynolds
number, the statistics of the small scale motions have a universal form that
is uniquely determined by ν and ε.

The phrases ‘similarity hypothesis’ and ‘universal form’ refer to a math-
ematical consequence of the Kolmogorov hypothesis denoting that on the
small scales all high-Reynolds-number turbulent velocity fields are statisti-
cally similar. That is, they are statistically identical when they are scaled by
the Kolmogorov velocity scale ([121], p. 186).

The third hypothesis concerns the motions of scale l in the range L ≈
Λ � l � η assumed to prevail in the universal equilibrium range. Kolmogorov
postulated that the universal equilibrium range extends to scales much larger
than η. If the energy is expected to be dissipated at the very smallest scales
only, there must exist an inertial subrange of scales in which the viscosity will
no longer play any role. That is, the statistical regime will be determined by
a single parameter ε.

Approximately stated Kolmogorov’s second similarity hypothesis yields
([83]; see also [121], p. 186): In every turbulent flow at sufficiently high
Reynolds numbers, the statistics of the motions of scale l in the range
L ≈ Λ � l � η have a universal form that is uniquely determined by ε,
but independent of ν.

Note that the Kolmogorov hypothesis, and deductions drawn from them,
apparently have no direct connection to the Navier-Stokes equations.

Hinze ([66], sect 3-4) derived an analytical expression for the 3D spec-
trum E(k, t) as a function of wave number k and time t. This result shows
that E(k = 0) ≈ 0, then the spectrum function increases rapidly, reaches a
maximum value, and decreases monotonously to zero as k increases.

Figure 1.6 shows an example of such a velocity spectrum determining a
generalized spectral energy distribution for single phase flow. The ordinate
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is a measure of the portion of turbulence energy that is associated with a
particular size eddy. The abscissa gives the eddy size in terms of wave number
(k) which is proportional to the velocity fluctuation frequency (k ∝ f/v1).
Small eddies have higher frequencies, thus larger wave numbers, than large
eddies (using Taylor’s hypothesis). According to Tennekes and Lumley ([167],
p. 259), the eddy size l is roughly equal to 2π/k. Peaks in the spectrum show
which size eddies contribute the most to the turbulence kinetic energy. As seen
from the Fig. 1.6, the smaller high frequency eddies are very week. The large
primary eddies, which are formed as the flow builds up, are known as macro
eddies and cause large velocity fluctuations of low frequency. This eddy size
is comparable to the characteristic dimensions of the flow system concerned.

Fig. 1.6. Energy spectrum graph, taken from Hinze ([66], p. 229). The Fig is re-
produced with permission of the McGraw-Hill Companies, copyright date January
07, 2005.

Large eddy motions can create shear regions, which can generate smaller
eddies as a result of disruptions32.

Eddies with wave numbers in the region of (ke) (see Fig. 1.6) contain
the largest part of the energy and contribute little to energy dissipation by
internal friction. However, small eddies with wave numbers in the region of

32 Tennekes and Lumley ([167], p. 258) presented a different mechanism. They imag-
ined that the smaller eddies are exposed to the strain-rate field of the larger ed-
dies. Because of the straining, the vorticity of the smaller eddies increases, with
a consequent increase in their energy at the expense of the energy of the larger
eddies.
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(kd) are produced from the non-ordered diffuse movement of the large high
energy eddies. At the smallest size eddies, this cascade of energy is dissipated
into heat by molecular viscosity. Hence, a turbulent flow situation is made
up of macro eddies which act as an energy reservoir, these in turn producing
micro eddies in which flux energy is dissipated by internal friction.

The hypotheses of Kolmogorov allow a number of additional deductions
to be formulated on the statistical characteristics of the small-scale compo-
nents of turbulence. The most important of them is the two-third-law deduced
by Kolmogorov [84]. This law states that the mean square of the difference
between the velocities at two points of a turbulent flow, being a distance x
apart33, equals C(εx)2/3 when x lies in the inertial subrange. C is a universal
model constant. Another form of this assertion (apparently first put forward
by Obukhov [116] [117]) is the five-third law . This law states that the spectral
density of the kinetic energy of turbulence over the spectrum of wave num-
bers, k, has the form Ckε

2/3k−5/3 in the inertial subrange. Ck is a new model
constant (see e.g., [8], sect. 6.4).

From the experimentally determined energy spectrum we can obtain the
mean turbulent energy per unit mass of fluid MTKE(t), the turbulent energy
dissipation rate per unit mass of fluid ε(t), and the integral length scale Λf (t).

That is, MTKE(t) can be expressed in terms of the energy spectrum as
(e.g., [15], p. 48):

MTKE(t) =

∞
∫

0

E(k, t)dk =
1
2
v

′
iv

′
i (1.331)

Likewise, one can write ε in terms of the energy spectrum as (e.g., [15], p. 51):

ε(t) = 2ν

∞
∫

0

k2E(k, t)dk (1.332)

and, for the integral length scale one may write (e.g., [15], p. 50; [106]; [121],
p. 240):

Λf (t) =

3π
2

∞
∫

0

k−1E(k, t)dk

E(t)
(1.333)

33 Kolmogorov [83][84] introduce the concept of structure functions describing pro-
cesses with stationary - or homogeneous increments.

By definition, the second order velocity structure function is the covariance of
the difference in velocity between two points in space. A consequence of isotropy
is that the structure function can be expressed in terms of a single scalar function.
According to the similarity hypotheses of Kolmogorov, the scalar function can be
expressed as: Bdd(x) = δv2 ≈ C(εx)2/3. δv is a derived velocity scale sometimes
used in reactor analysis.
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In parallel to the research on the turbulent velocity field, investigations
were made concerning the local structure of the fields of passive scalars like
chemical species concentrations and temperature. A thorough review of this
theory is given by Baldyga and Bourne [5], so this vast theory will not be
repeated in this book.

Instead, this paragraph is ended by a few comments on the validity of the
basic hypotheses of Kolmogorov for chemical reactor flows. It is noted that
the physical basis of the Kolmogorov similarity hypotheses was questioned
by Landau and Lifshitz ([92], p. 126; i.e., note that the first Russian edition
of the book was apparently printed as early as in 1944). Landau’s remark
was concerned with the effect of fluctuations in the energy dissipation rate on
the small scale properties of turbulence. It was argued that these fluctuations
must depend on the Reynolds number and other mean flow parameters, thus
they cannot be strictly universal. A consequence of this correction is that
the two-thirds and five-third laws may retain their form, but the coefficients
in these relations are not universal constants as anticipated by Kolmogorov
and Obukhov. It was speculated that these factors vary as functions of the
probability distribution for ε (see also [113], p. 584). Obukhov [118] and Kol-
mogorov [86] obviously found these remarks valid, thus some refinements of
the original hypotheses concerning the local structure of turbulence were dis-
cussed. However, these model limitations have apparently not yet attracted
wide attention in the chemical engineering research community as many re-
actor model closures still rely on the preliminary ideas of Kolmogorov.

1.3.3 Reynolds Equations and Statistics

In engineering practice only very simple statistics of turbulence is used based
on the average (mean), the fluctuation (standard deviation) and the second
moment (fluxes) taken at one point in space (i.e., one point time correlation
functions).

In the following we will thus present some basic statistical methods useful
for determining turbulence quantities from experimental data, and show how
these measurements of turbulence can be put into the statistical model frame-
work. Usually, this involves separating the turbulent from the non-turbulent
parts of the flow, followed by averaging to provide the statistical descriptor.
We will survey some of the basic methods of statistics, including the mean,
variance, standard deviation, covariance, and correlation (e.g., [66], chap 1;
[154], chap 2; [156]).

By averaging our velocity measurements over a certain time period, we
can eliminate or average out the positive and negative deviations of the tur-
bulent velocities about the mean. Once we have the mean velocity, v, for any
time period, we can subtract it from the actual instantaneous velocity, v, to
calculate the turbulent part, v′:

v′ = v − v (1.334)
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The velocity fluctuation represents the flow that varies with periods shorter
than the averaging time period. Recall that turbulence is a 3D phenomena.
Therefore, we expect that fluctuations in the x-direction might be accompa-
nied by fluctuations in the y- and z- directions. Turbulence, by definition, is
a type of motion. Yet motions frequently cause variations in the temperature
and concentration fields as well, if there is some mean gradient of that variable
across the turbulent domain. Hence, it is common practice to portion each of
these variables into mean and turbulent parts in the same manner as for the
velocity.

A mean quantity can be defined by time, space, and ensemble averages.
The time average applies at one specific point in space, and consists of

a sum or integral over a time period T . For any variable, A(t, r), that is a
function of time, t, and space, r:

A(r) =
1
N

N−1
∑

i=0

A(i, r) (1.335)

or

A(r) =
1
T

T
∫

t=0

A(t, r)dt (1.336)

where t = iΔt for the discrete case.
The spatial average, which applies at some instant in time, is given by a

sum or integral over the spatial domain. For example, the volume average is
given by the sum or integral over the macroscopic volume V :

〈A〉V (t) =
1
N

N−1
∑

j=0

A(t, j) (1.337)

or

〈A〉V (t) =
1
V

V
∫

V =0

A(t, V )dv (1.338)

where V = jΔV for the discrete case.
An ensemble average consists of the sum over N identical experiments:

〈A〉e(t, r) =
1
N

N−1
∑

n=0

An(t, r) (1.339)

or
〈A〉e(t, r) =

∫

ε

A(t, r;μ)p(μ)dμ (1.340)

In the definitions above, Δt = T/N and ΔV = V/N , where N is the number
of data points. p(μ)dμ denotes the probability of observing μ in the interval
dμ, where μ is some realization and ε is all realizations of the ensemble.
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In principle, for laboratory experiments the ensemble average is the most
desirable because it allows us to reduce random experimental errors by re-
peating the basic experiment. However, we often have problems performing
repeatable experiments in a operating process equipments and the physical
interpretation of the experimental data is complicated.

Spatial averages are possible by deploying an array of sensors covering a
line, area, or volume. If the turbulence is homogeneous (i.e., statistically the
same at every point in space) then each of the sensors in the array will be
measuring the same phenomenon, making a spatial average meaningful. Most
practical flow situations are rarely homogeneous meaning that most spatial
means are averaged over a variety of different phenomena. By proper choice
of sensor array domain size as well as intra-array spacing, one can sometimes
isolate scales of phenomena for study, while averaging out the other scales.
Volume averaging is impossible using point measurements such as thermome-
ters because of the difficulty of deploying these sensors at all locations within
the grid volumes of finite extent. However, sensors that can scan volumes of
the flow making proper volume averages of selected variables are available
[156]. On the other hand, such measurements are difficult to perform due to
enormous storage requirements. Area averaging is somewhat easier to perform
within small area domains, but still proper measurements may be difficult to
perform. Line averages are similarly performed by erecting sensors along one
direction only.

Time averages are frequently used, and are computed from sensors mounted
on a single fixed location site. The relative ease of making observations at a
fixed point have made this technique the most popular one for practical ap-
plications.

For turbulence that is both homogeneous and stationary (statistically not
changing over time), the time, space and ensemble averages should all be
equal. This is called the ergodic condition, which is sometimes assumed to
make the turbulence problem more tractable.

Using Reynolds decomposition the instantaneous quantities in the instan-
taneous equation are considered as sums of the mean (averaged) and fluctu-
ating components. Substituting the instantaneous quantities with their de-
composited sum and averaging, yields the averaged equations. The resulting
time averaged equation will, in addition to proper means, contain unknown
non-linear averaged terms which have to be modeled separately. These models
are very often of semi-empirical nature and need to be validated.

Experimental measurements describing the detailed characteristics of the
flow pattern including statistical data analysis is thus of vital importance.
On the other hand, statistical descriptors such as the variance, covariance,
standard deviation and turbulence intensity are of limited usefulness unless
we can physically interpret them.

The variance, σ2
A, is a statistical measure of the dispersion of data about

the mean defined by:
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σ2
A =

1
N

N−1
∑

i=0

(Ai −A)2 (1.341)

This is known as the biased variance. It is a good measure of the dispersion of a
sample of a flow variable, but according to the statistical definition not the best
measure of the dispersion of the whole population of possible observations. A
better estimate of the variance (an unbiased variance) of the population, given
a sample of data, is:

σ2
A =

1
N − 1

N−1
∑

i=0

(Ai −A)2 (1.342)

When N is large 1/N ≈ 1/(N − 1), and as a result the biased definition is
often used for convenience.

Recall that the turbulent part of the turbulent variable is given by a′ =
A−A. Substituting this into the biased definition of variances and comparing
the result with the definition of averages gives:

σ2
A =

1
N

N−1
∑

i=0

a
′2
i = a′2 (1.343)

Thus, whenever we encounter the average of the square of a turbulent part of
a variable, such as v′2

x , v′2
y , v′2

z , we can interpret these as variances.
The standard deviation is defined as the squared root of the variance:

σA = a
′2
i

1/2
(1.344)

The standard deviation (or root-mean-square, rms, amplitude) always has the
same dimensions as the original variable. It can be interpreted as a measure of
the magnitude of the spread or dispersion of the original data from its mean.
For this reason, it is used as a measure of the intensity of turbulence.

The turbulence intensity is expected to increase as the mean velocity vx

increases, hence a dimensionless measure of the turbulence intensity, I, is
often defined as:

Ix =
σvx

vx
(1.345)

Iy =
σvy

vy
(1.346)

Ix =
σvz

vz
(1.347)

In statistics, the covariance between two variables is defined as:

covar(A,B) =
1
N

N−1
∑

i=0

(Ai −A)(Bi −B) (1.348)

Using the Reynolds averaging methods, we can show that:
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covar(A,B) =
1
N

N−1
∑

i=0

a′ib
′
i = a′b′ (1.349)

Thus the non-linear turbulence products that were introduced by the aver-
aging process applied to the governing equations have the same meaning as
covariances.

The covariance indicates the degree of common relationship between the
two variables, A and B. For example, let A represent air temperature, T ,
and let B be the vertical velocity, vz. In the earths atmosphere, we might
expect the warmer than average air to rise (positive T ′ and positive v′z), and
the cooler than average air to sink (negative T ′ and negative v′z). Thus, the
product v′zT

′ will be positive on the average, indicating that vz and T vary
together.

Sometimes, one is interested in a normalized covariance. Such a relation-
ship is defined as the linear correlation coefficient, rAB :

rAB =
a′b′

σAσB
(1.350)

This variable ranges between −1 and +1 by definition. Two variables that
are perfectly correlated (i.e., vary together) yield r = 1. Two variables that are
perfectly negatively correlated (i.e., vary oppositely) yield r = −1. Variables
with no net variation together yield r = 0.

The definition of kinetic energy per unit volume is ρv2

2 , whereas the kinetic
energy per unit mass is just v2

2 . It is common to partition the kinetic energy
of the flow into a portion associated with the mean velocity, v2

2 , and a portion

associated with the turbulence, v′2

2 . We can thus write the relations:

Kinetic Energy of the Mean flow =
1
2
(v2

x + vy
2 + vz

2) (1.351)

Mean Turbulent Kinetic Energy = k =
1
2
(v′2

x + v′2
y + v′2

z ) (1.352)

1.3.4 Semi-Empirical Flow Analysis

In industrial reaction engineering the simplest reactors are designed like tubes
or pipes, and even the more complex reactor designs are often idealized
as tubes to ease the modeling complexity. Therefore, before we proceed on
the CFD related modeling issues the idealized or approximate engineering
pipe velocity formulas are given as they are still very useful for simple hand
calculations.
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Engineering Pipe Flow Design Formulas

From the introductory courses in fluid flow one recalls that the simple
parabolic profile for laminar flow in a pipe, the Hagen-Poiseuille law , is derived
by integration of a sufficiently simplified form of the generalized momentum
equation (see e.g., [13], Example 3.6-1):

vz(r)
vz,max

= 1 − (
r

R
)2 (1.353)

where the maximum velocity at r = 0 can be calculated from the cross-
sectional averaged velocity, vz,max = 2〈vz〉A.

Unfortunately, it is not possible to derive an analogue velocity profile for
turbulent flow in an analytical manner based on the generalized momentum
equations. However, a number of entirely empirical relations of similar sim-
plicity exist for the velocity profile in turbulent pipe flow. One such relation
often found in introductory textbooks on engineering fluid flow is the power
law velocity profile:

vz(r)
vz,max

= (1 − r

R
)1/7 (1.354)

where vz,max is the velocity at the centerline of the pipe (i.e., the centerline
velocities are not the same in the two flow regimes).

The latter relation is often used as a reasonable approximation for turbu-
lent pipe flows in engineering practice. That is, for fully developed turbulent
flows this relation provides a reasonable approximation to the measured ve-
locity profiles across most of the pipe radius. However, a brief examination of
this relation shows that the power-law profile cannot be valid near the wall,
since according to this equation the velocity gradient is infinite there. In addi-
tion, the simple relation cannot be precisely valid near the centerline because
it does not give: dvz

dr = 0 for r = 0.
The purpose of performing CFD model simulations is to obtain more accu-

rate predictions of the flow fields, thus precise boundary conditions are needed.
From the previous discussion it is rather obvious that for CFD reactor simu-
lations the empirical turbulent velocity profile formula for simple pipes is not
very useful providing accurate boundary conditions at reactor walls. In the
following subsections we thus consider the Prandtl mixing-length model and
a more advanced concept for analyzing simple wall shear flows, i.e., exampled
through a fully developed shear flow past a flat plate, where the mean velocity
vector is assumed to be parallel to the wall. This simple flow is of practical
importance and has played a prominent role in the historical development of
the study of turbulent wall flows. The important step forward using this con-
cept is that the boundary layer approach provides a local description of the
flow structure in the vicinity of solid walls. That is, the model is apparently
generic and valid on local scales for most turbulent solid wall flows.
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Prandtl’s Mixing-Length Model

The mixing-length model of Prandtl [123] for flow near a solid boundary is
based on an analogy between the chaotic motion of eddies and the random
motion of molecules in dilute gases (kinetic theory).

In Cartesian coordinates the Reynolds shear stress ρv′xv′y represents a flux
of x-momentum in the direction of y. Prandtl assumed that this momentum
was transported by discrete lumps of fluid, which moved in the y direction over
a distance l without interaction conserving the momentum and then mixed
with the existing fluid at the new location. The mixing length, l, is supposed
to be a variable analogous to the mean free path of kinetic theory in this
process.

Prandtl’s model derivation can then be briefly sketched, introducing the
Boussinesq [19] [20] approximation for the turbulent viscosity. Starting out
with the simple kinetic theory relation that the molecular viscosity equals the
molecular velocity times the mean free path, an analogous relation can be
formulated for the turbulent viscosity in terms of the turbulent mixing length
and a suitable velocity scale, νt ≈ lv′x.

The Prandtl velocity scale yields:

v′x = l|dvx

dy
| (1.355)

Supported by experimental observations, v′y is assumed to be of the same
order of magnitude as v′x in the constant stress layer near a solid boundary.
Hence, we may define Prandtl’s mixing length model as:

ρv′xv
′
y ≈ −μt

dvx

dy
≈ −ρl2(dvx

dy
)2 (1.356)

In the inner part of the boundary layer l is often estimated by l = κy (e.g.,
[66]), where κ is known as the von Kàrmàn constant.

This relation has been used successfully for many boundary layer flows.
However, it is today generally accepted that the physical equivalence between
the turbulent mixing length and the molecular mean free path is completely
erroneous. The turbulent eddies are not small compared to the width of the
mean flow, and they interact continuously rather than collide instantaneously.
This model limitation was already recognized by Taylor [157].

The mixing length model of Prandtl [123] is further discussed by McComb
[106], sect. 1.5.2), Hinze ([66], sect. 5-2), Sideman and Pinczewski [146],
Schlichting and Gersten ([139], sect 17.1.4) and Pope ([121], sect 7.1.7).

Velocity Distribution in Turbulent Boundary Layers

Originally, the concept of fluid boundary layer was presented by Prandtl [122].
Prandtl’s idea was that for flow next to a solid boundary a thin fluid layer (i.e.,
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a boundary layer) develops in which friction is very important, but outside
this layer the fluid behaves very much like a frictionless fluid.

To define a demarcation line between these two flow regions the thickness
of the boundary layer, δ, is arbitrarily taken as the distance away from the
surface where the velocity reaches 99% of the free stream velocity (e.g., [106],
p 12; [55], p 192; [114], p. 545).

To proceed giving a thorough description of the equations used for turbu-
lent flows, we need some results from the semi-empirical turbulent boundary
layer flow analysis.

For a generalized shear flow in the vicinity of a flat horizontal solid wall,
the boundary layer flow can be described in Cartesian coordinates. The stress,
−σxy,eff, associated with direction y normal to the wall is apparently domi-
nant, thus the stream-wise Reynolds averaged momentum equation yields:

ρ
Dvx

Dt
≈ −∂p

∂x
− σxy,eff

∂y
(1.357)

where
σxy,eff = −μ∂vx

∂y
+ ρv′xv

′
y (1.358)

Intuitively one could imagine that the boundary layer as a whole can be char-
acterized in terms of the boundary layer thickness and related dimensionless
groups. However, experimental data reveals that the laminar shear is domi-
nant near the wall (i.e., in the inner wall layer), and turbulent shear dominates
in the outer wall layer . There is also an intermediate region, called the overlap
wall region, where both laminar and turbulent shear are important.

Consequently, Prandtl [123] postulated that, at high Reynolds numbers,
close to the wall (y/δ � 1) there is an inner layer in which the mean velocity
profile is determined by the viscous scales, independent of δ and the free
stream velocity, vx(y = δ).

Since ample experimental analyzes support the Prandtl hypothesis, it is
evident that close to the wall the viscosity, ν, and the wall shear stress, σW ,
are important parameters. From these quantities one can define viscous scales
that are appropriate velocity scales and length scales in the near-wall region.
Dimensional analysis confirmed by experiments indicates that the relevant
velocity scale for the inner region is the friction velocity34, given by:

v* =

√

−σW

ρ
(1.359)

The corresponding length scale characterizing the inner layer, the viscous
length scale, is defined as

34 In most textbooks the friction velocity is defined as v* =
√

σW
ρ

, where σW ≈
σxy + σt

xy = ρν dvx
dy

− ρv′
xv′

y. However, due to the sign convention adopted in this
book for the shear stresses, a negative sign has to be introduced in front of the
wall stress variable.
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δv = ν

√

ρ

−σW
=

ν

v*
(1.360)

Two local Reynolds numbers can thus be formed based on the character-
istic velocity and length scales for the boundary layer. One Reynolds number
purely based on the viscous scales of the inner layer, v*δv/ν, is identically
unity, and the alternative dimensionless group called the friction Reynolds
number is defined using scales reflecting both the inner and outer layers,
v*δ
ν = δ

δv
.

The distance from the wall measured in viscous lengths, or wall units, can
be denoted by:

y+ =
y

δv
=

yv*

ν
(1.361)

Notice that y+ is very similar to the two local Reynolds numbers just de-
fined for the boundary layer, thus the magnitude of this dimensionless length
variable is sometimes interpreted as a kind of Reynolds number.

Subsequent experimental validation lead to additional partitioning of the
inner constant stress layer according to the relative magnitude of the viscous
and turbulent components of the total shear stress. The total shear stress
takes the form:

σeff
xy = σxy + σt

xy = −ρν dvx

dy
+ ρv′xv

′
y ≈ σW (1.362)

where the viscous part is given by Newton’s law applied to the mean rate of
strain and the turbulent contribution is just the corresponding component of
the Reynolds stress tensor. At the wall, the boundary condition for the in-
stantaneous velocity vector, v(r, t) = 0, dictates that all the Reynolds stresses
vanish. Consequently, the wall shear stress is entirely due to the viscous con-
tribution:

σW = −ρν[
dvx

dy
]y=0 (1.363)

The viscous sub-layer is defined as the region next to the wall where the first
term on the RHS of (1.362) is dominant. For larger values of y, the second term
on the RHS of (1.362) will become dominant, and this region is usually referred
to as the the inertial - or turbulent log-law sub-layer . Evidently there will be
an intermediate region where the two stresses will be of equal magnitude,
and this transition sub-layer is called the buffer layer . This boundary layer
theory is based on the assumption that the effective shear stress is constant
throughout the inner layer.

Viscous Sub-Layer Analysis

In the viscous sub-layer, the total shear stress is determined by the viscous
shear contribution:
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−
σeff

xy

ρ
≈ −σW

ρ
= ν

dvx

dy
(1.364)

for y+ < 5.
Since this relation is universal (e.g., [108]), it is convenient introduce a

non-dimensional function, Φv( y
δv

), thus:

dvx

dy
=

v∗
y

yv∗
ν

=
v∗
y
Φv(

y

δv
) (1.365)

Integrating with respect to y, we get:

vx =
u2
∗y

ν
(1.366)

or in the scaled variables y+ = y/δv and v+(y+) = vx/v∗, it yields:

v+ = y+ (1.367)

where the constant of integration has been set equal to zero in order to satisfy
the boundary condition, vx(y = 0) = 0.

Turbulent log-law Sub-Layer Analysis

At some further distance from the wall, in the turbulent log-law sub-layer, we
may neglect the viscous term, and the total stress tensor reduces to:

σeff
xy

ρ
≈ σW

ρ
≈ v′xv

′
y (1.368)

By use of the Prandtl mixing-length model and the relation l ≈ κy [123],
yields:

σeff
xy

ρ
≈ σW

ρ
≈ v′xv

′
y ≈ −l2(dvx

dy
)2 ≈ −κ2y2(

dvx

dy
)2 (1.369)

and hence, by introducing the definition of the friction velocity we obtain:

u2
∗ ≈ κ2y2(

dvx

dy
)2 (1.370)

The velocity gradient can thus be expressed in terms of a non-dimensional
function analogous to the one defined for the viscous sub-layer (e.g., [108]),
ΦI( y

δv
), hence:

dvx

dy
=

v∗
y

1
κ

=
v∗
y
ΦI(

y

δv
) (1.371)

or in the scaled variables:
dv+

dy+
=

1
κy+

(1.372)
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Finally, integrating with respect to y+, we obtain a logarithmic velocity profile:

v+ =
1
κ
lny+ + B (1.373)

where B is a constant of integration. The two parameters in this relation are
fitted to experimental velocity data obtained from pipe flow analyzes. How-
ever, the values of the constants, κ, and, B, vary slightly from one literature
source to another probably reflecting the experimental accuracy of the ana-
lyzes. In most papers on reactor modeling the values κ = 0.40 and B = 5.5
are preferred.

A further limitation is that this logarithmic relation is only valid for
smooth surfaces. That is, for flow situations where the height of any rough-
ness element on the wall is less than the thickness of the viscous sub-layer.
Contrary, if the roughness height is greater than the sub-layer thickness, the
roughness height itself determines the inner region length scale. The latter
approach is regularly applied in atmospheric weather forecast models (e.g.,
[22] [41] [75]).

For the inner region of the boundary layer, the mean velocity formulas for
smooth surfaces can be generalized and expressed in a universal form:

v+ = f(y+) (1.374)

which is known as the law of the wall , sketched in Fig. 1.7.

Outer Layer Analysis

von Kàrmàn [177] deduced that in the outer layer the velocity gradient actu-
ally depends on the thickness of the boundary layer as a whole. Hence, based
on dimensional arguments this implies that the velocity gradient can be ex-
pressed in terms of a non-dimensional function similar to those used for the
viscous sub-layers [108]:

dvx

dy
=

v∗
y
Φo(

y

δ
) (1.375)

where the appropriate lengthscale has been introduced.
Integrating this equation between y and δ yields the velocity-defect law

for the outer layer. This, of course, requires that the non-universal non-
dimensional function, Φo, is known.

This function, at present being unknown, can be determined as we notice
that the semi-empirical relations for the inner- and outer layers are different
in form, but they must overlap smoothly in the intermediate layer. Mathemat-
ically, this implies that the dimensionless functions, i.e., ΦI( y

δv
) and Φo(y

δ ),
should approach the same asymptotic value in the overlap region (e.g., [108];
[121], p 275). The velocity gradient can thus be expressed in both sets of scales
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Fig. 1.7. The law of the wall, taken from Tennekes and Lumley ([167], p 160). In
this figure the U and u* variables correspond to the vx and v* variables used in the
present text. Reprinted with permission of the MIT Press as Publisher, 1/6/2005.

y

v∗

dvx

dy
= ΦI(

y

δv
) = Φo(

y

δ
) =

1
κ
≈ 2.4 (1.376)

This relation establishes the form of the velocity-defect law for small y/δ,
and indicates that the log-law can give reasonable predictions also for rela-
tively large values of y+ provided that the overlap region has a significant
width.

In summary, experimental data indicates that the turbulent boundary
layer can be subdivided into an inner constant wall stress layer for the approx-
imate range 0 ≤ y ≤ 0.1δ, and an outer non-constant stress layer bounded by
0.1δ < y ≤ δ [137] [121].

The inner layer is further classified as:

1. Viscous sub-layer: 0 ≤ y+ ≤ 5
2. Transition sub-layer: 5 < y+ ≤ 30
3. Turbulent constant stress layer: 30 < y+ ≤ 400

The values used for δ and y+ to classify the various layers may vary from
one literature source to another. These discrepancies reflect the experimental
accuracy obtained determining the boundaries between the various layers.
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A common simplification adopted in many engineering CFD calculations
is to neglect the influence of the deviating physics occurring in the buffer-
layer. The inner part of the boundary layer is thus roughly subdivided into
two more approximate sub-layers only, those are a viscous - and a turbulent
sub-layer. The two sub-layers are separated at a certain distance from the wall
y+ = 11.63 where the linear velocity profile in the viscous sub-layer meets the
logarithmic velocity profile in the turbulent constant stress layer. For shorter
distances from the wall (y+ < 11.63) the flow is assumed to be purely viscous
and at larger distances from the wall (y+ ≥ 11.63) the flow is purely turbulent.

The semi-empirical boundary layer analyzes of Prandtl [123] and von
Kàrmàn [177] are further discussed by [108]; [106], sect 1.4.2; [66], sect 7-5;
[139], sect 17; [121], sect 7.

1.3.5 Reynolds Averaged Models

Reynolds [127] postulated that the Navier-Stokes equations are still valid for
turbulent flows, but recognized that these equations could not be applied di-
rectly due to the complexity and irregularity of the fluid dynamic variables. A
true description of these flows at all points in time and space was not feasible,
and probably not very useful at the time. Instead, Reynolds proposed to de-
velop equations governing the mean quantities that were actually measurable.

To reformulate the governing equations in terms of mean flow quantities
rather than instantaneous quantities, Reynolds postulated the fundamental
ideas of averaging. In the averaging procedure devised by Reynolds [127] the
instantaneous quantities are decomposed35 into the sum of mean and fluctu-
ating quantities.

The mean quantities were defined by time-averaging the instantaneous
quantities over a sufficient time period (Δt), i.e., being long enough to smooth
out the turbulent fluctuations, separating the turbulent parts from the non-
turbulent parts.

Introducing a generalized instantaneous quantity, ψ, the corresponding
time average quantity is defined by:
35 Note that the turbulent viscosity parameter has an empirical origin. In connec-

tion with a qualitative analysis of pressure drop measurements Boussinesq [19]
introduced some apparent internal friction forces, which were assumed to be pro-
portional to the strain rate ([20], p 8), to fit the data. To explain these observations
Boussinesq proceeded to derive the same basic equations of motion as had others
before him, but he specifically considered the molecular viscosity coefficient to
be a function of the state of flow and not only on the system properties [135]. It
follows that the turbulent viscosity concept (frequently referred to as the Boussi-
nesq hypothesis in the CFD literature) represents an empirical first attempt to
account for turbulence effects by increasing the viscosity coefficient in an empiri-
cal manner fitting experimental data. Moreover, at the time Boussinesq [19] [20]
was apparently not aware of the Reynolds averaging procedure that was pub-
lished 18 years after the first report by Boussinesq [19] on the apparent viscosity
parameter.
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ψ =
1
Δt

t+Δt
∫

t

ψ(t) dt (1.377)

It has been shown that the averaging procedure is valid for statistically sta-
tionary variables only, thus the time average should be independent of the
origin t. Apparently, the conventional Reynolds averaging procedure requires
that the transients in the governing equations should be negligibly small (e.g.,
[66], p 6; [167], p. 28).

After the mean quantities have been obtained, the fluctuations can be ob-
tained by subtracting the mean values from the corresponding instantaneous
ones. The mean of a fluctuating quantity is zero by definition:

ψ′ =
1
Δt

t+Δt
∫

t

(ψ(t) − ψ) dt ≡ 0 (1.378)

In the averaging procedure devised by Reynolds not only single quantities
are considered, but also products of quantities constituting the governing
equations.

Let A = A + a′ and B = B + b′ be two instantaneous variables, and let c
represent a constant. Accordingly, the Reynolds [127] axioms or mathematical
rules of averaging can be expressed as:

c = c

A = A

AB = AB

a′ = 0

A = A + a′ = A + a′ = A

cA = cA + a′ = cA

b′ = 0

AB = A(B + b′) = AB

A + B = A + a′ + B + b′ = A + B

dA

dt
=

dA

dt

AB = (A + a′)(B + b′) = AB + Ab′ + Ba′ + a′b′ = AB + a′b′

(1.379)

Turbulence is a 3D phenomenon, thus it is expected that turbulence in
one dimension might be accompanied by similar effects in the other two di-
rections. In addition, as mentioned above, the turbulent motions frequently
cause variations in the other quantities too. Hence, all the dependent variables
defining the system can be partitioned into mean and turbulent parts.
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Lately, a few alternative interpretations and extensions of the conventional
Reynolds averaging procedure are given in the literature. A least two of these
deviants deserve to be mentioned, as they are used frequently although not
necessarily in reactor modeling.

The desire to make practical calculations of statistically non-stationary
flows has led engineers to formulate semi-empirical extensions of the conven-
tional method. In this case the instantaneous variables are said to be time
averaged over a time interval which is large compared to the turbulent time
scales, but still small compared to the time dependency of the mean compo-
nent. Using this averaging procedure one should be aware of the problem of
interpreting the simulated results, as the spectral split between the mean and
turbulent contributions becomes rather vague and apparently related to both
the time interval of averaging and the resolution of the numerical solution
method.

An alternative interpretation of the Reynolds averaging procedure is reg-
ularly used in meteorology developing weather forecast models. The physical
basis for this approach is neat and intuitive [154]. In boundary layer mete-
orology experimental analyzes show that a spectral energy gap is evident.
This spectral gap provides a means to separate the turbulent from the non-
turbulent scales of motion. By time-averaging the instantaneous quantities
over a time period that corresponds to the spectral gap scales, the turbulent
effects are eliminated from the mean. The turbulent part of the flow varies
with periods shorter than the ones corresponding to the spectral gap scales,
whereas the mean represents the part that varies with longer periods. These
turbulence analyzes thus rely on the separation of scales enabling proper par-
titioning of the flow into the mean and turbulent parts. On physical reasons
many of the operational numerical weather forecast models use grid resolu-
tions or wavelength cutoffs that fall within the spectral gap. This means that
larger scale motions can be explicitly resolved, whereas the smaller scale tur-
bulent motions are modeled directly. That is, the effects of the sub-grid scale
motions on the larger scales are parameterized by sub-grid scale statistical
models. In one interpretation this averaging procedure is analogous to the
filtering procedure used in the LES method as the averaging operator used
is generic for time-, space- and ensemble averages. Unfortunately, for many
practical flows one might not be able to obtain any vivid separation of scales,
averaging the variables over a finite time period. Then the decomposition
procedure may break down, and the simulated results may become inaccurate
and difficult to interpret.

Stull ([154], sect. 2.4) and McComb ([106], app. B) discuss the statistical
basis of the averaging procedures in further details.

However, while the convectional process of averaging the equations can
be considered an exact procedure, the resulting averaged equations do not
contain enough information about the turbulence to form a solvable set of
equations. The statistical studies of the equations always lead to a situation
in which there are more unknowns than equations. This is called the closure
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problem of turbulence theory. One has to make ad hoc assumptions to make
the number of equations equal to the number of unknowns.

The process of replacing the unknown averages or covariances, occurring
in the governing equations after the equations have been averaged, with equa-
tions for variables which can be considered as dependent variables in the
problem is called turbulence modeling. The resulting equations are termed a
turbulence model. The turbulence model can be either an algebraic relation or
a set of transport equations for some characteristic turbulent quantities. The
various models are often classified according to the number of extra partial dif-
ferential equations which are considered in addition to the Reynolds-averaged
Navier-Stokes equations. That is, the zero-, one-, and two- equation models,
as well as Reynolds Stress Models. All the average model formulations, except
the Reynolds Stress Model, are based on the eddy viscosity hypothesis in what
is often known as the generalized Boussinesq hypothesis [19, 20]:

v′iv
′
j =

2
3
kδij − νt(

∂vi

∂xj
+

∂vj

∂xi
) (1.380)

where δij is the Kronecker delta and νt is the eddy viscosity variable. The
first term on the RHS is required as the sum of the normal stresses has to be
consistent with the definition of k.

By formulating a proper turbulence model, the total number of equations
involved equals the number of unknown variables, and a closed set of model
equations is obtained. That is, adopting the eddy viscosity hypothesis we ba-
sically need to find proper expressions estimating the eddy viscosity variable.
If the term containing the turbulent normal stresses is not neglected in equa-
tion (1.380), we need to determine the k variable too. The complexity of such
model formulations may vary a lot, thus only a few of the most popular ones
will be described below.

In multiphase reactor simulations the zero- and two equation models are
very popular, only a few attempts have been made to implement Reynolds
Stress Models, and LES models are still really rare.

Zero-equation Models

Turbulence models containing the partial differential equations for the mean
variable fields, and no differential equations for the turbulence are classified
as the zero-equation models. All models belonging to this class is based on
the eddy-viscosity concept. The eddy-viscosity is furthermore related to the
mean flow field via an algebraic relation. Therefore, these models are also
called algebraic models. Because of their simplicity, zero-equation models have
received considerable interest over the years, and have been in common use
for sophisticated engineering applications during the last decades.

The very simplest approximation of the turbulent effects on the mean flow
can be achieved by assuming that the eddy-viscosity is proportional to the
molecular viscosity:
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νt = fν (1.381)

throughout the flow field. The dimensionless constant f is typically of the
order 1000.

The mixing-length model of Prandtl [123] for flow near a solid boundary,
i.e., that have been referred several times already, is perhaps the most popular
zero-equation model.

Reynolds Stress Models

Stull [154] presents an excellent review of the procedures for formulating trans-
port equations for the turbulent fluxes and variances applied to boundary layer
meteorology. Wilcox [186], Pope [121] and Biswas and Eswaran [15] provide
alternative texts intended for the engineering community, the latter textbook
also considers experimental aspects of the field.

Chou [23] was the first to derive and publish the generalized transport
equation for the Reynolds stresses. The exact transport equation for the
Reynolds stresses was established by use of the momentum equation, the con-
tinuity equation and a moderate amount of algebra.

Because the upcoming derivations are sometimes long and involved, it is
easy to lose sight of the forest for the trees. The following summary gives the
steps that will be taken in the subsequent subsects. to develop the governing
equations in a form suitable for describing turbulent flows.

1. Apply the Reynolds decomposition procedure and expand the dependent
variables within the instantaneous equations into mean and fluctuating
parts.

2. Apply the time- or ensemble averaging procedure to get the equations for
the mean variables describing turbulent flows.

3. Subtract the equations of step 2 from the corresponding ones of step 1 to
get equations for the turbulent fluctuations.

4. Multiply the result of step 3 by other turbulent quantities and time- or
ensemble average to yield the transport equations for turbulence statistics
such as the Reynolds stresses and the turbulent kinetic energy.

5. Finally, formulate the transport equations for the other turbulent fluxes
and variances (i.e., sometimes called turbulent correlations).

The conventional Reynolds averaging procedure is deduced from the gov-
erning equations for incompressible fluid systems. In Cartesian coordinates
the corresponding instantaneous equation of continuity takes the following
form (i.e., written in a compact form by use Einstein’s summation notation):

∂vi(t, r)
∂xi

= 0 (1.382)

where vi(t, r) is the fluid velocity at space position r and time t.
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For an incompressible fluid, the instantaneous equation expressing conser-
vation of momentum is:

∂vi

∂t
+

∂vjvi

∂xj
= −1

ρ

∂p

∂xi
− 1

ρ

∂σij

∂xj
(1.383)

where σij is the deviatoric stress tensor. For an incompressible Newtonian
fluid, σij is given by:

σij = −ρν(
∂vi

∂xj
+

∂vj

∂xi
) (1.384)

where ν is the kinematic viscosity of the fluid.
With the substitution of σij from (1.384) and the use of (1.382), the result-

ing instantaneous equation of motion is known as the Navier-Stokes equation:

∂vi

∂t
+ vj

∂vi

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2vi

∂xj∂xj
(1.385)

By use of Reynolds averaging rules (1.379), the instantaneous continuity
(1.382) can be averaged and we obtain:

∂vi(r)
∂xi

= 0 (1.386)

Subtracting this result from (1.382) yields a similar equation for v′i, thus the
mean and fluctuating velocities separately satisfy the continuity equation.
This is a trivial consequence of the linearity of (1.382).

In order to treat the equation of motion in the same way, we apply the
Reynolds decomposition procedure on the instantaneous velocity and pressure
variables in (1.385) and average term by term. It can be shown by use of
Leibnitz’ theorem that the operation of time averaging commutes with the
operation of differentiating with respect to time when the limits of integration
are constant [154, 106, 121, 15]).

The result is

∂vi

∂t
+ vj

∂vi

∂xj
+

∂v′iv
′
j

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2vi

∂xj∂xj
(1.387)

Comparison with (1.385) shows that the equation for the mean velocity
is just the Navier-Stokes equation written in terms of the mean variables,
but with the addition of the term involving v′iv

′
j . Thus, the equations of mean

motion involve three independent unknowns vi, p and v′iv
′
j . This is perhaps the

best known version of the closure problem. Equation (1.387) is the Reynolds
equation and the term v′iv

′
j is the Reynolds stress. This term represents the

transport of momentum due to turbulent fluctuations.
Equation (1.387) for the mean velocity is formally identical to the original

Navier-Stokes equation, provided that we absorb the Reynolds stress into a
more general stress tensor. An effective stress tensor is thus defined by
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σij,eff = −ρν(
∂vi

∂xj
+

∂vj

∂xi
) + ρv′iv

′
j (1.388)

With a proper turbulence model the mean velocity is expected to be a
fairly smooth function of time and position, and hence the problem of solving
(1.387) should be very much simpler than the alternative direct numerical
simulation task based on the primitive Navier-Stokes equation.

The simplest prescription for the Reynolds stress is apparently obtained
from an algebraic turbulence model like the Prandtl [123] mixing-length
model. The Prandtl model is, as explained in the foregoing analysis, based
on the eddy viscosity concept and thus possesses the defects of this hypoth-
esis. In addition, it lacks universality mainly because the prescription of the
mixing length varies from one type of flow to another, and thus in compli-
cated flows it may be impossible to specify any reliable parameterization for
the mixing length.

The next category of turbulence closures, i.e., implying to be more accurate
than the very simple algebraic models, is a hierarchy of turbulent models based
on the transport equation for the fluctuating momentum field. These are the
first-order closure models, i.e., those that require parameterizations for the
second moments v′iv

′
k, and the second-order closure models, i.e., those that

require parameterizations for representing the third moments v′iv
′
jv

′
k. Since

the Reynolds stress transport equation constitutes the basis for both the first-
and second-order closure models, its derivation is presented next.

The equation of motion for the fluctuating velocity is obtained by sub-
tracting (1.387) from (1.385):

∂v′i
∂t

+ vj
∂v′i
∂xj

+ v′j
∂vi

∂xj
+ v′j

∂v′i
∂xj

−
∂v′iv

′
j

∂xj
= −1

ρ

∂p′

∂xi
+ ν

∂2v′i
∂xj∂xj

(1.389)

In accordance with the equation for the fluctuating component v′i, (1.389), a
corresponding equation for the fluctuating component v′k can be formulated
simply by changing the index from i (xi- momentum) to k (xk- momentum)
keeping all other indices and variables the same as before. The result is

∂v′k
∂t

+ vj
∂v′k
∂xj

+ v′j
∂vk

∂xj
+ v′j

∂v′k
∂xj

−
∂v′kv

′
j

∂xj
= −1

ρ

∂p′

∂xk
+ ν

∂2v′k
∂xj∂xj

(1.390)

Multiply (1.389) for the component i through with the fluctuating velocity
v′k, and time average yields

v′k
∂v′i
∂t

+ vjv′k
∂v′i
∂xj

+ v′kv
′
j

∂vi

∂xj
+ v′kv

′
j

∂v′i
∂xj

= −1
ρ
v′k

∂p′

∂xi
+ νv′k

∂2v′i
∂xj∂xj

(1.391)

It is recognized that (1.391) doesn’t completely constitute a transport
equation for the second moments. However, combined with the correspond-
ing transport equation, i.e., the one having the inverse i and k indexes, and
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with some mathematical manipulation the exact transport equations for the
Reynolds stresses are achieved.

For deriving the second equation, we multiply (1.390) for the component
k through with the fluctuating velocity v′i, and time average. The resulting
equation can also be formulated by interchanging the i and k indices (i.e.,
replace each occurrence of i with k, and each occurrence of k with i) in the
above equation. The result is:

v′i
∂v′k
∂t

+ vjv′i
∂v′k
∂xj

+ v′iv
′
j

∂vk

∂xj
+ v′iv

′
j

∂v′k
∂xj

= −1
ρ
v′i

∂p′

∂xk
+ νv′i

∂2v′k
∂xj∂xj

(1.392)

Summation of these two equations, and by use of the product rule of

calculus to produce combinations like, v′i
∂v′

k

∂t + v′k
∂v′

i

∂t = ∂v′
iv

′
k

∂t , yields

∂v′iv
′
k

∂t
+ vj

∂v′iv
′
k

∂xj
+ v′iv

′
j

∂vk

∂xj
+ v′kv

′
j

∂vi

∂xj
+ v′j

∂v′iv
′
k

∂xj

= −1
ρ
(v′i

∂p′

∂xk
+ v′k

∂p′

∂xi
) + ν(v′i

∂2v′k
∂xj∂xj

+ v′k
∂2v′i

∂xj∂xj
)

(1.393)

The last term before the equal sign can be put into flux form by use of the
continuity equation for the fluctuating components,

∂

∂xj
v′iv

′
jv

′
k = v′j

∂v′iv
′
k

∂xj
+ v′iv

′
k

∂v′j
∂xj

= v′iv
′
j

∂v′k
∂xj

+ v′jv
′
k

∂v′i
∂xj

Each pressure term can be rewritten using the product rule of calculus, as

illustrated in the following example: v′k
∂p′

∂xi
= ∂p′v′

k

∂xi
− p′

∂v′
k

∂xi
.

The viscous terms can also be rearranged using the product rule in a similar

manner. Consider a term of the form ∂2v′
iv

′
k

∂x2
j

, using simple rules of calculus we
can rewrite it as:

∂2v′iv
′
k

∂x2
j

=
∂

∂xj
[
∂v′iv

′
k

∂xj
] =

∂

∂xj
[v′i

∂v′k
∂xj

+ v′k
∂v′i
∂xj

]

=
∂v′i
∂xj

∂v′k
∂xj

+ v′i
∂2v′k
∂x2

j

+
∂v′k
∂xj

∂v′i
∂xj

+ v′k
∂2v′i
∂x2

j

= 2
∂v′i
∂xj

∂v′k
∂xj

+ v′i
∂2v′k
∂x2

j

+ v′k
∂2v′i
∂x2

j

If we multiply these terms by ν, then the last two terms above will be
identical to the last two terms in the transport equation. Thus, we can write
the last two terms in the transport equation as
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νv′i
∂2v′k
∂x2

j

+ νv′k
∂2v′i
∂x2

j

= ν
∂2v′iv

′
k

∂x2
j

− 2ν
∂v′i
∂xj

∂v′k
∂xj

The final form of the Reynolds stress transport equation (i.e., the transport
equation for the turbulent momentum flux36) is:

∂v′iv
′
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∂v′iv
′
k

∂xj
= − v′iv
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∂x2
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− 2ν
∂v′i
∂xj

∂v′k
∂xj

(1.394)

The physical interpretation of the terms in the equation is not neces-
sary obvious. The first term on the LHS denotes the rate of accumulation of
the kinematic turbulent momentum flux v′iv

′
k within the control volume. The

second term on the LHS denotes the advection of the kinematic turbulent
momentum flux by the mean velocity. In other words, the left hand side of
the equation constitutes the substantial time derivative of the Reynolds stress
tensor v′iv

′
k. The first and second terms on the RHS denote the production

of the kinematic turbulent momentum flux by the mean velocity shears. The
third term on the RHS denotes the transport of the kinematic momentum
flux by turbulent motions (turbulent diffusion). This latter term is unknown
and constitutes the well known moment closure problem in turbulence mod-
eling. The fourth and fifth terms on the RHS denote the turbulent transport
by the velocity-pressure-gradient correlation terms (pressure diffusion). The
sixth term on the RHS denotes the redistribution by the return to isotropy
term. In the engineering literature this term is called the pressure-strain cor-
relation, but is nevertheless characterized by its redistributive nature (e.g.,
[131]). The seventh term on the RHS denotes the molecular diffusion of the
turbulent momentum flux. The eighth term on the RHS denotes the viscous
dissipation term. This term is often abbreviated by the symbol 2εik.

For practical applications, second-order closure models are required for
the third-order diffusion correlations, the pressure-strain correlation and the
dissipation rate correlation as described by Launder and Spalding [94] and
Wilcox ([186], sect. 6.3).

Launder and Spalding [94] argued that the pressure diffusion terms and the
molecular diffusion of turbulent momentum fluxes are smaller than the rest of

36 Momentum is by definition mass times velocity with units ( kg m
s

). A momentum

flux is thus a quantity with units ( kg m
s

1
m2s

). These units are identical to (N/m2),
which are the units for stress. For convenience, as we are usually measuring ve-
locities and not fluxes, the fluxes are redefined in kinematic form by dividing by

the mixture density. A kinematic momentum flux thus has units (m2

s2 ).
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the terms in the equation. These terms can thus be sufficiently approximated
by a gradient type diffusion hypothesis. The third-order closure based on
transport equations for the third moments are not considered worthwhile, as
these correlations are considered small in engineering flows. The most common
approach used in modeling the third moments is to adopt a gradient transport
hypothesis for this term too. Because the turbulent energy dissipation occurs
at the smallest scales, most modelers use the Kolmogorov [83] hypothesis of
local isotropy to model the dissipation tensor (ε = 2

3ρεδik). A common feature
of the full Reynolds stress models and the two-equation models is thus the
limited accuracy reflected by the transport equation used for the turbulent
length-scale (e.g., the ε-equation). Naturally, in conjunction with the Reynolds
stress model second-order closures are used for the inherent terms in the length
scale equation, whereas first-order closures are adopted in the corresponding
two equation model equation. The pressure-strain correlation tensor, i.e., ap-
parently being of the same order of magnitude as the production term [186],
is also very difficult to parameterize further limiting the accuracy reflected
by the Reynolds stress models. Considerable attention has been paid to this
term by turbulence modelers, since there is no direct experimental informa-
tion available for this correlation [186]. The recent LES and direct numerical
simulations (DNS) have yet provided computer generated estimates for this
term. Substantial improvements are also needed modeling near wall regions.
Finally, in practice, each additional turbulence model equation increases both
the computing time and the task of optimizing model parameters. It is easily
seen that the Reynolds stress model basically includes 9 unknown terms for
3D simulations, since each term in equation (1.394) contains unrepeated i and
k indices. Fortunately, the number of independent terms is reduced to 6 by
symmetries. The computation of the nine terms in the Reynolds stress tensor
thus requires that 7 additional transport equations are solved (i.e., including
one transport equation for the turbulent energy dissipation rate). In addition,
the Reynolds stress simulations are not as robust as the simpler two-equation
model solution behavior.

Consequently, although the second-order closure models is considered a
standard model in most commercial CFD codes, the Reynolds stress model is
usually not considered worthwhile for complex reactor simulations. Actually,
for dynamic simulations the interpretation problems, mentioned earlier in this
paragraph, have shifted the attention towards the VLES simulations to be
described shortly. In this book the second-order closure models are thus not
considered in further details, the interested reader is referred to standard
textbooks on turbulence modeling for CFD applications (e.g., [186] [121]).

Two-Equation Models

Due to their robustness and reasonable accuracy, the first-order two-equation
models, such as the k-ε closure originally proposed by Harlow and Nakayama
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[62] [63], have become very popular for reactor simulations. In this section the
formal derivation of the k-ε model equations are given and discussed.

A transport equation for the turbulent kinetic energy, or actually the mo-
mentum variance, can be derived by multiplying the equation for the fluctuat-
ing component v′i, (1.389), by 2v′i, thereafter use the product rule of calculus
to convert some of the terms in the provisional equation, and finally time
average the resulting equation [154].

An alternative procedure is to simplify the transport equation for the kine-
matic momentum fluxes or Reynolds stresses. The contraction of the Reynolds
stress transport equation (1.394) (that is, when the 3 equations for the 3
normal stresses, (i = k = 1, 2, 3) are summed up) gives an exact transport
equation for the turbulent kinetic energy (e.g., [167] [131] [106]).

Applying the latter procedure we set i = k in the Reynold stress equation
(1.394), and we obtain the equation for the mean square of each component
of the fluctuating velocity:
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+ vj
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∂xj
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− 2
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[
∂p′v′i
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∂v′i
∂xi

)]

+ ν
∂2v

′2
i

∂x2
j

− 2ν(
∂v′i
∂xj

)2
(1.395)

The first term on the LHS denotes the rate of accumulation of the velocity
variance v

′2
i within the control volume. The second term on the LHS denotes

the advection of the velocity variance by the mean velocity. The first term
on the RHS denotes the production of velocity variance by the mean velocity
shears. The momentum flux v′iv

′
j is usually negative, thus it results in a positive

contribution to variance when multiplied by a negative sign. The second term
on the RHS denotes a turbulent transport term. It describes how variance
v

′2
i is moved around by the turbulent eddies v′j . The third term on the RHS

describes how variance is redistributed by pressure perturbations. This term
is often associated with oscillations in the fluid (e.g., like buoyancy or gravity
waves.) The fourth term on the RHS is called the pressure redistribution
term. The factor in square brackets consists of the sum of three terms (i.e.,

here given in Cartesian coordinates): ∂v′
x

∂x , ∂v′
y

∂y , and ∂v′
z

∂z . These terms sum to
zero because of the turbulence continuity equation. Hence, this term does not
change the total variance (i.e., the sum of all three variance components). But
it does tend to take energy out of the components having the most energy and
put it into components with less energy. Thus, it makes the turbulence more
isotropic, and is also known as the return to isotropy term. The fifth term
on the RHS denotes molecular diffusion of the turbulent velocity variance.
The sixth term on the RHS denotes the rate of viscous dissipation of velocity
variance. It is noted that this formulation of the dissipation rate tensor term
is not strictly correct [106]. The viscous energy dissipation rate for Newtonian
fluids is generally defined by (1.125) in sect 1.2.4. For incompressible fluids it
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can be slightly simplified and written as:

ε =
ν

2
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∂xi
)2 (1.396)

Consider the extension of this definition for the dissipation rate to the case
of turbulence. We can introduce the mean dissipation rate by averaging both
sides of (1.396), and introducing the decomposition of the velocity field into
mean and fluctuating variables. The result is:

ε =
ν

2

∑

i

∑

j

(
∂vi

∂xj
+

∂vj

∂xi
)2 +

ν

2

∑

i

∑

j

(
∂v′i
∂xj

+
∂v′j
∂xi

)2 (1.397)

For the particular case of homogeneous turbulence, we can set the mean ve-
locity gradient to zero and consider only the dissipation of the kinetic energy
of the fluctuating motions. That is, (1.397) becomes:

ε =
ν
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∂xi
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)2 (1.398)

where it can be shown that the last step follows from the particular properties
of homogeneous turbulence [159].

Therefore, the last term in the transport equation is not strictly the dis-
sipation, unless the turbulence is homogeneous. However, it is usual to argue
that the small scales responsible for the dissipation are homogeneous and
hence this is probably quite a good approximation, except possibly near a
solid surface.

It is obvious that this term is always positive, because it is a squared
quantity. Therefore, when this term appears in the transport equation with
the negative sign, it is always causing a decrease in the variance with time.
In addition, it becomes larger in magnitude as the eddy size become smaller
(i.e., using the hypothesis of Kolmogorov [83]). For these small eddies, the
eddy motions are rapidly damped by viscous mechanisms and irreversibly
converted into heat. This heating rate is so small, however, that it is often
neglected in the energy conservation equation for turbulent flows.

By definition the turbulent kinetic energy per unit mass is one half of the
variance v

′2
i . Therefore, if we sum over i, then (1.395) gives us the balance

equation for the turbulent kinetic energy, k, per unit fluid mass, which is
defined by:

2k =
∑

i

v
′2
i (1.399)

The only manipulation required is to divide all the terms in the equation by 2
and replace 1

2

∑

i v
′2
i on the left hand side by k. The turbulent kinetic energy

equation then is given by [78, 95, 131]):
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In (1.400), the first term on the LHS denotes the rate of accumulation of tur-
bulent kinetic energy, k, within the control volume; the second term on the
LHS denotes the advection of turbulent kinetic energy, k, by the mean ve-
locity; the first term on the RHS denotes the production of turbulent kinetic
energy by the mean velocity shear, and represents the rate at which kinetic
energy is transferred from the mean flow to the turbulence; the second and
third terms on the RHS denote turbulent transport of k. The triple veloc-
ity correlation is usually interpreted as the rate at which turbulent energy is
transported through the fluid by turbulent fluctuations. The pressure-velocity
correlation is interpreted as turbulent transport resulting from pressure and
velocity fluctuations; the fourth term on the RHS denotes the molecular dif-
fusion of turbulent energy, k; the fifth term on the RHS represents the ir-
reversible dissipation of turbulent kinetic energy to heat for homogeneous
turbulence.

Closing the k-ε model by turbulence modeling we relate the unknown
Reynolds stress tensor and the turbulent transport terms to the fundamental
mean flow variables, or the scaled variables in turbulent boundary layers,
introducing additional approximations.

The second, third and fourth terms on the RHS of (1.400)) (i.e., the triple
moment, the pressure-velocity correlation, and the viscous diffusion term) are
normally lumped together and modeled as diffusive transport processes being
proportional to the gradient of the kinetic energy, k, (i.e., thus sometimes
called the turbulent diffusion terms). That is, the triple moment is modeled
as a turbulent diffusion process and approximated in accordance with the
standard gradient hypothesis for scalar quantities. The pressure-velocity cor-
relation is assumed to be small and approximated as a gradient-transport
process too, apparently due to the lack of any better guess. The viscous diffu-
sion term is negligible except near the wall (i.e., where the turbulence theory
model is actually not valid since the flow is not fully turbulent).

The first-order closure models are all based on the Boussinesq hypothesis
[19, 20] parameterizing the Reynolds stresses. Therefore, for fully developed
turbulent bulk flow, i.e., flows far away from any solid boundaries, the tur-
bulent kinetic energy production term is modeled based on the generalized
eddy viscosity hypothesis37, defined by (1.380). The modeled k-equation38 is

37 Equation (1.380) is based on the assumption that all the normal stresses are equal
thus representing an isotropic model for the Reynolds stresses.

38 For the turbulent part of the inner boundary layer close to solid walls we usually
adopt another closure for the Reynolds stresses and neglect the molecular diffusion
term. The starting point for the boundary layer analysis, to be discussed shortly,
is thus the k-equation in the following form:

∂k
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∂k

∂xj
= −v′

iv
′
j

∂vi

∂xj
+

∂

∂xj
[(
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σk
)

∂k

∂xj
] − ε (1.401)
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written as:

∂k

∂t
+ vj

∂k

∂xj
= νt(

∂vi

∂xj
+

∂vj

∂xi
)
∂vi

∂xj
+

∂

∂xj
[(ν +

νt

σk
)
∂k

∂xj
] − ε (1.402)

where νt is the turbulent eddy kinematic viscosity and σk is an empirical
constant.

The turbulent viscosity is modeled by analogy with kinetic gas theory (i.e.,
νt ∝ vrmsL, and vrms ≈ k1/2), thus:

νt = C ′
μk

1/2L (1.403)

where C ′
μ is an empirical parameter and L is an integral length scale. This is

analogous to the relationship in kinetic theory between the viscosity, the parti-
cle energy, and the mean free path, and is often referred to as the Kolmogorov-
Prandtl relationship (e.g., [85] [124]).

At first sight, though, this model seems to represent only marginal advance
on the mixing length theory, if the length L still has to be fixed by simple
empirical arguments. The turbulent energy dissipation rate, ε, is also unknown
and needs to be parametrized.

To proceed it is apparently anticipated that the turbulence model will give
more realistic predictions if the length scale, L, is calculated from a transport
equation rather than from some local algebraic expression even though these
models are not rigorously derived. In this way a second transport equation is
introduced, from which the length scale can be derived. Models at this level are
accordingly known as two equation models and there are many of them. In fact
we do not formulate a transport equation for the length scale, L, itself, rather
a transport equation for the product kmLn has been considered, where k is the
kinetic energy of turbulence [94]. In order to obtain a dependent variable which
really reflects the physics of the turbulence, several combinations of k and L
have been considered over the years. Some of the combinations have an obvious
physical interpretation. For example, the combination m = 1/2 and n = −1
represents a turbulent or eddy frequency, the combination m = 1 and n = −2
represents turbulent vorticity. The far most popular combination is m = 3/2
and n = −1, by which the dependent variable is identified as the dissipation
rate of turbulent energy. For this variable, in principle a rigorous equation
can be derived from the transport equation for the fluctuating velocity, but
in practice many empirical steps are needed to make it tractable (e.g., [15],
chap 10.5). Instead, a simple semi-empirical procedure (i.e., apparently based
on an analogy with the k-equation) is often used in engineering practice to
draw up a transport equation for the dissipation rate, ε. An approximate
transport equation can be expressed as:
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∂xj
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)
∂ε

∂xj
] − Cε2ε

2

k
(1.404)

where Cε1 and Cε2 are additional empirical constants.
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This equation possesses production and dissipation terms that are similar
to those in the kinetic energy transport equation, except that they are divided
by the turbulence time scale of the energy containing eddies, τt = k

ε . As for
the k-equation, the Reynolds stresses are parameterized based on the eddy
viscosity hypothesis.

To close the k-ε model we need to eliminate the length scale variable, L,
from the model relation (1.403). This has been achieved by relating the length
scale to the dissipation rate and k through a semi-empirical relationship:

ε = CD
k3/2

L
(1.405)

that has been put up by Taylor [159] based on dimensional analysis (i.e.,
ε ∝ v3

rms
L , and one assumes vrms ≈ k1/2). CD is an empirical parameter which

in most instances is set to unity as it is very difficult to design experiments
for direct validation of this parameter value.

By combining (1.403) and (1.405) we obtain a relation for the turbulent
viscosity in terms of k, the obscure length scale variable ε, and one empirical
parameter:

νt =
Cμk

2

ε
(1.406)

where Cμ = C ′
μCD.

Examination of several two-equation models reveals that there is only very
small differences between the various models of this type [106]. This may be
expected since all proposals for formulating the 2nd equation are closely re-
lated, though they differ in the forms of diffusion and near wall terms employed
[95]. However, as mentioned above, the k-ε model of Jones and Launder [78]
has been predominant in the literature, and this model also determine the ba-
sis for most multi-phase turbulence models adopted in the more fundamental
(CFD) reactor modeling approaches.

Standard Model Parameter Values

The model parameter values have to be determined before the turbulence
closure can be used in practice. The pioneering Imperial College group [59]
[78] [61] [94] [96] [60] performed a few simple laboratory experiments and,
combined with model analysis of these data, determined a set of parameter
values which have later been referred to as the ‘standard’ parameter values.
The specific flow situations investigated by the Imperial College group and
the corresponding k-ε model simplifications used fixing this set of parameter
values have been further discussed by Rodi [132] and Pope ([121], sect. 10).
Basically, the parameter values are assumed to be universal and considered
individually, as the problem specific k-ε model equations contain only one
single unknown parameter for each flow situation studied. Accordingly, the
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parameter values are fitted one by one to experimental data analyzing a few
simple turbulent single phase flows only.

• In this manner, to determine the Cε2 parameter, the k-ε model is applied to
describe homogeneous decay of turbulence behind a grid. In this flow there
are no velocity gradients so there are no diffusion terms and no production
terms, only dissipation. The k and ε equations (1.401) and (1.404) become:

vx
dk

dx
= −ε (1.407)

vx
dε

dx
= −Cε2(

ε2

k
) (1.408)

Cε2 is then the only parameter appearing in the equations, and it can
therefore be determined directly from the measured rate of decay of k
behind a grid (e.g., [61]). The experimental data indicates that Cε2 = 1.92.

• Correspondingly, the Cμ parameter has been found analyzing simple tur-
bulent shear flows where dvx

dy is the only non-zero mean velocity gradient.
Applying the k-equation (1.401) to this flow situation we recognize that
the dissipation and production terms are approximately equal. In statisti-
cal turbulence analysis (e.g., [66]), this property is said to be denoting an
equilibrium shear flow. The simplified k-equation yields:

v′xv
′
y

dvx

dy
≈ −ε (1.409)

By use of (1.406) the k-equation can be written as:

v′xv
′
y

dvx

dy
≈ −Cμ

k2

νt
(1.410)

or, after minor reformulation, an expression for the unknown model pa-
rameter is given by:

Cμ ≈
v′xv

′
y

k2
(−νt

dvx

dy
) (1.411)

The unknown Reynolds stress term can be calculated using the eddy vis-
cosity hypothesis (1.380), or, alternatively, the term in the bracket on the
RHS of this relation can be recognized as being approximately equal to
the Reynolds stress:

v′xv
′
y ≈ −νt

dvx

dy
(1.412)

The Cμ parameter can thus be determined experimentally based on the
following model:

Cμ ≈ 1
k2

[νt
dvx

dy
]2 ≈ [

v′xv
′
y

k
]2 (1.413)

Measurements reported by Hanjalic and Launder [61] show that [v′
xv′

y

k ] ≈
0.3, giving Cμ ≈ 0.09.
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• σk is set to unity in accordance with the standard Reynolds analogy for
turbulent flows.

• Likewise, σε is preliminarily set to unity in accordance with the standard
Reynolds analogy for turbulent flows (i.e., later fixed at σε = 1.3 repre-
senting an optimization to experimental data for a number of 2D Couette
flows. See next item.).

• The last parameter, Cε1, is determined investigating inhomogeneous high
Reynolds number, fully developed channel flows (i.e., these flows are some-
times referred to as 2D Couette flows). Actually, the turbulence model is
applied describing the flow in regions near walls, where the logarithmic
velocity profile applies.
Starting out with fully developed channel flows the quantities of interest
(i.e., vx, k and ε) depend only on y, so the k-ε model equations (1.401)
and (1.404) reduce to:

0 =
d

dy
(
νt
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dk

dy
) − v′xv

′
y

dvx

dy
− ε (1.414)

0 =
d

dy
(
νt
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dε

dy
) − Cε1

ε

k
v′xv

′
y

dvx

dy
− Cε2

ε2

k
(1.415)

This result shows that for the ε-equation (1.415), only the advective term
is negligible. The transport equation for the dissipation rate cannot be
further reduced, and we recognize that the diffusion term in the ε-equation
may play an important role in near wall flows.
However, further simplifications can be achieved focusing on the log-law
region. Considering the k-equation (1.414) experimental observations in-
dicate that the production and dissipation terms balance (i.e., thus the
dissipation and production terms are in local equilibrium), hence in the k-
equation the diffusion term vanishes. This implies that k is approximately
uniform.
Introducing the result that the dissipation- and production terms in the
k-equation are in approximate local equilibrium, the ε-equation (1.415)
yields:

d[( νt

σε
) dε

dy ]

dy
+

ε2

k
(Cε1 − Cε2) ≈ 0 (1.416)

or
1
σε

(
dνt

dy

dε

dy
+ νt

d2ε

dy2
) +

ε2

k
(Cε1 − Cε2) ≈ 0 (1.417)

This ordinary differential equation (ODE) indicates that there is a net
source in the ε-equation that is balanced by the diffusion of ε away from
the wall.
The last parameter in the ε-equation that still remains undetermined, Cε1,
has been estimated recognizing that for the log-law region the given ODE
reduces to a very simple algebraic relationship between the parameters in
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the ε-equation. So, by fixing the values for the other model parameters just
determined above, Cε1 can be calculated directly from this relationship39.
To reduce the ε-equation sufficiently deriving the afore mentioned algebraic
relation between the model parameters only, all the physical variables have
to be eliminated. This variable elimination is achieved by adopting a few
hypotheses established in statistical turbulence theory and in the semi-
empirical boundary layer flow analysis discussed in the foregoing sects.,
and by further analysis of the k-ε model equations. In this manner, the ε
and νt variables can be expressed in terms of v∗, y and the empirical model
parameters only. After that, dε

dy , d2ε
dy2 and dνt

dy are easily deduced from the
resulting expressions for ε and νt since v∗ is considered independent of y.
Considering the ε variable first, the starting point is the semi-empirical
relation (1.405) stating that ε can be estimated from L and k. Therefore,
the unknown variables L and k are then expressed in terms of v∗, y and
the empirical model parameters, and thereafter eliminated from (1.405).
So, the purpose of the forthcoming task is to derive an expression for the
integral lengthscale, L, in terms of y and two empirical parameters only.
Initially, the mathematical operations involved are outlined briefly in an
easy to follow manner, thereafter the detailed model derivation is given.
A relationship between the integral lengthscale, L, and eddy viscosity pa-
rameter, νt, is found by introducing appropriate simplifications of the
k equation (1.401), approximating the production term in accordance
with the eddy viscosity hypothesis (1.380), and applying the Prandtl-
Kolmogorov relation (1.403) to eliminate the turbulent kinetic energy vari-
able from the equation. Thereafter, a relationship between the integral
length scale, L, and the mixing length, l, is found by comparing the re-
sulting expression for the viscosity parameter with the corresponding one
deduced from the Prandtl mixing length model (1.356). Thus, in the inner
part of the boundary layer L is determined by the mixing length and three
model parameters. Finally, the mixing length is approximated in terms of
y and an empirical parameter [174].
Accordingly, in mathematical terms, recognizing that the production and
dissipation terms are approximately equal constituting an equilibrium flow,
the k-equation is written as:

v′xv
′
y

∂vx

∂y
≈ −ε ≈ −CD

k3/2

L
(1.418)

where the turbulent energy dissipation rate has been substituted by
(1.405).

39 Alternatively, as the Reynolds analogy for turbulent flows is rather rough, it has
also been speculated that by fixing Cε1, σε1 can be calculated directly from the
given relationship instead. Of course, anyhow, it remains to find a plausible way
of fixing one of the two parameters. Actually, the preliminary parameter values
adjusted using the Reynolds analogy has later been optimized representing a best
fit to a larger number of experimental data and flow situations.
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On the LHS, the production term is modeled in accordance with the eddy
viscosity hypothesis (1.380), hence

νt(
∂vx

∂y
)2 ≈ CD

k3/2

L
(1.419)

Next, the Prandtl-Kolmogorov relation (1.403) is used to eliminate k from
the relation:
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After rearrangement, yields:

νt ≈ (
C

′3
μ
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)

1
2L2(

∂vx

∂y
) (1.421)

By use of the eddy viscosity hypothesis (1.380) and the Prandtl mixing
length model (1.356), a similar expression for the turbulent viscosity can
be deduced, and given by

νt ≈ l2|dvx

dy
| (1.422)

Comparing the resulting relations (1.421) and (1.422), one may suggest
that

L ≈ l(
CD

C ′3
μ

)
1
4 ≈ κy(

CD

C ′3
μ

)
1
4 (1.423)

This expression is used eliminating L from the relation for ε (1.405).
The purpose of the next task is thus to derive an expression for the tur-
bulent energy, k, in terms of v∗ and one empirical parameter only. Again,
the mathematical operations involved are outlined briefly in an easy to
understand manner, thereafter the detailed model derivation is given.
An expression for k in terms of the integral lengthscale, L, the mixing
length, l, the average velocity gradient and one empirical parameter is de-
rived using the Prandtl mixing length model (1.356), the eddy viscosity
hypothesis (1.380), and the Prandtl-Kolmogorov relation (1.403). The in-
tegral length scale, L, is eliminated from the resulting expression using the
relationship between the integral lengthscale, L, and the mixing length, l
(1.423) just derived in the previous paragraph. Then, the velocity gradient
near the wall is eliminated by use of the law of the wall (1.373).
Accordingly, in mathematical terms, the Prandtl mixing length model
(1.356) is combined with the eddy viscosity hypothesis (1.380) to form
an expression for the eddy viscosity parameter close to the wall. The re-
sult is given by:

νt ≈ l2
dvx

dy
(1.424)

Eliminating the eddy viscosity parameter by use of the Prandtl-Kolmogorov
relation (1.403) one obtains an expression for k near the wall:
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C ′
μk

1/2L ≈ l2
dvx

dy
(1.425)

or, after a little rearranging

k ≈ l2

C
′ 1
2

μ

(
dvx

dy
)2 (1.426)

The velocity gradient near a wall can be estimated from the logarithmic
velocity profile (1.373):

dvx

dy
≈ v∗

κy
(1.427)

Eliminating the velocity gradient in (1.426) by use of (1.427), one can
estimate k as:
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(1.428)

Inserting the resulting expressions for L (1.423) and k (1.428) into the
relation for ε (1.405), yields:
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(1.429)

From this expression two of the unknown derivatives in the ODE (1.417)
can be deduced by simple rules of calculus:

dε

dy
≈ −C3/4

D

v3
∗

κy2
(1.430)

and
d2ε

dy2
≈ 2C3/4

D

v3
∗

κy3
(1.431)

The last unknown variable in the ODE (1.417), the turbulent or eddy
viscosity, νt, is estimated from the Prandtl-Kolmogorov relation (1.403).
In this context the integral lengthscale, L, is eliminated by use of the
Taylor [159] expression (1.405), where the k and ε variables therein have
been substituted by use of (1.428) and (1.429), respectively. The result is:
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The derivative of the eddy viscosity parameter, νt, with respect to y is
expressed by

dνt

dy
≈ C

1/4
D v∗κ (1.433)

To conclude, by insertion of (1.428) to (1.433) into the ε-equation (1.417),
the relationship between the model parameters yields

Cε1 − Cε2 ≈ − κ2

C
1/2
μ σε

(1.434)

where κ is the von Kàrmàn constant and takes the value κ = 0.4.
This relationship (1.434) was, as a first approach, used to fix Cε1 when σε

was fixed at unity in accordance with the well known Reynolds analogy.
However, computer optimization fitting the parameters to experimental
data gathered from several flow situations gives the values Cε1 = 1.44 and
σε = 1.3.

The two-equation turbulence closure with the prescribed parameters given
above is called the standard k-ε model. With these parameters the model is
able to predict several types of turbulent flow, in particular the flows used to
determine the parameters.

Numerous papers have been published regarding the influence of the stan-
dard k-ε model parameters on the simulated results, both for single and mul-
tiphase flows, as outlined by Jakobsen [76]. Andersson [1] summarized the
current experience applying the standard k-ε model to various single phase
flow simulations. It was stated that the standard parameters by no means can
be regarded as universal constants. Ad hoc correlations must often be made
to the parameters in order to obtain good correspondence with experimental
data. Experience has shown that even in certain fairly simple single phase
flow situations some of the constants require other values. Furthermore, no
direct method for establishing adequate parameters for a given flow situation
has been proposed yet. These parameters are thus fixed only in the sense that
they are not changed during a calculation. Of course this must also be an
approximation, as flow condition may well vary considerably from one part of
an apparatus to the other during a calculation.

Therefore, despite the great success of the k-ε model in engineering appli-
cations, caution is needed especially when high accuracy is required. Biswas
and Eswaran [15], Pope [121], among others, list some of the major problems
encountered in the application of the k-ε model.

In the context of reactor modeling, it is important to notice that this model
rely on the Boussinesq eddy-viscosity concept which is based on the assump-
tion that turbulence is isotropic. This means that the normal Reynolds stresses
are considered equal and that the eddy viscosity is approximately isotropic.
Therefore, the k-ε model cannot reproduce secondary flows which arise due
to unequal normal Reynolds stresses. Unfortunately, the non-isotropic effects
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are important in many chemical reactors like bubble columns, fluidized beds
and stirred tanks. In addition, the standard k-ε model also requires modifica-
tions when applied to swirling flows, thus making this closure usability rather
limited for stirred tank simulations. Furthermore, the values of the empirical
parameters need modifications when the model is applied to flows where the
molecular viscosity plays an important role. Basically, the k-ε model cannot
be used near solid walls.

Wall Functions

In this paragraph the wall function concept is outlined. The wall functions
are empirical parameterizations of the mean flow variable profiles within the
inner part of the wall boundary layers, bridging the fully developed turbulent
log-law flow quantities with the wall through the viscous and buffer sub-
layers where the two-equation turbulence model is strictly not valid. These
empirical parameterizations thus allow the numerical flow simulation to be
carried out with a finite resolution within the wall boundary layers, and one
avoids accounting for viscous effects in the model equations. Therefore, in the
numerical implementation of the k-ε model one anticipates that the boundary
layer flow is not fully resolved by the model resolution. The first grid point
or node used at a wall boundary is thus placed within the fully turbulent log-
law sub-layer, rather than on the wall itself [95]. In effect, the wall functions
amount to a synthetic boundary condition for the k-ε model. In addition, the
limited boundary layer resolution required also provides savings on computer
time and storage.

Both equilibrium and non-equilibrium wall boundary implementations are
considered. For equilibrium flows the local production rate of turbulence
equals the dissipation rate in the near wall grid node. The first set of wall
function boundary conditions reported was apparently used for equilibrium
flows by Gosman et al. [59]. Denoting the dependent variables in the first
point near the wall by a subscript P , an approximate sketch of their approach
is given next.

• The velocity components parallel to the wall are estimated from the log-
arithmic velocity profile relation (1.373). For example, using Cartesian
coordinates, the x-component of the velocity vector is given as:

vx,P ≈ v∗
κ
ln(E

v∗yP

ν
) =

v∗
κ
ln(Ey+

P ) (1.435)

where the parameter value (i.e., the constant of integration) is considered a
function of surface roughness and shear stress variations (e.g., [59, 60, 154,
106]). In accordance with the practice of Gosman et al [59] and Gosman
et al. [60], we suggest E = 9.793 to be applied to chemical reactor models.

• Using a staggered grid arrangement the normal velocity component, say,
the y-component, is set equal to zero at the wall (i.e., valid for impermeable
walls only):
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vy,wall = 0 (1.436)

• The wall boundary condition for kp is specified in accordance with (1.428):

kP ≈ v2
∗

C
′ 1
2

μ

Accordingly, the wall boundary condition for the turbulent energy dissi-
pation rate, ε, is given by (1.429):

εP ≈ v3
∗

κyP

In the early FVM program codes, all the equilibrium variable values at the
grid point, P, were simply calculated from the given parameterizations. How-
ever, in these steady state program codes the friction velocity is not known a
priori but is an outcome of the iterative solution algorithm where the bound-
ary values are coupled through the governing transport equations.

In addition, the logarithmic law is strictly valid for high-Reynolds num-
ber zero pressure gradient boundary layers only. Therefore, under practical
flow conditions the physical basis is uncertain and the accuracy reflected by
these relations becomes poor [186]. In consequence, the given wall function
concept is not robust as severe numerical convergence- and stability problems
often arise, thus more advanced implementations evolved. The wall functions
and their implementations were subsequently extended to enable more robust
boundary conditions providing solutions under almost any circumstances. One
outcome of the subsequent model development is that in the modern FVM
codes the transport equations for the velocity components being parallel to
the wall and k are solved for the first grid node, P, within the calculation
domain close to the wall boundary. For the velocity components being paral-
lel to the wall there are no values stored at the solid surface in a staggered
grid arrangement, so the wall friction force at the cell surface is replaced by
an apparent source at the node point, P. The physical observation that the
shear stress is approximately constant over the inner part of the boundary
layer allows the modeler to relocate the point where the shear stress is actu-
ally calculated without further considerations. Since the physical value of k
approaches zero at the wall, there is be no k-flux contribution from the wall in
the k-equation. Furthermore, at the node, P, close to the wall the turbulence
production term reduces to a simple form expressed in terms of the wall shear
stress. In this way the value of k at the wall node, P, is determined by the
turbulence level in the mean flow and a modified turbulence generation term.

• For the velocity components parallel to the wall the calculation of the wall
boundary conditions, i.e., the apparent bulk source term, for turbulent
flows starts with the estimation of y+

P , the dimensionless distance of the
near wall node, P, to the solid surface. For turbulent flows where y+

P ≤
11.63, the value of the laminar wall shear stress is determined from:
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−σW = μ
vx,P

yP
(1.437)

where vx,P is the velocity component parallel to the wall calculated at the
first grid node inside the calculation domain. The resulting shear force,
Fw, is defined by:

Fw = σWACell = −μvx,P

yP
ACell (1.438)

where ACell is the wall area of the cell volume.
However, the friction force estimate calculated in this way is only valid in
the laminar layer very close to the wall and rapidly becomes inaccurate
as the node point enters the buffer layer. More important, nevertheless,
the k-ε model is strictly not valid in the viscous sub-layer. In practice the
first node is often incidentally placed within the laminar layer intending to
make sure that the numerical grid resolution is sufficiently fine, with the
unfortunate consequence that the simulated results are in poor agreement
with the physical flow situation. Therefore, in such situations, it is rec-
ommended to choose a coarser grid resolution ensuring that the first grid
node, P, is located in the log-law layer. For boundary layer flows for which
the log-law relations are accurate, the overall solution is then insensitive
to the choice of yP . However, in other flows it is found that the solution is
sensitive to the choice of yP even within the log-law region. Unfortunately,
it might not be possible to obtain numerically accurate, grid-independent
solutions in these cases.
If y+

P > 11.63, node, P, is considered to be in the log-law region of the
inner part of the turbulent boundary layer. In this region the law of the
wall (1.373) (i.e., in the form v+ = 1

κ ln(Ey+)) is used to calculate the
shear stress variable.
Actually, several possibilities exist formulating the wall friction force. The
natural boundary layer shear stress definition to use is the one deduced
from the fundamental equilibrium boundary layer analysis. The wall shear
stress is thus defined as −σW = ρv∗v∗.
Calculating the friction velocity from the log-law (1.373), yields:

−σW = ρ
κ2v2

x,P

(ln(Ey+
P ))2

(1.439)

In this approach the shear force, Fw, is defined by:

Fw = σWACell = −ρ
κ2v2

x,P

(ln(Ey+
P ))2

ACell (1.440)

In other flow situations where the turbulent energy diffusion towards the
wall is significant, appreciable departues from local equilibrium occur.
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There are a variety of non-equilibrium boundary conditions suggested in
the literature.
Launder and Spalding [95] recognized that the relation obtained for k in
the log-law layer (1.428) permits us to redefine the friction velocity, when
the k value is considered known from the previous iteration or time level.
Hence, a non-equilibrium boundary layer shear stress approximation is
given by −σW = ρv∗vk.
Calculating the friction velocity from the log-law (1.373), and the non-
equilibrium velocity scale from (1.428), yields:

−σW ≈ ρC
′1/4
μ k

1/2
P

κvx,P

ln(Ey+
P )

≈ ρC
′1/4
μ k

1/2
P

vx,P

v+
(1.441)

In this approach the shear force, Fw, is given by:

Fw = σWACell = −ρC1/4
μ k

1/2
P

vx,P

v+
ACell (1.442)

For quite a few flow situations this relation provides results being in
better agreement with experimental data, compared to the correspond-
ing predictions obtained using the equilibrium formulation. Versteeg and
Malalasekera [175] state that this approach represents the optimum near
wall relationships from extensive computing trails.
To further minimize the numerical convergence- and stability problems
related to the friction force calculations, yet another relation has been
suggested based on the friction coefficient concept. In this approach the
shear stress is defined by:

−σW = ρCf |vP |(vx,P − vx,W ) (1.443)

where vx,w is a moving wall velocity set to zero for stationary walls.
The skin friction coefficient is calculated from the log-law relation in an
implicit iteration loop

1
√

Cf

=
1
κ
ln(E

√

Cf
vx,P yP

ν
) =

1
κ
ln(E

√

CfRey) (1.444)

where −σW = Cfρv
2
x,P defines the friction factor.

Normally, simulating chemical reactor flows non-equilibrium wall bound-
ary conditions are used. Basically, the solutions obtained based on the two
non-equilibrium wall shear stress formulations given above do not diverge
significantly, but the last one may have slightly better inherent numerical
properties as the iteration process is sometimes converging a little faster.

• Assuming that v′xv
′
y = σxy,t ≈ σW , the k-equation (1.401) production

term yields:

Pk ≈ −x′
xv

′
y

dvx

dy
≈ −σW

(vx,P − vx,w)
yP

≈ −σW vx,P

yP
(1.445)
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The corresponding dissipation rate term is approximated using (1.405),
the Prandtl-Kolmogorov relation (1.403), the eddy viscosity hypothesis
(1.380), and the non-equilibrium boundary layer shear stress approxima-
tion (1.441):

εk,P ≈ CD
k

3/2
P

L
≈ CDC ′

μ

k2
P

νt
≈ CDC ′

μ

k2
P

σW
ρ
dvx

dy
≈ CDC ′

μ

k2
P

σW
ρ
vx,P

yP

≈ CDC ′
μk

2
P

v+

vx,P (CDC ′
μ)1/4k1/2

vx,P

yP
= (CDC ′

μ)3/4k
3/2
P

v+

yP

(1.446)

• The energy dissipation rate reaches its highest value at the wall. This
makes it difficult to estimate the flux towards the wall from the transport
equation, as it would require a very fine grid resolution. The energy dissipa-
tion, εP , is therefore roughly estimated as a fixed value by the equilibrium
relation (1.429):

εP ≈ C
3/4
D

v3
∗

κyP

In the non-equilibrium approaches the dissipation rate is calculated as a
function of the level of turbulent kinetic energy at the wall

εP ≈ (CDC ′
μ)

3
4
k

3/2
P

κyP

This approach works best within an iterative procedure, but can also be
adopted in explicit discretization schemes calculating εn+1

P from kn
P in the

previous time level.

Boundary Conditions

The solution of the governing reactor model equations are subjected to the
boundary conditions specified. The number of boundary conditions required
depends on the mathematical properties of the equations (e.g., elliptical,
parabolic, hyperbolic, or mixed).

For single-phase turbulent reactor flows, the typical boundary conditions
include impermeable solid walls, free surfaces, pressure boundaries, symmetry
axis, inlet- and outlet conditions.

An impermeable solid wall is specified assuming that the no-slip velocity con-
dition at the boundary is valid. In general, the scalar variable boundaries
are specified by Neumann, Dirichlet- or mixed conditions.

A free surface is determined by fixing the normal component of the velocity
at the surface to zero, and the partial derivative normal to the free surface
of all other scalar quantities are set to zero.
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An axis of symmetry is determined by fixing the radial component of the ve-
locity to zero, whereas the partial derivative with respect to r of all the
scalar variables is set to zero.

An inlet boundary is determined when the normal velocity component and
the known scalar variables are specified. The turbulence quantities are
generally estimated based on simple empirical relations.

An outlet boundary can be determined assuming that the flow is fully devel-
oped, thus the partial derivatives of all scalar variables are set to zero
normal to the outlet surface plane.

A pressure boundary is determined by specifying the absolute pressure value.

Further details on the boundary condition implementations are given in
chap 12 outlining the numerical algorithms, discretizations and solvers.

Mean Kinetic Energy and Its Interaction with Turbulence

We learn quite a lot about the physics of turbulence by considering the ways in
which energy is transported from one place to another, and transformed from
one energy form to another. For the general case of a fluid occupying a global
volume V bounded by a surface S, the total kinetic energy of macroscopic
fluid motion ET can be expressed in terms of the instantaneous velocity field
vi(t, r) as

2ET =
∑

i

∫

V

ρv2
i dv (1.447)

An equation for ET can be derived from the Navier-Stokes equation (1.124)
in the form (i.e., noting that a few terms vanish when integrated)

dET

dt
=

∫

V

ρvigidv −
∫

V

ρεdv (1.448)

where, for simplicity, we have considered an incompressible flow of a one com-
ponent mixture. gi(t, r) is an externally applied force (per unit mass of fluid).
ε is the energy dissipation per unit time and per unit mass of fluid, given by

2ε = ν
∑

i

∑

j

(
∂vi

∂xj
+

∂vj

∂xi
)2 (1.449)

Equation (1.448) tells us that the global rate of change of energy is equal to the
rate at which the external forces do work on the fluid minus the rate at which
viscous effects convert kinetic energy into heat. Note that the non-linear terms
in the Navier-Stokes equation do no net work on the system. Mathematically,
it can be shown that any term which appears as a divergence in the local
energy equation vanishes when integrated over the system volume in order
to obtain the global equation [106]. Furthermore, the viscous term can be
divided into two parts, of which one is diffusive in character and vanishes when
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integrated, and the other is dissipative and given by (1.449) for incompressible
fluids.

In the turbulent case the total kinetic energy equation (1.447) is readily
generalized to the form

2ET =
∑

i

∫

V

ρv2
i dv +

∑

i

∫

V

ρv
′2
i dv (1.450)

Normally, as discussed earlier, in reactor modeling we are interested in
the energy associated with the velocity fluctuations v′i only. The appropriate
turbulent kinetic energy balance equation, the k equation, has therefore been
derived via an equation for the Reynolds stress tensor.

The turbulent kinetic energy budget involves the production of turbulent
kinetic energy by interaction of turbulence with the mean velocity. It was
stated in the previous analysis that the production of k was accompanied by
a corresponding loss of kinetic energy from the mean flow. No quantitative
derivation was given at that point. To study this mechanism, a procedure
analog to the derivation of the instantaneous kinetic energy equation can be
applied to derive an equation for the mean kinetic energy of the flow.

We start with the transport equation for mean velocity in turbulent flow
(1.387), multiply by vi, and use the chain rule to derive the following equation
for mean kinetic energy per unit mass:

∂(1
2v

2
i )

∂t
+ vj

∂( 1
2v

2
i )

∂xj
+ vi

∂v′iv
′
j

∂xj
= −vi

ρ

∂p

∂xi
+ νvi

∂2vi

∂xj∂xj

(1.451)

The first term on the LHS represents the rate of accumulation of mean kinetic
energy within the control volume. The second term on the LHS describes the
advection of mean kinetic energy by the mean velocity. The third term on
the LHS represents the interaction between the mean flow and turbulence.
The first term on the RHS represents the production of MKE when pressure
gradients accelerate the mean flow. The second term on the RHS represents
the molecular dissipation of mean motions.

Using the product rule, the interaction term (i.e., the third term on the
LHS) can be rewritten as

−vi

∂v′iv
′
j

∂xj
= v′iv

′
j

∂vi

∂xj
−

∂(v′iv
′
j vi)

∂xj
(1.452)

This leaves

∂( 1
2v

2
i )

∂t
+ vj

∂( 1
2v

2
i )

∂xj
= −vi

ρ

∂p

∂xi
+ νvi

∂2vi

∂xj∂xj
+ v′iv

′
j

∂vi

∂xj
−

∂(v′iv
′
jvi)

∂xj

(1.453)

If we compare the k equation (1.401) with the mean kinetic energy equation
(1.453) we see that they both contain a term describing the interaction be-
tween the mean flow and turbulence. We are of course referring to the velocity
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variance production term, which is the second last term in (1.453). The sign
of this term differ in the two equations. Thus, the energy that is mechanically
produced as turbulence is lost from the mean flow, and visa versa.

Generalized Transport Equations for Specific Turbulent Fluxes
and Variances of the scalar variables

Let ψ be a general instantaneous scalar variable representing quantities like
energy, heat, temperature, species mass concentration, etc.. In Cartesian co-
ordinates the general transport equation for ψ can be written as

∂ρψ

∂t
+

∂

∂xj
(ρvjψ) =

∂

∂xj
(Γψ

∂ψ

∂xj
) + Sψ (1.454)

where Γψ is the molecular diffusion coefficient of quantity ψ, and Sψ is the
source term for the remaining processes not already in the equation, such as
for example chemical reactions in the species transport equation. The physical
interpretation of the terms in the general equation has been discussed earlier
for the individual quantities of interest.

The general equation for the corresponding mean Reynolds averaged vari-
ables in a turbulent flow is derived in the following way. We start with the
basic transport equation (1.454) and expand ψ into its mean and fluctuating
parts (e.g., [153] [167] [66]):

∂ρψ

∂t
+

∂ρψ′

∂t
+

∂

∂xj
(ρvjψ) +

∂

∂xj
(ρv′jψ) +

∂

∂xj
(ρvjψ

′) +
∂

∂xj
(ρv′jψ

′)

=
∂

∂xj
(Γψ

∂ψ

∂xj
) +

∂

∂xj
(Γψ

∂ψ′

∂xj
) + Sψ

(1.455)

where we still assume that the fluid is incompressible (i.e., ρ and Γψ are
constant). In addition, we have assumed that the remaining net source term,
Sψ, is a mean forcing. Note that the latter assumption is not valid for many
multicomponent reactive systems.

Next, we Reynolds average the instantaneous equation

∂ρψ

∂t
+

∂

∂xj
(ρvjψ + ρv′jψ

′) =
∂

∂xj
(Γψ

∂ψ

∂xj
) + Sψ (1.456)

The first term on the LHS denotes the rate of accumulation of the mean
quantity ψ within the control volume per unit volume. The second term on
the LHS denotes the convection of the mean quantity ψ by the mean velocity.
The third term on the LHS represents the divergence of the turbulent ψ flux.
The first term on the RHS represents the mean molecular diffusion of the ψ
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quantity. The second term on the RHS denotes the mean net body source
term for additional ψ processes40.

The general transport equation for the scalar quantity variance can be
formulated, in analogy to the procedure applied for momentum, by subtracting
(1.456) from (1.455) to obtain an equation for the turbulent fluctuations (e.g.,
[153] [167] [154]):

∂ρψ′

∂t
+

∂

∂xj
(ρv′jψ) +

∂

∂xj
(ρvjψ

′) +
∂

∂xj
(ρv′jψ

′) − ∂

∂xj
(ρv′jψ′)

=
∂

∂xj
(Γψ

∂ψ′

∂xj
)

(1.457)

Multiplying this equation by 2ψ′, and using the product rule of calculus
to covert terms like 2ψ′∂ψ′/∂t into terms like ∂ψ

′2/∂t, yields:

∂ρψ
′2

∂t
+ 2ψ′ ∂

∂xj
(ρv′jψ) +

∂

∂xj
(ρvjψ

′2) +
∂

∂xj
(ρv′jψ

′2)

= 2ψ′ ∂

∂xj
(ρv′jψ′) + 2ψ′ ∂

∂xj
(Γψ

∂ψ′

∂xj
)

(1.458)

Next, we average, applying the Reynolds averaging rules, and rearrange
the terms in the equation:

∂ρψ′2

∂t
+

∂

∂xj
(ρvjψ

′2) = −2ψ′ ∂

∂xj
(ρv′jψ) − ∂

∂xj
(ρv′jψ

′2) + 2ψ′ ∂

∂xj
(Γψ

∂ψ′

∂xj
)

(1.459)

The first term on the right hand side is usually reformulated by use of
the continuity equation for the fluctuations, and the last term is slightly re-
arranged assuming that Γψ is a constant:

∂ρψ′2

∂t
+

∂

∂xj
(ρvjψ

′2) = −2ρψ′v′j
∂ψ

∂xj
− ∂

∂xj
(ρv′jψ

′2) + 2Γψψ′ ∂
2ψ′

∂x2
j

(1.460)

40 Note that for multicomponent reactive systems the source term needs to be
treated in a more sophisticated way if the time scale of the reaction rate is at the
same order as the time scale of the turbulent fluctuations. For very rapid reactions,
like in most combustion processes, the turbulent fluctuations will not influence
the reaction rate directly but indirectly through the mixing properties of tur-
bulence. Therefore, these reactions are often referred to as dispersion-controlled
reactions. Further details are given by Jones [79], Baldyga and Bourne [5] and
Fox [49]. For (very) slow reactions, like in many chemical processes, the turbulent
transport processes perform relatively rapid mixing, thus allowing time for fresh
reagent to mix with the local fluid. Therefore, calculating the average reaction
rate the local reagent concentrations are assumed premixed and the turbulent
species concentration variances appears to be small.
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As was done for momentum, the last term in the equation is split into
two parts, one determining the molecular diffusion of the ψ variance which is
assumed to be small enough to be neglected. The remaining part is defined as
twice the molecular dissipation term, εψ, by analogy with the kinetic energy
term:

εψ ≈ Γψ(
∂ψ′

∂xj
)2 (1.461)

Thus, the transport equation for the general scalar quantity ψ variance is

∂ρψ′2

∂t
+

∂

∂xj
(ρvjψ

′2) = −2ρψ′v′j
∂ψ

∂xj
− ∂

∂xj
(ρv′jψ

′2) − 2εψ (1.462)

The first term on the LHS represents the local rate of accumulation of the
variance ψ′2. The second term on the LHS describes the convection of the
quantity ψ variance by the mean velocity. The first term on the RHS denotes
a production term, associated with the turbulent motions occurring within
a mean ψ gradient. The second term on the RHS represents the turbulent
transport of the ψ variance. The third term on the RHS denotes the molecular
dissipation.

The general transport equation for the specific turbulent fluxes of scalar
variables is derived in analogy to the corresponding momentum flux equations,
i.e., the Reynolds stress equations. The derivation combines two equations for
the fluctuations to produce a flux equation. For the first equation we start
with the momentum fluctuation equation (1.389), multiply it by the scalar
quantity perturbation ψ′, and Reynolds average:

ψ′ ∂v
′
i

∂t
+ vjψ′ ∂v

′
i

∂xj
+ ψ′v′j

∂vi

∂xj
+ ψ′v′j

∂v′i
∂xj

= −1
ρ
ψ′ ∂p

′

∂xi
+ νψ′ ∂2v′i

∂xj∂xj

(1.463)

Similarly for the second equation, we start with the equation for the fluc-
tuating scalar variable (1.457) and multiply by v′i and Reynolds average:

v′i
∂ρψ′

∂t
+ v′i

∂

∂xj
(ρv′jψ) + v′i

∂

∂xj
(ρvjψ′) = −v′i

∂

∂xj
(ρv′jψ′) + v′i

∂

∂xj
(Γψ

∂ψ′

∂xj
)

(1.464)

we can reformulate some of the terms using the two forms of the continuity
equation and the assumption that the fluid is incompressible

v′i
∂ψ′

∂t
+ v′iv

′
j

∂ψ

∂xj
+ vjv′i

∂ψ′

∂xj
+ v′iv

′
j

∂ψ′

∂xj
=

Γψ

ρ
v′i
∂2ψ′

∂x2
j

(1.465)

Next, add these two equations, put the turbulent flux divergence term into
flux form using the continuity equations, and combine terms
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∂ψ′v′i
∂t

+ vj
∂ψ′v′i
∂xj

+ ψ′v′j
∂vi

∂xj
+ v′iv

′
j

∂ψ

∂xj
+

∂ψ′v′iv
′
j

∂xj

= −1
ρ
ψ′ ∂p

′

∂xi
+ νψ′ ∂2v′i

∂xj∂xj
+

Γψ

ρ
v′i
∂2ψ′

∂x2
j

(1.466)

Then, we split the pressure term into two parts, and assume ν ≈ Γψ

ρ to
combine the molecular diffusion terms:

∂ψ′v′i
∂t

+ vj
∂ψ′v′i
∂xj

= − ψ′v′j
∂vi

∂xj
− v′iv

′
j

∂ψ

∂xj
−

∂ψ′v′iv
′
j

∂xj

− 1
ρ
[
∂p′ψ′

∂xi
− p′

∂ψ′

∂xi
] + ν

∂2ψ′v′i
∂xj∂xj

− 2ν(
∂v′i
∂xj

)(
∂ψ′

∂xj
)

(1.467)

The terms in this equation have physical interpretations analogous to those
in the momentum flux equation (1.394), except for the additional term (i.e.,
the second term on the RHS), which is a production/loss term related to the
mean scalar quantity gradient. Physically, this term suggests production of the
scalar quantity flux when there is a momentum flux in a mean scalar quantity
gradient. The turbulent momentum flux implies a turbulent movement of the
fluid. If that movement occurs across a mean scalar quantity gradient, then
the scalar quantity fluctuation would be expected.

Note that an additional term must be added if the source is assumed to
fluctuate too.

Substituting 2 εuiψ for the last term, and neglecting the pressure diffusion
term and the molecular diffusion term leaves:

∂ψ′v′i
∂t

+ vj
∂ψ′v′i
∂xj

= −ψ′v′j
∂vi

∂xj
− v′iv

′
j

∂ψ

∂xj
−

∂ψ′v′iv
′
j

∂xj
+

1
ρ
[p′

∂ψ′

∂xi
] − 2εuiψ

(1.468)

where the first and second terms on the LHS are the rate of accumulation
and advection terms, the first and second terms on the RHS relate to produc-
tion/consumption, the third term on the RHS denotes turbulent transport,
the fourth term on the RHS denotes redistribution, and the fifth term on the
RHS denotes the molecular destruction or dissipation of the turbulent scalar
quantity flux.

Turbulence closure models for the unknown terms in the flux- and vari-
ance equations for single phase reactor systems are discussed extensively by
Baldyga and Bourne [5] and Fox [49] [50]. However, the application of these
model closures should be treated with care as most of these parameterizations
are expressed in terms of the turbulent eddy and other scalar dissipation rates
(and dissipation energy spectra) which are about the weakest links in turbu-
lence modeling. The predictive capabilities of the Reynolds averaged models
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are thus very limited, and in most papers the use of these statistical con-
cepts are restricted to the reproduction of known concentration and reaction
rates. More elaborated statistical approaches have been proposed in which the
governing equations are conditionally averaged invoking probability density
functions and moments of the modeled quantities [121]. However, in this book
no further consideration is given to the second order closure models.

For the purpose of reactor modeling, and in particular for multiphase sys-
temes, virtually only first order closures are adopted. Extensive use is made
of the simple gradient transport hypothesis, even though it has long been re-
alized that a gradient transport model requires (among other things) that the
characteristic scale of the transporting mechanism must be small compared
with the distance over which the mean gradient of the transported property
changes appreciably [24]. In practice, this requirement is often violated and
there exists experimental evidence that the gradient-diffusion models are not
sufficiently accurate for variable density flows (e.g., [49]). Counter-gradient
(or up-gradient) transport may even occur in certain occasions [100] [154]. In
atmospheric simulations this phenomenon might be physically explained by
large eddy transport of heat from hot to cold areas, regardless of the local
gradient of the background environment.

Nevertheless, the second order closure models are avoided and usually
not employed in industrial reactor flow simulations due to their complexity,
negligible gain in accuracy and predictivity, and because of additional numer-
ical convergence- and stability problems. Rather, the present trend in reactor
modeling is to explore the capabilities of the large eddy simulation (LES)
model.

1.3.6 Large Eddy Simulation (LES)

In this section the elementary concepts of the large eddy simulation (LES)
technique are examined.

The LES approach has been thoroughly assessed by [150, 97, 27, 29, 30,
45, 46, 65, 110, 99, 176, 133, 109, 105, 128, 140, 141, 143, 53, 98, 137, 121].
These reports are recommended for complementary studies.

In some flows in boundary layer meteorology there appears to be a dis-
tinct lack of velocity variations at certain intervals of time periods or frequency
intervals (e.g., [173]). The separation of scales is evident in the measured spec-
trum where the spectral gap appears as a wave number region containing very
low energy separating the micro scale from the macro scale peaks. Motion to
the left of the gap are said to be associated with the mean flow. Motions
to the right constitute turbulence. Hence, the spectral gap provides a means
to separate the turbulent from the non-turbulent influences on the flow (see
also [137], p. 82). Most of the operational numerical weather prediction mod-
els use grid spacings or wavelength cutoffs that fall within the spectral gap.



162 1 Single Phase Flow

This means that larger scale motions can be explicitly resolved and determin-
istically forecasted. The smaller scale motions, namely turbulence, are not
explicitly resolved. Rather, the effects of those sub-grid scales on the larger
scales are approximated by turbulence models. These smaller size motions
are said to be parameterized by sub-grid scale stochastic (statistical) approx-
imations or modes. The referred experimental data analyzes of the flow in
the atmospheric boundary layer determine the basis for the large eddy sim-
ulation (LES) approach developed by meteorologists like Deardorff [27] [29]
[30]. Large-Eddy Simulation (LES) is thus a relatively new approach to the
calculation of turbulent flows.

The basic idea also stems from two additional experimental observations
(see also the historical LES outline by Moin and Kim [110]). First, the large-
scale structure of turbulent flows varies greatly from flow to flow and is con-
sequently difficult, if not impossible, to model in a general way. Secondly, the
small-scale turbulence structures are nearly isotropic, very universal in char-
acter, and hence much more amenable to general modeling. In LES, one actu-
ally calculates the large-scale motions in a time-dependent, three-dimensional
computation, using for the large-scale field dynamical equations that incor-
porate relative simple models for small-scale turbulence. Only the part of
the turbulence field with scales that are small relative to the overall dimen-
sions of the flow field is modeled. This in contrast to phenomenological turbu-
lence modeling, in which all the deviations from the mean velocity profile are
modeled.

A typical LES calculation for wall-bounded turbulent flows imposes a great
demand on computer speed and memory. At present, therefore, the use of
LES for practical engineering applications is admittedly uneconomical. Thus,
according to Reynolds [128], LES came to the attention of the engineering re-
search community about a decade after it had been pioneered by scientists in
weather forecast [101]. However, several considerations motivate the present
development of the LES method in the engineering community. First, the in-
formation generated by simple flow calculations can be used as a research tool
in studies of the structure and dynamics of turbulence. Secondly, the various
correlations that can be obtained from the computed large-scale field may
be used in developing phenomenological turbulence models for complex flows.
Thirdly, the great bulk of routine engineering calculations of turbulent flows
will always be made with the most economical representations of the tur-
bulence that provide adequate predictions. For complex flows that are three
dimensional, 3D calculations must be made with an appropriate approach. For
these flows LES may actually prove to be faster and cheaper than the other
turbulence models having the sophistication necessary to capture the complex
effects [128]. The main reason for this is that the present methods based on
the time (or ensemble) averaged Navier-Stokes equations require considerable
experimental validation to be useful since it is difficult to develop a universal
turbulence model representing all eddy sizes. Therefore, even with the experi-
mental data available, the range of applicability of a particular model may be
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limited. However, the cost of experimental research requires that model sim-
ulations should be carried out minimizing the number of experiments needed.
Large eddy simulations is a compromise which attempts to fill the gap. The
hypothesis is that by modeling just the small eddies, it may be possible to
develop models which are sufficiently flow independent. According to Ferziger
and Leslie [46], this is the premise of LES.

To provide an introductory mathematical description of the basic idea of
Large Eddy Simulations, we consider the turbulent energy spectra. Suppose
that we do not attempt to simulate all the wavenumber modes up to the
viscous cutoff (> kd). Instead, we only simulate modes for which k ≤ kC ,
where the chosen cutoff wavenumber kC satisfies the condition kC � kd. The
situation we are envisaging in engineering practice is illustrated schematically
in Fig. 1.8. Note that in engineering practice the cutoff wavenumber is often
apparently arbitrarily chosen due to the missing energy gap in the energy
spectrum, whereas in the geophysical sciences the choice of cutoff wavenumber
kC is not arbitrary but based on physical interpretations of experimental data
(e.g., [154]).

However, the theoretical interpretation of LES is that we are simulating the
Fourier-transformed Navier-Stokes equation with its wavenumber representa-
tion truncated to the interval 0 ≤ k ≤ kC . In accordance with the theory of

E(k)

kc kd k

Resolved scales Subgrid scales

Fig. 1.8. The energy spectrum divided into resolved scales (k < kC) and subgrid
scales (k > kC), for the purpose of large-eddy simulation.
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Taylor [164] the non-linear convection term couples all wave numbers together
thus the overall effect is a net transfer of energy from any one wavenumber to
higher wave numbers41 [106]. Hence, if we truncate at k = kC , we are removing
the mechanism by which energy is transferred from wave numbers below kC

to those above. In practice, such a simulation would fail because energy would
be cascaded down to k = kC and would pile up at the cutoff. To solve this
problem we usually introduce an apparent viscosity, an analog to the eddy
viscosity known from the foregoing discussion but with a different physical
interpretation, to represent the effect of energy transfers to k > kC . As can
be seen from Fig. 1.8, the larger eddies (λ > λC , or k < kC as λ = 2π/k)
carry most of the turbulent kinetic energy and most of the turbulent fluxes.
Accordingly, in the ideal case, the smallest eddies carry only a small fraction
of the turbulent kinetic energy and hardly any turbulent fluxes. Therefore,
assuming that the energy flux to k > kC is almost negligible, a rough model
for it may still be sufficient providing accurate solutions for the larger eddies.

LES can also be performed in physical space, using the governing equations
in a more familiar form. The flow problems are then simulated using a 3D time-
dependent numerical integration scheme which numerically resolves scales in
between a lower limit of the order Δ as given by the grid scale or any equivalent
resolution limit of the numerical integration scheme, and an upper limit as
given by the size of the computational domain.

Basically, in further details, there are four conceptual steps in LES ([121],
chap 13):

1. A filtering operation is defined to decompose the velocity, v(r, t), into
the sum of a filtered (or resolved) component, ṽ(r, t), and a residual (or
sub-grid-scale, SGS) component, v′(r, t):

vi = ṽi + v′i (1.469)

2. The equations for the evolution of the filtered velocity field are derived
from the Navier-Stokes equations.

3. Closure is obtained by modeling the residual-stress tensor, most simply
by an eddy-viscosity model.

4. The filtered model equations are solved numerically for ṽ(r, t), which pro-
vides a 3D and time dependent approximation to the large scale motions
in one realization of the turbulent flow.

41 If energy is feed into a certain band of scales, then turbulence has the tendency
to distribute energy in a wave number space from the given mode to all other
possible modes. In the absence of sources and sinks of energy, this process will
continue to complete redistribution. However, in reality, geometry limits the lower
end wave numbers and the viscosity damps out energy at high wave numbers. In
order to balance the dissipation, more energy has to be transported from the large
to small length scales. This is the reason for having a one-way transfer of energy
from small to high wave numbers. Thus, the sub-grid scale model has to mimic
the drainage of energy from the large scales.
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There are, however, two viewpoints on the separation of the modeling
issues (i.e., points 1-3 above) from the numerical solution (i.e., point 4 above).

• In one point of view, as expressed by Reynolds [128], the two issues are
considered separately. The filtering and modeling are independent of the
numerical method, and the closures are independent of the numerical grid
used. Hence, the terms ‘filtered’ and ‘residual’ are more appropriate than
the usual ‘resolved’ and ‘sub-grid’ phrases. In this case it is also expected
that the numerical method provides accurate solutions to the filtered equa-
tions. In practice, however, the modeling and numerical issues are always
connected.
In this approach the governing equations are usually transformed and
solved numerically in wave number space by use of very accurate spec-
tral methods.
The present LES concept has in most cases been used as a research tool
to study isotropic and homogeneous turbulence within the more theoreti-
cal fields of science. Note that the residual-stress models for homogeneous
turbulence are not adequate describing industrial non-isotropic inhomoge-
neous turbulent flows ([137] [121], chap 13).

• The alternative interpretation is that modeling and numerical issues should
deliberately be combined. The governing equations are then solved in phys-
ical space often using a second order accurate finite difference or finite
volume algorithm.
This LES concept is usually preferred in engineering practice. Note also
that the residual-stress models used in physical space are usually different
from those used in wave number space ([137] [121], chap 13).
In the numerical solution of the LES momentum equation, various numer-
ical errors are incurred, the most important being the spatial truncation
error. One way to express this error is through the modified equation,
which is the PDE satisfied by the numerical solution. The modified equa-
tion corresponding to the LES momentum equation can be written:

˜Dṽj

˜Dt
= ν

∂2ṽj

∂xi∂xi
− ∂

∂xj
(˜σR

ij − ˜σn
ij) −

1
ρ

∂p̃

∂xj
(1.470)

It is noted that the spatial-truncation error appears as an additional nu-
merical stress, ˜σn

ij , which depends on the grid spacing h. If the spatial
discretization is p-th order accurate, then ˜σn

ij is of order hp.
There are also differing viewpoints on the role of the numerical stress
in LES. The simplest view is that the LES equations should be solved
accurately. That is, for a given filter width, Δ, the grid spacing h should be
chosen to be sufficiently small so that the numerical stress, ˜σn

ij , is negligible
compared with the modeled residual stress ˜σR

ij . Kinetic energy is removed
from the resolved motions by numerical dissipation at the rate εnum =
−˜σn

ij
˜Sij .
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The opposite viewpoint, advocated by Boris et al. [16], is that no explicit
filtering should be performed and no explicit residual stress model should
be used (˜σR

ij = 0). Instead, an appropriate numerical method is used to
attempt to solve the Navier-Stokes equation for ṽ(r, t). Because the grid
is not fine enough to resolve the solution to the Navier-Stokes equation,
significant numerical stresses ˜σn

ij arise. Thus, filtering and residual-stress
modeling are performed implicitly by the numerical method.
The numerical stress ˜σn

ij depends on the type of numerical method used,
and hence this choice is crucial. The ideal scheme is accurate for the
well-resolved contributions to ṽ(r, t), while it attenuates poorly resolved
shorter-wave length contributions.
Compared with explicit modeling of the residual stresses, this approach
has advantages and disadvantages, advocates and detractors. The advan-
tages are that for a given grid size as much as possible of the turbulent
motion is represented explicitly by the LES velocity field ṽ(r, t), and that
energy is removed from ṽ(r, t) only where and when it is necessary to do
so. A further advantage is that the time and effort required to develop
and test a residual-stress model are eliminated. The primary disadvantage
is that the modeling and the numerics are inseparably coupled. Another
disadvantage is that there is no representation or estimation of the sub-
grid scale motions that can be used for defiltering or in models for other
sub-grid scale processes.

Leonard [97] was apparently the first to use the term Large Eddy Simula-
tion. He also introduced the idea of filtering as a formal convolution operation
on the velocity field and gave the first general formulation of the method.
Since Leonard’s approach form the basis for application of LES to chemical
reactor modeling, we discuss this approach in further details.

Leonard [97] defined a generalized filter as a convolution integral42:

ṽi(r, t) =
∫∫∫

G(r − ξ;Δ)vi(ξ, t) d3ξ (1.471)

where G represents the filter function and the tilde denotes the large scale (or
resolved) part of the velocity field. Over the years numerous filters have been
proposed and used for performing the spatial scale separation (e.g., [137]).

The filter function, G, is normalized by requiring that:

42 Convolution, the word comes from the folding together, one part upon another. In
mathematics convolution can be considered as a generalized product of functions.
In this context the purpose for introducing a convolution integral is to extend the
integral over the whole flow field domain. Lower limit is −∞, and upper limit
is ∞. The filtering function G(r − ξ; Δ) is a normalized weighting function with
characteristic length Δ. The argument r − ξ is a reminder for the limits of the
original integral, ξ ∈ (r− 1

2
Δr, r + 1

2
Δr). The symbol dξ should still be thought

of as simply an indication of what the independent variables are.
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∫∫∫

G(r − ξ;Δ) d3ξ = 1 (1.472)

Three classical filters for large eddy simulation, as given by Leonard [97],
are sketched in Fig. 1.9. In terms of the filter function (1.471), the volume-
averaged box filter as defined in (1.486) is given by (e.g., [97] [186] [137]):

G(ri − ξi;Δ) =

{

1/Δ if |ri − ξi| ≤ Δri/2,
0 Otherwise

(1.473)

and sketched in Fig. 1.9a. The physical box filter is not sharp in wave number
space.

A Gaussian filter as sketched in Fig. 1.9b, is defined by:

G(ri − ξi;Δ) = (
6

πΔ2
)1/2 exp(−6

|ri − ξi|2
Δ2

) (1.474)

Fig. 1.9. Possible spatial filters defining large-scale quantities with G = G1G2G3.
The filter denoted by (a) is the volume-averaged box filter, the filter denoted by
(b) is the Gaussian filter, and the filter denoted by (c) is the sharp cutoff filter.
Note that the position vector, x, used by Leonard corresponds to r in this book.
Reprinted from Leonard [97] with permission from Elsevier.
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The Gaussian filter is fairly sharp both in physical space and in wave number
space. This filter was for example used by Ferziger [45].

The Fourier transform of (1.471) is ̂ṽi(k, t) = ̂G(k)v̂i(k, t), where v̂i and
̂G represent the Fourier transforms of vi and G, respectively (e.g., [133, 186,
121, 137]).

A Fourier transform of the filter shown in Fig. 1.9c is a spectrally sharp
cutoff filter, a kind of box filter in k-space rather than r-space. The spectrally
sharp top-hat filter, i.e., the filter normally used in spectral simulations, is in
physical space defined by (e.g., [97] [106]):

G(ri − ξi;Δ) =
2 sin(π(ri − ξi)/Δ)

π(ri − ξi)
(1.475)

In physical space this filter is not sharp, as shown from the sketch in Fig. 1.9c.
The significance of the sharp spectral filter is apparent, it annihilates all

Fourier modes of wave number |k| greater than the cutoff wave number, kC =
π/Δ, whereas it has no effect on the lower wave number modes.

Illustrating the Reynolds averaging procedure in the previous sects. we
started by formulating the average incompressible conservation equations
for mass and momentum written in Cartesian coordinates, i.e., (1.382) and
(1.383). Performing the corresponding derivation of the filtered LES equations
we highlight the main similarities and differences between these two modeling
approaches.

The filter operation defined by (1.471) is sometimes written in the con-
tracted form (e.g., [106] [137]), intending to make the text more easy to follow:

ṽi(r, t) = G∗{vi} (1.476)

The continuity equation is a relatively simple starting point formulating the
LES equations, neatly demonstrating the filtering procedure. Applying the
mathematical operator G, defined according to (1.476), on (1.382) using a
homogeneous filter (e.g., [140], p 380; [121], chap 13) yields43:
43 This result can be proven by integration by parts with respect to ξ, provided only

that vi vanishes on the boundaries [106]:

∂

∂xi

∫

Gvid
3ξ =

∫

∂

∂xi
(Gvi)d

3ξ =

∫

G
∂vi

∂xi
d3ξ +

∫

∂G

∂xi
vid

3ξ (1.477)

or
∂

∂xi
(G∗{vi}) = G∗{ ∂vi

∂xi
} +

∫

∂G

∂xi
vid

3ξ (1.478)

Note that
∫

∂G

∂xi
vid

3ξ = 0 (1.479)

provided that vi = 0 at the boundaries.
Then,

G∗{ ∂vi

∂xi
} =

∂

∂xi
(G∗{vi}) =

∂ṽi

∂xi
(1.480)
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G∗{ ∂vi

∂xi
} =

∂

∂xi
(G∗{vi}) =

∂ṽi

∂xi
= 0 (1.482)

It follows from (1.382), (1.476), and (1.482) that the resolved scales satisfy
the continuity equation given by:

∂ṽi

∂xi
= 0 (1.483)

Considering the Navier-Stokes equation (1.383), the linear terms are straightly
treated in a similar manner but, as in the Reynolds averaging procedure, the
non-linear terms require further analysis. Applying the filter operator (1.476)
on the non-linear terms in (1.383), yields

∂ṽi

∂t
+

∂˜σij

∂xj
= −1

ρ

∂p̃

∂xi
+ ν

∂2ṽi

∂xj∂xj
(1.484)

where the filtered non-linear term, ˜σij , is given by [97]:

˜σij =G∗{vivj} = G∗{ṽiṽj + v′iṽj + ṽiv
′
j + v′iv

′
j}

=ṽivj = ˜ṽiṽj + ˜v′iṽj + ˜ṽiv′j + ˜v′iv
′
j

=ṽiṽj + (˜ṽiṽj − ṽiṽj) + (˜v′iṽj + ˜ṽiv′j) + ˜v′iv
′
j

=ṽiṽj + ˜Lij + ˜Cij + ˜Rij

=ṽiṽj + ˜σR
ij

(1.485)

where the instantaneous velocity field has been decomposed into resolved
and sub-grid scales by use of (1.469).

The above equations describe the large-scale motion. ˜Lij represents the in-
teractions among the large scales. The effect of small scales appears through
the residual stress tensors (i.e., ˜Cij and ˜Rij). In particular, ˜Cij represents the
interactions between the large and small scales, and ˜Rij reflects the interac-
tions between subgrid scales. The tensors ˜Lij , ˜Cij and ˜Rij are known as the
Leonard stress, cross-term stress and the residual Reynolds stress, respectively.

thus the resolved scales satisfy the continuity equation.

Pope ([121], p. 562) shows that the operation of filtering and differentiating
with respect to time commute. Pope also indicate that if we differentiate (1.471)
with respect to xj we will obtain the result

∂ṽi

∂xi
=

˜∂vi

∂xi
+

∫

vi
∂G(ξ, r)

∂xi
d3ξ (1.481)

showing that the operations of filtering and differentiation with respect to position
do not commute in general, but do so for homogeneous filters.
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At first sight comparing the Reynolds decomposition and time averaging
procedure with the corresponding steps in the filtering procedure there are
certainly similarities, but also a few essential differences. Obviously, consider-
ing the Leonard stress terms, the filtering differs from the standard Reynolds
averaging in one important respect, ˜ṽi 
= ṽi. That is, a second averaging yields
a different result from the first averaging ([53], chap 6). In a similar manner,
considering the cross-term stress, we recognize that ˜v′i 
= 0. Comparing the
resulting filtered equations of motion with the corresponding equations of
mean motion obtained by Reynolds averaging the instantaneous equations, it
is noted that the continuity equation (1.483) is formally identical with (1.386)
for continuity, if we replace ṽi by vi. There are also similarities between the
Reynolds averaged and the Leonard filtered Navier-Stokes equations, as given
by (1.387) and (1.484), respectively. The important differences lie in the pres-
ence of the cross-term stress term, ˜Cij , and the Leonard stress, ˜Lij , in (1.484).
The Leonard stress term on the RHS of (1.485) is not a residual tensor, as it
involves only the explicit scales and the filter function. The computation of
the Leonard stresses may still cause practical difficulties as it requires a sec-
ond application of the filter, but in principle there is no fundamental closure
problem. However, even though there are formal similarities, an essential con-
ceptual difference is that the Reynolds equations involve a mean field which
is stationary, or slowly varying with time, and varies smoothly in space, while
the large eddy simulations involve a field which may be extremely chaotic in
space and time if the numerical grid spacing is small enough [98]. If the grid
spacing is increased too much, however, the solution of the LES will, in some
sense, converge towards the mean flow. In the other extreme limit, reducing
the grid spacing sufficiently, a direct numerical simulation (DNS) is achieved.

In the following paragraphs only the engineering LES practice is consid-
ered, as this approach is relatively simple and based upon FD and FVM
algorithms (i.e., note that almost all reactor models are discretized by the
FVM).

The first engineering LES was Deardorff’s [27] simulation of plane channel
flow. Deardorff used Reynolds (spatial) averaging, applied to a unit cell of the
finite difference mesh, to define the larger (or resolved) scales, and introduced
the terminology filtered variables. Although only 6720 grid points were used,
the comparison with literature laboratory experiments was sufficient favorable
for the feasibility of the method to have been established.

The volume-average box filter used by Deardorff [27] is sketched in
Fig. 1.9a. In Cartesian coordinates the filter is ([186] [137])44:

44 Note that in these formulations a formal mathematical notation is used. r is the
position vector, while in the integrand we strictly need to use a vector which has
components somewhere between the integration limits. The symbols dξ, dη, and
dζ should be thought of as simply an indication of what the independent variables
are.
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ṽi(r, t) =
1
Δ3

∫ x+ 1
2 Δx

x− 1
2 Δx

∫ y+ 1
2 Δy

y− 1
2 Δy

∫ z+ 1
2 Δz

z− 1
2 Δz

vi(ξ, t)dξdηdζ (1.486)

The quantity ṽi denotes the resolvable-scale filtered velocity.
For finite difference and finite volume discretizations using the box filter,

the filter width, Δ, yields:

Δ = h = (ΔxΔyΔz)
1
3 (1.487)

To fully understand this concept of filtering, note that the values of flow prop-
erties at discrete points in a numerical simulation represent averaged values.
To illustrate this explicitly, Rogallo and Moin [133] considered the central dif-
ference approximation for the first derivative of a continuous variable, v(x),
in a grid with points spaced a distance h apart. We can write this as follows
(e.g., [133], p. 103 [186], p 323):

dṽ

dx
≈ ṽ(x + h) − ṽ(x− h)

2h
=

d

dx
[

1
2h

∫ x+h

x−h

v(ξ)dξ] (1.488)

This shows that the central-difference approximation can be thought of as an
operator that filters out scales smaller than the mesh size. Furthermore, the
approximation yields the derivative of an averaged value of ṽ(x).

In practice, the Leonard stress is often dominated by the numerical er-
rors inherent in the finite difference (and finite volume) representation and
is thus neglected or lumped into the deviatoric stress tensor (e.g., [97] [106]
[186], p. 325). Consequently, as the box filter is applied to the Navier-Stokes
equation, the residual stresses assume the form of sub-grid scale stresses:

˜σR
ij = ṽivj−ṽiṽj = (˜ṽiṽj−ṽiṽj)+(˜ṽiv′j+˜v′iṽj)+˜v′iv

′
j = ˜Lij+ ˜Cij+ ˜Rij ≈ ˜Cij+ ˜Rij

(1.489)
These stresses are similar to the classical Reynolds stresses that result from
time or ensemble averaging of the advection fluxes, but differ in that they are
consequences of a spatial averaging and go to zero if the filter width Δ goes
to zero.

For LES performed in physical space, the basic sub-grid stress model is the
eddy-viscosity model proposed by Smagorinsky45. The Smagorinsky model is
based on the gradient transport hypothesis and the sub-grid viscosity concept,
just as the Reynolds stress models based on the Boussinesq eddy viscosity
hypothesis, and expressed as:

˜σR
ij = −2νSGS,t

˜Sij +
δij

3
( ˜Ckk + ˜Rkk) (1.490)

45 The original idea of performing LES is due to Smagorinsky [150], who applied
the technique to shear flows calculating the general circulation of the atmosphere
on a finite difference grid and represented the drain of energy to turbulent scales
smaller than the grid spacing h (i.e., the sub-grid scales) by a sub-grid model
based on the effective viscosity hypothesis.
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The model is based on the assumption of proportionality between the
anisotropic part of the SGS-stress tensor, ˜σd

ij = ˜σR
ij −

δij

3 ( ˜Ckk + ˜Rkk), and the
large scale strain-rate tensor, ˜Sij . Hence,

˜σd
ij = −2νSGS,t

˜Sij (1.491)

where ˜σd
ij denotes the deviator of ˜σR

ij . This deviatoric tensor is necessary
since the residual stress model being proportional to the large scale strain-
rate tensor has a zero trace, thus we can only model a tensor that also has a
zero trace.

Leonard [97] defined the complementary tensor, δij

3 ( ˜Ckk + ˜Rkk), and sug-
gested that this term can be added to the filtered pressure, p̃+ δij

3 ( ˜Ckk + ˜Rkk).
In this way the complementary tensor requires no modeling. Analogous to the
average turbulent kinetic energy quantity, one can also define a sub-grid scale
kinetic energy variable, kSGS = 1

2 ( ˜Cii + ˜Rii). Hence, the anisotropic SGS
tensor is given by ˜σd

ij = ˜σR
ij − 2

3kSGSδij .
Thereafter, the closure consists in determining the SGS eddy viscosity

parameter. By analogy to the mixing length hypothesis, the Smagorinsky
[150] model is defined as:

νSGS,t = l2S
˜S ≈ (CSΔ)2 ˜S (1.492)

where ˜S ≈ (2˜Sij
˜Sij)1/2 is the characteristic filter rate of strain, ˜Sij =

1
2 ( ∂ṽi

∂xj
+ ∂ṽj

∂xi
), CS denotes the Smagorinsky constant, lS denotes the Smagorin-

sky lengthscale (analogous to the mixing length), and the generalized filter
width Δ is a characteristic length scale of the resolved eddies (e.g., [150] [133]
[106] [98] [186] [121], chap 13). Recall that in the present case, Δ is propor-
tional to the grid spacing, h.

If the grid scale h is close to the scale of the most energetic motions, such
a simulation is called a very large eddy simulation (VLES) [128]. In LES, the
filtered velocity field accounts for the bulk (say 80 %) of the turbulent kinetic
energy everywhere in the flow field ([121], chap 13). In VLES the grid and
filter are too large to resolve the energy-containing motions, and instead a
substantial fraction of the energy resides in the residual motions. A VLES
thus demands for more accurate sub-grid scale models than a LES in which
the sub-grid scale fluxes and variances are small. Accurate modeling of the
fluxes itself is necessary only where the sub-grid scales fluxes get large in
comparison to the resolved fluxes. However, such a VLES may still be more
accurate than a turbulence model which aims to describe all scales of motion
together in one model [143].

Some workers reserve the term LES for the case where the filter scale Δ
corresponds to a wavenumber in the k−5/3 inertial range, and the term VLES
when the residual field begins before the inertial range [128]. The reason for



1.3 Application of the Governing Equations to Turbulent Flow 173

this filter scale limit of subdivision between LES and VLES stems from the
derivation of the Smagorinsky constant. Basically, the early LES models were
constructed assuming that turbulence at the sub-grid scales corresponds to
the Kolmogorov [83] inertial range of turbulence [101]. In particular, adopting
the five-third law valid at these scales theoretical values for the Smagorinsky
constant can be derived (e.g., [101] [137] [121]). For a coarser filter width, as
those adopted in VLES, the assumption that the sub-grid scales corresponds
to the inertial range of turbulence is significantly violated and the micro eddy
movement is far from being isotropic and is not sufficiently independent of
the macro eddy movement. Therefore, in VLES no analytical estimate of the
Smagorinsky constant exists.

However, apparently the value of CS is not universal in LES either. In
practice, CS is adjusted to optimize the model results. Deardorff [28] [29]
quoted several values of CS based on Lilly’s estimates. The exact value cho-
sen depends on various factors like the filter used, the numerical method used,
resolution, and so forth, but they are generally of the order of CS = 0.2. How-
ever, from comparison with experimental results, Deardorff concluded that
the constant in the Smagorinsky effective viscosity model should be smaller
than this, and a value of about CS = 0.10 was used. In addition, for the case
of an anisotropic resolution (i.e., having different grid width Δx, Δy and Δz
in the different co-ordinate directions), the geometry of the resolution has to
be accounted for.

Like all other models, LES requires the specification of proper boundary
and initial conditions in order to fully determine the system and obtain a
mathematically well-posed problem. However, this concept deviates from the
more familiar average models in that the boundary conditions apparently rep-
resent the whole fluid domain beyond the computational domain. Therefore,
to specify the solution completely, these conditions must apply to all of the
space-time modes it comprises.

For 3D simulations of chemical reactors we generally need to specify inlet-,
outlet - and wall boundary conditions. In such wall bounded flows the finest
grid resolution is determined by the flow near walls where most of the turbu-
lence energy production occurs. For industrial reactor simulations it is thus
desirable to avoid the high cost of resolving the wall boundary layer by adopt-
ing the statistically average wall function approach based on the logarithmic
law of the wall in line with the work of Deardorff [27], Schumann [140] and
Moin and Kim [110]. The boundary conditions normally used in practical
LES applications are neatly examined by Sagaut [137] and Pope [121]. It is
noticed that the structure of the boundary layer flow has certain character-
istics that require special treatment in LES [137]. That is, experimental and
numerical investigations have revealed important dynamic processes within
the boundary layer (e.g., anisotropic and intermittent bursting events, quasi-
longitudinal and arch structures, etc.) that induce strong variations in the
Reynolds stresses, and in the production and dissipation of the turbulent ki-
netic energy. Resolving these near wall dynamics directly is still not feasible,
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and the existing sub-grid wall models are not sufficiently accurate. Another
severe difficulty occurs at the reactor outlet boundary. Unfortunately, at such
open boundaries the flow variables depend on the unknown flow outside the
domain. However, this issue is not specific to LES, but constitutes a problem
for most reactor simulations. The specification of accurate inlet conditions
may also be a problem, since the flow upstream of the computational domain
is usually not known in sufficient details (i.e., recall that we need to specify the
space-time modes). In addition, the influence of the upstream conditions may
persists for large distances downstream. Apparently, it is generally not clear
how to specify suitable boundary conditions performing reactor LES analysis.

In an ideal single phase reactor flow situation a LES simulation could be
initiated as a laminar flow, and by gradually increasing the inlet velocity the
flow will evolve to a sufficiently high Reynolds number laminar flow. Then,
by any physical disturbance the flow will sustain these instabilities and a flow
regime transition from laminar to turbulent flow will take place. In a numerical
simulation the necessary sustainable instabilities requited for the flow regime
transition to occur are caused by numerical instabilities normally emerging
after a relatively long simulation time period. Of course, it is also possible that
these numerical instabilities might grow or sustain as a pure numerical mode
and do not represent physical turbulence so a proper validation procedure
is necessary. To reduce the simulation time for the initial stage of the flow
calculation obtaining fully turbulent flows, forced perturbations are commonly
added to make the flow unstable and then evolving to become turbulent if the
Reynolds number is sufficiently large. That is, it might not be necessary to
add such perturbations deliberately as it is very difficult to specify consistent
3D fields for all the physical quantities involved to initialize the calculation. In
practice, using inaccurate initial conditions, the flow develops neatly becoming
fully turbulent but the higher order statistics might be physically realistic only
after a certain adjustment period [133].

Applying LES the numerical resolution used is crucial achieving sufficiently
accurate solutions. Schumann [143] stated that the size of the calculation
domain should be large in comparison to the scale of the most energetic eddies.
A reason for this requirement is that in LES the resolution requirements are
determined directly by the range of scales contributing to the desired statistics
and indirectly by the accuracy of the model [133]. The less accurate the model,
the further the model scales must be separated from the scales of interest. This
requirement may represent a problem in reactor simulations as the largest
eddies are comparable to the reactor dimensions. Accordingly, if the size of
the calculation domain adopted is too small we may neither get sufficient
data for reliable statistics. Another numerical resolution requirement is that
the scale h has to be much smaller than the scale of the large eddies. In VLES
the grid scale h may be close to the most energetic motions but still smaller.

Validating LES, comparing the model predictions with experimental re-
sults, is also crucial. One must then ensure that the filtered experimental
statistics are compared with the corresponding statistics of the filtered field.
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Alternatively, one can compare the total field statistics from the simulation
with the corresponding experimental data [128].

Progress in LES has taken place in various directions. Seeking more ac-
curate models it might be natural to incorporate non-local effects through
transport equations for the residual stresses and other quantities related to
the residual motions. These LES model closures parallel the conventional tur-
bulence modeling of Reynolds averaged closures. We have already stated that
the Smagorinsky model is deduced from the mixing-length model. Moreover,
transport equation models analogous to one-equation models, Reynolds stress
models and PDF models have been proposed [121]. The most important dif-
ference between the two concepts is that in LES the filter width Δ is taken
as the characteristic lengthscale of the residual motions, so that no equation
is needed for the turbulent length scale (analogous to the model equation for
ε). The most sophisticated SGS model used so far (i.e., counting the num-
ber of PDEs) was designed by Deardorff [30] for application to the atmo-
spheric boundary layer. The model consists of 10 partial differential equations
and bears a strong resemblance to a second-order closure model (a Reynolds
Stress Model, RSM). In this particular model the dissipation rate is taken to
be isotropic, hence the instantaneous dissipation rate εSGS of the residual or
sub-grid scale kinetic energy (kSGS = 1

2
˜σR

ii) is related to kSGS and the filter
width by:

εSGS =
CEk

3/2
SGS

Δ
(1.493)

where CE = 0.7.
While the model apparently leads to improved predictions, its complex-

ity has discouraged many researchers. Therefore, in a later study Deardorff
[31] reverted to an isotropic eddy-viscosity model in order to decrease the
computational costs. In the latter model version an additional equation was
used to determine the residual kinetic energy, as the eddy viscosity νSGS was
expressed by:

νSGS = Cνk
1/2
SGSΔ (1.494)

where Cν ≈ 0.10.
Using the latter two relations we may also approximate the residual dissi-

pation rate, e.g., in terms of the residual viscosity determined by other LES
closures, in case this parameter is needed for reactor modeling purposes like
in population balance kernels and in species mixing model parameterizations
provided that the overall closure models remain consistent [21].

Germano et al. [56] and Germano [57] have devised a new concept that
they describe as a Dynamic SGS Model. Their formulation is also based on
the Smagorinsky eddy-viscosity approximation. However, rather than fixing
the value of CS a priori, they permit it to be computed as the LES proceeds.
This is accomplished by using two filters.

A few rather preliminary attempts at performing LES describing turbu-
lent reactive flows have also been reported (e.g., [142] [120]). For the study
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of chemical processes within the atmospheric boundary layer zero-equation
models are usually adopted for the mass fluxes. The variances are generally
neglected. Moin et al [111] and Erlebacher et al. [44] pushed the frontiers of
LES research into compressible flows. They derived a compressible flow SGS
model and exercised it in computation of compressible isotropic turbulence.
The main difference between incompressible and compressible flow formula-
tions is that, instead of spatial filtering, it is customary to introduce mass
weighted or Favre filtering, ˜fρ = ˜ρf/ρ̃, in the latter case (e.g., [53]). The
Favre-filtered SGS-stresses and the heat flux are then, ˜σij = ρ̃(ṽivj − ṽiṽj)
and ˜Qk = cP ρ̃(˜vkT − ṽk

˜T ), where T is the temperature and cP is the specific
heat at constant pressure. The results presented are apparently in excellent
agreement with DNS results. McComb [106] classified the various LES runs
which have been carried out so far as, in effect, tests for sub-grid models. It
was noted that variations from one simulation to another, in terms of choice
of filter, filter width, grid resolution, and other numerical factors, can easily
obscure differences between sub-grid models. Based on an evaluation of sev-
eral investigations which have been performed specifically aiming at testing
sub-grid models, the overall conclusion was that the Smagorinsky model pre-
dicts reasonable results and that the various modifications to it have little net
effect on the actual LES. It was, however, indicated that when formulating
the sub-grid models for LES, as for any constitutive equations, attention have
to be drawn to the need to chose sub-grid models in such a way that the equa-
tion of motion for the large eddies is invariant under Galilean transformations.
This simple requirement may lead to improved sub-grid models. Nevertheless,
numerical aliasing errors can violate these invariance properties and lead to
nonlinear numerical instabilities [133].

In conclusion, for chemical reactor simulations LES holds promise as a
future design tool, especially as computers continue to increase in speed and
memory. Basically, it turns out that the VLES approach performs well essen-
tially due to the fine numerical grid resolution used thus an explicit SGS model
is of minor importance. The approach is thus very appealing, as the tedious
work fitting the turbulence closure to experimental data might be avoided.
Apparently, the closure complexity represented by the Smagorinsky model
seems sufficient for chemical reactor LES analyzes. Defining proper boundary
conditions are presently more demanding.
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des liquids dans les lits rectilignes à grande section I-II. Gauthier-Villars, Paris

21. Bove S (2005) Computational Fluid Dynamics of Gas-Liquid Flows including
Bubble Population Balances. PhD Thesis, Aalborg University, Esbjerg

22. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux profile relation-
ships in the atmospheric surface layer. J Atmos Sci 28:181-189

23. Chou PY (1945) On Velocity Correlations and the solutions of the equations
of turbulent fluctuation. Quarterly of Applied Mathematics 3:38-54

24. Corrsin S (1974) Limitations of Gradient Transport Models in Random Walks
and in Turbulence. In: Landsberg HE, van Mieghem J (eds) Advances in geo-
physics, Academic Press, New York, 18A

25. Crowe CT, Sommerfeld M, Tsuji Y (1998) Multiphase Flows with Droplets
and Particles. CRC Press, Boca Raton.

26. Danckwerts PV (1953) Continuous flow systems: Distribution of Residence
Times. Chem Eng Sci 2(1):1-18

27. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel
flow at large Reynolds numbers. J Fluid Mech Part 2 41:453-480

28. Deardorff JW (1971) On the magnitude of the subgrid scale eddy coefficient.
J Comput Phys 7(1):120-133

29. Deardorff JW (1972) Numerical Investigation of Neutral and Unstable Plane-
tary Boundary Layers. Journal of the Atmospheric Science 29:91-115

30. Deardorff JW (1973) The Use of Subgrid Transport Equations in a Three-
Dimensional Model of Atmospheric Turbulence. Journal of Fluids Engineering
(Transactions of the ASME), pp. 429-438

31. Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-
dimensional model. Boundary-Layer Meteorol 18:495-527

32. de Groot SR, Mazur P (1962) Non-Equilibrium Thermodynamics. North-
Holland, Amsterdam

33. Delhaye JM, Achard JL (1977) On the averaging operators introduced in two-
phase flow. In: Banerjee S, Weaver JR (eds) Transient Two-phase Flow. Proc.
CSNI Specialists Meeting, Toronto, 3.-4. august

34. Delhaye JM (1977) Instantaneous space-averaged equations. In: Kakac S,
Mayinger F Two-Phase Flows and Heat Transfer. Vol. 1, pp. 81-90, Hemi-
sphere, Washington, DC

35. Delhaye JM, Achard JL (1978) On the use of averaging operators in two phase
flow modeling: Thermal and Aspects of Nuclear Reactor Safty, 1: Light Water
Reactors. ASME Winter Meeting

36. Donea J, Giuliani S, Halleux JP (1982) An Arbitrary Lagrangian-Eulerian
Finite Element Method for Transient Dynamic Fluid-Structure Interactions.
Computer Methods in Applied Mechanics and Engineering 33:689-723

37. Donea J, Huerta A, Ponthot JP, Rodŕıguez-Ferran A (2004) Arbitrary
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179. von Kàrmàn T, Howarth L (1938) On the statistical theory of isotropic turbu-
lence. Proc Roy Soc A164(917):192-215

180. Wallis GB (1969) One-dimensional Two-phase Flow. McGraw-Hill Book Com-
pany, New York

181. Welty JR, Wicks CE, Wilson RE, Rorrer G (2001) Fundamentals of Momen-
tum, Heat, and Mass Transfer. 4th Edition, John Wiley & Sons, Inc., New York

182. Whitaker S (1968) Introduction to Fluid Mechanics. Prentice-Hall, Inc., En-
glewood Cliffs

183. Whitaker S (1985) A Simple Geometrical Derivation of the Spatial Averaging
Theorem. Chemical Engineering Education, pp. 18-21 and pp. 50-52

184. White FM (1974) Viscous Fluid Flow. McGraw-Hill, New York
185. White FM (1999) Fluid Mechanics. Fourth Edition, McGraw-Hill, Inc., New

York
186. Wilcox DC (1993) Turbulence modeling for CFD. DCW Canada, California
187. Zumdahl SS (1992) Chemical Principles. D. C. Heath and Company, Lexington



2

Elementary Kinetic Theory of Gases

In this chapter emphasis is placed on the mathematical derivation of the
governing equations of fluid dynamics from first principles using the kinetic
theory concepts. For dilute gases brief summaries of the Chapman-Enskog
theory and the ultra simplified mean free path concept are provided, both
shown to be useful methods deriving fundamental closures for the transport
coefficients. The extended kinetic theory considering multi-component mix-
tures is sketched, and three different mass flux formulations are examined.
An overview of the Enskog method extending the kinetic theory to denser
gases is given, denoting a mathematical fundament for the theory of granular
materials.

2.1 Introduction

The science of mechanics constitutes a vast number of sub-disciplines com-
monly considered beyond the scope of the standard chemical engineering ed-
ucation. However, when dealing with kinetic theory-, granular flow- and pop-
ulation balance modeling in chemical reactor engineering, basic knowledge
of the principles of mechanics is required. Hence, a very brief but essential
overview of the disciplines of mechanics and the necessary prescience on the
historical development of kinetic theory are given before the more detailed
and mathematical principles of kinetic theory are presented.

Mechanics is a branch of physics concerned with the motions of physi-
cal bodies and the interacting forces. The science of mechanics is commonly
divided into two major disciplines of study called classical mechanics and
quantum mechanics. Classical mechanics, which can be seen as the prime dis-
cipline of mechanics, describes the behavior of bodies with forces acting upon
them. Quantum mechanics is a relatively modern field of science invented
at about 1900. The term classical mechanics normally refers to the motion
of relatively large objects, whereas the study of motion at the level of the
atom or smaller is the domain of quantum mechanics. Classical mechanics

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 2,
c© Springer-Verlag Berlin Heidelberg 2008
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is commonly divided into statics and dynamics. Statics deals with bodies at
rest, while dynamics deals with bodies in motion. The study of dynamics is
sometimes further divided into kinematics and kinetics. Kinematics denotes
the description of motion without regard to its cause, while in kinetics one
intends to explain the change in motion as a result of forces. A third and very
recent branch of dynamics is non-linear dynamics and chaos, which denotes
the study of systems in which small changes in a variable may have large
effects.

Frequently we also need to describe the behavior of large populations of
interacting molecules in solids, gases and liquids, particulate systems, dense
suspensions and dispersions. The science of classical mechanics may thus be
grouped according to the state of matter being studied, into solid mechanics
and fluid mechanics, both disciplines are often considered sub-disciplines of
continuum mechanics1 dealing with continuous matter. Hence, fluid mechan-
ics or fluid dynamics denotes the study of the macroscopic physical properties
and behavior of fluids. The continuity assumption, however, considers fluids to
be continuous. That is, properties such as density, pressure, temperature, and
velocity are taken to be well-defined at infinitely small points, and are assumed
to vary continuously from one point to another. The discrete, molecular na-
ture of a fluid is ignored. Hence, in many physical sciences this mathematical
representation of the system is considered a simplifying engineering approach
often useful in engineering practice, but of limited accuracy especially when
the system considered doesn’t allow sufficient inherent separation of scales. For
those problems for which the continuity assumption does not give answers of
desired accuracy we may (not always!) obtain better results using more funda-
mental concepts. Statistical mechanics2 is the application of statistics, which
includes mathematical tools for dealing with large populations, to the field of
dynamics [33] [97] [83] [84]. Although the nature of each individual element of
a system and the interactions between any pair of elements may both be well
understood, the large number of elements and possible interactions present an
infeasible problem to the investigators who seek to understand the behavior
of the system. Statistical mechanics provides a mathematical framework upon
which such an understanding may be built.

There have apparently been two parallel developments of the statistical
mechanics theory, which are typified by the work of Boltzmann [6] and Gibbs
[33]. The main difference between the two approaches lies in the choice of
statistical unit [15]. In the method of Boltzmann the statistical unit is the
molecule and the statistical ensemble is a large number of molecules con-
stituting a system, thus the system properties are said to be calculated as

1 Continuum mechanics is to a large degree based on the Leonhard Euler (1707-
1783) axioms published in his book Mechanica in 1736-1737.

2 The expression statistical mechanics was apparently first used in 1902 by Josiah
Willard Gibbs in the title of his book Elementary Principles in statistical Me-
chanics [33].
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average over a phase space trajectory resembling time average properties [38].
In the method of Gibbs the entire system is taken as a single statistical unit
and the statistics are those of an ensemble of such systems, hence the sys-
tem properties are calculated as averages over a large collection of imaginary
systems each of which is an independent replica of the system of interest.
The collection of independent systems supposedly spans the assembly of all
possible micro-states consistent with the constraints with which the system is
characterized macroscopically. The very first steps developing the theory deal-
ing with irreversible processes was principally in accordance with the method
of Boltzmann as outlined shortly. In the more modern research in statistical
mechanics the method of Gibbs [33] has achieved considerable attention as it
can be extended in a relatively simple and general way to the description of
irreversible processes.

The discussion on the implications of choosing either of these methods
usually goes along the following lines. If the positions and velocities of all
the particles in a given system were known at any time, the behavior of the
system could be determined by applying the laws of classical and quantum
mechanics. This procedure is, of course, not feasible firstly because the actual
positions and velocities of the individual particles are not known and sec-
ondly because the computational efforts needed calculating the macroscopic
properties from the states of the individual particles are prohibitively great
taking into consideration the large number of particles commonly present in
the systems of interest. Instead, statistical methods are introduced with the
object of predicting the most probable behavior of a large collection of parti-
cles without actually being concerned with the precise states of the individual
particles. For this purpose the most probable particle states or a hypothetical
ensemble of systems are considered calculating the macroscopic properties.
Therefore, we may loosely say that the main reason for introducing the idea
of an ensemble was to make it easier to accomplish averaging in statistical
mechanics [51].

However, as the experimental characteristics are usually given as time
average properties, the equivalence of the calculation and measurement data
may be questionable. The ultimate question is whether the average over the
ensemble of systems is the same as the average over an infinite time for a single
system. Time averages and micro-canonical ensemble averages are commonly
assumed to be identical by the ergodic hypothesis3.

Statistical mechanics is normally further divided into two branches, one
dealing with equilibrium systems, the other with non-equilibrium systems.
Equilibrium statistical mechanics is sometimes called statistical thermody-
namics [70]. Kinetic theory of gases is a particular field of non-equilibrium
statistical mechanics that focuses on dilute gases which are only slightly re-
moved from equilibrium [28].

3 In this context the ergodic hypothesis says that the time average and the average
over a statistical ensemble are the same.
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The main objective of performing kinetic theory analyzes is to explain
physical phenomena that are measurable at the macroscopic level in a gas
at- or near equilibrium in terms of the properties of the individual molecules
and the intermolecular forces. For instance, one of the original aims of ki-
netic theory was to explain the experimental form of the ideal gas law from
basic principles [65]. The kinetic theory of transport processes determines
the transport coefficients (i.e., conductivity, diffusivity, and viscosity) and the
mathematical form of the heat, mass and momentum fluxes. Nowadays the
kinetic theory of gases originating in statistical mechanics is thus strongly
linked with irreversible- or non-equilibrium thermodynamics which is a mod-
ern field in thermodynamics describing transport processes in systems that
are not in global equilibrium.

In a series of impressive publications, Maxwell [65] [66] [67] [68] provided
most of the fundamental concepts constituting the statistical theory recogniz-
ing that the molecular motion has a random character. When the molecular
motion is random, the absolute molecular velocity cannot be described deter-
ministically in accordance with a physical law so a probabilistic (stochastic)
model is required.

Therefore, the conceptual ideas of kinetic theory rely on the assumption
that the mean flow, transport and thermodynamic properties of a collection
of gas molecules can be obtained from the knowledge of their masses, number
density, and a probabilistic velocity distribution function. The gas is thus
described in terms of the distribution function4 which contains information of
the spatial distributions of molecules, as well as about the molecular velocity
distribution, in the system under consideration.

An important introductory result was the Maxwellian velocity distribution
function heuristically derived for a gas at equilibrium. It is emphasized that a
gas at thermodynamic equilibrium contains no macroscopic gradients, so that
the fluid properties like velocity, temperature and density are uniform in space
and time. When the gas is out of equilibrium non-uniform spatial distributions
of the macroscopic quantities occur, thus additional phenomena arise as a
result of the molecular motion. The random movement of molecules from one
region to another tend to transport with them the macroscopic properties
of the region from which they depart. Therefore, at their destination the
molecules find themselves out of equilibrium with the properties of the region
in which they arrive. At the continuous macroscopic level the net effect of
these molecular transport processes is expressed through the non - equilibrium
phenomena of viscosity, heat conduction and diffusion. Nowadays the phrase
transport processes thus refers to the transport of mass, momentum and energy
within a fluid smoothing out the macroscopic gradients in the physical variable
fields enabling non-equilibrium systems to approach equilibrium states.

4 The distribution function is sometimes given other names. Chapman [10] [11] and
Chapman and Cowling [12], for example, introduced the name velocity distribution
function which is also frequently used.
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Analytical formulas quantifying the transport coefficients have been de-
duced in several ways, mostly based on the mean free path concept, the
Maxwellian moment equations, and the Boltzmann equation. A preliminary
theory of transport processes was suggested by Maxwell [65] in which the
transport coefficients were determined on the basis of Clausius’ empirical
mean free path hypothesis5. In a subsequent study by Maxwell [66] the equa-
tion of transfer for non-equilibrium gases was derived, describing the total
rate of change of any mean property of a gas consisting of molecules having
certain predefined properties, neatly simplifying the analytical solution. The
so-called Maxwellian molecules are point centers of force repelling each other
with forces which are inversely proportional to the fifth power of their mutual
distance. Almost needless to say, the resulting equations of change for the
mean variables (or moments of the distribution function), also called moment
equations or equations of transfer , play an important role in kinetic theory
[100](p. 319 and p. 346). Based on these equations Maxwell deduced more
accurate analytical relationships for the transport coefficients.

A few years later Boltzmann [6] presented the derivation of a more gen-
eral integro-differential equation which describes the evolution of the distri-
bution function in space and time. Two approximate methods6 for solving
the Boltzmann equation were given independently by Chapman [10] [11] and
Enskog [24] [25], leading to the same novel relations for the transport coeffi-
cients. In this way the Boltzmann equation provides a more rigorous deriva-
tion of Maxwell’s formulas quantifying the transport coefficients for a gas of
Maxwellian molecules. Another important contribution was the H-theorem
showing that the molecular collisions tend to increase entropy in an irre-
versible manner providing a firm theoretical justification of the second law of
thermodynamics which was already accepted at that time7.

More or less as a spin-off result of the foregoing analysis determining the
transport coefficients, a rigorous procedure deriving the governing equations
of fluid dynamics from first principles was established. It is stressed that in
classical fluid dynamics the continuum hypothesis is used so that the governing

5 The mean free path is the average distance traveled by a molecule between suc-
cessive collisions. The concept of mean free path was introduced by Clausius
(1822-1888) in 1858 [8].

6 Note that in 1949 Harold Grad (1923-1986) published an alternative method of
solving the Boltzmann equation systematically by expanding the solution into a
series of orthogonal polynomials. [36]

7 The pioneering work in the direction of the second law of thermodynamics is
considered to be performed in 1825 by Sadi Carnot investigating the Carnot
cycle [51] [40]. Carnot’s main theoretical contribution was that he realized that
the production of work by a steam engine depends on a flow of heat from a higher
temperature to a lower temperature. However, Clausius (1822-1888) was the first
that clearly stated the basic ideas of the second law of thermodynamics in 1850
[13] and the mathematical relationship called the inequality of Clausius in 1854
[51]. The word entropy was coined by Clausius in 1854 [51].
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equations of change are derived directly on the macroscopic scales applying
the balance principle over a suitable control volume, as described in chap. 1.
Thereafter, closure laws are required relating the internal stresses and diffusive
transport fluxes of mass and energy (heat) to the gradients of the macroscopic
quantities (e.g., Newtons law of viscosity, Fick’s law of mass diffusion, and
Fourier’s law of conduction are commonly adopted). By using these constitu-
tive relationships we also introduce several unknown parameters, the so-called
transport coefficients of viscosity, mass diffusivities and thermal conductiv-
ity into the governing equations. Unfortunately, fluid dynamics does neither
provide any guidelines on how to determine the mathematical form of the
constitutive relations nor the values of transport coefficients.

Therefore, a unique application of kinetic theory emerges provided that
an approximate solution of the Boltzmann equation is available. In this case
particular moments of the distribution function can be obtained multiplying
the Boltzmann equation by an invariant function (i.e., successively represent-
ing molecular mass, momentum and energy), and thereafter integrating the
resulting equation over the whole velocity space. The moments of the distri-
bution function (also called the probability-weighted average functions) repre-
sent macroscopic (ensemble) mean quantities like gas velocity, pressure, mass
density, temperature and energy. In this way it is possible to derive rigorous
equations of change for the evolution of the mean quantities starting out from
the Boltzmann equation. The resulting transport equations are recognized
as being analogue to the conservation equations of continuum mechanics. In
addition, in contrast to the continuum mechanic formulation the ensemble
averaged equations obtained from kinetic theory do not contain any unknown
coefficients. That is, a particular set of closure laws is established. Alterna-
tively, by comparing the kinetic theory results with the classical fluid dynamic
equations, we may verify both the form of the constitutive laws and the values
of the transport coefficients.

The kinetic theory of multi-component non-reactive mixtures was first
described by Maxwell [65] [67] and Stefan [92] [93] and later thoroughly de-
scribed by Hirschfelder et al. [39]. Hirschfelder et al. [39] also considers re-
active systems. The latest contributions are reviewed by Curtiss and Bird
[18] [19].

Basically, the Boltzmann equation is considered valid as long as the density
of the gas is sufficiently low and the gas properties are sufficiently uniform in
space. Although an exact solution is only achieved for a gas at equilibrium for
which the Maxwell velocity distribution is supposed to be valid, one can still
obtain approximate solutions for gases near equilibrium states. However, it is
evident that the range of densities for which a formal mathematical theory of
transport processes can be deduced from Boltzmann’s equation is limited to
dilute gases, since this relation is reflecting an asymptotic formulation valid
in the limit of no collisional transfer fluxes and restricted to binary collisions
only. Hence, this theory cannot without ad hoc modifications be applied to
dense gases and liquids.
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Enskog [26] made the first heuristic attempt to extend the kinetic the-
ory of dilute mono-atomic gases to higher density gas systems. Enskog in-
troduced corrections to the Boltzmann equation accounting for the finite
size of the colliding molecules (a free volume correction), and that the cen-
ters of the two colliding particles are no longer at the same point. These
model extensions resulted in a novel flux accounting for the mechanisms of
instantaneous momentum and energy transfer over the distance separating
the centers of the two colliding molecules. It is later stated that even at
moderate densities the collisional transfer fluxes may become significant com-
pared to the kinetic contribution, and they may dominate at slightly higher
densities.

Nowadays the standard literature of kinetic theory of dilute gases usually
refers to the books of Chapman and Cowling [12], Hirschfelder et al. [39],
Huang [40], Reif [83], Present [77], Vincenti and Kruger [100], Ferziger and
Kaper [28], Résibois and De Leener [85], Liboff [61], and Cercignani et al. [8].
Additional reviews on classical mechanics, for example the books of Goldstein
[35], Arnold [2], McCall [69], Iro [43], and Panat [73], might also be needed
deriving the elements of statistical mechanics, and in particular the dynamics
of binary collisions. Moreover, the extensions of the elementary kinetic theory
to liquid and polymeric liquid systems are examined by Hansen and McDonald
[38] and Bird et al [4], respectively. The contents of the this chapter are to a
large extent based on these reviews and the pioneering work summarized in
this introductory section.

The present chapter is outlined in the following way. First, the elementary
concepts of classical mechanics and kinetic theory are introduced. To illustrate
the fundamental procedure deriving the governing equations of fluid dynamics
from first principles, the Euler- and Navier-Stokes equations are derived for a
dilute mono-atomic gas using the principal kinetic theory concepts. However,
the mathematical details of the Enskog solution to the Boltzmann equation
are outside the scope of this book because of its lengthy contents and complex-
ity. Instead, the much simpler mean free path approach is used determining
approximate values for the transport coefficients. In the following section the
basic principles extending the mono-atomic equations to multi-component gas
systems are outlined, since the multi-component transport equations are of
fundamental importance for reactive system analysis. The subsequent section
naturally contains an overview examining the multi-component mass diffusion
concepts. Finally, Enskog’s approach extending the kinetic theory to some-
what denser gases is outlined in the last section.

2.2 Elementary Concepts in Classical Machanics

This section is devoted to a brief summary of the pertinent principles of
dynamics and classical statistical mechanics. Hence, it establishes much of
the notation used later presenting the kinetic theory concepts.
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At the outset it is important to recognize that several mathematical frame-
works for the description of dynamic systems are in common use. In this
context classical mechanics can be divided into three disciplines denoted by
Newtonian mechanics , Lagrangian mechanics and Hamiltonian mechanics re-
flecting three conceptually different mathematical apparatus of model formu-
lation [35, 52, 2, 61, 38, 95, 60, 4].

2.2.1 Newtonian Mechanics

The initial stage in the development of classical mechanics is often referred to
as Newtonian mechanics, and is characterized by the mathematical methods
invented by Newton8, Galileo (the principle of relativity [2]), among others
as summarized in further details by Arnold [2], Ferziger and Kaper [28] and
Cercignani et al. [8]. The basic concepts of Newtonian mechanics include the
use of point masses or particles, which is an object with negligible size with
respect to the typical length scales of the system considered [43]. Point masses
are thus mathematical points having mass but no structure. The motion of
a point particle is characterized by a small number of parameters, i.e., the
particle position, mass, and the forces applied to it. For an ensemble of par-
ticles the center of mass9 of a composite object behaves like a point particle.
The position of a point particle is defined with respect to an arbitrary point
in space, which is called the origin, O. A point is represented by the position
vector r from O to the particle.

Newton’s second law relates the mass and velocity of a particle to a vector
quantity known as a force. This fundamental law is also referred to as the
equation of motion:

8 Although some of the physical ideas of classical mechanics is older than written
history, the basic mathematical concepts are based on Isaac Newton’s axioms
published in his book Philosophiae Naturalis Principia Mathematica or principia
that appeared in 1687. Translating from the original Latin, the three axioms or
the laws of motion can be approximately stated [7] (p. 13) :

Law I: Every body continues in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed on it.

Law II: The change of motion is proportional to the motive force impressed;
and is made in direction of the right line in which that force is impressed.

Law III: To every action there is always opposited an equal reaction: or, the
mutual actions of two bodies upon each other are always equal, and directed to
contrary parts.

9 A vector rc representing the average of the radii vectors of the particles, weighted
in portion to their mass as:

rc =

∑

miri
∑

mi
=

∑

miri

M
(2.1)

defines a point known as the center of mass, or more loosely as the center of
gravity. [73], p 11.



2.2 Elementary Concepts in Classical Machanics 195

d(mc)
dt

= F (2.2)

where the quantity mc is called the momentum.
Given the initial coordinates and momenta of the particles, the particle

position and velocity at any later time can in principle be obtained as the
solution to Newton’s equations of motion. Typically, the mass is constant in
time, hence Newton’s law can be written in the conventional form:

F = m
dc
dt

= ma = mċ = mr̈ (2.3)

Newton used this equation as the basis of mechanics, hence it is sometimes
called Newton’s equation [2]. Note that Newton’s 1. and 3. laws merely emerge
as particular simplifications of the 2. law and are thus not explicitly stated.

A particular class of forces, known as conservative forces, can be expressed
as the gradient of a scalar potential energy function (or potential) denoted
by Ep:

mr̈ = F = ∇Ep(r) (2.4)

It is noticed that Newton’s second law of motion forms a set of second order
differential equations.

In order to formulate Newton’s laws a suitable reference frame has to be
chosen, as briefly sketched above. The inertial coordinate systems defined by
the Galileo’s principle of relativity are at rest or moving with a constant veloc-
ity [52]. In classical mechanics Newton’s laws are valid in all inertial coordinate
systems, since the rate of change of velocity equals the absolute acceleration
of the system. Moreover, all coordinate systems in uniform rectilinear motion
with respect to an inertial frame are themselves inertial. Strictly speaking
Newton’s laws are no longer valid if a system undergoes accelerations [37].
However, the Newtonian formulation can be extended for systems with arbi-
trary relative motion [73]. The modified relations are obtained by establishing
the equations of motion in a fixed system and thereafter transforming them
into the accelerated system. In the non-inertial frame of reference additional
fictitious forces (e.g., Coriolis, centripetal and centrifugal forces) arise to ac-
count for the motion which is actually caused by the acceleration of the frame
of reference.

Besides, to understand the basic principles of kinetic theory, granular flows
and population balances we need to widen our knowledge of classical mechan-
ics. Newton’s mathematical formulation of the laws of motion is perhaps the
most intuitive point of view considering familiar quantities like mass, force, ac-
celeration, velocity and positions and as such preferred by chemical engineers.
However, this framework is inconvenient for mathematical generalizations as
required describing the motion of large populations of particles for which it is
necessary to take into account the constraints10 that limit the motion of the
10 If the conditions of constraint can be expressed as equations connecting the co-

ordinates of the particles and the time having the form:
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system. In this book we restrict ourselves to holonomic constraints because
most of the microscopic world has holonomic constraints.

Two types of difficulties in the solution of mechanical problems are intro-
duced imposing constraints on the system. First, the coordinates of the N
particles, ri, i = 1, ..., N , are no longer all independent as they are connected
by the equations of constraint, hence the set of N equations determining the
motion of the individual particles are no longer independent. Second, interact-
ing forces may be created by the constraints and are thus not known a priori as
required in the Newtonian concepts [43]. Therefore, after Newton the field of
classical mechanics became more general, mathematical and abstract. In the
case of holonomic constraints, the first difficulty is solved by the introduction
of generalized coordinates. The second difficulty is avoided by re-formulating
the original theory of motion and forces in accordance with the Lagrangian
and Hamiltonian theoretical formalisms. These two alternative formulations
circumvent the concept of force, instead they are referring to other quantities
such as energy, generalized coordinates, generalized velocities and generalized
momenta for describing mechanical systems.

It is stressed that Lagrangian mechanics and Hamiltonian mechanics are
equivalent to Newtonian mechanics, but these re-formulations are more con-
venient solving complex problems describing the behavior of a system of in-
teracting particles. The main disadvantage of the Newtonian approach is that
it is formally tied to the Cartesian coordinate system11. The Lagrangian and
Hamiltonian formulations are independent of the coordinate system employed.
That is, with the Lagrangian formalism one re-formulates the mechanical
problem in terms of two scalar functions denoting the kinetic- and poten-
tial energy respectively, and this notation can greatly simplify the solution of
many problems utilizing possible symmetries in the system in a better way.
The Hamiltonian viewpoint is not particularly superior to the Lagrangian one
for the direct solution of mechanical problems, but the Hamiltonian frame-
work provides a better basis for theoretical generalizations in many areas of
physics. In this context it is emphasized that the Hamiltonian formulation
provides much of the language with which statistical mechanics and kinetic
theory are constructed.

f(r1, r2, r1, ..., t) = 0 (2.5)

then the constraints are said to be holonomic [35, 73]. The constraints which
cannot be expressed in the form of algebraic equations are non-holonomic con-
straints.

For the readers that are not familiar with the basics of Newtonian mechanics
and the concepts of constraints, chap. I of [35] and chaps. 1-4 of [73] may serve
as a understandable introduction to the subject.

11 In principle, Newton regarded both space and time absolute entities, implying
that they are the same for everyone [69]. No such frame does exist in nature, so
in practice it is usually feasible to set up a coordinate system that comes as close
to this idealization as may be required [73, 35, 70].
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2.2.2 Lagrangian Mechanics

The Lagrange’s equations can in general be expressed using either of two
types of variational principles. These are called the differential and the inte-
gral principles. The latter group of methods is also referred to as the principles
of minimum action, since in all these procedures the quantity to be varied has
the dimension of an action (= energy × time) [37] [2]. As an example we
consider the Hamiltonian integral principle12, because it is the most general
method and especially useful for holonomic systems with forces derivable from
particular potentials. In the context of kinetic theory of dilute gases the ap-
plication of the Lagrangian formulation may be convenient for the solution of
scattering problems, i.e., the two-body mutual central force problem as viewed
in the center of mass coordinate system [73] [35]. Nevertheless, the derivation
of the Lagrangian equations merely serves as an intermediate step examining
basic elements of the Hamiltonian formulation.

Considering a mechanical system consisting of a collection of particles
which are interacting with each other in accordance with the equations of
motion, the state of the system is completely described by the set of all the
positions and velocities of the particles. In mechanics the minimum number
of independent parameters necessary to uniquely determine the location and
orientation of any system in physical space is called the number of degrees
of freedom13. These quantities need not be the Cartesian coordinates of the
particle, as was the case in Newton’s work. Rather, the conditions of the
problem may render some other more convenient choice of parameters. Any
N independent parameters q = {q1, q2, ..., qN} which completely define the
position of a system with N degrees of freedom are called generalized coor-
dinates of the system. The corresponding derivatives q̇ = {q̇1, q̇2, ..., q̇N} are
called generalized velocities.

For a system placed in a conservative force field an alternative form of the
equations of motion is obtained by introducing a Lagrangian function defined
as the difference between the kinetic energy, T (q̇,q), and the potential energy,
Ep(q, t):

12 An example of the alternative differential method is the principle of Jean Le Rond
d’Alemert (1717-1783). Perspicuous descriptions of the d’Alemert principle and
the derivation of the Lagrangian equations are, for example, given by Greiner [37]
and Panat [73].

13 The phrase degrees of freedom is not interpreted identically when it is used in
the different branches of science. In physics and chemistry, each independent
mode in which a particle or system may move or be oriented is one degree of
freedom. In mechanical engineering, degrees of freedom describes flexibility of
motion. In statistics, the degrees of freedom are the number of parameter values
in probability distributions that are free to be varied. In statistical mechanics
the number of degrees of freedom a given system has is equal to the minimum
number of independent parameters necessary to uniquely determine the location
and orientation of the system in physical space.
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L(q̇,q, t) = T (q̇,q) − Ep(q, t) =
1
2
mq̇2 − Ep(q, t) (2.6)

It is emphasized that Lagrangian mechanics is the description of a mechanical
system in terms of generalized coordinates q and generalized velocities q̇.

The final task in the Lagrangian procedure is to derive a differential equa-
tion for L(q, q̇, t) by use of rather complex variational principles. Briefly
stated, we are considering the effect of small excursions along the path of
the system. The variation denotes a virtual displacement and the trajectory
of an object is derived by finding the path which minimizes the action, a
quantity which is the integral of the Lagrangian over time. Just a brief out-
line of the method is given in this book, because the main aim is to introduce
elements of the notation to be used in kinetic theory analysis shortly. Further
details on the technique are given elsewhere [52] [35] [61] [95].

The Hamiltonian variational principle states that the motion of the system
between two fixed points, denoted by (q, t)1 and (q, t)2, renders the action
integral14

S =

t2
∫

t1

L(q, q̇, t)dt (2.7)

a minimum.
The necessary condition for S to have a minimum is that the variation of

the integral is zero. Hence, the variational principle of least action is written
in the form:

δS = δ

t2
∫

t1

L(q, q̇, t)dt = 0 (2.8)

where δ denotes a variation about the motion of the system.
Employing this concept to obtain a differential equation for L(q, q̇, t),

which is defined by (2.6), the first variation of the action S is expressed by:

δS =

t2
∫

t1

L(q + δq, q̇ + δq̇, t)dt−
t2
∫

t1

L(q, q̇, t)dt = 0 (2.9)

By expanding the first integral to first order, the variation can be expressed
as:

δS =

t2
∫

t1

(
∂L

∂q
δq +

∂L

∂q̇

dδq

dt
)dt (2.10)

Reformulating the second term of the integrand in accordance with:

d

dt
(
∂L

∂q̇
δq) =

∂L

∂q̇

dδq

dt
+ δq

d

dt
(
∂L

∂q̇
) (2.11)

14 For brevity we drop the vector font on the q’s and q̇’s and assume a single degree
of freedom.
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implies that:

δS =
∣

∣

∣

∣

∂L

∂q̇
δq

∣

∣

∣

∣

t2

t1

+

t2
∫

t1

(
∂L

∂q
− d

dt
(
∂L

∂q̇
))δqdt (2.12)

Hence, the first term on the RHS vanishes, since the end points of the trajec-
tory are held fixed in the variation. The second integral must vanish for any
arbitrary, infinitesimal variation δq, hence the integrand is zero. The result is:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (2.13)

The above derivation can be generalized to a system of N particles, noting
that the variation must be effected for each variable independently. Hence, in
terms of L the equations of motion are:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 i = 1, 2, 3, ..., N (2.14)

This set of equations are the famous Lagrangian equations15.
The second term on the LHS denotes the generalized forces defined by:

Fi =
∂L

∂qi
(2.15)

It can now be shown that the Lagrangian equations are equivalent to the
more familiar Newton’s second law of motion. If qi = ri, the generalized
coordinates are simply the Cartesian coordinates. Introducing this definition
of the generalized coordinates, and the corresponding Lagrangian function
(2.6) into the Lagrangian equations of motion (2.14) we get:

d

dt
(mq̇) =

∂Ep

∂q
(2.16)

or, since the gradient of the time independent potential energy field denotes
a conservative force [43], the relation can be expressed in terms of a force:

mq̈ = F (q, t) (2.17)

The resulting relation is identical to the equation obtained in the Newtonian
representation (2.3).

Given the Lagrangian for a system of interacting particles, a number of
fundamental system properties can be deduced. Among these properties are
the basic conservation16 laws which can be deduced invoking the principle of
15 The mathematical Lagrangian formalism in classical mechanics was first published

in the book Mécanique Analytique by Joseph Louis Lagrange in 1788 [90].
16 During the motion of a mechanical system, the generalized coordinates and gener-

alized velocities which specify the state of the system vary with time. However, a
set of functions of these quantities exist whose values remain constant during the
motion of the system and depend only on the initial conditions. These functions
are referred to as integrals of motion, and the quantities represented by these
integrals are said to be conserved [52].
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homogeneity of time and space for closed systems that do not interact with
any external forces.

In this context examination of the total time derivative of the Lagrangian
is informative. The relation can be expressed as:

d

dt
L(q, q̇, t) =

∑

i

∂L

∂qi
q̇i +

∑

i

∂L

∂q̇i
q̈i +

∂L

∂t

=
∑

i

d

dt
(q̇i

∂L

∂q̇i
) +

∂L

∂t

(2.18)

or, by reorganizing the terms:

∑

i

d

dt
(q̇i

∂L

∂q̇i
− L) = −∂L

∂t
(2.19)

Several classes of transformations between two frames or coordinate sys-
tems leave the Newtonian equation of motion invariant [43] [52]. The invari-
ance of physical systems under translations of the coordinate system is often
referred to as the homogenity of space. The analogue invariance under rota-
tions of the coordinate system is named the isotropy of space. Translations
of the time origin also make the equation of motion remain invariant, this
property is called the homogenity of time. By virtue of the homogeneity of
time, the Lagrangian of a closed system does not depend explicitly on time.
Therefore, using (2.19) with L as defined by (2.6), it is verified that the energy
of the system is conserved, as the quantity:

E =
∑

i

q̇i
∂L

∂q̇i
− L = T + Ep (2.20)

remains constant in time during the motion of the system.
In a similar manner the homogeneity in space leads to the law of conser-

vation of linear momentum [52] [43]. In this case L does not depend explicitly
on qi, i.e., the coordinate qi is said to be cyclic. It can then be seen exploring
the Lagrange’s equations (2.14) that the quantity ∂L/∂q̇i is constant in time.
By use of the Lagrangian definition (2.6), the relationship can be written in
terms of more familiar quantities:

∂L

∂q̇i
= mq̇i (2.21)

It is stated that the momentum mq̇i is a constant of the motion, meaning
that it is a conserved quantity. This result is, of course, only valid when all
the interacting forces are conservative and there are no external forces acting
on the system of particles.

Note also that the isotropy of space is the basis for the derivation of the
law of conservation of angular momentum [52] [43].
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2.2.3 Hamiltonian Mechanics

Hamiltonian mechanics17 is based on the description of mechanical systems
in terms of generalized coordinates qi and generalized momenta pi.

Starting out from Lagrangian mechanics in which the equations of motion
are based on generalized coordinates qi and the corresponding generalized ve-
locities q̇i, (qi, q̇i), i =, 1, 2, 3, ..., N , the transformation of the problem to the
Hamiltonian description can be performed adopting the Legendre’s transfor-
mation technique. Hence, by replacing the generalized velocity variables q̇i

with generalized momentum variables pi, i.e., the latter quantities are also
known as conjugate momenta, it is possible to further exploit the symmetry
principles of mechanics. The concepts from Hamiltonian mechanics are perti-
nent to the phase space treatment of problems in dynamics. The Hamiltonian
formulation thus provides the view in which the statistical mechanics and
modern kinetic theory are constructed.

We define the Hamiltonian function by the Legendre transform of the
Lagrangian function (2.6) [35] [37]:

H(p,q, t) =
∑

i

q̇ipi − L(q̇,q, t) (2.22)

in which pi is given by:

pi =
∂L

∂q̇i
(2.23)

Given the Lagrange’s equations of motion (2.14) and the Hamiltonian function
(2.22), the next task is to derive the Hamiltonian equations of motion for the
system. This can be achieved by taking the differential of H defined by (2.22).
Each side of the differential of H produces a differential expressed as:

dH(q,p, t) =
∑

i

∂H

∂q̇i
dq̇i +

∑

i

∂H

∂pi
dpi +

∂H

∂t
dt

=
∑

i

(pi −
∂L

∂q̇i
)dq̇i +

∑

i

q̇idpi −
∑

i

(
d

dt

∂L

∂q̇
)dqi −

∂L

∂t
dt

(2.24)

Substituting the definition of the conjugate momenta (2.23) into (2.24) and
matching coefficients,

∑

i(pi − ∂L
∂q̇i

)dq̇i = 0, we obtain the equations of mo-
tion of Hamiltonian mechanics (i.e., also known as the canonical equations of
Hamilton):

17 Hamiltonian mechanics refers to a mathematical formalism in classical mechanics
invented by the Irish mathematician William Rowan Hamilton (1805-1865) during
the early 1830’s arising from Lagrangian mechanics which was introduced about
50 years earlier by Joseph-Louis Lagrange (1736-1813). The Hamiltonian equa-
tions can however be formulated on the basis of a variational principle without
recourse to Lagrangian mechanics [95] [2].
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ṗi = −∂H

∂qi
, (2.25)

q̇i =
∂H

∂pi
, (2.26)

An additional relationship of importance for explicitly time-dependent system
functions, can be deduced by the same procedure and expressed as:

∂L

∂t
= −∂H

∂t
(2.27)

The total time derivative of the Hamiltonian is achieved from (2.24)

dH

dt
=

∂H

∂t
+

∑

i

∂H

∂qi
q̇i +

∑

i

∂H

∂pi
ṗi (2.28)

Substitution of the Hamiltonian equations shows that the last two terms can-
cel, and so

dH

dt
=

∂H

∂t
(2.29)

In particular, if the Hamiltonian function does not depend explicitly on time,
then

dH

dt
= 0 (2.30)

This means that H represents a conserved quantity. Eliminating the La-
grangian from (2.22) using (2.20) shows that the Hamiltonian function equals
the total energy of the system, H = E.

It can now be shown that the Hamiltonian equations are equivalent to
the more familiar Newton’s second law of motion in Newtonian mechanics,
adopting a transformation procedure similar to the one used assessing the
Lagrangian equations. In this case we set pi = ri and substitute both the
Hamiltonian function H (2.22) and subsequently the Lagrangian function L
(2.6) into Hamilton’s equations of motion. The preliminary results can be
expressed as

∂Ep

∂ri
= −ṗi (2.31)

and
1
mi

pi = ṙi. (2.32)

Then, we combine these two equations and introduce the force on particle i,
defined in terms of the potential Ep by Fi = −(∂Ep/∂ri). The final result is
thus given by Fi = mir̈i in 3D which corresponds to Newton’s second law of
motion for particle i as expressed in the Newtonian formalism (2.3).

The Hamiltonian formalism has a number of important properties and
implications. In the following paragraphs only a few of them are sketched in
the context of a time-independent Hamiltonian function.
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Most important, the concepts of Hamiltonian mechanics are fundamental
to the phase space treatment of problems in dynamics. For a system with N
degrees of freedom the set of 2N canonically conjugate variables (p,q) define
a 2N -dimensional phase space sometimes called the Γ -space18 of the system
[52] [61]. It is sometimes convenient to regard the phase space for a system as a
whole as constructed out of the configuration space that corresponds to the set
of coordinates chosen for the system taken together with the momentum space
that corresponds to the set of momenta conjugate to those coordinates. Each
point in phase space corresponds to a definite state of the system. When the
system moves, the point representing it describes a curve called the phase path
or phase trajectory . The motion of the phase point along its phase trajectory
is determined by the canonical equations Since the Hamiltonian equations are
first order differential equations in time, the path of the representative point
in phase space is determined by the initial point.

Preservation of Phase Volume - Liouville Theorem

In the Hamiltonian formulation the Liouville equation can be seen as a con-
tinuity or advection equation for the probability distribution function. This
theorem is fundamental to statistical mechanics and requires further atten-
tion.

Considering an ensemble19 of initial conditions each representing a possible
state of the system, we express the probability of a given ensemble or density
distribution of system points in phase space Γ by a continuous function

f = f(p,q, t) (2.33)

which is a normalized quantity with the following property

18 For a collection of N identical particles the state of the system may be specified by
giving the coordinates of each particle so that the system as a whole is represented
by a cloud of N points in phase space. Alternatively, the state of the system
as a whole constituting the gas phase can be completely specified by a single
point in phase space. The phase for the system as a whole is called a γ-space
or sometimes a Γ -space, and the phase space for any individual kind of particles
(molecules) contained in the system is called a μ-space for that particle [97] [28].
These notations may be linked to the theory of Gibbs [33] and Boltzmann [6],
respectively.

19 Willard Gibbs (1839-1903) introduced the idea of an ensemble of systems in his
book entitled Elementary Principles in Statistical Mechanics published in 1902
[33]. An ensemble is a large number of of imaginary replicas of the system under
consideration. Gibbs also introduced the ideas of canonical-, micro-canonical- and
grand canonical ensembles which refer to ensembles having specific properties.
[51]. For example, the micro-canonical ensemble is the assembly of all states with
fixed total energy E, and fixed size. The canonical ensemble, another example,
considers all states with fixed size, but the energy can fluctuate [9].
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∫

all space

fΠ
i
dpidqi = 1, (2.34)

where Π
i

means product of all labeled variables and i runs from 1 to N degrees

of freedom.
The distribution function f(q,p, t) is defined such that the product

f(q,p, t)Π
i
dpidqi = f(q,p, t)dΩ represents the number of system points in

the phase volume dΩ about the point (q,p) at the time t. The product of
differentials dΩ = Π

i
dpidqi = dq1...dqNdp1...dpN may be regarded as an ele-

ment of volume in phase space. It follows that the corresponding integral
∫

dΩ
taken over some region of phase space represents the volume of the particular
region. This integral has the property of being invariant with respect to canon-
ical transformations20. This means that the magnitude of a volume element in
phase space is preserved under canonical transformations21. Therefore, at any
given instant in time, the hypothetical ensemble points in the imaginary dif-
ferential volume of Γ -space are consistently contained within a continuously
closed surface. Thus, we let Ω be an arbitrary volume element in Γ -space and
S denotes its surface.

The rate of change of the number of phase points dN , within the in-
finitesimal phase space volume Π

i
dpidqi is obtained from a balance equation

expressing that the system points in an ensemble are neither created nor de-
stroyed [60]. Hence, the rate of change of the number of system points in the
volume Ω,

∫

Ω
fdΩ is equal to the net flux of points that pass through the

closed surface that bound Ω:
∂

∂t
(fdΩ) +

∑

i

{ ∂

∂pi
(ṗifdΩ) +

∂

∂qi
(q̇ifdΩ)} = 0 (2.35)

We may divide by the volume to obtain the rate of change of density at a
fixed position in phase space
∂f

∂t
= −

∑

i

{ ∂

∂pi
(ṗif)+

∂

∂qi
(q̇if)} =

∑

i

{ṗi
∂f

∂pi
+f

∂ṗi

∂pi
+q̇i

∂f

∂qi
+f

∂q̇i

∂qi
} (2.36)

20 The transformation from one pair of canonically conjugate coordinates q and
momenta p to another set of coordinates Q = Q(p,q, t) and momenta P =
P(p,q, t) is called a canonical transformation or point transformation. In this
transformation it is required that the new coordinates (P,Q) again satisfy the
Hamiltonian equations with a new Hamiltonian H ′(P,Q, t) [35] [43] [52].

21 This theorem is known as the Poincarè theorem (1854-1912) [35] [43] [52], stating
that: dΩ = Π

i
dpidqi = Π

i
dPidQi.

The invariance rests on the property of the Jacobian determinant of a canonical

transformation: D = det
(

∂(Q,P)
∂(q,p

)

= 1. Consequently, the volume element is

transformed as: Π
i
dpidqi = Π

i
dPidQi = DΠ

i
dpidqi.

In particular, the evolution of a system in time also represents a canonical
transformation which implies that the volume in phase space is conserved as it
evolves in time. This is known as the Liouville theorem (1809-1882).
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Since the Hamiltonian equations satisfy the incompressibility condition

∑

i

(
∂q̇i

∂qi
+

∂ṗi

∂pi
) =

∑

i

(
∂2H

∂pi∂qi
− ∂2H

∂qi∂pi
) = 0 (2.37)

a volume element in phase space is preserved under Hamiltonian flow. This
relation is called the Liouville’s theorem which is a fundamental property of
Hamiltonian systems [60] [43].

This theorem further implies that the second and fourth terms in the
summation on the RHS of (2.36) cancel to obtain

∂f

∂t
+

∑

i

(ṗi
∂f

∂pi
+ q̇i

∂f

∂qi
) = 0 (2.38)

This result is known as the Liouville’s equations [61].
Notice that this equation is commonly written in the Poisson bracket form

∂f

∂t
+ [H, f ] = 0 (2.39)

where the Poisson bracket operator is defined by

[H, f ] =
N

∑

i=1

(q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
) =

N
∑

i=1

(
∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi
) (2.40)

The Poisson bracket is an operator in Hamiltonian mechanics which has
convenient inherent properties considering the time evolution of dynamic vari-
ables [61] [73]. The most important property of the Poisson bracket is that it
is invariant under any canonical transformation.

While this compact notation is convenient for the experienced user, to
grasp the basic concepts a rough description may be preferable. Therefore, for
the beginners that is not familiar with the concepts of statistical mechanics we
reiterate the presentation of the abstract theory using an alternative notation
equivalent to what is common in the fluid dynamic literature [40] [61]. The
purpose is to provide introductory ideas about the practical implications of
the Liouville equations describing the ensemble flow in Γ -space.

For this reason, we let u denote a generalized velocity vector of the system
points in the neighborhood of the element of surface dS:

u = {q̇1, q̇2, ..., q̇N ; ṗ1, ṗ2, ..., q̇N} (2.41)

In the particular case when the volume Ω is thought to be fixed in phase
space, the corresponding continuity equation can now be re-expressed as

∂

∂t

∫

Ω

fdΩ = −
∮

S

u · fdS = −
∫

Ω

∇ · ufdΩ (2.42)
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where the net ’convective’ flux out of the volume through the closed surface
S is

∮

u · fdS.
Now, using a variant of Gauss theorem in Γ -space yields,

∫

Ω

[
∂f

∂t
+ ∇ · (uf)]dΩ = 0 (2.43)

Requiring that the integrand must be equal to zero for any volume, the re-
sulting differential equation is given by

∂f

∂t
+ ∇ · (uf) = 0 (2.44)

With (2.41) and (2.37), we find

∇ · u =
N

∑

i=1

(
∂q̇i

∂qi
+

∂ṗi

∂pi
) =

N
∑

i=1

(
∂2H

∂qi∂qi
− ∂2H

∂qi∂pi
) = 0 (2.45)

since the flow of system points is incompressible. Introducing the solenoidal
vector field into the continuity equation returns the Liouville equation, which
now appears as

∂f

∂t
= −u · ∇f − f∇ · u = −u · ∇f (2.46)

In an engineering view the ensemble of system points moving through
phase space behaves much like a fluid in a multidimensional space, and there
are numerous similarities between our imagination of the ensemble and the
well known notions of fluid dynamics [35]. Then, the substantial derivative in
fluid dynamics corresponds to a derivative of the density as we follow the mo-
tion of a particular differential volume of the ensemble in time. The material
derivative is thus similar to the Lagrangian picture in fluid dynamics in which
individual particles are followed in time. The partial derivative is defined at
fixed (q, p). It can be interpreted as if we consider a particular fixed control
volume in phase space and measure the time variation of the density as the
ensemble of system points flows by us. The partial derivative at a fixed point
in phase space thus resembles the Eulerian viewpoint in fluid dynamics.

BBGKY-Hierarchy

In the more theoretical fields of science the conventional derivation of the
Boltzmann equation for the one-particle distribution function, assumed to be
valid for dilute gases, is considered far too heuristic and accordingly does not
form an adequate formal basis for rigorous analysis. In this point of view a for-
mal derivation starts out from a complete knowledge of the probability density
formulated in terms of a N -particle density function22, fN (q,p, t), providing
22 fN denotes the N-body joint-probability density for the N -body system. This

function gives the probability density of finding, at time t, particle 1 in the state
(p1,q1), particle 2 in the state (p2,q2),..., and particle N in the state (pN ,qN ).
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a general way of deducing the Boltzmann equation from the laws of dynamics
via approximations of this rigorous equation. Deriving the Boltzmann equa-
tion in this manner may also provide novel guidelines for the extension of
Boltzmann equation to higher densities.

The time evolution of this phase space probability density is governed by
the Liouville equation expressed as

∂fN

∂t
= [HN , fN ] (2.47)

However, the description of the system governed by the complete phase
space probability density is not feasible in practice for a large number of parti-
cles N . Therefore, one may rather consider the behavior of a subset of particles
defining a reduced phase space distribution function. The unwanted informa-
tion can be eliminated by integrating fN over the coordinates and momenta
of the remaining particles [38] [61](i.e., resembling an averaging procedure).
A particular system of integro-differential equations for such a reduced dis-
tribution function is known as the BBGKY-hierarchy (i.e., this abbreviation
is written for N. N. Bogoliubov, M. Born, H. S. Greed, G. Kirkwood, and J.
Yvon). Comprehensive discussions on this approach is given by Cercignani et
al. [8] and Liboff [61]. Nevertheless, this approach is not very useful in practice
since the BBGKY-hierarchy is not closed and an ad hoc problem contraction
is required. It is noted that the first equation in this sequence is still most
important as it governs the evolution of f1(p,q, t) in time and space provided
that an approximate closure for the pair density function f(2)(p′,q′;p,q, t) is
available (i.e., this equation contains the lowest number of unknowns in the
sequence), and it represents the generic form of all the kinetic equations. Much
effort has been devoted to find approximate solutions to the BBGKY hierar-
chy on the basis of expressions that relate f1(p,q, t) and f(2)(p′,q′;p,q, t).
The simplest approximation is to ignore the pair correlation altogether by
writing: f(2)(p′,q′;p,q, t) = f1(p′,q′, t)f1(p,q, t). This assumption implies
that there is no statistical correlation between particles of states (p′,q′) and
(p,q) at any time t.

Various efforts along these lines have attempted to derive the Boltzmann
equation from first principles. However, a number of assumptions come into
play in all these derivations, which renders even the more formal analyzes
somewhat ad hoc. Therefore, many practitioners do not consider the classical
formalism worthwhile.

2.3 Basic Concepts of Kinetic Theory

In this section the statistical theorems or mathematical tools needed to un-
derstand the Boltzmann equation in itself, and the mathematical operations
performed developing the macroscopic conservation equations starting out
from the microscopic Boltzmann equation, are presented.
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Introductory it is stressed that a heuristic theory, which resembles the
work of Boltzmann [6] and the standard kinetic theory literature, is adopted
in this section and the subsequent sections deriving the Boltzmann equation.
Irrespective, the notation and concepts presented in sect. 2.2 are often referred,
or even redefined in a less formal wrapping, thus the underlying elements of
classical mechanics are prescience of outmost importance understanding the
true principles of kinetic theory.

2.3.1 Molecular Models

For mono-atomic gases the spacing between the particles is considered large
enough so that we can approximate the particles as points, or point centers
of force. For this reason, in kinetic theory a gas molecule is characterized by
its position r and its velocity c.

However, the intermolecular force laws play a central role in the model
determining the molecular interaction terms (i.e., related to the collision term
on the RHS of the Boltzmann equation). Classical kinetic theory proceeds on
the assumption that this law has been separately established, either empiri-
cally or from quantum theory. The force of interaction between two molecules
is related to the potential energy as expressed by

F (r) = −dEP (r)
dr

(N) (2.48)

where r is the distance between the two molecules.
For most purposes it is chosen to use the potential energy of interac-

tion EP (r) rather than the force of interaction F (r). These two functions are
related as:

EP (r) = −
∞
∫

r

F (r)dr (J) (2.49)

Several molecular models have been considered, each of them having certain
advantages either in their physical interpretations or giving simple mathe-
matical representations of the laws of interaction. The billiard ball model is
one such exploratory molecular model which is frequently used because of its
simplicity. In this model a molecule is viewed as a microscopic particle and ap-
proximated by a small featureless sphere, possessing a spherically-symmetric
force field. For neutral particles this force field has a very short range, and
the particles can be pictured as being almost rigid spheres, with an effective
diameter equal to the range of the force field. Therefore, in an average sense
each gas molecule is assumed to be a rigid, spherical, non-attracting, particle
of diameter d, and mass m. These molecular characteristics resemble those
of a billiard ball, thus this molecular representation is often referred to as
the molecular ’billiard ball’ model. As they have no structure, these particles
have only energy of translation. The gas is further assumed to be sufficiently
dilute for collisions involving more than two particles at a time to be ignored,
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thus only binary collisions are considered. The collisions between these gas
molecules are considered perfectly elastic23. It is also assumed that the gas
obeys the ideal gas law.

The hard sphere potential is defined as:

EP (r) =

{

∞ if r ≤ d

0 if r > d
(2.50)

This model is frequently used considering mono-atomic uncharged
molecules. However, this model gives a very crude representation of the actual
physics (e.g., repulsive forces and volume of sphere), since molecules in fact
are complicated electronic structures, and can by no means resemble rigid
spheres.

The Maxwellian molecules are useful in exploratory calculations in which
a differentiable potential function is needed. For these molecules [66] the in-
termolecular force between pairs at a distance r apart is of the form Kr−5,
where K is a constant. Adopting this particular potential representation the
solution of the equation of transfer reduces to a feasible problem, thereby
Maxwell [66] obtained analytical expressions for the transport coefficients as
mentioned earlier.

These two models represent the most important spherical symmetrical
potential functions used in this book, but many others exist as well24 [39] (pp.
31-35). In the two models adopted in this work the force is always repulsive and
varies inversely as some power of the distance between the molecular centers.
No redistribution of energy between the internal and the translational energy
forms are allowed.

Depending on the molecular model chosen the interacting force may arise
only upon contact, or act when the molecules are at any distance away from
each other. Therefore, since many different molecular models and potentials
are investigated, it is common practice in textbooks on kinetic theory to derive
the expression for the collision term in a generalized or generic manner so that
the framework is valid for any molecular model chosen.

23 Considering a binary elastic collision two bodies collide and thereafter move apart
again in such a way that both the overall momentum and the total kinetic energy
of the center of mass of the two bodies are conserved ([96], p. 13) [43].

In a binary in-elastic collision, on the other hand, the two bodies collide and
stick together. The overall momentum is normally conserved in these collisions
too, but the overall kinetic energy of the center of mass of the two bodies is not
conserved([96], p. 13).

During real collisions, the colliding molecules (particles) undergo both elastic
and in-elastic deformations.

24 The most frequently used model potentials are: Rigid sphere, point center of
repulsion, Sutherland’s model, Lennard-Jones potential, modified Buckingham
potential, Kihara potential, Morse potential. Their advantages and disadvantages
are thoroughly discussed elsewhere [39] [28].
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2.3.2 Phase Space, Distribution Function, Means and Moments

A collection of mono-atomic gas molecules are characterized by their position r
in space and their velocity c at time t. An infinitesimal spatial space containing
the point r is denoted by dr (e.g., in Cartesian coordinates = dx dy dz). In
a similar manner, an infinitesimal element in a hypothetical velocity space
containing the velocity c is denoted by dc (e.g., in Cartesian coordinates
= dcx dcy dcz). The imaginary or hypothetical space containing both dr and
dc constitutes the six-dimensional phase space25 . Therefore, by a macroscopic
point (r, c, t) in phase space is meant an infinitesimal volume, dr dc, centered
at the point (r, c, t), having an extension sufficient to contain a large number
of molecules as required for a statistical description to be valid, but still small
compared with the scale of the natural changes in the macroscopic quantities
like pressure, gas velocity, temperature and density of mass.

A concept of principal importance in kinetic theory is the distribution
function. The probabilistic distribution function containing the desired infor-
mation about the spatial distribution of molecules and their velocity distribu-
tion is denoted by f(r, c, t). This probability function is defined in such a way
that f(c, r, t) dc dr denotes the probable number of molecules in the volume
element dr located at r, whose velocities lie in the range dc about c at time t.
We treat f as being a continuous and differentiable function of its arguments.
When the distribution function is given, the macroscopic properties of the
gas are determined using the concept of moments (or probability-weighted
averages). We may now define a molecular state vector (r, c) denoting the
independent variables needed to specify the rate of change of the macroscopic
properties.

The macroscopic property obtained by integrating f dc over the whole
velocity space is the number density, n(r, t), which denotes the number of
particles per unit volume at the location r at time t:

n(r, t) =
∫

f(r, c, t)dc (2.51)

The mass density of the collection of gas molecules at r, at time t, yields:

ρ(r, t) = mn(r, t) (2.52)

25 The classical phase space is formally defined in terms of generalized coordinates
and momenta because it is in terms of these variables that Liouville’s theorem
holds. However, in Cartesian coordinates as used in the present section it is usu-
ally still true that pi = mci under the particular system conditions specified
considering the kinetic theory of dilute gases, hence phase space can therefore be
defined in terms of the coordinate and velocity variables in this particular case.
Nevertheless, in the general case, for example in the presence of a magnetic field,
the relation between pi and ci is more complicated and the classical formulation
is required [83].
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Statistics means and moments are defined in terms of a suitable probabil-
ity density function (PDF). Therefore, in the present context these statisti-
cal measures are expressed in terms of the normalized distribution function,
P (r, c, t) = f(r, c, t)/n(r, t), having the important mathematical property of
a PDF: ∞

∫

−∞

P (r, c, t)dc =

∞
∫

−∞

f(r, c, t)
n

dc =
n

n
= 1 (2.53)

The mean (or expectation) of the random variable c is defined by [75] [83]
[84] [100]:

v(r, t) = 〈c(r, t)〉M =

∞
∫

−∞

cP (r, c, t)dc (2.54)

This measure is also referred to as the probability-weighted average of all
possible values of c.

More generally, let ψ(r, c, t) be a generalized physical function that denotes
a property of the molecules located at time t near r with a velocity near c.
Since ψ(r, c, t) is a function of c, the mean of ψ is:

〈ψ(r, t)〉M =

∞
∫

−∞

ψ(r, c, t)P (r, c, t)dc =
1

n(r, t)

∞
∫

−∞

ψ(r, c, t)f(r, c, t)dc (2.55)

The n-th moment about the origin is defined to be:

μn = 〈cn〉M =

∞
∫

−∞

cnP (r, c, t)dc (2.56)

A first-order moment of ψ can thus be defined as:

〈ψ(r, t)〉M =

∞
∫

−∞

ψ(r, c, t)P (r, c, t)dc (2.57)

It is noted that the moment (2.57) equals the mean (2.55).
It follows that the mean or macroscopic fluid velocity at the position r and

time t, yields:

v(r, t) =
1

n(r, t)

∫

cf(r, c, t)dc =
1

ρ(r, t)

∫

mcf(r, c, t)dc (2.58)

The translational motion of a particular collection of molecules can either
be specified by their velocity c relative to a standard frame of reference, or
by their velocity relative to a frame moving with a specified velocity. The
molecular velocity defined in the frame of reference which moves with the local
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fluid velocity v is called the peculiar velocity of the collection of molecules,
hence:

C = c − v (2.59)

It follows from the above definitions that the average peculiar velocity equals
zero.

2.3.3 Flux Vectors

In a non-equilibrium gas system there are gradients in one or more of the
macroscopic properties. In a mono-atomic gas the gradients of density, fluid
velocity, and temperature induce molecular transport of mass, momentum,
and kinetic energy through the gas. The mathematical theory of transport
processes enables the quantification of these macroscopic fluxes in terms of
the distribution function on the microscopic level. It appears that the mech-
anism of transport of each of these molecular properties is derived by the
same mathematical procedure, hence they are collectively represented by the
generalized property ψ.

In the gas we consider an infinitesimal element of surface area dA as
sketched in Fig. 2.1. The orientation of the surface area is defined by a unit
vector n normal to the surface, and ω is the angle between C and n. Imagine
further that the element of surface area moves along with the fluid having
the velocity v(r, t). The collection of molecules will then move back and forth
across this element area with their peculiar velocities C about the mean ve-
locity v, in accordance with (2.59).

Fig. 2.1. A cylinder containing all molecules with peculiar velocity C which cross
the surface element dA during the time interval dt.
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Ignoring any molecular collisions the number of molecules crossing the
surface area dA during the infinitesimal time interval (t, t + dt) equals the
number of molecules contained within an infinitesimal cylinder volume with
cross-sectional area dA and length |C|dt at time t. The volume of this cylinder,
n · C dt dA, contains f(r, c, t) dc (n · C dt dA) molecules.

Assuming that each molecule in an average sense carries with them the
physical property ψ(r, c, t), the amount of ψ transported by the molecules
with velocities in the range dC about C across the area dA in the time dt is
given by f(r, c, t) dc (n ·C dt dA)ψ(r, c, t). Accordingly, the flux of ψ denoting
the amount which crosses dA per unit area per unit time is expressed as
fn · Cψdc.

The total flux of ψ across the elementary surface area dA is obtained by
adding the contributions from molecules within all velocity
ranges26:

Φn(r, t) =
∫

fn · Cψdc (2.60)

where Φn(r, t) denotes the n component of the flux vector, thus Φn(r, t) =
n · Φ(r, t) = n〈Cnψ(r, t)〉M .

The complete flux vector of the property ψ is give by:

Φ(r, t) =
∫

fCψdc (2.61)

The physical interpretation of this vector is that the n-component of the vector
equals the flux of ψ across a surface normal to n.

At this point it is appropriate to introduce the particular flux vectors
associated with the transport of mass, momentum, and kinetic energy.

Transport of Mass

In this case we set ψ = m:

Φ(r, t) = m

∫

fCdc = mn〈C〉M = 0 (2.62)

Transport of Momentum

In this case we set ψ = mCi, hence:

Φ(r, t) = m

∫

fCiCdc = mn〈CiC〉M = pi (2.63)

26 The integration over c is equivalent to integrating over C since these two velocities
differ by a constant (i.e., independent of c) only, and the integration is over the
entire velocity space [39] (p. 457).
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This flux vector denotes the transport of momentum relative to v in the
i-direction. In a 3D system the direction index i takes three different values,
so there are a total of three flux vectors associated with momentum transfer.
Together the three flux vectors constitute a symmetric second-order tensor
with nine components. This tensor is usually referred to as the pressure tensor,
P. The pressure tensor is expressed by:

P ≡ m

∫

fCCdc ≡ ρ〈CC〉M = ρ

⎛

⎝

〈C2
x〉M 〈CxCy〉M 〈CxCz〉M

〈CyCx〉M 〈C2
y〉M 〈CyCz〉M

〈CzCx〉M 〈CzCy〉M 〈C2
z 〉M

⎞

⎠(2.64)

The diagonal elements 〈C2
i 〉M represent the normal stresses, in general

denoting the sum of the static and the viscous forces per unit area acting
on a surface at an instant in time. The non-diagonal elements, denoted by
〈CiCj〉M for i 
= j, represent the shear stresses or the viscous shear forces per
unit area.

We define the deviatoric - or viscous stresses as the negative thermal flux,
determined by the difference between the thermodynamic pressure and the
total pressure tensor, as follows:

σij ≡ [pδij − ρ〈CiCj〉M ] (2.65)

where the δij is the Kronecker delta.
The mean pressure (or pressure) is defined as the mean value of the normal

stresses across any three orthogonal planes. The mean pressure, p̄, is thus one
third of the trace of the pressure tensor:

p̄ =
1
3
ρ〈C2〉M =

1
3
P : e (2.66)

where the e is the unit tensor.
The trace of the pressure tensor can be expressed in terms of the peculiar

velocity:

P : e = Pxx + Pyy + Pzz = nm(〈C2
x〉M + 〈C2

y〉M + 〈C2
z 〉M ) = ρ〈C2〉M (2.67)

In particular, when the system is at equilibrium (no macroscopic gradi-
ents), the viscous stresses vanish (i.e., σij = 0) and the total pressure tensor
can be expressed in terms of the mean pressure or alternatively in terms of
the thermodynamic pressure, p, as:

P = p̄e = pe (2.68)

where Pxx = Pyy = Pzz = p. Since these conditions are satisfied in the static
case only, such a pressure system is called static.

Strictly speaking the Maxwellian distribution function only applies to a
gas in thermodynamic equilibrium which is a uniform steady state. The appli-
cation of this function is thus basically restricted to a gas at rest. To force an
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equilibrium gas system to flow, certain driving forces are necessary, hence all
flowing systems must involve local gradients in the velocity and some other
properties. Therefore, the Maxwellian distribution function is assumed valid
also for certain classes of flows or in certain regions in a given flow in which
the gradients are sufficiently small so that the gas can be considered in local
equilibrium (see also sec. 2.7.2). Such a pressure system is often called hydro-
static as it is an apparent static state of flow [100] (p. 344). The equations
of change derived from kinetic theory using the Maxwellian distribution func-
tion, assumed valid for the apparent equilibrium flows, correspond to the well
known Euler equations in classical gas dynamics.

Hence, it follows that in general the net macroscopic surface stress is de-
termined by two different molecular effects: One stress component associated
with the pressure and a second one associated with the viscous stresses27.
Again for a fluid at rest, the system is in an equilibrium static state con-
taining no velocity or pressure gradients so the average pressure equals the
static pressure everywhere in the system. The static pressure is thus always
acting normal to any control volume surface area in the fluid independent
of its orientation. For a compressible fluid at rest, the static pressure may
be identified with the pressure of classical thermodynamics as derived from
(2.64) using the Maxwellian distribution function (i.e., constituting the diag-
onal elements only). On the assumption that there is local thermodynamic
equilibrium even when the fluid is in motion this concept of stress is retained
at the macroscopic level. For an incompressible fluid the thermodynamic, or
more correctly thermostatic, pressure cannot be defined except as the limit of
pressure in a sequence of compressible fluids. In this case the pressure has to
be taken as an independent dynamical variable [1] (sects. 5.13-5.24).

The macroscopic relationship between the total molecular stress tensor,
which includes both the hydrostatic- or thermodynamic pressure and the vis-
cous stresses is expressed as:

P = pe + σ (2.69)

or in matrix notation:

P =

⎛

⎝

p + σxx σxy σxz

σyx p + σyy σyz

σzx σzy p + σzz

⎞

⎠ (2.70)

In practice the local pressure variable is assumed to be independent on the
state of the fluid. If the gradients in the flow field of a mono-atomic gas are
sufficiently large, viscous stresses and heat conduction phenomena emerge,
27 The viscous stresses only come into play for systems containing significant veloc-

ity gradients within the fluid. Nevertheless, very large gradients are not required
as the Navier-Stokes equations can be derived from the Chapman-Enskog per-
turbation theory. On the other hand, for the non-equilibrium boundary layer and
shock wave systems, i.e., systems which deviates considerably from equilibrium,
higher order expansions are apparently needed [28]. Actually, at least for shock
waves the validity of the Maxwell-Boltzmann equation becomes questionable.
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and the Maxwellian distribution function is no longer adequate. Therefore,
when the fluid is in real motion, additional viscous normal stresses appear as
denoted by σii.

Adopting the Newton’s viscosity law (1.69) derived from continuum me-
chanical principles [102] (sec. 2-4.2), the thermodynamic pressure deviates
slightly from the mean pressure. It follows that the mean pressure is approx-
imated as:

p̄ =
1
3
(Pxx + Pyy + Pzz) = p− (μB +

2
3
μ)∇ · v (2.71)

showing that the mean pressure in a deforming viscous fluid is not exactly
equal to the thermodynamic property called pressure (i.e., apparently the
constitutive relation is not consistent with the local equilibrium assumption).

This distinction is rarely important, as ∇ · v is normally very small in
typical reactor flow problems, nevertheless adopting the rigorous form of the
constitutive relation (1.69) the bulk viscosity μB appears as an undetermined
system parameter.

Stokes [94] solved this problem by introducing the novel assumption that
μB + 2

3μ = 0. Adopting this hypothesis we simply avoid the problem. Alter-
natively, when the incompressible flow limit ∇ · v = 0 is applicable, p̄ equals
p. Even for high speed compressible flows, i.e., for which ∇ · v 
= 0, we avoid
the problem since the viscous normal stresses are normally negligible for such
flows. Still a third assumption is often put forth, i.e., that the kinetic theory
of gases proves that μB + 2

3μ = 0 for a mono-atomic gas28 (e.g., Hirschfelder
et al [39] p 521; Vincenti and Kruger [100] p 391; Ferziger and Kaper [28]).
However, White [102] (p. 70) states that this is a specious argument since
the kinetic theory actually assumes rather than proves this relationship to be
valid. The discussion reported by Truesdell [99] also states that the theory is
vague on this issue, as the different perturbation methods proposed in kinetic
theory for solving the Maxwell-Boltzmann equation do not give consistent re-
sults even for mono-atomic gases. For polyatomic gases no formal theory exist
determining this parameter value. It appears, apparently, that there exists no
exact interpretation of Newton’s viscosity law.

Transport of Kinetic Energy

In this case we set ψ = 1
2mC · C and get:

Φ(r, t) =
∫

f
1
2
mC2Cdc =

1
2
mn〈C2C〉M = q(r, t) (2.72)

28 For example, the proof given by Vincenti and Kruger [100] (p. 391) is based on a
comparison between the result obtained solving the Maxwell-Boltzmann equation
using the Enskog expansion method and the corresponding expressions for the
stress tensor derived in continuum gas dynamics. From this inter-comparison it
is seen that for mono-atomic gases the kinetic theory result does not contain any
terms corresponding to the bulk viscosity, thus it is concluded that this parameter
equals zero.
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By use of (2.59), the kinetic energy of the collection of particles may be
expressed as:

1
2
mc · c =

1
2
m(C + v) · (C + v) =

1
2
m(C2 + 2v · C + v2) (2.73)

The average of the second term on the RHS, 〈mv · C〉M , vanishes, whereas
the average of the last term on the RHS, 〈1

2mv2〉M , denotes the kinetic energy
of the macroscopic fluid motion. The average of the first term on the RHS,
〈 1
2mC2〉M , is thus interpreted as the internal energy of the gas. It follows that

the internal energy per unit mass of the gas, e(r, t), is defined as:

e(r, t) =
1

n(r, t)

∫

1
2
C2f(r, c, t)dc =

1
ρ(r, t)

∫

1
2
mC2f(r, c, t)dc (2.74)

The gas temperature, T , is defined in terms of e by the relation:

ρe =
3
2
nkT (2.75)

noting that for point particles equipartition of energy gives the relation 29:
mC2 = 3kT . k is the universal Boltzmann constant, k = 1.380×10−23 (J/K).

2.3.4 Ideal Gas Law

Strictly speaking an ideal gas is a system composed of particles, or quasi-
particles, that do not interact with each other. In these simple systems the
energy is due solely to translational motion.

29 In classical statistical mechanics the principle of equipartition of energy states
that the internal energy of a system composed of a large number of particles
at thermal equilibrium will distribute itself evenly among each of the quadratic
degrees of freedom allowed to the particle system [97] [35]. In particular, for any
part of the internal molecular energy that can be expressed as the sum of square
terms, each term contributes an average energy of 1

2
kT per molecule [100] [70].

The phrase square term refers to a term that is quadratic in some appropriate
variable used to describe energy. It follows that for a dilute mono-atomic gas,
the mean energy associated with the translational motion of the c-th molecule
in each of the three space directions is 1

2
mC2. The mean energy of the gas is

obtained by adding the contributions from all the three directions: 1
2
mC2 =

1
2
m(C2

1 + C2
2 + C2

3 ) = 3
2
kT .

The equipartition principle was initially proposed by Maxwell [66] in 1867 who
stated that the energy of a gas is equally divided between linear and rotational
energy. The original theorem was later generalized by Boltzmann [6] in 1872
by showing that the internal energy is actually equally divided among all the
independent components of motion in the system.
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In kinetic theory, the temperature T of a gas at a uniform state at rest
or in uniform translation is defined directly in terms of the peculiar speeds
of the molecules, by the relation 1

2m〈C2〉M = 3
2kT obtained from (2.75) and

(2.74). In accordance with (2.75) and (2.67) the static pressure p of a gas in
equilibrium is given by p = 1

3nm〈C2〉M = knT . Considering the mass M of gas
contained in a volume V , the number of mono-atomic molecules N in the mass
M is M/m, and the number density n is therefore N/V . The thermodynamic
pressure is then given by pV = NkT [77] [12] [100] [28]. Alternatively one
can write N = nNa, where n is the number of moles of gas present and Na is
Avogadro’s number. Then, the ideal gas law , yields

pV = nRT (2.76)

where R = kNa is the universal gas constant.
This formula may also valid for a gas not in equilibrium provided that the

molecules possess only translatory energy.

2.4 The Boltzmann Equation

All the derivations of the Boltzmann equation are based on a number of
assumptions and hypotheses, making the analyzes somewhat ad hoc irrespec-
tive of the formal mathematical rigor and complexity accomplished. So in this
book a heuristic theory, which is physically revealing and equally ad hoc to
the more fundamental derivations of the Boltzmann equation, is adopted. It
is stressed that the notation used resembles that introduced by Boltzmann
[6] and is not strictly in accordance with the formal mathematical methods
of classical mechanics. However, some aspects of the formal formulations and
vocabulary outlined in sect. 2.2 are incorporated although somewhat based
on intuition and empirical reasoning rather than fundamental principles as
discussed in sect. 2.3.

The Boltzmann equation can be derived using a procedure founded on the
Liouville theorem30. In this case the balance principle is applied to a control
volume following a trajectory in phase space, expressed as

dc

dct

∫ ∫

fdrdc =
∫ ∫

(
∂f

∂t
)Collisiondrdc (2.77)

denoting that the rate of change of f for a system of a number of particles
moving with the phase space velocity vector (dr

dt ,
dc
dt ) equals the rate at which

f is altered by collisions.
Applying numerous theorems, similar but not identical to those used in

chap 1 deriving the governing equations in fluid dynamics, one arrives at the
Boltzmann equation on the form
30 The simplified interpretation of the Liouville theorem discussed in sect. 2.2 is

used here deriving the translational terms, intending to make the formulation
more easily available.
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∂f

∂t
+ c · ∂f

∂r
+ F · ∂f

∂c
= (

∂f

∂t
)Collision (2.78)

where c and r are considered independent coordinates. In addition, the force F
per unit mass is assumed to be independent of c and replaces the instantaneous
acceleration.

Symbolically the Boltzmann equation can be written as [40]:

Dcf

Dct
= (

∂f

∂t
)Collision (2.79)

where the LHS denotes the translational motion and the RHS represents
the impact of collisions.

The model derivation given above using the Liouville theorem is in many
ways equivalent to the Lagrangian balance formulation [83]. Of course, a con-
sistent Eulerian balance formulation would give the same result, but includes
some more manipulations of the terms in the number balance. However, the
Eulerian formulation is of special interest as we have adopted this framework
in the preceding discussion of the governing equations of classical fluid dy-
namics, chap 1.

For binary collisions the RHS of the Boltzmann equation (2.79) assumes
the form31

(
∂f

∂t
)Collision =

∫

c1

∫

4π

(f ′f ′
1 − ff1)gσA(Ω)dΩ′dc1 (2.80)

where the primes indicate the quantities after collision.
Presenting the basic theory involved we first discuss the translational part

of the equation in the limit of no collisions, before the more complex collision
term closure is outlined.

2.4.1 The Boltzmann Equation in the Limit of no Collisions

Preliminarily, deriving the terms on the LHS of the Boltzmann equation, we
assume that the effects of collisions are negligible. The molecular motion is
thus purely translational. We further assume that in an average sense each
molecule of mass m is subjected to an external forces per unit mass, F(r, t),
which doesn’t depend on the molecular velocity c. This restriction excludes
magnetic forces, while the gravity and electric fields which are more common
in chemical and metallurgical reactors are retained.

Ensemble of System Points Moving Along Their Trajectories
in Phase Space

In this section we consider the translational terms in the context of a gener-
alized advection equation [12, 77, 83, 40, 104, 39].
31 Unprimed quantities will henceforth refer to initial values rather than values at

arbitrary times, and primed quantities to final values after the collision.
The following shortening notation is thus introduced henceforth for the distri-

bution function: f1 ≡ f(c1, ...), f ′ ≡ f(c′, ...), f ′
1 ≡ f(c′

1, ...), etc.
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The collection of molecules which at time t have positions and velocities
in the range drdc near r and c will, at an infinitesimal time dt later, have the
positions and velocities in the range dr′dc′ near r′ and c′ as a result of their
motion under the influence of the force F.

It follows that:
r′ = r + cdt (2.81)

c′ = c + Fdt (2.82)

In mathematical terms the translational motion can be expressed as

f(r′, c′, t)dr′dc′ = f(r, c, t)drdc (2.83)

The Lagrangian like control volume drdc in the six dimensional phase space
may become distorted in shape as a result of the motion. But, in accordance
with the Liouville’s theorem, discussed in sect. 2.2.3, the new volume is simply
related to the old one by the relation:

dr′dc′ = |J|drdc (2.84)

where J is the Jacobian of the transformation relations (2.81) and (2.82)
from the old variables drdc to the new variables dr′dc′. In this particular case
where the force F does not depend on the velocity c of the molecules, we get
J = 1 due to the Poincarè theorem. Hence,

f(r′, c′, t) = f(r, c, t) (2.85)

or
f(r + cdt, c + Fdt, t + dt) − f(r, c, t) = 0 (2.86)

In terms of partial derivatives one obtains,
[(

∂f

∂x
cx +

∂f

∂y
cy +

∂f

∂z
cz

)

+
(

∂f

∂cx
Fx +

∂f

∂cy
Fy +

∂f

∂cz
Fz

)

+
∂f

∂t

]

dt = 0

(2.87)
or more compactly,

Dcf

Dct
≡ ∂f

∂t
+ c · ∂f

∂r
+ F · ∂f

∂c
(2.88)

where ∂f
∂r ≡ ∇rf denotes the gradient of f with respect to r, and ∂f

∂c ≡ ∇cf
denotes the gradient of f with respect to c.

Therefore, in the limit of no molecular interactions, for which the collision
term (∂f

∂t )Collision vanishes, the Boltzmann equation yields

Dcf

Dct
= 0 (2.89)

Equation (2.89) is a generalized advection equation stating that f remains
unchanged if the observer moves along with the system points in phase space.
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Ensemble of System Points Moving Through a Fixed Volume
in Phase Space

In this paragraph we consider the translational terms in the context of a
generalized continuity equation [100, 83, 85].

Consider a fixed 6D control volume in phase space (i.e., an imaginary
extension of the Eulerian control volume known from fluid dynamics, Fig. 1.2),
containing a given range of molecular positions between r and dr and of
velocities between c and dc. The number of molecules in this control volume
drdc of phase space changes as the positions and velocities of the molecules
change. The net accumulation of molecules in this range in time dt is given
by (∂f

∂t )drdcdt. The net change in the number of molecules within the control
volume is determined by the number of molecules entering and leaving this
range drdc as a result of the random molecular motion.

In Cartesian coordinates the number of molecules entering the control
volume, drdc, in time dt through the face x = constant equals f(cxdt)dydzdcx

dcydcz. The corresponding number of molecules leaving through the face x+
dx = constant is given by [fcx + ∂

∂x (fcx)dx]dtdydzdcxdcydcz where both f
and cx are evaluated at x+dx and thereafter approximated using a first order
Taylor expansion. Hence, the net number of molecules entering the control
volume drdc in time dt through the faces x and x + dx is:

f(cxdt)dydzdcxdcydcz − [fcx +
∂

∂x
(fcx)dx]dtdydzdcxdcydcz

= − ∂

∂x
(fcx)drdcdt (2.90)

Net inflow in y- direction

f(cydt)dxdzdcxdcydcz − [fcy +
∂

∂y
(fcy)dy]dtdxdzdcxdcydcz

= − ∂

∂y
(fcy)drdcdt (2.91)

Net inflow in z- direction

f(czdt)dxdydcxdcydcz − [fcz +
∂

∂z
(fcz)dz]dtdxdydcxdcydcz

= − ∂

∂z
(fcz)drdcdt (2.92)

Net inflow through the cx face of the velocity space:

f(Fxdt)dxdydzdcydcz − [fFx +
∂

∂cx
(fFx)dcx]dtdxdydzdcydcz

= − ∂

∂cx
(fFx)drdcdt

(2.93)
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Net inflow through the cy face of the velocity space:

f(Fydt)dxdydzdcxdcz − [fFy +
∂

∂cy
(fFy)dcy]dtdxdydzdcxdcz

= − ∂

∂cy
(fFy)drdcdt

(2.94)

Net inflow through the cz face of the velocity space:

f(Fzdt)dxdydzdcxdcy − [fFz +
∂

∂cz
(fFz)dcz]dtdxdydzdcxdcy

= − ∂

∂cz
(fFz)drdcdt

(2.95)

Overall, the net inflow of molecules into the phase space drdc is balanced by
the transient term, hence:

(
∂f

∂t
)drdcdt = − [

∂

∂x
(fcx) +

∂

∂y
(fcy) +

∂

∂z
(fcz)]drdcdt

− [
∂

∂cx
(fFx) +

∂

∂cy
(fFy) +

∂

∂cz
(fFz)]drdcdt

(2.96)

Or, after dividing by dr dc dt and adopting Einsteins summation index nota-
tion:

(
∂f

∂t
) = − ∂

∂xi
(fci) −

∂

∂ci
(fFi)

= − [ci
∂f

∂xi
+ Fi

∂f

∂ci
] − f [

∂ci

∂xi
+

∂Fi

∂ci
]

(2.97)

Further simplification can be achieved as we recall that the variables r and c
are independent, hence:

∂ci

∂xi
= 0 (2.98)

In a similar manner,
∂Fi

∂ci
= 0 (2.99)

since F does not depend on c.
Using the latter two relations the terms within the last bracket in (2.97)

vanish, so the Boltzmann equation reduces to:

∂f

∂t
= −c · ∂f

∂r
− F · ∂f

∂c
(2.100)

This relation is known as the Liouville theorem as discussed in sect. 2.2.3.
Introducing a generalized form of the substantial derivative, measuring

the rate of change as the observer moves along with the system points in
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phase space, a compact form similar to (2.89) is achieved. Note also that it is
common in the mechanics literature to assume that there always exists a suf-
ficiently differentiable and single-valued function defining the position vector,
even though it is unknown. In this interpretation the molecular positions and
velocities changes in accordance with (2.81) and (2.82) [63] (sec. 4.3).

2.4.2 Binary Collisions

To determine the rate of change of f caused by molecular collisions we have
to introduce a number of simplifying assumptions concerning the molecular
motion and collisions. The most important assumptions are [83, 12, 28]:

• The gas density is assumed to be very low so that only binary collisions
need to be taken into account. At higher densities, ternary and higher
order interactions become significant.

• The interactions with the external boundaries of the system are ignored.
• We neglect all possible effects which can be exerted by the external force

per unit mass, F, on the magnitude of the collisional cross section.
• We assume local equilibrium. This means that the distribution function

f(r, c, t) does not vary appreciably during a time interval of the order of
the duration of a molecular collision, nor does it vary appreciably over a
spatial distance of the order of the range of intermolecular forces.

• We assume molecular chaos. This means that in binary collisions both
sets of molecules are randomly distributed so that the molecular velocity
is uncorrelated with their position.

The time between two subsequent molecular collisions is also considered
large enough so that one can neglect possible correlations between their
initial velocities prior to the collision.
In other words, in approximate accordance with the original paper by
Boltzmann [6], we assume that in a given volume element the expected
number of collisions between molecules that belong to different velocity
ranges can be computed statistically. This assumption is referred to as the
Boltzmann Stosszahlansatz 32 (German for: Collision number assumption).
A result of the Boltzmann H-theorem analysis is that the latter statistical
assumption makes Boltzmann’s equation irreversible in time (e.g., [28],
sect. 4.2).

32 This assumption is difficult to justify because it introduces statistical arguments
into a problem that is in principle purely mechanical [85]. Criticism against the
Boltzmann equation was raised in the past related to this problem. Nowadays it
is apparently accepted that the molecular chaos assumption is needed only for the
molecules that are going to collide. After the collision the scattered particles are
of course strongly correlated, but this is considered irrelevant for the calculation
since the colliding molecules come from different regions of space and have met
in their past history other particles and are therefore entirely uncorrelated.
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No exact expression for (∂f
∂t )Collision has been obtained since the nature

of the interaction between the colliding molecules is not known in sufficient
details. We resort to assume by hypothesis some laws of interaction which are
validated comparing the overall results with experimental data.

Nevertheless, detailed experimental analysis of gases shows that, at dis-
tances large compared to the molecular dimensions, weak intermolecular forces
exist, whereas at distances of the order of the molecular dimensions the
molecules repel each other strongly. Moreover, collisions between complex
molecules may in general also redistribute energy between the translational
and internal energy forms.

To close the statistical Boltzmann equation determining the evolution of
the distribution function, it is considered advantageous to derive constitutive
relations for the collision term based on mechanistic analysis of simplified
images or models of binary particle collisions. In this context simplifying as-
sumptions about the nature of the forces between the two molecules during
collisions must be made. Several molecular models have been considered, as
already mentioned in sect. 2.3.1. Taking into account the molecular interac-
tions we need a mathematical expression for the rate at which the distribution
function f is being altered by collisions. In the Boltzmann equation, this phe-
nomenon is represented by the net rate at which collisions increase or decrease
the number of molecules entering the phase volume drdc, hence:

(
∂f

∂t
)Collision = (

∂f

∂t
)+Collision − (

∂f

∂t
)−Collision (2.101)

where the number of particles injected into drdc due to collisions during the
time dt is (∂f

∂t )+Collisiondrdcdt, while those ejected is (∂f
∂t )−Collisiondrdcdt.

However, the equation cannot be applied in practice before constitutive
relations for the unknown quantities (∂f

∂t )+Collision and (∂f
∂t )−Collision are formu-

lated in terms of the distribution function f which is to be determined solving
the Boltzmann equation.

To proceed we need to understand, and define in mathematical terms, the
fundamental nature of binary collisions. In particular, it is desired to define
the relationships between the initial and final velocities, the scattering cross
sections, the symmetry properties of the collision, and the collision frequency.

Dynamics of a Binary Collision

In this section we consider an elastic collision in free space between two spin-
less mono-atomic molecules33 of masses m1 and m2. In the laboratory frame
the initial particle positions are denoted by r1 and r2, and their initial veloc-
ities are indicated by c1 and c2. The corresponding positions and velocities

33 The theory may be useful even if the molecules are not mono-atomic, provided
that their states of internal motion (e.g., rotation and vibration) are not affected
by the collisions.
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after the collision are r′1, r
′
2 and c′1, c

′
2, respectively. In this frame the incident

particle (i.e., sometimes called the projectile) (m2) moves in and the target
(m1) is initially at rest. It is supposed that the particles interact through con-
servative forces only, so any external forces which act on the molecules are so
small compared with the internal forces involved locally in the collision that
their effect on the outcome of a collision can be neglected.

To express the dynamics of a binary collision in mathematical terms a more
precise definition of a collision is needed. A collision occurs when two particles
interact. The time taken for the interactions is assumed to be so small that
we may consider them instantaneous compared to the time period between
successive collisions. For this reason our interest lies on the particles’ dynamics
before and after the interaction takes place. It is essential to notice that the
interacting particles do not necessarily touch physically for a collision to occur.
We may then introduce a measure r0 that denotes the range of interaction.
This parameter is thus defined so that, when the particles are sufficiently far
away from each other (r > ro), the interaction vanishes. By definition, when
the particles enter the interaction domain (r ≤ r0), they experience a collision.
The meaning of before and after collision is thus given in terms of the potential
of interaction EP (r) or the range of interaction r0. Before interaction denotes
the interval in which the particles are approaching one another and r > r0
or, equivalently, EP (r) = 0. After collision denotes the interval in which the
particles are receding from one another and, again, EP (r) = 0 and r > r0.

Before the particles are entering the interaction region, r > r0, the two
particles move freely with constant momenta towards each other. The total
energy of the system equals the sum of the kinetic energies:

ETotal =
p2

1

2m1
+

p2
2

2m2
(2.102)

After the particles are exiting the interaction region, r > r0, they again move
freely with constant momenta but now away from each other. The energy
after interaction is:

E′
Total =

p
′2
1

2m1
+

p
′2
2

2m2
= ETotal (2.103)

In the interaction region, r ≤ r0, the kinetic energy of the particles is generally
converted partly into potential energy. The total energy of the two particles
is still conserved:

E′
Total = T + Ep = ETotal (2.104)

For elastic collisions we examine this energy balance in further details con-
sidering hard sphere billiard ball like particles. In the laboratory frame the
equations of motion for each of the interacting particles are:

m1
d2r1

dt2
= F12 (2.105)
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m2
d2r2

dt2
= F21 (2.106)

where the force exerted on molecule 1 by molecule 2 is denoted by F12, and
the force exerted on molecule 2 by molecule 1 is denoted by F21.

Provided that the interaction forces are conservative we may multiply
(2.105) with the particle velocity c1 = ṙ1 and (2.106) with the particle velocity
c2 = ṙ2, and integrating in time. The result denotes the law of conservation
of total energy [43]:

ETotal =
1
2
m1c2

1 +
1
2
m2c2

2 + Ep(|r1 − r2|) = Constant (2.107)

It is now important to recollect that we regard the range r ≤ r0 over which Ep

is effective as being negligible small (i.e., Ep(|r1 − r2|) → 0 for |r1 − r2| ≥ r0),
so our interest lies in what happens before and after the particles interact.
Therefore, for elastic collisions the kinetic energy is conserved:

1
2
m1c

2
1 +

1
2
m2c

2
2 =

1
2
m1c

′2
1 +

1
2
m2c

′2
2 = ETotal (2.108)

Similarly, the sum of the cross products of (2.105) and (2.106) with ṙ1 and
ṙ2, respectively, leads to the law of conservation of total angular momentum:

LTotal = m1r1 × ṙ1 + m2r2 × ṙ2 = Constant (2.109)

The relative position vectors in the laboratory frame are defined by:

r = r2 − r1 and r′ = r′2 − r′1 (2.110)

Accordingly, the relative displacements are:

r = |r2 − r1| and r′ = |r′2 − r′1| (2.111)

The coordinate rc of the center of mass of two point particles is given by
the weighted average of their coordinates r1 and r2:

rc =
m1r1 + m2r2

m1 + m2
(2.112)

where mc = m1 + m2 is the total mass.
The coordinates of the center of mass point rc lies on the straight line

connecting the positions r1 and r2 of point masses m1 and m2, respectively.
The velocity of the center of mass is given by:

G =
drc

dt
(2.113)

It follows that the center of mass acceleration vanishes as:

mc
dG
dt

= mc
d2rc

dt2
= m1

d2r1

dt2
+ m2

d2r2

dt2
= F12 + F21 = 0 (2.114)
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since the Newton 3. law of action and reaction states that F12 = −F21. Note
also that when the forces are given by the interaction potential Ep(r), the
local problem is spherically symmetric [43].

This result implies, when integrated in time, that the conservation of linear
momentum yields:

mcG = m1c1 + m2c2 = m1c′1 + m2c′2 = P = Constant (2.115)

showing that the velocities are not independent. In fact (2.115) states that the
total mass mc of the two molecules moves uniformly throughout the collision.
That is, the center of mass velocity G remains unchanged since P is conserved
(constant) for elastic collisions.

Another quantity of interest is the relative velocity. Let g21 and g′
21, and

g12 and g′
12 denote respectively the initial and final velocity of the second

molecule relative to the first, and of the first relative to the second, so that:

g21 = c2 − c1 = −g12 and g′
21 = c′

2 − c′
1 = −g′

12 (2.116)

The magnitudes of g21 and g12 are equal and can be denoted by g, likewise
for the final relative velocities. Thus:

g21 = g12 = g and g′21 = g′12 = g′ (2.117)

By means of (2.115) and (2.116) we can express c1 and c2, and c′
1 and

c′
2 in terms of G and g21, as given by:

c1 = G − μ

m1
g21

c′
1 = G − μ

m1
g′

21

c2 = G +
μ

m2
g21

c′
2 = G +

μ

m2
g′

21 (2.118)

where μ = m1m2
m1+m2

is the reduced mass .
The ratio between the kinetic energy (2.108) and momentum (2.115) is:

m1(c
′2
1 − c2

1)
m1(c′1 − c1)

= −m2(c
′2
2 − c2

2)
m2(c2 − c′2)

(2.119)

and, after simple manipulations

c′1 + c1 = c2 + c′2 or equivalently g′
21 = −g21 (2.120)

Accordingly, by integration in time we also get: r′ = −r.
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From the momentum conservation relation (2.115) and (2.118), we obtain:

c′1 =
2m2c2 + (m1 −m2)c1

mc
=

2m2

mc
c2 (2.121)

and

c′2 =
2m1c1 + (m2 −m1)c2

mc
=

m2 −m1

mc
c2 (2.122)

In the particular case of scattering from a stationary target, c1 = 0.
It is noticed that in-elastic collisions are characterized by the degree to

which the relative speed is no longer conserved. For this reason the coefficient
of restitution e in a collision is defined (i.e., with basis in (2.120)) as the
ratio of the relative velocity after collision, divided by the relative velocity of
approach [45] [69]:

c′2 − c′1 = −e(c2 − c1) (2.123)

where e = 1 denotes elastic collisions, whereas e = 0 for totally inelastic
collisions.

We now transform the model into a frame of reference that moves along
with the center of mass in which rc = 0 is taken as origin. In this coordinate
system the center of mass motion is eliminated, and the origin point is at rest
so Pc = 0. The center of mass frame is 1D in the symmetric case.

By use of the relations given in (2.118), (2.108) becomes:

Ec =
1
2
mc(G2

c +
μ

mc
g2) =

1
2
mc(G2

c +
μ

mc
g′

2) (2.124)

The relative velocity changes from the value g21 before the collision to the
value g′

21 after the collision. Since the collision is assumed to be elastic so
that the internal energies of the molecules remain unchanged, the total kinetic
energy Ec remains unchanged in a collision.

By the definition of the center of mass frame, (2.115) yields:

Pc = mcGc = m1c1c + m2c2c = m1c′
1c + m2c′

2c = 0 (2.125)

It then follows from (2.124) that Ec = μ
mc

g2 = μ
mc

g′2 so that g = g′, as
the center of mass velocity Gc vanishes as a consequence of conservation of
momentum (2.125). This result shows that the relative velocity is changed only
in direction and not in magnitude by the collision. The dynamical effect of a
collision is therefore known when the change in direction of g21 is determined.

Further knowledge on the direction of g21 is obtained by examining the
simultaneous positions (or velocities) of the two particles in the center of mass
framework. The position vectors r1c, r2c and r′1c, r′2c of the particles relative
to the center of mass are defined by:

r1c = r1 − rc = − μ

m1
r (2.126)
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r2c = r2 − rc =
μ

m2
r (2.127)

r′1c = r′1 − r′c = − μ

m1
r′ (2.128)

r′2c = r′2 − r′c =
μ

m2
r′ (2.129)

Eliminating the relative position vectors r and r′ from these relations, yield:

m1r1c = −m2r2c (2.130)

m1r′1c = −m2r′2c (2.131)

This means that in the frame of reference which moves with the center of
mass, the position vectors are at all times oppositely directed along a line,
and their magnitudes have a fixed ratio.

It is further note that, by derivation of (2.126) to (2.129) with respect to
time, we get:

c1c = ṙ1c = − μ

m1
(ṙ2 − ṙ1) = − μ

m1
c2 (2.132)

c2c = ṙ2c =
μ

m2
(ṙ2 − ṙ1) =

μ

m2
c2 (2.133)

c′1c = ṙ′1c = − μ

m1
(ṙ′2 − ṙ′1) =

μ

m1
(ṙ2 − ṙ1) =

μ

m1
c2 (2.134)

c′2c = ṙ′2c =
μ

m2
(ṙ′2 − ṙ′1) = − μ

m2
(ṙ2 − ṙ1) = − μ

m2
c2 (2.135)

Since in the laboratory frame c1 = 0.
No further information about the collision can be obtained from the laws

of conservation of momentum and energy. Instead, geometrical analysis of the
interaction between molecules reveals that the direction of g′

21 depends not
only on the initial velocities c1 and c2 (or in G and g21), but also on two
independent geometrical variables.

Therefore, to determine the direction of g′
21 an investigation of the colli-

sion geometry is required. We naturally chose to work in a polar coordinate
frame of reference where the trajectory is represented by the polar coordinates
(r, ψ, φ) with the polar axis lying along z being parallel to g21, as indicated
in Fig. 2.2 and Fig. 2.3. The polar coordinates of a point molecule 2 give its
position relative to a fixed reference point 0 and a given polar axis z. The
radial coordinate r is the distance from 0 to the molecule 2. θ is the angle
between g′

21 and the z axis and φ is the rotational angle of g′
21 about the z

axis. Molecule 2 approaches O with velocity g21 with a perpendicular distance
b to the straight line between the source of the particle at r = −∞ and the
scattering center O. The distance b is called the impact parameter. For elastic
collisions in which |g′

21| = |g21|, the final state is specified by the scattering
angle φ and the impact parameter b. Specifying G, g21, the angle φ, and the
impact parameter b, uniquely determines g′

21.
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At first sight, it may look like the two particle problem of describing the
motion of a molecule 2 relative to molecule 1 is equivalent to the one particle
problem of describing the motion of a single molecule 2 with reduced mass μ
acted on by the force F21. With respect to a fixed particle 1 the scattering
process appears as shown in Fig. 2.2.

Fig. 2.2. Scattering of a molecule by a fixed center of force O. Molecule 1 is at rest
with its center at the origin.

Using (2.118), the equation of motion for particle 2 (2.106) can be ex-
pressed as:

m2
d2r2

dt2
= μ

d2r
dt2

= F21 (2.136)

However, the problem cannot be solved that easily [35] [73]. The scattering
angle θL measured in the laboratory frame is the angle between the final and
incident directions of the scattered particle, whereas the angle θ calculated
from the equivalent one-body problem is the angle between the final and initial
directions of the relative vectors between the two particles. It is proven that the
two angles are the same provided that the reference particle remains stationary
throughout the scattering process (i.e., when the origin of the relative vector r
is fixed). On the contrary, in a real two-particle scattering event the reference
particle recoils and is itself set in motion by the mutual force between the two
particles, and it follows that the two angles are not the same. This means that
for elastic binary particle collisions the scattering process is most conveniently
described transforming the problem from the laboratory frame to a coordinate
system moving with the center of mass of both particles [77] [35]. The angle
between the initial and final directions of the relative vectors coincides with the
scattering angle in this particular view. In this particular coordinate system
it suffices to describe only one of the molecules in a binary collision as the
second particle always moves oppositely.
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Moreover, calculations are usually done in the center of mass frame,
whereas the measurements are done in the laboratory frame [35]. Therefore,
to calculate the kinematics of elastic collisions, it is often convenient to utilize
both frames sequentially determining the scattering angles. That is, it is nor-
mally a better strategy to transform the problem to the center of mass frame,
examine the kinetics of the collision and then transfer the result back to the
laboratory frame, than to work directly in the laboratory frame. In particular,
this procedure enables us to link the scattering angles in the laboratory frame
θL and the center of mass frame θ.

Fig. 2.3. Scattering in the frame of the relative vector r. The scattering angle θ is
related to ψ through the relation θ + 2ψ = π.

A simple geometrical analysis shows that after the scattering has taken
place the velocity vectors c′2 and c′2c make the angles θL and θ, respectively,
with the vector G lying along the initial direction of c1 [35], Fig. 2.4. Using
(2.118) which is expressed in the laboratory frame and (2.135) linking the two
frames, we get:

c′2 = G +
μ

m2
g′

21 = G + c′2c =
μ

m1
c2 + c′2c (2.137)

From Fig. 2.4 it can be seen that:

|c′2| sin θL = |c′2c| sin θ (2.138)

since G and c2 are parallel vectors, and

|c′2| cos θL = |c′2c| cos θ + |G| (2.139)

by the scalar product of the two vectors c′2 and G, and noting that c′2 = G+c′2c

in accordance with (2.137).
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The ratio of the latter two equations gives a relation between θL and θ:

tan θL =
sin θ

cos θ + |G|
|c′

2c|
=

sin θ

cos θ + μ
m1

|c2|
|c′

2c|
(2.140)

By derivation of (2.129) we know that |c′2c| = μ
m2

|g21| = μ
m2

|c2|, so for
elastic collisions we have [35] [37]

tan θL =
sin θ

cos θ + m2
m1

(2.141)

Fig. 2.4. The relations between the velocities in the center of mass and laboratory
coordinates.

The use of this relationship is further elucidated calculating the scattering
cross sections in sect. 2.4.2.

Relative Velocity Variation

In this section we consider a scattering event, viewed in a frame where the
origin of the relative vector r is fixed (i.e., equivalent to the center of mass
frame), as sketched in Fig. 2.3. The line joining the two molecules when at the
points of closest approach, rmin, is called the apse-line. This apse-line passes
through O, the intersection of the two asymptotes g21 and g′

21. The unit
vector k of the apse-line bisects the angle between −g21 and g′

21, as the orbit
of the second molecule relative to the first is symmetrical about the apse-line.
This symmetry is a consequence of the conservation of angular momentum
L = μgb = μg′b′ [61] [35].
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The components of g21 and g′
21 are equal in magnitude, but opposite in

sign, hence g21 · k = −g′
21 · k. It follows that g21 and g′

21 differ by twice the
component of g21 in the direction of k, thus:

g21 − g′
21 = 2(g21 · k)k = −2(g′

21 · k)k (2.142)

The components of g21 and g′
21 perpendicular to k are equal: g − k(k · g) =

g′ − k(k · g′).
With the help of (2.118) we find that:

c′1 − c1 =
μ

m2
(g21 − g′

21) = 2
μ

m2
(g21 · k)k = −2

μ

m2
(g′

21 · k)k (2.143)

and

c′2 − c2 =
μ

m1
(g21 − g′

21) = 2
μ

m1
(g21 · k)k = −2

μ

m1
(g′

21 · k)k (2.144)

This result implies that when k, c1 and c2 are given, the velocities after
the collision can be determined. That is, it is recognized from (2.80) that
these relations are needed in order to calculate the part of the collision term
concerning the inverse collision (i.e., f ′

1[c
′
1] = f ′

1[c1 + 2 μ
m2

(g21 · k)k] and
f ′
2[c

′
2] = f ′

2[c2 − 2 μ
m1

(g′
21 · k)k]).

Concept of Solid Angle

The concept of solid angle, commonly used in kinetic theory, radiation and
other scattering problem descriptions, is defined before the molecular scatter-
ing process is described in further details in the subsequent
section.

Basically, the solid angle is the three dimensional analog of an ordinary
angle. A differential plane angle dχ is defined as the ratio of the element of arc
length dl on the circle to the radius r of the circle, hence dχ = dl/r. Analogous,
the differential solid angle dΩ subtended by an arbitrary differential surface
dA is defined as the differential surface area dΩ of a unit sphere covered by
the arbitrary surface’s projection onto the unit sphere [77] [42] [88]:

dΩ =
er · dA
|r|2 =

er · ndA
r2

(2.145)

where er = r
|r| denotes a unit vector in the direction of r, |r| is the distance

from the origin to the arbitrary differential area dA, and n is the unit normal
vector of the differential surface area dA as sketched in Fig. 2.5.

In kinetic theory we are using the solid angle to indicate the direction of
the outgoing particles after the collision. In principle, we can calculate the
solid angle from any given surface. We chose to use the particular surface that
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Fig. 2.5. An illustration of the differential solid angle, dΩ = sin θdθdφ. The solid
angle has the units of the steradian (sr) or radian2 (rad2).

coincides with the unit sphere making the mathematical complexity feasible.
In this particular case we observe that n = er and |r| = r = 1, and from
(2.145) we get: dΩ = dA. Hence, as illustrated in Fig. 2.6, in spherical coordi-
nates the differential solid angle, dΩ, subtended by a surface element on the
sphere, dA, can be expressed as:

dΩ =
er · erdA

r2
= dA = sin θdθdφ (2.146)

Scattering Cross Sections

In engineering practice we are often concerned with the scattering of a beam
of identical particles incident with uniform velocity on the scattering center
rather than with the defection of a single particle. The different particles in the
beam have different impact parameters and are therefore scattered through
different angles. Hence, in these applications the complexity of the scattering
processes involved cannot be described with the classical methods due to
the prohibitive computational costs. Instead, the scattering of the particles
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Fig. 2.6. A sketch of the solid angle in the special case when the arbitrary surface
coincides with the unit sphere. In this particular case n = er, |r| = r = 1, hence
from (2.145) it follows that dΩ = dA.

in the incident beam are calculated in a statistical manner considering the
distribution of the deflected particles to be proportional to the density of the
incident beam. The corresponding proportionality factor is the differential
scattering cross section.

Due to the symmetry properties of a binary collision, it is convenient to
illustrate the basic ideas considering a one body scattering problem that is
concerned with the scattering of particles by a fixed center of force.

We first state that as a particle approaches the center of force, its orbit
will deviate from the incident straight line trajectory. After passing the center
of force, the force acting on the particle will eventually diminish so that the
orbit once again approaches a straight line (as sketched in Fig. 2.3). In general
the final direction of motion is not the same as the incident direction, and the
particle is said to be scattered.

To calculate the differential scattering cross section we need to define a
particular system of reference for the differential solid angle. A suitable ref-
erence system can be defined in the following manner [12]. Let eg and eg′ be
unit vectors in the direction of g21 and g′

21, so that g21 = geg and g′
21 = geg′ .

The element of the surface dΩ includes the point in a perpendicular plane
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with unit normal Ω ≡ eg, whereas the element of the surface dΩ′ includes the
point in a perpendicular plane with unit normal Ω′ ≡ eg′ .

The differential scattering cross section is defined in the following manner.
Imagine a uniform beam of particles, i.e., all with the same mass, energy and
initial velocity g, incident upon a scattering center of force located at the
origin O. Let the incident flux (or intensity), F = ng, be the number of
molecules in the incident beam crossing a unit area normal to the beam in
unit time (number

s m2 ). n is the number of particles per unit volume given by
(2.51).

The number of particles scattered into the element of solid angle dΩ′ about
Ω′ is proportional to the incident flux F and the element of solid angle dΩ′.
The cross section for scattering in a given direction, σA(Ω′; g′), is thus defined
so that,

FσA(Ω′; g)dΩ′ = the number of molecules scattered into the solid angle
element dΩ′ about Ω′ per unit time (s),

where dΩ′ is an element of solid angle around Ω′. The differential scat-
tering cross section, σA(Ω′; g), represents a statistical proportionality factor.
Hence, σA(Ω′; g)dΩ′ denotes the surface in a plane perpendicular to the in-
cident flow such that the molecules that cross this surface end up with a
velocity g′ within the solid angle dΩ′. The azimuthal angle φ, which locates a
section of the incident beam, is the same angle that appears in the spherical
coordinate frame fixed with origin at the scatter.

Performing simple trigonometrical analysis of Fig. 2.2 it is seen that the
number of deflected molecules considered equals the number of molecules that
passed through the differential cylinder collision cross section area, bdφ db,
hence:

FσA(Ω′; g)dΩ′ = F σA(θ; g)dΩ′ = F b(θ)db(θ) dφ (2.147)

The relationship between σA(Ω′, g) and the deflection angle θ is estab-
lished by trigonometry since with central forces there must be complete sym-
metry around the axis of the incident beam. It is then observed that all the
particles with an impact parameter in the range (b, b + db) are deflected in
the range (θ, θ+dθ), independently of φ, hence σA(Ω′, g) = σA(θ, g) [85]. The
detailed form of σA(θ; g) depends on the intermolecular potential34.

Besides, the impact parameter b is generally considered a function of the
energy and the corresponding scattering angle, thus (2.147) together with the
solid angle relation in polar angles (2.146) constitute the classical formula for
the differential scattering cross section,

σA(θ,E(g)) =
b(θ,E(g))

sin θ
|db(θ,E(g))

dθ
| (2.148)

34 The differential cross section is a measurable quantity [40]. If the intermolecular
potential is known, σA(θ, g) can also be calculated using techniques from quantum
mechanics. In this book we regard σA(θ, g) as a specified property of the gas.
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where E(g) = 1
2μg

2, and θ is the scattering angle. The absolute signs are
required as b and θ can vary in opposite directions, thus we avoid negative
particle numbers.

In addition, as discussed earlier in sect. 2.4.2, the values of the differential
scattering cross section σA depend on which of the two scattering angles θL

and θ that is adopted. However, the number of particles scattered into a given
element of solid angle must be the same whether we use θL or θ, so we may
write:

2πFσA(θ) sin θ|dθ| = 2πFσA(θL) sin θL|dθL| (2.149)

and
σA(θL) = σA(θ)

sin θ
sin θL

| dθ
dθL

| (2.150)

It is emphasized that both σA(θL) and σA(θ) are cross sections measured
in the laboratory frame, only expressed in different coordinates. A formal
expression for the scattering angle θ as a function of b can be obtained from
the orbit equation of the molecular model [35].

The total scattering cross section is another statistical quantity that can be
derived from the differential cross section, defined as the integral of σA(Ω′; g)
over all solid angle elements, hence:

σAT
=

∫

4π

σA(Ω′, g)dΩ′ =
∫

2π

∫

π

σA sin θdθdφ (2.151)

In other words, σA(Ω′; g) denotes the proportionality factor for the number
of particles scattered into a specific direction, whereas σAT

represents the
proportionality factor for the total number of molecules scattered out of the
incident beam.

For example, in the particular case when the molecules are rigid elastic
spheres the apse-line becomes identical with the line of center at collision. In
this case the distance d12 between the centers of the spheres at collision is
connected with their diameters d1, d2 by the relation [77]:

d12 =
1
2
(d1 + d2), (2.152)

Note also that since ψ is the angle between the g21 and k, as sketched in
fig. 2.7, it is shown that: ψ = 1

2 (π − θ).
Since the plane through k and g21 makes an angle ψ with a reference plane

through g21, ψ and θ are polar coordinates specifying the direction of k on
the unit sphere. Thereby,

b = d12 sinψ = d12 sin[
1
2
(π − θ)] = d12 cos

1
2
θ (2.153)

The billiard ball model is unique in that θ depends only on b, and not on g.
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Fig. 2.7. A sketch defining the geometrical variables in scattering of rigid spheres.

It follows that,

b db = d12 sinψ × d(d12 sinψ) = d2
12 sinψ cosψdψ (2.154)

Normally, we rather want to work with the angle θ in place of the angle
ψ: θ = π− 2ψ. By use of standard formulas from trigonometry we may write:

cos θ = cos(π − 2ψ) = cos(π) cos(2ψ) − sin(π) sin(2ψ)

= − 1[cos2 ψ − sin2 ψ] − 0[2 sinψ cosψ] = sin2 ψ − cos2 ψ

=1 − cos2 ψ − cos2 ψ = 1 − 2 cos2 ψ

(2.155)

so that

d cos θ = −4 cosψd cosψ = −4 cosψ(− sinψ)dψ = −4 cosψ sinψdψ (2.156)

and
− sin θdθ = 4 cosψ sinψdψ (2.157)

Therefore,

b db = d2
12 sinψ cosψdψ = −d2

12

4
sin θdθ (2.158)

or

b db dφ = d2
12 sinψ cosψdψ dφ = −d2

12

4
sin θdθ dφ = −d2

12

4
dΩ′ (2.159)

where we let dΩ′ be the differential element of solid angle, which is the
small area through which the unit vector eg′ passes through. Hence, dΩ′ =
sin θdθ dφ.

The differential collision cross section is defined as a positive proportion-
ality factor, but in our analysis we get:

σA12 =
b db

sin θdθ
= −d2

12

4
(2.160)
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To avoid negative values we modify the relation slightly (e.g., [12], p. 60; [85],
p. 81), in accordance with (2.148), hence:

σA12 = | b db

sin θdθ
| =

b

sin θ
|db
dθ

| =
d2
12

4
(2.161)

From this relation we can deduce the important result,

b db dφ = σA12dΩ
′ (2.162)

and from (2.151) we obtain:

σ′
AT12

= 2π

1
∫

−1

d2
12

4
d cos θ = πd2

12 (2.163)

Collision Symmetry Properties

The differential cross section has certain symmetry properties which are con-
sequences of the electromagnetic nature of the molecular interactions. We
briefly itemize two relevant symmetries:

• Invariance Under Time Reversal:

σ′
A(c1, c2|c′

1, c′
2) = σA(−c′

1,−c′
2| − c1,−c2) (2.164)

The invariance of physical laws under time reversal35 makes the cross
sections for the original and reverse collisions equal [83] [97] [40]. This
means that if we reverse the time each molecule will retrace its original
trajectory, as sketched in Fig. 2.8.

Fig. 2.8. A sketch illustrating an original collision (left) and an reverse collision
(right). The scattering cross section are the same for both types of collision.

35 From the definition of the Lagrangian function (2.6) it can be shown that the
time coordinate is both homogeneous and isotropic meaning that its properties
are the same in both directions [52]. For, if t is replaced by −t, the Lagrangian is
unchanged, and therefore so are the equations of motion. In this sense all motions
which obey the laws of classical mechanics are reversible.
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• Invariance Under Rotation and Reflection:

σ′
A(c1, c2|c′

1, c′
2) = σA(c∗1, c

∗
2|c′∗

1, c
′∗
2) (2.165)

where c∗ denotes the vector obtained from c after performing a given rota-
tion in space or a reflection with respect to a given plane, or a combination
of both [83] [97] [40].
It is of particular interest to consider an inverse collision which is obtained
from the original collision by interchanging the initial and final states, as
sketched in Fig. 2.9:

σA(c1, c2|c′1, c′2) = σA(c′1, c
′
2|c1, c2) (2.166)

Fig. 2.9. A sketch illustrating an original collision (left) and an inverse collision
(right). The scattering cross section are the same for both types of collision.

Collision Frequency

To determine the rate of change of the distribution due to molecular collisions
we also need to derive an expression for the expected number of collisions.
From this measure the molecular collision frequency can be obtained as a
spin-off result.

We first note that it is necessary to consider a small but finite range of
velocity, dc, rather than a specific value c, as the probability is about zero
that in dr there is any molecule whose velocity is equal to any specified value
c out of the whole continuous range at a given instant.

In a similar manner, during a small time-interval dt the probable number
of collisions in dr, between molecules in the velocity ranges dc1 and dc2 is
about zero if the geometrical collision variables b and φ are assigned at specific
values. Accordingly, we rather considered the finite ranges db and dφ of b and
φ, respectively.
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If we now consider the motion of molecules 2 relative to the center of
molecules 1, as sketched in Fig. 2.2, a collision between the two molecules in
which the impact parameter is in the range db about b and the azimuthal
angle in the range dφ about φ can occur provided that the extension of the
vector g21 cut the plane through O perpendicular to the polar axis within the
area bounded by circles of radii db, b+ db and center O, and by radii from O
including an angle dφ. It is customary to consider first only those collisions
which involve particles of relative velocity g21 and have impact parameters in
db about b, and azimuths in dφ about φ. If such a collision is to occur in a time
interval dt, then at the beginning of dt the center of molecule 2 must be within
a cylinder having an area bdφ db as base and generators equal to −g21dt (i.e.,
the length of the cylinder generators in the eg direction is given by the scalar
product: (g21 · eg)dt = |g21||eg| cos(0)dt = gdt). The volume (gdt)(bdφ db) is
commonly referred to as the collision cylinder, as sketched in Figs. 2.10. The
total number of molecules 2 in the collision cylinder which have their velocities
in the range dc2 about c2 is equal to f2(r, c2, t)( gdt bdφ db) dc2dt.

Thereafter, one such collision cylinder is associated with each of the
f1(r, c1, t)dc1dr molecules of type 1 within the specified velocity range dc1

about c1 in the volume element dr about r.
The expected number of collisions in dr about r , during a time interval dt,

between molecules in the velocity range dc1, dc2 about c1, c2 with geometrical
collision variables in the range db, dφ about b, φ is:

f1f2gbdbdφdc1dc2drdt (2.167)

On substituting σA(Ω′)dΩ′ for bdφdb, we obtain the alternative expression:

Fig. 2.10. Collision cylinder. Scattering in the c1 molecular frame, where the c2

molecules have velocity g21.
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f1f2gσA(Ω′)dΩ′dc1dc2drdt (2.168)

for the number of collisions.
For completeness it is stated that these relations rely on the molecular

chaos assumption (i.e., valid for dilute gases only36), anticipating that the col-
lisional pair distribution function can be expressed by: f (2)(r1, c1, r2, c2, t) =
f1(r1, c1, t)f2(r2, c2, t). A more general expression for the number of collisions
is then given by:

f (2)(r1, c1, r2, c2, t)gσA(Ω′)dΩ′dc1dc2drdt (2.169)

Adopting the molecular billiard ball model considering molecules that are
smooth and symmetric rigid elastic spheres not surrounded by fields of force,
the molecules affect each other motion only at contact.

Considering such binary collisions between billiard ball molecules of masses
m1 and m2 in a gas mixture at rest in a uniform steady state, the number of
collisions per unit volume and time is given by (2.168) after dividing by dr
and dt. Integrating the result over all values of Ω′, c1 and c2, we obtain the
collision density representing the total number of collisions per unit volume
and time between molecules of type m1 and molecules of type m2:

Z12 =
∫

c1

∫

c1

∫

4π

f1f2gσA(Ω′)dΩ′dc1dc2

=σA12

∞
∫

−∞

∞
∫

−∞

2π
∫

0

π
∫

0

f1f2g sin θdθdφdc1dc2

(2.170)

where σA12 is the differential cross section for rigid spheres.
Adopting the absolute Maxwellian distribution function (anticipated at

this point as it is discussed in sect 2.7.2), substituting f1 and f2 by the appro-
priate forms of the distribution function (2.224), i.e., f1 = n1(m1/2πkT )3/2 ×
exp(−m1c

2
1/2kT ) and f2 = n2(m2/2πkT )3/2 × exp(−m2c

2
2/2kT ), gives [12]

(p 87):

Z12 = 2n1n2d
2
12(

2πkTmc

m1m2
)1/2 = 2n1n2d

2
12(

2πkT
μ

)1/2 (2.171)

This quantity is named the bimolecular collision rate. The μ denotes the re-
duced mass and mc = m1 +m2 represents the total mass associated with the
center of mass of a two particle system.

Note that the number of collisions between pairs of similar molecules m1

cannot be calculated by simply changing the suffix 2 to 1 in the given collision
density relation for unlike molecules (2.171), because in this case one counts
36 Let the mean free path between collisions be l, the Boltzmann equation is valid

only when l 
 r0. This constraint ensures rectilinear trajectories between colli-
sions.
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each collision between a pair of m1 molecules twice. The correct number of
collisions between pairs of molecules m1 per unit volume and time is thus only
half the value given by the formula for pairs of unlike molecules. Hence, for
similar molecules the collision density is given by:

Z11 = 2n2
1d

2
1(
πkT

m1
)1/2 =

1√
2
πd2

1〈c1〉Mn2
1 (2.172)

It is anticipated that the mean value of the speed of a gas which consists of
molecules of type m1 in the Maxwellian state is given by 〈c1〉M = ( 8kT

πm1
)1/2.

The derivation of this relationship is explaned in (2.514) and (2.515).
The collision frequency denots the average number of collisions undergone

by each molecule of a certain type per unit time. The frequency of collisions
between any one molecule of type m1 with other m1 molecules, is:

Z1−1 =
2Z11

n1
= 4n1d

2
1(
πkT

m1
)1/2 (2.173)

since each collision affects two molecules at once. The type of target species
considered calculating the frequency is indicated by the last index of Z1−1

that is separated by the hyphen [100].
The frequency of collisions between any one molecule of type m1 and a

m2 molecule is given by:

Z1−2 =
Z12

n1
= 2n2d

2
12(

2πkTmc

m1m2
)1/2 (2.174)

The collision frequency for a molecule of type m1 colliding with all kinds of
molecules in the mixture is:

Z1 =
Z11 +

∑

j=2 Z1j

n1
= Z1−1 +

∑

j=2

Z1−j (2.175)

2.4.3 Generalized Collision Term Formulation

In this section we proceed deriving an explicit expression for the collision
source term (∂f

∂t )Collision in (2.78).
In the subsequent model derivation it is convenient to divide the velocity

of all particles in the gas into two groups, the small range of velocities that
fall into the interval dc about c and all other velocities denoted by c1.

The number of particles that are removed from the phase element drdc in
the time dt equals the total number of collisions that the c particles have with
the other c1 particles in the time dt. The term (∂f

∂t )+Collisiondrdcdt considers all
collisions between pairs of molecules that eject one of them out of the interval
dc about c. By definition, the number of particles which is thrown out of the
phase element is given by37:
37 The notation used henceforth for the pair distribution function is defined by:

f (2)(r, c, r1, c1, t).
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(
∂f

∂t
)−Collisiondrdcdt =

∫

1

f (2)(r, c, r1, c1, t)dr1dc1drdc (2.176)

Considering that the c1 particles in dr1 undergo a collision with the c
particles in dr in the time dt, we need to determine dr1 in terms of designable
quantities. This can be achieved with the aid of the sketch showing a scattering
event in the frame of the c particles (equivalent to Fig. 2.10), revealing that
all c1 particles in the collision cylinder of height gdt and base area bdφ db
undergo a collision with the c particles in the time dt. Hence, the volume of
the collision cylinder is given by dr1 = gdt bdφ db. It follows that the number
of particles removed in dt is:

(
∂f

∂t
)−Collisiondrdcdt =

∫

1

f (2)(r, c, r1, c1, t)(gbdφ db)dc1drdcdt

=
∫

1

f (2)(r, c, r1, c1, t)gσA(Ω′)dΩ′dc1drdcdt
(2.177)

Dividing by dcdrdt, we find that:

(
∂f

∂t
)−Collision =

∫

1

f (2)(r, c, r1, c1, t)gσA(Ω′)dΩ′dc1 (2.178)

where we integrate over the solid angle, dΩ′, and c1 to sum up the rate of
decrease for all the collisions occurring during dt. Note that we do not need to
worry about any quantification of dcdrdt as these variables neatly disappear
as we apply the usual theorem requiring that the argument of integration
must vanish for any domain of dcdrdt.

The number of particles injected into dcdr due to collisions in the interval
dt, (∂f

∂t )+Collisiondrdcdt, considers all the binary collisions that can send one
particle into the velocity interval dc about c.

This collision is recognized as being the inverse of the original collision,
hence:

(
∂f

∂t
)+Collisiondrdcdt =

∫

1

f ′(2)(r′, c′, r′1, c
′
1, t)dr

′
1dc′

1drdc′

=
∫

1

f ′(2)(r′, c′, r′1, c
′
1, t)gσA(Ω)dΩdc′

1drdc′dt

(2.179)

where the primed variables refer to the inverse collision of the unprimed vari-
ables in (2.178).

We are considering a collision of the type (2.166) where c is fixed at the
center of mass (i.e., the origin of the relative vector is fixed).

To express (2.179) in terms of known variables the Liouville law for elastic
collisions can be adopted, as several investigators (e.g., [28], sect. 3.1; [61],

The short notation henceforth introduced for the corresponding single distri-
bution function is defined by: f(r, c, t) ≡ f (1)(r, c, t).
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pp. 17-18; [12], pp. pp. 61-64; [40], p. 66; [83], p. 52) have shown that by
symmetry (i.e., G = G′ and dg21 = dg′

21) the Jacobian is unity38, hence
dΩdc′

1dc′ = dΩ′dc1dc. Note also that from the conservation of angular mo-
mentum the impact parameters b and b′ before and after the collisions, re-
spectively, are equal as L = μgb = μg′b′.

It follows that the number of particles added in dt is:

(
∂f

∂t
)+Collisiondrdcdt =

∫

1

f ′(2)(r′, c′, r′1, c
′
1, t)gσA(Ω′)dΩ′dc1drdcdt (2.180)

Dividing by drdcdt we find that:

(
∂f

∂t
)+Collision =

∫

1

f ′(2)(r′, c′, r′1, c
′
1, t)gσA(Ω′)dΩ′dc1 (2.181)

and again we integrate over the solid angle, dΩ′, and c1, but this time to sum
up the rate of increase for all the collisions occurring during dt.

Substituting these results into (2.101), yields the net collision rate:

(
∂f

∂t
)Collision =

∫

1

f ′(2)(r′, c′, r′1, c
′
1, t)gσA(Ω′)dΩ′dc1

−
∫

1

f (2)(r, c, r1, c1, t)gσA(Ω′)dΩ′dc1

(2.182)

Finally, we impose the assumption of molecular chaos. That is, the pair
distribution function can be expressed as [38] [61]:

f (2)(r, c, r1, c1, t) =
N − 1
N

f(r, c, t)f1(r1, c1, t) ≈ f(r, c, t)f1(r1, c1, t)

(2.183)
and

f ′(2)(r′, c′, r′1, c
′
1, t) =

N − 1
N

f ′(r′, c′)f ′
1(r

′
1, c

′
1, t) ≈ f ′(r′, c′, t)f ′

1(r
′
1, c

′
1, t)

(2.184)
Substituting all these results into (2.78), gives the Boltzmann equation39:

∂f

∂t
+ c · ∂f

∂r
+ F · ∂f

∂c

=
∫

1

[f ′(r, c′, t)f ′
1(r, c

′
1, t) − f(r, c, t)f1(r, c1, t)]gσA(Ω′)dΩ′dc1

(2.185)

For denser gases and rigid spheres the collision term is normally further re-
formulated in terms of k [85] (pp. 83-85), as outlined in sect. 2.11.
38 In Hamiltonian mechanics the Liouville’s law for elastic collisions represents an al-

ternative way of formulating Liouville’s theorem stating that phase space volumes
are conserved as it evolves in time [61] [43]. Since time-evolution is a canonical
transformation, it follows that when the Jacobian is unity the differential cross
sections of the original, reverse and inverse collisions are all equal. From this
result we conclude that σA(Ω) = σA(Ω′) [83] [28] [105].

39 It is noted that this substitution is not strictly rigorous as a number of unspecified
approximations are introduced as well [6].
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2.5 The Equation of Change in Terms of Mean
Molecular Properties

The emphasis in this section is to derive an equation of change for the average
quantity 〈ψ〉M . The mean value of the property function ψ(r, c, t) was defined
by (2.55) in sec. 2.3.2. Notice that we are generally considering any property
function ψ of a type of molecules that has position r and velocity c at time t.

The equation of change can be derived in two ways, either by analyzing
the situation directly on the average scales40, or by starting out from the
continuum microscopic Boltzmann equation (2.185) and thereafter apply a
suitable averaging procedure to obtain the corresponding average - or moment
equation.

In this section, an analysis based on the Boltzmann equation will be given.
Before we proceed it is essential to recall that the translational terms on the
LHS of the Boltzmann equation can be derived adopting two slightly different
frameworks, i.e., considering either a fixed control volume (i.e., in which r and
c are fixed and independent of time t) or a control volume that is allowed to
move following a trajectory in phase space (i.e., in which r(t) and c(t) are
dependent of time t) both, of course, in accordance with the Liouville theo-
rem. The pertinent moment equations can be derived based on any of these
two frameworks, but we adopt the fixed control volume approach since it is
normally simplest mathematically and most commonly used. The alternative
derivation based on the moving control volume framework is described by de
Groot and Mazur [22] (pp. 167-170).

By virtue of the fixed control volume framework we first derive a gener-
alized moment equation for 〈ψ〉M . The average quantity 〈ψ〉M is defined by
(2.55). To find the equation that 〈ψ〉M satisfies, we multiply on both sides of
the Boltzmann equation (2.185) by ψ and integrate over all velocities c. Thus,
we get:

∫

Dcf

Dct
ψdc =

∫

(
∂f

∂t
)Collisionψdc (2.186)

where
∫

Dcf

Dct
ψdc ≡

∫

∂f

∂t
ψdc

︸ ︷︷ ︸

1

+
∫

c · ∂f
∂r

ψdc
︸ ︷︷ ︸

2

+
∫

F · ∂f
∂c

ψdc
︸ ︷︷ ︸

3

(2.187)

Thereafter, we need to transform all the integrals in (2.187) into quantities
which are direct averages, i.e., into integrals which involve f itself rather than
its derivatives. For term 1 we obtain:

∫

∂f

∂t
ψdc =

∫

[
∂

∂t
(fψ) − f

∂ψ

∂t
]dc =

∂

∂t

∫

fψdc −
∫

f
∂ψ

∂t
dc (2.188)

40 The equation resulting from this approach is sometimes referred to as the Enskog’s
equation of change (e.g., [83], p. 527).
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since the order of differentiation with respect to t and integration over c can
be interchanged when the integration limits of c is not a function of t (i.e.,
applied to the first term om the RHS as the local time differentiation acts on
the whole argument of the integral). Term 1 in (2.187) thus yields:

∫

∂f

∂t
ψdc =

∂

∂t
(n〈ψ〉M ) − n〈∂ψ

∂t
〉M (2.189)

The integral term 2 in (2.187) can be rewritten in a similar manner, keeping
in mind that r and c are independent dynamic variables.

It follows that term 2 is manipulated as:
∫

c · ∂f
∂r

ψdc =
∫

[
∂

∂r
· (fcψ) − fc · ∂ψ

∂r
]dc

=
∂

∂r
·
∫

fcψdc −
∫

fc · ∂ψ
∂r

dc

=
∂

∂r
· (n〈cψ〉M ) − n〈c · ∂ψ

∂r
〉M (2.190)

Finally, since we have assumed that the force, F, is independent of the velocity
c, the integral term 3 in (2.187) can be expressed as:

∫

F · ∂f
∂c

ψdc =
∫

[
∂

∂c
· (Ffψ) − F · f ∂ψ

∂c
]dc

= [Ffψ]c − F ·
∫

f
∂ψ

∂c
dc (2.191)

The first term on the RHS vanishes, since for each direction (e.g., in Cartesian
coordinates, i = 1, 2, 3), f → 0 as |ci| → ∞, thus [Fifψ]ci=+∞

ci=−∞ → 0 . Hence,
term 3 in (2.191) becomes:

∫

F · ∂f
∂c

ψdc = −F · n〈∂ψ
∂c

〉M (2.192)

If we introduce the expressions from (2.189) through (2.191) into (2.187), we
obtain the result:

∫

Dcf

Dct
ψdc =

∂

∂t
(n〈ψ〉M ) +

∂

∂r
· (n〈cψ〉M )−

n[〈∂ψ
∂t

〉M + 〈c · ∂ψ
∂r

〉M + F · 〈∂ψ
∂c

〉M ]

=
∂

∂t
(n〈ψ〉M ) +

∂

∂r
· (n〈cψ〉M ) − n〈Dcψ

Dct
〉M

(2.193)

in which we conveniently define:

Dcψ

Dct
=

∂ψ

∂t
+ c · ∂ψ

∂r
+ F · ∂ψ

∂c
(2.194)
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At this point, we turn to the evaluation of the collision term given in (2.186).
From (2.185) it is seen that the collision term takes the form:

J (ψ(c))

=
∫ ∫ ∫

ψ[f ′(r, c′, t)f ′
1(r, c

′
1, t) − f(r, c, t)f1(r, c1, t)]gσA(Ω′)dΩ′dc1dc

(2.195)

Unfortunately, this relation is not particularly useful for a general ψ be-
cause of the very complex integrals. However, since mass (m), momentum
(mc), or kinetic energy (mc2) are conserved during a collision, it can be shown
that41:

J (ψ(c))

=
∫

1

ψ[f ′(r, c′, t)f ′
1(r, c

′
1, t) − f(r, c, t)f1(r, c1, t)]gσA(Ω′)dΩ′dc1dc = 0

(2.198)

This relation enable us to simplify the formulation of the general equation
of change considerably. Fortunately, the fundamental fluid dynamic conser-
vation equations of continuity, momentum, and energy are thus derived from
the Boltzmann equation without actually determining the form of either the
collision term or the distribution function f .

By substitution of the relations (2.193) and (2.195) into (2.186), we obtain
the Enskog’s equation of change:

41 It is convenient to introduce the notion of collisional invariants (or summational
invariants) (e.g., [39], p. 460; [61], p. 150). The validity of (2.198) is commonly
justified by the following arguments:

Due to the symmetry properties of the collision term expression, interchanging
variables gives the following equalities J (ψ(c)) = J (ψ1(c1)) for (c, c1) → (c1, c),
J (ψ′(c′)) = −J (ψ(c)) for (c, c1) → (c′, c′

1), and J (ψ′(c′)) = J (ψ′
1(c

′
1)) for

(c′
1, c

′) → (c′, c′
1). These symmetry properties can be combined to give the

following relationship: 4J (ψ(c)) = J (ψ(c))+J (ψ1(c1))−J (ψ′(c′))−J (ψ′
1(c

′
1).

The linearity of the J operator allows us to rewrite the latter result as
J (ψ(c)) = 1

4
(J (ψ(c) + ψ1(c1) − ψ′(c′) − ψ′

1(c
′
1)).

In conclusion, a function ψ(c) is a summation invariant if

Δψ(c) = ψ′(c′) + ψ′
1(c

′
1) − ψ(c) − ψ1(c1) = 0 (2.196)

That is, ψ(c) is a property of a molecule that is preserved in a collision. Hence,
for the conserved quantities mass, momentum and energy we can write:

J (m) = J (mc) = J (mc2) = 0 (2.197)
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∂

∂t
(n〈ψ〉M ) = n〈Dcψ

Dct
〉M − ∂

∂r
· (n〈cψ〉M ) + J (ψ) (2.199)

where J (ψ) denotes the rate of change of ψ per unit volume due to
collisions.

2.6 The Governing Equations of Fluid Dynamics

In this paragraph the conservation equations of fluid dynamic are derived from
the Boltzmann equation.

The equation of change, (2.199), becomes particularly simple if ψ refers to
a quantity which is conserved in collisions between molecules so that
J (Δψ = 0) = 0. Therefore, for conservative quantities (2.199) reduces to:

∂

∂t
(n〈ψ〉M ) +

∂

∂r
· (n〈cψ〉M ) = n〈Dcψ

Dct
〉M (2.200)

By letting ψ in (2.200) be m, mc, and 1
2mc2, respectively, we obtain the three

fundamental conservation equations that are all satisfied by the gas.

Conservation of mass

We let ψ = m, hence (2.200) yields:

∂

∂t
(nm) +

∂

∂r
· (nm〈c〉M ) = 0 (2.201)

By averaging the peculiar velocity, defined by (2.59) in section 2.3.2, we get
〈c〉M = v which is the mean velocity of the gas. Furthermore, the mass density
of the gas, given by (2.52), is defined by ρ(r, t) = mn(r, t). Equation (2.201)
becomes:

∂ρ

∂t
+

∂

∂r
(ρv) = 0 (2.202)

This is the equation of continuity of fluid dynamics.

Conservation of momentum

We let ψ = mc, hence (2.200) yields:

∂

∂t
(nm〈c〉M ) +

∂

∂r
· (nm〈cc〉M ) = nm〈Dcc

Dct
〉M (2.203)

By definition, (2.194), the last term in (2.203) can be rewritten as:

Dcc
Dct

= F · ∂c
∂c

= F (2.204)
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since c is independent of r and t.
By inserting (2.204), (2.203) becomes:

∂

∂t
(ρv) +

∂

∂r
· (ρ〈cc〉M ) = ρF (2.205)

The second term on the LHS of (2.205) constitutes the sum of the pressure
tensor (2.64) and the convective term. By use of (2.59), we set c = v + C,
and after some manipulation the dyad 〈cc〉M can be expressed as:

〈cc〉M =〈(v + C)(v + C)〉M = 〈vv + CC + vC + vC〉M
=vv + 〈CC〉M

(2.206)

since the average of the peculiar velocity is zero, i.e., 〈vC〉M = v〈C〉M = 0.
By use of the (2.206) and (2.64), (2.205) can be written as:

∂

∂t
(ρv) +

∂

∂r
· (ρvv) = − ∂

∂r
· P + ρF (2.207)

This relation corresponds to the Cauchy equation of motion in fluid dynamics.

Conservation of energy

We let ψ = 1
2mc2, hence (2.200) yields:

∂

∂t
(
1
2
nm〈c2〉M ) +

1
2
∂

∂r
· (nm〈cc2〉M ) =

1
2
nm〈Dcc

2

Dct
〉M (2.208)

By definition, (2.194), the last term in (2.208) is given by:

Dc(c · c)
Dct

= 2F · (∂c
∂c

· c) = 2F · c (2.209)

since c is independent of r and t.
By inserting (2.209), (2.208) can be written as:

∂

∂t
(ρc2) +

1
2
∂

∂r
· (ρ〈cc2〉M ) = ρF · v (2.210)

Equation (2.210) may be transformed, using the same methods as in the
treatment of the equation of motion. The first term on the LHS of (2.210)
can be manipulated by use of (2.59). We set c = v + C, and after some
manipulation the covariance 1

2 〈c2〉M can be expressed as:

1
2
〈c2〉M =

1
2
〈C2〉M +

1
2
〈v2〉M = e +

1
2
v2 (2.211)

where e is defined in accordance with (2.74).
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The second term on the LHS of (2.210) also needs some further manipu-
lation. By use of (2.59), the covariance 1

2ρ〈cc2〉M can be expressed as:

1
2
ρ〈cc2〉M =

1
2
ρ〈c(c · c)〉M =

1
2
ρ〈(C + v)(C2 + 2v · C + v2)〉M

=
1
2
ρ

{

〈CC2〉M + 〈(2v · C)C〉M + 〈Cv2〉M + 〈vC2〉M

+ 〈v(2v · C)〉M + 〈vv2〉M
}

=
1
2
ρ〈CC2〉M + ρv · 〈CC〉M +

1
2
ρv〈C2〉M +

1
2
ρvv2

=q + P · v + ve +
1
2
ρvv2

(2.212)

since the average of the peculiar velocity is zero, i.e., 〈Cv2〉M = v(2v·〈C〉M ) =
0. Furthermore, the last line on the RHS is obtained introducing the heat flux
q as defined by (2.72), the pressure tensor P as defined by (2.64), and the
internal energy variable e as defined by (2.74).

By use of (2.211) and (2.212), (2.210) can be expressed as:

∂

∂t
(ρ[e+

1
2
v2]) +

∂

∂r
· (ρv[e+

1
2
v2]) = − ∂

∂r
· q− ∂

∂r
· (P · v) + ρF · v (2.213)

This is the total energy equation, for which the potential energy term is ex-
pressed in terms of the external force F. By use of the momentum equation
we can derive a transport equation for the mean kinetic energy, and thereafter
extract the mean kinetic energy part from the equation (i.e, the same pro-
cedure was used manipulating the continuum model counterpart in chap. 1,
sect. 1.2.4). The result is:

∂

∂t
(ρe) +

∂

∂r
· (ρve) = − ∂

∂r
· q − P :

∂

∂r
v (2.214)

This may be even further restated in terms of temperature by using the con-
tinuity equation (2.202) and the definitions of e, (2.74), and T , (2.75):

ρ
De

Dt
= Cvρ

∂T

∂t
+ Cvρv · ∂T

∂r
= − ∂

∂r
· q − P :

∂

∂r
v (2.215)

where Cv = 2m
3k , since the thermal energy consists of translational energy only

for mono-atomic gases.
The conservation equations (2.202), (2.207) and (2.213) are rigorous (i.e.,

for mono-atomic gases) consequences of the Boltzmann equation (2.185). It is
important to note that we have derived the governing conservation equations
without knowing the exact form of the collision term, the only requirement
is that we are considering summation invariant properties of mono-atomic
gases. That is, we are considering properties that are conserved in molecular
collisions.
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Nevertheless, it is clear that, in order to obtain practically useful fluid
dynamic equations from the general formulations derived above, one must
find suitable closures determining explicit expressions for the unknown quan-
tities, i.e., the pressure tensor P and the heat flux q, in terms of the known
variables. Of course, (2.64) and (2.72) provide a prescription for calculating
these quantities in terms of molecular quantities, but this requires finding the
actual distribution function f which is a solution of the Boltzmann equation
(2.185). It is noted that the pressure tensor is generally split into the pressure
and the deviatoric or viscous stresses according to (2.69) shifting the problem
to finding an expression for the viscous stresses instead. Anyhow, using the
Chapman-Enskog series approximation of the distribution function, two well
known forms of the fluid dynamic equations are obtained adopting the zero
and first order perturbation approximations of the distribution function as
will be outlined shortly.

Meanwhile the H-theorem is presented, as we need further knowledge on
the distribution function and the embedded physics.

2.7 The Boltzmann H-Theorem

In this section the elementary definitions and results deduced from the H-
theorem are given [6].

In summary, the statistical H-theorem of kinetic theory relates to the
Maxwellian velocity distribution function and thermodynamics. Most impor-
tant, the Boltzmann’s H-theorem provides a mechanistic or probabilistic prove
for the second law of thermodynamics. In this manner, the H-theorem also
relates the thermodynamic entropy quantity to probability concepts. Further
details can be found in the standard references [97] [39] [12] [100] [47] [28]
[61] [85].

In practice, during the process of developing novel models for the collision
term, the H-theorem merely serves as a requirement for the constitutive rela-
tions in order to fulfill the second law of thermodynamics (in a similar manner
as for the continuum models).

2.7.1 The H-Theorem Formulation

We first derive the H-theorem in an approximate manner, starting out by
introducing the differential H-property function defined by:

H =
∫

f ln fdcdr (2.216)

To determine how H changes in time we consider a uniform state in which
the distribution function f is independent of position r and no external forces
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act upon the molecules. Thus (2.185) reduces to42:

df

dt
=

∂f

∂t
=

∫ ∫

(f ′f ′
1 − ff1)gσA(Ω′)dΩ′dc1 (2.217)

Let the global quantity be defined by:

H =
∫

f ln fdc (2.218)

H is thus given by the integral over all velocities. Then, H is a number, inde-
pendent of r, but a function of t, depending only on the mode of distribution
of the molecular velocities [12].

Multiplying the Boltzmann equation (2.185) by (1 + ln f) and integrating
over the phase space, yields:

dH

dt
=
∂H

∂t
=

∫

∂

∂t
(f ln f)dc =

∫

(1 + ln f)
∂f

∂t
dc

=
∫ ∫ ∫

(1 + ln f)(f ′f ′
1 − ff1)gσA(Ω′)dΩ′dcdc1

(2.219)

Considering that (1 + ln f) represents a summation invariant property,
(2.219) can then be expressed as:

dH

dt
=

1
4

∫ ∫ ∫

ln(ff1/f
′f ′

1)(f
′f ′

1 − ff1)gσA(Ω′)dΩ′dcdc1 (2.220)

since 4ψ(1 + ln f) = ψ([1 + ln f ] + [1 + ln f1] − [1 + ln f ′] − [1 + ln f ′
1]) =

ψ(ln f + ln f1 − ln f ′ − ln f ′
1) = ψ(ln ff1 − ln f ′f ′

1) = ψ(ln ff1
f ′f ′

1
) = −ψ(ln f ′f ′

1
ff1

).
Setting Ξ = ff1 and Υ = f ′f ′

1, (2.220) can be rewritten as:

∂H

∂t
=

1
4

∫ ∫ ∫

(Υ −Ξ) ln(Ξ/Υ )gσA(Ω′)dΩ′dcdc1 (2.221)

with Ξ and Υ positive, we examine the three cases Ξ = Υ , Ξ > Υ , and Ξ < Υ .
For all three cases (Υ −Ξ) ln(Ξ/Υ ) ≤ 0.

Moreover, gσA(Ω′)dΩ′dcdc1 is a positive measure, thus the integral on the
right hand side of (2.220) is either negative or zero, so H can never increase.
Hence, we can write:

∂H

∂t
≤ 0 (2.222)

This relation is known as Boltzmann’s H-theorem.
This theorem states that, for any initial f , H approaches a finite minimum

limit, corresponding to a state of gas in which ∂H/∂t = 0 (steady state), and
this can according to (2.220) occur, only if:
42 We use the notation (index 1 or no index) to indicate the two sets of identical

molecules having the same mass, but perhaps with different velocities.
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f ′f ′
1 =ff1

ln f ′ + ln f ′
1 = ln f + ln f1

(2.223)

The H-theorem is thus equivalent to the second law of thermodynamics which
states that the entropy cannot decrease. A formal relationship between the H
quantity and the entropy S is discussed in sect. 2.7.3.

Equation (2.223) also relates H to the theory of irreversible thermody-
namics, as it is a probabilistic confirmation of the irreversibility of physical
processes.

2.7.2 The Maxwellian Velocity Distribution

To find the exact equilibrium distribution that is a solution to (2.223), it can
be shown that the resulting equilibrium distribution is given by (see e.g., [77];
[61], p. 162; [12], p. 69):

f0(c) = n
( m

2πkT

)
3
2
e−

mC2
2kT (2.224)

where k is the Boltzmann constant. In the Maxwellian distribution the
parameters n, c and T are constants in r and t. This distribution formula is
often referred to as the absolute Maxwellian.

For the imaginary equilibrium flows we assume that in the neighborhood
of any point in the gas, the distribution function is locally Maxwellian, and
ρ, T , and v vary slowly in space and time. It can be shown that the approx-
imation f(r, c, t) ≈ f0(r, c, t) is also a solution to (2.223), when f0(r, c, t) is
defined by:

f0(r, c, t) =n(r, t)
(

m

2πkT (r, t)

)
3
2

e−
mC2(r,t)
2kT (r,t)

=n(r, t)
(

m

2πkT (r, t)

)
3
2

e−
m(c−v(r,t))2

2kT (r,t)

(2.225)

It is important to note that this distribution function (2.225), defined so that
it resembles (2.224) but with the constant values of n, v and T in (2.224)
replaced by the corresponding functions of r and t, remains a solution to
(2.223). This distribution function, which is called the local Maxwellian, makes
the kinetic theory much more general and practically relevant.

Both the absolute- and local Maxwellians are termed equilibrium distri-
butions. This result relates to the local and instantaneous equilibrium as-
sumption in continuum mechanics as discussed in chap. 1, showing that the
assumption has a probabilistic fundament. It also follows directly from the
local equilibrium assumption that the pressure tensor is related to the ther-
modynamic pressure, as mentioned in sect. 2.3.3.
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2.7.3 The H-Theorem and Entropy

In this section a relationship between the equilibrium value of H and entropy,
S, is derived [12] (p. 78).

Considering a gas at uniform steady state, (2.216) can be reformulated in
terms of the absolute Maxwellian distribution (2.224), hence:

H = n

{

lnn +
3
2

ln
( m

2πkT

)

− 3
2

}

(2.226)

Integrating H over the gas volume (V = M
ρ = M

mn ), it follows that:

H0 =
∫

V

Hdr =
M

m

[

lnn +
3
2

ln
( m

2πkT

)

− 3
2

]

(2.227)

Assuming that the kinetic theory definition of temperature and the thermo-
dynamic counterpart are consistent, the entropy variable may be considered
a function of ρ and T as obtained combining the first and second law of ther-
modynamics [32]. The entropy of the gas is then given by [12] (p. 41):

δS = M

(

CV
δT

T
+

k

m

δV

V

)

=
Mk

m

(

3
2
δT

T
+

δn

n

)

(2.228)

After integration the relation can be written as:

S =
Mk

m
ln

(

T 3/2

n

)

+ constant = −kH0 −
3M
2m

(

ln
(

2πk
m

)

+ 1
)

+ constant

(2.229)
where lnT has been eliminated using (2.227).

This relation connects H0 with the entropy when the gas is in a uniform
steady state:

S = −kH0 + Constant’ (2.230)

It is commonly argued that the constant reflects the arbitrariness of the zero
point of entropy.

Due to the statistical relationship between H0 and S expressed through
(2.230), the Boltzmann’s H-theorem shows that for a gas that is not in a
steady state H0 must decrease and the entropy S will increase accordingly. In
accordance with (2.222) we can write:

dH0

dt
= −1

k

dS

dt
≤ 0 (2.231)

or
dS

dt
≥ 0 (2.232)

The H-theorem is apparently a probability theory confirmation of the 2nd
law of thermodynamics stating that the entropy cannot decrease in a physical
process.
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2.8 Solving the Boltzmann Equation

Various attempts have been made to obtain approximate solutions to the
Boltzmann equation. Two of these methods were suggested independently by
Chapman [10] [11] and by Enskog [24] giving identical results. In this book
emphasis is placed on the Enskog method, rather than the Chapman one, as
most modern work follows the Enskog approach since it is less intuitive and
more systematic, although still very demanding mathematically.

The Enskog [24] expansion method for the solution of the Boltzmann equa-
tion provides a series approximation to the distribution function. In the zero
order approximation the distribution function is locally Maxwellian giving rise
to the Euler equations of change. The first order perturbation results in the
Navier-Stokes equations, while the second order expansion gives the so-called
Burnett equations. The higher order approximations provide corrections for
the larger gradients in the physical properties like ρ, T and v.

The zero order approximation to f is valid when the system is at equilib-
rium and the gas properties contain no or very small macroscopic gradients. In
particular, when the system is at equilibrium the heat fluxes and the viscous
stresses vanish.

The Navier-Stokes equations are valid whenever the relative changes in
ρ, T and v in the distance of the mean free path are small compared to
unity. Inasmuch as the Enskog theory is rather long and involved, we will
only provide a brief outline of the problem and the method of attack, and
then rather discuss the important results.

When the second order approximations to the pressure tensor and the heat
flux vector are inserted into the general conservation equation, one obtains
the set of PDEs for the density, velocity and temperature which are called
the Burnett equations. In principle, these equations are regarded as valid for
non-equilibrium flows. However, the use of these equations never led to any
noticeable success (e.g., [28], pp. 150-151); [39], p. 464), merely due to the
severe problem of providing additional boundary conditions for the higher
order derivatives of the gas properties. Thus the second order approximation
will not be considered in further details in this book.

Further details of the Enskog method are given by Enskog [24] and in
the standard references like Hirschfelder et al. [39], Ferziger and Kaper [28],
Vincenti and Kruger [100], Chapman and Cowling [12] and Liboff [61].

2.8.1 Equilibrium Flow - The Euler Equations

Applying the local Maxwellian distribution function (2.225), explicit expres-
sions can be obtained for the heat flux, q and the pressure tensor P.

Substituting f0 into the two flux formulas (2.64) and (2.72), give:

P = m

∫

f0CCdc = pe (2.233)
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and
q =

1
2
m

∫

f0CC2dc = 0 (2.234)

In the zero order solution, there is no heat flow and the pressure tensor is
diagonal. The diagonal elements in the pressure tensor denote the normal
stresses that are identical to the thermodynamic pressure, as defined by (2.68).

These conclusions are not obvious at first sight, so a brief mathemati-
cal verification is provided. In Cartesian tensor notation, the pressure tensor
(2.64) is given by:

Pij = ρ
( m

2πkT

)3/2
∫

CiCj exp
(

−mC2

2kT

)

dC = pδij (2.235)

where dC = dc, since v is not a function of c.
Furthermore, as the integration is over the whole velocity space, it can be

proved that any integral vanishes when the integrand is odd. Inspection of
the pressure tensor shows that, since Ci and Cj themselves are odd functions
of Ci and Cj respectively, whereas the exponential is an even function, the
integrand as a whole is odd when i 
= j and even when i = j.

The derivation of the shear and normal stress terms is examined for two
representative cases, for which we pick out the odd term (i = 1, j = 2) and
the even term (i = j = 1). The two analytical integral solutions required are
taken from the literature43.

For the particular odd term (i = 1, j = 2) yields:

P12

nm

= (
m

2πkT
)3/2

∞
∫

−∞

C1 exp(−mC2
1

2kT
)dC1

∞
∫

−∞

C2 exp(−mC2
2

2kT
)dC2

∞
∫

−∞

exp(−mC2
3

2kT
)dC

= (
m

2πkT
)3/2 × 0 × 0 × 2

[

1
2
√
π(

m

2kT
)−1/2

]

= 0,

(2.236)

43 In the following mathematical manipulation we are solving even integrals on the
form:

∞
∫

−∞

xn exp(−ax2)dx = 2

∞
∫

0

xn exp(−ax2)dx

Two even integral solutions are employed in this reformulation in which n = 0
and n = 2, respectively, as listed below:

∞
∫

0

exp(−ax2)dx =

√
π

2
a−1/2 and

∞
∫

0

x2 exp(−ax2)dx =

√
π

4
a−3/2

Further details can, for example, be found in [61] (pp. 526-527) and [12] (sect. 1.4).
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and so on for the other shear stresses P13 and P23. It is thus verified that for
equilibrium flows all the viscous stresses vanish, σ = 0.

For the particular even term (i = j = 1) yields:

P11

nm

= (
m

2πkT
)

3
2

∞
∫

−∞

C2
1 exp(−mC2

1

2kT
)dC1

∞
∫

−∞

exp(−mC2
2

2kT
)dC2

∞
∫

−∞

exp(−mC2
3

2kT
)dC

= (
m

2πkT
)3/2 × 2

[√
π

4
(
m

2kT
)−3/2

]

× 22

[√
π

2
(
m

2kT
)−1/2

]2

= p(
1

nkT
)(

m

2πkT
)3/2(2π)3/2(

m

kT
)−5/2 =

p

nm
,

(2.237)

and so on for P22 and P33. The total pressure tensor becomes, P = pe.
The heat flux is treated in a similar manner. By substituting f0 from

(2.225) into the definition of q (2.72), it is seen that this expression constitutes
an odd integral, hence q = 0 (e.g., [100], sect. 5).

Since we have just verified that both the viscous stresses and the heat
conduction terms vanish for equilibrium flows, the constitutive stress ten-
sor and heat flux relations required to close the governing equations are
determined. That is, substituting (2.233) and (2.234) into the conservation
equations (2.202), (2.207) and (2.213), we obtain the Euler equations for
isentropic flow:

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.238)

∂

∂t
(ρv) + ∇ · (ρvv) = −∇p + ρF (2.239)

∂

∂t
(ρ[e +

1
2
v2]) + ∇ · (ρv[e +

1
2
v2]) = −∇ · (pv) + ρF · v (2.240)

2.8.2 Gradient Perturbations - Navier Stokes Equations

Applying the Enskog perturbation method we intend to describe the prop-
erties of gases which are only slightly different from equilibrium. Only under
these conditions will the flux vectors be about linear in the derivatives so
that the formal definitions of the transport coefficients apply. In this limit the
distribution function is still nearly Maxwellian, and the Boltzmann equation
can be solved by a perturbation method. The resulting solutions are then
used to obtain expressions for the heat and momentum fluxes and for the
corresponding transport coefficients.

The first step in the Enskog expansion is to introduce a perturbation
parameter ε into the Boltzmann equation to enforce a state of equilibrium
flow as the gas is dominated by a large collision term:
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Dcf

Dct
=

1
ε

∫

1

[f ′(r, c′, t)f ′
1(r, c

′
1, t) − f(r, c, t)f1(r, c1, t)]gσA(Ω′)dΩ′dc1

=
1
ε
J(ff)

(2.241)

where the perturbation parameter factor ε−1 measures the frequency of colli-
sions. It is assumed that if ε � 1, the collisions are so frequent that the gas
behaves like a continuum being in local equilibrium at every point.

Thereafter, the distribution function is expanded in a series in ε:

f = f0 + εf1 + ε2f2 + ... (2.242)

In a similar manner the time derivative is expanded as:

∂

∂t
=

∂0

∂t
+ ε

∂1

∂t
+ ε2

∂2

∂t
+ ... (2.243)

stipulating that the time dependence of f is solely dependent on the fluid
dynamic variables ρ, T , and v, and expressed in terms of an exact differential.
The physical meaning of the expansion in time is that the lowest order terms
vary most rapidly, whereas higher order terms are more slowly varying.

If these series expansions are introduced into the modified Boltzmann
equation (2.241), and the coefficients of equal powers of ε equated, the dis-
tribution function can be uniquely determined to a specified order provided
that f still satisfies the moment relations defining the physical properties like
density, gas velocity and temperature.

Following this procedure, we get:

0 = J(f0f0) (2.244)

and
Dc,0f

0

Dct
= J(f0f1) (2.245)

The solution of (2.244) gives rise to the absolute Maxwellian, f0, as dis-
cussed in sect 2.7.2.

Considering the first order approximation, (2.245) is supposedly solved for
f1. It is then required that the physical properties (ρ,v,T ) are determined
by the zero order approximation, f0, whereas the higher order terms in the
expansion contribute to q and σ only.

Next, in the first order perturbation solution f1 is written in terms of the
perturbation function Φ. Hence,

f ≈ f0 + f1 ≈ f0 + Φf0 = f0(1 + Φ) (2.246)

where ε is set to unity.
After (2.245) has been solved for Φ (i.e., instead of f1), f is known to

second order f = f0(1 +Φ). Note that when the perturbation function Φ 
= 0
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but still Φ � 1, the system is only slightly different from equilibrium as
prerequisited.

After the first order approximation is introduced through (2.246), (2.245)
is said to be an inhomogeneous linear integral equation for Φ. The form of Φ
is then established without actually obtaining a complete solution. Instead,
by functional analysis a partial solution is written in the form (e.g., Chapman
and Cowling [12], sect. 7.3; Hirschfelder et al. [39], chap. 7, sect. 3):

Φ = − 1
n

[
√

2kT
m

A · ∂

∂r
(lnT ) + 2B :

∂

∂r
v

]

(2.247)

where A is a vector function of C =
√

m
2kT C, n and T , whereas and B is

a tensor function of C, n and T .
To determine the form of these two functions (i.e., A and B) the solution

for Φ (2.247) is substituted into the linearized Boltzmann equation (2.245),
and thereafter the coefficients of the different components of ∇T and ∇v in
the resulting relation are equated.

The only vectors that can be formed from these quantities are products of
C itself and scalar functions A(C, n, T ), expressed as:

A = A(C, n, T )C (2.248)

B can be shown to be a symmetrical, traceless and non-divergent tensor
[12, 28, 61]. The only second order symmetrical traceless tensors that can be
formed from C, n and T are products of CC44 and scalar functions B(C, n, T ).
Hence, it follows that:

B = CCB(C, n, T ) (2.249)

Finally, solutions to the integral flux equations like (2.64) and (2.72) are
then obtained by expressing the scalar functions A(C, n, T ) and B(C, n, T ) in
terms of certain polynomials45 (i.e., Sonine polynomials).

However, without showing all the lengthy details of the method by which
the two scalar functions are determined, we briefly sketch the problem defini-
tion in which the partial solution (2.247) is used to determine expressions for
the viscous-stress tensor σ and the heat flux vector q.

Introducing the expressions for the first order approximation of the distri-
bution function (2.246) and thereafter the partial solution for Φ (2.247) into
the pressure tensor definition, (2.64), we get [39]:

44 This notation is used denoting a symmetrical, traceless and non-divergent tensor
[12] [61] [28].

45 The detailed mathematical analysis needed determining these integrals are omit-
ted in this book as it is rather lengthy and involved, instead the reader being
interested in these pure mathematics are referred to the formal mathematical
procedures given in the standard references (e.g., Enskog [24]; Hirschfelder et al.
[39]; Chapman and Cowling [12], p.126; Liboff [61], p. 187).
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P = m

∫

fCCdc = m

∫

f0(1 + Φ)CCdc

= m

∫

f0CCdc
︸ ︷︷ ︸

1

+m

∫

f0ΦCCdc
︸ ︷︷ ︸

2

(2.250)

where the parameter ε has been set equal to one.
From the previous section we recognize that term 1 on the RHS of (2.250)

equals the pressure term, pe, as for equilibrium systems. It can be shown by
kinetic theory that term 2 on the RHS corresponds to the viscous stress tensor
σ as defined by the pressure tensor (2.69).

In order to determine the stress tensor term 2 in (2.250), the perturbation
function Φ in the integrand is substituted by the partial solution (2.247).
Omitting integrals of odd functions of the components of C or C, only the term
containing the B remains. After some lengthy manipulations, the result is:

σ = −μ
(

∇v + (∇v)T − 2
3
(∇ · v)e

)

(2.251)

Note that the viscosity parameter μ has been introduced as a prefactor in front
of the tensor functions by substitution of the kinetic theory transport coeffi-
cient expression after comparing the kinetic theory result with the definition of
the viscous stress tensor σ, (2.69). In other words, this model inter-comparison
defines the viscosity parameter in accordance with the Enskog theory.

An analytical expression for the heat flux vector can be derived in a similar
manner using the Enskog approach. That is, we introduce the first order
approximation of the distribution function from (2.246) into the heat flux
definition (2.72) and thereafter substitute the partial solution for Φ, as defined
by (2.247), into the resulting flux vector integrand as follows [39]:

q =
1
2
m

∫

f0(1 + Φ)C2CdC = −λ∇T (2.252)

Hence, the conductivity λ in (2.252) is determined by model inter-comparison
in accordance with the Enskog method46.

In conclusion, when these first order expressions for the pressure tensor and
the heat flow vector are substituted into the general conservation equations
(2.202), (2.207) and (2.213), we obtain the following set of partial differential
equations:

1
ρ

Dρ

Dt
= −∇ · v (2.253)

ρ
Dv
Dt

= −∇p−∇ · σ + ρF (2.254)

46 Overall, it is important to recognize that both the Newton viscosity law and
Fourier’s law of heat conduction are automatically generated from the approxi-
mate kinetic theory solution of Enskog.
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ρ
D

Dt
(e +

1
2
v2) = −∇ · q −∇ · (pv) −∇ · (σ · v) + ρF · v (2.255)

where σ and q are given by (2.251) and (2.252), respectively.
The resulting set of conservation equations derived by kinetic theory cor-

responds to the Navier-Stokes equations of fluid dynamics.

2.9 Multicomponent Mixtures

In this section we briefly discuss some of the important issues that arise when
the kinetic gas theory is extended to gas mixtures. For a more detailed study
of kinetic theory of mixtures the reader is referred to Hirschfelder et al. [39],
Williams [104] (app D) and Ferziger and Kaper [28].

It is first necessary to generalize the definitions of the important functions.
If we denote the chemical species in a gas mixture by s, then ns, ms, fs, cs,
Cs, Fs, etc. will in general be different for each species.

The starting point for the kinetic theory of low density, non-reacting mix-
tures of mono-atomic gases is the knowledge of the distribution function
fs(r, cs, t). fs(r, cs, t) is defined in such a way that the quantity fs(r, cs, t)
dcsdr represents the probable number of molecules of the s-th species which
at the time t lie in a unit volume element dr about the point r and which have
velocities within the range dcs about cs. It is emphasized that cs denotes the
molecular velocity of a species s with respect to a coordinate system fixed in
space.

The total number of molecules of species s per unit spatial volume yields:

ns(r, t) =
∫

fs(r, cs, t)dcs (2.256)

For the mixture as a whole we have:

n(r, t) =
∑

s

∫

fs(r, cs, t)dcs =
∑

s

ns (2.257)

and
ρ(r, t) =

∑

s

ms

∫

fs(r, cs, t)dcs =
∑

s

msns =
∑

s

ρs (2.258)

The mean (number average) values of any function ψs(cs) over all the
molecules of a particular species, s, yield:

〈ψ〉M,s =
1
ns

∫

ψs(cs)fs(r, cs, t)dcs (2.259)

and the corresponding mean (number average) values of any function ψs(cs)
over all the species in the mixture are:



2.9 Multicomponent Mixtures 263

〈ψ〉M,n =
1
n

∑

s

∫

ψ(cs)fs(r, cs, t)dcs =
1
n

∑

s

ns〈ψ〉M,s (2.260)

The corresponding mixture mass average value of any function ψs(cs) is
defined by:

〈ψ〉M,m =
1
ρ

∑

s

ms

∫

ψ(cs)fs(r, cs, t)dcs =
1
ρ

∑

s

nsms〈ψ〉M,s (2.261)

In particular, the mass average velocity vm of the mixture is given by:

vm = 〈cs〉M,m =
1
ρ

∑

s

ρs〈cs〉M,s (2.262)

It is recognized that the mass average velocity for a mixture, vm, is not equal
to the number or molar average velocity 〈cs〉M,n.

The number average velocity for a particular species, s, is defined by:

〈cs〉M,s =
1
ns

∫

csfs(r, cs, t)dcs =
1

nsms

∫

mscsfs(r, cs, t)dcs = vs(r, t)

(2.263)

Note that for each species the molecular number and mass average velocities
are equal, as all the molecules have the same mass.

The peculiar velocity of a molecule of species s is defined in terms of the
mass average velocity:

Cs(r, cs, t) = cs − vm(r, t) (2.264)

The species s diffusion velocity denotes the average velocity of the partic-
ular type of species with respect to a reference frame moving with the mass
average velocity of the gas mixture:

vd,s = 〈cs〉M,s − vm = vs − vm (2.265)

Thus, the diffusion velocity for a given species equals the average of the cor-
responding peculiar velocity and can be written in the form:

vd,s =
1
ns

∫

(cs − vm)fs(r, t)dcs (2.266)

Hence, from the definitions of the diffusion and mass average velocities it
follows that:
∑

s

nsmsvd,s =
∑

s

ms

∫

(cs − vm)fs(r, t)dcs =
∑

s

msns(〈cs〉M,s − vm) = 0

(2.267)
The kinetic theory temperature is defined in terms of the mean (number

average) peculiar kinetic energy:
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1
2

∑

s

ms

∫

(cs − vm)2fsdcs =
1
2

∑

s

msns〈(cs − vm)2〉M

=
1
2

∑

s

msns〈C2
s 〉M =

3
2
nkT

(2.268)

The rigorous development of the kinetic theory of gases is based upon the
Boltzmann equation for the velocity distribution function fs. An extended
Boltzmann equation, similar to (2.78), describes how fs evolves in time and
space,

∂fs

∂t
+

∂

∂r
· (csfs) +

∂

∂cs
· (Fsfs) = (

∂fs

∂t
)Collision =

∑

r

J (fs|fr) (2.269)

The external force per unit mass acting on a molecules of species s is denoted
by Fs, and (∂fs

∂t )Collision =
∑

r J (fs|fr) =
∫ ∫

(f ′
sf

′
r − fsfr)gsrσAsr

dΩsrdcs

denotes the molecular collision term accounting for the change in fs due to
molecular collisions.

The collective flux vector associated with the property ψs(cs) is given by:

ψs =
∫

ψsfsCsdcs =
∫

ψsfsCsdCs (2.270)

It is noted that, as for simple systems computing average quantities, integra-
tion over Cs is equivalent to integration over cs since the two velocities differ
by a constant, and the integration is over the entire range of velocities.

The specific species mass, heat and momentum fluxes can now be expressed
by substituting the individual conservative properties for the function ψs.

The mass flux vector is obtained if ψs = ms:

js = ms

∫

(cs − vm)fsdcs = ms

∫

CsfsdCs = nsms〈Cs〉M,s = nsmsvd,s,

(2.271)
and, as shown earlier by (2.267), the sum of all the species mass flux vectors
equals zero:

∑

s

js = 0 (2.272)

The three flux vectors associated with the species momentum transport
in the x, y and z-directions are obtained from (2.270) when ψs = msCs,x,
ψs = msCs,x and ψs = msCs,x, respectively.

The nine components of these three vectors form a symmetric pressure
tensor, Ps, hence the mixture pressure yields:

P =
∑

s

Ps =
∑

s

ms

∫

(cs − vm)(cs − vm)fsdcs =
∑

s

ms

∫

CsCsfsdCs

=
∑

s

msns〈CsCs〉M,s = ρ〈CsCs〉M,m

(2.273)
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where the thermodynamic pressure is given by p = 1
3 tr(P) = 1

3P : e = Σsps =
nkT , and the viscous stresses yield: σ = P − pe.

The species s heat flux vector associated with the transport of kinetic
energy is obtained if we let ψs = 1

2msC
2
s , hence the mixture heat flux vector

is determined by the sum over all the components:

q =Σsqs =
1
2
Σsms

∫

(cs − vm)2(cs − vm)fsdcc =
1
2
Σsms

∫

C2
sCsfsdCc

=
1
2
Σsmsns〈C2

sCs〉M
(2.274)

Analytical expressions for the multicomponent flux vectors can be derived
using the Enskog [24] perturbation method as sketched for one component
mono-atomic gases in sect 2.8.

If the species s Boltzmann equation (2.269) is multiplied by the molecular
property ψs(cs) and thereafter integrated over all molecular velocities, the
general equation of change is achieved:

∂

∂t

∫

ψsfsdcs +
∂

∂r
·
∫

csψsfsdcs +
∫

Fs ·
∂ψs

∂cs
fsdcs =

∫

ψs(
∂fs

∂t
)Collisiondcs

(2.275)
To derive the species equations of change we let ψs denote successively the
mass ms, the momentum mscs, and the energy 1

2ms(Cs ·Cs). Thereafter, the
corresponding mixture equations are obtained simply by adding all the specific
species s equations. The governing equations are given by [39] (sect 7-2):

∂ρs

∂t
+ ∇ · (ρsvm) + ∇ · js = 0, (2.276)

∂ρ

∂t
+ ∇ · (ρvm) = 0, (2.277)

∂

∂t
(ρvm) + ∇ · (ρvmvm) = −∇p−∇ · σm +

∑

s

ρsFs (2.278)

∂

∂t
(ρ[e+

1
2
v2

m])+∇· (ρvm[e+
1
2
v2

m]) = −∇·q−∇· (P ·vm)+ρF ·vm (2.279)

where the internal energy per unit volume is defined by ρe = 3
2nkT =

1
2

∑

s ms

∫

(cs − vm)2fsdcs.

Elementary Multicomponent Mass Diffusion

The Enskog series solution to the species s Boltzmann equation can be ob-
tained in the same manner as sketched for the simple systems in sect. 2.8.
Near equilibrium the perturbation function Φs can be expressed as a linear
function of the various gradients [39] (p. 469):
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Φs = −(As ·
∂ lnT
∂r

) − (Bs :
∂

∂r
vm) + n

∑

r

Cs,r · dr) (2.280)

where the vector As, the tensor Bs, and the vectors Cs,r are functions of cs,
r, and t.

If this expression for Φs is used in the integrals for the flux vectors, we
obtain expressions for the mass diffusion vector, the pressure tensor, and the
heat flux vector.

In particular, the integral for the diffusion flux can be expressed in terms
of Φs. Hence, for a q component gas mixture the multicomponent mass flux
vector yields (Hirschfelder et al [39], p 478, p 516 and p 714; Curtiss and Bird
[18, 19]):

js = nsmsvd,s =ms

∫

CsfsdCs ≈ ms

∫

Csf
0
sΦsdCs

=ms

∫

[−(As ·
∂ lnT
∂r

) + n
∑

r

Cs,r · dr)]Csf
0
s dCs

≈p
q

∑

r=1

αsr

nrms
dr −DT

s

∂ lnT
∂r

=
n2

ρ

q
∑

r=1

msmrDsrdr −DT
s

∂ lnT
∂r

=ρs

q
∑

r=1

D̂srdr −DT
s

∂ lnT
∂r

(2.281)

where the constants, αsr, correspond to the phenomenological coefficients of
Onsager47 which satisfy the reciprocal relations considering the processes of
diffusion and thermal conduction. One of the phenomenological coefficient
indexes refers to the temperature variable, whereas the other indexes refer
to the components in the mixture. DT

s denotes the multicomponent thermal
diffusion coefficients48, having the property:
47 The flux equations in irreversible thermodynamics describes the coupling among

the fluxes of the various system properties. The linearity postulate states that
the fluxes are linear functions of all the driving forces.

It is understood that these relations are derived adopting several relations from
irreversible thermodynamics, e.g., the second law of thermodynamics, the Gibbs-
Duhem relation, the linear law and the Onsager reciprocal relations [39, 22, 62,
18, 5].

48 The latter serves as a reminder that the kinetic theory predicts the cross effects
like the transport of mass resulting from a temperature gradient (thermal diffu-
sion). It can also be shown that the theory predicts transport of energy resulting
from a concentration gradient (the diffusion-thermo effects). These second-order
effects are often referred to as the Soret - and Dufour effects. Unfortunately, no
shortcuts are available as these terms do not appear when applying simple kinetic
theory, only the more rigorous solution methods resolve these properties.
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q
∑

s=1

DT
s = 0. (2.282)

For dilute mono-atomic gases the vector ds is defined by:

ds =
∂

∂r
(
ns

n
) + (

ns

n
− nsms

ρ
)
∂ ln p
∂r

− nsms

pρ
[
ρ

ms
gs −

q
∑

r=1

nrgr] (2.283)

constituting the so-called generalized diffusional driving forces due to concen-
tration gradients, pressure gradients, and external force differences. From this
result it follows that the diffusion flux, as defined in (2.281), contains terms
proportional to the same driving forces which obey the property:

q
∑

s=1

ds = 0. (2.284)

It is possible to justify several alternative definitions of the multicomponent
diffusivities. Even the multicomponent mass flux vectors themselves are ex-
pressed in either of two mathematical forms or frameworks referred to as the
generalized Fick- and Maxwell-Stefan equations.

The Fick first law of binary diffusion [29], expressing the mass flux as a
function of the driving force, can be defined by:

j1 = −ρD12∇ω1 (2.285)

and serves as basis for the generalized Fickian multicomponent formulations.
In the generalized Fickian equations (2.281) the given diffusivities, Dsr,

correspond to the diffusivity definition used by Curtiss and Hirschfelder [16],
Hirschfelder et al. [39] (p. 715) and Bird et al. [3]:

Dsr = − ρp

n2msmr
(
αsr

nrmr
+

1
nsms

q
∑

k=1
k �=s

αsk) (2.286)

These diffusivities are not symmetric, Dsr 
= Drs.
However, the Dsr coefficients relate to the alternative set of consistent

multicomponent Fick diffusivities, D̂sr, by [18]:

D̂sr = −Dsr
ωs

xsxr
+

q
∑

k=1
k �=s

ωkDsk
ωs

xsxk
=

cRTαsr

ρsρr
(2.287)

The multicomponent Fick diffusivities, D̂sr, are symmetric [17]:

D̂sr = D̂rs s, r = 1, 2, 3, ..., q (2.288)

and obey the relation
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q
∑

s=1

ωsD̂sr = 0 r = 1, 2, 3, ..., q (2.289)

Hence, the corresponding multicomponent mass fluxes, i.e., the last line on the
RHS of (2.281), denote a consistent set of generalized Fick equations derived
from kinetic theory of dilute gases.

However, the multicomponent Fickian diffusivities, D̂sr, do not corre-
spond to the approximately concentration independent binary diffusivities,
Dsr, which are available from binary diffusion experiments or kinetic theory
determined by the inter-molecular forces between s− r pair of gases. Instead,
these multicomponent Fickian diffusion coefficients are strongly composition
dependent.

Due to this difficulty it is preferable to transform the Fickian diffusion
problem in which the mass-flux vector, js, is expressed in terms of the driving
force, ds, into the corresponding Maxwell-Stefan form where ds is given as
a linear function of js. The key idea behind this procedure is that one in-
tends to rewrite the Fickian diffusion problem in terms of an alternative set
of diffusivities (i.e., preferably the known binary diffusivities) which are less
concentration dependent than the Fickian diffusivities.

This transformation can be done using the method suggested by Curtiss
and Bird [18] [19] which is in accordance with the work of Merk [71]. To
shorten the notation they temporary define a modified diffusion velocity, v′

d,s,
by:

ρsv′
d,s = js + DT

s ∇ lnT (2.290)

Thereafter, the diffusion velocity is expressed in terms of the driving forces
using the last line on the RHS of (2.281). For species s and k the resulting
relationships are given by:

v′
d,s =

q
∑

r=1

D̂srdr (2.291)

and

v′
d,k =

q
∑

r=1

D̂krdr (2.292)

Then each of the two relations is multiplied by the multicomponent inverse
diffusivities, Ĉsk (with k 
= s and dimensions time/length2), and when one
equation is subtracted from the other, we get:

Ĉsk(v′
d,k − v′

d,s) = −
q

∑

r=1

Ĉsk(D̂kr − D̂sr)dr (2.293)

Next, the sum on k is performed:
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q
∑

k=1
k �=s

Ĉsk(v′
d,k − v′

d,s) = −
q

∑

r=1

⎡

⎢

⎣

q
∑

k=1
k �=s

Ĉsk(D̂kr − D̂sr)

⎤

⎥

⎦
dr, s = 1, 2, 3, ..., q

(2.294)
Curtiss and Bird [18] [19] and Slattery [89] (sect. 8.4.4) state that from
kinetic theory of dilute gas mixtures it appears that the coefficients Ĉsk

are determined in such a way that the following relations are satisfied
q
∑

k=1
k �=s

Ĉsk(D̂kr − D̂sr) = δsr + ωs. Thus, by use of the property
q
∑

s=1
ωsD̂sr = 0,

the RHS of (2.294) reduces to +ds.
The modified diffusion velocity (2.290) can be related to the standard

diffusion velocity (1.28), and expressed by:

v′
d,s =

js
ρs

+
DT

s

ρs
∇ lnT = vd,s +

DT
s

ρs
∇ lnT (2.295)

Hence, the diffusion problem (2.294) can be expressed in terms of the actual
diffusion velocities:

q
∑

k=1
k �=s

Ĉsk(vd,k − vd,s) = ds −
q

∑

k=1
k �=s

Ĉsk(
DT

k

ρk
− DT

s

ρs
)∇ lnT, s = 1, 2, 3, ..., q

(2.296)
These relations are called the generalized Maxwell-Stefan equations and

are the inverted counterparts of the Fick diffusion equations (2.281). These
two descriptions contain the same information and are interrelated as proven
by Curtiss and Bird [18] [19] for dilute mono-atomic gas mixtures.

The Maxwell-Stefan diffusivities are now defined by:

Ĉsk =
xsxk

D̃sk

(2.297)

Thereby, the generalized Maxwell-Stefan equations can be expressed in nu-
merous ways:

ds−
q

∑

k=1
k �=s

xsxk

D̃sk

(
DT

k

ρk
− DT

s

ρs
)∇ lnT =

q
∑

k=1
k �=s

xsxk

D̃sk

(vd,k − vd,s), s = 1, 2, 3, ..., q

=
q

∑

k=1
k �=s

xsxk

D̃sk

({vk − vm} − {vs − vm}) =
q

∑

k=1
k �=s

xsxk

D̃sk

(vk − vs)

=
q

∑

k=1
k �=s

xsxk

D̃sk

(
nk

ρk
− ns

ρs
) =

q
∑

k=1
k �=s

xsxk

D̃sk

(
jk
ρk

− js
ρs

)

=
q

∑

k=1
k �=s

1
cD̃sk

(xsNk − xkNs) =
q

∑

k=1
k �=s

1
cD̃sk

(xsJ∗
k − xkJ∗

s)

(2.298)
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where the combined molar flux with respect to stationary axes is given by:

Ns = csvs = cxsvs = csv∗
m + J∗

s, (2.299)

and the corresponding combined mass flux is defined by:

ns = ρsvs = ρωsvs = ρsvm + js (2.300)

In general, this equation ought to be written in terms of the difference of
molecular velocities vk −vs, so that the relation can be expressed in terms of
any desired mass or molar fluxes.

A more rigorous derivation of these relations were given by Curtiss and
Hirschfelder [16] extending the Enskog theory to multicomponent systems.
From the Curtiss and Hirschfelder theory of dilute mono-atomic gas mixtures
the Maxwell-Stefan diffusivities are in a first approximation equal to the bi-
nary diffusivities, D̃sr ≈ Dsr. On the other hand, Curtiss and Bird [18] [19]
did show that for dense gases and liquids the Maxwell-Stefan equations are
still valid, but the strongly concentration dependent diffusivities appearing
therein are not the binary diffusivities but merely empirical parameters.

Considering pure diffusion problems (i.e., no convection) or Engineering
multicomponent systems with predefined molar velocities (i.e., not involving
the momentum equations), the molar flux description is often used. Accord-
ingly, in ordinary diffusion problems the Fickian flux formulation can be re-
placed by a set of q − 1 independent equations. For simplicity we generally
adopt a set of assumptions considered very good approximations for dilute
gas systems, i.e., the thermal diffusion is negligible, the body force per unit
mass is the same on each species, and either the pressure is constant or the
molecular weights of all the species are about the same. Hence, the driving
force (2.283) reduces to:

ds ≈ ∇xs (2.301)

The resulting set of equations, i.e., using the last line on the RHS of (2.298),
is given by:

∇xs = −
q

∑

r=1

xsxr

D̃sr

(vs − vr) = −
q

∑

r=1

1
cD̃sr

(xrNs − xsNr), s = 1, 2, 3, ..., q

(2.302)
This relation is referred to as the Maxwell-Stefan model equations, since
Maxwell [65] [67] was the first to derive diffusion equations in a form analo-
gous to (2.302) for dilute binary gas mixtures using kinetic theory arguments
(i.e., Maxwell’s seminal idea was that concentration gradients result from the
friction between the molecules of different species, hence the proportionality
coefficients, Ĉsk, were interpreted as inverse friction or drag coefficients), and
Stefan [92] [93] extended the approach to ternary dilute gas systems. It is em-
phasized that the original model equations were valid for ordinary diffusion
only and did not include thermal, pressure, and forced diffusion.
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It is seen from (2.302), or maybe easier from the Fickian formulation
(2.281), that when the driving force (2.283) is approximated by the mole frac-
tion gradients, there is an important difference between binary diffusion and
multicomponent diffusion fluxes (e.g., Toor [98]; Taylor and Krishna [96]).
In binary systems the movement of species s is always proportional to the
negative of the concentration gradient of species s. In multicomponent dif-
fusion, however, we may also experience reverse diffusion in which a species
moves against its own concentration gradient, osmotic diffusion in which a
species diffuses even though its concentration gradient is zero, and diffusion
barrier when a species does not diffuse even though its concentration gradient
is nonzero.

It is sometimes convenient to cast the governing set of equations into a
q − 1 dimensional matrix form. Starting out from the diffusive molar fluxes,
as given by the last term on the RHS of (2.298), yield:

ds = −
q

∑

r=1

xrJ∗
s − xsJ∗

r

cD̃sr

(2.303)

However, only q − 1 of the diffusion fluxes are independent, hence:

J∗
q = −

q−1
∑

r=1

J∗
r (2.304)

Using the latter relation, (2.303) may be rewritten as:

ds = −
q

∑

r=1

xrJ∗
s − xsJ∗

r

cD̃sr

= −
q−1
∑

r=1

xrJ∗
s − xsJ∗

r

cD̃sr

−
(

xqJ∗
s − xsJ∗

q

cD̃sq

)

= −
q−1
∑

r=1

xrJ∗
s − xsJ∗

r

cD̃sr

−

⎛

⎜

⎜

⎜

⎝

xqJ∗
s − xs(−

q−1
∑

r=1
J∗

r)

cD̃sq

⎞

⎟

⎟

⎟

⎠

= −
q−1
∑

r=1

(

−xsJ∗
r

cD̃sr

+
xsJ∗

r

cD̃sq

)

−
q−1
∑

r=1

xrJ∗
s

cD̃sr

− xqJ∗
s

cD̃sq

= −
q−1
∑

r=1

(

−xsJ∗
r

cD̃sr

+
xsJ∗

r

cD̃sq

)

−
q

∑

r=1

xrJ∗
s

cD̃sr

= −
q−1
∑

r=1
r �=s

(

− xs

cD̃sr

+
xs

cD̃sq

)

J∗
r −

q
∑

k=1
k �=s

xk

cD̃sk

J∗
s −

xs

cD̃sq

J∗
s

=
1
c

⎧

⎪

⎨

⎪

⎩

−
q−1
∑

r=1
r �=s

BsrJ∗
r −BssJ∗

s

⎫

⎪

⎬

⎪

⎭

(2.305)
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where the coefficients Bss and Bsr are defined by:

Bsr = −xs

(

1
D̃sr

− 1
D̃sq

)

(2.306)

and

Bss =
xs

D̃sq

+
q

∑

k=1
k �=s

xk

D̃sk

(2.307)

Let (d) and (J∗) denote, respectively, the vectors of independent driving forces
d1,d2,d3, ...,dq−1 and independent diffusion fluxes J∗

1,J
∗
2,J

∗
3, ...,J

∗
q−1, hence

we may write the q − 1 equations in q − 1 dimensional matrix form as:

c(d) = −[B](J∗) (2.308)

where [B] is a square matrix of order q − 1.
Then, to find an explicit expression for (J∗) we pre-multiply by the inverse

of [B]:
c[B]−1(d) = −[B]−1[B](J∗) = −(J∗) (2.309)

or, more conveniently:
(J∗) = −c[B]−1(d) (2.310)

Multicomponent mass transport problems can be approximated by lineariza-
tion replacing the variable properties in the governing equations (i.e., [B])
with constant reference values (i.e., [B]xref) [96]. This approach provides sig-
nificant computational savings in many cases, but this model linearization
should be treated with caution as it gives accurate predictions only when the
property variations are not too large.

In particular cases it is desired to work with an explicit expression for the
mole flux of a single species type s, J∗

s, avoiding the matrix form given above.
Such an explicit model can be derived manipulating the original Maxwell-
Stefan model (2.303), with the approximate driving force (2.301), assuming
that the mass fluxes for all the other species are known:

J∗
s =

−c∇xs +
q
∑

r=1
r �=s

J∗
rxs

D̃sr

q
∑

r=1
r �=s

xr

D̃sr

= Ds

⎛

⎜

⎝
−c∇xs +

q
∑

r=1
r �=s

(

J∗
rxs

D̃sr

)

⎞

⎟

⎠

(2.311)

where Ds is given by:
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Ds =

⎛

⎜

⎝

q
∑

r=1
r �=s

xr

D̃sr

⎞

⎟

⎠

−1

(2.312)

Wilke [103] proposed a simpler model for calculating the effective diffusion
coefficients for diffusion of a species s into a multicomponent mixture of stag-
nant gases. For dilute gases the Maxwell-Stefan diffusion equation is reduced
to a multicomponent diffusion flux model on the binary Fick’s law form in
which the binary diffusivity is substituted by an effective multicomponent
diffusivity. The Wilke model derivation is examined in the sequel.

The combined molar flux of species s in a binary mixture is defined in
accordance with (2.299), using Fick’s law:

Ns = csv∗
m + J∗

s = xscv∗
m − cDsr∇xs = xs(Ns + Nr) − cDsr∇xs (2.313)

in which cv∗
m = Ns + Nr for binary mixtures.

Wilke [103], among others, postulated that an analogous equation for the
combined molar flux of species s in a multicomponent mixture can be written
as [3](p 571):

Ns = xs

q
∑

r=1

Nr − cDsm∇xs (2.314)

where Dsm represents the effective diffusion coefficient of component s with
respect to the composition of the multicomponent gas mixture.

To express the effective diffusion coefficient in terms of the known binary
diffusivities Wilke invoked the Maxwell-Stefan equation. From the last line on
the RHS of (2.298) a particular form of the Maxwell-Stefan equation is given:

∇xs =
q

∑

r=1
r �=s

1
cD̃sr

(xsNr − xrNs) (2.315)

For dilute systems all gases except the species s molecules are being stag-
nant, hence all the fluxes denoted by Nr, for r 
= s, are zero. Thus, the Wilke
relation (2.314) reduces to:

Ns = − cDsm

1 − xs
∇xs, (2.316)

and the Maxwell-Stefan equation (2.315) yields:

∇xs = −
q

∑

r=1
r �=s

1
cD̃sr

xrNs (2.317)

Then, by solving (2.316) for ∇xs and equating the result to the simplified
driving force (2.301) in the Maxwell-Stefan equations (2.315), we get [23] [3]
(p 571):



274 2 Elementary Kinetic Theory of Gases

1
Dsm

=
1

(1 − xs)

q
∑

r=1
r �=s

xr

D̃sr

(2.318)

The diffusion of species s in a multicomponent mixture can then be written in
the form of Fick’s law of binary diffusion, using the effective diffusion coeffi-
cient Dsm instead of the binary diffusivity. The Wilke equation is defined by:

J∗
s = −cDsm∇xs (2.319)

However, the Wilke equation does not in general satisfy the constraint that
the species mole fractions must sum to 1 [14].

A similar model often used by reaction engineers is derived for the limiting
case in which all the convective fluxes can be neglected. Consider a dilute
component s that diffuses into a homogeneous mixture, then J∗

r ≈ 0 for r 
= s.
To describe this molecular transport the Maxwell-Stefan equations given by
the last line in (2.298) are adopted. With the given restrictions, the model
reduces to:

∇xs =
q

∑

r=1
r �=s

1
cD̃sr

(xsJ∗
r − xrJ∗

s) ≈ −
q

∑

r=1
r �=s

1
cD̃sr

xrJ∗
s (2.320)

By solving the effective multicomponent diffusion flux as postulated by Wilke
(2.319) for ∇xs and equating the result to the simplified driving force (2.301)
in the Maxwell-Stefan equations (2.320), we get:

1
Dsm

=
q

∑

r=1
r �=s

xr

D̃sr

(2.321)

This simple relation provides fair approximations of the molecular fluxes for
several ternary systems in which s is a trace component [82] (p 597).

To describe the combined bulk and Knudsen diffusion fluxes the dusty gas
model can be used [44] [64] [48] [49]. The dusty gas model basically represents
an extension of the Maxwell-Stefan bulk diffusion model where a descrip-
tion of the Knudsen diffusion mechanisms is included. In order to include the
Knudsen molecule - wall collision mechanism in the Maxwell-Stefan model
originally derived considering bulk gas molecule-molecule collisions only, the
wall (medium) molecules are treated as an additional pseudo component in
the gas mixture. The pore wall medium is approximated as consisting of gi-
ant molecules, called dust, which are uniformly distributed in space and held
stationary by an external clamping force. This implies that both the diffusive
flux and the concentration gradient with respect to the dust particles vanish.

For the q + 1-component pseudo-mixture we may modify the formulation
of the Maxwell-Stefan equation given in the last line of (2.298) and the gen-
eralized diffusional driving force expression (2.283). The dusty gas model, for
s = 1, 2, ..., q + 1, yields:
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−
q

∑

r=1

N′
sx

′
r − N′

rx
′
s

c′D̃′
sr

−
N′

sx
′
q+1 − N′

q+1x
′
s

c′D̃′
s,q+1

=∇x′
s +

(x′
s − ω′

s)∇p′

p′

−
c′sg

′
s − ω′

s

q+1
∑

r=1
c′rg

′
r

p′

(2.322)

However, only q of these equations are independent. It is thus required to
solve (q − 1) equations for the bulk species and 1 for the pseudo-component
denoting the pore wall medium.

The quantities marked with a prime refer to the pseudo-mixture, that is the
gas mixture with the dust molecules. This distinction will be maintained by
writing p′, c′, x′

s, D̃
′
sr and ω′

s for the quantities referred to the pseudo-mixture
and p, c, xs, D̃sr and ωs for the same quantities referred to the actual ideal
gas. Note also that for the species concentrations cs, partial pressures ps and
the molar flux vectors there are no distinction between the two quantities.

To ensure that the dust molecules are motionless, N ′
q+1 = 0, a net external

force is used to prevent them from moving in response to any gas pressure
gradients [49]:

∇p = cq+1gq+1 (2.323)

Moreover, it is assumed that there are no external forces acting on the actual
species, gs = 0 for s = 1, ..., q. The form of the q independent equations is
thus given by:

−
q

∑

r=1

N′
sx

′
r − N′

rx
′
s

c′D̃′
sr

−
N′

sx
′
q+1

c′D̃′
s,q+1

= ∇x′
s+

(x′
s − ω′

s)∇p′

p′
+
ω′

scq+1gq+1

p′
(2.324)

To obtain a form of the dusty gas model that can be used in practice the
primed variables associated with the pseudo-mixture have to be transformed
to the unprimed variables associated with the gas.

The two first terms on the RHS can be formulated as:

∇x′
s +

x′
s

p′
∇p′ = ∇

(

p′s
p′

)

+
x′

s

p′
∇p′ = p′s∇

(

1
p′

)

+
1
p′
∇p′s +

x′
s

p′
∇p′

= − p′s
p′2

∇p′ +
1
p′
∇p′s +

x′
s

p′
∇p′

= −x′
s

p′
∇p′ +

1
p′
∇p′s +

x′
s

p′
∇p′ =

1
p′
∇p′s

(2.325)

From the equation of state for an ideal gas we observe:

p′ = c′RT = (c + cq+1)RT = p + cq+1RT (2.326)

Hence, applying the nabla operator yields:

∇p′ = ∇p + cq+1R∇T (2.327)
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Inserting this result into (2.323), gives:

cq+1gq+1 = ∇p′ − cq+1R∇T (2.328)

By use of the ideal gas law, (2.325) can be rewritten as:

1
p′
∇p′s =

1
c′RT

∇(c′sRT ) =
c′s∇(lnT )

c′
+

∇c′s
c′

(2.329)

Then, employing these formulas, (2.324) can be rewritten as:

−
q

∑

r=1

N′
sx

′
r − N′

rx
′
s

c′D̃′
sr

−
N′

sx
′
q+1

c′D̃′
s,q+1

= ∇x′
s +

x′
s∇p′

p′
− ω′

s∇p′

p′
+

ω′
scq+1gq+1

p′

=
1
p′
∇p′s −

ω′
s∇p′

p′
+

ω′
s(∇p′ − cq+1R∇T )

p′

=
c′s∇(lnT )

c′
+

∇c′s
c′

+
ω′

scq+1R∇T

p′

(2.330)

To complete the transformation of the dusty gas model containing primed
quantities into the unprimed variables associated with the actual gas, one
must employ the following definitions:

x′
s =

c′s
c′

(2.331)

c′s = cs (2.332)

D̃e
sr =

c′D̃′
sr

c
(2.333)

D̃e
sK =

D̃′
s,q+1

x′
q+1

(2.334)

xs =
cs

c
(2.335)

N′
s = Ns (2.336)

Multiplying the first term on the LHS of (2.330) by c′/c′, we obtain:

−
q

∑

r=1

N′
sx

′
rc

′ − N′
rx

′
sc

′

c′2D̃′
sr

= −
q

∑

r=1

Nscr − Nrcs

c′2D̃′
sr

= −
q

∑

r=1

Nsxr − Nrxs

c′D̃e
sr

(2.337)
The mass fraction of species s can be expressed as:

ω′
s =

ms

mtotal
=

ms

V
mtotal

V

=
ρs

ρtotal
=

ρs
q
∑

r=1
ρr + ρq+1

=
csMws

q
∑

r=1
(crMwr

) + cq+1Mwq+1

(2.338)
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When Mwq+1 → ∞, ω′
s → 0, so the last term on the RHS of (2.330) vanishes.

Hence, (2.330) becomes:

−
q

∑

r=1

Nsxr − Nrxs

D̃e
sr

−
N′

sx
′
q+1

D̃′
s,q+1

≈ cs∇(lnT ) + ∇cs (2.339)

By employing the relations; D̃e
sK = D̃′

s,q+1
x′

q+1
and N′

s = Ns, we get:

−
q

∑

r=1

Nsxr − Nrxs

D̃e
sr

− Ns

D̃e
sK

= cs∇(lnT ) + ∇cs (2.340)

Moreover, by use of the ideal gas law; cs = ps

RT , the RHS can be manipulated
like:

−
q

∑

r=1

Nsxr − Nrxs

D̃e
sr

− Ns

D̃e
sK

=
ps

RT
∇(lnT ) + ∇ ps

RT

=
ps

RT 2
∇T + ∇ ps

RT

=
ps

RT 2
∇T +

ps

R
∇

(

1
T

)

+
1
RT

∇ps

=
ps

RT 2
∇T − ps

RT 2
∇T +

1
RT

∇ps

=
1
RT

∇ps =
c

p
∇ps = c∇xs

(2.341)

Note that the final expression on the RHS is valid for ideal gases at constant
pressure only.

By splitting the combined molar flux (2.299), we obtain:

q
∑

r=1

(J∗
s + csv∗

m)xr − (J∗
r + crv∗

m)xs

D̃e
sr

+
J∗

s + csv∗
m

D̃e
sK

≈ −c∇xs (2.342)

By simple manipulation, the commonly used mole form of the dusty gas model
is achieved:

q
∑

r=1

J∗
sxr − J∗

rxs

D̃e
sr

+
J∗

s + csv∗
m

D̃e
sK

≈ −c∇xs (2.343)

It is sometimes advantageous to use an explicit expression, similar to (2.311),
for the diffusive flux. To achieve such an expression, we must reformulate the
model by first re-arranging the terms in the following way:

J∗
s

q
∑

r=1

xr

D̃e
sr

−
q

∑

r=1

J∗
rxs

D̃e
sr

+
J∗

s

D̃e
sK

+
csv∗

m

D̃e
sK

≈ −c∇xs (2.344)



278 2 Elementary Kinetic Theory of Gases

Observing that the terms occurring for r = s in the two sums cancel out,
we get:

J∗
s

⎛

⎜

⎝

q
∑

k=1
k �=s

xk

D̃e
sk

+
1

D̃e
sK

⎞

⎟

⎠
−

q
∑

r=1
r �=s

J∗
rxs

D̃e
sr

+
csv∗

m

D̃e
sK

≈ −c∇xs (2.345)

or, explicitly:

J∗
s ≈ De

s

⎛

⎜

⎝

q
∑

r=1
r �=s

J∗
rxs

D̃e
sr

− csv∗
m

D̃e
sK

− c∇xs

⎞

⎟

⎠
(2.346)

where

De
s ≈

⎛

⎜

⎝

q
∑

k=1
k �=s

xk

D̃e
sk

+
1

D̃e
sK

⎞

⎟

⎠

−1

(2.347)

In some cases the convective term on the LHS of (2.343) can be neglected
since J∗

s � csv∗
m. For these particular problems the dusty gas model (2.343)

reduces to:
q

∑

r=1
r �=s

J∗
sxr − J∗

rxs

D̃e
sr

+
J∗

s

D̃e
sK

≈ −c∇xs (2.348)

This relation can be written in the matrix form:

J∗
s

⎛

⎜

⎝

q
∑

k=1
k �=s

xk

D̃e
sk

+
1

D̃e
sK

⎞

⎟

⎠
−

q
∑

r=1
r �=s

J∗
rxs

D̃e
sr

≈ −c∇xs (2.349)

or more compactly:

J∗
sBss +

q
∑

r=1
r �=s

J∗
rBsr ≈ −c∇xs (2.350)

with the coefficients:

Bss =

⎛

⎜

⎝

q
∑

k=1
k �=s

xk

D̃e
sk

+
1

D̃e
sK

⎞

⎟

⎠
(2.351)

Bsr = − xs

D̃e
sr

(2.352)

In vector notation we get:

[B](J∗) = −c(∇x) (2.353)

or, after multiplying both sides by [B]−1, we obtain:
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(J∗) = −c[B]−1(∇x) (2.354)

It is emphasized that in this description the gas molecule-dust interactions are
accounted for by a set of effective Knudsen diffusion coefficients. Therefore,
the dusty gas model contains two types of effective binary diffusion coeffi-
cients, the effective binary pair diffusivities in the porous medium and the
effective Knudsen diffusivities. The effective diffusivities are related to the
corresponding molecular diffusivities by:

D̃e
sr = D̃sr

ε

τ
(2.355)

and
D̃e

sK = D̃sK
ε

τ
(2.356)

where the porosity-to-tortuosity factor ( ε
τ ) characterizes the porous matrix

and is best determined by experiment. Epstein [27] provides physical inter-
pretations of the ε and τ parameters. For dilute gases, both the molecular
bulk and Knudsen diffusivities can be derived from kinetic theory.

Consistent Diffusive Mass Flux Closures for the Governing
Reactive Flow Equations

The conventional modeling practice considers the mass average mixture ve-
locity as a primitive variable instead of the number or molar averaged mixture
velocity. The mass averaged velocity is the natural and most convenient basis
for the laws of conservation of mixture mass, momentum and energy. It is
noticed that the total number of moles of the molecules in a mixture is not
necessarily conserved in reactive systems, whereas the elements and the mix-
ture mass are preserved quantities. Separate equations of motion and energy
for each species s can be derived by continuum arguments [5]. However, for
mixtures containing a large number of different species the resulting sets of
separate species mole, momentum and energy equations are neither feasible
nor needed for solving transport problems. Besides, the species momentum
and energy fluxes are not measurable quantities. Therefore, for the calcula-
tion of multicomponent problems containing convective transport phenomena
the mass average velocity based description of the diffusion has an essential
advantage. If this description is chosen, then all the conservation equations
contain only mass average velocities, while in the molar description of the
diffusion the equations of motion and energy contain mass average velocities
whereas the species mass balance equations contain number or mole average
velocities. The two velocities are equal only when all the components of the
system have the same molar mass, hence the mass average velocity based
diffusion flux formulation is recommended for reactor simulations.

The rigorous derivation of the Maxwell-Stefan equations by use of the ki-
netic theory of dilute gases has already been explained in connection with
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(2.290) to (2.298). Nevertheless, although not very useful in practical appli-
cation, it might be informative from a physical point of view to start out
from the complete macroscopic species momentum balance when examining
the consistent derivation of the Maxwell-Stefan equations in terms of the mass
diffusion fluxes. However, it is noted that the following macroscopic derivation
is not as rigorous as the alternative kinetic theory approach.

The linear momentum principle for species s states that the rate of change
of momentum is balanced by the forces acting on the system and the rate of
production of momentum of species s [101] [78]:

D

Dt

∫

Vs(t)

ρsvs dv =
∫

Vs(t)

ρsgs dv +
∫

As(t)

n · Ts da +
∫

Vs(t)

q
∑

r=1

Psr dv

+
∫

Vs(t)

rsv∗
s dv

(2.357)

where ρsgs represents the body force acting on species s. The term n · Ts

represents the species stress vector. The term Psr denotes the force per unit
volume exerted by species r on species s, and the sum in the balance equation
represents the force exerted on species s by all the other species. The last term
rsv∗

s designates the source of species momentum49. Note that the velocity of
the molecules of species s generated by chemical reaction, v∗

s, need not be
equal to the species s velocity vs.

To convert the system balance description into an Eulerian control volume
formulation the transport theorem is employed (i.e., expressed in terms of the
species s velocity, vs):

D

Dt

∫

Vs(t)

f dv =
∫

Vs

∂f

∂t
dv +

∫

As

fvs · n da (2.358)

in which f represents any scalar, vector or tensor valued function.
To convert the area integrals into volume integrals the Gauss theorem is

used (App A) in the standard manner.
The transformed momentum balance yields:

∫

Vs

(

∂(ρsvs)
∂t

+ ∇ · (ρsvsvs) − ρsgs −∇ · Ts −
q

∑

r=1

Psr − rsv∗
s

)

dv = 0

(2.359)
From chap 1 it is known that this balance has to be valid for any volume,
hence the integral argument must be equal to zero:

∂(ρsvs)
∂t

+ ∇ · (ρsvsvs) − ρsgs −∇ · Ts −
q

∑

r=1

Psr − rsv∗
s = 0 (2.360)

49 The fundamental derivation of the species balance equation for systems with
homogeneous chemical reactions, starting out from from a Boltzmann type of
equation, is briefly discussed in the following subsection.
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This balance equation can also be derived from kinetic theory [101]. In the
Maxwellian average Boltzman equation for the species s type of molecules,
the collision operator does not vanish because the momentum mscs is not
an invariant quantity. Rigorous determination of the collision operator in this
balance equation is hardly possible, thus an appropriate model closure for the
diffusive force Psr is required. Maxwell [65] proposed a model for the diffusive
force based on the principles of kinetic theory of dilute gases. The dilute gas
kinetic theory result of Maxwell [65] is generally assumed to be an acceptable
form for dense gases and liquids as well, although for these mixtures the binary
diffusion coefficient is a concentration dependent, experimentally determined
empirical parameter.

The elementary modeling of the diffusion force is outlined in the sequel. For
dilute multicomponent mixtures only elastic binary collisions are considered
and out of these merely the unlike-molecule collisions result in a net transfer of
momentum from one species to another. The overall momentum is conserved
since all the collisions are assumed to be elastic (see sect 2.4.2), hence the net
force acting on species s from r per unit volume, Psr equals the momentum
transferred from r to s per unit time and unit volume [77] (sect 4-2). The
diffusion force yields:

Psr = MsrZsr (2.361)

where Msr represents the momentum flux transferred per collision, and Zsr

denotes the number of collisions between species s and r molecules per unit
time and unit volume (the collision density).

Several closures have been proposed to calculate the collision density for
molecules in gas mixtures [77] (pp 52-55). To derive these expressions for
the collision density one generally perform an analysis of the particle-particle
interactions in an imaginary container [77] [91] [51], called the conceptual
collision cylinder in kinetic theory, as outlined in sect 2.4.2. A fundamental
assumption in this concept is that the rate of molecular collisions in a gas
depends upon the size, number density, and average speed of the molecules.
Following Maxwell [65] each type of molecules are considered hard spheres,
resembling billiard balls, having diameter ds, mass ms and number density
ns. These hard spheres exert no forces on each other except when they collide.
Moreover, the collisions are perfectly elastic and obey the classical conserva-
tion laws of momentum and energy. In addition, the particles are uniformly
distributed through the gas. Different approximations of the hitherto unknown
average molecular speeds 〈cs〉M and 〈cr〉M can then be made. Suppose that
a molecule of type s moves with an average speed of 〈|cs|〉M = 〈cs〉M in an
imaginary container that contains both s and r molecules. Preliminary, in line
with the early models, we may assume that the molecules of r are stationary
(this restriction will be removed shortly). Since we are using the billiard ball
molecular model, a collision occurs each time the distance between the center
of a molecule s and a molecule r becomes equal to dsr = (ds + dr)/2 in ac-
cordance with (2.152). This means that if we construct an imaginary sphere
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of radius dsr around the center of molecule s, a collision occur every time
another molecule r is located within this sphere as the molecule s enclosed
within the imaginary sphere travels with its average speed sweeping out a
cylindrical volume σAT

〈cs〉M = πd2
sr〈cs〉M per unit time. If nr is the total

number of r molecules per unit mixture volume, the number of centers of r
molecules in the volume swept out is σAT

〈cs〉Mnr. This number equals the
number of collisions experienced by the one molecule of s in unit time, hence
the collision frequency can expressed by:

Zs−r = σAT
〈cs〉Mnr (2.362)

adopting the same notation as used in the last part of sect 2.4.2. A reasonable
approximation of the molecular speed may be calculated from the Maxwellian
distribution function following the kinetic theory presented in sect 2.4.2.

Moreover, if there is a total of ns molecules of s per unit volume in addition
to the r molecules, the collision density Zsr denoting the total number of s−r
collisions per unit volume per unit time is:

Zsr = Zs−rns = σAT
〈cs〉Mnrns (2.363)

If only the s type of molecules are present, the collision density Zss represents
the collisions of s molecules with one another. The expression for this density
resembles that for Zsr but a pre-factor 1/2 has to be introduced to avoid
counting each collision twice:

Zss =
1
2
σAT

〈cs〉Mnsns (2.364)

which coincides with (2.172) when the speed is calculated from the Maxwellian
velocity distribution function.

In the collision density formulas presented so far the target molecules r
within the collision cylinder are assumed stagnant, hence only the averaged
speed 〈cs〉M of the s molecules is considered. A better estimate of the collision
density might be obtained allowing the target molecules to move within the
collision cylinder, thus the average relative speeds 〈|crel,sr|〉M and 〈|crel,ss|〉M
of the molecules should be used instead of the average speed of the individual
species.

Furthermore, dealing with a mixture containing two types of molecules s
and r of different masses, the 〈cs〉M and 〈cr〉M values are different. A fairly
accurate model is achieved considering that the average relative speed is given
by 〈|crel,sr|〉M = (〈cs〉2M + 〈cr〉2M )1/2. This average speed relation is derived
using the Maxwellian distribution function as shown by Present [77] (p 79,
p 53, p 30). A rigorous collision density model can then be expressed as:

Zsr = σAT
〈|crel,sr|〉Mxrxsn

2 = σAT

√

〈cs〉2M + 〈cr〉2Mxrxsn
2 (2.365)

If the gas contains only type s molecules, the average relative speed of two
molecules becomes 〈|crel,ss|〉M = (〈cs〉2M + 〈cs〉2M )1/2 =

√
2〈cs〉M . Hence, the

expression for Zss has to be modified replacing 〈cs〉M by
√

2〈cs〉M , giving:
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Zss =
1√
2
σAT

〈cs〉Mnsns (2.366)

The corresponding expression for the number of collisions of one molecule of
s per unit time, when only s molecules are present, becomes:

Zs =
√

2σAT
〈cs〉Mns (2.367)

It is noted that the collision cross-sectional area, also referred to as the total
scattering cross section (2.163), can be approximated in different ways too.
In one approach the target particles are approximated as point-like particles.
Thus, the cross section of the target particles are not considered in calculating
the effective cross-sectional area, so σAT

≈ πd2
s/4. To achieve an improved

estimate of the effective cross-sectional area the size of the target particles
should be taken into account as well, thus σAT

= πd2
sr.

The net momentum flux transferred from molecules of type s to molecules
of type r can be approximated by the difference between the average momen-
tum of molecule s before and after the collision:

Msr = ms(vs − v′
s) (2.368)

In the literature the net momentum flux transferred from molecules of type
s to molecules of type r has either been expressed in terms of the average
diffusion velocity for the different species in the mixture [77] or the average
species velocity is used [96]. Both approaches lead to the same relation for the
diffusion force and thus the Maxwell-Stefan multicomponent diffusion equa-
tions. In this book we derive an approximate formula for the diffusion force
in terms of the average velocities of the species in the mixture. The diffusive
fluxes are introduced at a later stage by use of the combined flux definitions.

Nevertheless, the given momentum flux formula (2.368) is not useful before
the unknown average velocity after the collisions v′

s has been determined. For
elastic molecular collisions this velocity can be calculated, in an averaged
sense, from the classical momentum conservation law and the definition of
the center of mass velocity as elucidated in the following.

The velocity of the center of mass referred to a fixed point in space can be
obtained from the expression given for position vector of the center of mass
(2.112):

G =
msvs + mrvr

ms + mr
(2.369)

If all possible particle-particle approaches are considered, the ensemble aver-
age velocities after the collision will be equal to G = G′ = Constant, because
all directions of reflection or rebound are assumed to occur with equal like-
lihood in kinetic theory of dilute gases [77]. By ensemble averaging, we may
write:

v′
s = v′

r = G′ = G (2.370)

One recollects from (1.339) that the ensemble averaged of a species k velocity
〈c′k〉e is defined by:
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v′
k =< c′k >e=

1
N

N
∑

i=1

c′k,i (2.371)

where N is the number of events (collisions) observed.
An ensemble averaged momentum balance considering N binary collisions

between s and r molecules is obtained by averaging (2.115). The result is:

msvs + mrvr = msv′
s + mrv′

r (2.372)

Inserting (2.370) into (2.372) gives:

msvs + mrvr = msv′
s + mrv′

r = msG′ + mrG′ = (ms + mr)G′ (2.373)

Solving for v′
s = G′ the relation becomes:

v′
s = G′ =

msvs + mrvr

ms + mr
= Constant (2.374)

By assuming that an ensemble average velocity equals a Maxwellian aver-
age velocity, we might introduce (2.374) into (2.368). In this way we get:

Msr = ms

(

vs −
msvs + mrvr

ms + mr

)

(2.375)

If we multiply the first term on the RHS by ms+mr

ms+mr
, we get:

Msr = ms

(

vs

(

ms + mr

ms + mr

)

− msvs + mrvr

ms + mr

)

= ms

(

msvs + mrvs −msvs −mrvr

ms + mr

)

= ms

(

mrvs −mrvr

ms + mr

)

=
msmr(vs − vr)

ms + mr

(2.376)

By inserting (2.365) and (2.376) into (2.361), we achieve:

Psr = MsrZsr = xrxs(vs − vr)
msmrπn

2d2
sr

√

〈cs〉2M + 〈cr〉2M
ms + mr

(2.377)

If we insert a proportionality (drag or friction) coefficient that does not
depend on the mole fractions and the velocities vs and vr, we obtain:

Psr = xrxs(vs − vr)fsr (2.378)

The binary friction coefficient has been related to the binary diffusivity by
the following relation [65] [96]:
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fsr =
p

D̃sr

(2.379)

The diffusion force can thus be expressed as50:

Psr =
pxrxs(vs − vr)

D̃sr

(2.380)

By inserting (2.380) into (2.360), the species momentum equation yields:

∂(ρsvs)
∂t

+ ∇ · (ρsvsvs) = ρsgs + ∇ · Ts +
q

∑

r=1

Psr + rsv∗
s

= ρsgs −∇ps + ∇ · σs + p

q
∑

r=1

xrxs(vr − vs)
D̃sr

+ rsv∗
s

(2.381)

where the species stress tensor has been decomposed in the standard manner:

Ts = −pse + σs (2.382)

where σs is the species s viscous stress tensor.
The balance (2.381) can be simplified to obtain the Maxwell-Stefan equa-

tion, due to the following assumption:

∂(ρsvs)
∂t

+ ∇ · (ρsvsvs) − ρsgs −∇ · σs − rsv∗
s � p

q
∑

r=1

xrxs(vr − vs)
D̃sr

−∇ps

(2.383)
It has been shown that this inequality is valid for a wide variety of conditions
[101]. That is, (2.381) can be reduced to:

p

q
∑

r=1

xrxs(vr − vs)
D̃sr

≈ ∇ps = p∇xs + xs∇p (2.384)

If we assume that the last term on the RHS is small,

q
∑

r=1

xrxs(vr − vs)
D̃sr

−∇xs � xs

p
∇p, (2.385)

the Maxwell-Stefan equation (2.298) is reproduced for the particular cases in
which the driving force can be approximated by the mole fraction gradient,
the gravity force is the only body force acting on the system and the thermal
diffusion is neglectable. Therefore, in one instructive view, it is stated that the
50 This model was first obtained by Maxwell [65] for binary systems. Present [77]

(sect 8-3) outlines a more accurate treatment by the moment transfer method
which is not restricted to the billiard-ball molecular representation.
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Maxwell-Stefan equations represent a particular simplification of the species
momentum equation.

The corresponding combined mass flux form of the Maxwell-Stefan relation
can be expressed like:

ds = −
q

∑

r=1

xsxr(vs − vr)
D̃sr

= −
q

∑

r=1

xsxr

(

ns

ωs
− nr

ωr

)

ρD̃sr

(2.386)

The combined flux variable in the Maxwell-Stefan equation given above is
then eliminated using the definition (2.300), thus:

ds = −
q

∑

r=1

xsxr

(

js+ρωsvm

ωs
− jr+ρωrvm

ωr

)

ρD̃sr

= −
q

∑

r=1

xsxr

(

js
ωs

− jr
ωr

)

ρD̃sr

(2.387)

Moreover, for computational purposes, it is convenient to convert the mole
fractions into mass fractions:

ds = −
q

∑

r=1

xsxr
js
ωs

− xsxr
jr
ωr

ρD̃sr

= −
q

∑

r=1

(

ωsMw

Mws

) (

ωrMw

Mwr

)

js
ωs

−
(

ωsMw

Mws

)(

ωrMw

Mwr

)

jr
ωr

ρD̃sr

= − M2
w

ρMws

q
∑

r=1

ωrjs − ωsjr
Mwr

D̃sr

(2.388)

However, only q − 1 of the diffusion fluxes are independent, hence:

jq = −
q−1
∑

r=1

jr (2.389)

Eliminating the diffusive flux jq from (2.388), by use of (2.389), yields:

ds
ρMws

M2
w

= −
q−1
∑

r=1

ωrjs − ωsjr
Mwr

D̃sr

−
(

ωqjs − ωsjq
Mwq

D̃sq

)

= −
q−1
∑

r=1

ωrjs − ωsjr
Mwr

D̃sr

−

⎛

⎜

⎜

⎜

⎝

ωqjs − ωs

(

−
q−1
∑

r=1
jr

)

Mwq
D̃sq

⎞

⎟

⎟

⎟

⎠

= −
q−1
∑

r=1

(

− ωsjr
Mwr

D̃sr

+
ωsjr

Mwq
D̃sq

)

−
q−1
∑

r=1

(

ωrjs
Mwr

D̃sr

)

−
(

ωqjs
Mwq

D̃sq

)

= −
q−1
∑

r=1

(

− ωsjr
Mwr

D̃sr

+
ωsjr

Mwq
D̃sq

)

−
q

∑

r=1

(

ωrjs
Mwr

D̃sr

)
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= −
q−1
∑

r=1
r 
=s

(

− ωsjr
Mwr

D̃sr

+
ωsjr

Mwq
D̃sq

)

−
(

− ωsjs
Mws

D̃ss

+
ωsjs

Mwq
D̃sq

)

−
q

∑

r=1
r 
=s

(

ωrjs
Mwr

D̃sr

)

−
(

ωsjs
Mws

D̃ss

)

= −
q−1
∑

r=1
r 
=s

(

− ωs

Mwr
D̃sr

+
ωs

Mwq
D̃sq

)

jr −

⎛

⎜

⎜

⎝

ωs

Mwq
D̃sq

+
q

∑

k=1
k 
=s

(

ωk

Mwk
D̃sk

)

⎞

⎟

⎟

⎠

js

(2.390)

A more compact notation is achieved introducing two coefficient matrices:

ds = − M2
w

ρMws

⎛

⎜

⎜

⎝

q−1
∑

r=1
r 
=s

B′
srjr + B′

ssjs

⎞

⎟

⎟

⎠

(2.391)

where the coefficient matrices Bsr and Bss are defined by:

B′
sr = −ωs

(

1
Mwr

D̃sr

− 1
Mwq

D̃sq

)

(2.392)

and

B′
ss =

ωs

Mwq
D̃sq

+
q

∑

k=1
k 
=s

ωk

Mwk
D̃sk

(2.393)

The diffusion flux can then be written in a vector form:

(j) = −ρ(Mw)
M2

w

[B′]−1(d) (2.394)

For the particular cases in which the expression for the driving force reduces
to the mole fraction gradient, we can derive an explicit expression for js as-
suming that all the other fluxes jr are known. Besides, when the mass based
formulation is used, it is convenient to rewrite the driving force in terms of
the corresponding mass fraction gradient:

ds ≈ ∇xs = ∇
(

ωsMw

Mws

)

=
1

Mws

∇(ωsMw) =
1

Mws

(ωs∇Mw + Mw∇ωs)

(2.395)
By inserting (2.395) into (2.388), gives:

1
Mws

(ωs∇Mw + Mw∇ωs) = − M2
w

ρMws

q
∑

r=1

ωrjs − ωsjr
Mwr

D̃sr

(2.396)
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If we multiply the expression by Mws
/Mw, we can re-arrange the relation like:

ωs∇ ln(Mw) + ∇ωs =
Mw

ρ

q
∑

r=1

ωsjr − ωrjs
Mwr

D̃sr

(2.397)

The RHS of the relation can also be manipulated slightly, as the terms for
r = s cancel out. The result is given by:

ωs∇ ln(Mw) + ∇ωs =
Mw

ρ

⎛

⎜

⎜

⎝

q
∑

r=1
r 
=s

ωsjr
Mwr

D̃sr

− js
q

∑

r=1
r 
=s

ωr

Mwr
D̃sr

⎞

⎟

⎟

⎠

(2.398)

An explicit relation for the diffusive flux of species s, js, can be obtained with
minor manipulation:

js = D′
s

⎛

⎜

⎜

⎝

−ρωs∇ln(Mw) − ρ∇ωs + Mwωs

q
∑

r=1
r 
=s

jr
Mwr

D̃sr

⎞

⎟

⎟

⎠

(2.399)

where the effective mass based diffusion coefficient is defined by:

D′
s =

⎛

⎜

⎜

⎝

Mw

q
∑

r=1
r 
=s

ωr

Mwr
D̃sr

⎞

⎟

⎟

⎠

−1

(2.400)

The relation (2.399) can be used to solve the set of Maxwell-Stefan equations
iteratively.

Kleijn [46] used this Maxwell-Stefan formulation simulating chemical va-
por deposition reactors. One advantage of this explicit formula is that the
multicomponent flux is relatively easy to implement as user defined functions
in commercial flow codes. However, the conventional matrix form probably
enables the design of more efficient solution strategies.

An alternative to the complete Maxwell-Stefan model is the Wilke approx-
imate formulation [103]. In this model the diffusion of species s in a multicom-
ponent mixture is written in the form of Fick’s law with an effective diffusion
coefficient D′

sm instead of the conventional binary molecular diffusion coeffi-
cient. Following the ideas of Wilke [103] we postulate that an equation for the
combined mass flux of species s in a multicomponent mixture can be written
as:

ns = ωs

q
∑

r=1

nr − ρD′
sm∇ωs (2.401)

where D′
sm represents the effective diffusion coefficient of component s with

respect to the mass based composition of the multicomponent gas mixture.
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From the second last line on the RHS of (2.298) a particular form of the
Maxwell-Stefan equation is given:

∇xs =
q

∑

r=1
r �=s

xsxr(nr

ωr
− ns

ωs
)

ρD̃sr

(2.402)

For dilute systems all gases except the species s molecules are being stagnant,
hence all the fluxes denoted by nr, for r 
= s, are zero. Hence, the Wilke
relation (2.401) reduces to:

ns = − ρD′
sm

1 − ωs
∇ωs, (2.403)

and the Maxwell-Stefan equation (2.402) reduces to:

∇xs ≈ −
q

∑

r=1
r �=s

xsxr
ns

ωs

ρD̃sr

(2.404)

Noting that the driving force can be expressed in terms of mass fractions
instead of mole fractions in according to (2.395), and by transforming the
mole fractions on the RHS into mass fractions, the relation above can be
written as:

ωs∇Mw + Mw∇ωs ≈ −M2
wns

ρ

q
∑

r=1
r �=s

ωr

Mwr
D̃sr

(2.405)

With minor manipulation the previous relation can be written as:

∇ωs ≈ −Mwns

ρ

q
∑

r=1
r �=s

ωr

Mwr
D̃sr

− ωs
∇Mw

Mw
(2.406)

For dilute mixtures consisting of species having about the same molecular
weight the last term on the RHS of (2.406) might be neglected:

∇ωs ≈ −Mwns

ρ

q
∑

r=1
r �=s

ωr

Mwr
D̃sr

(2.407)

By solving (2.403) for ∇ωs and equating the result to the same gradient as
derived from the simplified Maxwell-Stefan equations (2.407), we obtain an
expression for the effective mass based diffusivity:

1
D′

sm

≈ Mw

1 − ωs

q
∑

r=1
r 
=s

ωr

Mwr
D̃sr

(2.408)
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This effective diffusivity expression is consistent with the multicomponent
diffusive flux written on the Fick’s law form:

js = −ρD′
sm∇ωs, (2.409)

which might be applied when the given restrictions are fulfilled.
In reactive flow analysis the Fick’s law for binary systems (2.285) is fre-

quently used as an extremely simple attempt to approximate the multicom-
ponent molecular mass fluxes. This method is based on the hypothesis that
the pseudo-binary mass flux approximations are fairly accurate for solute gas
species in the particular cases when one of the species in the gas is in excess
and acts as a solvent. However, this approach is generally not recommend-
able for chemical reactor analysis because reactive mixtures are normally not
sufficiently dilute. Nevertheless, many industrial reactor systems can be char-
acterized as convection dominated reactive flows thus the Fickian diffusion
model predictions might still look acceptable at first, but this interpretation
is usually false because in reality the diffusive fluxes are then neglectable
compared to the convective fluxes.

To describe the combined bulk and Knudsen diffusion fluxes the dusty gas
model can be used. It is postulated that on a mass basis the dusty gas model
can be written in analogy to (2.330) in the following way:

−
q

∑

r=1

n′
sx′

rx′
s

ω′
s

− n′
rx′

sx′
r

ω′
r

ρ′D̃′
sr

−
n′

sx′
sx′

q+1
ω′

s

ρ′D̃′
s,q+1

=
c′s∇(lnT )

c′
+

∇c′s
c′

(2.410)

when Mwq+1 → ∞, ω′
s → 0 in accordance with (2.338).

To close the mass form of the dusty gas model, using a similar transfor-
mation procedure as employed for the mole based formulation, three novel
definitions are required:

n′
s = ns (2.411)
j′s = js (2.412)
ρ′s = ρs (2.413)

We multiply the first term on the LHS by c′2/c′2 and the second term on the
LHS by c′/c′:

−
q

∑

r=1

ns

ω′
s
(x′

rc
′)(x′

sc
′) − nr

ω′
r
(x′

sc
′)(x′

rc
′)

(c′)2ρ′D̃′
sr

−
ns

ωs
(x′

sc
′)x′

q+1

c′ρ′D̃′
s,q+1

=
c′s∇(lnT )

c′
+

∇c′s
c′

(2.414)
Thereby, all the primed terms of the pseudo-mixture can then be transformed
into the actual un-primed variables:

−
q

∑

r=1

ns

ρs
crcs − nr

ρr
cscr

cDe
sr

−
ns

ρs
cs

De
sK

= cs∇(lnT ) + ∇cs (2.415)
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Thereafter, the terms containing the actual unprimed mixture variables can
be re-written by use of (2.300) and the ideal gas law:

q
∑

r=1

xrxs

ωs
js − xsxr

ωr
jr

De
sr

+
xs

ωs
js + vmcsMw

De
sK

= −ρ∇xs (2.416)

This form of the mass based dusty gas model equation, which corresponds
with the mole based formulation (2.342), is restricted to constant pressure
systems.

To enable effective computations it is convenient to rewrite the mole frac-
tions into mass fractions, hence the dusty gas model takes the form:

M2
w

Mws

q
∑

r=1
r �=s

ωrjs − ωsjr
Mwr

De
sr

+
Mwjs + vmρsMw

Mws
De

sK

= − ρ

Mws

(ωs∇Mw + Mw∇ωs)

(2.417)
From this expression an explicit expression for js can be obtained:

js = De
s

⎛

⎜

⎝
M2

w

q
∑

r=1
r �=s

ωsjr
Mwr

De
sr

− vmρsMw

De
sK

− ρ(ωs∇Mw + Mw∇ωs)

⎞

⎟

⎠
(2.418)

where

De
s =

⎛

⎜

⎝
M2

w

q
∑

r=1
r �=s

ωr

Mwr
De

sr

+
Mw

De
sK

⎞

⎟

⎠

−1

(2.419)

In the particular cases in which the convective term can be neglected, js �
ρvmωs, the dusty gas model (2.417) reduces to:

M2
w

q
∑

r=1
r �=s

ωrjs − ωsjr
Mwr

De
sr

+
Mwjs
De

sK

= −ρ(ωs∇Mw + Mw∇ωs) (2.420)

The model can be written in a matrix form:

js

⎛

⎜

⎝
M2

w

q
∑

k=1
k �=s

ωk

Mwk
De

sk

+
Mw

De
sK

⎞

⎟

⎠
−M2

w

q
∑

r=1
r �=s

ωsjr
Mwr

De
sr

= −ρ(ωs∇Mw + Mw∇ωs)

(2.421)
A more compact notation is obtained introducing two coefficient matrices:

jsBss +
q

∑

r=1
r �=s

jrBsr = −ρ(ωs∇Mw + Mw∇ωs) (2.422)

The coefficient matrices are defined by:
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Bss = M2
w

q
∑

k=1
r �=s

ωk

Mwk
De

sk

+
Mw

De
sK

(2.423)

and
Bsr = −M2

w

ωs

Mwr
De

sr

(2.424)

Using vector notation the dusty gas model for the mass fluxes yields:

(j) = −ρ[B′′]−1

(

(ω)∇Mw + Mw∇(ω)
)

(2.425)

From (2.341) a less restricted driving force can be derived avoiding the
constant pressure assumption. The extended diving force can be expressed
by:

ds ≈ c
∇ps

p
≈ ∇(pxs)

RT
=

1
Mws

RT
(p(ωs∇Mw + Mw∇ωs) + Mwωs∇p)

(2.426)
In this case the dusty gas diffusive mass flux can be written as:

(j) = −ρ[B′′]−1 1
RT

(

p(ω)∇Mw + Mw∇(ω) + Mw(ω)∇p

)

(2.427)

The design of a complete set of governing equations for the description of
reactive flows requires that the combined fluxes are treated in a convenient
way. In principle, several combined flux definitions are available. However,
since the mass fluxes with respect to the mass average velocity are preferred
when the equation of motion is included in the problem formulation, we apply
the species mass balance equations to a q-component gas system with q − 1
independent mass fractions ωs and an equal number of independent diffusion
fluxes js. However, any of the formulations derived for the multicomponent
mass diffusion flux can be substituted into the species mass balance (1.39),
hence a closure selection optimization is required considering the specified
restrictions for each constitutive model and the computational efforts needed
to solve the resulting set of model equations for the particular problem in
question.

Let (ω) and (j) denote, respectively, the column arrays of independent
mass fractions ω1, ω2, ω3, ..., ωq−1 and independent diffusion fluxes j1, j2, j3, ...,
jq−1. For multicomponent mixtures with no homogeneous chemical reactions
the governing species mass balance can be written on the vector form:

∂(ρ(ω))
∂t

+ ∇ · (ρvm(ω)) = −∇ · (j) (2.428)

For multicomponent systems the diffusive flux term may be written in ac-
cordance with the Maxwell-Stefan equations (2.394) with the driving force
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expressed in terms of mass fractions (2.395). With this rigorous diffusion flux
closure, the species mass balance becomes:

ρ
D(ω)
Dt

= ∇ ·
(

ρ[B′]−1

(

(ω)∇Mw + Mw∇(ω)
))

(2.429)

where [B′] is a squared matrix of order q − 1.
The mass diffusion flux may alternatively be calculated in accordance with

the approximate Wilke equation (2.409). In this case the species mass balance
reduces to:

ρ
D(ω)
Dt

= ∇ ·
(

ρ[diag(D′
m)]∇(ω)

)

(2.430)

where [diag(D′
m)] is a diagonal squared matrix of order q − 1 and the vector

(D′
m) denotes a column array with dimension (q − 1).
To described the combined bulk and Knudsen diffusion fluxes in porous

media the dusty gas model (2.427) can be used. The corresponding transport
equation is given by:

ερ
D(ω)
Dt

= ∇·
(

ρ[B′′]−1 1
RT

(

p(ω)∇Mw +Mw∇(ω)+Mw(ω)∇p

))

(2.431)

where the matrix [B′′] has dimensions (q − 1) × (q − 1). It is noted that
numerous approximations have been made deriving this equation, for this
reason any application in reactor simulations should be carefully validated.

In order to develop a more rigorous expression for the driving forces in
mass transfer, use is normally made of physical laws and postulates taken from
irreversible thermodynamics. For multicomponent systems it is advantageous
to relate the diffusion fluxes to the activity rather than number - or mass frac-
tions, since the activity formulation is valid for ideal as well as non-ideal sys-
tems. Notwithstanding, the binary diffusivities, Dsr, and the Maxwell-Stefan
diffusivities, D̃sr, are almost identical for ideal gas mixtures solely. For non-
ideal gas mixtures and liquids the multi-component diffusivities are empirical
parameters only. However, the generalized driving force formulation is claimed
to be more useful in describing the inter-diffusion in dense gases and liquids
(e.g., Curtiss and Bird [18, 19]; Taylor and Krishna [96]).

To avoid vagueness the notation used in the forthcoming mathematical
manipulations of the thermodynamic variables are specified. The extensive
thermodynamic functions (e.g., internal energy, Gibbs free energy, Helmholtz
energy, enthalpy, entropy, and volume) can be expressed in two ways, either
in terms of mass or mole. Using the Gibbs free energy as an example, i.e.,
it is postulated that this thermodynamic property is a function of pressure,
temperature and composition, hence we can write:

Ĝ = Ĝ(T, P,M1,M2,M3, ...,Mq) (2.432)

in terms of mass, and
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�
G =

�
G(T, P, n1, n2, n3, ..., nq) (2.433)

in terms of mole.
In irreversible thermodynamics it is more convenient to use intensive or

specific variables instead. Again we have two possible ways of defining the
specific functions, either using molar specific variables which are given per
mole or specific variables which are given per unit mass. Hence,

G =
Ĝ

M
= G(T, P, ω1, ω2, ω3, ..., ωq−1) (2.434)

and

G =

�
G

n
= G(T, P, x1, x2, x3, ..., xq−1) (2.435)

In thermodynamics partial variables are also used intensively. Accordingly,
two sets of partial variables can be defined. The partial mass variable yields:

μs = Ǧs = (
∂Ĝ

∂Ms
)T,p,Mk �=s

(2.436)

This quantity is related to the corresponding intensive variables in the
following way [89] (sec. 8.4):

(
∂Ĝ

∂Ms
)T,p,Mk �=s

− (
∂Ĝ

∂Mq
)T,p,Mk �=q

= (
∂G

∂ωs
)T,p,ωk �=s,q

(2.437)

The corresponding partial molar variable is written as:

Ḡs = (
∂

�
G

∂ns
)T,p,nk �=s

(2.438)

which is related to the corresponding intensive variables:

(
∂

�
G

∂ns
)T,p,nk �=s

− (
∂

�
G

∂nq
)T,p,nk �=q

= (
∂G

∂xs
)T,p,xk �=s,q

(2.439)

The partial mass and the partial molar variables are simply related by:

Ḡs = Mws
μs (2.440)

Finally, we relate the intensive variables to the partial variables in the follow-
ing manner:

Ĝ(T, P, ω1, ω2, ω3, ..., ωq−1) =
q

∑

s=1

(
∂Ĝ

∂Ms
)T,p,Mk �=s

ωs (2.441)
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and

G(T, P, x1, x2, x3, ..., xq−1) =
q

∑

s=1

(
∂

�
G

∂ns
)T,p,nk �=s

xs (2.442)

The Gibbs-Duhem equation is derived from the Euler and Gibbs equations
(e.g., Prausnitz et al. [76], app. D; Slattery [89], p. 443). The two forms of the
Gibbs-Duhem equation are:

MSdT − V dp +
q

∑

s=1

Mωsdμs = 0 (2.443)

using specific variables, and

n
�
SdT − V dp +

q
∑

s=1

nxsdḠs = 0 (2.444)

in terms of specific molar variables.
The starting point for the rigorous derivation of the diffusive fluxes in

terms of the activity is the entropy equation as given by (1.170), wherein the
entropy flux vector is defined by (1.171) and the rate of entropy production
per unit volume is written (1.172) as discussed in sec. 1.2.4.

To eliminate S from the Gibbs-Duhem relation formulated in terms of
specific quantities (2.443) we need the definitions of MH:

MH = ME + pV =
q

∑

s=1

MωsȞs (2.445)

and MG:

MG = MH − TMS =
q

∑

s=1

Mωsμs (2.446)

From these two relations we find:

MS =
MH −MG

T
=

ME + pV −
q
∑

s=1
Mωsμs

T
(2.447)

Hence, by substitution of the given expressions for MS (2.447) into the mass
form of the Gibbs-Duhem equation (2.443) yields:

(
MH −MG

T
)dT − V dp +

q
∑

s=1

Mωsdμs = 0 (2.448)

After division by the volume and the temperature, this equation can be put
in a form useful to manipulate the entropy production term. Thus, by use of
(2.445) and (2.447), we get:
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q
∑

s=1

ρsdμs −
1
T

q
∑

s=1

ρsμsdT − 1
T
dp +

1
T 2

q
∑

s=1

ρsȞsdT = 0 (2.449)

or
q

∑

s=1

ρsd
(μs

T

)

− 1
T
dp +

1
T 2

q
∑

s=1

ρsȞsdT = 0 (2.450)

Assuming that this relation is valid at the state of local equilibrium, the
differentiation can be exchanged by the ∇-operator (Curtiss and Bird [18]
[19]):

q
∑

s=1

ρs∇
(μc

T

)

− 1
T
∇p +

1
T 2

q
∑

s=1

ρsȟs∇T = 0 (2.451)

With the aim of expressing the rate of entropy production Φtotal due to
mass diffusion in terms of a convenient driving force, cRT

ρs
ds, we add some

extra terms in the third term on the RHS of (1.172) in such a way that
the entropy production term remains unaltered utilizing the property that
∑

s js = 0. The form of the terms that are added is guided by the terms in
the Gibbs-Duhem equation (2.451).

The modified entropy production rate (1.172) is commonly written as [18]
[19]:

Φtotal = − 1
T 2

(q · ∇T ) − 1
T

(σ : ∇v) − 1
T

q
∑

r=1

Arrr−

q
∑

s=1

(

js
ρs

·
[

ρs∇
(μs

T

)

− ρs

ρT
∇p +

ρsȟs

T 2
∇T− ρsȟs

T 2
∇T − ρsgs

T
+

ρs

ρT

q
∑

r=1

ρrgr

])

(2.452)

The entropy production term has been written as a sum of products of fluxes
and forces. However, there are only q− 1 independent mass fluxes js, and the
Gibbs-Duhem equation (2.451) tells us that there are only q − 1 independent
forces as well [5].

Furthermore, it is noted that the first three terms in the brackets on the
RHS of (2.452) are similar to the terms in the Gibbs-Duhem relation (2.451).
However, two of these three terms do not contribute to the sum. The pressure
term vanishes because

∑

s js = 0. The two enthalpy terms obviously cancel
because they are identical with opposite signs. Moreover, the last term in the
brackets on the RHS of (2.452), involving the sum of external forces, is zero
as

∑

s js = 0. One of the two remaining terms, i.e., the one containing the
enthalpy, we combine with the q term. Hence, the modified entropy flux vector
(1.171) and production terms (1.172) become:

Js =
1
T

(

q −
q

∑

r=1

jrȟr

)

+
q

∑

r=1

šrjr (2.453)
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and

TΦtotal = − 1
T

[

q −
q

∑

r=1

jrȟr

]

· ∇T −
q

∑

r=1

jr ·
cRT

ρr
dr − σ : ∇v −

q
∑

r=1

Arrr

(2.454)

where

cRT

ρs
ds = T∇(

μs

T
) +

ȟs

T
∇T − 1

ρ
∇p− gs +

1
ρ

q
∑

r=1

ρrgr (2.455)

Due to the linearity postulate in irreversible thermodynamics, each vector
flux must depend linearly on all the vector forces in the system. We may thus
rewrite the fluxes as [18] [19]:

q −
q

∑

r=1

jrȟr = − 1
T
α00∇T −

q
∑

r=1

(
cRTα0r

ρr
)dr (2.456)

js = −αs0∇T − ρs

q
∑

r=1

(
cRTαsr

ρr
dr) (2.457)

in which the αsr are the phenomenological coefficients being symmetric ac-
cording to the Onsager reciprocal relations. Henceforth, the thermal diffusion
coefficients are denoted by DT

s = αs0 = α0s and the Fickian diffusivities are
given by D̂sr = cRTαsr

ρsρr
as foreseen in the preceding paragraphs.

It is sometimes convenient to reformulate the generalized diffusional driv-
ing forces ds either in terms of mass or molar functions, using the partial
mass Gibbs free energy definition, Ǧs = ȟs − T šs, and the chain rule of par-
tial differentiation assuming that the chemical potential (i.e., μs = Ǧs) is a
function of temperature, pressure and concentration (Slattery [89], sect. 8.4).
ds can then be expressed in several useful forms as listed below. Expressing
the thermodynamic functions on a mass basis we may write:

ds =
ρs

cRT

(

Šs∇T + ∇μs −
1
ρ
∇p− gs +

1
ρ

q
∑

r=1

ρrgr

)

=
ρs

cRT

⎡

⎢

⎣

q
∑

r=1
r �=s

(
∂μs

∂ωr
)T,p,ωk �=s,q

∇ωr + (V̌s −
1
ρ
)∇p− gs +

1
ρ

q
∑

r=1

ρrgr

⎤

⎥

⎦

=
ρs

cRT

[

∇T,pμs + (V̌s −
1
ρ
)∇p− gs +

1
ρ

q
∑

r=1

ρrgr

]

(2.458)

These relations may also be reformulated on a mole basis:
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ds =
csMws

cRT

(

S̄s

Mws

∇T + ∇(
Ḡs

Mws

) − 1
ρ
∇p− gs +

1
ρ

q
∑

r=1

ρrgr

)

=
xs

RT

⎡

⎢

⎣

q
∑

r=1
r �=s

(
∂Ḡs

∂xr
)T,p,xk �=s,q

∇xr + V̄s∇p

⎤

⎥

⎦
+

xsMws

RT

(

−1
ρ
∇p− gs +

1
ρ

q
∑

r=1

ρrgr

)

=
xs

RT
∇T,pḠs +

xsMws

RT

[

(V̌s −
1
ρ
)∇p− gs +

1
ρ

q
∑

r=1

ρrgr

]

(2.459)

The transformations of the thermodynamic quantities like the partial mass
Gibbs free energy might need further explanation. By use of the chain rule
of partial differentiation the chemical potential on a mass basis is expanded
considering that the chemical potential, μs, is a function of T , p and ωs:

dμs =(
∂μs

∂T
)p,ωdT + (

∂μs

∂p
)T,ωdp +

q
∑

r=1
r �=s

(
∂μs

∂ωr
)T,p,ωk �=s,r

dωr (2.460)

where the partial derivatives with respect to T and p are eliminated by the
thermodynamic relations,

(
∂μs

∂T
)p,x = −Šs (2.461)

and
(
∂μs

∂p
)T,ω = V̌s (2.462)

where V̌s is the partial mass volume.
Alternatively, expressing the chemical potential on a molar basis we get:

dḠs =(
∂Ḡs

∂T
)p,xdT + (

∂Ḡs

∂p
)T,xdp +

q
∑

r=1
r �=s

(
∂Ḡs

∂xr
)T,p,xk �=s,r

dxr (2.463)

where the partial derivatives with respect to T and p are substituted by the
thermodynamic relations,

(
∂Ḡs

∂T
)p,x = −S̄s (2.464)

and

(
∂Ḡs

∂p
)T,x = V̄s (2.465)

where V̄s is the partial molar volume.
Assuming that these relations are valid for a system at local equilibrium,

the differential ’d’ may be substituted by the ∇-operator. Hence, from (2.460)
and (2.463) we may define the following short notations:
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∇T,pμs =
q

∑

r=1
r �=s

(
∂μs

∂ωr
)T,p,ωk �=s,r

dωr (2.466)

and

∇T,pḠs =
q

∑

r=1
r �=s

(
∂Ḡs

∂xr
)T,p,xk �=s,r

dxr (2.467)

in which we are keeping the temperature T and pressure p constant.
For the description of inter-diffusion in dense gases and liquids the ex-

pression for ds is further modified introducing a fugacity (i.e., a corrected
pressure) or an activity (i.e., a corrected mole fraction) function [76]. The
activity as(T, ω1, ω2, ω3, ωq−1) for species s is defined by:

μs = μ0
s + RT ln

f̂s

f0
s

= μ0
s + RT ln as (2.468)

where the auxiliary fugacity and activity functions are related by as = f̂s

f0
s
. μ0

s

denotes the chemical potential at some reference state. While either μ0
s or f0

s

is arbitrary, both may not be chosen independently, since when one is chosen
the other is fixed.

For liquids it is convenient to chose a particular reference state, a standard
state, that can be defined by the Gibbs free energy of 1 mole of pure s at the
mixture temperature, T , and a specified pressure, say 1 bar. Hence, in this
case μ0

s is a function of temperature only, μ0
s = μ0

s(T, p = 1bar, ω → 1).
Alternatively, μ0

s may be chosen as the chemical potential for pure species
s at the system temperature and pressure in which μ0

s = μ0
s(T, p). That is,

numerous reference states are possible, which one to be chosen matters little
provided that the model formulation is consistent. Henceforth, we are using
the given standard state as defined above.

For dense gases it often more convenient to use the fugacity, f̂s, defined
by51:

μs = μ∗
s + RT ln

f̂s

f∗
s

(2.469)

where μ∗
s denotes a reference state being an ideal gas state at the system

temperature and a standard pressure state (e.g., p∗ = 1 bar). However, in
either case using fugacities or activities the model derivation is very similar
so we proceed considering the activity formulation only.

Introducing the activity variable, the first term on the RHS of (2.455) is
rewritten by use of the chain rule of partial differentiation considering that the
chemical potential is a function of temperature, pressure and composition. The

51 Chemical potentials are not the easiest of quantities to deal with, especially con-
sidering the use of consistent reference states for all the species that may be
involved in multiphase multicomponent systems.
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mass and mole based relations are given by (2.460) and (2.467), respectively.
It follows that the first term on the RHS of the mass based expression (2.455)
can be written as:

ρsT∇(
μs

T
) =ρsT∇(

μ0
s

T
) + ρsRT∇ ln as = ρs∇μ0

s − ρsμ
0
s∇ lnT + ρsRT∇ ln as

= − ρsš
0
s∇T − ρsμ

0
s∇ lnT + ρsRT∇ ln as

= − ρs(T š0
s + μ0

s)∇ lnT + ρsRT∇ ln as

(2.470)

In the derivation given on the last page the relation:

∇μ0
s = (

dμ0
s

dT
)∇T = −š0s∇T (2.471)

has been used since μ0
s(T ) is a function of temperature only.

Substitution of (2.470) into (2.455) gives:

cRT

ρs
ds = RT∇ ln as + (ȟs − ȟ0

s)∇ lnT − 1
ρ
∇p− gs +

1
ρ

q
∑

r=1

ρrgr (2.472)

Then, by use of the chain rule of partial differentiation on μs we get (2.460),
and thereafter eliminating the partial derivatives therein by (2.461) and
(2.462), introducing the activity through (2.468), and eliminating the stan-
dard state potential by (2.471) as well as the Gibbs free energy definition:

μs = ȟs − T šs (2.473)

We may thus write:

RT∇ ln as = RT

q
∑

r=1
r �=s

(
∂ ln as

∂ωr
)T,p,ωk �=s,r

∇ωr + V̌s∇p− (ȟs − ȟ0
s)∇ lnT (2.474)

where V̌s denotes the partial mass volume which can be related to the volume
fraction of species s by: φs = ρsV̌s = csV̄s.

Inserting (2.474) into (2.472), gives:

cRT

ρs
ds = RT

q
∑

r=1
r �=s

(
∂ ln as

∂ωr
)T,p,ωk �=s,r

∇ωr + (V̌s −
1
ρ
)∇p− gs +

1
ρ

q
∑

r=1

ρrgr

(2.475)

A problem related to the use of thermodynamic quantities on a mass basis
instead of molar basis is that all the existing thermodynamic models natu-
rally are expressed in terms of molar quantities. For example, in the case of
concentrated non-ideal liquid mixtures the thermodynamic quantities can be
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calculated from the existing models of the excess Gibbs energy GE which are
normally expressed in terms of specific molar functions. There are numerous
models for GE available, e.g., NRTL, UNIQUAC and UNIFAC, all providing
thermodynamic properties on the molar basis [76].

We may easily rewrite the important quantities in (2.472) to molar basis
as the partial mass and partial molar variables of species s are simply related
by the molecular weight. We start by changing the thermodynamic quantities
within the two first terms on the RHS of (2.455) using molar concentrations
defined by ρs = Mws

cs.
Then, we redefine the activity for species s by:

Ḡs = Ḡ0
s + RT ln am

s (2.476)

where am
s = am

s (T, x1, x2, x3, ..., xq−1).
Again, by use of the chain rule of partial differentiation and consistent

formulas from thermodynamics, we get:

csRT∇ ln am
s = csRT

q
∑

r=1
r �=s

(
∂ ln am

s

∂xr
)T,p,xk �=s,r

∇xr + csV̄s∇p− (h̄s − h̄0
s)∇ lnT

(2.477)
Hence, on the molar form the driving force (2.472) becomes:

cRTds = csRT

q
∑

r=1
r �=s

(
∂ ln am

s

∂xr
)T,p,xk �=s,r

∇xr + (csV̄s − ωs)∇p

− ρsgs + ωs

q
∑

r=1

ρrgr

(2.478)

The ratio of activity and mole fraction defines the activity coefficient, am
s =

xsγs [76]. For an ideal solution the activity is equal to the mole fraction since
the activity coefficient equals unity.

That is, we may expand the first term on the RHS in a convenient man-
ner, excluding xq (i.e., for a solvent containing several solutes it might be
convenient to label the solvent as species q):

xs

q−1
∑

r=1

(
∂ ln am

s

∂xr
)T,p,x∇xr =xs

q−1
∑

r=1

(

∂ ln(γm
s xs)

∂xr

)

T,p,x

∇xr

=xs

q−1
∑

r=1

(

1
γm

s xs

∂γm
s xs

∂xr

)

T,p,x

∇xr

=xs

q−1
∑

r=1

(

∂ lnxs

∂xr
+

∂ ln γm
s

∂xr

)

T,p,x

∇xr

=
q−1
∑

r=1

(

δsr + xs
∂ ln γm

s

∂xr

)

T,p,x

∇xr

(2.479)
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For ideal solutions γm
s = 1, hence the q − 1 independent driving forces yield:

ds = ∇xs +
1

cRT
(csV̄s − ωs)∇p− ρs

cRT
gs +

ωs

cRT

q
∑

r=1

ρrgr (2.480)

Applications in Chemical Reactor Engineering
The applicability of the multicomponent mass diffusion models to chemical

reactor engineering is assessed in the following section. Emphasis is placed
on the first principles in the derivation of the governing flux equations, the
physical interpretations of the terms in the resulting models, the consistency
with Fick’s first law for binary systems, the relationships between the molar
and mass based fluxes, and the consistent use of these multicomponent models
describing non-ideal gas and liquid systems.

The rigorous Fickian multicomponent mass diffusion flux formulation is
derived from kinetic theory of dilute gases adopting the Enskog solution of
the Boltzmann equation (e.g., [17] [18] [19] [89] [5]). This mass flux is defined
by the relation given in the last line of (2.281) :

js = −DT
s ∇ lnT − ρs

q
∑

r=1

D̂srdr s = 1, 2, 3, ..., q

where the driving force can be expressed in any of the given forms, e.g., (2.458)
and (2.459), either on molar or mass basis.

For binary systems the Fickian mass flux vector reduces to:

j1 = −DT
1 ∇ lnT − ρ1(D̂11d1 + D̂12d2)

= −DT
1 ∇ lnT + ρD̂12d1 = −DT

1 ∇ lnT + ρ

{

−D̃12
ω1ω2

x1x2

}

d1

= −DT
1 ∇ lnT − c2

ρ
Mw1Mw2D̃12d1

(2.481)

where we have used the additional requirements that j1 + j2 = 0, d1 +d2 = 0,
ω1D̂11 + ω2D̂21 = 0, and D̂12 = D̂21 in accordance with (2.272), (2.284),
(2.289) and (2.288), respectively. For dilute gases the multicomponent Fickian
diffusivities are also related to the binary Maxwell-Stefan diffusivities as shown
by Curtiss and Bird [18] [19], i.e., D̂11 = −ω2ω2

x1x2
D̃12 and D̂12 = −ω1ω2

x1x2
D̃12. It

is further noticed that for gases at low density the Maxwell-Stefan diffusivities
are approximately equal to the Fick first law binary diffusivities, i.e. D̃12 ≈
D12. In addition, for binary systems the mass fractions are related to the
corresponding mole fractions by:

ω1 =
Mw1

Mw

x1 and ω2 =
Mw2

Mw

x2. (2.482)

For flowing systems it may seem natural to express the driving force in
terms of mass fractions using (2.458), thus:
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d1 =
ρ1

cRT

[

(
∂μ1

∂ω2
)T,p∇ω2 + (V̌ − 1

ρ
)∇p− ω2(g1 − g2)

]

=
ρ

c
(
∂ ln a1

∂ lnω1
)T,p∇ω1 +

ρ1

cRT

[

(V̌ − 1
ρ
)∇p− ω2(g1 − g2)

] (2.483)

where we have introduced an activity on a mass basis. However, this activity
is an unused variable and there exists no model for it yet. In addition, a
principal disadvantage of working in terms of a1 is that for ideal solutions
( ∂ ln a1

∂ ln ω1
)T,p 
= 1 in general.

Instead, the driving force is usually rewritten on a molar basis using
(2.458), (2.459) and (2.476). Hence, we obtain:

d1 =
ρ1

cRT

[

(
∂μ1

∂ω2
)T,p∇ω2 + (V̌ − 1

ρ
)∇p− ω2(g1 − g2)

]

=(
∂ ln am

1

∂ lnx1
)T,p∇x1 +

Mr1x1

RT

[

(V̌ − 1
ρ
)∇p− ω2(g1 − g2)

] (2.484)

The principal advantage of working in terms of am
1 is of course that for ideal

solutions (∂ ln am
1

∂ ln x1
)T,p = 1.

It may be informative to express the overall mass flux as the sum of four
terms52 [39] [3] [89] [5]:

j1 = jo1 + jp1 + jg1 + jT1 (2.485)

The ordinary diffusion flux, which is normally significant in reactor analysis,
is expressed as:

jo1 = −c2

ρ
Mw1Mw2D̃12(

∂ ln am
1

∂ lnx1
)T,p∇x1 (2.486)

For ideal solutions this relation naturally reduces too Fick’s first law:

jo1,id = −c2

ρ
Mw1Mw2D̃12∇x1 (2.487)

For non-ideal mixtures, the Fick first law binary diffusivity, D12, can thus be
expressed in terms of the Maxwell-Stefan diffusivity, D̃12, by:

D12 = D̃12(
∂ ln am

1

∂ lnx1
)T,p (2.488)

The latter relationship may not be entirely obvious at present but clarified
shortly as it is further discussed in connection with (2.498).

However, strictly speaking, the fundamental kinetic theory concept is valid
for dilute gases solely because the mass flux diffusivities are known for ideal
gas mixtures only, D̃12 ≈ D12.
52 See also sect 1.2.2 concerning the importance of the various contributions to the

overall mass diffusion flux in chemical reactor analysis.
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The pressure diffusion is given by:

jp1 =
Mw1x1

RT
(V̌ − 1

ρ
)∇p (2.489)

and is significant in systems where there are very large pressure gradients [62].
However, the operating pressure gradients in chemical reactors are usually not
large enough so this term is not significant in reactor models.

The forced diffusion is expressed as:

jg1 = −Mw1x1ω2

RT
(g1 − g2) (2.490)

which may be of importance describing aqueous electrolytes [62]. If gravity is
the only external force, as in most chemical reactors, then g1 = g2 = g and
j(g)
1 vanishes.

The thermal diffusion term is written as:

jT1 = −DT
1 ∇ lnT (2.491)

This term is usually not important in reactor modeling, since sufficiently large
temperature gradients are not common in chemical process plants.

The multicomponent generalization of Fick’s first law of binary diffusion
is the second mass flux formulation on the Fickian form considered in this
book. The generalized Fick’s first law is defined by53 [72] [22] [62] [20] [96]:

js = −ρ
q−1
∑

r=1

D̀sr∇ωr s = 1, 2, 3, ..., q − 1 (2.492)

and restricted to multicomponent systems, i.e., q > 2. The diffusivities, D̀sr,
defined by this relation may take negative values and are not, in general,
symmetric (D̀sr 
= D̀rs). The vector form of this mass flux is given by (2.493):

(j) = −ρ[diag(D̀)]∇(ω) (2.493)

A multicomponent Fickian diffusion flux on this form was first suggested in ir-
reversible thermodynamics and has no origin in kinetic theory of dilute gases.
Hence, basically, these multicomponent flux equations represent a purely em-
pirical generalization of Fick’s first law and define a set of empirical multi-
component diffusion coefficients.

That is, as described by de Groot and Mazur [22] (chap. XI), Taylor and
Krishna [96] and Cussler [20], it can be shown using the linearity postulate
and the Onsager relations from irreversible thermodynamics that not all of

53 In the chemical engineering literature the generalized or multicomponent form of
Fick’s first law of binary diffusion is normally written on a molar basis.
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these diffusion coefficients are independent but are subject to certain con-
straints. However, these theoretical constraints are not very useful in prac-
tice, since they require detailed thermodynamic information that is rarely
available. Anyhow, the thermodynamic theory does not provide any values
for (quantification of) the multicomponent diffusion coefficients, D̀sr, so in
practice all of them have to be determined from experiments. Hence, these
coefficients cannot be interpreted simply, and there is therefore no fundamen-
tal theory predicting any formal relationships between the multicomponent -
and the Fick first law binary diffusivities even for dilute gases in this particular
diffusion model formulation.

The generalized multicomponent Maxwell-Stefan equation (2.298) repre-
sents the third multicomponent mass diffusion formulation considered in this
book. The rigorous form of Maxwell-Stefan equation can be expressed as:

q
∑

k=1
k �=s

xsxk

D̃sk

(
jk
ρk

− js
ρs

) = ds −
q

∑

k=1
k �=s

xsxk

D̃sk

(
DT

k

ρk
− DT

s

ρs
)∇ lnT, s = 1, 2, 3, ..., q

where the Maxwell-Stefan diffusivities D̃sk are less concentration dependent
than D̂sk and D̀sk for dilute gases.

For binary systems the generalized Maxwell-Stefan relation reduces to:

x1x2

D̃12

(

j2
ρ2

− j1
ρ1

)

= d1 −
x1x2

D̃12

(

DT
2

ρ2
− DT

1

ρ1

)

∇ lnT (2.494)

With the additional constraints that j1 + j2 = 0 and DT
1 + DT

2 = 0, and by
expressing the mass fraction in terms of mole fractions (2.482), we can rewrite
(2.494) as:

j1 = −DT
1 ∇ lnT − c2

ρ
Mw1Mw2D̃12d1 (2.495)

where

d1 =
x1

RT

[

(
∂Ḡ1

∂x2
)T,p∇x2 + V̄1∇p

]

+
x1Mw1

RT

(

−1
ρ
∇p− g1 +

1
ρ
(ρ1g1 + ρ2g2)

)

=(
∂ ln am

1

∂ lnx1
)T,p∇x1 +

x1Mw1

RT

(

V̌1 −
1
ρ

)

∇p− x1Mw1ω2

RT
(g1 − g2)

(2.496)

If we drop the pressure-, thermal-, and forced-diffusion terms, the binary
diffusivities can be expressed as:

j1 = − c2

ρ
Mw1Mw2D̃12d1 =

c2

ρ
Mw1Mw2

{

D̃12(
∂ ln am

1

∂ lnx1
)T,P

}

∇x1 (2.497)
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The driving force can also be expressed in terms of the mass fraction gradient
using (2.482):

j1 = − c2

ρ
Mw1Mw2D̃12(

∂ ln am
1

∂ lnx1
)T,P

{

(
ρ

c
)2

1
Mr1Mr2

∇ω1

}

= − ρ

{

D̃12(
∂ ln am

1

∂ lnx1
)T,P

}

∇ω1 = −ρD12∇ω1

(2.498)

This result confirms that (2.488) is valid, and for dilute gases, i.e., ideal gas
systems, D12 and D̃12 are about equal. Similarly, it is easily shown that the
Fick’s first law diffusivity is the same whether this law is formulated on a
mass or molar basis.

For non-ideal systems, on the other hand, one may use either D12 or D̃12

and the corresponding equations above (i.e., using the first or second term in
the second line on the RHS of (2.498)). In one interpretation the Fick’s first
law diffusivity, D12, incorporates several aspects, the significance of an inverse
drag (D̃12), and the thermodynamic non-ideality. In this view the physical
interpretation of the Fickian diffusivity is less transparent than the Maxwell-
Stefan diffusivity. Hence, provided that the Maxwell-Stefan diffusivities are
still predicable for non-ideal systems, a passable procedure is to calculate
the non-ideality corrections from a suitable thermodynamic model. This type
of simulations were performed extensively by Taylor and Krishna [96]. In a
later paper, Krishna and Wesselingh [49] stated that in this procedure the
Maxwell-Stefan diffusivities are calculated indirectly from the measured Fick
diffusivities and thermodynamic data (i.e., fitted thermodynamic models),
showing a ’weak’ composition dependence. In this engineering approach it is
not clear whether the total composition dependency is artificially accounted
for by the thermodynamic part of the model solely, or if both parts of the
model are actually validated independently.

From a more scientific point of view, the Maxwell-Stefan diffusivities for
multicomponent dense gases and liquids deviate from the Fick first law binary
coefficients derived from kinetic theory and are thus merely empirical parame-
ters [18]. Hence, for non-ideal systems one needs to fit either D12 or D̃12 to the
experimental data in accordance with the corresponding equations above (i.e.,
using the first or second term on the RHS of (2.498)). It is then, generally,
more convenient to measure D12 directly since this procedure requires no ad-
ditional activity data. Because the Maxwell-Stefan diffusivities are the binary
values found from binary experiments or calculated from the Enskog theory
for the case of dilute gases only, the various forms of the multicomponent dif-
fusion flux formulations are all of limited utility in describing multicomponent
diffusion for non-ideal systems as they all contain a large number of empirical
parameters that have to be determined. The non-ideal corrections in terms
of the activity are apparently not very useful even for binary systems as the
Maxwell-Stefan diffusivities are not the binary ones except for dilute gases
where the solution becomes ideal.
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A qualified question is then whether or not the multicomponent models are
really worthwhile in reactor simulations, considering the accuracy reflected by
the flow, kinetics and equilibrium model parts involved. For the present mul-
tiphase flow simulations, the accuracy reflected by the flow part of the model
is still limited so an extended binary approach like the Wilke model suffice
in many practical cases. This is most likely the case for most single phase
simulations as well. However, for diffusion dominated problems multicompo-
nent diffusion of concentrated ideal gases, i.e., for the cases where we cannot
confidently designate one of the species as a solvent, the accuracy of the diffu-
sive fluxes may be significantly improved using the Maxwell-Stefan approach
compared to the approximate binary Fickian fluxes. The Wilke model might
still be an option and is frequently used for catalyst pellet analysis.

To describe the mass diffusion processes within the pores in catalyst pellets
we usually distinguish three fundamentally different types of mass diffusion
mechanisms [64, 49, 48]:

• Bulk diffusion that are significant for large pore sizes and high system pres-
sures in which gas molecule-molecule collisions dominate over gas molecule-
wall collisions.

• Knudsen diffusion becomes predominant when the mean-free path of
the molecular species is much larger than the pore diameter and hence
molecule-wall collisions become important.

• Surface diffusion of adsorbed molecular species along the pore wall surface.
This mechanism of transport becomes dominant for micro-pores and for
strongly adsorbed species.

The bulk diffusion processes within the pores of catalyst particles are usu-
ally described by the Wilke model formulation. The extended Wilke equation
for diffusion in porous media reads:

J∗
s = −cDe

s∇xs (2.499)

where De
s = De

sm = (ε/τ)Dsm for bulk diffusion. The Dsm is calculated from
the Wilke equation (2.319).

If Knudsen diffusion is important, the combined effective diffusivity may
be estimated as [23]:

1
De

s

=
1

De
sK

+
1

De
sm

(2.500)

On the other hand, the more rigorous Maxwell-Stefan equations and the dusty
gas model are seldom used in industrial reaction engineering applications. Nev-
ertheless, the dusty gas model [64] represents a modern attempt to provide a
more realistic description of the combined bulk and Knudsen diffusion mecha-
nisms based on the multicomponent Maxwell-Stefan model formulation. Sim-
ilar extensions of the Maxwell-Stefan model have also been suggested for the
surface diffusion of adsorbed molecular pseudo-species, as well as the com-
bined bulk, Knudsen and surface diffusion apparently with limited success
[48] [49].
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However, if convective transport of heat and species mass in porous cat-
alyst pellets have to be taken into account simulating catalytic reactor pro-
cesses, either the Maxwell-Stefan mass flux equations (2.394) or dusty gas
model for the mass fluxes (2.427) have to be used with a variable pressure
driving force expressed in terms of mass fractions (2.426). The reason for this
demand is that any viscous flow in the catalyst pores is driven by a pressure
gradient induced by the potential non-uniform spatial species composition and
temperature evolution created by the chemical reactions. The pressure gradi-
ent in porous media is usually related to the consistent viscous gas velocity
through a correlation inspired by the Darcy’s law [21] (see e.g., [5] [49] [89],
p 197):

vm = −B0

μ
∇p (2.501)

Generally, the permeability B0 (m2) has to be determined experimentally.
However, for simple structures the permeability coefficient B0 can be deter-
mined analytically. Considering a cylindrical pore, for example, the permeabil-
ity can be calculated from the Poiseuille flow relationship
B0 = d2

0/32 [49].
Solving this flow model for the velocity the pressure is calculated from the

ideal gas law. The temperature therein is obtained from the heat balance and
the mixture density is estimated from the sum of the species densities. It is
noted that if an inconsistent diffusive flux closure like the Wilke equation is
adopted (i.e., the sum of the diffusive mass fluxes is not necessarily equal to
zero) instead, the sum of the species mass balances does not exactly coincide
with the mixture continuity equation.

A few investigations on the practical applications of the dusty gas model
are reported in the literature. In a representative study of the interacting phe-
nomena of diffusion and chemical reaction in porous catalyst pellets for the
steam reforming and methanation reactions under industrial conditions [23],
the dusty gas model was used as basis for the evaluation of the limitations in
the applicability of the simplified model (2.499). The models used in the study
were derived considering a set of simplifying assumptions: (1) The reaction
mixture was treated as an ideal gas. (2) The system was operated at steady
state. (3) The external heat and mass transfer resistances were neglected. (4)
The viscous flow was negligible and the pellet was under isobaric conditions.
(5) Both Knudsen and ordinary diffusion fluxes were considered. (6) The pel-
let was assumed to be isothermal. (7) The pellet slab is symmetric about
the center. Under industrial operating conditions it was shown that at low
steam to methane ratios the diffusion fluxes calculated using the simplified
Fickian formulation (2.499) were in excellent agreement with the dusty gas
model results. At higher steam to methane ratios the simplified model pre-
dictions did deviate a little yet significantly from the dusty gas model results,
indicating that it might be worthwhile to solve the full dusty gas model in
this case. However, the use of the more complex dusty gas model in reaction
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engineering is generally not considered an essential issue in the investigations
reported in the literature. That is, in view of the uncertainties reflected by
the other terms (e.g., reaction kinetics, interfacial fluxes and convection) in a
typical reactor model these deviations are normally negligible. Therefore, it is
generally anticipated that the simplified model (2.499) is sufficient for most
practical reactor simulations.

Polyatomic Reactive Systems

For polyatomic reactive systems the mixture continuity, momentum and en-
ergy equations seemingly remain unchanged compared to the corresponding
conservation equations for multicomponent non-reacting mono-atomic gases,
as ms, msCs, and etotals = 1

2msC
2
s + eint

s are summation invariants. Note
that etotals denotes the total energy which equals the sum of the transla-
tional and internal energy forms. However, for polyatomic reactive systems
the species mass balance deviates from the corresponding one for non-reactive
systems in that it includes a reaction rate term resulting from collisions of
molecules of type s with all types of molecules [39]. This means that when
deriving this particular transport equation from basic principles, the collision
term on the RHS of the Boltzmann equation (2.275) must be modified to
account for the effects of chemical reactions. Correspondingly, transforming
the mixture energy balance in terms of temperature the resulting tempera-
ture equation is slightly different from that of mono-atomic gases in that it
contains a heat of reaction term. In addition, as expected, the Enskog per-
turbation solution of the mixture Boltzmann equation (2.269) is a little more
involved than the corresponding one for simple systems containing one type of
species only. Fortunately, the expressions for the fluxes in terms of the distri-
bution function are basically unaffected by the reaction taking place in the gas
mixture.

2.10 Mean Free Path Concept

In this section the determination of the transport properties , i.e., using the
empirical method suggested by Maxwell [65], on the basis of Clausius’ mean
free path concept is outlined.

That is, instead of determining the transport properties from the rather
theoretical Enskog solution of the Boltzmann equation, for practical applica-
tions we may often resort to the much simpler but still fairly accurate mean
free path approach (e.g., [12], section 5.1; [87], chap. 20; [34], section 9.6).
Actually, the form of the relations resulting from the mean free path concept
are about the same as those obtained from the much more complex theories,
and even the values of the prefactors are considered sufficiently accurate for
many reactor modeling applications.
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Transport Properties

The overall aim in this analysis is to determine a rough estimate of the transfer
fluxes in dilute one-component gases using the elementary mean free path
concept in kinetic theory. In this approach it is assumed that the only means
for transport of information in the fluid is via molecular collisions. Due to the
physical similarity of the flux phenomena of mass, momentum and energy, a
common mathematical formalism is outlined (e.g., [104] app E; [61] sect 3.4.2;
[77] sect 3-4; [39] sect 2).

Considering a dilute gas containing n molecules per unit volume inducing
a macroscopic transfer flux of property ψ. The symbol ψ denotes any property
of a single molecule that can be changed by collisions, and 〈ψ〉M represents
the average value of ψ for the gas. The molecules are assumed to move in a
geometrical configuration in which ∂〈ψ〉M

∂x = ∂〈ψ〉M

∂y = 0, so that the molecular
motion transport the property 〈ψ〉M in the z-direction only. For illustrative
purposes we consider a gas confined between two infinite parallel planes de-
noted by z = z0 and z = z2. Imagine a net flux of the properties in the positive
z-direction through a plane at an arbitrary location z = z1 between the two
planes located at z = z0 and z = z2. Let Fψ denote the net molecular flux of
the property ψ in the z-direction.

At each collision it is assumed to be an equalizing transfer of properties
between the two molecules, so in consequence Fz1 is determined by the relative
location of the last collision experienced by a molecule before it crosses the
plane at z = z1. This particular distance is thus expected to be related to the
mean free path, l. It is supposed throughout that the mean free path is small
compared to the dimensions of the vessel containing the gas.

It may be expected that on the average molecules crossing the plane z = z1
from the z1 − l side will transfer the property ψz1−l and those crossing from
the z1 + l side will transfer the property ψz1+l. Hence, Fz1 = Γ 〈ψ〉M |z1−l −
Γ 〈ψ〉M |z1+l, where Γz1−l denotes the number of molecules per unit area per
second crossing the plane z = z1 from the z1 − l side and Γz1+l denotes the
number of molecules per unit area per second crossing the plane z = z1 from
the z1 + l side.

This means that Γz1−l = Γz1+l = Γz1 , where Γz1 = 1
6 〈|C|〉Mn. The factor

1
6 accounts for the fact that only one-sixth of the molecules on plane Γz1−l

move in the (+z)-direction54. Hence:

Fz1 =
1
6
〈|C|〉Mn(〈ψ〉M |z1−l − 〈ψ〉M |z1+l) (2.502)

54 Consider isotropic molecular motion in a Cartesian coordinate system. If there are
n molecules per unit volume, about one-third of them have velocities along the
x-direction. Half of these, i.e., 1

6
N per unit volume, move in the (+x)-direction

and the other half of them move in the (−x)-direction. Accordingly, one-sixth of
the N molecules move in the (+y)-direction, another one-sixth of the them move
in the (−y)-direction, another one-sixth of them in the (+z)-direction, and finally
the last one-sixth of them will move in the (−z)-direction.
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The properties 〈ψ〉M |z1−l and 〈ψ〉M |z1+l in (2.502) may then be expanded in
a Taylor series about z = z1, since the mean free path is small compared to
the distance over which 〈ψ〉M changes appreciably. Neglecting terms of order
higher than one the result is55:

Fψ,z1 =
1
6
〈|C|〉Mn(〈ψ〉M |z−l − 〈ψ〉M |z+l) =

2l〈|C|〉M
6

n

×
(

〈ψ〉M |z−l − 〈ψ〉M |z+l

2l

)

≈ − l〈|C|〉M
3

n
d〈ψ〉M
dz

(2.503)

assuming that the gradient of the property 〈ψ〉M is constant over distances of
the order l.

To determine the species mass diffusion a concentration gradient is induced
by assuming that the species number concentration is different at each of
the planes z0, z1, z2. To estimate the viscosity we create a gradient in the
z-momentum by assuming that the molecules at the plane z0 are moving in
the negative z-direction, at the plane z1 the molecules are stationary, and
those at plane z2 are moving in the positive z-direction. To induce a thermal
conduction flux the three planes are taken to be at different temperatures.

Then, the specific fluxes are achieved letting the symbol Fψ successively
represent the y-component of the flux of momentum through a plane with
normal in the z-direction, the flux of energy through the same plane, and the
mass flux of species c through the same plane, respectively. The symbol 〈ψ〉
represents correspondingly the y-direction momentum per molecule of mass
m, mvy, the energy per particle (me), and the mass per molecule of species
c, mc.

Comparing the fluid dynamic closures with the corresponding kinetic the-
ory results we see that:

Fmvy
= −1

3
〈|C|〉M lnm

dvy

dz
= Pyz = −μdvy

dz
(2.504)

Fme = −1
3
〈|C|〉M lnm

de

dT
|V

dT

dz
= qz = −λdT

dz
(2.505)

Fmωc
= −1

3
〈|C|〉M lnm

dωc

dz
= jz = −ρDdωc

dz
(2.506)

The molecular fluxes can be extended to systems containing gradients in the
other two space dimensions as well, denoting a complete three dimensional
flux formulation.

Note that in determining the viscosity parameter we consider a spatially
uniform fluid in a state of shear such that v = vy(z)ey. In the heat conduction
case we imagine that a gas is heated at constant volume so that all the energy
supplied is increasing the energy of the molecules, thus n[d(me)/dT ] = ρCv,
where Cv = 3k

2m is the specific heat per unit mass at constant volume. The
mass diffusion flux is determined considering a binary mixture in which both
55 The subscript z1 is omitted since the choice of the position z = z1 was arbitrary.
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the total pressure and temperature are uniform. The form of the species mass
flux used above deviates from the standard literature on elementary kinetic
theory in that the mass fraction is used in instead of the species number
density. A brief discussion of the two formulations is given by [87] (p 495).

The standard self-diffusion flux can be derived in a similar way. The flux
of particles in the positive z-direction that crosses the z1 plane is equal to the
number of molecules that reach the same plane from z1 − l, minus those that
reach it from z1 − l. The result is [61]:

Γz1 =Γ |z1−l − Γ |z1+l =
1
6
〈|C|〉M (〈n〉M |z−l − 〈n〉M |z+l)

=
2l〈|C|〉M

6

(

〈n〉M |z−l − 〈n〉M |z+l

2l

)

≈− l〈|C|〉M
3

d〈n〉M
dz

= −Dd〈n〉M
dz

(2.507)

Comparing the two last terms, we may conclude: D = 1
3 l〈|C|〉M .

The molecular flux models are still not closed as the mean free path l and
the molecular speed quantities 〈|C|〉M are not determined yet. A frequently
used closure is examined in the next paragraph.

Mean Free Path

In this section approximate mathematical models determining the molecular
mean free path are derived.

It is anticipated that for dilute gases the mean free path is a significant
parameter that governs the mechanism of transfer, defined as the mean dis-
tance traveled by a molecule between two successive collisions [87]. The basic
physical interpretation of the transfer phenomenon is thus that a molecule
traveling a free path of a certain distance is in effect transferring momentum,
energy and mass over that distance.

To derive a simple expression for the mean free path we preliminarily
examine the molecular motion from the point of view of an elementary kinetic
theory of dilute gases adopting the billiard ball molecular model. Consider a
pure gas composed of a collection of rigid, non-attracting spherical molecules
of diameter d1, mass m1, and number density n1 colliding at random. A
molecule is singled out as it travels in straight paths from one collision to the
next, anticipating that the molecular speed and direction of motion change
with each collision. It is then further imagined that at a given instant all
the molecules but the one in question are frozen in position, whereas this
particular molecule moves with an average speed 〈|c1|〉M . At the instant of a
collision, the center to center distance of the two molecules is d1 (see Fig. 2.7).
The total collision cross section or target area, σAT

, of the moving molecule
is then given by σAT

= πd2
1. In time t the moving molecule sweeps out a

cylindrical volume of length 〈|c1|〉M t and cross section σAT
(see Fig 2.10).
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Any molecule whose center is in this cylinder will be struck by the moving
molecule. The number of collisions in time t is given by σAT

n1〈|c1|〉M t, where
n is the number of molecules present in a unit volume, assumed to be uniformly
distributed in space. A crude estimate of the mean free path, l1, is then given
by the ratio of the distance traveled in time t over the number of collisions in
this time [100]:

l1 =
〈|c1|〉M t

σAT
n1〈|c1|〉M t

=
1

σAT
n1

(2.508)

The corresponding collision frequency is defined as the average number of
collisions per unit time experienced by any one molecule of type 1:

Z1−1 = σAT
n1〈|c1|〉M =

〈|c1|〉M
l1

(2.509)

The mean time between successive collisions of molecules of type 1, called the
collision time τ1, is approximated by:

τ1 =
1

Z1−1
=

l1
〈|c1|〉M

(2.510)

Several extensions of the crude model sketched above have been derived
over the years, for example considering the situation that all the molecules in
the cylindrical volume move with the same average speed. A third model pro-
viding results being in better agreement with the Enskog relations is obtained
assuming that all the molecules possess a Maxwellian speed distribution.

The Maxwellian representation of the collision frequency of one molecule
of type m1 with similar molecules (2.173) is commonly rewritten using the
ideal gas law:

Z1−1 =
2Z11

n1
= 4n1d

2
1

√

πkT

m1
= 4

p1

kT
d2
1

√

πkT

m1
= 4p1d

2
1

√

π

m1kT
(2.511)

The mean free path, l1, traveled by a molecule of type m1 between successive
collisions in a given time t is found by dividing the total distance traveled
by all molecules of type m1 in this time by the total number of the collisions
between them:

l1 =
n1〈|c1|〉M t

n1t
τ1

= 〈|c1|〉Mτ1 =
〈|c1|〉M
Z1−1

(2.512)

From this formula it is seen that to calculate l1 we need to determine the
mean molecular speed 〈|c1|〉M . For real systems the average molecular speed
is difficult to determine. Assuming that the system is sufficiently close to
equilibrium the velocity distribution may be taken to be Maxwellian. For
molecules in the absolute Maxwellian state the peculiar velocity equals the
microscopic molecular velocity, i.e., C1 = c1, because the macroscopic velocity
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is zero v1 = 0, hence it follows that the speed of the microscopic molecular
velocity equals the thermal speed: 〈C1〉M = 〈|C1|〉M = 〈c1〉M = 〈|c1|〉M .

The mean value of a generalized function of the molecular velocity for a
gas in the absolute Maxwellian state is defined by:

n〈ψ〉M =

∞
∫

−∞

ψfdc = n(
m

2πkT
)3/2

∞
∫

−∞

ψ exp(−mC2

2kT
)dc (2.513)

The present form of the integral is not really defined in a consistent manner
as the integrand contains the peculiar speed C, which is defined by C =
|C|, whereas the integration is over the velocity space dc. Transforming from
Cartesian coordinates (Cx, Cy, Cz) to spherical polar coordinates (C, θ, φ), we
get with spherical symmetry: dc = dC = C2 sin θdθdφdC (e.g., [105], p. 34;
[12], p. 70; [34], p. 242).

The mean value of the thermal speed C (= |C|) can then be derived as
follows56:

〈C〉M =(
m

2πkT
)3/2

∞
∫

−∞

C exp(−mC2

2kT
)dC

=(
m

2πkT
)3/2

∞
∫

0

C3 exp(−mC2

2kT
)

2π
∫

0

π
∫

0

sin θdθdφdC

=4π(
m

2πkT
)3/2

∞
∫

0

C3 exp(−mC2

2kT
)dC

=4π(
m

2πkT
)3/2 × 1

2
(
m

2kT
)−2 = (

8kT
πm

)1/2

(2.514)

Thus, for a molecule of type 1 the mean value of the peculiar speed 〈C1〉M
for a gas in the Maxwellian state yields:

〈C1〉M = 〈c1〉M =
√

8kT
πm1

= 2
√

2kT
πm1

(2.515)

56 In these manipulations we have used a mathematical formula solving odd integrals
on the form:

∞
∫

0

xn exp(−ax2)dx

The solution for n = 3 is (e.g., [61] (pp. 526-527), [12], sect. 1.4):

∞
∫

0

exp(−ax2)dx =
1

2
a−2
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The mean free path can then be determined from (2.512) and (2.511):

l1 =〈|c1|〉Mτ1 =
〈|c1|〉M
Z1−1

=

(

2
√

2kT
πm1

)

⎛

⎝

1

4n1d2
1

√

πkT
m1

⎞

⎠

=
1√

2n1d2
1π

=
kT√

2p1d2
1π

(2.516)

Transport Coefficients

In this section we derive theoretical expressions for the transport coefficients
(i.e., viscosity, thermal conductivity, and diffusivity) for dilute gases.

Using the elementary mean free path theory (2.508), the viscosity, ther-
mal conductivity57 and self-diffusion coefficients in (2.504) and (2.506) are
estimated to be (e.g., [77]; [28], sect. 6.7 and. chap. 7; [100], chap. 5; [74],
chap. 3):

μ1 =
1
2
ρ1l1〈C1〉M =

1
πd2

1

√

m1kT

π
(2.517)

λ1 =
1
2
ρ1l1〈C1〉MCv,1 = μ1Cv,1 (2.518)

D11 =
1
2
l1〈C1〉M = μ1/ρ1 (2.519)

In a one-component gas it is conceptually still possible to label a certain
subset of particles with 1 and the complement, 2. The resulting motion of the
conceptually labeled subgroup of particles is called self-diffusion. Diffusion in
a two-component system is called mutual diffusion.

The following set of parameter values may be more common because they
are obtained adopting a refined proportionality coefficient in the flux expres-
sions and the more accurate mean free path relation (2.516). The parameter
values are58 [77] (sect 3-5) [74] (chap 3) [5] (sects 1-4, 9-3 and 17-3):

μ1 =
1
3
ρ1l1〈C1〉M =

2
3πd2

1

√

m1kT

π
(2.520)

λ1 =
1
3
ρ1l1〈C1〉MCv1 = μ1Cv−1 =

1
πd2

1

√

k3T

πm1
(2.521)

57 In this section we denote the thermal conductivity by the symbol λ to distinguish
this parameter from the Boltzmann constant.

58 Maxwell [65] was able to obtain these fairly accurate expressions for the transport
coefficients which describe their primary dependence of upon temperature, pres-
sure, mass and size of the molecules in the gas based on rather crude arguments.
Historically, the mean free path theory given by Maxwell [65] predates the more
accurate theory based on the Boltzmann equation by about half a century.
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The self diffusivity which is valid for two species of identical mass and size
yields:

D11 =
1
3
l1〈C1〉M = μ1/ρ1 =

2
3
(

kT

π3m1
)1/2 1

nd2
1

=
2
3
(

k3

π3m1
)1/2(

T 3/2

p1d2
1

) (2.522)

For species of differing mass and size, the mean free paths, velocities, and
collision frequencies will be different. The derivation of the binary diffusivity
is more complicated but may be expressed as [28] [74] [5] (sect 17-3):

D12 =
2
3

(

k

π

)3/2 (

1
2m1

+
1

2m2

)1/2
(

T 3/2

p(d1+d2
2 )2

)

(2.523)

A similar result was obtained by Present [77] (p 149) for the rigid-sphere
molecular model:

D12 =
1
3
l1〈C1〉M =

3
8
(
πkT

2μ
)1/2 1

nπd2
12

(2.524)

The pressure dependence expressed by these relations is fairly accurate for
pressures up to about 10 − 20 atmospheres. At higher pressures, multi-body
collisions become important and the pressure dependence is greater. Experi-
mental evidence also show that a temperature dependence of T 3/2 is too weak
leading to the search for more accurate relations as derived by use of the
Enskog approach.

Alternative estimates of the transport coefficients can be obtained from
the rigorous Chapman-Enskog expansion method of mono-atomic gases at low
densities (e.g., [24] [25] [12] [61] (p 202) [28]). The transport coefficients de-
duced from the Chapman-Enskog kinetic theory with the rigid elastic spheres
interaction model yield (e.g., [39] sect 8.2; [61], p 202):

μ1 =
5

16d2
1

√

m1kT

π
, (2.525)

λ1 =
5
2
μ1Cv1 =

75
64d2

1

√

k3T

m1π
(2.526)

D11 =
3

8n1d2
1

√

kT

m1π
(2.527)

The binary diffusivity can also be determined in a similar manner considering
a binary mixture of dilute gases:

D12 =
3

16n1d2
12

√

2kT
πμ

(2.528)

The Chapman-Enskog kinetic theory actually gives general expressions for the
transport properties in terms of the intermolecular potential energy which is
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related to the intermolecular force as expressed by (2.48) and (2.49). The
molecular interaction is most frequently described by the empirical Lennard-
Jones 12 − 6 potential.

The transport coefficients like viscosity, thermal conductivity and self-
diffusivity for a pure mono-atomic gas and the diffusivity for binary mixtures
obtained from the rigorous Chapman-Enskog kinetic theory with the Lennard-
Jones interaction model yield (e.g., [39], sect 8.2; [5], sects 1-4, 9-3 and 17-3):

μ1 =
5
16

√
πm1kT

πσ2
1Ωμ,1

(2.529)

λ1 =
25
32

√
πm1kT

πσ2
1Ωλ,1

Cv1 (2.530)

D11 = 3.2027 × 10−5

√

T

Mw1

1
cσ2

1ΩD,11
(2.531)

D12 = 0.0018583

√

T 3

(

1
Mw1

+
1

Mw2

)

1
pσ2

12ΩD,12
(2.532)

in which σ1 is a characteristic diameter of the molecules of type 1, often
called the collision diameter, and may be defined differently for each molec-
ular model. In the Lennard-Jones potential σ1 has the significance of being
the distance from the center of mass of the two molecules to the point at
which the potential changes from repulsive to attractive [28]. To calculate σ12

an analog of the rigid sphere model is generally adopted: σ12 = (σ1 + σ2)/2.
This approach has little theoretical justification and is not accurately verified
by experimental data. The collision integrals59 Ωμ,1, Ωλ,1, ΩD,11, and ΩD,12

account for the details of the paths that the molecules take during a binary
collision and are usually of order unity. In one view these integrals are in-
terpreted as describing the deviation from the rigid sphere behavior. The ε
quantity in the Lennard-Jones potential is a characteristic energy denoting the
maximum energy of attraction between a pair of molecules. For binary mix-
tures ε12 is usually approximated by a geometric average of the contributions
from the two species ε12 ≈ √

ε1ε2.
By use of these formulas accurate calculations of the transport coefficients

can thus be performed provided that the Lennard-Jones potential parameters
like ε1 and σ1 are known. Extensive lists of these parameters are given for
many substances by Hirschfelder et al [39] and Bird et al [5], among others.

59 Chapman and Cowling [12] have shown that in kinetic theory the transport coef-
ficients can be expressed in terms of the Sonine polynomial expansion coefficients
which are complicated combinations of the bracket integrals. In the given solu-
tions these integrals are written as linear combinations of a set of these collision
integrals. See also Hirschfelder et al [39], sect 7-4.
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Dilute gas hypothesis

The phrase dilute gas indicates that the physical volume n[34πd
3] occupied by

the gas particles (molecules) is small compared to the volume V available to
the gas. Mathematically this condition can be expressed as:

n

[

4
3
πd3

]

� V, (2.533)

or
n

[

4
3πd

3
]

V
� 1, (2.534)

where n denotes the number of particles and d is the radius of the particle.
A real gas can thus be considered dilute provided that the mean free path

l is much larger than the particle size, i.e., l � d.
Assuming that the molecules are rigid elastic spheres a typical value for

the mean free path for a gas, say oxygen, can be calculated from (2.516).
Consider a typical room temperature at 300 (K) and a pressure of 101325
(Pa). The collision diameter of molecular oxygen can be set to 3.57 × 10−10

(m) in accordance with the data given by [51], example 1.4. We can then
calculate the mean free path l for oxygen:

l =
RT√

2πd2Nap

=
8.314(JK−1mol−1) × 300(K)√

2π[3.57 × 10−10(m)]2 × 6.022 × 1023(mol−1) × 101325(Pa)
=7.22 × 10−8(m)

(2.535)

Since the molecular diameters for the different gases are of the same order,
the mean free path in any gas at the given temperature and pressure is of
the order 10−5(cm). In this case it follows that the mean free path is about
hundred times the diameter of the molecule, thus the gas is dilute. However,
it is noted that at higher gas pressure, say 10132500 (Pa), the mean free path
is reduced and comparable with the dimensions of a molecule. In this case
the assumption of molecular chaos may not be valid so the gas cannot be
considered dilute [12].

Continuum hypothesis

A dilute gas mixture is assumed to behave as a continuum when the mean free
path of the molecules is much smaller than the characteristic dimensions of the
problem geometry. A relevant dimensionless group of variables, the Knudsen
number Kn, is defined as [47, 30, 31]:

Kn =
l

L
, (2.536)
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where l is the mean free path of the molecules and L a characteristic dimension
of the apparatus region in which the relevant physical phenomena take place
(e.g., the thickness of boundary layers in which large gradients appear, the
diameter of catalyst pores, the reactor diameter, etc).

In general the continuum hypothesis is considered valid for Kn < 0.01.
By use of the typical numerical value for the mean free path given above

for a gas at temperature 300K and pressure 101325Pa, this condition indi-
cates that the continuum assumption is valid provided that the characteristic
dimension of the apparatus is L > 0.001cm. Nevertheless, it is noted that at
low gas pressures, say 10Pa, the mean free path is increased and might be
comparable with the characteristic dimensions of the apparatus. In particular,
for low pressures and small characteristic dimensions we might enter a flow
regime where the continuum assumption cannot be justified.

2.11 Extending the Kinetic Theory to Denser Gases

The preceding sections in this chapter deal with the kinetic theory of dilute
gases summarizing the statistical modeling concepts, deriving the governing
conservation equations and fairly accurate relations determining the transport
coefficients from first principles.

The starting point for the kinetic theory of dilute mono-atomic gases is the
Boltzmann equation determining the evolution of the distribution function in
time and space. The formulation of the collision term is restricted to gases
that are sufficiently dilute so that only binary collisions need to be taken
into account. It is also required that the molecular dimensions are small in
comparison with the mean distance between the molecules, hence the transfer
of molecular properties is solely regarded as a consequence of the free motion
of molecules between collisions.

Obviously, these restrictions are not met in dense gases, so the dilute gas
results are not acceptable for higher-density systems (e.g., Ferziger and Kaper
[28], p. 356). After recognizing these model restrictions, Enskog [26] made a
first attempt to extend the kinetic theory of dilute mono-atomic gases to
slightly higher densities.

Basically, Enskog’s kinetic theory extension consists in the introduction of
corrections that account for the fact that for dense gases the molecular diam-
eter is no longer small compared with the average intermolecular distance.

The fundamental postulate is that as a dilute gas is compressed two novel
effects become important because the molecules have finite volumes. First,
it is expected that during a molecular collision momentum and energy are
transferred over a distance equal to the separation of the molecules. In the
particular case of rigid spherical molecules this collisional transfer of momen-
tum and energy takes place instantaneously and results in a transfer over
the distance between their centers. Second, the collision frequency may be
altered. One possible mechanism is that the collision frequency is increased
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because the particle diameter is not negligible small compared with the aver-
age distance between the molecules. However, the collision frequency may also
decrease because the molecules are close enough to shield one another from
oncoming molecules. Nevertheless, the probability of multiple simultaneous
collisions is considered negligible.

Enskog’s Equation

For dilute mono-atomic gases we have shown that the evolution of the distri-
bution function is given by the Boltzmann equation as expressed by (2.185).
Hence, considering dense gases it might be natural to start out from this re-
sult. Enskog [26] derived a modified Boltzmann equation for the evolution of
the distribution function supposedly valid for denser gases. No changes was
made to the LHS of the equation, whereas an extended form of the collision
term was introduced due to the finite size of the molecules.

More precisely, Enskog considered a mono-atomic gas composed of rigid
spherical molecules of diameter d. The restriction to rigid spheres was made
because multi-body collisions need not be considered, as for this special molec-
ular model there are essentially no three-body and higher order collisions. The
major aim was to take into account the mechanisms of instantaneous momen-
tum and energy transfer over the distance separating the centers of the two
colliding molecules, d12 = d. Another important goal was to extend the colli-
sion frequency formula correcting for the finite size of the molecules.

Considering the impact of collisions for dilute mono-atomic gases we have
shown in the foregoing paragraphs that we need to know the numbers of pairs
of molecules both lying in the element dr which are going to collide in the time
interval dt and elementary knowledge from scattering theory. Hence, during
a time interval dt the expected number of collisions in the volume element dr
about r between molecules in the velocity ranges dc about c and dc1 about
c1, with the infinitesimal solid angle in the range dΩ′ about Ω′, is given by
the collision term on the RHS of (2.185).

For dense gases Enskog started out from the given result for dilute gases,
examined the basic collision term formulation and thereafter introduced cer-
tain extensions to the collision term. The pertinent modifications certainly
need further considerations and are thus briefly outlined next.

In the analysis of a binary collision between molecules with velocities c1

and c2 the direction of the line of centers at collision can be specified by the
unit vector k along the apse-line (i.e, in the particular case of rigid spherical
molecules, the apse-line corresponds to the line joining the centers of the two
molecules at the instant of contact), Fig. 2.7. This unit vector is precisely
characterized by the polar angles (ψ, φ).

Therefore, instead of describing the deflection60 with the angles (θ, φ),
it is more convenient to use the angles (ψ, φ) since in these variables the
60 The deflection angle θ is defined as the angle between the final and initial ve-

locities: θ = π − 2ψ. It appears that the phrase scattering is used for the case
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final velocity g′
21 is more simply related to the initial velocity g21 (i.e., by

symmetry the projections of g21 and g′
21 on k are equal and of opposite sign:

k · g21 = −k · g′
21, as discussed in sect. 2.4.2). In particular, in sect. 2.4.3

we found that when the collision term in (2.185) is expressed in terms of
the impact parameter (i.e., bdb dφ), c′ and c′1 should be given as functions of
c, c1, b and φ. Alternatively, when the collision term is rewritten in terms of
σA(θ, g)dΩ′ the velocities c′ and c′1 must be given as functions of c, c1 for given
Ω′, through the law of collision. We can then, for example, use (2.142), (2.143)
and (2.144) expressed in the particular reference frame chosen (i.e., laboratory
system). However, a third and more common approach is to use the unit vector
k to describe the scattering. That is, we express the scattering cross section
in terms of the variable k rather than θ. Therefore, when the scattering cross
section is expressed in terms of the unit vector k, (2.142), (2.143) and (2.144)
can be used directly to compute c′ and c′1 as these relations are independent
of the laboratory frame. The latter formulation plays a fundamental role in
the applications of kinetic theory to denser gases, hence it is worthwhile to
display its derivation in further details.

The scattering cross section is expressed in terms of the variable k, simply
by defining a function sA(ψ, g) by [85] [77]:

sA(ψ, g) sinψdψdφ = σA(θ, g) sin θdθdφ (2.537)

in such a way that the number of particles deflected into the corresponding
differential surface element of a sphere of unit radius per unit time (2.147)
becomes:

FσA(θ, g) sin θdθdφ = FsA(ψ, g) sinψdψdφ (2.538)

By trigonometric manipulations using (2.157), we obtain

sA(ψ, g) = σA(θ, g)
sin θdθdφ
sinψdψdφ

= 4σA(|π − 2ψ|; g) cosψ (2.539)

where we have required that sA is a positive factor by using a positive angle:
θ = |π − 2ψ|.

It appears that the variable k will be convenient shortly calculating the
collision term because it allows us to write down the number of scattered par-
ticles in a form independent of the particular system of coordinates used in
the previous calculations (i.e., the laboratory frame). Trigonometrical consid-
erations imply that:

cosψ = k · eg′ = k · g′
21

|g′
21|

(2.540)

or,

ψ = arccos(cosψ) = arccos(
k · g′

21

g
) (2.541)

of Maxwellian billiard ball particles, whereas the phrase deflection is used in the
more general case considering a center of force.
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and we introduce a novel quantity

dk = sinψdψdφ (2.542)

denoting a differential area of a sphere of unit radius. Hence, ψ and φ represent
the polar angles around k.

It follows that the number of particles scattered into the differential area
element per unit time, given by (2.538), can be rewritten using (2.542), (2.541)
and (2.540). The result is

FσA(θ, g) sin θdθdφ = FsA(ψ, g) sinψdψdφ = FsA(ψ, g)dk

= FsA(arccos(
k · g′

21

g
), g))dk

= FsA(arccos(k · eg′), |g′
21|)dk = FsA(k,g′

21)dk
(2.543)

which is independent of the laboratory reference frame, as it is expressed in
a system of coordinates moving with the center of mass.

For hard spheres (2.543) takes a particularly simple form, using (2.539),
(2.540) and (2.161), we get:

sA(k,g′
21) = sA(arccos(

k · g′
21

g
), g) = 4σA(ψ, g)k · eg′ = 4(

d2
12

4
)k · eg′

= d2
12k · eg′ (2.544)

Making an inversion of the trajectory with respect to the origin O and revers-
ing the velocities, the unit vector along the apse line changes sign, whereas
the deflection angle θ does not change in these transformations [85]. Hence,
in accordance with the Liouville law for elastic collisions, the cross sections
of the two processes are the same and consistently s(k′,g21) = s(k,g21) =
s(−k,g21).

Reformulating (2.543), using (2.540) and (2.544), we get:

|g21|FσA(θ, g)dΩ′ = |g21|FsA(k,g′
21)dk = Fd2

12k · g21dk (2.545)

or, simply
gσA(θ, g)dΩ′ = d2

12k · g21dk = d2
12gdk cosψ (2.546)

The frequency of collision in (2.168) can now be rewritten as:

f(r, c, t)f1(r1, c1, t)d2
12g · kdkdc1dcdr (2.547)

where it is assumed that the molecules having a velocity in the range c1, c1 +
dc1 may collide with the target molecule within the collision cylinder and form
a homogeneous incident beam with flux dF = gf1(r, c1, t)dc1. Moreover, we
have dropped the subscript in the relative velocity because from this point on
we are interested only in the velocity before (c,c1 and g) and after (c′,c′1 and
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g′) the collision and never in the intermediate velocities during the scattering
process.

Two modifications are made to this expression in order to describe the
frequency of collisions in a dense gas of rigid spheres. First, the frequency of
collisions is changed by a factor χ:

χf(r, c, t)f1(r1, c1, t)d2
12g · kdkdc1dcdr (2.548)

where χ is a free volume correction function that is unity for dilute gases,
and increases with increasing gas density towards infinity as the gas density
approaches the state of closest packing where no motion is possible. The cor-
rection function χ is related to the viral expansion of the equation of state
and fitted to experimental data [39].

Second, due to the finite size of the colliding molecules the centers of the
two molecules are not at the same point. If, at the instant of collision, the
center of the first molecule is at r, the center of the second one is at r− d12k,
so that f(r1, c1, t) is replaced by f(r− d12k, c1, t). The correction function is
determined at the point of contact between the two particles, hence:

χ(r − 1
2
d12k)f(r, c, t)f1(r1, c1, t)d2

12g · kdkdc1dcdr (2.549)

As for dilute gases, corresponding to any direct collision specified by the vari-
ables c, c1,k there is an analogous inverse collision in which c, c1 are the
velocities of the molecules after the collision, while −k is the direction of the
apse-line. In such a collision the center of the second molecule is at r + d12k,
while the point of contact is at r + 1

2d12k. Hence, the extended Boltzmann
equation describing the evolution of the the distribution function for a dense
gas of rigid spherical molecules is analogous to (2.185):

Dcf

Dct
=

∫ ∫

[χ(r1 +
1
2
d12k)f ′(r1, c1, t)f ′

1(r1 + d12k, c2, t)

− χ(r1 −
1
2
d12k)f(r1, c1, t)f1(r1 − d12k, c2, t)]d2

12(g · k)dkdc1

(2.550)

This extended Boltzmann equation is called the Enskog equation.
Applying the Enskog approximate solution method, consistent flux vectors

are derived for dense gases accounting for the finite size of the molecules.
Because of the inherent corrections there are two contributions to the dense
gas fluxes, one flux associated with the collisional transfer which is important
in dense gases only, and another flux due to the motion of molecules between
collisions as for dilute gases. The total flux of the property ψ is determined
by the sum of these two contributions:

ψ = ψCollisional + ψKinetic (2.551)

In particular, for mono-atomic dense gases both the pressure tensor, P, and
the heat flow vector q, contain two flux contributions [12] [28] [39].
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Although the Enskog theory is formally valid for rigid spheres only, fairly
accurate results have been obtained for real gases as well provided that the
effective collision diameter is appropriately adjusted.

Enskog’s dense gas theory for rigid spheres is also used as basis developing
granular flow models. The modifications suggested extending the dense gas
kinetic theory to particulate flows are discussed in chap 4.

2.12 Governing Equations for Polydispersed Multiphase
Systems

To describe polydispersed multiphase systems the Boltzmann equation can
be extended by including the dependency of the internal property coordinates
such as the particle size and shape in the definition of the distribution function.
In this way a statistical balance formulation can be obtained by means of a
distribution function on the form: p(ξ, r,vξ, c, t)dξdr dvξ dc, defined as the
probable number of particles with internal properties in the range dξ about ξ,
with a velocity range in property space dvξ about vξ, located in the spatial
range dr about the position r, with a velocity range dc about c, at time t.
The particular Boltzman type of equation is given by:

∂p

∂t
+ ∇r · (cp) + ∇c · (Fp) + ∇ξ · (vξp) + ∇vξ

· (aξp) = I (2.552)

where the first term on the LHS denotes the time variation of the distribution
function p. The second term on the LHS represents the change in the number
density distribution because of fluid particle convection into and out of the
range dr. The third term on the LHS represents the change in the number
density distribution because of acceleration of the fluid particle into and out
of the range dc in the standard manner. However, in this case the net force F
acting to accelerate or decelerate the fluid particle includes the body and drag
forces (per unit mass). The fourth term on the LHS represents the change in
the number density distribution because of transport processes in the property
space for example due to fluid particle growth into and out of the range dξ. The
fifth term on the LHS represents the change in the number density distribution
because of accelerations in the property space for example due to acceleration
of the fluid particle interface into and out of the range dvξ. The term on the
RHS represents the rate of change in the number density distribution due to
particle coalescence, breakage and collisions.

Following the same procedure as outlined in sects 2.5 and 2.6 deriving the
governing single phase conservation equations from the original Boltzmann
equation, the extended Boltzmann equation can be multiplied by a general-
ized property function whereupon the resulting equation is integrated over
the whole velocity space to give a generic transport equation for the con-
served multiphase quantities [86]. In particular, considering that the property
function is unity a transport equation for the number distribution function
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f(ξ, r, t) is obtained [53]. This transport equation is generally referred to as
the population balance equation.

Hulburt and Katz [41] applied this approach to derive a transport equation
for the number distribution function describing particulate systems consider-
ing growth, nucleation and agglomeration processes. Reyes Jr [86] and Lafi and
Reyes [50] derived an extended set of mass, momentum and energy equations
to describe polydispersed bubbly flows using a fluid particle continuity equa-
tion analogous to the Boltzmann’s transport equation. In a similar manner
Laurent et al [59] derived the governing conservation equations for polydis-
persed dense sprays of evaporating liquid droplets. Lathouwers and Bellan
[54, 55, 56, 57, 58] proposed a similar model for polydispersed gas-solid mul-
ticomponent reactive processes in fluidized beds.

The main challenge in formulating these equations is related to the defini-
tion of the collision operator. So far this approach has been restricted to the
formulation of the population balance equation. That is, in most cases a gen-
eral transport equation which is complemented with postulated source term
formulations for the particle behavior is used. Randolph [80] and Randolph
and Larson [81] used this approach deriving a microscopic population balance
equation for the purpose of describing the behavior of particulate systems.
Ramkrishna [79] provides further details on this approach considering also
fluid particle systems.

The population balance modeling framework is further discussed in chap 9.
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3

Multiphase Flow

In this chapter the pertinent multiphase modeling concepts established in
fluid mechanics are examined. The modeling framework constituting the ba-
sis for the next generation of chemical reactor models is presented. The av-
erage multi-fluid model represents a trade-off between accuracy and compu-
tational efforts. This concept is a direct multi-dimensional extension of the
conventional reactor models with the addition of the momentum equations.
The multi-fluid model is actually the only approach that can be used analyz-
ing chemical reactive systems on industrial scales considering both inherent
physics and feasible computational efforts. The remaining sections of the chap-
ter are devoted to the derivation of the two-fluid and multi-fluid models, and
to the description of the averaging procedures commonly used in multi-phase
flow analysis.

3.1 Introduction

It is primarily a knowledge of chemical kinetics and reactor design that distin-
guishes the chemical engineers from other engineers. This multi-disciplinary
profession emerged as a branch of engineering that is concerned with the
design, construction and operation of chemical process plants in which the
chemical reactor is a central unit. Both catalytic and non-catalytic chemical
processes are operated in these chemical reactor units, as described in basic
reaction engineering courses [78]. However, the major motivation for perform-
ing multi-phase flow analysis in chemical reaction engineering is highly linked
to the discovery of catalysts.

A catalyst is, as is well known by chemical engineers, a substance that
affects the rate of a reaction but emerges from the process unchanged. The
major application of catalysis are in petroleum refining and in chemical pro-
duction, and this is thus a very important field of research in an oil and gas
producing country like Norway. The development and use of catalysts has
been a major part of the constant search for new ways of increasing product
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yield and selectivity from chemical reactions. Catalysis is usually referred to
as the occurrence, study, and use of catalysts and catalytic processes. In this
context yield refers to the amount of a specific product formed in a given pro-
cess per mole of entering reactant, while selectivity is related to the number
of moles of desired product formed per mole of undesired product formed.
Both homogeneous and heterogeneous catalytic systems are used. Homoge-
neous catalysis concerns processes in which a catalyst is in solution with at
least one of the reactants. A heterogeneous catalytic process involves more
than one phase, usually the catalyst is a solid and the reactants and products
are in liquid or gaseous form.

The discovery of solid catalyst and their application to chemical processes
led to a breakthrough of the chemical industry [61]. Catalytic processing, in-
volving multiphase systems, is utilized in the production of most industrial
chemicals. The chemical or biochemical catalysts employed have a determin-
ing influence on the plant size, complexity, product distribution, by-products,
economy and emission to the environment. The success of catalytic processing
of multiphase systems has resulted from a synergetic approach to the problem
by industrial chemistry and chemical engineering researchers. Traditionally,
the focus of the industrial chemistry scientists has been on the catalyst, its
preparation, active form, activity, active centers, kinetics and poisons that
might damage it. Chemical engineers were mainly concerned with how to pro-
vide chemicals in sufficient amounts, enable mixing of the reactants on the
molecular scales bringing the species effectively in contact with the chosen
catalyst, and how to separate the products (and the catalyst particles) from
the effluent process mixture (suspension). The engineers also concerned them-
selves with design and scale-up issues, as to how to produce the selectivity
and rates reached in the laboratory on the industrial process scale.

Chemical reaction engineering (CRE) emerged gradually as a powerful
methodology that quantifies the interplay between transport phenomena and
kinetics on a variety of scales. A fundamental task for chemical reaction engi-
neers is the formulation of a reactor model for which the basis are the species
mass transport equations and the heat balance. The fluid velocity is normally
considered a model parameter, or approximated by idealized flow formulas.
These models have been used successfully determining various quantitative
measures of reactor performance such as production rate, conversion and se-
lectivity. The ability to establish such quantitative links between measures of
reactor performance and input and operating variables is essential in optimiz-
ing the operating conditions in manufacturing, for proper reactor selection in
design and scale-up, and in correct interpretation of data in research and pilot
plant work.

However, the conventional reactor model formulations are normally strictly
not precise on the microscopic scales (yet usually sufficient in engineering
practice) as the fundamental or ’rigorous’ version of the governing transport
equations were considered too complex to be conveniently solved for practi-
cal applications. There are generally two ways to obtain simplified models,
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i.e., either by direct simplification of the fundamental equations neglecting
insignificant terms that have no practical interest or by averaging integrating
the governing equations over suitable scales in time - and space. The averaging
procedure is more common in practice, as the direct simplifications are only
applicable for a few idealized flows.

The choice of averaging scales in space (e.g., whole reactor, reactor section
or differential volume) to which the averaging procedure is applied determines
the level of sophistication of the reactor model on macroscopic scales. As
it is very common in chemical reactors to have flow predominantly in one
direction, i.e., normally in the axial direction as in tubular reactors, a cross
sectional averaged model may be used when only the spacial gradients in the
principal flow direction have to be considered. The resulting equations are
conventionally referred to as the non-ideal axial dispersion model (ADM). In
the presence of packing or multiple fluid phases, a distinction is made between
the true local fluid velocity, sometimes called the interstitial velocity (m/s),
and the velocity considered over the whole cross section, as if there were
only one phase and no packing, called the superficial velocity (m3 fluid/m2

cross section s). If the convective transport is completely dominant over any
diffusive transport, the idealized Plug Flow Reactor (PFR) model is achieved.
Otherwise, when the dispersion terms are very large, we can average out all
space gradients in the species mass densities and the enthalpy quantity leading
to the ideal Continuous Stirred Tank Reactor (CSTR) model.

The conventional models are often sufficient determining proper descrip-
tions of the kinetics and the molecular transport processes, which then enables
us to properly quantify the species overall or effective generation rates. Hence,
the idealized reactor models are still preferred for the conventional chemical
reactor analysis. They are also frequently utilized in chemical process simu-
lations, optimization and control. However, it is obvious that all terms in a
reactor model should be described at the same level of accuracy. It is cer-
tainly not optimal to have a detailed description of one term in the model if
the others can only be very crudely described. Therefore, the improvement
in accuracy obtained by the more detailed description of the kinetics at the
molecular scale in turn required a more detailed description of the flow fields.
The search for more fundamental reactor models solving all the pertinent
balance equations simultaneously (e.g., the continuity equation, species mass
balances, heat balance and momentum equations) in a predictive manner is
gradually emerging defining a strategic goal in chemical reaction engineering.
Sufficient modeling progress achieving such predictive capabilities is not im-
minent. It appears that the fundamental multi-phase reactor models still have
limited inherent capabilities to fully replace the empirically based analysis in
use today.

Nevertheless, in the last two or three decades an increasing trend in ap-
plying fundamental modeling approaches to elucidate details of the reactor
flow performance has been seen in the literature and recognized as useful
by the industry. It is emphasized that almost only cold flow analysis of the



338 3 Multiphase Flow

reactor flow fields have been performed hitherto concluding that even the
flow patterns in industrial reactors are almost prohibitively complex, hence
the fundamental modeling is a challenging task. So, in chemical reactor en-
gineering the multi-fluid flow models are merely related to modern academic
research investigating details of cold flow patterns, physicochemical hydrody-
namics and to a very limited extent improving the basic understanding of the
complex interactions between flow phenomena, thermodynamics, molecular
and turbulent transport processes, and chemical reaction kinetics.

Chemical Reactor Flow Structure Characteristics

Detailed descriptions of the chemical reactor flow patterns are given in chaps 8,
10, 7 and 11. Meanwhile, a preliminary overview of the pertinent reactor flow
characteristics is given to determine which modeling concepts are available
describing the behavior of the relevant flows.

Typical multiphase flow regimes identified in general gas-liquid and gas-
solid flows in vertical and horizontal tubes are illustrated in Fig 3.1.

Fig. 3.1. Multiphase flow regimes. A: Slug flow. B: Bubbly flow. C: Droplet Flow.
D: Annular flow. E: Packed and porous fixed bed. F: Particulate flow. G: Stratified
free surface flow.

Examples of typical reactor flows are listed belows:

• Single phase fluid flows (single phase reactors, i.e., laminar and turbulent
flows).

• Flow through porous beds of solids (fixed bed reactors, i.e., continua of
gas; three phase fixed beds, i.e., continua of gas through a porous fixed
solid and trickling liquids on the solid surface).
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• Granular flows (fluidized bed reactors, i.e., discrete particles in a continu-
ous gas phase).

• Bubbly flows (two phase bubble columns, stirred tank reactors, waste wa-
ter treatment, i.e., bubbles in liquid).

• Slurries (i.e., discrete particles in liquid).
• Complex multiphase flows (e.g., slurry bubble columns and stirred tank

reactors i.e., bubbly flows in slurries; three phase fluidized beds, i.e., liq-
uid droplets and particles in continuous gas) where many phases interact
simultaneously.

In addition to the complex flow structure encountered in these reactor
systems, typically one has to deal with component and energy transport within
the individual phases and momentum, heat and mass transfer both between
the various phases and to the external reactor walls. The interactions with
chemical reaction kinetics are difficult both with respect to physical modeling
and numerical solution approximations due to the very wide range of time
and length scales involved.

3.2 Modeling Concepts for Multiphase Flow

The development of computational methods for multiphase flows was pio-
neered by Harlow and Welch [96], Hirt [106], Amsden and Harlow [6], Harlow
and Amsden [97], Nichols and Hirt [155], Hirt and Nichols [108], and Hirt
and Nichols [107] at the Los Alamos science laboratory in New Mexico. These
methods were based on finite difference discretizations of the continuity and
Navier-Stokes equations using velocity and pressure as the primitive variables.
The early work on incompressible flows showed the need to use staggered
grids and upwind differencing at high Reynolds numbers to obtained stable
and physical solutions. The idea of solving the pressure from the continuity
equation was accepted. In Europe the interest in computational fluid mechan-
ics was initiated by the publication of a book by another pioneering group at
Imperial College in London UK introducing the basic principles of the finite
volume method and the wall function concept making primitive turbulence
simulations feasible [86]. The work of Spalding on multiphase modeling and
solution methods [207] [208] [209] [210] [211] at Imperial College is perhaps
better known as he produced the very first commercial CFD program code
(PHOENICS) for solving multiphase flow problems. An excellent review on
models and numerical methods for multiphase flow has been presented by
Stewart and Wendroff [212]. Similar reviews with emphasis on dilute gas-
particle flows models have been published by Crowe [36], Crowe et al. [37]
and Crowe et al. [38].

For multiphase systems a rough distinction can be made between systems
with separated flows and those with dispersed flows, as sketched in Fig 3.1 (i.e.,
regime G versus regimes B, C and F). This classification is not only important
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from a physical point of view, but also from a computational perspective since
for each class different computational approaches are required.

In view of the multi-phase reactor flow structure characteristics summa-
rized in sect 3.1, it is obvious that dispersed flow systems are dominating.
For these flows roughly three different computational strategies can be distin-
guished based on the scales resolved by the model formulation:

1. The Eulerian-Lagrangian models for very dilute flows where small discrete
particles are considered in the control volume formulating the governing
microscopic model equations. For slightly denser flows different types of
Eulerian and Lagrangian averaging procedures are applied deducing the
more practical macroscopic model equations.

2. The Eulerian-Eulerian multifluid models for dense flows where a rela-
tively large number of particles are considered determining a continuous
phase in the control volume formulating the governing microscopic model
equations. Different types of Eulerian averaging procedures are applied
deducing the corresponding macroscopic model equations.

3. The High resolution methods for multiphase flows containing any number
of particles where the model equations are formulated considering very
small control- and averaging volumes. That is, the relative size of fluid
particles with respect to the averaging volumes is large enough so the
particles (not the interfaces!) can in principle be resolved [11, 245, 222,
223].
The modeling frameworks used are Eulerian, Lagrangian, or a combination
of these concepts.

In the sequel the averaged Eulerian- Lagrangian, averaged Eulerian-
Eulerian, and High Resolution methods are outlined.

3.2.1 Averaged Models

In this section the governing equations determining the averaged Eulerian-
Lagrangian and the Eulerian - Eulerian modeling concepts are discussed.

Averaged Eulerian-Lagrangian Multi-Phase Models

For dispersed multiphase flows a Lagrangian description of the dispersed phase
are advantageous in many practical situations. In this concept the individual
particles are treated as rigid spheres (i.e., neglecting particle deformation and
internal flows) being so small that they can be considered as point centers of
mass in space. The translational motion1 of the particle is governed by the
Lagrangian form of Newton’s second law [103, 148, 120, 38]:

1 For non-spherical rigid particles the particle rotation may become important. This
requires that an angular momentum equation for each particle has to be solved
[38].
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d

dt
(mpvp) = fhp + fp + fE + fG + fD + fV + fL + fB (3.1)

where mp = ρpVp is the mass of the particle. Treating the dispersed phase
as rigid spheres ρp, Vp and mp are constants in time. The forces listed on
the RHS of (3.1) denote surface and body forces acting on the particle as
considered in sect 5.2. fhp denotes the force due to the hydrostatic pressure,
fp designates the force due to any external pressure gradients, fG denotes the
body force due to gravity, fE denotes any body force created by external fields
apart from gravity, fD is the steady drag force, fV is the virtual mass force,
fL is the transversal lift force, and fB is the Basset history force.

The particle trajectory is calculated from the definition of the translational
velocity of the center of mass of the particle:

drp(t)
dt

= vp(t, rp(t)) (3.2)

A group of Euler-Lagrangian concepts are classified with respect to the com-
plexity involved describing the interfacial coupling between the phases [66].
In a one way coupled system the particle volume loading is assumed to be
small enough so that any effects that the presence of the dispersed phase may
have on the continuous phase can be neglected. Thus, the local velocity of the
continuous phase has a direct impact on the particle while the reverse is not
true. For slightly denser systems the effects of the particles on the carrier fluid
cannot be ignored and two way coupling is required. For dense systems four
way coupling is necessary to take into account the additional particle-particle
collision effects and any fluid turbulence modification caused by the particles.

When one way coupling is used, the Eulerian velocity field is computed
independent of the particle tracking by a standard single-phase simulation.
Thereafter, the trajectories of the individual particles are computed indepen-
dently from one another. In contrast, a two way coupled Euler-Lagrangian
simulation must solve the fully time dependent dispersed and continuous phase
equations in an iterative manner. In a four way coupled system there are mu-
tual (binary) interactions between the individual particles as well as a two way
coupling between the dispersed and continuous phases, making the dynamic
equations of all the phases strongly coupled so the iterative process becomes
even more difficult to handle both regarding computational time and stability.

The complexity of the interfacial coupling depends mainly on the value of
the dispersed phase volume fraction and the number of particles. That is, for
a given value of the dispersed phase volume fraction the number of particles
depends on the current particle size distribution. In practice, as a general
rule of thumb, for very dilute flows (say αp < 10−6) containing very small
particles a simple one-way coupling between the dispersed and continuous
phases is assumed sufficient, while two way coupling is considered a reason-
able approach for moderately dense dispersions (say αp ≤ 10−3). For denser
systems four-way coupling is recommended [38] [203]. However, the computa-
tional speed and storage capabilities of the present computers are limited so in
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many practical simulations the number of particles are prohibitively large and
the computational loads have to be reduced considering statistical methods.
It is thus distinguished between direct Euler-Lagrangian models which are
tracking all the particles simultaneously, and statistical model formulations
computing an ensemble of representative particle trajectories only. For flows
involving a relative small number of of tiny particles (typically less than 103

particles) it is normally feasible to solve a set of Lagrangian equations for ev-
ery element. However, if the number of tiny particles is large (typically more
than 104 particles), a statistical approach is more practical. In such a descrip-
tion the total population is represented by a finite number of computational
parcels, each of which represents a group of particles having the same proper-
ties. In this case caution is required as the Euler-Lagrange method is not fully
consistent whenever the cloud of particles tracked constitutes a volume larger
than the fluid parcel considered averaging the governing equations. Moreover,
the number of computational parcels (samples) must be large enough so that
the properties of the whole population are well represented.

For simulations involving two- and four way coupling the continuous phase
is described by slightly modified single phase momentum equations formulated
in the Eulerian framework [148, 152, 125, 130, 49, 50]. That is, the Eulerian
momentum equations contain an additional interaction term denoting the sum
of the individual interactions by each particle. These interaction terms are
deduced based on Newton’s 3. law (i.e., the individual drag forces experienced
by the particles act with equal magnitude but in the opposite direction on
the continuous phase, actio=reactio). It is noted the drag terms require the
interpolation of the continuum phase velocity from the Eulerian grid to the
local particle position.

The main advantage of the Eulerian-Lagrangian approach (i.e., compared
to the alternative Euler-Euler model described in the next subsection) is its
flexibility with respect to the incorporation of the microscopic transport phe-
nomena. Particle dynamics can in principle be described in detail, a particle
size distribution can easily be incorporated, direct particle-particle interac-
tions can be accounted for as well as the hydrodynamic interaction between
neighboring particles.

The major disadvantage of the Eulerian-Lagrangian approach is its rela-
tively high computational load (i.e., again compared to the Eulerian-Eulerian
approach). The flows in multiphase chemical reactors, for example, are usually
very dense so it is not feasible to keep track of the high number of dispersed
particles, thus only the statistical approach can be used [120]. Note also that
all the averaged multiphase model formulations require appropriate closure
laws for the interfacial transport of momentum. The correct form of these
closure laws is still being debated. Rigorous derivations of the constitutive re-
lations and model coefficients exist at best solely for idealized flow situations,
whereas semi-empirical parameterizations and parameter fitting are used in
practical applications in which the flow characteristics deviate largely from
the idealized cases.
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Averaged Eulerian-Eulerian Multi-fluid Models

The averaged Eulerian-Eulerian multi-fluid model denotes the averaged mass
and momentum conservation equations as formulated in an Eulerian frame of
reference for both the dispersed and continuous phases describing the time-
dependent motion. For multiphase isothermal systems involving laminar flow,
the averaged conservation equations for mass and momentum are given by:

∂

∂t
(αkρk) + ∇ · (αkρkvk) = Γk (3.3)

and

∂

∂t
(αkρkvk) + ∇ · (αkρkvkvk) = − αk∇p−∇ · (αkσk)

+ Mk,l + ΓkvI + Sk + αkρkgk

(3.4)

where ρk, vk, αk and σk represent, respectively, the density, velocity, volume
fraction and viscous stress tensor of the k-th phase, p the pressure, Γk a source
term describing mass exchange between phase k and the other phases, Mk,l

the interface momentum exchange term between phase k and phase l, and Sk

a momentum source term of phase k due to external forces other than gravity.
An advantage of the multi-fluid model it that in principle it can be used to

compute any multiphase flow regime, provided that an adequate closure rela-
tion for the interfacial coupling terms are provided. Besides, when this model
is applied to describe dense dispersed flows, the Euler-Euler approach is nor-
mally less computationally demanding than the alternative Euler-Lagrangian
model simulations described in the previous sub-section. Nevertheless, at the
same time, a severe disadvantage of a multi-fluid model is the need for em-
pirical closure laws for the interfacial transport processes. The formulation
of the Eulerian interfacial closure laws for both dilute and dense suspensions
are based on simple average of the Lagrangian single particle relationships for
idealized flows, thus the accuracy reflected by the Eulerian interfacial cou-
pling terms is generally even poorer than for the corresponding Lagrangian
models. Although promising results have been obtained in recent years, there
are still no general agreement on the correct mathematical form of the net
interfacial forces acting on the dispersed phase particles, nor on the net hy-
drodynamic and fluid-particle turbulence interactions. Prudence must also be
shown to limit numerical diffusion in the Eulerian model fields, for instance,
by applying at least second order schemes both in time and space instead of
the first order schemes commonly applied in the commercial program codes
[30, 79, 140, 201, 202, 123].

Notwithstanding, as the flow in most operating chemical reactors is dense,
the Euler-Euler type of models has been found to represent a trade-off between
accuracy and computational efforts for practical applications [120].
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3.2.2 High Resolution Methods

The purpose of this section is to give an overview of the pertinent high res-
olution methods often referred in the literature on multiphase reactor mod-
eling. These are: The Maker and Cell (MAC) method [96], the Simplified
MAC method [6], the volume of fluid (VOF) method[108], the level set (LS)
front capturing method [214, 20, 186], and finally the front tracking method2

[227, 221].
Using the volume averaged Eulerian-Eulerian and Eulerian-Lagrangian

multi-phase models the spatial resolution considered deriving the constitutive
relations is generally coarse compared to the size of the particles. However,
small-scale structures in the fluid and most likely also within the dispersed
fluid particles may under specific conditions govern important phenomena en-
countered in multiphase reactors. In this context the physicochemical phenom-
ena affecting the fluid particle coalescence and breakage rates are highlighted.
In this area much fundamental work remains to be done.

In view of the discussion in sect 3.2.1, numerical methods that are de-
signed to resolve the interfacial configurations in time and space are attrac-
tive elucidating the impacts of the microscopic phenomena on the macroscopic
quantities. Such high resolution models are often divided into various classes
due to their mathematical characteristics. One class of these methods can
be recognized by the use of a single set of transport equations for the whole
flow field [183, 224], the whole field formulation. Another useful formulation
of the balance equations decomposes the problem into any number of bulk
phase domains where the usual single phase transport equations holds, and
the interfaces across which the physical quantities are required to have spe-
cific jumps. This alternative formulation is thus sometimes called the jump-
condition form. In the latter approach each phase is treated separately. From
another mathematical point of view the various methods for interface simula-
tion can be divided into two classes, depending on whether a fixed or a moving
grid is used in the bulk of the phases as well as to locate the interface and
determining its orientation. In fixed-grid methods, there is a predefined grid
that does not move with the interface. In this case the interface is making a
2D plane cut across the fixed 3D grid. In moving-grid methods, the interface is
a boundary between two elements or sub-domains of the bulk grid. The inter-
face then identifies, at some order of approximation, with element boundaries
[183]. Lately, the complexity of the methods has increased tremendously, so a
more compound characterization is frequently used to distinguish the different
techniques. Hence, three important methods are named in accordance with
the concepts used to identify the position and orientation of the interface, the
grids adopted, as well as the frameworks employed formulating the governing
2 It is noticed that after some re-evaluation Tryggvason and co-workers [228, 222]

classified their front tracking method [227] as an embedded interface method, since
it is best described as a hybrid between a front tracking and a front capturing
method.
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equations. In the early particle methods the flow fields of the bulk phases are
solved on a fixed grid, and the position of the interface is identified using pas-
sive marker particles which are following the bulk flow. In the modern front
capturing methods, the interface or front separating the bulk phases appears
directly on a fixed grid as a region with steep gradients in the primary vari-
ables [228]. The front tracking methods are usually constructed by explicitly
tracking the interface by use of a moving grid, a front, determining a material
boundary between the fluid phases which are thus treated separately on a
fixed grid [224] [228].

Following these classifications, the MAC, SMAC, VOF and LS techniques
are all front capturing methods. The MAC and SMAC techniques are also
referred to as particle methods. In the VOF and LS methods a similar maker
function is used to identify the phases and reconstruct the interface, hence
they are sometimes called volume tracking methods [111] [227]. The embed-
ded interface (EI) method can be characterized as a hybrid between a front
capturing and a front tracking technique [222] [224]. In this type of methods
a stationary or fixed regular grid is used for the fluid flow, but the interface
is tracked by a separate grid of lower dimension. This grid is usually called
the front. However, unlike front tracking methods where each phase is treated
separately, the embedded interface method follow most front capturing meth-
ods and treats all phases by a single set of governing equations for the whole
flow field.

The Marker and Cell Method (MAC)

The original MAC method of Harlow and Welch [96] was the first marker
method developed aiming at numerical simulations of time-dependent incom-
pressible flows with a free surface [111]. The MAC model constitutes the
continuity and Navier-Stokes equations for the continuous fluid, and the La-
grangian equations of motion for the marker particles. As part of this method
Harlow and Welch proposed a novel staggered grid arrangement of the de-
pendent variables (i.e., separate grid cells were used for vx, vy and p in 2D),
which is essential for treating the pressure-velocity coupling in the Navier-
Stokes equations and is still frequently used in fluid flow codes. On this grid
the continuity and Navier-Stokes equations were discretized using a second
order finite difference scheme in space, applying simple averaging for points
where the variables are not defined in the grid. As in all incompressible flow
codes, the continuity equation was treated implicitly. The velocity tendencies
were approximated using a first order explicit scheme. Hence, all the terms
in the Navier-Stokes equations are approximated using the velocity values at
time level tn.

In the first phase of the MAC algorithm the pressure at time level tn+1 is
calculated, solving a Poisson equation in which the source term is a function
of the velocity values at time level tn only. Thereafter, the full Navier-Stokes
equations are used to find the time level tn+1 velocities. It is emphasized that
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the Poisson equation is derived by combining the implicit incompressibility
condition with the momentum equations, thus the resulting momentum equa-
tions satisfy the continuity automatically. The pressure field obtained from
this procedure is the true pressure instead of a pseudo pressure as used in
later methods such as SIMPLE [160] and the typical fractional step projec-
tion algorithms [33]. In the second phase of the MAC method marker particles
are scattered initially to identify the spatial region occupied by a single fluid
with a free surface (facing vacuum) and to track the movement of the free
surface during the simulation. The particles are transported in a Lagrangian
manner along with the materials. Surfaces are then defined as lying at the
boundary between regions with and without marker particles, hence the lo-
cation and shape of the free surface can be found. However, the free surface
stresses and the effects of the surface tension were ignored.

The simplified MAC method, the SMAC technique of Amsden and Har-
low [6], denotes a three-stage fractional time step advancement procedure
that resembles the technique suggested by Chorin [33]. In the SMAC proce-
dure tentative estimates of the tn+1 time level velocity field is determined first
using an explicit algorithm approximating the momentum equations, ensur-
ing that the vorticity is correct but the continuity may not be satisfied. Then,
a corrected pressure is calculated from the continuity in-balance in such a
way as to preserve the vorticity but bringing the divergence to zero. Finally,
an updated velocity is calculated from the new pressure estimate. The ad-
vantages of SMAC, compared to the original MAC method, are related to
simpler program implementations, higher convergence rates, and more con-
venient boundary treatment. In the second phase of the algorithm the free
surface treatment is still the same as for the original MAC method.

It appears that a method that defines fluid regions rather than interfaces
offers the advantage of logical simplicity for situations involving interacting
multiple free boundaries. While the marker particle method provides this sim-
plicity, it suffers from a significant computer memory and storage demand.
It also requires considerable computational efforts to move all the particle
points to the new locations. Besides, no successful extensions of the MAC
method which enable proper reconstruction of sharp interfaces seemed fea-
sible. It was thus natural to seek an alternative interface capturing method
which requires less computer resources but still provides sufficient accuracy.
No real breakthrough in this respect was achieved till the use of marker par-
ticles was abandoned and a marker function advected by the flow was used
instead [108].

The Volume of Fluid (VOF) Method

In this sub-section the basis elements of the volume of fluid method are de-
scribed. In general the VOF model is composed of a set of continuity and
momentum equations, as well as a transport equation for the evolution of a
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phase indicator function which is used to determine the location and orien-
tation of the interface. We distinguish between the jump condition - and the
whole field formulations of the method, in which both forms are based on a
macroscopic view defining the interface as a 2D surface. The jump condition
form is especially convenient for free-surface flow simulations, whereas the
whole field formulation is commonly used for interfacial flow calculations in
which the internal flow of all the phases are of interest.

A common feature for all the different formulations of the VOF model is
that the location and orientation of the interface are defined through a volume
fraction function. The evolution of this volume fraction function in time and
space is determined by a scalar advection equation defined by:

Dα1

Dt
=

∂α1

∂t
+ (vm · ∇)α1 = 0 (3.5)

The propagation procedure contains the calculation of the volume fraction,
α1, that represents the fractional volume of the cell occupied by fluid 1. A unit
value of α1 corresponds to a cell full of fluid 1, while a zero value indicates
that the cell contains no fluid 1. Cells with α1 values between zero and one
must then contain an interface.

The VOF models thus require a proper numerical advection scheme to ap-
proximate the transport of the scalar function in an accurate manner avoiding
numerical diffusion. Most VOF algorithms solve the problem of updating the
volume fraction field, α1, given the fixed grid and the velocity field, vm, using
a second order explicit discretization scheme in time and a higher (second)
order discretization scheme on the flux form in space. In many program codes
the fractional step or operator split method, which updates the volume frac-
tion by advecting the interface along one spatial direction at the time, has
been used [179, 180, 226, 92, 183, 123]. Thus, in 3D three consecutive recon-
struction and convection steps are required per time step. In unsplit methods
there is only one reconstruction step and the volume fluxes across the cell
faces are computed simultaneously.

In the jump-condition formulation the physical problem is generally de-
composed into k bulk phase domains where the continuity and momentum
equations for isothermal incompressible flows holds, and at the interface be-
tween these domains boundary conditions are specified using the interface
jump conditions. That is, across the interface some quantities are required to
be continuous, while others are required to have specific jumps. The discon-
tinuous (singular) momentum jump condition can be derived by use of the
surface divergence theorem3 (see e.g., [63] p 51; [26]). A rigorous derivation
of the jump balances for the multi-fluid model is given in sect 3.3.
3 The work of Brenner [26] also contains a micro-mechanical derivation of the dif-

ferential equation of interface statics that clearly distinguish between micro-scale
and macro-scale viewpoints. From thermodynamic analysis it is concluded that
the surface tension manifests itself in the normal direction as a force that drives
surfaces towards a minimum energy state characterized by a configuration of
minimum surface area.
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The governing equations for the jump condition form of the VOF method
are thus defined by [164]:

∇ · vk = 0 (3.6)

∂vk

∂t
+ vk · ∇vk = − 1

ρk
∇pk + νk∇2vk (3.7)

The interface boundary conditions, i.e., the momentum jump conditions, are
expressed as (i.e., no surface tension gradients are considered):

2
∑

k=1

Tk · nk = 2σIHInI (3.8)

This condition may be split into a normal stress condition:

2
∑

k=1

nI · Tk · nk = nI · 2σIHInI (3.9)

or
2

∑

k=1

[(nI · nk)pk + nI · σk · nk] = 2σIHI (3.10)

and a tangential stress condition:

2
∑

k=1

[t(k)
k · σk · nk]I = 0 (3.11)

where the vectors t(k) may be any set of d− 1 independent tangent vectors to
the interface AI , and d is the dimension of space [132, 245, 183].

Performing macro-scale experiments it has been observed that the normal
surface tension force induces higher normal stresses in the fluid on the concave
side of the interface than on the other fluid on the convex side of the interface.
In a micro-scale view we may say that this interfacial tension force is exerted
by the interfacial material lying on the convex side of the surface upon the
material lying on the concave side. The normal component of the surface force
is thus frequently (not always!) defined positive into the mean curvature of
the surface, in line with the physical observations. The direction of the normal
component of the interface force given by (3.9) is determined by two factors,
the interface normal unit vector nI which we have defined positive into the
curvature4, and the mean curvature variable which we have chosen to define
as an absolute value. That is, the variable used here determining the mean
curvature of the surface (HI = (κ1 + κ2)/2) is consistent with the definition
4 If we define nI positive out of the curvature instead, the curvature itself must

be defined in a consistent manner with sign defining its orientation. Note that
several variations of sign conventions may be chosen. The choice of conventions
is to a large extent a matter of convenience.
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given by Slattery [199] (p 1116) and by most classical textbooks on differential
geometry. κ1 and κ2 denote the absolute values of the principal curvatures of
the surface. The principal curvatures are the maximum and minimum values
of the normal curvature. Another mode of expressing the principal curvatures
κ1 and κ2 is in terms of the principal radii of curvature R1 and R2: κ1 = 1/R1

and κ2 = 1/R2. Finally, the mean curvature of a surface may also be expressed
in terms of the variation of the unit surface normal nI with position in the
surface. Thus, the mean surface curvature may be given by: HI = − 1

2∇ · nI .
Free-surface flow is a limiting case of flow with interfaces, in which the

treatment of one of the phases is simplified. For instance, for some cases of
gas-liquid flow, we may consider the pressure pgas in the gas to depend only
on time and not on space and the viscous stresses in the gas to be negligible.
For such flows the jump condition formulation must be used, since the bulk
momentum equation breaks down. The jump conditions become boundary
conditions on the border of the liquid domain [245, 183]:

pl + nlg
l · σl · nlg

l = pgas + 2σIHI (3.12)

and
tlg,(k)
l · σl · nlg

l = 0 (3.13)

The original VOF model designed for free surface flow simulations constitutes
the mass and momentum conservation equations for incompressible fluids in
the jump condition form [155, 108].

The pioneering SOLA-VOF method [108] evolved from the MAC/SMAC
techniques [96, 6], thus the velocity and pressure fields are obtained in ac-
cordance with the SMAC method with only minor modifications. That is, in
the SOLA codes the condition of a zero velocity divergence is still treated as
an equation for the pressure but now, merely to save memory, the pressure-
velocity coupling is solved iteratively adjusting the pressure and velocity si-
multaneously. The original SOLA-VOF method considers the motion of a fluid
zone in vacuum. Therefore, no shear forces were present at the fluid surface.
The effect of velocity gradients on the surface pressure was neglected, hence
at the free surface a fixed boundary value was specified for the pressure, ps(t).
Later on, the surface tension effects have been included with only minor ad-
ditional efforts. The boundary pressure values were then determined from the
surface tension force, p = ps − 2HIσI , where HI is the mean curvature of the
interface.

The SOLA-VOF method time integration consists of three basic steps:

• A tentative estimate of the velocity field in the new time-step is achieved
by an explicit step, using the previous time level values for all advective,
pressure and diffusive terms.

• Iterate on the pressure-velocity changes until the continuity is satisfied.
• The new fluid distribution is determined updating the volume fraction

function.
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The SOLA-VOF method has been used simulating bubble motion in liquid
[12]. An important part of this simulation is the tracking of the free surface
and determining boundary conditions on it. The simplified jump condition
form of the VOF method was applicable because for large differences in liquid
and gas densities and large Reynolds numbers the motion of the gas inside
the bubble becomes unimportant and the pressure distribution in it can be
assumed uniform constituting a free surface flow.

The alternative VOF models designed to describe stratified and dispersed
flows with internal motions in all the phases are based on the whole domain
formulation. The basis for this approach is a set of equations valid for the
whole calculation domain, in which the governing mass and momentum bal-
ances are expressed as [132, 214, 32, 183, 164, 92, 222, 227]:

∇ · vm = 0 (3.14)

∂

∂t
(ρvm)+∇· (ρvmvm) = −∇pm −∇·σm +ρg+2σIH

12
I nIδI(r− r′) (3.15)

where σI is the surface tension, HI the local mean curvature, and n1 the
normal to the interface pointing into phase 1. δI(r−r′) is a Dirac delta function
that is zero everywhere except at the interface, where r = r′. The effect of the
discontinuous (singular) surface tension force is to act as an additional forcing
term in the direction normal to the fluid interface.

The density and viscosity occurring in these equations are defined as:

ρm = α1ρ1 + (1 − α1)ρ2 (3.16)

and
μm = α1μ1 + (1 − α1)μ2 (3.17)

The model can be classified as a homogeneous mixture model which is formu-
lated directly on the averaging scales (i.e., the control volume coincides with
the averaging volume). It is further assumed that the relative velocity in the
interface grid cells is zero (vr = 0), and that all the scales of turbulence are
resolved (i.e., in this respect this homogeneous model formulation resembles
a direct numerical simulation).

The derivation of the given whole field formulation, introducing the Dirac
delta function (δI) into the surface tension force relation to maintain the
discontinuous (singular) nature of this term, is to a certain extent based on
physical intuition rather than first principles (i.e., in mathematical terms this
approach is strictly not characterized as a continuum formulation on the dif-
ferential form). Chandrasekhar [31] (pp 430-433) derived a similar model for-
mulation and argued that to some extent the whole field momentum equation
can be obtained by a formal mathematical procedure. However, the fact that
the equation involves δI -functions means that to interpret the equation cor-
rectly at a point of discontinuity, we must integrate the equation, across the
interface, over an infinitesimal volume element including the discontinuity.
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In addition, we need to specify which quantities are continuous and which
bounded at an interface between two fluids. Similar whole field formulations
have been used and further discussed by Lafaurie et al. [132], Sussman et al.
[214], Chang et al. [32], Popinet and Zaleski [164], Gueyffier et al. [92] and
Tryggvason [222] [183].

Several numerical techniques have been proposed to approximate the sin-
gular interface terms occurring in the VOF model formulations. A convenient
way to categorize these techniques is due to the physical images of the interface
used as basis designing the numerical method.

It is so that interfacial physics are conventionally described adopting either
a superficial 2D macroscopic - or a somewhat more physical 3D microscopic
representation of the interface. Since an interface is generally observed and
characterized on a macroscopic scale that is large relative to the thickness of
the interfacial zone, an interface is often conveniently idealized as a 2D, dis-
continuous (singular) surface possessing a macroscopically defined location,
configuration and orientation between a pair of contiguous, 3D, immiscible
bulk fluid phases. The alternative representation of the interface is more fun-
damental denoting a microscopic, 3D interface structure, accounting for the
diffuse transition region existing between the two fully developed bulk fluid
phases on either side. These two models are mutually consistent describing
the interface behavior on the macroscopic scales, but the microscopic view
possibly affords a more rational means for deriving interfacial constitutive
laws when the microscopic physics are known allowing for the deduction of
macroscale models by proper averaging. Such approaches may also be valuable
explaining the underlying mechanisms determining the 2D interfacial proper-
ties which are normally parameterized directly on the macroscopic scales.

The first generation methods that were proposed involved interface re-
construction and approximation of the singular interfacial term from the 2D
interface properties. These models thus rely on a proper numerical procedure
to locate the interface within the mesh based on the volume fraction field.
The local curvature may then be calculated in each surface grid cell.

The first VOF methods were naturally developed for 2D problems. Such
an interface is considered to be a continuous, piecewise smooth line and the
problem of its reconstruction is that of finding an approximation to the section
of the interface in each cell, by knowing only the volume fraction, α1, in
that cell and in the neighboring ones. The simplest types of VOF-methods
are the Simple Line Interface Calculation (SLIC) as used in the SOLA-VOF
algorithm [108]. Typically, the reconstructed interface is made up of a sequence
of segments aligned with the grid. The more accurate techniques attempt to fit
the interface through piecewise linear segments. These techniques are known
as the Piecewise Linear Interface Construction (PLIC) methods [8] [179]. The
key part of the reconstruction step is the determination of the location of the
segment. This is equivalent to the determination of the unit normal vector,
nI , to the segment. This kind of VOF methods can be generalized to three
dimensions with little conceptual difficulty [245, 183].
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The second fairly modern group of methods introduces (of numerical rea-
sons) a 3D continuous surface force (CSF) or a 3D continuum surface stress
(CSS) acting locally within the whole transition region constituting a meso-
scale interface. Notice that since we are primarily interested in the interfacial
forces, the latter group of techniques were used approximating the surface
effects without actually reconstructing the interface.

The pioneering work, determining the basis for all the techniques in this
group, was performed by Brackbill et al. [25] developing the the continuum
surface force method (CSF) for modeling the surface tension effects on fluid
motion. In the CSF model the interface discontinuity (singular) term has
been smoothed to avoid numerical instabilities, and the surface tension force
becomes replaced by a continuous formulation. In other words, the discon-
tinuous (singular) surface tension force determined from a macro-scale point
of view, is reformulated considering a more diffuse transition region (inspired
by microscopic physics and the micro-scale point of view) that is not neces-
sarily aligned with the grid. Brackbill et al. [25] replaced the discontinuous
characteristic function by a smooth variation of fluid volume fraction α̃1 be-
tween 0 and 1 over a distance of order h, where h is a length comparable
to the resolution afforded by a computational mesh with spacing ΔV = h3.
This replaces the jump condition boundary-value problem at the interface by
an approximate continuous model and mimics the problem specification in
a numerical calculation, where one specifies the values of α1 at grid points
and interpolates between. The interface where the fluid changes from fluid
1 to fluid 2 discontinuously is replaced by a continuous transition, and the
surface tension force acts everywhere within the transition region. The CSF
method thus eliminates the need for interface construction, simplifies the cal-
culation of the surface tension effects, enables accurate modeling of two- and
three-dimensional fluid flows driven by surface forces, and imposes no mod-
eling restrictions on the number, complexity, or dynamic evolution of fluid
interfaces having surface tension. A restriction related to this numerical ap-
proximation is of course that we are introducing a smoothed representation
(i.e., in itself relying on the assumption that the interface is limited to an
explicitly defined finite thickness) of the physical phenomena which are oc-
curring at very small scales. In addition, the Eulerian discretization schemes
applied approximating (3.5) are diffusive and smear out the αk profile and
thus the interface. Therefore, the main difficulty in using these methods is to
maintain a sharp interface between the different phases.

It might be worth mentioning that, as this numerical discretization tech-
nique replaces the conventional 2D interface specification with a 3D descrip-
tion, the interface reformulation makes it convenient to introduce an alterna-
tive notation for the interface characteristics as well expressing the curvature
with sign defining its orientation. The reformulated surface force is then de-
fined positive acting on one of the fluid fields, in accordance with the choice of
unit normal sign convention. A common practice is to define the unit normal
vector positive pointing out of phase 1. A constraint therefore is to make sure
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that consistent sign conventions are adopted for the normal unit vector and
the orientation of the surface curvature (as the unit normal vector pointing
out of phase 1 may at some instants be oriented into the curvature and at
other instants out of the curvature, since the surface orientation may change
with time).

On the meso-scopic scale the smoothly varying volume fraction α̃1 is con-
structed as follows:

α̃1(r) =
1

ΔV

∫

ΔV

α1(r′)δI(r − r′)dv′ (3.18)

where δI(r− r′) is a smooth integration kernel (i.e., an interpolation function
like the B-spline [25]). We let δI(r − r′) → δI as the grid spacing h → 0.

Further, α̃1, is differentiable because δI is, hence:

∇α̃1(r) =
1

ΔV

∫

ΔV

α1(r′)∇δI(r − r′)dv′ (3.19)

Using Gauss’ theorem and noting that α1 is constant within each fluid, Brack-
bill et al [25] converted the volume integral into an integral over the interface
δAI :

∇α̃1(r) =
[α1]
ΔV

∫

δAI

n1δI(r − r′; ε)da′ =
1

ΔV

∫

δAI

n1δI(r − r′; ε)da′ (3.20)

where [α1] is the jump in the volume fraction variable, i.e., [α1] = 1.
This relation can be used calculating a weighted mean of the surface nor-

mal. This approximation of the normal converges to the true normal of the
interface as the smoothing kernel becomes more concentrated on the inter-
face. Several alternative high-order kernels have been discussed by Aleinov
and Puckett [5].

The volume averaged force formulation then yields:

FI,1 =
1

ΔV

∫

ΔV

2n1σIδIHIdv
′ ≈ 2

ΔV

∫

ΔV

σI∇α̃1HIdv
′ ≈ 2

ΔV
σI∇α̃1HI

∫

ΔV

dv′

≈ 2σI∇α̃1HI

(3.21)

Brackbill et al [25] also found it very difficult to use the classical expres-
sions calculating the mean curvature of any 3D surface in a numerical model,
since they require an algorithm determining the principal curvatures being
the maximum and minimum values of the normal curvature (see e.g., [63],
pp 44-47). To improve on this limitation of the VOF model, Brackbill et al
[25] suggested an alternative and computationally much simpler expression
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for the mean curvature, HI , which could be used determining the net surface
force per unit area, FI,1, on any element of the surface AI .

The mean curvature is expressed in terms of the unit normal pointing into
phase 1:

HI = −1
2
∇I · n1 (3.22)

The unit normal vector is determined from the spatial distribution of the
volume fraction of the phase 1 field:

n1 = − ∇α̃1

|∇α̃1|
(3.23)

The normal component of the volume force, that is non-zero only within
the phase transition regions, can then be expressed in terms of the volume
fraction gradient [25]:

FI,1 ≈ 2[−∇α̃1]σI(−
1
2
)∇ · [− ∇α̃1

|∇α̃1|
] ≈ −∇α̃1σI∇ · [ ∇α̃1

|∇α̃1|
] (3.24)

where Chang et al. [32] stated that the color function is defined so that the
normal vector points in the outward direction5.

The momentum equations in the whole field formulation can also be rewrit-
ten in a momentum conserving form [132] [183] [92], defining a 3D capillary
pressure tensor

T′
I = −σI(e − nInI)δI (3.25)

where e is the unit tensor δij . To enable a physical interpretation of this
tensor, the particular normal vector used in this relation is required to give
meaning outside the surface AI . Using this quantity the capillary force can
be represented as the divergence of T′

I ,

∇ · T′
I = σI∇ · {(e − nInI)δI} = σIHInIδI (3.26)

The momentum equation (3.15) can then be cast in a conservative form

∂

∂t
(ρv) = −∇p−∇ · (ρvv + σ + T′

I) + ρg (3.27)

For this reason the surface tension force can be interpreted as a correction
to the momentum stress tensor, i.e., it represents a continuum surface stress
(CSS) tensor.

5 In the case of two immiscible fluids, a characteristic phase indicator function, XI ,
may be defined that is equal to 1 in one of the phases and 0 in the other phase.
Then XI and nI are related by nIδI = ∇XI analogue to the relations used in
standard volume averaging procedures [54] [164]. An averaged representation of
this relation may be given as 1

ΔV

∫

δAI

n1δIda′ = −∇α̃1
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This model formulation constitutes a volume conserving (i.e., exact only
when ρ1 = ρ2) variant of the VOF algorithm. The model is considered rela-
tively simple to implement in a program code, computationally efficient and
easy to parallelize. Both the 2D and 3D CSS simulations performed well with-
out using the smoothed function (3.18) calculating the normal vector and
the curvature, indicating that the CSS method may be more stable than the
original CSF technique. The volume conservative algorithm can thus use the
volume fraction itself which varies sharply over one or two grid cells across
the interface. If (3.18) is used instead, the CSS methods amounts to a variant
of the basic CSF method.

The CSF and CSS based versions of the VOF method have been used to
calculate improved estimates of the single particle drag and lift coefficients
and for simulating breakage and coalescence of dispersed flows containing a
few fluid particles [49, 218, 50, 141, 18].

A third variant of the VOF method calculates the interface tension force
by the CSS method and perform an independent PLIC reconstruction of the
interface to improve the design of the advection schemes. In this way the
tailored advection discretization schemes prevent numerical smoothing of the
interface [149].

In reactor technology the VOF methods have become very popular for such
simulations because they are reasonable accurate, relative simple to implement
and much faster than the more accurate level set and front tracking methods
(discussed shortly). However, it is noted that none of the VOF approaches
are useful in predicting the rebound outcome of colliding fluid particles be-
cause the surface tension force or stress approximation fails to predict the
complex physics involved in these cases. That is, when two interfaces from
two different particles are placed in the same grid cell, the particles might
automatically merge or coalesce as a numerical mode due to the low order lo-
cal approximation of the interface normal in combination with an insufficient
interface resolution. Hence, this approach cannot be used in coalescence - re-
bound outcome studies determining a physical coalescence criterion. However,
by use of an in-house code6 based on the CSS-PLIC approach Gotaas et al [88]
simulated binary droplet collisions under conditions that gave permanent coa-
lescence, and coalescence followed by reflexive or stretching separation. It was
concluded that the VOF predictions were in excellent agreement with experi-
mental data in most cases. A typical collision map for the air/water system is
given in Fig 3.2. Nevertheless, for head-on collisions the simulated outcomes
for operating conditions on the border between the coalescence and reflexive
separation regimes did not always coincide with experimental observations, as
a coalescence outcome prevailed somewhat into the experimental reflexive sep-
aration regime. It was revealed that in these odd cases the in-house code is not

6 These droplet-droplet collisions are simulationed by use of an in-house VOF code
called FS3D developed at University of Stuttgart and Institut für Thermody-
namik der Luft-und Raumfahrt, ITLR
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able to conserve the thin liquid film which is present when the droplets are at
their maximum deformation. Instead the film ruptures and this in turn results
in a unphysical loss of kinetic energy so that the final separation observed in
the experimental analysis doesn’t occur. It is mentioned that this film rupture
problem did not occur simulating the coalescence outcome conditions. Gotaas
et al [88] did use a model resolution of 1 μm which represents the present com-
puter capacities at the University in Trondheim. The VOF code might thus
become inaccurate due to insufficient numerical resolution or, more severely,
because the macroscopic VOF model breaks down when such a film or inter-
face becomes very thin as the basic model concept is based on the continuum
hypothesis. In such flow situations the liquid film might reach scales much less
than the scales on which short range molecular forces act to attract or repel
interface molecules. These mechanisms are normally considered significant on
scales of the order of 10-40 nm and are thus generally not taken into account
by the VOF model. However, the given threshold is very uncertain as the
molecular forces are largely affected by the fluid properties and the presence
of surfactants [93, 183, 158]. In this area much fundamental work remains to
be done.

Fig. 3.2. Typical droplet-droplet collision outcome map with four regimes [88];
Bouncing (Bo), Coalescence (Co), Stretching Separation (Ss), and Reflexive Sepa-
ration (Rs). χ denotes the impact factor, and We is the Weber number.

The VOF technique thus works best analyzing flow situations where the
macroscopic interface motion may be nearly independent on the microscopic
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interface physics. For example, many analyzes on stratified or free-surface
flows may be performed successfully by such a model.

It is also noted that the VOF model concept is not primarily intended
for multicomponent reactive flow analyzes, so no interfacial heat- and mass
transfer fluxes or any variations in the surface tension are usually considered.

The Level Set (LS) Method

In the previous sub-section we did learn that the VOF algorithms locate the
interface by tracking a marker function, αk, which corresponds to the local
volume fraction of the phase k. At an interface, αk goes between 0 and 1,
hence identifies its location. As αk is discontinuous at an interface, a practical
computation method smears out the αk profile and thus the location of the
interface. This numerical problem, leading to a thickening of the interface, led
researchers to propose an extension of the VOF technique. These extended
VOF algorithms, introducing a modified interface tracking function, are called
level set (LS) methods. The level set algorithms are defined with a fixed
interface thickness. These LS models can therefore be implemented and solved
using the same numerical difference techniques for the advection terms as
those used for the VOF technique, without allowing the interface to smear
out in space.

The design of the LS methods may be sketched as follows. To determine
the exact location of the interface, we utilize some inherent properties of a
mathematical function characterized as a distance function. In this context a
distance function, d, denotes the signed normal distance to the interface. This
type of functions satisfies:

|∇d| = 1 for r ∈ Ω with d = 0 for r ∈ Γ (3.28)

and ∇d determines a unit normal vector at the interface, Γ .
If such a function did exist, the surface tension force could be represented

by [214] [186] (p.151):
FI = 2nσIδ(d)HI (3.29)

In this formulation the surface tension term is considered to be a force con-
centrated on the interface, Γ .

In practice, a mathematical function that behave like a distance function
over the whole calculation domain as the interface evolves in space is very
difficult to define. Therefore, as a compromise, we may utilize the so-called zero
level set of a smooth function, ϕ, that behaves like a distance function locally
in the vicinity of the interface. The novel idea of the level set methodology is
thus to introduce a higher dimensional smooth function ϕ(r, t = 0) defined as:

ϕ(r, t = 0) = ±d (3.30)

where r is a point in space and d is still the shortest distance from r to
the initial interface. The sign of ϕ(r, t = 0) indicates whether r is inside or
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outside the regions closed by the initial interface (i.e., for two-phase flow the
positive sign denotes one of the phases, whereas the negative sign denotes the
transition interface zone).

As pointed out by Sussman et al [214] and Chang et al. [32], the surface
tension force can be cast into the level set formulation:

FI = 2nσIδ(d)HI = 2∇ϕσIδ(ϕ)HI(ϕ) (3.31)

This relation is true only for the ideal case where ϕ remains a distance func-
tion, as: n = ( ∇ϕ

|∇ϕ| )ϕ=0, HI = ∇ · ( ∇ϕ
|∇ϕ| )ϕ=0, and |∇ϕ|ϕ=0 = 1.

The derivation of this relation can apparently be found in Chang et al
[32], in which it was also shown (using rather complex mathematics) that this
formulation admits solutions that are consistent with the boundary condition
applied in the jump-condition formulation.

In a similar manner as for the VOF technique, the evolution of the interface
is determined solving a transport equation for the level set function. That is,
instead of solving equation (3.5), the following equation is solved [179]:

Dϕ

Dt
=

∂ϕ

∂t
+ (v · ∇)ϕ = 0 (3.32)

The level set equation (3.32) describes the evolution of the distance function as
the interface moves along its normal vector field with normal speed F = n ·v.
By use of the relation determining the normal vector pointing into the positive
phase, n = ∇ϕ

|∇ϕ| , we may rewrite the equation as:

Dϕ

Dt
=

∂ϕ

∂t
+(v·∇)ϕ =

∂ϕ

∂t
+v· ∇ϕ

|∇ϕ| |∇ϕ| =
∂ϕ

∂t
+v·n|∇ϕ| =

∂ϕ

∂t
+F |∇ϕ| = 0

(3.33)
Both forms of the transport equation have been used describing the evolution
of the interface. The choice of formulation seems to be a matter of convenience.

Since the density and viscosity are constant in each fluid, they take two
different values depending on the sign of ϕ, we may write:

ρ(ϕ) = ρ2 + (ρ1 − ρ2)H(ϕ) (3.34)

and
μ(ϕ) = μ2 + (μ1 − μ2)H(ϕ) (3.35)

where H(ϕ) is the Heaviside function given by ([215], p. 273):

H(ϕ) =

⎧

⎪

⎨

⎪

⎩

0 if ϕ < 0
1
2 if ϕ = 0
1 if ϕ > 0.

(3.36)

In practice, however, a smoothed level set function is defined so that |∇ϕ| = 1
when |ϕ| ≤ ε due to the finite resolution applied in numerical simulations
smearing the front out on several grid cells.
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To alleviate further numerical problems due to sharp changes in some
of the physical variables across the front and also because of the numerical
difficulties presented by the Dirac delta function in the surface tension term,
the interface is defined having a fixed thickness that is proportional to the
spatial mesh. This allows us to smooth the functions across the interface and
replace the Dirac delta function with a smoothed delta function δε. In other
words, we maintain a fixed thickness of the interface within the LS approach.

The approximated delta function is defined as (e.g., [214]):

δε(ϕ) =

{

1
2 (1 + cos(πϕ/ε))/ε if |ϕ| < ε,

0 Otherwise.
(3.37)

where ε denotes the prescribed thickness of the interface (e.g., [214] used
ε = 3

2Δx).
The Heaviside function is also replaced with a smoothed Heaviside function

Hε(ϕ) defined as ([215], p. 274):

Hε(ϕ) =

⎧

⎪

⎨

⎪

⎩

0 if ϕ < −ε
1
2 [1 + ϕ

ε + 1
π sin(πϕ

ε )] if ϕ ≤ ε

1 if ϕ > ε.

(3.38)

The smoothed delta function is then given by δε = dHε

dϕ , whereas the thickness
of the interface can be approximated by 2ε/|∇ϕ|.

The smoothed density and viscosity are now given as:

ρε(ϕ) = ρ2 + (ρ1 − ρ2)Hε(ϕ) (3.39)

and
με(ϕ) = μ2 + (μ1 − μ2)Hε(ϕ), (3.40)

respectively.
The surface tension force is represented by [32] [214] [215]:

FI = 2nσIδ(d)HI ≈ 2∇ϕσIδε(ϕ)HI(ϕ) (3.41)

We can derive this force relation from the CSF model of Brackbill et al. [25]
if we let the smoothed color function, ∇α̃l, be given as a smoothed Heaviside
function Hε. This implies that7: ∇α̃l = δε(ϕ)∇ϕ.

The mean curvature, HI , of the zero level set is then found from:

HI(ϕ) = −1
2
∇ · n(ϕ) = −1

2
∇ · ( ∇ϕ

|∇ϕ| ) (3.42)

where the last term is given by appropriate finite difference approximations
(e.g., [214]; [186], p 58).
7 The reformulation is based on the relationship: ∇Hε(ϕ) = ∂Hε

∂x
+ ∂Hε

∂y
+ ∂Hε

∂z
=

∂Hε
∂ϕ

( ∂ϕ
∂x

+ ∂ϕ
∂y

+ ∂ϕ
∂z

) = ∂Hε
∂ϕ

∇ϕ
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So, it is clear that we can choose ϕ(r, t = 0) to be a distance function.
However, under the evolution of ϕ(r, t), solving (3.32) or (3.33), it will not nec-
essarily remain a distance function (i.e., |∇ϕ| 
= 1). A procedure is needed to
reinitialize the level set function at each time step to retain its distance func-
tion properties without changing its level set. Sussman and Smereka ([215],
p 275) suggested that this can be achieved by solving the following PDE:

∂d

∂t′
= sign(ϕ)(1 − |∇d|) (3.43)

with initial conditions d(r, 0) = ϕ(r), where

sign(ϕ) =

⎧

⎪

⎨

⎪

⎩

−1 if ϕ < 0
0 if ϕ = 0
1 if ϕ > 0

(3.44)

and t′ is an artificial time.
The steady state solution of this PDE are distance functions. Furthermore,

when sign(0) = 0, d(r, t′) has the same zero level set as ϕ. Therefore, Sussman
and Smereka [215] solved this PDE to steady state and then replaced ϕ(r) by
d(r, t′steady).

They also found that ϕ only needs to be a distance function close to the
front. Therefore, it is not necessary to solve the PDE to steady state over the
whole domain. We may then locate the interface as the local areas within the
calculation domain where |d| ≤ ε, and we iterate on d until |∇d| = 1 near
the interface. The front will then have a uniform thickness, as this solution
corresponds to |∇ϕ| = 1 when |ϕ| ≤ ε.

Compared to the VOF method, the level set methods offer interface identi-
fication through the use of a distance function which is continuous everywhere
in the field. The solution of the field equation for this function then identify
the interface location, the zero level sets. Furthermore, this level set function
reflects advantageous numerical properties being a smooth function. In other
words, the main difference between the VOF and the level set methods is
related to the properties of the improved maker function formulation. Advan-
tages of the level-set method are that, unlike the VOF method, the interface
is represented as a continuous surface. Furthermore, there is no need for the
complex interface reconstruction algorithms. The improved function formula-
tion also reduces the main disadvantage of the VOF method, that is, it does
not smear out the location of the interface. However, according to Rider et al.
[179], level set methods although conceptually appealing suffer from a number
of detriments. First among these is the lack of volume (mass) conservation.
Computational cost is also an issue. For these reasons the LS method has
not (yet) become as popular as the VOF method, analyzing dispersed flows
in chemical reactors. However, the LS method has been used to describe the
detailed flow around individual fluid particles and thus may contribute to
improve our understanding of these phenomena.
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Pan and Suga [159], for example, performed 3D dynamic simulations of
binary droplets collisions for cases of different Weber numbers and impact
parameters. The systems used are water drops in air and tetradecane drops
in nitrogen at atmospheric conditions. The bulk fluids are considered incom-
pressible. The simulations cover the four major regimes of binary collision:
bouncing, coalescence, reflexive separation, and stretching separation. The
method predicted the outcomes of both head on and off-center collisions in
all the regimes for both systems in excellent agreement with the available ex-
perimental data. However, contrary to the work of Gotaas et al [88] in which
a VOF method was used to investigate the capasity of accurately predicting
the flow regime transition lines as sketched in Fig 3.2, Pan and Suga focused
on operating conditions in the bulk of the different flow regimes. Newerthe-
less, from the results presented in their papers it can be seen that both the
VOF and LS methods have problems to conserve the thin liquid films created
when the drops collide and a reflexive separation outcome is expected at the
transition areas between the coalescence and reflexive separation regimes. On
the other hand, it is emphasized that the LS model captures the bouncing
collision outcome even though the model in principle can predict automatic
coalescence in cases when the gas film becomes extremely thin before rup-
ture due to the computational model limitations which are similar to those
of the VOF method. No physical coalescence criterion is prescribed in any
of these models. At first sight, it may thus seem like the inherent interface
force discretization and the continuous level set function reinitialization pro-
cedure give slightly more accurate predictions of the collision outcome than
the VOF method. However, at lower Weber numbers than that of the bounc-
ing collision, the LS model fails to predict the expected coalescence regime
seen in the experimental data. The simulated results might thus suggest that
the mechanism of bouncing collision is governed by macroscopic dynamics,
whereas the collision regime of coalescence after minor deformation may be
related to microscopic phenomena. Typical errors in mass conservation were
reported to be less than 5% by volume.

The LS models are apparently more accurate than the computationally
cheaper VOF methods, but the LS models still suffer from not having the
possibility to prescribe a physical coalescence criterion instead of relying on
the numerical mode outcome of the discretization approximations.

In reactor engineering the level-set method is generally too computation-
ally demanding for direct applications to industrial scale units. The level set
method can be applied for about the same cases as the VOF method and works
best analyzing flows where the macroscopic interface motion is independent
of the microscopic phenomena. These concepts are not primarily intended
for multi-component reactive flows, so no interfacial heat- and mass transfer
fluxes or any variations in the surface tension are normally considered.



362 3 Multiphase Flow

The Embedded Interface (EI) Method

In this sub-section the embedded interface method (frequently referred to as a
front tracking method) developed for direct numerical simulations of viscous
multi-fluid flows is outlined and discussed. The unsteady model is based on
the whole field formulation in which a sharp interface separates immiscible
fluids, thus the different phases are treated as one fluid with variable mate-
rial properties. Therefore, equations (3.14) and (3.15) account for both the
differences in the material properties of the different phases as well as sur-
face tension effects at the phase boundary. The bulk fluids are incompressible.
The numerical surface tension force approximation used is consistent with the
VOF and LS techniques [222] [32], hence the major novelty of the embedded
interface method is in the way the density and viscosity fields are updated
when the fluids and the interface evolve in time and space.

Tryggvason and co-workers [227, 228, 127, 128, 170, 224, 71, 72, 225] solve
the Navier-Stokes equations using a projection method very similar to the
MAC method [96]. The interface is tracked explicitly by connected marker
points. In the solution procedure a fixed structured grid is used for the trans-
port equations, and a moving grid of lower dimension marks the boundary
between the bulk phases. This moving grid is called the front.

The properties of each fluid particle remain constant, thus a set of advec-
tion equations can be set up expressing these constraints:

Dρ

Dt
= 0 (3.45)

Dμ

Dt
= 0 (3.46)

These relations are referred to as the EOSs for the material properties [228,
158, 95, 224].

However, an essential feature of the EI method is that the fluid properties
are not advected solving the above EOSs directly. Instead, the interface be-
tween the different fluids is moved. This is achieved by explicit tracking points
on the interface between the two fluids in a Lagrangian manner [227]:

drI

dt
= vI (3.47)

After the discrete points on the interface are moved with the flow, the con-
tinuous interface is reconstructed by connecting these points by appropriate
linear or triangular elements (i.e., a finite element technique). It is noticed
that explicit front tracking is generally more complex than the advection of
a maker function as in the VOF and LS methods, nevertheless this technique
is also considered more accurate [224].

Seeing that the momentum equations are solved on a fixed grid but the
surface tension is found on the front, it is necessary to convert the inter-
face quantity that exists at the front to a grid value. It follows that at each
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time step information must be passed between the moving Lagrangian inter-
face and the stationary Eulerian grid by interpolation since the Lagrangian
interface points do not necessarily coincide with the Eulerian grid points.
This is done by a method known as the immersed boundary technique [228]
[127]. With this technique, the interface is approximated by a smooth distri-
bution function that is used to distribute the interface terms over grid points
nearest to the interface. In a similar manner, this function is used to inter-
polate the variables from the stationary grid to the interface. In particular,
an indicator function, I(r), that is 1 inside the fluid particle and 0 in the
continuous fluid, is constructed from the known position of the interface. In
fact, the jump in the indicator function across the interface is distributed
to the fixed grid points nearest to the interface using the distribution func-
tion. The immersed boundary technique then generates a grid-gradient field
∇I(r) =

∫

Font
δI(r − rFont)nFontdAFont which is zero except in a thin zone

near the interface. This transition zone has a finite thickness which is fixed
during the simulation. The indicator function (i.e., a Heaviside function) is
then obtained by solving a Poisson equation [71]:

∇2I = ∇ · ∇I = ∇ ·
∫

Font

δI(r − rFont)nFontdAFont (3.48)

To relate the gradient to the δI function marking the interface, it is found
convenient to express the indicator function in terms of an integral over the
product of 1D δI functions [224].

Since the property variables are discontinuous across the interface, one
may expect either excessive numerical diffusion or problems with oscillations
around the jump if no special treatment is used at the front. To avoid these
problems local smoothing of the variables across the discontinuous interface
is introduced. This is accomplished by use of the smoothed indicator function
calculating the fluid properties at each point on the fixed grid by:

μ(r) = μc + (μd − μc)I(r) (3.49)

ρ(r) = ρc + (ρd − ρc)I(r) (3.50)

Notice that these relations imply that the material properties in each phase
have a smooth incompressible extension into the other phase.

The net effects of the immersed boundary technique are that in the inter-
face transition zone the fluid properties change smoothly from the value on
one side of the interface to the value on the other side. The artificial interface
thickness is fixed as a function of the mesh size applied to provide stability
and smoothness, and it does not change during the calculations. Therefore
no numerical diffusion is present. The finite thickness also serves to position
the interface more accurately on the grid. The surface tension force (normal
contribution only) is then calculated estimating the mean curvature based on
geometric information obtained from the restructured interface.
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Describing collisions between fluid particles using the EI model, the fluid
film drainage and particle deformation processes will be described in detail.
However, after the fluid within the film between the particles has drained
until there are only the thickness of the two interfaces left (i.e., one inter-
face grid for each particle), the particles move together being influenced by
the interfaces, until the particles eventually rebound. Coalescence of the two
particles is only allowed if an empirical closure, i.e., a coalescence model, is
used together with a numerical procedure for merging the two moving grids.
To accommodate topology changes in the model, the interface is artificially
reconnected when two points come closer than a specified small distance. The
threshold is chosen rather arbitrarily since there exist no reliable model for
the critical interface thickness. So far Tryggvason and coworkers have either
used a given drainage time or a specified thickness of the film as criteria for
coalescence. It occurs that an advantage of front tracking is that it is possi-
ble to control the distance at which interfaces merge and study the effect of
varying coalescence criteria, unlike front capturing methods where there is no
active control over topological changes.

In the EI method the interface is explicitly tracked by connected marker
points, so such changes in topology are accounted for by changing the connec-
tivity of the points in an appropriate way. Tryggvason and coworkers state that
this numerical operation is very time consuming and represents the greatest
disadvantage of front-tracking methods. However, in methods like VOF and
LS which identify the phase boundary by a maker function, topology changes
take place automatically whenever two interfaces, or different parts of the
same interface, come closer than about one grid cell spacing. Coalescence is
apparently related to the drainage of the fluid between the coalescing inter-
faces in a complex manner, and a method that is simply connecting parts of
the interface that are close certainly give an incorrect solution because these
films supposedly rupture as a result of short-range molecular forces. There-
fore, to calculate the draining of these films prior to rupture a prohibitive fine
grid resolution is required. However, performing EI model simulations using
feasible grid resolutions Tryggvason and co-workers have confirmed that the
flow in the film between two colliding droplets is commonly so simple that
the drainage process can be accomplished by analytical lubrication models
[93, 199].

The embedded interface method has not been applied describing industrial
scale chemical reactor operation. However, the EI method has been applied
examining numerous multi-fluid phenomena relevant to reactor analysis. Un-
verdi and Tryggvason [228, 228] and Tryggvason et al [221] investigated the
interactions of two 2D and 3D bubbles. The impact of variations in viscosity
and the effects of surface tension were illustrated. They further stated that
the model can be used to inspect the validity of the classical model simpli-
fications (e.g., inviscidness, Stokes flow, two-dimensjonality or axisymmetry)
and to confirm the applicability of these idealizations for specific problems.
The motion of a few 2D bubbles at low Reynolds numbers was simulated by
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Esmaeeli and Tryggvason [70], indicating that in such bubbly flows there is
an inverse energy cascade. Esmaeeli et al. [69] and Ervin and Tryggvason [68]
computed the rise of a single bubble in a vertical shear flows and showed that
the lift force changes sign when the bubble deforms. Nobari et al [158] and
Han and Tryggvason [95] simulated binary collisions of axisymmetric drops,
predicting the breakage after initial coalescence in reasonable agreement with
experimental data. Juric and Tryggvason [127] developed a front tracking or
EI method for the solidification of pure materials and used it to examine the
growth of dendrites. The EI model has been extended and used to elucidate
the motion of a premixed flame by Qian et al. [170]. The EI method has also
been extended to simulate boiling flows [128, 71, 72, 225].

The variety of applications clearly demonstrate that the EI method has the
potential of resolving many problem aspects in reactor technology. However,
it is noted that the EI concept is not primarily intended for multicomponent
reactive flow analyzes, but still interfacial heat- and mass transfer fluxes and
variations in the surface tension have been considered [224]. Nevertheless, in
most cases the bulk phases are considered incompressible.

No direct model intercomparsisons between the EI, VOF and LS methods
have been performed, so it is difficult to evaluate which method are preferable
regarding computational costs and accuracy for different applications. How-
ever, it seems that the VOF method is faster but suffers from lower accuracy.
The LS methods are usually more accurate than VOF methods, but suffers
from higher computational costs and problems regarding mass conservation.
The EI method is quite accurate, but is probably the most time consuming
one comparing these methods. However, although the LS model predictions
can be very good for fluid particle collision simulations, the EI method has
the advantage of controlling the coalescence process explicitly provided that
a proper coalescence criterion is available. Notwithstanding, the VOF tech-
nique is still generally preferred in engineering research and industrial practice,
whereas the LS and EI methods are regarded as academic research tools.

3.3 Basic Principles and Derivation
of Multi-Fluid Models

In the following chapters on multiphase modeling we first present the under-
lying principles used developing the microscopic two-fluid model. Then we
introduce the averaging theorems and learned about the detailed mathemati-
cal manipulations required formulating the macroscopic multi-fluid transport
equations. The concepts of averaging are employed to overcome the scale dis-
parity dealing with the complex flow regimes occurring in multiphase chemical
reactors.

An introductory summary of the basic ideas underlying the conventional
single phase modeling concepts is given to emphasize the inherent limitations
reflected by the different continuum model formulations [173]. It is generally
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accepted that solids, liquids, and gases are composed of distinct molecules
or atoms. Therefore, in single phase flow there is numerous modeling ap-
proaches available that can be taken depending upon the application in ques-
tion. These include the atomistic simulation of the behavior at the molecular
level, kinetic theory, local instantaneous continuum modeling and averaged
macro-scale modeling. It is further noticed that the evolution of these mod-
eling approaches starts with a particle formulation at the atomic level. Then,
by Maxwellian averaging over systems of particles, a local instant continuum
model in the form of partial differential equations (PDEs) can be derived
from kinetic theory, as shown in chap. 2. In the context of kinetic theory it
is essential to point out the conceptual ideas that each macroscopic point
in the continuum description represents a mean value for a large number of
discrete molecules (although the exact number is not explicitly specified). In
the particular cases in which very fine scales are considered as basis for the
PDE model formulation (e.g., for micro channel analysis), the basic contin-
uum assumption might become questionable as each macroscopic point only
represent a limited number of molecules so no reliable weighted mean values
can be determined as the representativity of the distribution function is ques-
tionable. The macro-scale model is obtained by still another averaging of the
local instantaneous continuum model. These modeling approaches applied to
single phase fluid dynamics yield the Boltzmann equation, the Navier-Stokes
equations, and the Reynolds averaged Navier-Stokes equations, respectively.

In most engineering models materials are conveniently treated as continu-
ous media instead of individual molecules or atoms. This is because engineers
are mostly concerned about the averaged features of material, represented
by primitive variables like density, velocity, pressure, temperature, and mass
fractions, which vary continuously in space and time. The only approach that
is numerically tractable even for the single phase case, considering the current
state of computer capability, is the averaged macro-scale model. In kinetic
theory the macroscopic transport equations that correspond to the local in-
stantaneous conservation laws are derived in terms of moments of invariant
quantities by use of the Boltzmann equation. It is noted that the local in-
stantaneous equations deduced from kinetic theory are inherently closed, so
no additional constitutive relations are required. In continuum mechanics, on
the other hand, the governing equations are formulated directly on macro-
scopic scales adopting the continuum hypothesis. In this approach closure
laws are required, as the inherent characteristics of the molecular or atomic
movement are ignored in this framework. In fluid mechanics the Newton’s
law of viscosity, the Fourier’s law of conduction, and the Fick’s law of diffu-
sion constitute the closure laws for momentum, energy, and mass, respectively.
Nevertheless, introducing the constitutive relations in the continuum mechan-
ical approach, the resulting local instantaneous equations deduced from the
two concepts coincide. It is thus apparent that the given PDEs in both formu-
lations are not exact, they are merely very useful approximations. However,
the partial differential descriptions typically break down at very short length
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and time scales in the sense that the underlying model assumptions are vi-
olated so no physical solution can be ensured. The length and time scales
below which continuum descriptions become inaccurate are on the order of
the characteristic lengths and times associated with the micro-structure of the
medium. Only for lengths and times much larger than characteristic molecu-
lar lengths and times do the Navier-Stokes equations provide a quantitatively
correct description of fluid dynamic behavior. In single phase flow the im-
portance of rarefaction effects are frequently assessed by the magnitude of
the Knudsen number which is defined as the ratio of the mean free path of
the molecules to the particle diameter Kn = λ/dp. If the Knudsen number
is large, say Kn � 10−3, the flow can not be regarded as a continuum [38].
Moreover, in kinetic theory a similar Knudsen number is defined in terms of
some characteristic macroscopic dimension and measures the relative impor-
tance of collisions and particle streaming, and this dimensionless group must
be small if the Chapman-Enskog expansion is to be valid [77].

In general, the differential description is useful for processes where there
is a wide separation of scales between the smallest macroscopic scales of in-
terest and the microscopic scales associated with the internal structure of the
fluid. If the micro-scales were always of molecular magnitude then questions of
scale separation would seldom arise. But, in many of the models employed for
engineering purposes, the characteristic scales of the internal structure being
described are themselves macroscopic in nature. In such situations the de-
sired separation between the calculated and modeled scales is much less clear
cut, and one must be careful not to attribute quantitative significance to any
predicted solution features with scales comparable to the internal micro-scale.
When a continuum description is pushed to far, i.e. applied on scales too small,
one can only hope that such inaccuracies are not catastrophic in nature.

The local instant behavior of Newtonian multiphase flow is considered
accurately described by the continuum equations with the addition of inter-
faces across which appropriate jump conditions hold. Nevertheless, just as
for single phase flows, the application of the local instantaneous equations
to large-scale engineering problems is numerically intractable. Therefore, to
obtain macro-scale solutions we must resort to further averaging and seek so-
lutions for the average values of the system dependent variables. In essence
there are three approaches to averaging the continuous phase equations, these
are time, volume and ensemble averaging. Considering time and volume av-
eraging a central point is that the length and time scales associated with the
detailed flow structures are not always widely separated from the macroscopic
length and time scales on which one would like to predict the average behav-
ior. Therefore, the continuum description rely on proper separation of scales.
However, proper separation of scales rarely occurs in multiphase flows, as the
scales of the internal structures over which we desire to average may be com-
parable to the macroscopic scales over which the desired averaged quantities
vary. This is precisely the sort of situation in which a simple partial differen-
tial description may be expected to break down as the field variables are not
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sufficiently smooth to be considered continuous functions [173] [112]. Thus,
in these particular flow regimes, it is somewhat doubtful whether the PDEs
for the averaged flow variables can accurately predict the rate of change on
the length and time scales of interest. The second averaging operation also
introduces the need for additional closure models, and the details of the aver-
aging methods have been the subjects of debate. It is important to note that
the characteristic lengths and times over which these averages are performed
clearly define lower limits for the scales over which the equations accurately
represent differential variations. Nevertheless, the resulting PDEs can still
be accurately solved to ensure reliable predictions of the physics inherently
accounted for by the closed set of model equations, since the numerical ap-
proximations and the physical closure models are not coupled. Of course, the
resulting numerical solution doesn’t reflect any small scale physics which was
not taken into account formulating the closure laws.

Considering multiphase LES simulations, on the other hand, the situa-
tion is very different as the numerical representation and the physical model
can be directly coupled. To perform a LES simulation a differential model is
formulated, discretized and implemented in a program code. In this particu-
lar case careful considerations are required as the length and time scales of
the eventual discretization may not be compatible with those in which the
interfacial model closures were based. Besides, in many situations of single
phase simulations having wide spread of scales the discretization errors re-
flected by the finite difference and finite volume methods can be separately
analyzed and dealt with by conventional techniques such as convergence and
truncation-error analysis based on the Taylor series expansions. That is, from
a mathematical point of view, the PDEs resulting from the volume averaging
or filtering procedures are based on the continuous function assumption, and
thus they can in principle be solved with finer and finer numerical resolution in
time and space intending to improve the accuracy of the numerical representa-
tion of the proposed PDEs. On the other hand, from a physical point of view,
if the numerical resolution becomes finer than the cut off filtering scales (in
time and space) determining the basis for the interfacial closure formulation,
severe physical interpretation problems occur (strictly not defined). Proper
model validation can then only be performed on scales larger than the filtered
scales. In multiphase flow one is thus hardly ever in a position to keep on refin-
ing the resolution until the solution no longer changes (i.e., basically because
no adaptive interfacial closures are available), and one must seek other means
of obtaining the most accurate results possible under the circumstances. In
any case, there is clearly no point in examining the behavior of the system in
the limit of infinitely fine resolution when the interfacial closures do not apply
on scales less than those considered in their parameterization.

Therefore, ensemble averaging is frequently used intending to avoid the
shortcomings of time and volume averaging, as ensemble averaging is not
limited by any volume or time constraints [38] [59] (i.e., still limited by the
continuum hypothesis adopted formulating the underlying single phase equa-
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tions). Ensemble averaging is based on the probability of the flow field being in
a particular configuration at a given time. That is, theoretically an ensemble
denotes an infinite set of replicas of the same system that are identical in all
respects apart from being in different microscopic multiphase system states
at a particular instant in time. Nevertheless, in a more practical view a useful
conceptualization of the ensemble average assumes that the flow is determin-
istic, but the randomness arises through uncertainty in the initial conditions
itself, the physical transport coefficients or the empirical model parameters
and the chaotic behavior of the evolving flow [58] [59]. Let a realization of the
flow denote a possible motion that could have happened. An ensemble average
is then taken over many different flow realizations that have the same initial
and boundary conditions. In the limit that the number of realizations is going
to infinity, the ensemble average approaches the ensemble mean which may be
a function of both time and space. In numerical weather prediction a similar
ensemble average is computed by averaging over many different forecasts for
the same domain and time period, but starting from slightly different initial
conditions or using different numerical models or parameterizations. In this
sense an ensemble average is a generalization of the simple principle of adding
the values of the variables for each realization, and dividing by the number
of observations. It is further emphasized that ensemble averaging does not
require that any representative volume contains a large number of particles
in any given realization [58]. Besides, the interfacial coupling terms can in
principle be considered representative for an ensemble of identical multiphase
system states, thus they do not restrict the ensemble average in terms of a
representative volume in their fundamental form. Nevertheless, the interface
closures adopted in all continuum model formulations are conveniently derived
per unit volume based on simple volume averaging considering one single par-
ticle in a relatively large volume of the continuous phase so that the particle
can be considered a point mass. The interfacial constitutive relations may also
be parameterized in terms of the relevant time scales for the problem in ques-
tion. Therefore, these characteristic length and time scales obviously define
limitations for the scales over which the closed ensemble average equations
accurately represent differential variations. In effect all the closed macro-scale
model formulations reflect similar restrictions for their applications.

In a conceptual interpretation the time and volume averages are repre-
sentative measures for one realization only, so these averages rely on an im-
plicit assumption that the statistics are the same for any one realization [58].
In a theoretical sense the ensemble average is thus considered fundamental,
and time and space averages can only be used to approximate the ensemble
average in special situations. That is, the ergodic hypothesis states that for
statistically stationary and homogeneous flows the ensemble, time and volume
averages are identical, otherwise the ergodic hypothesis is to be considered a
rough approximation [105]. On the other hand, the experimental data used
for model validation is normally obtained in a time or volume averaged frame-
work [216]. Moreover, the accuracy limitations in performing experiments and
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the implicit assumptions related to the time and volume averaging techniques
make the link between purely theoretical model considerations and practical
applications difficult. In most applications it is thus referred to the ergodic
hypothesis assuming that experimental data determined using any averaging
procedure can be used validating any model formulation. However, such a
model validation procedure is only approximate (at best) and indicates the
accuracy that can be achieved using any of these modeling concepts.

Based on the considerations presented above, it was found necessary to
carry out a critical evaluation of the various model formulations available
aiming to achieve a proper description of the multiphase flow regimes occur-
ring in chemical reactors.

3.3.1 Local Instantaneous Transport Equations

In this section we apply the control volume approach to derive the governing
equations for two-phase flows in the Eulerian framework. The mathematical
formulation of the local instantaneous equations starts with the integral bal-
ance principle written for a fixed control volume (CV), through which the
fluid flows, containing two continuous phases separated by an interface across
which the physical properties are discontinuous and may jump. The inte-
gral equations are then transformed by means of the Leibniz rule and the
Gauss theorems to obtain a sum of two volume integrals and a surface in-
tegral. The volume integrals lead to the local instantaneous PDEs valid in
each of the continuous phases whereas the surface integral denotes the local
instantaneous jump conditions valid on the interface only. Literature cited
[185, 9, 13, 42, 112, 43, 47, 41, 26, 197, 48, 24, 198, 197, 118, 199, 63, 25, 146,
147, 67, 40, 82].

By definition a phase interface is the region in space separating two immis-
cible phases in which the system properties differ from those of the contiguous
phases. When a physical phase interface is investigated on a sufficiently fine
length scale, the transition zone is characterized as a highly inhomogeneous
3D region over which rapid changes and steep normal gradients in the con-
tinuum mechanical fields and material properties occur [82]. Several modeling
approaches have been proposed describing the interfacial transport processes,
yet the results are not in complete agreement. Basically, the physical nature
of such a phase interface allows two different views to be taken formulating
continuum models for the interface region. Hence the interface region is either
regarded as a microscopic 3D diffuse transition region or a macroscopic 2D
dividing surface as observed over an experimental length scale that is large
relative to the thickness of the physical interfacial transition zone.

From an academic viewpoint one might assume that on microscopic scales
the system properties are continuous functions across the interface region as
well as throughout the bulk phases, the phase interface might be regarded
as a 3D region with finite thickness. Applying the general balance principle
to a material CV containing two phases, in a similar manner as we did for a
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continuous 3D media in chap 1, the governing balance equations can be cast
in the generic form:

D

Dt

∫

V (t)

(ρψ) dv = −
∫

A(t)

J · n da +
∫

V (t)

∑

c

ρcφc dv (3.51)

where n is the outward directed normal unit vector to the surface of the
control volume A, D/Dt is the substantial time derivative, v is the velocity,
ρ is the density, ψ is the conserved quantity, J is the diffusive flux and φc

is the source term. The given system balance can be transformed into an
Eulerian control volume balance formulation by use of an extended form of
the generalized transport theorem, which takes the discontinuous interface
into consideration, in a similar manner as described in chap 1 for single phase
flow. When the specific field variables indicated in Table 1.1 are substituted,
the familiar local instantaneous balance equations are obtained governing the
transport of mixture mass, species mass, mixture momentum, mixture energy,
temperature and entropy etc. for the continuous media.

Although it is appealing from a scientific point of view to regard the inter-
face as a 3D region of finite thickness, the computational difficulties involved
considering the implicit numerical grid resolution requirements make the ap-
plication of this concept infeasible.

From a practical viewpoint instrumentation size limitations enable only in-
direct observations of the interfacial properties through their influence upon
the surrounding bulk phases. Therefore, in engineering applications an inter-
face has traditionally been viewed as a singular 2D dividing surface separating
two immiscible homogeneous bulk phases8. In this concept the cumulative ef-
fects of the interface upon the adjoining phases are taken into account by
the assignment to the dividing surface of any excess properties not accounted
for by the homogeneous bulk phases [1]. Adopting these ideas describing two-
phase flows it is essential to note that the conventional single phase differential
balance equations can be applied to each bulk phase up to the interface, but
not across it. Therefore, in the presence of a discontinuous interface the gov-
erning equations must be supplemented by appropriate boundary conditions
or jump conditions at the interface. This is accomplished by writing separate
conservation and constitutive equations for each of the two bulk fluids and
the dividing surface.

Furthermore, adopting the macro scale viewpoint several alternative mod-
eling approaches are proposed in the literature for deriving the jump conditions.
Moreover, coinciding results are achieved from independent thermodynami-
cal and mechanical derivations, since the surface tension is equivalently de-
fined from energy and force considerations [150]. The relevant concepts can be
briefly summarized as follows. In a series of papers a general balance principle
in which the interface is represented by a 2D dividing surface of no thickness

8 The 2D dividing surface model was originally proposed by Gibbs [83] (p 219).
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was formulated for a generic quantity associated with a two-phase material
body [185, 194, 42, 41, 197, 48, 199, 200]. A second group of interface model
formulations applied a very similar balance principle in which the interface
was represented by a 3D region over an infinitesimal CV of negligible thick-
ness which was fixed to and spans the interface [135]. Ishii [112] derived an
alternative interfacial balance equation based on a CV analysis, introducing
surface mean properties which were averaged over a thin layer in the neigh-
borhood of the interface. A third group of methods is proposed deriving the
macro-scale interfacial conservation and constitutive equations from knowl-
edge of the underlying micro-scale equations and thermodynamic principles
[151, 150, 26, 63, 146, 147, 82]. Matched asymptotic expansion techniques are
used for systematically reconciling the macro- and micro scale views.

In this book the generic balance equations for discontinuous 3D media are
formulated adopting the generic surface excess concept [83, 1, 63]. The physical
interface view adopted admits the use of two disparate length scales, so the
physical variables are decomposed into the sum of a bulk phase quantity and
an interface quantity. The bulk quantities represent the macro scale view that
we are not resolving distances of the order of the thickness of the interfacial
region. In the micro scale viewpoint, on the other hand, a more physical field
density becomes apparent which is fully continuous throughout dV . It is only
in the vicinity of the fluid interface that differences between the interface
and bulk properties emerge, and these differences are attributable to large
normal gradients in ψ existing within the interfacial transition zone. Thus,
as a means of reconciling the usual discontinuous macro-scale view of fluid
interfaces with the more physical continuous micro-scale view, the residual
difference is assigned to the macroscopic surface AI as representing the total
surface excess amount of the property ψ in AI . Therefore, the generic area
field density ψI is connected to the excess amount of the property per unit
area at the points of the 2D interfacial continuum.

Consider a joint material control volume (CV) containing two phases with
phase index k(= 1, 2) and an interface with area AI(t) moving with the ve-
locity vI , as illustrated in Fig. 3.3. The macroscopic volume occupied by the
CV is denoted by V = V1(t) + V2(t), and A = A1(t) + A2(t) is the closed
macroscopic surface of the CV. Hence it follows that for each phase k sepa-
rately, an arbitrary non-material control volume Vk(t) bounded by a closed
surface having partly an external CV surface Ak(t) and partly an interface
surface AI(t) is employed. lI(t) is the line formed by the intersection of AI()
with A(t). It is emphazised that the interface is not a material surface because
mass transfer may occur between the volumes V1(t) and V2(t) through AI(t).

With the use of the excess property relations, the first term on the LHS
of (3.51) is written as:

D

Dt

∫

V (t)

(ρψ) dv =
d

dt

∫

V1(t)+V2(t)

(ρψ) dv +
dI

dt

∫

AI(t)

(ρIψI) da (3.52)
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Fig. 3.3. A material control volume containing two phases with a moving non-
material interface.

in which the quantities ψ, ρ and v are assumed to be continuously differen-
tiable in the regions V1(t) and V2(t), and the surface quantities ψI , ρI and vI

are assumed to be continuously differentiable on the surface AI(t). Since in
general the dividing surface AI(t) is non-material, the regions V1(t) and V2(t)
are not material.

The molecular (diffusive) fluxes of the property ψ through the boundaries
of the macroscopically discontinuous CV depicted by V are rewritten in a
similar manner, in which we are led to define the surface excess lineal flux of
ψ through AI [63]:

−
∫

A(t)

J · n da = −
∫

A1(t)+A2(t)

J · n da−
∫

lI(t)

ϕI · NI dl (3.53)

The volume source relation adopts the form:
∫

V (t)

∑

c

ρcφc dv =
∫

V1(t)+V2(t)

∑

c

ρcφc dv +
∫

AI(t)

∑

c

ρI,cφI,c da (3.54)

By substituting these macro-scale excess property relations (3.52)- (3.54)
into the generic microscopic transport equation (3.51), the macroscopic bal-
ance principle, as applied to the overall material CV for an arbitrary property
ψ (per unit mass) associated with a two-phase system, is by definition ex-
pressed as a balance of the rate of change of the property within the two
volumes Vk(t) (k = 1, 2) and the interface AI(t), net inflow fluxes by diffusion
through Ak(t), production within the bulk volumes dVk and the interface sur-
face AI(t), and net inflow fluxes through the interface AI (per unit length of
line). The resulting generic macroscopic balance equation is expressed on the
form9:
9 The notation used in the generic equation is strictly only valid for scalar proper-

ties. In the particular case when a vector property is considered the tensor order
of the corresponding variables is understood to be adjusted accordingly. Hence,
the quantities ψk, φk and φI may be vectors or scalars, while Jk and ϕI may be
vectors, or second order tensors.
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2
∑

k=1

⎛

⎜

⎝

d

dt

∫

Vk(t)

(ρkψk) dv

⎞

⎟

⎠
+

dI

dt

∫

AI(t)

ρIψI da = −
2

∑

k=1

∫

Ak(t)

Jk · nk da

+
2

∑

k=1

∫

Vk(t)

∑

c

ρk,cφk,c dv +
∫

AI(t)

∑

c

ρI,cφI,c da−
∮

lI(t)

ϕI · NI dl

(3.55)

in which t is the time coordinate, A(t) is the closed surface bounding the whole
body, lI(t) is the line formed by the intersection of AI(t) with A(t), ρkψk is
the density of the property per unit volume within the bulk phase k, dI

dt is
the surface material derivative following a multi-component surface particle
moving with the mass-averaged surface velocity vI , ρIψI is the density of the
quantity per unit area on AI(t), ρI is the mass density per unit area on AI(t),
Jk is the diffusive flux of the quantity ψk (per unit area) through Ak(t), nk

is the unit vector normal and outward directed with respect to the closed
surfaces constituted by Ak(t), φk,c is the rate of production of the quantity
ψk per unit mass at each point within the bulk phases, φI,c is the rate of
production of the quantity ψk per unit mass at each point on AI , and ϕI is
the flux of the quantity ψI (per unit length of line) through lI(t), NI is the
unit vector normal to lI(t) that is both tangent to and outwardly directed
with respect to AI(t).

For the purpose of describing interfacial transport phenomena it is conve-
nient to describe the 2D surface geometry using a 3D reference system with
origo located outside the surface in the CV in which the surface is embed-
ded (e.g., [63], chap. 3; [217], sect. 11.4; [62], pp. 486-492). This framework
is named extrinsic and connects the 2D surface and the ambient 3D bulk
phases. The intrinsic perspective of an observer located internally within the
surface is then used as a component part providing a simpler description of
the interface in terms of a 2D representation which is independent of the 3D
space in which the interface is embedded. Due to the mathematical complex-
ity involved, the notation of the 2D differential geometry is examined briefly.
A more comprehensive introduction can be found in, for instance, references
[63, 217, 25, 129, 1, 62, 94, 199, 241, 232, 29].

Let us consider surfaces in a Cartesian frame, whence these results can be
generalized to any set of three coordinates x in an arbitrary coordinate system
fixed in space. A surface in 3D space can generally be defined in several differ-
ent ways. Explicitly, z = F (x, y), implicitly, f(x, y, z) = 0 or parametrically
by defining a set of parametric equations of the form x = x(ζ, η), y = y(ζ, η),
z = z(ζ, η) which contain two independent parameters ζ, η called surface coor-
dinates or curvilinear coordinates of a point on the surface. In this coordinate
system a curve on the surface is defined by a relation f(ζ, η) = 0 between
the curvilinear coordinates. By eliminating the parameters ζ, η one can derive
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the implicit form of the surface and by solving for z one obtains the explicit
form of the surface. Moreover, using the parametric form of the surface we can
define the position vector to a point on the surface which is then represented
in terms of the parameters ζ, η as rI = r(x(ζ, η), y(ζ, η), z(ζ, η)). The curves
r(ζ, c2) and r(c1, η) with c1, c2 constants define two surface curves called co-
ordinate curves, which intersect at the surface coordinates (c1, c2). The family
of curves with equally spaced constant values define a surface coordinate grid
system. The vectors aζ = ∂r

∂ζ and aη = ∂r
∂η evaluated at the surface coordinates

(c1, c2) on the surface, are tangent vectors to the coordinate curves through
the point and basis vectors for any vector lying in the surface. The position
vector is then expressed in the form rI = x(ζ, η)ex + y(ζ, η)ey + z(ζ, η)ez.
From the basis vectors we may construct a unit normal vector to the sur-
face at the point P by calculating the cross product of the tangent vectors
nI(ζ, η) = aζ × aη/|aζ × aη|, denoting a right handed system of coordinates.
In this frame a vector c associated with points in the surface can be expressed
by c = cαaα + cnnI = cαaα + cnnI , where cα(α = 1, 2) are the contra-variant
components of c and cα(α = 1, 2) are the covariant components of c. For
orthogonal coordinate systems, a set of unit vectors iα = aα/|aα| can be de-
fined. Hence, at each point P on AI one can define a set of orthonormal basis
vectors (i1, i2, nI), where i1 and i2 are lying in the tangent plane and nI is
the unit normal to AI . In this frame the vector c associated with points in
the surface can be expressed by c = ĉαiα + cnnI .

Let the position (ζ, η) of a moving particle in the surface be represented
by the position vector rI = rI(ζ, η, t) = x(ζ, η, t)ex +y(ζ, η, t)ey +z(ζ, η, t)ez.
The velocity of the surface point (ζ, η) is then defined by:

vI =
(

∂rI

∂t

)

ζ,η

(3.56)

A rigorous model formulation must consider all the relevant interfacial trans-
port phenomena. By constructing a moving coordinate system at each point
on the interface one can describe the geometry in terms of a curvature which
is a measure of how the tangent vector to the coordinate curves in the surface
are changing along the curves. To compute the curvature we parameterize a
curve in the surface in yet another way in terms of the arc length parameter s,
thus rI = rI(s) where ζ = ζ(s) and η = η(s). Thereafter we design a moving
frame of orthogonal unit vectors traveling along a curve in space consisting of
three vectors, the unit tangent vector, the unit normal vector and a bi-normal
vector which is perpendicular to both the tangent and normal vectors10. From
these prerequisites the method for determining the curvature proceeds with
the construction of a unit normal nI at a general point P on the surface,
and the design of a plane which contains the unit surface normal vector nI .
Let rI,1 = rI,1(s1) denote the position vector defining a curve 1 which is the
intersection of the selected plane with the surface, where s1 is the arc length
10 This frame is named the Frenet frame after Jean-Frédéric Frenet (1816-1900).
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along the curve measured from the point P . The curve’s unit tangent vector
evaluated at the point P is then given by:

t1 =
drI,1

ds1
=

drI,1/dt

ds1/dt
=

drI,1/dt

|drI,1/dt|
(3.57)

Differentiating t1 ·t1 = 1, with respect to arc length s1 we find t1 ·dt1/ds1 = 0
which implies that the vector dt1/ds1 is perpendicular to the tangent vector
t1. Therefore, if we divide dt1/ds1 by the length |dt1/ds1|, we obtain a unit
vector which is orthogonal to t1.

Hence, the principal unit normal vector to the space curve ns1 is defined
by:

ns1 = ± 1
|dt1/ds1|

dt1

ds1
(3.58)

in which we normally choose the sign of ns1 so that ns1 points in the direction
in which the curve is bending [62]. In other words, the unit normal vector ns1

is positive pointing into the concave side of the curve.
The bi-normal unit vector of a space curve b1 = t1×nI is perpendicular to

both the surface tangent vector t1 and the surface normal vector nI , such that
the vectors (t1,nI ,b1) form a right handed system. It is noted that the vector
ns1 lies in the plane which contains the vectors nI and b1, yet the direction
of the two normal vectors in this plane generally differ by an angle θ.

For curve 2 a consistent orthogonal Frenet frame is defined by (t2,nI ,b2).
Therefore, for each of the two Frenet frames the curvature vectors κ1 = dt1

ds1

and κ2 = dt2
ds2

denote the rate at which the unit tangent vectors to the two
curves turn with respect to the arc length s1 and s2, respectively, along these
curves. Since t1 and t2 are unit vectors, the length remain constant and only
the direction changes as the particles move along the curves. The curvature
vectors can be written in the component form as

κ1 =
dt1

ds1
= κ1ns1 = κn1nI + κg1bs1 = κn1 + κg1 (3.59)

κ2 =
dt2

ds2
= κ2ns2 = κn2nI + κg2bs2 = κn2 + κg2 (3.60)

where κn is called the normal curvature and κg is called the geodesic curvature.
The curvatures along s1 and s2 are conventionally defined by

κ1 =
∣

∣

∣

∣

dt1

ds1

∣

∣

∣

∣

and κ2 =
∣

∣

∣

∣

dt2

ds2

∣

∣

∣

∣

(3.61)

for curve 1 and 2, respectively.
To determine how much a curve is curving near a point on the surface

the normal curvature components suffice, since the geodesic curvature rather
concerns a property of curves in a metric space which reflects the deviance of
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the curve from following the shortest arc length distance along each infinites-
imal segment of its length. So far the two perpendicular planes containing
the unit normal were arbitrarily selected. If we vary the plane containing the
unit surface normal nI at P we get different curves of intersection with the
surface, in which each curve has a curvature associated with it. By examining
all such planes we can identify the maximum and minimum normal curvatures
associated with the surface point P . The values of these normal curvatures
are called the principal curvatures κn1 and κn2 . We omit details here, making
only loose statements about the results of differential geometry of surfaces.

The local geometry of a surface is generally characterized by two surface
tensors, the metric tensor and curvature tensor. Letting (ζ, η) = (ζ1, ζ2), the
tangent vectors to each of the coordinate curves at a point P can be repre-
sented as the basis vectors aα = ∂rI

∂ζα (α = 1, 2) where the partial derivatives
are to be evaluated where the coordinate curves on the curves intersect. It
follows that an element of arc length with respect to the surface coordinates
is represented by:

ds2 = drI · drI =
∂rI

∂ζα
· ∂rI

∂ζβ
dζαdζβ = gαβdζ

αdζβ (3.62)

where the components of the local metric tensor is defined by
gαβ = aα · aα (α, β = 1, 2) in terms of the basis vectors. It has an inverse gαβ

which satisfies by definition aα · aβ = gαβgαβ = δβ
α (α, β = 1, 2), where δβ

α

is the Kronecker delta and the repeated Greek superscript-subscript indices
imply summation following the Einstein summation convention. The metric
tensor and its inverse are used to raise and lower Greek indices as in the
following example: aα = gαβaβ and aα = gαβaβ (α, β = 1, 2). It is noted that
the quadratic form of (3.62) is called the first fundamental form of the surface.
Many important local properties of a surface can be expressed only in terms
of this fundamental form. The study of these properties is called the intrinsic
geometry of the surface.

The normal curvature which is determined from the dot product relation
κn = nI · κ = nI · dt

ds . From the orthogonality condition nI · t = 0 we obtain
by differentiation with respect to the arc length s the relation nI · dt

ds + t · dnI

ds ,
so the normal curvature can be rewritten as κn = −t · dnI

ds = −drI

ds · dnI

ds . We
can then define the quadratic form

κnds
2 = −drI · dnI = Kαβdζ

αdζβ (3.63)

where the components of the curvature tensor (dyadic) Kαβ is defined via
the second derivative of the surface shape function, Kαβ = nI · ∂

∂ζα

∂rI

∂ζβ
. The

curvature tensor for the surface is defined by the relation K = −∇InI , and the
signed mean curvature HI = − 1

2g
αβKαβ = − 1

2∇I ·nI of the surface is positive
11 when the mean curvature is concave in the direction of nI . The surface

11 Note that other sign conventions exist as well.
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gradient operator is defined as ∇I = eI · ∇ = aα ∂
∂ζα . The quadratic form of

(3.63) is called the second fundamental form of the surface. The investigation
of the properties of the surface expressible in terms of the second fundamental
form are called extrinsic geometry of the surface.

Adopting an alternative interpretation of the second fundamental form of
the surface the normal and mean curvatures can be computed from a pro-
cedure for determining the radii of curvature instead. In general, a curved
surface is uniquely characterized by two radii of curvature. Again, to com-
pute the curvature at a given point P of an arbitrary surface embedded in
3D space, one erects a normal to the surface at the point in question and
then passes a plane through the surface and containing the normal. The line
of intersection will in general be curved, so the local curvature at differential
dimensions is approximated as the arc of a circle that is tangent to the curve
at the given surface point. Thus, the first radius of curvature coincides with
the radius of the imaginary circle. The second radius of curvature is obtained
by passing a second plane through the surface, also containing the normal,
but perpendicular to the first plane. The mean curvature, HI , is then defined
as the geometric mean value of the two radii of curvature,

HI =
1
2
(

1
R1

+
1
R2

) (3.64)

It is emphasized that the radii of curvature R1 and R2 obtained in this way are
not necessarily the principal radii of curvature, but the geometric mean value
of the reciprocals of the radii of curvature equals the mean curvature as this
sum is independent of how the first plane is orientated [1]. On the other hand,
if we rotate the first plane through a full circle, the first radius of curvature
will go through a maximum, and its value at this maximum is called the
principal radius of curvature. The second principal radius of curvature is then
that in the second plane, yet kept fixed and perpendicular to the first. From
the preceding discussion we conclude that the principle curvatures correspond
to the reciprocals of the principal radii of curvature κ1 = 1/R1 and κ2 = 1/R2.

From a mathematical point of view this geometrical surface representation
forms a rigorous basis for calculating the interfacial transport processes. The
geometrical surface model can, for example, be adopted describing the macro-
scale experimental observations that the normal surface tension force induces
higher normal stresses in the fluid on the concave side of the interface than in
the other fluid on the convex side of the interface. Nevertheless, in practice it
is difficult to use these mathematical expressions for estimating the curvature
of a surface in a numerical model, since it requires an algorithm for finding and
choosing two convenient curves s1 and s2, and calculating the mean curvature
from these two curvatures. Instead, the mean curvature is expressed in terms
of the unit normal that are determined based on so-called level curves as
discussed in sect. 3.2.2 presenting the VOF- and LS methods. A geometrical
interpretation of the directional derivative shows that the gradient to a level
curve at a given point on the surface determines a normal vector to the level
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surface. The normal vector is directed in the direction in which the level
function increases most rapidly (corresponding to the direction of steepest
ascent on a surface). The position of a point on a moving and deforming
dividing surface may be described by the single scalar equation (e.g., [199],
p 24; [217], sect 12.7):

f(r, t) = 0 (3.65)

upon differentiating this function with respect to time following a particular
point on the surface (ζ, η), we find:

∂f

∂t
+ vI · ∇f = 0 (3.66)

Since the interface is considered a level surface, the unit normal vector nI to
AI is defined by:

nI = ± ∇f

|∇f | (3.67)

where the sign (+) is conventionally used for the normal directed outwards
and (−) is used for nI directed inwards [246]. Nevertheless, nI can point in
the same direction as nk or in the opposite direction depending on the choice
of level function (i.e., the level function is usually set to be the volume fraction
of either the continuous or dispersed phase). The unit normal of the dispersed
phase, for example, is pointing outside the particle when it is defined from
the spatial distribution of the volume fraction fields as follows:

nd = − ∇αd

|∇αd|
=

∇αc

|∇αc|
(3.68)

The speed of displacement of the surface is defined as the scalar product of
vI by nI . We then deduce, by use of (3.66) and (3.67):

vI · nI = vI ·
∇f

|∇f | = −
∂f

∂t
|∇f | (3.69)

The next task in our model derivation is to transform the system description
(3.55) into an Eulerian control volume formulation by use of an extended form
of the generalized transport theorem (see App A). For phase k the generalized
Leibnitz theorem is written:

d

dt

∫

Vk(t)

(ρkψk) dv =
∫

Vk(t)

∂(ρkψk)
∂t

dv +
∫

Ak(t)

ρkψkvk · nk da

+
∫

AI(t)

ρkψkvI · nk da

(3.70)

Likewise, the second term on the LHS of (3.55) is transformed using the
Leibnitz theorem for the area AI (see app A). The surface theorem yields:
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dI

dt

∫

AI(t)

(ρIψI) da =
∫

AI

(

dI(ρIψI)
dt

+ ρIψI∇I · vI

)

da (3.71)

in which dI/dt is the material derivative in the surface denoting the time
derivative of a surface quantity following the motion of a surface particle
(e.g., [199], p 14; [58], p 90; [63], sect 3.4). A material interface does not
exchange mass at any point rI with the surrounding bulk phases, but moves
and deforms with the mass averaged motion of the neighboring fluid phases
[63], Sect 3.4. In particular, the normal component of the velocity vector at
some point rI of a material fluid interface, is identical to the actual normal
surface velocity at that point. However, it is possible to allow for net solute or
solvent molecular exchange to occur by molecular diffusion without violating
the condition of no net mass exchange. Therefore, we often restrict the model
derivation considering a material interface, with the interpretation that there
are no convective transport across the interface, but we do not rule out the
possibility of diffusive transport across the interface. This is possible because
the molecular mass diffusion flux is measured relative to the mass averaged
velocity, hence there is not net mass transport when there is no convective
flux. That is, for a material surface, the velocity of a point lying permanently
on the interface is the same as the mass-averaged velocity of the two 3D fluid
continua lying on either sides of the interface. For a non-material interface
the interface velocity will generally differ from the velocities of the two 3D
fluid continua lying on either sides of the interface. However, the kinematical
treatment of the interface as being a material surface may in many cases
be a sufficiently accurate approximation for reactive systems. Nevertheless,
to present a general description, we proceed assuming that the interface is
non-material.

The convective and diffusive transport terms in (3.55) are rewritten as the
sum of a volume and an interface surface integral using Gauss’ theorem (see
app A). For each bulk phase we get:

∫

Vk(t)

∇ · Jk dv =
∫

Ak(t)

Jk · nk da +
∫

AI(t)

Jk · nk da (3.72)

and
∫

Vk(t)

∇ · (ρkvkψk) dv =
∫

Ak(t)

(ρkvkψk) · nk da +
∫

AI(t)

(ρkvkψk) · nk da (3.73)

We can now combine the generalized transport theorem (3.70) and the
Gauss’ theorem (3.73) to obtain:
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d

dt

∫

Vk(t)

(ρkψk) dv =
∫

Vk(t)

[

∂(ρkψk)
∂t

+ ∇ · (ρkvkψk)
]

dv

+
∫

AI(t)

ρkψk(vI − vk) · nk da

(3.74)

We may refer to (3.74) as the transport theorem for a region where the closing
control volume surface partly consists of a non-material phase interface.

Finally, the interfacial flux terms in (3.55) are transformed from a line
integral into an interface surface integral using the surface divergence theorem
(app. A). In the momentum equation the interfacial stress term involving
surface tension appears as a line integral

∫

lI(t)
NI · TI dl over the curve lI(t)

which is the intersection of the fixed CV and AI(t). TI is the surface stress
tensor and NI is the unit normal vector located in the tangent plane and
directed outward the area AI (Fig. 3.4). The surface fluid is normally assumed
to be inviscid and thus isotropic, so this force reduces to

∫

lI(t)
NIσIdl, where

σI is the surface tension (a scalar). The Gauss theorem for a surface enable
the transformation of a line integral into a surface integral, hence the surface
tension term is conventionally written as:

∫

lI(t)

NIσI dl =
∫

AI(t)

[∇IσI − (∇I · nI)σInI ] da =
∫

AI(t)

[∇IσI + 2HIσInI ] da

(3.75)
where ∇I is the surface del operator. The surface divergence −(∇I · nI) is
equal to twice the mean curvature,

−∇I · nI = 2HI (3.76)

The first term on the RHS of (3.75) is a force acting tangential to the interface
toward regions of higher surface tension. The second term on the RHS of (3.75)
is a force acting normal to the interface, proportional to the curvature HI . The
normal force tends to smooth regions of high curvature, whereas the tangential
force tends to force fluid along the interface towards regions of higher surface
tension.

Surface tension arises due to short range intermolecular forces. The most
important ones are van der Waals forces, London dispersion forces, hydro-
gen and metallic bondings [1]. The contributions from the individual forces
are assumed independent, and the effective surface tension are calculated as
the linear sum of the individual force contributions. The different molecular
attraction forces at the two sides of the interfaces induce a resulting attrac-
tion force at the interface. Imagine that the molecules at an interface between
two fluids exist in a state different from that of the molecules in the inte-
rior of the fluid. The phase k molecules are (on the average) surrounded by
phase k molecules on only one side within the interface, whereas the interior
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molecules are completely surrounded. Consequently, the configurational en-
ergy of the surface molecules differs from that of the interior molecules and
the surface exists in a state of tension [234]. From a micro-scale point of view
we may then say that the interfacial tension force is exerted by the interfacial
material lying on the convex side of the surface upon the material lying on
the concave side.

Two somewhat different definitions of the surface tension exist in the lit-
erature [1]. First, as discussed above, the surface tension can be viewed as a
force per unit length intending to reduce the area of the interface. We can
thus define it in accordance with the following interface force:

∫

AI(t)

FI da = −
∮

lI(t)

NIσI dl (3.77)

where σI has units N/m. This interpretation is usually adopted for experi-
mental determination of the surface tension.

Second, in thermodynamics it is more common to define surface tension in
terms of work or the amount of energy needed to increase the surface with one
unit area (i.e., the energy needed to bring a certain amount of molecules from
the bulk to the surface). In this context the surface tension has a character of
a surface free energy per unit area. The latter definition is in fact equivalent to
the unit force per unit length (i.e. Nm/m2 ≡ N/m). The energy interpretation
is by many researchers in thermodynamics considered the more fundamental
one, and thus this interpretation is usually adopted for theoretical derivations.
The surface tension is then defined as [1] [166]:

σI = (
dĜ

dA
)T,P,n = (

dF̂

dA
)T,V,n (3.78)

where dA determines the increase in surface area, dĜ denotes the change of
surface Gibbs free energy, and dF̂ denotes the change of surface Helmholtz
energy. In this case σI has units Nm/m2.

Further details on the force balance at an arbitrary curved fluid interface
is given in app A.

In the total energy and heat equations a similar line integral term appears
∫

lI(t)
qI ·NIdl accounting for the heat flux entering the CV through lI . Using

another form of the Gauss theorem for a surface (app. A) transforming the
line integral into a surface integral, the surface heat flux term is conventionally
written as:

∫

lI(t)

qI · NI dl =
∫

AI(t)

∇I · qI da (3.79)

For convenience, the generic interface flux ϕI of arbitrary tensorial order
in (3.55) is split into two groups of contributions in accordance with their
tensorial order (i.e., considering the mentioned surface tension and interfacial
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Fig. 3.4. Diagram for Gauss surface theorem.

heat fluxes only). The first group represents flux vectors ςI , whereas the second
group denotes fluxes of isotropic second order tensors ζIeI .

The resulting surface terms are then written applying the different forms
of the surface divergence theorem [63]:

−
∮

lI(t)

ϕI · NIdl = −
∮

lI(t)

(

ςI · NI + (ζIeI) · NI

)

dl

= −
∫

AI(t)

∇I · ςIda−
∫

AI(t)

∇I · (ζIeI)da

= −
∫

AI(t)

∇I · ςIda−
∫

AI(t)

[

∇IζI − (∇I · nI)ζInI

]

da

(3.80)

where ∇I · eI = 2HInI . eI denotes the dyadic surface idemfactor defined by
eI = e − nInI , in which the dyadic e is the 3D spatial idemfactor [63]. It is
further noted that the ςI vector is tangent to the surface AI .
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Using these theorems and excess definitions, (3.55) takes the form:

2
∑

k=1

∫

Vk(t)

(

∂(ρkψk)
∂t

+ ∇ · (ρkvkψk) + ∇ · Jk −
∑

c

ρk,cφk,c

)

dv =

−
∫

AI(t)

(

dI(ρIψI)
dt

+ ρIψI∇I · vI −
∑

c

ρI,cφI,c

−
2

∑

k=1

(ρk(vk − vI)ψk + Jk) · nk

+ ∇I · ςI −∇IζI + (∇I · nI)ζInI

)

da

(3.81)

It is seen that the governing system equation (3.51) is transformed into a
generic Eulerian control volume formulation (3.81) consisting of a volume
integral determining the microscopic transport equations for the bulk phases
and a surface integral determining the jump balance at the interface.

The balance (3.81) must be satisfied for any Vk(t) and AI(t), thus the
arguments in the volume and surface integrals must all independently be equal
to zero. The local instantaneous two-phase balance equations for a quantity
ψ in the kth phase where Jk and φk are the fluxes and sources of ψk can then
be expressed as:

∂(ρkψk)
∂t

+ ∇ · (ρkvkψk) + ∇ · Jk −
∑

c

ρk,cφk,c = 0 (3.82)

The balance principle applied to mass, momentum and energy for an interface
is expressed by the jump condition:

2
∑

k=1

(

ρk(vk − vI)ψk + Jk

)

· nk =

dI(ρIψI)
dt

+ ρIψI∇I · vI −
∑

c

ρI,cφI,c + ∇I · ςI −∇IζI + (∇I · nI)ζInI

(3.83)

Continuity

The mass balance is then found by substituting ψ = 1, Jk = 0 and φk,c = 0
into (3.82):

∂ρk

∂t
+ ∇ · (ρkvk) = 0 (3.84)

This equation expresses the constraint of conservation of mass at every point
within phase k.
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Introducing the values for the interface parameters ςI = 0, φI,c = 0 and
ζI = 0 into (3.83), the jump mass balance for the dividing surface becomes
(e.g., [199], p. 87; [42], p. 400; [205], p. 44):

2
∑

k=1

ρk(vk − vI) · nk =
dIρI

dt
+ ρI∇I · vI (3.85)

In practical applications one normally neglects the terms describing the inter-
facial effects, thus the jump mass balance may be written as

2
∑

k=1

ρk(vk − vI) · nk =
2

∑

k=1

ṁk = 0 (3.86)

Species Mass Balance

The species mass balance is established by substituting ψ = ωs, Jk = jk,s and
φk,c = Rk,s/ρk,c into the (3.82):

∂ρk,s

∂t
+ ∇ · (ρk,svk) = −∇ · jk,s + Rk,s (3.87)

Introducing the values for the interface parameters ςI = 0, φI,c =
−RI,s/ρI,c and ζI = 0 into (3.83), the jump mass balance equation for the
dividing surface becomes (e.g., [199], pp. 679-708):

2
∑

k=1

(

ρk,s(vk − vI) + jk,s

)

· nk =
dIρI,s

dt
+ ρI,s∇I · vI + RI,s (3.88)

where Rk,s is the rate at which species s is produced by homogeneous chemical
reactions per unit volume, and RI,s is the rate at which species s is produced
by heterogeneous chemical reactions per unit area.

In practical applications one normally neglects the terms describing the
interfacial transport phenomena, thus the jump component mass balance may
be written as:

2
∑

k=1

(

ρk,s(vk − vI) + jk,c

)

· nk = RI,s (3.89)

In line with single phase flows, the diffusive flux, jk,s, is commonly param-
eterized adopting Fick’s law for binary systems, jk,s = −ρkDs∇ωk,s.

Momentum Balance

The momentum balance is found by substituting ψ = v, Jk = Tk and and
φk,c = gk,c into the generalized transport equation (3.82):
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∂

∂t
(ρkvk) + ∇ · (ρkvkvk) = −∇ · Tk +

∑

c

ρk,cgk,c (3.90)

This is Cauchy’s first law for a multicomponent mixture (e.g., [199], p 710).
Introducing the values for the interfacial parameters σI = 0, φI,c = gI,c

and ζI = σI into (3.83), the jump momentum balance for the dividing surface
becomes12(e.g., [199], p 710; [42], p 400; [205], p 44):

2
∑

k=1

(

ρkvk(vk − vI) + Tk

)

· nk =

dI(ρIvI)
dt

+ ρIvI∇I · vI −
∑

c

ρI,cgI,c −∇IσI + (∇I · nI)σInI

(3.91)

where (∇I ·nI)σInI and ∇IσI denote the normal and tangential components
of the surface force [25], respectively.

In practical applications considering fluid particles one normally neglects
all the interface terms in (3.91), except the interfacial tension terms. Hence,
the jump momentum balance is given by:

2
∑

k=1

(

ρkvk(vk − vI) + Tk

)

· nk = −∇IσI + (∇I · nI)σInI (3.92)

Each of the two tangential unit vectors ti (i = 1, 2) is perpendicular to nI

and to the other vector, t1 · t2 = 0. Therefore, the tangential components of
the jump condition (3.92) can be expressed as:

2
∑

k=1

(

Tk · nk

)

· ti = −∇IσI · ti for i = 1, 2 (3.93)

From this equality it follows that when the surface tension is constant, the
tangential stress is continuous over the interface. In fluid mechanics it is thus
frequently assumed that the tangential components of velocity are continuous
across a phase interface [199]. With this simplification, vI,t = vk,t, the jump
momentum balance yields:

2
∑

k=1

(

ρk(vk · nk − vI · nk)2nk + Tk · nk

)

=

dI(ρIvI)
dt

+ ρIvI∇I · vI −
∑

c

ρI,cgI,c −∇IσI + (∇I · nI)σInI

(3.94)

in which we have used a particular identity for a spatial vector field in a
surface given on the next page.
12 The surface tension parameter (a scalar) has the same role as the pressure term

in the three dimensional case (e.g., [42], p 398; [199], p 163).
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The mentioned identity for a spatial vector field in a surface is defined by:

v = (v · nI)nI + (e − nInI) · v = (v · nI)nI + eI · v = vnnI + vt
̂t (3.95)

where eI is the dyadic surface idem-factor which can be regarded as a tan-
gential projector [246]. The tangential vector ̂t can be written as linear com-
binations of the two basis vector fields associated with an orthogonal surface
coordinate system ̂t = ̂titi [199].

The surface tension force is usually significant when one of the materials
is a liquid and the other is either a gas, solid or a liquid. A computational
methodology to determine the surface tension for solids in liquids are outlined
by [60] [242]. In gas-solid particle flows the surface tension terms are commonly
ignored, since these forces are usually very small compared to the viscous
terms within the particle phase [57].

Energy Balance Equation

The energy balance is found by substituting ψ = (ek + 1
2v

2
k), Jk = Tk ·vk +qk

and φk,c = vk,c · gk,c into (3.82) (e.g., [199], pp. 715-723):

∂ρk(ek + 1
2v

2
k)

∂t
+∇·(ρk(ek +

1
2
v2

k)vk) = −∇·Tk ·vk +
∑

c

ρk,cvk,c ·gc,k−∇·qk

(3.96)
Introducing the values for the interfacial parameters ςI = qI − σIvI and
ζI = 0 into (3.83), the jump energy balance equation for the dividing surface
becomes (e.g., [42], pp 400-401):

2
∑

k=1

(

ρk(ek +
1
2
v2

k)(vk − vI) + vk · Tk + qk

)

· nk =
dIρI(eI + 1

2v
2
I )

dt
+

ρI(eI +
1
2
v2

I )∇I · vI −
∑

c

ρI,cvI,c · gc,I + ∇I · qI −∇I · (σIvI)

(3.97)

Internal Energy Balance

The differential transport equations for mechanical energy, internal energy,
and temperature in the bulk phases are derived as described for the single
phase equations in chap. 1. The derivation of the corresponding jump balances,
on the other hand, may need some further comments. To derive the jump
internal energy balance we start with the jump total energy balance and
subtract the jump kinetic (mechanical) energy balance, in a similar way as we
did for the derivation of the transport equations for the bulk phases.

The jump kinetic energy balance is derived by taking the scalar product
of the jump momentum balance (3.91) with vI (e.g., [199], p 720; [42], p 401):
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2
∑

k=1

(

ρkvI · vk(vk − vI) + vI · Tk

)

· nk =

dI

dt
(
1
2
ρIv

2
I ) + ρIv

2
I∇I · vI −

∑

c

ρI,cvI · gc,I − vI · ∇IσI + (∇I · nI)σIvI · nI

(3.98)

Subtracting the jump kinetic energy balance (3.98) from the jump total energy
balance (3.97), yields:

2
∑

k=1

(

ρk(ek +
1
2
v2

k − vk · vI)(vk − vI) + (vk − vI) · Tk + qk

)

· nk =

dI(ρIeI)
dt

+ ρI(eI −
1
2
v2

I )∇I · vI + ∇I · qI −
∑

c

ρI,cjI,c · gc,I

+ vI · ∇IσI − (∇I · nI)σIvI · nI −∇I · (σIvI) =
dI(ρIeI)

dt
+ ρI(eI −

1
2
v2

I )∇I · vI + ∇I · qI −
∑

c

ρI,cjI,c · gc,I

− (∇I · nI)σIvI · nI − σI∇I · vI

(3.99)

Since our concern is primarily with interface energy transfer rather than with
the energy associated with the dividing surface, we normally neglect all inter-
facial effects and write the jump internal energy balance (3.99) as:

2
∑

k=1

(

ρk(ek +
1
2
v2

k −vk ·vI)(vk −vI) + (vk −vI) ·Tk + qk

)

·nk = 0 (3.100)

There is no experimental evidence to suggest that the interfacial effects ne-
glected in the jump energy balance significantly affect interface energy transfer
([199] p 721). On the other hand, the interfacial effects in the jump momentum
balance may affect the velocity distribution within the immediate neighbor-
hood of the interface and in this way indirectly influence the interface energy
transfer. Nevertheless, even if the interfacial energy has no practical effect
upon interface energy transfer, it is not zero, since interfacial tension is a
derivative of eI (see [199], sect 5.8.6). In engineering practice we normally
neglect the effect of mass transfer upon the interchange of kinetic energy,
and the work done at the phase interface with respect to its effect upon the
interchange of internal energy at the interface. Adopting these simplifying
assumptions the jump internal energy balance further reduces to (e.g., [205],
p 45):

2
∑

k=1

(

ρkek(vk − vI) + qk

)

· nk = 0 (3.101)

Jump Enthalpy Balance
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Let the enthalpy be defined by hk = ek+pk/ρk, the deviatoric stress tensor
by Tk = pke + σk, and the surface enthalpy hI = eI − σI/ρI , hence the jump
internal energy balance (3.99) can be cast into the following form (e.g., [42];
[205] p 45):

2
∑

k=1

(

ρk(hk +
1
2
v2

k − vk · vI)(vk − vI) + (vk − vI) · σk + qk

)

· nk =

dI(ρIhI)
dt

+ ρI(hI −
1
2
v2

I )∇I · vI +
dIσI

dt
+ ∇I · qI −

∑

c

ρI,cjI,c · gc,I

− (∇I · nI)σIvI · nI

(3.102)

where we have used the fact that (vk − vI) · pkek · nk = (vk − vI) · nkpk.
At catalytic surfaces chemical reaction engineers often prefer to use a heat

jump formulation which contains an explicit term for the heat generation due
to the heterogeneous chemical reactions. The reformulation of the surface en-
thalpy term in the above enthalpy jump condition follows the same principles
as explained in sect 1.2.4 deriving the single phase temperature equations
from the enthalpy equation.

By use of the species mass jump condition (3.88) or its simplified form
(3.89), the surface version of the complete differential (1.142) can be expressed
as:

dIhI

dt
= Cp,I

dITI

dt
+

(

1
ρI

+
TI

ρ2
I

(

∂ρI

∂TI

)

p,ω

)

dIpI

dt

− 1
ρI

[ N
∑

c=1

h̄I,c∇I · (
JI,c

Mwc

) +
q

∑

r=1

rr,cref,I(−ΔH̄r,cref,I)
]

(3.103)

This result is then used to rewrite the surface enthalpy substantial derivative
term in (3.102), and so the required form of the jump enthalpy balance is ob-
tained. However, in practical applications of the jump condition for catalytic
surfaces, one generally neglects the terms describing the interfacial transport
phenomena and retains only the heat of reaction term. Therefore, the approx-
imate jump heat balance is written as:

2
∑

k=1

(

ρkhk(vk − vI) + qk

)

· nk ≈
q

∑

r=1

rr,cref,I(−ΔH̄r,cref,I) (3.104)

This jump enthalpy condition determines the basis for the derivation of the
conventional temperature equation used in heterogeneous catalysis (3.204).

Jump Entropy Balance
In order to transform the enthalpy balance into a jump entropy balance,

we introduce the Gibbs free enthalpies defined by ([42], p. 402):
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gk = hk − Tksk (3.105)

gI = hI − TIsI (3.106)

The Gibbs equation, written for the interface, has the following form:

dIhI

dt
= TI

dIsI

dt
− 1

ρI

dIσI

dt
(3.107)

Using these definitions, the jump enthalpy balance becomes:
2

∑

k=1

(

ρk(gk + Tksk +
1
2
v2

k − vk · vI)(vk − vI) + (vk − vI) · σk + qk

)

· nk =

dIρIgI

dt
+

dIρITIsI

dt
+ ρI(gI + TIsI −

1
2
v2

I )∇I · vI +
dIσI

dt
+ ∇I · qI

−
∑

c

ρI,cjI,c · gc,I − (∇I · nI)σIvI · nI

(3.108)

Summarizing the Governing Equations and Jump Balances

The generic instantaneous transport equation for a balanced quantity ψ in
the kth phase is expressed by (3.82), in which Jk and φk are the fluxes and
source of ψk. It is noted that the bulk phase equation is identical to the single
phase equation (1.3) presented in chap. 1.

Ignoring the interface transport terms, the local instantaneous jump bal-
ances for a quantity ψ can be expressed in a generic form as:

2
∑

k=1

(

ρk(vk − vI)ψk + Jk

)

· nk ≈−
∑

c

ρI,cφI,c + ∇I · ςI

−∇IζI + (∇I · nI)ζInI

≈−MI

(3.109)

where MI denotes the relevant terms associated with ψ at the dividing sur-
face.

The values for ψ, J, φ and MI are given in Table 3.1:

Table 3.1. The definitions of ψ, J and MI

Conservation
Principle ψ J φ MI

Total mass 1 0 0 0
Component mass ωs Js Rs RI,s

Momentum v T gc −Mσ
I

Energy e+ 1
2v

2 T · v +q (gc · vc) −(εσ
I + ∇I · qI)
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where
ωs is the mass fraction of component s;
Js is the molecular (diffusive) flux of component s;
Rs is the rate of production of species s by homogeneous reactions;
RI,s is the rate of production of species s by heterogeneous reactions;
T is the total stress tensor (= pe + σ);
gc is the external forces per unit mass of component c;
MI is a net surface property term:

Mσ
I = −∇IσI + (∇I · nI)σInI is the surface tension force;

εσI = −∇I · (σIvI) is the surface energy associated with
surface tension;

e is the internal energy of the multicomponent system;
q is the multicomponent energy flux vector;
σ is the viscous stress tensor;
σI is the surface tension;
∇I is the surface del or nabla operator.

The Microscopic Transport Equations for a Finite Number of
Dispersed Phases - the Multi-Fluid Model

The generic microscopic transport equation for a generalized quantity ψ can be
formulated considering a material control volume V (t) containing N continu-
ous phases separated by several interfaces across which the physical properties
are discontinuous and may jump, as sketched in Fig. 3.5. This formulation
represents a direct extension of the two-fluid modeling procedure described in
the preceding section. Among the most rigorous model formulations proposed
hitherto are those by Slattery [194, 197, 199] and Deemer and Slattery [41].

The generic balance equation for the variable ψ in V (t) is written as:

N
∑

k=1

⎛

⎜

⎝

d

dt

∫

Vk(t)

ρkψk dv

⎞

⎟

⎠
+

1
2

N
∑

k=1

N
∑

j=1

(1 − δjk)
dI,jk

dt

∫

AI,jk(t)

ρI,jkψI,jk da =

−
N

∑

k=1

∫

Ak(t)

Jk · nk da

+
N

∑

k=1

∫

Vk(t)

∑

c

ρk,cφk,c dv +
1
2

N
∑

k=1

N
∑

j=1

(1 − δjk)
∫

AI,jk(t)

∑

c

ρI,jk,cφI,jk,c da

− 1
2

N
∑

k=1

N
∑

j=1

(1 − δjk)
∮

lI,jk(t)

ϕI,jk · NI,jk dl

(3.110)
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Fig. 3.5. A material control volume V (t) containing N phases with moving inter-
faces. The closed surface bounding the CV is A(t), and the dividing surfaces enclosed
by A(t) are AI,jk(t). The lines formed by the intersection of AI,jk(t) with A(t) are
ljk(t). Any anomalous physical phenomena occurring in the union of all common
lines formed by the intersection of the dividing surfaces are ignored [199].

where AI,jk(t) denotes the interface between the jth and kth phases. Defining
the location of the surface AI,jk(t) as rI,jk = rI,jk(x(ζ, η, t), y(ζ, η, t), z(ζ, η, t))
the velocity of the surface point (ζ, η) is defined by vI,jk = (∂rI,jk/∂t)ζ,η.

The two first terms on the LHS of (3.110) can be transformed into a volume
and a surface integral using the Leibnitz’s theorem:

d

dt

∫

Vk(t)

ρkψk dv =
∫

Vk(t)

∂

∂t
(ρkψk) dv +

∫

Ak(t)

(ρkvkψk) · nkda

+
N

∑

j=1

(1 − δjk)
∫

AI,kj(t)

ρkψkvI,kj · nkjda

(3.111)

The convective and diffusive terms can be written as a sum of a volume and
a surface integral using the Gauss’ theorem:

∫

Vk(t)

∇ · (ρkψkvk) dv =

∫

Ak(t)

ρkψkvk · nk da +
N

∑

j=1

(1 − δjk)
∫

AI,kj(t)

ρkψkvk · nkj da

(3.112)
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and
∫

Vk(t)

∇ · Jk dv =
∫

Ak(t)

Jk · nk da +
N

∑

j=1

(1 − δjk)
∫

AI,kj(t)

Jk · nkj da (3.113)

Accordingly, (3.110) can be rewritten as:

N
∑

k=1

∫

Vk(t)

(

∂(ρkψk)
∂t

+ ∇ · (ρkvkψk) + ∇ · Jk −
∑

c

ρk,cφk,c

)

dv =

−
N

∑

k=1

N
∑

j=1

(1 − δij)
∫

AI,kj(t)

(

1
2
dI,kj

dt
(ρI,kjψI,kj) +

1
2
ρI,kjψI,kj∇I,kj · vI,kj

− 1
2

∑

c

ρI,kj,cφI,kj,c − (ρk(vk − vI,kj)ψk + Jk) · nk

+
1
2
∇I,kj · ςI,kj −

1
2
∇I,kjζI,kj +

1
2
(∇I,kj · nI,kj)ζI,kjnI,kj

)

da

(3.114)

The balance (3.114) must be satisfied for any Vk(t) and AI,kj(t), thus the
arguments in the volume and surface integrals must all independently be equal
to zero. The local instantaneous multi-fluid balance equations for a quantity
ψ in the kth phase where Jk and φk are the fluxes and sources of ψk can then
be expressed as:

∂(ρkψk)
∂t

+ ∇ · (ρkvkψk) + ∇ · Jk −
∑

c

ρk,cφk,c = 0 (3.115)

The generic jump condition is expressed as:

ṁI,kjψk + ṁI,jkψj + Jk · nkj + Jj · njk =
dI,kj(ρI,kjψI,kj)

dt
+ ρI,kjψI,kj∇I,kj · vI,kj −

∑

c

ρI,kj,cφI,kj,c

+ ∇I,kj · ςI,kj −∇I,kjζI,kj + (∇I,kj · nI,kj)ζI,kjnI,kj

(3.116)

where ṁI,kj = ρk(vk − vI,kj) · nI,kj is the mass transfer per unit area of
the interface and unit time from the kth phase to the jth phase through the
interface.

The particular local instantaneous equations are specifically defined when
the values for ψ, J, φ and MI are given in accordance with Table 3.1 for
multi-fluid systems.

3.3.2 The Purpose of Averaging Procedures

From the preceding discussion in this chapter, one can conclude that the perti-
nent modeling approaches to be applied in practice must involve some kind of
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average representation of the flow structure in the reactors. Starting out from
the local instantaneous equations proper averaging is needed on the macro-
scopic scales to avoid solving the multiphase flow problem as a deterministic
multi-boundary problem with the interface relations of mass, momentum, and
energy as boundary conditions (e.g., [205, 112, 67, 58]). The purpose of aver-
aging is thus to allow a coarser mesh and a longer time step to be used in the
numerical simulation. Unfortunately, as a consequence of the averaging of the
instantaneous jump conditions valid across the interface between the phases,
new expressions that lack formal description are introduced. Closure models
for such terms thus become necessary. These models are often formulated by
recourse to approximate local flow field analysis and sometimes by recourse
to empiricism. Usually, it is here that the approach loses some of the precision
that is inherent in the derivation of the rigorous differential equations. In fact
all the averaging methods have the important drawback that the resulting
macroscopic equations have lost most of the topological information about
the flow structure. For example, after averaging the governing equations for
gas-liquid flows operating in the the bubbly flow, stratified flow or slug flow
regimes the resulting set of macroscopic equations are apparently identical.
This means that all these flows are represented by the same set of governing
equations, so for each particular flow regime the physical structure properties
have to be re-introduced through the constitutive equations. Nevertheless, this
framework is still the most rigorous concept that can be put to practice for
performance optimization, scale-up and design of industrial scale reactors.

3.4 Averaging Procedures

This section deals with the formulation of proper transport equations repre-
senting some kind of averaged continuum mechanical description of the flow
system. There are two main strategies that have been used deriving the ex-
isting macroscopic models, denoted the averaging and mixture approaches,
respectively. The Averaging approach consist in the postulation of the local
instantaneous conservation equations prior to the application of an averaging
procedure deriving macroscopic Eulerian multi-fluid models. In the mixture
approach the mixture properties are postulated directly at the macroscopic
scales, and a set of macroscopic balance equations is formulated based on the
conventional conservation laws and the mixture properties. So, in this partic-
ular modeling concept the control volume and the averaging volume coincide.

The averaging approach might be considered fundamental and preferred
compared to the mixture approach, because averaging provides certain ad-
vantages as the resulting macroscopic variables are explicitly related to the
local variables. Nevertheless, averaging cannot circumvent the need to pos-
tulate constitutive equations, but it can give insight into the types of terms
expected to be important in the constitutive relations. The major difference
between the averaging and mixture approaches thus lies in the level at which
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we introduce the necessary postulates and empiricism. Moreover, embedded
in the practice of using either average or mixture equations is the assumptions
that, for the investigation of multiphase flows in reactor systems, the local mi-
croscopic details of the flow are not needed (eluding a multi-scale approach).
However, even though it is the macroscopic characteristics that are of interest,
the effect of the microscopic details on the macroscopic characteristics can be
very important for particular multiphase systems.

Depending on the mathematical formulation used to describe the multi-
phase problem in question, the different averaging procedures can be classified
into three groups, the Eulerian averaging, the Lagrangian averaging and the
Boltzmann statistical averaging [112]. In this section emphasis is placed on
the Eulerian integral averaging operators since the main purpose is to smooth
out instant and local variations of the local instantaneous variable fields. Be-
sides, these averages are conventionally used in continuum mechanics and
experimental analyzes.

The philosophy taken in this book is that any understanding that can be
gained from averaging is worthwhile, thus a general introduction to this topic
is given before all the mathematical details are presented. Many mathemat-
ically different Eulerian averaging procedures for deriving the macroscopic
equations and jump conditions for multiphase flows have been proposed in
the literature. These are the volume averaging-, the time averaging- and the
ensemble averaging techniques, as well as combinations of the basic single av-
eraging operators. Besides, some researches also introduce mass- or phase av-
eraged variables. The first step in a general averaging procedure is to form the
average of the local instantaneous transport equations and the corresponding
jump conditions. The resulting averaged equations cannot be solved directly,
as they contain averages of products of the dependent variables. The second
step in an averaging procedure is thus to obtain a solvable set of equations by
relating the averages of products to expressions containing products of aver-
aged variables. This has commonly been done either by employing concepts
similar to conventional single phase Reynolds decomposition [177] or methods
similar to single phase Favre decomposition before averaging [75, 76]. Note
that the Reynolds and Favre decomposition and averaging rules are normally
used in the field of single phase turbulence modeling in order to separate the
fluctuating components of the variables from the averaged variables (sepa-
ration of scales), whereas when applied to multiphase flow models the main
purpose of these procedures is rather to separate the averages of product into
products of average. Moreover, these procedures give rise to extra terms in
the transport equations, containing covariances of the fluctuating components,
analogous to the Reynolds stress terms obtained in the case of single phase
turbulence modeling. A general procedure for formulating a multi-fluid model
is sketched in Fig. 3.6. Finally, for completeness it ought to be mentioned that
a lot of work has been focused on formulating multi-fluid models for dispersed
phases based on kinetic theories [176, 175, 133], and on the kinetic theories
of granular materials as outlined in chap 4. It is noted that the fundamental
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basis for such model formulations is related to dispersed particle statistics
(Maxwellian averaging) rather than continuum mechanics.

Integral balances of mass,
momentum and energy

Local instantaneous 
equations and jump 
conditions

Gauss’ and Leibnitz’s
theorems

Averaging procedure

Closure equations

Boundary and initial
conditions

Multifluid model

Closed set of PDEs

Averaged equations

STEP 1

STEP 2

STEP 3

STEP 4

Fig. 3.6. General procedure for formulating a multi-fluid model.

From a mathematical point of view there are still no complete agreement
on the properties of the different averaging operators and their suitability for
deriving the macroscopic equations.

In continuum mechanics a proper averaging procedure should lead to flow
variables that are continuous [10]. Considering the pure time and space aver-
ages which were the first methods to appear around 1950 [54], some doubts
or difficulties related to the continuity of the flow variables were pointed out
by [43, 47, 10, 48, 205]. To deal with these matters the basic averages were
thus refined by weighting, by multiple application, and by various choices of
averaging scales.

On the other hand, experimental techniques have been developed over the
years exclusively to determine time- and volume average measures of the flow
keeping the expenses as low as possible. Therefore, in the past the time averag-
ing, volume averaging and time- or ensemble averaging after volume averaging
solely have been used in the engineering sciences deriving multiphase models.
In particular the time- after volume averaging operator was frequently used.
In this method the purpose of the time averaging after volume averaging is to
express averages of products in terms of products of averages and to account
for the high frequency fluctuations retained by the instantaneous volume av-
erages (separation of scales) [205]. A convenient consequence of this approach
is that the conventional single phase Reynolds and Favre decomposition and
time averaging concepts are considered appropriate, thus the established single
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phase turbulence models are often adopted closing the resulting model equa-
tions. However, detailed inspections of the flows in laboratory scale, pilot scale
and industrial scale chemical reactors under typical operating conditions re-
veal that the validity conditions of the time- and volume averaging operators
are frequently violated thus an ensemble average operator might be prefer-
able. Therefore, in the last few years the mass-weighted ensemble averaging
procedure has gained considerable interest.

In the subsequent sections the averaging procedures most frequently used
in multiphase reactor modeling are examined. Hence it follows that the basic
principles of averaging are presented with emphasis on disperse two phase
systems.

3.4.1 The Volume Averaging Procedure

In this section we assess the volume averaging technique. The literature cited
considering different forms of spatial averaging (i.e., area or volume) are [43,
44, 243, 156, 10, 24, 192, 52, 54, 21, 2, 135, 205, 206, 157, 193, 14, 81, 89, 90,
91, 7, 194, 195, 196, 197, 198, 199, 200, 233, 234, 235, 237, 238, 239, 110, 17,
163, 165, 230, 153, 154, 181, 37, 38, 171, 98, 99, 100, 101, 102, 168, 129] which
might be recommended for complementary studies.

The condition under which the volume averaging operators can be applied
handling the scale disparity in a suitable manner13 can be expressed as [235,
156, 89, 205, 206]:

⎧

⎨

⎩
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⎫

⎬

⎭
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⎬

⎭
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⎧
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⎫

⎬

⎭

This means that we require that the averaging volume is sufficiently large
so that the microscopic variations in ψk are essentially smoothed out and the
averaged functions 〈ψk〉V are continuous, and that the average of the average
equals the average, 〈〈ψk〉V 〉V = 〈ψk〉V . That is, when the averaging volume is
very small the average quantities of the mixture fluctuates because portions
of the phases included in the averaging volume are location-dependent. This
fluctuation diminishes as the size of the volume increases, and within a certain
characteristic size of V the average quantities become independent of V . How-
ever, the characteristic size of V should not be too large, otherwise it becomes
dependent upon the global variations of the quantities and the dimensions of
the system.

13 It is noted that the requirement of proper separation of scales represents the main
drawback of the volume averaging method. The constitutive equations used gener-
ally depend strongly on this assumption which is hardly ever fulfilled performing
simulations of laboratory, pilot and industrial scale reactor units.
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The volume averaging operator which can be applied to any scalar, vector
or tensor valued property function ψk associated with phase k, is defined by14:

〈ψk〉V =
1
V

∫

V

Xkψkdv =
1
V

∫

Vk(t)

ψkdv (3.117)

where Xk is the phase indicator function which equals 1 in phase k and zero
elsewhere. The mathematical properties of the generalized function Xk ensure
that the ordinary mathematical operations of vector calculus can be performed
on the local variables. In particular, as the fluid properties is discontinuous
across the 2D interface between the two bulk phases, the phase indicator func-
tion is used as a weighting function in forming averages of the local variables
to ensure that the differentiation of the discontinuous variables within the
integrals are performed in a valid manner [58] [7]. Besides, it is claimed that
the introduction of the weighted averages leads to considerable mathematical
simplification deriving the averaged equations [54] [171]. However, the trade-
off for the simple derivation is that all the manipulations involve generalized
functions15. Hence it is emphasized that the conventional space averaging op-
erator was defined avoiding the explicit use of the phase indicator function
[43, 47, 24, 54, 205, 206, 239]. On the other hand, under certain conditions
the Xk-weighted volume average coincides with the conventional single volume
average operator [171].

The intrinsic volume average is defined as:

〈ψk〉Vk
= 〈ψk〉Xk

V =

1
V

∫

V

Xkψkdv

1
V

∫

V

Xkdv
=

1
Vk(t)

∫

Vk(t)

ψkdv (3.118)

where the intrinsic volume average has been expressed as the Xk-weighted
volume average. In other words, the Xk-weighted volume average as defined
by (3.118) is assumed to coincide with 〈ψk〉Vk

which represents the averaged
value of ψ in the phase k over the volume Vk(t).

By comparing the averaging operators (3.117) and (3.118), we can see that:

〈ψk〉V =
Vk

V
〈ψ〉Vk

= αk〈ψ〉Vk
(3.119)

in which the instantaneous volume fraction αk of phase k is given by:
14 It is emphasized that 〈ψk〉V is the average of the quantity ψ in phase k over

the entire averaging volume V . This averaging operator is sometimes called the
extensive or superficial volume average of ψ for phase k.

15 Mathematicians may say that this approach leads to more elegant mathematics,
since the phase indicator function might be imagined as a sensor which enables
local instantaneous phase identification. However, this somewhat mathematical
formulation may also impede physical understanding for an inexperienced reaction
engineer having a more practical background.
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αk =
Vk

V
(3.120)

To derive a local volume average of the generic differential balance equation
for phase k (3.82) is integrated over the phase k averaging volume Vk, and
thereafter multiplied with the reciprocal averaging volume V . The resulting
volume averaged equation is given by:

1
V

∫

Vk

∂(ρkψk)
∂t

dv+
1
V

∫

Vk

∇·(ρkvkψk+Jk)dv− 1
V

∫

Vk

∑

c

ρk,cφk,cdv = 0 (3.121)

or, using a more compact notation:

〈∂(ρkψk)
∂t

〉V + 〈∇ · (ρkvkψk + Jk)〉V − 〈
∑

c

ρk,cφk,c〉V = 0 (3.122)

The first, second and third terms in (3.122) have to be reformulated using the
conventional volume averaging theorems16. The first theorem one makes use
of relates the spatial average of a time derivative to the time derivative of a
spatial average, and is called the Leibnitz rule for volume averaging:

1
V

∫

Vk

∂ψk

∂t
dv =

∂

∂t
[
1
V

∫

Vk

ψkdv] −
1
V

∫

AI

ψkvI · nkda (3.123)

or, using the compact notation:

〈∂ψk

∂t
〉V =

∂

∂t
〈ψk〉V − 1

V

∫

AI

ψkvI · nkda (3.124)

In this theorem AI is the area of the interface between phase k and the other
phase, nk is the outward unit normal of the infinitesimal element of area a of
phase k, and vI is the velocity of the local interface. The theorem, which was
originally derived by [236], represents a special form of the Leibnitz rule which
is necessary for the particular case when the time derivative is discontinuous
and reflects a Dirac delta function like character [90, 239, 58].

For the particular case when ψk = 1 it is recognized that (3.117), (3.118)
and (3.124) can be manipulated and expressed as

〈1〉V =
1
V

∫

V

Xk dv =
1
V

∫

Vk

dv = αk (3.125)

and
0 =

∂αk

∂t
− 1

V

∫

AI

vI · nkda (3.126)

16 The volume averaging theorems have been derived rigorously by several re-
searchers [194, 199, 200, 38, 233, 235, 236, 237, 239, 110, 89, 90, 91].
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in accordance with the work of [98, 99, 205, 239], among others.
The second theorem we utilize relates the average of a spatial derivative to

the spatial derivative of the average, and is called the Gauss rule for volume
averaging:

1
V

∫

Vk

(∇ψk)dv = ∇[
1
V

∫

Vk

ψkdv] +
1
V

∫

AI

ψknkda (3.127)

or
〈∇ψk〉 = ∇〈ψk〉 +

1
V

∫

AI

ψknkda (3.128)

This spatial averaging theorem was independently derived by Anderson and
Jackson [7], Slattery [194] and Whitaker [233] applying three different methods
[110]. In the method of Slattery [194] the theorem is elegantly deduced from
the three dimensional Leibnitz’s theorem17 using advanced mathematics and
a compact notation for the geometry [196] [38]. On the other hand, the use of
weighted averages emerged from the work of Anderson and Jackson [7].

A special case of (3.128) is the theorem for the volume average of a diver-
gence:

〈∇ · ψk〉V = ∇ · 〈ψk〉V +
1
V

∫

AI

ψk · nkda (3.129)

where ψk is interpreted as a vector or a second order tensor field [200]. The
theorems (3.128) and (3.129) represent special forms of the Gauss rule which
are necessary in the particular case when the spatial derivatives are discon-
tinuous and reflect a Dirac delta function like character [58].

For the particular case when ψk = 1 it is recognized that (3.128) reduces
to:

0 = ∇αk +
1
V

∫

AI

nkda (3.130)

This is an important relationship frequently utilized manipulating the aver-
aged terms [205] [239].

This completes the list of the mathematical tools required to reformulate
the volume averaged equation (3.121) into a more practically useful form.

Applying the Leibnitz’s rule (3.123) to the first term in (3.121) yields:

1
V

∫

Vk

∂(ρkψk)
∂t

dv =
∂

∂t
[
1
V

∫

Vk

ρkψkdv] −
1
V

∫

AI

ρkψkvI · nkda (3.131)

or, in the compact notation:

〈∂(ρkψk)
∂t

〉V =
∂

∂t
〈ρkψk〉V − 1

V

∫

AI

ρkψkvI · nkda (3.132)

17 The three dimensional Leibnitz theorem is also referred to as the general transport
theorem.
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Applying the Gauss’ rule (3.129) to the second and the third terms gives:

1
V

∫

Vk

∇· (ρkvkψk)dv = ∇· [ 1
V

∫

Vk

(ρkvkψk)dv]+
1
V

∫

AI

(ρkvkψk) ·nkda (3.133)

for the convective terms. In the compact notation we write

〈∇ · (ρkvkψk)〉V = ∇ · 〈ρkvkψk〉V +
1
V

∫

AI

(ρkvkψk) · nkda (3.134)

Likewise, the diffusive terms are written:

1
V

∫

Vk

∇ · Jk dv = ∇ · [ 1
V

∫

Vk

Jkdv] +
1
V

∫

AI

Jk · nk da (3.135)

and, in the compact notation:

〈∇ · Jk〉V = ∇ · 〈Jk〉V +
1
V

∫

AI

Jk · nk da (3.136)

The fourth term is given directly by use of the volume average operator:

1
V

∫

Vk

∑

c

ρk,cφk,c dv = 〈
∑

c

ρk,cφk,c〉V (3.137)

Substituting the novel relations (3.132), (3.134), (3.136) and (3.137) into
the generic equation (3.122), the volume averaged equation becomes:

∂〈ρkψk〉V
∂t

+ ∇ · 〈ρkvkψk〉V + ∇ · 〈Jk〉V =

− 1
V

∫

AI

(ψkρk(vI − vk) + Jk) · nk da + 〈
∑

c

ρk,cφk,c〉V (3.138)

Introducing the phase k volume fraction (3.120) and the intrinsic volume
average operator (3.118), we get:

∂(αk〈ρkψk〉Vk
)

∂t
+ ∇ · (αk〈ρkvkψk〉Vk

) + ∇ · (αk〈Jk〉Vk
) =

− 1
V

∫

AI

(ṁkψk + Jk · nk) da + αk〈
∑

c

ρcφc〉Vk
(3.139)

where ṁk is the interface mass transfer rate defined by:

ṁk = ρk(vk − vI) · nk (3.140)
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The local jump conditions are averaged in a similar manner. Integrating the
local jump condition (3.109) over the interfacial area AI and then multiply-
ing the result with the reciprocal averaging volume V , the averaged jump
condition becomes:

1
V

∫

AI

(

∑

k

[ṁkψk + Jk · nk] + MI

)

da = 0 (3.141)

The averaged equations governing each phase and the corresponding jump
conditions are then achieved defining the specific values of the generic variables
in (3.139) and (3.141) in accordance with Table 3.1.

The governing instantaneous volume averaged equations are examined
next with focus on the principal approximations normally applied to the in-
terfacial integral terms.

Mass:
The volume averaged continuity equation appears by substituting ψk = 1,
Jk = 0 and φc,k = 0 into (3.139):

∂(αk〈ρk〉Vk
)

∂t
+ ∇ · (αk〈ρkvk〉Vk

) = − 1
V

∫

AI

ṁk da (3.142)

Introducing the values for the interface properties MI = 0 into (3.141),
yields:

∑

k

ΓV k = 0 (3.143)

where the interfacial mass transfer terms due to phase change is defined
by:

ΓV k =
1
V

∫

AI

ρk(vI − vk) · nkda = − 1
V

∫

AI

ṁkda = aI〈ṁk〉AI
(3.144)

in which 〈ṁk〉AI
= −

∫

AI
ṁkda/AI denotes the interfacial area averaged

mass transfer rate [112]. The interfacial area density is defined by:

aI = AI/V (3.145)

Momentum:
The volume averaged momentum equation appears by substituting ψk =
vk, Jk = Tk and φc,k = gc,k into (3.139):

∂(αk〈ρkvk〉Vk
)

∂t
+ ∇ · (αk〈ρkvkvk〉Vk

) + ∇ · (αk〈Tk〉Vk
) =

− 1
V

∫

AI

(ṁkvk + Tk · nk) da + αk〈
∑

c

ρcgc〉Vk
(3.146)
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Introducing the values for the interface properties MI = 2σIHInI +∇IσI

into (3.141), yields:

∑

k

(MΓ
k + MT

k ) =
1
V

∫

AI

MIda (3.147)

The interfacial momentum transfer due to phase change is defined by:

MΓ
k =

1
V

∫

AI

ρkvk(vI − vk) · nkda = − 1
V

∫

AI

ṁkvkda = ΓV k〈vk〉ΓV k

AI

(3.148)
in which the mass transfer weighted interfacial area averaged velocity
〈vk〉ΓV k

AI
is defined in analogy to the mass-weighted averaged variables

known from turbulence theory [112] (p. 133).
The interfacial momentum stresses yield:

MT
k = − 1

V

∫

AI

Tk · nkda = − 1
V

∫

AI

(pke + σk) · nkda (3.149)

where the total stress tensor of both phases has been modeled using the
Newtonian strain-stress formulation.
It has become customary to rewrite the interfacial momentum transfer
term MT

k in terms of the interfacially averaged pressure 〈pk〉AI
and shear

stresses 〈σk〉AI
of phase k to separate the mean field effects from local

effects [233, 194, 112, 54, 56, 153, 154, 193]. In the volume averaging
approach the interfacial area averaged pressure is defined by:

〈pk〉AI
=

1
AI

∫

AI

pkda (3.150)

and the interfacial area averaged viscous stress term is defined by:

〈σk〉AI
=

1
AI

∫

AI

σk da (3.151)

The deviation between the local instantaneous pressure and the interfacial
area averaged pressure is defined as:

p̂k,I = pk − 〈pk〉AI
(3.152)

and similarly, the interfacial stress deviation yields:

̂σk,I = σk − 〈σk〉AI
(3.153)
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Using these definitions of the interfacial quantities, the stress terms in
(3.146) can be expressed as:

−∇ · (αk〈Tk〉Vk
) − 1

V

∫

AI

(pke + σk) · nk da

= −
[

∇(αk〈pk〉Vk
) + ∇ · (αk〈σk〉Vk

)
]

−
[

〈pk〉AI
e · 1

V

∫

AI

nk da + 〈σk〉AI
· 1
V

∫

AI

nk da

+
1
V

∫

AI

(p̂k,Ie + ̂σk,I) · nk da

]

(3.154)

Besides, by making use of (3.130), introducing the interfacial momentum
transfer term MT

k given by (3.149), and defining the generalized drag
term by:

Fk =
1
V

∫

AI

(p̂k,Ie + ̂σk,I) · nk da (3.155)

we can further manipulate the stress terms in (3.154) in the following
manner:

−∇ · (αk〈Tk〉Vk
) + MT

k

= −
[

∇(αk〈pk〉Vk
) + ∇ · (αk〈σk〉Vk

)
]

−
[

−〈pk〉AI
∇αk − 〈σk〉AI

· ∇αk − Fk

]

= −αk∇〈pk〉Vk
+ (〈pk〉AI

− 〈pk〉Vk
)∇αk

−∇ · (αk〈σk〉Vk
) + 〈σk〉AI

· ∇αk + Fk

≈ −αk∇〈pk〉Vk
−∇ · (αk〈σk〉Vk

) + Fk = −αk∇〈pk〉Vk
+ Md

k

(3.156)

where
Md

k = 〈pk〉AI
∇αk + 〈σk〉AI

· ∇αk + Fk (3.157)

The terms (〈pk〉AI
− 〈pk〉Vk

)∇αk + 〈σk〉AI
· ∇αk are referred to as the

interfacial pressure difference effect (or the concentration gradient effect)
and the combined interfacial shear and volume fraction gradient effect [67]
[115], respectively. The interfacial pressure difference effect is normally as-
sumed to be insignificant for the two-fluid model [54, 4, 125, 119]. That
is, for two-phase flows one generally assumes that
〈pk〉AI

= 〈pk〉Vk
= 〈pl〉AI

= 〈pl〉Vl
for phases k and l, respectively. More-

over, for separated flows the combined interfacial shear and volume frac-
tion gradient effect normally dominates over the generalized drag Fk,
whereas this combined effect is generally ignored for dispersed flows [115].
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The generalized drag force per unit mixture volume which is acting on
the dispersed phases of mean diameter d is commonly formulated as [112,
113, 114, 115, 168, 4, 54, 57, 58, 154, 119, 120]:

Fd = − 1
V

∫

AI

(p̂d,Ie + ̂σd,I) · nd da = Nd(fD + fV + fB + fL)

=
6αd

πd3
(fD + fV + fB + fL)

(3.158)

where the f -terms in the bracket denote the forces acting on a single sphere
in a dilute mixture (assuming no particle-particle interactions) which are
normally including the steady drag, virtual mass, Basset history and the
lift forces. The Nd denotes the number of particles per unit volume and
is defined by Nd = 6αd

πd3 . The generalized drag force hypothesis is assumed
valid for dilute flows provided that that the different forces are indepen-
dent. Further details on the modeling of the interfacial coupling terms are
discussed in the sect 5.2.
For wall bounded flows the wall interaction forces have a similar origin as
the interfacial momentum transfer terms [129]. These terms are assessed
in further details in sect 3.4.6.
For the surface tension forces we can utilize (3.130) and the mean value
theorem for integrals, hence the term on the RHS of (3.147) can be ex-
pressed as [112] [129]:

1
V

∫

AI

MIda =
1
V

∫

AI

(2σIHInI + ∇IσI) da

≈ 2〈σIHI〉AI

1
V

∫

AI

nIda +
1
V

∫

AI

∇IσI da

≈ 2〈σI〉AI
〈HI〉AI

∇α2 + aI〈∇IσI〉AI

(3.159)

where 〈HI〉AI
is the interfacial area averaged curvature [112] [54] [129]. In

this relation we adopt the sign convention defined by nI = n1. The mean
curvature is still defined in accordance with (3.76).
For dispersed flows containing very small fluid particles the interfacial ten-
sion effects have occasionally been considered significant [129]. In this case,
the average momentum jump condition (3.147) becomes [112] [54] [129]:

ΓV k〈vk〉ΓV k

AI
+ 〈pk〉AI

∇αk + 〈σk〉AI
· ∇αk + Fk

+ ΓV l〈vl〉ΓV l

AI
+ 〈pl〉AI

∇αl + 〈σl〉AI
· ∇αl + Fl

= 2σI〈HI〉AI
∇αl + aI〈∇IσI〉AI

(3.160)

Nevertheless, it is common to neglect the variations in surface tension at
the interfaces, and the interfacial pressures are generally related by the
Young-Laplace equation [244] [138] [54]:
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〈pk〉AI
− 〈pl〉AI

≈ −2σI〈HI〉AI
= −σI(

1
R1

+
1
R1

) (3.161)

in which the curvature radii is defined in accordance with (3.64).
In this case the averaged momentum jump condition can be expressed by:

ΓV k(〈vk〉ΓV k

AI
− 〈vl〉ΓV l

AI
) + (〈σk〉AI

− 〈σl〉AI
) · ∇αk + Fk + Fl ≈ 0 (3.162)

Provided that the interfacial area averaged velocities are parameterized
in a consistent manner (i.e., ΓV k(〈vk〉ΓV k

AI
− 〈vl〉ΓV l

AI
) = 0), this condition

shows that the introduction of the surface tension force is in accordance
with Newton’s 3. law.
In practice, however, it is difficult to parameterize the interfacial area
averaged velocity so in the momentum equation it’s often set equal to
the bulk velocity and in the momentum jump condition the mass transfer
terms are simply neglected enabling a closure relation for the interfacial
drag terms which are in agreement with Newton’s 3. law. Hence,

(〈σk〉AI
− 〈σl〉AI

) · ∇αk + Fk + Fl ≈ 0 (3.163)

For dispersed systems the interfacial tension terms are generally more
important in the high resolution models simulating details of the local
flow close to each individual interface.

Energy :
The volume averaged energy equation appears by substituting ψk = ek +
1
2v

2
k, Jk = Tk · vk + qk and φc,k = vk · gc,k into (3.139):

∂

∂t

(

αk〈ρk(ek +
1
2
v2

k)〉Vk

)

+ ∇ ·
(

αk〈ρkvk(ek +
1
2
v2

k)〉Vk

)

+ ∇ ·
(

αk〈Tk · vk〉Vk

)

+ ∇ ·
(

αk〈qk〉Vk

)

= − 1
V

∫

AI

(

ṁk(ek +
1
2
v2

k) + (Tk · vk + qk) · nk

)

da

+ αk〈
∑

c

ρk,cvk,c · gk,c〉Vk

(3.164)

Introducing the values for the interface properties
MI = ∇I · qI −∇I · (σIvI) into (3.141), yield:

∑

k

(EE
k + EW

k + EΓ
k ) = − 1

V

∫

AI

MIda (3.165)

where the interfacial energy transfer due to phase change is defined by:
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EΓ
k =

1
V

∫

AI

ρk(ek +
1
2
v2

k)(vI − vk) · nkda = − 1
V

∫

AI

ṁk(ek +
1
2
v2

k) da

= ΓV k〈(ek +
1
2
v2

k)〉ΓV k

AI

(3.166)

in which 〈(ek + 1
2v

2
k)〉ΓV k

AI
denotes the mass transfer weighted interfacial

(internal and mechanical) energy [112] (p. 137).
The interfacial heat transfer is given by:

EE
k = − 1

V

∫

AI

qk · nkda = aI〈qk · nk〉AI
, (3.167)

in which 〈qk · nk〉AI
denotes the interfacial area averaged heat transfer

flux.
The interfacial work by viscous and pressure forces yields:

EW
k = − 1

V

∫

AI

(Tk · vk) · nkda (3.168)

and the surface energy sources are expressed as the product of the inter-
facial area concentration and the averaged interfacial fluxes:

1
V

∫

AI

MI da = − 1
V

∫

AI

(−∇I · (σIvI) + ∇I · qI) da

= 〈∇I · (σIvI)〉AI
aI − 〈∇I · qI〉AI

aI

(3.169)

where −〈∇I · qI〉AI
and 〈∇I · (σIvI)〉AI

are the interfacial area averaged
interfacial energy fluxes.

Internal Energy :
It is not convenient to use (3.139) averaging the internal energy balance,
as some of the terms do not fit within the generalized framework. Instead
the averaged form of the internal energy equation is obtained by averaging
(1.126). The resulting volume averaged internal energy equation is given
by [192] [205]:

∂

∂t
(αk〈ρkek〉Vk

) + ∇ · (αk〈ρkvkek)〉Vk
) =

− αk〈Tk : ∇vk〉Vk
−∇ · (αk〈qk〉Vk

)

− 1
V

∫

AI

(ṁkek + qk · nk) da + αk〈
∑

c

jk,c · gk,c〉Vk

= −αk〈σk : ∇vk〉Vk
− αk〈pk∇ · vk〉Vk

−∇ · (αk〈qk〉Vk
)

− 1
V

∫

AI

(ṁkek + qk · nk) da + αk〈
∑

c

jk,c · gk,c〉Vk

(3.170)
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Alternatively, the internal energy balance can be deduced from the av-
eraged counterparts of the kinetic energy equation (1.124) and the total
energy equation (1.113).
The averaged form of the internal energy jump balance (3.101) can be
written as

∑

k

(EE
k + eΓ

k ) ≈ 0 (3.171)

and from (3.166) it is seen that eΓ
k = ΓV k〈ek〉ΓV k

AI
.

Enthalpy :
It is not convenient use (3.139) averaging the enthalpy equation as some
of the terms do not fit within the generalized framework. Instead the
averaged form of the enthalpy equation can be obtained by averaging
(1.129) directly or from (3.170) and the enthalpy definition (1.128).
The volume averaged enthalpy equation is given by [192] [205]:

∂

∂t
(αk〈ρkhk〉Vk

) + ∇ · (αk〈ρkvkhk〉Vk
) =

∂(αk〈pk〉Vk
)

∂t
+ ∇ · (αk〈vkpk〉Vk

)

− αk〈σk : ∇vk〉Vk
− αk〈pk∇ · vk〉Vk

−∇ · (αk〈qk〉Vk
)

− 1
V

∫

AI

(

ṁk(hk − pk

ρk
) + qk · nk

)

da + αk〈
∑

c

jk,c · gk,c〉Vk

(3.172)

The averaged form of the simplified enthalpy jump balance (3.102) can be
written as

∑

k

(EE
k + hΓ

k ) ≈ 0 (3.173)

in which we have neglected the interfacial tension and heat flux effects. Be-
sides, the additional interfacial jump condition term which occurs within
the averaging process

1
V

∫

AI

pk(vI − vk) · nk da ≈ 0 (3.174)

since the effect of wave propagation is assumed to be negligible [199] [192].
The interfacial heat transfer due to phase change is expressed as

hΓ
k = ΓV k〈hk〉ΓV k

AI
(3.175)

Temperature:
The averaging of the temperature equation for multiphase reactive systems
is not straight forward and numerous forms of the averaged equation can
be found in the literature.
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It is obviously not convenient to use (3.139) averaging the temperature
equation, as the terms in the equation do not fit within the generalized
framework. Instead the averaged form of the temperature equation might
be deduced by averaging (1.150).
The volume averaged temperature equation is then given by:

αk〈ρkCp,k
∂Tk

∂t
〉Vk

+ αk〈ρkCp,kvk · ∇Tk〉Vk
=

−∇ · (αk〈qk〉Vk
) − αk〈

T

ρ
(
∂ρ

∂T
)p,ω

Dp

Dt
〉Vk

−∇ · (αk〈σk : ∇vk〉Vk
) + αk〈

∑

c

Jk,c · gk,c〉Vk

+ αk〈
N

∑

c=1

h̄c∇ · ( jc
Mwc

)〉Vk
+ αk〈

q
∑

r=1

rr,cref(−ΔH̄r,cref)〉Vk

− 1
V

∫

AI

qk · nk da

(3.176)

To achieve the solvable temperature equation frequently used in reactor
analysis it is necessary to assume that Cp,k is constant within the aver-
aging volume. In this particular case the continuity equation can be used
manipulating the terms on the LHS of (3.176). In addition, in this ap-
proach the interfacial heat transfer term due to phase change has to be
included by postulation.
Alternatively, a similar result is obtained from (3.172) by use of the com-
plete differential (1.142). This method seems more appropriate as the
derivation of the interfacial terms for example is in accordance with the
standard averaging theorems, hence this method might be more rigor-
ous. The alternative form of the averaged temperature is given in (3.204).
However, the choice of model approximations should of course always be
determined by comparison with physical observations.

Chemical species:
The volume averaged species mass balance appears by substituting ψk =
ωk,s, Jk = jk,s and φc,k = −Rk,s/ρk,c into (3.139):

∂(αk〈ρk,s〉Vk
)

∂t
+ ∇ · (αk〈ρk,svk〉Vk

) + ∇ · (αk〈jk,s〉Vk
) =

− 1
V

∫

AI

(ṁkωk,s + jk,s · nk) da + αk〈Rk,s〉Vk
(3.177)

Introducing the values for the interface properties MI = RI,s into (3.141),
yields:

∑

k

(JΓ
k,s + Jj

k,s) =
1
V

∫

AI

RI,s da (3.178)



410 3 Multiphase Flow

The interfacial species mass transfer due to phase change is defined by:

JΓ
k,s =

1
V

∫

AI

ρkωk,s(vI − vk) · nkda = − 1
V

∫

AI

ṁkωk,sda

=ΓV k〈ωk,s〉ΓV k

AI

(3.179)

in which the 〈ωk,s〉ΓV k

AI
denotes the mass transfer weighted interfacial

species s mass fraction [112] (p. 133).
The other interfacial mass transfer fluxes are given by:

Jj
k,s = − 1

V

∫

AI

jk,s · nk da = aI〈jk,s · nk〉AI
(3.180)

in which 〈jk,s · nk〉AI
denotes the interfacial area averaged mass transfer

flux.
The interfacial production term due to heterogeneous reactions is normally
rewritten as:

1
V

∫

AI

MI da =
1
V

∫

AI

RI,s da = 〈RI,s〉AI
aI = ρBulk〈RI,s〉m (3.181)

in which the interfacial reaction rate per unit interface area is commonly
substituted by the more practical reaction rate per unit mass 〈RI,s〉m =
〈RI,s〉AI

aI/ρBulk (kg/kg, cat× s) in which ρBulk denotes the bulk density
of the catalyst (kg, cat/m3

r).

In order to carry out computations with the volume averaged equations
on the form (3.138) or (3.139), we need to relate the average of products
to products of averages and derive constitutive equations for the interfacial
coupling terms.

The first problem is generally solved by introducing mass- and phase
weighted volume averaged variables and the concept of spatial decomposition
of these variables [98, 81].

The mass-weighted volume average of the quantity ψk is defined by:

〈ψk〉Xkρk

V =

1
V

∫

V

ρkψkXk dv

1
V

∫

V

ρkXk dv
=

〈ρkψk〉V
〈ρk〉V

=
〈ρkψk〉Vk

〈ρk〉Vk

, (3.182)

in which the intrinsic volume average coincides with the Xk-weighted average
as defined by (3.118).

We can now adopt the concept of spatial decomposition of the mass-
weighted variables to relate the average of products to products of average.

Let ̂

̂ψk represent the spatial deviation of the point variable ψk from the
mass-weighted volume average value 〈ψk〉Xkρk

V , as defined by:



3.4 Averaging Procedures 411

̂

̂ψk = ψk − 〈ψk〉Xkρk

V (3.183)

where ψk represents the local variable at a point in space r. The concept
of spatial decomposition of the volume averaged variables was initially pro-
posed by Whitaker [233] [235] [236] for applications in multiphase flow models
in analogy to the conventional temporal decomposition of the instantaneous
variables used in the study of turbulent transport phenomena [75] [131]. The
spatial decomposition concept was later slightly modified by Gray and co-
workers [89] [98] [99] [91] to eliminate an inherent inconsistency for modeling
dispersion as a diffusive mechanism.

Introducing (3.183) into (3.182) we obtain the important result:

〈ρk〉V 〈ψk〉Xkρk

V =〈ρkψk〉V

=〈ρk(〈ψk〉Xkρk

V + ̂

̂ψk)〉V

=〈ρk〉V 〈ψk〉Xkρk

V + 〈ρk
̂

̂ψk〉V
=〈ρk〉V 〈ψk〉Xkρk

V ,

(3.184)

in which we have shown that 〈ρk
̂

̂ψk〉V = αk〈ρk
̂

̂ψk〉Vk
= 〈̂̂ψk〉Xkρk

V = 0 because
〈ψk〉Xkρk

V is constant within V .
Moreover, utilizing (3.184) the convective term in the averaged equation

(3.139) can be rewritten as:

〈ρkvkψk〉Vk
=〈ρkvkψk〉Xk

V

=〈ρk(〈vk〉Xkρk

V + ̂v̂k)(〈ψk〉Xkρk

V + ̂

̂ψk)〉Vk

=〈ρk〉Vk
〈vk〉Xkρk

V 〈ψk〉Xkρk

V + 〈ρk
̂

̂ψk
̂v̂k〉Vk

(3.185)

Introducing the mass-weighted variables (3.182) and manipulating the convec-
tive terms by use of the concept of spatial decomposition (3.183), the averaged
equation (3.139) can be written as:

∂(αk〈ρk〉Vk
〈ψk〉Xkρk

V )
∂t

+ ∇ · (αk〈ρk〉Vk
〈vk〉Xkρk

V 〈ψk〉Xkρk

V )

+ ∇ · (αk〈Jk〉Vk
) = − 1

V

∫

AI

(ṁkψk + Jk) · nkda + αk

∑

c

〈ρk,cφc〉Vk

−∇ · (αk〈ρk
̂v̂k

̂

̂ψk〉Vk
)

(3.186)

It is easily seen that the principal closure problem is maintained since
three undetermined terms appear in the volume averaged equations (3.186).

The first term, −∇ · (αk〈ρk
̂v̂̂

̂ψ〉Vk
), is called the microscopic deviation term.

In principle these terms correspond to the single phase SGS turbulence fluxes
and might be modeled adopting a single phase turbulence model. In LES
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these covariance terms are normally modeled as sub-grid scale turbulence
fluxes adopting the Smagorinsky model. On the other hand, in connection
with the double averaging operators (i.e., adopting the time or ensemble after
volume averaging procedures) these terms are normally neglected [243, 10].
The second term, − 1

V

∫

AI
Jk · nk da, accounts for the effects of interfacial

stress, heat and species mass transfer, whereas the third term, 1
V

∫

AI
ṁkψk da,

accounts for the interfacial transfer due to phase change.
To illustrate the remaining covariance modeling task required closing the

model, the fairly rigorous instantaneous volume averaged equations expressed
in terms of mass-weighted quantities are listed below.

Mass:
The modified volume averaged continuity equation deduced from (3.142)
can be written as:

∂

∂t

(

αk〈ρk〉Vk

)

+ ∇ ·
(

αk〈ρk〉Vk
〈vk〉Xkρk

V

)

= ΓV k (3.187)

The interfacial mass transfer flux ΓV k needs to be approximated providing
parameterizations for the unknown quantities in (3.144).

Momentum:
The modified volume averaged momentum equation deduced from (3.146)
can be written as:

∂

∂t

(

αk〈ρk〉Vk
〈vk〉Xkρk

V

)

+ ∇ ·
(

αk〈ρk〉Vk
〈vk〉Xkρk

V 〈vk〉Xkρk

V

)

= −∇ ·
(

αk(〈Tk〉Vk
+ 〈Tk〉Re

Vk
)
)

+ MT
k

+ ΓV k〈vk〉ΓV k

AI
+ αk〈

∑

c

ρk,cgc〉Vk

≈ −αk∇〈pk〉Vk
−∇ ·

(

αk(〈σk〉Vk
+ 〈Tk〉Re

Vk
)
)

+ Fk

+ ΓV k〈vk〉ΓV k

AI
+ αk〈

∑

c

ρk,cgc〉Vk

(3.188)

in which 〈Tk〉Re
Vk

= 〈ρk
̂v̂k

̂v̂k〉Vk
. In addition, closure relations are needed

for the interfacial terms (3.148), (3.158) and (3.159).
Energy :

The modified volume averaged energy equation deduced from (3.164) can
be written as:

∂

∂t

(

αk〈ρk〉Vk
(〈ek〉Xkρk

V +
1
2
(〈vk〉Xkρk

V )2 +
1
2
〈̂v̂k · ̂v̂k〉Xkρk

V )
)

+ ∇ ·
(

αk(〈ρk〉Vk
〈vk〉Xkρk

V 〈ek〉Xkρk

V + 〈ρk
̂v̂k

̂êk〉Vk
)
)
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+
1
2
∇ ·

(

αk〈ρk〉Vk
〈vk〉Xkρk

V ((〈vk〉Xkρk

V )2 + 〈̂v̂k · ̂v̂k〉Xkρk

V )
)

+ ∇ ·
(

〈vk〉Xkρk

V · (αk〈ρk
̂v̂k

̂v̂k〉Vk
)
)

(3.189)

+
1
2
∇ ·

(

αk〈ρk〉Vk
〈̂v̂k(̂v̂k · ̂v̂k)〉Xkρk

V

)

+ ∇ ·
(

αk〈qk〉Vk

)

+ ∇ ·
(

αk(〈Tk〉Vk
· 〈vk〉Xkρk

V + 〈Tk · ̂v̂k〉Vk
)
)

= ΓV k

(

〈ek〉ΓV k

AI
+

1
2
(〈vk〉ΓV k

AI
)2

)

+ EW
k + EE

k

+ αk〈
∑

c

ρk,cvk,c · gk,c〉Vk

The interfacial work by viscous and pressure forces (3.168) can be rear-
ranged decomposing the velocity as:

EW
k = − 1

V

∫

AI

(Tk · vk) · nkda

= − 1
V

∫

AI

(Tk · (〈vk〉Xkρk

V + ̂v̂k)) · nkda

=MT
k · 〈vk〉Xkρk

V + E
̂

̂W
k

(3.190)

where E
̂

̂W
k is called the interfacial extra work [56].

Besides, constitutive equations are required for the unknown quantities in
(3.166), (3.167) and (3.169).

Mechanical Energy :
The volume averaged kinetic energy equation can be derived by talking
the scalar product of the averaged velocity with the momentum equation
(3.188). Without introducing the normal simplifications assumed valid for
dispersed flows, the result is:

∂

∂t

(

αk〈ρk〉Vk

1
2
(〈vk〉Xkρk

V )2
)

+ ∇ ·
(

αk〈ρk〉Vk
〈vk〉Xkρk

V

1
2
(〈vk〉Xkρk

V )2
)

= −〈vk〉Xkρk

V · ∇ ·
(

αk(〈Tk〉Vk
+ 〈Tk〉Re

Vk
)
)

+ 〈vk〉Xkρk

V · MT
k

+ ΓV k〈vk〉ΓV k

AI
· 〈vk〉Xkρk

V + αk〈
∑

c

ρk,cgc〉Vk
· 〈vk〉Xkρk

V

(3.191)

A simplified formulation of the volume averaged mechanical energy equa-
tion supposedly valid for dispersed flows only can be expressed as:
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∂

∂t

(

αk〈ρk〉Vk

1
2
(〈vk〉Xkρk

V )2
)

+ ∇ ·
(

αk〈ρk〉Vk
〈vk〉Xkρk

V

1
2
(〈vk〉Xkρk

V )2
)

= −αk〈vk〉Xkρk

V · ∇〈pk〉Vk

− 〈vk〉Xkρk

V · ∇ ·
(

αk(〈σk〉Vk
+ 〈Tk〉Re

Vk
)
)

+ 〈vk〉Xkρk

V · Fk

+ ΓV k〈vk〉ΓV k

AI
· 〈vk〉Xkρk

V + αk〈
∑

c

ρk,cgc〉Vk
· 〈vk〉Xkρk

V

(3.192)

In which the identity:

〈vk〉Xkρk

V ·
(

∂

∂t
(αk〈ρk〉Vk

〈vk〉Xkρk

V ) + ∇ · (αk〈ρk〉Vk
〈vk〉Xkρk

V )
)

=
∂

∂t

(

αk〈ρk〉Vk

1
2
(〈vk〉Xkρk

V )2
)

+ ∇ ·
(

αk〈ρk〉Vk
〈vk〉Xkρk

V

1
2
(〈vk〉Xkρk

V )2
)

(3.193)

has been used [112, 56].
An apparent internal energy equation can be derived by subtracting
(3.192) from (3.183). The result is:

∂

∂t

(

αk〈ρk〉Vk
(〈ek〉Xkρk

V +
1
2
〈̂v̂k · ̂v̂k〉Xkρk

V )
)

+ ∇ ·
(

αk(〈ρk〉Vk
〈vk〉Xkρk

V 〈ek〉Xkρk

V + 〈ρk
̂v̂k

̂êk〉Vk
)
)

+
1
2
∇ ·

(

αk〈ρk〉Vk
〈vk〉Xkρk

V 〈̂v̂k · ̂v̂k〉Xkρk

V

)

+
1
2
∇ ·

(

αk〈ρk〉Vk
〈̂v̂k(̂v̂k · ̂v̂k)〉Xkρk

V

)

+ ∇ ·
(

αk〈qk〉Vk

)

+ αk

(

〈σk〉Vk
+ 〈Tk〉Re

Vk

)

: ∇〈vk〉Xkρk

V + ∇·
(

αk〈Tk · ̂v̂k〉Vk

)

+ αk〈pk〉Vk
∇ · 〈vk〉Xkρk

V = ΓV k

(

〈ek〉ΓV k

AI
+

1
2
(〈vk〉ΓV k

AI
)2

− 〈vk〉ΓV k

AI
· 〈vk〉Xkρk

V

)

+ E
̂

̂W
k + EE

k

+ αk

(

〈
∑

c

ρk,cvk,c · gk,c〉Vk
− 〈

∑

c

ρk,cgc〉Vk
· 〈vk〉Xkρk

V

)

(3.194)

For the particular systems where gravity is the only external force con-
sidered, the corresponding energy source terms vanish.
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Internal Energy :
The modified volume averaged internal energy equation can be deduced
from (3.170) introducing a spatial decomposition of the velocity variable.
The result is:

∂

∂t

(

αk〈ρk〉Vk
〈ek〉Xkρk

V

)

+ ∇ ·
(

αk〈ρk〉Vk
〈vk〉Xkρk

V 〈ek〉Xkρk

V

)

= −αk〈σk〉Vk
: ∇〈vk〉Xkρk

V − αk〈pk〉Vk
∇ · 〈vk〉Xkρk

V

− αk〈σk : ∇̂v̂k〉Vk
− αk〈pk∇ · ̂v̂k〉Vk

−∇ · (αk〈qk〉Vk
)

+ Γk〈ek〉ΓV k

AI
+ EE

k −∇ · (αk〈ρk
̂v̂k

̂êk〉Vk
) + αk〈

∑

c

jk,c · gk,c〉Vk

(3.195)

The averaged form of the internal energy jump balance (3.101) can be
written as

∑

k

(EE
k + eΓ

k ) ≈ 0 (3.196)

From (3.165) we observe that eΓ
k = ΓV k〈ek〉ΓV k

AI
.

Subtracting the equation for the averaged internal energy (3.195) from
the apparent internal energy equation (3.194) gives an equation for the
spatial covariance expressing an average deviating kinetic energy:

∂

∂t

(

αk〈ρk〉Vk
(
1
2
〈̂v̂k · ̂v̂k〉Xkρk

V )
)

+ ∇ ·
(

αk〈ρk〉Vk
〈vk〉Xkρk

V (
1
2
〈̂v̂k · ̂v̂k〉Xkρk

V )
)

+ ∇ ·
(

αk〈ρk〉Vk
(
1
2
〈̂v̂k(̂v̂k · ̂v̂k)〉Xkρk

V )
)

+ αk〈Tk〉Re
Vk

: ∇〈vk〉Xkρk

V + ∇·
(

αk〈Tk · ̂v̂k〉Vk

)

= ΓV k

(

1
2
(〈vk〉ΓV k

AI
)2 − 〈vk〉ΓV k

AI
· 〈vk〉Xkρk

V

)

+ αk

(

〈
∑

c

ρk,cvk,c · gk,c〉Vk
− 〈

∑

c

ρk,cgc〉Vk
· 〈vk〉Xkρk

V

)

− αk〈
∑

c

jk,c · gk,c〉Vk
+ E

̂

̂W
k

(3.197)

Enthalpy :
The modified volume averaged enthalpy equation can be deduced from
(3.172) or alternatively from (3.195) and the relations between the aver-
aged internal energy and the enthalpy:

〈ek〉Xkρk

V = 〈hk〉Xkρk

V − 〈pk〉Vk
/〈ρk〉Vk

(3.198)
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〈ek〉ΓV k

AI
= 〈hk〉ΓV k

AI
− 〈pk〉ΓV k

AI
/〈ρk〉ΓV k

AI
(3.199)

The result is:

∂

∂t
(αk〈ρk〉Vk

〈hk〉Xkρk

V )

+ ∇ ·
(

αk〈ρk〉Vk
〈vk〉Xkρk

V 〈hk〉Xkρk

V

)

=

∂(αk〈pk〉Vk
)

∂t
+ ∇ · (αk〈vk〉Xkρk

V 〈pk〉Vk
) + ∇ · (αk〈̂v̂kpk〉Vk

)

− αk〈σk〉Vk
: ∇〈vk〉Xkρk

V − αk〈pk〉Vk
∇ · 〈vk〉Xkρk

V

− αk〈σk : ∇̂v̂k〉Vk
− αk〈pk∇ · ̂v̂k〉Vk

−∇ · (αk〈qk〉Vk
)

−∇ · (αk〈ρk
̂v̂k

̂

̂hk〉Vk
) + αk〈

∑

c

jk,c · gk,c〉Vk

+ ΓV k〈hk〉ΓV k

AI
+ EE

k

(3.200)

The averaged form of the enthalpy jump balance (3.101) can be written
as:

∑

k

(EE
k + hΓ

k ) ≈ 0 (3.201)

in which hΓ
k = ΓV k〈hk〉ΓV k

AI
.

Temperature:
The averaged temperature equation can be derived from the averaged
enthalpy equation (3.200) by use of the complete differential (1.142). In
this case the averaged enthalpy equation is first reformulated by use of
the averaged continuity equation (3.187). The intermediate result is:

αk〈ρk〉Vk

(

∂〈hk〉Xkρk

V

∂t
+ 〈vk〉Xkρk

V · ∇〈hk〉Xkρk

V

)

=

∂(αk〈pk〉Vk
)

∂t
+ 〈vk〉Xkρk

V · ∇(αk〈pk〉Vk
) + ∇ · (αk〈̂v̂kpk〉Vk

)

− αk〈pk∇ · ̂v̂k〉Vk
− αk〈σk〉Vk

: ∇〈vk〉Xkρk

V − αk〈σk : ∇̂v̂k〉Vk

−∇ · (αk〈ρk
̂v̂k

̂

̂hk〉Vk
) + αk〈

∑

c

jk,c · gk,c〉Vk
−∇ · (αk〈qk〉Vk

)

+ ΓV k〈hk〉ΓV k

AI
+ EE

k − ΓV k〈hk〉Xkρk

V

(3.202)

The volume averaged form of the complete differential (1.142) can be
approximated as:
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D〈hk〉Xkρk

V

Dt
= 〈Cp,k〉Vk

D〈Tk〉Vk

Dt

+
(

1
〈ρk〉Vk

+
〈Tk〉Vk

〈ρk〉2Vk

(

∂〈ρk〉Vk

∂〈Tk〉Vk

)

p,ω

)

D〈pk〉Vk

Dt

− 1
〈ρk〉Vk

[

〈
N

∑

c=1

h̄c∇ · ( jc
Mwc

)〉Vk
+ 〈

q
∑

r=1

rr,cref(−ΔH̄r,cref)〉Vk

]

(3.203)

in which the average of products are assumed equal to the product of
averages.
By substitution the temperature equation yields:

αk〈ρk〉Vk
〈Cp,k〉Vk

(

∂〈Tk〉Vk

∂t
+ 〈vk〉Xkρk

V · ∇〈Tk〉Vk

)

=

− αk
〈T 〉Vk

〈ρ〉Vk

(

∂〈ρ〉Vk

∂〈Tk〉Vk

)

p,ω

D〈pk〉Vk

Dt
+ 〈pk〉Vk

Dαk

Dt

−∇ · (αk〈σk〉Vk
: ∇〈vk〉Xkρk

V + αk〈σk : ∇̂v̂k〉Vk
)

+ αk

(

〈
N

∑

c=1

h̄c∇ · ( jc
Mwc

)〉Vk
+ 〈

q
∑

r=1

rr,cref(−ΔH̄r,cref)〉Vk

)

−∇ · (αk〈qk〉Vk
) + ΓV k(〈hk〉ΓV k

AI
− 〈hk〉Xkρk

V ) + EE
k

+ αk〈
∑

c

jk,c · gk,c〉Vk

(3.204)

The interfacial heat transfer flux involves the interfacial heat which can
be related to the heat of vaporization or condensation and the heat flux
of the phase on the k side of the interface [112].
For incompressible and porous media flows we may follow the approaches
of [239, 200] wherein the variations of the factor ρkCp,k within the av-
eraging volume are neglected to enable application of the Leibnitz’ and
Gauss’ averaging rules on the temperature and apparent flux terms. For
this particular case the modified volume averaged enthalpy equation in
terms of temperature can be deduced from (3.176) as follows:

ρkCp,k

(

∂(αk〈Tk〉Vk
)

∂t
+ 〈vk〉Vk

· ∇(αk〈Tk〉Vk
)
)

=

−∇ · (αk〈qk〉Vk
) −∇ · (αk〈σk〉Vk

: ∇〈vk〉Vk
)

+ αk〈
N

∑

c=1

h̄c∇ · ( jc
Mwc

)〉Vk
+ αk〈

q
∑

r=1

rr,cref(−ΔH̄r,cref)〉Vk

+ ΓV k〈Cp,kTk〉ΓV k

AI
+ EE

k + αk〈
∑

c

jk,c · gk,c〉Vk

−∇ · (ρkCp,k〈v̂k
̂Tk〉Vk

)

(3.205)
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in which the terms on the LHS are manipulated by use of the continuity
equation. Moreover, the average of products resulting from the convective
term is reformulated using spatial decomposition of the temperature and
velocity variables.
The procedure can be summarized in three steps:

〈∂Tk

∂t
〉V + 〈vk · ∇Tk〉V

≈ ∂

∂t
(αk〈Tk〉Vk

) + ∇ · (αk〈vkTk〉Vk
) − ΓV k

ρkCp,k
〈Cp,kTk〉ΓV k

AI

=
∂

∂t
(αk〈Tk〉Vk

) + 〈vk〉Vk
· ∇(αk〈Tk〉Vk

) + ∇ · (〈̂v̂k
̂Tk〉Vk

)

− ΓV k

ρkCp,k
〈Cp,kTk〉ΓV k

AI

(3.206)

Chemical species:
The modified volume averaged species mass balance deduced from (3.177)
can be expressed as:

∂

∂t

(

αk〈ρk〉Vk
〈ωk,s〉αkρk

V

)

+ ∇ ·
(

αk(〈ρk〉Vk
〈vk〉αkρk

V 〈ωk,s〉αkρk

V + 〈ρk
̂v̂k

̂ω̂k〉Vk
)
)

+ ∇ ·
(

αk〈jk,s〉Vk

)

= ΓV k〈ωk,s〉ΓV k

AI
− Jj

k,s + αk〈Rk,s〉Vk

(3.207)

in which constitutive equations are needed for the unknown quantities in
(3.179), (3.180) and (3.181).

For incompressible flows the fluid properties (e.g., ρk, μk) are constants
so the covariances between the fluctuating components of ρk and ψk, i.e.,

〈ρ̂k
̂

̂ψk〉Vk
, vanish. The density variable is thus conveniently denoted by ρk and

simply moved outside the averaging bracket. Therefore, for constant density
flows the mass-weighted variables coincide with the phase-weighted or intrinsic
variables, thus the Favre like mass-weighted variable procedure used above
can be replaced by a simpler method resembling the conventional Reynolds
averaging procedure used in turbulence analysis [153, 154, 193].

Since the spatially averaged model for incompressible systems is used occa-
sionally in chemical engineering practice, we will briefly outline the Reynolds
like spatial decomposition and averaging procedure for completeness. In this
case the ̂ψk represents the spatial deviation of the point variable ψk from the
intrinsic volume average value 〈ψk〉Vk

, and is defined by:

̂ψk = ψk − 〈ψk〉Vk
(3.208)

where ψk represents the local variable at a point in space r.
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The average of the spatial deviation ̂ψk is computed applying the intrinsic
average operator (3.118) on (3.208). The obvious result is:

〈 ̂ψk〉Vk
= 〈ψk〉Vk

− 〈〈ψk〉Vk
〉Vk

= 〈ψk〉Vk
− 〈ψk〉Vk

= 0 (3.209)

It follows that the average of the product of the two local variables ψk and
φk can be written as the product of the averaged variables plus a covariance
term, as follows:

〈ψkφk〉Vk
= 〈ψk〉Vk

〈φk〉Vk
+ 〈 ̂ψk

̂φk〉Vk
(3.210)

Having related the average of products to the products of averages, the aver-
aged equation (3.139) becomes:

∂(αkρk〈ψk〉Vk
)

∂t
+ ∇ · (αkρk〈vk〉Vk

〈ψk〉Vk
) + ∇ · (αk〈Jk〉Vk

) =

− 1
V

∫

AI

(ṁkψk + Jk) · nkda−∇ · (αkρk〈v̂k
̂ψk〉Vk

) + αk

∑

c

ρk,c〈φc〉Vk

(3.211)

The averaging approach for incompressible flows has been applied describing
solidification processes in metallurgy [153, 81, 14, 193]. For example, for the
modeling of materials solidification Shyy et al [193] did derive a set of macro-
scopic transport equations intended to be valid in solid, liquid, and mushy
zones. In particular, since the volume averaged covariance terms can be inter-
preted as sub-grid stresses they adopted the LES concept developing a micro-
scopic deviation model and constitutive equations based on the Smagorinsky
eddy viscosity coefficient hypothesis. The suggested models have their limita-
tions as the constitutive relations are not generally valid, thus experimental
data is always required to fit the unknown model parameters and for model
validation.

The conventional constitutive equations are discussed in chap 5.

3.4.2 The Time Averaging Procedure

In this section we assess the single time averaging technique. Pure time av-
eraging has been examined by [229, 112, 45, 43, 47, 53, 48, 24, 54, 116, 157].
These investigations are recommended for complementary studies.

The conditions under which the time averaging procedure can be applied
for multiphase flows coincide with those for which time averaging can be used
for single phase turbulence flows18, and can be expressed as [112, 43, 47]:
18 It is noted that the requirement of proper separation of scales represents the main

drawback of the time averaging method. The constitutive equations used gener-
ally depend strongly on this assumption which is hardly ever fulfilled performing
simulations of turbulent reactive flows.
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In this averaging procedure we imagine that at any point r in a two-phase
flow, phase k passes intermittently so a function ψk associated with phase
k will be a piecewise continuous function. However, the interfaces are not
stationary so they do not occupy a fixed location for finite time intervals. For
this reason the average macroscopic variables are expected to be continuous
functions (but this hypothesis has been questioned as it can be shown that
the first order time derivative might be discontinuous which is not physical,
hence an amended double time averaging operator was later proposed as a
way of dealing with this problem [43, 47]). Since T is the overall time period
over which the time averaging is performed, phase k is observed within a
subset of residence time intervals so that T =

∑

k Tk for all the phases in the
system. In this context the time averaged equations are established treating
the interfaces as discontinuous jumps with no thickness [43, 47], in contrast
to the interface model used by Ishii [112].

In the conventional averaging procedure a phase indicator function Xk is
defined by:

Xk(r, t) =

{

1 if location r pertains to phase k,

0 otherwise.
(3.212)

The mathematical properties of Xk ensure that the ordinary mathematical
operations of vector calculus can be performed on the local instantaneous
variables which are discontinuous [112, 58].

The local instantaneous equations can be time averaged over a defined
time interval [t − T/2; t + T/2]. The single time averaging operator which
can be applied to any scalar, vector or tensor valued property function ψk

associated with phase k, is defined by:

〈ψk〉T =
1
T

t+T/2
∫

t−T/2

Xkψkdt
′ =

1
T

tk+Tk/2
∫

tk−Tk/2

ψkdt
′ (3.213)

It is emphasized that 〈ψk〉T is by definition the time average of the quantity
ψk over the entire time averaging period T .

The corresponding time average of ψk over the time interval Tk, which
coincides with the Xk-weighted average of ψk over the entire time period T ,
is defined by:
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〈ψk〉Tk
= 〈ψk〉Xk

T =

1
T

t+T/2
∫

t−T/2

Xkψkdt
′

1
T

t+T/2
∫

t−T/2

Xkdt′

=
1
Tk

tk+Tk/2
∫

tk−Tk/2

ψkdt
′ (3.214)

By comparing the averaging operators (3.213) and (3.214), the following re-
lationship is achieved:

〈ψk〉T =
Tk

T
〈ψk〉Tk

= βk〈ψk〉Tk
(3.215)

in which the time fraction βk of phase k is defined by:

βk =
Tk

T
(3.216)

To derive a time average of the generic differential balance equation for phase k
(3.82) is multiplied with Xk, integrated over the entire averaging time interval
T , and thereafter multiplied with the fixed reciprocal overall time averaging
period T . The resulting time averaged equation is given by:

1
T

t+T/2
∫

t−T/2

(

Xk
∂(ρkψk)

∂t
+Xk∇·(ρkvkψk+Jk)−Xk

∑

c

ρk,cφk,c

)

dt′ = 0 (3.217)

or, using a more compact notation:

〈∂(ρkψk)
∂t

〉T + 〈∇ · (ρkvkψk + Jk)〉T − 〈
∑

c

ρk,cφk,c〉T = 0 (3.218)

The first, second and third terms in (3.218) have to be reformulated using
the conventional time averaging theorems19. The first theorem one makes use
of relates the average of a time derivative to the time derivative of an average
quantity, and is called the Leibnitz’s rule for time averaging:

1
T

t+T/2
∫

t−T/2

Xk
∂ψk

∂t
dt′ =

∂

∂t
[
1
T

t+T/2
∫

t−T/2

Xkψk dt
′] − 1

T

∑

tk
I∈(t−T

2 ;t+ T
2 )

vI · nI

|vI · nI |
ψk(tkI )

(3.219)
or, expressed in the compact notation

〈∂ψk

∂t
〉T =

∂

∂t
〈ψk〉T − 1

T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

ψk(tkI )vI · nI

=
∂

∂t
(βk〈ψk〉Tk

) − 1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

ψk(tkI )vI · nI

(3.220)

19 The time averaging theorems have been derived by [112] [47].
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where nk is the outward unit normal of the element of area Ak of phase k,
and vI is the velocity of the local interface. ψk(tkI ) denotes the value of ψ on
the phase k side of the interface. It is also noted that vI · nI is positive when
the interface is approaching the point under consideration and negative when
the interface is leaving it [112, 47].

For the particular case when ψk = 1 it is recognized that (3.213), (3.214)
and (3.220) can be manipulated and expressed as:

〈1〉T =
1
T

t+T/2
∫

t−T/2

Xkdt
′ =

Tk

T
= βk (3.221)

and
0 =

∂βk

∂t
−

∑

tk
I∈(t−T/2;t+T/2)

vI · nI

|vI · nI |
(3.222)

in accordance with the work of [112, 43, 47, 24].
The second theorem we utilize relates the average of a spatial derivative

to the spatial derivative of the average, and is termed the Gauss rule for time
averaging:

1
T

t+T/2
∫

t−T/2

(Xk∇ψk) dt′ = ∇[
1
T

t+T/2
∫

t−T/2

Xkψk dt
′]+

1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

nIψk(tkI )

(3.223)
In the compact notation, we get:

〈∇ψk〉T =∇〈ψk〉T +
1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

nIψk(tkI )

=∇(βk〈ψk〉Tk
) +

1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

nIψk(tkI )
(3.224)

A special case of (3.224) is the theorem for the time average of a divergence:

〈∇ · ψk〉T =∇ · 〈ψk〉T +
1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

nI · ψk(tkI )

=∇ · (βk〈ψk〉Tk
) +

1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

nI · ψk(tkI )
(3.225)

where ψk is interpreted as a vector or a second order tensor field.
For the particular case when ψk = 1 it is recognized that (3.224) reduces to:

0 = ∇βk +
1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

nI (3.226)



3.4 Averaging Procedures 423

which is an important relationship frequently utilized manipulating the av-
eraged terms [47]. The same relationship is obtained from (3.225) if ψk is
replaced with the unit tensor ψk = e.

By taking into account the particular forms of the Leibnitz’s and Gauss’
theorems valid for time averaging (3.220), (3.224) and (3.225), the averaged
generic equation (3.218) becomes:

∂(βk〈ρkψk〉Tk
)

∂t
+ ∇ · (βk〈ρkvkψk〉Tk

) + ∇ · (βk〈Jk〉Tk
) =

− 1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

(ṁkψk + Jk · nk) + βk〈
∑

c

ρcφc〉Tk
(3.227)

where ṁk is the interface mass transfer rate as defined by (3.140).
The interfacial transfer terms occurring on the RHS of (3.227) can be

rewritten as [112]:

− 1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

(ṁkψk + Jk · nk) = −
∑

j

l−1
j (ṁkψk + Jk · nk)j

(3.228)
where j denotes the j-th interface passing through r during the time interval
T and where lj = T |vI · nI |j is the interfacial transport length for interface
j.

The local jump conditions are time averaged in a similar manner. To derive
the averaged form of the generic condition we multiply (3.109) with 1

|vI ·nI | ,
take the sum over all the interface occurrences obtained within the entire aver-
aging time interval tkI ∈ [t−T/2; t+T/2], and thereafter multiply the resulting
relation with the fixed reciprocal averaging time period T . The averaged jump
condition becomes:

− 1
T

∑

tk
I∈(t−T

2 ;t+ T
2 )

1
|vI · nI |

(
∑

k

[ṁkψk + Jk · nk] + MI) =

−
∑

j

l−1
j

(

∑

k

[ṁkψk + Jk · nk] + MI

)

j

= 0
(3.229)

The averaged equations governing each phase and the corresponding jump
conditions are then achieved defining the specific values of the generic variables
in (3.227) and (3.229) in accordance with Table 3.1.

Mass:
The time averaged continuity equation appears by substituting ψk = 1,
Jk = 0 and φc,k = 0 into (3.227):

∂(βk〈ρk〉Tk
)

∂t
+ ∇ · (βk〈ρkvk〉Tk

) = −
∑

j

l−1
j ṁkj = ΓTk (3.230)
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Introducing the values for the interface properties MI = 0 into (3.229),
yields:

∑

k

ΓTk = 0 (3.231)

where the interfacial mass transfer terms due to phase change is defined by

ΓTk = −
∑

j

l−1
j ṁkj = aTI

〈ṁk〉TI
(3.232)

in which 〈ṁk〉TI
= −

∑

j
ṁkj

lj
/aTI

denotes the interfacial area averaged
mass transfer rate [112]. The interfacial area density is defined in accor-
dance with (3.233). The surface area concentration per volume is given
by [112]:

aTI
=

∑

j

l−1
j (3.233)

Momentum:
The time averaged momentum equation appears by substituting ψk = vk,
Jk = Tk and φc,k = gc,k into (3.227):

∂(βk〈ρkvk〉Tk
)

∂t
+ ∇ · (βk〈ρkvkvk〉Tk

) + ∇ · (βk〈Tk〉Tk
) =

−
∑

j

l−1
j (ṁkvk + Tk · nk)j + βk〈

∑

c

ρcgc〉Tk
(3.234)

Introducing the values for the interface properties MI = 2σIHInI +∇IσI

into (3.229), yields:
∑

k

(MΓ
Tk + MT

Tk) =
∑

j

l−1
j MIj (3.235)

where the interfacial momentum transfer due to phase change is de-
fined by:

MΓ
k = −

∑

j

l−1
j ṁkjvkj = ΓTk〈vk〉ΓT k

TI
(3.236)

in which the mass transfer weighted interfacial area averaged velocity
〈vk〉Γk

TI
is defined in analogy to the mass-weighted averaged variables

known from turbulence theory [112] (p. 133).
The interfacial momentum stresses yield:

MT
k = −

∑

j

l−1
j Tkj · nkj = −

∑

j

l−1
j (pke + σk)j · nkj (3.237)

where the total stress tensor of both phases has been modeled using the
Newtonian strain-stress formulation.
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In a similar manner as for the volume averaging method in sect 3.4.1, the
stress terms are normally rewritten introducing interfacial mean quantities
weighted by the interfacial mass transfer rate (i.e., in the volume averaging
method the interfacial area averaged stresses are not weighted by the mass
transfer rate). The interfacial mean pressure weighted by the interfacial
mass transfer rate per unit surface area becomes:

〈pk〉TI
=

∑

j
pkjṁkj

lj
∑

j
ṁkj

lj

(3.238)

Naturally, the interfacial mean viscous stress weighted by the mass trans-
fer rate per unit surface area is then defined by:

〈σk〉TI
=

∑

j
σkjṁkj

lj
∑

j
ṁkj

lj

(3.239)

The corresponding fluctuating interfacial quantities are defined by:

p′k,I = pk − 〈pk〉TI
(3.240)

σ′
k,I = σk − 〈σk〉TI

(3.241)

Proceeding in the same way as explained presenting the volume averaging
procedure, we obtain the following result

MT
k = 〈pk〉TI

∇βk + 〈σk〉TI
· ∇βk + Fk (3.242)

The interfacial pressure difference effect and the combined interfacial shear
and time fraction gradient effect are treated in the same manner as sug-
gested discussing the analogous terms in (3.156). The modified definition
of the generalized drag force follows naturally from an analogy to (3.158).
Utilizing (3.226) and the mean value theorem for integrals, the term on
the RHS of (3.235) can be expressed as

∑

j

l−1
j MIj =

∑

j

l−1
j (2σIHInI + ∇IσI)j

≈ 2〈σIHI〉TI

∑

j

nI,kj

T |vI,kj · nkj |
+

∑

j

l−1
j ∇IjσI

≈ 2〈σI〉TI
〈HI〉TI

∇β2 + aTI
〈∇IσI〉TI

(3.243)

where 〈HI〉TI
is the interfacial area averaged curvature [112]. The mean

curvature is defined in accordance with (3.76). In this equation the sign
convention is given by the definition nI = n1.

Energy :
The time averaged energy equation appears by substituting ψk = ek+ 1

2v
2
k,

Jk = Tk · vk + qk and φc,k = vk · gc,k into (3.227):
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∂

∂t

(

βk〈ρk(ek +
1
2
v2

k)〉Tk

)

+ ∇ ·
(

βk〈ρkvk(ek +
1
2
v2

k)〉Tk

)

+ ∇ ·
(

βk〈Tk · vk〉Tk

)

+ ∇ ·
(

βk〈qk〉Tk

)

= −
∑

j

l−1
j

(

ṁk(ek +
1
2
v2

k) + (Tk · vk + qk) · nk

)

j

+ βk〈
∑

c

ρk,cvk,c · gk,c〉Tk

(3.244)

Introducing the values for the interface properties
MI = ∇I · qI −∇I · (σIvI) into (3.229), yields:

∑

k

(EE
k + EW

k + EΓ
k ) =

∑

j

l−1
j MI,j (3.245)

The interfacial energy transfer due to phase change is defined by:

EΓ
k =

∑

j

l−1
j ρkj(ek +

1
2
v2

k)j(vI − vk)j · nkj = −
∑

j

l−1
j ṁkj(ek +

1
2
v2

k)j

=ΓTk〈(ek +
1
2
v2

k)〉ΓT k

TI

(3.246)

in which 〈(ek + 1
2v

2
k)〉Γk

TI
denotes the mass transfer weighted interfacial

(internal and mechanical) energy [112] (p. 137).
The interfacial heat transfer is given by:

EE
k = −

∑

j

l−1
j qkj · nkj = aTI

〈qk · nk〉TI
, (3.247)

in which 〈qk · nk〉TI
denotes the interfacial area averaged heat transfer

flux.
The interfacial work by viscous and pressure forces yield:

EW
k = −

∑

j

l−1
j (Tk · vk)j · nkj (3.248)

The surface energy sources are expressed as the product of the interfacial
area concentration and the averaged interfacial fluxes:

∑

j

l−1
j MIj = −

∑

j

l−1
j (−∇I · (σIvI) + ∇I · qI)j

= 〈∇I · (σIvI)〉TI
aTI

− 〈∇I · qI〉TI
aTI

(3.249)

where −〈∇I · qI〉TI
and 〈∇I · (σIvI)〉TI

are the interfacial accumulated
residence time averaged interfacial energy fluxes.
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Chemical species:
The time averaged species mass balance appears by substituting ψk =
ωk,s, Jk = jk,s and φc,k = Rk,s/ρk,c into (3.227):

∂(βk〈ρk,s〉Tk
)

∂t
+ ∇ · (βk〈ρk,svk〉Tk

) + ∇ · (βk〈jk,s〉Tk
) =

−
∑

j

l−1
j (ṁkωk,s + jk,s · nk)j + βk〈Rk,s〉Tk

(3.250)

Introducing the values for the interface properties MI = RI,s into (3.229),
yields:

∑

k

(JΓ
k,s + Jj

k,s) =
∑

j

l−1
j MIj (3.251)

where the interfacial species mass transfer due to phase change is defined
by:

JΓ
k,s =

∑

j

l−1
j ρkjωkj,s(vI − vk)j · nkj = −

∑

j

l−1
j ṁkjωkj,s = ΓTI

〈ωk,s〉TI
,

(3.252)
in which the 〈ωk,s〉TI

denotes the mass transfer weighted interfacial species
s mass fraction [112] (p. 133).
The other interfacial mass transfer fluxes are given by:

Jj
k = −

∑

j

l−1
j jkj · nkj = aTI

〈jk · nk〉TI
(3.253)

in which 〈Jk · nk〉TI
denotes the interfacial area averaged mass transfer

flux.
The interfacial production term due to heterogeneous reactions is normally
rewritten as:

∑

j

l−1
j MIj =

∑

j

l−1
j RIj,s = 〈RI,s〉TI

aI = ρBulk〈RI,s〉mTI
(3.254)

in which the interfacial reaction rate per unit interface area is commonly
substituted by the more practical reaction rate per unit mass 〈RI,s〉mTI

=
〈RI,s〉TI

aI/ρBulk (kg/kg, cat× s) in which ρBulk denotes the bulk density
of the catalyst (kg, cat/m3

r).

In order to carry out computations with the time averaged equations on
the form (3.227), we need to relate the average of products to products of
averages and derive constitutive equations for the interfacial coupling terms.

Proceeding in a similar manner as suggested deriving the volume averaged
equations, the first problem is generally solved introducing mass- and phase
weighted time averaged variables and the concept of temporal decomposition
that is analogous to the temporal decomposition conventionally used in the
study of turbulent transport phenomena [89] [112].
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The mass-weighted time average of the quantity ψk is defined by:

〈ψk〉Xkρk

T =

1
T

t+T/2
∫

t−T/2

(Xkρkψk) dt′

1
T

t+T/2
∫

t−T/2

(Xkρk) dt′
=

〈ρkψk〉T
〈ρk〉T

=
〈ρkψk〉Tk

〈ρk〉Tk

(3.255)

In analogy to the conventional Favre decomposition and time averaging pro-
cedure we let ψ′′

k denote the temporal fluctuation of the instantaneous variable
ψk about the mass-weighted time average value 〈ψk〉Xkρk

T , as defined by:

ψ′′
k = ψk − 〈ψk〉Xkρk

T (3.256)

Introducing (3.256) into (3.255) we obtain an important relationship:

〈ρk〉T 〈ψk〉Xkρk

T =〈ρkψk〉T
=〈ρk(〈ψk〉Xkρk

T + ψ′′
k )〉T

=〈ρk〈ψk〉Xkρk

k 〉T + 〈ρkψ
′′
k 〉T

=〈ρk〉T 〈ψk〉Xkρk

T

(3.257)

in which we have shown that 〈ρkψ
′′
k 〉T = βk〈ρkψ

′′
k 〉Tk

= 〈ψ′′
k 〉

Xkρk

T = 0 because
〈ψk〉Xkρk

T is constant within T .
Using (3.257) the convective term in the averaged equation (3.227) can be

written as:

〈ρkvkψk〉Tk
=〈ρkvkψk〉Xk

T

=〈ρk(〈vk〉Xkρk

k + v′′
k)(〈ψk〉Xkρk

k + ψ′′
k )〉Xk

T

=〈ρk〉T 〈vk〉Xkρk

T 〈ψk〉Xkρk

T + 〈ρkv′′
kψ

′′
k 〉T

(3.258)

Introducing the mass weighted variables (3.256) and manipulating the con-
vective terms by use of the concept of temporal decomposition (3.255), the
averaged equation (3.227) becomes:

∂(βk〈ρk〉Tk
〈ψk〉Xkρk

T )
∂t

+ ∇ · (βk〈ρk〉Tk
〈vk〉Xkρk

T 〈ψk〉Xkρk

T )

+ ∇ · (βk〈Jk〉Tk
) = −

∑

j

l−1
j (ṁkψk + Jk)j · nkj + βk

∑

c

〈ρk,cφc〉Tk

−∇ · (βk〈ρkv′′
kψ

′′
k 〉Tk

)

(3.259)

As in the volume averaged equations discussed in sect 3.4.1, three undeter-
mined terms can be identified in the time averaged equations (3.259). The first
term, −∇ · (βk〈ρkv′′ψ′′〉Tk

) denotes the covariance or correlation terms. The
second term, −

∑

j l
−1Jkj · nkj , accounts for the effects of interfacial stress,
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heat and species mass transfer, whereas the third term, −
∑

j l
−1ṁkjψkj , ac-

count for the interfacial transfer due to phase change.
To save space the governing time averaged equations for each of the pri-

mary variables are not listed here as their mathematical form coincides with
the volume averaged model formulation given in sect 3.4.1. Nevertheless, it
is important to note that the physical interpretations of the mean quantities
and the temporal covariance terms differ from their spatial counterparts. Fur-
thermore, the conventional constitutive equations for the unknown terms are
discussed in chap 5, and the same modeling closures are normally adopted for
any model formulation even though their physical interpretation differ.

3.4.3 The Ensemble Averaging Procedure

In this section we examine the ensemble averaging method in the framework
of the generic single averaging procedure proposed by Drew [54] and further
elaborated in [55, 137, 56, 58]. The paper by Enwald et al [67] summarizes
this approach nicely in the setting of fluidized bed reactor simulations.

Other statistical averaging methods exist as well, some of them have been
assessed by [27, 104, 28, 3, 126, 247, 248, 249, 169, 142]. These reports might
be recommended for complementary studies.

As distinct from the time and volume averaging procedures, the application
of the ensemble averaging operator is not restricted by any space- and time
scales. The ensemble averaging is thus considered the fundamental method
[58, 59].

Generally, an ensemble average is defined in terms of an infinite number
of realizations of the flow, consisting of variations of position, configuration,
and velocities of the discrete units and the fluid between them. This means
that we imagine that one can measure a local instantaneous quantity for each
of an infinity of experiments which are alike except for presumably unimpor-
tant details of their behavior, and obtain the averaged values by averaging
the quantity over the ensemble. For this reason the ensemble average can be
interpreted as a measure related to the repeatability of experiments. On the
other hand, for chaotic multiphase systems an exact experiment or realization
is hardly repeatable since physical characteristics like the detailed boundary
and initial conditions cannot be controlled with sufficient accuracy [56]. An
inaccurate repetition of the experiment will thus rather lead to another mem-
ber of the ensemble. Besides, it goes without saying that in physical analysis
an infinite number of experiments cannot be realized, so the measured data
is not averaged over an infinity of realizations. The best that one can do is
to compute ensemble averages over a sufficiently large but finite number of
realizations to ensure that the average measures become stable and do not
fluctuate significantly. For such systems a correct detailed prediction cannot
be made either because the physical characteristics like the boundary and
initial conditions cannot be specified [59].
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Consider a local instantaneous scalar, vector or tensor valued function
defined by ψ ≡ ψ(r, t), and let 〈ψ〉e(r, t) denote the corresponding averaged
field. The ensemble averaging operator can be defined in terms of a continuous
probability density function [54, 58, 137]. For this purpose a few mathematical
prerequisites are needed. Let R denote an appropriate space domain, τ a time
domain and ε an event space of a process P. In this method a statistical process
refers to the set of possible flows that could occur using appropriate initial and
boundary conditions20. In this notation a generic local instantaneous variable
ψ, defined in P, is written as ψ ≡ ψ(r, t;μ). It follows that r ∈ R is the
position vector, t ∈ τ is the time and μ ∈ ε is a particular realization of the
process P. A realization of the flow designates a possible motion that could
have happened.

In order to avoid mathematical difficulties when applying the averaging
operators to the generic equation we introduce the phase indicator function
Xk(r, t;μ) in any realization. This Heaviside function picks the phase k while
ignoring the other phases and the interface. The characteristic function is
defined by:

Xk(r, t;μ) =

{

1 if phase k is present at location r in the realization μ,

0 otherwise.
(3.260)

The Xk is considered a generalized function which is especially useful in con-
nection with differentiation of discontinuous functions within an integral.

The ensemble average of ψ is then defined by:

〈ψk〉e =
∫

ε

ψk(r, t;μ)p(μ)dμ =
∫

ε

ψk(r, t;μ)dm(μ) (3.261)

where p(μ)dμ = dm(μ) is the probability density for observing a realization μ
in the interval dμ on the set of all possible events ε. In this method one refers
to ε as the ensemble.

From the definition of a probability density function we note:
∫

ε

p(μ)dμ = 1 (3.262)

20 For some turbulent flows, the boundary conditions and initial conditions cannot
be controlled sufficiently to allow repeatable experiments. In this case, although
turbulent flows are not really deterministic, a useful conceptualization of the
ensemble average assumes that the flow is deterministic but that randomness
may arise through the uncertainty in the initial and boundary conditions [58].

Another possible conceptualization of the ensemble average imagines that the
process is affected by small random forces through the motion. Particulate flows
can then be described by distributions of positions, velocities and sizes adopting
the basic principles of kinetic theory [85, 247, 248, 169, 249]. This alternative
ensemble averaging approach is examined in relation to granular flows in chap 4.
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Before the averaging operator can be applied to the generic transport equa-
tion we need to take into account that multiphase mixtures are characterized
by the presence of discontinuities in the fields. It is generally assumed that the
fields of interest are smooth within each separate phase k, but that they can
change discontinuously across the interfaces dividing the phases. Thereby the
property functions are well behaved within each of the continuous phases, but
in order to average the exact local instantaneous equation taking the discontin-
uous interfaces into account we need extended expressions for 〈∂ψk/∂t〉e and
〈∇ψk〉e. That is, for a well behaved function ψk connected to the bulk phases
conventional axioms similar to (1.379) can still be applied, while to deal with
the discontinuous fields related to the interfaces we introduce the phase indi-
cator function so that 〈Xk∂ψk/∂t〉e and 〈Xk∇ψk〉e are considered generalized
functions which can be manipulated in terms of test functions as outlined
by [54] [55] [58]. Compared to the previous averaging procedures (e.g., [43]
[47]), the use of generalized functions eliminates certain difficulties encoun-
tered when applying the averaging operators to discontinuous fields21. The
trade-off for the simple derivation of the averaged equations and jump condi-
tions is that all the mathematical manipulations involve generalized functions
[54].

The particular forms of the Leibnitz’s and Gauss’ rules used for ensemble
averaging are given by:

〈Xk
∂ψk

∂t
〉e =〈∂Xkψk

∂t
〉e − 〈ψk

∂Xk

∂t
〉e

=
∂〈Xkψk〉e

∂t
− 〈ψk

∂Xk

∂t
〉e

(3.263)

and

〈Xk∇ψk〉e =〈∇Xkψk〉e − 〈ψk∇Xk〉e
=∇〈Xkψk〉e − 〈ψk∇Xk〉e

(3.264)

The last term on the RHS in both of these equations are related to the surface
average of ψk over the interface and evaluated on the phase k side of the
face [58]. The other terms on the RHS in both equations are related to the
bulk phase average of ψk and are treated applying the conventional averaging
axioms on the form (1.379).

The ensemble average of the phase indicator function is quivalent to the
average occurrence of phase k:
21 It is noted that the original Reynolds axioms are not applicable to discontinuous

functions as normally occur across the interfaces in multiphase flow. As a remedy,
Drew [54] extended these functions making them continuous by use of the gener-
alized function concept connecting the functions of the continuous phases on each
side of the interface across the interface. Hence the discontinuous functions are
modified to be continuous but locally very steep functions across the interface.
Formally the averaging axioms can then be extended to include the interfaces,
giving rise to the modified formulations of the axioms.
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γk = 〈Xk〉e (3.265)

where
2

∑

k=1

γk = 1 (3.266)

It is noted that both the time fraction βk and the average occurrence or
number fraction γk are often treated as equivalent to the local volume fraction
αk of phase k. However, this assumption is strictly correct for stationary and
homogeneous flows only.

This equivalence of averages is not obvious so some kind of justification
might be needed. Drew [54] pointed out that mathematically the local averag-
ing operators for the volume, time and ensemble averages are formally similar.
Besides, both the time and volume averages can be viewed as approximations
to the ensemble average provided that the ergodic hypothesis holds on the
local scale. Under these restrictions, with the ensemble averaging notation as
basis, all the single averaging operators can be written in a generic manner.

In this notation the time average of ψk is defined by taking one realization
μ∗, integrating over the time interval from t−T/2 to t+T/2, and normalizing:

〈ψk(r, t;μ∗)〉T =
1
T

t+T/2
∫

t−T/2

ψk(r, τ ;μ∗)dτ (3.267)

which has the practical advantage that we need not sample the ensemble
repeatedly but rather perform a large number of samples in time within one
realization.

In a similar manner the volume average can be seen as an ensemble average
in which ψk is integrated over a sub-ensemble represented by μη for η ∈ V .
The volume average is then defined by:

〈ψk〉V =
1
V

∫

V

ψk(r, t;μ∗
η) dv =

1
V

∫

V

ψk(r + η, t;μ∗)dvη (3.268)

It is emphasized that these time and volume averaging operators are appropri-
ate only for statistically steady and homogeneous flows in which the ergodic
hypothesis holds.

The averaged balance equations are obtained by multiplying the exact
local instantaneous equations (3.82) and (3.109) by Xk and then applying the
single generic averaging operator. Xk is a generalized function satisfying the
topological equation on the form [54] [56]:

DIXk

Dt
=

∂Xk

∂t
+ vI · ∇Xk = 0 (3.269)

This relation is imagined as the material derivative of Xk following the
interface [56]. For a point in space that is located on the interface Xk takes
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the value Xk = 0, otherwise Xk = 1. In either case the partial derivatives are
both zero, so all the terms in (3.269) are zero. On the other hand, considering
a point located on the surface that move with the interface velocity, Drew
[54] [56] [58] imagines that the function Xk is expressing a constant jump
determined by the generalized functions. Thus its material derivative is zero.

Using the Xk function we can average the generic transport equation.
Preliminarily, we put up the resulting equation in the compact notation:

〈Xk
∂(ρkψk)

∂t
〉e + 〈Xk∇ · (ρkvkψk)〉e + 〈Xk∇ · Jk〉e

= 〈Xk

∑

c

ρk,cφk,c〉e
(3.270)

The first, second and third terms in (3.270) have to be reformulated using the
extended forms of the conventional averaging theorems.

The extended form of the Leibnitz’s rule can be derived by use of the phase
indicator function (3.260), the topological equation (3.269), the Reynolds av-
eraging rules (1.379) and the chain rule [54]:

〈Xk
∂ψk

∂t
〉e = 〈∂(Xkψk)

∂t
− ψk

∂Xk

∂t
〉e

= 〈∂(Xkψk)
∂t

+ (ψkvI) · ∇Xk〉e

= 〈∂(Xkψk)
∂t

〉e + 〈(ψkvI) · ∇Xk〉e

=
∂〈Xkψk〉e

∂t
+ 〈(ψkvI) · ∇Xk〉e

(3.271)

In a similar manner the extended form of Gauss’ rule can be derived by
use of the phase indicator function (3.260), the topological equation (3.269),
the Reynolds averaging rules (1.379) and the chain rule [54]:

〈Xk∇ψk〉e = 〈∇(Xkψk) − ψk∇Xk〉e
= 〈∇(Xkψk)〉e − 〈ψk∇Xk〉e
= ∇〈Xkψk〉e − 〈ψk∇Xk〉e

(3.272)

Applying the generic form of Leibnitz’s theorem (3.271) to the first term in
(3.270), we get:

〈Xk
∂(ρkψk)

∂t
〉e =

∂〈Xkρkψk〉e
∂t

+ 〈(ρkψkvI) · ∇Xk〉e (3.273)

Similarly, by applying the generic form of Gauss’ rule (3.272) to the second
and the third terms in (3.270) we obtain the following results:

〈Xk∇ · (ρkvkψk)〉e = ∇ · 〈Xkρkvkψk〉e − 〈(ρkvkψk) · ∇Xk〉e (3.274)



434 3 Multiphase Flow

and

〈Xk∇ · Jk〉e = ∇ · 〈XkJk〉e − 〈Jk · ∇Xk〉e (3.275)

Introducing these modified formulations (3.273), (3.274) and (3.275), the av-
eraged generic equation (3.270) can be written as:

∂〈Xkρkψk〉e
∂t

+ ∇ · 〈Xkρkvkψk〉e + ∇ · 〈XkJk〉e − 〈Xk

∑

c

ρk,cφk,c〉e

= 〈(ρkvkψk) · ∇Xk〉e + 〈Jk · ∇Xk〉e − 〈ρkψkvI · ∇Xk〉e
= 〈[ρkψk(vk − vI) + Jk] · ∇Xk〉e

(3.276)

The RHS of (3.276) denotes the interfacial transport terms.
The averaged equations of the form (3.276) cannot be solved directly,

as they contain averages of products of the dependent variables. To obtain a
solvable set of equations, we need to relate the average of products to products
of average variables. For this purpose the phase- and mass weighted quantities
are introduced.

The weighted mean quantities are defined in agreement with the standard
single phase Favre averaging procedure [112, 48, 67]. That is, we define:

Phase-weighted averaging :

〈ψk〉Xk
e =

〈Xkψk〉e
〈Xk〉e

=
〈Xkψk〉e
〈γk〉e

(3.277)

Mass-weighted averaging :

〈ψk〉Xkρk
e =

〈Xkρkψk〉e
〈Xkρk〉e

(3.278)

The generalized instantaneous quantity ψk is decomposed into a weighted
mean component and a fluctuation component in analogy to the Favre aver-
aging procedure for compressible flows [75, 131]:

ψk = 〈ψk〉Xkρk
e + ψ′′

k (3.279)

where ψ′′
k is the superimposed fluctuation component of the instantaneous

quantity ψk around it’s mean weighted component 〈ψk〉Xkρk
e . The average

of a mass weighted fluctuating quantity like 〈ψ′′
k 〉Xkρk

e is equal to zero by
definition, 〈ψ′′

k 〉Xkρk
e = 0. This result can be verified decomposing ψk on the

RHS of the weighted variable definition (3.278) using (3.279):

〈Xkρk〉e〈ψk〉Xkρk
e =〈Xkρkψk〉e

=〈Xkρk(〈ψk〉Xkρk
e + ψ′′

k )〉e
=〈Xkρk〈ψk〉e〉Xkρk

e + 〈Xkρkψ
′′
k 〉e

(3.280)
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Comparing this result with the definition of the weighted component of ψk

given by (3.278), it follows that 〈Xkρkψ
′′
k 〉e = 0. From the latter relation we

can deduce, the important result:

〈Xkρkψ
′′
k 〉e = 〈Xkρk〉e〈ψ′′

k 〉Xkρk
e = 〈Xk〉e〈ρk〉Xk

e 〈ψ′′
k 〉Xkρk

e

= γk〈ρk〉Xk
e 〈ψ′′

k 〉Xkρk
e

= 0

(3.281)

By definition the phase indicator function Xk cannot be decomposed into a
mean component and a fluctuation component, thus the only way this relation
can be fulfilled is by defining 〈ψ′′

k 〉Xkρk
e = 0.

If we adopt (3.281), all the terms in the generic equation (3.276) can be
reformulated and expressed in terms of weighted quantities and a large number
of unknown covariances. The different terms in the equation are rewritten as:

The transient term:

〈Xkρkψk〉e = 〈Xkρk〉e〈ψk〉Xkρk
e

= 〈Xk〉e〈ρk〉Xk
e 〈ψk〉Xkρk

e

= γk〈ρk〉Xk
e 〈ψk〉Xkρk

e

(3.282)

The convective term:

〈Xkρkvkψk〉e = 〈Xkρk(〈vk〉Xkρk
e + v′′

k)(〈ψk〉Xkρk
e + ψ′′

k )〉e
= 〈Xkρk(〈vk〉Xkρk

e 〈ψk〉Xkρk
e + 〈vk〉Xkρk

e ψ′′
k

+ v′′
k〈ψk〉Xkρk

e + v′′
kψ

′′
k )〉e

= 〈Xkρk〉e〈vk〉Xkρk
e 〈ψk〉Xkρk

e

+ 〈Xkρkψ
′′
k 〉e〈vk〉Xkρk

e

+ 〈Xkρkv′′
k〉e〈ψk〉Xkρk

e + 〈Xkρkv′′
kψ

′′
k 〉e

= 〈Xk〉e〈ρk〉Xk
e 〈vk〉Xkρk

e 〈ψk〉Xkρk
e

+ 〈Xk〉e〈ρkv′′
kψ

′′
k 〉Xk

e

= γk〈ρk〉Xk
e 〈vk〉Xkρk

e 〈ψk〉Xkρk
e + γk〈ρkv′′

kψ
′′
k 〉Xk

e

(3.283)

The covariances of phase k are normally defined by the phasic average of
the product of the fluctuating arbitrary variable and the velocity components:

JRe,Xk

k =
〈Xkρkv′′

kψ
′′
k 〉e

〈Xk〉e
=

〈Xkρkv′′
kψ

′′
k 〉e

γk
(3.284)

The diffusive term:

〈XkJk〉e = 〈Xk〉e〈Jk〉Xk
e = γk〈Jk〉Xk

e (3.285)
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The volume production term:

〈Xk

∑

c

ρk,cφk,c〉e =
∑

c

〈Xkρk,c〉e〈φk,c〉Xkρk
e

= 〈Xk〉e
∑

c

〈ρk,c〉Xk
e 〈φk,c〉Xkρk

e

= γk

∑

c

〈ρk,c〉Xk
e 〈φk,c〉Xkρk

e

(3.286)

Introducing the reformulated forms of the terms examined above, the exact
macroscopic transport equation (3.276) (i.e., without including any constitu-
tive equations for the unknown terms) can be expressed as:

∂(γk〈ρk〉Xk
e 〈ψk〉Xkρk

e )
∂t

+ ∇ · (γk〈ρk〉Xk
e 〈vk〉Xkρk

e 〈ψk〉Xkρk
e )

+ ∇ · (γk(JXk

k + JRe,Xk

k )) − γk

∑

c

〈ρk,c〉Xk
e 〈φk,c〉Xkρk

e

= 〈[ρkψk(vk − vI) + Jk] · ∇Xk〉e = 〈(ṁkψk + Jk · nk)
∂Xk

∂n
〉e

(3.287)

The gradient of the phase indicator function, being a generalized scalar func-
tion [54], can be expressed as22:

∇Xk = (
∂Xk

∂n
)nk = −δ(r − rI)nk (3.288)

in which δ(r− rI) denotes the Dirac’s delta function for the interface and nk

is the unit normal to the interface between the phases in the direction out of
phase k. Thus, the Dirac delta function or the gradient in the phase indicator
function serves to pick out the mass and molecular fluxes at the interface. The
Dirac delta function has the property:

+∞
∫

−∞

f(ξ)δ(ξ − a)dξ = f(a) (3.289)

Averaging the product of the absolute value of the gradient and the fluxes gives
as the result the average contributory effect of mass and molecular fluxes at
the interfaces over the whole domain of integration [67]. Drew [54] defined the
averaged interfacial area per unit volume by:

22 It is noted that two different sign conventions are in common use considering
the definitions of the interfacial terms. We follow the sign convention by [54, 67],
but a different set of consistent definitions are proposed in the latest reports
[136, 55, 56, 57, 58]. The reason for switching the sign convention becomes clear
shortly, as all the interfacial fluxes in our derivation apparently have opposite
sign compared to the conventional formulations presented in this chapter.
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aeI = 〈∂X
∂n

〉e (3.290)

The averaged jump conditions are derived by multiplying the exact jump
condition (3.109) by ∂Xk

∂n (for a specific value of k [56, 67]) and averaging,
recognizing that n1 = −n2 and ∂X1

∂n = ∂X2
∂n :

∑

k

〈(ṁkψk + Jk · nk)
∂Xk

∂n
〉e = −〈MI

∂Xl

∂n
〉e (3.291)

or
∑

k

〈[ρk(vk − vI)ψk + Jk] · ∇Xk〉e = −〈MI
∂Xl

∂n
〉e (3.292)

in which it is understood that on the RHS no summation should be made
(henceforth we drop the index l infering that we have chosen either l = 1 or
l = 2) and the factor ∂Xl

∂n = nl · ∇Xl is to be expressed in accordance with
the prevailing sign convention for the interface terms (3.288).

The averaged equations governing each phase and the corresponding jump
conditions are then achieved defining the specific values of the generic variables
in (3.287) and (3.291) in accordance with Table 3.1:

Mass:
The volume averaged continuity equation appears by substituting ψk = 1,
Jk = 0 and φc,k = 0 into (3.287):

∂(γk〈ρk〉Xk
e )

∂t
+ ∇ · (γk〈ρk〉Xk

e 〈vk〉Xkρk
e ) = 〈ṁk

∂Xk

∂n
〉e = Γk (3.293)

Introducing the values for the interface properties MI = 0 into (3.291),
yields:

∑

k

Γk = 0 (3.294)

where the interfacial mass transfer terms due to phase change is defined
by:

Γk = 〈ṁk
∂Xk

∂n
〉e = aeI

〈ṁk〉eI
(3.295)

in which 〈ṁk〉eI
= 〈ṁk

∂Xk

∂nk
〉e/aeI

denotes the interfacial area averaged
mass transfer rate [58]. The interfacial area density is defined in accor-
dance with (3.290).

Momentum:
The averaged momentum equation appears by substituting ψk = vk,
Jk = Tk and φc,k = gc,k into (3.287):

∂(γk〈ρk〉Xk
e 〈vk〉Xkρk

e )
∂t

+ ∇ · (γk〈ρk〉Xk
e 〈vk〉Xkρk

e 〈vk〉Xkρk
e )

+ ∇ · (γk(〈Tk〉Xk
e + 〈Tk〉Re,Xk

e )) = 〈(ṁkvk + Tk · nk)
∂Xk

∂n
〉e+

γk〈ρk〉Xk
e

∑

c

〈ωk,c〉Xkρk
e 〈gk,c〉Xkρk

e

(3.296)
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Introducing the values for the interface properties MI = 2σIHInI +∇IσI

into (3.291), yields:

∑

k

(MΓ
k + MT

k ) = −〈MI
∂X

∂n
〉e (3.297)

where the interfacial momentum transfer due to phase change is defined
by:

MΓ
k = 〈ṁkvk

∂Xk

∂n
〉e = Γk〈vk〉Γk

eI
(3.298)

in which the mass transfer weighted interfacial area averaged velocity
〈vk〉Γk

eI
is defined in analogy to the mass-weighted averaged variables

known from turbulence theory [112] (p. 133).
The interfacial momentum stresses yield:

MT
k = 〈Tk · nk

∂Xk

∂n
〉e = 〈(pke + σk) · nk

∂Xk

∂n
〉e (3.299)

where the total stress tensor of both phases has been modeled using the
Newtonian strain-stress formulation.
In a similar manner as for the single averaging methods in sects 3.4.1,
3.4.2 and 3.4.3, the stress terms are normally rewritten introducing an
interfacial averaged pressure 〈pk〉eI

and an interfacial averaged viscous
stress 〈σk〉eI

. In this method the interfacial pressure is normally defined
by:

〈pk〉eI
=

〈pk
∂Xk

∂n 〉e
〈∂Xk

∂n 〉e
=

〈pk
∂X
∂nl

〉e
aeI

(3.300)

Naturally, the interfacial viscous stress is defined by:

〈σk〉eI
=

〈σk
∂Xk

∂n 〉e
〈∂X

∂n 〉e
=

〈σk
∂Xk

∂n 〉e
aeI

(3.301)

The corresponding fluctuating interfacial quantities are defined by:

p′′k,I = pk − 〈pk〉eI
(3.302)

σ′′
k,I = σk − 〈σk〉eI

(3.303)

Proceeding in the same way as explained presenting the volume averaging
procedure, we obtain the following result:

MT
k = 〈Tk · ∇Xk〉e = 〈pk∇Xk〉e + 〈σk · ∇Xk〉e

= 〈pk〉eI
〈∇Xk〉e + 〈σk〉eI

· 〈∇Xk〉e + 〈T′′
k · ∇Xk〉e

= 〈pk〉eI
∇γk + 〈σk〉eI

· ∇γk + Fk

(3.304)
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The interfacial pressure difference effect and the combined interfacial shear
and time fraction gradient effect are treated in the same manner as sug-
gested discussing the analogous terms in (3.156). The modified definition
of the generalized drag force follows naturally from an analogy to (3.158).
Utilizing (3.288), (3.272) with ψk = 1 and the mean value theorem for
integrals, the term on the RHS of (3.297) can be defined by the index
l = 1 and expressed as:

−〈MI
∂X

∂n
〉e = −〈(2σIHIn1 + ∇IσI)

∂X1

∂n1
〉e

≈ −2〈σIHI〉eI
〈n1

∂X1

∂n1
〉e − 〈∇IσI

∂X1

∂n1
〉e

≈ −2〈σI〉eI
〈HI〉eI

∇γ2 − aI〈∇IσI〉eI

(3.305)

where 〈HI〉eI
is the interfacial area averaged curvature [112]. The mean

curvature is defined by (3.76). Again, we have used the sign convention
that occurs by nI = n1.

Energy :
The averaged energy equation appears by substituting ψk = ek + 1

2v
2
k,

Jk = Tk · vk + qk and φc,k = vk · gc,k into (3.287):

∂

∂t

(

γk〈ρk〉Xk
e (〈ek〉Xkρk

e +
1
2
(〈vk〉Xkρk

e )2 +
1
2
〈v′′

k · v′′
k〉Xkρk

e )
)

+ ∇ ·
(

γk(〈ρk〉Xk
e 〈vk〉Xkρk

e 〈ek〉Xkρk
e + 〈ρkv′′

ke
′′
k〉Xk

e )
)

+
1
2
∇ ·

(

γk〈ρk〉Xk
e 〈vk〉Xkρk

e ((〈vk〉Xkρk
e )2 + 〈v′′

k · v′′
k〉Xkρk

e )
)

+ ∇ ·
(

〈vk〉Xkρk
e · (γk〈ρkv′′

kv
′′
k〉Xk

e )
)

+
1
2
∇ ·

(

γk〈ρk〉Xk
e 〈v′′

k(v′′
k · v′′

k)〉Xkρk
e

)

+ ∇ ·
(

γk〈qk〉Xk
e

)

+ ∇ ·
(

γk(〈Tk〉Xk
e · 〈vk〉Xkρk

e + 〈Tk · v′′
k〉Xk

e )
)

= Γk

(

〈ek〉Γk
eI

+
1
2
(〈vk〉Γk

eI
)2

)

+ EW
k + EE

k

+ γk〈
∑

c

ρk,cvk,c · gk,c〉Xk
e

(3.306)

Introducing the values for the interface properties
MI = ∇I · qI −∇I · (σIvI) into (3.291), yields:

∑

k

(EE
k + EW

k + EΓ
k ) = −〈MI

∂X

∂n
〉e (3.307)
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where the interfacial energy transfer due to phase change is defined by:

EΓ
k = − 〈∂Xk

∂n
ρk(ek +

1
2
v2

k)(vI − vk) · nk〉e

=〈∂Xk

∂n
ṁk(ek +

1
2
v2

k)〉e = Γk〈(ek +
1
2
v2

k)〉Γk
eI
,

(3.308)

in which 〈(ek + 1
2v

2
k)〉Γk

eI
denotes the mass transfer weighted interfacial

(internal and mechanical) energy [112] (p. 137).
The interfacial heat transfer is given by:

EE
k = 〈qk · nk

∂Xk

∂n
〉e = aeI

〈qk · nk〉eI
, (3.309)

in which 〈qk · nk〉eI
denotes the interfacial area averaged heat transfer

flux.
The interfacial work by viscous and pressure forces yields:

EW
k = 〈(Tk · vk) · nk

∂Xk

∂n
〉e (3.310)

and the surface energy sources are expressed as the product of the inter-
facial area concentration and the averaged interfacial fluxes:

−〈MI
∂X

∂n
〉e = 〈(−∇I · (σIvI) + ∇I · qI)

∂X1

∂n1
〉e

= −〈∇I · (σIvI)〉eI
aeI

+ 〈∇I · qI〉eI
aeI

(3.311)

where 〈∇I · qI〉eI
and −〈∇I · (σIvI)〉eI

are the interfacial averaged inter-
facial energy fluxes.

Chemical Species:
The averaged species mass balance appears by substituting ψk = ωk,s,
Jk = jk,s and φc,k = Rk,s/ρk,c into (3.287):

∂(γk〈ρk〉Xk
e 〈ωk,s〉Xkρk

e )
∂t

+ ∇ · (γk〈ρk〉Xk
e 〈ωk,s〉Xkρk

e 〈vk〉Xkρk
e ) + ∇ · (γk〈jk,s〉Xk

e ) =

〈(ṁkωk,s + jk,s · nk)
∂Xk

∂n
〉e + γk〈Rk,s〉Xk

e (3.312)

Introducing the values for the interface properties MI = RI,s into (3.291),
yields:

∑

k

(JΓ
k,s + Jj

k,s) = −〈MI
∂X

∂n
〉e (3.313)

where the interfacial species mass transfer due to phase change is de-
fined by:
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JΓ
k,s = − 〈ρkωk,s(vI − vk) · nk

∂Xk

∂n
〉e = 〈ṁkωk,s

∂Xk

∂n
〉e

=Γk〈ωk,s〉Γk
eI
,

(3.314)

in which the 〈ωk,s〉Γk
eI
, denotes the mass transfer weighted interfacial

species s mass fraction [112] (p. 133).
The other interfacial mass transfer fluxes are given by:

Jj
k,s = 〈jk,s · nk

∂Xk

∂n
〉e = aeI

〈jk,s · nk〉eI
(3.315)

in which 〈jk,s · nk〉eI
denotes the interfacial area averaged mass transfer

flux.
The interfacial production term due to heterogeneous reactions is normally
rewritten as:

−〈RI,s
∂X

∂n
〉e = 〈RI,s〉eI

aeI
= ρBulk〈RI,s〉meI

(3.316)

in which the interfacial reaction rate per unit interface area is commonly
substituted by the more practical reaction rate per unit mass 〈RI,s〉meI

=
〈RI,s〉eI

aeI
/ρBulk (kg/kg, cat× s) in which ρBulk denotes the bulk density

of the catalyst (kg, cat/m3
r).

As expected, three groups of undetermined terms appear in the averaged
equations (3.287). The first term, ∇ · (γk〈ρkv′′ψ′′〉Xk

e ) denotes the covariance
or correlation terms. The second term, 〈Jk ·nk

∂Xk

∂n 〉e, accounts for the effects
of interfacial stress, heat and species mass transfer, whereas the third term,
〈ṁkψk

∂Xk

∂n 〉e, account for the interfacial transfer due to phase change. The
conventional constitutive equations are discussed in chap 5.

3.4.4 The Time After Volume Averaging Procedure

In this section we examine the multiple averaging operators with emphasis
on the time after volume averaging technique. The literature cited concerning
the multiple averaging operators like the space followed by time or ensemble
averaging are [229, 243, 46, 43, 47, 24, 10, 174, 189, 190, 191, 192, 64, 135,
205, 206, 74]. These reports might be considered for complementary studies.

The time after volume averaging procedure can be applied under a uni-
fied set of conditions denoting the sum of the two sub-sets of requirements
formulated in sects 3.4.1 and 3.4.2 for the pure volume and time averaging
procedures to handle the scale disparity in a proper manner.

It has been shown that the time-volume and volume-time averaging opera-
tors are mathematically commutative [43, 47]. Nevertheless, Sha and Slattery
[189] argued that in experimental analysis the instrumentation often records
space average followed by a time average data. For this reason it might be
convenient to formulate a consistent model formulation for the theoretical
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analysis. Later, Soo and co-workers [190, 191, 205, 206] on the other hand
state that the order of performing volume averaging and time averaging can-
not be arbitrarily chosen due to the different physical interpretations of the
different averages. Hence, volume averaging was preferred for constructing a
continuum for each phase while time averaging was performed after volume
averaging to account for the high-frequency fluctuations.

To close the rigorous time after volume averaged equations several model-
ing strategies have emerged over the years relating the average of products to
products of averages. We may roughly divide these methods into two groups,
one class of concepts dealing with separated flows and a second group of ap-
proaches considering dispersed flows.

In this context it is worth mentioning that when formulating the early
stratified flow models the time after area averaging method was preferred de-
scribing one-dimensional two-phase pipe flows [231, 43, 47, 24, 16] and thermo-
fluid dynamics in boiling water nuclear reactors [229, 10, 243, 190, 191].
Moreover, a three-dimensional generalization of the area averaging method
intended for stratified flows was derived by [135]. It is pointed out that no
decomposition of the field variables was performed in any of the early time
and spatially averaged stratified flow models [229, 243, 10, 51]. Instead, cor-
relation or distribution coefficients are introduced and defined as the ratio
between the average of the product of macroscopic variables and the product
of the averaged macroscopic field variables

Ck =
αk〈ρk〉αk

Vk
〈ψkvk〉αkρk

V

αk 〈ρk〉αk

Vk
〈ψk〉αkρk

V 〈vk〉αkρk

V

(3.317)

In this theory the covariance coefficients are affected by the size of the av-
eraging scales in time and space [51]. However, in engineering practice these
coefficients are commonly set to unity because very little data on the distri-
bution coefficients are available [229, 243, 10].

In this work the application of the time after volume averaging method to
dispersed flows is of particular interest. In this specific application the vari-
ables are usually decomposed both in time and space. However, the spatial
covariances are generally neglected merely due to a general lack of under-
standing of the physical processes considered by these terms. It is generally
assumed that for dispersed mixtures the effect of non-locality and thus the spa-
tial covariances can be neglected [51, 205, 206]. The temporal decomposition
of the spatially averaged variables gives rise to terms of mean and fluctuating
quantities where the temporal covariances are interpreted as the turbulent
contributions. Therefore, in this double averaging procedure the first part of
the model formulation coincides with the standard volume averaging method
as outlined in sect 3.4.1. The time averaging theorems used are similar to
the conventional Reynolds or Favre averaging procedures, and deviate from
the time averaging operator described in sect 3.4.2 in that the operator is
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applied to the continuous variable fields achieved after the smoothing volume
averaging.

Let the time averaging operator, when applied to any volume averaged
scalar, vector, or tensor valued function 〈ψk〉V associated with phase k, be
defined by:

〈ψk〉V =
1
T

t+T/2
∫

t−T/2

〈ψk〉V dt (3.318)

where 〈ψk〉V is continuous and has no jump discontinuities. That is, 〈ψk〉V
has no jump discontinuities in space because this function is already spatially
smoothed.

In accordance with the conventional Reynolds axioms (1.379), the Leib-
nitz’s rule is given by:

∂〈ψk〉V
∂t

=
∂〈ψk〉V

∂t
(3.319)

Likewise, the Gauss’ rule for a scalar field yields:

∇〈ψk〉V = ∇〈ψk〉V (3.320)

and the particular form of Gauss’ rule used for vectors and tensors is written:

∇ · 〈ψk〉V = ∇ · 〈ψk〉V (3.321)

An instantaneous volume-averaged quantity can be decomposed into two
parts, the mean and the fluctuation23:

〈ψk〉V = 〈ψk〉V + 〈ψk〉′V (3.323)

where 〈ψk〉′V denotes the superimposed fluctuation component of the instan-
taneous variable 〈ψk〉V around it’s mean component 〈ψk〉V .

Defining a Favre averaging procedure the generalized instantaneous quan-
tity, ψk is decomposed into a weighted mean component and a fluctuation
component [75] [131]:

〈ψk〉V = 〈ψk〉αkρk

V + 〈ψk〉′′V (3.324)

where 〈ψk〉′′V denotes the deviation between the instantaneous variable 〈ψk〉V
around it’s mean weighted component 〈ψk〉αkρk

V .

23 For comparison we note that if we reverse the order in which we apply the av-

eraging operators to the generalized quantity ψ, the deviation ̂ψk between the
un-smoothed local time averaged ψk and the time- and volume averaged prop-
erty value 〈ψk〉V is defined by:

̂ψk = ψk − 〈ψk〉V (3.322)
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Alternatively, for the mass-weighted variables we can define:

〈ψk〉αkρk

V = 〈ψk〉αkρk

V + 〈ψk〉
′′,αkρk

V (3.325)

where 〈ψk〉
′′,αkρk

V = 〈ρk〉V 〈ψk〉′′V is the superimposed mass-weighted fluctua-
tion component of the instantaneous mass-weighted quantity 〈ψk〉αkρk

V around
it’s mean component 〈ψk〉αkρk

V . The mass-weighted average is given by:

〈ψk〉
′′,αkρk

V = 〈ρk〉V 〈ψk〉′′V = 0 (3.326)

By definition the time average of the fluctuating components in (3.323) and
(3.325) equals zero, whereas the time average of the fluctuating component in
(3.324) is not:

〈ψk〉′′V 
= 〈ψk〉′V = 〈ψk〉
′′,αkρk

V = 0 (3.327)

Furthermore, we have

〈ψk〉V =
1
T

t+T/2
∫

t−T/2

[
1
V

∫

V

(ψk + ψ′
k)dv]dt =

1
V

∫

V

[
1
T

t+T/2
∫

t−T/2

(ψk + ψ′
k)dt′]dv

=〈ψk〉V (3.328)

which shows that the time average of an instantaneous volume averaged quan-
tity equals the volume average of a time averaged quantity.

Again, it is emphasized that the particular forms of the Leibnitz’s and
Gauss’ rules which are valid for time averaging of discontinuous functions
as used in sect 3.4.2 are not applicable for the time after volume averaging
process considered in this sub-section, since the discontinuities related to the
interface are smoothed out after volume averaging has been performed [205].
It follows that the conventional single phase Favre and Reynolds temporal de-
composition and time averaging concepts are valid and can be applied without
modifications [177, 75, 131]. Besides, we find it is worth mentioning that in
connection with the single averaging operators like the volume averaging pro-
cedure described in sect 3.4.1, the main purpose of the Reynolds and Favre
decomposition and averaging rules is to separate the averages of product into
products of average. On the other hand, applying a time averaging operator to
the instantaneous volume averaged variables the main purpose is to separate
the high frequency fluctuating components from the time-averaged variables
in analogy to single phase turbulence modeling.

Taking (3.138) and (3.141) as starting point for the time averaging, we
can write:

∂〈ρkψk〉V
∂t

+ ∇ · 〈ρkvkψk〉V + ∇ · 〈Jk〉V =

− 1
V

∫

AI

(ṁkψk) da +
1
V

∫

AI

(Jk · nk) da + 〈
∑

c

ρk,cφk,c〉V (3.329)
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and
1
V

∫

AI

(
∑

k

[ṁkψk + Jk · nk] + MI) da = 0 (3.330)

So far in the derivation of the averaged equations the basic concepts used
are considered fairly rigorous, but in order to put (3.329) and (3.330) into
directly usable forms several modeling approaches have emerged proposing
quite different manipulations and approximations of the undetermined terms.

The rigorous form of the averaged equations for the particular quantities
governing phase k and the corresponding jump conditions can be achieved
defining the specific values of the generic variables in (3.329) and (3.330) in
accordance with Table 3.1.

Mass:
The time after volume averaged continuity equation appears by substitut-
ing ψk = 1, Jk = 0 and φc,k = 0 into (3.329). The result is:

∂(〈ρk〉V )
∂t

+ ∇ · (〈ρkvk〉V ) = − 1
V

∫

AI

ṁk da (3.331)

Introducing the values for the interface properties MI = 0 into (3.330),
we get:

∑

k

ΓV k = 0 (3.332)

where the interfacial mass transfer terms due to phase change is defined
by:

ΓV k = − 1
V

∫

AI

ṁkda = aI〈ṁk〉AI
≈ aI 〈ṁk〉AI

(3.333)

in which the turbulent contributions are commonly lumped into the em-
pirical model parameters or simply neglected.

Momentum:
The time after volume averaged momentum equation appears by substi-
tuting ψk = vk, Jk = Tk and φc,k = gc,k into (3.329). The result is:

∂(〈ρkvk〉V )
∂t

+ ∇ · (〈ρkvkvk〉V ) + ∇ · (〈Tk〉V ) =

− 1
V

∫

AI

(ṁkvk + Tk · nk) da + 〈
∑

c

ρcgc〉V (3.334)

Introducing the values for the interface properties MI = 2σIHInI +∇IσI

into (3.330), yields:
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∑

k

(MΓ
k + MT

k ) = − 1
V

∫

AI

MIda (3.335)

where the interfacial momentum transfer due to phase change is defined
by time averaging (3.148):

MΓ
k = − 1

V

∫

AI

ṁkvkda = ΓV k〈vk〉ΓV k

AI
≈ ΓV k〈vk〉ΓV k

AI
(3.336)

in which the turbulent contributions are usually lumped into the empirical
model parameters or simply neglected.
The interfacial momentum stresses (3.149) yield:

MT
k = − 1

V

∫

AI

Tk · nkda = − 1
V

∫

AI

(pke + σk) · nkda (3.337)

in which the turbulent contributions are taken into account through the
empirical drag coefficients. Sha et al. [191] also indicate that several ad-
ditional covariance momentum transfer terms may occur due to high fre-
quency fluctuations. For example, there may be interfacial stresses akin
to Reynolds stresses, interfacial momentum transfer associated with the
high frequency fluctuating mass generation which may not vanish locally,
and interacial momentum transfer due to eddy mass diffusion. However,
experimentally its hard to distinguish between the different contributions,
and the contributions of the high frequency correlation terms on the net
interfacial momentum transfer flux are usually assumed to be of the same
order of magnitude as the uncertainty reflected by the empirical drag co-
efficients.
By time averaging the term on the RHS of (3.147) can be expressed as

1
V

∫

AI

MIda ≈ 2〈σI〉AI
〈HI〉AI

∇α2 + aI〈∇IσI〉AI

≈2〈σI〉AI
〈HI〉AI

∇α2 + aI 〈∇IσI〉AI

(3.338)

In these terms the turbulent contributions are usually neglected due to
limited knowledge of the turbulent interfacial processes.

Energy :
The time after volume averaged energy equation appears by substituting
ψk = ek + 1

2v
2
k, Jk = Tk · vk + qk and φc,k = vk · gc,k into (3.329). The

averaged energy equation takes the form:

∂

∂t

(

〈ρk(ek +
1
2
v2

k)〉V
)

+ ∇ ·
(

〈ρkvk(ek +
1
2
v2

k)〉V
)

+ ∇ cot
(

〈Tk · vk〉V
)

+ ∇ ·
(

〈qk〉V
)
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= − 1
V

∫

AI

(

ṁk(ek +
1
2
v2

k) + (Tk · vk + qk) · nk

)

da (3.339)

+ 〈
∑

c

ρk,cvk,c · gk,c〉V

Introducing the values for the interface properties
MI = ∇I · qI −∇I · (σIvI) into (3.330), yields:

∑

k

(EE
k + EW

k + EΓ
k ) =

1
V

∫

AI

MIda (3.340)

where the time after volume averaged interfacial energy transfer due to
phase change is defined by:

EΓ
k = − 1

V

∫

AI

ṁk(ek +
1
2
v2

k) da = ΓV k〈(ek +
1
2
v2

k)〉ΓV k

AI

≈ΓV k〈(ek +
1
2
v2

k)〉ΓV k

AI

(3.341)

in which the turbulent contribution is commonly lumped into the empir-
ical model parameters.
The time after volume averaged interfacial heat transfer is given by:

EE
k = − 1

V

∫

AI

qk · nkda = aI〈qk · nk〉AI
≈ aI 〈qk · nk〉AI

(3.342)

in which the turbulent contributions are usually lumped into the empirical
model parameters. Nevertheless, in a few approaches the effective flux is
split into a laminar and a turbulent contribution. It can be shown that
the concepts of the averaging indicates that there may be contributions
to the interfacial energy flux due to the high frequency fluctuations [190].
The interfacial work by viscous and pressure forces yields:

EW
k = − 1

V

∫

AI

(Tk · vk) · nkda (3.343)

and the surface energy sources are expressed as the product of the inter-
facial area concentration and the averaged interfacial fluxes:

1
V

∫

AI

MI da = − 1
V

∫

AI

(−∇I · (σIvI) + ∇I · qI) da

= 〈∇I · (σIvI)〉AI
aI − 〈∇I · qI〉AI

aI

(3.344)

The turbulent contributions are usually neglected due to limited under-
standing of the phenomena involved.
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Chemical species:
The time after volume averaged species mass balance appears by sub-
stituting ψk = ωk,s, Jk = jk,s and φc,k = Rk,s/ρk,c into (3.329). The
averaged species mass balance becomes:

∂(〈ρk,s〉V )
∂t

+ ∇ · (〈ρk,svk〉V ) + ∇ · (〈jk,s〉V ) =

− 1
V

∫

AI

(ṁkωk,s + jk,s · nk) da + 〈Rk,s〉V (3.345)

Introducing the values for the interface properties MI = RI,s into (3.330),
yields:

∑

k

(JΓ
k,s + Jj

k,s) =
1
V

∫

AI

MI da (3.346)

The interfacial species mass transfer due to phase change is defined by:

JΓ
k,s = − 1

V

∫

AI

ṁkωk,sda = ΓV k〈ωk,s〉ΓV k

AI
≈ ΓV k 〈ωk,s〉ΓV k

AI (3.347)

In the interfacial coupling terms the turbulent contributions are commonly
taken into account through the empirical model parameters.
The other interfacial mass transfer fluxes are given by:

Jj
k = − 1

V

∫

AI

jk · nk da = aI〈jk · nk〉AI
≈ aI 〈jk · nk〉AI

(3.348)

The turbulent contributions are usually taken into account through the
empirical model parameters or simply neglected due to the lack of under-
standing of these processes.
The interfacial production term due to heterogeneous reactions is normally
rewritten as

1
V

∫

AI

MI da =
1
V

∫

AI

RI,s da = 〈RI,s〉AI
aI ≈ ρBulk 〈RI,s〉m (3.349)

The turbulent contributions to the interfacial terms are normally normally
neglected since our knowledge concerning these phenomena are limited.

In order to carry out computations with the time after volume averaged
transport equations on the form (3.329) and (3.330), we need to relate the
average of products to products of averages and derive constitutive equations
for the interfacial coupling terms.
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The Favre Decomposition Method

One way to solve the first problem is to introduce mass- and phase weighted
volume averaged variables and the concepts of spatial and temporal decompo-
sition of the volume averaged variables. The mass-weighted volume average of
the quantity ψk is defined by (3.182) and the phase-weighted volume average
is defined by (3.118). However, for dispersed flows all the spatial covariances
are neglected in this averaging method [205, 206, 74]. The turbulence effects
are thereafter considered by temporal decomposition of the weighted quanti-
ties followed by time averaging in a way resembling the analysis of variable
density single phase flows [75, 131]. In particular, mass-weighted averaging
akin to Favre averaging in compressible flows is employed in accordance with
the work of [87, 117, 139]. This approach has the merit of reducing the num-
ber of covariance terms emerging after the averaging operation as compared
to conventional Reynolds averaging. The phase velocities and the scalar vari-
ables representing the balanced quantities are normally mass-weighted before
they are temporally decomposed into phase mean and fluctuating compo-
nents, while the remaining scalar variables are decomposed into phase mean
and fluctuating components without any prior mass-weighting.

From (3.184) the volume averaged mass flux of phase k in (3.138) is refor-
mulated using a spatial decomposition (3.183) of the velocity variable. Thus,
we can write:

〈ρkvk〉V = 〈ρk(〈vk〉αkρk

V + ̂v̂k)〉V = 〈ρk〉V 〈vk〉αkρk

V (3.350)

In the subsequent temporal decomposition of the scalar variables is as
a main rule performed in accordance with (3.323), while the velocity is de-
composed using the approach for mass-weighted variables (3.325). After time
averaging the mass flux (3.350) of phase k, we obtain:

〈ρkvk〉V =〈ρk〉V (〈vk〉αkρk

V + 〈vk〉
′′,αkρk

V )

=〈ρk〉V 〈vk〉αkρk

V + 〈ρk〉V 〈vk〉′′V
=〈ρk〉V 〈vk〉αkρk

V

(3.351)

Besides, the term 〈ρk〉V = αk〈ρk〉Vk
is treated as one field variable for com-

pressible flows, whereas for incompressible flows the mass-weighted average
variable reduces to a phase-weighted average.

In accordance with (3.185) the convective term in the generic volume av-
eraged equation (3.138) is manipulated introducing mass-weighted variables
(3.182) and the concept of spatial decomposition (3.183). Hence, the volume
averaged convection term is given by:

〈ρkvkψk〉V =〈ρk〉V 〈vk〉αkρk

V 〈ψk〉αkρk

V + 〈ρk
̂

̂ψk
̂v̂k〉V

≈〈ρk〉V 〈vk〉αkρk

V 〈ψk〉αkρk

V

(3.352)
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in which the volume average of products is approximated by the product of
averages. That is, the covariance of the spatial deviation variables are normally
neglected.

With a temporal decomposition of the volume averaged variables (3.323)
and (3.325), we get:

〈ρkvkψk〉V ≈ 〈ρk〉V 〈vk〉αkρk

V 〈ψk〉αkρk

V

= 〈ρk〉V (〈vk〉αkρk

V + 〈vk〉′′V )(〈ψk〉αkρk

V + 〈ψk〉′′V )

= 〈ρk〉V 〈vk〉αkρk

V 〈ψk〉αkρk

V + 〈ρk〉V 〈ψk〉′′V 〈vk〉αkρk

V

+ 〈ρk〉V 〈vk〉′′V 〈ψk〉αkρk

V + 〈ρk〉V 〈vk〉′′V 〈ψk〉′′V
= 〈ρk〉V 〈vk〉αkρk

V 〈ψk〉αkρk

V + 〈ρk〉V 〈vk〉′′V 〈ψk〉′′V

(3.353)

Using (3.351) and (3.353) the averaged equations governing phase k can
be modeled as:

Mass:
The reformulated time after volume averaged continuity equation appears
by substituting (3.351) into (3.331). The result is:

∂(〈ρk〉V )
∂t

+ ∇ · (〈ρk〉V 〈vk〉αkρk

V ) = Γk (3.354)

in which the source term Γk may be a complex function of low and high
frequency contributions. However, in most reactor simulations only the
low-frequency contributions are taken into account.

Momentum:
The reformulated time after volume averaged momentum equation ap-
pears by substituting (3.182) and (3.353) into (3.334). The result is:

∂

∂t

(

〈ρk〉V 〈vk〉αkρk

V

)

+ ∇ ·
(

〈ρk〉V 〈vk〉αkρk

V 〈vk〉αkρk

V

)

= −∇
(

αk 〈pk〉Vk

)

−∇ ·
(

αk(〈σk〉V
αk + 〈σk〉Re

V

αk

)
)

− 1
V

∫

AI

(ṁkvk + Tk · nk) da + 〈ρk〉V
∑

c

〈ωk,c〉αkρk

V gk,c

(3.355)

where the time after volume averaged momentum flux is given in accor-
dance with (3.353) as:

〈ρkvkvk〉V =〈ρk〉V 〈vk〉αkρk

V 〈vk〉αkρk

V + 〈ρk〉V 〈vk〉′′V 〈vk〉′′V (3.356)

The second term on the RHS of (3.356) represents the Reynolds stress of
phase k, defined by:
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〈σk〉Re
V = 〈ρk〉V 〈vk〉′′V 〈vk〉′′V (3.357)

or we may introduce a phase weighted Reynolds stress in analogy to the
quantities used in the multiphase single averaging operators [139]. The
phase-weighted Reynolds stress term can be defined by:

〈σk〉Re
V

αk

=
〈σk〉Re

V

αk
=

〈ρk〉V 〈vk〉′′V 〈vk〉′′V
αk

(3.358)

which needs to be modeled by a suitable turbulence model for phase k.
A consistent phase-weighted definition of the time after volume averaged
viscous stress term yields:

〈σk〉V
αk =

〈σk〉V
αk

(3.359)

The pressure term is normally rewritten using the conventional Reynolds
decomposition concept, thus:

∇ · 〈pke〉V = ∇〈pk〉V =∇
(

αk 〈pk〉Vk
+ α′

k 〈pk〉′Vk

)

≈∇(αk 〈pk〉Vk
)

(3.360)

The temporal covariance term is normally neglected due to the lack of
knowledge on the physical processes taking place (i.e, α′

k〈pk〉′Vk
≈ 0).

Preliminary analysis based on a hypothesis that these terms are of diffusive
nature has been performed by [119].
The source term is derived in the following way:

∑

c

〈ρk,c〉V gk,c =
∑

c

〈ρkωk,c〉V gk,c = 〈ρk〉V
∑

c

〈ωk,c〉αkρk

V gk,c (3.361)

in which the particular scalar ωk,c denoting the balanced species mass
fraction is represented by a mass-weighted quantity.

Energy :
The reformulated time after volume averaged energy equation appears by
substituting (3.182) and (3.353) into (3.339). The energy equation takes
the form
∂

∂t
(〈ρk〉V 〈Ek〉αkρk

V ) + ∇ · (〈ρk〉V 〈v〉αkρk

V 〈Ek〉αkρk

V )

= −∇ · (〈pk〉V 〈vk〉αkρk

V ) −∇ · (〈qk〉V )

−∇ · (〈vk〉αkρk

V · (〈σk〉V + 〈σ〉Re
V ))

+ ∇ · (〈ρk〉V Dek

k,t∇〈ek〉αkρk

V )

− 1
V

∫

AI

(

ṁk(ek +
1
2
v2

k) + (Tk · vk + qk) · nk

)

da

+ 〈ρk〉V
∑

c

(〈ωk,c〉αkρk

V 〈vk,c〉αkρk

V −D
ωk,s

k,t ∇〈ωk,c〉αkρk

V ) · gk,c

(3.362)
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where 〈Ek〉αkρk

V = 〈ek〉αkρk

V + 1
2 (〈vk〉αkρk

V · 〈vk〉αkρk

V )
The transient terms in (3.339) are reformulated in the following way:

〈ρk(ek +
1
2
v2

k)〉V =〈ρkek〉V +
1
2
〈ρkv2

k〉V

=〈ρkek〉V +
1
2
〈ρk(vk · vk)〉V

(3.363)

in which we adopt (3.182) for the internal energy-density covariance:

〈ρkek〉V = 〈ρk〉V 〈ek〉αkρk

V (3.364)

where the particular scalar ek denoting the internal energy is represented
by a mass-weighted quantity.
The kinetic energy term in (3.339) is more cumbersome to deal with. The
volume average kinetic energy term yields:

〈ρk(vk · vk)〉V = 〈ρk((〈vk〉αkρk

V + ̂v̂k) · (〈vk〉αkρk

V + ̂v̂k))〉V
= 〈ρk(〈vk〉αkρk

V · 〈vk〉αkρk

V + 2〈vk〉αkρk

V · ̂v̂k + ̂v̂k · ̂v̂k)〉V
= 〈ρk〉V (〈vk〉αkρk

V · 〈vk〉αkρk

V ) + 〈ρk(̂v̂k · ̂v̂k)〉V )
≈ 〈ρk〉V (〈vk〉αkρk

V · 〈vk〉αkρk

V )

(3.365)

After time averaging the volume averaged kinetic energy term, we get:

〈ρk(vk · vk)〉V ≈ 〈ρk〉V (〈vk〉αkρk

V · 〈vk〉αkρk

V )

= 〈ρk〉V ((〈vk〉αkρk

V + 〈vk〉′′V ) · (〈vk〉αkρk

V + 〈vk〉′′V ))

= 〈ρk〉V (〈vk〉αkρk

V · 〈vk〉αkρk

V ) + 〈ρk〉V (〈vk〉′′V · 〈vk〉′′V )

≈ 〈ρk〉V (〈vk〉αkρk

V · 〈vk〉αkρk

V )

(3.366)

The convective energy flux in (3.339) is also split into two separate con-
tributions:

〈ρkvk(ek +
1
2
v2

k)〉V =〈ρkvkek〉V +
1
2
〈ρkvkv2

k〉V

=〈ρkvek〉V +
1
2
〈ρkv(vk · vk)〉V

(3.367)

The time after volume averaged internal energy flux, i.e., the first term
on the RHS of (3.367), is reformulated in accordance with (3.353) and
given by:

〈ρkvkek〉V =〈ρk〉V 〈vk〉αkρk

V 〈ek〉αkρk

V + 〈ρk〉V 〈vk〉′′V 〈ek〉′′V (3.368)

The second term on the RHS of (3.368) represents the thermal transport
due to the fluctuations in velocity and internal energy. This term can be
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modeled in accordance with the gradient hypothesis and the Boussinesq
transport coefficient concept. That is, we approximate the covariance by:

〈ρk〉V 〈vk〉′′V 〈ek〉′′V = −〈ρk〉V Dek

k,t∇〈ek〉αkρk

V (3.369)

and Dek

k,t is the eddy thermal diffusivity.
The volume averaged kinetic energy flux in (3.367) is given by:

〈ρkvk(vk · vk)〉V
= 〈ρk(〈vk〉αkρk

V + ̂v̂k)((〈vk〉αkρk

V + ̂v̂k) · (〈vk〉αkρk

V + ̂v̂k))〉V
= 〈ρk〉V 〈vk〉αkρk

V (〈vk〉αkρk

V · 〈vk〉αkρk

V )+

〈ρk〈vk〉αkρk

V (2〈vk〉αkρk

V · ̂v̂k + ̂v̂k · ̂v̂k)〉V +

〈ρk
̂v̂k(〈vk〉αkρk

V · 〈vk〉αkρk

V + 2〈vk〉αkρk

V · ̂v̂k + ̂v̂k · ̂v̂k)〉V
= 〈ρk〉V 〈vk〉αkρk

V (〈vk〉αkρk

V · 〈vk〉αkρk

V + 〈̂v̂k · ̂v̂k〉V )+

2〈vk〉αkρk

V · 〈ρk
̂v̂k

̂v̂k〉V + 〈ρk
̂v̂k(̂v̂k · ̂v̂k)〉V ≈

〈ρk〉V 〈vk〉αkρk

V (〈vk〉αkρk

V · 〈vk〉αkρk

V )

(3.370)

After introducing a temporal decomposition of the mass-weighted velocity
variable and time averaging the volume averaged term in (3.370), we get:

〈ρkvk(vk · vk)〉V ≈ 〈ρk〉V 〈vk〉αkρk

V (〈vk〉αkρk

V · 〈vk〉αkρk

V )

= 〈ρk〉V 〈vk〉αkρk

V (〈vk〉αkρk

V · 〈vk〉αkρk

V )

+ 〈vk〉αkρk

V 〈ρk〉V (〈vk〉′′V · 〈vk〉′′V )

+ 2〈vk〉αkρk

V · 〈ρk〉V 〈vk〉′′V 〈vk〉′′V
+ 〈ρk〉V 〈vk〉′′V (〈vk〉′′V · 〈vk〉′′V )

≈ 〈ρk〉V 〈vk〉αkρk

V (〈vk〉αkρk

V · 〈vk〉αkρk

V )

+ 2〈vk〉αkρk

V · 〈ρk〉V 〈vk〉′′V 〈vk〉′′V

(3.371)

in which the second term on the RHS of (3.371) represents the energy
transport due to the fluctuations in velocity. This term can be expressed
in terms of the Reynolds stresses as:

〈vk〉αkρk

V · 〈ρk〉V 〈vk〉′′V 〈vk〉′′V = 〈vk〉αkρk

V · 〈σk〉Re
V

(3.372)

In addition, the volume averaged expansion work in (3.339) is estimated
by:

∇ · (〈pke · vk〉V ) =∇ · (〈pkvk〉V )

=∇ · 〈(〈pk〉V + p̂k)(〈vk〉αkρk

V + ̂v̂k)〉V
=∇ · (〈pk〉V 〈vk〉αkρk

V + 〈pk〉V 〈̂v̂k〉V
+ 〈p̂k〉V 〈vk〉αkρk

V + 〈p̂k
̂v̂k〉V )

≈∇ · (〈pk〉V 〈vk〉αkρk

V )

(3.373)
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After time averaging the volume averaged expansion work term, the result
is:

∇ · 〈pke · vk〉V =∇ · 〈pkvk〉V
≈∇ · 〈pk〉V 〈vk〉αkρk

V

=∇ · (〈pk〉V + 〈pk〉′V )(〈vk〉αkρk

V + 〈vk〉′′V )

=∇ · (〈pk〉V 〈vk〉αkρk

V + 〈pk〉V 〈vk〉′′V
+ 〈pk〉′V 〈vk〉′′V )

≈∇ · (〈pk〉V 〈vk〉αkρk

V )

(3.374)

The work performed by the viscous forces in (3.339) is treated in a similar
manner. The volume averaged term is approximated as:

∇ · (〈σk · vk〉V ) =∇ · 〈(〈σk〉V + ̂σk) · (〈vk〉αkρk

V + ̂v̂k)〉V
=∇ · (〈σk〉V · 〈vk〉αkρk

V + 〈σk〉V · 〈̂v̂k〉V
+ 〈̂σk〉V · 〈vk〉αkρk

V + 〈σ̂k · ̂v̂k〉V )
≈∇ · (〈σk〉V · 〈vk〉αkρk

V )

(3.375)

and, by time averaging the result is:

∇ · 〈σk · vk〉V ≈∇ · 〈σk〉V · 〈vk〉αkρk

V

=∇ · (〈σk〉V + 〈σk〉′V ) · (〈vk〉αkρk

V + 〈vk〉′′V )

=∇ · (〈σk〉V · 〈vk〉αkρk

V + 〈σk〉V · 〈vk〉′′V
+ 〈σk〉′V · 〈vk〉′′V )

≈∇ · (〈σk〉V · 〈vk〉αkρk

V )

(3.376)

The variables in the body force (3.339) are spatially decomposed and
volume averaged, the result can be expressed as:

〈
∑

c

ρk,cvk,c · gk,c〉V =
∑

c

〈ρkωk,cvk,c〉V · gk,c

=
∑

c

(〈ρk〉V 〈ωk,c〉αkρk

V 〈vk,c〉αkρk

V + 〈ρk
̂ω̂k,c

̂v̂k,c〉V ) · gk,c

≈ 〈ρk〉V
∑

c

(〈ωk,c〉αkρk

V 〈vk,c〉αkρk

V ) · gk,c

(3.377)

and by subsequent time averaging, yields:

〈
∑

c

ρk,cvk,c · gk,c〉V =
∑

c

〈ρkωk,cvk,c〉V · gk,c

≈
∑

c

〈ρk〉V 〈ωk,c〉αkρk

V 〈vk,c〉αkρk

V · gk,c
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=
∑

c

(〈ρk〉V 〈ωk,c〉αkρk

V 〈vk,c〉αkρk

V ) · gk,c (3.378)

+
∑

c

(〈ρk〉V 〈ωk,c〉′′V 〈vk,c〉′′V ) · gk,c

≈ 〈ρk〉V
∑

c

(〈ωk,c〉αkρk

V 〈vk,c〉αkρk

V −Dk,t∇〈ωk,c〉αkρk

V ) · gk,c

in which the second term on the RHS represents the species mass transport
due to the fluctuations in velocity and species mass fractions. This term
is modeled as:

〈ρk〉V 〈vk〉′′V 〈ωk,s〉′′V ≈ −〈ρk〉V D
ωk,s

k,t ∇〈ωk〉αkρk

V (3.379)

and D
ωk,s

k,t is the eddy mass diffusivity.
Chemical species:

The reformulated time after volume averaged species mass balance ap-
pears by substituting (3.182) and (3.353) into (3.345). The averaged
species mass balance becomes:

∂

∂t
(〈ρk〉V 〈ωk,s〉αkρk

V ) + ∇ · (〈ρk〉V 〈vk〉αkρk

V 〈ωk,s〉αkρk

V )

= −∇ · (〈jk,s〉V ) + ∇ · (〈ρk〉V D
ωk,s

k,t ∇〈ωk〉αkρk

V )

− 1
V

∫

AI

(ṁkωk,s + jk,s · nk) da + 〈Rk,s〉V

(3.380)

The transient term in (3.345) is modeled as:

〈ρk,s〉V =〈ρkωk,s〉V = 〈ρk〉V 〈ωk,s〉αkρk

V

=〈ρk〉V (〈ωk,s〉αkρk

V + 〈ωk,s〉′′V )

=〈ρk〉V 〈ωk,s〉αkρk

V + 〈ρk〉V 〈ωk,s〉′′V
=〈ρk〉V 〈ωk,s〉αkρk

V

(3.381)

The time after volume averaged convective mass flux of species s in (3.345)
is approximated in accordance with (3.353) and given by:

〈ρkvkωk,s〉V =〈ρk〉V 〈vk〉αkρk

V 〈ωk,s〉αkρk

V

+ 〈ρk〉V 〈vk〉′′V 〈ωk,s〉′′V
≈〈ρk〉V (〈vk〉αkρk

V 〈ωk,s〉αkρk

V −D
ωk,s

k,t ∇〈ωk〉αkρk

V )

(3.382)

We end this subsection by summarizing the governing equations valid for
incompressible flows, since this model formulation is often used in engineering
research. For incompressible flows the fluid properties (e.g., ρk, μk) are con-
stants so the density variable is conveniently denoted by ρk and simply moved
outside the averaging over-lined bracket.
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For these particular flows the mass-weighted and the phase-weighted av-
eraged quantities are equal, thus:

〈ψk〉ρkαk

V =
ρkαk〈ψk〉V

ρkαk
= 〈ψk〉αk

V =
αk〈ψk〉V

αk
(3.383)

The relationship between the conventional Reynolds time average in
(3.323) and the weighted Favre time average variables in (3.324) follows di-
rectly from their definitions [131]:

〈ψk〉V = 〈ψk〉V + 〈ψk〉′V = 〈ψk〉αkρk

V + 〈ψk〉′′V (3.384)

in which we recall that 〈ψk〉′′V 
= 〈ψk〉
′′,αkρk

V = 0.
Decomposing the phase-weighted quantity in (3.383) using the Favre pro-

cedure, we get:

αk 〈ψk〉αk

V = αk〈ψk〉V = αk(〈ψk〉αk

V + 〈ψk〉′′V )

= αk〈ψk〉αk

V + αk〈ψk〉′′V
= αk〈ψk〉αk

V

(3.385)

Comparing (3.385) with the definition of the weighted component of ψk

given by (3.383), it follows that:

αk〈ψk〉′′V = 0 (3.386)

An important consequence of (3.386) is that:

αk〈ψk〉′′V = (αk + α′
k)〈ψk〉′′V = αk 〈ψk〉′′V + α′

k〈ψk〉′′V = 0 (3.387)

or after rearranging the resulting relation:

〈ψk〉′′V = −α′
k〈ψk〉′′V
αk


= 0 (3.388)

meaning that the time average of the fluctuation component related to the
phase weighted averaged variables is not zero by definition.

Besides, multiplying both sides of the expression (3.384) by αk and there-
after time averaging the resulting equation, we get a relation between the
Favre and Reynolds averaged variables:

αk〈ψk〉V = αk〈ψk〉V + α′
k〈ψk〉′V = αk〈ψk〉αkρk

V + αk〈ψk〉′′V (3.389)

Then, since αk〈ψk〉′′V = 0 by (3.386), we observe that:

〈ψk〉αkρk

V − 〈ψk〉V =
α′

k〈ψk〉′V
αk

(3.390)
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Furthermore, taking the time average of (3.324), we get:

〈ψk〉V = 〈ψk〉αkρk

V + 〈ψk〉′′V (3.391)

and it follows that:

〈ψk〉αkρk

V − 〈ψk〉V = −〈ψk〉′′V =
α′

k〈ψk〉′′V
αk

=
α′

k〈ψk〉′V
αk

(3.392)

From this result it is seen that 〈ψk〉′′V equals the difference between the two
average values of the variable ψk, and can be expressed in terms of either
forms of the volume fraction covariances.

The governing equations for incompressible flows can thus be expressed
by:

Mass:
The incompressible form of the time after volume averaged continuity
equation (3.354) becomes:

∂(αk ρk)
∂t

+ ∇ · (αk ρk 〈vk〉αk

V ) = Γk (3.393)

Momentum:
The incompressible form of the time after volume averaged momentum
equation (3.355) is given by:

∂

∂t
(αk ρk 〈vk〉αk

V ) + ∇ · (αkρk 〈vk〉αk

V 〈vk〉αk

V )

= −∇(αk 〈pk〉Vk
) −∇ ·

(

αk(〈σk〉V
αk + 〈σk〉Re

V

αk

)
)

− 1
V

∫

AI

(ṁkvk + Tk · nk) da + αkρk

∑

c

〈ωk〉αk

V gk,c

(3.394)

Energy :
The incompressible form of the time after volume averaged energy equa-
tion (3.362) can be expressed as:

∂

∂t
(αk ρk 〈Ek〉αk

V ) + ∇ · (αk ρk 〈v〉αk

V 〈Ek〉αk

V )

= −∇ · (〈pk〉V 〈vk〉αk

V ) −∇ · (αk 〈qk〉Vk
)

−∇ · (〈vk〉αk

V · (〈σk〉V + 〈σ〉Re
V ))

+ ∇ (αkρkD
ek

k,t∇〈ek〉αk

V )

− 1
V

∫

AI

(

ṁk(ek +
1
2
v2

k) + (Tk · vk + qk) · nk

)

da

+ αkρk

∑

c

(〈ωk,c〉αk

V 〈vk,c〉αk

V −D
ωk,c

k,t ∇〈ωk,c〉αk

V ) · gk,c

(3.395)
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Chemical Species:
The incompressible form of the time after volume averaged species mass
balance equation (3.380) can be expressed as:

∂

∂t
(αkρk〈ωk,s〉αk

V ) + ∇ · (αkρk〈vk〉αk

V 〈ωk,s〉αk

V )

= −∇ · (〈jk,s〉V ) + ∇ · (ρkD
ωk,s

k,t ∇〈ωk〉αk

V )

− 1
V

∫

AI

(ṁkωk,s + jk,s · nk) da + 〈Rk,s〉V

(3.396)

The Conventional Reynolds Decomposition Method

The alternative Reynolds averaged equations are derived without introducing
any weighted-average variables. Instead we adopt the conventional Reynolds
averaging method [64, 205, 125, 119]. In the past, almost all the practical
problems of multiphase flow and reactor modeling were dealt with using these
equations. By applying the Reynolds averaging rules (1.379) to the volume
averaged equations (3.138), the terms in the averaged generic equation (3.329)
can be expressed as follows:

The transient term:

αk〈ρk〉Vk
〈ψk〉V =α′

k〈ρk〉′Vk
〈ψk〉′V + αk 〈ρk〉′Vk

〈ψk〉′V
+ α′

k〈ψk〉′V 〈ρk〉Vk
+ α′

k〈ρk〉′Vk
〈ψk〉V

+ αk 〈ρk〉Vk
〈ψk〉V

(3.397)

The convective term:

αk〈ρk〉Vk
〈vk〉V 〈ψk〉V =

α′
k〈ρk〉′Vk

〈vk〉′V 〈ψk〉′V + αk 〈ρk〉′Vk
〈vk〉′V 〈ψk〉′V +

〈ρk〉Vk
α′

k〈vk〉′V 〈ψk〉′V + αk 〈ρk〉Vk
〈vk〉′V 〈ψk〉′V +

α′
k〈ρk〉′Vk

〈ψk〉′V 〈vk〉V + 〈ρk〉Vk
〈vk〉V α′

k〈ψk〉′V +

αk 〈vk〉V 〈ρk〉′Vk
〈ψk〉′V + α′

k〈ρk〉′Vk
〈vk〉′V 〈ψk〉V +

αk 〈ρk〉′Vk
〈vk〉′V 〈ψk〉V + 〈ρk〉Vk

α′
k〈vk〉′V 〈ψk〉V +

α′
k〈ρk〉′Vk

〈vk〉V 〈ψk〉V + αk 〈ρk〉Vk
〈vk〉V 〈ψk〉V

(3.398)

The diffusive term:

αk〈Jk〉Vk
= α′

k〈Jk〉′Vk
+ αk 〈Jk〉Vk

(3.399)
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The volume production term:

αk〈ρk〉Vk

∑

c

〈ωk,c〉V 〈φk,c〉V =

∑

c

(

αk 〈ρk〉Vk
〈ωk,c〉V 〈φk,c〉V + αk 〈ρk〉Vk

〈ωk,c〉′V 〈φk,c〉′V +

αk 〈ωk,c〉V 〈ρk〉′Vk
〈φk,c〉′V + αk 〈φk,c〉V 〈ρk〉′Vk

〈ωk,c〉′V +

αk 〈φk,c〉V 〈ρk〉′Vk
〈ωk,c〉′V + αk 〈ρk〉′Vk

〈ωk,c〉′V 〈φk,c〉′V +

〈ρk〉Vk
〈ωk,c〉V α′

k〈φk,c〉′V + 〈ρk〉Vk
〈φk,c〉V α′

k〈ωk,c〉′V +

〈ρk〉Vk
α′

k〈ωk,c〉′Vk
〈φk,c〉′V + 〈ωk,c〉V 〈φk,c〉V α′

k〈ρk〉′Vk
+

〈ωk,c〉V α′
k〈ρk〉′Vk

〈φk,c〉′V + 〈φk,c〉V α′
k〈ρk,c〉′Vk

〈ωk,c〉′V +

α′
k〈ρk,c〉′Vk

〈ωk,c〉′V 〈φk〉′V
)

(3.400)

Substituting the given expressions (3.397) to (3.400) for the terms in the
governing equation, (3.329) is expressed as:

∂

∂t
(αk 〈ρk〉Vk

〈ψk〉V ) + ∇ · (αk 〈ρk〉Vk
〈vk〉V 〈ψk〉V )

= −∇ ·
(

αk 〈Jk〉Vk
+ α′

k〈Jk〉′Vk

)

+
∑

c

αk 〈ρk〉Vk
〈ωk,c〉V 〈φk,c〉V

− 1
V

∫

AI

(ṁkψk)da− 1
V

∫

AI

(Jk · nk)da

−
[

∂

∂t

(

α′
k〈ρk〉′Vk

〈ψk〉′V + αk 〈ρk〉′Vk
〈ψk〉′V

+ α′
k〈ψk〉′V 〈ρk〉Vk

+ α′
k〈ρk〉′Vk

〈ψk〉V
)]

−
[

∇ ·
(

α′
k〈ρk〉′Vk

〈vk〉′V 〈ψk〉′V + αk 〈ρk〉′Vk
〈vk〉′V 〈ψk〉′V

+ 〈ρk〉Vk
α′

k〈vk〉′V 〈ψk〉′V + αk 〈ρk〉Vk
〈vk〉′V 〈ψk〉′V

+ α′
k〈ρk〉′V 〈ψk〉′V 〈vk〉V + 〈ρk〉Vk

〈vk〉V α′
k〈ψk〉′V (3.401)

+ αk 〈vk〉V 〈ρk〉′Vk
〈ψk〉′V + α′

k〈ρk〉′Vk
〈vk〉′V 〈ψk〉V

+ αk〈ρk〉′Vk
〈vk〉′V 〈ψk〉V + 〈ρk〉Vk

α′
k〈vk〉′V 〈ψk〉V

+ α′
k〈ρk〉′Vk

〈vk〉V 〈ψk〉V
)]
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+
∑

c

(

αk 〈ρk〉Vk
〈ωk,c〉′V 〈φk,c〉′V +

αk 〈ωk,c〉V 〈ρk〉′Vk
〈φk,c〉′V + αk 〈φk,c〉V 〈ρk〉′Vk

〈ωk,c〉′V +

αk 〈φk,c〉V 〈ρk〉′Vk
〈ωk,c〉′V + αk 〈ρk〉′Vk

〈ωk,c〉′V 〈φk,c〉′V +

〈ρk〉Vk
〈ωk,c〉V α′

k〈φk,c〉′V + 〈ρk〉Vk
〈φk,c〉V α′

k〈ωk,c〉′V +

〈ρk〉Vk
α′

k〈ωk,c〉′Vk
〈φk,c〉′V + 〈ωk,c〉V 〈φk,c〉V α′

k〈ρk〉′Vk
+

〈ωk,c〉V α′
k〈ρk〉′Vk

〈φk,c〉′V + 〈φk,c〉V α′
k〈ρk,c〉′Vk

〈ωk,c〉′V +

α′
k〈ρk,c〉′Vk

〈ωk,c〉′V 〈φk〉′V
)

An obvious drawback related to the application of this particular averaging
procedure is the extensive need for constitutive relations to achieve a solvable
set of equations. The number of covariances are substantially reduced for the
cases in which the density fluctuations can be neglected. Nevertheless, the
conventional Reynolds averaging procedure gives rise to several covariance
terms which lack physical interpretation and are thus generally ignored in
spite of limited physical justification.

The incompressible flow form of the volume and time averaged equations
which can be derived adopting the conventional Reynolds averaging procedure
are more practical. Moreover, the covariance terms of order higher than two
are normally neglected in accordance with the conventional single phase tur-
bulence modeling procedure assuming that their relative magnitude is small
compared to the lower order covariances. Considering the transient term of
the generic transport equation all covariances are usually neglected based on
the hypothesis that these terms are smaller than the product of averaged
quantities.

The transient term (3.397) is normally approximated by:

αkρk〈ψk〉V ≈ αk ρk 〈ψk〉V (3.402)

The convection term (3.398) can be expressed as:

αk〈ρk〉Vk
〈vk〉V 〈ψk〉V ≈

αk ρk 〈vk〉′V 〈ψk〉′V + ρk 〈vk〉V α′
k〈ψk〉′V

+ ρk α′
k〈vk〉′V 〈ψk〉V + αk ρk 〈vk〉V 〈ψk〉V

(3.403)

The diffusion term (3.399) is normally approximated by:

αk〈Jk〉Vk
≈ αk 〈Jk〉Vk

(3.404)

The volume production term (3.400) is approximated by:

αk〈ρk〉Vk

∑

c

〈ωk,c〉V 〈φk,c〉V ≈ αk ρk

∑

c

〈ωk,c〉V 〈φk,c〉V (3.405)
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The model equations for incompressible flows which are frequently used in
engineering research are thus written as:

∂

∂t
(αk ρk 〈ψk〉V ) + ∇ · (αk ρk 〈vk〉V 〈ψk〉V )

= −∇ ·
(

αk 〈Jk〉Vk

)

+ αk ρk

∑

c

〈ωk,c〉V 〈φk,c〉V − 1
V

∫

AI

(ṁkψk)da

− 1
V

∫

AI

(Jk · nk)da−
[

∇ ·
(

αk ρk 〈vk〉′V 〈ψk〉′V

+ ρk 〈vk〉V α′
k〈ψk〉′V + ρk α′

k〈vk〉′V 〈ψk〉V
)]

(3.406)

It is easily seen that the incompressible model formulation contains less covari-
ance terms than the model equations for compressible flows (3.401). For this
reason the compressible formulation is seldom used, instead the formulation
valid for incompressible flows is often used for weakly compressible systems
as well.

For convenience, we normally remove the 〈...〉V volume averaging signs
from the equations. By introducing the consistent sets of values for the gen-
eralized variables we get, as before, the transport equations for the specific
balanced quantities.

Mass:

∂(αkρk)
∂t

+ ∇(αkρkvk) = ∇ · (ρkD
αk

k,t∇αk) + Γk (3.407)

where the covariance is modeled by use of the gradient hypothesis and the
Boussinesq turbulent transport coefficient concept:

ρkα′
kv

′
k ≈ −ρkD

αk

k,t∇αk (3.408)

Momentum:

∂(αkρkvk)
∂t

+ ∇ · (αkρkvk vk)

= −∇(αk pk) −∇ · (αkσk) + αkρkg −∇ · (αkρkv′
kv

′
k)

+ 2∇ · (ρkvkD
αk

k,t∇αk) + MΓ
k + MT

k

= −∇(αk pk) −∇ · (αk(σk + σRe
k )) + αkρkg + 2∇ · (ρkvkD

αk

k,t∇αk)

+ MT
k + MΓ

k

(3.409)

in which the Reynolds stresses are defined by

σRe
k = ρkv′

kv
′
k (3.410)
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Moreover, gravity is often the only body force considered in reactor anal-
ysis, and the covariance term is frequently approximated in accordance
with (3.408).

Energy:

∂(αkρkEk)
∂t

+ ∇ · (αkρkvk Ek)

= −∇ · (αk pk vk) −∇ · (αk σk · vk) + ∇ · (αk qk) + αkρkvk · g

+ ∇ ·
(

αk ρk vk · v′
kv

′
k + ρkvk vk · α′

kv
′
k

)

+ ∇ · (αkρkv′
ke

′
k)

+ ∇ · (ekρkα′
kv

′
k)

= −∇ · (αk pk vk) −∇ ·
(

αk(σk + σRe
k ) · vk

)

+ ∇ · (αk qk) + αkρkvk · g

+ ∇ · (ρkvk vk · (Dαk

k,t∇αk)) + ∇ · (αkρkD
ek

k,t∇ ek)

+ ∇ · (ekρkD
αk

k,t∇αk)
(3.411)

where the additional covariance is modeled as the earlier one by use of
the gradient hypothesis and the Boussinesq turbulent transport coefficient
concept:

ρkαk v′
ke

′
k ≈ −ρkαkD

ek

k,t∇ ek (3.412)

Chemical Species:

∂

∂t
(αkρkαk ωk,s) + ∇ · (αkρkαk vk ωk,s) = −∇ · (αk jk,s)

+ ∇ · (αkρk D
ωk,s

k,t ∇ωk,s) −
1
V

∫

AI

(ṁkωk,s + jk,s · nk) da + 〈Rk,s〉V

(3.413)

where the velocity-mass fraction covariance is modeled by use of the gradi-
ent hypothesis and the Boussinesq turbulent transport coefficient concept:

ρkαk v′
kω

′
k,s ≈ −ρkαkD

ωk,s

k,t ∇ωk,s (3.414)

In one view the time after volume averaging averaging operator gives rise
to a set of model equations which is closed introducing numerous simplifying
assumptions reducing the accuracy of the simulated results. However, in an-
other viewpoint it is argued that for model validation it is more convenient
to use this double averaging method in comparison with the models derived
adopting the single averaging operators, since the measured data is in bet-
ter consistency with the simulated results obtained applying this particular
model.
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More important perhaps, because of the fluctuating volume fraction vari-
able the mathematical form of the resulting time after volume averaged equa-
tions differ slightly from those derived using the single averaging operators
discussed in sects 3.4.1, 3.4.2 and 3.4.1. Not only are the physical interpreta-
tions of the various terms different, there are also additional and mathemati-
cally deviating terms occurring in this model formulations. It is observed that
this fact has induced some confusion in the literature, as inconsistent constitu-
tive equations are sometimes erroneously exchanged between the single- and
multiple averaged equations. For this reason caution is needed ensuring that
only consistent constitutive equations are used to approximate the unknown
covariance terms occurring in the more advanced reactor models.

3.4.5 The Mixture Models

The basic mixture model concept considers the whole multiphase mixture as a
single macroscopic continuum. In the literature the mixture model equations
are derived applying various approaches which we conveniently divide into
two groups. Basically, the mixture models are either derived applying the
balance principle over a macroscopic Eulerian CV or by taking the sum of the
averaged equations for the individual phases [15]. The first group of models
is known from the work of Wallis [231], Sha and Soo [187] and Bennon and
Incropera [17], whereas the second group of formulations emerged from the
work of Zuber and Findlay [250], Soo [204] and Ishii [112].

Bedford and Drumheller [15] reviewed the basic principles of the contin-
uum theories that have been developed to model mixtures of immiscible con-
stituents, such as bubbly flows, fluid-particle mixtures, fluid saturated porous
media, and composite materials. In the classical continuum theory of mix-
tures the pseudo-fluid is given effective macroscopic properties which have
to be postulated. Balance equations are written for the pseudo-homogeneous
mixture mass, momentum and energy in terms of the postulated mixture
properties. These three macroscopic mixture conservation equations may be
supplemented by postulated phasic balance equations. In these extended ver-
sions of the classical theories the mixture properties are given as a volume
fraction weighted sum of the phasic properties. To close this model separate
continuity equations of the dispersed phases are postulated and incorporated
in the formulation to account for the phase distribution phenomena. In par-
ticular using the mixture equations together with the continuity equations of
the dispersed phases computationally efficient descriptions of the multiphase
flow are achieved, since we are considerably reducing the number of transport
equations to be solved compared to the full multi-fluid model. It is generally
accepted that the extended mixture model concept is appropriate to describe
mixture flows in which the dynamics of the phases are closely coupled [112].
In the second group of mixture models the phasic equations are adopted from
one of the existing macroscopic multi-fluid model formulations which can be
derived from the local instantaneous equations applying different averaging
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procedures. The mixture model equations are then achieved by taking the
sum of the averaged equations for all the individual phases in the system. In
the ideal case both approaches provide the same macroscopic equations.

To determine the dispersed phase velocities as occurring in the phasic
continuity equations in both formulations, the momentum equation of the
dispersed phases are usually approximated by algebraic equations. Depending
on the concept used to relate the phase k velocity to the mixture velocity the
extended mixture model formulations are referred to as the algebraic slip-,
diffusion- or drift flux models.

These mixture models have been applied to investigate chemical engineer-
ing problems by [17, 163, 202, 182, 145, 165, 230, 85, 193, 19], among others.

The Classical Homogeneous Mixture Model

In this section the classical continuum theory of mixtures is reviewed [15]. In
this concept the multiphase mixture is treated as a single homogeneous con-
tinuum. Thereby the balance principle can be applied to derive conservation
laws for the macroscopic pseudo-fluid in analogy to the single phase formula-
tion examined in chap 1. Approximate constitutive equations are postulated
for the expected macroscopic behavior of the phases.

Consider any quantity ψm associated with a mixture of phases. For an
arbitrary material macroscopic control volume24 Vm(t) bounded by the surface
area Am(t), a generalized integral balance can be postulated stating that the
time rate of change is equal to the molecular transport flux plus the volumetric
production [187]:

D

Dt

∫

Vm(t)

ρmψm dv = −
∫

Am(t)

Jm · n da +
∫

Vm(t)

ρmφm dv (3.415)

In this notation, n is the outward directed normal unit vector to the ex-
ternal mixture surface Am(t) closing the mixture volume Vm(t), D/Dt is the
substantial time derivative, vm is the velocity associated with the mixture,
ρm is the mixture density, ψm is any mixture quantity, Jm is the mixture
diffusive flux and φm is the source term. Virtually no mixture theory includes
any interfacial properties, so we chose not to include the interface mechanisms
in the basic model formulation [115].

It follows from the continuum assumption that the integrands in (3.415)
are continuous and differentiable functions, so the integral theorems of Leib-
nitz and Gauss (see app. A) can be applied transforming the system de-
scription into an Eulerian control volume formulation. The governing mixture

24 To relate the classical mixture theory to the more familiar volume averaging
method we may assume that the mixture CV, which is larger than a phase el-
ement but smaller than the characteristic domain dimension, coincides with the
averaging volume used in the volume averaging approach.
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equations are thus derived in the same manner as outlined for single phase
flow in chap 1. The resulting equation is written:

∫

Vm

(

∂(ρmψm)
∂t

+ ∇ · (ρmvmψm) + ∇ · Jm − ρmφm

)

dv = 0 (3.416)

Since (3.416) must be satisfied for any Vm, the macroscopic equation can
be transformed into its differential form:

∂(ρmψm)
∂t

+ ∇ · (ρmvmψm) + ∇ · Jm − ρmφm = 0 (3.417)

in which the properties and the constitutive equations required for the mix-
ture mass, momentum, energy, and species transport equations have to be
postulated. To deduce the different mixture balance equations the variables in
(3.417) are defined in analogy with the single phase variables in Table 3.1. The
resulting set of partial differential equations is sometimes called the macro-
scopic continuum mixture equations [193].

The basic mixture model equation (3.417) contains several undetermined
quantities which have to be determined. These variables are conventionally
postulated as the sum of the volume fraction weighted property values of the
phases in the mixture.

The mixture density ρm yields:

ρm =
∑

k

αkρk (3.418)

The mixture viscosity μm:
μm =

∑

k

αkμk (3.419)

The mixture diffusive flux Jm:

Jm =
∑

k

αkJk (3.420)

The mixture mass averaged velocity vm:

vm =

∑

k

αkρkvk

∑

k

αkρk
=

∑

k

αkρkvk

ρm
(3.421)

The generic mass averaged quantity ψm:

ψm =

∑

k

αkρkψk

∑

k

αkρk
=

∑

k

αkρkψk

ρm
(3.422)
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where the actual phase k volume fraction αk = Vk/Vm have been introduced
relating the superficial variables and the actual phase variables.

To preserve the system volume the volume fractions αk are subject to the
natural constraint:

∑

k

αk = 1 (3.423)

Since the mixture properties are given as the sum of the volume fraction
weighted property values of the different phases in the mixture, the dispersed
phase volume fractions were originally calculated from the postulated dis-
persed phase continuity equations. In the past these macroscopic equations
were expressed based on hypothesis and physical intuition rather than basic
principles. The modern versions of the classical mixture theories are thus de-
rived starting out from the averaged equations for the individual phases to
ensure that the governing equations are correctly formulated.

The main disadvantage reflected by the classical mixture model is that no
direct connection is made with the microscopic phenomena. In consequence
essential features of the multi-phase systems are easily overlooked, and some-
times unnecessary assumptions are imposed on the macroscopic quantities
[102]. For this reason the classical mixture model is seldom used for reactor
analysis involving fluid flow calculations, since it is very difficult to postu-
late reliable parameterizations for the mixture properties and the constitutive
equations. However, the mixture model concept determines the basis for the
pseudo-homogeneous reactor models which are well known from conventional
reactor modeling [80]. In these reactor simulations simplified descriptions of
the flow or even predefined velocity profiles are used, nevertheless these em-
pirical models are computationally efficient and thus very useful analyzing
the interactions between the reaction kinetics and the different transport pro-
cesses occurring in such reactive systems. It is emphasized that for many
chemical processes idealized flow profiles prevail or the chemical kinetics and
the molecular diffusion processes are the rate determining steps so the details
of the flow are not essential determining the chemical conversion and heat
transport in the reactor [122].

In problems in which the dispersed phase momentum equations can be
approximated and reduced to an algebraic relation the mixture model is sim-
pler to solve than the corresponding multi-fluid model, however this model
reduction requires several approximate constitutive assumptions so impor-
tant characteristics of the flow can be lost. Nevertheless the simplicity of this
form of the mixture model makes it very useful in many engineering applica-
tions. This approximate mixture model formulation is generally expected to
provide reasonable predictions for dilute and uniform multiphase flows which
are not influenced by any wall effects. In these cases the dispersed phase ele-
ments do not significantly affect the momentum and density of the mixture.
Such a situation may occur when the dispersed phase elements are very small.
There are several concepts available for the purpose of relating the dispersed
phase velocity to the mixture velocity, and thereby reducing the dispersed
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phase momentum equation to a much simpler relation. The algebraic rela-
tions frequently mentioned in the multiphase flow literature are outlined in
the following sub-sections.

The Algebraic-Slip Mixture Model

In this section we derive the algebraic-slip mixture model equations for cold
flow studies starting out from the multi-fluid model equations derived applying
the time- after volume averaging operator without mass-weighting [204, 205].
The momentum equations for the dispersed phases are determined in terms
of the relative (slip) velocity.

Under isothermal cold flow conditions only the continuity and momen-
tum equations are required as defined by (3.417) choosing appropriate values
for the generalized functions analogous to those in Table 3.1. The governing
mixture equations are then expressed as:

∂ρm

∂t
+ ∇ · (ρmvm) = 0 (3.424)

and

∂(ρmvm)
∂t

+ ∇ · (ρmvmvm) = −∇pm −∇ · (σm + σm,t) + ρmg (3.425)

where vm is the mixture velocity vector which represents the velocity of the
mixture mass center, g is the acceleration due to gravity, pm is the mixture
pressure, σm is the mixture viscous stress tensor, and σm,t is the turbulent
mixture stress tensor.

For Newtonian fluids the effective stress tensor (i.e., the sum of the viscous
and turbulent stresses) is given by:

σm,eff = σm + σm,t = −μeff(∇vm + (∇vm)T − 2
3
e(∇ · vm)) (3.426)

In order to approximate the effective viscosity μeff = μm,t + μm for the mix-
ture flows, separate models are needed for the turbulent viscosity μm,t and the
mixture viscosity μm. The standard k-ε model originally developed for single-
phase flows has been used to compute the turbulent viscosity μm,t in the
majority of publications on numerical simulations of two-phase flows. Nev-
ertheless, it is still an open question whether the approximate turbulence
models which were originally developed for single-phase flow are appropriate
for two-phase flow simulations [122].

The volume fractions of the dispersed phases can be calculated from the
time-after volume averaged phase k = d continuity equations, as examined in
sect 3.4.4. A common form of the modeled continuity equations yields:

∂(αdρd)
∂t

+ ∇ · (αdρdvd) = ∇ · (ρdD
αd
α,t∇αd) (3.427)
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in which the diffusive terms accounts for dispersive effects of the dispersed
phase due to random fluctuations of the fluid-particle motions. This term
stems from the modeled volume fraction-velocity covariance in the continuity
equation [205, 119]. For turbulent flows the turbulent diffusivity Dαd

α,t is nor-
mally determined by the turbulent viscosity as the turbulent Schmidt number
is about 1.

In (3.427) the dispersed phase velocity vd occurs as an undetermined vari-
able. The phasic velocities are related to the mixture velocity through the
mixture velocity definition (3.421). The dispersed phase velocity is computed
from the continuous phase velocity vc and a relative (slip) velocity vrk, in
accordance with the definitions:

vrk = vk − vc (3.428)

For the relative (slip) velocity vrd numerous empirical correlations are avail-
able in the literature [34]. Hence it follows that each component of the dis-
persed phase momentum equation is reduced to an algebraic-slip relation
(3.428). This is the reason why this mixture model formulation is referred
to as the algebraic-slip mixture model.

In particular applications alternative relations for the slip velocity (3.428)
can be derived introducing suitable simplifying assumptions about the dis-
persed phase momentum equations comparing the relative importance of the
pressure gradient, the drag force, the added mass force, the Basset force, the
Magnus force and the Saffman lift force [125, 119, 58]. For gas-liquid flows it
is frequently assumed that the last four effects are negligible [201, 19].

The relation for the slip velocity is then written as:

vslip,d = − ∇p

CD,d
(3.429)

where CD,d is a drag force coefficient for which a large number of correlations
can be found in literature. It is noted that each of these expressions is only
valid under specific operating conditions. The CD,d depends primarily on the
particle Reynolds number Rep. In the past the bubble size dependency was
considered negligible for air bubbles in water in the mean diameter size range
1 − 10 mm. Hence,

CD = 50
g

cm3s
(3.430)

was used in this bubble size range, leading to a mean bubble slip velocity of
about 20 cm/s, which is in approximate agreement with experimental velocity
data of air bubbles in tap water [34, 184].

For dispersed gas-liquid flows it is further assumed that pm = pc = p.
The density of the continuous liquid phase is commonly assumed constant
ρl ≈ constant, while the density of the gas phases is either given in accordance
with the ideal gas law ρg = pMw

RT or assumed constant. The viscosities of both
phases are commonly given constant values.
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The bubble wake effects are occasionally considered important describing
the transversal movement of the bubbles [73, 218]. In these cases it is imagined
that small bubbles are accelerated in the wake of larger ones and others are
pushed aside. Hence, there is a considerable particle path dispersion on the
bubble size scale which appears as a random motion on the macro scale level
considered in the model. The impacts of these random spatially dispersive
effect are often assumed embedded in the diffusion-like term occurring in the
the continuity equation for the gas phase (3.427). The corresponding diffu-
sion coefficient has been related to the turbulent eddy viscosity of the liquid
phase [120]. This approach assumes an isotropic dispersion. However, since
real bubbles rise relative to the liquid predominantly in the vertical direction,
the dispersion will probably not be an isotropic effect [121]. A more general
representation might be expressed in terms of a dispersion tensor. However,
at present there are neither sufficient knowledge available to model the tensor
elements nor enough experimental data to validate such models.

This gas-liquid modeling approach has been used performing dynamic
simulations of two-phase bubble column reactor flows operating at low gas
holdups [201, 202, 19]. A major limitation revealed in these simulations is
that there is some difficulties in conserving mass for the dispersed phases,
so this concept is not recommended for the purpose of simulating chemically
reactive flows.

The Diffusion Mixture Model

In this section we derive the diffusion mixture model equations starting from
the time averaged multi-fluid model expressed in terms of phase- and mass
weighted variables [112]. The relative movement of the individual phases is
given in terms of diffusion velocities.

The continuity and momentum equations for each phase k are given by:

∂

∂t
(αk〈ρk〉Xk) + ∇ · (αk〈ρk〉Xk〈vk〉Xkρk) = Γk (3.431)

and

∂

∂t
(αk〈ρk〉Xk〈vk〉Xkρk) + ∇ · (αk〈ρk〉Xk〈vk〉Xkρk〈vk〉Xkρk) =

− αk∇〈pk〉Xk −∇ · (αk[〈σk〉Xk + 〈σRe
t,k〉Xk ])

+ αk〈ρk〉Xk〈g〉Xkρk + Fk

(3.432)

where the turbulent stress tensor is given by:

〈σRe
t,k〉Xk = 〈ρkv′′

kv′′
k〉Xk (3.433)

and the corresponding time averaged jump conditions yields:
∑

k

Γk = 0 (3.434)
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∑

k

Fk = FI (3.435)

where we have neglected the effect of interfacial mass transfer upon the inter-
facial momentum transfer.

Based on the Favre-averaged continuity equations (3.431), the mixture
continuity equation is obtained by taking the sum over all phases:

∂

∂t

∑

k

(αk〈ρk〉Xk) + ∇ ·
∑

k

αk〈ρk〉Xk〈vk〉Xkρk =
∑

k

Γk (3.436)

At the interface the total mass is balanced in accordance with the jump
mass condition (3.434), thus the RHS of (3.436) must vanish. Hence, by use
of the Favre averaged form of (3.418) and (3.421) we obtain the continuity
equation for the mixture (3.424).

The mixture momentum equation can be deduced in a similar way from
the sum of the momentum balances of the individual phases:

∂

∂t

∑

k

αk〈ρk〉Xk〈vk〉Xkρk + ∇ ·
∑

k

αk〈ρk〉Xk〈vk〉Xkρk〈vk〉Xkρk

= −
∑

k

αk∇〈pk〉Xk −∇ ·
(

∑

k

αk[〈σk〉Xk + 〈σRe
t,k〉Xk ]

)

+
∑

k

αk〈ρk〉Xk〈g〉Xkρk +
∑

k

Fk

(3.437)

Ishii [112] introduced the diffusion velocity vMk of phase k defined as the
velocity of phase k relative to the velocity of the mass center of the mixture:

vMk = 〈vk〉Xkρk − vm (3.438)

Using the given definition of the diffusion velocity (3.438), the Favre form
of the mixture density (3.418) and the Favre form of the mixture velocity
(3.421), the second term in the mixture momentum balance (3.437) can be
reformulated:

∇ ·
∑

k

αk〈ρk〉Xk〈vk〉Xkρk〈vk〉Xkρk =

∇ · (ρmvmvm) + ∇ ·
∑

k

(αk〈ρk〉XkvMkvMk)
(3.439)

Introducing the mixture- and diffusion velocity variables (3.421) and (3.438),
the momentum equation (3.437) takes the form:

∂

∂t
(ρmvm) + ∇ · (ρmvmvm) = −∇pm −∇ · (σm + σRe

m,t + σMm) + ρmg + FI

(3.440)
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The last term on the right hand side of the mixture momentum equation
(3.440) accounts for the influence of the surface tension force FI on the mixture
in accordance with (3.435).

The three stress tensors are defined as:

σm =
∑

k

αk〈σk〉Xk (3.441)

σRe
m,t =

∑

k

αk〈ρkv′′
kv′′

k〉Xk (3.442)

σMm =
∑

k

αk〈ρk〉XkvMkvMk (3.443)

and represent the average viscous stress, turbulent stress and diffusion stress
due to the phase slip, respectively.

In (3.440) the pressure of the mixture is defined by the relation:

∇pm =
∑

k

αk∇〈pk〉Xk (3.444)

In practice, the phase pressures are often assumed to be equal, i.e., 〈pk〉Xk =
pm = p.

If we now return to consider an individual phase, we may use the defi-
nition of the diffusion velocity (3.438) to eliminate the phase velocity in the
continuity equation for phase k:

∂

∂t
(αk〈ρk〉Xk) + ∇ · (αk〈ρk〉Xkvm) = Γk −∇(αk〈pk〉XkvMk) (3.445)

In practice, the diffusion velocity has to be determined through the relative
velocity (3.428). Hence, it follows that:

vMd =〈vd〉Xdρd − vm

=[vrd + 〈vc〉Xcρc ] − [
1
ρm

n
∑

k=1

αk〈ρk〉Xk〈vk〉Xkρk ]

=[vrd + 〈vc〉Xcρc ] − [
1
ρm

n
∑

k=1

αk〈ρk〉Xk(vrk + 〈vc〉Xcρc)]

=[vrd + 〈vc〉Xcρc ]

− [
1
ρm

n−1
∑

d=1

αd〈ρd〉Xdvrd +
1
ρm

n
∑

k=1

αk〈ρk〉Xk〈vc〉Xcρc ]

=vrd − 1
ρm

n−1
∑

d=1

αd〈ρd〉Xdvrd

(3.446)

When the diffusion velocity is eliminated, the main difference between
the particular diffusion- and algebraic-slip mixture models presented in this
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section is that the algebraic-slip model is derived using a double time- after
volume averaging operator [205], while the diffusion model is derived applying
a single time averaging operator combined with the introduction of phase- and
mass weighted variables [112].

The given diffusion model formulation has been used simulating the gas-
liquid dynamics in cylindrical bubble column reactors [182].

The Drift-Flux Mixture Model

In this section we derive the drift-flux mixture model starting out from
the time averaged multi-fluid model expressed in terms of phase- and mass
weighted variables [112]. The relative moment of the phases is given in terms
of drift velocities. This approach can be applied for systems where the phase
densities are constants and the interface mass transfer can be neglected.

The drift velocity vV k of phase k is defined as the velocity of phase k
relative to the velocity of the volume center of the mixture [112, 85]:

vV k = 〈vk〉Xkρk −
∑

k

αk〈vk〉Xkρk = 〈vk〉Xkρk − jm (3.447)

where jm =
∑

k αk〈vk〉Xkρk is the volumetric flux of the mixture representing
the velocity of the volume center of the mixture.

We may then write:
∑

k

αkvV k =
∑

k

αk〈vk〉Xkρk −
∑

k

αkjm = jm − jm = 0 (3.448)

The flux of the dispersed phase relative to the velocity of the volume centre
of the mixture is given by [85]:

JV d = αd(〈vd〉Xdρd − jm) = αdvV d (3.449)

Introducing the mixture- and drift velocity variables (3.421) and (3.447), the
momentum equation (3.437) takes the form:

∂

∂t
(ρmvm) + ∇ · (ρmvmvm) = −∇pm −∇ · (σm + σRe

m,t + σV m) + ρmg + FI

(3.450)
The three stress tensors are defined as:

σm =
∑

k

αk〈σk〉Xk (3.451)

σRe
m,t =

∑

k

αk〈ρkv′′
kv′′

k〉Xk (3.452)

σV m =
∑

k

αk〈ρk〉XkvV kvV k (3.453)
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and represent the average viscous stress, turbulent stress and drift stress due
to the phase slip, respectively.

For systems with constant densities and no phase change, the Favre aver-
aged continuity equation (3.431) reduces to:

∂αk

∂t
+ ∇ · (αk〈vk〉Xkρk) = 0 (3.454)

By use of the drift velocity (3.447), the continuity equation can be rewrit-
ten as:

∂αk

∂t
+ ∇ · (αkjm) + ∇ · (αkvV k) = 0 (3.455)

After some manipulations we get:

∂αk

∂t
+ jm · ∇αk = −∇ · (αkvV k) (3.456)

where the relation ∇ · jm = 0 is derived taking the sum of the individual
continuity equations for all the phases in the system.

In practice, the drift velocity (3.447) is determined from the slip velocity
(3.429) as follows:

vV,k =〈vk〉Xkρk −
∑

k

αk〈vk〉Xkρk

=[〈vc〉Xcρc + vrk] − [
∑

k

αk(〈vc〉Xcρc + vrk)] = vrk −
∑

k

αkvrk

(3.457)

This form of the mixture model is called the drift flux model. In particu-
lar cases the flow calculations is significantly simplified when the problem is
described in terms of drift velocities, as for example when αd is constant or
time dependent only. However, in reactor technology this model formulation
is restricted to multiphase cold flow studies as the drift-flux model cannot be
adopted simulating reactive systems in which the densities are not constants
and interfacial mass transfer is required.

The drift-flux model equations have been assessed in multiphase flow anal-
ysis by several authors [112, 85, 145, 231].

3.4.6 The Gross Scale Averaged Two-Phase Transport Equations

The area averaging theory described in this section is based on the papers by
[229, 243, 44, 46, 47, 22, 10, 24, 115, 135, 16]. The main object in this section
is to provide the necessary theorems to derive the cross-sectional averaged
equations that coincide with the conventional 1D multiphase chemical reactor
model from first principles. To formulate these theorems we chose to adopt the
same concepts as were used deriving the corresponding single phase equations
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in sect 1.2.6. Following the approach of Delhaye and Achard [47] we proceed
performing an analysis of a small volume of a pipe with variable cross-section
area containing a two phase mixture and deduce the limiting forms of the
Leibnitz’ and Gauss’ theorems for area considered valid in the limit Δz → 0.
For this reason it is emphasized that these theorems are actually derived for
a volume but reduces to an area formulation introducing certain simplifying
approximations.

Given a tube with axis Oz (unit vector ez) in which a volume Vk is limited
by a boundary, AI and cut by a cross section plane over area, Ak, as sketched
in Fig 3.7. The lateral dimensions of the control volume extend to the conduit
walls. In this notation, nk is the outward directed unit vector normal to the
interface of phase k. lI(t, z) is the intersection of interface, AI , with the cross
sectional plane. nl,k is the outward directed unit vector normal to the closed
curve of phase k, lW,k(t, z), in the cross section plane.

Fig. 3.7. Sketch of the control volume determining the basis for area-averaging of
the two phase equations.

The purpose of this derivation is to average the local, instantaneous bal-
ance equation over the variable cross-section area of a pipe occupied by the
two phases, as sketched in Fig 3.7.

The local, instantaneous balance equation (1.3) is integrated over the cross
section area, Ak(t, z), limited by the boundaries, lI(t, z), with the other phase
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and with the pipe wall boundary, lW,k(t, z):
∫

Ak(t,z)

∂(ρkψk)
∂t

da +
∫

Ak(t,z)

∇ · (ρkvkψk)da = −
∫

Ak(t,z)

∇ · Jkda

+
∫

Ak(t,z)

∑

c

ρc,kφc,kda

(3.458)

To proceed the limiting forms of the Leibnitz and the Gauss theorems25,
appropriate for two phase flow, are applied. These theorems are considered
direct extensions of the single phase theorems examined in sect 1.2.6 so no
further derivation is given here. In most reactor model formulations the pipe
walls are supposed to be fixed and impermeable. In the limit z → 0, the
limiting form of the Leibnitz theorem for volume reduces to the following
relation for area [43, 47]:

∂

∂t

∫

Ak(t,z)

f(r, t)da =
∫

Ak(t,z)

∂f(r, t)
∂t

da +
∫

lI(t,z)

f(r, t)vI · nk
dl

nk · nl,k

+
∫

lW,k(t,z)

f(r, t)vW · nk
dl

nk · nl,W

(3.459)

where vI ·nk is the displacement velocity of a point on the interface, AI , and
vW ·nk is the displacement velocity of a point on the wall boundary face, AW .

For the particular case when the phase k control volume is varying both in
time and space at the interface, but in space only at the wall boundary face,
this relation is simplified as vW · nW = 0:

∂

∂t

∫

Ak(t,z)

f(r, t)da =
∫

Ak(t,z)

∂f(r, t)
∂t

da +
∫

lI(t,z)

f(r, t)vI · nk
dl

nk · nl,k
(3.460)

In the limit z → 0, the limiting form of the Gauss theorem for volume
reduces to the following relation for area (where we let B be a vector or a
tensor):

∫

Ak(t,z)

∇·Bda =
∂

∂z

∫

Ak(t,z)

ez·Bda+
∫

lI(t,z)

nk·B
dl

nk · nl,k
+

∫

lW,k(t,z)

nk·B
dl

nk · nl,W

(3.461)
In the case of B being a vector, the component of the vector B on Oz is

given by ez · B = Bz.
25 Area averaging can be considered to be a limiting case of local volume averaging

[43, 47, 189]. Thus the phrase limiting form refers to the modified forms of the
averaging theorems which are applicable to the governing 3D equations to derive
a set of equations valid for 1D problems.
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If we take B = ez we obtain:
∫

Ak(t,z)

∇ · ezda =
∂

∂z

∫

Ak(t,z)

ez · ezda +
∫

lI(t,z)

nk · ez
dl

nk · nl,k

+
∫

lW,k(t,z)

nk · ez
dl

nk · nl,W
(3.462)

With minor rearrangement this gives the following important result:

∂Ak(t, z)
∂z

= −
∫

lI(t,z)

nk · ez
dl

nk · nl,k
−

∫

lW,k(t,z)

nk · ez
dl

nk · nl,W
(3.463)

Introducing these relations into the cross section area averaged equation, gives:

∂

∂t

∫

Ak(t,z)

(ρkψk)da +
∂

∂z

∫

Ak(t,z)

(ρkvz,kψk)da +
∂

∂z

∫

Ak(t,z)

(ez · Jk)da =

−
∫

lW,k(t,z)

nk · Jk
dl

nk · nl,W
−

∫

lW,k(t,z)

nk · (ρkvkψk)
dl

nk · nl,W

−
∫

lI(t,z)

nk · Jk
dl

nk · nl,k
−

∫

lI(t,z)

nk · (ρkvkψk)
dl

nk · nl,k

+
∫

lI(t,z)

ρkψk(vI · nk)
dl

nk · nl,k
+

∫

Ak(t,z)

∑

c

(ρc,kφc,k)da

(3.464)

where vz,k is the z-component of the velocity vector, vk.
As we assume no mass flow through the pipe wall, the wall convection

term is equal to zero as nk · vk = 0 at the wall. The equation reduces to:

∂

∂t

∫

Ak(t,z)

(ρkψk)da +
∂

∂z

∫

Ak(t,z)

(ρkvz,kψk)da +
∂

∂z

∫

Ak(t,z)

(ez · Jk)da =

−
∫

lW,k(t,z)

nk · Jk
dl

nk · nl,W
−

∫

lI(t,z)

nk · (ρkvkψk + Jk)
dl

nk · nl,k

+
∫

lI(t,z)

ρkψk(vI · nk)
dl

nk · nl,k
+

∫

Ak(t,z)

∑

c

(ρc,kφc,k)da

(3.465)
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or

∂

∂t

∫

Ak(t,z)

(ρkψk)da +
∂

∂z

∫

Ak(t,z)

(ρkvz,kψk)da +
∂

∂z

∫

Ak(t,z)

(ez · Jk)da =

−
∫

lW,k(t,z)

nk · Jk
dl

nk · nl,W
−

∫

lI(t,z)

(mkψk + nk · Jk)
dl

nk · nl,k

+
∫

Ak(t,z)

∑

c

(ρc,kφc,k)da

(3.466)

where mk is the interfacial mass transfer rate given by (3.140).
Introducing area averaged quantities by use of the area averaging operator

defined by:

〈ψk〉Ak
=

1
Ak

∫

Ak(t,z)

ψda, (3.467)

The balance equation can be written as:

∂(Ak〈ρkψk〉Ak
)

∂t
+

∂

∂z
(Ak〈ρkvz,kψk〉Ak

) +
∂

∂z
(Ak〈ez · Jk〉Ak

) =

−
∫

lW,k(t,z)

nk · Jk
dl

nk · nl,W
−

∫

lI(t,z)

(mkψk + nk · Jk)
dl

nk · nl,k

+
∑

c

Ak〈ρc,kφc,k〉Ak

(3.468)

The cross-section averaged equations governing phase k are obtained defin-
ing the specific values of the generalized variables in (3.468) in accordance with
Table 3.1 gives the instantaneous area-averaged equations for the balance of
mass, momentum, total energy, species mass and entropy.

The Balance of Mass:
In this case we define ψk = 1, Jk = 0, and φc,k = 0, hence:

∂(Ak〈ρk〉Ak
)

∂t
+

∂

∂z
(Ak〈ρkvz,k〉Ak

) = −
∫

lI(t,z)

mk
dl

nk · nl,k
= ΓAk

A

(3.469)
where ΓAk

is the area averaged interfacial mass transfer rate defined by:

ΓAk
= − 1

A

∫

lI(t,z)

mk
dl

nk · nl,k
(3.470)
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The Balance of Momentum:
In this case we define ψk = vk, Jk = Tk, and φc,k = gc,k, thus:

∂(Ak〈ρkvk〉Ak
)

∂t
+

∂

∂z
(Ak〈ρkvz,kvk〉Ak

) +
∂

∂z
(Ak〈ez · Tk〉Ak

)

= −
∫

lW,k(t,z)

nk · Tk
dl

nk · nl,W
−

∫

lI(t,z)

(mkvk + nk · Tk)
dl

nk · nl,k

+
∑

c

Ak〈ρc,kgc,k〉Ak

(3.471)

and after the total stress tensor, Tk, is split into a pressure term, pke, and
a viscous stress tensor, σk, we get:

∂(Ak〈ρkvk〉Ak
)

∂t
+

∂

∂z
(Ak〈ρkvz,kvk〉Ak

) +
∂

∂z
(Ak〈pkez〉Ak

) =

− ∂

∂z
(Ak〈ez · σk〉Ak

) +
∑

c

Ak〈ρc,kgc,k〉Ak

−
∫

lW,k(t,z)

nk · Tk
dl

nk · nl,W
−

∫

lI(t,z)

(mkvk + nk · Tk)
dl

nk · nl,k

(3.472)

If we project the terms in (3.472) along the tube axis, we obtain:

∂(Ak〈ρkvz,k〉Ak
)

∂t
+

∂

∂z
(Ak〈ρkvz,kvz,k〉Ak

) +
∂

∂z
(Ak〈pk〉Ak

) =

− ∂

∂z
(Ak〈(ez · σk) · ez)〉Ak

) +
∑

c

Ak〈ρc,kgc,z,k〉Ak

−
∫

lW,k(t,z)

(nk · Tk) · ez
dl

nk · nl,W
−

∫

lI(t,z)

(mkvk + nk · Tk) · ez
dl

nk · nl,k

(3.473)

If we assume that the pressure, pk, is constant along lI and lW , and equal
to the averaged pressure, 〈pk〉Ak

over Ak. Then, by using the definition
(3.463), (3.473) can be written as:

∂(Ak〈ρkvz,k〉Ak
)

∂t
+

∂

∂z
(Ak〈ρkvz,kvz,k〉Ak

) +
∂

∂z
(Ak〈pk〉Ak

) ≈

− ∂

∂z
(Ak〈(ez · σk) · ez)〉Ak

) +
∑

c

Ak〈ρc,kgc,z,k〉Ak

−
∫

lW,k(t,z)

(nk · σk) · ez
dl

nk · nl,W
−

∫

lI(t,z)

(mkvk + nk · σk) · ez
dl

nk · nl,k

+ 〈pk〉Ak

∂Ak

∂z
(3.474)
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or

∂(Ak〈ρkvz,k〉Ak
)

∂t
+

∂

∂z
(Ak〈ρkvz,kvz,k〉Ak

) + Ak
∂〈pk〉Ak

∂z
≈

− ∂

∂z
(Ak〈(ez · σk) · ez)〉Ak

) +
∑

c

Ak〈ρc,kgc,z,k〉Ak

−
∫

lW,k(t,z)

(nk · σk) · ez
dl

nk · nl,W
−

∫

lI(t,z)

(mkvk + nk · σk) · ez
dl

nk · nl,k

(3.475)

where the interfacial momentum transfer due to phase change is defined
by:

MΓ
k,z = − 1

A

∫

lI(t,z)

mkvk · ez
dl

nk · nl,k
= ΓAk〈vz〉ΓAk

lI
(3.476)

For dispersed flows the interfacial momentum viscous stresses acting on
the dispersed phase can be approximated by:

Mσ
z,d = − 1

A

∫

lI(t,z)

(nd · σd) · ez
dl

nd · nl,d
≈ −3

4
ρc
CD

dS
αd|〈vz,r〉A|〈vz,r〉A

(3.477)
where dS is the Sauter mean diameter and vz,r = (vz,d − vz,c) denotes the
relative velocity. That is, the averaged drag force is related to the averaged
local relative velocity 〈vz,r〉A and not to the difference between the area
averaged velocities of the individual phases [115].
The wall momentum viscous stresses, i.e., the friction drag, yields:

MDrag
k,z = − 1

A

∫

lW,k(t,z)

(nk · σk) · ez
dl

nk · nl,W

≈− fD,W
1
2
ρk|〈vz,k〉A|〈vz,k〉A

SW

4A

(3.478)

where SW is the perimeter of the wall.
By the principles of material indifference Slattery [196] (pp 228-230) elu-
cidated the functional relationship between the variables in the empirical
friction or drag force parameterizations26. It is noted that the dimen-
sionless wall drag or friction factors of Darcy (fD) and Fanning (fF ) are
related in the following manner (e.g., [124, 240]):

26 Whitaker [234] (chap 8) explains the convention normally used to distinguish
between these two types of parameters. The friction factors for dispersed bod-
ies immersed in a flowing fluid is traditionally referred to as dimensionless drag
coefficients, whereas the drag force for flow inside closed conducts is generally
expressed in terms of a dimensionless friction factor.



480 3 Multiphase Flow

fF =
|σw|
1
2ρvz

2
=

fD

4
(3.479)

The friction factor for laminar flow in pipes (Re < 2300) is given by
fD = 4fL = 64

Re . For turbulent flow in rough pipes the friction factors
depends on both the Reynolds number and the surface roughness of the
tube. Colebrook [35] devised an implicit relation for the Darcy friction
factor which reproduce the well known Moody diagram quite well.

1√
fD

≈ 1.74 − 2.0 log(2
ε

D
+

18.7
Re

√
fD

) (3.480)

Similar parameterizations exist for flows past a flat plate, jets and wakes
[240].

The Balance of Total Energy:
In this case we define ψk = (1

2v
2
z,k + ek), Jk = (qk + Tk · vk), φc,k =

gc,k · vc,k, so it follows that:

∂(Ak〈ρk( 1
2v

2
z,k + ek)〉Ak

)
∂t

+
∂

∂z
(Ak〈ρkvz,k(

1
2
v2

z,k + ek)〉Ak
) =

− ∂

∂z
(Ak〈(Tk · vk) · ez〉Ak

) − ∂

∂z
(Ak〈qk · ez〉Ak

)

+
∑

c

Ak〈ρc,kgc,k · vc,k〉Ak
−

∫

lW,k(t,z)

qk · nk
dl

nk · nl,W

−
∫

lI(t,z)

(mk(
1
2
v2

z,k + ek) + nk · (Tk · vk) + qk · nk)
dl

nk · nl,k

(3.481)

or by introducing the enthalpy per unit of mass, hk = ek + pk

ρk
, we obtain:

∂(Ak〈ρk( 1
2v

2
z,k + ek)〉Ak

)
∂t

+
∂

∂z
(Ak〈ρkvz,k(

1
2
v2

z,k + hk)〉Ak
) =

− ∂

∂z
(Ak〈(σk · vk) · ez〉Ak

) − ∂

∂z
(Ak〈qk · ez〉Ak

)

+
∑

c

Ak〈ρc,kgc,k · vc,k〉Ak
−

∫

lW,k(t,z)

qk · nk
dl

nk · nl,W

−
∫

lI(t,z)

(mk(
1
2
v2

z,k + ek) + nk · (Tk · vk) + qk · nk)
dl

nk · nl,k

(3.482)

where the interfacial energy transfer due to phase change is defined by:

EΓ
k,z = − 1

A

∫

lI(t,z)

mk(
1
2
v2

z + e)k
dl

nk · nl,k
= ΓAk〈(

1
2
v2

z + e)k〉ΓAk

lI
(3.483)
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The interfacial energy source yields:

EE
k,I = − 1

A

∫

lI(t,z)

(nk · qk)
dl

nk · nl,k
= aI〈nk · qk〉lI (3.484)

The interfacial work by viscous and pressure forces yield:

EW
k,I = − 1

A

∫

lI(t,z)

nk · (Tk · vk)
dl

nk · nl,k
(3.485)

The external wall heat transfer is expressed as:

EE
k,Wall = − 1

A

∫

lW,k(t,z)

(nk · qk)
dl

nk · nl,W
= 〈nk · qk〉W

SW

A
(3.486)

The Entropy equation:
In this case we define:

ψk =sk,

Jk =
qk −

∑

c μc,kjc,k

Tk
, and (3.487)

φk

ρk
= − 1

Tkρk

[

1
Tk

(qk · ∇Tk) +
∑

c

jc,k · (Tk∇(
μc,k

Tk
) − Fc,k) + σk : ∇vk

+
∑

r

Ar,krr,k

]

Hence it follows that:

∂(Ak〈ρksk〉Ak
)

∂t
+

∂

∂z
(Ak〈ρkvz,ksk〉Ak

)

+
∂

∂z
(Ak〈

(

qk −
∑

c μc,kjc,k

Tk

)

· ez〉Ak
)

+
∫

lW,k(t,z)

(

qk −
∑

c μc,kjc,k

Tk

)

· nk
dl

nk · nl,W

+
∫

lI(t,z)

(

mksk +
(

qk −
∑

c μc,kjc,k

Tk

)

· nk

)

dl

nk · nl,k
− 1

Tk

[

1
Tk

(qk · ∇Tk)

+
∑

c

jc,k · (Tk∇(
μc,k

Tk
) − gc,k) + σk : ∇vk +

∑

r

Ar,krr,k

]

= 0

(3.488)

The final form of the entropy equation is consistent with the formulation
given for one component fluids by [136].
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The Species Mass Balance:
In this case we define ψk = ωk,s, Jk = jk,s, and φc,k = Rk,s/ρk,c, and we
get:

∂(Ak〈ρkωk,s〉Ak
)

∂t
+

∂

∂z
(Ak〈ρkωk,svz,k〉Ak

) =

− ∂

∂z
(Ak〈ez · jk,s〉Ak

) −
∫

lW,k(t,z)

nk · jk,s
dl

nk · nl,W

−
∫

lI(t,z)

(mkωk,s + nk · jk,s)
dl

nk · nl,k
+ Ak〈Rs,k〉Ak

(3.489)

The interfacial species mass transfer due to phase change is defined by:

JΓ
k,s = − 1

A

∫

lI(t,z)

mkωk,s
dl

nk · nl,k
≈ ΓAk〈ωk,s〉ΓAk

lI
(3.490)

The other interfacial mass transfer fluxes are given by:

Jj
k,s = − 1

A

∫

lI(t,z)

nk · jk,s
dl

nk · nl,k
≈ aI〈nk · jk,s〉lI (3.491)

in which 〈nk · jk,s〉lI denotes the averaged interfacial mass transfer flux.
The area averaged wall mass transfer flux of species s is given by:

JWall = − 1
A

∫

lW,k(t,z)

nk · jk,s
dl

nk · nl,W
(3.492)

but normally vanishes as we consider impermeable walls only.

In the present state of knowledge numerous hypothesis are generally ad-
mitted to achieve a solvable set of equations [229, 243, 46, 10]. The fairly
rigorous set of equations are thus simplified neglecting both the time - and
spatial covariance terms, so the average of products are approximated by the
products of average. In addition, it is assumed that the EOS valid for local
quantities apply to averaged quantities. Besides, as often adopted in chemical
reactor analysis, in vertical flows the pressure is considered constant over the
cross-section. Moreover, as the reactor flows are assumed to be symmetrical
with respect to a straight line, the vectorial momentum equation reduces to
its projection on the symmetry axis. It is further noted that the area phase
fraction, αk, is defined by:

αk =
Ak

A
(3.493)

which can be introduced into the equations eliminating the phase cross sec-
tional area, Ak, variable [135].
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On the basis of these hypotheses, the set of modeled equations used in
chemical engineering practice are obtained as follows, as we drop the cross-
sectional averaging sign 〈...〉Ak

for convenience, expressing the necessary bal-
ances:

The Balance of Mass:
The fairly rigorous equation (3.469) is modeled as:

∂(αkρk)
∂t

+
1
A

∂

∂z
(αkρkvz,kA) = ΓAk

(3.494)

The Balance of Momentum:
The fairly rigorous equation (3.475) is modeled as:

∂(αkρkvz,k)
∂t

+
1
A

∂

∂z
(αkρkvz,kvz,kA) + αk

∂pk

∂z
≈

− 1
A

∂

∂z
(αk(ez · σk) · ez)A) +

∑

c

αkρc,kgc,z,k + ΓAk〈vz〉ΓAk

lI
+ Mσ

z,k

− fD,W
1
2
ρk|vz,k|vz,k

SW

4A
(3.495)

The Balance of Total Energy:
The modeled form of the energy equation (3.496) can be expressed as:

∂(αkρk( 1
2v

2
z,k + ek))

∂t
+

1
A

∂

∂z
(αkρkvz,k(

1
2
v2

z,k + ek)A) =

− 1
A

∂

∂z
(αk〈(Tk · vk) · ez〉Ak

A) − 1
A

∂

∂z
(αk〈qk · ez〉Ak

A)

+
∑

c

αkρc,kgc,k · vc,k + 〈nk · qk〉W
SW

A

+ ΓAk〈(
1
2
v2

z + e)k〉ΓAk

lI
+ EW

k,I + aI〈nk · qk〉lI

(3.496)

The Species Mass Balance:
The modeled form of the species mass balance (3.489 ) can be expressed
as:

∂(αkρkωk,s)
∂t

+
1
A

∂

∂z
(αkρkωk,svz,kA) =

− 1
A

∂

∂z
(αkjz,k,sA) + ΓAk〈ωk,s〉ΓAk

lI
+ aI〈nk · jk,s〉lI + αkRs,k

(3.497)

The governing 1D two phase flow equations assessed in this section are
very often used in industry, academia and in engineering research. For ex-
ample, these 1D area-averaged equations (with slightly different constitutive
equations) determine the basis for the commercial dynamic two-fluid model
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simulator named OLGA developed at the Institute for Energy Technology
(IFE) at Kjeller in Norway [16] for the oil and gas processing industry. The
model is intended for dynamic simulations of two-phase oil and gas flows
in pipelines. It has been used analyzing terrain slugging, pipeline startup and
shut-in, production rates, and pigging. These simulations have been performed
for pipelines of several kilometers length with time spans ranging from hours
to weeks.

3.4.7 Heterogeneous Dispersion Models

In chemical reaction engineering the two phase or heterogeneous versions of
the dispersion models discussed in sect 1.2.6 are frequently used simulating
multiphase reactor like fixed bed, fluidized bed and slurry bubble column
reactors. However, this model is most successfully applied to fixed bed reactors
as the flow profile in these reactors is being fairly flat. For such reactors
the effective dispersion coefficient typically considers both molecular - and
turbulent diffusion, and the gross scale dispersion caused by the packing of
catalyst particles. Besides, in reactor simulations the cross section averaged
enthalpy and temperature equations are required for non-isothermal systems.
These two balance equations can with minor struggle be deduced from the
total energy equation following the same steps as examined for single phase
flows in sect 1.2.6. In a heterogeneous model the effective thermal conductivity
contains various contributions, such as conduction in the solid and in the fluid,
and radiation in gas-filled voids between solid surfaces.

Heterogeneous Axial Dispersion models

The axial dispersion model equations for the continuous phase is developed
based on the 1D form of the governing equations given in sect 3.4.6. However,
the instantaneous area averaged model equations are also Reynolds averaged
to enable reactor simulations with practicable time resolutions. For the time
after area averaged models, the instantaneous variables are decomposed and
Reynolds averaged in the standard way. If we drop the averaging signs, the
basic 1D species mass balance deduced from (3.497) is given by:

∂

∂t
(αkρkωk,s) +

∂

∂z
(αkρkvz,kωk,s) =

∂

∂z
(αkρkDz,k,eff

∂ωk,s

∂z
) + ΓAk〈ωk,s〉ΓAk

lI

(3.498)
in which it is customary to define the superficial velocity by vS

z,k = αkvz,k.
The interfacial mass transfer term ΓAk〈ωk,s〉ΓAk

lI
has to be parameterized for

the chemical process in question, normally a simple film model suffices.
The corresponding heat or temperature equation can be derived following

a similar procedure as adopted formulating the single phase equation (1.299).
The result is:
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αkρkCp,k

(

∂Tk

∂t
+ vz,k

∂Tk

∂z

)

=
∂

∂z
(αkkz,k,eff

∂Tk

∂z
) + ΓAk〈hk〉ΓAk

lI

+
4U
dr

(Tsur − T )
(3.499)

where the interfacial heat transfer rate has to be parameterized for the chem-
ical process in question, normally a simple film model suffice. The effective
transport coefficients are included as a reminder that the temporal covari-
ances resulting from the Reynolds averaging procedure are normally modeled
adopting the gradient hypothesis and the Boussinesq turbulent viscosity con-
cept.

There are several ways of describing the solid phase processes. One way of
treating the solid phase is to consider the packed bed as a porous media and
simply adopt a similar set of model equations for the solid phase, as put up for
the fluid, noting that the solid phase is often fixed so there is no convection.
A more common modeling approach in chemical reaction engineering is to
investigate the intra-particle processes formulating a diffusion model for a
single representative particle.

The alternative pseudo-homogeneous model is a kind of mixture model (see
sect 3.4.5) which is achieved by taking the sum of the individual equations for
the two phases.

The initial conditions used for dynamics reactor simulations depend upon
the start-up procedure adopted in industry for each particular chemical pro-
cess. A possible set of initial conditions corresponds to uniform variable fields
given by the inlet values as outlined in sect 1.2.6. The standard Danckwerts
[39] boundary conditions are normally applied.

3.5 Mathematical Model Formulation Aspects

The well-posedness of the two-fluid model has been a source of controversy
reflected by the large number of papers on this issue that can be found in the
literature. This issue is linked with analysis of the characteristics, stability and
wavelength phenomena in multi -phase flow equation systems. The controversy
originates primarily from the fact that with the present level of knowledge,
there is no general way to determine whether the 3D multi-fluid model is well
posed as an initial-boundary value problem. The mathematical theory of well
posedness for systems of partial differential equations describing dispersed
chemical reacting flows needs to be examined.

Introductory work has however been made to analyze the mathematical
properties of the equations. In their pioneer work Gidaspow [84] and Ly-
ckowski et al [144] consider the 1D, incompressible, in-viscid two-fluid flow
equations with no added mass or lift effects given by:

∂αk

∂t
+

∂(αk〈vk〉Vk
)

∂x
= 0 (3.500)
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αkρk(
∂〈vk〉Vk

∂t
+ 〈vk〉Vk

∂〈vk〉Vk

∂x
) = −αk

∂〈pk〉Vk

∂x
+ Fx,k (3.501)

where Fx,g = −Fx,l = Kl(vg − vl), and Kl is assumed to be constant.
If the characteristics of the system of equations are found to be complex,

the initial-value problem is said to be ill-posed [178]. A physical interpretation
of this mathematical statement can be found by analyzing the flow instabilities
predicted by this set of model equations. The instabilities predicted by a well-
posed model system has some realistic physical meaning, while the instability
always present in an ill-posed system is a mathematical mode having no phys-
ical origin indicating that the model is not treating small-scale phenomena
correctly.

Traditionally, this so-called ill-posed nature of the model makes it desir-
able to seek physical modifications of the simple model to find a well-posed
mode. Several attempts have thus been made to improve the mathematical
properties of the equations by re-examining some of the basic assumptions
made in the derivation of the model equations. The idea is that by introduc-
ing more physical and exact formulations into the description, the final set of
equations will be well posed.

Ramshaw and Trapp [172] incorporated surface tension effects, which had
traditionally been ignored. Travis et al [220] considered viscous stresses, La-
hey et al [134] considered the added mass force, Prosperetti and Wijngaar-
den [167] considered compressibility effects. Trapp [219] considered Reynolds
stresses, while Stuhmiller [213], Bourè [22], Pauchon and Banerjee [161, 162],
Sha and Soo [188], Prosperetti and Jones [168] and Holm and Kupershmidt
[109] have put their main focus on the adoption and interpretation of the
interfacial pressure forces (see sects 3.4.1 and 3.4.6). The simplest choice for
the interfacial pressure distribution 〈pk〉AI

is to assume that it is equal to the
fluid bulk pressure. This implies that 〈pg〉Vg

= 〈pl〉Vl
= 〈pg〉AI

= 〈pl〉AI
for a

two-phase system and as a result the current engineering practice is obtained
(e.g., [168, 125, 119]). However, this approach leads to an equation set involv-
ing a single pressure, which has real characteristics only when the two fluid
velocities are equal [219].

Considering low-pressure bubbly flows a slightly more general assumption
is that the interfacial pressure in the gas phase is related to the average pres-
sure of the gas phase by:

〈pg〉AI
− 〈pg〉Vg

≈ 0 (3.502)

since the averaged pressure within the spheres will be very close to the average
interfacial pressure [213, 161, 136, 143].

In contrast, the difference between the interfacial averaged pressure and
the mean pressure in the liquid phase is, for a non-pulsating bubble, given by
[213]:

〈pl〉AI
− 〈pl〉Vl

= ξρI(〈vg〉g − 〈vl〉Vl
) (3.503)

It was shown that this approach gives real characteristics only if 〈pl〉AI
is

lower than 〈pl〉Vl
. A value of ξ = −1

4 is used by several researchers [136] [161].
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However, Drew [54] also discusses this approach and argues that this for-
mulation is questionable, as it may not be consistent with the interfacial drag
parameterizations used.

Sha and Soo [188] dealt with essentially the same problem from a more
physical angle. Their discussion focuses on what form the ∇(αk〈pk〉Vk

) term
in the momentum equation should take. They gave an overview of the terms
∇(αk〈pk〉Vk

) = αk∇〈pk〉Vk
+〈pk〉Vk

∇αk and divided the literature approaches
into three groups. These includes those who favor (1) dropping 〈pk〉Vk

∇αk for
the reason of being canceled out by the interfacial source term in the momen-
tum equation when the bulk mean pressure is assumed equal to the interfacial
mean pressure. Those who favor (2) retaining a part of it as a stabilizing force.
Sha and Soo [188] argued that the physical effect of the 〈pk〉Vk

∇αk term is to
spread the dispersed phase which has an initial concentration gradient. They
proposed to replace the term by:

αk∇〈pk〉Vk
+ (1 −B)〈pk〉Vk

∇αk (3.504)

where B, 0 ≤ B ≤ 1, is a displacement factor which is a function of the flow
configuration. The last group, those who favor (3) retaining 〈pk〉Vk

∇αk for the
reason of an extension of the continuum mechanics, as a compressive force to
fulfill the laws of thermodynamics.

In an attempt to close the non-constructive controversy, Bourè [23] claims
that both forms of the pressure terms are acceptable. The occurrence of com-
plex roots in the momentum equations is not related to the correct use of
the pressure terms, but is primarily a problem of mathematical form of the
constitutive terms.

In reaction engineering the 2D and 3D multi-fluid model equations used
are obviously solvable although with certain struggle, hence to some extent af-
fected by the mathematical model properties reflected by the simplified model
equations examined in the above mentioned work. Besides, in some cases nu-
merical problems occur due to the inadequate mathematical properties re-
flected by the constitutive equations used in particular in the limit as αk → 0
or αk → 1. Another source of problem encountered in dense reactor flows is
the highly recirculating flow patterns located at the outlets making consistent
formulations of the necessary boundary conditions difficult, especially for re-
active variable density flows. Further analysis of the mathematical properties
of the model equations are still considered useful, in the sense that this can
assist in developing novel closure laws having more appropriate properties and
to ensure that the need for ad hoc tricks to obtain somewhat ill-conditioned
solutions can be avoided.
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61. Duducovič MP (1999) Trends in Catalytic Reaction Engineering. Catal Today
48 (1-4):5-15

62. Edwards CH Jr, Penny DE (1982) Calculus and Analytic Geometry. Prentice-
Hall Inc, Englewood Cliffs, New Jersey

63. Edwards DA, Brenner H, Wasan DT (1991) Interfacial Transport Processes
and Rheology. Butterworth-Heinemann, Boston

64. Elghobashi SE, Abou-Arab TW (1983) A two-equation turbulence model for
two-phase flows. Phys Fluids 26(4):931-938.

65. Elghobashi SE, Truesdell GC (1993) On the two-way interaction between ho-
mogeneous turbulence and dispersed solid particles. I: Turbulence modification.
Phys Fluids A5 (7):1790-1801

66. Elghobashi SE (1994) On predicting particle laden turbulent flows. Appl Sci
Res 52:309-329.

67. Enwald H, Peirano E, Almstedt AE (1996) Eulerian Two-Phase Flow Theory
Applied to Fluidization. Int J Multiphase Flow 22:21-66, Suppl.

68. Ervin EA, Tryggvason G (1997) The rise of bubbles in a vertical shear flow.
ASME J Fluid Engineering 119:443-449

69. Esmaeeli A, Ervin E, Tryggvason G (1994) Numerical simulations of rising
bubbles. In: Blake JR, Boulton-Stone JM, Thomas NH (eds) Bubble Dynamics
and Interfacial Phenomena. Kluwer Academic Publishers, Dordrecht

70. Esmaeeli A, Tryggvason G (1996) An Inverse Energy Cascade in Two-
Dimensional Low Reynolds Number Bubbly Flows. J Fluid Mech 314:315-330

71. Esmaeeli A, Tryggvason G (2004) Computations of film boiling. Part I:
numerical method. Int J Heat Mass Transfer 47:5451-5461

72. Esmaeeli A, Tryggvason G (2004) A front tracking method for computations
of boiling in complex geometries. Int J Multiphase Flow 30:1037-1050

73. Fan F-S, Tsuchiya K (1990) Bubble Wake Dynamics in Liquids and Solid-
Liquid Suspensions. Butterworth-Heinemann, Boston

74. Fan F-S, Zhu C (1998) Principles of Gas-Solid Flows. Cambridge University
Press, Cambridge

75. Favre A (1965) Equations des gaz turbulents compressibles. J Mechanique
4(3):361-390

76. Favre A (1969) Statistical Equations of Turbulent Gases. Problems of Hydro-
dynamics and Continuum Mechanics. SIAM, pp. 231-266, Philadelphia (PA)

77. Ferziger JH, Kaper HG (1972) Mathematical Theory of Transport Processes
in Gases. North-Holland Publishing Company, Amsterdam

78. Fogler Scott H (2006) Elements of Chemical Reaction Engineering. Fourth
Edition, Prentice-Hall International, Inc, New Jersey



References 493

79. Freitas J (1993) Editorial. Transactions of the ASME, Journal of Fluids Engi-
neering. New York: American Society of Mechanical Engineers 115:339-340.

80. Froment GF, Bischoff KB (1990) Chemical Reactor Analysis and Design. John
Wiley and Sons, New York

81. Ganesan S, Poirier DR (1990) Conservation of Mass and Momentum for the
Flow of Interdendritic Liquid during Solidification. Metallurgical Transactions
B 21B:173-181

82. Ganesan V, Brenner H (2000) A diffuse interface model of two-phase flow in
porous media. Proc R Soc Lond A 456:731-803

83. Gibbs JW (1928) The Collected Works of J. Willard Gibbs. Longmans, Green
& Co, New York

84. Gidaspow D (1974) Introduction to Modeling of Two-Phase Flow. Round Table
Discussion (RT-1-2). Proc 5th Int Heat Transfer Conf Vol VII, p. 163.

85. Gidaspow D (1994) Multiphase Flow and Fluidization-Continuum and Kinetic
Theory Descriptions. Academic Press, Harcourt Brace & Company, Publishers,
Boston

86. Gosman AD, Pun WM, Runchal AK, Spalding DB, Wolfshtein M (1969) Heat
and Mass Transfer in Recirculating Flows. Academic Press, London and New
York

87. Gosman AD, Lekakou C, Polits S, Issa RI, Looney MK (1992) Multidimen-
sional Modeling of Turbulent Two-Phase Flows in Stirred Vessels. AIChE J
38(12):1946-1956

88. Gotaas C, Havelka P, Roth N, Hase M, Weigand B, Jakobsen HA, Svendsen HF
(2004) Influence of viscosity on droplet-droplet collision behaviour: Experimen-
tal and numerical results. CHISA 2004, Prague, Czech Republic, August 22-26.

89. Gray WG (1975) A Derivation of the Equations for Multi-Phase Transport.
Chem Eng Sci 30:229-233

90. Gray WG, Lee PCY (1977) On the Theorems for Local Volume Averaging of
Multiphase Systems. Int J Multiphase Flow 3:333-340

91. Gray WG (1983) Local Volume Averaging of Multiphase Systems Using A
Non-Constant Averaging Volume. Int J Multiphase Flow 9(6):755-761

92. Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume-of Fluid In-
terface Tracking with Smoothed Surface Stress Methods for Three-Dimensional
Flows. J Comput Phys 152:423-456.

93. Hagesæther L, Jakobsen HA, Svendsen HF (1999) Theoretical analysis of fluid
particle collisions in turbulent flow. Chem Eng Sci 54:4749-4755.

94. Heinbockel JH (2001) Introduction to Tensor Calculus and Continuum Me-
chanics. Trafford Publishing, Canada (ISBN 1553691334)

95. Han J, Tryggvason G (1999) Secondary breakup of axisymmetric liquid drops.
I. Acceleration by a constant body force. Physics of Fluids 11(12):3650-3667

96. Harlow FH, Welch JE (1965) Numerical Calculation of Time-Dependent Vis-
cous Incompressible Flow of Fluid with Free Surface. Physics and Fluids 8:2182-
2189

97. Harlow FH, Amsden AA (1975) Numerical Calculation of Multiphase Fluid
Flow. J Comput physics 17:19-52

98. Hassanizadeh M, Gray WG (1979) General conservation equations for multi-
phase systems: 1. Averaging procedure. Advances in Water Resources 2:
131-144



494 References

99. Hassanizadeh M, Gray WG (1979) General conservation equations for multi-
phase systems: 2. Mass, momenta, energy, and entropy equations. Advances in
Water Resources 2:191-203

100. Hassanizadeh M, Gray WG (1980) General conservation equations for multi-
phase systems: 3. Constitutive theory for porous media flow. Advances in Water
Resources 3:25-40

101. Hassanizadeh M, Gray WG (1987) High Velocity Flow in Porous Media. Trans-
port in Porous Media 2:521-531

102. Hassanizadeh M, Gray WG (1990) Mechanics and thermodynamics of multi-
phase flow in porous media including interphase boundaries. Adv Water Re-
sources 13(4):169-186

103. Hidy GM, Broch JR (1970) The Dynamics of Aerocolloidal Systems. Pergamon,
Oxford

104. Hinch EJ (1977) An average-equation approach to particle interactions in a
fluid suspension. J Fluid Mech 83(4):695-720

105. Hinze JO (1975) Turbulence. Second Edition, McGraw-Hill, New York
106. Hirt CW (1968) Heuristic stability theory for finite difference equations. J

Comput Phys 2:339-355
107. Hirt CW, Nichols BD (1980) Adding Limited Compressibility to Incompressible

Hydrocodes. J Comput Phys 34:390-300
108. Hirt CW, Nichols BD (1981) Volume of Fluid (VOF) Method for the Dynamics

of Free Boundaries. J Comput Phys 39:201-225
109. Holm DD, Kupershmidt BA (1986) A multipressure regulation for multiphase

flow. Int J Multiphase Flow, 12(4):681-697
110. Howes FA, Whitaker S (1985) The Spatial Averaging Theorem Revisited. Chem

Eng Sci 40(8): 1387-1392
111. Hyman JM (1984) Numerical Methods for Tracking Interfaces. Physica

12D:396-407.
112. Ishii M (1975) Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles,

Paris
113. Ishii M, Chawla TC (1979) Local drag laws in dispersed two-phase flows. Ar-

gonne National Laboratory Report NUREG/CR-1230, ANL-79-105, Argonne,
Illinois, USA

114. Ishii M, Mishima K (1981) Study of two-fluid model and interfacial area. Ar-
gonne National Laboratory Report ANL-80-111, Argonne, Illinois, USA

115. Ishii M, Mishima K (1984) Two-Fluid Model and hydrodynamic Constitutive
Equations. Nuclear Engineering and Design 82:107-126

116. Ishii M (1990) Two-fluid model for two-phase flow. Multiphase Science and
Technology 5 (chap 1) Hemisphere, New York

117. Issa RI, Oliveira PJ (1995) Numerical Prediction of Turbulent Dispersion in
Two-Phase Jet Flows. In: Celata GP, Shah RK (eds) Two-Phase Flow Mod-
elling and Experimentation. pp. 421-428

118. Ivanov IB (1988) Thin Liquid Films. Fundamentals and Applications. Marcel
Dekker Inc, New York and Basel

119. Jakobsen HA (1993) On the modelling and simulation of bubble column reac-
tors using a two-fluid model. Dr Ing Thesis, Norwegian Institute of Technology,
Trondheim, Norway.

120. Jakobsen HA, Sannæs BH, Grevskott S, Svendsen HF (1997) Modeling of Ver-
tical Bubble Driven Flows. Ind Eng Chem Res 36 (10):4052-4074.



References 495

121. Jakobsen HA (2001) Phase Distribution Phenomena in Two-Phase Bubble Col-
umn Reactors. Chem Eng Sci 56(3):1049-1056

122. Jakobsen HA, Lindborg H, Handeland V (2002) A numerical study of the
interactions between viscous flow, transport and kinetics in fixed bed reactors.
Computers and Chemical Engineering 26:333-357

123. Jakobsen HA (2003) Numerical Convection Algorithms and Their Role in Eu-
lerian CFD Reactor Simulations. International Journal of Chemical Reactor
Engineering A1:1-15.

124. Jayatilleke CLV (1969) The Influence of Prandtl Number and Surface Rough-
ness on the Resistance of the Laminar Sublayer to Momentum and Heat Trans-
fer. Prog Heat Mass Transfer 1:193-329

125. Johansen ST (1990) On the Modelling of Dispersed Two-Phase Flows. Dr
Techn thesis, The Norwegian Institute of Technology, Trondheim.

126. Joseph DD, Lundgren TS, Jackson R, Saville DA (1990) Ensemble Averaged
and Mixture Theory Equations for Incompressible Fluid-Particle Suspensions.
Int J Multiphase Flow 16 (1):35-42

127. Juric D, Tryggvason G (1996) A Front-Tracking Method for Dendritic Solidi-
fication. J Comput Phys 123:127-148

128. Juric D, Tryggvason G (1998) Computations of Boiling Flows. Int J Multiphase
Flow. 24(3):387-410

129. Kolev NI (2002) Multiphase Flow Dynamics 1: Fundamentals. Springer, Berlin
130. Kuipers JAM, van Swaaij WPM (1997) Application of Computational Fluid

Dynamics to Chemical Reaction Engineering. Reviews in Chemical Engineering
13 (3):1-118.

131. Kuo KK (1986) Principles of Combustion. John Wiley & Sons, New York
132. Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G (1994) Modelling

Merging and Fragmentation in Multiphase Flows with SURFER. J Comput
Phys 113:134-147.

133. Lafi AY, Reyes JN (1994). General particle transport equations. Final Report
OSU-NE-9409. Department of Nuclear Engineering, Oregon State University

134. Lahey RT Jr, Cheng LY, Drew DA, Flaherty JE (1980) The effect of virtual
mass on the numerical stability of accelerating two-phase flows. Int J Multi-
phase Flow 6:281-294

135. Lahey RT Jr, Drew DA (1989) The Three-Dimensional Time-and Volume Aver-
aged Conservation Equations of Two -Phase Flow. Advances in Nuclear Science
and Technology 20:1-69

136. Lahey RT Jr (1992) The prediction of phase distribution and separation phe-
nomena using two-fluid models. In: Lahey RT Jr (ed) Boiling Heat Transfer.
Elsevier Science Publishers BV

137. Lahey RT Jr, Drew DA (1992) On the Development of Multidimensional Two-
Fluid Models for Vapor/Liquid Two-Phase Flows. Chem Eng Comm 118:
125-139
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4

Flows of Granular Materials

In this chapter the derivation of the governing macroscopic equations of
granular flow are examined.

The standard references for the kinetic theory of granular flows consist of
the papers by Savage and Jeffrey [65], Jenkins and Savage [31], Lun et al [49],
Jenkins and Richman [32], Johnson and Jackson [35], Johnson et al [36], Ding
and Gidaspow [16] and the book of Gidaspow [22]. In addition, several reviews
of the kinetic theory of granular flow and papers presenting locally averaged
equations of motion for a mixture of identical spherical particles might be
suggested as supplementary reading. Among these reports are Anderson and
Jackson [1], Campbell [10], Jenkins [34], Elghobashi [18], Boemer et al [9],
Crow et al [12, 13], Sinclair [78], Hrenya and Sinclair [29], Jackson [30], Peirano
and Leckner [60], and van Wachem et al [84, 85].

A granular material is defined as a collection of a large number of discrete
solid particles in a vacuum. Granular flow might thus be referred to as a flow
of a powder in a vacuum [22]. Nevertheless, at more relevant pressures the
interstices between the particles are filled with at least one fluid, and thus,
an industrial granular flow is a multiphase process. However, if the particles
are closely packed or if they are much denser than the interstitial fluid, the
particles alone, and not the fluid or the fluid-particle interactions, will play
the greatest role in momentum transport within the material, in which case
the interstitial fluid can be ignored in describing the flow behavior [10]. Flows
of granular material are generally taken to fall into this limiting category
and thus may be considered dispersed single-phase rather than multiphase
flows. On the other hand, even so, for reactive systems like fluidized beds the
interstitial fluid is normally of outmost importance because the interstitial
fluid contains one or more of the reactants hence the transport processes
within this phase has to be described in an appropriate manner to determine
the chemical process operation.

In a granular material there are primarily three mechanisms by which
the bulk stresses are generated. These are (i) dry friction, (ii) transport of
momentum by particle translation like in dilute gases, and (iii) momentum
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transport by particle interactions like in dense gases and liquids. In the past
it was usually assumed that although all three mechanisms co-exist in most
flow regimes, one of them will normally play a predominant role.

Depending on the local stress conditions, a granular material may behave
either as an elastic solid or a fluid [10, 69]. The load supported by the elastic-
solid systems is hold locally by frictional bonds between the particles so the
systems strength is limited to the loads that those bonds can support. When
a sufficient number of the bonds have been overcome, the system will fail and
begin to flow. The initial failure will consist of many-particle blocks moving
relative to one another along shear bands that roughly follow stress charac-
teristics through the material. If the motion occurs slowly, particles will stay
in contact and interact frictionally with their neighbors over long periods of
time. The failure will continue in this manner as long as the deformation
remains fairly slow. This particle motion is characterized as the quasi-static
regime of granular flow [10]. The dry friction stresses are of the quasi-static,
rate independent, Coulomb, type as described in the soil mechanics literature
[66, 68, 35, 36, 58, 79]. However, these quasi-static motions are not of primary
interest for chemical reaction engineers and will thus be disregarded in the
subsequent discussion. Nevertheless, there are several flows of practical inter-
est that fall into the intermediate regime where both frictional contacts (1),
particle translation (2) and particle-particle collisions (3) are all significant.
To model such flows the momentum equation is normally extended includ-
ing an extra stress so that the total stress is the linear sum of frictional,
kinetic and collisional contributions, each calculated independently from con-
stitutive expressions derived for the limits of pure frictional, pure kinetic,
and pure collisional interactions, respectively. It is noted that the quasi-static
stress models are still of empirical nature. Due to these additional stresses,
the boundary conditions might also be adapted to the particular application.
The other extreme is the rapid-flow regime which corresponds to high-speed
flows, far beyond the initial failure [10]. In this case each particle moves freely
instead of moving in many-particle blocks. This flow regime evolves naturally
from the quasi-static regime if the motion becomes rapid enough to transfer
enough energy to the particles in the vicinity of the local slip regions to break
these particles free of their blocks. In this way the rapid flow regime regions
might expand until every particle in the granular mass is moving indepen-
dently. These flows are of great interest to chemical reactor engineers because
the fluidized bed reactors are operated within this regime.

To model the latter type of flows an analogy between particle collisions
in suspensions and molecular collisions in dense gases as described by the
kinetic theory was proposed by Bagnold [2] in 1954. By employing a simple
expression for the collision frequency of particles, Bagnold derived a relation
for the repulsive pressure of particles for uniform shear flow. Nevertheless, the
importance of the velocity fluctuations and the means by which they could be
included in a properly formulated continuum theory were first exploited by
Ogawa [56] and Ogawa et al [57].
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Ogawa et al considered an analogy between the random motion of the
granular particles and the thermal motion of molecules in the kinetic-theory
picture of gases. In this view the velocity of each particle is decomposed into
a sum of the mean velocity of the bulk material and an apparently random
component to describe the motion of the particle relative to the mean. Fur-
thermore, a fluctuation particle temperature, commonly referred to as the
granular temperature, was defined as the mean kinetic energy of the particle
velocity fluctuations. Moreover, they postulated that the mechanical energy
of a granular flow is first transformed into random particle motion and then
dissipated into internal energy.

Based on this hypothesis a balance law was formulated for the granular
temperature that related the rate of change to the production by the mean
flow shear, the heat like flux from one point to another in the flow, and the
dissipation into thermal energy. The energy transport in granular flows can
thus be interpreted as follows. The source of all the energy is the work done
on the system, either by body forces or through the motion of the system
boundaries. Shear work, as given by the product of the shear stress and the
velocity gradient, performed on the system converts some of the kinetic en-
ergy of the mean motion into granular temperature which is the kinetic energy
associated with the random particle velocities. Finally, the inelastic collisions
between particles will dissipate away the granular temperature into thermo-
dynamic heat. The magnitude of the granular temperature thus depends on
the ratio of the temperature generation by shear work and its dissipation by
collisional in-elasticity. To close the granular temperature equation the gran-
ular conductivity, granular dissipation and the mean granular stress must be
related by constitutive assumptions to the mean density, mean velocity and
the granular temperature in order to complete the theory.

In many ways the thermodynamic and granular temperatures play similar
roles in governing the behavior of their respective systems. In particular, both
temperatures generate pressures and govern the internal transport rates of
mass, momentum, and energy.

Although no granular temperature equation was considered, Savage and
Jeffrey [65] were the first to suggest that the kinetic theory for dense gases
as proposed by Enskog [20] might be useful determining the stress tensor
in a granular flow. In particular, Savage and Jeffery considered a collection
of smooth, rigid, elastic, spherical particles in Couette flow. From elemen-
tary kinetic theory they recognize that in order to deduce explicit expressions
for the stress tensor, it is necessary to determine the form of the complete
pair-distribution function f (2) at collision. It was assumed that the f (2)-
function can be expressed as a product of a configurational pair-correlation
function and two single particle distribution functions. The configurational
pair-correlation function represents a generalization of the more familiar ra-
dial distribution function. Bear in mind that the latter function is restricted
to a gas at equilibrium in which there are no mean deformation so spatial
homogeneity of the mean flow prevails. For non-equilibrium shear flows a
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simple correction for anisotropy in the configurational pair-correlation
function was made based on kinematic arguments. Furthermore, the single dis-
tribution function of each particle was approximated by the Maxwellian [32].

Jenkins and Savage [31] extended the preliminary kinetic theory of Savage
and Jeffrey [65] considering slightly inelastic particles. Jenkins and Savage
used Maxwell’s [54] equations of transfer to derive local expressions for the bal-
ance of granular mass, granular linear momentum, granular temperature, and
integral expressions for the stress, energy flux and energy dissipation terms
therein. In order to evaluate these integrals and thereby close the transport
equations it is again necessary to determine the complete pair-distribution
function. In this case the preliminary distribution function proposed by Savage
and Jeffrey [65] for elastic particles was modified reformulating the configura-
tional pair-correlation function expression so that it depends linearly upon
the rate of deformation. Besides, the granular temperature equation was
taken into account to determine the local rate of change of the fluctuating
energy considering the energy dissipation rate due to inelastic particle colli-
sions. Moreover, to calculate the mean collisional rate of change of ψ per unit
volume, Δ(ψ)Collision, several approximative closure relationships were intro-
duced. Among these constitutive relations, the relative velocity component
normal to the plane of contact is approximated and related to the corre-
sponding component prior to the collision through (2.123). In addition, the
complete pair-distribution function is approximated by a symmetric average
obtained shifting the pair of spatial points at which it is evaluated through a
first order Taylor expansion.

Lun et al [49] reviewed several granular flow theories for dense flows and
proposed that the application of the classical granular theory might be ex-
tended making a unified model valid for both dilute and dense flows. A gen-
eralized model was thus established by incorporating the kinetic stresses and
the kinetic fluctuation-energy flux in addition to the collisional stresses, the
collisional fluctuation-energy flux and the collision rate of dissipation per unit
volume in the classical dense flow formulation. The constitutive relations used
were deduced assuming that the spherical particles are uniform, smooth, but
slightly inelastic requiring that the coefficient of restitution is about unity.
In addition, the component of relative velocity g12 in the direction of k was
approximated by (2.123) in accordance with the work of Jenkins and Savage
[31]. However, in contrast to previous work, in order to calculate the un-
known fluxes by the concept of kinetic theory, Lun et al adopted the Enskog
[20] dense gas pair-distribution function approximation. The collisional single
distribution function therein was approximated using a scheme inspired by
the Chapman-Enskog expansion method [11]. However, in this approach the
parameters in the trail function were calculated by satisfying a few moment
equations generated from an extended form of the Maxwell equation instead
of using a Boltzmann type of equation.

It is emphasized that in the pioneering papers, mentioned above, simpli-
fied kinetic theories based on mechanically derived or intuitive relationships
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were used to determine the distribution function in place of the Boltzmann
equation. The complexity of formulating the Boltzmann equation account-
ing for the inter-particle collisions was a severe bottleneck that prevented the
use of more rigorous kinetic theories describing the behavior of inelastic solid
particles. In particular, the analogous results in kinetic theory of dense gases
obtained using the reversibility of collisions are not valid anymore and must
be re-derived.

A more elaborated extension of the kinetic theory of granular flows was
proposed by Jenkins and Richman [32]. They showed that Grads [24] method
of moments for determining the single particle distribution function of elastic
molecular particles in dilute gases might be adapted and applied to dense
systems of inelastic particles. By use of this method they extended the theory
of Jenkins and Savage [31] and determined a supposedly more accurate form
of the balance laws including the collisional transfers and productions of the
velocity moments. Hence, as for the more familiar kinetic theory of a dilute gas,
two distinct directions in the subsequent research on granular flow modeling
emerged. One group of scientists followed closely the modeling ideas of Enskog
[20] and solved the resulting Enskog equation by use of the Chapman-Enskog
approximate method [11]. A second group of researchers followed roughly the
modeling ideas of Enskog [20] but solved the Enskog like equations by the
Grads [24] method of moments.

During the subsequent two or three decades a number of investigators
include the drag into the governing equations for granular flows to generalize
the treatment to multiphase flow [64, 16, 22, 42, 76]. In this case the inter-
facial momentum coupling is normally taken into account through the external
force term. In general, the F term includes the gravity, the external pressure
gradient, the steady drag force, the added mass force, and several lift forces.
The governing equations for the interstitial fluid phase are derived based on
the continuum multi-fluid formulation and averaged in an appropriate manner
as examined in sect 3.3.

Ding and Gidaspow [16], for example, derived a two-phase flow model
starting with the Boltzmann equation for the distribution function of particles
and incorporated fluid-particle interactions into the macroscopic equations.
The governing equations were derived using the classical concepts of kinetic
theory. However, to determine the constitutive equations they used the ad
hoc distribution functions proposed by Savage and Jeffery [65]. The resulting
macroscopic equations contain both kinetic - and collisional pressures but
only the collisional deviatoric stresses. The model is thus primarily intended
for dense particle flows.

Gidaspow [22] extended the work of Ding and Gidaspow [16] by deriving
a modified set of approximative macroscopic conservation equations suppos-
edly applicable for describing both dilute and dense granular flows. Again,
following the classical concepts in kinetic theory, the Maxwell transport equa-
tion was formulated by the moment method starting out from the Boltzmann
equation. Unlike the approach of Ding and Gidaspow [16], in this work the
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kinetic and collisional transfer fluxes occurring in the governing equations
were calculated in accordance with the Chapman-Enskog expansion method.
However, each total transfer flux is approximated as a linear sum of the ki-
netic flux valid for dilute flows (i.e., as derived in accordance with the Enskog
[20] dense gas approach) and the collisional flux contributions for dense flows.
To determine the kinetic transfer fluxes for dilute suspensions the distribu-
tion function was determined from the Boltzmann equation with an inherent
Enskog [20] dense gas collision operator considering elastic particles, whereas
the collisional transfer fluxes were determined by approximating the distri-
bution function from the modeled Boltzmann equation for dense suspensions
consisting of inelastic particles.

The available continuum models for dispersed multi-phase flows thus follow
one of two asymptotic approaches. The dilute phase approach is formulated
based on the continuum mechanical principles in terms of the local conserva-
tion equations for each of the phases. A macroscopic model is then obtained
by averaging the local equations based on an appropriate averaging procedure.
In the dense phase approach, on the other hand, a kinetic theory description
is adopted for the dispersed particulate phase (granular material), whereas an
averaged continuum model formulation is adopted for the interstitial phase.

4.1 The Two-Fluid Granular Flow Model

The two-fluid granular flow model is formulated applying the classical Eulerian
continuum concept for the continuous phase, while the governing equations of
the particle phase are developed in accordance with the principles of kinetic
theory. In this theory it is postulated that the particulate system can be rep-
resented considering a collection of identical, smooth, rigid spheres, adapting
a Boltzmann type of equation. This microscopic balance describes the rate of
change of the distribution function with respect to position and time.

The Boltzmann equation is generally expressed as [11]:

∂f

∂t
+ c · ∇f + ∇c · (Ff) =

(

∂f

∂t

)

Collision

(4.1)

The moment method can then be employed to derive a generalized equation of
change for a mean particle property < ψ > in the same manner as described in
chap 2 for molecular systems. In particular, the generalized transport equation
for < ψ(r, t) > is derived multiplying (4.1) by a microscopic quantity ψ(r, c, t)
and integrating the resulting relation over the whole velocity space.

Suppose that ψ and f are expressed as functions of (r, c, t), then a math-
ematical moment can be defined by the following ensemble average:

< ψ(r, t) >=
1

n(r, t)

∞
∫

−∞

ψ(r, c, t)f(r, c, t) dc (4.2)
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where n is the number density of the particles. The moment < ψ(r, t) >
denotes a macroscopic quantity.

To examine the derivation of the macroscopic equation throughly some
further comments are needed. If we multiply (4.1) by ψ(t, r, c) and there-
after apply the chain rule to re-write the terms on the LHS, the intermediate
result is:

∂

∂t
(ψf)−f

∂ψ

∂t
+∇·(cψf)−c·f∇ψ+∇c ·(Fψf)−(Ff)·∇cψ = ψ

(

∂f

∂t

)

Collision
(4.3)

Integration over the whole velocity space yields:

∂

∂t

∞
∫

−∞

(ψf)dc −
∞
∫

−∞

f
∂ψ

∂t
dc + ∇ ·

∞
∫

−∞

(cψf)dc −
∫

c · f∇ψdc

+

∞
∫

−∞

∇c · (Fψf)dc −
∞
∫

−∞

F · f∇cψdc =

∞
∫

−∞

ψ(
∂f

∂t
)Collisiondc

(4.4)

The fifth term on LHS vanishes because [Fifψ]ci=∞
ci=−∞ = 0. It is assumed that

the distribution function f converges to zero when the velocity in direction i
becomes infinite.

In terms of moments on the form (4.2), relation (4.4) can be re-written as:

∂

∂t
(n < ψ >) + ∇ · (n < cψ >)

− n

(

∂ < ψ >

∂t
+ < c · ∇ψ > + < F · ∇cψ >

)

= Δ(ψ)Collision

(4.5)

in which Δ(ψ)Collision =
∫

ψ
(

∂f
∂t

)

Collision
dc denotes the collisional rate of

change of the macroscopic variable < ψ >.
It is noted that in cases where the net external force F is independent of

c it can be moved outside the averaging bracket. However, for granular flow
the net external force is generally considered dependent on c thus F is kept
inside the averaging operator.

4.1.1 Collisional Rate of Change

In this section the derivation of the collision operators for dilute and dense
suspensions are examined. Introductory the established formulas for dilute
and dense gases consisting of elastic particles are outlined. Thereafter the
kinetic theory of inelastic particles are considered.

It is explained in chap 2 that the Boltzmann equation is an equation of
motion for the one-particle distribution function and is appropriate to a rare
gas [86, 50]. In this particular case appropriate expressions for the collision
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operator (∂f
∂t )Collision can be derived since the nature of the elastic interactions

between the colliding particles is known. Enskog [20] extended the kinetic
theory of dilute mono-atomic gases to slightly higher densities, as described
in sect 2.11. In this approach Enskog adopted the molecular billiard ball model
which assumes that the gas consists of a collection of identical, rigid, smooth
and perfectly elastic spheres.

To elucidate the extended theory we refer to the derivation of the dilute
gas collision operator and explain the important modifications that have to be
introduced for dense gases. Basically, in order to calculate the collision rate of
change we adopt similar principles as outlined for dilute gases in sects 2.4.3 and
2.4.2. However, a modified expression for the collision frequency is required.

To deduce the formula for the dense gas collision frequency a modified
relation for the volume of the collision cylinder is required. As mentioned in
chap 2, it is customary to consider the motion of particles 2 relative to the
center of particles 1 (see Fig 2.2). For a binary molecular collision to occur the
center of particle 2 must lie on the sphere of influence with radius d12 about
the center of particle 1, see Fig 2.7. The radius of the sphere of influence
is defined by (2.152). Besides, since the solid angle dk centered about the
apse line k is conveniently used in these calculations in which the billiard ball
molecular model is adopted, it is also necessary to specify the direction of the
line connecting the centers of the two particles at the instant of contact [86].
The two angles θ and φ are required for this purpose. Moreover, when the
direction of the apse line lies in the range of θ, φ and θ + dθ, φ + dφ, at the
instant of collision, the center of particle 2 must lie on the small rectangle da
cut out on the sphere of influence of particle 1 by the angles dθ and dφ. The
area of this rectangle is1:

da = (d12dθ) (d12 sin θdφ) = d2
12 sin θdφdθ = d2

12dk (4.6)

If such a collision occurs in a time dt so short that the possibility for the same
particle to collide more than once during dt is negligible, then at the beginning
of dt the particle must lie somewhere inside a cylinder with da as base. The
sides of such a cylinder may not necessarily be perpendicular to the face da,
hence the height is expressed as dl = (g21 · k) dt = g21dt cos θ. The volume
of a single collision cylinder can thus be expressed by dvsingle = dl × da =
[(g21 · k)dt] × (d2

12dk). Such a cylinder is associated with each of the f1dc1dr
particles of the first kind having velocity within the range c1 to c1 + dc1 and
being located in dr. If da is small, it might be assumed that the cylinders do
not overlap to any significant extent, so that the volume of all the cylinders
dvtotal is given by:

dvtotal = (f1dc1dr) × dvsingle = f1(g21 · k)d2
12dk dc1drdt (4.7)

1 In the discussion of dilute gases in sect 2.4.2 the corresponding surface area ele-
ment is determined by the product da = b db dφ, as illustrated in Fig 2.10. For the
billiard ball molecular model the link between the two surface element formulas
when centered about the apse line is defined analogous to (2.159).
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In many of these tiny cylinders there might be no particle of the second kind
having velocity within the range c2 to c2 + dc2. If da and dc2 are sufficiently
small, the possibility of two particles of type 2 in any of these cylinders can be
neglected. Therefore, the total number of particles of type 2 in the whole gas
volume dvtotal, which we imagine consist of a set of tiny cylinders containing
a particle of type 1, is determined by f2dc2dvtotal. In this way each collision
cylinder in the gas which contains a particle of type 2 coincides with a collision
of the specified type within dr during the time period t to t+dt. Inserting the
above expression for dvtotal into f2dc2dvtotal and dividing by dt, the collision
frequency can be calculated as:

N12 = f1f2(g21 · k)d2
12dkdc1dc2dr (4.8)

This relation is consistent with (2.167), after dividing the latter relation by
dt, and denotes the basis for the dense gas extensions made by Enskog as
explained in sect 2.11.

To generalize the formulation of the collision frequency a collisional pair
distribution function f (2)(t, r1, c1, r2, c2) is sometimes introduced, following
a slightly different approach than the one used in sect 2.11. This function
is defined such that f (2) dc1 dc2 dr1 dr2 is the probability of finding a pair
of particles 1 and 2 centered at r1, r2 with a velocity c1, c2 in the volume
element dr1, dr2 and the velocity range dc1, dc2, respectively.

For a dilute gas molecular chaos is assumed so the velocities of the two
colliding particles are uncorrelated. The pair distribution function can then be
expressed as the product of two single particle distribution functions f (2) =
f

(1)
1 f

(1)
2 . The number of binary collisions per unit time per unit volume N12

can then be expressed as follows:

N12 = f (2)(t, r1, c1, r2, c2)(g21 · k)d2
12dkdc1dc2dr (4.9)

A similar representation of the collision frequency is used in sect 2.4.3 deriving
the Boltzmann equation for a dilute gas in a generalized manner.

In accordance with the ideas presented in sect 2.4.3, the corresponding
dilute gas collision operator can be expressed analogous to (2.185). However,
the operator is reformulated and defined in terms of k because the billiard ball
molecular model is adopted. The details of the transformation is explained in
sect. 2.11. The result is:

(
∂f

∂t
)Collision =

∫

[f ′(r, c′, t)f ′
1(r, c

′
1, t) − f(r, c, t)f1(r, c1, t)]d2

12(g · k)dkdc1

(4.10)

where the primed velocities are determined by (2.143) and (2.144).
Enskog [20] made two modifications to (4.9) in order to describe the fre-

quency of collisions in a dense gas assumed to consist of rigid spheres, but the
assumption of molecular chaos still prevails. Firstly, due to the finite size of
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the colliding molecules, the centers of the two molecules are not at the same
point any more. For two particles of equal diameters the collision contact point
is now located at r + 1

2d12k. The collision frequency expression is thus given
by [20]:

N12 = f (2)(t, r, c1, r + d12k, c2, t)(g21 · k)d2
12dkdc1dc2dr (4.11)

Secondly, for a dense gas the volume of the molecules is comparable with the
total volume occupied by the gas, so the free interstitial volume in which the
center of any one molecule might be placed is reduced. The net effect is to
increase the probability of a collision.

The pair distribution function is thus modified by a volume correction
function [20] [11] (sects 16.2 to 16.4):

f (2)(t, r, c1, r + d12k, c2) = χ(r +
1
2
d12k)f (1) (t, r, c1) f (1) (t, r + d12k, c2)

(4.12)
where χ is a quantity that is unity for ordinary gases, and increases with in-
creasing density, becoming infinite as the gas approaches the state in which the
molecules are packed so closely that motion is impossible (e.g, [11], Sect 16.2).
The position of the point of collision can be expressed in different ways de-
pending on the choice of origin, normally the center point of particle 1 is
used.

The dense gas collision operator is also formulated in accordance with the
ideas presented in sect 2.4.3, but in this case the generalized form (2.182) is
adopted. After expressing the operator in terms of k, the result is:

(
∂f

∂t
)Collision =

∫

1

f ′(2)(r′, c′, r′1, c
′
1, t)(g

′
21 · k)d2

12dkdc1

−
∫

1

f (2)(r, c, r1, c1, t)(g21 · k)d2
12dkdc1

=
∫

1

(

f ′(2)(g′
21 · k) − f (2)(g21 · k)

)

d2
12dkdc1

(4.13)

This operator formulation is similar to the one used in the Enskog equation
(2.550). However, the simplifying assumption that the collisions are elastic is
not yet introduced making the relation more general (i.e., at this stage g′

21 is
not necessarily equal to g21).

Savage and Jeffrey [65] and Jenkins and Savage [31] performed much of
the pioneering work considering an extrapolation of the Enskog dense gas
kinetic theory to granular flows. The collision operator of Enskog was modified
because, as distinct from the elastic molecules, the particles are smooth but
inelastic with a restitution coefficient e, ranging between zero and one [31]. On
the other hand, the Enskog pair distribution function (4.12) was adopted in its
original form. However, Savage and Jeffrey [65] associated the χ-factor with a
configurational pair-correlation function which for a gas at equilibrium reduces
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to the radial distribution function denoting the ratio of the local number
density at a distance r = |r2−r1| from the central particle to the bulk number
density. In other words, the radial distribution function, g0 ≥ 1, accounts for
the increase of the binary collision probability when the suspension becomes
denser. There are no way to determine an exact formula for this function, so
numerous empirical parameterizations have been proposed.

Ding and Gidaspow [16], for example, prosed an empirical relation being
a function of the particulate phase volume fraction to be used for granular
flows in fluidized beds given by:

χ(r +
1
2
d12k) = g(αs) =

[

1 −
(

αs

αs,max

)1/3
]−1

(4.14)

To calculate the collisional rate of change for dense suspensions Gidaspow [22]
adopted the dense gas collision operator (4.13), but in this case the particles
are inelastic so g′

21 is related to g21 through the empirical relation (2.123).
The kinetic fluxes for dilute suspensions were determined adopting the dilute
gas collision operator (4.10), valid for elastic particles, instead. For dense
suspensions the kinetic fluxes were approximated by those deduced for dilute
suspensions.

The collisional rate of change Δ(ψ)Collision of any particle property ψ is the
integral over all possible binary collisions of the change in ψ in a particular
collision multiplied by the probability frequency of such a collision. Hence,
particle 1 gains ψ′

1 − ψ1 of the microscopic property ψ during the collision
with particle 2. The primed and unprimed variables still refer to values of ψ
after and before the collision. Thus, the net gain of ψ for particle 1 per unit
volume and time for dilute systems becomes:

Δ(ψ1)Collision =
∫

g21·k>0

(ψ′
1 −ψ1)f (2)(t, r, c1, r+ d12k, c2)(g21 ·k)d2

12dkdc1dc2

(4.15)
where g21 ·k > 0 indicates that the integration is to be taken over all values of
k, c1, and c2 considering only particles that are about to collide [31] [49] [32].

A similar expression for the collisional rate of change for particle 2 can
be obtained. In this case we utilize the collision symmetry properties, so this
relation is achieved by interchanging the labels 1 and 2 in (4.15) and replacing
k by −k. As distinct from the previous analysis, to determine this probability
frequency at the instant of a collision between particles labeled 1 and 2 we
now take the center of the second particle to be located at position r and the
center of particle 1 to be at r − d12k. This approach represents a collision
dynamically identical but statistically different from the previous one [31] [49]
[32]. The result is:

Δ(ψ2)Collision =
∫

g21·k>0

(ψ′
2 −ψ2)f (2)(r− d12k, c1, r, c2, t)(g21 ·k)d2

12dkdc1dc2

(4.16)
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Each of the integrals equals the collisional rate of change Δ(ψ)Collision, but a
more symmetric expression of Δ(ψ)Collision might be achieved taking one half
of the sum of (4.15) and (4.16) [31, 32].

The values of f (2) separated by a distance d12k in (4.15) and (4.16) are
related to each other by means of the Taylor series [49]:

f (2)(t, r, c1, r + d12k, c2) = f (2)(t, r − d12k, c1, r, c2) + (d12k · ∇)
∞
∑

m=0

(−d12k · ∇)m

(m + 1)!
f2(t, r, c1, r + d12k, c2)

(4.17)

By inserting f (2)(t, r, c1, r + d12k, c2) from (4.17) into (4.15), adding the in-
termediate result to (4.16) and divide by 2, we obtain

Δ(ψ)Collision =
1
2

(Δ(ψ1)Collision + Δ(ψ2)Collision) = Ω(ψ) −∇ · Φ(ψ) (4.18)

The source term Ω(ψ) represents the loss of ψ caused by inelastic collisions.
It is defined by:

Ω(ψ) =
d2
12

2

∫

g21·k>0

Δψf2(r − d12k, c1, r, c2, t)(g21 · k)dkdc1dc2 (4.19)

with Δψ = (ψ′
2 + ψ′

1) − (ψ2 + ψ1).
The flux term represents the transfer of ψ during collisions. It is defined

by:

Φ(ψ) = − d3
12

2

∫

g21·k>0

(ψ′
1 − ψ1)k

∞
∑

m=0

(−d12k · ∇)m

(m + 1)!
×

f (2)(r, c1, r + d12k, c2, t)(g21 · k)dkdc1dc2

≈− d3
12

2

∫

g21·k>0

(ψ′
1 − ψ1)kf (2)(r, c1, r + d12k, c2, t)(g21 · k)dkdc1dc2

(4.20)

This relation represents a first order approximation to the flux since only the
first term in the Taylor series is included.

To calculate the integrals defining the source term and the flux term,
appropriate expressions for Δψ and ψ′

1 − ψ1 have to be determined from an
analysis of the inelastic binary particle collision dynamics.

4.1.2 Dynamics of Inelastic Binary Collisions

In this section the dynamics of inelastic binary particle collisions are examined.
The theory represents a semi-empirical extension of the binary collision theory
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of elastic particles described in sect 2.4.2. The aim is to determine expressions
for the total change in the first and second moments of the particle velocity
to be used deriving expressions for the collisional source (4.19) and flux (4.20)
terms.

Consider an inelastic collision between two smooth identical spherical par-
ticles 1 and 2, of mass m and diameter dp = d12 [32] [60]. If J12 is the impulse
of the force exerted by particle 1 on particle 2, the linear momentum balances
over a collision relate the velocity vectors of the center of each sphere just
before and after the collision through:

mc1 = mc′1 − J12 (4.21)
mc2 = mc′2 + J12 (4.22)

where c′1 and c′2 are the velocities of the particles just after the collision and
c1 and c2 just before the collision.

The relative velocities of the centers of the spheres immediately before and
after a collision are still given by (2.116).

For these inelastic particles it is required that the relative velocity com-
ponent normal to the plane of contact, g21 · k (before collision) and c′21 · k
(after collision) satisfy the empirical relation (2.123) [31]. If the restitution
coefficient therein is equal to one, the collision is elastic, which means that
there is no energy loss during collision. Otherwise the collision is inelastic,
which means that there is energy dissipation during collision.

It is required that the component of the relative velocity perpendicular to
the apse line should be unchanged in a collision, thus the impulse J12 must
act entirely in the k direction. On this demand, J12 can be determined from
(4.21), (4.22) and (2.123). The impulse of the force exerted by particle 1 on
particle 2 is given by:

2J12 = m(c1 − c2) + m(c′2 − c′1) = mg12 −mg′
12

= m(g12 · k)k −m(g′
12 · k)k = m(1 + e)(g21 · k)k

(4.23)

The particle velocities just after collision can be expressed in terms of those
just before collision in accordance with (4.21) and (4.22):

c′1 = c1 −
1
2
(1 + e)(g12 · k)k (4.24)

c′2 = c2 +
1
2
(1 + e)(g12 · k)k (4.25)

Expressions for the change in the velocity moments can thus be generated
by repeated multiplication of the velocity quantities in (4.24) and (4.25). The
change in the first and second moments are:

c′1 − c1 = − 1
m

J12 = −1
2
(1 + e)(g21 · k)k (4.26)
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c′1c
′
1 − c1c1 =

1
2
(1 + e)(g12 · k)

(

1
2
(1 + e)(g12 · k)kk − [kc1 + (kc1)T ]

)

(4.27)

Similar expressions can be derived for the change in the velocity moments of
particle 2.

The translational kinetic energy change during a binary particle collision
ΔE can be determined as the difference between the LHS and RHS of (2.108).
After re-writing the result by use of (2.118), we get [22]:

2ΔE = m1c
′2
1 + m2c

′2
2 −m1c

2
1 −m2c

2
2 =

m1m2

mc
(g

′2
12 − g2

12) (4.28)

Then, using (2.123) yields:

ΔE =
1
2
m1m2

mc
(e2 − 1)(k · g12)2 (4.29)

For the case of equal mass particles, m1 = m2 = m, the formula reduces to:

ΔE =
1
4
m(e2 − 1)(k · g12)2 (4.30)

This expression coincides with the result of Jenkins and Savage [31].
The total change in the velocity moments can be deduced from (4.26) and

(4.27), and expressed as:

Δ(c) = c′1 − c1 + c′2 − c2 = 0 (4.31)

Δ(cc) =c′1c
′
1 − c1c1 + c′2c

′
2 − c2c2

=
1
2
(1 + e)(g12 · k)

(

(1 + e)(g12 · k)kk − [kg12 + (kg12)T ]
)

(4.32)

Similar expressions can also be derived for the fluctuating velocities.

4.1.3 Maxwell Transport Equation and Balance Laws

The Maxwell transport equation can be derived from (4.5) requiring that ψ(c)
is a function of c only. With (4.18), the Maxwell transport equation can be
written as:

∂

∂t
(n < ψ >) + ∇ · (n < cψ >) − n < F · ∇cψ > = Ω(ψ) −∇ · Φ(ψ) (4.33)

in which Ω(ψ) is given by (4.19) and Φ(ψ) by (4.20). It is further noted that
the terms ∂ψ

∂t and ∇ψ in (4.5) vanish because the local ψ(c) is now independent
of t and r.
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Continuity:

Taking ψ = m, (4.33) yields the local form of the continuity equation for the
granular material:

∂ρd

∂t
+ ∇ · (ρdvd) = 0 (4.34)

From (4.19) and (4.20) we conclude that Ω(m) = Φ(m) = 0.

Momentum:

Taking ψ = mc, (4.33) yields the local form of the balance of linear momen-
tum:

∂

∂t
(ρdvd) + ∇ · (ρd < cc >) − ρd < F > = Ω(mc) −∇ · Φ(mc) (4.35)

From (4.19) we conclude that Ω(mc) = 0 because the mc is a summational
invariant (i.e., in a particle collision the momentum is conserved).

It is customary to introduce a total pressure tensor p defined as the sum
of a kinetic and a collisional pressure contribution:

p = pkin + pcoll = ρd < CC > +Φ(mc) (4.36)

The kinetic pressure term pkin can be deduced from the second term in the
momentum balance after introducing the peculiar velocity (2.59). The second
moment term is reformulated as follows:

ρd < cc > = ρd < (C + vd)(C + vd) > = ρd < CC > +ρdvdvd (4.37)

The last but one term on the RHS denotes kinetic pressure and the last term
the convective momentum flux.

The collisional pressure term is defined in accordance with (4.20):

pcoll =Φ(mc)

= −m
d3
12

2

∫

g21·k>0

(c′1 − c1)kf (2)(r, c1, r + d12k, c2, t)(g21 · k)dkdc1dc2

(4.38)

After introducing the derived quantities into the momentum balance, we get:

∂

∂t
(ρdvd) + ∇ · (ρdvdvd) − ρdF = −∇ · p (4.39)
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The Granular temperature:

Finally, taking ψ = 1
2mc2 in (4.33), we get:

∂

∂t
(
ρd

2
< c2 >)+∇·(ρd

2
< cc2 >)−ρ

2
< F·∇c(c2) > = Ω(

1
2
mc2)−∇·Φ(

1
2
mc2)

(4.40)
Introducing the peculiar velocity (2.59) we can re-write the terms to obtain
more common forms. We first note that:

c2 = c · c = (C + vd) · (C + vd) = C2 + 2C · c + v2
d (4.41)

Then, we define the granular temperature which is given by the specific kinetic
energy of the velocity fluctuations (i.e., the translational fluctuation energy):

3
2
θ =

1
2
< C2 > (4.42)

It is noted that:

Φ(
1
2
mc2) = Φ(

1
2
m[C2 + 2C · c + v2

d]) = vd · pcoll + qcoll (4.43)

since, in accordance with (4.20), it is customary to define:

Φ(
1
2
mC2) = qcoll (4.44)

Φ(
1
2
m[2C · c]) = vd · pcoll (4.45)

Φ(
1
2
mv2

d) = 0 (4.46)

The last relationship is true because the macroscopic velocity is not changed
in a microscopic particle collision as the microscopic particle momentum is
conserved (i.e., (v2

d)′ − v2
d = 0).

The collisional source term Ω( 1
2mc2) is given by (4.19) and expressed as:

Ω(
1
2
mc2) = −γ (4.47)

where γ is the rate of energy dissipation per unit volume due to inelastic
collisions of smooth particles.

The kinetic part of the flux of fluctuation energy is defined by

qkin =
1
2
ρ < CC2 > (4.48)

Inserting these quantities into the Maxwell equation (4.33), in which
ψ = 1

2mc2, the result is:
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∂

∂t

(

ρd(
3
2
θ +

1
2
v2

d)
)

+ ∇ ·
(

q + ρvd
3
2
θ + vd · p + ρvd

1
2
v2

d

)

= ρ < F · c > −γ
(4.49)

where the total energy fluctuating flux is denoted by:

q = qkin + qcoll (4.50)

An equation for the granular temperature can then be achieved by subtracting
the mechanical energy equation from the above equation for the sum of the
fluctuating and mean kinetic energy forms.

As shown for single phase flows in chap 1, the mechanical energy balance is
obtained by taking the scalar vector product between the macroscopic velocity
and the local momentum balance:

vd ·
{

∂

∂t
(ρdvd) + ∇ · (ρdvdvd) − ρdF = −∇ · p

}

(4.51)

Re-arranging the resulting relation gives:

∂

∂t
(ρd

1
2
v2

d) + ∇ · (ρdvd
1
2
v2

d) = −vd · ∇ · p + ρdvd · F (4.52)

A convenient short notation can be introduced in terms of the double dot
tensor product [7]:

p : ∇vd = ∇ · (p · vd) − vd · ∇ · p (4.53)

A convenient form of the macroscopic kinetic energy equation can be ex-
pressed as:

∂

∂t
(ρd

1
2
v2

d) + ∇ · (ρdvd
1
2
v2

d) = p : ∇vd −∇(p · vd) + ρdvd · F (4.54)

The transport equation for the fluctuating kinetic energy expressed in terms
of the granular temperature is achieved by subtracting the equation for the
macroscopic kinetic energy from the equation for the sum of the fluctuating
and macroscopic energy forms. The result is [16, 22]:

∂

∂t

(

ρd
3
2
θ

)

+ ∇ ·
(

vdρ
3
2
θ

)

= −∇ · q − p : ∇vd

+ ρ < F · c > −ρvd· < F > −γ
(4.55)

The external force terms are retained in the given form to ensure that the
effects of the interstitial fluid are included in a consistent manner. According
to Reyes [64], Lafi and Reyes [42], Gidaspow [22], Simonin [76], among others,
the net force exerted on a particle can be written on the form:

F = FD − 1
ρd

∇p + g (4.56)
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where the first term on the RHS is the steady drag term. The second term
on RHS denotes the ratio of the macroscopic fluid pressure gradient and
the density of the dispersed phase. The last term denotes the gravitational
acceleration.

For granular flow (as distinct from the classical kinetic theory for a dilute
gas) the net external force acting on the particle depends on the microscopic
velocity because of the phase interaction terms introduced to consider the
interstitial fluid behavior. However, the net force can be divided into two
types of contributions, a set of external forces Fe which are independent of
c and a separate steady drag force FD. Hence, the net force exerted on a
particle is re-written as:

F = FD + Fe =
1
τcd

(vc − c) + Fe (4.57)

where FD = 1
τcd

(vc−c) and Fe = − 1
ρd
∇p+g. The vc is the local instantaneous

velocity of the interstitial fluid, and τcd is the particle-to-fluid relaxation time.
For multiphase flows perturbed by the presence of particles to obtain a tur-

bulence like behavior the local instantaneous velocity of the continuous phase
can for example be decomposed adopting the Reynolds averaging procedure
(i.e., other methods including time-, volume-, ensemble-, and Favre averaging
have been used as well) and expressed as: vc = v′

c+ < v >c, where v′
c is

the fluctuating component of the continuous phase velocity. Introducing the
peculiar velocity for the dispersed phase this relation can be re-arranged as:

F =
1
τcd

(< v >c −vd) +
1
τcd

(v′
c − C) + Fe (4.58)

The second term on the RHS is often neglected due to a general lack of
knowledge about the physics they represent.

4.1.4 Transport Equation in Terms of Peculiar Velocity

In this section an alternative derivation of the governing equations for granular
flow is examined. In this alternative method the peculiar velocity C, instead
of the microscopic particle velocity c, is used as the independent variable
in the particle property and distribution functions. The transformation of
these functions and the governing equation follows standard mathematical
procedures for changing the reference frame. The translational motion of an
individual particle may be specified either by its microscopic velocity c relative
to a fixed or Galilean frame of reference, or by its velocity relative to a frame
of reference moving with the local velocity of the granular material vd.

Experience has shown that one might benefit substantially from deriving
the governing transport equations after having transformed the property and
distribution functions so that they are dependent on the peculiar velocity vari-
able (2.59) instead of the microscopic particle velocity c. This means that the
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basic functions ψ(r, c, t) and f(t, r, c) in which (r, c, t) are the independent
variables, have to be replaced by ψ(t, r,C + vd) and f(t, r,C + vd) where
(t, r,C) are now the independent variables. Compared to the previous deriva-
tion of the transport equations starting out from (4.5), the generalized balance
formulation in the alternative frame is simpler because all the terms containing
time and space derivatives of ψ vanish as the relevant properties are functions
of C only. This is particularly the case for the velocity moments of order 2
and higher because all the terms in the resulting equation appear directly in
their desired form and do not require further manipulations.

To transform the mathematical operators when changing the reference
frame, let f = f(r, c, t), fC = f(r,C, t) and f(r, c, t) = fC(r,C, t). It is noted
that by performing this frame transformation the interpretations of the math-
ematical operators ∂/∂t and ∇ in the Boltzmann equation will change as well,
because C, not c, is to be kept constant while performing the differentiation.
Accordingly, due to the implicit dependence of f upon t and r through the
dependence of C upon vd(r, t) as expressed by (2.59), the chain rule theorem
(e.g., [17], p 105 ; [11], pp. 48-49; [22]) has to be invoked to re-formulate the
operators in an appropriate manner.

The chain rule provides a relation between the partial derivative of f
with respect to the individual particle velocity c and the partial derivative of
fC with respect to the peculiar velocity C. To understand the forthcoming
transformation it might be informative to specify explicitly the meaning of
the partial derivatives.

In tensor notation we may write the theorem like:

∑

i

∂f

∂ci
|t,ri

=
∑

i

∂fC

∂Ci
|t,ri

∂Ci

∂ci
|t,ri

+
∑

i

∂fC

∂ri
|t,Ci

∂ri

∂ci
|t,ri

+
∑

i

∂fC

∂t
|ri,Ci

∂t

∂ci
|t,ri

=
∑

i

∂fC

∂Ci

(4.59)

where j 
= i. The terms ∂Ci

∂ci
|rj ,cj

, ∂ri

∂ci
|rj ,cj

and ∂t
∂ci

|rj ,cj
are either zero by

definition or calculated from (2.59)2 which defines the relationships between
the variables C, c, r, and t.

In vector notation yields:

∇cf = ∇CfC (4.60)

The chain rule can also be used to obtain a relation between the partial
derivative of f with respect to time, t, and the partial derivative of fC with
respect to time, t. In tensor notation we may write the theorem like:

2 It is noted that (2.59) can also be used in the opposite way too transforming the
fC back to f .
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∂f

∂t
|ri,ci

=
∑

i

∂fC

∂Ci
|t,ri

∂Ci

∂t
|ri,ci

+
∑

i

∂fC

∂ri
|t,Ci

∂ri

∂t
|ri,ci

+
∂fC

∂t
|ri,Ci

∂t

∂t
|ri,ci

=
∑

i

∂fC

∂Ci
|t,ri

∂(ci − vi,d)
∂t

|ri,ci
+ 0 +

∂fC

∂t
|ri,Ci

= −
∑

i

∂fC

∂Ci

∂vi,d

∂t
+

∂fC

∂t

(4.61)

The terms ∂Ci

∂t |ri,ci
, ∂ri

∂t |ri,ci
and ∂t

∂t |ri,ci
are either zero by definition or cal-

culated from (2.59) which defines the relationships between the variables C,
c, r, and t.

In vector notation yields:

∂f

∂t
=

∂fC

∂t
−∇CfC · ∂vd

∂t
(4.62)

To deduce a relation between the partial derivative of f with respect to the
physical space coordinates, ri, and the partial derivative of fC with respect
to the physical space coordinates, ri, the chain rule is invoked again.

In tensor notation we may write the theorem like:

∑

i

∂f

∂ri
|t,ci

=
∑

i

∂fC

∂Ci
|t,ri

∂Ci

∂ri
|t,ci

+
∑

i

∂fC

∂ri
|t,Ci

∂ri

∂ri
|t,ci

+
∑

i

∂fC

∂t
|ri,Ci

∂t

∂ri
|t,ci

=
∑

i

∂fC

∂Ci
|t,ri

∂(ci − vi,d)
∂ri

|t,ci
+

∑

i

∂fC

∂ri
|t,Ci

+ 0

= −
∑

i

∂fC

∂Ci

∂vi,d

∂ri
+

∑

i

∂fC

∂ri

(4.63)

The terms ∂Ci

∂ri
|t,ci

, ∂ri

∂ri
|t,ci

and ∂t
∂ri

|t,ci
are either zero by definition or calcu-

lated from (2.59) which defines the relationships between the variables C, c,
r, and t.

In vector notation yields :

∇f = ∇fC −∇CfC · ∇vd (4.64)

The LHS of the Boltzmann equation (4.1) can thus be expressed as:

∂fC

∂t
−∇CfC · ∂vd

∂t
+ (C + vd) · (∇fC −∇CfC · ∇vd) + ∇C · (FfC) (4.65)

Introducing the substantial derivative, defined by the average velocity vd, one
obtains:

DfC

Dt
+ C · ∇fC − Dvd

Dt
· ∇CfC − (C∇CfC) : ∇vd + ∇C · (FfC) (4.66)
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Subsequently, a modified transport equation for a quantity ψ(C) can be
derived by the moment method. To proceed we multiply the LHS of the mod-
ified Boltzmann equation (4.66) with ψ and thereafter integrate the resulting
equation over the velocity space dC. Integration over C is equivalent to inte-
gration over c, as the two vectors differ only by a vector which is independent
of c and C and the integration is performed over the whole velocity space [39]
(p 457). The various integral terms deduced from (4.66) can be transformed
by means of the following relations:

∞
∫

−∞

ψ
DfC

Dt
dC =

D

Dt

∞
∫

−∞

ψfCdC −
∞
∫

−∞

fC
Dψ

Dt
dC

=
D

Dt
n < ψ > −n <

Dψ

Dt
> (4.67)

∞
∫

−∞

ψC · ∇fCdC = ∇ ·
∞
∫

−∞

ψCfCdC −
∞
∫

−∞

fC∇ · CfCdC

= ∇ · n < ψC > −n < C · ∇ψ > (4.68)

∞
∫

−∞

ψ∇CfCdC =

∞
∫

−∞

∞
∫

−∞

[ψfC ]∞−∞dCydCz −
∞
∫

−∞

fC∇CψdC

= −n < ∇Cψ > (4.69)

Since C is now regarded as independent of r, the variable C is not included
in the differentiation with respect to r in (4.68) [11] (pp 48-49). In (4.69)
integration by parts is performed and the first term vanishes because, by
hypothesis, ψfC tends to zero as Cx tends to infinity in either direction.

By use of a similar argument we get:

∞
∫

−∞

ψC∇CfC = −n < ∇C(ψC) >

= −n < ψ > e − n < C∇Cψ > (4.70)

where e is the unit tensor.
Multiplying the RHS of the Boltzmann equation (4.1) with ψdC and there-

after integrating the resulting term over the velocity space, one obtains the
rate of change by collisions in the property ψ summed over all the particles
in a unit volume ([11], sect 3.11):

∞
∫

−∞

ψ(
∂f

∂t
)CollisiondC = Δ(ψ)′Collision (4.71)
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To complete the reformulation of the Boltzmann equation replacing the
microscopic particle velocity with the peculiar velocity, the collisional rate
of change term has to be modified accordingly. Jenkins and Richman [32]
proposed the following approximate formula:

Δ(ψ)Collision =
1
2

(Δ(ψ1)′Collision + Δ(ψ2)′Collision)

= Ω(ψ) −∇ · Φ(ψ) − Φ(∇Cψ) : ∇vd

(4.72)

In the derivation of this expression, several manipulations are made [60]. The
chain rule is applied, and the integral operator and the derivative operator
in (4.17) are commuted. The order in which these operations are performed
can be inverted because the Taylor series expansion is written for a fixed
point in space. The third term in (4.72) occurs after the peculiar velocity is
introduced. The symbol Φ corresponds to the tensor equivalent of Ψ valid
for the particular case in which the argument is a vector, both calculated in
accordance with (4.20).

By use of the transformation formulas (4.66) to (4.70) and (4.72), the
equation of change for the average property < ψ > can be deduced from the
Boltzman equation (4.1):

D

Dt
n < ψ > +n < ψ > ∇ · vd + ∇ · n < ψC > −n < F · ∇Cψ >

− n <
Dψ

Dt
> −n < C · ∇ψ > +n

Dvd

Dt
· < ∇Cψ >

+ n < C∇Cψ >: ∇vd = Ω(ψ) −∇ · Φ(ψ) − Φ(∇Cψ) : ∇vd

(4.73)

In the particular case in which ψ(C) is a function of the peculiar velocity
only, the given relation reduces to:

D

Dt
n < ψ > +n < ψ > ∇ · vd + ∇ · n < ψC > −n < F · ∇Cψ >

+ n
Dvd

Dt
· < ∇Cψ > +n < C∇Cψ >: ∇vd

= Ω(ψ) −∇ · Φ(ψ) − Φ(∇Cψ) : ∇vd

(4.74)

By introducing the modified external force expression (4.58) into (4.74), the
transport equation for the property < ψ > can be re-written as:

D

Dt
n < ψ > +n < ψ > ∇ · vd = −∇ · [n < ψC > +Φ(ψ)]

− [n < C∇Cψ > +Φ(∇Cψ)] : ∇vd

+ n

(

Fe +
1
τcd

(< v >c −vd) −
Dvd

Dt

)

· < ∇Cψ >

+ n <
1
τcd

(v′
c − C) · ∇Cψ > +Ω(ψ)

(4.75)

in which we assume that the Maxwellian average of a turbulent quantity can
be used to approximate a Reynolds averaged variable.
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The Mass Conservation Equation

The mass balance is obtained from (4.75) with ψ = m:

∂

∂t
αdρd + ∇ · (αdρdvd) = 0 (4.76)

where ρdαd = nm is the local bulk density of the dispersed phase. All the terms
like Ω(m), Φ(m) and Φ(m) vanish because m is an invariant and constant
quantity.

The Momentum Equation

The momentum balance is obtained with ψ = mC in (4.75):

αdρd
Dvd

Dt
= −∇· (pkin +pcoll)−

αdρd

τcd
(vd− < v >c)−αd∇pd +αdρdg (4.77)

where pkin = αdρd < CC > is the kinetic pressure tensor and pcoll = Φ(mC)
is the collisional pressure tensor of the granular material as defined by (4.20).
These terms represent the transport of momentum by particle velocity fluc-
tuations and by particle collisions, respectively.

The term Ω(mC) defined by (4.19) becomes zero because mC is an invari-
ant quantity according to (4.31). The term Φ(m) defined by (4.20) is equal
to zero because m is a constant and doesn’t change in a collision. The local
instantaneous pressure of the continuous phase might be decomposed as the
sum of a mean pressure < p > and a pressure fluctuation p′. However, the
pressure covariance terms are normally neglected in gas-solid flows [6].

The Granular Temperature

A transport equation for the granular temperature is obtained with ψ = 1
2mC2

in (4.75):

3
2

(

∂

∂t
(αdρdθ) + ∇ · (αdρdθvd)

)

= −∇ · (qkin + qcoll)

− (pkin + pcoll) : ∇vd − αdρd

τcd
(3θ− < v′

c · C >) − γ

(4.78)

where qkin = 1
2αdρd < CC2 > is the kinetic heat flux and qcoll = Φ( 1

2mC2)
is the collisional heat flux. The first two terms on the RHS represent the
transport of energy by particle velocity fluctuations and by particle collisions,
respectively. The third and fourth terms represent production of energy by
the mean velocity gradient. The fifth and sixth terms represent the different
interactions with the continuous phase. The fifth term denotes a dissipation
term due to the drag force (3θ), and the sixth term denotes production due
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to the interaction with the fluid turbulence (< v′
c · C >). The last term

Ω( 1
2mC2) = −γ represents the energy dissipation due to collisions.
A dissension is observed in the literature concerning whether the granular

translational energy is representing a local fluid property or a continuum flow
phenomenon. In one view it is noted that the properties reflected by the granu-
lar temperature θ are quite different from those of the thermal temperature T .
The granular temperature is not representing a noticeable sensible heat be-
cause the magnitude of the translational energy (1

2mC2) of granular flows is
similar to the average translational kinetic energy (1

2mv2
d). For comparison,

in a gas the peculiar velocity of the molecules are much larger than the aver-
age gas velocity, i.e., CMolecular �< vc >. However, the translational energy
associated with a granular material is assumed characterized by scales com-
parable to the particle size being considerable smaller than the microscopic
length scales of the flow. Therefore, the particle fluctuations in granular flows
is considered a local fluid property [48]. In this interpretation the granular
temperature must not be confused with the turbulent kinetic energy which is
a continuum flow phenomenon. In a second view, the particles are assumed to
be characterized by scales comparable to the macroscopic length scales of the
flow, thus the granular temperature is associated with the turbulent kinetic
energy which is a continuum fluid flow phenomenon [15, 22, 19, 60].

Granular Transport Coefficients- and Flux Closures

In this section the transport coefficients and flux closures derived by Ding
and Gidaspow [16] and Gidaspow [22] are defined. For further details on the
Enskog dense gas approach and the Chapman-Enskog approximate solution
method the interested reader is referred to the original literature presented in
chap 2, and in particular to the books of Gidaspow [22] and Chapman and
Cowling [11], sects 7 and 16.

The granular material closures presented in this section lead to a typical, or
even the standard reference, dense phase model used for simulating fluidized
bed reactor flows.

The Kinetic Pressure Tensor

By use of the Chapman-Enskog approximate solution method [11], the kinetic
pressure tensor can be given by [22]:

pkin = αdρd < CC >= αdρd

∫

CCfdC = αdρd

∫

CCf0(1 + φ1)dC

= αd(pkine + σkin)
(4.79)

where
pkin = ρdθ (4.80)

is the kinetic pressure.
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The σkin denotes the deviatoric pressure tensor defined by:

σkin = − 2
(1 + e)g0

(

1 +
4
5
αdg0(1 + e)

)

2μdiluteS (4.81)

The variable S is the rate of strain (deformation) tensor given by:

S =
1
2

(

∇vd + (∇vd)T
)

− 1
3
(∇vd : e)e (4.82)

This pressure tensor closure was derived by Gidaspow [22] in accordance with
the Enskog theory presented by Chapman and Cowling [11], chap 16. That is,
with the restitution coefficient e equal to one, the χ factor substituted by g0,
and bρ = 4αd this relation corresponds to equation (16.34 − 2) in Chapman
and Cowling [11].

It is further noted that in this context Gidaspow [22] refers to the dense
gas approach of Enskog [20] using the phrase a dilute gas solution for a non-
Maxwellian distribution function. This reflects the fact that the dense gas
approach actually considers a gas only slightly denser than the dilute limit,
as distinct from the kinetic theory of dense granular flows.

The Collisional Pressure Tensor

Likewise, in accordance with the Enskog [20] dense gas approach, Gidaspow
[22] proposed a closure for the collisional pressure tensor. By use of the
Chapman-Enskog approximate solution method [11], the collisional pressure
tensor can be written as:

pcoll = pcoll1 + pcoll2 = αd(pcolle + σcoll) (4.83)

where pcoll1 is given by:

pcoll1 =
2
5
α2

dρdg0(1 + e)(2 < CC > +C2e)

= 2α2
dρdg0(1 + e)θe

− 2αd

(1 + e)g0

(

1 +
4
5
αdg0(1 + e)

)

4
5
α2

dρdg0(1 + e)2μdiluteS

(4.84)

and, the pcoll2 is:

pcoll2 = − 4
3
√
π
ρdα

2
dd12g0(1 + e)

√
θ

(

6
5
S + (∇ · vd)e

)

(4.85)

It is recognized that the first term in the formula for pcoll1 contains the colli-
sional pressure, defined by:

pcoll = 2αdρdg0(1 + e)θ (4.86)
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The collisional deviatoric pressure tensor consists of the remaining terms in
pcoll and is thus given by:

σcoll = − 2αd

(1 + e)g0

(

1 +
4
5
αdg0(1 + e)

)

4
5
αdρdg0(1 + e)2μdiluteS

− 4
3
√
π
ρdαdd12g0(1 + e)

√
θ

(

6
5
S + (∇ · vd)e

) (4.87)

The Total Pressure Tensor

The total pressure tensor contains both the kinetic and collisional contribu-
tions:

p = pkin + pcoll = αd(pde + σd) (4.88)

Hence it follows that the total pressure of the dispersed phase is defined as
the sum of the kinetic (4.80) and collisional (4.86) pressure contributions:

pd = ρdθ + 2αdρdθ(1 + e)g0 = ρdθ[1 + 2(1 + e)αdg0] (4.89)

The total deviatoric stress tensor can be written as:

σd = −μd

(

∇vd + (∇vd)T
)

−
(

μB,d − 2
3
μd

)

(∇ · vd)e (4.90)

where

μd =
2μdilute

(1 + e)g0αd

(

1 +
4
5
αdg0(1 + e)

)2

+
4
5
αdρdd12g0(1 + e)

√

θ

π
(4.91)

The first term on the RHS in the viscosity closure denotes the kinetic con-
tribution and dominates in the dilute regime. The second term on the RHS
denotes the collisional contribution and dominates in the dense flow regime.

The normal component of the collisional deviatoric pressure tensor resem-
bles the bulk viscosity term and is thus denoted by μB,d:

μB,d =
4
3
αdρdd12g0(1 + e)

√

θ

π
(4.92)

The viscosity for the dilute limit can be written as:

μdilute =
5
96

ρdd12

√
πθ (4.93)

Except for the conversion to granular temperature, as performed by [22],
this is the expression for the dilute gas viscosity given by the bracket integral
(7.41-1) in Chapman and Cowling [11].

Using the given relation for μdilute Laux [48] (sect 2.3.2) experienced
numerical problems in regions of very dilute flow. The numerical problems
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were connected with the non-zero dilute viscosity obtained when αd → 0.
These problems were avoided introducing a modified semi-empirical expres-
sion for μdilute.

The modified dilute viscosity is defined by [48]:

μdilute =
30
√

2
96

ρdαd min |lp, lp,max|
√
πθ (4.94)

This relation for μdilute becomes zero when αd < αd,min.
The modified dilute viscosity is approximated based on the relation

μdilute ∝ ρd
Blp

√
θ. The bulk density is proportional to αd, whereas the mean

free path lp is inversely proportional to αd. A typical value, αd,min = 1×10−5,
was used to limit the mean free path in an unconfined flow. The limit lp,max

was thus either given as a characteristic dimension of the flow geometry, or
calculated from αd,min as lp,max = 1

6
√

2
d12

αd,min
.

The Granular Heat Flux Vectors

A similar derivation can be made for the granular heat flux vectors [22]. The
total granular heat flux is given by:

qd = qkin + qcoll = −αdΓd∇θ (4.95)

where the granular conductivity is given by:

Γd =
2kdilute

(1 + e)g0αd

[

1 +
6
5
(1 + e)g0αd

]2

+ 2αdρdd12g0(1 + e)

√

θ

π
(4.96)

As for the viscosity μd, the first term on the RHS of the conductivity Γd

closure denotes the kinetic contribution and dominates in the dilute regime.
The second term on the RHS of the closure equation denotes the collisional
contribution and dominates in the dense flow regime.

This relation corresponds to (9.272) in the book of Gidaspow [22]. An
approximation of the dilute flow conductivity is given by Gidaspows equation
(9.260). That is,

kdilute =
5
2
μdiluteCV =

5
2

(

5
√
π

96
ρpd12θ

1/2

) (

3
2

)

=
75
384

√
πρdd12θ

1/2 (4.97)

where CV = 3
2 and μdilute is given by (4.93).

The Dissipation Term

The algebraic dissipation term in the equation for granular temperature (4.78)
is defined in accordance with (4.19), and approximated by:

γ = −Ω = 3(1 − e2)α2
dρdg0θ

(

4
d12

√

θ

π
−∇ · vd

)

(4.98)

which corresponds to equation (9.213) in the book of Gidaspow [22].
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4.1.5 Initial- and Boundary Conditions for the Granular
Phase Equations

To solve the equations of granular flows, appropriate boundary conditions for
the velocities and for the granular temperature are required. The boundary
conditions proposed by Ding and Gidaspow [16] are generally adopted in most
granular flow simulations.

At the impermeable wall, the no-slip condition is generally not appropri-
ate for granular flows. Nevertheless, the granular phase velocity component
normal to the wall is normally set to zero. However, the granular phase is usu-
ally allowed to slip along the wall. A velocity slip proportional to the velocity
gradient at the wall is commonly applied:

vd,z|wall = −λd
∂vd,z

∂n
|wall (4.99)

where the n denotes the direction normal to the wall. The slip parameter
λd takes the value of the mean free path of the molecules. λd is normally
estimated by:

αd
4
3
π(

λd

2
)3 =

π

6
d3
12 (4.100)

with some simple manipulations we achieve

λd =
d12

α
1/3
d

(4.101)

Although there might be a granular temperature flux through the wall, little
is known about the magnitude of such a flux. Hence, a simple zero gradient
boundary condition is normally used:

(

∂θ

∂r

)

wall

= 0 (4.102)

The dispersed phase volume fraction normal gradient is set to zero.
The boundary value for the normal velocity at the symmetry axis is zero.

The tangential velocity, volume fraction and granular temperature gradients
normal to the symmetry axis are all set to zero. The inlet conditions for the
fluidized bed are given in accordance with the operating conditions specified.
In particular, a small but non-zero value is specified for the granular tem-
perature, i.e., θ ≈ 10−7 (m2/s2). The dispersed phase volume fraction is set
to zero at the inlet where solid-free gas enters the system. At the outlet, the
normal gradients of all granular material quantities are zero as the mass flux
is assumed to be continuous. The initial condition specifies a fluidized bed
operating at the minimum fluidization state. The granular temperature is set
equal to the inlet value everywhere inside the calculation domain.
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4.2 Remarks on the Kinetic Theory of Granular Flows

The main advantage associated with the kinetic theory approach for dense
suspensions is the appearance of two extra pressure terms in addition to the
interstitial fluid phase pressure, one kinetic pressure tensor accounting for
the transport phenomena due to the translational particle movement and one
collisional pressure tensor accounting for the transport phenomena due to
particle collisions.

The alternative dilute two-fluid modeling approach reflects the advantage
of allowing the same averaging operators to be applied to both phases. In this
way the governing equations for both phases contain consistent interfacial
coupling terms. However, the dilute approach does not give rise to any of the
two pressure tensors accounting for the transport phenomena caused by the
particle movenent and collisions. The dense phase two-fluid modeling concept,
on the other hand, contain an inherent inconsistency as the dispersed gran-
ular material phase is averaged over the velocity space using the Maxwellian
averaging approach while the Eulerian microscopic dilute phase equations are
time-, volume- or ensemble averaged. The formulation of consistent phase
interaction- and co-variance terms is thus a very complex task.

In particular, referring to the introduction of the external forces as pre-
sented in sect 4.1.3 there are still no complete consensus in the literature
regarding the treatment of the interfacial coupling terms like the steady drag-
, added mass- and lift forces. In one view it is considered convenient to split
the net force exerted by the interstitial fluid on the particle into two different
contributions: One virtual force applied by an undisturbed flow on a imaginary
fluid particle which coincides with the solid particle in volume and shape, and
a second contribution that represents the forces due to the perturbations in
the flow. These flow disturbances are created by the presence of the particles.
The phrase undisturbed flow thus refers to the flow that would be observed if
the particle was not present. Neglecting the effects of the perturbations in the
flow, the net force exerted on a particle (4.57) might be approximated by:

˜F =
1
τcd

(ṽc − c) − 1
ρd

∇p̃ + g (4.103)

where the quantities p̃c and ṽc are the imaginary pressure and velocity fields
of the undisturbed flow.

For undisturbed turbulent flows the local instantaneous velocity of the
continuous phase have been decomposed in various ways, not necessarily in
accordance with the familiar Reynolds - and Favre averaging procedures.

To explain the basic problem we use the Reynolds decomposition and
averaging procedure, as an example. Introducing the peculiar velocity for the
dispersed phase (4.103) can be re-arranged as:

˜F =
1
τcd

(< ṽ >c −vd) +
1
τcd

(ṽ′
c − C) − 1

ρd
∇p̃ + g (4.104)
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The interpretations of the velocity variables in the first and second terms
on the RHS represent a severe problem due to a general lack of knowledge
about the physics they represent. Besides, when the F quantity in the Maxwell
equation is substituted by this relation and Maxwellian averaged, the resulting
covariances consist of velocity quantities which are averaged in an inconsistent
manner (Maxwellian- versus time-, volume-, or ensemble averaging). For this
reason other somewhat ad hoc decomposition procedures have been defined
intending to achieve more consistent closures for these terms.

The granular flow modeling work of Simonin and co-workers [71, 73, 72,
15, 6, 74, 75, 26, 83, 87, 3, 88, 4, 4, 60, 89] is briefly outlined in the fol-
lowing illustrating the complexity of this task. The group is recognized for
developing two-fluid models for industrial applications based roughly on the
modeling ideas of Enskog [20] and the solution strategy of Grad [24]. Most
of these model closures can be considered as extensions of, rather than al-
ternatives to, the modeling approach of Gidaspow [22] taking into account
the fluid-particle covariance term (i.e., the drift velocity) which is normally
neglected employing the Chapman-Enskog approach. The closures of Simonin
and co-workers are deduced by use of the statistical turbulence theories of
Taylor [80], Hinze [27], Tchen [81], Csanady [14] and Yudine [90]. The work
of Tchen [81] represents one of the first attempts to study the dispersion of
particles in a steady and homogeneous turbulent flow field by use of the fluid
Lagrangian two-point correlation function Rij(τ) and the gradient hypothesis.
The turbulence dispersion coefficient needed to close the flux model is defined
in terms of the correlation function and thus the fluid-particle velocity covari-
ance (correlation tensor). Several additional assumptions were made in his
derivation: (1) The particles are spherical and follow Stoke’s law of resistance,
(2) the particles are small compared to the smallest length scales of the fluid
flow, and (3) during the motion of the particles, their neighborhood is formed
by the same fluid. A few years later assumption (3) in the Tchen theory was
assessed and found questionable. Yudine [90] and Csanady [14] studied the
effect of turbulent diffusion of heavy particles in turbulent flows. In particu-
lar, the existence of the crossing trajectory effect3 was recognized. Based on
these classical analyzes Deutsch and Simonin [15] derived closure models for
the particle velocity covariances, the fluid-particle velocity covariances, and
the drift velocity intending to avoid assumption (3) in the theory of Tchen.
An algebraic formula for the dispersion - or drift velocity computed along the
particle trajectories was deduced for homogeneous isotropic turbulence4. Nev-
ertheless, in the case of industrial gas-solid flows, most assumptions of these

3 The crossing trajectory effect refers to the impact of the continuous change of the
fluid eddy-particle interactions as the heavy particle trajectory might go through
numerous eddies reflecting different flow properties. Hence it follows that the
velocity history of heavy particles may differ from that of a marked fluid particle.

4 Similar closure models for the drift velocity and the velocity co-variances have
been derived from kinetic theory by Koch and co-workers [38, 39] and Reeks
[62, 63].
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models are still too restrictive and a more general formulation is necessary.
The generalized formulation proposed in the subsequent work of Simonin and
co-workers consists of separate transport equations for the drift velocity and
the fluid-particle velocity correlation tensor. For dilute suspensions the deriva-
tion of the second order velocity moment closure follows a similar procedure
as used for single phase flows deriving the Reynolds stress turbulence model.
For dense suspensions similar transport equations are derived for the drift ve-
locity and fluid-particle velocity correlation tensor based on the kinetic theory
of granular flow approach. However, in another view the second order closure
might be exaggerated in complexity, computationally expensive and impos-
sible to validate. Besides, there are still no consensus regarding the physical
meaning of these covariance terms [37]. The algebraic formulas proposed by
Deutsch and Simonin [15] for the drift velocity supposedly valid for homo-
geneous isotropic turbulence of the interstitial fluid is not generally accepted
but considered important by the inventors at least for particular applications.
The second order closure of Simonin and co-workers is still only applied in
academic research. For these reasons further details of the work of Simonin
and co-workers are disregarded in this presentation.

A further comparison between the two-phase dilute formulation and the
dense phase two-fluid model reveals another striking difference. The contin-
uum mechanics modeling concepts give rise to a set of transport equations
on the flux form, while the kinetic theory concepts as expressed in terms of
the peculiar velocity give rise to transport equations defined by (4.75) on the
advective- or non-flux form. The standard formulation using the local parti-
cle velocity c defined by (4.33) leads to a set of equations on the flux form.
Nevertheless, as long as there is no mass transfer between the phases, both
forms of the dense phase equations are valid, as the continuity equation can
be used to transform the equations in a consistent manner. However, when
there is mass transfer fluxes between the phases as in chemical reactive flows,
the models might differ considerably dependent on the starting point taken
for re-writing the balance equations using the continuity equation.

Hence it follows that for multicomponent reactive mixtures the problem
has to be re-considered deriving the governing equations again from scratch,
this time in terms of an extended distribution function for molecules of a
particular type. The multicomponent kinetic theory for a dilute gas has been
considered by Hirschfelder et al [28]. Tham and Gubbins [82] extended the
Enskog theory of dense, rigid sphere fluids to multicomponent systems.

In a series of papers Lathouwers and Bellan [43, 44, 45, 46] presented a
kinetic theory model for multicomponent reactive granular flows. The model
considers polydisersed particle suspensions to take into account that the phys-
ical properties (e.g., diameter, density) and thermo-chemistry (reactive versus
inert) of the particles may differ in their case. Separate transport equations
are constructed for each of the particle types, based on similar principles as
used formulating the population balance equations [61].
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To describe the behavior of the multicomponent reactive granular material
Lathouwers and Bellan started out from the work of Simonin [77] defining a
single particle distribution function f

(1)
i (t, r, c,Y,m) of particle type i such

that f
(1)
i is the probable number of particles of type i having their center of

mass in the region r, r+dr, a velocity in the region c, c+dc, mass fractions in
Y,Y+dY, temperature in T, T+dT , and mass in the region m,m+dm. With
only moderate mathematical complexity in derivation they established a set of
equations governing reactive granular flows. The multicomponent model was
applied to dense gas-solid reactive mixtures to investigate the performance
and optimal operating conditions of biomass pyrolysis in fluidized bed. The
main reason for using such a complex model was to enable incorporation of
the phase change phenomena changing the particle mass along its trajectory.

However, to describe catalytic processes much simpler models might be
sufficient because a catalyst is a substance that affects the reaction rate of a
reaction but emerges from the the chemical process unchanged. In most cases
like this a simple extension of the classical mono-disperse single component
granular flow model, i.e., extending the model by introducing the reaction
terms only, may be an option. Further work is thus needed to validate the
performance of the granular flow models applied to different types of chemical
reactive processes.

4.2.1 Granular Flow Closure Limitations

There are many aspects of rapid granular flows that have barely been studied
and require further considerations to provide appropriate closures for reactor
flows.

The theoretical studies of rapid granular flows are generally based on the
assumption that the energy dissipation in a binary particle collision is de-
termined by a constant coefficient of restitution e, the ratio of the relative
approach to recoil velocities normal to the point of impact on the particle.
However, measurements show that the coefficient of restitution is a strong
function of the relative impact velocity [10]. Physically, the energy dissipation
relates to the plastic deformation of the particle’s surface. Thus, a realistic
microscopic model should include the deformation history of the particle’s
surface. However, such a model might become computationally demanding
and thus not feasible.

Moreover, most theoretical studies performed so far are based on the as-
sumption that the granular material is composed of uniformly sized disk or
spheres. However, real materials may have a wide distribution of particle sizes
affecting the properties of the flow.

Granular flows have a tendency to segregate according to size and/or den-
sity under the action of a body force such as gravity. Savage [67] made a review
on the different mechanisms responsible for particle percolation, dispersion,
and segregation. One such segregation effect is common in everyday experi-
ence and can be easily recognized. When a polydisperse mixture is agitated in
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the presence of gravity the random particle motion is more likely to open a gap
large enough for a small particle to fall into than one that can accommodate
a large particle. Hence, the small particles migrate to the bottom of the flow,
and the large particles migrate to the top. However, there is other phenom-
ena associated with the deposition of sediments that results in the opposite
behavior in which the finer particles are found in the top of the flow and the
coarse ones are located at the bottom. Many similar phenomena have been
identified. In fluidized beds in particular the axial segregation, due to particle
diameters and/or density, is generally explained by the fact that smaller par-
ticles are more easily fluidized and will follow the gas more effectively than
larger ones. Larger particles will not follow the gas effectively and start accu-
mulating, particularly in the wall region where the gas velocity is very low.
The radial particle segregation may have a similar origin. All these phenomena
are caused by complex interactions between the particle sizes and densities
that are not well understood, yet these mechanisms should be represented by
the interaction terms of the individual phase equations. The important terms
are thus the fluid particle steady drag-, the particle-particle steady drag-, the
added mass-, and the transversal lift forces. Jenkins and Mancini [33] used
the kinetic theory to derive balance laws and constitutive equations for plane
flows of a dense, binary mixture of smooth, nearly elastic, circular disks. The
disks may have different radii and masses and the coefficient of restitution,
characterizing the energy dissipated in the collisions between like and unlike
pairs, may be different. The collisional fluxes and sources of momentum and
energy that appear in these equations involve the complete pair distribution
function for colliding pairs of like and unlike disks. They assume that these
distribution functions can be expressed as the product of the single particle
distribution function for each disk and a factor that accounts for the effects of
excluded area and collisional shielding. However, rather than determining the
single particle distribution function as an appropriate solution to the kinetic
equations governing their evolution, they were assumed to be Maxwellian.
Equipartition of energy was also assumed, leading to equality of the granular
temperatures of both particle phases. While such an assumption is found rea-
sonable for mixtures of molecules experience elastic collisions it might not be
true for inelastic solid particles. Gidaspow and co-workers (i.e., Gidaspow et
al [23], Manger [51]) thus extended the kinetic theory to binary particle mix-
tures with unequal granular temperatures for the different particle phases.
Manger [51] implemented the binary mixture model with two different granu-
lar temperatures into a 2D computer code to simulate segregation in a channel
flow and concluded that the model can predict particle segregation induced
by simultaneous changes in particle size and weight. However, no experimen-
tal validation of the model predictions were performed so further work was
required on this topic. Hjertager and co-workers (i.e., Mathiesen et al [52]
[53]) thus performed an experimental and computational investigation of the
multiphase flow behavior in a circulating fluidized bed. In this work, the bi-
nary particle phase flow model developed by Gidaspow and co-workers [23]
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[51] was generalized to N granular phases to enable a realistic description of
the particle size and density distributions in gas-solid mixtures. Each granular
phase is uniquely defined by a diameter, density and a restitution coefficient.
A 2D model implemented in Cartesian coordinates with two, sometimes three,
dispersed phases was applied to the circulating fluidized bed. The turbulence
of the interstitial gas phase was modeled by use of a VLES turbulence clo-
sure. The model predictions were compared with literature data and their own
measurements. In both experimental investigations Laser Doppler Anemom-
etry and Phase Doppler Anemometry techniques were used to measure mean
and fluctuating velocity, diameter and solid concentration, simultaneously.
The model predictions were in fair agreement with the experimental data.
However, there are still many aspects of particle segregation in granular flows
that need further considerations. Lathouwers and Bellan [43] [44] [45] [46]
[47] considered binary particle mixtures in their model investigating a multi-
component reactive process operated in a fluidized bed reactor. However, the
discussion focused mainly on the chemical process and no experimental vali-
dation of the particle segregation mechanisms were performed.

In addition, granular materials in industrial units operations will generally
be highly angular. Yet all of the analyzes and most of the computer simulations
have been performed for perfect spheres or disks.

Sphericity has been assumed in most studies for many reasons. In theoret-
ical work and computer simulations it is easy to detect a collision of spherical
particles, as particles are in contact whenever their centers are a distance of
two radii apart. For non-spherical particles, the contact mechanisms become
much more complicated, as the orientation of the particle, which changes as
the particle rotates, must be taken into account. For this reason the assump-
tion of spherical particles are normally considered a fair approximation for
catalyst pellets.

Furthermore, for multicomponent reactive flows the sensible thermal en-
ergy or rather the thermal temperatures of the different phases are important
variables for optimization, scale-up and design of the reactor units. Very few
theoretical and experimental studies have focused on developing parameteriza-
tions for the thermal conductivity of granular materials. The work of Gelperin
and Einstein [21] may be mentioned. However, the importance of these terms
in fluidized bed simulations might not be crucial since the granular material
advection processes generally dominate the heat transport.

Moreover, very few parameterizations are reported on the wall- and fluid-
granular material convective thermal heat transfer coefficients. For introduc-
tory studies, the work of Natarajan and Hunt [55], Gunn [25], Kuibe and
Broughton [40], Kuipers et al [41] and Patil et al [59] might be consulted. To
enable validation and reliable predictions of non-isothermal non-adiabatic re-
active granular flows the thermal conductivity and the convective heat transfer
coefficients have to be determined with sufficient accuracy. For certain pro-
cesses this may be an important task for future research in the field of granular
flows in fluidized beds.
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5

Constitutive Equations

The macroscopic multi-phase models resulting from the local averaging pro-
cedures must be supplemented with state equations, constitutive equations,
boundary and initial conditions. The constitutive equations specify how the
phases interact with themselves and with each other. The closure laws or con-
stitutive laws can thus be divided into three types [16]; Topological, constitu-
tive and transfer laws , where the first type describes the spatial distribution of
phase-specific quantities, the second type describes physical properties of the
phases and the third type describes different interactions between the phases.

The accurate modeling of multiphase flows requires that the phase inter-
action terms given by the jump conditions and the turbulent like effects are
correctly parameterized. This problem is very involved since not all of the
phase interaction and phase change terms are independent. Most of the exist-
ing expressions are of empirical nature, thus experimental data are needed in
order to develop and validate laws. Guiding principles for formulating closure
laws are given by [31, 3, 35, 36, 37]:

1. The principle of equipresence states that if one variable is known to depend
on one specific variable, then all other variables to be constituted must
be allowed to depend on the same variable (i.e. unless another principle
shows that a particular dependence cannot occur).
This principle prevents a priori prejudicing of the constitutive equations
by selectively excluding certain dependencies. It is usually this principle
which makes the general approach impractical, since it forces us to include
dependencies for which there is no physical evidence. In practice, however,
this principle has to be compromised.

2. The principle of well-posedness states that the description of the motion
should be such that a solution to the initial boundary value problem exists
and depends continuously on the initial and boundary conditions.
In mathematical terms this implies that all eigenvalues of the system of
Partial Differential Equations, PDEs, are real.
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3. The principle of material frame indifference (objectivity) states that vari-
ables, for which constitutive equations are needed, cannot depend on the
coordinate frame (i.e., Euclidean space, plus time) in which the variables
are expressed.

4. The principle of coordinate invariance states that constitutive rules must
be stated in such a way that they do not depend on the coordinate system.
One way to insure that this principle is satisfied is to work with dyadic
or invariant notation as is common practice in the more mathematical
engineering disciplines.

5. The dimensional invariance principle states that the constitutive equa-
tions must be dimensionally correct, and that arbitrary functional depen-
dences can only occur through dimensionless variables.

6. The phase separation principle states that the bulk phase quantities should
be functions of only the average variables for that phase.

7. The correct low concentration limits principle states that, in the limit
as αk → 0, the equations for the dispersed phases should approach the
appropriate single particle equations, while the equations for the contin-
uous phase should approach the correct equations for that single phase
continuous fluid.

8. The entropy inequality principle must hold for all locations of the sys-
tem. The closure law formulation is restricted by the second law of
thermodynamics.

To be able to estimate the interfacial momentum, heat and mass transfer
fluxes we need a firm understanding of the basic transport processes. A sur-
vey of the pertinent modeling concepts that may be adopted describing these
phenomena in chemical reactors is given. Both the well known parameteriza-
tions used in the conventional reactor models (i.e., basically denoting a closed
set of heat and species mass balances), and a few more rigorous formulations
which rely on detailed information of the local flow patterns (i.e., for models
that consist of a complete set of the governing balance equations for mass,
momentum, heat, and species mass) are described. The latter group of model
concepts may have the potential of improving the description of the interfacial
fluxes in the more advanced multiphase reactor model formulations.

The primary interfacial closure laws were originally established in the con-
text of the Lagrangian model formulation in which a single particle is sur-
rounded by a continuous fluid of infinite extent. These concepts have later been
adopted in the Eulerian models considering dilute non-colliding particulate
flows. In this case a volume (space) averaged macro-scopic model formulation
is most convenient as this view allows of an intuitive physical interpretation of
the coupling terms. In recent years the approximate Eulerian interfacial clo-
sure law parameterizations are adopted for the alternative macroscopic model
formulations as well (even though the original physical interpretations of these
closures may not be consistent with the different averaging methods).
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5.1 Modeling of Multiphase Covariance Terms

The averaged multiphase equations do not contain enough information about
the average of products to form a solvable set of equations. In addition, in
contrast to single phase flows, the averaged multiphase equations also require
some information about the interfacial phenomena occurring at a variety of
time and length scales. On the other hand, in both situations the statistical
studies of the equations always lead to a situation in which there are more
unknowns than equations. This is a closure problem similar to that of single
phase turbulence theory. In both the single phase and multiphase flow situa-
tions one has to make ad hoc assumptions to make the number of equations
equal to the number of unknowns.

5.1.1 Turbulence Modeling Analogues

In this subsection an overview of the various formulations of the k− ε turbu-
lence models applied to multiphase flows is given.

In most multiphase modeling approaches the standard single phase k − ε
model formulation is adopted, with only minor modifications to account for
the turbulence production and dissipation due to the existence of the dis-
persed phase. Only a few papers consider the consistent multiphase k − ε
models that can be formulated based on the multiphase equations following
a procedure corresponding to the one we applied in sect 1.2.7 for single phase
flows. It is noted that the various averaging procedures that might be applied
formulating the governing multiphase equations can in specific cases give rise
to different terms in the resulting k-ε model equations, so the turbulence clo-
sures derived by use of the different averaging methods do not necessarily
coincide (in particular comparing single- and multiple averaging operators).

For convenience a summary of a few important features of the single phase
k−ε model is repeated before the multiphase model extensions are introduced.
It is stressed that the conventional form of the single phase k-equation is
defined by (1.401). The corresponding transport equation for the dissipation
rate ε (1.404) is normally formulated empirically based on an analogy to the
equation for turbulent kinetic energy (1.401). The latter equation possesses
production and dissipation terms that are similar to those in the kinetic energy
transport equation but are divided by the turbulence time scale of the energy
containing eddies, τt = k

ε (i.e., the turbulent kinetic energy accumulated at
the integral length scale of turbulence is approximated by an averaged k value
for the whole spectrum of turbulence). Moreover, the turbulent kinetic energy
production term is modeled based on the eddy viscosity hypothesis (1.380)
which is an isotropic model for the Reynolds stress assuming that all the
normal stresses are equal. In addition, the effective turbulent viscosity (1.406)
is approximated by analogy with the kinetic theory of dilute gases (see, e.g.,
[92], pp 159-160; [116], pp 361-373; [160], pp 18-19). The dissipation rate ε is
estimated based on dimensional analysis (1.429).
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A non-isotropic version of the eddy viscosity hypothesis is sometimes used
in situations where such effects are essential and the particular flow in question
is expected to be far from isotropic [93]. That is, when the turbulent kinetic
energy is calculated, the Reynolds stresses can be approximated by:

v′v′ =
2
3
Ak − νt(∇v + (∇v)T ) (5.1)

where A is a turbulence anisotropy tensor which may be calculated by one of
the various algebraic stress models available [108]. Naturally, for the case of
isotropic turbulence A = e.

A k − ε Model for Bubbly Flows: Bubble Induced Turbulence

To enable simulations of two-phase bubbly flows [67] [65] the single phase
k− ε model has been extended by including a semi-empirical production term
to take into account the additional turbulence production induced by the
bubbles’ motion relative to the liquid (i.e., based on the idea of [128] [129]).
In this approach it was assumed that the internal flow inside the dispersed
phase (gas bubbles) does not affect the liquid phase turbulence. The shear
work performed on the liquid by a single bubble, representing the additional
turbulence production due to the bubble, was thus assumed to be equal to
the product of the drag force and the relative velocity.

In vector notation the two-phase k− ε model equations for incompressible
flows (time averaged) were formulated as follows:

∂

∂t
(αlρlk) + ∇ · (αlρlv̄lk) = ∇ · (αl

νl,t

σk
∇k) + αl(Pk + Pb − ρlε) (5.2)

∂

∂t
(αlρlε) + ∇ · (αlρlv̄lε) = ∇ · (αl

νl,t

σε
∇ε) + αl

ε

k
(C1(Pk + Pb) − C2ρlε)

(5.3)

in which Pk denotes the production of turbulence due to fluid shear and
Pb represents the production of turbulence due to the relative bubble-liquid
motion.

The turbulence production term due to the relative bubble-liquid motion
per unit volume is expressed as:

Pb = CbF̄l · (v̄l − v̄g) (5.4)

In Cartesian index notation this term becomes:

Pb = Cb

∑

i

F̄l,i(v̄l,i − v̄g,i) (5.5)

where 0 ≤ Cb ≤ 1 is a parameter to be empirically determined. This param-
eter is expected to be related to bubble size and shape as well as the local
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turbulent length scale. Note, however, that only the steady drag force part of
the generalized drag force formulation has been included so far.

The fluid shear production term is usually expressed as:

Pk = μl,t(∇v̄l + (∇v̄l)T ) : ∇v̄l (5.6)

However, we recollect from the derivation of the single phase k-equation in
sect 1.2.7 that the rigorous definition of this production term can be approx-
imated by the generalized Boussinesq hypothesis, in the following manner
(conveniently written in tensor notation):

Pk = − ρlv′l,iv
′
l,j

∂vl,i

∂xj
≈ −

(

2
3
ρlkδij − μl,t

(

∂vl,i

∂xj
+

∂vl,j

∂xi

))

∂vl,i

∂xj
(5.7)

This relation is usually further simplified by neglecting the normal stresses
due to the assumption of a non-existing inverse cascade of turbulence. The
shear production term is thus approximated by

Pk ≈ μl,t

(

∂vl,i

∂xj
+

∂vl,j

∂xi

)

∂vl,i

∂xj
(5.8)

The two production terms Pk and Pb are normally added linearly in the tur-
bulence model, because these mechanisms are assumed to be independent.

For steady-state simulations using Reynolds averaged models the turbulent
kinetic energy variable k denotes a measure of the mean energy considering
all time scales (i.e., for the whole energy spectrum). For a typical energy
spectrum we know that most of the energy is accumulated on the larger scales
of turbulence and very little on the smaller scales. Therefore, the k-quantity
is sometimes used as a measure of the energy level on the integral scales (i.e.,
the larger energy containing scales).

Unsteady turbulent flow simulations using Reynolds averaged models have
been discussed by [130] (chap 21) and [151] (Chap 6). The physical interpre-
tation of the quantities used in these models has been a matter of discussion.
Schlichting and Gersten [130] (chap 21) stated that these flow variables are
interpreted as time average quantities whereby the time interval used in the
averaging operator has been chosen large enough to include all turbulent fluc-
tuations, but still small enough to contain no effect from the transient, or
periodic, part. This concept is based on the assumption that the transient
process occurs very slowly, or that the frequency of the oscillation is very
small and lies outside the turbulent spectrum. Telionis [151] (Chap 6) dis-
cussed an extension of this approach, the triple decomposition, where the
instantaneous quantities are decomposed into three parts. Note that in the
standard Reynolds decomposition we split the instantaneous velocities into
a time independent time average (mean) and a fluctuation, whereas in the
triple decomposition approach the mean motion is also dependent on time.
The mean is thus generally made up of a time independent part and a time
dependent ordered part.
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In other cases the application of this concept has been further extended
simulating faster turbulent fluctuations that are within the turbulence spec-
trum. For such dynamic simulations, using Reynolds averaged models, the
k-quantity represents the turbulent kinetic energy accumulated on the frac-
tion of the spectrum that is represented by the modeled scales. Therefore, to
compare the simulated results obtained with this type of models with experi-
mental data, that is averaged over a sufficient time period to give steady-state
data (representing the whole spectrum of turbulence), both the modeled and
the resolved scales have to be considered [68].

Similarly, in our analysis of the dynamic multiphase flow pattern within
chemical reactors we may need information on the size of eddies and on the
scales of the coherent structures that can be observed within the flow. Unfor-
tunately, in practice it is difficult to create a snapshot picture of the flow pat-
tern in the reactors. Instead of observing a large region of space at an instant
in time, we find it easier to make measurements at one point in space over a
long time period. This approach is in accordance with the hypothesis of Taylor
[150], as mentioned in sect 1.2.7. Taylor suggested that for quasi-steady single
phase turbulent flows (i.e., homogeneous turbulence with respect to time),
turbulence might be considered to be frozen as it advects past a sensor. Thus,
the fluid velocity could be used to translate turbulence measurements deter-
mined as a function of time to their corresponding measurements in space.
However, the approximate hypothesis is valid for the homogeneous fields only
in which a constant mean velocity prevails, say v̄z in the the z-direction.

From sect 1.2.7 we reitrate that Taylor’s simplification is useful for flow
situations where the turbulent eddies evolve with a time scale longer than
the time it takes an eddy to be advected past a fixed spatial point (e.g., the
location of a sensor). If an eddy of diameter λ is advected at a mean velocity of
magnitude, |v|, (i.e., considering a uniform flow with mean velocity, v, of low
intensity, so that v �

√

v′2) the time period, P , for it to pass by a stationary
sensor is given by:

P =
λ

|v| (5.9)

The Taylor hypothesis can also be stated in terms of a wavenumber, κ, and
frequency, f :

κ =
f

|v| (5.10)

where κ = 2π
λ , and f = 2π

P , for wavelength λ and wave period P . The dimen-
sions of κ are radians per unit length, while f has dimensions of radians per
unit time.

To satisfy the requirement that the turbulent properties of the flow within
the eddy will not change significantly as the eddy advects past a sensor, the
following criterion should be fulfilled:

σM 〈 |v|
2

(5.11)
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where σM , the standard deviation of the magnitude of the velocity, is a mea-
sure of the intensity of turbulence. Thus, Taylor’s hypothesis should be sat-
isfactory when the turbulence intensity is small relative to the magnitude of
the velocity.

The Taylor hypothesis has been further discussed by [144] (pp 5-7) and
[59] (pp. 31-81) considering theories of double correlations between turbulence-
velocity components, the features of the double longitudinal and lateral corre-
lations in homogeneous turbulence, integral scales of turbulence, and Eulerian,
Lagrangian and mixed Eulerian-Lagrangian correlations.

In this case it is usually assumed that [59] (p 46):

∂

∂t
= −vz

∂

∂z
(5.12)

Thus, Taylor’s hypothesis is valid only if all terms on the right hand side of the
z-component of the momentum equation (i.e., considering a homogeneous flow
field that has a constant mean velocity given as vz) are very small compared
with the terms on the left hand side.

For steady-state simulations, considering the turbulence spectrum in terms
of eddy size (length scale), the scales predicted by the k-ε model is thus much
larger than the particle size. The inclusion of turbulence production due to
the bubbles’ relative motion is therefore based on the assumption of an inverse
cascade of turbulence.

For dynamic simulations the k-quantity may represent scales less than
or at the same order of magnitude as the particle size. In the cases where
the extra turbulence production mechanisms represent scales larger than the
ones represented by the modeled part of turbulence, no extra terms should be
included in the turbulence model.

The physical interpretation that the particles may introduce a inverse cas-
cade of turbulence has been confirmed numerically by [44] who used direct
numerical simulations of arrays of bubbles (12 by 12 and 18 by 18) in 2D low
Reynolds number bubbly flows to investigate the relative motion of several
bubbles. They found that the bubbles produced eddies much larger than the
bubble size. Those eddies kept growing until they were of the same size as
the computational domain for the small (12 by 12) array. (For the 18 by 18
array the computation was stopped while the eddies were still growing, and
not reached the size of the computational domain). Later studies on the the
inverse energy cascade structure of turbulence in bubbly flows and on tur-
bulence structures induced by bubble buoyancy by [106, 107] confirmed the
findings of [44].

The given k− ε turbulence model formulation has been used to determine
the turbulence of the continuous phase in two-phase bubbly flow by several
investigators on bubble columns (e.g., [65, 127]) and on stirred tank reactors
(e.g., [49]).
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A k − ε for Bubbly Flows: Two Time Scales

Lopez de Bertodano et al [93] proposed a similar extension of the standard
single-phase k − ε model considering two time scales of turbulence to enable
simulations of bubbly two-phase flows.

The basis for their model development was an analysis of the asymptotic
behavior of both the modified single-phase k − ε model described above, and
a two-phase k − ε model developed from the time averaged two-fluid model
equations (i.e., by use of the time averaging operator outlined in sect 3.4.2
or alternatively by use of the generalized single averaging operator procedure
discussed in sect 3.4.3). Two physical flows were analyzed: Bubbles rising in
a still tank of liquid, and homogeneous decay of grid generated turbulence in
bubbly flow.

The two-phase k − ε model analyzed was based on the Favre averaged
transport equation for turbulent kinetic energy developed by [73, 74]. The
resulting transport equation for kinetic energy is similar to the one obtained
from the single phase model (5.2), supporting the semi-empirical modification
introduced in that model.

The formulation of a proper ε - equation for the case of bubbly flow was
found to be more severe. As a first approach they adopted the above equation
developed from the single phase transport equations (5.3). However, analyz-
ing the two physical situations mentioned above, they found that this model
formulation fails to produce both the asymptotic value and the time constant
of homogeneous decay of grid generated bubbly flow turbulence. That is, the
modified single-phase model did not break down, but it gave rise to unphysical
solutions for such cases.

Based on these observations [93] proposed a modified model containing
two time constants, one for the liquid shear induced turbulence and a sec-
ond one for the bubble induced turbulence. The basic assumption made in
this model development is that the shear-induced turbulent kinetic energy
and the bubble-induced turbulent kinetic energy may be linearly superposed
in accordance with the hypothesis of [128, 129]. Note, however, that [82] ob-
served experimentally that this assumption is only valid for void fractions less
than 1 %, whereas for higher values there is an amplification in the turbu-
lence attributed to the interactions between the bubbles. The application of
this model to the high void fraction flows occurring in operating multiphase
chemical reactors like stirred tanks and bubble columns is thus questionable.

Nevertheless, in the first step in the model derivation a transport equation
for the bubble induced turbulent kinetic energy was postulated:

∂

∂t
(αlρlkBI) + ∇ · (αlρlv̄lkBI) = ∇ · (αl

νl,t

σk
∇kBI) +

1
τb

(kBIa − kBI) (5.13)

where kBIa denotes the asymptotic value of bubble induced turbulent kinetic
energy, kBI denotes the turbulence generated by the bubbles, and τb denotes
the time constant of the bubble.
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Secondly, the standard single phase k-equation was adopted to describe
the shear induced turbulence. Third, by adding these two transport equations,
assuming that the bubble and shear induced turbulent kinetic energy contri-
butions can be linearly superimposed, they obtained the following k-equation
for the liquid phase:

∂

∂t
(αlρlk) + ∇ · (αlρlv̄lk) =∇ · (αl

νl,t

σk
∇k) + αl(Pk,SI − ρlεSI)

+
1
τb

(kBIa − kBI)
(5.14)

To parameterize the new quantities occurring in these equations a few semi-
empirical relations from the literature were adopted. The asymptotic value of
bubble induced turbulent kinetic energy, kBIa, is estimated based on the work
of [3]. By use of the so-called cell model assumed valid for dilute dispersions, an
average relation for the pseudo-turbulent stresses around a group of spheres
in potential flow has been formulated. From this relation an expression for
the turbulent normal stresses determining the asymptotic value for bubble
induced turbulent energy was derived:

kBIa = αg
1
2
CV |v̄l − v̄g|2 (5.15)

Lopez de Bertodano [92] defined a time constant for the bubbles by:

τb =
db

|v̄l − v̄g|
(5.16)

whereas [93] redefined this definition to make the model consistent with the
two-phase model of [74]:

τb = (
2
3
CV

CD
)

db

(v̄l − v̄g)
(5.17)

This relation was obtained using the well-known expression for steady interfa-
cial drag and the two formulations for bubble induced turbulence production
(i.e., the one given by [74], and the other one defined by [93]).

At this point it is important to notice that the interfacial source and dis-
sipation terms occurring in the k- equation above are consistent with the
source and sink terms in the two-phase k - equation developed by [74]. Lopez
de Bertodano et al [93] recognized that the terms ρlεSI + kBI

τb
are a linear

superposition of shear and bubble induced dissipation. Similarly, the terms
Pk,SI + kBIa

τb
were found to denote the linear superposition of the shear and

bubble induced sources of turbulence. Note that the latter term, i.e., by in-
troducing the suggested parameterizations, is identical to the bubble induced
source of turbulence (Pb) which was taken to be proportional to the work
done on the liquid by the bubbles as shown in equation (5.3). The k - equa-
tion used by [93] is thus identical to equation (5.3). The only modification
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introduced into the modified single phase k - ε model is that the production
of bubble induced dissipation used in the ε - equation, i.e., αl

ε
kC1Pb, has been

replaced by a bubble induced dissipation term arising from the above deriva-
tion, εBI = −kBIa

τb
. The ε - equation used by Lopez de Bertodano et al [93] is

then given by:

∂

∂t
(αlρlε) + ∇ · (αlρlv̄lε) = ∇ · (αl

νl,t

σε
∇ε) + αl

ε

k
(C1Pk − C2ρlε) − εBI

(5.18)

Lopez de Bertodano [92] stated that this simple modification has a big effect on
the dynamic and the asymptotic behavior of the model. At a later stage, [93]
also stated that the bubble induced time constant, which is proportional to the
residence time of a bubble, is usually very short compared to the time constant
of the shear induced turbulence. They concluded that for most practical cases
the transport equation for bubble induced turbulence (5.13) can be reduced
to kBI = kBIa.

Another important modification implemented is that [92] and [93] assumed
that the idea of linear superposition may also be used for the viscosity. Sato
et al [129] proposed that for bubbly flow the turbulent viscosity should be the
sum of the single phase shear induced turbulent viscosity (νSI) and the bubble
induced turbulent viscosity (νBI):

νt = νSI + νBI (5.19)

where the bubble induced viscosity is given by [129]:

νBI = 1.2
db

2
αg|v̄l − v̄g| (5.20)

This simple model for bubble induced viscosity is a Prandtl mixing length
model with the bubble radius as the mixing length and 1.2αg|vl − vg| as

the mean eddy fluctuation (i.e., νBI = lm
√

v′2). The shear induced turbulent
viscosity is still given by (1.406).

A few attempts to apply this model for the description of bubble column
operation have been reported in the literature (e.g., [49]). However, no notable
improvements were obtained compared to the single time-scale model.

Turbulence Models for Gas-Solid Two-Phase Flows

Elghobashi [42] gives an overview of the challenges and progress associated
with the task of numerically predicting solid particle-laden turbulent flows.
The review covers the mathematical methods based on turbulence closure
models as well as direct numerical simulation (DNS). The review is restricted
to incompressible, isothermal flows without phase change or particle-particle
collision. The flow situations where particle-particle collisions become impor-
tant are discussed in chap 4 considering kinetic theory and granular flows.
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In most gas-particle flow situations occurring in fluidized bed reactors, a
standard k − ε turbulence model is used to describe the turbulence in the
continuous phase whereas a separate transport equation is formulated for the
kinetic energy (or granular temperature) of the particulate phase [122, 42, 41,
165, 84, 52]. Further details on granular flows are given in chap 4.

A Fairly Rigorous k − ε Model for Two-phase Flows

Elghobashi and Abou-Arab [40] did develop a modeled k−ε turbulence model
for two-phase flows. As basis the fairly rigorous instantaneous volume aver-
aged momentum equation for the continuous phase was adopted (i.e., neglect-
ing the spatial covariance terms), derived beforehand in accordance with the
time - after volume averaging procedure described in sect 3.4.4. The con-
ventional Reynolds averaging procedure was adopted for the time averaging
process. Constitutive equations for the resulting time-averaged equations were
suggested for the turbulent covariances up to third order.

However, to the author’s knowledge, this model has not been applied for
the prediction of multiphase reactors mostly due to the complexity of the
suggested closure relations. On the other hand, this paper serves as a useful
reference as the exact derivation of the k − ε model equations are given and
discussed. Parts of this modeling work have been adopted in many papers.

5.2 Interfacial Momentum Closure

Many authors have addressed the mathematical problem of averaging micro-
scopic balance equations in order to derive macroscopic model formulations.
However, the result is always a set of equations in which extra terms involving
integrals over the microscopic domains remain. While various hypotheses may
be made about interfacial closure laws expressing these extra terms as func-
tions of the solution variables, it is not clear that such laws always exist, what
form they should take and what approximations may be implied in their use.

One can thus state that the constitutive equations for the interfacial terms
are the weakest link in a multi-fluid model formulation because of considerable
difficulties in terms of experimentation and modeling on a macroscopic level.
The main difficulties in modeling arise from the existence of interfaces between
phases and discontinuities associated with them.

In practice one needs to provide appropriate formulations for the interfa-
cial momentum closure laws using analytical expressions which are (to some
extent) based on the general modeling principles presented in the introduc-
tion of this chapter, and that physically reproduce experimental results with
reasonable fidelity. The formulations that will be given for various forces
and effects will typically be applicable only for given ranges of particle-fluid
conditions.
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Introductorily we examine a generally accepted momentum balance for-
mulation for a small (point) particle generally referred to as Newton’s second
law. The net force is conventionally split into the uncoupled effects of drag,
gravity (fG), body forces other than gravity (fE), hydrostatic pressure force
(fhp), external pressure gradient force (fp), pressure gradient term (fpg), and
wall interactions (fW ). The net drag force or generalized drag is usually split
into the effects of steady drag (fD), lift (fL), virtual - or added mass (fV ),
and Besset history force (fB) terms. A fairly rigorous form of the Newton’s
second law can be expressed by [100, 7, 101, 96, 26, 94]:

d

dt
(mpvp) =

∑

k

fk

≈ fD + fL + fV + fB + fG + fE + fhp + fp + fpg + fW

(5.21)

This equation is referred to as the Basset [10] -Boussinesq [18]-Osceen [112]
(BBO) equation.

The linear split of the net drag force acting on the particle is not always
valid as there can be non-linear interactions between the various forces. Such
interactions are not well understood, but are typically small enough to be
neglected for many conditions [94].

For a particle moving in a fluid in motion the momentum equation might
be extended including the so-called pressure gradient force term:

fpg = mc
Dvc

Dt
(5.22)

which represents the force generated by the local pressure gradient in the fluid
surrounding the particle due to fluid acceleration. In this model mc denotes
the mass of fluid enclosed in the volume of the particle. The pressure gradient
term is naturally associated with the fluid acceleration as determined from
the Navier-Stokes equation for the conveying fluid [22, 26].

For gas-rigid particle and gas-droplet flows, where the ratio of the continu-
ous phase density to the dispersed particle material density is small (∼ 10−3),
the RHS of the BBO equation is dominated by the steady drag (fD) and
the gravity (fG) forces. For liquid-solid flows for which the densities are com-
parable a complete BBO equation might be required. For bubbly flows the
important forces are fD, fL, fV , fG, and fhp. It is noted that the virtual mass
force is of particular importance in this case because the fluid phase density
is much larger than the particle density (∼ 103). In general, the steady drag
and gravity forces are the predominant forces in multiphase flow systems, and
as such it is helpful to consider the ratio of the other forces to either of these
so that their inclusion or neglect can be properly decided.

The fluid-particle interaction closures applied in the modern single particle
momentum balances originate from the classical work on the Newton’s second
law as applied to a small rigid sphere in an unsteady, non-uniform flow lim-
ited to Stokesian flow conditions (ReP � 1), as derived by Stokes [142] and
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Basset [10]. The formulation of extended force expressions which are valid for
larger particle Reynolds numbers to enable a more general description have
later been the subject of much experimental and theoretical research. The
fundamental modeling principles are outlined in the sequel.

In mathematical terms the total hydrodynamic surface force, fS , exerted
by a continuous fluid on a particle is defined as [118] [11] (p. 404) [120, 14]:

fS = −
∫∫

A

T · nda (5.23)

where T is the total stress tensor for the continuous fluid and n is the outward
directed unit normal vector to the particle surface A.

The components fS,i of the hydrodynamic force on the sphere are given
by [120, 14]:

fS,i = −
∫∫

A

Tijnjda (5.24)

where Tij denotes the components of the total stress tensor, T, in the
xi-direction acting on a surface element whose normal is in the xj-direction,
and nj is the jth component of the unit outward normal vector to the particle
surface, A.

To evaluate the integral in the surface force definition (5.23), and to make
the formulation consistent with the conventional momentum balance given
(5.21), the conveying fluid pressure is decomposed into three contributions:

pc = ρcg · r + pc,ext + pc,dyn (5.25)

The first term on the RHS corresponds to the hydrostatic pressure (pc,hp),
the second represents any external pressure not induced by gravity (pc,ext),
and the third (pc,dyn) denotes the dynamic pressure.
The surface force can then be rewritten as:

fS = −
∫∫

Ap

[(ρcg · r + pc,ext + pc,dyn)e + σc] · n da

= −
∫∫∫

Vp

∇ · (ρcg · r + pc,ext)e dv −
∫∫

Ap

(pc,dyne + σc) · nda

= − Vp(ρcg + ∇pc,ext) + fhydr = fhp + fp + f c,hydr

(5.26)

this transformation is restricted to incompressible fluids and constant external
pressure gradients.

The net hydrodynamic force, frequently also referred to as the generalized
drag force, is usually further divided into numerous contributions like the
steady drag, virtual mass, lift, and history forces:

f c,hydr ≈ fD + fV + fL + fhist (5.27)
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Fig. 5.1. Normal and shear stresses acting on the surface of a sphere, The stresses
are due to the flow around the sphere with fluid velocity V ez far from the sphere.

In the general case the structure of the hydrodynamic force for incompressible
fluids is generally retained.

The steady drag is the component of the hydrodynamic force acting on
the particle surface in the continuous phase flow direction. One might, for
example, imagine a uniform velocity in the z-direction as sketched in Fig 5.1,
and describe the external flow using the Cartesian coordinate system, then
the steady drag force is defined by [14, 30]:

fD,z = −
∫∫

A

pez · nda−
∫∫

A

n · σ · ezda (5.28)

where p is the pressure, ez is the unit vector in the z-direction, and σ is the
viscous stress tensor. By use of vector and tensor identities, this expression
may be rearranged to:

fD,z = −
∫∫

A

pnzda−
∫∫

A

σzjnjda (5.29)

The steady drag force may be split into two components, the form drag and
the friction drag. The form drag, also called pressure drag, is the normal
components of the total stress integrated over the surface area, while the
friction drag consists of the surface integral of the shear components of the
total stress. Consequently, the drag forces are defined as:
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fD,z = fD,form + fD,friction (5.30)

The form and friction drag forces are given by:

fD,form = −
∫∫

A

pnzda−
∫∫

A

σzznzda (5.31)

fD,friction = −
∫∫

A

(σzxnx + σzyny)da (5.32)

The lift force is the component of the hydrodynamic force acting on the parti-
cle surface normal to the direction of flow, say y-direction as we are considering
a uniform fluid velocity in the z-direction [30]:

fL,y = −
∫∫

A

pey · nda−
∫∫

A

n · σ · eyda (5.33)

where ey is the unit vector in the y-direction.
For applications in Eulerian model formulations the particles are assumed

small and the dispersion is sufficiently dilute so that there is no significant
particle-particle interactions [64] [65]. The net force on the particles per unit
of mixture volume, FP , is then obtained by multiplying fP by the number
density of particles, NP (e.g., Albr̊aten [1]):

FP = fPNP (5.34)

where fP is the net force on a single sphere.
It is noted that even though this relation (5.34) is often adopted when

reactor modelers attempt to approximate the macroscopic interfacial momen-
tum coupling terms in the averaged multi-fluid model formulations, such a
closure is strictly not rigorous. That is, the given relation (5.34) is rigorous
in itself but it is not strictly consistent with the coupling terms produced by
the averaging procedures. Recollect that the average transfer terms are gener-
ally defined in terms of the difference between the total pressure and viscous
stresses and their interfacial average counterparts so that these definitions
deviate significantly from those used obtaining the classical solutions for the
drag force components.

The number density of particles per unit mixture volume, can be expressed
in terms of the volume fraction of the dispersed phase, αd, and the averaged
particle volume, Vp:

Np =
αp

Vp
=

Number of Particles
Mixture Volume

(5.35)

where the volume fraction of the dispersed phase is given by:

αp =
Volume of particulate phase

Mixture Volume
= VpNp. (5.36)
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The average volume of a single particle is given by:

Vp = (
π

6
)d3

V (5.37)

where dV is the volume averaged particle diameter.
Indeed, several important length scales for a dispersed system can be de-

fined [64].
The Sauter mean diameter:

dS =
6Vp

AS
(5.38)

The drag diameter:

dD =
3Vp

2AP
(5.39)

The equivalent diameter:

dV = (
6Vp

π
)1/3 (5.40)

and surface diameter:
dA = (

AS

π
)1/2 (5.41)

in which AS is the average surface area per particle, and AP is the aver-
age projected area per particle on a plane normal to the flow. For spherical
particles the above defined diameters are all equivalent. For a system with
a distribution of particle sizes it is necessary to calculate the corresponding
mean values for these parameters.

One can now define the interfacial area concentration or contact area aS by:

aS = NpAS (5.42)

Using the given length scale definitions (5.38) to (5.41) the area concentration
can be expressed in a number of forms:

aS =
6αP

dS
=

6αP

dV
(
dA

dV
)2 =

6αP

dD
(
dD

dS
) (5.43)

The ratio of the Sauter mean diameter to the drag diameter appears as a shape
factor. It is noted that for non-spherical particles or for systems with a particle
size distribution, the various shape factors may not be unity. However, for a
distribution of spherical particles, the shape factor, (dPD

dPS
), is unity regardless

of the particle size distribution. However, in most reactor simulations the
shape factors have been set to unity for all multiphase systems.

Obtaining closed expressions describing the hydrodynamic forces expe-
rienced by rigid particles, drops or bubbles embedded in various flows has
been a subject of active research since the first experimental studies of
the drag force on spheres in viscous fluid were made by Newton in 1710
[141]. A brief survey of the important experimental observations, theory and
the commonly used generalized drag force models is given in the following
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subsections. Numerous review papers present the state-of-the-art concern-
ing the steady drag, history, added mass and lift forces. The reviews by
[22, 65, 96, 103, 26, 174, 143, 94, 97, 98, 99, 147] are recommended for com-
plementary studies.

5.2.1 Drag force on a single rigid sphere in laminar flow

Stokes showed in 1851 that for very low Reynolds numbers (ReP � 1) the
drag force can be found by theoretical analysis [142]:

fD = 6πμfrpvrel (5.44)

which consists of one third form drag (due to pressure) and two thirds friction
drag (due to shear stresses).

Due to its great importance in reactor simulations, a brief survey of the
main steps involved in Stokes’ solution of the Navier-Stokes equation for creep-
ing motion about a smooth immersed rigid sphere is provided. The details of
the derivation is not repeated in this book as this task is explained very well
in many textbooks [169, 14, 103, 15].

Consider an incompressible creeping motion of a uniform flow of speed
V = |v| ≈ |vzez| approaching a solid sphere of radius rp, as illustrated in
Fig 5.1. To describe the surface drag force in the direction of motion it is
convenient to use spherical polar coordinates (r, θ), with θ = 0 in the z-
direction. Moreover, we assumed symmetry about the z-axis (placing origin
of the external Cartesian coordinate system for the bulk flow at the mass
center of the sphere so that it coincides with the origin of the internal spher-
ical coordinate system) reducing the continuity and Navier-Stokes equations
significantly because all derivatives ∂/∂φ and all terms with vφ can be dis-
regarded. The approximate 2D flow problem is then transformed by use of
the Stokes stream function and solved analytically as the problem yields a
product solution ψ(r, θ) = f(r)g(θ). The two unknown velocity components
vr(r, θ, ψ) and vθ(r, θ, ψ) are related to the Stokes stream function and can
thus be expressed in terms of (r, θ) only, eliminating the stream function vari-
able using the Stokian analytical solution ψ = ψ(θ, r) for creeping motion
past a sphere. With vr(r, θ) and vθ(r, θ) known, the pressure p(r, θ) is found
by integrating the reduced form of the momentum equation neglecting all the
inertia terms. The local surface problem is linked to the uniform bulk velocity
through the boundary conditions, revealing the convenience of making the
origins of the internal and external coordinate systems coincide. In view of
the symmetry assumption adopted the fluid exerts a shear stress Trθ(rp, θ),
tangential to the particle surface, and a radial normal stress Trr(rp, θ), per-
pendicular to the surface. At any point on the surface of the sphere, both
stresses have components in the direction of motion. It follows that at any
point on the surface the normal stress has a component (−Trr(rp, θ) × cos θ)
in the direction of motion. The drag force due to this stress is obtained from
(5.29) by integration over the entire surface of the particle. Hence,



560 5 Constitutive Equations

fNormal
D,z =

2π
∫

0

π
∫

0

[

−Trr(rp, θ) cos θ
]

r2
p sin θdθdφ

= 2π

π
∫

0

[

−
(

p− 2μ
∂vr

∂r

)∣

∣

∣

∣

rp

cos θ
]

r2
p sin θdθ = 2πμrpV

(5.45)

In most papers the contribution from the normal viscous stresses is assumed
negligible compared to the pressure contribution [169, 22, 14, 15]. Neverthe-
less, Middleman [103] kept the normal viscous stress contributions1 and after
a lengthy exercise in calculus he shows that the the above mentioned sim-
plification is valid. Actually, for any kind of flow pattern the normal viscous
stresses are zero at fluid-solid boundaries for Newtonian fluids with constant
density (i.e., in which the continuity equation reduces to ∇ · v = 0) as a
consequence of the no-slip boundary condition [15].

Likewise, the viscous shear component (Trθ(rp, θ)×sin θ) can be integrated
to give a viscous force acting in the direction of the external flow.

fShear
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2π
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0

π
∫

0
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Trθ(rp, θ) sin θ
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r2
p sin θdθdφ

= 2π

π
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(
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rp

cos θ
]

r2
p sin θdθ = 4πμrpV

(5.46)

The total drag on the sphere in the direction of flow becomes

fD,z = fNormal
D,z + fShear

D,z = 2πμrpV + 4πμrpV = 6πμrpV (5.47)

This result is called the Stokes law. For a freely moving particle the interfacial
drag formulation is normally modified and written as (5.44).

Except for the Stokes’ regime2, an analytical description of the flow field
is difficult. It has thus become common practice to apply a generalized steady
drag force formulation intended to be valid for all flow regimes. Applying
the principle of coordinate invariance, one intends to work with an invariant
notation. Considering a particle motion in a continuous fluid the velocity
relative to the surrounding fluid, and not only the fluid velocity as indicated
by Stokes law, will determine an invariant drag force (i.e., an expression for
the force that is independent of the coordinate system). This leads to the
standard expression for the steady drag [64, 35, 120, 26]:

1 It is not evident whether the normal viscous contribution should be regarded as
a component of form drag or of skin friction.

2 It is noted that Oseen [112], Proudman and Pearson [119], among others, extended
Stokes’ theoretical analysis to the narrow range ReP < 5 by including inertial
effects in the flow field away from the particle surface.
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fSteady
D =

1
2
CDρfAP |vf − vp| (vf − vp) (5.48)

where CD is the drag coefficient.
For the problem of describing fluid flow past a rigid sphere, the relative

importance of the convective acceleration term (also called the inertia term)
and the linear viscous acceleration term can be assessed by dimensional argu-
ments. Consider the drag force on a sphere falling or raising in the +z-direction
within a stagnant fluid or the equivalent drag force exerted by a uniform flow,
in the −z-direction, past a fixed sphere. Physically, these flows are character-
ized by the size of the sphere, for which we often take the particle diameter,
dP , as a natural measure, and by the terminal velocity, v∞. Therefore, we
may expect v · ∇v to be of order v2

∞/dP , and ν∇2v to be of order νv∞/d2
P .

This leads to the estimate:

|v · ∇v
ν∇2v

| ∼ | v
2
∞/dP

νv∞/d2
P

| ∼ |v∞dP

ν
| = ReP (5.49)

where ReP is the particle Reynolds number.
From the z-component of the momentum equation it can be shown that

the inertia term may be omitted if ReP � 1. In other words, when the inertia
term is not negligible, the drag formula given by Stokes law is no longer
valid. The drag relation is thus modified by introducing a drag coefficient,
CD, defined by (e.g., [22, 120, 141, 103]):

CD =
fSteady

D,z
1
2ρfv2

∞AP

(5.50)

This dependence of fSteady
D,z on v∞, dP , μ and ρf may become more obvious

writing the equations of motion for incompressible flow in dimensionless form
(e.g., [14, 120, 169]).

The variables and terms in the governing equations are made dimensionless
by introducing r′ = r/dP , p′ = p/(ρv2

∞), v′ = v/v∞ and ∇′ = dP∇ into the
equations:

v′ · ∇′v′ = −∇′p′ +
1

ReP
∇′2v′ = −∇′ · T′ (5.51)

and
∇′ · v′ = 0 (5.52)

The prime denotes dimensionless variables. The corresponding dimensionless
boundary conditions may be written: v′|r′=1/2 = 0 and lim

r′→∞
v′ = −ez. At

steady state conditions, v′ and p′ are functions of position, r′, only, and there-
fore the solutions of the equation with the suggested boundary conditions are
functions of r′ and ReP only. From the dimensionless momentum equation it
follows that the normalized stress tensor can be expressed as: T ′

ij = Tij/(ρv2
∞).

Thus, the drag force expression is also a function of r′ and ReP only, as one
recalls that the drag force was given by:
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fD,z = −
∫∫

A

TzjnjdA (5.53)

The dimensionless surface area can be given by: dA′ = dA/(πd2
P,D). By in-

serting the dimensionless variables into the expression for the drag force, the
drag force becomes:

fD,z = −
∫∫

A

ρfv
2
∞T ′

zjnj(πd2
P,D)dA′ (5.54)

By non-dimensionalizing this equation one obtains

f ′
D,z =

FD,z

ρfv2
∞(πd2

P,D)
= −

∫∫

A

T ′
zjnjdA

′ (5.55)

where F ′
D,z denotes the dimensionless drag.

Since the dimensionless variables only depend upon r′ and ReP , it appears
that the drag must be of the form:

fD,z = d2
P,Dρfv

2
∞h(ReP ) (5.56)

where h is a function of ReP only. It has thus been shown that for a given
geometry the steady drag force on the particle surface (i.e., integrated over
the particle surface at r′ = 1/2, so the dependency on r′ vanishes) only varies
with the particle Reynolds number. The pre-factor 1/2 in the definition of
CD appears because it is often convenient to introduce the dynamic pressure,
given by 1/2ρv2

∞ from the kinetic energy equation. The drag coefficient is
based on the projected area normal to the flow rather than the entire surface
area, because the area is the source of most of the drag that arise. The choice of
area entering the formulation of the drag coefficient is a matter of convenience
in practical applications. It follows from the definition of the drag coefficient
(5.50) that CD is a function of ReP only, thus the drag force for any ρ,
v∞ and AP is established once the relation CD = CD(ReP ) is determined
experimentally.

The standard drag curve refers to a plot of CD as a function of Rep for a
smooth rigid sphere in a steady uniform flow field. The best fit of the cumula-
tive data that have been obtained for this drag coefficient is shown in Fig 5.2.
Numerous parameterizations have been proposed to approximate this curve
(e.g., many of them are listed by [22]).

The variations in CD have been examined and explained theoretically as
summarized by [105, 22, 141, 26], among others. Table 5.1 summarizes briefly
the phenomena that occur at different particle Reynolds numbers, ReP. For
very low Reynolds numbers, ReP < 1, the Stokes law can be used as the
inertial terms in the Navier-Stokes equations are negligible. With increas-
ing Reynolds numbers the inertial forces become important and the actual
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Fig. 5.2. The standard drag curve shows the drag coefficient of a rigid sphere as a
function of particle Reynolds number. Reprinted from Clift et al [22] with permission
from Elsevier.

drag coefficient is higher than what is predicted by Stokes drag formula. The
Oseen [112] solution is considered valid for ReP < 5. At ReP ∼ 10 − 100 the
flow begins to separate and form vortices behind the sphere. In this case the
pressure in the wake is further reduced, so the form drag increases. More-
over, at about ReP ∼ 150 the vortex system begins to oscillate and leaves
the particle and forms a wake when ReP ∼ 500 [141]. In Newton’s regime
700 < ReP < 2× 105 the (form) drag coefficient is normally approximated by
a constant value CD ≈ 0.44. Beyond ReP ∼ 3× 105 Newton’s drag law is not
valid anymore as this value is considered a critical Reynolds number, where
the boundary layer becomes turbulent reducing the (form) drag significantly.
However, if the particle is not smooth, this transition effect is blurred and less
well defined.

Morsi and Alexander [105] provided a set of correlations for the drag co-
efficient as a function of particle Reynolds number which reproduce Fig 5.2

ReP < 1 Stokes’ regime
ReP ≥ 1 Inertial effects become important
ReP ≥ 10 A vortex is formed
ReP increases The vortex increases
ReP ≥ 150 The vortex starts oscillating
ReP ≥ 500 The vortex leaves the particle and forms a wake
ReP ≥ 700 Newton’s regime
ReP ≥ 105 Transition from laminar to turbulent boundary layer

Table 5.1. Formation of a vortex as ReP increases.
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fairly well in the ReP range 0 ≤ ReP < 5× 104. The experimental data avail-
able were divided into 8 regions in ReP , and for each region they fitted a
correlation of the form:

CD =
K1

ReP
+

K2

ReP
2 + K3 (5.57)

The coefficients of (5.57) and the width of the regions were chosen to minimize
the difference between the experimental and analytical curves.

The drag coefficient relations given are:

CD =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

24
ReP

for 0 < ReP < 0.1,
22.73
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+ 0.0903
ReP2 + 3.690 for 0.1 < ReP < 1,

29.1667
ReP

− 3.8889
ReP2 + 1.222 for 1 < ReP < 10,

46.50
ReP

− 116,67
ReP2 + 0.6167 for 10 < ReP < 100,

98.33
ReP

− 2778
ReP2 + 0.3644 for 100 < ReP < 1000,

148.62
ReP

− 47500
ReP2 + 0.357 for 1000 < ReP < 5000,

− 490.546
ReP

+ 578700
ReP2 + 0.46 for 5000 < ReP < 10000,

− 1662.5
ReP

+ 5416700
ReP2 + 0.5191 for 10000 < ReP < 50000

(5.58)

These correlations are often used simulating particulate flows in chemical
reactors.

5.2.2 Lift forces on a single rigid sphere in laminar flow

Rigid spheres sometimes experience a lift force perpendicular to the direction
of the flow or motion. For many years it was believed that only two mecha-
nisms could cause such a lift. The first one described is the so-called Magnus
force which is caused by forced rotation of a sphere in a uniform flow field.
This force may also be caused by forced rotation of a sphere in a quiescent
fluid. The second mechanism is the Saffman lift . This causes a particle in a
shear flow to move across the flow field. This force is not caused by forced ro-
tation of the particle, as particles that are not forced to rotate also experience
this lift (i.e., these particles may also rotate, but then by an angular velocity
induced by the flow field itself).

Rotating spheres (Magnus force)

A rotating sphere in uniform flow will experience a lift which causes the
particle to drift across the flow direction. This is called the Magnus effect
(or force). The physics of this phenomenon are complex.

The rotation of a rigid sphere will cause the surrounding fluid to be en-
trained. When the sphere is placed in a uniform flow, this results in higher
fluid velocity on one side of the particle, and lower velocity on the other side.
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This gives an asymmetrical pressure distribution around the sphere. Origi-
nally this was thought to cause lift on the particle that move the particle
towards the region of higher local velocity [22], see Fig 5.3.

Fig. 5.3. The Magnus lift force on a rotating particle. The sketch illustrates the flow
pattern induced by a rotating particle. The initial particle rotation is not caused by
the flow.

Maccoll [95] studied the aerodynamics of a spinning sphere, and observed
a negative Magnus effect when the ratio of the equatorial speed of the rotating
sphere to the flow speed, vequa/v, was less than 0.5.

Krahn [76] explained how the rotation of the sphere would cause the tran-
sition from laminar to turbulent boundary layers at different rotational veloc-
ities at the two sides of a sphere. The direction of the asymmetrical wake was
explained based on the separation points for laminar and turbulent boundary
layers. Krahn studied the flow around a cylinder. For a non-rotating cylin-
der the laminar boundary layer separates at 82o from the forward stagnation
point, while the turbulent boundary layer separates at about 130o. Due to the
rotation the laminar separation point will move further back, while the tur-
bulent separation point will move forward. For some value of vequa/v between
0 and 1 the laminar and turbulent separation points will be at equal distance
from the stagnation point. The pressure on the turbulent side will be smaller
than on the laminar side causing a negative Magnus force.

Taneda [148] studied a rotating sphere moving linearly in a quiescent liq-
uid, and showed that when the Reynolds number was near 2.5 × 105, and
vequa/v < 0.6 the particle would experience a negative lift force. This is close
to the region where Swanson [145] found negative lifts for a rotating cylinder.
Taneda found that the Magnus effect was caused by the asymmetric wake
due to the rotation of the sphere. He showed that the negative lifts were due
to the boundary layers changing from laminar to turbulent at different times
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on the two sides of the rotating sphere, causing the wake to be distorted op-
posite to what is shown in Fig 5.3. It was also shown that disturbances in
the main flow would cause the region of negative lift to contract, and shift to
ReP ∼ 8.5 × 104.

Swanson [145] reviewed the investigations of the Magnus force, and pre-
sented experimental drag and lift coefficients for an infinite, rotating cylinder
at different Reynolds numbers and velocity ratios. For velocity ratios less than
0.55, and Reynolds numbers between 12.8 × 104 and 50.1 × 104 the cylinder
would experience negative lift.

Rubinow and Keller [123] calculated the flow around a rotating sphere
moving in a viscous fluid for small Reynolds numbers. They determined
the drag, torque, and lift force (Magnus) on the sphere to O(ReP). The re-
sults were:

fD = −6πrpμcvrel(1 +
3
8
ReP + O(ReP)) (5.59)

fL = πr3
pρcΩ × vrel(1 + O(ReP)) (5.60)

t = −8πμcr
3
pΩ(1 + O(ReP)) (5.61)

Drew and Wallis [37] (p 61) examined the forces on spheres in two-phase
suspensions based on theoretical analyzes. Their result included lift forces that
give rise to a net transverse force on particle swarms if the group of spheres
are translating and rotating as a unit. Note that this force is different from
that due to rotation of each sphere.

Clift et al [22] summarized the measurements of drag and lift on rotating
spheres, and concluded that the phenomena involved are so complex that drag
and lift forces on rotating spheres should be determined experimentally.

Spheres in shear flow (Saffman force)

A rigid sphere in shear flow experiences a force that moves the particle normal
to the flow direction.

Segré and Silberberg [131, 132] showed experimentally that neutrally buoy-
ant particles would migrate to, and concentrate at approximately 60% of
the pipe radius in laminar flow. They used small tubes and relatively large
particles.

Other workers have shown that initially non-rotating particles also expe-
rienced lateral motion [79, 80]. The shear flow thus gives rise to a lift force
which is caused by the shear solely or rotation induced by the flow. Hence,
these observations implied that a Magnus type of force was not adequate.
Lawler and Lu [85] and Lahey [79, 80] gave an overview over lateral distri-
butions of positive, neutrally, and negative buoyant particles. The result is
sketched in Fig 5.4.
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Subsequently Saffman [125, 126] derived an expression for the lift force
on a particle in a shear flow, as illustrated in Fig 5.5. He incorporated three
different Reynolds numbers defined by:

Reκ =
κr2

p

νc
ReP =

vsliprp

νc
ReΩ =

Ωr2
p

νc
(5.62)

and assumed that:

Reκ � 1 ReΩ � 1 ReP � Re1/2
κ (5.63)

That is, Saffman considered three different velocity scales. The conventional
particle Reynolds number is expressed in terms of the relative fluid-particle
velocity vslip, the shear Reynolds number contains the fluid velocity gradi-
ent times the particle diameter (dvz

dy dp), and the rotation Reynolds number
contains the fluid rotational speed times the particle diameter (Ωdp).

The lift force was found to

fL = 6.46μcvz,c(
dvz,c

dy
)1/2

r2
p

ν
1/2
c

(5.64)

Fig. 5.4. Radial migration of particles in shear flow
Radial migration of positive, neutrally, and negative buoyant particles in shear
flow. The figure illustrates the observations reported by Segré and Silberberg

[131, 132], as sketched by Lawler and Lu [85] and Lahey [79, 80]. Reprinted from
Lahey [80] with permission from Elsevier.
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Saffmann [125] (p 394) compared the Magnus force developed by Rubinow
& Keller [123] with the shear force given above and showed that unless the
rotational speed is much larger than the rate of shear κ = dvz/dy, and for
a freely rotating particle Ω = 1

2
dvz

dy , the lift force due to shear is an order
of magnitude larger than the lift force due to forced rotation when the par-
ticle Reynolds number is small (for which these models are supposed to be
valid).

Fig. 5.5. The Saffman force on a particle in a shear flow. The sketch illustrates that
this lift force is caused by the pressure distribution developed around the sphere due
to particle rotation induced by the shear flow velocity gradient.

Lawler and Lu [85] reviewed the classical experimental observations on
transversal migration of spherical particles and concluded that neither the
original Magnus nor the Saffman force models are capable of explaining all
these observations. They thus propose that the lift forces might be expressed
in terms of the relative particle-fluid angular velocity rather than the absolute
angular velocity of the particle as used in all the classical models. Crowe et al
[26] also made similar extensions of the classical lift force models.

Dandy and Dwyer [30] computed numerically the three–dimensional flow
around a sphere in shear flow from the continuity and Navier-Stokes equations.
The sphere was not allowed to move or rotate. The drag, lift, and heat flux of
the sphere was determined. The drag and lift forces were computed over the
surface of the sphere from (5.28) and (5.33), respectively. They examined the
two contributions to the lift force, the pressure contribution and the viscous
contribution. While the viscous contribution always was positive, the pressure
contribution would change sign over the surface of the sphere. The pressure
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contribution to the lift was found to be negative for most of the Reynolds
numbers and shear rates that were examined. The total lift was always found
to be positive, and the results agreed well with those of Saffman [125, 126].

Auton [7], Thomas et al [152] and Auton et al [8] determined a lift force
due to inviscid flow around a sphere. In an Eulerian model formulation this lift
force parameterization is usually approximated for dilute suspensions, giving:

FL = CLρcαd(vc − vd) × (∇× vc) (5.65)

For potential (inviscid) flow CL = 0.5.
Drew and Lahey [33] derived the forces on a sphere in inviscid flow. They

employed the objectivity principle which implies that the forces should be
independent of coordinate system. They found the same formulation for the
lift force as given by (5.65), but they stressed that it was not objective in that
form. When written in combination with the virtual mass force as:

FL,V =αdCVρc[(
∂vc

∂t
+ vc · ∇vc) − (

∂vd

∂t
+ vd · ∇vd)]

− αdρcCV(vc − vd) × (∇× vc)
(5.66)

the combination was supposedly objective.
However, just after this paper was published, Acrivos pointed out in a

personal communication with Drew and Lahey that a fundamental error had
been made in the derivation. Therefore, in a corrigendum by Drew and Lahey
[34] the conclusions regarding objectivity were modified to apply only approx-
imately to a fluid with very small vorticity. In practice, the sum of the added
mass and lift forces is thus not necessarily frame-indifferent when applied to
reactor simulations.

5.2.3 Lift and drag on rigid spheres in turbulent flows

Spheres in turbulent flows have not been extensively studied, partly due to
the difficulties in measuring.

Taneda [149] studied the flow past a sphere at particle Reynolds numbers
between 104 and 106, and found that the wake is not axisymmetric and that
it rotates slowly and randomly about the stream-wise axis. The sphere is thus
subject to a random side force.

Willetts and Murray [171] studied the lift on spheres fixed in turbulent
flows. The spheres were located both near and far from a boundary. They
found that particles near a wall experienced lift away from the wall, while a
sphere in a shear flow away from a wall experienced a lift towards the wall.
The forces were found to be of the same magnitude as the forces in laminar
flow, and they were consistent with the laminar results of Segré and Silberberg
[131, 132]. Spheres that were not close to a boundary, and not subjected to a
velocity gradient, experienced randomly fluctuating instantaneous lift which
was strongly associated with the wake deflection. They suggested that the lift
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was caused by disturbances of the boundary layer separation line induced by
small impinging eddies.

Lee and Durst [89] studied turbulent air–glass particles flow using Laser
Doppler Anemometer (LDA) measurements, using particles with diameters
100, 200, 400, and 800 μm. They found that the particles would lag behind
the air more and more depending on particle size. An exception was that the
two smaller particles sizes would have a larger upward velocity at the wall
than the air. For the larger particles a particle free layer near the wall was
seen. This layer was thicker than the viscous sublayer of the air. They also
found that the large particles enhanced turbulence, while the small particles
dampened it. The large particles would also cause the air velocity profile to be
flatter. The root mean square axial fluctuating velocity was found to increase
towards the wall with a sudden drop at the wall. Based on these observations
they suggested a new theoretical approach based on the dynamic response
characteristics of the particles to the fluid flow.

This new approach is described by Lee and Wiesler [90] and developed
into a model that explains the transversal movement of particles as a result
of the turbulent diffusion. The basis of their modeling is a particular form of
the Maxey-Riley equation [100]:

π

6
d3

pρp
dvp

dt
= 3πμcdp(vc − vp)

+
π

6
d3

pρc
dvc

dt

+
1
2
π
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pρc(
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− dvp

dt
)

+
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2
d2

p(πρcμc)(1/2)

∫ t

0

(dvc

dt′ − dvp

dt′ )
(t− t′)(1/2)

dt′ (5.67)

They required that the turbulence should be locally isotropic and steady, that
the particle Reynolds number should be small, that the particles concentration
was small, and that the particle diameter should be much smaller than the
length scale of the energy containing eddies for the diffusion controlled range
of the model. The model is based on the ability of the particle to respond
to the motion of the surrounding fluid. It depends on particle size and den-
sity, turbulence structure of the fluid, and transversal particle concentration
differences.

Lee [86] examined earlier studies on cylinders in turbulent flow fields, and
found in turbulent flow that the wake would decrease with increasing turbu-
lence intensity, and then disappear, and the mean flow would behave in the
same manner as for Stokes flow. He therefore proposed, and showed, that the
drag on a particle in turbulent flow could be determined from a Stokes law
with the molecular viscosity replaced by an effective viscosity calculated from
the volumetric concentration of particles, the flow Reynolds number, the den-
sity ratio, and the Froude number. The Froude number, determining the ratio
between the initial- and gravity forces, is defined as:
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Fr =
|vc|

(dpg)0.5
(5.68)

Lee and Börner [88] used LDA measurements to characterize the suspension
turbulent flow to enable the calculation of the drag and lift forces. The results
were in fair agreement with the measurements of Lee and Durst [89].

Based on the model of Lee and Wiesler [90] and the measurements of
Lee and Börner [88] Lee [87] formulated a set of governing equations for the
mean motion of particles in a suspension turbulent flow. The model contained
both pseudo Stokes drag and pseudo Saffman forces which were expressed in
terms of a modified viscosity, and supposedly valid for larger particle Reynolds
numbers.

Yamamoto et al [173] studied lift and drag on cylinders and on spheres
in linear shear turbulent flow in a vertical square duct. The cylinders had
diameters from 4 to 10 mm, and the spheres had diameters from 20 to 30 mm.
The approaching flow had center velocities of 12 to 19 m/s. They found that
the lift near the center of the channel was always towards the low velocity side
of the duct. For the circular cylinder they found that the lift coefficient varied
with the radius, and it was negative near the wall. The lift increased with
increasing velocity gradient, but the drag was little affected by the gradient.
The fluctuating parts of the drag and lift forces were found to be small.

Clift et al [22] and Crowe et al [26] reviewed the literature considering
the effects of free stream turbulence on the particle drag coefficient. Gen-
erally, in their view there are experimental data indicating that the free
stream turbulence reduces the critical particle Reynolds number for the drag
coefficient of a sphere. They further refer to several workers that investi-
gated the effects of turbulence and proposed that the particle drag coeffi-
cient should be parameterized in terms of certain turbulence characteristics.
In most cases two normalized parameters have been used to quantify the
effect of the free stream turbulence on the particle drag, these are the rel-
ative turbulence intensity IR =

√

v′2/|vc − vp| and the ratio between the
turbulent integral length scale and the particle diameter Le/dp. In most re-
ports the effect of the turbulent length scale is found to be weak, whereas
the relative turbulence intensity and the critical Reynolds number might be
correlated.

However, there is generally considerable discrepancy in the data for the
drag coefficient dependence on turbulence. The spread in the data obtained
for the drag coefficient of a sphere in turbulent flows is indicated in Fig 5.6.
For this reason the standard drag curve parameterizations are normally used
and the effects of turbulence is disregarded.

To summarize, no firm conclusions regarding the impact of free stream
turbulence on the drag and lift force coefficients can be drawn analyzing the
available data. More detailed experiments are obviously needed to better un-
derstand the affect of turbulence on the drag and lift force coefficients.
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Fig. 5.6. Effect of relative turbulence intensity IR on sphere drag coefficient CD.
Reprinted from Clift et al [22] with permission from Elsevier.

5.2.4 Drag force on bubbles

The interphase forces between bubbles and the surrounding liquid are more
complex than the forces between rigid spheres and a surrounding liquid. This is
because the gas in the bubbles may be circulating causing the interface to move
as opposed to the surface of a rigid particle. The bubbles are deformable, and
they may have different shapes depending on the different physical properties
of the gas and of the surrounding fluid. The shape of bubbles or drops rising or
falling unhindered in a liquid can be determined based on three dimensionless
numbers.

The Eötvös number is determining the ratio between the gravitational- and
surface tension forces (i.e., the Eötvös number is equal to the Bond number),
and defined by:

Eo =
gΔρd2

p

σ
, (5.69)

the Morton number3:

Mo =
gμ4

l Δρ

ρ2
l σ

3
, (5.70)

3 This dimensionless group is often referred to as the M -group or the property
group (Fan and Tsuchiya [45], p 19; Middleman [103], p 227). It is here called the
Morton number, Mo, in accordance with the notation used by Clift et al [22] and
Fan and Tsuchiya [45]. Mo involes only physical properties of the surrounding
medium for gas bubbles and the pressure field. A more general form for any
fluid particles of density ρg can be given by ∇pS |ρl − ρg|μ4

l /(ρ3
l σ

3
I ) where ∇pS

is the static pressure gradient in any pressure field and is replaced by ρlg in the
gravitational field.
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the particle Reynolds number (i.e., determining the ratio between the initial-
and the viscous forces):

ReP =
ρldpvslip

μl
, (5.71)

and the Weber number (i.e., determining the ratio between the initial- and
surface tension forces):

We =
ρlv

2
slipdp

σ
. (5.72)

Only three of these numbers are independent, since the Eötvös number
can be expressed as:

Eo =
Re4

PMo
We2 (5.73)

Similarly, the Capillary number, Ca, determining the ratio between the viscous-
and surface tension forces, is related to the Weber number, We, and particle
Reynolds number, ReP . That is, the Capillary number can be expressed as,
Ca = We

ReP
.

When the Reynolds, Morton and Eötvös numbers are determined, the
shape of bubbles or drops falling or rising unhindered in a liquid can be
determined from the shape regime map in Fig 5.7. A similar map has been
presented earlier by Grace et al [53].

Bubbles or drops in creeping flow

The drag force acting on a spherical bubble in the Stokes flow regime (creeping
flow) can be derived with only minor changes applying the same solution
procedure as used for rigid spheres shown in sect 5.2.1. The difference between
the two situations is just in the boundary conditions at the surface of the
spherical object [14]. For bubbles the surface conditions at r = rp are (1)
vr = 0 and (2) Trθ ≈ 0, meaning that we have neglected the gas viscosity of the
bubble so there are no internal friction in the particle. With these boundary
conditions one can find an analytical solution for the stream function ψ, and
thus the velocity components vr and vθ, and finally the pressure distribution
around the particle are known. The rr-component of the total stress tensor
at the surface of the bubble is therefore

fNormal
D,z =

2π
∫

0

π
∫

0

[

−Trr(rp, θ) cos θ
]

r2
p sin θdθdφ

= 2π

π
∫

0

[

−
(

p− 2μ
∂vr

∂r

)∣

∣

∣

∣

rp

cos θ
]

r2
p sin θdθ = 4πμrpV

(5.74)
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Notice that σrr 
= 0 on the surface of the bubble due to the prevailing free
slip condition, in contrast to the rigid sphere case in which σrr vanishes on
the surface due to the no-slip condition.

A similar solution for creeping flow past a spherical droplet of fluid were
derived independently by Hadamard [55] and Rybczynski [124]. In this case
the fluid stream has a velocity V at infinity and viscosity μf , while the droplet
has a viscosity μp and a fixed interface. The boundary conditions at the droplet
interface are (1) zero radial velocities and (2) equality of surface shear and

Fig. 5.7. Shape regimes for bubbles and drops in liquid. Reprinted from Clift et al
[22] with permission from Elsevier.
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tangential velocity on either side of the interface. The drag force on the droplet
is then given by:

fD,z = 6πμrpV
1 + 2μf

3μp

1 + μf

μp

(5.75)

This drag force consists of contributions from pressure (form drag), deviatoric
normal stress, and shear stress (friction drag).

The corresponding drag coefficient is given by:

CD =
fD,z

1
2πρfV 2r2

P

=
8

ReP
(
2 + 3μp

μf

1 + μp

μf

) (5.76)

For μp � μf , this solution (5.75) coincides with Stokes’ solution for a rigid
sphere (5.47), whereas for μp � μf , this solution coincides with the solution
for a spherical bubble in liquid (5.74). A liquid droplet in another liquid lies
in between these limiting cases.

Langlois [83], White [169], Clift et al [22] and Zapryanov and Tabakova
[174] give further details on the derivation of the viscous drag force on a small
spherical droplet.

Fluid spheres at higher Reynolds numbers

Fluid spheres in flow at higher Reynolds numbers behave different from rigid
spheres.

As the Reynolds number increases, a wake is formed behind the fluid sphere
or ellipsoid [22, 45]. The formation of a wake behind a fluid particle is delayed
compared to a solid sphere due to the internal circulation of the gas. The recir-
culating wake may be completely detached from the fluid sphere. A secondary
internal vortex will then not be formed. For smaller particle Reynolds num-
bers the wake is symmetrical, but as the Reynolds number increases further
the vortex sheet breaks down to vortex rings. Further increase of the Reynolds
number cause the vortex rings to shed asymmetrically, and the drop or bubble
will show a rocking motion. This is one of the two types of secondary motion
defined. The other is oscillations (shape dilations), and is also thought to be
due to the vortex shedding.

In most systems the bubbles (or drops) with diameters between 1 and
15 mm are ellipsoidal. The terminal velocity of bubbles in water at 20oC has
been measured by several researchers. The results are summarized in Fig 5.8.

The curves for the drag coefficient and the terminal velocity converge for
small and large bubbles. This is likely to be because there is always some
surface active contaminants present, even in distilled water, that will prevent
the internal circulation of the smallest bubbles. For the large bubbles the
surface tension forces are not important. Several different drag formulations
are given based on the Reynolds number and the density ratio of the gas and
liquid [54, 163, 78].
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Fig. 5.8. Terminal velocity of air bubbles in water at 20oC. Reprinted from Clift
et al [22] with permission from Elsevier.

The drag coefficient parameterizations proposed by Ishii and co-workers
[62, 63, 64] for bubbles in liquid at different flow regimes are often used in
reactor simulations. In the churn-turbulent regime they obtained:

CD =
8
3
(1 − αg)2 (5.77)

and in the distorted bubble regime they gave:

CD =
2
3
db

√

gΔρ

σ
{1 + 17.67(f(αg))6/7

18.67f(αg)
}2 (5.78)

where:
f(αg) = (1 − αg)1.5 (5.79)

More recently, Tomiyama and co-workers [154, 155, 156, 157] performed de-
tailed experiments investigating the drag coefficient of a single bubble in a
stagnant liquid. They proposed a drag coefficient parameterization which is
split in three categories. These are pure, gently-contaminated, and contami-
nated systems, respectively.
For pure systems:

CD = max
[

min
[

16
ReP

(1 + 0.15Re0.687
P ),

48
ReP

]

,
8
3

Eo

Eo + 4

]

(5.80)

For gently-contaminated systems:
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CD = max
[

min
[

24
ReP

(1 + 0.15Re0.687
P ),

72
ReP

]

,
8
3

Eo

Eo + 4

]

(5.81)

For contaminated systems:

CD = max
[

16
ReP

(1 + 0.15Re0.687
P ),

8
3

Eo

Eo + 4

]

(5.82)

where the Eötvös number Eo is defined as

Eo =
g(ρc − ρd)d2

P

σI
(5.83)

This parameterization of the drag coefficient for bubbles in stagnant liquids
is very often used in the latest reports on bubbly flow simulations.

5.2.5 Lift force on bubbles

Experiments have shown that bubbles under certain conditions experience lift
in the opposite direction to what would be predicted by rigid sphere analysis.
Other mechanisms must therefore be important in determining the lift force
on bubbles. Lift in turbulent flow is very complex, and few studies have been
performed.

Several studies on the phase distribution in vertical bubbly flows in pipes
and channels are performed, though, and many of these are reviewed by
Jakobsen [65]. Typically, they describe how the bubbles will migrate towards
the core of the column and rise there when the superficial gas velocity is larger
than the small (0 to few cm/s) superficial liquid velocity. When the superficial
liquid velocity is larger, the gas will tend to accumulate/peak at the wall. The
core peaking of void is contradictory to the lift calculated from classical invis-
cid analyses [7] [152, 8]. To account for the net lift force acting on a particle
swarm the classical lift force model (5.65) is normally adopted [152, 65]. In
this case values of CL from 0.01 up to 0.5 have been reported for different
flow conditions. However, little or no knowledge on the mechanisms causing
the changes in the parameter did exist until quite recently [65].

In a series of more recent papers, Tomiyama and co-workers (i.e., [154, 155,
156, 157]) performed detailed experiments investigating the transverse migra-
tion of single bubbles in simple shear flows and found that the transversal
lift force coefficient depends on the Eötvös number. A net transverse force FL

acting on a single bubble was proposed on the form (5.65). They further antic-
ipated that the net lift force coefficient consists of three separate contributions
accounting for the Magnus lift-, Saffman shear induced lift-, and lift caused
by the slanted wake behind a deforming bubble, thus CL = CM

L + CS
L + CT

L .
The Magnus force coefficient is CM

L ∼ 0 when there is no forced particle rota-
tion. For the Saffman type of shear induced lateral lift CS

L = 0.5 for potensial
(invisid) flows [152].
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Interpreting their data it was concluded that when Eo is low, the bubble
will migrate toward the pipe wall as explained with the classical shear-induced
or Saffman type of lift force. On the other hand, when Eo is high, the vortex
behind a deformed bubble becomes slanted and for this reason the bubble
migrates toward the pipe center. This implies that there is a third transversal
lift force contribution caused by the interaction between the wake and external
shear field.

Measurements performed under the experimental conditions of
−5.5 ≤ log(Mo) ≤ −2.8 and 1.6 ≤ Eo ≤ 6 were used as basis making an
empirical parameterization for the net transverse lift force coefficient.

For Eo < 4:

CL = min
[

0.288 tanh(0.121ReP ), 0.00105Eo3−0.0159Eo2−0.0204Eo+0.474
]

(5.84)
For 4 ≤ Eo ≤ 10:

CL = 0.00105Eo3 − 0.0159Eo2 − 0.0204Eo + 0.474 (5.85)

For Eo > 10:
CL = −0.29 (5.86)

This parameterization gives 0 < CL ≤ 0.288 for small bubbles that migrate
towards the pipe wall and negative values for large distorted bubbles. The
sign of CL changes at dp = 5.6 (mm) from positive to negative.

In one of the latest studies reported by Tomiama et al [157] on the lift
force the CL value was found to be well correlated with ReP in accordance
with the given parameterization for small bubbles, whereas for intermediate
and large bubbles CL was considered a function of a modified Eötvös number
Eod (i.e., exchanging Eo with Eod in the above parameterization of CL). The
Eod is defined in terms of the maximum horizontal dimension of a bubble as
a characteristic length:

Eod =
g(ρc − ρd)d2

H

σI
(5.87)

To estimate dH which occurs in the definition of Eod, an empirical correlation
of the aspect ratio E for spheroidal bubbles in a contaminated system was
used:

E =
dV

dH
=

1
1 + 0.163Eo0.757

(5.88)

where dV is the maximum vertical dimension of a bubble.
Other lift forces might exist as well, in particular for wall bounded flows.

To prevent the model inconsistency that small bubbles intend to penetrate
through the pipe wall, as predicted by the conventional lift force (5.65), Antal
et al [2] proposed the remedy of introducing an additional wall lift force that
pushes the dispersed phase away from the wall toward the pipe center. The
force was found to be:
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FW
L,d =

αdρc|v‖|2
rd

[CW1 + CW2(
rd

y0
)]nW (5.89)

where

v‖ = (vd − vc) − [nW · (vd − vc)]nW (5.90)
CW1 = −0.104 − 0.06vslip (5.91)
CW2 = 0.147 (5.92)

y0 is the distance between the wall and the particle and nW is the unit normal
vector outward from the wall.

Later, Tomiyama [156, 154] observed a defect in the original model by
Antal et al, namely, that a bubble located far from the wall is attracted to
the wall. Based on a best fit of model simulations to experimental data from
a square duct with wall-distance H, a modified wall force was given as:

FW
L,d = Cwρc|vslip · ez|2er (5.93)

where
Cw = Cw2(

1
y0

− 1
H − y0

) +
Cw3dV

2
(

1
y2
0

− 1
(H − y0)2

) (5.94)

Subsequently, the original formulation by [2] has been modified in several ways
to ensure that the wall force drop to zero at an appropriate distance from the
wall [115, 66].

The modified wall lift force model used by Jakobsen et al [66] for the net
force acting on the dispersed phase is given by:

FW
L,d = max(0, Cw1 + Cw2

dp

y0
)αdρc

|vd − vc|2
dp

nW (5.95)

in which the parameter values used, i.e., Cw1 = −0.1 and Cw2 = 0.35, are
representing an empirical best fit to a set of experimental liquid velocity data
for bubble columns (employing a finite grid resolution).

In another attempt to account for turbulence effects Jakobsen [65] per-
formed turbulence modelling of the drag force, and showed that this proce-
dure gave rise to a transversal force acting in the opposite direction compared
to the classical lift force [7, 8, 152].

Experiments and numerical simulations

Kariyasaki [70] studied bubbles, drops, and solid particles in linear shear flow
experimentally, and showed that the lift force on a deformable particle is
opposite to that on a rigid sphere. For particle Reynolds numbers between
10−2 and 8 the drag coefficient could be estimated by Stokes’ law. The terminal
velocity was determined to be equal to that of a particle moving in a quiescent
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liquid. The fluid particles would deform into airfoil shapes when submitted to
shear flow.

Kariyasaki proposed to calculate the lift force from a balance of buoyancy,
gravity, drag and lift, hence:

fL =
(fBuo − fG)(vp,r − vc,r)

|vslip|
(5.96)

The measured lift force on a solid particle compared well with the model of
Saffman (5.64) when the shear Reynolds number was small, and with the
model of Rubinow and Keller (5.60) when the shear Reynolds number was
large. The shear Reynolds number was defined as:

Reκ =
κd2

V

νc
(5.97)

where dV is the equivalent volume diameter and the fluid shear is defined
by κ = |dvc

dy |. The lift force on the deformed fluid particle was assumed to
be caused by the same mechanisms as those that create lift on a wing. The
assumptions made in calculating the lift were:

1. |κ| � |vslip|/da

2. The particle was shaped as a thin plate with a negligible volume.

The lift force was then expressed by:

fL = 6.84πρcv2
slipd

2
V D

2 Reκ

ReP |Reκ|1.2 (5.98)

where the deformation factor was given as

D =
da − db

da + db
= 0.43(

|κ|ρcνcdV

σ
)0.6 (5.99)

where da and db denote the major and minor axes of an ellipsoidal bubble.
Esmaeeli et al [43] solved the full Navier–Stokes equations for a bubble

rising in a quiescent liquid, or in a liquid with a linear velocity profile. The
calculations were performed in 2-dimensional flow, but similar results have
also been reported for 3-dimensional calculations. The surface tension forces
were included, and the interface was allowed to deform. It was shown that
deformation plays a major role in the lift on bubbles. Bubbles with a low
surface tension have a larger Eötvös number, and are more prone to deform.

Fig 5.9 shows how two different bubbles rise in vertical shear flow with a
non-dimensional shear rate:

G =
ωd2

effρc

μc
(5.100)

where ω is the mean vorticity and deff is the effective diameter of the bubble.
For bubble (a) the Eötvös number is 0.78, and the Morton number is 1.26 ×
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Fig. 5.9. Bubbles rising in vertical shear flow, G = 16. For bubble a Eo = 0.78
and M = 1.2610−6. For bubble b Eo = 6.24 and M = 6.3110−4. Reproduced from
Esmaeeli et al [43] with permission from Elsevier.

10−6. For bubble (b) the Eötvös number is 6.24 and the Morton number is
6.31× 10−4. The bubbles have totally different motion depending on whether
the bubble deforms or not. Bubble (a) does not deform significantly, and
rotates with the flow as it rises, and eventually experiences a lift to the right.
Bubble (b) deforms due to the shear and the upward motion. The bubble thus
takes the form of an airfoil, and experiences lift to the left. The circulation of
bubble (b) changes as the bubble deforms, and settles in the opposite direction
of the circulation of bubble (a).

5.2.6 The Added mass or virtual mass force on a single rigid
sphere in potential flow

The virtual mass effect relates to the force required for a particle to accelerate
the surrounding fluid [65, 170, 26]. When a particle is accelerated through
a fluid, the surrounding fluid in the immediate vicinity of the particle will
also be accelerated at the expense of work done by the particle. The particle
apparently behaves as if it has a larger mass than the actual mass, thus the
net force acting on the particle due to this effect has been called virtual mass
or added mass force. The steady drag force model does not include these
transient effects.

To define the virtual mass force we postulate a Lagrangian force balance
for the sphere:

m
dV

dt
=

[

4
3
πρd r

3
P + mV

]

dV

dt
=

∑

i

fi (5.101)
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in which the apparent mass can be expressed by:

m =
4
3
πρfluidr

3
P

(

ρd

ρfluid
+

mV
4
3πρfluidr3

P

)

(5.102)

where CV = mV /(4
3πρfluidr

3
P ) is the virtual mass or added mass force

coefficient.
The magnitude of this added mass can be found by considering the change

in kinetic energy of the fluid surrounding an accelerating particle. By equating
the energy added to the fluid to an equivalent body energy, the virtual mass
can be calculated. The kinetic energy of the surounding fluid is given by:

Ek,fluid =
∫

1
2
u2

reldm =
1
2
mV V

2 (5.103)

where the integral is to be taken over all the fluid mass. The integration of
the fluid kinetic energy can also be accomplished by a particle-surface integral
involving the velocity potential [26].

Considering an initially stagnant fluid (see Fig 5.10), Ek,fluid denotes the
kinetic energy added to the fluid by the particle movement (J), dm the fluid
element (kg), vrel the velocity of the fluid relative to the particle (m/s), mV

is the virtual mass (kg), and V is the velocity of the particle (m/s).
The motion of a sphere moving through a stagnant incompressible fluid is

equivalent to the uniform fluid flow about a fixed sphere. For axisymmetrical
potential flow the velocity components of the fluid can be obtained by use of
the Stokes’ stream function as explained by [26, 170]:

Fig. 5.10. Streamlines relative to a moving sphere.
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vr = V cos θ
(

1 − r3
P

r3

)

vθ = −1
2
V sin θ

(

2 +
r3
P

r3

)

(5.104)

where vr denotes the fluid velocity in r-direction (m/s), vθ the fluid velocity
in θ-direction (m/s), and rP is the radius of the sphere (m).

The velocity components relative to the moving sphere can be found by
subtracting the sphere velocity vr,p = V cos θ and vθ,p = −V sin θ. The relative
velocity components are thus given by:

vr = −V r3
P cos θ
r3

vθ = −V r3
P sin θ
2r3

(5.105)

The streamlines relative to the moving sphere are sketched in Fig 5.10.
The element of fluid mass dm relates to the volume element dV , as for

incompressible fluids dm = ρdV in which ρ is a constant. Since the fluid
extend from the particle surface, it is convenient to express the mathematical
problem in spherical coordinates. Fig 5.11 shows the spherical coordinates of
a arbitrary point, P , in space. From Fig 5.12 the approximate volume of a
rectangular block extending from the surface can be calculated as:

ΔV = rPΔφ rΔθ Δr = r sin θΔφ rΔθ Δr (5.106)

in which we have used the relation rP = r sin θ considering the triangle OPQ
in Fig 5.11.

Fig. 5.11. Spherical polar coordinates.



584 5 Constitutive Equations

In differential form the arbitrary fluid volume becomes:

dV = r2 sin θ drdθdφ (5.107)

So, the element of fluid mass dm is given by

dm = ρdV = ρ(r sin θ)r drdθdφ (5.108)

Inserting (5.108) and v2
rel = v2

r + v2
θ into (5.103), the integral can be

evaluated to obtain the kinetic energy added to the fluid:

Ek,fluid =
∫

1
2
v2

reldm =
∫ 2π

0

∫ π

0

∫ ∞

rP

1
2
(v2

r + v2
θ)ρ(r sin θ)r drdθdφ

=
∫ 2π

0

∫ π

0

∫ ∞

rP

1
2

[

(

−V r3
P cos θ
r3

)2

+
(

−V r3
P sin θ
2r3

)2
]

ρr2 sin θ drdθdφ

=
ρV 2r6

P

2

∫ 2π

0

∫ π

0

∫ ∞

rP

[

(cos θ)2

r4
+

(sin θ)2

4r4

]

sin θ drdθdφ

=
ρV 2r6

P

2

∫ 2π

0

∫ π

0

[

(cos θ)2
(

− 1
3r3

)

+ (sin θ)2
(

− 1
3r3

)

1
4

]∞

rP

sin θ dθdφ

=
ρV 2r6

P

2

∫ 2π

0

∫ π

0

[

(cos θ)2
(

1
3r3

P

)

+ (sin θ)2
(

1
3r3

P

)

1
4

]

sin θ dθdφ

=
ρV 2r3

P

6

∫ 2π

0

∫ π

0

(

cos2 θ sin θ +
1
4

(

1 − cos2 θ
)

sin θ
)

dθdφ

=
ρV 2r3

P

6

∫ 2π

0

[

−1
3

cos3 θ +
1
4

(

− cos θ +
1
3

cos3 θ
)]π

0

dφ

=
ρV 2r3

P

6

∫ 2π

0

[

2
3

+
1
4

(

2 − 2
3

)]

dφ =
1
3
ρπr3

PV
2

(5.109)

The virtual mass mV can now be derived from (5.109) and (5.103):

mV =
2
3
ρπr3

P =
1
2

(

4
3
ρπr3

P

)

, (5.110)

It follows that the virtual mass force is given by: [97]:

fV,P =
1
2
mV

dV

dt
=

1
2
ρc
π

6
d3

P,V

dV

dt
(5.111)
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Fig. 5.12. Volume element represented in spherical polar coordinates.

The virtual mass coefficient for a sphere in an invicid fluid is thus CV = 1
2 .

The basic model (5.111) is often slightly extended to take into account the
self-motion of the fluid. In general the added mass force is expressed in terms
of the relative acceleration of the fluid with respect to the particle acceleration.

Similar analyses can be performed for dispersed bodies other than spheres
[26]. In these cases the basic equations are the same, but the mass of fluid
displaced can be different.

It is emphasized that the virtual mass force accounts for the form drag
(shape effects) due to the relative acceleration between the particle and the
surrounding fluid.

The Eulerian formulation of the added mass or virtual mass force
acting on rigid spheres in potential flow

In the Eulerian framework the virtual mass force valid for potential flows is
normally expressed by [7, 152, 64, 33, 8]:

FV = αdρcfV (
Dvc

Dt
− Dvd

Dt
) (5.112)

where CV is usually set to 0.5 as for a single sphere.
In bubbly flow simulations values ranging from 0.25 to 0.75 have been used

for different bubble shapes and number densities of bubbles [65]. The added
mass effect is obviously more important for light bubbles in liquids than for
heavy solid particles or droplets in gas or liquid.

Alternative, and supposedly more advanced, added mass force and co-
efficient formulations have been presented and discussed in the literature
[31, 32, 24, 164, 170, 19, 51, 94]. However, there are still controversis regarding
the physics of added mass in particular considering dense dispersions [158].
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Oscillations of a sphere in viscous flow (History force)

The history force was discovered independently by Boussinesq [18] and Basset
[10] in their study of the oscillations of a rigid sphere in a viscous flow.

While the virtual mass force accounts for the form drag on the particle
due to relative acceleration between the particle and the surrounding fluid,
the history term accounts for the corresponding viscous effects. Moreover, the
history force originates from the unsteady diffusion of the vorticity around the
particle so there is a delay in the boundary layer development as the relative
velocity changes with time [96, 97, 22]. This means that when the relative
velocity between the particle and the fluid varies, the vorticity present at
the particle surface changes and the surrounding flow needs a finite time to
readapt to the new conditions.

A general expression for fB in a uniform flow has been put in the form:

fB = μdP

t
∫

0

K(t− τ)(
∂vc

∂τ
− ∂vd

∂τ
) dτ (5.113)

where the kernel K(t− τ) depends on the diffusion process of the vorticity.
The Basset’s expression is found in the limit of unsteady Stokes flow for a

rigid sphere and is given by:

K(t− τ) =
3
2
[

πd2
p

ν(t− τ)
]1/2 (5.114)

Substituting (5.114) into (5.113) the history force becomes [22, 174]:

fB = −6πμr2
P

1√
πν

t
∫

0

∂vp

∂τ
(t− τ)−1/2 dτ (5.115)

in which it is assumed that the fluid movement is negligible.
The case of a bubble is more complicated because of the different origin

of the interfacial vorticity. For a rigid surface the vorticity comes from the
no-slip condition, while on a bubble it is the vanishing of the shear stress on
a curved surface that forces vorticity to be non-zero. For a bubble a closed
expression of the kernel is defined by [104, 96]:

K(t− τ) = 4π exp[36ν(t− τ)/d2
P ]erfc[36ν(t− τ)/d2

P ] (5.116)

For a drop, the solution naturally depends on the ratio between the kinetic
viscosities of the outer and inner fluids [146, 172, 21, 174]. A closed form of
K(t− τ) has not been obtained for this case [96].

Magnaudet [96] also compared the magnitudes of different history forces
and concluded that the history force acting on a clean bubble is much smaller
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than the corresponding one acting on a rigid sphere. The history force can be
neglected in most cases considering bubbly flows.

The extension of the theory to non-uniform flows and to high Reynolds
number flows is still controversal. Nevertheless, Clift et al [22] reviewed nu-
merous investigations and claimed that the history term has a negligible effect
on the mean motion of a particle in a turbulent fluid. The impacts on the fluc-
tuations in particle motion might be more severe at high frequencies.

In multiphase reactor flow simulations the impacts of the history forces
are normally neglected as the present understanding of these phenomena is
far from complete.

5.2.7 Interfacial Momentum Transfer Due to Phase Change

The conventional formulas for the interfacial momentum transfer due to phase
change are defined in sect 3.3 for the different averaging methods commonly
applied in chemical reactor analysis. The modeling concepts usually adopted
for the different averages are mathematically similar, so we choose to present
a representative interfacial momentum transfer term in the framework of the
volume averaging method described in sect 3.4.1.

In fluid mechanics the interfacial momentum transfer due to phase change
(3.148) is normally expressed in terms of interfacial mass flux weighted
quantities

MΓ
k = − 1

V

∫

AI

ρkvk(vk − vI) · nkda ≈ ΓV k〈vk〉ΓAI
(5.117)

The modeling of the interfacial mass transfer terms due to phase change ΓV k

is discussed in sect 5.3, so only the 〈vk〉ΓAI
term is considered in this section.

For catalytic solid surfaces in packed beds and porous materials the speed
of displacement of the interface is assumed to be zero, vI ·nk = 0. For this rea-
son the interfacial momentum transfer due to phase change can be reduced to:

MΓ
k ≈ − 1

V

∫

AI

ρkvkvk · nkda ≈ ΓV k〈vk〉ΓAI
(5.118)

The same model assumption is used for gas-liquid interfaces as well, since the
interface is hypothetically pictured as being stagnant [47]. However, one or
both of the bulk phases may move.

At catalytic solid surfaces there are normally no phase change, so the
interfacial momentum transfer due to phase change simply vanishes. Hence,

ΓV k〈vk〉ΓAI
= 0 (5.119)

The rather blurry picture of the gas-liquid interface makes it very difficult
to parameterize the 〈vk〉ΓAI

variable. Therefore, the interfacial momentum
transfer due to phase change is generally neglected at these surfaces too.
Further work is obviously required to improve our knowledge about these
phenomena and to validate this model assumption.
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5.3 Interfacial Heat and Mass Transfer Closures

In this section the classical heat and mass transfer theories are examined.
The singular surface jump conditions for the primitive quantities, as derived
in the framework of the standard averaging procedures, are approximated
by the classical chemical engineering stagnant film theory normally used in
chemical reactor models. The relevant transport phenomena solutions and the
classical theories on heat and mass transfer considering both low- and high
mass transfer rates are summarized in the subsequent subsections.

5.3.1 Approximate Interfacial Jump Conditions

Fairly rigorous formulas for the interfacial heat and mass transfer terms are
defined in sect 3.3 for the different averaging methods commonly applied in
chemical reactor analysis. However, since the modeling concepts are mathe-
matically similar for the different averages, we choose to examine these consti-
tutive equations in the framework of the volume averaging method described
in sect 3.4.1. This modeling framework is used extensively in chemical reactor
analysis because the basic model derivation is intuitive and relatively easy to
understand.

It has been pointed out that the macroscopic interfacial transfer terms
occurring in the averaged model equations, as described in sect 3.3, represent
approximate integral values of the averaged interfacial terms as proposed by
Ishii [61] making a provisional model for stratified flows in nuclear reactor en-
gineering. Specific application dependent constitutive equations and modeling
concepts are thus required determining these terms for the different chemical
systems, flow regimes, operating conditions, and so forth to reimpose the es-
sential physics that were lost during the averaging process with an appropriate
level of complexity.

For comparison we briefly display the standard macroscopic transfer func-
tions resulting from the averaging process, before we introduce the particu-
lar constitutive equations normally applied in chemical reaction engineering.
This might help to elucidate the connection between the conventional fluid me-
chanics modeling framework and the customary chemical reaction engineering
interfacial coupling terms.

In the multiphase flow literature these integral terms are generally ap-
proximated as the product of the interfacial area concentration and a mean
interfacial flux using the mean value theorem for integrals.

Using the mean value theorem the interfacial mass transfer rate due to
phase change (3.144) becomes [61, 72, 12]:

ΓV k = − 1
V

∫

AI

ρk(vk − vI) · nkda ≈ aI〈ṁk〉AI
≈ aIρk〈vrel

n,k〉AI

where 〈vrel
n,k〉AI

denotes the average interfacial velocity of phase k, relative
to the velocity of phase k at the interface, normal to the interface and in a



5.3 Interfacial Heat and Mass Transfer Closures 589

direction outward of phase k. This means that 〈vrel
n,k〉AI

represents the normal
interface velocity solely due to phase change.

Similarly, the interfacial heat transfer (3.175), as related to (3.201), and
the species transfer (3.179) due to phase change are normally expressed in
terms of interfacial mass flux weighted quantities

hΓ
k = − 1

V

∫

AI

ρkhk(vk − vI) · nkda ≈ ΓV k〈hk〉ΓAI

JΓ
k,s = − 1

V

∫

AI

ρkωk,s(vk − vI) · nkda ≈ ΓV k〈ωk〉ΓAI

It is noted that in the general case the interface velocity is not equal to the
neighboring phase velocities vI 
= vk.

The initial engineering applications of the two-fluid framework to model
chemical reacting flows focused on combustion processes. Unlike the normal
behavior of chemical reactors, in many of the homogeneous combustion ap-
plications the details of the chemical reaction kinetics are effectively ignored
because the reactions are very fast and thus assumed to be in local instanta-
neous chemical equilibrium. That is, all the reactions are assumed to occur
much faster than the turbulent micro-mixing. The rate determining step is
thus the turbulent micro-mixing properties of the flow, so turbulence model-
ing was considered especially important. To describe heterogeneous systems
like spray and solid particle combustion processes the two-fluid model has
been considered useful [77] [111, 140, 137, 138]. It is noted that for these sys-
tems the burning rate 〈vrel

n,k〉AI
, i.e., the rate at which the particles shrink, is

normally defined in accordance with the modeling approach explained by Ishii
[61]. Moreover, in the combustion processes involving droplet vaporization the
multicomponent mass diffusion and heating of the liquid phase are usually the
rate-controlling phenomena determining the overall burning rate [138].

In recent years the conventional modeling framework has also been adopted
for the description of multicomponent transport phenomena during metal al-
loy solidification [109, 110, 12].

In the field of chemical reaction engineering, on the other hand, the el-
ementary modeling principles still being used in the modern fluid dynamic
reactor models did not evolve from any averaging concept, since the classical
reaction engineering models were postulated long before the averaging con-
cepts were proposed. The present aim is thus to link the classical approach
used in reactor analysis with the conventional fluid dynamic formulas given
above.

Although many physical processes of interest to chemical reaction engi-
neers involve absorption, heterogeneous reaction, surface mass transport, and
interfacial mass transfer at moving and deforming interfaces, their main fo-
cus is concerned with the phenomena occurring at two particular types of
interface systems. These are (1) the adsorption and reaction processes taking
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place at catalytic solid surfaces and (2) the condensation/evaporation of fluid
mixtures going on at gas-liquid interfaces.

In the case of adsorption and reaction at a fixed catalytic surface the speed
of displacement of the interface is assumed to be zero4 [167]. In this case the
interfacial transfer terms due to phase change can be reduced to:

ΓV k = − 1
V

∫

AI

ρk(vk − vI) · nkda ≈ − 1
V

∫

AI

ρkvk · nkda (5.120)

hΓ
k = − 1

V

∫

AI

ρkhk(vk − vI) · nkda ≈ − 1
V

∫

AI

ρkhkvk · nkda (5.121)

JΓ
k,s = − 1

V

∫

AI

ρkωk,s(vk − vI) · nkda ≈ − 1
V

∫

AI

ρkωk,svk · nkda (5.122)

where one of the phases represents a rigid solid which is in contact with the
second one being a fluid phase. The interface is a catalytic surface at which
chemical reactions can take place, and both the bulk phases are continuous.
Further discussions and a fundamental description of the species mass transfer
phenomena are given by Whitaker [167, 168].

In the case of phase change at gas-liquid mixtures interfaces profound un-
derstanding of (1) the thermodynamics of fluid mixtures, (2) phase equilibria,
(3) heat transfer, and (4) mass transfer are required. The classical two-film
theory concept of Colburn and Drew [23] is normally adopted [162, 15]. In this
approach the interfacial transfer models are derived considering a stagnant
surface or interface enclosed by two thin and stagnant hypothetical films. For
dynamic (i.e., no global equilibrium) cases one imagines resistances to both
heat and mass transfer through the films on both sides of the interface and
that thermodynamic equilibrium prevails at the interface only, thereby the
bulk phases are not necessarily uniform at steady state.

In this context it is emphasized that in chemical reaction engineering a
detailed description of the movement of the interfaces have not been consid-
ered important even for gas-liquid systems, in the sense that the complexity
of such an approach will lead to impracticable computational costs and little
gain in understanding and physical modeling of the important chemical pro-
cesses. Henceforth, if otherwise not explicitly stated, for the examination of
the engineering heat and mass transfer theories both the hypothetical films
and the embedded interface are assumed to be stagnant, vI ·nk = 0. However,
the bulk phases may still move relative to each other.

It follows that the definitions of the interfacial heat and mass transfer fluxes
are not stringent and to a certain extent based on fragmentary arguments,
therefore the transfer coefficients can be interpreted in several ways [15, 139].
Basically, the transfer coefficients are either treated as an alternative model

4 The fundamental analysis applies to packed and porous beds only, but in practice
the same modeling approach is generally used for dispersed catalyst particles
as well.
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to the fundamental diffusion models (i.e., the Fourier’s and Fick’s laws) or
the transfer coefficients are taking both diffusive and convective mechanisms
into account through extended theories and/or empirical parameterizations.
However, the distinction between these approaches is rather blurred so it is not
always clear which of the fundamental transport processes that are actually
implemented.

In an attempt to explain the chemical engineering modeling approach in
a precise manner Bird et al [13, 15] proposed to distinguish between the def-
inition of the transfer coefficients for problems with low- and high net mass
transfer rates although no precise partition was made. It was assumed that for
systems with a slightly soluble component, small diffusivities, and small net
mass transfer rates the analytical expressions derived from pure diffusive flux
considerations can be used. For high net mass transfer rates the transfer co-
efficients depend on the convective mass transport in addition to the diffusive
mechanisms. To describe the transfer under such conditions, Bird et al adopted
the approach of Colburn and Drew [23] consisting in replacing the analytical
formula derived for pure diffusion through the hypothetical films by a similar
but entirely empirical expression in which the pre-factor in front of the driving
force is substituted by an empirical mass transfer coefficient. These mass trans-
fer coefficients are assumed to be functions of the physical properties of the
mixture and the conditions of the flow. Other theories, again, impose various
semi-empirical convective effects and compare the classical stagnant film mass
diffusion transport estimates with the extended mass transfer expressions. By
similarity arguments one then postulate semi-empirical relationships between
the transport and transfer coefficients. The impact of convection on the mass
transfer coefficient are then supposedly lumped into the film thickness param-
eter [47]. It is hardly necessary to remark that prudence is required working
with these concepts to make sure that the different formulas and the transfer
coefficients are used in a consistent manner.

The advantage of working in terms of the traditional joint diffusive and
convective flux concept is that the contribution of convection is automatically
taken into account and we do not need separate models for the interfacial
transfers due to phase change. The disadvantage is that the transfer coef-
ficients show a more complicated dependence upon concentration and mass
transfer rates. In a scientific view the loss in physical rigor might outweigh the
possible gain in computational ease [139]. Nevertheless, in this work we follow
the approach chosen in most chemical reactor analysis in which the transfer
coefficients are defined in terms of the combined fluxes including both diffusive
and convective contributions.

The combined volumetric species mass transfer rate across a hypothetical
fluid film Rnk,s

represents the species mass transfer from a solid surface of
area AI and mass fraction 〈ωk,s〉AI

to an adjacent moving fluid stream with
mass fraction 〈ωk,s〉Vk

. For a binary fluid mixture the combined volumetric
species mass transport rate is approximated by:
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Rnk,s
= aI〈nk,s〉AI

= Jj
k,s + JΓ

k,s ≈ aIρk
Dk,s

lk,s
(〈ωk,s〉AI

− 〈ωk,s〉Vk
)

= aIρkkc,s(〈ωk,s〉AI
− 〈ωk,s〉Vk

)
(5.123)

in which it is assumed that the mean interfacial flux is proportional to the
difference between the interfacial average and the intrinsic volume average of
the mass fraction. Dk,s is the binary diffusion coefficient in the phase denoted
by k, and lk is the thickness of the film on the phase k side of the interface.
In this case JΓ

k,s denotes the convective contributions to the interfacial species
mass transfer flux, as no phase change takes place at these interfaces. If the no
slip condition applies at the surface, the convective flux contribution is zero.

The surface average combined convective mass transfer flux 〈nk,s〉AI

(kg/m2s) is generally approximated by:

〈nk,s〉AI
= Jj

k,s + JΓ
k,s ≈ aIρk

Dk,s

lk,s
(〈ωk,s〉AI

− 〈ωk,s〉Vk
)

= aIρkkc,s(〈ωk,s〉AI
− 〈ωk,s〉Vk

)
(5.124)

It is further noted that the use of interfacial mass flux weighted transfer
terms is generally not convenient treating multicomponent reactive systems,
because the phase change processes are normally not modeled explicitly but
deduced from the species composition dependent joint diffusive and convec-
tive interfacial transfer models. Moreover, the rigorous reaction kinetics and
thermodynamic models of mixtures are always formulated on a molar basis.

Basically the fundamental convective heat transfer refers to the conductive
flux mechanisms by which heat is transferred between a solid surface and a
fluid moving over the surface in such a way that the fluid is stagnant at
the wall because of the no slip behavior. The volumetric heat transfer rate
RQk

(W/m3s) represents the heat transfer from a solid surface of area AI

and temperature 〈TS〉AI
to an adjacent moving fluid stream of temperature

〈Tk〉Vk
(K). The volumetric heat transfer rate can be approximated by:

RQk
= − 1

V

∫

AI

qk · nkda = aI〈qk · nk〉 ≈ hcond
k aI(〈TS〉AI

− 〈Tk〉Vk
) (5.125)

The corresponding surface average convective heat transfer flux 〈qk · nk〉A is
generally approximated by:

〈 Q̇
cond
k

AI
〉A = 〈qk · nk〉A ≈ hcond

k (〈TS〉AI
− 〈Tk〉Vk

) (5.126)

where hcond
k is the heat transfer coefficient (Wm2K) associated with pure

conduction at the wall.
Alternatively, the convective heat transfer rate may refer to the combined

conductive and convective flux mechanisms by which heat is transferred be-
tween a solid surface and a fluid moving over the surface provided that the
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fluid is not stagnant at the wall because of fluid-wall slip. In this case the
volumetric heat transfer rate RQk

(W/m3s) is given by:

RQk
= − 1

V

∫

AI

(qk + ρkhkvk) · nkda = aI〈(qk + ρkhkvk) · nk〉

≈hcond, conv
k aI(〈TS〉AI

− 〈Tk〉Vk
)

(5.127)

The corresponding surface average combined convective heat transfer flux is
normally approximated by:

〈 Q̇
cond, conv
k

AI
〉 = 〈 Q̇

cond + Q̇conv
k

AI
〉A = 〈(qk + ρkhkvk) · nk〉A

≈hcond, conv
k (〈TS〉AI

− 〈Tk〉Vk
)

(5.128)

where hcond, conv
k is the combined convective heat transfer coefficient account-

ing for conductive and convective heat transfer (W/m2K).
In both convective heat transfer definitions it is presumed that the solid

surface is warmer than the fluid so that heat is being transferred from the solid
to the fluid. Equations (5.125) and (5.127) are sometimes called Newton’s
law of cooling but are merely the defining equation for the hk parameters
[102, 60, 15].

The convective heat transfer coefficient generally depends on conditions in
the boundary layer, surface geometry, fluid motion, and thermodynamic and
transport properties of the fluid. A thorough examination of the heat transfer
coefficient theory and many examples are given by Bird et al [15], Kays and
Crawford [71], Middleman [102] and Incropera and DeWitt [60].

The approximate modeling approaches found to be suitable for the purpose
of determining the interfacial heat and mass transfer fluxes in reactor analysis
can be summarized as follows.

Chemical Species Mass Transfer
1. Considering a binary fluid mixture at a catalytic solid surface the

species mass transport is approximated by the transfer flux across a
hypothetical fluid film:

Rnk,s
= aI〈nk,s〉AI

= Jj
k,s + JΓ

k,s ≈ aIρk
Dk,s

lk,s
(〈ωk,s〉AI

− 〈ωk,s〉Vk
)

= aIρkkc,s(〈ωk,s〉AI
− 〈ωk,s〉Vk

)
(5.129)

The interfacial species mass jump balance (3.178) can now be ex-
pressed as:

Rnfluid,s
+ Rnsolid,s

≈ ρBulk〈RI,s〉m, (5.130)

and we can eliminate the solid phase transfer term from the bulk phase
transport equations [166].
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In addition, the net diffusive mass flux for each phase vanishes for
binary systems as

∑

s J
j
k,s = 0 adopting Fick’s law. Nevertheless, this

diffusive flux definition is commonly used also for dilute pseudo-binary
systems. In these particular cases the latter relationship is only ap-
proximate.

2. For a non-reactive two-phase gas-liquid interface the mass transport
is approximated by the net transfer flux across the two stagnant fluid
films. For each film we may write a transfer rate term on the form:

Rnk,s
= Jj

k,s + JΓ
k,s ≈ aIρk

Dk,s

lk,s
(〈ωk,s〉eqAI

− 〈ωk,s〉Vk
)

= aIρkkc,s(〈ωk,s〉eqAI
− 〈ωk,s〉Vk

)
(5.131)

It is still assumed that the mean interfacial flux is proportional to
the difference between the interfacial average and the intrinsic vol-
ume average of the mass fraction. In addition, the interfacial surface
averaged concentrations are assumed to be in local instantaneous ther-
modynamic equilibrium.
For dilute mixtures Henry’s law is frequently used to relate the inter-
facial concentrations:

〈ωg,s〉eqAI
= 〈Hs〉AI

〈ωl,s〉eqAI
(5.132)

where 〈Hs〉AI
is a surface averaged value for a modified Henry’s law

constant for species s in the mixture. The conventional Henry’s law is
always defined on a mole basis.
When a similar expression for the second film is established, the in-
terfacial concentrations can be eliminated (the derivation is shown in
the subsequent subsections). Assuming there are no surface reactions
in the hypothetical films or at the gas-liquid interface, the interfacial
species mass jump balance (3.178) reduces to:

Rng,s
+ Rnl,s

= 0 (5.133)

The net diffusive mass flux for each phase still vanishes for binary
systems as

∑

s J
j
k,s = 0 using Fick’s law, whereas for dilute pseudo-

binary systems the latter relationship is only approximate.
Mixture Mass Transfer

1. For catalytic solid surfaces the interfacial mass transfer rate is defined
by (3.144) as:

ΓV k =
∑

s

Rnk,s
=

∑

s

(JΓ
k,s + Jj

k,s) =
∑

s

JΓ
k,s = 0 (5.134)

since the net rate of mass generation in phase k is given by the sum
of the component mass transfer terms. In this case the convective and
diffusive fluxes through the hypothetical film must cancel each other.
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For a two-phase system the interfacial mass jump balance (3.143) is
expressed as ΓV g = −ΓV l = 0.

2. For gas-liquid interfaces the interfacial mass transfer rate through
each of the two films, is used to approximate (3.144), as expressed by:

ΓV k =
∑

s

Rnk,s
=

∑

s

(JΓ
k,s + Jj

k,s) =
∑

s

JΓ
k,s

≈ aIρk

∑

s

kc,s(〈ωk,s〉eqAI
− 〈ωk,s〉Vk

)
(5.135)

That is, the net rate of mass generation in phase k is given by the
sum of the component mass transfer fluxes for binary mixtures using
Fick’s law. For a two-phase system the interfacial mass jump balance
(3.143) is expressed as ΓV g + ΓV l = 0.

Again, it is mentioned that the binary mass flux definitions given above
are commonly used also for pseudo-binary systems. In these particular
cases the above relationships are only approximate.

Mixture Heat Transfer
1. Similar constitutive equations are used to approximate the integrals

representing the interfacial heat transfer rates by convection and con-
duction through the stagnant films in the vicinity of a catalytic solid
surface. Hence, the film model can be used to approximate the inter-
facial heat transport (3.167) by:

RQk
= − 1

V

∫

AI

(qk + ρkhkvk) · nkda = hΓ
k + EE

k

≈ aIhk(〈Tk〉AI
− 〈Tk〉k)

(5.136)

The EE
k contribution vanishes when the fluid is really stagnant at the

interface (no slip).
The final form of the interfacial jump heat balance for a catalytic
surface (3.173) yields:

RQg
+RQl

= EE
g + hΓ

g +EE
l + hΓ

l ≈ ρBulk〈RI,s(−ΔHR)〉mAI
(5.137)

At the catalytic solid surfaces the interfacial heat transfer due to phase
change vanishes, instead the convective contributions in (3.175) are
incorporated into the convective heat transfer coefficients.

2. For gas-liquid systems involving phase change the mixture enthalpy
consists of a sensible heat and a latent heat of vaporization. The corre-
sponding heat jump condition (3.173) can be expressed as EE

g +hΓ
g +

EE
l + hΓ

l ≈ 0, or alternatively [138]:

− 1
V

∫

AI

(qg + ρgvghg) · ng

=
1
V

∫

AI

(ql + ρlvl([hl −Δhvap
lg,mix] + Δhvap

lg,mix)) · nl da

(5.138)
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in which hvap
lg,mix represents the net latent heat of vaporization of the

multicomponent mixture (J/kg).
In the chemical engineering community the interfacial heat balance
concept proposed by Colburn and Drew [23] to treat the latent heat
of vaporization term may be more familiar. A consistent expression
for the net latent heat of vaporization of the multicomponent mixture
hvap

lg,mix in terms of the pure vapor s enthalpies hvap
lg,s can be derived

from the Colburn and Drew theory [23, 162, 9] (sect 4.1.8). In their
two-film model approach the heat balance includes (1) the heat flux at
the interface due to condensation RQI,λ

, (2) sensible heat loss by the
gas film, and (3) sensible heat loss by the liquid film. The interfacial
heat jump balance (3.173) is then approximated by:

RQl
≈ RQI,λ

−RQg
(5.139)

neglecting the species mixing effects.
To be consistent with the mass transfer model, the interfacial heat
transfer flux through each of the films consists of both conductive
(3.167) and convective (3.175) contributions. The heat transfer terms
are approximated by

RQk
= − 1

V

∫

AI

(qk + ρkhkvk) · nkda = hΓ
k + EE

k

≈ aIhk(〈Tk〉AI
− 〈Tk〉k)

(5.140)

That is, the interfacial heat transfer per unit volume is modeled as
the product of the interfacial area concentration and a mean normal
interfacial flux which is proportional to the difference between the
interfacial average and the intrinsic volume average of the temperature
of phase k.
The latent heat of vaporization for multicomponent mixtures is de-
pendent upon the mixture composition and given by [138]:

RQI,λ
=

1
V

∫

AI

ρlvlΔhvap
lg,mix · nl da =

1
V

∫

AI

∑

s

ρl,svl,sΔhvap
lg,s · nl da

=
1
V

∫

AI

∑

s

nl,s · nl

Mw,s
(h̄g,s − h̄l,s) da

=
1
V

∫

AI

∑

s

nl,s · nl

Mw,s
Δh̄lg,s da

(5.141)

The net latent heat of vaporization of the multicomponent mixture
Δhvap

lg,mix can thus be calculated from the following relation:

Δhvap
lg,mix =

∑

s
nl,s·nl

Mw,s
Δh̄lg,s

∑

s nl,s · nl
=

∑

s
nl,s·nl

Mw,s
Δh̄lg,s

nl,tot · nl
=

∑

s
nl,s·nl

Mw,s
Δh̄lg,s

ρlvl · nl

(5.142)
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where h̄g,s is the partial molar enthalpy of component s in the gas, and
h̄l,s is the partial molar enthalpy of component s in the liquid. nl,s de-
notes the liquid phase combined mass flux for species s, whereas nl is
the outward directed unit vector for the liquid. For non-volatile/non-
condensing species the convective and diffusive fluxes through the
hypothetical films must be zero or cancel out.
For non-ideal multicomponent mixtures the multiphase flow
calculation can be combined with a more rigorous thermodynamic
equilibrium calculation to determine the mixture properties at the
interface as discussed by [81, 69, 117].
However, describing the chemical reactor performance under indus-
trial operation conditions the heat balance is normally dominated
by the heat of reaction term, the transport terms and the external
heating/cooling boundary conditions, hence for chemical processes in
which the phase change rates are relatively small the latent heat term
is often neglected.

Future work might consider extensions of these interfacial transfer con-
cepts to ameliorate the simulation accuracy by utilizing the local information
provided by the multi-fluid models. For multiphase reactive systems these pro-
cesses can be rate determining, in such cases there are no use for advanced flow
calculations unless these fluxes can be determined with appropriate accuracy.

5.3.2 Fundamental Heat and Mass Transport Processes

The molecular transport processes refer to the transfer of continuum prop-
erties by molecular movement through a medium which can be a fluid or a
solid. Each molecule of a system has a given quantity of the property mass,
energy and momentum associated with it. When concentration gradients exist
in any of these property fields, a net transport occurs. In dilute fluids such
as gases where the molecules are relatively far apart, the rate of transport of
the property should be relatively fast since few molecules are present to block
the transport by interaction. In dense fluids such as liquids the molecules are
closer together and transport or diffusion proceeds more slowly. The molecules
in solids are even more close-packed than in liquids and molecular migration
is even more restricted. Therefore, the molecular diffusion coefficient for gases
is larger than for liquids and solids.

The conventional parameterizations used describing molecular transport
of mass, energy and momentum are the Fick’s law (mass diffusion), Fourier’s
law (heat diffusion or conduction) and Newton’s law (viscous stresses). The
mass diffusivity, Dc, the kinematic viscosity, ν, and the thermal diffusivity,
α, all have the same units (m2/s). The way in which these three quantities
are analogous can be seen from the following equations for the fluxes of mass,
momentum, and energy in one-dimensional systems [13, 135]:
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jc,y = −Dc
d(ρc)
dy

(Fick’s law for constant ρ) (5.143)

qy = −αd(ρCpT )
dy

(Fourier’s law for constant ρCp) (5.144)

σyx = −ν d(ρvx)
dy

(Newton’s law for constant ρ) (5.145)

where jc,y is the flux of species c per area in kg/(sm2), Dc is the mass diffusion
coefficient in m2/s, ρc is the mass concentration of c in the mixture, qy is the
heat flux in J/(sm2), α = k/(ρCp) is the thermal diffusivity of the conducting
medium, T is the temperature in K, τyx is the shear stress in kg/(sm2), ν is
the kinematic viscosity coefficient and vx is the x-velocity component in m/s.

Note that these analogies are less obvious in two- and three dimensional
problems, however, because σ is a tensor quantity with nine components,
whereas jc and q are vectors with three components.

In general, there are more than one driving force involved producing dif-
fusive transport for any one fluid property as examined in chap 2. The origin
of molecular mass diffusion might be related a combination of one or more of
the following non-equilibrium phenomena; concentration gradients, pressure
gradients, thermal gradients or external forces.

Heat conduction is also related to atomic and molecular activity. Conduc-
tion may be viewed as the transfer of energy from the more energetic to the
less energetic particles of a substance due to interactions between the particles.
For a gas the temperature at any point in space is associated with the energy
of molecules in proximity to the point. This energy is related to the random
translational motion, as well to the internal rotational and vibrational mo-
tions, of the molecules. Higher temperatures are associated with an increase
in molecular energies, and when neighboring molecules collide, a net transfer
of energy from the more energetic to the less energetic molecules must occur.
In the presence of a temperature gradient, energy transfer by conduction must
then occur in the direction of decreasing temperature. We may speak of the
net transfer of energy by random molecular motion as a diffusion of energy.

The situation is much the same in liquids, although the molecules are more
closely spaced and the molecular interactions are stronger and more frequent.
Similarly, in a solid, conduction may be attributed to atomic activity in the
form of lattice vibrations. The modern view is to ascribe the energy transfer
to lattice waves induced by atomic motions. In a non-conductor, the energy
transfer is exclusively via these waves, in a conductor it is also due to the
translational motion of the free electrons.

In reaction engineering the ordinary diffusion processes taking place close
to an interface have been analyzed in two ways. First, as just mentioned, the
interfacial transport fluxes can be described in a fundamental manner adopt-
ing the Fourier’s and Fick’s laws which are expressed in terms of the trans-
port coefficients known as conductivity and diffusivity. Second, the interfacial
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transport fluxes can alternatively be approximated in terms of the engineering
transfer coefficients for convective heat and mass transport.

5.3.3 Mass Transport Described by Fick’s law

This section contains a simple introduction to steady state and unsteady
species mole (mass) diffusion in dilute binary mixtures. First, the physical
interpretations of these diffusion problems are given. Secondly, the physical
problem is expressed in mathematical terms relating the concentration profiles
to the diffusion fluxes. Emphasis is placed on two diffusion problems that form
the basis for the interfacial mass transfer modeling concepts used in reaction
engineering.

The basic theory is reviewed in many textbooks on chemical reaction en-
gineering [15, 6, 27, 102, 58]. These texts may be recommended for compli-
mentary studies.

Adolf Fick developed the law of diffusion by means of analogies with
Fourier’s work on thermal conduction [46]. Mathematically, the mass diffu-
sion flux is thus expressed as:

jc = −ρDc∇ωc (Fick’s law) (5.146)

This equation states that the flux of species is proportional to concen-
tration gradient and occurs in the direction opposite to the direction of the
concentration gradient of that species. The proportionality coefficient is the
molecular diffusion coefficient.

This diffusion coefficient formulation is useful for fundamental studies
where we want to know concentration versus position and time.

Steady diffusion across a thin film with a fixed boundary

Consider a very thin film between two well-mixed fluids. Each of the fluids are
dilute binary mixtures, consisting of the same solvent and solute having differ-
ent concentrations. The solute diffuses from the higher concentrated solution
into the less concentrated one.

The diffusion across this thin film is considered to be a steady-state prob-
lem. There are no concentration changes with time, as indicated in Fig 5.13.

To describe this problem in mathematical terms, either the differential
species mass balance (1.39) can be reduced appropriately or alternatively a
species mass shell balance over a thin layer, Δz, can be put up and combined
with Fick’s law. The resulting equation for steady diffusion in the thin layer
is of course the same in both cases. The simple ordinary differential equa-
tion is integrated twice with the appropriate boundary conditions in order to
get a relation for the concentration profile that is needed to determine the
diffusive flux.
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Fig. 5.13. Steady diffusion across a thin film.

Assuming that the diffusion coefficient is constant, the governing equations
describing the problem are listed below:

The species mole balance5:

0 = −dJ∗
i

dz
(5.147)

The Fick’s law for binary diffusion (i.e., in 1D):

J∗
i = −Ddci

dz
(5.148)

Combining these relations we obtaine the following differential equation:

0 = D
d2ci

dz2
(5.149)

that can be solved using appropriate boundary conditions:

z = 0 ci = ci0

z = l ci = cil

The solution of the above differential equation yields the concentration
profile:

ci = ci0 +
1
l
(cil − ci0)z (5.150)

The resulting concentration profile is linear and independent on the diffusion
coefficient.

5 The classical models are generally expressed in terms of diffusive mole fluxes.
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The diffusive flux is then found by differentiating the concentration profile:

J∗
i = −Ddci

dz
=

D

l
(ci0 − cil) (5.151)

This flux formulation determine the basis for the basic film theory.

Unsteady diffusion in a semi-infinite slab with a fixed boundary

Consider a volume of solution that start at an interface and extends a very long
distance away from the interface. We want to describe how the concentration
varies in the solution as a result of a concentration change at its interface.
The concentration profile will change with time, as sketched in Fig 5.14.

To develope a model for this mathematical problem we can either simplify
the differential species mass balance equation (1.39) appropriately or combine
the transient shell species mass balance written for the thin layer Δz with
Fick’s law for binary diffusion. The resulting partial differential equation is
called Fick’s second law. A simple way to obtain a solution for this differen-
tial equation is to adopt the method of combination of variables. It is then
necessary to define a new independent variable that enable us to transform
the partial differential equation into an ordinary differential equation.

The equations describing the problem can be listed as follows:
The species mole balance:

∂ci

∂t
= −∂J∗

i

∂z
(5.152)

Time

Position z

z

ci0

Δ
ci 8

Fig. 5.14. Diffusion in a semi-infinite slab.
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By use of the Fickian mole diffusion flux closure the Fick’s second law is
obtained:

∂ci

∂t
= D

∂2ci

∂z2
(5.153)

The initial and boundary conditions needed are:

t = 0 all z ci = ci∞
t < 0 z = 0 ci = ci0

t > 0 z = ∞ ci = ci∞

The definition of the new independent variable is given as:

ζ =
z√
4Dt

(5.154)

Transforming Ficks second law and the initial and boundary conditions yield:

d2ci

dζ2
+ 2ζ

dci

dζ
= 0 (5.155)

and

ζ = 0 ci = ci0

ζ = ∞ ci = ci∞

Two of the conditions have the same form after the transformation. However,
the two reminding boundary conditions are sufficient solving the transformed
ordinary differential equation.

The solution of the ordinary differential equation can be formulated as an
error function. The concentrations profile is thus given as:

ci − ci0

ci∞ − ci0
= 1 − erf(ζ) =

2√
π

∫ ζ

0

e−ζ2
dζ (5.156)

The flux can now be found by combining Ficks law for binary diffusion
with the given concentration profile. The resulting flux relation can be
expressed as:

J∗
i =

√

D

πt
e−z2/4Dt

(ci0 − ci∞) (5.157)

The interfacial flux (i.e., the flux at z=0) at a particular time, t, is given by:

J∗
i |z=0=

√

D

πt
(ci0 − ci∞) (5.158)

Analysis of the results obtained for the unsteady problem shows that the
predicted concentration profile is time and position dependent, and that the
diffusive flux at the interface is proportional to the square root of the diffusion
coefficient.
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Before we leave this mathematical exercise it is emphasized that we did
consider an semi-infinite slab to explain the physical basis of the more ad-
vanced interfacial heat and mass transfer concepts to be introduced shortly in
sect 5.3.5. Moreover, it is noted that the boundary condition at z = ∞ might
be replaced by a more practical one at a bounded or semi-infinite distance
from the interface. In this case the solution relies on the assumption that we
are considering a finite time period so that the ambient concentration is kept
unaltered. In other words, if the diffusion process proceeds only a relatively
short time period after the change in concentration at the interface occurs, the
ambient concentration at a semi-infinite distance from the interface will not
change. On the other hand, after a longer time period the concentration pro-
file slinther into the steady state limit. In this case the ambient concentration
might be changed due to the diffusive mass transfer flux so the semi-infinite
slab concept is not valid anymore. The penetration and surface renewal mass
transfer models rely on the assumption that the recidence time of the inter-
facial element is sufficiently short so the inherent diffusion processes can be
descibed using a semi-infinite slab approximation.

Unsteady diffusion in a semi-infinite slab with a moving boundary

For completeness we briefly outline in this subsection a generic analytical
method of solution for a class of problems in unsteady-state linear diffusion,
which involve two phases or regions separated by a moving plane interface.

In particular we examine situations in which diffusion occurs in two distinct
regions separated by a moving boundary or interface [28, 25]. Moreover, the
two regions are separated by a plane surface and diffusion takes place only
in the direction perpendicular to this plane. The concentration is initially
uniform in each region. The component mass diffusion may then result in a
net movement of the matter in one or both regions relative to the interface.

In mathematical terms the position in medium 1 can be specified by a
coordinate in the z1 system which is fixed with respect to medium 1, and
position in medium 2 is specified by a coordinate in the z2 system, fixed with
respect to medium 2. The media are thus separated at time t by the plane
z1 = Z1, z2 = Z2, which is initially at z1 = z2 = 0. Medium 1 occupies a
semi-infinite slab of the space Z1 < z1 < ∞, medium 2 a semi-infinite slab of
the space −∞ < z2 < Z2.

To adopt the conventional Fick’s law of binary diffusion we assume that
in both media one of the components present moves by diffusion relative to
the z1 and z2 coordinates and is transfered from one medium to the other.
The concentration of the diffusing component at time t is denoted by c1 at z1
and by c2 at z2.

Fick’s second law (5.155) is obeyed in the two media, and for simplicity
we assume that the diffusion coefficient is constant and independent of the
concentrations. At any time in the calculation the concentrations c1(Z1) and
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c2(Z2) at either side of the interface are assumed to be related by an equilib-
rium law, like for example the Henry’s law for gas absorption. The diffusion
component is conserved at the interface so a jump condition can be expressed
as:

D1(
∂c1
∂z1

)z1=Z1 −D2(
∂c2
∂z2

)z2=Z2 + c1(Z1)
dZ1

dt
− c2(Z2)

dZ2

dt
= 0 (5.159)

Since by assumption there is a constant proportionality between the rates of
movement of the two media relative to the interface, it follows that:

Z2 = Constant × Z1 (5.160)

The solution to the diffusion problem has the same form as that for the con-
ventional Fick’s second law (5.156):

c1i∞ − c1i

c1i∞ − c1i0
= 1 − erf(

z1

2
√
D1t

) (5.161)

where c1∞ and c10 are given by the initial and boundary conditions:

t = 0, z1 > 0, c1i = c1i∞,
t > 0, z1 = 0, c1i = c1i0.

Similarly, for medium 2 we get:

c2i(−∞) − c2i

c2i(−∞) − c2i0
= 1 + erf(

z2

2
√
D2t

) (5.162)

where c2i(−∞) and c20 are given by the initial and boundary conditions:

t = 0, z2 < 0, c2i = c2i(−∞),
t > 0, z2 = 0, c2i = c2i0.

Eliminating the unknown interface quantities using the equilibrium relation
and the rates of movement of the two media relative to the interface, the
component mass jump condition can be used to calculate the position of the
interphase.

Danckwerts [28] mentioned a few examples of chemical engineering pro-
cesses that might be described in this way. However, in chemical reaction
engineering this modeling approach is merely of mathematical interest, as it
is rarely used for practical applications because of the numerious restrictions
involved. For this reason the method is not further elucidated in this book.

5.3.4 Heat Transfer Described by Fourier’s Law

Fourier’s law of heat conduction states that heat transfer by molecular inter-
actions at any point in a solid or fluid is proportional in magnitude and coin-
cident with the direction of the negative gradient of the temperature field [48]:
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q = −k∇T (Fourier’s law) (5.163)

Fourier’s law is the simplest form of a general energy flux and is strictly
applicable only when the system is uniform in all respects except for the
temperature gradient, that is, there are no mass concentration gradients or
gradients in other intensive properties.

In general, there could occur more than one driving force in a conductive
transport process. Given a system with gradients of temperature, pressure,
mass concentration, magnetic field strength, and so on, there is no a priori
justification for ignoring the possibility that each of these gradients might
contribute to the energy flux. The simplest expression that could describe
this relationship would be a linear combination of terms, one for each of
the existing potential gradients. Experience shows that there are, in fact,
measurable coupled effects, such as energy fluxes due to mass concentration
gradient, and that this general form of the linear rate equation is necessary
under certain rare conditions. The relationships between the coefficients of
this equation have been the subject of several investigations. This field of
science is called irreversible thermodynamics [75].

5.3.5 Heat and Mass Transfer Coefficient Concepts

Fairly rigorous expressions for the interfacial heat and mass transfer terms are
defined in sect 3.3 for the different averaging methods commonly applied in
chemical reactor analysis. However, since the modeling concepts are analogous
for the different averages, we choose to examine these constitutive equations
in the framework of the volume averaging method descibed in sect 3.4.1. This
modeling approach is used extensively in reactor analysis because the basic
model derivation is intuitive and quite easy to understand.

Physically, the interfacial heat and mass transfer terms occuring in the
averaged model equations described in sect 3.3 represent advection of an in-
terfacial quantity of phase k due to the relative motion of the interface, as
proposed by Ishii [61] making a provisional model for stratified flows in nu-
clear reactor engineering. It is noted that in these units bulky quantities of
fluid mass are transferred accross the interface due to phase change or var-
ious fragmentation/disintegration mechanisms (e.g., evaporation, condensa-
tion, boiling, liquid film fragmentation and disintegration, jet fragmentation,
fluid particle fragmentation, etc.).

However, this modeling approach is not necessarily convenient for the pur-
pose of describing dispersed reactive flows in general. The use of mass weighted
interfacial fluxes is certainly not applicable treating multicomponent reac-
tive systems since the rigorous reaction kinetics and thermodynamic models
normally operates on a molar basis. Besides, in dynamic cases the classical
interfacial heat and mass transfer theories (e.g., the hypothetical stagnant
two-film model is commonly used) one imagines resistances to both heat and
mass transfer on both sides of the interface, and that thermodynamic equilib-
rium prevails at the interface only, thereby the bulk phases are not necessarily
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uniform at steady state. Moreover, it is emphasized that in these theories the
interface is generally assumed to be stagnant, vI = 0. In reaction engineering
the possibility of describing the movement of the interfaces is not considered
important, in the sence that the complexity of such an approach will lead
to impracticable computational costs and little gain in understanding and
physical modeling of the important chemical processes.

The definitions of the heat and mass transfer fluxes are thus merely based
on empirical arguments, so in the literature there are given more than one
way to interpret the transfer coefficients [15, 139]. Basically, the transfer coef-
ficients are either treated as an alternative model to the fundamental diffusion
models (i.e., the Fourier’s and Fick’s laws) or the transfer coefficients are tak-
ing both diffusive and convective mechanisms into account through empirical
parameterizations. However, in reaction engineering practice the distingtion
between these approaches is rather blurred so it is not always clear which of
the fundamental transport processes that are actually implemented.

The advantage of working in terms of the traditional joint diffusive and
convective flux concept is that the contribution of convection is automatically
taken into account and we do not need separate models for the interfacial
transfers due to phase change. The disadvantage is that the transfer coef-
ficients show a more complicated dependence upon concentration and mass
transfer rates.

In a scientific view the loss in physical rigor might outweigh the possi-
ble gain in computational ease [139]. Nevertheless, in most chemical reactor
analysis the transfer coefficients are defined in terms of the combined fluxes
including both diffusive and convective contributions [27].

In the following sections a survey of the elementary diffusion theories that
are determining the basis for the mass transfer coefficient concepts is given. No
heat and mass transfer models dealing with simultaneous chemical reactions
are considered to maintain attention to the fundamental principles.

Mass Transfer in regions close to a stagnant Interface

The description of the interfacial transport processes in terms of mass transfer
coefficients is an approximate engineering concept that normally results in
simpler mathematical problems than the alternative description in terms of
the more fundamental Fick’s law.

The definition of the mass transfer coefficient is thus based on an over-
simplified picture of the actual physics. The mass transfer coefficient concept
relies on the hypothesis that the changes in concentrations are limited to two
hypothetical stagnant films, one on each side of the stagnant interface. The
transfer flux is thus transfering mass between the interface and the well mixed
bulk solution. The amount of matter transferred is expected to be proportional
to the concentration difference and the interfacial area. The proportionality
coefficient, kc, is called the mass transfer coefficient. The mass transfer coef-
ficient is usually defined by the following flux relation:
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〈Ni〉AI
= kc

(

〈ci,k〉AI
− 〈ci,k〉Vk

)

(5.164)

where 〈Ni〉AI
is the flux at the interface in (mol/sm2), kc is the mass transfer

coefficient in (m/s), and (〈ci,k〉AI
− 〈ci,k〉Vk

) is the concentration difference
(driving force) in (mol/m3).

Correspondingly, the mean interfacial mass flux is assumed to be propor-
tional to the difference between the interfacial average and the intrinsic volume
average of the quantity determing the driving force of the fluxes [110, 109].

The species transfer can thus be expressed as a mass flux 〈Ni,k〉AI

(kg/sm2) in line with (3.180), simply by multiplying the conventional mole
flux by the molecular weight Mωi

:

〈ni,k〉AI
= Mωi

〈Ni,k〉AI
= kc

(

〈ρi,k〉AI
− 〈ρi,k〉Vk

)

(5.165)

where (〈ρi,k〉AI
− 〈ρi,k〉Vk

) is the concentration difference (driving force) in
(kg/m3).

It is noted that although the combined mole and mass fluxes are related as
ns = Mws

Ns, when there are negligible convection fluxes as calculated either
by mole or mass averaged velocities the corresponding diffusive fluxes are not
necessarily related in the same way since: js 
= Mws

J∗
s = j∗s.

The concentration difference can also be re-defined in different ways, thus
there exists a variety of modifications of the basic mass transfer coefficient
definition as well. Therefore, care should to be taken to ensure that the mass
transfer coefficient parameterizations adopted for modeling purposes, corre-
spond to the model formulation used.

The mass transfer coefficient concept is usually less accurate than Fick’s
law, but it is very useful for practical problems were only average concentra-
tions are available.

The Mole Flux Equation for an Ideal Gas

The driving force is usually defined as a concentration difference between
the interface and the bulk phase. For gases, however, it is more common to
use the pressure difference as the driving force. We can thus formulate two
different definitions of the mass transfer flux, and then derive an expression
for the relation between the concentration based and the pressure based mass
transfer coefficients.

The flux is the same, so the definitions must be equal:

Rni,k
= JΓkV

i,k + Jj
i,k = Mωi

kp

(

〈pi,k〉AI

〈Tk〉VK

〈Tk〉AI

− 〈pi,k〉Vk

)

(5.166)

where kc and kp are the mass transfer coefficients defined with concentration
and pressure as the driving force, respectively. 〈ρi,k〉AI

and 〈ρi,k〉Vk
are the
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mass concentrations at the interface and bulk-face in (kg/m3). 〈pi,k〉AI
and

〈pi,k〉Vk
are the pressures at the interface and in the bulk phase having the

unit (Pa).
The concentration and pressure are related by the equation of state for an

ideal gas:
c =

n

V
=

p

RT
(5.167)

where V is the volume in (m3) and R is the universal gas constant in
(J/Kmol).

The relation between the different mass transfer coefficients is:

kp =
kc

R〈Tk〉Vk

(5.168)

It is thus possible to express the flux as:

〈Ni〉AI
=

kc

R〈Tk〉Vk

(

〈pi,k〉AI

〈Tk〉VK

〈Tk〉AI

− 〈pi,k〉Vk

)

(5.169)

Mass Transfer Across a Stagnant Interface

In the context of reactor technology, mass transfer across an interface means
mass transfer from one well mixed bulk phase into another well mixed bulk
phase. This case occurs more frequently than mass transfer from an interface
into one bulk phase, which we have discussed above.

Mass transfer across an interface between two well mixed bulk phases can
then be described in terms of the flux relation (henceforth for convenience we
drop the averaging symbol):

Ni = KcΔci (5.170)

where Ni is the solute flux relative to the interface in (mol/sm2), Kc is the
overall mass transfer coefficient in (m/s) and Δci is the concentration differ-
ence in (mol/m3).

Note that we can express the flux using either the concentration difference
related to the phase at the left hand-side of the interface or the other concen-
tration difference related to the phase at the right-hand side of the interface.
In this way two different overall mass transfer coefficients can be defined for
the twophase mixture.

To derive a relation for the overall mass transfer coefficient we consider a
gas-liquid interface, as sketched in Fig 5.15. Formulate the expressions for the
fluxes at both sides of the interface and relate the two unknown interfacial
concentrations to each other by use of an equilibrium relation like Henrys law.
The flux relations can then be combined in order to eliminate the interfacial
concentrations obtaining an overall driving force.

It is further assumed that within the system containing the two stagnant
1D films steady state has been reached, so that the fluxes at both sides of
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Fig. 5.15. Mass transfer across a gas - liquid interface.

the interface are equal. It is also assumed that the interface processes are in
a state of thermodynamic equilibrium.

The species mole flux at the gas side can be expressed as:

Ni = kg(piI − pib) (5.171)

whereas the flux at the liquid side can be expressed as:

Ni = kl(cib − ciI) (5.172)

The equilibrium processes at a dilute interface is usually described using
Henrys law:

piI = HiciI (5.173)

where the Hi denotes the Henry law constant for species, i. The flux across
the interface can be expressed in terms of the concentration difference at the
liquid side:

Ni = KL(cib − c∗i ) (5.174)

where Kl is the overall liquid-side mass transfer coefficient.
The Kl coefficient is defined by:

KL =
1

1/kl + 1/kgHi
(5.175)
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and c∗i is the hypothetical liquid phase concentration which would be in equi-
librium with the bulk gas. This concentration is calculated from Henry’s law:

c∗i =
pib

Hi
(5.176)

The flux across the interface could alternatively be expressed in terms of
the gas side concentration difference:

Ni = KG(p∗i − pib) (5.177)

where Kg is the overall gas-side mass transfer coefficient, given by:

KG =
1

1/kG + Hi/kL
(5.178)

and p∗i is the hypothetical gas phase concentration which would be in equilib-
rium with bulk liquid:

p∗i = Hicib (5.179)

Parameterization of the Engineering Transfer Coefficients

In this section the formal mathematical concepts for deriving the engineering
transfer coefficients are examined6.

The basic theory is throughly discussed by Astarita et al [6], Bird at al
[15], Hines and Maddox [58], Cussler [27], Middleman [102], Arpaci et al [5],
Sherwood et al [134] and Sideman and Pinczewski [135]. These texts might
be recommended for supplementary studies.

Heat and mass transfer coefficients are usually reported as correlations in
terms of dimensionless numbers. The exact definition of these dimensionless
numbers implies a specific physical system. These numbers are expressed in
terms of the characteristic scales.

Correlations for mass transfer are conveniently divided into those for fluid
- fluid interfaces and those for fluid - solid interfaces. Many of the correlations
have the same general form. That is, the Sherwood or Stanton numbers con-
taining the mass transfer coefficient are often expressed as a power function
of the Schmidt number, the Reynolds number, and the Grashof number.

6 The methods of completely empirical experimentation and dimensional analysis
are very important in engineering practice but excluded from this survey as these
methods are well known and described in most introductory textbooks on unit
operations in chemical engineering.

In principle dimensional analysis consists in an algebraic treatment of the
symbols for units, and this method is sometimes considered intermediate between
formal mathematical development and a completely empirical study.

These methods are used to attack problems for which no mathematical closure
equations can be derived.
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The formulation of the correlations can be based on dimensional analysis
and/or theoretical reasoning. In most cases, however, pure curve fitting of
experimental data is used. The correlations are therefore usually problem
dependent and can not be used for other systems than the one for which
the curve fitting has been performed without validation. A large list of mass
transfer correlations with references is presented by Perry [113].

The dimensionless numbers commonly used in correlations of heat and
mass transfer coefficients are listed below (e.g., [134], chap 5.2; [27], p 224;
[60], pp 355-356):

The Sherwood number , Sh = kcl/D, that determine the ratio between the
effective mass transfer velocity and the molecular diffusivity (i.e., a di-
mensionless concentration gradient at the interface).

The Nusselt number , Nu = hl/k, that determine the ratio between the
effective heat transfer velocity and the molecular conductivity (i.e., a di-
mensionless temperature gradient at the interface).

The Stanton number for mass, Stm = kc/vz,av, that determine the ratio
between the mass transfer velocity and the flow velocity, a modified Sher-
wood number.

The Stanton number for heat, Sth = h/(CP ρvz,av) = Nu
RePr , that determine

the ratio between the convective heat transfer flux at the interface and
the thermal capacity of the fluid, a modified Nusselt number.

The Reynolds number , Re = ul/ν, that determine the ratio between the
inertia force and the viscous force.

The Lewis number, Le = α/D, that determine the ratio between the diffu-
sivity of heat and the diffusivity of mass.

The Prandtl number, Pr = ν/α, that determine the ratio between the diffu-
sivity of momentum and the diffusivity of heat.

The Péclet number, Pe = vz,avl/D = RePr, that determine the ratio be-
tween the flow velocity and the mass diffusion velocity.

The Schmidt number, Sc = ν/D, that determine the ratio between the kinetic
viscosity or the diffusivity of momentum and the molecular diffusivity of
mass.

The Grashof number, Gr = l3Δρg/ρν2, that determine the ratio between the
buoyancy force and the viscous force for free convection problems.

where l is a characteristic length, which has to be chosen for the given
system under consideration, and g is the gravitational acceleration.

The heat and mass transfer fluxes at the interface are influenced by
the fluid dynamics of the phases near the interface. In most situations the
flow in this region is so complicated that the governing equations cannot be
solved without introducing simplifying assumptions. The fluid dynamic model
adopted should, however, still be able to capture the main characteristics of
the actual flow, as the heat and mass transfer coefficients may be very sensitive
upon these variables.
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We may now distinguish between two conceptually different approaches
for incorporating the effects of the actual flow phenomena into the coefficient
parameterizations. First, we have the semi-empirical chemical engineering the-
ories using simplified relations determining imaginative flow patterns. These
models are physical re-constructions, which are more easily analyzed than
the actual flow situation. Unfortunately, these relations often contain several
parameters that need to be fitted to experimental (input-output) data. Sec-
ond, we have the more formal mechanical engineering approach that is based
on analytical solutions of the governing equations for rather idealized flows
systems. Although the resulting parameterizations are strickly only valid for
the particular idealized flow system for which they were derived, the rela-
tions obtained are often successfully applied describing complex flows as well.
For turbulent flows, most of the concepts available determining the fluxes
close to solid surfaces were originally developed determining interfacial heat
transfer fluxes for single component flow calculations. These concepts have
later been extended to mass transfer problems by use of a so-called similarity
hypothesis.

The film theory

The film theory is the simplest model for interfacial mass transfer. In this case
it is assumed that a stagnant film exists near the interface and that all resis-
tance to the mass transfer resides in this film. The concentration differences
occur in this film region only, whereas the rest of the bulk phase is perfectly
mixed. The concentration at the depth l from the interface is equal to the
bulk concentration. The mass transfer flux is thus assumed to be caused by
molecular diffusion through a stagnant film essentially in the direction normal
to the interface. It is further assumed that the interface has reached a state
of thermodynamic equilibrium.

The mass transfer flux across the stagnant film can thus be described as
a steady diffusion flux. It can be shown that within this steady-state pro-
cess the mass flux will be constant as the concentration profile is linear and
independent of the diffusion coefficient.

Consider a gas-liquid interface, as sketched in Fig 5.16. The mathematical
problem is to formulate and solve the diffusion flux equations determining
the fluxes on both sides of the interface within the two films. The resulting
concentration profiles and flux equations can be expressed as:

The concentration profile within the gas phase resembles (5.150) and is ex-
pressed in terms of species partial pressure:

pi = pi0 +
z

lG
(piI − pi0) (5.180)

The diffusive flux yields:

J∗
i = −DG

dpi

dz
=

DG

lL
(pi0 − piI) (5.181)
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Fig. 5.16. Gas-liquid interface - Film theory.

The mole concentration profile within the liquid phase resembles (5.150) and
is given by:

ci = ciI +
z

lL
(ci0 − ciI) (5.182)

The corresponding diffusive flux yields:

J∗
i = −DL

dci

dz
=

DL

lL
(ciI − ci0) (5.183)

By comparing the equations determining the diffusive fluxes with the cor-
responding definitions of the mass transfer coefficients, we obtain the rela-
tionships between the mass transfer coefficients and the diffusion coefficients.
As before we assume that the mass transfer rate is low, so that the flux is
considered purely diffusive.

The definition of the mass transfer coefficient can thus be expressed as:

Ni = kg(pi0 − piI) = kl(ciI − ci0) (5.184)

The corresponding diffusive flux can be expressed using Ficks law:

Ni = J∗
i =

DG

lG
(pi0 − piI) =

DL

lL
(ciI − ci0) (5.185)

The relationships between the mass transfer and diffusion coefficients yield:
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kl =
DL

lL
(5.186)

kg =
DG

lG
(5.187)

In dimensionless form, the relations can be expressed in terms of a Sherwood
number:

Sh =
kcl

D
(5.188)

determining the ratio between the mass transfer and diffusion rates.
The film model can then be expressed as:

Sh = 1 (5.189)

The result obtained from the film theory is that the mass transfer coefficient
is directly proportional to the diffusion coefficient. However, the experimen-
tal mass transfer data available in the literature [6], for gas-liquid interfaces,
indicate that the mass transfer coefficient should rather be proportional with
the square root of the diffusion coefficient. Therefore, in many situations the
film theory doesn’t give a sufficient picture of the mass transfer processes at
the interfaces. Furthermore, the mass transfer coefficient dependencies upon
variables like fluid viscosity and velocity are not well understood. These de-
pendencies are thus often lumped into the correlations for the film thickness,
l. The film theory is inaccurate for most physical systems, but it is still a
simple and useful method that is widely used calculating the interfacial mass
transfer fluxes. It is also very useful for analysis of mass transfer with chem-
ical reaction, as the physical mechanisms involved are very complex and the
more sophisticated theories do not provide significantly better estimates of
the fluxes. Even for the description of many multicomponent systems, the
simplicity of the model can be an important advantage.

For heat transfer the film theory is the most commonly used model, and the
physical picture of a laminar film in which the whole temperature difference
is situated leads to a result analogous to the mass transfer coefficient model
[5]. After integrating Fourier’s law over the film, a comparison with the heat
transfer coefficient model (5.126) yields:

q =
k

l
(TS − Tf ) (5.190)

h =
k

l
(5.191)

Nu =
hl

k
= 1 (5.192)

where k denotes the conductivity of the fluid, l the film thickness, h the
convective heat transfer coefficient, and TS and Tf refer to the surface and
fluid temperatures, respectively.
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The Surface-Renewal Theories

The surface-renewal models intend to provide an improved representation of
the physical interface phenomena compared to the basic film theory. The
surface-renewal models are based on the well known idea that turbulent flows
consist of small fluid elements or eddies that may form discrete entities having
certain characteristic flow properties. Within the interface region these fluid
elements are arriving from the bulk phase and after residing at the interface
for a period of time (the exposure time) they are replaced and mixed with
the bulk fluid again, as sketched in Fig 5.17. The replacement of the eddies is
caused by the turbulence properties of the flow. During the exposure time mass
exchange between the fluid element on one side and the adjoining phase on
the other side due to unsteady diffusion processes, and the interfacial element
can be treated as a semi-infinite slab since the exposure time is less than the
time required for diffusive transport across the whole slab. The bulk of both
phases are assumed to be well mixed.

Excellent reviews on the surface-renewal theories are given by Sideman
and Pinczewski [135], Astarita et al [6], and Thomson [153].

The Penetration Theory

The penetration theory can be viewed as the original surface-renewal model.
This model was formulated by Higbie [57]. This model is based on the assump-
tion that the liquid surface contains small fluid elements that contact the gas

Position z

LiquidGas

Interfacial
element

Well mixed
bulk region

iI

ib

c

c

pi

ib

ibc

Fig. 5.17. The principles of Surface-Renewal theories.
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phase for a time that is equal for all elements. After this contact time they
penetrate into the bulk liquid and each element is then replaced by another
element from the bulk liquid phase. The basic mechanism captured in this
concept is that at short contact times, the diffusion process will be unsteady.
Considering that the fluid elements may diffuse to an infinite extend into
the liquid phase, the model formulation developed earlier for diffusion into
a semi-infinite slab can be applied describing this system. After some time
the diffusion process will reach a steady state, thus the penetration theory
predictions will then correspond to the limiting case described by the basic
film theory. However, when the transient flux development is determining a
notable amount of the total flux accumulated, the two models will give rise
to different mass transfer coefficients.

The concentration profile resembles (5.156) and can be expressed by:

ci − ciI

ci − cil
= 1 − erfζ =

2√
π

∫ ζ

0

e−ζ2
dζ (5.193)

and the diffusive flux can be expressed by:

J∗
i =

√

D

πt
e−z2/4Dt(ci − cil) (5.194)

where the instantaneous interfacial diffusion flux (i.e., at z = 0) resembles
(5.158) and is given by:

J∗
i |z=0 =

√

D

πt
(ci − cil) (5.195)

This is the solution for an instantaneous flux rate at the interface, since
we are considering dilute solutions any diffusion-induced convection can be
neglected. This means that the total mole flux is equal to the diffusion flux,
and that we can write the instantaneous mass transfer rate directly in the
form derived for the diffusion flux:

Ni(t)|z=0 =

√

D

πt
(ci − cil) (5.196)

The instantaneous mass transfer rate is expressed as a function of time.
In order to calculate an average mass transfer coefficient we need to average
the instantaneous coefficient over the total exposure time period. To do this
we need to know the age distribution function, which represents the fraction
of elements having ages between t and t + dt at the surface. In the penetra-
tion theory, it is assumed that all the elements reside at the interface for a
time period of the same length. As a consequence of this assumption the age
distribution function is [6]:

E(t) =
1
te

t ≤ te (5.197)
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E(t) = 0 t > te (5.198)

where te is a fixed contact time (s).
The averaged mass transfer rate yields:

〈Ni〉te =
∫ te

0

Ni(t)|z=0E(t)dt (5.199)

〈Ni〉te = 2
√

D

πte
(ci − cil) (5.200)

Based on this model a relation between the mass transfer and diffusion
coefficients can be expressed as:

kc = 2
√

D

πte
(5.201)

The mass transfer coefficient parameterizations based on (5.201) can be
written in terms of dimensionless groups. Two examples are listed here:

Sh =
kl

D
=

(

6
π

)1/2 (

lvx

ν

)1/2
( ν

D

)1/2

[27] (5.202)

St =
k

vx
= (const.)

(

μ

ρD

)−1/2 (

Lvxρ

μ

)−1/2

[6] (5.203)

The exposure time, te, equals the relationship between the penetration
depth and the characteristic velocity. This theory predicts that the mass trans-
fer coefficient is proportional to D1/2, which indicates that the penetration
model is more realistic than the film theory. This model contains a fitting pa-
rameter, the contact time te, into which all details on the true fluid dynamics
are lumped.

An analogue heat transfer coefficient relation has been derived by the
penetration concept. The heat transfer theory is reviewed by Thomson [153].

The Danckwerts surface renewal model

The classical Danckwerts surface-renewal model is analogous to the penetra-
tion theory. The improvement is in the view of the eddy replacement process.
Instead of Higbies assumption that all elements have the same recidence time
at the interface, Danckwerts [29] proposed to use an averaged exposure time
determined from a postulated time distribution. The recidence time distribu-
tion of the surface elements is described by a statistical distribution function
E(t), defined so that E(t)dt is the fraction of the interface elements with age
between t and t+ dt. The rest of the formulation procedure is similar to that
of the penetration model.
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The normalized age distribution function was given by

E(t) =
1
τ

exp
(

− t

τ

)

= s exp(−st) (5.204)

assuming that the rate of dissapearance of surface elements of a certain age
is proportional to the number of elements of the same age. s is the average
surface renewal rate which is equal to the reciprocal of the average residence
time of the elements τ .

The averaged mass transfer rate is defined by:

Ni =
∫ te

0

ni(t)|z=0E(t)dt (5.205)

Ni =

√

D

τ
(cil − cib) (5.206)

In this case the relation between mass transfer and diffusion coefficient can
be expressed as:

kc =

√

D

τ
=

√
Ds (5.207)

The surface-renewal theory intends to provide a better representation of
the physical mechanisms than the penetration theory, but it predicts the same
dependency of the mass transfer coefficient upon the diffusion coefficient. The
penetration theory can thus be looked upon as a special case of the sur-
face renewal theory where the distribution function takes the form of (5.204).
Moreover, both theories also contain an unknown fitting parameter and are
thus in practice equivalent. For the quantitative determination of the transfer
coefficient we need to relate s, τ or te to the measurable parameters of the
system under consideration. For this reason these concepts have no predictive
value.

The original Danckwerts model has later been extended to relate the re-
newal rate s to many flow parameters, and to account for the existence of the
micro scale flow of the fluid within the individual eddies. Further modifications
relate to the fact that not all the penetrating eddies reach the whole way to
the interface. Many model extensions have thus been developed based on the
basic surface-renewal concept. A review of these models is given by Sideman
and Pinczewski [135]. The various extensions are motivated by the inherent
assumptions regarding, the governing equations, the boundary conditions, the
age distribution function and/or the mean contact time.

An analogue heat transfer coefficient relation has been derived by the
surface renewal concept. The heat tranafer theory is reviewed by Thomson
[153].

Laminar Boundary Layer Theory - The Integral Method

The integral boundary layer method for determining the transfer coefficients
is explained in this section.
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The basic boundary layer theory has been summarized in many textbooks
in chemical engineering, among them the books of Hines and Maddox [58],
Incropera De Witt [60], Cussler [27], Middleman [102] and Bird et al [15] are
considered very informative.

While the film and surface-renewal theories are based on a simplified phys-
ical model of the flow situation at the interface, the boundary layer methods
couple the heat and mass transfer equation directly with the momentum bal-
ance. These theories thus result in analytical solutions that may be considered
more accurate in comparison to the film or surface-renewal models. How-
ever, to be able to solve the governing equations analytically, only very ideal-
ized flow situations can be considered. Alternatively, more realistic functional
forms of the local velocity, species concentration and temperature profiles can
be postulated while the functions themselves are specified under certain con-
straints on integral conservation. From these integral relationships models for
the shear stress (momentum transfer), the conductive heat flux (heat transfer)
and the species diffusive flux (mass transfer) can be obtained.

The prescribed shape of the velocity profile for the fluid flowing parallel
to a flat plate may be expressed as:

vx = a0 + a1y + a2y
2 + a3y

3 (5.208)

The parameters in this expression are assumed to be independent of y the
direction normal to the plate, but may vary with x the direction parallel to
the plate. The velocity profile need to fulfill the following boundary conditions
(i.e., no slip and no pressue variation in the x-direction):

y = 0, vx = 0
∂2vx

∂y2
= 0 (5.209)

y = δ, vx = vx,0
∂vx

∂y
= 0 (5.210)

In this context the momentum boundary layer thickness y = δ is conveniently
defined as the point beyond which the velocity takes on its free stream value7.

The second condition stating that the velocity gradient vanishes at y = δ,
ensures that we obtain a continuous gradient as the velocity attains its free
stream value.

Applying these boundary conditions we can determine the values for the
parameters:

a0 = a2 = 0

a1 =
3
2
vx,0

δ

7 This definition merely represents a simplifying model assumption as opposed to
the conventional definition in which the thickness of boundary layer δ is arbitrarily
taken as the distance away from the surface where the velocity reaches 99% of
the free stream velocity



620 5 Constitutive Equations

a3 = −1
2
vx,0

δ3

These results give the following dimensionless velocity profile:

vx

vx,0
=

3
2

(y

δ

)

− 1
2

(y

δ

)3

(5.211)

The velocity gradient at the wall can then be expressed as:

∂vx

∂y
|y=0 =

3
2δ

(5.212)

At this point it should be kept in mind that δ is an unknown function of x.
The velocity function, vx(x, y), is expressed in terms of the unknown function
δ(x). The main advantage of the integral method is that it is easier to obtain
a solution for δ(x) than to solve the Navier Stokes equations for vx(x, y). A
drawback is that we are using an approximate velocity field which to some
extent reduces the accuracy of the result.

The next step in the procedure is to formulate mass and momentum bal-
ances for an element of the boundary layer, as sketched in Fig 5.18. The mass
balance equates the net rate of mass flow across the two vertical boundaries
to the rate of mass flow across the horizontal boundaries. Assuming no mass
flow across the lower horizontal boundary, the mass balance becomes:

∫ l

0

ρvxdy|x −
∫ l

0

ρvxdy|x+Δx − ρvy,lΔx = 0 (5.213)

Dividing by Δx and letting Δx → 0, gives a relation for vy:

vy,l = − d

dx

∫ l

0

vxdy (5.214)

Fig. 5.18. Balance on fluid element of the laminar boundary layer.



5.3 Interfacial Heat and Mass Transfer Closures 621

The momentum balance states that any difference in x-directed momentum
flow must be equal to the net x-directed shear force acting on the solid surface.
This gives the momentum balance on the element:

∫ l

0

ρv2
xdy|x −

∫ l

0

ρv2
xdy|x+Δx − ρvx,lvy,lΔx = −σwΔx (5.215)

Again, dividing by Δx and letting Δx → 0 gives:

−σw = − d

dx

∫ l

0

ρv2
xdy − ρvx,lvy,l (5.216)

A combination of (5.214) and (5.216) eliminates vy,l, and we may write:

−σw =
d

dx

∫ l

0

(vx,l − vx)ρvxdy (5.217)

Inside the boundary layer, the shear stress is given by Newton’s law of
viscosity:

−σw = μ
∂vx

∂y
|y=0 (5.218)

By combining (5.218), (5.217) and (5.212) we get:

μ
3
2δ

=
d

dx

∫ l

0

(vx,l − vx)ρvxdy (5.219)

By introducing the relation for the velocity profile (5.211) into (5.219)
and performing the integration we get a differential equation for the boundary
layer thickness. In this operation it is convenient to replace l by δ in the upper
limit of the integral. This problem reformulation is allowed as the integrand
vanishes for l > δ because vx = vx,l = vx,0. The integral solution is [27, 102,
15]:

δ
dδ

dx
=

140
13

μ

ρvx,0

This ODE is solved by introducing the following initial condition:

x = 0 δ = 0 (5.220)

The solution is:
δ

x
= 4.64

(vx,0x

v

)−1/2

= 4.64Re−1/2 (5.221)

This means that the fluid mechanics of the problem is solved. The boundary
layer thickness is given as a function of the distance x from the plate edge
through (5.221). Hence, the velocity vx can be calculated from (5.211).

To proceed determining an expression for the mass transfer coefficient, the
same solution method is applied to the corresponding concentration boundary
layer problem.
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Again, a polynomial profile of third order is postulated for the unknown
field:

c = a′0 + a′1y + a′2y
2 + a′3y

3 (5.222)

The parameters are evaluated by applying the concentration boundary
conditions:

y = 0 c = c0
∂2c

∂y2
= 0 (5.223)

y = δc c = 0
∂c

∂y
= 0 (5.224)

In this case we have defined a concentration variable that vanishes beyond
the boundary layer. It is imagined a physical situation in which a species is
dissolving from the surface of a plate and being transported by diffusion and
convection into a fluid that does not contain this species except very near the
plate, as sketched in Fig 5.18.

To satisfy these boundary conditions, the dimensionless concentration pro-
file must have the form:

c

c0
= 1 − 3

2
y

δc
− 1

2

(

y

δc

)3

(5.225)

The concentration gradient at y = 0 can be expressed as:

∂c

∂y
|y=0 = −3c0

2δc
(5.226)

Next, a species mole (or mass) balance is made over the boundary layer ele-
ment in Fig 5.18. The net rate of convection of the species across the vertical
planes of the control volume must be balanced by the rate corresponding to
the flux from the solid surface:

∫ l

0

cvxdy |x −
∫ l

0

cvxdy |x+Δx −clvy,lΔx = −nwΔx (5.227)

The species mole (mass) flux at the interface can be defined both in terms of
Fick’s first law and the mass transfer coefficient concepts:

−Nw = D
∂c

∂y
|y=0= − d

dx

∫ δc

0

cvxdy = −kc(c0 − cδc
) (5.228)

in which the upper integration limit y = l has been replaced by y = δc. It
is imagined that beyond the upper edge of the concentration boundary layer
c = 0 and vx,l = 0, provided that the concentration boundary layer thickness
is always thinner than the hydrodynamic boundary layer.

It occurs that vx is a known function of x and y/δ as given by (5.211) and
(5.221), c is given in terms of y/δc by (5.225) and the concentration gradient
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at y = 0 is given by (5.226), hence (5.228) yields a relationship between δc

and δ. With the additional assumption that δc � δ, the species mole (mass)
balance problem reduced to:

4
3
x
d

dx

(

δc

δ

)3

+
(

δc

δ

)3

≈ D

ν
= Sc−1 (5.229)

where Sc is the Schmidt number.
Besides, if δc is smaller than δ, the former may also develop slower, thus

the following boundary condition is induced [27]:

x = 0
δc

δ
= 0 (5.230)

Integration now gives:
(

δc

δ

)3

=
D

ν
+ bx−3/4 (5.231)

Because ( δc

δ ) does not become infinite as x approaches zero, the term contain-
ing x vanishes as b must be zero [13].

The momentum boundary layer thickness δ can now be eliminated by use
of (5.221):

δc

x
= 4.64

(

ν

vx,0x

)1/2 (

D

ν

)1/3

= 4.64Re−1/2Sc−1/3 (5.232)

Finally, the concentration boundary layer problem is almost solved as the
mass transfer coefficient kc can be calculated from (5.228):

−Nw = kcc0 = D
∂c

∂y
|y=0 = −D3c0

2δc
(5.233)

Eliminating δc by (5.232), we find:

Nw = 0.332
Dc0
x

(xvx,0

ν

)1/2 ( ν

D

)1/3

(5.234)

Comparing this result with the first two terms in (5.233), we get a relation
for the local value of the mass transfer coefficient:

kcx

D
= 0.332

(xvx,0

ν

)1/2 ( ν

D

)1/3

(5.235)

By averaging over the plate length L, an average mass transfer coefficient
is obtained 〈kc〉L = 1

L

∫ L

0
kc(x)dx. This quantity can be calculated from a

relation expressed in terms of an averaged Shearwood number:

〈Sh〉L =
〈kc〉LL

D
= 0.664

(

Lvx,0

ν

)1/2
( ν

D

)1/3

= 0.664Re1/2Sc1/3 (5.236)
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The integral method thus leads to a mass transfer coefficient which vary with
the 2/3 power of the diffusion coefficient. This parameter dependency is be-
tween the linear one of the film theory and the square-root variation of the
penetration and surface-renewal theories.

It is noted that the integral method gives only approximate values for the
mass transfer coefficient as the model derivation is based on several simplifying
assumptions regarding the concentration and velocity profiles. Nevertheless,
the given relation has been confirmed by experiments for laminar boundary
layer flows over a flat plate (e.g., [134], p 80 and p 201; [27], p 345).

Based on the boundary layer analysis for laminar flow past a plate we might
suggest that the mass transfer coefficient generally depends on the Reynolds
number and the Prandtl number:

Sh = A RemScn (5.237)

It is possible to show adopting an analogous procedure that for heat transfer
the Nusselt number depends on the Reynolds and Prandtl number in a similar
manner (e.g., [134], p. 160):

Nu = A RemPrn (5.238)

The Reynolds analogy states that Sc = Pr = 1, indicating that the transfer
coefficients are functions of Re only.

Each of the modified Reynolds analogy relations (5.237) and (5.238) in-
cludes an additional Sc and Pr dependency, respectively. These relationships
are often referred to as the Chilton-Colburn analogies [20, 60] (p 364).

Experimental analyses show that (5.237) and (5.238) can be used for a
number of convective heat and mass transfer systems, and might be sufficiently
accurate even for problems involving complex geometries [60].

Turbulent Boundary Layer Theory - Eddy Viscosity Consept

In this section the heat and mass transport coefficients for turbulent boundary
layers are examined. In this case the model derivation is based on the governing
Reynolds averaged equations. In these equations statistical covariances appear
which involve fluctuating velocities, temperatures and concentrations. The
nature of these terms is not known a priori and their effects must by estimated
by semi-empirical turbulence modeling. The resulting parameterizations allow
us to express the unknown turbulent fluctuations in terms of the mean flow
field variables. It is emphasized that the Reynolds equations are not actually
solved, merely semi-empirical relations are derived for the wall fluxes through
the inner boundary layer.

Due to experimental diffculties, turbulence closures exist only for the tur-
bulent momentum transport phenomena. In particular, approximate semi-
empirical models for the turbulent viscosity parameter have been derived. To
achieve constitutive relations for the corresponding heat and mass transport
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properties further empiricism is introduced through the analogy theories for
turbulent flows. The simplest of these analogies are frequently referred to as
the Reynolds analogy for turbulent flows.

The basic similarity hypothesis states simply that the turbulent transport
processes of momentum, heat and mass are caused by the same mechanisms,
hence the functional properties of the transfer coefficients are similar. The
different transport coefficients can thus be related through certain dimension-
less groups. The closure problem is thus shifted and henceforth consist in
formulating sufficient parameterizations for the turbulent Prandtl (Prt)- and
Schmidt (Sct) numbers.

The modeling procedure can be sketched as follows. First an approximate
description of the velocity distribution in the turbulent boundary layer is re-
quired. The universal velocity profile called the Law of the wall is normally
used. The local shear stress in the boundary layer is expressed in terms of
the shear stress at the wall. From this relation a dimensionless velocity pro-
file is derived. Secondly, a similar strategy can be used for heat and species
mass relating the local boundary layer fluxes to the corresponding wall fluxes.
From these relations dimensionless profiles for temperature and species con-
centration are derived. At this point the concentration and temperature dis-
tributions are not known. Therefore, based on the similarity hypothesis we
assume that the functional form of the dimensionless fluxes are similar, so
the heat and species concentration fluxes can be expressed in terms of the
momentum transport coefficients and velocity scales. Finally, a comparison
of the resulting boundary layer fluxes with the definitions of the heat and
mass transfer coefficients, indiates that parameterizations for the engineering
transfer coefficients can be put up in terms of the appropriate dimensionless
groups.

The reports by Sideman and Pinczewski [135] and Arpaci and Larsen [4]
provide extensive reviews of the analogy theories.

Turbulent Flow Fields
The application of Navier-Stokes equations to turbulent flows are discribed

in sect 1.2.7. The Reynolds averaged equations for incompressible flows are
normally adopted deriving the transfer coefficients for heat and mass.

For convenience the governing Reynolds averaged equations valid for fully
developed turbulent boundary layer flow are listed below [169, 135]. In these
equations several simplifications are made, in particular ∂

∂t = 0 and the dom-
inant flow is in the x-direction so vz = 0. Moreover, the diffusion in the x-
and z-directions are neglected.

The continuity equation:

∂vx

∂x
+

∂vy

∂y
= 0 (5.239)

The momentum transport:
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ρvx
∂vx

∂x
+ ρvy

∂vx

∂y
= −∂p̄

∂x
+

∂

∂y

(

μ
∂vx

∂y
− ρv′xv

′
y

)

(5.240)

The heat transport:

ρCpvx
∂T

∂x
+ ρCpvy

∂T

∂y
=

∂

∂y

(

k
∂T

∂y
− ρCpT ′v′y

)

(5.241)

The species concentration transport:

vx
∂c

∂x
+ vy

∂c

∂y
=

∂

∂y

(

D
∂c

∂y
− c′v′y

)

(5.242)

The Reynolds transport terms (i.e., the terms of the kind v′xv
′
y, T ′v′y and

c′v′y) are the mean rates of transport of momentum, heat, and mass across
the corresponding CV-surfaces of the balanced element by the turbulent ve-
locity fluctuations. This system of equations can not be solved because these
terms are not known. We therefore need additional information regarding the
Reynolds transport terms. We may postulate a model for the momentum
transport terms, intending to relate the Reynolds transport stresses to the
mean flow field variables.

The gradient hypothesis
The turbulent transport processes are often described as diffusive fluxes

being proportional to the mean variable gradient of the transported quantities
. The turbulent transport terms may then be expressed in a form analogous
to their laminar equivalents in accordance with the hypothesis of Boussinesq
[17].

The dominating turbulent fluxes can then be expressed as:

σt = ρv′xv
′
y = −μt

∂vx

∂y
(5.243)

qt = ρCpT ′v′y = −kt
∂T

∂y
(5.244)

Nt = c′v′y = −Dt
∂c

∂y
(5.245)

where μt denotes the turbulent viscosity, kt the turbulent conductivity, and
Dt the turbulent diffusivity.

Although the Boussinesq’s hypothesis does not determine a complete
model for turbulence, its importance lies in the fact that it provides a re-
lationship between the apriori unknown Reynolds transport terms and the
mean flow field variables. To close the model it is necessary to specify the
turbulent coefficients in terms of known quantities.

The molecular and turbulent transport coefficients may be added as a
linear sum of independent contributions determining the effective transport
coefficients.



5.3 Interfacial Heat and Mass Transfer Closures 627

The effective fluxes are thus given by:

σ = −(μ + μt)
∂vx

∂y
(5.246)

q = −(k + kt)
∂T

∂y
(5.247)

Nt = −(D + Dt)
∂c

∂y
(5.248)

In general, in fully developed turbulent flows the turbulent viscosity, conduc-
tivity and diffusivity vary from point to point in the flow field and are many
magnitudes greater than the molecular coefficients.

The existing turbulence models consist of approximate relations for the
μt-parameter in (5.246). The Prandtl mixing-length model (1.356) represents
an early algebraic (zero-equation) model for the turbulent viscosity μt in tur-
bulent boundary layers.

To determine the corresponding coefficients for heat and mass transfer
we need some theoretical prerequisites which were introduced already in
sect 1.3.4. However, it might be convenient to examine and partly repeat
certain relationships before we proceed to the next section.

Momentum Transfer:
It has been shown that there exists a continuous change in the physical
behavior of the turbulent momentum boundary layer with the distance
from the wall. The turbulent boundary layer is normally divided into
several regions and sub-layers. It is noted that the most important region
for heat and mass transfer is the inner region of the boundary layer, since
it constitutes the major part of the resistance to the transfer rates. This
inner region determines approximately 10 − 20% of the total boundary
layer thickness, and the velocity distribution in this region follows simple
relationships expressed in the inner variables as defined in sect 1.3.4.
The ratio between the local shear stress in the boundary layer defined by
(5.246) and the shear stress at the wall given by (1.359), yields:

σ
σw

=
−ρ (ν + νt) du

dy

−ρ (v∗)2
(5.249)

This relation may be rewritten introducing the dimensionless inner vari-
ables:

σ
σw

=
(

1 +
νt

ν

) du+

dy+
= ε+

du+

dy+
(5.250)

Since the shear in the inner region is assumed constant and equal to the
shear stress at the wall (i.e., σ ≈ σw ≈ constant), we get:

dy+

du+
= ε+ =

(

1 +
νt

ν

)

(5.251)
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For fully developed turbulent flow νt

ν � 1, the relation reduces to:

dy+

du+
=

νt

ν
(5.252)

If we combine this relationship with the Prandtl mixing length expression
(1.356) in which the mixing length is approximated by l = κy, we get the
following dimensionless velocity gradient:

du+

dy+
=

1
κy+

(5.253)

After integration, the velocity distribution in the inner region of the
boundary layer appears:

u+ =
1
κ

ln y+ + G (5.254)

The values of κ = 0.4 and G = 5.1 are recommended on the basis of
extensive experimental data [169]. This equation is in satisfactory agree-
ment with the experimental data for most parts of the inner region of the
boundary layer (i.e., in the region where the Reynolds stress is of consider-
ably greater magnitude than the viscous stress). Near the wall where the
molecular viscosity effects predominate is called the viscous sub-layer and
in that thin region the velocity profile is given by u+ = y+. A transition
zone can be identified between the viscous sub-layer and the turbulent
core where both molecular and turbulent transport mechanisms are sig-
nificant. This layer is called a buffer zone. Numerous parameterizations of
the velocity profile in the boundary layer exist on this form. Some of them
are discussed by Sherwood [133] and listed by Sideman and Pinczewski
[135]. The commonly used relationships were proposed by von Karman
[161]. He defined the velocity profile in the form of empirical expressions
relating u+ and y+ for three separate zones of the inner region.
• Viscous sub-layer, 0 < y+ < 5:

u+ = y+ (5.255)

• Buffer zone, 5 < y+ < 30:

u+ = 5.0 ln y+ − 3.05 (5.256)

• Turbulent core, y+ > 30:

u+ = 2.5 ln y+ + 5.5 (5.257)

These relations are often referred to as the universal velocity profile or the
law of the wall .
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Analogies Between Mass, Heat and Momentum Transfer Fluxes
A comparison of the partial differential equations for the conservation

of heat, mass and momentum in a turbulent flow field (5.240), (5.241) and
(5.242) shows that the equations are mathematically similar provided that
the pressure term ∂P

∂x in the momentum equation is negligible [135]. If the
corresponding boundary contitions are similar too, the normalized solution of
these equations will have the same form.

However, to solve the heat and mass transfer equations an additional mod-
eling problem has to be overcome. While there are sufficient measurements
of the turbulent velocity field available to validate the different νt modeling
concepts proposed in the literature, experimental difficulties have prevented
the development of any direct modeling concepts for determining the turbu-
lent conductivity αt, and the turbulent diffusivity Dt parameters. Neverthe-
less, alternative semi-empirical modeling approaches emerged based on the
hypothesis that it might be possible to calculate the turbulent conductivity
and diffusivity coefficients from the turbulent viscosity provided that sufficient
parameterizations were derived for Prt and Sct.

The first model suggested for these dimensionless groups is named the
Reynolds analogy. Reynolds suggested that in fully developed turbulent flow
heat, mass and momentum are transported as a result of the same eddy mo-
tion mechanisms, thus both the turbulent Prandtl and Schmidt numbers are
assumed equal to unity:

Pr t = 1 Sct = 1 (5.258)

Provided that this hypothesis holds the heat and mass transfer rates can be
estimated from the rate of momentum transport.

It is noted that Sideman and Pinczewski [135], among others, have ex-
amined this hypothesis in further details and concluded that there are nu-
merous requirements that need to be fulfilled to achieve similarity between
the momentum, heat and mass transfer fluxes. On the other hand, there are
apparently fewer restrictions necessary to obtain similarity between heat and
low-flux mass transfer. This observation has lead to the suggestion that em-
pirical parameterizations developed for mass transfer could be applied to heat
transfer studies simply by replacing the Schmidt number (Sct = νt

Dt
) by the

Prandtl number (Pr t = νt

αt
) and visa versa.

To proceed we need to put up dimensionless relations for the heat and mass
transfer fluxes in the turbulent boundary layer using a procedure analoguous
to the one applied for the momentum flux (5.249) in which the Boussinesq’s
turbulent viscosity hypothesis is involved.

Heat Transport:
Using Fouriers law, the ratio of the heat flux in the boundary layer (5.247)
and the heat flux at the wall can be expressed as:

q

qw
=

−(k + kt)dT
dy

qw
(5.259)
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A dimensionless temperature, T+, may be defined as:

T+ =
T − Tw

T ∗ (5.260)

Introducing dimensionless variables, we get:

q

qw
= −

(k + kt)T∗u∗

ν
dT+

dy+

qw
=

−ρCP (α + αt)T∗u∗

ν
dT+

dy+

qw
(5.261)

In the latter relation the thermal diffusivity parameters, α and αt, are
defined by:

α =
k

ρCP
and αt =

kt

ρCP
(5.262)

For convenience the corresponding Prandtl numbers, Pr and Prt, can be
introduced:

q

qw
=

−ρCP ( 1
Pr + 1

Prt

νt

ν )T ∗u∗ dT+

dy+

qw
(5.263)

where
Pr =

ν

α
and Prt =

νt

αt
(5.264)

With the given sign convention, the heat flux at the wall can be expressed
by:

qw = −ρCPT
∗u∗ (5.265)

which is merely the defining equation for the temperature scale.
The ratio of the heat fluxes (5.263) can then be expressed by:

q

qw
=

−ρCP ( 1
Pr + 1

Prt

νt

ν )T ∗u∗ dT+

dy+

−ρCPT ∗u∗ = (
1
Pr

+
1

Prt

νt

ν
)
dT+

dy+
(5.266)

in which the dimensionless temperature is given by

T+ =
T − Tw

T ∗ = −(T − Tw)
ρCPu

∗

qw
= −(T − Tw)

CP σw

qwu∗ (5.267)

Species Mole (Mass) Transport:
Using Ficks law, the ratio of the species mole (mass) flux in the boundary
layer (5.247) and the species mole (mass) flux at the wall can be expressed
as:

N

Nw
= −

(D + Dt) dc
dy

Nw
(5.268)

A dimensionless mole (mass) concentration, c+, may be defined as:

c+ =
c− cw

c∗
(5.269)
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Introducing the dimensionless variables, we get:

N

Nw
=

−(D + Dt) c∗u∗

ν
dc+

dy+

Nw
(5.270)

We may reformulate the relation by introducing the Schmidt numbers, Sc
and Sct:

N

Nw
=

−( 1
Sc + 1

Sct

νt

ν )c∗u∗ dc+

dy+

Nw
(5.271)

where
Sc =

ν

D
and Sct =

νt

Dt
(5.272)

With the given sign convention, the species mole (mass) flux at the wall
can be defined as:

Nw = −c∗u∗ (5.273)

which is merely the definition equation for the concentration scale.
The ratio between the species mole (mass) fluxes can then be expressed:

N

Nw
= (

1
Sc

+
1
Sct

νt

ν
)
dc+

dy+
(5.274)

where the dimensionless concentration is given by:

c+ =
c− cw

c∗
= −(c− cw)

u∗

Nw
= −(c− cw)

σw

ρNwu∗ (5.275)

The momentum, heat and species concentration equations (5.250), (5.266)
and (5.274) may now be integrated to express the velocity, temperature, and
concentration distribution in the turbulent boundary layer.

The velocity profile:

u+ =

y+
∫

0

σ
σw

1 + νt

ν

dy+ (5.276)

The temperature profile:

T+ =

y+
∫

0

q
qw

1
Pr + 1

Prt

νt

ν

dy+ (5.277)

The concentration profile:

c+ =

y+
∫

0

N
Nw

1
Sc + 1

Sct

νt

ν

dy+ (5.278)
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It is noted that the upper boundary of the integrals is taken as y = δ > δT ,
where δT is the thickness of the thermal boundary layer for the temperature
profile, and y = δ > δc, where δc is the thickness of the concentration boundary
layer for the concentration profile. Outside the boundary layers the free stream
or completely mixed bulk quantities are set to T = T0 and c = c0, respectively.

Therefore, by adopting the Reynolds analogy for turbulent flows (5.258)
we get:

T+
0 = (T̄W − T̄0)

ρCpu∗

qW
=

δ+
∫

0

dy+

1
Pr + νt

ν

(5.279)

c+0 = (c̄W − c̄0)
u∗

NW
=

δ+
∫

0

dy+

1
Sc + νt

ν

(5.280)

where δ+ = δu∗/ν as can be derived from y+ = yu∗/ν when y = δ.
Combining these two expressions with the definitions of dimensionless

temperature (5.267) and concentration (5.275), and then rearranging these
relations we obtain the general expressions for the heat and mass transfer
coefficients.

The heat transfer coefficient:

h =
qW

(T̄W − T̄0)
=

ρCpu
∗

∫ δ+

0
dy+

1
Pr +

νt
ν

(5.281)

The mass transfer coefficient:

kc =
NW

(c̄W − c̄0)
=

u+

∫ δ+

0
dy+

1
Sc +

νt
ν

(5.282)

Introducing the appropriate dimensionless groups:

Sh =
kcl

D
, Nu =

hl

k
and Re =

ūl

ν
(5.283)

we can generalize the resulting parameterizations for the heat and mass trans-
fer coefficients as given by (5.284) and (5.286) below.

The dimensionless heat transfer coefficient yields [133, 135]:

Nu =

√

fF

2 RePr
∫ δ

0
dy+

1
Pr +

νt
ν

(5.284)

in which the friction velocity (1.359) is expressed in terms of the Fanning
friction factor (3.479):

u∗ =
√

−σw

ρ
=

√

fF

2
u (5.285)
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The dimensionless mass transfer coefficient yields [133] [135]:

Sh =

√

fF

2 ReSc
∫ δ

0
dy+

1
Sc +

νt
ν

(5.286)

The introduction of different parameterizations for the turbulent viscosity
parameter leads to different modifications of the correlations for the dimen-
sionless numbers. By setting the viscous Prandtl and Schmidt number equal
to unity and noting that the integral term in the denominator is simply the
velocity u+ (5.276) that can also be expressed by u+ = u

u∗ =
√

2
fF

, we get
[133, 135]:

Sh = Nu =
fF

2
Re (5.287)

The latter relation may also be expressed in the form ([134], p 163; [60],
p 364):

Stm = Sth =
fF

2
(5.288)

which is by many authors referred to as the Reynolds analogy. This relationship
is based on the assumption that the Prandtl and Schmidt numbers (i.e. for
laminar flow) are equal to unity. The given relation has been compared with
experimental data and found to be appropriate for most common gases, but
not for liquids [134]. For many common gasses D ≈ α ≈ ν, confirming the
assumption that Pr and Sc are equal to unity [27] (p 510). However, for liquids
these numbers may be significantly different. The need to extend the Reynolds
analogy enabling a reliable description of liquid systems lead to the Chilton-
Colburn relation [20], which was mentioned deriving the transfer coefficients
for laminar flow in the previous section:

Sh =
fF

2
ReSc1/3 (5.289)

and
Nu =

fF

2
RePr1/3 (5.290)

For Prandtl numbers other than unity, the integrals in (5.284) and (5.286) are
split into parts depending upon the number of regions needed to appropriately
reproduce the law of the wall. The simplest extension of the basic model is
to split the integral into two parts, thus the expressions for Nu and Sh yield
[133, 135]:

Nu =

√

fF

2 RePr
∫ y+

1
0

dy+
1

1
Pr +

νt
ν

+
∫ δ+

y+
1

dy+
νt
ν

(5.291)

and
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Sh =

√

fF

2 ReSc
∫ y+

1
0

dy+
1

1
Sc +

νt
ν

+
∫ δ+

y+
1

dy+
νt
ν

(5.292)

The analogy calculations with the turbulent Prandtl and Schmidt numbers
other than unity are based on various empirical relations for these dimen-
sionless parameters. However, comparisons with experimental data show that
the parameter values of Sc = Pr = 1 are good first approximations for most
practical applications. No significant improvements have been obtained by the
extended formulations.

Reviews of several extensions of the analogy theory are given in the reports
by Sherwood [133] and Sideman and Pinczewski [135].

Heat and Mass Transfer to the Surface of a Sphere

The mass transfer correlation determining the mass transfer to the surface of
a sphere is commonly referred to as the Frössling equation [50]:

Sh = 2 + 0.6Re1/2Sc1/3 (5.293)

Based on Frösslings development, Ranz and Marshall [121] came to the well
established conclusion that the heat transfer correlation can be expressed in
an analogous manner:

Nu = 2 + 0.6Re1/2Pr1/3 (5.294)

If we study the heat transfer from the surface of a sphere with r = R, that is
immersed in a stagnant fluid we have a process of steady conduction from the
surface of the sphere (r = R) through the fluid, radially outward to r = ∞.
The radial conductive flux is:

qr = −kdT
dr

(5.295)

When we have obtained steady state, the rate of heat transfer (flux times area)
through the surrounding fluid is constant with respect to the radial position:

4πr2qr = −4πkr2 dT

dr
= Constant (5.296)

With the following boundary conditions:

T = TR r = R (5.297)
T = T0 r = ∞ (5.298)

The solution to this problem is the temperature profile:

T = T0 + (TR − T0)
R

r
(5.299)
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By inserting this temperature profile into the flux expression (5.295), we ob-
tain the steady heat flux at the surface r=R:

qR = k
TR − T0

R
(5.300)

It is recollected that in according to Newton’s law of cooling (5.125) the
corresponding definition of the heat transfer coefficient can be expressed as:

qR = h(TR − T0) (5.301)

By comparing the given conductive heat flux relation with the corresponding
definition of the heat transfer coefficient, it is customary to define the heat
transfer coefficient by:

h =
k

R
(5.302)

This h is the convective heat transfer coefficient for pure conduction (assuming
no slip at the surface).

The dimensionless heat transfer coefficient, named the Nusselt number is
defined by Nu = hdp/k, and by combining this with (5.302) we get:

Nu =
hdp

k
=

2hR
k

= 2 (5.303)

This is the appropriate correlation to use when there is heat or mass (i.e.,
substitute Nu by Sh) transfer from a sphere immersed in a stagnant film is
studied, Nu = 2. The second term in (5.294) accounts for convective mech-
anisms, and the relation is derived from the solution of the boundary layer
equations. For higher Reynolds numbers the Nusselt number is set equal to
the relation resulting from the boundary layer analysis of a flat plate:

Nu = 0.6Re1/2Pr1/3 (5.304)

Bird et al [13] (p 647), Hines and Maddox [58] (chap 6.7), Cussler [27],
Middleman [102] and Incropera and DeWitt [60] (p 415), among others,
presents tabulated mass transfer correlations for various problems, including
laminar/turbulent flow, single solid spheres and packed beds.

5.3.6 Heat Transfer by Radiation

In this section a brief introduction to the fundamental concepts of thermal
radiation modeling is given. The main purpose of this survey is to elucidate
the basic assumptions involved deriving the conventional engineering model of
thermal radiation fluxes. To this end the thermal radiation flux is determined
in terms of a heat transfer coefficient.

Explanations of radiation physics and more detailed descriptions of the
concepts of thermal radiation can be found in the books by Long [91], Arpaci
et al [5], Hagen [56], Incropera and DeWitt [60], Siegel and Howel [136], Eckert
and Drake [39], among many others.
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Basic Definitions and Elementary Concepts of Thermal Radiation

Radiative heat transfer or thermal radiation is a distinctly separate mech-
anisms from conduction and convection for the transport of heat. Thermal
radiation is associated with the rate at which energy is emitted by the mate-
rial as a result of its finite temperature. The mechanism of emission is related
to energy released as a result of oscillations or transitions of the many elec-
trons that constitute the material. These oscillations are, in turn, supported
by the internal energy for this reason the temperature drops. The emission of
thermal radiation is thus associated with thermally excited conditions within
the matter.

Since radiation originates due to emission by matter its subsequent trans-
port does not require the presence of any matter. Unlike convection and con-
duction, heat can thus be transfered by thermal radiation through vacuum.
One theory views radiation as the propagation of electro-magnetic waves. Al-
ternatively, radiation may be viewed as the propagation of a collection of
particles termed photons or quanta. Planck [114] developed the quantum me-
chanics which can explain radiation in terms of particles (photon) traveling
with the speed of light. The energy associated with each photon is given by:

E = hν =
hc

λ
(5.305)

where h = 6.6262 × 10−34 (Js) is the Planck constant.
Radiation also possesses the standard wave properties of frequency ν and

wavelength λ. For radiation propagating in a particular medium, the two
properties are related by:

λ =
c

ν
(5.306)

where c is the speed of light in the medium. For propagation in a vacuum,
c0 = 2.998×108 (m/s). The unit of wavelength is normally given in micrometer
(μm).

All states of matter (solids, liquids, and gases) emit thermal radiation. For
gases and for semi-transparent solids, such as glass and salt crystals at ele-
vated temperatures, emission is a volumetric phenomenon. That is, radiation
emerging from a finite volume of matter is the integrated effect of local emis-
sion throughout the volume. In most solids and liquids, radiation emitted from
interior molecules is strongly absorbed by adjoining molecules. Accordingly,
radiation that is emitted from a solid or a liquid originates from molecules
that are within a distance of approximately 1 μm from the exposed surface.
It is for this reason that emission from a solid or a liquid into an adjoining
gas or a vacuum is viewed as a surface phenomenon.

Consider a heated enclosure with surface A and volume V filled with radi-
ating material. If qAdA is defined as the radiant surface energy flux arriving
at dA from a surface element dAS , and the volumentric energy flux qV dV



5.3 Interfacial Heat and Mass Transfer Closures 637

arrives at dA from a volume element dV , then the radiative energy flux from
the entire enclosure arriving at dA is:

qraddA =
∫

AS

qAS
dAS +

∫

V

qV dV (5.307)

Radiation thus leads to energy balances in the form of integral equations.
When radiation is combined with advection and conduction, the combina-
tion of integral and differential operators leads to integrodifferential equa-
tions which are more cumbersome to solve than partial diferential equations
(PDEs).

The energy in thermal radiation has in general a spectral distribution,
as the radiation varies with the wavelength, and a directional distribution
as the radiation also varies with angle. Actually, thermal radiation is the
name given to electramagnetic radiation in the range of wavelengths 0.1 <
λ < 100μm. These spectral and directional dependencies severely complicates
rigorous radiation analysis.

Before further details of the theory are considered an informative sketch
of the general radiation flux modeling framework is required giving an in-
troductory overview linking the conceptual fragments which constitute the
overall theory. In most cases we will preferably focus on radiation from solid
surfaces. Basically, as already mentioned, a material will emit radiation as a
direct result of its temperature. This energy flux or emissive power is denoted
by E. Also, radiation emitted from other objects can fall into a surface. This
energy flux is termed irradiation and denoted by G. The irradiation generally
interacts with a semitransparrant medium and portions of this radiation are
reflected, absorbed, and transmitted. The properties that determine the frac-
tions of the irradiation that are distributed in each of these rays are called
reflectivity, absorptivity and transmisivity, respectively. The total radiation
leaving a surface is the sum of the reflected and emitted components and this
is named radiosity indicated by the symbol J . The radiative behavior and
properties of ideal (blackbody) and opaque materials are both important for
the determination of the radiant flux from a real material. A property called
emissivity is defined as the ratio of the radiation emitted by the real surface
to the radiation emitted by a blackbody at the same temperature.

To get an idea about the spectral and directional complexity of the rigor-
ous modeling of radiant heat transfer the variables that must be specified for
the radiative properties are introduced. A functional notation is used to give
explicitly the variables upon which a quantity depends. The most fundamental
variables includes dependencies on wavelength, direction, and surface temper-
ature. A total quantity does not have a spectral dependency. A hemispherical
spectral variable does not have a directional dependency. A hemispherical
total quantity has only a temperature dependency.

In the following radiation is treated as a electromagnetic phenomenon. The
radiation emitted in any direction is normally defined in terms of a quantity
called the intensity of radiation. There are two types of intensity, a spectral
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intensity which refers to radiation in an interval dλ around a single wavelength
λ, and the total intensity which refers to the combined radiation including all
wavelengths.

The spectral intensity is defined as the energy per unit area normal to the
direction of propagation, per unit solid angle about the direction, per metre
of wavelength.

The solid angle is a 3D angle measured in steradian, as explained in
sect 2.4.2. For convenience the defining arguments are briefly summarized
this time with emphasis on applications to radiation heat transfer.

Consider emission from a differential element of area dA into a hypothetical
hemisphere centered at a point on dA. The emission in a particular direction
from an element of area dA is specified in terms of the zenith and azimuthal
angles, θ and φ, respectively, of a sperical coordinate system Fig 5.11. A
differential surface in space dAS , through which this radiation passes, subtends
a solid angle dΩ when viewed from a point on dA.

From sect 2.4.2 we recall that the differential solid angle dΩ is defined
by a region between the rays of a sphere and is measured as the ratio of the
element of area dAS on the sphere to the square of the sphere’s radius (see
Figs 2.5 and 2.6 in which dA denotes any surface element):

dΩ =
dAS

r2
=

r sin θrdθdφ
r2

= sin θdθdφ (5.308)

where the area dAS is normal to the (θ, φ) direction and may be represented
by:

dAS = r2 sin θdθdφ (5.309)
for a spherical surface.

The rate at which emission from dA passes through dAS can be expressed
in terms of the spectral intensity Iλ,e of the emitted radiation. Iλ,e denotes
the rate at which radiant energy is emitted at the wavelength λ in the (θ, φ)
direction, per unit area of the emitting surface normal to this direction, per
unit solid angle about this direction, and per unit wavelength interval dλ
about λ. The area used to define Iλ,e is the component of dA perpendicular
to the direction of the radiation, dAp = dA cos θ, which denotes the projected
area of dA. The spectral intensity is defined by:

Iλ,e(λ, θ, φ) =
dQ̇rad

dA cos θdΩdλ
(W/m2 srμm) (5.310)

in which dQ̇λ = (dQ̇rad/dλ) is the rate at which radiation of wavelength λ
leaves dA and passes through dAS .

The spectral heat flux associated with emission into any finite solid angle
or any finite wavelength interval may be determined by integration over the
hypothetical hemisphere above dA:

qλ(λ) =

2π
∫

0

π/2
∫

0

Iλ,e(λ, θ, φ) cos θ sin θdθdφ (W/m2μm) (5.311)
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The total heat flux associated with emission in all directions and at all wave-
lengths is then:

qrad =

∞
∫

0

qλ(λ)dλ =

∞
∫

0

2π
∫

0

π/2
∫

0

Iλ,e(λ, θ, φ) cos θ sin θdθdφdλ (W/m2)

(5.312)
The concept of emissive power is used to quantify the amount of radiation
emitted per unit surface area. The hemispherical spectral emissive power Eλ

is defined as the rate at which radiation of wavelength λ is emitted in all
directions from a surface per unit wavelength dλ about λ and per unit surface
area. It is thus related to the spectral intensity of the emitted radiation by:

Eλ(λ) =

2π
∫

0

π/2
∫

0

Iλ,e(λ, θ, φ) cos θ sin θdθdφ = qλ(λ) (W/m2 μm) (5.313)

It is noted that Eλ(λ) is a flux based on the actual surface area, whereas Iλ,e

is based on the projected area.
The total hemispherical emissive power E is the rate at which radiation is

emitted per unit area at all possible wavelenghts and directions:

E =

∞
∫

0

Eλ(λ)dλ =

∞
∫

0

2π
∫

0

π/2
∫

0

Iλ,e(λ, θ, φ) cos θ sin θdθdφdλ (W/m2) (5.314)

A diffuse emitter denotes a special case of a surface for which the intensity
of the emitted radiation is independent of direction, Iλ,e(λ, θ, φ) ≈ Iλ,e(λ). In
this case

Eλ(λ) = Iλ,e(λ)

2π
∫

0

π/2
∫

0

cos θ sin θdθdφ (5.315)

and

E =

∞
∫

0

Eλ(λ)dλ = πIe (5.316)

The given concepts also apply to incident radiation. Such radiation origi-
nates from emission and reflection occuring at other surfaces and have spectral
and directional distributions determined by the spectral intensity Iλ,i(λ, θ, φ).

The spectral irradiation which encompasses radiation of wavelength λ in-
cident from all directions is defined by:

Gλ(λ) =

2π
∫

0

π/2
∫

0

Iλ,i(λ, θ, φ) cos θ sin θdθdφ (W/m2 μm) (5.317)
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The total irradiation G represents the rate at which radiation is incident per
unit area from all directions and wavelengths:

G =

∞
∫

0

Gλ(λ)dλ =

∞
∫

0

2π
∫

0

π/2
∫

0

Iλ,i(λ, θ, φ) cos θ sin θdθdφdλ (W/m2) (5.318)

In the particular case in which the incident radiation is diffuse, Iλ,i is inde-
pendent of θ and φ, thus:

Gλ(λ) = πIλ,i (5.319)

and
G = πIi (5.320)

The radiative flux termed radiosity accounts for the net radient energy
leaving a surface. The spectral radiosity Jλ represents the rate at which radi-
ation of wavelength λ leaves a unit area of the surface, per unit wavelength in-
terval dλ about λ. Jλ accounts for radiation leaving in all directions and is thus
related to the intensity associated with emission and reflection Iλ,e+r(λ, θ, φ).
Therefore,

Jλ(λ) =

2π
∫

0

π/2
∫

0

Iλ,e+r(λ, θ, φ) cos θ sin θdθdφ (W/m2 μm) (5.321)

and the total radiosity J is:

J =

∞
∫

0

Jλ(λ)dλ =

∞
∫

0

2π
∫

0

π/2
∫

0

Iλ,e+r(λ, θ, φ) cos θ sin θdθdφdλ (W/m2)

(5.322)
In the particular case that the surface is both a diffuse reflector and a diffuse
emitter, Iλ,θ,φ is independent of θ and φ, hence:

Jλ(λ) = πIλ,e+r (5.323)

and
J = πIe+r (5.324)

The concept of blackbody is determining the basis for describing the radiation
properties of real surfaces. The black body denotes an ideal radiative sur-
face which absorb all incident radiation, being a diffuse emitter and emit a
maximum amount of energy as thermal radiation for a given wavelength and
temperature. The black body can be considered as a perfect absorber and
emitter.

The spectral thermal radiative power Eλ,b emitted by a blackbody with
wavelength λ can be related to the spectral radiation intensity Iλ,b as derived
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by Planck [114] from considerations of quantum statistical thermodynamics.
The relation is given by:

Iλ,b(λ, T ) =
2hc20

λ5[exp(hc0/λkT ) − 1]
(W/m2 srμm) (5.325)

where T is the absolute temperature, h is Plank’s constant, c0 is the velocity
of electromagnetic radiation (i.e., speed of light in vacuum), and k is the
Boltzmann constant. Hence it follows that:

Eλ,b(λ, T ) = πIλ,b(λ, T ) =
2πhc20

λ5[exp(hc0/λkT ) − 1]
(W/m2 μm) (5.326)

The total emissive power emitted by a black body is obtained by integra-
tion over all wavelengths:

Eb =

∞
∫

0

πIλ,bdλ (5.327)

The solution to this integral is called the Stefan-Boltzmann law :

Eb = σ × T 4 (W/m2) (5.328)

where σ is the Stefan-Boltzmann constant which is given by:

σ =
8π5k4

15c3h3
= 5.67 × 10−8 (W/m2 K4) (5.329)

This relation is often used in engineering calculations.
The blackbody spectral and total intensities are independent of direction

so that emission of energy into a direction at θ away from the surface normal
direction is proportional to cos θ. This is known as Lambert’s cosine law .

For real surfaces emissivity is defined as the ratio of the radiation emitted
by the surface to the radiation emitted by a blackbody at the same tem-
perature. So, the emissivity specifies how well a real body radiates energy as
compared with a blackbody. The directional spectral emissivity ελ,θ(λ, θ, φ, T )
of a surface at temperature T is defined as the ratio of the intensity of the
radiation emitted at the wavelength λ and the direction of θ and φ to the
intensity of the radiation emitted by a blackbody at the same values of T and
λ:

ελ,θ(λ, θ, φ, T ) =
Iλ,e(λ, θ, φ, T )
Iλ,b(λ, T )

(−) (5.330)

In a similar manner, a total, directional emissivity εθ representing a spectral
average of ελ,θ is difined by:

εθ(θ, φ, T ) =
Ie(θ, φ, T )
Ib(T )

(−) (5.331)
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A hemispherical spectral emissivity is a directional average of ελ,θ defined
by:

ελ(λ, T ) =
Eλ(λ, T )
Eλ,b(λ, T )

=

2π
∫

0

π/2
∫

0

Iλ,e(λ, θ, φ, T ) cos θ sin θdθdφ

2π
∫

0

π/2
∫

0

Iλ,b(λ, T ) cos θ sin θdθdφ

(−) (5.332)

The hemispherical total emissivity represents an average of ελ,θ over all
directional and wavelengths and is defined by:

ε(T ) =
E(T )
Eb(T )

(−) (5.333)

In the most general situation the irradiation interacts with a semitransparrant
medium. For a spectral component of irradiation, portions of this radiation
can be reflected, absorbed, and transmitted:

Gλ = Gλ,ref + Gλ,abs + Gλ,trans (W/m2 μm) (5.334)

where Gλ,ref is the reflected portion of the spectral irradiation, Gλ,abs is the
absorbed portion of the spectral irradiation, and Gλ,trans is the transmitted
portion of the spectral irradiation.

In general, the determination of these components is complex and can
be strongly influenced by volumetric effects within the medium. However, in
many engineering applications the medium is opague to the incident radiation
so that Gλ,trans ≈ 0 and the absorption and reflection processes are treated
as surface phenomena.

The absorptivity is a property that determines the fraction of the irradi-
ation that is absorbed by a surface. The directional spectral absorbtivity of
a surface is defined as the fraction of the spectral intensity incident in the
direction of θ and φ that is absorbed by the surface:

αλ,θ(λ, θ, φ, T ) =
Iλ,i,abs(λ, θ, φ, T )
Iλ,i(λ, θ, φ, T )

(−) (5.335)

The hemispherical total absorptivity α represents an integrated average over
both direction and wavelength:

α =
Gabs

G
=

∞
∫

0

αλ(λ)Gλ(λ)dλ

∞
∫

0

Gλ(λ)dλ
(−) (5.336)

where αλ(λ) is a hemispherical spectral absorptivity
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αλ(λ) =
Gλ,abs(λ)
Gλ(λ)

=

2π
∫

0

π/2
∫

0

αλ,θ(λ, θ, φ)Iλ,i(λ, θ, φ) cos θ sin θdθdφ

2π
∫

0

π/2
∫

0

Iλ,i(λ, θ, φ) cos θ sin θdθdφ

(−)

(5.337)
Similar directional spectral reflectivity and transmissivity quantities can

also be defined. These properties are normally given the symbols ρ and τ .
However, from the above discussion, it’s apparent that the sum of the reflected,
absorbed and transmitted components must equal the irradian, and so we can
write:

ρG + αG + τG = G (W/m2) (5.338)

or ρ+α+τ = 1. As a rule of thumb, most gases have a high value of τ as they
transmit thermal radiation, and quite low values of ρ and α as they reflect
and absorb small amounts at moderate temperature and pressures. Most solids
transmit little thermal radiation but reflect and absorb significant amounts.
Since reactor analysis concerns radiation from solid sufaces in most cases, we
get ρ + α = 1. The radiosty J from a surface is thus given by:

J = E + ρG = E + (1 − α)G (W/m2) (5.339)

Besides, according to Kirchhoff’s law , the total hemispherical emissivity of the
surface equals the total hemispherical absorptivity. Therefore, ε = α, ελ = αλ,
and ελ,θ = αλ,θ.

A gray surface may be defined as a surface for which αλ and ελ are in-
dependent of λ over the relevant spectral regions of the irradiation and the
surface emission.

ε(T ) =

ελ,0(T )
λ2
∫

λ1

Eλ,T (T )dλ

Eb(T )
= ελ,0(T ) (−) (5.340)

and

α(T ) =

αλ,0(T )
λ4
∫

λ3

Gλ(T )dλ

G(T )
= αλ,0(T ) (−) (5.341)

Engineering Modeling of Thermal Radiation Fluxes

In this subsection we focus on the engineering modeling approach determining
thermal radiation from plan solid surfaces. In this case the emitter is assumed
to be diffuse and only hemisperical total radiation quantities are considered as
calculated from the spectral counterparts by integration over all wavelengths
and all directions.

Consider a solid that is initially at a higher temperature Ts than that of
its surroundings Tsur, and around it there exist a vacuum, see Fig 5.19. The
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Fig. 5.19. Radiation cooling of a heated solid.

presence of the vacuum prevents energy loss from the surface of the solid by
conduction or convection. However, experience has shown that the solid will
cool and eventually achieve thermal equilibrium with its surroundings. This
cooling is associated with a reduction in the internal energy stored by the
solid and is a direct consequence of the emission of thermal radiation from
the surface. In turn, the surface will receive and absorb radiation originating
from the surroundings. But, since Ts > Tsur the net heat transfer rate by
radiation qrad is from the surface, and the surface will be cooled until Ts

reaches Tsur.
Radiation that is emitted by the surface originates from the thermal energy

of matter bounded by the surface. The rate at which energy is released per unit
area (W/m2) is determined by the surface emissive power E. For a blackbody
the emissive power (representing a theoretical maximum rate) is prescribed
by the Stefan-Boltzmann law:

Eb(Ts) = σT 4
s (5.342)

where Ts is the absolute temperature (K) of the surface.
The heat flux emitted by a real surface is of course less than that of a

blackbody at the same temperature and is given by:

E = εσT 4
s (5.343)

where ε the emissivity of the surface. This quantity takes values in the range
0 ≤ ε ≤ 1 and depends strongly on the surface material.

In this instance the irradiation G may originate from a special source, such
as the sun, or from other surfaces to which the surface of interest is exposed.
A portion, or all, of the irradiation may be absorbed by the surface, thereby
increasing the thermal energy of the material. Since the rate at which radiant
energy is absorbed per unit area is evaluated in terms of the surface radiative
property termed the absorptivity α, we get:

Gabs = αG (5.344)
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where 0 ≤ α ≤ 1. If α < 1, the surface is opaque and portions of the irradiation
are reflected. If the surface is semitransparent, portions of the irradiation may
also be transmitted.

A special case that occurs frequently in engineering practice involves ra-
diation exchange between a small surface at Ts and a much larger, isothermal
surface that completely surrounds the smaller one. The surroundings could
be a furnace whose temperature Tsur differs from that of an enclosed surface
(Tsur − Ts). For such a condition, the irradiation may be approximated by
emission from a blackbody at Tsur, in which case G = σT 4

sur. If the surface is
assumed to be one for which α = ε (a gray surface), the net rate of radiation
heat transfer from the surface, is:

Q̇rad = εAEb(Ts) − αGA = εAσ(T 4
s − T 4

sur) (5.345)

This expression provides the difference between thermal energy that is released
due to radiation emission and that which is gained due to radiation absorption.

There are many applications for which it is convenient to express the net
radiation heat exchange in a form similar to Newton’s law of cooling:

〈Q̇rad〉AI
= hradA(〈Ts〉AI

− 〈Tsur〉V ) (5.346)

where the radiation heat transfer coefficient hr is:

hrad = εσ(〈Ts〉AI
+ 〈Tsur〉V )(〈Ts〉2AI

+ 〈Tsur〉2V ) (5.347)

In this case we have linearized the radiation rate equation, making the heat
rate proportional to a temperature difference rather than to the difference be-
tween two temperatures to the fourth power. Note, however, that hr depends
strongly on temperature, while the temperature dependence of the convection
heat transfer coefficient, h is generally weak.

In reactor simulations where the bulk of the vessel contains a fluid the
surface may also simultaneously transfer heat by convection to the adjoining
fluid. The total rate of heat transfer from the surface is then given by:

Q̇cond,conv,rad = hcond,convA(〈Ts〉AI
− 〈Tsur〉V ) + hradA(〈Ts〉AI

− 〈Tsur〉V )

= hcond,convA(〈Ts〉AI
− 〈Tsur〉V ) + εAσ(〈Ts〉4AI

− 〈Tsur〉4V )
(5.348)

Note that most monoatomic and diatomic gases, as well as air, are trans-
parent at low temperatures, thus we often assume that the radiation energy
exchange among the enclosure surfaces is unaffected by the presence of these
gases. At higher temperatures, gases no longer remain transparent and become
to some degree opaque. Then they start participating in the energy exchange
process by absorbing, and emitting this energy making the modeling prob-
lem much more complex since the radiation emerging from a finite volume of
matter is an integrated effect of the local emission throughout the volume.



646 5 Constitutive Equations

Radiation is relevant to many environmental (solar radiation) and indus-
trial heating, cooling and drying processes. In chemical reaction engineering
in particular thermal radiation is especially important for gas systems operat-
ing at high temperatures like chemical conversion processes that involve fossil
fuel combustion. In addition to the thermal radiation from solid wall surfaces
the gas radiation effects might be important describing the heat transport in
furnaces of fired steam reformers [38]. Furthermore, the radiation energy emit-
ted by flames in furnaces and combustion chambers depends not only on the
gaseous emission, but also on the heated carbon (soot) particles formed within
flames [5] (chaps 8-10). The radioation modeling and simulation approaches
frequently applied in combustion engineering are reviewed by Viskanta and
Mengüc [159].
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APPLICATIONS



6

Chemical Reaction Engineering

Chemical reaction engineering1 (CRE) emerged as a methodology that quan-
tifies the interplay between transport phenomena and kinetics on a variety of
scales and allows formulation of quantitative models for various measures of
reactor performance [3]. The ability to establish such quantitative links be-
tween measures of reactor performance and input and operational variables is
essential in optimizing the operating conditions in manufacturing, for proper
reactor design and scale-up, and in correct interpretation of data in research
and pilot plant work.

A starting point for reaction engineers is the formulation of a reactor model
for which the basis is the micro-scale species mass - and enthalpy balances.
For practical applications the direct solution of these equations is too costly
and simplifications or average representations are usually introduced.

The choice of averages (e.g., global reactor volume, cross sectional area or
length) to which the balance equations are integrated over (averaged) deter-
mines the level of sophistication of the reactor model. It is very common in
tubular reactors to have flow predominantly in one spatial direction, say z.
The major gradients then occur in that direction. For many cases, then, the
cross-sectional average values of concentration and temperature are used in-
stead of the local values. In this way the one dimensional dispersion model is
obtained. If the convective transport is completely dominant over the diffusive
transport, the diffusive term may be neglected. The resulting equations are
denoted the ideal Plug Flow Reactor (PFR) model. When the entire reactor
can be considered to be uniform in both concentration and temperature (i.e.,
due to very large dispersion coefficients), one may neglect gradients in all spa-
tial directions and integrate the equations globally over all spatial dimensions
(assuming convective flows at the boundaries) leading to the ideal reactor
model of the Continuous Stirred Tank Reactor (CSTR). The description of

1 Recently a branch of CRE that is mainly focusing on transport phenomena and
fluid flow analysis, rather than reaction kinetics, has emerged. By these groups
the abbreviation CRE is frequently interpreted as chemical reactor engineering.

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 6,
c© Springer-Verlag Berlin Heidelberg 2008



660 6 Chemical Reaction Engineering

a real reactor, with intermediate levels of mixing, may require amplified in-
formation about the mixing. For such processes the dispersion models (DM),
in which the mixing processes are described through the empirical dispersion
parameters, might be useful. A classification of dispersion models for fixed-
bed tubular reactors, for example, is given by Froment and Hofmann [7]. For
more complex flow patterns more elaborated and complete models are required
where the flow fields are described via the solution of the Navier-Stokes equa-
tions. The understanding of the complex flow phenomena involved as well as
the solution of these vector equations make the problem much more difficult
to analyze spending reasonable costs and efforts.

The advanced reactor models are discussed in the subsequent chapters,
only a brief introduction to the idealized reactor models are presented in this
chapter as these models are principal tools for chemical reaction engineers.
In particular, the idealized models are easy to calculate, and they give the
extreme values of the conversions between which those realized in a real reactor
will occur provided there is no bypassing of reactants in the reactor.

6.1 Idealized Reactor Models

Basically, the processes taking place in a chemical reactor are chemical reac-
tion, and mass, heat and momentum transfer phenomena. The modeling and
design of reactors are therefore sought from employing the governing equations
describing these phenomena [1]: the reaction rate equation, and the species
mass, continuity, heat (or temperature) and momentum balance equations.

A fundamental aim in chemical reaction engineering is to be able to size
reactors given the rate of reaction as a function of species composition and
temperature. For practical applications chemical reaction engineers usually
consider two extreme cases, either no mixing occurs in the reactor as the fluid
elements move along parallel streamlines with equal velocity in the reactor
or the mixing is complete and the fluid motion is complex and not ordered.
By these two extremes approximations, the tubular plug flow (PFR) and
the continuous stirred tank reactor (CSTR) models can be derived from the
governing microscopic transport equations.

6.1.1 Plug Flow Reactor Models

To derive the plug flow reactor model for homogeneous systems we consider
the single phase cross sectional averaged model formulation as derived in
sect 1.2.7. The microscopic species mass balance reduces to (1.301) and the
corresponding heat or temperature equation is given by (1.302). In chemical
reaction engineering the non-ideal flow reactor model consisting of the species
mass balance (1.301) and temperature equation (1.302) is named the axial
dispersion model (ADM). If more than one phase exist, similar balance equa-
tions are needed for each of the phases. For two phase flow the cross sectional
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average model equations (3.498) and (3.499) might be employed, as derived
in sect 3.4.7. The latter non-ideal flow reactor model is often referred to as
the heterogeneous axial dispersion model. Note also that in multiphase flow
models, a distinction is made between the true local velocity, called the inter-
stitial velocity (m/s), and the velocity averaged over the whole cross section,
called the superficial velocity (m3/m2s).

Under plug flow conditions the convective transport is completely domi-
nant over the diffusive mass transport term. The fluid moves like a plug and
the diffusive term can be neglected. The conditions for plug flow are closely
satisfied for narrow and long tubular reactors when the viscosity is low. How-
ever, this approximation is clearly best for fully developed turbulent flow,
for which the velocity profiles are relatively flat. For dynamic conditions, the
species mass balance is a PDE with z and t as the independent variables. The
Eulerian species mass balance (1.301) reduces further to:

∂

∂t
(ρωs) +

∂

∂z
(ρvSωs) = Rs (6.1)

Recall that the rate of generation for reaction r can be expressed independent
of species, since this quantity is proportional to the extent of reaction (1.146),
thus if only one reaction takes place: Rs = νsMωs

rr.
Integration over a differential volume element in a tubular reactor gives:

∂

∂t

∫

V

ρsdv + A

∫

z

∂

∂z
(ρvSωs) dz =

∫

V

Rsdv (6.2)

or
∂Ms

∂t
+

∫

z

∂ṁs

∂z
dz =

∫

V

Rsdv (6.3)

in which Ms =
∫

V
ρsdv (kg) and ṁs = ρvSωsA (kg/s).

For steady-state conditions the species mass balance equation is a first-
order ODE with the z-coordinate as the only independent variable. The Eu-
lerian species mass balance (6.1) becomes:

d

dz
(ρvSωs) = Rs (6.4)

Multiplying the LHS of the species mass balance with the cross ssectional area
ratio A/A, gives:

dṁs

dV
= Rs (6.5)

The standard plug flow model is written in terms of molar concentrations
[8] [6], hence both sides of the relation above are divided by the molecular
weight of species s, Mωs

. The mole balance yields:

dFs

dV
= rs (6.6)
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where Fs = ρsv
SA/Mωs

(mol/s). This relation is named the plug flow reactor
model.

The 1D total mass balance or continuity states that:

d

dz
(ρvS) = 0 (6.7)

This relation can be solved for the superficial velocity, provided that the den-
sity is known from a appropriate EOS. For gas mixtures the ideal gas law is
often used, thus the changes in composition is taken into account through the
average molecular mass of the mixture2. Moreover, the continuity equation
can be integrated from the inlet z = 0 to any level z = z, to show that the
mass flux is constant in the tube (ρvS)|z = (ρvS)|in = Constant (kg/m2s). In
particular, this integral relationship is frequently used to simplify the models,
calculating the convective/advective flux terms from the known inlet values.

The plug flow model heat or temperature equation is deduced from the
cross section averaged temperature equation (1.299). In many tubular reactor
processes the heat conduction term in the z-direction is much smaller than the
heat transport by convection. For such cases the conductive transport term
can be neglected and the temperature equation reduces to:

ρCp
∂T

∂t
+ ρCpv

s ∂T

∂z
= (−ΔHr,s)Rs/Mωs

+
4U
dr

(Tsur − T ) (6.8)

For steady-state conditions the temperature equation becomes, after adopting
the integrated continuity and multiplying the resulting relation with the cross
section area A = πd2

r/4,

ṁCp
dT

dz
= (−ΔHr,s)ARs/Mωs

+ πdrU(Tsur − T ) (6.9)

where ṁ = ρvSA = ρinv
S
inA (kg/s). This relation is the heat balance for a

single phase tubular reactor operating under plug flow conditions. This tem-
perature equation is coupled with the species mass balances by the reaction
term and through the mixture heat capasity term on the LHS.

The principal difference between reactor design calculations involving ho-
mogeneous reactions and those involving fluid-solid heterogeneous reactions is
that for the latter, the reaction takes place on the surface of a catalyst. For the
heterogeneous processes the reaction rate is normally based on mass of solid
catalyst, W , rather than on reactor volume, V . For a fluid-solid heterogeneous
process, the rate of reaction of a species s is defined as:
2 In chap 1 it was shown that when the total mole balance is used instead, the

reaction term does not always vanish on the RHS because the number of moles
may change in a chemical process. This total molar balance can be obtained
starting out from the species mass balance (6.4), after dividing by the molecular
mass for each species to obtain a species mole balance and finally sum these
equations for all species in the mixture.
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r′s = mol s produced/s kg(catalyst) (6.10)

The mass of solid catalyst is used because the amount of catalyst is what is
important to the rate of product formation. For a packed tubular reactor the
governing plug flow balance equations are [8]:

d

dz
(ρvSωs) = ρBR

′
s, (6.11)

ṁCp
dT

dz
= (−ΔHr,s)AρBRs/Mωs

+ πdrU(Tsur − T ), (6.12)

dpt

dz
= f

ρg(vs)2

dp
(6.13)

The latter equation is used to calculate the pressure drop through the bed and
is named the Ergun equation [4]. The ρB is the catalyst bulk density (kg/m3),
and f is a friction factor (−) for the packing. Ergun proposed the following
parameterization for the friction factor:

f =
1 − ε

ε3

[

1.75 +
150(1 − ε)

Rep

]

(6.14)

The following initial conditions are often used: at z = 0, ρs = ρs,0, T = T0,
pt = pt,0. In this model dp is the equivalent particle diameter.

6.1.2 Batch and Continuous Stirred Tank Reactors

Considering a well-mixed vessel, one may average the governing microscopic
equations over all the spatial dimensions. For convenience, this operation is
performed by further integrating the cross sectional averaged axial dispersion
model equations over the remaining z-dimention. Moreover, due to the as-
sumption of complete uniformity within the reactor, the diffusive transport
terms vanish after integration of the balance equations because only convec-
tion/advection is considered at the inlet- and outlet boundaries. Nevertheless,
one should keep in mind that the uniformity is actually created by the large
level of mixing (large dispersion terms in the bulk of the reactor volume).

The reactor models considering complete mixing may be subdivided into
batch and continuous types. In the continuous stirred tank reactor (CSTR)
models, an entering fluid is assumed to be instantaneously mixed with the
existing contents of the reactor so that it loses its identity. This type of reactor
operates at uniform concentration and temperature levels. For this reason
the species mass balances and the temperature equation may be written for
the entire reactor volume, not only over a differential volume element. Under
steady-state conditions, the species mass and heat balances reduce to algebraic
equations.

For a CSTR which is completely mixed, we start from the averaged species
mass (1.301) and heat (1.302) balance equations. No diffusive terms are re-
tained as the reactor volume is assumed to be uniform in composition and
temperature, as explained above. The resulting species mass balance yields:
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∂

∂t
(ρωs) +

∂

∂z
(ρvSωs) = Rs (6.15)

After global integration in z from the inlet to the outlet of the reactor and
multiplying the resulting relation by the cross section area A, we get:

∂

∂t
(ρωsV ) +

∫

∂ṁs

∂z
dz = RsV (6.16)

Let ṁs|in and ṁs|out represent, respectively, the inlet and outlet mass flow
rates of species s, the following relation can then be obtained by use of Green’s
theorem:

dMs

dt
= ṁs|out − ṁs|in + RsV (6.17)

Under steady-state conditions, the simplified species mass balance reduces
further to:

ṁs|out − ṁs|in + RsV = 0 (6.18)

The reactor model is preferrably formulated in terms of mole numbers, so we
may divide the relation by the molecular weight of the species s. The result
is the algebraic mole balance:

Fs|in − Fs|out = RsV (6.19)

This mole balance is named the continuous stirred tank reactor (CSTR)
model.

Integrating the temperature equation (1.302) over the entire reactor vol-
ume, we obtain:

MCp
∂T

∂t
+ ρCpv

sA

∫

∂T

∂z
dz = V (−ΔHr,s)Rs/Mωs

+
∫

πdrU(Tsur − T ) dz

(6.20)
in which M = ρV (kg).

By use of the integrated continuity and assuming that the heat transfer
term is not a function of z, the temperature equation can be modified to:

MCp
∂T

∂t
+ Cp(ρvs)|inA

∫

∂T

∂z
dz = V (−ΔHr,s)Rs/Mωs

+ AhU(Tsur − T )

(6.21)
For steady-state conditions the transient term can be neglected, and by use
of Green’s theorem the relation reduces to:

Cpṁin(Tout − Tin) = V (−ΔHr,s)Rs/Mωs
+ AhU(Tsur − T ) (6.22)

in which the heat exchange surface of the reactor is denoted by Ah = πdrL.
This equation can be used calculating the temperature when the CSTR model
is adopted.

In batch reactors the spatially uniform composition and temperature vari-
ables may vary with time, however, so first-order ODEs are obtained, with
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time as the only independent variable. In a batch reactor no fluid is entering
or leaving the reactor except at the time of loading or unloading, so the species
mass balance (1.301) and the temperature equation (1.302), with no transport
terms, can be integrated to yield:

d(ρsV )
dt

= RsV (6.23)

or
dMs

dt
= RsV (6.24)

The classical batch reactor model is preferrably formulated in terms of mole
numbers, Ns (mol), so we may divide the relation by the molecular weight
of the species s, Mωs

. The resulting mole balance for the batch reactor
yields:

dNs

dt
= rsV (6.25)

The batch reactor temperature equation is given by:

ṁCp
dT

dt
= (−ΔHr,s)V Rs/Mωs

+ (πdrL)U(Tsur − T ) (6.26)

6.2 Simplified Reactor Models

In particular cases simplified reactor models can be obtained neglecting the
insignificant terms in the governing microscopic equations (without averag-
ing in space) [9]. For axisymmetrical tubular reactors, the species mass and
heat balances are written in cylindrical coordinates. Himelblau and Bischoff
[9] give a list of simplified models that might be used to describe tubular re-
actors with steady-state turbulent flow. A representative model, with radially
variable velocity profile, and axial- and radial dispersion coefficients, is given
below:

vz(r)
∂ρs

∂z
=

∂

∂z
(ρDeff,z(r)

∂ωs

∂z
) +

1
r

[

∂

∂r
(rρDeff,r(r)

∂ωs

∂r
)
]

+ Rs (6.27)

ρCpvz(r)
∂T

∂z
=

∂

∂z
(keff,z(r)

∂T

∂z
) +

1
r

[

∂

∂r
(rkeff,r(r)

∂T

∂r
)
]

+ Rs/Mωs
(−ΔHr,s)

(6.28)
with boundary conditions:

vz(r)ρs,in = vz(r)ρs(0, r) − ρ(0, r)Deff,z(r)
∂ωs(0, r)

∂z
, (6.29)

∂ωs(L, r)
∂z

= 0,
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∂ωs(z, 0)
∂r

= 0,

∂ωs(z,Rr)
∂r

= 0

and

ρinCp,invz(r)Tin = ρ(0, r)Cp(0, r)vz(r)T (0, r) − keff,z(r)
∂T (0, r)

∂z
, (6.30)

∂T (L, r)
∂z

= 0,

∂T (z, 0)
∂r

= 0,

∂T (z,Rr)
∂r

= − U

kr

(

T (z,Rr) − Twall

)

For turbulent flow in pipes the velocity profile can be calculated from the
empirical power law design formula (1.354).

Similar balance equations with purely laminar diffusivities can be used for
a fully developed laminar flow in tubular reactors. The velocity profile is then
parabolic, so the Hagen Poiseuille law (1.353) might suffice.

It is important to note that the important difference between the cross sec-
tion averaged 1D axial dispersion model equations (discussed in the previous
section) and the simplified 2D model equations (presented above) is that the
latter is valid locally at each point within the reactor, whereas the averaged
one simply gives a cross sectional average description of the axial composition
and temperature profiles.

6.3 Chemical Reaction Equilibrium Calculations

The second law of thermodynamics is the basis for any equilibrium calcula-
tion. One way to state the second law is that all real processes occur spon-
taneously in the direction that increases the entropy of the universe3 (system
3 In classical thermodynamics a simple system is defined as a system that is macro-

scopically homogeneous, isotropic, and uncharged, that are large enough so that
surface effects can be neglected, and that are not acted on by electric, magnetic,
or gravitational fields [2]. A thermal reservoir is defined as a reversible heat source
that is so large that any heat transfer of interest does not alter the temperature of
the thermal reservoir. Such a thermal reservoir is a system enclosed by rigid im-
permeable walls and characterized by relaxation times sufficiently short so that
all processes of interest therein are essentially quasi-static. Given two or more
simple systems, they may be considered as constituting a single composite sys-
tem. The composite system is termed closed if it is surrounded by a wall that is
restrictive with respect to the total energy, the total volume, and the total mole
numbers of each species of the composite system.

In the present outline the universe is considered a composite system, the system
represents a simple subsystem and the surroundings a thermal reservoir.
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plus surroundings). A spontaneous change occurs naturally (by itself) under
specified conditions, without an ongoing input of energy from outside the sys-
tem. In particular, a chemical reaction proceeding toward equilibrium is an
example of a spontaneous change. For a thermodynamically reversible adia-
batic process a quantitative statement of the second law can be formulated
as [11]:

dŜuniv = dŜsys + dŜsurr ≥ 0 (6.31)

Using this formulation two separate measurements of dŜsys and dŜsurr are re-
quired to predict whether a reaction will be spontaneous at a particular tem-
perature. Therefore, it is considered more convenient to have one criterion for
spontaneity with reference to changes in the system only, which can be used to
define an equilibrium state, without explicitly considering the environment.
The Gibbs free energy (Ĝ) and the Helmholtz free energy4 (F̂ ) functions
have both been introduced especially, among other things, to provide such
criteria for spontaneity as requested. Generally, the free energy change is a
measure of the spontaneity of a process and of the useful energy available from
the process. Moreover, the use of the Gibbs function is more common than
the Helmholtz function because of the experimental convenience of specifying
the T and p constraints (as compared with the alternative T and V con-
straints). Henceforth we continue to use the Gibbs function (Ĝ) exclusively,
but the concepts might be recast into equivalent forms when appropriate to
a particular situation [2].

By elementary theory we can show that the Gibbs function is defined in
such a way that the free energy change criterion we are searching for (i.e.,
dĜ|T,p = 0) may be deduced from the second law of thermodynamics on the
condition that T and p are constants. However, only a superficial summary of
the fundamental theory is provided as the underlying ideas is quite involved.

For a thermodynamically reversible adiabatic process (Tsys = Tsurr) at
constant pressure, the change in entropy of the surroundings can be expressed
as [11]:

dŜsurr = −dĤsys

Tsys
(6.32)

Substituting for dŜsurr in (6.31) gives a relationship that lets us focus solely
on the system:

dŜuniv = dŜsys −
dĤsys

Tsys
≥ 0 (6.33)

Multiplying both sides by (−Tsys) gives:

−TsysdŜuniv = −TsysdŜsys + dĤsys (6.34)

From the Gibbs equation, Ĝ = Ĥ − T Ŝ, the change in the free energy of the
system (dĜsys) at constant temperature and pressure is given by:

4 The Helmholtz free energy is sometimes denoted by Â (J).
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dĜsys = dĤsys − TsysdŜsys (6.35)

Combining this equation with the previous one, the result is:

−TsysdŜuniv = −TsysdŜsys + dĤsys = dĜsys (6.36)

In accordance with the second law interpretation, the sign of dĜsys dictates
whether a reaction is spontaneous or not. We reiterate that the second law
states that if dŜuniv > 0 the process is spontaneous, else if dŜuniv < 0 the
process is non-spontaneous, and if dŜuniv = 0 the process is at equilibrium.
Because dĜsys = −TsysdŜuniv, we can easily conclude that if dĜsys < 0 the
process is spontaneous, else if dĜsys > 0 the process is non-spontaneous, and
if dĜsys = 0 the process is at equilibrium.

Before we proceed with the conventional theory of chemical reaction equi-
librium calculations, a few words might be required explaining the postulate
given above that equivalent forms of the second law of thermodynamics can
be preferable when appropriate to a particular situation.

Firstly, the reason why the particular Ĝ(T, p,n) and F̂ (T, V,n) functions
have been introduced to enable convenient equilibrium calculations, and no
other state functions, must be seen in connection with historical requirements.
The pioneers in classical thermodynamics experienced that in practice many
chemical processes occur either in open vessels exposed to the atmosphere at
constant temperature and pressure or in closed rigid vessels with diathermal
walls at constant temperature and volume. In the latter case the ambient
atmosphere acts as a thermal reservoir. The Gibbs energy function is thus
conveniently defined in such a way that we can make use of the physical sys-
tem property that at constant T and p, the system tends to move toward a
state of minimum Gibbs energy for which dĜ|T,p = 0. It is emphasized that
this system property represents a reformulation of the second law of thermo-
dynamics which holds only when T and p are constants. In a similar manner,
the Helmholtz energy function (F̂ ) is conveniently defined in such a way that
we can make use of the physical system property that at constant temper-
ature and volume, the system tends to move toward a state of minimum
Helmholtz energy. Therefore, an alternative condition for chemical reaction
equilibrium at constant T and V can be expressed as dF̂ |T,V = 0. Again,
it is emphasized that this system property represents a reformulation of the
second law of thermodynamics which holds only when T and V are constants.
Secondly, so far we have mentioned that the second law of thermodynamics
provides several state functions governing the direction of natural processes.
The particular state function appropriate to a given situation is governed
by the choice of thermodynamic variables. In classical thermodynamics the
most important state functions applied to equilibrium calculations are thus
the entropy function, the Helmholtz function, and the Gibbs function. For
each such state function, there is a statement of the second law of thermo-
dynamics that include both the criterion for a natural process to occur and
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for the equilibrium state. Thirdly, Callen [2] proved the equivalence of alter-
native formulations of the conditions of chemical equilibrium. Each of these
alternative formulations can be convenient for particular problems. We recol-
lect that the principle of maximum entropy is the conventional statement of
the second law of thermodynamics. Callen postulated that this law may be
generalized and expressed as an extremum principle. Moreover, he stated that
the same extremum principle can be reformulated in several equivalent math-
ematical forms. In particular, the equivalence of the maximum entropy rep-
resentation and the minimum energy representation has been examined. The
reformulations of the novel extremum principle are written in terms of Legen-
dre transformed energy and entropy functions representations. The Helmholtz
and the Gibbs energies represent two such thermodynamic potentials which
correspond to two particular Legrendre transforms of the energy. In chap 2 it
is explained that multiple equivalent formulations have been used in classical
mechanics (i.e., the Newtonian, Lagrangian, and Hamiltonian mechanics) be-
cause certain problems are much more tractable in a Lagrangian formalism
than in a Newtonian formalism, or visa versa. Another postulate of Callen [2]
is that for particular problem formulations one of the equivalent representa-
tions of the equilibrium condition in thermodynamics may also be simpler to
use than the conventional Gibbs energy condition. The main point now is that
we may utilize these novel ideas enabling more efficient reactor simulations.
In fluid dynamics chemical reaction equilibrium calculations are neither natu-
rally occurring at uniform and constant T and p nor at uniform and constant
T and V because a material control volume is not defined at particular T , p
or V . However, it is not trivial to design a more optimal state function for the
control volume representation that will make future reactor simulations less
computational demanding.

Meanwhile we still make use of the conventional theory, thus the chemical
reaction equilibrium composition is usually found by minimizing the Gibbs en-
ergy constrained by the material balance. In this standard problem definition
the values for the element-abundance vector b, temperature T , pressure p,
and the appropriate free energy data are thus assumed to be known. When
designing numerical algorithms for calculating the unknown equilibrium com-
position of a mixture, it is customary to distinguish between two equivalent
representations of the minimizing problem [14]:

1. The stoichiometric formulation, in which the constraints are incorporated
through stoiciometric reaction equations. These procedures are sometimes
referred to as the classical equilibrium constant methods because the equi-
librium constant and the extent of reaction are the primary quantities.

2. The non-stoichiometric formulation, in which the stoichiometric equations
are not used, instead the material balance constraints are treated by means
of Lagrange multipliers. In these direct free energy minimization methods
the problem is usually expressed as minimizing G, for fixed T and p,
subject to the material balance constraint.
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6.3.1 Stoichiometric Formulation

Generally the reaction equilibrium problem may be written:

min Ĝ(n) =
q

∑

i=1

niμi,

subject to An = b

and ni ≥ 0 (6.37)

In these equations Ĝ(n) is the Gibbs energy function for the mixture and
n ∈ Rq is a column vector (sometimes called the species-abundance vector)
containing the unknown variables representing the number of moles of each of
the q species (molecules) in the mixture. A ∈ Rm×q is the predefined formula
matrix. This coefficient matrix defines how the m elements in the mixture are
distributed within the q species (molecules) that can exist in the system. m
is the total number of elements in the mixture. b ∈ Rm is a column vector
(sometimes called the element-abundance vector) containing the known values
for the total amount of the different elements in the mixture.

In this formulation the solution task consist in identifying the species com-
position vector neq that minimizes Ĝ, for fixed T and p. The governing equa-
tions to be solved in the equilibrium calculations can be derived from the
total differential of the state function. Assuming Ĝ = Ĝ(T, p,n), the total
differential of the Gibbs function can be expressed like:

dĜ =

(

∂Ĝ

∂p

)

T,n

dp +

(

∂Ĝ

∂T

)

p,n

dT+
q

∑

i

(

∂Ĝ

∂ni

)

T,p,nj,j �=i

dni, i = 1, 2, · · · , q

(6.38)
At equilibrium we require that dĜ|T,p = 0, hence the above differential re-

duces to:

dĜ =
q

∑

i

(

∂Ĝ

∂ni

)

T,p,nj,j �=i

dni = 0, i = 1, 2, · · · , q (6.39)

However, the number of unknowns and thus the mathematical problem to be
solved is still quite large even for systems in which only a few reactions occur.
To reduce the number of unknown variables, it is convenient to introduce the
extent of reaction quantity. For a specific stoichiometric equation defining a
particular reaction, the extent of reaction is defined by:

ξ =
ni − ni,0

νi
(6.40)

By definition the stoichiometric coefficient is positive for a product and neg-
ative for a reactant.

For a system with r reactions a matrix notation may be more appropriate,
hence the r stoichiometric equations and the species-abundance vector n are
related through the extent of reaction ξ by:
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n = n0 +
r

∑

j=1

νjξj . (6.41)

where n0 represents any particular solution with an initial composition, νj is
a stoichiometric vector, and ξj is the extent of reaction for reaction j. This
relation is merely the definition equation for the extent of reaction ξj .

We may then re-define the Gibbs free energy function in terms of ξ instead
of n. Hence, the modified state function definition yields:

Ĝ = Ĝ (T, p, ξ) (6.42)

In this case the solution task is to minimize Ĝ, for fixed T and p, in terms of
the extent of reaction ξj for the r reactions.

The total differential of the modified Gibbs energy function Ĝ = Ĝ (T, p, ξ)
is examined to elucidate the necessary conditions for obtaining a minimum in
the free energy function:

dĜ =

(

∂Ĝ

∂p

)

T,ξ

dp +

(

∂Ĝ

∂T

)

p,ξ

dT +
r

∑

j

(

∂Ĝ

∂ξj

)

T,p,ξk,k �=j

dξj , j = 1, 2, · · · , r

(6.43)
By chain rule differentiation, the last term on the RHS of this relation can be
re-written in terms of mole numbers:

dĜ =

(

∂Ĝ

∂p

)

T,ξ

dp +

(

∂Ĝ

∂T

)

p,ξ

dT +
r

∑

j

q
∑

i=1

(

∂Ĝ

∂ni

)

T,p,nk,k �=i

(

∂ni

∂ξj

)

ξk,k �=j

dξj

(6.44)

The last term derived on the RHS can be further simplified by recognizing
that:

(

∂Ĝ

∂ni

)

T,p,nk,k �=i

= μi (6.45)

and
(

∂ni

∂ξj

)

ξk,k �=j

= νij (6.46)

At equilibrium, we again require that dĜT,p = 0, hence (6.44) reduces to:

dĜT,p =
r

∑

j=1

q
∑

i=1

νijμidξj = 0 (6.47)

where νij is the stoichiometric coefficient of species i in reaction j.
From the relations (6.43) to (6.47) it is concluded that the necessary con-

ditions for a minimum value of Ĝ are:



672 6 Chemical Reaction Engineering
(

∂Ĝ

∂ξj

)

T,p,ξk,k �=j

=
q

∑

i=1

(

∂Ĝ

∂ni

)

T,p,nk,k �=i

(

∂ni

∂ξj

)

ξk,k �=j

=
q

∑

i=1

μiνij = 0, j = 1, 2, ..., r

(6.48)

In this method the chemical equilibrium state is defined by the chemical equi-
librium constant [10]. The chemical equilibrium constants can be derived from
(6.48) provided that appropriate expressions are introduced for the chemical
potential. A change in chemical potential for an isothermal process is related
to a change in the fugacity of the species5 [13]:

dμi|T = RTd ln f̂i|T (6.49)

where f̂i is the fugacity of species i in the mixture.
If we integrate, at constant temperature, the given relation between the

standard state and some arbitrary state, we obtain [13]:

μi = μ0
i + RT ln

(

f̂i

f0
i

)

(6.50)

The fugacity of species i in the mixture f̂i can be defined in terms of the pure
species fugacity fpure

i through an activity coefficient γi or a fugacity coefficient
φi as will be explained shortly.

The ratio of the fugacities represents the activity, ai = f̂i/f
0
i , hence we

can re-write the above relation like:

μi = μ0
i + RT ln (ai) (6.51)

Considering a single model reaction like:

aA + bB = cC + dD

we can derive an expression for the rate of change of the chemical potential:

ΔμR = Δμ0
R + RT ln

(

ac
Ca

d
D

aa
Aa

b
B

)

(6.52)

The criterion for chemical reaction equilibrium is thus that the energy
difference between reactants and products is zero, ΔμR = 0. Hence, we can
define the equilibrium constant for the model reaction by:

5 The American chemist G. N. Lewis (1875−1946) introduced the fugacity function
(Latin fugare, to fly) as a measure of the pressure adjusted for the lack of ideality
[11]. For an ideal gas the fugacity is equal to the pressure. For a non-ideal gas we
normally define the standard state to correspond to unit fugacity, f0

i = 1 (bar).
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−Δμ0
R

RT
= ln

(

ac
Ca

d
D

aa
Aa

b
B

)

eq

= lnKeq (6.53)

The relationship between the equilibrium constant and the change in the
chemical potential for the reaction is sometimes called the van’t Hoff equation
[10].

An explicit expression for the chemical equilibrium constant is thus
given by:

Keq = exp
(

−Δμ0
R

RT

)

(6.54)

where Δμ0
R is the standard free energy change for the reaction at a given

temperature T and a defined reference state.
This concept can be generalized and applied to a multicomponent mixture

in which multiple reactions are taking place. In this case Δμ0
R,j is system-

atically expressed in terms of the reference chemical potentials by inserting
(6.50) into (6.48). The result is:

q
∑

i=1

[

νijμ
0
i + νijRT ln

(

f̂i

f0
i

)]

= 0 (6.55)

The measure of the change in chemical potential associated with reaction j is
defined by ΔG0

R,j = Δμ0
j =

∑q
i=1 νijμ

0
i . It is emphasized that this quantity

is calculated from the stoichiometric coefficients of the reaction and not from
the number of moles of the different species transformed by the reaction.
Nevertheless, the ΔG0

R,j is frequently referred to as the standard Gibbs energy
change for reaction j. The above relation can be re-written as:

ΔG0
R,j

RT
=

1
RT

q
∑

i=1

νijμ
0
i = −

q
∑

i=1

νij ln

(

f̂i

f0
i

)

= − lnKeq,j (6.56)

In order to relate Keq,j to the activities we rearrange the relation to obtain:

lnKeq,j =
q

∑

i=1

νij ln (ai) = ln (ai)
∑ q

i=1 νij = ln
q

Π
i=1

a
νij

i (6.57)

Hence, a non-linear equation for Keq,j can easily be obtained:

Keq,j =
q

Π
i=1

a
νij

i (6.58)

For most liquid mixtures the fugacity is not a strong function of pressure
thus the fugacity ratio is approximately fpure

i /f0
i ∼ 1, thus for liquids the

activity can be approximated as:

ai =
γixif

pure
i

f0
i

≈ γixi (6.59)
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The corresponding equilibrium constant yields:

Keq,j =
q

Π
i=1

(γixi)νij (6.60)

The calculation of the equilibrium composition for a reactive liquid mixture
requires specific excess models for the activity coefficient of every species [13].
Note that for ideal solutions the activity coefficient has a value of unity, γi = 1.

For gas mixtures6 the fugacity of species i in the mixture f̂i is convention-
ally written:

f̂i = yif
pure
i = yi

fpure
i

p
p = yiφip (6.61)

The fugacity coefficient is defined as φi = fpure
i /p = f̂i/pi, and is calculated

from an appropriate EOS.
The corresponding equilibrium coefficient for reaction j in the mixture

yields:

Keq,j =
q

Π
i=1

(
f̂i

f∗
i

) =
q

Π
i=1

(
yiφip

f∗
i

)νij =
q

Π
i=1

(
yiφip

p∗
)νij (6.62)

in which f∗
i = p∗ = 1 (bar). p∗ is the pressure at the reference state (ideal

gas). For gases the standard state for ΔG0
R,j is thus 1 (bar).

This model represents the most frequently used description of chemical
reaction equilibrium and should be familiar to most chemical engineering stu-
dents. However, for multicomponent mixtures in which multiple reactions may
take place, this type of non-linear problems may be cumbersome to solve nu-
merically. One important obstacle is that the non-linear equilibrium constant
definitions may give rise to multiple solutions, hence we have to identify which
of them are the physical solutions. The stoichiometric formulation might thus
be inconvenient for mixtures containing just a few species for which only a
few reactions are taking place.

6.3.2 Non-stoichiometric formulation

In this case the chemical reaction equilibrium problem is expressed so that we
are minimizing the free energy directly as formally defined by the fundamen-
tal statement (6.37). In mathematical terms (6.37) represents a constrained
optimization problem. This type of problems is usually solved by the use of
Lagrange multipliers.

A Lagrangian function for the equilibrium problem can be defined as7:

L(λ,n) ≡ Ĝ(n) − λ
T

(An − b) (6.63)

6 This approach can also be adopted for liquid mixtures provided that an appro-
priate EOS is available.

7 The elements of Lagrangian mechanics are explained in chap 2.
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In this framework the minimization problem is expressed as:

minL(λ,n) (6.64)

where λ ∈ Rm is a column vector of the Lagrange multipliers.
The Lagrangian function has a minimum when ∇L = 0, in which the ∇L

operator is defined by a column vector consisting of the two elements:

∂L

∂n
=

∂Ĝ

∂n
−AT

λ = μ −AT

λ = 0

∂L

∂λ
=

∂Ĝ

∂λ
− (An − b) = −(An − b) = 0 (6.65)

Notice that ∂Ĝ/∂n equals the chemical potential vector μ, and ∂Ĝ/∂λ = 0.
The solution of these equations may be obtained by use of the iterative

Newton method. The Newton method can be derived from a second order
Taylor expansion, which for the given Lagrangian (L) gives:

∇L(k) + ∇2L(k)δy(k+1) = 0 (6.66)

or more conveniently
∇2L(k)δy(k+1) = −∇L(k) (6.67)

where δy = (δn, δλ)
T

is a column vector containing the difference in the
composition and Lagrange multiplier estimates for the iteration number k+1
and k.

The gradient and Laplace operators in (6.67) are applied to the Lagrangian
(6.63). The gradient of the Lagrangian is defined by (6.65), whereas the
Laplace operator applied to the Lagrangian is simply the divergence of the
gradient of the Lagrangian. Hence, (6.67) can be re-written as:

[

∂

∂nT

(

μ −AT

λ
)

∂

∂λT

(

μ −AT

λ
)

∂

∂nT (b −An) ∂

∂λT (b −An)

](k)
[

δn
δλ

](k+1)

=
[

AT

λ − μ
An − b

](k)

(6.68)

After performing the differentiation in the first parenthesis, the Newton
method can be expressed as:

[

H −AT

−A 0

](k) [

δn
δλ

](k+1)

=
[

AT

λ − μ
An − b

](k)

(6.69)

where H is the Hessian matrix of G, H = ∂2G/∂n∂n
T

= ∂μ/∂n
T

. The Hes-
sian matrix may be found by analytical differentiation or by a finite differences
approximation of the derivative.

The matrix operations may be further simplified, as can be illustrated
writing down the problem as two algebraic equations that need to be solved
simultaneously:
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H(k)δn(k+1) −AT

δλ(k+1) = AT

λ(k) − μ(k)

AT

δn(k+1) = b −An(k) (6.70)

Moreover, since δλ(k+1) = (λ(k+1) − λ(k)), the equations reduce to:

H(k)δn(k+1) −AT

λ(k+1) = AT

λ(k) −AT

λ(k) − μ(k) = −μ(k)

AT

δn(k+1) = b −An(k) (6.71)

The resulting iterative method formulation is called the Newton-Lagrange
scheme:

[

H −AT

−A 0

](k) [

δn
λ

](k+1)

=
[

−μ
An − b

](k)

(6.72)

Computational aspects, including advantages and disadvantages, of the so-
lution of the chemical reaction equilibrium model formulation are discussed
by Michelsen and Mollerup [12]. In particular, readers not familiar with the
theory for constrained optimization can find a short introduction therein. A
more extensive discussion of practical methods of optimization can be found
in the book of Fletcher [5].

An important feature of the non-stoichiometric formulation is that no in-
formation about the reaction stoichiometry is required. However, the species
that the mixture is composed of must be specified.

Note also that this type of chemical reaction equilibrium calculations is
sometimes referred to as a Gibbs reactor simulation.
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7

Agitation and Fluid Mixing Technology

Many industrial processes rely on effective agitation and mixing of fluids.
The application of agitators cover the areas of mining, hydrometallurgy, biol-
ogy, petroleum, food, pulp and paper, pharmaceutical and chemical process
industry. In particular, in these industries we find typical chemical reaction en-
gineering processes like fermentation, waste water treatment, hydrogenation,
polymerization, crystallization, flue gas desulfurization, etc [65, 21].

Generally, agitation refers to forcing a fluid by mechanical means to flow in
a vessel. Mixing usually implies the taking of two or more separate phases, or
two fluids, and causing them to be randomly distributed through one another.

There are a number of purposes for agitating fluids, the intension may for
example be to optimize blending of two miscible liquids, dissolving solids in
liquids, dispersing a gas in a liquid as fine bubbles, suspending fine solid par-
ticles in a liquid, and agitation of a liquid to increase heat transfer between
the fluid and a coil or jacket in the vessel wall. Fluid mixing may also be im-
portant in reactors to ensure optimal operation conditions for some chemical
systems requiring uniform temperature and species concentrations within the
reactor volume. Fluid mixing and blending1 devices may thus be important
units both for reactive and non-reactive processes.

There are many ways to obtain mixing in a vessel. This chapter focuses
on the turbulent impeller type of mixers, as they are frequently applied in the
chemical process industries.

7.1 Tank Geometry and Impeller Design

There is not only one optimal or unique tank design for each kind of process,
since several designs may satisfy the process specifications [65]. In order to
simplify design and minimize costs, standard reactor designs are usually con-
sidered sufficient for most processes. Based on experience, it has been found
1 In English literature the term blending are most commonly used describing mix-

ing of miscible liquids, whereas the term mixing is used describing mixing of
immiscible liquids, powders, etc [53].

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 7,
c© Springer-Verlag Berlin Heidelberg 2008
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that for turbulent mixing using low viscosity fluids, the standard geometry
shown in Fig 7.1 can be used. The standard tank is characterized by the di-
ameter, T , liquid height H, impeller diameter D, impeller blade width W ,
clearance of impeller from the tank bottom C and the baffle width B. The
standard tank is defined with four baffles placed 90◦ apart.

However, the standard tank does not reflect an optimized geometry for
all processes performed in stirred tanks. The determination of an optimal
geometry for a given process is very difficult, hence the standard geometry
has been viewed as a reference geometry and as a point of departure for novel
studies. For turbulent mixing, a liquid height to tank diameter ratio (H/T )
equal to 1 is often used as a base to describe the effect of geometry. No such
standard tank geometry similar to the one used in turbulent mixing has been
used for laminar mixing of high viscosity fluids.

Two different types of impellers for turbulent flow exist, radial impellers
and axial impeller, as sketched in Fig 7.2. The radial impellers project the fluid
radially out from the blade towards the tank wall. The flow splits at the tank
wall, and approximately 50% of the fluid circulates towards the surface while
the rest to the bottom, creating two regions of low mean velocity. The flow
exiting the impeller blade forms a sharp velocity gradient with a strong peak at
the impeller blade horizontal center line. Examples of radial flow impellers are
disk style flat blade turbines (Rushton impellers) and curved blade turbines.
Turbines that resemble multi-bladed paddle agitators with shorter blades are
used at high speeds for liquids with a very wide range of viscosities. Normally,
the turbines have four or six blades. Various types of paddle agitators are
often used at low speeds between about 20 and 200 rpm. At low speeds mild
agitation is obtained in an unbaffled vessel. At higher speeds baffles are used,
since without baffles, the liquid is simply swirled around with little actual
mixing. An anchor or gate paddle is often used with viscous liquids where
deposits on walls can occur and to improve heat transfer to the wall.

The axial impeller discharges fluid mainly axially, parallel to the impeller
shaft. The fluid is pumped through the impeller, normally towards the bottom
of the tank. Since the flow make a turn at the bottom, the velocity vectors fan
out radially at approximately D/2 beneath the impeller. Then, the flow moves
along the bottom and rises near the tank wall. Analyzing the flow pattern,
one can see that a back-flow eddy region is formed directly under the impeller.
Upon examining the flow around the axial impeller one can also observe that
a large contribution to the inlet flow enters radially at the tip of the impeller
blade. This pattern is shown in Fig 7.1.

Examples of axial impellers are marine propeller and pitched blade tur-
bine, shown in Fig 7.2. A three bladed marine type propeller is similar to the
propeller blade used in driving boats. The propeller can be a side entering
type in a tank or be clamped on the side of an open vessel in an off-center
position. Axial flow impellers are used in blending and mixing of miscible
liquids.
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Fig. 7.1. Turbulent flow impellers. (a) The flow pattern produced by a radial im-
peller in a the standard tank geometry. (b) The flow pattern produced by an axial
impeller in a standard tank geometry Tatterson [87]. By permission from Tatterson
(personal communications, 2006).

In turbulent mixing unwanted phenomena such as solid body rotation and
central surface vortices may occur. In solid body rotation the fluid rotates as
if it was a solid mass, and as a result little mixing takes place. At high impeller
rotational speeds the centrifugal force of the impeller moves the fluid out to
the walls creating a surface vortex. This vortex may even reach down to the
impeller resulting in air entrainment into the fluid [87].
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Fig. 7.2. Typical turbulent impellers [87]. By permission from Tatterson (personal
communications, 2006).

The characteristic solid body rotation is the primary flow pattern in un-
baffled tanks. To avoid these phenomena, baffles are installed in the tank. On
wall baffles are sketched in Fig 7.1. Generally, baffles are placed in the tank to
modify the flow and surface destroy vortices. Baffles mounted at the tank wall
are most common, but also bottom baffles, floating surface baffles and disk
baffles at the impeller shaft are possible. Often tank wall baffles are mounted
a certain distance from the wall, as illustrated in Fig 7.3. This creates a dif-
ferent flow pattern in the tank. The purpose of installing baffles away from
the wall is to avoid dead zones where liquid is seldom exchanged and where
impurities accumulate. Experiments have confirmed that the flow patterns in
baffled agitated tanks are different from the flow patterns in unbaffled agi-
tated tanks. In baffled tanks the discharge flow dissipates partly in the bulk
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Fig. 7.3. Vortices in baffled tanks [87]. Left: Baffle off wall. Right: Baffle on wall.
By permission from Tatterson (personal communications, 2006).

and turns axially near the tank wall. Baffles increase the axial circulation
and reduce the tangential velocities. While the axial circulation dominates in
the baffled tank, solid body rotation easily form in an unbaffled tank. Due to
the high tangential velocity in the unbaffled solid body rotation flow regime,
the relative velocity between the fluid and the impeller becomes small, result-
ing in poorer mixing and circulation in unbaffled tanks compared to baffled
tanks. The magnitude of the tangential velocity component is also reflected
by the turbulence intensities. The radial and axial turbulence intensities are
usually less than the turbulence intensities of the tangential velocity, indicat-
ing that the flow is non-isotropic, and that the mixing in the radial and axial
directions is much lower than in the tangential direction [87].

In a tank with radial impellers, suitable baffles will produce strong top-to-
bottom currents from the radial discharge. The installation of baffles generally
increase the power consumption [65]. For axial flow impellers, the need for
baffling is not as great as for radial flow impellers, thus axial flow impellers
also consume less power than radial impellers. Baffles are normally used in
turbulent mixing only.

For laminar mixing other impellers are used, some laminar impellers are
sketched in Fig 7.4. To bring the fluid in the entire tank in motion, the diam-
eter of these impellers usually approach the tank diameter since the laminar
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bulk flow is otherwise relatively low. Laminar impellers with diameter ap-
proaching the tank diameter are also called close-clearance impellers. Laminar
mixers often have complex geometries, characterized by geometrical variables
as the impeller diameter D, the blade width W , the pitch p, the impeller wall
clearance C, and the off-bottom clearance Cb. In most applications, baffles
are not needed and can in fact cause poor mixing behavior [87]. Examples of
laminar impellers are helical ribbons, screws, helical ribbon screws and anchor
impellers.

In many processes, multiple impellers are applied in order to obtain better
mixing of a larger volume. In tall tanks where the liquid height to tank di-
ameter ratio (H/T ) is greater than 1, the use of multiple impellers will cause
better top-to-bottom circulation of the bulk. By using axial impellers, fluid
can be pumped upward or downward in the tank into a new impeller’s flow
area. However, if the axial flow impellers are placed too close together, they
may behave as a single larger impeller. A problem associated with multiple
radial impellers is the formation of fluid cells or compartments around each
impeller. Exchange of fluid mass between these fluid cells is poor resulting in
poor mixing of the whole tank volume.

The viscosity of the fluid is one of several factors affecting the selection
of the type of agitator ([27], pp 142-143). Based on experience the viscos-
ity ranges for which the different agitators can be used might be indicated.
Propellers are often used for viscosities of the fluid below about 3 (Pa s), tur-
bines may be used below about 100 (Pa s), modified paddles such as anchor
agitators are normally used above 50 (Pa s) to about 500 (Pa s), helical and
ribbon type agitators are often used above this range to about 1000 (Pa s)
and have been used up to 25 000 (Pa s). For viscosities greater than about
2.5 to 5 (Pa s) and above, baffles are usually not needed since little swirling
is present above these viscosities.

7.2 Fluid Shear Rates, Impeller Pumping Capacity
and Power Consumption

An impeller is essentially a pump, although not a very efficient one. All the
energy an impeller supplies to the fluid produces fluid flow and shear. In
other words, a rotating impeller transports kinetic energy from the impeller
blade to the surrounding fluid. Generally, approximately 80% of the mixing
applications primarily require impeller pumping and mass flow of the batch,
such as blending of liquids and solid suspension. These important applications
include fermentation, particle degradation in emulsions, gas dispersion and
polymerization [65]. For about 20% of the mixing applications, producing
shear is the main requirement for mixing. Many industrial chemical reactive
processes require primarily shear in order to provide contact between the
reacting components on a molecular level.
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Fig. 7.4. Typical laminar impellers [87]. By permission from Tatterson (personal
communications, 2006).

7.2.1 Fluid shear rates

Fig 7.5 shows a typical flow pattern produced by a radial impeller. As can be
seen from the figure, the velocity of the fluid discharged from the middle of
the impeller blade is highest. The shear rate is determined by the gradient of
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Fig. 7.5. Simulated stirred tank showing a typical flow pattern from a radial im-
peller. The figure is produced by a FLUENT simulation.

the velocity profile. The velocity gradient multiplied by the kinematic viscos-
ity determines the shear stress. This force is responsible for dispersing gas,
stretching liquid particles and intermixing small-scale fluid parcels [65].

To investigate how changes in impeller speed and impeller size influence on
the fluid shear, the fluid discharge velocities from the impeller have been mea-
sured and simulated. The maximum shear rate obtained at the fluid boundary,
as well as the average shear rate around the entire impeller can be calculated
from these data. The maximum shear rates in the tank volume are gener-
ally found on the impeller blade. In a baffled tank, the shear rates decrease
from impeller tip towards the tank wall and are decreasing with decreasing
rotational speed.

7.2.2 Impeller Pumping Capacity

Axial turbines are pumping fluid axially in the tank creating a circulating flow
pattern. The total volumetric turnover rate in the tank is the total circulation
rate taking place in the tank. The pumping capacity, Q, of an impeller is the
volumetric flow rate passing through the planes established by the impeller
rotation. The entrained circulation rate is the difference between these two
volumetric flow rates. In accordance with the continuity equation on integral
form for an incompressible fluid, the volumetric flow rate Q is proportional to
the fluid velocity multiplied by the flow area:
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Q ∝ vA ∝ (πND)D2 (m3/s) (7.1)

where the fluid velocity is assumed to be proportional to the impeller tip
speed, v ∝ vt = (πND), and a size measure of the area is given by the square
of the impeller diameter, A ∝ D2.

We may then introduce a proportionality coefficient, NQ, defined as:

Q = NQND3 (m3/s) (7.2)

where the flow or pumping number, NQ, is a dimensionless group used to
quantify the flow pattern in stirred tanks [65]. NQ varies with impeller type,
tank geometry and flow regime. N is the stirring rate in RPM (rounds per
minute).

The impeller Reynolds number is defined as:

Re =
ρvD

μ
=

ρ(ND)D
μ

=
ρND2

μ
(7.3)

A similar relation can be derived for radial impellers. Experiments have shown
that for a disk style turbine the pumping number decreases with increasing
impeller Reynolds number [87] (p 213), while for a propeller the pumping
number seems to increase with increasing Reynolds number. Normally, em-
pirical correlations expressed in terms of the impeller Reynolds number etc.
are developed to estimate how the pumping number varies with impeller ge-
ometry.

7.2.3 Impeller Power Consumption

Impeller power draw is the power transfer from the impeller to the fluid caus-
ing fluid motion. This power is eventually dissipated by viscous dissipation
into heat within the fluid. Power dissipation is often termed power consump-
tion and is equal to the power draw at steady state according to a global or
macro scale kinematic energy balance.

Several approaches have been applied estimating the power consumption.
The traditional approach is to use dimensional analysis, creating power laws
based on experimental data on torque2 [87]. The power or Newton number
has the same function as the pumping number, accounting for various effects
on power consumption.

Impeller power consumption, P , is primarily a function of system charac-
teristics like impeller speed, N , impeller diameter, D, impeller design, phys-
ical properties of fluid, vessel size and geometry, impeller location and baffle
design. Through extensive experimental work, correlations determining the

2 The torque or angular moment is defined as the tendency of a force to rotate the
body to which it is applied. Torque is thus a force that affects rotational motion
and is always specified with regard to the axis of rotation.
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influence of these quantities upon power consumption have been established.
The main purpose of such relations is to estimate the power draw for a given
process, so that a tank geometry which maximizes impeller power draw can be
designed and scaled to industrial units [87] (p 22). The power consumption,
P , is given by:

P = NpρN
3D5 (W ) (7.4)

where Np is the dimensionless Newton number and ρ is the density of the
fluid. The dimensionless Newton number is a characteristic number for the
effects of geometry and flow regime on the power consumption.

The power number in (7.4) is usually determined from suitable param-
eterizations which are functions of Reynolds number, Froude number, and
geometry.

7.2.4 Fundamental Analysis of Impeller Power Consumption

Fundamental momentum and energy analyzes can be used to verify the re-
lationships obtained by dimensional analysis. The theory might be of more
general interest thus a brief outline is presented in this section.

Radial Impeller Power Consumption

In this analysis the moment of a force with respect to an axis, namely, torque,
is important. Although the linear momentum equation can be used to solve
problems involving torques, it is generally more convenient to apply the an-
gular moment equation for this purpose. By forming the moment of the linear
momentum and the resultant force associated with each particle of fluid with
respect to a point in an inertial coordinate system, a moment of moment
equation that relates torque and angular momentum flow can be obtained.

Our starting point is the familiar Newton’s second law for a single rigid
particle:

f =
d(mv)
dt

(N) (7.5)

The torque exerted by the force F about a fixed point is [79]:

t = r × f (Nm) (7.6)

where r is the radius vector from the fixed point to the point of application
of r.

From Newton’s law of motion it is obvious that:

t = r × d(mv)
dt

(Nm) (7.7)

By convention the angular momentum vector h is defined as the vector prod-
uct of the radius vector to the particle and the linear momentum:
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h = r × (mv) (kgm2/s) (7.8)

Upon differentiating h with respect to time, we get:

dh
dt

=
dr
dt

×mv + r × d(mv)
dt

= r × d(mv)
dt

(7.9)

The first term on the RHS vanishes because the cross product of two parallel
vectors is zero (i.e., mdr/dt× v = mv × v = 0).

This relation express that the rate of change of angular momentum of a
particle about a fixed point is equal to the torque applied to the particle ([95],
p 130 and pp 158-159):

t =
dh
dt

(Nm) (7.10)

A similar analysis can be applied to a material control volume. If O is the
point about which moments are desired, the angular momentum about O for
the given system is expressed by:

HO =
∫

V (t)

ρ(r × v) dv (kgm2/s) (7.11)

where r is the position vector from O to the elemental volume dv, and ρ and
v are the fluid density and velocity of that element.

The torque on the material volume is then:

TO =
DHO

Dt
=

D

Dt

∫

V (t)

ρ(r × v) dv (Nm) (7.12)

We can now relate the system formulation to an inertial control volume for-
mulation using the Reynolds transport theorem (see App A):

D

Dt

∫

V (t)

ρ(r× v) dv =
∫

V

∂

∂t
[(r× v)ρ] dv +

∫

A

(r× v)ρv · n da (Nm) (7.13)

For an Eulerian control volume, (7.12) becomes:

TO =
∂

∂t

∫

V

(r × v)ρ dv +
∫

A

(r × v)ρv · n da (Nm) (7.14)

This relation is referred to as the angular momentum theorem. The first term
on the RHS represents the rate of change of angular momentum of the fluid
contained in the control volume, and the second term represents the net flux of
angular momentum leaving the control volume. The sum is equal to the total
torque applied to the mass of fluid that is contained in the control volume at
time t.
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For steady flows where the only external torque is applied by a shaft, the
angular momentum equation reduces to:

TShaft =
∫

A

(r × v)ρv · nda (Nm) (7.15)

Furthermore, if there are only 1D inlets and outlets, the angular momentum
flux terms evaluated on the control surface become:

∫

A

(r × v)ρv · nda =
∑

(r × v)OutṁOut −
∑

(r × v)InṁIn (7.16)

For 1D flows where the fluid enters the device at the radial location r1 with a
uniform absolute velocity v1, and leaving the pump at the radial location r2

with a uniform absolute velocity v2, the relation reduces to:

TShaft = r2vθ,2ṁ2 − r1vθ,1ṁ1 (Nm) (7.17)

If the flow enters the impeller with purely axial absolute velocity, the
entering fluid has no angular momentum and vθ,1 = 0. The torque is then
given by:

TShaft = r2vθ,2ṁ2 = ρQr2vθ,2 (Nm) (7.18)

This form of the angular momentum equation can be applied determining
the dependence of torque on fluid pumping for a radial impeller. The control
volume for radial flow impellers may be defined as a circular cylindrical volume
encompassing the impeller plus some fluid surrounding the impeller. The fluid
enters the impeller axially and exit radially. Tests have shown that the flow
into the impeller has very little angular momentum. Therefore, only the flow
exiting from the impeller must be considered for a radial impeller. The angular
momentum balance (7.18) can be approximated as ([65], pp 158-159; [83],
pp 413-414):

TShaft = rvθṁ =
D

2
vθṁ (Nm) (7.19)

where r has been set to D/2.
The mass flow rate ṁ is given by the radial component of the velocity

exiting the impeller:

ṁ = ρQ = ρNQND3 = ρπDHvr (kg/s) (7.20)

The principal assumption required to link the angular momentum equation
(7.19) and the continuity relation (7.20) is that the flow exiting the impeller
is tangential to the blade attachment. Although this is not absolutely correct,
it does make a reasonable first approximation [65]:

vr = v cosφ (7.21)
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and
vθ = πND − v sinφ (7.22)

where φ is the blade attachment angle, v is the fluid velocity parallel to the
blade tip and H is the impeller blade height. Combining the latter two equa-
tions, we can express the tangential component of the flow from the impeller
in terms of the tip speed and the impeller flow:

vθ = πND − vr tanφ (7.23)

Using the continuity relation (7.20), the radial component of the velocity
can be expressed as a function of the impeller flow number:

vr =
NQ

πH
D

ND (7.24)

Substituting the expressions found for the two velocity components (7.23) and
(7.24) into the continuity (7.20) and the angular momentum balance (7.19)
gives an expression for the dependence of torque on fluid pumping:

P = N TShaft = π2ρNQN
3D5(1 − NQ

π2 H
D

tanφ) = NP ρN
3D5 (W ) (7.25)

where :
NP =

π

2
NQ(1 − NQ

π2 H
D

tanφ) (7.26)

The result deduced from the fundamental angular momentum equation co-
incides with the dimensional analysis. The fundamental equation provides
additional information relating the dimensionless numbers NP and NQ to the
impeller geometry.

Propeller Power Consumption - Angular Momentum Analysis

The design of an axial propeller is based on the fundamental principles of
airfoil theory. The device use airfoil sections to change the fluid pressure in
order to produce a force, and the change in pressure occurs because the fluid
momentum changes. The problem can be described using either the angular
momentum equation or the total energy equation. The angular momentum
equation analysis is presented first, the approach using the total energy equa-
tion is discussed in the next subsection. For chemical engineers the latter
approach may seem more physically intuitive.

To simplify the analysis, we assume that the flow into the impeller has
no preswirl. Tests have shown that this preswirl is quite small for most cases.
Because of the impeller geometry and airfoil coordinate system, the lift and
drag terms contribute both to the axial thrust3 and to the torque forces. The
3 Thrust is defined as the propulsive force developed by a jet-propelled motor.
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propeller of a boat or a airplane is designed to produce thrust, and since the
greatest contribution to thrust comes from the lift force FL, the design goal is
to maximize lift and minimize drag, FD. Since the angle of the blade decreases
with an increase in r, for a well designed propeller the propeller blade must
be warped in order to obtain the optimum angle of attack along the length of
the blade. This make it very difficult to estimate the resulting velocity profile
around the whole surface of the blade, and it becomes very difficult to apply
the same procedure as for radial devices. To obtain a reasonable estimate of
the torque for axial devices we are forced to use the more complex procedure
integrating the moment of inertia over the rigid blade surface.

By definition (e.g., [16], chap 14), the lift is normal to the relative fluid
velocity, vRelative, and the drag is the force acting parallel to the same velocity,
as sketched in Fig 7.6. Thus one component of the lift force, dFLcosθ, pro-
duces a positive thrust component4, and a component of the drag, dFD sin θ,
produces a negative thrust component:

dFThrust = dFLcosθ − dFDsinθ (N) (7.27)

In a similar manner, it can be shown that the tangential force for this blade
element is given by:

dFTangential = dFLsinθ + dFDcosθ (N) (7.28)

The torque, T , opposing rotation of the propeller (and inducing fluid flow) is
given by:

dT = rdFTangential = (dFLsinθ + dFDcosθ)r (Nm) (7.29)

Thus, the differential balance between the torque and the drag forces can
be expressed as:

dT = rdFD (Nm) (7.30)

assuming that θ is very small so that cos θ ≈ 1 and sin θ ≈ 0.
The steady drag force on the impeller blade section can, as a first approach,

be formulated as:
FD =

1
2
CDρU2A (N) (7.31)

where A is the projected area or surface area of the body, ρ is the density of
the fluid and U is the relative velocity between the blade and the fluid.

Using the differential force balance, the differential torque is given as:

dT = rdFD =
1
2
CDρU2Wrdr (7.32)

where Wdr is the projected area of the blade section, and CD is the average
drag coefficient of the blade section.
4 The work done by the impeller on the fluid is equal to the thrust multiplied by

the distance [83](p 423), as is discussed in the subsequent section.
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Fig. 7.6. Definition sketch for a propeller-blade element [16]. VR: Velocity of fluid
relative to propeller section. FL: Lift force normal to VR. FD: Drag force acting
parallel to VR. V0: Speed of airplane and propeller. Vt = rω: Tangential velocity
resulting from propeller rotation. r: Radial position on propeller. ω: Angular speed
of propeller. θ: Angle between Vt and VR. α and β: Angular measures. Reproduced
with permission from John Wiley & Sons, Inc, 2006.

Equating the relative velocity of the fluid to the blade with the impeller
rotational speed (U = Nr), assuming no pre-swirl, yields:

dT =
1
2
CDρN2Wr3dr (7.33)

Integrating over the impeller radius gives:

T = KρN2WR4 (7.34)

For geometrically similar systems, the impeller radius, R, and the blade width,
W , are proportional to the impeller diameter, D.

The torque may thus be approximated by:

T = K ′′ρN2D5 (7.35)

Hence, the power draw yields:
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P = N T ≈ K ′′′ρN3D5 (W ) (7.36)

since power draw is the product of torque and the impeller rotational speed.
For laminar flow a similar differential force balance, balancing the drag

force on a blade section and the torque can be formulated. For creeping flow
inertial forces are not important and viscous forces completely dominates the
flow.

The laminar steady drag force on the fluid can be written as F ∝ μUD,
where μ is the fluid viscosity. Substituting U with πND the power becomes
P ∝ μN2D3 or P

μN2D3 = K, where K is the Newton number for laminar flow.
K can be rewritten as:

K =
P

ρN3D5
× ρND2

μ
= Np Re (−) (7.37)

which shows that for laminar flow:

Np ∝ 1
Re

(7.38)

This is in agreement with the observed change in power number under laminar
flow conditions [87] (p 21-22).

Propeller Power Consumption - Kinetic Energy Analysis

The application of impellers in mixing vessels denotes a kind of turbomachin-
ery5. The principal difference between the two units is the feedback response
which results from the fluid being contained in a vessel [65]. This has a major
effect on the pumping capacity, the power draw, and the mechanical loads
experienced by the structure. Nevertheless, the same broad principles may be
applied to predict the impact of impeller geometry changes on the flow and
power.

Two theoretical approaches can be applied to predict the head, power,
efficiency, and flow rate of a pump or impeller. One way is to apply a simple
1D Euler flow formulation, and the alternative way is to apply more complex
3D models which account for viscous effects. In this section the derivation of
the steady state 1D power equation is examined, starting out from the general
microscopic energy balance [95] (chap 3.6 and 11.2), [62] (chap 5) and [100]
(chap 5).

As explaned in chap 1, for a fixed control volume the first law of thermo-
dynamics can be written:

Q̇ + Ẇ =
DE

Dt
=

∂

∂t

∫

V

Êρdv +
∫

A

Êρ(v · n)da (7.39)

5 Turbomachines are dynamic fluid machines that add (for pumps) or extract (for
turbines) flow energy.
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The total stored energy, Ê, per unit mass is considered to be the sum of three
terms:

Ê = e +
1
2
v2 + (−g · r) (7.40)

If z is defined positive upwards, g = −gez and (−g · r) = (gez · r) = gz, thus:

Ê = e +
1
2
v2 + gz (7.41)

The molecular internal energy, e, is a function of T and p for a single
phase pure substance, whereas the potential and kinetic energies are kinetic
properties.

The heat and work transfer terms need to be examined in detail. In chap 1,
Q̇ was divided into conduction and radiation effects. Here we leave this term
untouched and consider the work term in further detail.

The work term (i.e, the work transfer rate, Ẇ , also called power) can be
divided into three parts:

Ẇ = ẆShaft + ẆPressure + ẆViscous stresses (7.42)

The work of gravitational forces has already been included as potential energy.
Other types of work, e.g., those due to electromagnetic forces, are excluded
in this analysis.

The shaft work isolates that portion of the work which is deliberately done
by a machine (e.g., pump impeller, fan blade, piston, agitation impeller, etc.)
protruding through the control surface into the control volume.

The power required to drive the pump is:

PShaft = ẆShaft,Pump = ΩShaftTShaft (7.43)

where ΩShaft is the shaft angular velocity and TShaft denotes the shaft torque.
When shaft torque and rotation are in the same direction, we are dealing with
a pump, otherwise the given turbomachine is a turbine.

The rate of work, Ẇ , done by pressure forces occurs at the surface only, all
work on internal portions of the material in the control volume is by equal and
opposite forces and is self-canceling. The pressure work equals the pressure
force on a small surface element, da, times the normal velocity component
into the control volume:

dẆPressure = (pda)vn,in = p(−v · n)da (7.44)

The total pressure work is the integral over the control surface:

ẆPressure = −
∫

A

p(v · n)da (7.45)

If part of the control surface is the surface of a machine part, one prefers
to delegate that portion of the pressure to the shaft work term, ẆShaft, not
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to ẆPressure, which is primarily meant to isolate the fluid flow pressure work
terms.

The shear work due to viscous stresses also occurs at the control surfaces,
the internal work terms again being self-canceling, and consists of the product
of each viscous stress (one normal and two tangential) and the respective
velocity component:

dẆViscous stresses = (σ · n) · vda (7.46)

or
ẆViscous stresses =

∫

A

(σ · n) · vda (7.47)

where (σ · n) is the stress vector on the elemental surface, da.
For all parts of the control surface which are solid walls, v = 0 from the

viscous no-slip condition. Hence, ẆViscous stresses = 0 identically. If parts of
the control volume surface denote the surface of a machine, the viscous work
is contributed by the machine and should rather be absorbed in the term,
ẆShaft. At an inlet or outlet, the flow is approximately normal to the element
da. Thus, the only viscous work term comes from the normal stress, σnnvnda.
Since viscous normal stresses are extremely small in most cases, it is customary
to neglect viscous work at inlets and outlets of the control volume.

The net result of the above discussion is that the rate of work term essen-
tially consists of:

Ẇ = ẆShaft −
∫

A

p(v · n)da (7.48)

Introducing these terms into the energy balance equation, we find that the
pressure work term can be combined with the energy flux term since both
involve surface integrals of (v · n). The control volume energy equation thus
becomes:

Q̇ + ẆShaft =
∂

∂t

∫

V

Êρdv +
∫

A

(Ê +
p

ρ
)ρ(v · n)da (7.49)

The control volume surface integral can be expressed in terms of the enthalpy
quantity, h = e+ p/ρ. Then, the final form of the energy equation for a fixed
control volume becomes:

Q̇ + ẆShaft =
∂

∂t

∫

V

(e +
1
2
v2 + gz)ρdv +

∫

A

(h +
1
2
v2 + gz)ρ(v · n)da (7.50)

If the control volume has a series of 1D inlets and outlets, the surface
integral reduces to a summation of outlet fluxes minus inlet fluxes:
∫

A

(h+
1
2
v2+gz)ρ(v·n)da =

∑

(h+
1
2
v2+gz)OutṁOut−

∑

(h+
1
2
v2+gz)InṁIn

(7.51)
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where the values of h, 1
2v

2 and gz are taken to be averages over each cross
section.

For steady flow with one inlet and outlet, both assumed 1D this equation
further reduces to a relation used in many engineering analyzes. Let section
1 be the inlet and section 2 the outlet:

Q̇ + ẆShaft =
∑

(h +
1
2
v2 + gz)2ṁ2 −

∑

(h +
1
2
v2 + gz)1ṁ1 (7.52)

From continuity we find that, ṁIn = ṁOut = ṁ, thus:

(h +
1
2
v2 + gz)1 = (h +

1
2
v2 + gz)2 − q − wShaft (7.53)

where q = Q̇/ṁ = dQ/dm, the heat transfered to the fluid per unit mass.
Similarly, wShaft = ẆShaft/ṁ = dWShaft/dm.

The steady flow energy equation states that the upstream stagnation en-
thalpy, H1 = (h + 1

2v
2 + gz)1, differs from the downstream value H2 only

if there is heat transfer or shaft work (i.e., neglecting viscous work) between
section 1 and 2.

Each term in the latter equation has the dimensions of energy per unit
mass, or velocity squared, which is a form commonly used by mechanical
engineers. If we divide through by g, each term becomes a length, or a head,
which is a form preferred by civil engineers. The traditional symbol for head
is h, so we rewrite the head form of the energy equation in terms of internal
energy:

(
p

ρg
+

e

g
+

v2

2g
+ z)1 = (

p

ρg
+

e

g
+

v2

2g
+ z)2 − hq − hShaft (7.54)

where hq = q/g and hShaft = wShaft/g are the head forms of the heat added
and shaft work, respectively. The term p

ρg is called pressure head and the term
v2

2g is denoted velocity head.
A very common application of the steady flow energy equation is for low

speed flow with no shaft work and negligible viscous work, such as liquid flow
in pipes. For this case we may write the energy balance relation as:

(
p

ρg
+

v2

2g
+ z)1 = (

p

ρg
+

v2

2g
+ z)2 +

e2 − e1 − q

g
(7.55)

The last term on the right is the difference between the available head
upstream and downstream and is normally positive, representing the loss in
head due to friction, denoted as hFriction.

An important group of fluid mechanics problems involves 1D, incompress-
ible, steady flow with friction and shaft work. Included in this category are
constant density flows through pumps and agitators.

Thus, in low speed incompressible flow with one inlet and one exit, we
may assume that the previous observation that e2−e1−q

g equals the loss in
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head of available energy due to friction is still valid. Thus, we conclude that
the energy equation can be expressed as:

(
p

ρg
+

v2

2g
+ z)2 = (

p

ρg
+

v2

2g
+ z)1 + hShaft − hFriction (7.56)

where hShaft is the head supplied and hFriction the losses. This relation is
sometimes called the mechanical energy equation or the extended Bernoulli
equation.

If a turbine is in the control volume, the notation hShaft = −hTurbine (with
hTurbine > 0) is adopted. For a pump or an agitator in the control volume,
hShaft = hPump. The quantity hTurbine is termed the turbine head and hPump

is the pump head. The loss term, hFriction, is often referred to as head loss6.
The above equation may then be written in a more specific form:

(
p

ρg
+

v2

2g
+ z)2 = (

p

ρg
+

v2

2g
+ z)1 − hFriction + hPump − hTurbine (7.57)

The h-terms are all positive, as friction loss is always positive in real flows,
a pump adds energy, and a turbine extracts energy from the flow.

The loss term, hFriction, is commonly correlated with flow parameters in
pipes, valves, fittings, and other flow devices.

The pipe head loss may be calculated by the well known Darcy-Weisbach
equation [94], valid for duct flows of any cross section and for laminar and
turbulent flow:

hFriction = fD
L

d

v2

2g
(7.58)

For laminar flow fD can be found analytically, fD = 64μ/ρvd, while for tur-
bulent flows more approximate relations are used.

Assuming steady flow, the pump basically increases the Bernoulli head
of the flow between point 1 and 2. Neglecting heat transfer, this change is
denoted by H:

6 In other contexts, the turbine head is sometimes written as hT = −(hShaft −
hFriction)T , where the subscript T refers to the turbine component of the contents
of the control volume only. The quantity hT is the actual head drop across the
turbine and is the sum of the shaft work head out of the turbine and the head
loss within the turbine.

When a pump is in the control volume, hP = (hShaft − hFriction)P is often used
where hP is the actual head rise across the pump an is equal to the difference
between the shaft work into the pump and the head loss within the pump. Notice
that the hFriction used for the turbine and the pump is the head loss within that
unit only. When hs is used in the extended Bernoulli equation, hFriction involves
all losses including those within the turbine, pump or compressor. When hT or
hP is used for hShaft, then hFriction includes all losses except those associated with
the turbine or pump flows.
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H = (
p

ρg
+

v2

2g
+ z)2 − (

p

ρg
+

v2

2g
+ z)1 = hPump − hFriction (7.59)

The net head H is a primary output parameter for any turbomachine. Usually
v1 and v2 are about the same, z2−z1 is a meter or so, and the net pump head
is essentially equal to the change in pressure head:

H ≈ p2

ρg
− p1

ρg
=

Δp

ρg
≈ hPump − hFriction (7.60)

The power delivered to the fluid yields:

P = ẆPump − ẆPump, Friction = ṁg(hPump − hFriction)
= (ρvA)g(hPump − hFriction) = ρgQ(hPump − hFriction) = QΔp

(7.61)

where the Q quantity in this relation is the volumetric flow rate.
The power draw (i.e., power transferred from the impeller to the fluid by

the lift forces) will eventually dissipate to heat (through viscous dissipation
in the fluid).

According to the z-component of the linear momentum equation, the
thrust force from the impeller blade is balanced by the pressure difference
over the pump [83] (p 423):

FThrust = ΔpA = ρgHA (7.62)

The lift force is usually expressed as [16] (p 635):

FThrust =
1
2
CLρU

2A ∝ 1
2
CLρ(ND)2A (7.63)

Hence, the impeller power draw can be expressed as:

P = QΔp ∝ ND3[ρ(ND)2] = ρN3D5 (W ) (7.64)

Introducing a proportionality factor, the Newton number (NP ), the following
relation occurs:

P = NP ρN
3D5 (W ) (7.65)

This relation determining the dependence of power draw on fluid pumping
is identical to the expression we found earlier using the torque analysis. This
result should be expected as the mechanical energy balance is not independent
of the momentum equations, they basically provide the same information.

7.3 Turbulent Mixing

The study of mixing includes understanding of how gas, liquid and solid phases
are transported in the tank, and how this transport is affected by the tank
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and the impeller(s) geometry, as well as the operational conditions such as
stirring rate and pumping capacity.

Many elements must be taken into consideration designing mixing devices,
basically determining the geometry and size of the tank, what type of impeller
to use, the size of the impeller, the size and geometry of heat transfer equip-
ment and if baffles are needed.

Turbulent mixing includes phenomena on all scales in the turbulence spec-
tra. For reactive mixtures the molecular scale phenomena are also pertinent.
In the context of fluid mixing emphasis has been put on the scales assumed
relevant to the process and to provide basic understanding of the controlling
mechanisms of mixing. A common approach in practical reaction engineering
is therefore to describe mixing on macro and micro scales only.

Micro mixing is mixing of individual molecules, while macro mixing is
mixing of parcels, groups or aggregates of molecules. For a chemical reaction
to take place, direct contact between the reacting molecules must be estab-
lished. If the reactants A and B are introduced into an agitated tank, they will
not react immediately because A-rich regions and B-rich regions are partially
segregated in the tank. By means of shear from an impeller, a homogeneous
mixture forms with time. However, before the fluids are completely mixed,
reactions at different rates at different points in the reactor may occur, giving
a non-uniform product, which may be unacceptable in an industrial process.
In fact, this means that different fluid elements of one reactant do not expe-
rience mixing with the other reactant at a micro scale level at the same time.
Therefore, for fast chemical reactions, an impeller producing high shear is rec-
ommended so that different reaction rates at different locations are avoided.
The problems related to mixing of fluids are basically associated with fast
reactions and all types of heterogeneous systems. Accordingly, for slow reac-
tions, high shear mixing is not that important since the reactants have time
to mix at a micro scale level in the whole tank volume before they react
at all.

7.3.1 Studies on Turbulent Mixing

For non-reacting fluids the studies of turbulent mixing can be divided into
three categories, the gross scale observations of the global flow pattern, fine
scale analysis, and experimental studies on the whole turbulent energy spectra.

Gross Scale Studies

Gross-scale studies are concerned with the overall flow pattern in a tank with
measurements of impeller pumping capacity and gross flow rate. Such studies
can give qualitative and quantitative results good enough for initial selection
of impeller type and may also provide information about the most advanta-
geous design of the system. Circulation and mixing times are other important
variables that may be determined in these studies.
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Fine Scale Studies

Three different theoretical approaches have been established describing
turbulent flows in general, as outlined in sect 1.3. These methods are the
direct numerical simulations (DNS), large eddy simulations (LES), and the
Reynolds average Navier-Stokes (RANS) approach.

Only a few LES simulations have been reported describing the turbulent
flow in single phase stirred tanks (e.g., [20, 77, 18]). The lattice-Boltzmann
method is used in the more recent publications since this scheme is consid-
ered to be an efficient Navier-Stokes solver. Nevertheless, the computational
requirements of these models are still prohibitive, therefore the application
of this approach is restricted to academic research. No direct simulations of
these vessels have been performed yet.

The Reynolds averaging approach has thus been found to represent a trade-
off between accuracy and computational costs. Using the Reynolds averaging
concept turbulence is interpreted as a waveform and described by the time
averaged equations of motion and a turbulence closure. Two-equation tur-
bulence models like the standard k-ε and k-ω models are common but full
Reynolds stress models have also been applied in rare cases.

For model validation measurements of instantaneous-, time average-, and
fluctuating velocities, and turbulence energy are required.

Experimental Studies on the Turbulence Energy Spectra

In this method correlations between various velocity fluctuations are used to
determine the turbulent energy spectrum, E(k), and several turbulence length
scales. The correlations mentioned contain information about how velocities
and other flow properties are statistically related in the turbulent flow. Turbu-
lence measured at a fixed point can be described as a fluctuating waveform. If
two instantaneous waveforms appear to have a corresponding behavior, they
are said to be correlated. Equation (1.311) shows how velocity fluctuations
at two points can be statistically correlated if the distance between the two
points are small.

The velocity fluctuations v′i(t, r) and v′j(t, r + x) are said to be correlated
if Rij(t,x) has a non-zero value, and uncorrelated if the Eulerian correlation
tensor Rij(t,x) is zero.

The Rij(t,x) correlation can be normalized by introducing the rms velocity
[8]. The Eulerian correlation function is defined by:

Qij(t,x) =
v′i(t, r)v

′
j(t, r + x)

vrms
i (t, r)vrms

j (t, r + x)
(7.66)

By assuming isotropic turbulence the rms velocity components in all directions
are equal, hence (7.66) becomes:
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Qii(t,x) =
v′i(t, r)v

′
i(t, r + x)

vrms
i (t, r)vrms

i (t, r + x)
(7.67)

To calculate Qii(t,x), the v′i terms must be determined. Therefore, the scalar
function f(r) called the Eulerian correlation function for isotropic turbulence
in sect 1.3, is introduced (e.g., [88], chap 8; [7], chap 8; [5], sect 3.4):

f(t,x) =
v′p(t, r)v′p(t, r + x)

(vrms
p (t, r))2

(7.68)

in which the velocity fluctuations are measured in the direction p parallel to
the vector of separation x. Using the velocity components in the direction
normal to x, another correlation function g(t,x) is defined:

g(r) =
v′n(x)v′n(t, r + x)

(vrms
n )2

(7.69)

As explained in sect 1.2.7, from these correlations the turbulent energy spec-
tra, and the micro and macro scales can be calculated. The values of the
different correlations are determined experimentally by measuring mean ve-
locities and velocity fluctuations at different locations in the agitated tank.

In sect 1.2.7 we showed that the dynamics of the one-point velocity cor-
relation, v′iv

′
j , for incompressible flows, can be expressed by four transport

equations [41] (p 323). The analogous transport equation for the dynamics of
the two-point velocity correlation, (v′i)A(v′j)B , for the general case of inhomo-
geneous, non-isotropic turbulence can be formulated based on the equations
for the fluctuating velocity components (i.e., obtained by subtracting the time
averaged equation of motion from the corresponding instantaneous equation)
referring to point A, multiplied by the fluctuating velocity component (vj)B ,
referring to point B. A similar equation can be formulated based on the equa-
tion for the fluctuating velocity components referring to point B, multiplied
by (vj)A. The equation for Qij(r) is obtained by adding these two equations.
The equation for the two-point velocity correlation predicts the energy trans-
port by means of the velocity fluctuations between the two points A and B. In
other words, it describes how the turbulence energy is spread out over different
eddy sizes and the transfer mechanisms of the energy exchange through the
energy cascade. By taking the Fourier transform of this equation, the equation
for the energy spectrum E(k) is obtained ([41, 8]). A typical energy spectrum
with essential features is illustrated in Fig 1.6. The physics represented by the
spectra is explained in sect 1.3.2.

Several length scales of turbulence can also be determined from the mea-
sured correlation functions. The Eulerian length scales obtained from f(t,x)
and g(t,x) are the longitudinal and transverse integral scales (1.312) and
(1.313), respectively. These length scales are characteristics of the larger tur-
bulence vortices in the flow.
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The Taylor micro scales of turbulence can be calculated from the same
functions f(t,x) and g(t,x) using (1.317) and (1.319), respectively. However,
the resulting scales do not characterize any distinct group of turbulence vor-
tices and are thus not very useful in describing micro mixing in stirred tanks.

Instead, the Kolmogorov micro-scales (1.328) to (1.330) characterize the
dissipation scales of turbulence and might indicate the effectiveness of micro-
mixing in the flow provided that the turbulent energy dissipation rate and
the kinematic viscosity of the fluid is known. If the Kolmogorov micro length
scale is much larger than the molecular scales, the molecules are not efficiently
mixed by turbulent diffusion.

The mean energy dissipation rate can be calculated directly from the
energy spectrum using (1.332). Moreover, for isotropic turbulence, the en-
ergy dissipation rate and the micro scale are related as expressed by (1.323).
Caution is required using the dissipation rate calculated from a turbulence
model like the k-ε model as in this model the dissipation quantity is merely a
tuning variable for the shear stresses in a pipe and not necessarily a true
physical dissipation rate. The latter approach requires validation for any
applications.

7.3.2 Flow Fields in Agitated Tanks

The flow fields in agitated tanks with different geometry and impellers have
been studied by many researchers. Qualitative and quantitative observations
have been reported for the discharge flow from the impeller, the flow near
and around impeller and the flow in the bulk of the tank. The flow field is
generally affected by impeller and tank geometry, number of blades, liquid
height and fluid properties. Most studies of flow fields have been performed
for a standard tank geometry.

In most investigations the discharge flow from a Rushton turbine in a baf-
fled tank is considered, but also the discharge flow from pitched blade turbines,
propellers and open flat blade turbines have been studied. The discharge flow
patterns for three different impellers are illustrated in Fig 7.7.

The discharge flow from a Rushton turbine is characterized by two trailing
vortices at the top and bottom of the blade, and a strong radial discharge flow
in the middle. This pattern is discharged continuously, but a periodicity is
observed. Away from the blade the pattern is disrupted, causing a significant
increase in turbulent velocity fluctuations. The most efficient mixing occurs at
the location where the discharge flow meets the bulk flow [87]. The magnitude
of the maximum velocity in the profile is comparable with the impeller tip
velocity, vt. Experiments show that the radial discharge velocity profile is not
symmetrical around the radial centerline.

The strong periodicity in the discharge flow velocity near the blade is
caused by the trailing vortices shed by the impeller. In these vortices, the
circumferential velocity is of the order of the impeller tip velocity, vt, and the
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Fig. 7.7. The flow patterns around turbulent impellers [87]. By permission from
Tatterson (personal communications, 2006).

diameter of a vortex is about half the blade width W . Vortices are found to
exist all the way to the tank wall, but they do decay with radial distance from
impeller.

The energy spectrum usually have a peak at the blade passing frequency,
as shown by Mujumdar et al [61]. As the distance from the impeller increases,
this peak weakens rapidly. This peak may be due to the presence of trailing
vortices, but also influenced by the characteristic periodic component of the
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impeller discharge flow. Experiments have also shown that the local energy
dissipation rates decrease with radial distance from the impeller blade tip.

The discharge flow from a flat blade turbine (i.e., a paddle) is shown in
Fig 7.7. The flow is similar to the flow from a disk style turbine, however,
the flow pattern from the flat blade turbine is not as stable as that from the
disk style turbine due to the absence of the disk. As for the Rushton turbine,
the discharge flow is not symmetrical around the centerline of the blade. The
energy spectra for the open flat blade turbine has a peak at the blade passing
frequency, in addition to the standard −5/3 and −7 regions.

The flow pattern from a pitched blade turbine is shown in Fig 7.7. The flow
pattern is dominated by a large axial flow through the impeller. This pumping
does not provide any mixing of the fluid, but the mixing is accomplished by
the vortex system formed from the blade tip. The flow from the pitched blade
turbine spreads out both axially and radially. The flow pattern developed by
a propeller is quite similar to that produced by the pitched blade turbine, but
in the propeller discharge mostly axially.

Studies on the velocity flow fields near and around the impeller have pri-
marily been focused on the turbulence structures and the behavior of the
trailing vortices [92].

A trailing vortex system generated by a disk style turbine is shown in
Fig 7.8. As can be seen from the figure, vortices along the top and bottom of
the blade are formed. The centrifugal force of the blade throws the fluid out-
wards as the blade moves forward. This creates a mass deficit which causes the
formation of a jet (the discharge flow) and the trailing vortices. The trailing
vortices are continuously generated behind the blade, and upon leaving the
blade, they have a short duration time before they break up. Upon exiting the
blade, the vortex turns tangentially due to strong Coriolis forces. The axis of
a vortex is not stationary from one blade passage to the next blade passage,
but moves around in an erratic behavior.

The flow pattern around a pitched blade turbine is something similar to
that for a Rushton turbine illustrated in Fig 7.8.

7.3.3 Circulation and mixing times in turbulent agitated tanks

Circulation times are measures of the average bulk fluid motion generated
by the liquid pumping of the impeller in a stirred tank. Measurements of
circulation and mixing times help us to understand the scalar transport in
the tank.

Circulation times are associated with the tank’s total volumetric flow rate,
entrainment flow, and the pumping capacity of the impeller.

The mean circulation time, θc, is given by the total tank volume divided
by the pumping capacity [87, 64]:

θc =
V

Q
(7.70)
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Fig. 7.8. The vortex system generated by a Rushton turbine [92]. Reprinted with
permission from Elsevier.

The mean circulation time represents an average value for all the fluid ele-
ments in the tank and provide information on how fast the fluid parcels are
transported around in the tank.

Mixing times are fundamental knowledge in reactor design and scale-up.
Mixing times tell us when the whole tank volume is ideally mixed, or when
a non-uniform system is made uniform. Generally, the impeller region is well
mixed while the bulk fluid is not. To be able to mix all the bulk fluid of
a tank, several tank volumes have to pass the impeller. Hence, the mixing
time is usually considerably longer than the mean circulation time. To ensure
sufficient mixing, the mixing time has to be shorter than the residence time
of the species in the tank. The average residence time of material in a tank is
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often considered to be the active volume of the tank divided by the volumetric
flow rate. The differences between the residence and circulation times depend
on the volumes of stagnant dead zones in the tank.

The number of revolutions needed to accomplish mixing is a function of
the tank geometry, the impeller geometry, and of the rotational speed of the
impeller. For a given geometry the relationship between impeller rotational
speed and mixing time can be approximated as:

Nθm = K (7.71)

where θm is the mixing time, N the impeller speed and K a constant deter-
mined by the geometry and the size of the tank.

The mixing time is especially important upon scale-up since a larger tank
will increase the mixing time, while a larger impeller will reduce the mixing
time. These effects might be taken into account through the K function in
(7.71) provided that a appropriate parameterization is available. The main
parameters affecting the mixing times are the impeller rotational speed, the
impeller and tank diameters, and the presence of baffles [87]. The mixing
time is also affected by the presence of multiple impellers. However, for such
vessel designs there are inconsistent mixing performance trends reported in
the literature, so the mixing times need to be determined experimentally for
each application.

7.3.4 Turbulent Reactive Flow in Stirred Tank

Turbulent reacting flow modeling is complicated by the fact that these flows
contain a wide range of time and length scales (e.g., [71, 25, 26]; [2], chap 6
to 9). The rates of turbulent diffusion and convection (i.e., macro mixing) are
controlled by the energy containing large scale eddies, generally several orders
of magnitude larger than the molecular scale. Chemical reactions occur only if
reactants are mixed on the molecular level. For non-premixed flows, molecular
diffusion (i.e., micro mixing) occurs at intermediate and small scales and must
occur before chemical reactions can take place.

Because of computational limitations, it is impossible to include a detailed
description of all scales of interest simulating industrial reactors. The unre-
solved phenomena such as micro mixing and chemical reactions must be mod-
eled. Due to the non-linear nature of the chemical reaction terms in the mass
balance equation, these simplifications can lead to large errors in the model
predictions for turbulent flows. In order to formulate appropriate models for
reacting flows, one must understand the complex interactions between tur-
bulence, molecular diffusion, and chemical kinetics. In general, the modeling
process for turbulent reacting flows involves at least three steps [25]:

1. Modeling of the molecular diffusion-chemical reaction processes to predict
the local reaction rate.
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2. Modeling of the turbulent field in enough detail to approximate the rate
controlling steps of turbulent mixing.

3. Modeling of local turbulent mixing of the heat and species concentrations.

The relative importance of the specific physical phenomena mentioned
strongly depends on the type of flow under consideration. In this section, the
discussion is limited to single-phase, constant density flows under isothermal
conditions with constant viscosity and equal diffusivities. The emphasis is
placed on the modeling of turbulent mixing and on the interactions between
turbulent mixing and chemical reactions in non-premixed turbulent reacting
flows.

The velocity field in these flows is governed by the incompressible Navier-
Stokes equation (1.385) and the corresponding continuity relation (1.382).
For incompressible fluids a generic transport equation for scalar species mass
concentration fields can be deduced from (1.454) and expressed as:

∂ωc

∂t
+ v · ∇ωc = D∇2ωc + Sωc

(7.72)

In this equation D is the molecular diffusivity of binary systems, and Sωc
is

the chemical source term for species c. The scalar fields are assumed to be
passive scalars so that ωc has no significant influence on the momentum and
continuity equations.

After suitable non-dimensional variables are substituted into the equa-
tions, following the same procedure as outlined in sect 1.2.5, the important
dimensionless groups are obtained for the problem in question. These are the
Reynolds number, the Schmidt number, the Peclet number, Pe = ReSc =
ul/D, and the Damköhler number, DaI = lr/u. The u and l are the char-
acteristic velocity and length scales, respectively, for the velocity field, and r
denotes a characteristic chemical reaction rate.

Turbulence models are generally limited to fully developed high-Reynolds
number flows. Gas-phase flows are normally characterized by Sc ≈ 1, while for
liquid phase flows, Sc � 1. The value of this Damköhler number indicates the
relative rates of the mixing and chemical reaction rate time scales. Reactive
flows might thus be divided into three categories: Slow chemistry (DaI � 1),
fast chemistry (DaI � 1), and finite rate chemistry (DaI ≈ 1).

The description of turbulent mixing of passive scalars is based on an exten-
sion of the turbulence theory developed for the momentum transfer processes,
described in sect 1.2.7. In particular, the energy cascade idea introduced by
Richardson [76] and the Kolmogorov hypotheses [47] are adopted.

However, there are important differences between the velocity and the
passive scalar spectra (e.g., [68, 13, 14, 4, 8]). The spectra of passive scalars
also varies for different systems depending on the value of Sc.

For large Reynolds number the kinetic energy spectrum of turbulence
has the form E(k) ∝ k−5/3 in inertial sub-range ranging from the en-
ergy containing integral scale k0 = 2π/L to the Kolmogorov micro-scale
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kK = (2π/λK) = 2π(ε/ν3)1/4. Beyond the Kolmogorov micro scales the
velocity spectrum has the form E(k) ∝ k−7 [39, 80].

For mixtures where Sc � 1, the inertial convective subrange for passive
scalars is specified by the wave number range k0,c = 2π/Lc � k � kC =
2π(ε/D3)1/4. The wave number of the largest scales for which the scalar has
been spread out (i.e., the scale of segregation) is k0,c = 2π/Lc. The inte-
gral scale of scalar segregation Lc can be estimated from an Eulerian scalar
correlation function in analogy to the method used determining the integral
scale of turbulence [8]. Since D � ν the spectrum of concentration fluctu-
ations in which Ec(k) ∝ k−5/3 is not as extensive as the familiar inertial
subrange for the velocity fluctuations [4, 8]. The scalar spectrum begins to
fall off more rapidly at wave numbers near the Corrsin [13] micro-scale of
turbulence kC = 2π/λC = 2π(ε/D3)1/4 as a result of larger effect of diffusion
than of viscosity.

For mixtures where Sc ≈ 1, the inertial-convective subrange of a scalar
quantity spectrum and the inertial subrange of velocity spectrum are of com-
parable extent and end at the Kolmogorov scale (kK). That is, in both spec-
tra the inertial subrange is specified by the wave number range k0 � k �
(ε/ν3)1/4. Beyond the Kolmogorov scale both the scalar and velocity spec-
tra fall off more rapidly than E ∝ k−5/3 at the end of the inertia subrange
as a consequence of molecular transport processes like viscosity and diffusion
becoming important.

For mixtures with Sc � 1 the classical turbulence theory for scalars fields
predicts that the scalar spectrum has a shape similar to E(k) for k < kK . For
kK < k < kB , the so-called Batchelor spectrum [4] is found for which Ec(k) ∝
k−1, and for k > kB , the scalar spectrum falls rapidly towards zero due to
the effect of scalar dissipation by molecular diffusion, as illustrated in Fig 7.9.
The Batchelor [4] wave number is of the order kB ≈ 2π(ε/νD2)1/4. Molecular

Fig. 7.9. The scalar spectrum in wave number space for systems in which Sc 
 1
[87]. By permission from Tatterson (personal communications, 2006).
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diffusion occurs near the Batchelor scale λB = (νD2

ε )1/4 = Sc−1/2λK , defining
the end of the Batchelor spectrum where Ec(k) ∝ k−1.

For gases the Schmidt number is close to unity so that no special attention
is required for the higher wave numbers. Turbulent reactive gas flows might
thus be sufficiently described using the relatively simple gradient hypothesis
with a constant Schmidt number. However, from the above discussion it can
be concluded that for liquids (Sc � 1) momentum is transported much faster
than mass in the viscous region of the spectrum. Due to this observation,
turbulent reactive gas and liquid flows are usually modeled differently, as
special emphasis has to be put on the liquid mixing properties avoiding the
gradient hypothesis [78].

By far the most widely employed models for turbulent reactive flows in
stirred tanks are based on the Reynolds averaged Navier Stokes (RANS) equa-
tion. This is a moment equation containing quantities that are averaged over
the whole wave spectra, as explained in sect 1.2.7.

The Reynolds averaged equation for the scalar concentration fields can be
deduced from (1.456) and written as:

∂ωc

∂t
+ v · ∇ωc = −∇ · (v′ω′

c) + Dc∇2ωc + Sc(ω) (7.73)

Closure of the mean scalar field equation requires a model for the scalar flux
term. This term represents the scalar transport due to velocity fluctuations
in the inertial subrange of the energy spectrum and is normally independent
of the molecular diffusivity. The gradient diffusion model is often successfully
employed (e.g., [15, 78, 2]):

v′ω′
c = −Dt,i,j∇ωc (7.74)

where Dt,i,j is a tensor that, in general, depends on the Reynolds stresses and
mean velocity gradients. Using the k-ε model this tensor reduces to:

v′ω′
c = −Dt∇ωc (7.75)

in which Dt = μt/Sc in accordance with the Reynolds analogy for turbulent
flow.

However, as discussed in chap 1.2.7, the gradient-diffusion models can
fail because counter-gradient (or up-gradient) transport may occur in certain
occasions [15, 85], hence a full second-order closure for the scalar flux (1.468)
can be a more accurate but costly alternative (e.g., [2, 78]).

In scalar mixing studies and for infinite-rate reacting flows controlled by
mixing, the variance of inert scalars is of interest since it is a measure of the
local instantaneous departure of concentration from its local instantaneous
mean value. For non-reactive flows the variance can be interpreted as a de-
parture from locally perfect mixing. In this case the dissipation of concentra-
tion variance can be interpreted as mixing on the molecular scale. The scalar
variance equation (1.462) can be derived from the scalar transport equation
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(e.g., [2], chap 6.4). The relation contains three unknown covariance terms
that need to be closed. These are the scalar and scalar variance flux terms,
and the scalar dissipation. The flux terms are often macroscopic in nature
and are usually modeled by the gradient hypothesis. The scalar dissipation
rate describes the decay of scalar variance due to molecular diffusion and thus
depends on the smaller scales of turbulence. The determination of the scalar
dissipation term is discussed by Pope [71] (sect 5.7.3). A simple closure for
the scalar dissipation term, suggested by Spalding [84] (A.1-11), assumes that
the scalar mixing time is proportional to the turbulence time τω ∝ τt. Hence,
as a first approach we can approximate εω by:

εω =
1
2
Cωω′2/τt (7.76)

in which the decay time scale of the velocity fluctuations can be approximated
by τt = k/ε. The corresponding decay time scale of the scalar fluctuations is
thus determined by τω = 1

2ω
′2/εω. The empirical constant Cω is usually taken

to be 2.0.
More advanced dynamic models for εω have also been proposed [25, 26, 60].

In these models a separate transport equation is formulated, modeled and
solved numerically to predict this variable field.

The most difficult term to close in (7.73) is the reaction rate terms denoted
by Sc(ω). To simulate turbulent reactive flows accurate modeling of this term
is very important. For slow reactions (i.e., DaI � 1) the turbulent mixing
is completed before the reaction can take place thus an adequate closure is
available:

Sc(ω) = Sc(ω) (7.77)

For very fast reactions local instantaneous chemical equilibrium might be as-
sumed in the flow so that negligible turbulence-chemistry interactions prevail
and the turbulence mixing behavior of a non-reactive but otherwise identical
mixture can be adopted describing the evolution of the reactive process. The
statistics of the reaction rate term can thus be predicted by the method of
moments provided that an appropriate PDF for the turbulent mixing process
is known. In this way the micro mixing models intend to restore some of the
information that were lost in the averaging process. Such a procedure must
require additional empirical information to determine the PDF. In particular,
the mean concentration of the species can be calculated in terms of a pre-
sumed PDF estimated from a few of the lower moments of the local mixture
fraction f (e.g., see [72], chap 12 and [2], chaps 6-9). The presumed PDFs are
usually based on two moments, the mean mixture fraction f and the variance
about the mean σ2 = (f ′)2. A typical presumed PDF can be represented by
(i.e., the normal or Gaussian distribution):

Φ(f) =
1

σ
√

2π
exp[− (f − f)2

2σ2
] (7.78)
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Other presumed PDFs exist as well. Each PDF has its own advantages and
disadvantages, but none of them are generally applicable.

The use of the PDF is best illustrated by use of a simple example for a
single irreversible second order reaction at isotherm conditions, defined by:

A + B → Products

for which the reaction rate is given by:

rproducts = kcAcB =
k

MwA
MwB

ρAρB (7.79)

By performing Reynolds decomposition and time averaging the given reaction
rate can be expressed as:

rproducts = kcAcB = k(cA cB + c′Ac
′
B) (7.80)

In general the covariance term is non-zero, hence rproducts 
= rproducts(cA, cB),
since the average reaction term is not determined by the mean concentrations
alone.

A proper closure strategy for the reaction rate thus depends on the ratio
of the rate of reactions and the rate of mixing. In the previous case, consid-
ering very slow reactions the concentration fluctuations decay to zero before
the reactions occur and no turbulence modeling is needed. The other extreme
involves infinitely fast reactions so that local instantaneous chemical equilib-
rium prevails everywhere in the mixture. If the rate constant is very large
(k → ∞), the reaction rate can only be finite when cAcB + c′Ac

′
B ≈ 0.

The concentration of A and B can then be related to the PDF of a passive
scalar or tracer. Consider again the instantaneous transport equations for
A and B, assuming equal diffusivity of both species, constant total molar
concentration and that the molar average and mass average velocities are
about equal we get:

∂cA

∂t
+ v · ∇cA = DAB∇2cA + rA(cA, cB) (7.81)

and
∂cB

∂t
+ v · ∇cB = DBA∇2cB + rB(cA, cB) (7.82)

Subtracting the latter relation from the previous one, the source term can be
eliminated and we obtain a transport equation for a conserved scalar which
behaves as a non-reacting tracer:

∂(cA − cB)
∂t

+ v · ∇(cA − cB) = DAB∇2(cA − cB) (7.83)

since rB(cA, cB) = −rA(cA, cB).
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By normalization, the mixture fraction is defined by:

f =
cA − cB + cB0

cA0 + cB0
(7.84)

where cA0 + cB0 are the initial concentrations of the reactants A and B at the
inlet and f is the mixture fraction denoting the normalized conserved scalar
tracer. The mixture fraction is unity on the A inlet and zero on the B inlet.

The moment method states that given the probability density function Φ
of f , the average concentrations of the reactive scalars can be calculated by:

ρA

ρA,0
=

1
∫

0

ρA(f)
ρA,0

Φ(f)df (7.85)

ρB

ρB,0
=

1
∫

0

ρB(f)
ρB,0

Φ(f)df (7.86)

For the particular case of second-order kinetics the concentration covariance
term is given by:

ρ′Aρ
′
B =

1
∫

0

ρA(f)ρB(f)Φ(f) df (7.87)

For instantaneous reactions the problem is thus reduced to the calculation of
the presumed PDF of a passive scalar or tracer. A large number of alternative
presumed PDFs have been listed and discussed by [2, 67, 60]. Each presumed
PDF has its advantages and disadvantages, but none of them are generally
applicable.

The concept of the full PDF approaches is to formulate and solve additional
transport equations for the PDFs determining the evolution of turbulent flows
with chemical reactions. These models thus require modeling and solution
of additional balance equations for the one-point joint velocity-composition
PDF. The full PDF models are thus much more CPU intensive than the
moment closures and hardly tractable for process engineering calculations.
These theories are comprehensive and well covered by others (e.g., [8, 2, 26]),
thus these closures are not examined further in this book.

For finite rate chemical reaction processes neither of the asymptotic sim-
plifications explained above are applicable and appropriate closures for Sc(ω)
are very difficult to achieve.

The improvement in accuracy achieved by the complex closures com-
pared to the simpler ones can also be questionable. Osenbroch [67] and
Mortensen [60] successfully applied the combined particle image velocimetry
(PIV)/planar laser induced fluorescence (PLIF) technique to measure the in-
stantaneous velocity and reacting species concentration in mixing devices like
a mixing channel, pipe, and multi-functional channel reactor. The measured
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data was used to validate computational fluid dynamics simulations of reac-
tive flows adopting numerous scalar mixing closures. Based on these studies
it can be concluded that further work is needed developing sufficient models
for the prediction of the turbulence-chemistry interaction processes occurring
in chemical reactors.

7.4 Heat Transfer in Stirred Tank Reactors

The temperature in stirred tank reactors may be influenced by chemical or
physical reactions within the tank. Cooling or heating devices might be re-
quired to control the process temperature. In many endothermic processes
heat has to be added to raise and maintain the temperature of the bulk. In
other exothermic processes heat is removed to avoid hot spots.

Heating and cooling of the process fluid are accomplished by heat transfer
between the process fluid and a heating or cooling media that is circulated

Fig. 7.10. Different heat transfer equipment. (a) Vessel with jacket. (b) Vessel with
internal helical coil. (c) Vessel with external helical coil. Sketched after similar figures
in [65, 40].
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within a closed heat transfer surface. Different types of heat transfer equip-
ment are used in industrial processes such as jackets, external or internal
helical coils, as sketched in Fig 7.10.

Heat transfer from the bulk of the tank to the heat transfer medium can
be calculated by the standard heat transfer model:

Q = U0A0ΔT (W ) (7.88)

where U0 is the overall heat transfer coefficient, A0 the heat transfer surface
area and ΔT the temperature driving force. An illustration of the heat transfer
model is given in Fig 7.11.

The overall heat transfer resistance (1/Uo) is calculated as the sum of the
individual resistances in analogy to Ohm’s law. The relationship between the
overall resistance and the different contributions is expressed as:

1
U

=
1
ho

+
l

k
+

1
hi

Ao

Ai
+ ff (Km2/W ) (7.89)

where ho is the convective heat transfer coefficient at the process side, l is the
thickness of the tank wall, k is the conductivity of the wall material and hi is

Fig. 7.11. A Sketch of the heat transfer flux model, determining the flux from the
bulk of the tank to the heat transfer medium.
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the convective heat transfer coefficient at the heat transfer liquid side related
to a common heat transfer area basis, and ff is a fouling factor accounting
for corrosion or dirt films on either side of the heat transfer surface [65].

The stirring and the resulting flow pattern inside the tank can be very
important for the overall heat transfer resistance, because the performance of
the reactor affects the heat transfer coefficient at the process side ho. The other
resistances are determined by the materials used and the properties of the
cooling/heating media and are thus not influenced by the reactor performance.

To determine the process side heat transfer coefficient, ho, empirical cor-
relations for many impeller types and tank geometries have been established.
The parameterizations are generally expressed in terms of dimensionless num-
bers, geometrical ratios and viscosity ratios (see e.g., [23, 65, 40] and references
therein).

7.5 Scale-up of Single Phase Non-Reactive Turbulent
Stirred Tanks

Mixing properties and flow fields in stirred tanks are usually studied on a
laboratory scale. Practical scale-up of a stirred tank cannot be performed
requiring that every individual mixing and fluid mechanical parameters in
the small scale tank should be maintained in the larger one. Therefore, scale-
up procedures for different types of processes have been determined through
experience, testing and computational fluid dynamics simulations.

Over the years several guidelines have been developed for the opti-
mal scale-up of stirred tanks, usually reflected through the concepts of
geometric-, dynamic- and kinematic similarities [65]. Geometric similarity
means that all the pertinent dimensions are similar and have a common con-
stant ratio. Kinematic similarity requires that all the velocities at the two
different scales have a common constant ratio. Dynamic similarity requires
that all pertinent force ratios must have a common constant ratio.

The concepts of similarity suggest the use of dimensionless groups. There
are, however, other process parameters that could be held constant. Such
parameters could be, the blending time, the power per unit volume, the su-
perficial gas velocity, the shear rates and the heat transfer coefficient. Which
scale-up criteria that should be chosen depends on the actual process, since the
sensitivity to each parameter appears to be different for the various processes.

A general trend is observed which might be used as a rule of thumb. In
a small tank the blending time is relatively short, the pumping capacity is
relatively high, the average shear rate is relatively high, and a smaller range
of shear rates is observed compare to what is found in larger tanks. To obtain
a similar flow pattern in a large scale tank, the geometry must change. Larger
volumes require taller vessels, but not an equally larger diameter. When taller
vessels are applied, the need for multiple impellers arises in order to obtain
turbulent mixing in the whole volume.



7.6 Mixing of Multi-Phase Systems 717

When it comes to mixing in a laboratory scale unit, the content of the
whole vessel is typically well mixed. At a larger scale, bulk mixing may be a
problem. In a large tank, the fluid at the top of the vessel might participate
irregularly in the general circulation. In the upper part turbulence is usually
not well developed. However, experiments have shown that for fast reactions
the product distribution can be unaffected by scale-up if the energy dissipation
rate is held constant in the reaction zone. On the other hand, if local energy
dissipation rate variations occur in the bulk, this may affect the micro mixing
[87].

The integral length scales or macro scales of turbulence are generally of the
same order of magnitude as the impeller blade width. In addition, the macro
scale of turbulence is found to scale with the impeller size. This means that for
a large scale vessel, larger eddies will form than in a small vessel. Consequently,
large variations in velocities and concentrations can be expected in the vessel
upon scale-up.

7.6 Mixing of Multi-Phase Systems

The previous sections describe how mixing is accomplished in a liquid phase.
However, many industrial processes carried out in stirred tank reactors involve
mixing of solids, gases and other liquids in a continuous liquid phase. The
presence of a second phase will affect both the power consumption and the
flow pattern in the tank. In the sequel, the mixing phenomena caused by the
presence of gas bubbles, liquid droplets and solid particles are discussed.

Gas-Liquid Dispersions.

To disperse gas, the gas is usually injected into the liquid from the bottom of
the tank or near the impeller to enhance dispersion. Disk style turbines are
found to be most convenient for gas dispersion because the disk disturbs the
freely rising gas bubbles. The turbines with flat blades give radial flow and
are very useful for gas dispersion where the gas is introduced just below the
impeller at its axis and drawn up to the blades and chopped into fine bubbles.

With axial flow impellers, the upward flowing gas bubbles are allowed to
rise near the shaft where the shear forces are small, so that the flow pattern
and pumping effect is disrupted. Therefore, axial flow impellers are not very
useful for gas dispersion [65].

How gas disperses in the liquid phase depends primarily on the impeller
speed and the gas injection rate. The different flow regimes that may occur
are illustrated in Fig 7.12.

The isothermal expansion power is the energy supplied to the system by the
gas stream dispersing the gas in the liquid. When the power due to the impeller
rotation is less than the isothermal expansion power of the gas, the flooded
regime which is characterized by gas rising unhindered near the impeller shaft
prevails. The distribution of gas in the tank is non-uniform.
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Fig. 7.12. Gas dispersion flow regimes [87]. By permission from Tatterson (personal
communications, 2006).

When the mixer power is approximately equal to the gas stream energy,
a surface picture may indicate a well-dispersed uniform flow of gas bubbles
leaving the liquid phase. However, in the bulk of the tank the gas flow domi-
nates the flow pattern. Radial impellers will help to disperse the gas bubbles
towards the walls of the tank as the gas rises.

At a mixer power input of two to three times the gas stream energy, the
flow pattern is controlled by the mixer [65]. If the mixer power is then increased

Fig. 7.13. Different types of cavities in gas dispersion systems [87]. The 3−3 cavity
structure consists of three large cavities and three clinging cavities in a symmet-
rical pattern around a six-blade disk style turbine. By permission from Tatterson
(personal communications, 2006).
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to five times the gas expansion energy, the bubbles are driven down to the
bottom of the tank, resulting in a completely uniform distribution of gas in
the liquid phase.

Cavitation is a function of pressure drop occurring across the impeller
blades, the fluid temperature and the vapor pressure of the fluid. If the fluid
is near its boiling point, cavitation will occur with the turbulent impellers.
Cavities are bubbles that are gathering behind the blades of a rotating im-
peller, these are characterized as vortex cavities, clinging cavities, large cav-
ities and ragged cavities, and the 3 − 3 cavity structure. The different types
of cavities are sketched in Fig 7.13. Vortex cavities may occur at very low gas
rates, while large cavities can be found at high gas rates. Ragged cavities are
large cavities at flooded conditions, and clinging cavities are intermediately
between vortex and large cavities. The 3 − 3 structure is typically formed on
a disk style turbine.

The purpose of most gas dispersion processes is to transfer gas into the
liquid, sometimes to obtain a chemical reaction. The mass transfer rate across
the gas-liquid interface can thus be the rate limiting step in the process,
especially when the chemical reaction is fast. The rate of mass transfer is
generally described by the mass transfer coefficients kl and kg, which are the
coefficients for the liquid and the gas side, respectively. Usually, the gas side
coefficient is neglected because the resistance to mass transfer on the liquid
side is generally much higher than on the gas side.

The bubble size distribution is among the important factors controlling
the interfacial mass transfer rate in gas liquid stirred tank reactors. This dis-
tribution is determined by a balance of coalescence and breakage rates. For
this reason the trailing vortices play an important role in the gas dispersion
processes in gas-liquid stirred tanks. This role stems from the vortex’s ability
to capture gas bubbles in the vicinity of the impeller, accumulate them inside
the vortex and disperse them as small bubbles in the vortex tail. This ability is
related to the high vorticity associated with the rotation of the vortex. Sudiyo
[86] investigated bubble coalescence in a 2.6 liter stirred tank. Instantaneous
velocity fields were measured using PIV and corresponding turbulent kinetic
energy, dissipation rate, various length and time scales were estimated. A
shadowgraph technique was employed to measure the bubble size distribution
and the coalescence rate. The results show that bubble coalescence takes place
mostly near the tank wall, especially on the leeward side of baffles. Moreover,
the most important factors affecting coalescence are the gas volume fraction,
fluctuation of liquid velocity, different rise velocities of bubbles, and trapping
of bubbles in stationary and turbulent vortices. Andersson [1] investigated
the breakage mechanisms of bubbles in a stirred tank with a high-speed imag-
ing technique. It was observed that bubbles tend to generate unequal sized
fragments. The measurements also showed that binary bubble breakage is
frequent.
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Liquid-Liquid Emulsions

The dispersion of one liquid into another immiscible liquid occurs in the man-
ufacture of many kinds of emulsion products.

The design of a mixing equipment is usually based on experience with the
type of product desired, and seldom upon model calculations of the actual drop
sizes or interfacial areas. Reliable models for the drop size and interfacial area
could be very useful as they may explain how changes in operating conditions
or physical system variables will affect an operating system. However, it is
very difficult in industrial applications to calculate the local drop sizes and
drop size distributions. One of the difficulties is the wide variety of shear rates
that exist in stirred tanks.

The shear rate affects the droplet size, and since the shear rate near the
impeller is much higher than the shear rate in the bulk, a distribution of
droplet sizes result. In the shear rate zone around the impeller, the dispersing
zone, the droplets are teared apart, while in the coalescing zone throughout
the rest of the tank the droplets are interacting resulting in larger droplets [65].
This makes the determination of an average droplet size difficult. However,
some empirical correlations have been proposed for for design purposes.

As the stirring speed increases, the peak in the distribution gets narrower
and is moved towards smaller droplet sizes. This skewness in distribution is
also a result of the interfacial tension between the two liquid phases. As the
droplet size decreases, the interfacial tension is the dominating force. There
is thus a minimum droplet size that can be achieved by the maximum shear
stress near the impeller [33]. Andersson [1] investigated the breakage mecha-
nisms of fluid particles with a high-speed imaging technique. Experiments of
bubbles and droplets were made in the same vessel under identical operating
conditions making a comparison between bubble and drop breakage dynamics
possible. It was shown that bubbles tend to generate unequal sized fragments,
whereas droplets form equal sized fragments. This difference was explained by
an internal flow redistribution mechanism, active only for bubbles. The num-
ber of fragments produced upon breakage is also quite different for bubbles and
droplets. For droplets breakage normally resulted in more than two fragments,
whereas binary breakage is a common outcome for bubbles as mentioned in
the previous section.

When operating liquid-liquid systems, it is important to know which one
of the phases that is dispersed. If a tank is filled with 50% of each phase, the
result will depend on how the mixing is performed. For void fractions of 20%
of one liquid and 80% of the other, one can be quite sure that the 20% liquid
will be dispersed because this phase could not possibly be the continuous
phase.

Generally, to create a stable emulsion between a light and a dense liquid
phase, the impeller should be placed in the phase which is going to be the
continuous phase. With time, the other phase is then drawn into this phase.
Figure 7.14 illustrates how to mix a light and a dense phase. There can be
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Fig. 7.14. Methods for dispersion of a light and a dense liquid phase.

some practical problems dispersing the heavy phase in the light phase. If it
is not sufficient to agitate in the light phase or optionally at the interface, it
might be necessary to add the dense phase to the tank during agitation [65].

Like for gas-liquid dispersions, the liquid-liquid mass transfer flux is gen-
erally described by the mass transfer coefficient, kl. One of the main fac-
tors limiting the mass transfer rate in industrial systems is impurities on the
interface causing changes in the foam and settling characteristics of the sys-
tem. Therefore, experimental data is always required to validate mass transfer
models.

Solid-Liquid Suspensions

The suspension of solids in a liquid is perhaps the most common application
of stirred tanks. Usually, the solid particles are denser than the carrying fluid
resulting in continuous settling of the particles towards the bottom of the
tank. To avoid permanent settling of solids and to obtain a satisfactory mass
transfer flux to the solid surface, mixing is provided to keep the solids in
suspension.

To describe the solid-liquid suspension process, the settling velocity is
one of the most important parameters. The settling velocity of a particle is
obtained by measuring the falling velocity of an unhindered particle. A drag
force will act on the falling particle, as explained in sect 5.2.1. This force can
be described by an empirical correlation for the drag coefficient (5.50). The
drag coefficient changes with flow regime. As can be seen from Fig 5.2, the
drag coefficient decreases with increasing Reynolds number in the laminar
regime, while it remains roughly constant under turbulent flow conditions.
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The solids are kept in suspension if the pumping capacity of the impeller
causes strong enough circulation of the liquid. In most processes, complete sus-
pension of the particles is not required. Often, so-called off-bottom suspension
is sufficient, which means that all particles are moving above the bottom of
the tank with some vertical velocity. Radial flow impellers are usually not
very effective in suspending solid particles. Actually, about three times more
power is required for a radial turbine to provide the same degree of unifor-
mity compared to an axial turbine. This is because the radial turbines pick
up particles from the bottom of the tank by the suction side of the impeller,
which is only half of the total flow from the impeller. Due to the appearance
of an upper and a lower circulation zone, the contents of the two zones are
not sufficiently mixed. Axial impellers are therefore most frequently used for
the suspension of solids in stirred tanks [65].

In solid-liquid systems the size and shape of the baffles are important de-
sign parameters. The standard baffling is illustrated in Fig 7.1. As the solid
concentration increases and the viscosity becomes high, narrower baffles (ap-
proximately 1/24T ) placed a distance from the wall, should be used. This
design is normally employed to avoid permanent settling of particles in the
low velocity zones. In some processes such fillets (settled particles) can nev-
ertheless be advantageous for the power consumption.

Gas-Liquid-Solid Systems

Some industrial processes involve mixing of both gases, liquids and solids. In
slurry stirred tank reactors the liquid phase is the continuous phase where gas
is dispersed and solid is suspended. In many of the processes performed in tank
reactors, the purpose of fluid mixing is to dissolve the gas in the liquid and
transport the species from the gas phase to the surface of the solid particles.
In most chemical processes the solid particles act as catalysts to promote a
chemical reaction. However, in a few processes, like in polymerization, the
solid particles are the product of the reaction.

The choice of impeller for three-phase systems is a compromise between
dispersing gas in the liquid and suspending the particles in the liquid. We
recall that the axial-flow impellers are usually used for solid-liquid systems,
while radial impellers are used for gas-liquid systems. Introducing gas from
the bottom of a tank containing a solid-liquid suspension will destroy the flow
pattern created by an axial impeller. Therefore, radial impellers are usually
more effective in three phase systems even if they require more power for the
same level of suspension [65]. Another solution is to apply multiple impellers,
one to fulfill the criterion for gas dispersion and another one to fulfill the
criterion for solids suspension [87]. The existence of solid particles might also
modify the interfacial area between gas and liquid compared to gas-liquid
systems.
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7.7 Governing Equations in Relative and Absolute
Frames

In this section the governing equations employed in the different impeller
model implementations are presented.

The fictitious forces are conventionally derived with the help of the frame-
work of classical mechanics of a point particle. Newtonian mechanics recog-
nizes a special class of coordinate systems called inertial frames. The Newton’s
laws of motion are defined in such a frame. A Newtonian frame (sometimes
also referred to as a fixed, absolute or absolute frame) is undergoing no acceler-
ations and conventionally constitute a coordinate system at rest with respect
to the fixed stars or any coordinate system moving with constant velocity and
without rotation relative to the inertial frame. The latter concept is known
as the principle of Galilean relativity. Speaking about a rotating frame of ref-
erence we refer to a coordinate system that is rotating relative to an inertial
frame.

The Laboratory framework is frequently assumed to be inertial and ade-
quate for practical engineering problems on the earth although the laboratory
framework is actually fixed to a rotating planet and is therefore strictly speak-
ing an accelerated frame (i.e., this approximation is not valid for large scale
ocean and atmospheric flows). To describe the fluid flow caused by the im-
peller motion in stirred tanks both rotating and laboratory frames have been
employed.

For completeness it is mentioned that the transformations between differ-
ent sets of coordinates describing the same motion, characterize a branch of
classical mechanics named kinematics which is fundamentally mathematical
methods, and is not based on physical principles.

7.7.1 Governing Eulerian Flow Equations in the Laboratory Frame

The general equations of continuity (1.26) and momentum (1.78) in vector
notation are introduced in chap 1 employing a Laboratory frame. To describe
the flow in the stirred vessels the governing equations are conveniently trans-
formed and written in cylindrical coordinates7 (e.g., [34]; [6], p 139 and p 555;
[10]; [42]; [29], p 73; [95], pp 137-141):

Continuity:

∂ρ

∂t
+

1
r

∂

∂r
(ρrvr) +

1
r

∂

∂θ
(ρvθ) +

∂

∂z
(ρvz) = 0 (7.90)

Momentum equation:
The r-component:

7 The laboratory frame equations can also be obtained from the rotational frame
formulation, if we let Ω = 0.
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∂(ρvr)
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∂(rρvrvr)
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+
1
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∂(ρvθvr)
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+

∂(ρvzvr)
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−∂p
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r
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∂r
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(7.91)

The θ-component:

∂(ρvθ)
∂t
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1
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∂(rρvrvθ)
∂r

+
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∂(ρvθvθ)
∂θ

+
ρvrvθ

r
+

∂(ρvzvθ)
∂z

=

−1
r

∂p
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1
r

∂(rσrθ)
∂r
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σrθ

r
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1
r

∂σθθ

∂θ
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∂σzθ

∂z

)

+ ρgθ (7.92)

The z-component:

∂(ρvz)
∂t

+
1
r

∂(rρvrvz)
∂r

+
1
r

∂(ρvθvz)
∂θ

+
∂(ρvzvz)

∂z
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−∂p

∂z
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1
r

∂(rσrz)
∂r

+
1
r

∂σθz

∂θ
+

∂σzz

∂z

)

+ ρgz (7.93)

The nine components of the viscous stress tensor usigma are defined by:

σrr = 2μ∂vr

∂r − 2
3μ∇ · v σθr = σrθ = μ

(

1
r

∂vr

∂θ + r ∂
∂r

vθ

r

)

σθθ = 2μ
(

1
r

∂vθ

∂θ + vr

r

)

− 2
3μ∇ · v σzr = σrz = μ

(

∂vr

∂z + ∂vz

∂r

)

σzz = 2μ∂vz

∂z − 2
3μ∇ · v σzθ = σθz = μ

(

1
r

∂vz

∂θ + ∂vθ

∂z

)

It turns out that two fictitious forces occur in the momentum equation
when written in cylindrical coordinates. The term ρvθvr/r is an effective force
in the θ-direction when there is flow in both the r- and θ-directions. The term
ρv2

θ/r gives the effective force in the r-direction resulting from fluid motion in
the θ-direction. These terms do not represent the familiar Coriolis and cen-
trifugal forces due to the earth’s rotation8. Instead, they arise automatically
on transformation of the momentum equations from Cartesian to cylindrical
coordinates and are thus not added on physical grounds (kinematics). Nev-
ertheless, the ρv2

θ/r term is sometimes referred to as a Coriolis force and the
ρv2

θ/r term is often called a centrifugal force. It is thus important to distin-
guish between the different types of fictitious forces.

7.7.2 Coriolis and Centrifugal Forces

In most textbooks the apparent forces, like the Coriolis and the centrifugal
forces, are derived with the help of the framework of classical mechanics of a
point particle.
8 The virtual Coriolis and centrifugal forces due to the earth’s rotation are normally

added to gθ and gr, as shown in (7.115).
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To examine the elementary mathematical operations involved in
Newtonian mechanics, for example, we describe the motion of a material par-
ticle by the Newton’s second law of motion. The Newtonian frame of reference
adopted is henceforth named O. The moving relative reference frame is des-
ignated Ō. The basic task is thus to transform the Newton’s second law of
motion as formulated in an inertial frame of reference into a relative rotating
frame of reference.

Let the translative velocity (i.e., the relative movement without any rotat-
ing component) of the reference frame Ō relative to O be designated v0, and
the angular velocity of Ō relative to O denoted by Ω, as sketched in Fig 7.15.
In the inertial frame in which ex, ey, ez are fixed orthogonal unit vectors, we
define the vector of rotation and the rotational acceleration vector (in the
common x-y and x̄-ȳ plane):

Ω =Ωez

Ω̇ =Ω̇ez

(7.94)

where ez is the unit vector in the z-direction (which is common to both
systems of reference since the axes z and z̄ are parallel and normal to the
figure plan). The quantities r0(t), v0(t) and a0(t) are time dependent functions
relative to O.

The vector r, shown in Fig 7.15, can be determined in both coordinate
systems O and Ō:

O v

a

v

a

x

Ω

y

O

v

a

Ω

x

y
r(t)

r(t)

r(t)

Fig. 7.15. Visualization of vectors of location, velocity and acceleration in the
inertial and moving reference frames.
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r = r̄ + r0 = rxex + ryey + rzez = r̄xēx + r̄yēy + r̄zēz + r0 (7.95)

A change of r̄ with respect to time seen from O then occurs as a result
of both change of the components r̄x, r̄y and r̄z in the moving relative frame
and change of the unit vectors ēx, ēy and ēz:

˙̄r =
d(r̄xēx)

dt
+

d(r̄yēy)
dt

+
d(r̄zēz)

dt

=
dr̄x

dt
ēx + r̄x

dēx

dt
+

dr̄y

dt
ēy + r̄y

dēy

dt
+

dr̄z

dt
ēz + r̄z

dēz

dt
= v̄ + Ω × r̄

(7.96)

in which we have employed a set of predefined relations for the time derivatives
of the unit vectors.

The time derivatives of the unit vectors referred above are defined by
(similar to a planar movement of a solid body):

dēx

dt
= Ω × ēx (7.97)

dēy

dt
= Ω × ēy (7.98)

dēz

dt
= Ω × ēz = 0 (7.99)

These relationships can be derived recognizing that the unit vectors ēx and
ēy in Ō are time dependent functions in O, whereas ēz = ez.

A relation derived based on the same principles as used in (7.96) is valid
for the velocity vector v̄:

˙̄v = ā + Ω × v̄ (7.100)

From (7.95) we know that r = r̄ + r0 (see Fig 7.15). By derivation of
the position vector with respect to time, and using (7.96), we find that the
velocity vector v can be expressed by:

v = ṙ = ˙̄r + ṙ0 = v̄ + Ω × r̄ + v0 (7.101)

By derivation of (7.101) with respect to time, followed by use of (7.96) and
(7.100), the acceleration a can be expressed in terms of Ō:

a = v̇ = ˙̄v +
dΩ
dt

× r̄ + Ω × ˙̄r + v̇0

= (ā + Ω × v̄) +
dΩ
dt

× r̄ + Ω × (v̄ + Ω × r̄) + v̇0

= ā + 2Ω × v̄ +
dΩ
dt

× r̄ + Ω × (Ω × r̄) + a0

(7.102)

We can now illustrate the fictitious modifications required employing a relative
frame in Newtonian mechanics. The Newton’s second law of motion in the
initial (i.e., non-rotating) reference frame, is defined by:
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ma = f (7.103)

in which m is the mass of our point on the object, and f is the non-fictitious
force acting on it. Note that, if these forces are Galilean invariant, the force
definitions are equivalent in both reference frames. Making use of the rela-
tion (7.102) connecting the accelerations in the two frameworks, the apparent
equation of motion of the point particle in the rotating reference frame takes
the form:

mā = f −m(2Ω × v̄ +
dΩ
dt

× r̄ + Ω × (Ω × r̄) + a0) (7.104)

A comparison of equations (7.103) and (7.104) shows that the Newton’s second
law of motion in the inertial frame O is identical in form to that in Ō except
that the latter formulation contains several additional fictitious body forces.
The term −2mΩ × v̄ is the Coriolis force, and −mΩ × (Ω × r̄) designates
the centrifugal force. No name is in general use for the term −dΩ

dt × r̄. The
acceleration −a0 compensates for the translational acceleration of the frame.

7.7.3 Governing Eulerian Equations in a Rotating Frame

By use of the result obtained from Newtonian mechanics, relating the accel-
eration a and ā, we can convert (1.78), which is written in terms of O, into a
momentum balance as seen from an observer in Ō.

In fluid mechanics the time rate of change of a vector ψ is then written as
Dψ/Dt = D̄ψ̄/D̄t+Ω×ψ in analogy to the result from classical mechanics.
The above relation for the generalized vector ψ is applied to a fluid parcel’s
position r and then to its velocity v, leading to the relation:

Dv
Dt

=
D̄v̄
Dt

+ 2Ω × v̄ +
D̄Ω
D̄t

× r̄ + Ω × (Ω × r̄) +
Dv0

Dt
(7.105)

Note that the rate of change of Ω is the same in the rotating frame as in an
absolute frame [6].

Assuming that Dv/Dt is equal to the local force acting per unit mass on a
fluid parcel, the apparent forces in the rotating frame are derived. The above
derivation can be called a Lagrangian approach since it exploits the concept
of the fluid parcel9. In this framework we define:

a =
Dv
Dt

=
∂v
∂t

+ v · ∇v (7.106)

and
9 Recently, an Eulerian derivation of the Coriolis force has been reported by

Kageyama and Hyodo [45]. They present a general procedure to derive the trans-
formed equations in the rotating frame of reference based on the local Galilean
transformation and rotational coordinate transformation of field quantities.
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ā =
D̄v̄
Dt

=
∂v̄
∂t

+ v̄ · ∇̄v̄ (7.107)

The momentum equation (1.78) in O is then transformed from the flux
form to the advective (non-flux) form:

ρ

(

∂v
∂t

+ v · ∇v
)

+ v
(

∂ρ

∂t
+ ∇ · (ρv)

)

= −∇p−∇ · σ + ρg (7.108)

The two terms in the second bracket is zero in accordance with the continuity
equation (1.26).

Moreover, by use of (7.105) and (7.106), the substantial derivative in the
inertial frame is transformed into the rotating framework:

ρ

(

D̄v̄
D̄t

+ 2Ω × v̄ +
D̄Ω
D̄t

× r̄ + Ω × (Ω × r̄) +
Dv0

Dt

)

= −∇p−∇ · σ + ρg

(7.109)

The rate of deformation and the pressure are frame-indifferent (e.g., see
[6], p 141; [54], p 400; [28, 31, 34]) so we can simply re-write the divergence
operator and the stress terms into the rotating reference frame notation. The
transformed momentum equation yields:

ρ
D̄v̄
D̄t

= ρ (−2Ω × v̄ − Ω × (Ω × r̄)) −∇p−∇ · σ̄ + ρḡ (7.110)

It is common practice to omit the bars as it is now understood that the
equation is formulated in the rotating reference framework.

Greenspan [31] outline the transformation of the Eulerian equations gov-
erning the motion of an incompressible viscous fluid from an inertial to a
rotational frame. The transformation of the Navier-Stokes equations simply
results in adding the artificial forces in the momentum balance. The additional
equations are apparently not changed as the substantial derivative of scalar
functions are Galilean invariant so the form of the terms do not change.

Batchelor [6] and Ghil and Childress [28] examine the transformation of
the governing Eulerian equations for compressible flows from an inertial to
a rotational frame. As it turns out, only the momentum equation is actually
effected by this transformation because the material or substantial derivative
operator of scalar functions is invariant to rotation.

Of particular interest in the context of stirred tank reactor theory is the
case of steadily rotating axes of reference (DΩ/Dt = 0) without translating
acceleration (Dv0/Dt). Equation (7.109) can then be written as:

ρ
D̄v̄
D̄t

= ρ (−2Ω × v̄ − Ω × (Ω × r̄)) −∇p−∇ · σ + ρg (7.111)

To describe the flow in a stirred tank the governing equations are often
written in cylindrical coordinates10, as listed in sect 7.7.1. The remaining
10 Hansen [34] gives an informative derivation of the momentum equations in cylin-

drical coordinates employing an inertial frame.
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task is thus to transform these governing Eulerian equations formulated in
an inertial Laboratory frame into a relative rotating frame of reference. We
outline this procedure by examining the transformation of the momentum
equation components (7.91) to (7.93).

In the common case of Ω consisting only of a z-component orthogonal to
the vector r̄, we define:

Ω =

⎛

⎝

0 ēr

0 ēθ

Ω̄ ēz

⎞

⎠ (7.112)

The fictitious body forces in cylindrical coordinates are thus written as:

Coriolis force:

−2Ω × v̄ = −2
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0 ēθ
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Centrifugal force:

−Ω × (Ω × r̄) = −
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0 ēz
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⎠ (7.114)

The components of these fictitious forces are usually added to the body
force g of momentum equation components (7.91) to (7.93). For the different
components of the momentum equation we get:

gr =
(

Ω̄2r̄ + 2Ω̄v̄θ

)

gθ = (−2Ω̄v̄r)
gz = −g (7.115)

For turbulent flows the governing equations are usually Reynolds averaged.
The resulting models are often closed by employing the eddy viscosity hy-
pothesis. In these cases the laminar viscosity in the viscous stress terms are
substituted with an effective viscosity μeff = μ+ μt. Moreover, the eddy vis-
cosity is normally calculated using a kind of k-ε model [50], as presented in
sect 1.2.7. Using a rotating reference frame to model the impeller effects no
additional covariance terms are occurring due to the fictitious terms.
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7.8 Impeller Modeling Strategies

In this section the different impeller modeling strategies employed simulating
the flow fields in stirred tanks are examined.

7.8.1 The Impeller Boundary Conditions (IBC) Method

The IBC method represents the traditional way to model the effect of the im-
peller in a stirred tank reactor. Harvey and Greaves [37, 38] were among the
first to apply this method. Pericleous and Patel [69] used this method to sim-
ulate both tangential and axial agitators in chemical reactors. It is also noted
that Gosman et al [30] simulated several two-phase flows in tanks stirred by
Rushton turbines using a dynamic two-fluid model. However, the steady state
condition is normally imposed and no moving reference frame, neither rotat-
ing nor translating, is considered. This means that all the transient terms, as
well as the Coriolis- and centrifugal forces, vanish from the governing equa-
tions. Gravitation is the only body force considered. The rotating impeller
is modeled by empirical boundary conditions being imposed on the surface
of the impeller blades. For Rushton turbines, for example, empirical profiles
for the physical quantities like vr, vθ, vz, k and ε as functions of z only (the
method does not resolve the impeller region so only azimuthally uniform val-
ues are possible) were normally imposed on the vertical control surface

∑

v

bounding the impeller-swept region in a stirred vessel [10], as illustrated in
Fig 7.16. The flow field in the impeller region is computed as in any other part

vΣ

Fig. 7.16. Simulating the effect of a Rushton turbine on the flow one practice is
to impose empirical profiles for the physical quantities like vr, vθ, k and ε on the
vertical control surface

∑

v bounding the impeller-swept region in a stirred vessel
[10].
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of the computational domain. The shaft, hub and disc of the Rushton turbine
(see Fig 7.16), excluding the impeller blades, are treated as solid volumes. For
different impeller geometries (and in rare cases also for the Rushton turbine),
the impeller region has been bounded by two surfaces, one horizontal and one
vertical [73].

In order to reduce the computational efforts one may utilize symmetries
in the problem so that only a part of the domain needs to be simulated,
but the domain applied must still include at least one baffle. To determine
appropriate boundary conditions for the impeller surface, experimental data
are required. In fact the method relies on experimental data for each geometry
and fluid in question. The need for such amounts of empirical information is
the main limitation of the IBC method. Moreover, the reliability on the results
of a simulation using the IBC method depends directly on the quality of the
experimental data [10].

7.8.2 The Snapshot (SS) Method

Ranade and Van den Akker [74] introduced the snapshot method for simulat-
ing flows in baffled stirred tanks. The snapshot method has many similarities
with the traditional IBC method but differs in that the effect of the impeller
rotation is approximately modeled mechanistically and not deduced from em-
pirical data analysis solely. The snapshot method thus represents an early
attempt to improve on the main limitation associated with the IBC method.

The basic idea is to describe a snapshot of the flow in a stirred vessel with
a fixed relative position of blades and baffles. It is assumed that the main flow
characteristics of a stirred vessel at the particular time instant in question can
be captured approximately from the solution of the steady-state equations,
provided that artificial cell volume adjustments and momentum sources are
implemented to represent the effect of the impeller rotation.

A particular simulation of the flow is performed using a fixed reference
frame for a specific blade position. The snapshot model equations are thus
basically the same as those used in the traditional IBC method. The modeling
of the effects of the impeller rotation on the flow is based on a simple analysis
of the physical problem [75]. In particular, the blade rotation causes suction
of fluid at the rear side of the blades and equivalent ejection of fluid from the
front side of the blades. These dynamic phenomena in the impeller region are
thus modeled approximately by including apparent volume corrections (i.e.,
net time average effects) in the continuity equation for the computational cells
attached to the front and rear sides of the impeller blades. In addition, since
the impeller blades are treated as stationary walls, additional momentum
source terms (i.e., net time average effects) representing the effect of shear
caused by the rotating impeller blades are implemented for the computational
cells attached to the edges of the impeller blades. These momentum sources
are estimated for the contact area between the cell and impeller blade using an
adjusted turbulence wall function model. Furthermore, empirical information
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is required to quantify the size and location of the inner region where these
artificial sources are needed. In the outer region the apparent effects of the
transient terms are neglected as the flow is assumed to be in steady-state.

Simulating the flow generated by a Rushton turbine the governing equa-
tions are usually solved for half of the vessel volume due to symmetry consider-
ations. The standard boundary conditions are implemented at the stationary
wall, for the impeller shaft, disc and hub, an angular velocity corresponding
to the impeller rotation speed was specified. The top fluid surface is assumed
flat and modeled as a wall. Cyclic boundary conditions were imposed at the
open surfaces of the solution domain. Simulations of flows generated by differ-
ent impellers have also been performed requiring appropriate changes in the
boundary conditions and calculation domain.

To achieve steady-state values for comparison with experimental data dif-
ferent calculations have to be carried out at different time instants represent-
ing an average for the different positions of the impeller blades relative to the
baffles.

Ranade and Krishnan [75] reported an evaluation of the snapshot ap-
proach. It was concluded that the simulations captured most of the key fea-
tures of near-impeller flows with fair accuracy.

Ranade and Van den Akker [74], for example, used the snapshot method for
simulating gas-liquid flows in baffled stirred tanks using a time after volume
averaged two-fluid model for incompressible flows (as described in sect 3.3).
These multiphase simulations also predicted the near-impeller flows with fair
accuracy. Most important, the cavities due to the accumulation of gas in the
low-pressure region behind the impeller blades were detected.

Nevertheless, the artificial source term modeling approach has not been
fully accepted as a predictive tool for simulating swirling flows. In one view
the snapshot approach is not much better than the IBC method, because the
artificial sources have to be validated for every case investigated requiring
many costly experimental investigations. For this reason it will not be further
assessed in this book.

7.8.3 The inner-outer (IO) method and the multiple reference
frame approach (MRF)

The inner-outer method was first presented by Brucato et al [9, 10]. This
iterative procedure was proposed intending to design a relatively simple en-
gineering simulation, which enable approximate predictions of the effect of
the rotating impellers on the fluid motion in stirred tanks, without resorting
to empirical source terms relying on experimental data. This procedure thus
represents an advanced attempt to improve on the main limitation associated
with the IBC method.

The model formulation is based on a simple physical analysis of the stirred
tank problem which reveals the following characteristics. In the view of an ob-
server fixed on the vessel wall, the impeller is rotating. On the other hand,
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considering an observer following the impeller, the vessel itself appears to
be rotating. In the inner-outer iterative procedure the whole vessel volume
domain is thus subdivided into two overlapping zones. These are the inner
domain containing the impeller and the outer one including the baffles. Ac-
cordingly, the global iterative procedure is also subdivided into two major
steps.

In the first iterative step of this method the simulation of the flow in the
inner domain is carried out using a model formulation considering a reference
frame rotating with the impeller, with a first guess for the boundary condi-
tions (e.g., initially a still fluid may suffice) imposed on the artificial surface
∑

2 dividing the two sub-domains, as illustrated in Fig 7.17. Thus, (7.109)
is to be solved taking the Coriolis- and centrifugal force into account. The
steady state condition imposed on the simulation requires that the transient
terms are neglected. The impeller region is resolved so physical boundary con-
ditions are required implementing the actual surfaces. After the first trail flow
field in the impeller region is obtained, the corrected values for the different
quantities (e.g., v, k and ε) are imposed as boundary conditions on the inner
surface

∑

1 of the outer domain (Fig 7.18). Since the two frames are different,
the information which is exchanged has to be adjusted for the relative mo-
tion and averaged over the azimuthal direction (due to an imposed symmetry
requirement).

Thereafter, in the second step of the procedure the calculation is carried
out using a model formulation considering a fixed laboratory reference frame

Σ 2

Fig. 7.17. Computational domain for the inner simulation, lined region is excluded
from the domain. The figure is drawn based on a similar figure published by Brucato
et al [10].
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Σ 1

Fig. 7.18. Computational domain for the outer simulation, lined region is excluded
from the domain. The figure is drawn based on a similar figure published by Brucato
et al [10].

for the outer domain, in which the Coriolis- and centrifugal body forces are not
included (i.e., except those for the earth’s rotation). In this case the updated
boundary conditions on the inner surface

∑

1 of the outer domain (Fig 7.18)
is employed. The baffle region is resolved so physical boundary conditions are
required implementing the actual surfaces. Subsequent to obtaining conver-
gence (at least performing a few iterations) on the outer part of the domain,
a first iteration on the whole flow field has been achieved. After the results
for the outer domain have been obtained, a new guess for the boundary con-
ditions for the inner domain iteration can be imposed on surface

∑

2. A new
estimate for the solution of the inner domain can then be calculated, and sim-
ilar inner-outer iterations can be repeated until the whole calculation domain
attains a satisfactory numerical convergence.

Simplified versions of the IO-method with no overlap between the inner
and outer regions have been used by Marshall et al [55] and Luo et al [52].
Since there is no overlapping zone between the two regions, the solution is
matched at the interface between the rotating and stationary regions. A gen-
eral formula for transforming the interface velocity between the two frames
of reference was given by [52]. However, the location of the interface may not
be arbitrary, since in one view the concept requires that the surface has to be
placed at a location where the flow variables do not change significantly with
time or with θ. Otherwise, a predictor-corrector approach may be needed in
conjunction with the MRF method in order to find an optimal location of the
interface. Notwithstanding, with a perfect first guess of the interface location
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(or in particular cases for which the interface location is not of crucial impor-
tance) the multiple reference frame (MRF) method is computationally less
expensive than the IO-method. For this reason the MRF-method has been
implemented in most of the commercial CFD codes. It is further noted that
in some commercial codes basically the same approach is known under the
name the Multiple Rotating Reference Frame (MRRF).

To validate the predicted results several simulations have to be carried
out specifying different positions of the impeller blades relative to the baffles
to achieve average steady-state values for comparison with experimental data.
This averaging procedure is analogous to the one used employing the snapshot
method.

7.8.4 The Moving Deforming Mesh (MDM) Technique

Perng and Murthy [70] introduced the moving deforming mesh technique for
simulating unsteady flows in mixing vessels.

The model formulation used with moving meshes is of the arbitrary-
Lagrangian-Eulerian (ALE) type. The integral form of the equations governing
the incompressible Newtonian fluid in a time-varying control-volume V (t) is
written as:

d

dt

∫

V(t)

dv =
∮

A(t)

u · n da (7.116)

d

dt

∫

V(t)

ρ dv =
∮

A(t)

ρ(u − v) · n da (7.117)

d

dt

∫

V(t)

ρv dv =
∮

A(t)

[ρ(u − v)v − Teff] · n da +
∫

V (t)

Sv dv (7.118)

d

dt

∫

V(t)

ρψ dv =
∮

A(t)

[ρ(u − v)ψ − Jeff] · n da +
∫

V (t)

Sψ dv (7.119)

where u is the control volume surface velocity vector arising from the
motion of the moving grid. Sv and Sψ are the source terms for v and ψ
equations, respectively. d/dt is the total derivative.

A single mesh for both the moving and the stationary part is used in
this approach. The grid attached to the rotor moves with it and causes the
interfacial mesh to deform. When mesh deformation becomes acute, the grid is
regenerated locally and the flow variables are transferred to the regenerated
mesh. Fig 7.19 shows an illustrative example in which only a single row of
cells are deformed. Regenerating the grid means, as indicated in the figure,
snapping back the grid by one cell. At this point all the cells and grid notes
are renumbered and the procedure continues. Further details of the techniques
for mesh deformation, regeneration and variable interpolation are explained
by [70].
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Fig. 7.19. Grid motion through deformation and snapping (from left to right) [70]:
1. initial grid, 2. grid moves and deforms, 3. the right boundary and cells are snapped
to the left, 4. grid advances one cell distance. Reproduced with permission by John
Wiley & Sons, Inc.

Note that this strategy may lose accuracy if the interface grid is allowed
to deform excessively before regeneration.

To validate the predicted results only one time dependent simulation has
to be carried out to achieve time and impeller region average values for com-
parison with experimental data and the steady-state results obtained by the
IBC, IO and snapshot methods.

7.8.5 The Sliding Grid (SG) or Sliding Mesh (SM) Method

Murthy et al [63] were the first who used the sliding grid method for the
simulation of unsteady flows in mixing vessels. The model formulation used
with moving meshes is of the arbitrary-Lagrangian-Eulerian (ALE) type [70].
In this particular approach the flow domain is divided into two cylindrical,
non-overlapping sub-domains, each gridded as a separate block. The outer
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grid is fixed to the laboratory reference frame, the inner grid rotates with the
impeller as illustrated in Fig 7.20 and Fig 7.21.

(b)

(a)

(b)

Σ
S

Fig. 7.20. Multiblock sliding grid approach. (a) = inner, rotating, block; (b) =
outer, stationary, block;

∑

S = sliding interface. The figure is drawn based on a
similar figure published by Brucato et al [10].

The governing equations for both the fixed and the rotating sub-domain
grids are written with respect to the laboratory reference frame. In the inner
domain the rotation of the grid is accounted for by transforming the total time
derivative in the familiar Eulerian conservation equations into an Arbitrary-
Eulerian-Lagrangian form similar to the model used in the MDM method
[70]. The moving grid for the inner domain is allowed to slide relative to the
stationary outer domain along a surface of slip. A conservative interpolation
procedure is used to connect the necessary flow variables and face fluxes across
this surface. Again, due to symmetry, the whole vessel does not need to be
calculated. However, the domain must include an integer number of both
blades and baffles.

To validate the predicted results only one of these time dependent simula-
tions has to be carried out to achieve time (steady-state) and impeller region
average values for comparison with experimental data and simulated results
obtained by the IBC, IO and snapshot methods. This validation procedure is
the same as the one used for the MDM method.

7.8.6 Model Validation

In order to validate the different approaches it is necessary to compare the re-
sults with experimental data. In addition, the IBC method relies on empirical
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Fig. 7.21. Sliding grid motion [63]. Upper subfigure: sketch of the initial grid.
Mid subfigure: Impeller grid rotation in clockwise direction. Lower subfigure: Cyclic
rearrangement of impeller grid. Reproduced with permission by IChemE 2007.

data in order to implement the momentum source induced by the stirrer. Bru-
cato et al [10] give a review of the different methods of measuring the velocity
field. The most commonly used measurement technique is the Laser Doppler
Velocimetry (LDV). Measurements for radial impellers were made for exam-
ple by Dyster et al [19] who reported detailed mean and fluctuating velocity
profiles in the impeller stream. Kemoun et al [46] used LDV to receive data
in a closed surface surrounding the impeller. Another method that has been
used to determine the velocities in the impeller region is to mount a hot wire
on the rotating impeller, like Günkel and Weber [32] did for radial impellers.
In addition, Van′t Riet and Smith [89, 90] and Van′t Riet et al [91] used a
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camera mounted on a turntable rotating with the stirrer and obtained pictures
of tracer particles relative to the rotating impeller.

Less experimental work has been performed for axial impellers. Kresta and
Wood [48] performed LDV measurements of mean and fluctuating radial, axial
and tangential velocities in cylindrical tanks with a 45 -pitched, four blade
turbine at 400 rpm. A review of experimental investigations of turbulent flow
in closed and free-surface unbaffled tanks stirred by radial impellers can be
found in Ciofalo et al [12].

Experimental investigations of wall heat transfer in stirred tank reactors
have been reported by Engeskaug et al [23], Oldshue [65], Hewitt et al [40],
among others.

Harris et al [36] and Brucato et al [10] reviewed the status on modeling
baffled stirred tank reactors. Simulations using the impeller boundary condi-
tion (IBC) method, the inner-outer approach, and the sliding mesh method
were compared. Although reasonable flow predictions have been obtained for
the liquid bulk by use of the IBC method, this approach is subject to the avail-
ability of velocities and turbulence data for formulating appropriate boundary
conditions. This method is thus not feasible for multiphase flows and industrial
scale reactors because of the difficulties in obtaining data for the boundary
treatment. Moreover, the IBC method has no predictive value for the flow and
turbulence in the impeller region, even its capabilities in predicting global pa-
rameters like the power and pumping numbers are limited.

The IO simulations confirmed that the IO procedure is capable of predict-
ing the near impeller flow and turbulence fields with a reasonable accuracy,
thus to some extent reducing the need for empirical information. Hence, the
IO method is often preferred compared to the IBC method although it was
1 − 4 times more cpu demanding for one of the particular cases referred.

The SM method provides the advantage of enabling transient simulations
for problems in which the flow and mixing phenomena occurring at impeller
startup or as a consequence of changes in impeller rotational speed are of
interest. The sliding mesh method generally provides more accurate results
than the inner-outer approach, but in one of the cases referred it did also
require a factor of four more computing time. The SM method also required
7 − 20 times larger cpu times than for the IBC runs for some problems.

Lane et al [49] did compare the performance of simulations with the SM
and the MRF approach in predicting flow fields within a standard stirred tank
equipped with a Rushton turbine. Reasonable agreement with experimental
data in terms of mean velocities is obtained with both methods. Nevertheless,
the MRF method provides a saving in computational time of about an order
of magnitude.

Based on the impeller modeling analyses mentioned above, among other
similar investigations, it is customarily concluded that for most industrial ap-
plications the MRF method is an appropriate simulation tool. The method
represents a trade-off between accuracy and computational demands. How-
ever, the averaging process needed to obtain representative data in the im-
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peller region is tedious as it requires many (several) similar simulations at
different snapshots (representing different impeller blade positions).

In academia the SM method is considered a more fundamental method
than the MRRF method because the former approach is transient and do
not rely on a manual re-gridding of the geometry. The SM method has the
potential of being predictive provided that the governing equations are solved
with sufficient accurately (i.e., for DNS). However, future work might improve
on the direct fluid-impeller structure interaction mapping, enabling an efficient
dynamic update of the impeller grid as the impeller moves and the flow evolves
in a DNS without the interpolation costs of a sliding grid.

7.9 Assessment of Multiple Rotating Reference Frame
Model Simulations

In this section a series of simulations of a standard vessel equipped with
a Ruhton turbine, as obtained by use of the Multiple Rotating Reference
Frame (MRRF) method, are evaluated. The simulations are performed with
the commercial software FLUENT [24]. The simulations were run with a reso-
lution of 86950 cells. The turbulent effects are described by a modified (RNG)
k-ε model11 [97, 98, 99, 82, 66]. For model validation experimental LDA data
characterizing a standard vessel of laboratory scale, as reported by Engeskaug
[22], is used. The simulations considered in this section have been reported by
Engeskaug [22], Druecker [17] and Jakobsen [43].

The stirred tank geometry used in these investigations:

• The tank diameter, T = 0.222 (m)
• The liquid hight in the vessel, H = T = 0.222 (m)
• The impeller diameter, D = 0.076 (m)
• The impeller blade width, W = 0.020 (m)
• The impeller blade hight, W = 0.020 (m)
• The impeller clearance, Cb = 0.100 (m)
• The width of wall baffles, B = 0.022 (m)
• The wall baffles wall clearance, CB = 0.011 (m)
• The diameter of the impeller axis, TI = 0.015 (m)
• The thickness of the impeller blades is 1 (mm), the baffles 2 (mm) and of

the Rushton Turbine’s disc 3 (mm).
• The impeller rotates at 300 (rpm).

The grid used in these MRRF stirred tank simulations is shown in Fig 7.22.
The overall flow fields in a vertical layer between two baffles and in a hor-

izontal layer at the disc axial level are shown as vector plots in Fig 7.23 and

11 This turbulence model is similar to the standard k-ε model, but with altered
model parameter values and the effect of swirl on turbulence is included in the
RNG mode intending to enhance the accuracy of swirling flow simulations.
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Fig. 7.22. A representative grid employed for the multiple rotating reference frame
(MRRF) model simulations.

Fig 7.24. Sometimes it is more informative to present the corresponding speed
or velocity magnitude quantity in a contour plot, for example to identify the
location of the highest kinetic energy as shown in Fig 7.25 and Fig 7.26. Qual-
itatively the general flow field is described fairly well. The two main vortexes
above and below the impeller can be identified and the highest speed occur
at the impeller blade tips in agreement with the experimental observations.

A plot of the predicted turbulent kinetic energy at the disc axial level
is shown in Fig 7.27. The turbulent kinetic energy values are questionable
because the energy level is quite low in the impeller region where the velocity
gradients are the largest.

In the following a quantitative comparison of the predicted velocity and
turbulent kinematic energy profiles with experimental data is discussed. In
each figure several graphs are compared. Considering velocities the meaning
of the different lines are: The blue line denotes the experimental data [22]
(Laser), the black line denotes MRRF simulations at high resolution (86950
cells) in which the sum of the residuals for each field is less than 0.001 (MRRF
e-3), the green line denotes MRRF simulations at high resolution (86950 cells)
in which the sum of the residuals for each field is less than 0.0001 (MRRF
e-4), the red line denotes MRRF simulations at low resolution (∼ 50000 cells)
in which the sum of the residuals for each field is less than 0.0001 (MRRF
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Fig. 7.23. Simulated velocity in a vertical plane of stirred tank reactor.

low res.), and the pink line represents the MRRF simulations of Engeskaug
[22] at high resolution (86950 cells) in which the residuals for each field is less
than 0.0001 (Engeskaug (MRRF)). Considering the turbulent kinetic energy
the meaning of the different lines are modified: The blue line denotes the
experimental data [22] (Laser), the green line denotes MRRF simulations at
high resolution (86950 cells) in which the sum of the residuals for each field
is less than 0.0001 (MRRF e-4), the red line denotes SM simulations at high
resolution (86950 cells) in which the sum of the residuals for each field is less
than 0.0001, the black line denotes SM simulations at low resolution (∼ 50000
cells) in which the sum of the residuals for each field is less than 0.0001 (SM
low res.), and the pink line represents the SM simulations of Engeskaug [22]
at high resolution (86950 cells) in which the sume of the residuals for each
field is less than 0.0001 (Engeskaug (MRRF)).

The radial velocity profiles (i.e., the three velocity components are given
as azimuthal average functions of radial position in the vessel) obtained by the
MRRF simulations for the axial level of the impeller are in good agreement
with the experimental data both in the impeller region and in the area closer
to the wall outside the impeller region, as can be seen from Fig 7.28, Fig 7.29
and Fig 7.30. However, the turbulent kinetic energy is not accurately predicted
compared to the measured values, as shown in Fig 7.31. The highest turbulent
kinetic energy values for the disc axial level are observed at the outer radius
of the impeller where the impeller blades create the strongest swirls. The
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Fig. 7.24. Simulated velocity in a horizontal plane of stirred tank reactor.

simulated turbulent kinetic energy is much smaller then the experimental
values over the whole cross section of the reactor. Below and above the disc
the highest kinetic energy levels occur near the walls in the gap between the
baffles and the walls (not shown).

Engeskaug [22] and Druecker [17] compared a compatible set of simulated
sliding mesh (SM) and multiple rotating reference frame (MRRF) results with
the experimental data. An identical numerical grid spacing was used for both
methods, but in the SM method two non-overlapping sub-domains are slid-
ing reative to each other whereas for the MRRF method the two subdomains
are fixed. It was found that the MRRF and SM results are similar, but in
most areas the MRRF velocity predictions were in better agreement with
the experimental data than the SM results (not shown). On the other hand,
quite surprisingly, the turbulent kinetic energy profiles are in most areas much
better predicted with the SM method compared to the MRRF simulations
(see Fig 7.31). However, it is difficult to determine if these differences in the
predictions are due to the different averaging procedures applied to the simu-
lated results, differences in the numerical model implementation, interpolation
schemes, or differences in the two model formulations.

The computational time required by these impeller modeling methods were
also compared. For baffled tanks the computational time required by these two
impeller methods are quite similar as several MRRF simulations have to be
run per one SM simulation because a manual change in the relative impeller-
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Fig. 7.25. Simulated velocity magnitude in a vertical plane of stirred tank reactor.

baffle positions are performed to resolve the flow in the impeller region. The
SM simulations are time dependent so the results have to be averaged over a
sufficient period in time. For unbaffled vessels only one MRRF simulation is
required, so the MRRF method is significantly cheaper than the SM method
in these cases.

The simulated results evaluated in this section are about ten years old,
thus today the numerical resolution used in this work might be considered
coarse. However, although the present computers allow better resolutions to
be used in the simulations the status on stirred tank modeling is still very
similar. For single phase flows the limiting steps are basically related to the
turbulence modeling and the computational efficiency. For multi-phase flows
additional limitations regarding the closure laws determining interfacial trans-
fer fluxes, particle growth, particle coalescence and breakage processes, etc are
prohibitive and make predictive simulations very difficult.

It is noted that in recent papers several extended turbulence models, i.e.,
the standard k-ε [50], RNG k-ε [97, 98, 99, 82, 66], realizable k-ε [81], Chen-
Kim k-ε [11], optimized Chen-Kim k-ε [44], standard k-ω [96], k-ω shear-stress
transport (SST) [56, 57, 58] and the standard Reynolds stress models, have
been proposed and validated. However, little or no significant improvements
have been achieved considering the predictivity of the turbulence models,
although each of them may have minor advantages and disadvantages. A few
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Fig. 7.26. Simulated velocity magnitude in a horizontal plane of stirred tank
reactor.

recent investigations of the flow in stirred tanks are assessed to support this
conclusion.

Jenne and Reuss [44] performed critical assessments of the use of k-ε tur-
bulence models for simulations of turbulent single phase flow induced by the
impellers in baffled/unbaffled stirred tanks. A standard configuration stirred-
tank reactor equipped with a Rushton turbine was simulated by use of the
PHOENICS code in which the effect of the impeller is described by the empiri-
cal source term method. The accuracy reflected by three k-ε turbulence models
(i.e., the standard k-ε, Chen and Kim k-ε, RNG k-ε models) in predicting the
mean flow and turbulence quantities is tested by 3D simulations. The differ-
ent simulations were compared with experimental data, revealing that none of
the possible k-ε models performs satisfactory reproducing a known flow field
without an optimization of the model parameters for the vessel in question.
By parameter fitting/tuning an optimized Chen-Kim k-ε turbulence model
was obtained. By use of the optimized turbulence model fair agreement was
achieved between measured flow details and the predicted results for vessels
and impellers of somewhat different geometry.

Zakrzewska and Jaworski [101] performed single phase CFD simulations
of turbulent jacket heat transfer in a Rushton turbine stirred vessel using
the eight turbulence models mentioned above as implemented in FLUENT.
In all simulations the boundary flow at the vessel wall was described by the
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Fig. 7.27. Simulated turbulent kinetic energy in horizontal plane of stirred tank
reactor.

Fig. 7.28. Measured and simulated radial profiles of the tangential velocity com-
ponent at the axial level of the disc.

standard logarithmic wall functions. The predicted values of the local heat
transfer coefficient were compared with measured values. In these simulations
the standard k-ε, the optimized Chen-Kim k-ε and the k-ω SST model results
were in fair agreement with experimental data, whereas the realizable k-ε,
RNG k-ε and the Reynolds stress model were not recommended.
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Fig. 7.29. Measured and simulated radial profiles of the axial velocity component
at the axial level of the disc.

Fig. 7.30. Measured and simulated radial profiles of the radial velocity component
at the axial level of the disc.

Haque et al [35] simulated turbulent flows with a free-surface in unbaffled
agitated vessels using three turbulence models (i.e., the Reynolds stress, stan-
dard k-ε and k-ω SST models) as implemented in CFX. In this case it appears
that the SST model did perform better than the standard k-ε model, whereas
some features of the flow structure and the mean velocity profiles were better
predicted by the Reynolds stress model.

Lo [51] simulated two- and three phase isothermal non-reacting stirred
tanks with two downward pumping 45◦ pitched -blade disc turbines and one
curved-blade impeller at the bottom. Four or six baffles were placed at equal
distance around the vessel wall. An Eulerian multiphase-population balance
(MUltiple-SIze-Group, MUSIG) model was used as implemented in CFX. Tur-
bulence of the continuous phase was modeled by the standard k-ε turbulence
model, and an algebraic relation was used for the particle induced eddy vis-
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Fig. 7.31. Measured and simulated radial profiles of the turbulent kinetic energy
at the axial level of the disc.

cosity. The sliding mesh impeller method was used. The phase distribution in
the tanks were in fair agreement with experimental data. Comparisons of the
measured and predicted shaft power were generall within ±20% deviation. No
detailed evaluation of the performance of the turbulence model was reported.

A similar pseudo-two phase investigation was reported by Venneker et al
[93] using the empirical source term impeller method in FLUENT. They sim-
ulated the turbulent flow pattern in a baffled agitated vessel equipped with a
six-blade disc turbine and a ring sparger. The transport of bubbles throughout
the vessel was simulated by a scaled single-phase flow field. The single phase
turbulence field was modeled with the Reynolds stress model. Compared to
LDA measurements the overall predictiuons were qualitatively correct, but
the turbulent kinetic energy and energy dissipation rate fields need further
improvements. Local gas fraction and bubble size distributions in the tank
was described by a population balance model. Model predictions for the gas
fractions in pseudoplastic Xanthan solutions were compared with local mea-
surements and agreed fairly well qualitatively.

Basara et al [3] simulated single- and two-phase turbulent flows in stirred
vessels equipped with six- and four blade Rushton-type turbines using the
sliding mesh impeller method. To describe turbulence in the liquid phase a
standard k-ε model was used for single phase calculations and an extended
k-ε model was employed for the two-phase simulations. These simulations
were performed in transient mode with 1 (ms) time steps. The whole calcu-
lation contains 3900 time steps, which means approximately 4s of real time
and 17 complete rotations of the impeller. One such simulation took 13 days
of CPU time using an Intel single processor with 2.6 (GHz). The flow pat-
ter predictions were compared with experimental data and fair agreement
was obtained. It was stated that the standard k-ε model over-predicted the
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turbulence kinetic energy, and that might be achieved using more accurate
turbulence models.

Moilanen et al [59] did use CFX to simulate two-phase aerated fermenters.
A MRRF technique was employed to describe the impeller motion. The results
obtained using two different turbulence closures were compared with exper-
imental and visual observations. The two turbulence models tested were the
standard k-ε and the SST models. It was stated that the k-ε model did be-
have unphysically in the bulk regions of the vessel by generating unreasonable
turbulence properties. The SST model gave more reasonable results.
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8

Bubble Column Reactors

In this chapter the elementary hydrodynamic characteristics of simple bubble
columns are summarized. Different designs of bubble columns are sketched,
and examples of their industrial applications are outlined. An overview of the
status on Eulerian bubble column modeling is presented.

8.1 Hydrodynamics of Simple Bubble Columns

In its most simple form a bubble column reactor basically consists of a vertical
cylinder with a gas distributor at the inlet, as sketched in Fig 8.1. Simple con-
struction and lack of any mechanically operated parts are two characteristic
aspects of the reactor. In general, the bubble column is an adaptable type
of reactor which is reasonable in price and can be built in large sizes. The
ratio between length and diameter may vary, but ratios between 3 and 10 are
most common [28]. Units of 100−200 (m3) are regarded as very large in the
chemical industry.

The liquid phase may be operated in batch mode or it may move co-
currently or counter-currently to the flow of the gas phase. The gas usually
enters at the bottom of the column through a gas distributor which may vary
in design. The gas phase is dispersed by the distributor into bubbles entering
a continuous liquid phase. In addition, reactive or catalytic particles may be
suspended in the liquid phase.

The liquid flow rate passing through a bubble column is usually very low.
The gas throughput on the other hand may vary widely according to the
specified conversion level. The normal ranges of liquid and gas superficial
velocities, based on empty reactor cross-sectional area, are in the region of 0
to 3 (cm/s) and 3 to 25 (cm/s), respectively.

The reactor may be cooled or heated by means of internal heat exchanges.
One of the main features is very high heat transfer coefficients [68], thus en-
suring a fairly uniform temperature throughout the reactor even with strong

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 8,
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 8.1. A sketch of a simple bubble column.

exothermic/endothermic reactions. This is of special significance when reac-
tions in which the selectivity is highly dependent on temperature are involved.

The rising gas bubbles entrain an amount of liquid with them which is
considerably greater than that corresponding to the liquid throughput [28].
The larger bubbles plus entrained liquid tend to rise up through the center of
the column. Thus, continuity will ensure that fluid returns down the column
close to the wall, transporting smaller bubbles with it, forming a distinctive
circulating flow pattern. Large bubble swarms with length scales of the same
order as the column diameter are observed rising in a helical fashion towards
the top of the column. However, averaged over a long period of time (in the
order of 10 to 30 seconds) this transient circulation pattern vanishes. Yet non-
uniform time averaged radial gas holdup and velocity profiles result despite a
uniform initial distribution of gas across the whole cross-section of the reactor.
The mean liquid axial velocity profiles have been found to be relatively stable
with a general shape as shown in Fig 8.2. Nevertheless, a transient radial
cross-exchange of fluid elements is superimposed on the mean axial circulation
pattern, giving rise to a relatively high radial intermixing.

For water and dilute aqueous solutions the bubbles are generally uniformly
distributed in the liquid at low gas flow rates [132]. The bubble size distribu-
tion is relatively narrow and the bubbles rise uniformly through the column.
This is known as homogeneous flow and is sketched in Fig 8.3. Homogeneous
bubbly flow may occur in small scale apparatus with superficial gas velocities
below 5 (cm/s).
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Fig. 8.2. Liquid flow profile in a simple bubble column [155]. Reproduced with
permission. Copyright 1979 American Institute of Chemical Engineers (AIChE).

This state is not maintained when the gas passes more rapidly through
the column. Coalescence and bubble breakage lead to a wider bubble size dis-
tribution. Large bubbles are formed and these may rise more rapidly than the
smaller bubbles. This type of flow is referred to as heterogeneous, Fig 8.3, and
is quite common as a result of the high gas rates frequently adopted in in-
dustry. For water and dilute aqueous solutions heterogeneous churn-turbulent
flow may occur in columns with diameters larger than about 20 (cm) and
when the superficial gas velocity exceeds about 7 (cm/s).

In narrow bubble columns the large bubbles in the heterogeneous zone
are stabilized by the tube wall and move upwards through the column in a
piston-like manner. These elongated bubbles or slugs fill practically the whole
cross-section and continue to grow by collecting smaller bubbles continuously
throughout their upward journey. This is known as slug flow, Fig 8.3, and
for water and dilute aqueous solutions this regime is most likely to occur in
tall appliances with column diameters of around 20 (cm) or less and with
superficial gas velocities above 7 (cm/s).
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Fig. 8.3. Operating states in bubble columns. Figure depicted from Deckwer [28].
Copyright John Wiley & Sons Limited. Reproduced with permission.

Note that the flow chart is system dependent and may change somewhat
for other mixtures and operating conditions [132].

Bubble columns have been found to work well when the gas throughput is
high even in the case of the simple type shown in Fig 8.1, since the high rate
of liquid circulation ensures that when any solids involved, such as catalyst,
reagent or biomass are uniformly distributed [28]. However, liquid circulation
does have the adverse effect of increasing the back-mixing and if conversion
expectations are high, the reactor volume may increase accordingly. The ef-
fect of back-mixing on the conversion is of course dependent on the chemical
reacting system in question. The short gas residence time, determined mainly
by the bubble rise velocity, is a further disadvantage.

8.1.1 Experimental Characterization of Cylindrical Bubble
Column Flow

The literature reporting measurements of gas and liquid velocities, flow pat-
terns, and phase distribution of two-phase flow in pipes or cylindrical columns
is extensive. Introductorily, a few essential observations are summarized.

Several thorough reviews on the characteristics of vertical bubbly flows
have been reported [59, 62, 66, 104]. Bubble columns are usually operated at
very low or zero liquid fluxes, and larger gas fluxes. Experimental investiga-
tions performed by several groups show that under these flow conditions, core
peaking is the rule.

In a pioneering investigation, Serizawa [127, 128] measured the lateral
void distribution as well as the turbulent axial liquid velocity fluctuations for
bubbly air/water up-flows in a vertical pipe of diameter 60 (mm) inner diam-
eter. They used electrical resistivity probes to measure the local void fraction,
the bubble impaction rate, the bubble velocity and its spectrum. Turbulence
quantities, such as the liquid phase mean velocity, and the axial turbulent
fluctuations were measured using a hotfilm anemometer. A supplementary
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experimental investigation of phase distribution phenomena in a 57.15 (mm)
inner diameter pipe was performed by Wang et al [162]. By a hotfilm
anemometer they measured the lateral void distribution as well as the mean
and fluctuations in the axial liquid velocity for both bubbly up-flows and
down-flows. To measure all components of the Reynolds stress tensor in the
liquid phase, a special 3D conical probe was used. It was confirmed that the
lateral void distribution is strongly influenced by the flow direction. Moreover,
in this study it was also found that for up flows wall peaking become more
pronounced for higher liquid flows, while liquid flow rate appeared to have
little effect on the void fraction profiles for down flows.

Serizawa and Kataoka [129] made some interesting observations of phase
distribution in bubbly flow in a 30 (mm) inner diameter circular tube. A
variation of the phase distribution patterns as a function of the superficial
liquid velocity (or liquid flux) was observed. In stagnant liquid (i.e., having
zero superficial liquid velocity) no significant wall peaking was observed. The
gas bubbles seemed to choose a pattern in the core of the tube, creating core
peaking. For superficial liquid velocities ranging from 0.5 to 3.0 (m/s), wall
peaking was observed. For superficial liquid velocities higher than 3.0 (m/s),
they observed a gas phase maximum at a position shifting towards the tube
center (intermediate peaking). Serizawa and Kataoka [129] also reviewed and
interpreted data from other studies on two-phase flow phase distribution and
sketched a rough flow regime map. Serizawa and Kataoka [129] concluded
that there are three basic types of radial phase distributions. These are, wall
peaking, intermediate peaking and core peaking. Other types of patterns are
supposed to be a combination of these three regimes. Serizawa and Kataoka
also speculated that the physical phenomena taking place in the region near
walls were the governing mechanisms which dominate the whole picture of
upward two-phase flow in pipes. It was further indicated that bubble size and
shape might play an important role determining the lateral void distribution.

In a series of papers Žun [164, 165, 166, 167] studied the phase distribution
of two-phase turbulent up-flows in a 25.4 (mm) square Plexiglas channel. The
liquid (water) volumetric fluxes were between 0 and 0.97 (m/s). Air bubbles
were generated on single nozzles, but about 50 different nozzle diameters were
used to keep the bubbles size constant at different air and water flow rates.
Ellipsoidal bubbles in the equivalent sphere diameter range from 0.6 to 5.3
(mm) with a distinctive intrinsic later space displacement were studies. The
void fraction profiles were measured by micro-resistivity probes of 0.011 (mm)
diameter. Žun found that the transition from wall to core void peaking would
happen when the liquid flux was decreased. He also claimed that bubble size
would be important in determining the phase distribution. Larger bubbles
would cause core peaking, while smaller bubbles would cause wall peaking.

Hills [57] studied the radial variation of gas holdup and liquid velocity
in a bubble column with diameter 138 (mm). The gas holdup was measured
with a conductivity probe, while the liquid velocity was measured using a
modified Pitot tube. He used three different gas distributors. The superficial
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gas velocity was varied from 5 to 169 (mm/s), while there was no net liquid
flow through the column. He observed that the gas holdup was significantly
larger (up to 35 % gas void fraction) in the center of the column than at the
walls where it would typically fall off to between 0 and 10 % gas void fraction.
He also found that, on average, the gas would rise in the center of the column
giving large upward vertical liquid and gas velocities there, and down-flow
along the wall. Large vortices were superimposed on the averaged pattern,
thus the flow was not regular.

Menzel et al [98] found core peaking for all the gas fluxes they studied in
their investigation, and the time averaged radially varying velocity component
profiles have a maximum at the core of the column as shown in Fig 8.4. The
column used had a diameter of 0.6 (m), and a height of 5.44 (m). The system
considered was air-water. The water was operated in batch mode. The velocity
measurements were performed with a hotfilm anemometer.

Fig. 8.4. Mean liquid velocities in axial and radial direction for different gas fluxes.
Reproduced with permission [98]. Copyright 1990 American Chemical Society.
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Torvik [154] also used a hotfilm anemometer and measured velocities, void
fractions, and turbulent kinetic energy of a bubble column with diameter
0.29 (m) and height 4.52 (m). Both the air and the water were operated
in continuous modes in the column. The liquid superficial velocity was low.
Results at level 2.6 (m) above gas distributor at different gas velocities are
shown in Fig 8.5.

Gasche [42], Gasche et al [43], Grienberger [46], Grienberger and Hofmann
[47], Hillmer [55] and Hillmer et al [56] also studied the flow in two-phase
bubble columns using a hotfilm anemometer.

Groen et al [48] measured the local and time-dependent behavior of
the two-phase flow in a bubble column. Measurements with Laser Doppler
Anemometry (LDA) and with glass fibre probes were performed in two
air/water bubble columns of inner diameter 15 and 23 (cm), respectively.
These measurements showed that the time averaged axi-symmetric liquid
velocity profiles are a result of the passage of coherent structures (bubble
swarms). It was concluded that considering the flow in a bubble column as
stationary by far oversimplifies the actual phenomena present.

Fig. 8.5. Radial volume fraction profiles of gas at axial level 2.6 (m) above inlet
in a two phase bubble column. The measurements are performed for five different
superficial gas velocities. The figure is depicted from Torvik [154].

Lance and Bataille [78] studied grid-generated turbulent bubbly flow in a
45 (cm) × 45 (cm) rectangular pipe. Laser-Doppler and hotfilm anemometry
were used for the experimental investigation. The high-frequency of spectra of
the velocity components were determined by the power −8/3. A decade later
Mudde et al [102] reported LDA-measurements characterizing 15 (cm) and
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23 (cm) inner diameter bubble columns containing air-water mixtures with
gas fractions ranging from 4% to 25%. The high-frequency of spectra of the
axial and tangential velocity components did follow the Kolmogorov −5/3 law.
However, Harteveld [54] studied the accuracy of the estimation of turbulence
power spectra from Laser Doppler Anemometry (LDA) signals in bubbly flows.
It was found that the estimated spectra of bubble signals with reconstruction
techniques give poor results. In other words, the power law of Lance and
Bataille is probably more reliable than the one proposed by Mudde et al.

Recently, Garnier et al [40] performed experiments in a cylindrical column
of 80 (mm) diameter and 310 (mm) height and reported that the vertical
air/water bubbly flow is very uniform provided that a special design of the
gas injection device is used. They used a gas injection device made of a reg-
ular array of 271 hollow needles, which are 126 (mm) long with a 0.62 (mm)
internal diameter, through which gas bubbles were blown. The aim of the
experiment was to produce a mono-disperse injection with as uniform as pos-
sible a distribution of void fraction. Garnier et al observed uniform flow up to
40% voidage and the radial void profiles were almost flat.

Harteveld et al [53, 104] reported similar experiments in a 15 (cm) diameter
bubble column with gas fractions around 10%. A special sparger consisting of
561 needles was used to generate bubbles with a very narrow size distribution
with a ∼ 4.6 (mm) equivalent diameter. When the sparging of the bubbles was
uniform, the radial gas fraction profile was almost completely flat, but with a
small peak at the wall. The flow was uniform and there was no large-scale liq-
uid circulation. The turbulence levels are also low. If the outer ring of 0.75 (cm)
thickness of needles was switched off, a weak circulation was observed but the
flow was still stable and no large vortices were observed. Switching off a second
ring so that the thickness of ungassed ring is about 1.6 (cm), the flow became
strongly time dependent with the familiar large-scale circulation and the vorti-
cal structures present. It was later confirmed by experiments that the flow was
stable at uniform gassing even up to gas fractions of 25%. These experiments
clearly indicates that the sparger has a profound influence on the flow.

8.2 Types of Bubble Columns

Many different bubble column designs have been used over the years, all
adapted to particular practical needs [133]. Figure 8.6 depicts a few of the
modifications frequently used. A special case is the down-flow bubble column.
In the column part of this reactor flow of the two phases is co-current from
top to bottom as shown in Fig 8.6. The advantages of this type of reactor is
that the relatively short gas residence times obtained in up-flow reactors, can
be increased since the residence time is determined by the bubble rise velocity
[28]. Furthermore, incorporation of additional perforated plates transforms the
simple column, sketched in Fig 8.1, into a multistage cascade version, Fig 8.6.
This redistribution of gas over the perforated plates intensifies mass transfer,
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reduces the fraction of large bubbles and prevents back-mixing in both phases.
Back-mixing is also decreased by filling the bubble column with a packing or
by use of static mixers Fig 8.6. Multi-layer appliances, as obtained by incor-
porating cooling devices, prevent bulk circulation and a uniform gas flow can
be achieved throughout the reactor, provided a suitable gas distributor is fit-
ted [28]. Internal, axially oriented heat exchanger tubes may also increase the
recirculation [10, 11].

Two main groups of bubble columns can be distinguished, these are sim-
ple bubble columns (Fig 8.1) and bubble columns with enforced circulation
via a loop (Fig 8.6). Depending on the way in which the loop is realized, the
latter group may be subdivided into bubble columns with internal or external
loop. Compared to the types of bubble columns with reduced back-mixing

Fig. 8.6. Special types of bubble column reactors. Figures depicted from Onken [109]
(Reproduced by permission from Verein Deutscher Ingenieure (VDI)- Gesellschaft
Verfahrenstechnik und Chemieingenieurwesen 2007) and Deckwer [28] (Copyright
John Wiley & Sons Limited. Reproduced with permission). Similar figures can also
be found in Shah and Sharma [133] and Shah et al [132].
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as described above, bubble columns with loop show more complex mixing
behavior having a greater tendency of homogenizing the total reaction mix-
ture. Loop reactors also permit the processing of large amounts of gas and
provide a homogeneous flow zone. The homogeneous flow pattern is caused
by directional fluid circulation being stabilized by means of an inserted loop
eliminating complete radial transfer over the whole cross-sectional area. The
high rate of circulation obtained gives shorter mixing times and hence a lack
of any significant concentration gradient [28]. This is of special advantage for
biotechnological processes in which it is important that the biomass is sur-
rounded by material of constant composition. These reactors are thus often
used in biotechnology, for instance as air-lift fermenters. In addition, these
types of bubble column reactors can, compared to a stirred tank, decrease the
shear stress induced cell damage for sensitive cultures.

In bubble columns with internal loop, the gas may either be supplied
into the draft tube region or the annular region. If efficient degassing of the
down-flowing liquid is required, the draft tube region is to be preferred with a
conical widening of the top part of the bubble column allowing less turbulent
liquid flow in this zone [109]. External loop bubble columns are often equipped
with a pump for circulating the liquid. This may be necessary when a heat
exchanger with a high pressure drop has been installed in the external loop
(Fig 8.6). Alternatively, additional impulse for liquid circulation in the loop
can be introduced, by feeding both the gas and liquid through a jet. Reactors
with this type of gas sparging devices are called jet loop reactors.

In general, the gas may be dispersed in several ways, for instance through
a perforated plate, sinter plate, or by various types of jets. Gas dispersion by
use of a jet requires more energy compared to the distributor plates, but it
may be advantageous if high utilization of the reacting gas is desired due to
the high interfacial areas obtained [28]. Sintered plates produce small bubbles
and a uniform bubble distribution. However, as sintered plates tend to become
encrusted and clogged up and thus may cease to function, they are seldom used
for process gas dispersion despite the advantages which they offer. Perforated
plates with holes between 1 and 5 (mm) in diameter are thus commonly
used. This kind of gas distributor plate gives rise to a more non-uniform
bubble distribution, but is usually not associated with problems of deposits
and encrustation. The bubble distribution in the inlet zone, caused by the
construction of the gas distributor, have a decisive influence on gas holdup,
interfacial area and the level of mass transfer [28].

8.3 Applications of Bubble Columns
in Chemical Processes

Two-phase and slurry bubble columns are widely used in the chemical - and
biochemical industry for carrying out gas-liquid and gas-liquid-solid (cat-
alytic) reaction processes [27, 28, 29, 34, 35, 36, 117].
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The surveys on applications of bubble columns in industrial processes given
by Deckwer [28] and Onken [109] show that in many cases the simple type of
bubble column is not used, but modifications, such as loop, multistage and
down-flow bubble columns, depending on specific requirements of the individ-
ual process. Schügerl et al [126] describe special requirements associated with
bio-processes. In the present summary of applications of the various types of
bubble columns in chemical processes, the special use of bubble columns as
bio-reactors at sterile conditions is excluded. However, aerobic fermentations
can be considered as three-phase reactors [109], with suspended biomass as
the third phase. The largest bubble column reactors that have been erected
for fermentation processes operated at un-sterile conditions, referred to as
the Bayer Tower Biology (simple bubble column) and the Biohoch Reactor
Hoechst (jet loop reactor), have a volume of more than 10000 (m3) per reactor
unit [109]. Moreover, for the aerobic treatment of small quantities of highly
polluted effluents a process has been developed in which a down-flow bub-
ble column is employed. This demonstrates that even for the same reactions
different types of bubble columns may be suited, depending on the given con-
ditions. Additional application examples of bubble column reactors are given
in Table 8.1.

Bubble columns are also used for a number of conventional processes such
as oxidation, hydrogenation, chlorination, chemical gas cleaning and also var-
ious bio-technological applications [28, 109, 132, 133, 126].

8.4 Modeling of Bubble Column Reactors

The historical development of bubble column modeling has been discussed
by Deckwer [28] and Dudukovic [34]. Models for bubble column reactors can
be divided into various categories according to the degree of mixing in each
phase. Perfect mixing (CSTR), partial mixing (ADM) or no mixing (PFR)
characteristics may be found in both gas and liquid phase. The mixing in
the liquid phase is often more intense than within the gas phase due to the
turbulent motion induced by the gas bubbles, hence the early bubble column
models were defined using a simple and ideal CSTR model for the Liquid
phase and a PFR model for the gas phase. However, the heterogeneous axial
dispersion model (ADM), consisting of the mass (3.498) and heat (3.499)
balances as assessed in chap 6, can be considered a more general formulaton
for both the gas and liquid (slurry) phases in bubble columns [168, 58, 133, 28].

For two-phase bubble columns the balance equations determining the liq-
uid (slurry) phase axial dispersion model can be written as [133, 28]:

d(ρLv
S
Lωi,L)
dz

=
d

dz

(

εLρLDeff,z,L
dωi,L

dz

)

+ kL,ia(ρ∗L,i − ρL,i)+ εL

∑

r

νi,rRL,r

(8.1)
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Table 8.1. Examples of Bubble Column Reactor Applications in the Chemical
Process Industry.

Process Type of Reactor Reference

Partial Oxidation of
ethylene
to Acetaldehyde BC with External Loop Onken [109], Deckwer [28]

Oxidation of
acetaldehyde
to acetic acid Cascade BC Shah et al [132], Onken [109]

Oxidation of p-xylene BC with external loop or
to
Dimethylterephthalate

Cascade Onken [109]

Hydrogenation of
benzene

Slurry BC

to cyclohexane with external loop Onken [109], Deckwer [28]

Synthesis of
hydrocarbons,
Fischer-Tropsch
synthesis

Dry [33], Deckwer [28],

in the liquid phase Slurry BC Shah et al [132]

Synthesis of Methanol Slurry BC Shah et al[132], Deckwer[28]

Oxychlorination of
ethylene
to 1,2-Dichloroethane Packed BC Onken [109], Deckwer [28]

Hydrolysis of phosgene Downflow BC Onken [109]

Ozonization of waste
water

Downflow BC Onken [109]

Biological waste water
purification (aerobic) Onken [109], Deckwer [28]

a) Bayer Tower Biology Simple BC
b) Biohoch Reactor Jet internal loop BC
c) Compact Reactor Downflow BC

BC = Bubble Column.
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For the gas phase the axial dispersion model is written as:
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The species balance equations are normally solved with the standard Danck-
werts boundary conditions [26].

For the phase k(= G,L) the inlet boundary conditions at z = 0 yield:

ρk(0)vS
k (0)ωi,k(0) − εk(0)ρk(0)Deff,k(0)

dωi,k(0)
dz

= vS
in,kρin,kωi,in,k (8.6)

ρk(0)vS
k (0)cp,k(0)Tk(0) − εk(0)keff,k(0)

dTk(0)
dz

= ρin,kvz,in,kcp,kTin,k (8.7)

vS
G(0) = vz,in,G (8.8)

The outlet boundary conditions at z = L yield:

dωc(z = L)
dz

=
dT (z = L)

dz
= 0 (8.9)

where the superficial velocity is linked to the local velocity through vS
k = vkεk.

The total pressure of the gas can be calculated from the ideal gas law:
pG = ρG,iRTG/Mω. For high pressure systems the operating pressure is dom-
inated by the imposed pressure and is thus often assumed constant, whereas
for atmospheric and low pressure processes the axial pressure profile is of-
ten dominated by the static pressure of the liquid phase, dpL

dz = −εLρLgz.
The pressures in the two phases are generally assumed to be equal, pG ≈ pL.
To close the interfacial mass transfer model a simple Henrys law equilibrium
relation is frequently employed, ρ∗L,i = Mωi

pi/Hi = ρG,iRTG/Hi.
In these balance equations all terms should be described at the same level

of accuracy. It certainly does not pay to have the finest description of one
term in the balance equations if the others can only be very crudely described.
Current demands for increased selectivity and volumetric productivity require
more precise reactor models, and also force reactor operation to churn turbu-
lent flow which to a great extent is uncharted territory. An improvement in
accuracy and a more detailed description of the molecular scale events describ-
ing the rate of generation terms in the heat- and mass balance equations has
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in turn pushed forward a need for a more detailed description of the transport
terms (i.e., in the convection/advection and dispersion/conduction terms in
the basic mass- and heat balances).

Experimental evidence show that the liquid axial velocity is far from being
flat and independent of the radial space coordinate [28], and the use of a cross-
sectional average velocity variable seems not to be sufficient. The back mixing
induced by the global liquid flow pattern was commonly accounted for by
adjusting the axial dispersion coefficient accordingly. However, while (slurry)
bubble column performance often can be fitted with an axial dispersion model,
decades of research have failed to produce a predictive equation for the axial
dispersion coefficient. Hence, research is in progress to quantify these based
on first principles (e.g., see Jakobsen et al [62, 66], Joshi [67], Sokolichin et al
[141], Rafique et al [117], Portela and Oliemans [115], and references therein).
However, despite of their simple construction, the fluid dynamics observed
in these columns is very complex. Even though the CFD modeling concepts
have been extended over the last two decades in accordance with the rapid
progress in computer performance, the model complexity required resolving
all the important phenomena in these systems are still not feasible within
reasonable time limits. The multi-fluid model is found to represent a trade-off
between accuracy and computational efforts for practical applications.

Unfortunately, the present models are still on a level aiming at reasonable
solutions with several model parameters tuned to known flow fields. For pre-
dictive purposes, these models are hardly able to predict unknown flow fields
with reasonable degree of accuracy. It appears that the CFD evaluations of
bubble columns by use of multi-dimensional multi-fluid models still have very
limited inherent capabilities to fully replace the empirical based analysis (i.e.,
in the framework of axial dispersion models) in use today [63]. After two
decades performing fluid dynamic modeling of bubble columns, it has been
realized that there is a limit for how accurate one will be able to formulate
closure laws adopting the Eulerian framework. In the subsequent sections a
survay of the present status on bubble column modeling is given.

8.4.1 Fluid Dynamic Modeling

Considering modeling in further details the general picture from the lit-
erature is that the forces acting on the dispersed phase are [62]: Inertia-,
gravity-, buoyancy-, viscous-, pressure-, lift-, wall-, turbulent stress-, turbu-
lent dispersion-, steady drag- and added mass forces. In the latest papers
performing 3D simulations, the force balances in vertical bubbly flows are
found to be determined by only a few of these forces. The axial component of
the momentum equation for the gas phase is dominated by the pressure- and
steady drag forces only indicating that algebraic slip models may be sufficient
[20, 105, 141], whereas most multi-fluid models also retain the inertia- and
gravity (buoyancy) terms. The axial momentum balance for the liquid phase
considers the inertia-, turbulent stress-, pressure-, steady drag- and gravity
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forces. Only pressure and buoyancy forces are acting on a motionless bubble
in a liquid at rest. In the radial- and azimuthal directions the force balances
generally includes the steady drag force, i.e., a force that is opposing motion,
while the pertinent forces causing motion are more difficult to define. In a very
short inlet zone the wall friction is likely to induce a radial pressure gradient
that pushes the gas bubbles away from the wall, whereas a few column diam-
eters above the inlet the radial pressure gradient vanishes. It is still an open
question whether or not this pressure gradient is sufficient to determine the
phase distribution observed in these systems. It is expected that the presence
of the wall induce forces that act on the dispersed particles further away from
the inlet, but there is no general acceptance on the physical mechanisms and
formulations of these forces. It is also a matter of discussion whether this wall
effect should be taken into account indirectly through the liquid wall friction,
or in view of the model averaging performed directly as a force in the gas
phase equations.

In the generalized drag formulation the interfacial coupling is expressed
as a linear sum of independent forces, this point of view is probably not valid
when the void fraction exceeds a few percent. Moreover, the parameterizations
used for the coefficients occurring in the interfacial closures vary significantly,
especially at higher void fractions. Single particle drag -, added mass - and
lift coefficients are most frequently used, whereas swarm corrections have been
included in some codes. For higher void fractions other rather empirical cor-
rections have been introduced as well [9]. Likewise, considering the multi-fluid
model, the average interfacial momentum transfer terms containing the inter-
facial average pressure and viscous stresses (discussed in sect 3.3) are strictly
not consistent with the fundamental singlephase forces presented in sect 5.2.

The interfacial coupling and wall forces are difficult to parameterize with
sufficient accuracy. The steady drag component part of the generalized drag is
the dominant interfacial force. In a few papers fair agreement with the avail-
able experimental data on the dynamic large scale circulating flow pattern in
bubble columns have been achieved using this interfacial force solely [73, 66].
A variety of different formulations of this force, and especially on the drag
coefficient, are reported in the literature valid for deformable and rigid spher-
ical particles, extended for different flow regimes, swarm effects and pure and
contaminated fluid systems. In several papers on bubble column flow model-
ing [12, 105] the drag coefficient correlations valid for non-deformable spheres
[100, 125] have been adopted. For typical heterogeneous flow conditions these
relations give rise to drag force coefficient values which are typically about
25% of the standard values for cap bubbles given by the parameterizations
suggested by Tomiyama et al [149] (see sect 5.2.4). Jakobsen et al [66] did
assess these spherical particle coefficient correlations in their 2D code and ob-
tained completely flat profiles (i.e., no variation in the radial direction) for the
axial velocities and the volume fraction. There was thus no circulation cells
created in the column, which is in accordance with the experiments reported
by Harteveld [53]. On the other hand, other 2D and 3D simulations reported
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in the literature employing the drag coefficient correlations for spherical par-
ticles always give the anticipated dynamic circulating flow pattern that has
become standard in the recent papers. It should be mentioned that in most of
the latter simulations an additional wall friction force [94] acting on the gas
phase is implemented (to be discussed shortly).

Implementing the added mass force has barely any influence on the steady
state solution [30, 66]. Deen et al [30] explained this to some extent surprising
result by the fact that the simulations soon reach a quasi-stationary state
where there is only minor acceleration. The bubble jets observed close to the
distributor plate are then disregarded. However, the convergence rate and
thus the computational costs are often significantly improved implementing
this force.

The primary effect of the transversal lift force is to push the gas bubbles
radially inwards or outwards in the column depending on the sign of the lift
coefficient. The force is usually modeled as though it is induced by a velocity
gradient, and can therefore only reinforce or smooth out the existing gradients
in the flow fields. For this reason other forces are important in the initial phase
of the flow pattern development. Moreover, in the two-fluid model with a single
average bubble size this force alone can not change a center peak flow pattern
to a wall peak pattern or vice versa. However, using a multi-fluid model with a
bubble size distribution the lift force might change a center peak flow pattern
to a wall peak pattern or vice versa. Nevertheless, any interactions between
the onset of the dynamic large-scale circulation flow pattern and the bubble
coalescence and breakage mechanisms have not been demonstrated yet.

Effects similar to those of the lift force are observed when implementing the
turbulent dispersion force using the gradient diffusion model. This dispersion
force closure smoothes out sharp velocity gradients in the domain. If the model
overestimates the diffusive effect, the velocity profiles may become completely
flat over the column cross section.

The radial wall lift force proposed by Antal et al [2] requires a certain
minimum resolution of the grid close to the wall. The values of the model co-
efficients are crucial for the development of the profiles since these parameters
determine the magnitude of the force as well as the operative distance from
the wall. The magnitude of the force is highest for larger bubbles, and the
force is very sensitive to the bubble size. However, the force does not alter the
flow development significantly except very close to the wall.

To ensure that the gas in upward bubbly flow migrates away from a tri-
angular duct wall Lopez de Bertodano [94] introduced an axial friction force
acting on the gas in the vicinity of the wall. Under bubble column flow con-
ditions this friction force may significant affect the radial phase distribution
provided that a sufficiently small steady drag force is employed [66]. The ad-
dition of the gas wall friction may for example alter a uniform or wall peaking
flow regime into a center peaking behavior.

In several reports on bubble column modeling a constant gas density is em-
ployed. This assumption is not consistent for tall columns that are operated
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at ambient outlet pressure. Similar inconsistency problems arise when reactive
systems are simulated, as the gas density vary in accordance with the chemical
process behavior. Moreover, interfacial mass transfer fluxes and chemical re-
actions often induce numerical stability problems and no proper convergence.

The flow of the continuous phase is considered to be initiated by a bal-
ance between the interfacial particle-fluid coupling - and wall friction forces,
whereas the fluid phase turbulence damps the macroscale dynamics of the
bubble swarms smoothing the velocity - and volume fraction fields. Temporal
instabilities induced by the fluid inertia terms create non-homogeneities in
the force balances. Unfortunately, proper modeling of turbulence is still one
of the main open questions in gas-liquid bubbly flows, and this flow property
may significantly affect both the stresses and the bubble dispersion [141].

It has been shown by Svendsen et al [144], among others, that the time
averaged experimental data on the flow pattern in cylindrical bubble columns
is close to axi-symmetric. Fair agreement between experimental - and sim-
ulated results are generally obtained for the steady velocity fields in both
phases, whereas the steady phase distribution is still a problem. Therefore, it
was anticipated that the 2D axi-symmetric simulations capture the pertinent
time-averaged flow pattern that is needed for the analysis of many (not all)
mechanisms of interest for chemical engineers. Sanyal et al [122] and Krishna
and van Baten [72] for example stated that the 2D models provide good engi-
neering descriptions, although they are not able to capture the high frequency
unsteady behavior of the flow, and can be used for approximately predicting
the low frequency time-averaged flow and void patterns in bubble columns.

The early 2D steady-state model proposed by Jakobsen [59] (outlined in
app C) was able to capture the global flow pattern fairly well provided that
a large negative lift force was included. However, after the first elaborated
experimental studies on 2D rectangular bubble columns were published by
Tzeng et al [153] and Lin et al [89], it was commonly accepted that time-
average computations cannot provide a rational explanation of the transport
processes of mass, momentum, and energy between the bubbles and liquid.
The experimental data obtained was analyzed and sketches of their interpre-
tations of the dynamic flow patterns in both 2D and 3D columns were given,
as shown in Fig 8.7. It was concluded that a proper bubble column model
should consider the transient flow behavior. A few years later Sokolichin and
Eigenberger [138], Sokolichin et al [139], Sokolichin and Eigenberger [140] and
Borchers et al [14] claimed that dynamic 3D models were needed to provide
sufficient representations of the high frequency unsteady behavior of these
flows. Very different dynamic flow patterns may result in quantitatively simi-
lar long-time averaged flow profiles. This limits the use of long-time averaged
flow profiles for validation of bubbly flow models. van den Akker [156], among
others, questioned the early turbulence modeling performed (or rather the
lack of any) in these studies and argued that the apparently realistic simu-
lations of the transient flow characteristics could be numerical modes rather
than physical ones (see also Sokolichin et al [141]). Insufficiently fine grids
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may have been used in the simulations resulting in numerical instabilities
that could be erroneously interpreted as physical ones. However, after the
observation of Sokolichin and Eigenberger was reported, intensive focus on
these instability issues were put forward, mainly by researchers from the fluid
dynamics community. The experimental data provided by Becker et al [7]
and Becker et al [8], see Fig 8.8, still serve as a benchmark test and is often
used for validation of dynamic flow models. The numerical investigations were
restricted to bubbly flow hydrodynamics (i.e., no reactive systems were ana-
lyzed), where additional simplifications were made; isothermal conditions, no
interfacial mass transfer, constant liquid density, gas density constant or de-
pending on local pressure as described by the ideal gas law, neglecting bubble
coalescence and breakage.

Fig. 8.7. Classification of regions accounting for the macroscopic flow structures:
left, 2D bubble column[153]; right, 3D bubble column[22]. Reproduced with permis-
sion. Copyright 1993 and 1994 American Institute of Chemical Engineers (AIChE).

However, after the dynamic flow structures were observed bubble columns
have generally been simulated using either 2D - or 3D dynamic models both
for cylindrical [122, 74, 112, 107, 87, 88, 108, 12, 73] and rectangular 2D and
3D column geometries [105, 101, 103, 111, 73, 30, 17, 18, 12, 15, 141]. The
gas is introduced both adopting uniform and localized feedings at the bot-
tom of the column. Modeling of systems uniformly gassed at the bottom is
more difficult than the modeling of partly aerated ones. Simulating systems
with continuous liquid flow is also more difficult than keeping the liquid in
batch mode. Finally, it is also noted that the different research groups ap-
plied both commercial codes (e.g., CFX, FLUENT, PHOENICS, ASTRID,
NPHASE) and several in-house codes where the inherent choice of numerical
methods, discretizations, grid arrangements and boundary implementations
varies quite a lot. These numerical differences alter the solutions to some ex-
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tent, so it should not be expected that the corresponding simulations will
provide identical results. An open and unified research code available for all
research groups could assist eliminating any misinterpretations of numerical
modes as physical mechanisms, and visa versa.

Fig. 8.8. Lateral movement of the bubble hose in a flat bubble column [8]. Reprinted
with permission from Elsevier.

Considering the interfacial- and turbulent closures for vertical bubble
driven flows, no extensive progress has been observed in the later publica-
tions. However, two diverging modeling trends seem to emerge due to the lack
of understanding of the phenomena involved and on how to deal with these
phenomena within an average modeling framework. One group of papers con-
siders only phenomena that can be validated with the existing experimental
techniques and thus contains a minimum number of terms and effects. The
other group of papers include a large number of weakly founded theoretical
hypothesis and relations intending to resolve the missing mechanisms.

Steady-State or Dynamic simulations, Closures, and Numerical
Grid Arrangements

Not only dynamic models have been adopted investigating these phenomena.
Lopez de Bertodano [94] for example used a 3D steady finite volume method
(FVM) (PHOENICS) with a staggered grid arrangement to simulate turbulent
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bubbly two-phase flow in a triangular duct. In this study the lift-, the turbu-
lent dispersion- and the steady drag forces were assumed dominant. Standard
literature expressions were adopted for the drag- and lift forces, whereas a
crude model for the turbulent dispersion force was developed. An extended
k-ε model, considering bubble induced turbulence, was also developed for the
liquid phase turbulence. It was proposed that the shear-induced turbulence
and the bubble-induced turbulence could be superposed. The lift force was
found essential to reproduce the experimentally observed wall void peaks sat-
isfactorily. Anglart et al [1] adopted many of the same closures within a 2D
steady version of the same code (PHOENICS) predicting low void bubbly flow
between two parallel plates. They found satisfactory agreements with exper-
imental data when applying drag-, added mass-, lift-, wall (lubrication)- and
turbulent diffusion forces in their study. The extended k-ε model of Lopez de
Bertodano [94] was applied for the liquid phase turbulence. In a more resent
paper Antal et al [4] adopted very similar closures for 3D steady-state bub-
ble column simulations using the NPHASE code. The NPHASE CMFD code
employs a FVM on a collocated grid. A three field multi-fluid model formula-
tion was used to simulate two-phase flow in a bubble column operating in the
churn-turbulent flow regime. The gas phase was subdivided into two fields (i.e.,
small and large bubbles) to more accurately describe the interfacial momen-
tum transfer fluxes. The third field was used for the liquid phase. The model
results were validated against a few time averaged data sets for the liquid
axial velocity and the gas volume fraction. Global flow patterns for all three
fields and overall gas volume fractions were shown. The simulations were in
fair agreement with the experimental observations. Using a 2D in-house FVM
code with a staggered grid arrangement Dhotre and Joshi [31] predicted the
flow pattern, pressure drop and heat transfer coefficient in bubble column re-
actors. The model used contained steady drag-, added mass- and lift forces,
as well as a reduced pressure gradient formulated as an apparent form drag.
Turbulent dispersion was accounted for by use of mass diffusion terms in the
continuity equations. A low Reynolds number k-ε model was incorporated,
broadly speaking constituting a standard k-ε model with modified treatment
of the near-wall region. The turbulence model used contained an additional
production term accounting for the large scale turbulence produced within the
liquid flow field due to the movement of the bubbles. A semi-empirical me-
chanical energy balance for the gas-liquid system was required fulfilled. The
simulated results were in very good agreement with experimental literature
data on the axial liquid velocity, gas volume fraction, friction multiplier and
heat transfer coefficient.

In a recent study Jakobsen et al [66] examined the capabilities and limita-
tions of a dynamic 2D axi-symmetric two-fluid model for simulating cylindrical
bubble column reactor flows. In their in-house code all the relevant force terms
consisting of the steady drag, bulk lift, added mass, turbulence dispersion and
wall lift were considered. Sensitivity studies disregarding one of the secondary
forces like lift, added mass and turbulent dispersion at the time in otherwise
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equivalent simulations were performed. Additional simulations were run with
three different turbulence closures for the liquid phase, and no shear stress
terms for the gas phase. A standard k− ε model [86] was used to examine the
effect of shear induced turbulence, case (a). In an alternative case (b), both
shear- and bubble induced turbulence were accounted for by linearly super-
posing the turbulent viscosities obtained from the k− ε model and the model
of Sato and Sekoguchi [123]. A third approach, case (c), is similar to case (b)
in that both shear and bubble induce turbulence contributions are considered.
However, in this model formulation, case (c), the bubble induced turbulence
contribution was included through an extra source term in the turbulence
model equations [59, 62, 66]. The relevant theory is summarized in sect 5.1.

A comparison between the steady state profiles at axial levels z = 2.0 (m)
and z = 0.3 (m) in the column employing the three turbulence closures (a),
(b) and (c) was given as shown in Figs 8.9 and 8.10, respectively. The most
important conclusion drawn from this investigation is that the assumption
of cylindrical axi-symmetry in the computations prevents lateral motion of
the dispersed gas phase and leads to an unrealistic radial phase distribution
wherein the maximum void is away from the centerline, which is also reported
by other authors [122, 73]. It is also worth noting that imposing the axi-
symmetry boundary condition causes the liquid flow to develop very quickly
and the long-time circulating pattern is reached within a few seconds (typically
less than 5 seconds of real time) after the first gas has been flowing through the
column. In contrast, the experimental data reported by Sanyal et al [122] and
Pfleger and Becker [112] is characterized by a highly dynamic flow, with 3D
vortical bubble swarms. For z = 2.0 (m) all the model versions gave reasonable
velocities compared to the experimental data. For z = 0.3 (m) there were
larger discrepancies between the simulated results and the experimental data.
The voidage profiles observed in the experiments are lower than at z = 2.0
(m), while the profiles from the simulations are approximately the same. The
discrepancy indicates that the physics in the bottom of the column is not
sufficiently captured by the 2D model. At the axial level 0.3 (m) above the
inlet, Fig 8.10, the cross-sectional averaged void was overestimated by about
25 − 35%, thus the corresponding cross-sectional averaged gas velocity was
underestimated. This is a strong indication that 3D effects are important at
least in the inlet section. However, studies reported in the literature show
that it can be very difficult to obtain reasonable time averaged radial void
profiles even in 3D simulations [66]. Nevertheless, the deviation between the
experimental data and the simulated results may also indicate that the inlet
boundary conditions used, the phase distribution and the interfacial coupling
are inaccurate and not in agreement with the real system.

Deen et al [30] used the lift force in addition to the steady drag- and added
mass forces in their dynamic 3D-model to obtain the transversal spreading of
the bubble plume which is observed in experiments. A prescribed zero void
wall boundary was used forcing the gas to migrate away from the wall. The
continuous phase turbulence was incorporated in two different ways, using



778 8 Bubble Column Reactors

−0.1 −0.05 0 0.05 0.1 0.15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r [m]

v c [m
/s

]

−0.1 −0.05 0 0.05 0.1 0.15

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r [m]

v d [m
/s

]

−0.1 −0.05 0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0.25

r [m]

α d

−0.1 −0.05 0 0.05 0.1 0.15
0

2

4

6

8

10

r [m]

μ 
[k

g/
m

s]

Fig. 8.9. Axial velocity-, gas voidage- and turbulent viscosity profiles as a function
of column radius at the axial level z = 2.0 (m) after 80 (s) (steady-state) employing
the steady drag and added mass forces. Crosses: experimental data [61], continu-
ous line: standard k-ε model, case (a), dotted line: standard k-ε model plus Sato
model, case (b), dashed line: extended k-ε model, case (c). Grid resolution: 20×72,
time resolution: 2 · 10−4 (s). Reprinted with permission from [66]. Copyright 2005
American Chemical Society.

either a standard k-ε- or a VLES model. The effective viscosity of the liq-
uid phase was composed of three contributions, the molecular-, shear induced
turbulent - and bubble induced turbulence viscosities. The calculation of the
turbulent gas viscosity is based on the turbulent liquid viscosity as proposed
by Jakobsen et al [62]. These simulations were performed using the commer-
cial code CFX, thus a FVM on a collocated grid was employed. Sample results
simulating a square 3D column at low void fractions using the 3D VLES model
of Deen et al [30] are shown in Fig 8.11. Krishna and van Baten [73, 74] used a
steady drag force as the only interfacial momentum coupling in their transient
2D- and 3D three fluid models with an inherent prescribed and fixed bi-modal
distribution of the gas bubble sizes. The two bubble classes are denoted small
and large bubbles. The small bubbles are in the range of 1−6 (mm), whereas
the large bubbles are typically in the range of 20− 80 (mm). A simplification
made in the model is that there are no interactions or exchanges between the
small and large bubble populations. A FVM on a non-staggered grid was used
discretizing the equations (i.e., in CFX). No-slip conditions at the wall were
used for both phases. A k-ε model was applied for the liquid phase turbulence,
whereas no turbulence model was used for the dispersed phases. To prevent a
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Fig. 8.10. Axial velocity-, gas voidage- and turbulent viscosity profiles as a function
of column radius at the axial level z = 0.3 (m) after 80 (s) (steady-state) employing
the steady drag and added mass forces. Crosses: experimental data [61, 46], contin-
uous line: standard k-ε model, case (a), dotted line: k-ε model plus Sato model, case
(b), dashed line: extended k-ε model, case (c). Grid resolution: 20×72, time reso-
lution: 2 · 10−4 (s). Reprinted with permission from [66]. Copyright 2005 American
Chemical Society.

circulation pattern in which the liquid flows up near the wall and comes down
in the core, the large bubble gas was injected on the inner 75% of the radius.
The time averaged volume fraction- and velocity profiles calculated from the
predicted 3D flow field were in reasonable agreement with experimental data.
Lehr et al [88] used a similar three-fluid model (implemented in CFX), com-
bined with a simplified population balance model for the bubble-size distribu-
tion. The simplified population balance relation used contained semi-empirical
parameterizations for the bubble coalescence and breakage phenomena. It was
concluded that the calculated long time average volume fractions, velocities,
and also the interfacial area density were in good agreement with experimen-
tal data. Pfleger et al [111] applied a two-fluid model using the same code
(CFX) to a 2D rectangular column with localized spargers. It was concluded
that a 3D model including the steady drag force and a standard k-ε model is
sufficient to correctly capture the unsteady behavior of bubbly flow with very
low gas void fractions. The bubble swarm began its swinging motion after a
certain time delay. Pfleger and Becker [112] and Bertola et al [12] used sim-
ilar two-fluid models and FVMs on collocated grid arrangements (CFX and
FLUENT, respectively) simulating both cylindrical and rectangular columns,
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confirming the results found by Pfleger et al [111]. It should be noted, how-
ever, that Bertola et al [12] solved the k-ε turbulence model for both phases,
whereas in the work of Pfleger and co-workers [111, 112] the dispersed phase
was considered laminar. Mudde and Simonin [103] performed both dynamic
2D - and 3D simulations of a 2D rectangular column using a similar FVM on
a collocated grid arrangement (ASTRID). Their two-fluid model contained an
extended k− ε turbulence model formulation for the liquid phase turbulence,
and drag - and added mass forces. The dispersed phase turbulence was as-
sumed steady and homogeneous and described by an extended Tchen’s theory
approach [145, 135, 136, 161]. This code predicted reasonable high frequency
oscillating flows only when the added mass force was included, without this
force low frequency almost steady flows were obtained. Using a FD algorithm
Tomiyama et al [147] reported that the transient transversal migration of bub-
ble plumes in vessels can be well predicted including steady drag-, added mass-
and lift forces in their two-fluid model describing laminar flows containing very
low void fractions (i.e., below 0.5%). Later, Tomiyama [148] and Tomiyama
and Shimada [150] used the bubble induced turbulence model of Sato and
Sekoguchi[123] and Sato et al [124] and an extended k− ε model in their work
on turbulent flows. In a recent paper Sokolichin et al [141] concluded that
the model by Sato and Sekoguchi [123] for bubble induced turbulence overes-
timates the turbulent viscosity parameter and thus strongly underestimates
the turbulence level in a number of test cases. Another disadvantage of this
approach is associated with the local nature of the model, because it consid-
ers the increase of the turbulence intensity only locally in the reactor where
the gas phase is actually present. In reality, the turbulence induced by the
bubbles at some given point can spread and affect regions further away from
the turbulence source. Oey et al [105] applied a 3D two-fluid model containing
the steady drag-, added mass- and turbulent dispersion forces together with
an extra source term in the k − ε turbulence model accounting for the effects
of the interface in their in-house staggered FVM code (ESTEEM). Due to
the controversy in the literature regarding disperse phase turbulence, both
laminar and turbulent gas simulations were made. In the turbulence case, the
extended Tchen’s theory approach was adopted. The liquid tangential velocity
components close to the wall were found using wall functions, while no wall
friction was taken into account for the dispersed phase. They found that in
3D the steady drag force was sufficient to capture the global dynamics of the
bubble plume while the other forces moreover have secondary effects only.

Most of the studies mentioned above adopted a kind of k − ε model to
describe the liquid turbulence in the system, whereas there is less consen-
sus regarding whether the dispersed phase should be considered turbulent or
laminar, or even whether any deviating stress terms at all should remain in
the dispersed phase equations. However, even the k− ε model predictions are
questioned by Deen et al [30] and Bove et al [15]. This group showed that only
low frequency unsteady flow is obtained using the k− ε model due to overesti-
mation of the turbulent viscosity. These model predictions were found not to
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Fig. 8.11. Snapshots of the instananeous isosurfaces of αd = 0.04 and liquid velocity
fields after 30 and 35 s, for the LES model [30]. Reprinted with permission from
Elsevier.

be in satisfactory agreement with the more high frequent experimental results.
On the other hand, when using a 3D Smagorinsky LES (Large Eddy Simu-
lation) model instead, the strong transient movements of the bubble plume
which are observed in experiments were captured.

Similarly, the majority of the investigations reported conclude that for
both rectangular and cylindrical columns the high frequency instabilities are
3D and have to be resolved by the use of 3D models. Nevertheless, in a few
recent papers [5, 6, 21] it has been shown that 2D mixture model formulations
can be used to reproduce the time-dependent flow behavior of 2D bubble
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columns. It has been found that the crucial physics can be captured by 2D
models if suitable turbulence models are used. The predictions reported by
Bech [5, 6] rely on the inclusion of a mass diffusion term in the dispersed
phase continuity equation together with a appropriate zero- or two-equation
turbulence model, while Cartland Glover and Generalis’ [21] predictions rely
on the inclusion of a Reynolds stress model. In the work of Bech [6] the k-ω
turbulence model gave a better qualitative prediction of the bubble plume
than the standard k-ε model, due to the low-Reynolds number treatment of
the former model. A simple mixing length turbulence model gave the best
prediction of the meandering plume, even without any dispersion term.

A conclusion drawn in several papers investigating the fluid dynamics of
the reactors is that the flow have to be about perfect before the chemistry re-
lated topics should be considered. Such an invidious statement may have been
of severe hindrance for the development of integrated fluid dynamic reactor
models of interest for chemical reaction engineers. However, there are several
indications that the local high frequency dynamics and coherent structures
of the flow are important determining the conversion in chemical reacting
systems [141, 101, 18, 157, 53]. The mixing times predicted by steady flow
codes are for example found not to be in accordance with experimental data,
whereas mixing times predicted by high frequent transient flow codes are in
fair agreement with the corresponding measurements. Nevertheless, the main
limitation associated with these advanced reactor models is the tremendous
CPU demands needed for the high frequency instabilities, making such 3D
simulations not feasible for most research groups.

The interfacial and turbulence closures suggested in the literature also dif-
fer considering the anticipated importance of the bubble size distributions. It
thus seemed obvious for many researchers that further progress on the flow
pattern description was difficult to obtain without a proper description of the
interfacial coupling terms, and especially on the contact area or projected area
for the drag forces. The bubble column research thus turned towards the de-
velopment of a dynamic multi-fluid model that is extended with a population
balance module for the bubble size distribution. However, the existing mod-
els are still restricted in some way or another due to the large cpu demands
required by 3D multi-fluid simulations.

Multi-Fluid Models and Bubble Size Distributions

To gain insight on the capability of the present models to capture physical re-
sponses to changes in the bubble size distributions, a few preliminary analyzes
have been performed adopting the multi-fluid modeling framework.

Lo [91, 92, 93] developed the extended two-fluid model named the MUSIG
(MUltiple-SIze-Group) model in which the dispersed phase is divided into
multiple groups. In the original two-fluid MUSIG model only one set of con-
tinuity and momentum equations are considered for the dispersed phase. The
model describes the dynamic evolution of a number of bubble size groups in
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space (typically ∼ 15 − 20 groups) and from the resulting size distribution a
mean bubble size is determined. The mean bubble size, which is varying lo-
cally in the column, is used to calculate an improved estimate of the contact
area and thus the momentum transfer terms (steady drag). However, since the
two-fluid model is employed, the single gas velocity field limits the applicabil-
ity of the model. In particular, effects such as segregation by size are difficult
to describe. The performance of the original MUSIG model is thus limited to
convectively dominated bubbly flows, since it is based on the assumption that
a single velocity field can be applied for all bubble size groups [71].

To remove this model limitation entirely a complete multifluid model is
required. For gas-liquid systems Reyes [121] and Lafi and Reyes [77] pre-
sented a detailed derivation of the mass, momentum and energy conservation
equations for polydispersed systems following an approach analogous to the
Boltzmann’s transport equation. They derived a set of fluid particle conserva-
tion equations for the distribution of chemically non-reacting, spherical fluid
particles dispersed in a continuous medium. Kocamustafaogullari and Ishii
[70], following a similar approach, extended the application of the model to
a general two-phase flow. An analogous modeling framework for dense gas-
solid reactive mixtures in fluidized beds has been presented by Goldman and
Sirovich [44], Simonin [137], Valiveti and Koch [158] and Lathouwers and
Bellan [81, 82, 83, 84, 85]. In this case the governing transport equations are
derived using kinetic theory concepts similar to those of dense gases. Impor-
tant differences from classical kinetic theory are the inelasticity of collisions
between macroscopic particles leading to dissipation, and the presence of an
interstitial gas exerting drag on the particles, which leads to interaction terms
in the averaged transport equations.

Based on these generalized theories the research group at FZ Rossendorf
in Dresden [134, 39] developed a useful alternative to the original MUSIG
model by extending the two-fluid model to a multifluid model with a limited
number both of size (M) and velocity (N) phases (sometimes referred to
as the N × M MUSIG model). The dispersed phases can thus move with
different velocities and the novel multifluid model might be capable of handling
more complex flow situations. In particular, in the extended MUSIG model
approach the dispersed phase is devided into a number of N velocity phases
(or groups), where each of the velocity groups is characterized by its own
velocity field. Moreover, the overall particle size distribution is represented by
dividing the particle diameter range within each of the velocity groups into
a number of M bubble size phases (or classes). The subdivision into groups
and classes should preferably be based on the different physics of the particle
motion. Considering bubbly flows with bubbles of different sizes, the different
behaviour with respect to the lift or turbulent dispersion forces could be a
suitable split up criterion for the velocity groups. Shi et al [134] assumed that
for most cases 3 or 4 velocity groups are sufficient in order to capture the main
phenomena in bubbly and slug flows. For simplicity the number of particle
diameter classes within each of the velocity groups was equal and fixed to
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a predefined value. The first numerical simulations were therefore performed
using N = 3 velocity phases and M = 7 bubble size classes in each velocity
group. An overall number of 21 bubble size classes was thus applied for the
representation of the local bubble size distribution. This bubble size resolution
was found to be appropriate for many bubbly flow problems.

Sha et al [130, 131] developed a similar multifluid model for the simulation
of gas-liquid bubbly flow. To guarantee the conservation of mass the popu-
lation balance part of the model was solved by the discrete solution method
presented by Hagesaether et al [52]. The 3D transient simulations of a rect-
angular column with dimensions 150 × 30 × 2000 (mm) and the gas evenly
distributed at the bottom were run using the commercial software CFX4.4.
For the same bubble size distribution and feed rate at the inlet, the simula-
tions were carried out as two, three, six and eleven phase flows. The number
of population balance equations solved was 10 in all the simulations. It was
stated that the higher the number of phases used, the more accurate are the
results.

Carrica et al [20] developed a simplified multi-fluid model for the descrip-
tion of bubbly two-phase flow around a surface ship. In the momentum equa-
tions for the gas bubble phases or groups the inertia and shear stress terms
were assumed to be negligible. The interfacial momentum transfer terms in-
cluded for the different bubble groups are steady-drag, added mass, lift and
turbulent dispersion forces. Algebraic turbulence models were used both for
the liquid phase contributions and the for the bubble-induced turbulence. The
two-fluid model was solved using a FVM on a staggered grid. In the popula-
tion balance part of the model the intergroup transfer mechanisms included
were bubble breakage, coalescence and the dissolution of air into the ocean.
15 size groups were used with bubble radius at normal pressure between 10
(μm) and 1000 (μm). It was found that intergroup transfer is very important
in these flows both for determining a reasonable two-phase flow field and the
bubble size distribution. The population balance was discretized using the
multi-group approach. It was pointed out that the lack of validated kernels
for bubble coalescence and breakage was limiting the accuracy of the model
predictions. Politano et al [113] adapted the population balance model of Car-
rica et al [20] for the purpose of 3D steady-state simulation of bubble column
flows. However, no details regarding the necessary model modifications were
provided. In a later study by Politano et al [114] a 2D steady-state version
of this model was applied for the simulation of polydisperse two-phase flow
in vertical channels. The two-fluid model was modified using an extended
k-ε model for the description of liquid phase turbulence. A two-phase loga-
rithmic wall law was developed to improve on the boundary treatment of the
k-ε model. The interfacial momentum transfer terms included for the different
bubble groups are steady-drag, added mass, lift, turbulent dispersion and wall
forces. The two-fluid model equations were discretized using a finite difference
(FD) method. The bubble mass was discretized in three groups. The effect of
bubble size on the radial phase distribution in vertical upward channels was
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investigated. Comparing the model predictions with experimental data it was
concluded that the model is able to predict the transition from the near-wall
gas volume fraction peaking to the core peaking beyond a critical bubble size.

Tomiyama [148] and Tomiyama and Shimada [150] adopted a (N + 1)-
fluid model for the prediction of 3D unsteady turbulent bubbly flows with
non-uniform bubble sizes. Among the (N + 1)-fluids, one fluid corresponds to
the liquid phase and the N fluids to gas bubbles. To demonstrate the potential
of the proposed method, unsteady bubble plumes in a water filled vessel were
simulated using both (3+1)-fluid and two-fluid models. The gas bubbles were
classified and fixed in three groups only, thus a (3 + 1)- or four-fluid model
was used. The dispersions investigated were very dilute thus the bubble coa-
lescence and breakage phenomena were neglected, whereas the inertia terms
were retained in the 3 bubble phase momentum equations. No population bal-
ance model was then needed, and the phase continuity equations were solved
for all phases. It was confirmed that the (3 + 1)-fluid model gave better pre-
dictions than the two-fluid model for bubble plumes with non-uniform bubble
sizes.

As mentioned earlier, three-fluid models have also been used by a few
groups [73, 88]. Krishna and van Baten [73] solved the Eulerian volume-
averaged mass- and momentum equations for all three phases. However, no
interchange between the small and large bubble phases were included thus
each of the dispersed bubble phases exchanges momentum only with the liq-
uid phase. No population balance model was used as the bubble coalescence
and breakage phenomena were neglected. Lehr et al [88] extended the ba-
sic three-fluid model including a simplified population balance model for the
bubble-size distribution.

In most studies reported so far two-fluid models are used [20, 113, 91, 92,
93, 107, 17, 108], assuming that all the particles have the same average veloc-
ities. In other words, the possible particle collisions due to buoyancy effects
are neglected even though these contributions have not been proven insignif-
icant. This means that the two momentum equations for the two phases are
solved together with the continuity equation of the liquid phase and the N
population balance equations for the dispersed phases [20]. An alternative, of-
ten used adopting commercial CFD codes due to limited access to the solver
routines, is to solve the full two-fluid model in the common way using the
dispersed phase continuity equation together with the two momentum equa-
tions and the liquid phase continuity. Within the IPSA-like calculation loop
the N−1 population balance equations are solved in another step considering
additional transport equations for scalar variables. Unfortunately, using this
approach it may be difficult to ensure mass conservation for the dispersed
phase, and/or the last class can get negative concentrations. From the solu-
tion of the size distribution of the dispersed phase, the Sauter mean diameter
is calculated. This diameter is then used computing the contact area, thus the
two-way interaction between the flow and the bubble size distribution is es-
tablished. When dilute dispersions are considered, the interfacial momentum
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transfer fluxes due to particle collisions, coalescence and breakage phenomena
are normally neglected. Politano et al [113] are the only ones that considered
the interfacial momentum transfer fluxes between the bubble groups induced
by bubble coalescence and breakage, but still the bubble collisions resulting
in rebound were not taken into consideration.

Several resent studies indicate that algebraic slip models are sufficient
modeling the flow pattern in bubble columns [20, 105, 141, 13], as the pres-
sure and steady drag forces only dominate the axial component of the gas
momentum balance. Therefore, the population balance model can be merged
with an algebraic slip model to reduce the computational cost required for
preliminary analysis [13]. Furthermore, adopting this concept the restriction
used in the two-fluid model assuming that all the particles have the same
velocity can be avoided. This means that only one set of momentum - and
continuity equations for the mixture is solved together with the N population
balance equations for the dispersed phases. The individual phase- and bubble
class velocities are calculated from the mixture ones using algebraic relations.

Even simpler approaches are used solving a single transport equation for
one moment of the population balance only, determining a locally varying
mean particle size or the interfacial area density [70, 99, 87, 163].

The main contribution from the work of Luo [95, 96] was a closure model
for binary breakage of fluid particles in fully developed turbulence flows based
on isotropic turbulence - and probability theories. The author(s) also claimed
that this model contains no adjustable parameters, a better phrase may be no
additional adjustable parameters as both the isotropic turbulence - and the
probability theories involved contain adjustable parameters and distribution
functions. Hagesaether et al [49, 50, 51, 52] continued the population balance
model development of Luo within the framework of an idealized plug flow
model, whereas Bertola et al [13] combined the extended population balance
module with a 2D algebraic slip mixture model for the flow pattern. Bertola
et al [13] studied the effect of the bubble size distribution on the flow fields
in bubble columns. An extended k-ε model was used describing turbulence
of the mixture flow. Two sets of simulations were performed, i.e., both with
and without the population balance involved. Four different superficial gas
velocities, i.e., 2, 4, 6 and 8 (cm/s) were used, and the superficial liquid velocity
was set to 1 (cm/s) in all the cases. The population balance contained six
prescribed bubble classes with diameters set to d1 = 0.0038 (m), d1 = 0.0048
(m), d1 = 0.0060 (m), d1 = 0.0076 (m), d1 = 0.0095 (m) and d1 = 0.0120
(m).

Figs 8.12 and 8.13 show simulated and experimental results with superficial
gas velocity, vs

g = 8 (cm/s). Fig 8.12 shows the axial and radial liquid velocity
components, the axial gas velocity component and the gas fraction 2.0 (m)
above the column inlet. Fig 8.13 shows the number density in each class 2.0
(m) above the inlet.

The results from the two simulations (i.e., with and without the popula-
tion balance) are nearly identical. In both cases the simulated results are in
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Fig. 8.12. Simulated results obtained with (continuous line —) and without (dashed
line - - -) the population balance at the axial level 2 (m) above the column inlet.
(·) is experimental data [61]. vs

d = 8 (cm/s). Reprinted with permission from Begell
House Inc.

fair agreement with the experimental data, but in the center of the reactor the
deviation between the simulated and experimental velocity and void fraction
profiles are rather large. The number density 2.0 (m) above the inlet is shown
in Fig 8.13. In general, it was found that the initial bubble size was not stable
and further determined by break-up and coalescence mechanisms. The simu-
lation provides results in fair agreement with the experimental data for the
classes 3 to 6 where the bubble number density is at the same order of mag-
nitude as the experimental data. In bubble classes 1 and 2 the experimental
bubble number densities are considerably underestimated in the simulations
compared to the measured data.

However, in other cases the model predictions deviate much more from
each other and were in poor agreement the experimental data considering the
measurable quantities like phase velocities, gas volume fractions and bubble
size distributions. An obvious reason for this discrepancy is that the breakage
and coalescence kernels rely on ad-hoc empiricism determining the particle-
particle and particle-turbulence interaction phenomena. The existing param-
eterizations developed for turbulent flows are high order functions of the local
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Fig. 8.13. The calculated bubble number density at axial level 2 (m) above the
column inlet. (·) is experimental data [61]. vs

d = 8 (cm/s). Reprinted with permission
from Begell House Inc.

turbulent energy dissipation rate that is often determined by the k-ε tur-
bulence model. This approach is not accurate enough [88, 108, 116], as this
model variable (i.e., ε) merely represents a closure for the turbulence integral
length scale with model parameters fitted to experimental data of idealized
single phase flows. The population balance kernels are also difficult to validate
on the meso scale level as the physical mechanisms involved (e.g., considering
eddies and eddy - particle interactions) are vague and not clearly defined. If
possible, the coalescence and breakage closures should be re-parameterized in
terms of measurable quantities. Well planed experimental analysis of the meso
scale phenomena are then required providing data for proper model validation.

Initial- and Boundary Conditions

Initial- and boundary conditions are very important parts of any model formu-
lation. However, there is still very limited knowledge regarding the formulation
of proper boundary conditions even for simple bubble columns [63, 66, 156].

For implicite solutions and steady state problems the initial guess of the
unknown fields are given physical values, as close to the expected solution as
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possible. For very simple flow problems a uniform flow field may suffice in
which some of the velocity components are set to zero.

For dynamic simulations initial values are specified for all the variable
fields. For bubble column flows there is generally no gas in the column initially
and thus no flow before the valves are opened (αc = 1, vk = 0). Using the k-ε
model the turbulent energy and dissipation rates are given low but non-zero
values.

Inlet boundary conditions for the local gas volume fraction, bubble size
distribution as well as the local gas velocity components are difficult to de-
termine but numerous approximate conditions have been proposed in the lit-
erature [119, 12, 15]. For example, when the gas starts entering the column,
uniform void - and velocity profiles for both phases might be specified at the
inlet [66]. The inlet conditions for αk and vk,z may also be determined using
a 1D mass balance over the inlet plane, requiring that the relative velocity
inside the column is determined by prescribed terminal velocities and a known
(empirical) bubble size distribution. Superficial velocities for the liquid and
dispersed phases are normally prescribed. This approach neglects the com-
plex bubble trajectories, added mass- and turbulent production mechanisms
within a short but important inlet zone [13]. Experimental investigations of
the complex flows in the inlet zone of the column have been performed by
several research groups [118, 41, 53]. Nevertheless, there is clearly a need for
further studies as Harteveld et al [53] demonstrated important discrepancies
between their experimental observations and the model predictions reported
in the literatutre regarding the onset of the important flow instabilities. A
uniform aeration at the inlet did create a very small entrance region, and
no large-scale circulation or coherent structures [53]. On the other hand, the
general purpose flow simulators normally give a dynamic large-scale circula-
tion flow pattern even with uniform distribution of gas at the inlet, because
the current models are tuned to known flow fields and thus reveal insufficient
predictive capabilities.

The specification of proper outlet boundary conditions is also a problem
for these flows, as the recirculating motion of the liquid phase continues as long
as gas bubbles are present at sufficiently high fluxes. Consistent formulations
of such boundaries have not been reported so far [45]. When the liquid is
operated in a continuous mode, Neuman conditions are frequently used for the
scalar variables. For the velocity components Neuman conditions can be used
as well, or a prescribed pressure boundary is preferred. However, at higher
gas fluxes no inflow of gas can be allowed at the outlet boundary because
the inflow fluxes are then generally unknown. If the column is operated in
the heterogeneous flow regime, the recirculation motion is so strong that this
boundary treatment often breaks down. This limitation restricts the use of
explicit discretization schemes to situations with low gas fractions, or cases
where the local recirculating flux contains very little gas.

For implicit solution methods other approximate and rather crude outlet
conditions are sometimes used for the flow variables. In the commercial flow
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codes the boundary is often idealized considering the liquid phase in batch
mode only [119]. Following the experimental laboratory practice of keeping
the height of the gas-liquid dispersion smaller than the actual column height,
the top surface of the column can be modeled as an outlet for both the gas
and liquid phases. It is anticipated that the solution of the model equations
will determine the actual height of the gas-liquid dispersion and only gas
will exit from the column outlet. Adopting this approach one has to ensure
that the modeling closures are well posed and that the discretization scheme
applied to the governing equations as well as the iterative solver used are
capable of handling the steep gradients in the volume fraction and density
profiles (discontinuities) that occur when the continuous phase change from
being liquid below the gas-liquid interface and gas above it. Due to the large
density difference between these phases, such an attempt very often leads to
non-physical pressure and velocity values close to the interface and encounters
severe convergence difficulties. In order to enhance the convergence behavior
in the interface region, empirically adjusted and smoothed profiles of the con-
tinuous phase density profile and/or on the void fraction profile may help to
maintain a fairly stable solution [110]. For incompressible flows this numerical
approach could enforce mass conservation, whereas for reactive - and other
density varying system’s mass conservation may be a severe problem thus this
boundary treatment should be avoided.

As numerical instabilities and inaccurate mass conservation are frequent
solving problems containing sharp interfaces within the calculation domain,
the solution domain is often restricted to the height of the gas-liquid disper-
sion. In this case the local liquid velocity components normal to the outlet
plane are fixed at zero as there is no net fluxes through the column outlet
cross section. The top surface of the solution domain is assumed to coincide
with the free surface of the dispersion that may or may not be assumed flat.
This assumption is rather crude as an exact value of the gas-liquid dispersion
height is not known a priori. In order to induce apparently physical flow char-
acteristics at the outlet, approximate boundaries are required for the other
flow variables. The tangential shear stress and the normal fluxes of all scalar
variables are set to zero at the free surface. The gas bubbles are free to escape
from the top surface. In commercial codes this implementation may not be
possible and further approximations have been proposed. In some cases the
top surface of the dispersion is defined as an artificial inlet where the normal
liquid velocity is set to zero and the normal gas velocity is set to an approxi-
mate terminal rise velocity. In other cases the top surface of the dispersion is
modeled as a no shear wall. This boundary set both the gas and liquid veloc-
ities to zero. In order to represent escaping gas bubbles, an artificial gas sink
is defined for all the grid cells attached to the top surface. A similar approach
was used by Lehr et al [88]. The free surface, which was assumed to be located
at the top of the column, was approximated by an apparent semi-permeable
wall. In this way the gas could leave the system, whereas the liquid surface
acts as a frictionless wall for the liquid. The liquid was considered to leave the
system through an outflow at the periphery of the column.
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Bove et al [15] specified an outlet pressure boundary instead, and the axial
liquid velocity components were determined in accordance with a global mass
balance. This approach is strictly only valid when the changes in liquid density
due to interfacial mass transfer or temperature changes are negligible, as the
local changes are not known a priori.

Furthermore, in many industrial systems the liquid phase is not operated in
batch mode, a continuous flow of the liquid phase has to be allowed. However,
due to numerical problems most reports on bubble column modeling introduce
the simplifying assumption that the continuous phase is operated in batch
mode. Further work is needed on the continuous mode boundary condition.

At an axi-symmetric boundary Neuman conditions are used for all the
fields, except for the normal velocity component which is zero because the flow
direction turns at this point. The assumption of cylindrical axi-symmetry in
the computations prevents lateral motion of the dispersed gas phase and leads
to an unrealistic radial phase distribution [73, 66]. Krishna and van Baten [73]
obtained better agreement with experiments when a 3D model was applied.
However, experience showed that it is very difficult to obtain reasonable time
averaged radial void profiles even in 3D simulations.

To implement a wall boundary when a k-ε turbulence model closure is
adopted for bubble driven flows in bubble columns, the conventional wall
function approach used for the single phase flow is employed. The liquid ve-
locity profile near the wall is thus assumed to be similar to the single phase
flow profile and approximated by the classical logarithmic law of the wall, as
described in sect 1.3.5. However, Troshko and Hassan [151, 152] claimed that
this assumption is reasonable for dilute and downward bubbly flows, but not
recommended for upwards bubble driven flows as found in bubble columns.
A corresponding two-phase logarithmic wall law was derived intending to be
in better agreement with experimental data on homogeneous bubbly flows. It
is noted that when other turbulence closures are adopted, a variety of model
specific wall boundary conditions have been designed.

8.4.2 Numerical Schemes and Algorithms

Significant improvements of the numerical methods have been obtained during
the last decade, but the present algorithms are still far from being sufficiently
robust and efficient. Further work on the numerical solution methods in the
framework of FVMs should proceed along the paths sketched in the sequel.

Several schemes and algorithms for solving the fluid dynamic part of the
model have been published. This work has been concentrated on several items.
Most important, one avoids using the very diffusive first order upwind schemes
discretizing the convective terms in the multi-fluid transport equations. In-
stead higher order schemes that are more accurate have been implemented
into the codes [62, 139, 140, 65, 105, 66]. The numerical truncation errors
induced by the discretization scheme employed for the convective terms may
severely alter the numerical solution and this can destroy the physics reflected
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by the model equations. Oey et al [105] and Jakobsen et al [66], for example,
stated that accurate discretization schemes for the dispersed phase continuity
equation and for the convection terms within the fluid momentum equations
are crucial for accurate predictions of the dynamic flow development in bubble
columns [105, 66]. Large discretization errors may change the flow developing
from center to wall peaking or visa versa.

This finding reflects an important aspect of any multi-phase flow model-
ing, the numerical and modeling issues cannot be investigated (completely)
separately as their interplay is of considerable importance [62, 63, 65, 66].
It is also well known that the strong coupling between the phasic equa-
tions prevents efficient and robust convergence for the implicit iteration pro-
cess [106]. Exchanging the well known partial elimination algorithm (PEA)
of Spalding [142, 143], reducing the interaction between the phasic veloci-
ties in the drag terms of the momentum equations, with a coupled solver
[69, 75, 79, 80, 3, 76, 4, 146] that simultaneously iterates on one velocity
component of all phases at the time seems to improve the numerical sta-
bility and the overall convergence rate [160]. In addition, the discretization
schemes together with the solution algorithms lead to large sparce linear sys-
tems of algebraic equations that need to be solved. Previously the TDMA
algorithm was applied to multi-dimensional problems determining a line-wise
Gauss-Seidel approach. During the last decade there have been developments
in full-field solvers along the lines of Krylov subspace methods and in the field
of multigrid schemes [159, 79, 80, 160, 90]. These methods make effective use
of sparsity and are efficient methods for the solution of large linear systems
[90]. Furthermore, the original inter-phase-slip-algorithm (IPSA) of Spalding
[142] was developed to introduce an implicit coupling between pressure and
volume fractions. The algorithm contains an attempt to approximate the si-
multaneous change of volume fraction and velocity with pressure. However,
most versions of the IPSA algorithm were merely extensions of the single phase
SIMPLE approach, thus the pressure was computed by assuming that all the
velocity components, but not the volume fraction variable, depend upon pres-
sure changes. The pressure-volume fraction relationship was not considered
in a satisfactory implicit manner. Therefore, the extension of the single phase
pressure-velocity coupling to multi-fluid models leads to low convergence rates
and pure robustness of the iterating procedure [59]. Another issue that makes
the implication of multiphase reactor models difficult is that the conventional
algorithms for incompressible flow are not applicable as for reactive flow sys-
tems the density is highly variable. Moreover, the overall solution strategy
might also be re-designed to ensure that the algorithm conserves mass for
all the phases and not only for the total mixture. Lately, numerical methods
originally intended for multiphase models, rather than being extended single
phase approaches, have been investigated [75, 80, 3, 76, 4, 146, 66]. A fully
implicit coupling of the phasic continuity and compatibility equations within
the framework of pressure-volume fraction-velocity correction schemes seems
to have potentials if the resulting set of algebraic equations could be solved
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by an efficient and robust parallel solver [76]. However, so far, severe stability
problems have been identified within the iterative solution process. The nu-
merical properties of the resulting set of algebraic equations are not optimized
for robust solutions.

The capabilities of alternative methods like FEMs (e.g., [19]) and fully
spectral methods (e.g., [32]) are still rarely explored.

8.4.3 Chemical Reaction Engineering

Based on the experimental and numerical analyzes discussed in the previous
sections, it may seem evident that the current bubble column models have very
limited inherent capabilities of predicting industrial bubble column flows with
sufficient accuracy. However, after tedious adjustments of model parameters,
boundary conditions, time and space resolutions, numerical implementations,
and solution algorithms it is often possible to reproduce known flow fields
to a certain extent. Dynamic and 3D flow patterns that upon averaging give
profiles in fair agreement with experimental data can be achieved. The global
liquid flow pattern is usually captured fairly well, whereas the corresponding
gas fields are more questionable and difficult to evaluate due to the lack of
reliable experimental data. Unfortunately, the possibility of achieving a com-
pletely erroneous steady-state flow pattern where the liquid flows up along
the wall and down in the core of the column is present. Moreover, it is often
difficult to reproduce the gas volume fraction fields with sufficient accuracy.
The latter limitation would severely affect the contact areas, the interfacial
heat- and mass transfer fluxes, the projected areas as well as the interfacial
momentum transfer fluxes preventing reliable predictions of the performance
of chemical processes. It can thus be concluded that a true predictive fluid
dynamic model is not imminent.

However, even though there are obviously many open questions and short-
comings related to the fluid dynamic modeling of bubble columns, prelimi-
nary attempts have been performed predicting chemical reactive systems. For
example, the early 2D models that were developed by Jakobsen [59, 144] to
describe the global steady flow pattern were tested aiming at predicting chem-
ical conversion of a reactive system operated in a bubble column [59, 64]. The
system investigated was CO2 absorption in a methyldiethanolamine (MDEA)
solution. The starting point for the numerical investigation was a steady two-
fluid flow model tuned to the air/water system. This air/water model was
then applied to the reactive system without re-tuning any model parameters
but updating the physical properties in accordance with the reactive system.
It was found that with this advanced reactor model both the global flow pat-
tern, the interfacial mass transfer fluxes as well as the conversion were still
difficult to predict due to the limited accuracy reflected by the interfacial cou-
pling models and especially the relations used for the contact area (and the
projected area). Several semi-empirical models for the locally varying mean
bubble size and contact areas were suggested [59, 60] with limited success.
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The accuracy of the experimental data used for model validation was also
questioned.

According to Dudukovic et al [35], still no fundamental models for the
interfacial heat- and mass transfer fluxes have been coupled successfully to
the flow models and reliable reactor performance predictions based on these
models are not imminent. The mechanisms of coalescence and breakage are far
from being sufficiently understood yet. The physicochemical hydrodynamics
determining the bubble coalescence and breakage phenomena may not be
captured by any continuum model formulation. Therefore, the use of advanced
fluid dynamic models might not significantly improve on the prediction of the
interfacial transfer fluxes and thus the chemical conversion, as the pertinent
physics on bubble, interface and molecular scales still have to be considered
using empirical parameterizations.

In summary, one of the weakest links in modeling reactive systems op-
erated in bubble columns is the fluid dynamic part considering multi-phase
turbulence modeling, interfacial closures, and especially the impact and de-
scriptions of bubble size and shape distributions. For reactive systems the
estimates of the contact areas and thus the interfacial mass transfer rates are
likely to contain large uncertainties.

8.4.4 Multifluid Modeling Framework

Average multi-fluid models with approximate bubble coalescence and break-
age rate closures1 have been found to represent a trade-off between accuracy
and computational efforts for practical applications. The multifluid model
represents an extension of the well known two-fluid model and is described in
detail by Reyes [121], Lafi and Reyes [77], Carrica et al [20], Pfleger et al [112],
Lathouwers and Bellan [85], Pfleger et al [111], Tomiyama and Shimada [150],
Fan et al [38] and Jakobsen et al [66]. To determine the multiphase flow solely
(i.e., not including any reactive chemical processes) the governing equations
consist of the continuity- and momentum equations for N + 1 phases, one
phase corresponds to the liquid phase and the remaining N phases are gas
bubble size phases. In most resent papers ensemble average models are used.

The average multifluid model equations are outlined in the following to-
gether with the conventional interfacial closures that are frequently adopted in
gas-liquid bubbly flow analyzes. The average multi-fluid continuity equation
for phase k reads2:

∂

∂t
(αkρk) + ∇ · (αkρkvk) =

N
∑

l=1

Γk,l (8.10)

1 The population balance modeling issues are discussed in chap 9.
2 For simplicity, summarizing the govering transport equations, the averaging sym-

bols are omitted.
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where the novel term on the right hand side describes the net mass transfer
flux to phase k from all the other l phases.

The phasic volume fractions must also satisfy the compatibility condition:

N+1
∑

k=1

αk = 1 (8.11)

In a consistent manner the momentum balance for phase k yields:

∂

∂t
(αkρkvk)+∇·(αkρkvkvk) = −αk∇p−∇·(αkσk)+αkρkg+

N
∑

l=1

Mk,l (8.12)

where the novel interfacial momentum transfer terms account for all the mo-
mentum transfer fluxes between phase k and the other N phases.

The limiting steps in the model development are the formulation of closure
relations or closure laws determining turbulence effects, interfacial transfer
fluxes and the bubble coalescence and breakage processes. When sufficiently
dilute dispersions are considered, only particle - fluid interactions are signif-
icant and the two-fluid closures can be employed. In these particular cases,
only the interaction between each of the dispersed gas phases (d) and the
continuous liquid phase (c) is considered parameterizing the last term on the
RHS of (8.12):

N
∑

l=1

Md,l ≈ Md,c = αcFd = −αcFc

= αcFD,d + αcFV,d + αcFL,d + αcFTD,d + αcFW,d

(8.13)

The steady drag-, added mass-, lift-, turbulent diffusion- and wall forces, re-
spectively, are presented in sect 5.2. Moreover, the force terms for dilute dis-
persions are multiplied by the liquid fraction due to the reduced liquid volume
available for considerable gas loadings [59].

The Lagrangian steady drag force on a single particle is commonly ex-
pressed by (5.48). For Eulerian model formulations one normally employs
(5.34), hence for the multifluid models the standard steady drag force param-
eterization yields:

FD,d = −FD,d(vd − vc) = − 3
4ds,d

αdρcCD,d|vd − vc|(vd − vc) (8.14)

The drag coefficient is frequently estimated using the relation suggested by
Tomiyama et al [149], as described in sect 5.2.4.

The acceleration of the liquid in the wake of the bubbles can be taken into
account through the added mass force given by (5.112), whereas the Eulerian
lift force acting on the dispersed phase is normally expressed on the form
(5.65).
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In near-homogeneous, stationary flows, the turbulence in the continuous
phase might cause the particles in the dispersed phases to be transported
from regions of high concentrationtion to regions of low concentration. This
mechanism is often modeled as a gradient diffusion process. However, the par-
ticle motion in free shear layers is rather governed by the large-scale, rotating
structures which represent a quasi-orderly, not stochastic, motion. In this par-
ticular case the turbulent particle dispersion cannot be regarded as a gradient
diffusion process. In any case, the turbulence in the continuous phase may af-
fect the migration of the dispersed phase particles. These turbulence-particle
interaction mechanisms are collectively referred to as turbulent dispersion .
The mechanisms and models for particle disperion in turbulent flows have
been reviewed by several reseachers [23, 24, 120, 37, 16, 66]. Still there is no
generally accepted model which is applicable to all flow conditions.

Nevertheless, the turbulent dispersion force acting on bubbles in turbulent
liquid flow is commonly modeled using the gradient hypothesis (e.g., [20]):

FTD,d = − νc,t

αdScb
FD,d∇αd = − 3

4ds,d
ρcCD,d|vd − vc|

νc,t

Scb
∇αd (8.15)

where the bubble Schmidt number is defined as: Scb = νc,t

νb
, in which νb(≈ νd,t)

is interpreted as a bubble diffusivity.
An additional wall lift force that pushes the dispersed phase away from

the wall was suggested by Antal et al [2]. Recently, the defect in the original
model that a bubble located far from the wall is attracted to the wall, has
been removed by Politano et al [114]. The modified wall lift force model used
by Jakobsen et al [66] is given by (5.95).

The wall might also exert a friction force on the bubbles[97]. A wall bound-
ary condition for the gas momentum equations that was formulated by Lopez
de Bertodano [94] is thus sometimes used:

Fd,w = −Cwb,d
αdρc

100ds,d
|vc|vd,zAw (8.16)

where Cwb,d = 1.0 is a common value.
The mere presence of dispersed phases within a continuous phase can also

affect turbulence within the continuous phase [25]. These effects are often
named turbulence modulation. Large particles tend to increase the turbulence
levels in the continuous phase, due to enhanced shear production in their
wakes. However, large concentrations of small particles tend to decrease tur-
bulence in the continuous phase. There is still no generally accepted model
which is applicable to all flow conditions. Considering bubbly flows the stan-
dard (single phase) k − ε model is usually adopted as basis describing liquid
phase turbulence in the Eulerian multiphase simulations. A few extensions of
the standard k− ε model have also been used, accounting for bubble induced
turbulence, as outlined in sect 5.1. There is, however, experimental evidence
that the flow in bubble columns is highly anisotropic (e.g., see [98]). Never-
theless, complete Reynolds stress models are used in rare cases only due to
their numerical stability limitations.
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9

The Population Balance Equation

The chemical engineering community began the first efforts that can be asso-
ciated with the concepts of the population balance in the early 1960s.

The familiar application of population balance principles to the modeling
of flow and mixing characteristics in vessels was formally organized by Danck-
werts [17]. Certain distribution functions were then defined for the residence
times of fluid elements in a process vessel. The residence time distribution
function give information about the fraction of the fluid that spends a cer-
tain time in a process vessel. Himmelblau and Bishoff [35] describe how the
residence time and other age distributions are defined, how they can be mea-
sured, and how they can be interpreted. This chapter thus focuses on the
derivation and use of the general population balance equation (PBE) to de-
scribe the evolution of the fluid particle distribution due to the advection,
growth, coalescence and breakage processes.

The historical derivation of the general population balance equation for
countable entities is outlined. Two fundamental modeling frameworks emerge
formulating the early population balances, in quite the same way as the kinetic
theory of dilute gases and the continuum mechanical theory were proposed
deriving the governing conservation equations in fluid mechanics. A third less
rigorous approach is also used formulating the population balance directly
on the macroscopic averaging scales, an analogue to the multiphase mixture
models.

Considering dispersed two-phase flows, a few research groups adopted a
statistical Boltzmann-type equation determining the rate of change of a suit-
able defined distribution function. Performing the Maxwellian averaging in-
tegrating all terms over the whole velocity space to eliminate the velocity
dependence, one obtains the generic population balance equation. Rigorous
closures are required for the unknown terms resulting from the averaging pro-
cess. However, by employing the conventional Chapman-Enskog approximate
expansion method solving the Boltzmann-type equation this theory provides
rational means of understanding for the one way coupling between micro-
scopic particle physics and the average macroscopic continuum properties.

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 9,
c© Springer-Verlag Berlin Heidelberg 2008
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Moreover, to represent complex problem physics an optimized choice of dis-
tribution function definition considering multiple internal coordinates in an
environment of a particular state may be necessary, and novel closure re-
quired, making the approach rather demanding theoretically. The procedure
sketched above has much in common with the granular theory of solid par-
ticles, outlined in chap 4. However, the majority of research groups within
the chemical engineering community adopted an alternative approach based
on a generalization of the classical continuum mechanical theory developing
the population balance equation. On the other hand, the continuum theory
gives only an average representation of the dispersed phase considering macro-
scopic scales several orders of magnitude larger than the microscopic particle
dimensions and does not provide any information on the unresolved mech-
anisms that can be utilized formulating the population balance closures. In
most cases, the balance principle is applied formulating a transport equation
for the distribution function on the integral form. Generalized versions of the
Leibnitz- and Gauss theorems are then required transferring the integral bal-
ance to the differential form. Thereafter, the governing microscopic continuum
equations on the differential form are averaged to obtain a model formulation
representing tractable volume and time resolutions. However, the averaging
process also give rise to additional closure requirements. In the past, the time
after volume averaging procedure was frequently used, being consistent with
the time- after volume averaged multi-fluid model formulation discussed in
sect 3.4.4. The third group of population balances are formulated on integral
form directly on the averaging scales and then converted to the differential
form employing the extended Leibnitz- and Gauss theorems. In this formu-
lation, the closures are purely empirical parameterizations based on intuitive
relationships rather than sound scientific principles.

The population balance concept was first presented by Hulburt and Katz
[37]. Rather than adopting the standard continuum mechanical framework,
the model derivation was based on the alternative Boltzmann-type equation
familiar from classical statistical mechanics. The main problems investigated
stem from solid particle nucleation, growth, and agglomeration.

Randolph [95] and Randolph and Larson [96], on the other hand, formu-
lated a generic population balance model based on the generalized continuum
mechanical framework. Their main concern was solid particle crystallization,
nucleation, growth, agglomeration/aggregation and breakage.

Ramkrishna [93, 94] adopted the concepts of Randolph and Larson to
investigate biological populations. An outline of the population balance model
derivation from the continuum mechanics point of view was discussed.

Similar approaches are also frequently used in the theory of aerosols in
which the gas is the continuous phase [122, 25], in chemical-, mechanical- and
nuclear engineering describing multi-phase droplet flow dynamics [45, 46] and
to incompressible bubbly two-phase flows [26].

In chemical engineering Coulaloglou and Tavlarides [16] were among
the first to introduce the simpler macroscopic formulation, describing the
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interaction processes in agitated liquid-liquid dispersions. Drifting from the
fundamental microscopic equations the closures became an integrated part of
the discrete numerical discretization scheme adopted (i.e., there is no clear
split between the numerical scheme and the closure laws).

Lee et al [66] and Prince and Blanch [92] adopted the basic ideas of
Coulaloglou and Tavlarides [16] formulating the population balance source
terms directly on the averaging scales performing analysis of bubble breakage
and coalescence in turbulent gas-liquid dispersions. The source term closures
were completely integrated parts of the discrete numerical scheme adopted.
The number densities of the bubbles were thus defined as the number of bub-
bles per unit mixture volume and not as a probability density in accordance
with the kinetic theory of gases.

Luo [73] and Luo and Svendsen [74] extended the work of Coulaloglou
and Tavlarides [16], Lee et al [66] and Prince and Blanch [92] formulating the
population balance directly on the macroscopic scales where the closure laws
for the source terms were integrated parts of the discrete numerical scheme
used solving the model equations.

Hagesæther et al [29, 30] and Wang et al [119] extended the breakage
model of Luo and Svendsen [74] removing an internal limitation that the kernel
was not taking into consideration that there is a physical lower limit for the
particle size for which the breakage rate diminishes. Some of the shortcomings
were removed from the original kernels by taking into account the energy
distribution of the turbulent eddies, the effect of capillary pressure and the
surface energy increase during bubble/droplet breakup.

Carrica et al [11] investigated compressible bubbly two-phase flow around
a surface ship. They developed a population balance from kinetic theory us-
ing the particle mass as internal variable, whereas most earlier work on solid
particle analysis used particle volume (or diameter). In flows where compress-
ibility effects in the gas are important (as in the case of laboratory bubble
columns operated at atmospheric conditions) the use of mass as an internal
coordinate was found to be advantageous because this quantity is conserved
under pressure changes. The use of a mass density form of the population bal-
ance derived based on the kinetic theory approach (i.e., instead of the more
common number density) has also been discussed, having several advantages
in reactor technology [90]. Millies and Mewes [82], Lehr and Mewes [67], Lehr
et al [68], Pilon et al [87] and Lasheras [58] sketched a possible alternative for-
mulation using particle volume (diameter) as the internal coordinate within
the number density form of the population balance equation. In their ap-
proach several growth terms have to be considered expressing the effects of
gas expansion due to changes in gas density in accordance with a suitable
EOS. Both formulations are equivalent in the case of incompressible fluids.

In the work of Fleischer et al [23] and Hagesæther et al [28] one dimen-
sional population balance formulations and closure laws very similar to those
of Luo and Svendsen [74] were employed. In the bubbly flow simulations by
Hagesæther et al [29, 30] and Wang et al [119, 120] the macroscopic population
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balance formulation of Luo and Svendsen [74] was still adopted (no fluid dy-
namic calculations were performed) but with extended versions of the kernel
functions.

Venneker et al [118] made an off-line simulation of the underlying flow
and the local gas fractions and bubble size distributions for turbulent gas
dispersions in a stirred vessel. The transport of bubbles throughout the vessel
was estimated from a single-phase steady-state flow field, whereas literature
kernels for coalescence and breakage were adopted to close the population
balance equation predicting the gas fractions and bubble size distributions.

Several extensions of the two-fluid model have been developed and re-
ported in the literature. Generally, the two-fluid model solve the continuity
and momentum equations for the continuous liquid phase and one single dis-
persed gas phase. In order to describe the local size distribution of the bubbles,
the population balance equations for the different size groups are solved. The
coalescence and breakage processes are frequently modeled in accordance with
the work of Luo and Svendsen [74] and Prince and Blanch [92].

Lehr and Mewes [67] included a model for a varying local bubble size in
their 3D dynamic two-fluid calculations of bubble column flows performed by
use of a commercial CFD code. A transport equation for the interfacial area
density in bubbly flow was adopted from Millies and Mewes [82]. In deriving
the simplified population balance equation it was assumed that a dynamic
equilibrium between coalescence and breakage was reached, so that the relative
volume fraction of large and small bubbles remain constant. The population
balance was then integrated analytically in an approximate manner.

Extended two-fluid models have also been employed by Lo [70, 71, 72]
developing the MUSIG model in the CFX-4 software, Buwa and Ranade [10]
using the FLUENT software, Olmos et al [83, 84] using CFX4-3 with 10
bubble size classes, Chen et al [13] running 2D simulations using the FLUENT
software with 16 bubble size classes, Chen et al [12] performed 3D simulations
using the FLUENT software with 9 bubble size classes. Moreover, Laakkonen
et al [55] simulated a laboratory scale stirred tank using the two-fluid MUSIG
model in CFX5.7. Laakkonen et al adopted the simplified kernels of Lehr et
al [68].

Chen et al [12] and Bertola et al [8] simulated mixtures consisting of N +1
phases by use of algebraic slip mixture models (ASMMs) which have been
combined with a population balance equation. Each bubble size group did have
individual local velocities which were calculated from appropriate algebraic
slip velocity parameterizations. In order to close the system of equations, the
mixture velocity was expressed in terms of the individual phase velocities. The
average gas phase velocity was then determined from a volume weighted slip
velocity superposed on the continuous phase velocity. Chen et al [12] also did
run a few simulations with the ASMM model with the same velocity for all
the bubble phases.

In order to improve the accuracy of the flow field simulation, a three-
phase model was introduced by Krishna and co-workers [49, 50, 51, 52]. In
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the three-phase models, the gas phase is divided into two bubble size groups.
The momentum equations are employed for the two bubble groups and the
liquid. For the two different bubble size groups, the drag coefficients are dif-
ferent. However, Krishna and co-workers [49, 50, 51, 52] did not include any
population balance model to estimate the bubble coalescence and breakage
phenomena, hence the size of the small and large bubbles was constant. Moti-
vated by the work of Krishna et al [51, 52, 72, 50], Lehr et al [68] combined the
three-fluid model in CFD 4.2 with the simplified population balance of Millies
and Mewes [82] and Lehr and Mewes [67]. In this case the bubble size distribu-
tion is bimodal and the solutions of the balance equation for high superficial
gas velocities result in two-fractions, one for the fraction with small and the
other for the fraction with large bubble diameters. The flow field accuracy in
cylindrical columns is considered better with a three phase model than that
obtained by a two-fluid model [68]. However, the assumption of equilibrium
between the coalescence and break-up processes may not be appropriate in
bubble columns because of significant influence of convection.

To remove the two-fluid model limitations entirely a complete multi-fluid
model is required. For gas-liquid systems Reyes [98] and Lafi and Reyes [57]
presented a detailed derivation of the mass, momentum and energy conserva-
tion equations for polydispersed systems following an approach analogous to
the Boltzmann’s transport equation. They derived a set of fluid particle con-
servation equations for the distribution of chemically non-reacting, spherical
fluid particles dispersed in a continuous medium. Kocamustafaogullari and
Ishii [43], following a similar approach, extended the application of the model
to a general two-phase flow. An analogous modeling framework for dense gas-
solid reactive mixtures in fluidized beds has been developed by Simonin [108]
and Lathouwers and Bellan [59, 60, 61, 62, 63].

Based on these generalized theories Shi et al [107] and Frank et al [24]
developed a useful alternative to the original MUSIG model by extending the
two-fluid model to a multi-fluid model with a finite number of size (M) and
velocity (N) phases. This multi-fluid model is sometimes called the N × M
MUSIG model. In the extended MUSIG model approach the dispersed phase
is divided into N velocity phases (or groups), where each of the velocity groups
is characterized by its own velocity field. Moreover, the overall particle size
distribution is represented by dividing the particle diameter range within each
of the velocity groups into a number of M bubble size phases (or classes). The
N ×M MUSIG model was built into CFX-10.

Sha et al [104, 105] developed a similar multi-fluid model for simulating
gas-liquid bubbly flows in CFX4.4. However, slightly different distributions
of the velocity fields and the particle size classes were allowed in these two
codes. To guarantee the conservation of mass the population balance solution
method presented by Hagesaether et al [29, 30] was adopted. For the same
bubble size distribution and feed rate at the inlet, the simulations were run as
two, three, six, and eleven phase flow. The number of the discrete population
balance equations was ten for all the simulations.



812 9 The Population Balance Equation

9.1 Three Alternative Population Balance Frameworks

In the following sections three alternative approaches for deriving population
balance models are outlined. Two of these population balance forms are for-
mulated in accordance with the conventional continuum mechanical theory.
First, a macroscopic balance is formulated directly on the averaging scales in
terms of number density functions [92, 74]. A corresponding set of macroscopic
source term closures are presented as well. Secondly, a more fundamental mi-
croscopic population balance is formulated in terms of number probability
densities [95, 96, 35, 94]. The corresponding generalized source term closure
formulation is then given without preference to any specific multiphase sys-
tem. Nevertheless, emphasis is subsequently placed on bubbly flows [38]. A
few source term closures for the bubble coalescence and breakage processes
are then presented. The kernels given are frequently adopted describing the
bubble size- and phase distributions in both two-phase bubble column- and
stirred tank reactors. The microscopic balance is subsequently averaged us-
ing the familiar time after volume averaging procedure. In this approach the
fairly general form of the constitutive relations adopted for the bubble co-
alescence and breakage phenomena are purely formulated based on physical
reasoning and intuitive interpretations of the mechanisms involved. Further
links to the discrete particle scale phenomena are usually expressed on the
averaging scales extrapolating relationships and concepts from the kinetic
theory of gases. The fundamental kinetic theory concept allows for the intro-
duction of external forces determining the interaction between the fluid and
the dispersed particles. In the third approach the generic population balance
equation is derived by averaging a statistical Boltzmann-type of equation in
line with the work of Reyes [98], Lafi and Reyes [57], Carrica et al [11] and
Lasheras et al [58].

The fundamental derivation of the population balance equation is con-
sidered general and not limited to describe gas-liquid dispersions. However,
to employ the general population balance framework to model other particu-
late systems like solid particles and droplets appropriate kernels are required
for the particle growth, agglomeration/aggregation/coalescence and breakage
processes. Many droplet and solid particle closures are presented elsewhere
(e.g., [96, 122, 25, 117, 75, 76, 46]).

9.1.1 The Continuum Mechanical Approach

The formulations of the population balance equation based on the continuum
mechanical approach can be split into two categories, the macroscopic- and
the microscopic population balance equation formulations. The macroscopic
approach consists in describing the evolution in time and space of several
groups or classes of the dispersed phase properties. The microscopic approach
considers a continuum representation of a particle density function.
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In this book the macroscopic population balance equation formulation is
presented following the original notation and nomenclature of Luo [73] and
Luo and Svendsen [74].

The fundamental and thus more general microscopic population balance
equation is formulated from scratch on the continuum scales using generalized
versions of the Leibnitz- and Gauss theorems.

The Macroscopic Population Balance Equation

In this section the macroscopic population balance formulation of Prince and
Blanch [92], Luo [73] and Luo and Svendsen [74] is outlined. In the work of Luo
[73] no growth terms were considered, the balance equation thus contains a
transient term, a convection term and four source terms due to binary bubble
coalescence and breakage.

The population equation was expressed as:

∂ni

∂t
+ ∇ · (vi ni) = BB,i −DB,i + BC,i −DC,i

(

1
sm3

)

(9.1)

where ni is the number density with units (m−3), vi is the mass average
velocity vector, and the source terms express the bubble number birth and
death rates per unit dispersion volume for bubbles of size di at time t due to
coalescence and breakage, respectively. The source terms are assumed to be
functions of bubble size di, bubble number ni and time t.

The birth of bubbles of size di due to coalescence stems from the coales-
cence between all bubbles of size smaller than di. Hence, the birth rate for
bubbles of size di, BC,i, can be obtained by summing all coalescence events
that form a bubble of size di. This gives:

BC(i) =
di/2
∑

dj=dmin

ΩC(dj : di − dj)
(

1
sm3

)

(9.2)

where dmin is the minimum bubble size and depends on the minimum eddy
size in the system. The source term definition implies that bubbles of size dj

coalesce with bubbles of size (di − dj) to form bubbles of size di. The upper
limit of the sum stems from symmetry considerations or to avoid counting the
coalescence between the same pair of bubble sizes twice.

Similarly, the death of bubbles of size di due to coalescence stems from
coalescence between two bubbles in class di or between one bubble in class di

and other bubbles. Hence, the bubble death rate for bubbles of size di, DC ,
can be calculated by:

DC(i) =
dmax−di

∑

dj=dmin

ΩC(dj : di)
(

1
sm3

)

(9.3)
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where dmax is the maximum bubble size in the system. The upper limit indi-
cates that the bubble size formed by coalescence will not exceed dmax.

The birth of bubbles of size di due to breakage stems from the breakage
of all bubbles larger than di. The breakage birth rate, BB , can be obtained
by summing all the breakage events that form the bubbles of size di:

BB(i) =
dmax
∑

dj=di

ΩB(dj : di)
(

1
sm3

)

(9.4)

The death of bubbles of size di due to breakage stems from breakage of the
bubbles within this class, thus:

DB(i) = ΩB(di)
(

1
sm3

)

(9.5)

The local gas volume fraction can be calculated by:

αg =
N

∑

i=1

ni
π

6
d3

i (−) (9.6)

Hagesæther et al [28, 29, 30] extended the model by Luo and Svendsen [74],
but the resulting breakage model was still not completely conservative. To
ensure number and mass conservation they thus adopted a numerical proce-
dure redistributing the bubbles on pivot points in accordance with the discrete
solution method [94].

Macroscopic Source Term Closures

In accordance with the work of Coulaloglou and Tavlarides [16] and Prince
and Blanch [92], Luo [73] assumed that all the macroscopic source terms deter-
mining the death and birth rates could be defined as the product of a collision
density and a probability. Thus modeling of bubble coalescence means model-
ing of a bubble-bubble collision density and a coalescence probability, whereas
modeling of bubble breakage means modeling of an eddy-bubble collision den-
sity and a breakage probability.

Models for the collision densities were derived assuming that the mecha-
nisms of the bubble-bubble and eddy-bubble collisions are analogous to colli-
sions between molecules as in the kinetic theory of gases [16].

Models for the Binary Bubble Coalescence Rate Sink, ΩC(di : dj)

For the coalescence between bubbles of class, di, and bubbles of class, dj , the
binary coalescence rate sink is expressed as:

ΩC(di : dj) = ωC(di : dj)pC(di : dj)
(

1
sm3

)

(9.7)
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Models for the Bubble-Bubble Collision Density, ωC(di : dj)

Although not necessary valid for bubble columns, the dispersions are consid-
ered sufficiently dilute so that only binary collisions need to be considered.
A collision of two bubbles can occur when the bubbles are brought together
by the surrounding liquid flow or by body forces like gravity. At least three
sources of relative motion can be distinguished; motion induced by turbu-
lence in the continuous phase, motion induced by mean velocity gradients,
and buoyancy (or, more generally, body forces)- induced motion, arising from
different bubble slip velocities, wake interactions or helical/zigzag trajectories
[39]. However, most studies on bubble columns has been restricted considering
only models for the contribution of turbulence to coalescence, the contribu-
tions from mean-velocity gradients and body forces are generally neglected
without proper validation. The two last mentioned collision mechanisms are
generally both significant, which greatly complicates the construction and val-
idation of coalescence models.

The parameterization of the particle collision densities was obviously per-
formed employing elementary concepts from the kinetic theory of gases, thus
the derivation of the source term closures at the microscopic level have been
followed by some kind of averaging and numerical discretization by a discrete
numerical scheme [16, 92, 118].

Adopting elementary concepts from kinetic theory to derive a simple ex-
pression for the particle collision density one may consider a particle as it
travels in a straight path from one collision to the next in a mono-disperse
dispersion, as illustrated in Fig 9.1. Its speed and direction of motion changes
with each collision. Further imagine that at a given instant all particles, but
the one in question are frozen in position and this particle moves with an
average speed, |vP|. At the instant of collision, the center to center distance
of the two particles is d. Considering the relatively large bubbles in industrial
bubble columns the total collision cross section of the target area of the spher-
ical fluid particle1 is σAT

= πd2. In time Δt the moving particle sweeps out a
cylindrical volume of length |vP|Δt and cross section πd2. Any particle whose
center is in this cylinder will be struck by the moving particle. The number of
collisions in the time Δt is f (1)πd2|vP|Δt, where f (1) is assumed to be locally
uniformly distributed in space.

1 Smoluchowski [111], Williams and Loyalka [122], Friedlander [25] and Kolev [46]
(p 170), among others, considered very small particles and interpreted the cross
sectional area in a slightly different way representing an extrapolation of the
concepts in kinetic theory of gases. In these analyzes the traveling particle is
treated as a point in space without cross sectional area, thus the effective area
becomes equal to the cross sectional area of the stagnant particle. This alternative
cross sectional area approximation becomes: σ′

AT
= 1

4
πd2.
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The effective swept volume rate2 hC(d) is given by:

hC(d) = σAT
vp = πd2vp

(

m3

s

)

(9.8)

where σAT
= πd2 is the total cross-sectional area of the collision tube.

Stationary particle inside
the collision tube

d2

d

Fig. 9.1. A sketch of a collision tube of a entering bubble moving through the tube
with speed |vp|. The bubbles within the tube are assumed to be frozen or stationary.
Reprinted with permission from [38]. Copyright 2005 American Chemical Society.

In kinetic theory the collision density of a single particle is defined as the
number of collisions per unit time and length (diameter):

ωf (d) = f (1)(d)hC(d) = f (1)(d, t)πd2|vp|
(

1
s[m]

)

(9.9)

This relation represents a rough collision density model for a dispersion con-
taining only one type of particles.

Sometimes the collision density representing the number of collisions per
unit mixture volume and per unit time and length2 (diameter2) is a more
convenient quantity. Multiplying the collision density of a single particle with
the particle number density the modified collision density yields:
2 The collision tube concept is familiar from the kinetic theory of gases. Consider

a particle in such a cube, moving with a relative speed with respect to the other
particles which are fixed. The particle in the tube sweeps a volume per unit
time (m3s−1). Venneker [118] named the rate of volume swept by the particle
for the effective swept volume rate. Henceforth this name is used referring to this
quantity.
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ωff (d) = hC(d)f (1)f (1) =
1
2
f (1)f (1)πd2|vp|

(

1
m3s[m][m]

)

(9.10)

The factor 1
2 appears due to the fact that h(d) represents twice the number

of collisions.
In accordance with the pioneering work of Smoluchowski [111], similar

considerations can be repeated for dispersions containing two types of particles
having diameters d, d′ and particle densities f (1), f

′(1). The resulting collision
density yields:

ωC(d, d′) = hC(d, d′)f (1)f
′(1) = f (1)f

′(1)π(
d + d′

2
)2|vrel,d,d’|

(

1
m3s[m][m]

)

(9.11)
where the collision frequency is calculated using the mean collision diameter
ddd′ ≡ (d + d′)/2. Note that in this case the 1

2 factor is not included.
Kolev [46] discussed the validity of these relations for fluid particle colli-

sions considering the obvious discrepancies resulting from the different nature
of the fluid particle collisions compared with the random molecular collisions.
The basic assumptions in kinetic theory that the molecules are hard spheres
and that the collisions are perfectly elastic and obey the classical conservation
laws do not hold for real fluid particles because these particles are deformable,
elastic and may agglomerate or even coalescence after random collisions. The
collision density is thus not really an independent function of the coalescence
probability. For bubbly flow Colella et al [15] also found the basic kinetic the-
ory assumption that the particles are interacting only during collision violated,
as the bubbles influence each other by means of their wakes.

Prince and Blanch [92] modeled bubble coalescence in bubble columns
considering bubble collisions due to turbulence, buoyancy, and laminar shear,
and by analysis of the coalescence probability (efficiency) of collisions. It was
assumed that the collisions from the various mechanisms are cumulative. The
collision density resulting from turbulent motion was expressed as a function
of bubble size, concentration and velocity in accordance with the work of
Smoluchowski [111]:

ωT (d, d′) ≈ f (1)f
′(1)π

4
(
d + d′

2
)2(v̄2

t,d + v̄2
t,d′)1/2

(

1
m3s[m][m]

)

(9.12)

where the collision cross-sectional area is defined by: σ′
AT

= π
4 (d+d′

2 )2.
To calculate the collision density an estimate of the length of the relative

velocity between a pair of unlike particles, taking into account the distribu-
tion of particle velocities, is required. From kinetic theory of gases, we know
that v̄rel,1,2 = (v̄2

1 + v̄2
2)1/2 can be justified by a detailed calculation with

the Maxwell distribution function (See Present [91], p 53 and p 79). How-
ever, this relation is not generally valid for bubble, drops and particles. The
approximation:

|v̄rel,t,d,d’| ≈ (v̄2
t,d + v̄2

t,d′)1/2 (9.13)

is questionable.
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Estimates of the turbulent fluid particle velocities have been obtained us-
ing certain relations developed in the classical theory on isotropic turbulence
due to Kolmogorov [47]. It is noted that the derivation of the population bal-
ance kernel closures are only approximate as the application of the classical
turbulence relations, which were developed for continuous fluid velocity fluc-
tuations or vortices, to describe discrete fluid particle flows are not always
in accordance with the classical turbulence theory restrictions. The theory of
Kolmogorov [47] states that within the inertial subrange of turbulence, where
the distance λ between two points in the flow field is much smaller than the
turbulence integral-scale L but much larger than the Kolmogorov micro-scale
η, the second order velocity structure function is only a function of the tur-
bulent energy dissipation rate ε and the distance λ,

δv2(λ) = [vz(z + λ) − vz(z)]2 = C(ελ)2/3. (9.14)

This turbulence quantity is defined as the covariance of the difference in ve-
locity between two points in physical space. The two-point velocity structure
function should not be confused with the normal component of the Reynolds
stresses, which is a one-point, one time, covariance of the velocity.

To estimate the average turbulent fluid particle velocity, the second-
order structure function (9.14) is interpreted as an absolute particle veloc-
ity squared and defined for two points in the fluid separated by a distance
equal to the bubble diameter d. The structure function is then given as
δv2(d) = [vz(z + d) − vz(z)]2. If the magnitude of the diameter d lies within
the inertial subrange of turbulence, the structure function can be calculated
as δv2(d) = C(εd)2/3. The discrete absolute mean velocity of bubbles with
diameter di is thus approximated as:

v̄2
t,di

≈ δv2(di) = C(εdi)2/3 (9.15)

where C ≈ 27
55Γ ( 1

3 )Ck ≈ 27
55 × 2.6789× 1.5 ≈ 1.973. This relationship between

the constant C and the Kolmogorov constant Ck (i.e., the parameter in the
energy spectrum function for the inertial subrange) has been deduced from
the power-law spectrum and the second-order structure function [89] (chap 6
and app G).

In this model approximation it is assumed that the eddy motion on the
size of the bubble is primarily responsible for the relative motion between
bubbles. Very small eddies do not contain sufficient energy to significantly af-
fect the bubble motion, while eddies much larger than the bubbles transport
groups of bubbles by fluid advection without leading to significant relative
motion. Moreover, to make the problem feasible it is customary to assume
that the turbulence is isotropic and that the bubble size lies in the inertial
subrange of turbulence. However, the validity of using the Kolmogorov hy-
potheses describing bubbly flows is strictly not verified yet. The relationships
from classical turbulence theory have simply been interpreted and extrapo-
lated in a convenient manner. The Kolmogorov velocity second-order structure
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function δv2(d) might for example appear as an estimate for an absolute tur-
bulent bubble velocity in the inertial subrange of isotropic turbulence [92], in
other cases the same structure function might be considered a relative bub-
ble velocity in turbulent flow, or even employed as a measure of intra-bubble
oscillations.

The collision density relation proposed by Prince and Blanch [92] for use
in the framework of a discrete solution method was deduced from (9.12) and
given as3,

ωT
C(di : dj) ≈ninj

π

4
(
di + dj

2
)2(v̄2

t,di
+ v̄2

t,dj
)1/2

≈0.088πninj(di + dj)2ε1/3(d2/3
i + d

2/3
j )1/2

(

1
sm3

) (9.16)

The collision density formula was written in a discrete form consistent with
the numerical scheme adopted. The number densities of the bubbles were
thus defined as the number of bubbles per unit mixture volume and not as a
probability density in accordance with the kinetic theory concept.

The buoyancy collision density ωB
C (di : dj) has been expressed by (e.g.,

[73, 92], [122], p 164):

ωB
C (di : dj) ≈ ninj

π

4
(
di + dj

2
)2|v̄r,di

− v̄r,dj
|

(

1
sm3

)

(9.17)

where v̄r,di
is the rise velocity of the particle.

The functional form of the collision rate due to laminar shear is expressed
by (e.g., [25], p 200; [122], p 170):

ωLS
C (di : dj) ≈ ninj

4
3
(
di + dj

2
)3(

dvc

dr
)

(

1
sm3

)

(9.18)

where v̄c is the continuous phase circulation velocity. The term (dvc

dr ) is the
average shear rate.

The net coalescence frequency of bubbles of diameter di and dj was then
calculated superposing the different bubble collisions mechanisms as a linear
sum of contributions multiplied by a common efficiency [92]:

ΩC(di : dj) =
[

ωT
C(di : dj) + ωB

C (di : dj) + ωLS
C (di : dj)

]

pC(di : dj)
(

1
sm3

)

(9.19)
Hagesæther et al [29, 30] adopted this approach modeling bubble column dis-
persions and found that with the choice of parameter values used in their

3 Note that the parameter value used by Luo [73] is a factor of 4 larger than the
one in (9.16). The reason for this deviation is that Luo used a different definition
of the effective total cross-sectional area σAT .
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analysis, the turbulent contribution dominated the collision rate for the bub-
bles in the system. However, the most important model parameter being the
turbulent energy dissipation rate is difficult to compute and only crude esti-
mates were obtained. To achieve approximate estimates for the macroscopic
coalescence and breakage rates in bubble columns the macroscopic kernel val-
ues were calculated adopting a fixed global average value for the energy dissi-
pation rate. The magnitude of the turbulent energy dissipation rate has been
estimated by semi-empirical analysis of the kinetic energy transport in the
column. Shah et al [106], for example, postulated that the global energy dis-
sipation rate per unit mass in bubble columns can be calculated from the
pressure drop experienced by the gas flow rate. This relationship was derived
from a macroscopic mechanical energy balance assuming that the global work
done by the pressure of surroundings on the bubble volume element moving
with a constant and uniform gas velocity is balanced by the global energy
dissipation rate term. The global energy dissipation function was then ap-
proximated by:

μΦeffV ≈ (vGp|out − vGp|in)A ≈ vGAΔp|global ≈ vGρLgαLHGLA (J/s)
(9.20)

where HGL is the suspension height, A the column cross section area,
V = HGLA the suspension volume, and Δp|global the global pressure drop.
The global specific energy dissipation rate is then obtained by dividing the
dissipation function by the liquid mass:

〈εG〉global ≈
μΦeffV

mL
≈ vGρLgαLHGLA

ρLαLHGLA
= vGg (J/kg s) (9.21)

Similar estimates of the turbulent energy dissipation rate per unit mass has
been used by others as well [73, 68]. Nevertheless, the value of the energy
dissipation rate has not been validated experimentally yet. For agitated vessels
an analogous relation for the turbulent energy dissipation rate per unit mass
has been reported by Prince and Blanch [92].

Hagesæther et al [29, 30] did not make any firm conclusion on the relative
importance of the various collision density contributions, as the turbulent
bubble velocity closures used by them are at best inaccurate.

In addition, as distinct from the approach of Prince and Blanch [92], Kolev
[46] (p 174) argued that the frequency of coalescence of bubbles should rather
be determined having individual efficiencies:

ΩC(di : dj) =ωT
C(di : dj)pT

C(di : dj) + ωB
C (di : dj)pB

C(di : dj)

+ ωLS
C (di : dj)pLS

C (di : dj),
(

1
sm3

) (9.22)

Kolev [46] (p 173) further assumed that for the coalescence processes induced
by buoyancy and non-uniform velocity fields the forces leading to collisions
inevitably act towards coalescence for contracting particle free path length.
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Therefore, the probabilities must have the following values 0 ≤ pT
C(di : dj) ≤ 1

and pB
C(di : dj) = pLS

C (di : dj) ≈ 1.

Models for the Probability of Coalescence, pC(di : dj)

The expression for coalescence probability (sometimes named efficiency) of
binary fluid particle collisions in dispersions is normally related to the physical
phenomena that are considered to determine the overall coalescence process.
The coalescence process in stagnant fluids is generally assumed to occur in
three consecutive stages, as sketched in Fig 9.2. First, bubbles collide, trapping
a small amount of liquid between them under the action of the continuous
phase. Second, this liquid drains over a period of time from an initial thickness
until the liquid film separating the bubbles reaches a critical thickness, under
the action of the film hydrodynamics. The hydrodynamics of the film depends
on whether the film surface is mobile or immobile, and the mobility, in turn,
depends on whether the continuous phase is pure or a solution. Third, at this
point, film rupture occurs due to film instability resulting in instantaneous
coalescence.

The duration of the actual particle-particle interactions taking place in
real flow situations in process vessels is however limited and may vary consid-
erably in time and space. The net force which compresses the fluid particle
must thus act for a sufficient time to ensure that the intervening film drains
to the critical thickness so that film rupture and coalescence take place. In
an early view it was postulated that for these processes to occur, the actual
particle-particle collision (contact) time interval Δtcol must exceed the coa-
lescence time interval Δtcoal of the coalescence processes, Δtcol > Δtcoal. The
probability of coalescence was thus generally defined as a function of the ratio

Fig. 9.2. A sketch of the three consecutive stages of the binary coalescence pro-
cess. Two bubbles are approaching each other. The bubble surfaces deform and a
thin liquid film is created between them. The liquid drains thinning the film, and
hydrodynamic instabilities cause film rupture. The final result of binary bubble co-
alescence is a new larger bubble.
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of the collision time interval Δtcol and the coalescence time interval, Δtcoal
(e.g., [46], p 248):

pC ∝ f(Δtcol/Δtcoal) (−) (9.23)

The coalescence efficiency thus represents the fraction of particles that coalesce
out of the total number of particles that have been colliding.

The functional relationship given by Ross and Curl [101] is often used
modeling the fluid particle coalescence probability:

pC ≈ exp(−Δtcoal/Δtcol) (−) (9.24)

The probability of oscillatory fluid particle coalescence which is induced by
turbulent fluctuations, is generally expected to be determined by physical
mechanisms on various scales. Coulaloglou and Tavlarides [16], Luo [73], Luo
and Svendsen [74], Hagesæther et al [28, 29, 30], among others, adopted the
same functional relationship as presented above describing these processes,
basically because no extended models were available. However, modified rela-
tions for estimating the collision and coalescence time intervals were derived
for these problems.

The coalescence time is usually estimated to be the time required for film
drainage between the fluid particles. In most cases the complexity of the film
draining phenomena involved is a severe problem for the modelers and may
be best illustrated discussing briefly an early modeling attempt. Oolman and
Blanch [85] derived an expression for the coalescence times in stagnant fluids
by examining the time required for the liquid film between bubbles to thin
from an initial thickness to a critical value where rupture occurs. The orig-
inal model considers the flow rate of fluid from the liquid film by capillary
pressure, augmented by the Hamaker contribution (reflecting the mutual at-
traction of fluid molecules on opposite sides of the liquid film) at very low
film thicknesses, bubble deformation, and the changes in the concentration of
surfactant species.

The liquid film drainage model was given by [85]:

−dh

dt
= { 8

R2
dρc

[
−4c
RT

(
dσI

dc
)2 + h2(

2σI

rb
+

A

6πh3
)]}1/2 (m/s) (9.25)

where h is the film thickness (m), Rd is the radius of the liquid disk between
the coalescing bubbles (m), R is the gas constant, T is the temperature (K),
A is the Hamaker constant (J), σI is the surface tension (N/m) and c is the
concentration of a surfactant species (mol/m3).

To solve (9.25) sufficient initial conditions are required. In the work of
Prince and Blanch [92] a rough estimate of the initial thickness of the films
created in air-water systems was given to be h0 = 1×10−4 (m). Likewise, the
final film thickness was taken as hf = 1 × 10−8 (m).

Prince and Blanch [92] thus obtained an estimate of the coalescence time
for binary bubble collisions in bubble columns solving a simplified form of
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(9.25). They considered that in practice several of the effects included in
(9.25) are very cumbersome to determine and no analytical solution of the
resulting equation is available. Several simplifying assumptions were therefore
employed (e.g., no Hamaker contributions, no surface impurities, simplified
interface geometry, etc.) making an analytical solution possible. A typical
coalescence time Δtcoal,ij was found by integration,

Δtcoal,ij = (
r3
ijρc

16σI
)1/2ln(

h0

hf
) (s) (9.26)

where rij = (r−1
b,i + r−1

b,j )−1/2 denotes the equivalent bubble radius.
For dispersed flows Chesters [14] derived an extended estimate for the

coalescence time Δtcoal considering drainage between deformable and fully
mobile interfaces. This model is assumed to be valid for systems where the
viscosity of the dispersed phase is sufficiently small so that the film drainage
is controlled by the resistance induced by the film to deformation and ac-
celeration. When the film drainage is further caused by inertia forces like
turbulence stresses, the parallel film model reduces to h = h0 exp(−t/Δtcoal).
In this formula Δtcoal = ρcv̄relr

2/8σI . Assuming that the relations governing
film drainage between unequal particles are the same as those between equal
particles of equivalent radius [14], the given coalescence time relation has been
used both for unequal and equal sized fluid particle collisions. Therefore, al-
though many bubble collisions encountered in practice involve partial-fully
mobile interfaces, Luo [73] approximated the coalescence time for equal and
unequal bubbles in bubble column flows by:

Δtcoal,ij ≈ 0.5
ρcv̄rel,t,ijd

2
i

(1 + ξij)2σI
(9.27)

The length of the relative velocity between a pair of unlike bubbles is
approximated by a mean velocity representative for bubbles with size corre-
sponding to the inertial subrange of isotropic turbulence (9.13):

v̄rel,t,ij = (v̄2
t,i + v̄2

t,j)
1/2 = v̄t,i(1 + ξ

−2/3
ij )1/2, (9.28)

where v̄t,i is the discrete mean velocity of bubbles with diameter di was cal-
culated from (9.15).

In a turbulent flow field the collision time Δtcol can be estimated by the
time two bubbles of size d and d′ will stay together before the turbulent
fluctuations separate the bubbles again. Assuming that the collision time is
proportional to the characteristic life time of an eddy with size in the inertial
subrange of turbulence, Levich [69] determined the average collision time Δtcol
between fluid particles in turbulent flow from dimensional analysis. In the
inertial range of turbulence the energy dissipation rate might be approximated
by ε ∼ v3/le. The characteristic life time of eddies with a given size le about
the size of the mean collision diameter of the bubbles le ≈ (d + d′)/2 is then
τl ∼ le/v ∼ l

2/3
e ε−1/3. The average contact time was thus approximated as:
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Δtcol ≈ (d + d′)2/3ε−1/3. (9.29)

The accuracy reflected by the contact time relation obtained solely from di-
mensional considerations is generally not considered sufficient given the sen-
sitivity of the coalescence probability to small changes in the approximate
contact time. Moreover, little or no experimental date is available for model
validation.

For bubble column flow Luo [73] intended to derive a more reliable collision
time relation valid both for two unequal and equal sized fluid particles by
investigating the fluid particle approach process by use of a simplified kinetic
energy balance. Based on a simple parallel film model which disregards all
external forces, an expression for the collision time was obtained:

Δtcol = 2tmax ≈ (1 + ξij)

√

(ρd/ρc + CV )
3(1 + ξ2

ij)(1 + ξ3
ij)

ρcd3
i

σI
(9.30)

where ξij = di/dj , CV is the added mass coefficient, and tmax is the time
between the first contact and the time when the film area between the two
colliding bubbles reaches its maximum value.

In order to determine the mean turbulent approach velocity of bubbles
causing bubble-bubble collisions, a series of questionable assumptions were
made by Luo and Svendsen [74]. First, in accordance with earlier work on fluid
particle coalescence the colliding bubbles were assumed to take the velocity
of the turbulent fluid eddies having the same size as the bubbles [16, 92]. Luo
and Svendsen [74] further assumed that the turbulent eddies in liquid flows
may have approximately the same velocity as neutrally buoyant droplets in
the same flow. Utilizing the experimental results obtained in an investigation
on turbulent motion of neutrally buoyant droplets in stirred tanks reported
by Kuboi et al [53, 54], the mean square droplet velocity was expressed by:

v2
rms(d) = v′2(d) = β(εd)2/3 (m2/s2) (9.31)

where the parameter value β ≈ 2.0 was determined from the experimental
data.

The experimental data also indicated that the turbulent velocity com-
ponent distributions of droplets follow the Maxwellian distribution function,
thus the mean droplet velocity was calculated as the mathematical average of
the velocity distribution4:

v̄drops = (
8v2

rms(d)
3π

)1/2 =

√

16
3π

(εd)1/3 =
√

1.70(εd)1/3 (m/s) (9.32)

4 Luo and Svendsen [74] did not distinguish between the experimentally determined
relation (9.31) and the Kolmogorov structure function (9.14). In their work the
theoretical parameter value C was calculated as C = (3/5)Γ (1/3)Ck ≈ (3/5) ×
2.6789×1.5 = 2.41. It follows that their mean droplet velocity estimate is v̄drops ≈
( 8δv2(d)

3π
)1/2 =

√

8 × C/(3π)(εd)1/3 =
√

2.046(εd)1/3.
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It was further noticed that the value of the coefficient was sensitive to the den-
sity ratio between the continuous and dispersed phases, (ρd/ρc). Moreover, in
a recent study Brenn et al [9] investigated unsteady bubbly flow with very low
void fractions and concluded that the velocity probability density functions
of bubbles in liquid are better described using two superimposed Gaussian
functions.

Hagesæther et al [27] derived a model for film drainage in turbulent flows
and studied its predictive capabilities. It was concluded that the film drainage
models are not sufficiently accurate, and that adequate data on bubbly flows
are not available for model validation. For droplet flows it was found that
the pure drainage process (without interfacial mass transfer fluxes) was pre-
dicted with fair accuracy, whereas no reliable coalescence criterion was found
(similar conclusions were made by Klaseboer et al [41, 42]). Furthermore, it
was concluded that a head on collisions are not representative for all possible
impact parameters. Orme [86] and Havelka et al [32], among others, noticed
that the impact parameter is of great importance for the droplet-droplet col-
lision outcome in gas flows. However, no collision outcome maps have been
published yet for bubble-bubble collisions.

Furthermore, according to the experimental analysis of liquid films formed
upon single bubble impact with a free surface as reported by Doubliez [20], it
is likely that a thin liquid film formed between two colliding bubbles ruptures
after the collision when bubbles are actually already moving apart from each
other. Millies and Mewes [82], Hagesæther [31], and Laari and Turunen [56]
thus concluded that the film thinning time cannot be used to model the coa-
lescence rate. Furthermore, Stewart [112] investigated experimentally bubble
interaction in low-viscosity liquids and observed that the coalescence time is
often much smaller than the contact time. Hence, the probabilistic hypotheses
normally used for the calculation of the coalescence efficiency are question-
able and presumably not valid. However, no complementary theory has been
presented yet.

Saboni et al [102, 103] developed drainage models for partially mobile
plane-films to describe film drainage and rupture during coalescence in liquid-
liquid dispersions taking into account the interfacial-tension gradients gener-
ated by interfacial mass transfer. The resulting Marangoni forces were accel-
erating the film drainage which in general corresponds to dispersed to contin-
uous phase transfer and diminish film drainage in the negative case. Similar
effects might be expected to occur for the gas-liquid systems operated in bub-
ble columns, but no detailed experimental analysis on gas-liquid dispersions
has been reported yet.

Models for the Macroscopic Breakage Rate Source, ΩB(di, dj)

During the last decade considerable attention has been put on the macro-
scale modeling of bubble breakage in gas-liquid dispersions (e.g., [92, 43, 99,
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58, 119]). A brief outline of the important milestones are given in this sub-
section.

The fluid particle breakage controls the maximum bubble size and can
be greatly influenced by the continuous phase hydrodynamics and interfacial
interactions. Therefore, a generalized breakage mechanism can be expressed as
a balance between external stresses (dominating component), σ, that attempts
to disrupt the bubble and the surface stress, σI/d, that resists the particle
deformation. Thus, at the point of breakage, these forces must balance, σ ≈
σI

d/2 . This balance leads to the prediction of a critical Weber number, above
which the fluid particle is no longer stable. It is defined by [36]:

Wecr =
σdmax

2σI
(9.33)

where dmax is the maximum stable fluid particle, and σ reflects the hydrody-
namic conditions responsible for particle deformation and eventual breakage.

In the case of turbulent flow, particle breakage is caused by velocity
fluctuations resulting in normal stress variations along the particle surface,
Wecr = ρcv

′2
c dmax/2σI . In laminar flow, viscous shear in the continuous phase

will elongate the particle and cause breakage, Wecr = μc(∂vz

∂r )dmax/2σI . In
the absence of net flow of the continuous phase such as rising bubbles in a
liquid, the fluid particle breakage is caused by interfacial instabilities due to
Raleigh-Taylor and Kelvin-Helmholtz instabilities [21]. In most bubble column
analyzes the flow is considered turbulent and both the viscous – and interfacial
instability effects are neglected basically without any further validation.

The fluid particle fragmentation phenomena in a highly turbulent flow are
related to the fact that the velocity in a turbulent stream varies from one
point to another (i.e., validated by two-point measurements [99]). Therefore,
different dynamic normal stresses will be exerted at different points on the
surface of the fluid particle. Under certain conditions, this will inevitably lead
to deformation and breakage of the fluid particle.

According to Kocamustafaogullari and Ishii [43], the force due to the dy-
namic pressure may develop either through the local relative velocity around
the particle, which appears because of inertial effects, or through the changes
in eddy velocities over the length of the particle.

Most of the published literature on bubble breakage is derived from the
theories of Kolmogorov [48] and Hinze [36]. In one phenomenological inter-
pretation bubble breakage occurs through bubble interactions with turbulent
eddies bombarding the bubble surface. If the energy of the incoming eddy
is sufficiently high to overcome the surface energy, deformation of the sur-
face results, which can finally lead to the formation of two or more daughter
bubbles. For the bubble breakage to occur, the size of the bombarding eddies
have to be smaller than or equal to the bubble size, since larger eddies only
transport the bubble. In order to model the breakup process, the following
simplifications are generally made [74]:
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1. The turbulence is isotropic,
2. Only binary breakage of a bubble is considered,
3. The breakage volume ratio is a stochastic variable,
4. The occurrence of breakage is determined by the energy level of the ar-

riving eddy,
5. Only eddies of a size smaller than or equal to the bubble diameter can

cause bubble breakage.

The fundament of the macroscopic theories is the engineering interpreta-
tion considering the velocity fluctuations as imaginary discrete entities de-
noted fluid slabs or eddies. Following this concept a large number of ed-
dies exist in the flow having a size (diameter) distribution ranging from the
Kolmogorov micro scale up to the vessel dimensions.

The basic ideas for the model development of Luo and Svendsen [74] was
adopted from an earlier paper by Coulaloglou and Travlarides [16] considering
droplet breakage in turbulent flows. In the model of Coulaloglou and Travlar-
ides [16] the breakage density was expressed as a product of an integral or
average breakage frequency (∝ 1/tb) and an integral (average) breakage effi-
ciency determining the fraction of particles breaking. The breakage time (tb)
was determined from isotropic turbulence theory and the breakage efficiency
was determined from a probable fraction of turbulent eddies colliding with
the droplets that have kinetic energy greater than the droplet surface energy.

Prince and Blanch [92] further postulated that bubble breakage is a result
of collisions between particles and turbulent eddies, and that the collision rate
can be calculated following arguments from the kinetic theory of gases. A total
breakage rate ΩB(di) for particles of size di, with units (1/sm3), was thus ex-
pressed as a product of an eddy-bubble collision rate ωB(di : λj) and a break-
age probability (efficiency) pB(di : λj), thus ΩB(di) =

∑

λ ωB(di : λj)pB(di :
λj). This breakage rate model thus depends on a predefined daughter particle
size distribution.

Luo and Svendsen [74] modified the eddy-particle collision concept using
an eddy number density (instead of an eddy number concentration) and ar-
gued that for a bubble to be fragmented each of the colliding eddies must have
sufficient turbulent kinetic energy to overcome the increase in bubble surface
energy, as illustrated in Fig 9.3. This is the so-called surface energy criterion
for fluid particle breakage. Unlike the previous breakage models, the model by
Luo and Svendsen [74] predicts the partial breakage rate for particles of size
di breaking into the particular daughter particle sizes. In this way this break-
age model does not require a predefined daughter particle size distribution
function.

Luo and Svendsen [74] also used a second criterion stating that the size
of the colliding eddies must be of the same order of magnitude as the bubble
diameter or less. It was assumed that larger eddies will give the fluid particle
a translational velocity solely, whereas eddies of scales comparable to the fluid
particle can cause breakage.



828 9 The Population Balance Equation

Fig. 9.3. A sketch of the bubble breakage surface energy balance. The mean kinetic
energy of an eddy of size λ breaking a bubble of size di, ē(di, λ), is assumed to be
larger than the increase of the bubble surface energy required breaking the parent
bubble di into a daughter bubble dj and a second corresponding daughter bubble,
es(di, dj). Reprinted with permission from [38]. Copyright 2005 American Chemical
Society.

A differential breakage density was then defined as a product of an
eddy-bubble collision probability density ωT

B,λ(di, λ) and a breakage efficiency
pB(di : dj , λ), which both depended on the eddy size (λ). The total breakage
rate source for a bubble of size di yields:

ΩB(di) =
dmax
∑

dj=dmin

ΩB(di : dj)
(

1
sm3

)

(9.34)

The individual rate breaking a parent bubble of size di into the daughter size
classes dj is expressed as:

ΩB(di : dj) =

d
∫

λmin

ωT
B(di, λ)pB(di : dj , λ) dλ

(

1
sm3

)

(9.35)

The eddy-bubble collision probability density ωT
B(di, λ) has units (1/sm3[m]).

The upper integration limit for the eddy size is based on the model assumption
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that only eddies of size smaller than or equal to the bubble diameter can cause
bubble breakage. A bubble being dispersed in a large scale fluid eddy (larger
than the bubble scale, d) is assumed to be advected together with the eddies
in the fluid. Unfortunately, the breakage frequency is found to be significantly
sensitive to the choice of integration limits [29, 30, 58]. Note that no explicit
breakage frequency was given.

Luo and Svendsen [74] considered the collision of eddies with a given ve-
locity v̄λ bombarding a number ni of locally frozen bubbles, as illustrated in
Fig 9.4. The eddy-bubble collision probability density was computed as5:

ωT
B(di, λ) = nifλhC(di, λ) = nifλ

π

4
(di + λ)2v̄λ

(

1
sm3[m]

)

(9.36)

where fλ is the number of eddies of size between λ and λ + dλ with units
(1/m3s[m]), and v̄λ is the turbulent velocity of eddies of size λ.

Stationary bubbles inside
the collision tube

λ

d2

λv

Fig. 9.4. A sketch of a collision tube of an entering eddy moving through the
tube with a velocity vλ. The bubbles within the tube are assumed to be frozen or
stationary. Reprinted with permission from [38]. Copyright 2005 American Chemical
Society.

5 Politano et al [88] adopted the kernel functionality of Luo and Svendsen but mod-
ified the definition of the effective collision cross-sectional area, σAT = π

4
( di+λ

2
)2,

in accordance with other work in nuclear engineering (e.g., Kolev [46], p 168).
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The mean turbulent velocity of eddies with size λ in the inertial subrange
of isotropic turbulence was assumed equal to the velocity of the neutrally
buoyant droplets measured by Kuboi et al [53, 54]. Kuboi et al [53, 54] found
that the turbulent velocity of droplets could be expressed by the Maxwell dis-
tribution function (9.32), thus the mean eddy velocity was approximated by:

v̄λ ≈
(

8β
3π

)1/2

(ελ)1/3 =
√

1.70(ελ)1/3 (m/s) (9.37)

The β coefficient value in the droplet rms velocity relation (9.31) obtained by
Kuboi et al [53, 54] is accidentally about the same as the C ≈ 27

55Γ ( 1
3 )Ck value

in the Kolmogorov structure function relation (9.14), that is β ≈ C ≈ 2.0.
However, it was commented by Kuboi et al [53, 54] that the comparison of
these relations cannot be very decisive, in view of the fact that there is a
large difference between the processes and kind of fluid used to obtain these
relations. Kuboi et al [53, 54] also investigated the particle-fluid density dif-
ference effect producing non-neutrally buoyant particle flows and concluded
that the parameter value discussed above is very sensitive to the density ratio.
Therefore, the application of the above relation as an approximation for the
bubble velocity is highly questionable.

Furthermore, to employ (9.36), the number probability density of eddies
of a particular size fλ must be determined. Luo and Svendsen [74] assumed
that the turbulence is isotropic and that the eddy size of interest lies in the
inertial subrange. An expression for the number probability density of eddies
as a function of wave length for these conditions were formulated adopting
conceptual ideas from Azbel [2](p 85) and Azbel and Athanasios [3]. The
turbulent energy spectrum function, E(k), can be interpreted as the kinetic
energy contained within eddies of wave numbers between k and k + dk, or
equivalently, of size between λ and λ + dλ, per unit mass. A relationship
between fλ and E(k) can thus be obtained formulating an energy balance for
eddies being interpreted both as discrete entities and as a wave function:

Eeddies(λ) = Espectra(λ),
(

J

m3[m]

)

(9.38)

thus

fλ[
1
2
(ρL

π

6
λ3)v̄2

λ] = E(k)ρL(1 − αg)(−
dk

dλ
),

(

J

m3[m]

)

(9.39)

The functional form of the energy spectrum in the inertial subrange of turbu-
lence is defined as (e.g., [89]):

E(k) = Ckε
2/3k−5/3,

(

m2

s2
[m]

)

(9.40)

where Ck ≈ 1.5.
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To enable computation of the number density of eddies we need to elimi-
nate the wave number k from the energy balance. The necessary relationship
between the wave number and the size of the eddy (wave length) is given by
k = 2π/λ, hence dk

dλ = −2πλ−2. To be consistent with the previous assump-
tions the eddy velocity must be estimated from the experimental relation
(9.37). The number density of eddies fλ is thus defined by6:

fλ = (1 − αg)
24Ck

β(2π)5/3

1
λ4

=
0.841(1 − αg)

λ4

(

1
m3[m]

)

, (9.41)

where αg is the volume fraction of dispersed phase.
The determination of the structure function parameter value C may rep-

resent a severe problem as several authors report very different estimates.
For example, Luo [73] used C = 3

5Γ (1/3)Ck = 2.41, Batchelor [7](p 123)
defined C = 9

5Γ (1/3)Ck = 7.23, Pope [89] (p 232) obtained another value
C ≈ 1.973, Mart́ınez-Bazán et al [78] referred to Batchelor [6] and claimed
that C ≈ 8.2, Risso and Fabre [99] referred to Batchelor [5](p 120) and de-
fined C = 27

55Γ (1/3)Ck = 1, 973 which is the same value as given by Pope [89].
Lasheras et al [58] reviewed several breakage models, and pointed out that
the value of this parameter is ranging from about C = 8 × 2.41/(3π) = 2.045
to C = 8.2.

Substituting the expression for the number density of eddies (9.41) into
(9.36), the collision density for the eddies of size between λ and dλ with
particles of size di can be expressed as:

ωT
B(di, λ) =

π

4
(0.841)

√
1.70(1 − αg)ni(ελ)1/3 (di + λ)2

λ4

(

1
sm3[m]

)

(9.42)

In dimensionless variables7,

ωT
B(ξ) = 0.861(1 − αg)(εdi)1/3ni

(1 + ξ)2

d2
i ξ

11/3
, (9.43)

where ξ = λ/di.

6 Luo and Svendsen [74] did not distinguish between the value of the theoretical
parameter C in the structure function relation (9.14) and the empirical parame-
ter β = 2.0 in the droplet rms velocity relation (9.31) when calculating the mean
eddy velocity from (9.37). To reproduce the parameter value in the eddy number
density relation used by Luo and Svendsen, the value of the β parameter is com-
puted using the structure function relation (9.14) instead of the empirical relation
(9.31). That is, they let β = 8C

3π
, and C = 3

5
Γ (1/3)Ck ≈ 3

5
× 2.6789× 1.5 = 2.41.

The parameter in the eddy number density of eddies was thus approximated as:
9Ck

C25/3π2/3 = 0.822.
7 Luo and Svendsen used the parameter values C = 3

5
Γ (1/3)Ck = 2.41,

and (8C/3π) ≈ 2.045, hence their parameter value in (9.43) becomes
π
4
(0.822)

√
2.045 ≈ 0.923.
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To close the differential breakage density model (9.35) a breakage proba-
bility (efficiency) is needed. For each particular eddy hitting a particle, the
probability for particle breakage was assumed to depend not only on the en-
ergy contained in the arriving eddy, but also on the minimum energy required
to overcome the surface area increase due to particle fragmentation. The latter
quantity was determined by the number and the sizes of the daughter particles
formed in the breakage processes. In mathematical terms, the surface energy
criterion was written:

e(di, λ) ≥ es(di, dj) (9.44)

where e(di, λ) (J) denotes the turbulent kinetic energy of an individual eddy of
size λ breaking a bubble of size di and es(di, dj) (J) represents the increase of
bubble surface energy required breaking the parent bubble di into a daughter
bubble dj and a second complement daughter bubble.

To determine the energy contained in eddies of different scales, a distri-
bution function of the kinetic energy for eddies in turbulent flows is required.
A Maxwellian distribution function may be a natural and consistent choice
as the eddy velocity is assumed to follow this distribution [66], but Luo and
Svendsen [74] preferred an empirical energy-distribution density function for
fluid particles in liquid developed by Angelidou et al [1]. The turbulent kinetic
energy distribution of eddies with size λ is approximated as follows:

pe

(

e(di, λ)
)

=
1

ē(di, λ)
exp

[

− e(di, λ)
ē(di, λ)

]

(9.45)

The probability density for a fluid particle with size di breaking with the
larger daughter bubble dj when hit by an eddy with size λ was then assumed
equal to the probability of the arriving eddy of size λ having a turbulent
kinetic energy greater than or equal to the minimum energy required for the
particle breakage (9.44).

The conditional breakage probability function used by Luo and Svendsen
thus yields8:

8 Notice that this efficiency function is not necessary volume or mass conservative
as Luo and Svendsen [74] did consider the breakage efficiency function being
equal to the kinetic energy distribution function. It would probably be better to
consider the breakage distribution function purely proportional to the empirical
kinetic energy distribution function, and determine the probability constant by
requiring bubble volume or mass conservation within the breakage process.
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pB(di : dj , λ) =

∞
∫

es(di,dj)

1
ē(di, λ)

exp
[

− e(di, λ)
ē(di, λ)

]

de′

=1 −
es(di,dj)

∫

0

1
ē(di, λ)

exp
[

− e(di, λ)
ē(di, λ)

]

de′

=1 −
χc
∫

0

exp(−χ)dχ′ = exp(−χc)

(9.46)

where χ = e(di,λ)
ē(di,λ) is a dimensionless energy ratio. In this ratio ē(di, λ) is the

mean turbulent kinetic energy for eddies of size λ and e(di, λ) is the kinetic
energy for an individual eddy of size λ, respectively.

In accordance with (9.44) the critical energy ratio for particle breakage to
occur, was calculated from:

χcr =
(

e(di, λ)
ē(di, λ)

)

cr

=
es(di, dj)
ē(di, λ)

=
3CfπσI

2βρcε2/3d
5/3
i ξ11/3

. (9.47)

By use of (9.37) the mean kinetic energy of an eddy with size λ, was
determined by9:

ē(di, λ) = ρc
π

6
λ3 v̄

2
λ

2
= ρc

2β
3
λ11/3ε2/3 = ρc

2β
3
ξ11/3d

11/3
i ε2/3 (9.48)

When a fluid particle with diameter di is broken up into a particle of size
dj and the complement particle of size (d3

i − d3
j )

1/3, the increase in surface
energy was given by:

es(di, dj) =πσI [d2
j + (d3

i − d3
j )

1/3 − d2
i ]

=πσId
2
i [f

2/3
Vij

+ (1 − fVij
)2/3 − 1] = Cf (fVij

)πσId
2
i

(9.49)

where Cf (fVij
) is defined as the increase coefficient of surface area which

depends only on the breakage volume fraction, fVij
= d3

j/d
3
i . The es(di, dj)

function is symmetrical about the breakage volume fraction, fVij
= 0.5.

Combining (9.43), (9.46) and (9.35), the breakage density of one particle
of size di that breaks into particles of sizes dj and (d3

i − d3
j )

1/3 is given by10:

9 Luo [73] employed (9.15) with C ≈ 2.41 and obtained ē(di, λ) = ρc
π
6
λ3 v̄2

λ
2

=

ρc
Cπ
12

λ11/3ε2/3 = ρc
Cπ
12

ξ11/3d
11/3
i ε2/3. Moreover, with this parameter value

and bubble velocity estimate the critical energy ratio becomes χcr ≈
es(di, dj)/ē(di, λ) = 12CfσI/(Cρcε

2/3d
5/3
i ξ11/3).

10 Luo and Svendsen [74] employed the parameter value (8C/3π) ≈ 2.045 instead,
hence the parameter in (9.50) becomes 0.923.
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ΩB(di : dj) =

d
∫

λmin

ωT
B(di, λ)pB(di : dj , λ)dλ

(

1
sm3

)

=0.861(1 − αg)ni(
ε

d2
i

)1/3

1
∫

ξmin

(1 + ξ)2

ξ11/3
exp(− 3CfπσI

2ρcβε2/3d
5/3
i ξ11/3

)dξ

(9.50)

where ξmin = λmin
d , λmin

λd
≈ 11.4 − 31.4 and η is the Kolmogorov micro-scale.

A severe limitation of the original breakage density closure of Luo and
Svendsen [74] is that the model produces too many very small particles what-
ever numerical size resolution used, the model is thus not well posed. That is,
using the surface energy criterion solely a maximum breakage probability is
predicted when the breakage fraction approaches zero. This is not in agree-
ment to the real physical situation [119]. Several contributions have focused
on the modification of the basic model of Luo and Svendsen [74] intending to
avoid this limitation (e.g., [29, 68, 119]).

Hagesæther et al [29] and Wang et al [119] extended the basic breakage
model of Luo and Svendsen [74] assuming that when a fluid particle with
size di is hit by an eddy of size λ having turbulent kinetic energy e(di, λ),
the daughter particle size is limited by a minimum value due to the capillary
pressure and by a maximum value due to the increase of the surface energy.

The daughter bubble size is thus limited by two constraints. The capillary
pressure constraint states that if the dynamic pressure of the turbulent eddy
1
2ρcv

2
λ exceeds the capillary pressure σI/d

′′, the fluid particle is deformed and
finally breaks up resulting in a minimum breakage fraction fVmin (or bubble
size dj,min) [69]. d′′ denotes the diameter of the smaller daughter size (or two
times the minimum radius of curvature). When breakage occurs, the dynamic
pressure induced by the eddy turbulence kinetic energy satisfy the criterion:

1
2
ρcv

2
λ ≥ σI

d′′
(9.51)

The second constraint, often referred to as the surface area criterion [74],
states that the eddy kinetic energy must be larger than the increase of the
surface energy during the breakage as expressed by (9.44). This constraint
results in a maximum breakage fraction fVmax (or bubble size dj,max).

Lehr et al [68] derived a similar breakage density function using only the
capillary constraint and assumed that the interfacial force on the bubble sur-
face and the initial force of the colliding eddy balance each other. Contrary,
Hagesæther et al [29] and Wang et al [119] assumed that during breakage the
inertial force of the colliding eddy is often larger than the interfacial force
and bubble deformation is strengthened until breakage occurs. Therefore, the
force balance of Lehr et al [68] may not be satisfied during bubble breakage.

Politano et al [88] studied the equilibrium between coalescence and break-
age in homogeneous flows with isotropic turbulence using a population balance
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model. The population balance was solved using a multi-group approach. The
daughter size distribution function was approximated by a uniform function,
a delta function, and by the model proposed by Luo and Svendsen [74]. The
breakage rate was calculated using either the model proposed by Luo and
Svendsen [74] or the model proposed by Prince and Blance [92]. Significant
differences in the resulting bubble breakage rate, and therefore in the bubble
size distribution were observed comparing the model performance with ex-
perimental data on bubbly flows in an agitated tank. The model of Luo and
Svendsen [74] was in very good agreement with the experimental data, whereas
the model of Prince and Blanch [92] appears to over predict the bubble size.

Most of the macroscopic population balance kernels discussed are based
on the eddy collision arguments that rely on the interpretation that turbulent
flows consist of a collection of fluid slabs or eddies which are treated using
relationships developed in the kinetic theory of gases. This engineering eddy
concept is impossible to validate regarding eddy shape, the number densities
and the breakage mechanisms discussed above. Further, the resulting breakage
models require the specification of the minimum and maximum eddy sizes that
are capable of causing particle breakage, as well as a criterion for the mini-
mum bubble size dmin. Finally, the macroscopic formulation is considered less
fundamental and less general than the average microscopic one. An unfor-
tunate consequence of this modeling framework is that a discrete numerical
scheme for the particle size is embedded within the source term closures, thus
optimizing the numerical solution procedure is not a trivial task.

9.1.2 The Microscopic Continuum Mechanical Population Balance
Formulation

In this section the population balance modeling approach established by Ran-
dolph [95], Randolph and Larson [96], Himmelblau and Bischoff [35], and
Ramkrishna [93, 94] is outlined. The population balance model is considered
a concept for describing the evolution of populations of countable entities
like bubble, drops and particles. In particular, in multiphase reactive flow the
dispersed phase is treated as a population of particles distributed not only
in physical space (i.e., in the ambient continuous phase) but also in an ab-
stract property space [37, 95]. In the terminology of Hulburt and Katz [37],
one refers to the spatial coordinates as external coordinates and the property
coordinates as internal coordinates. The joint space of internal and external
coordinates is referred to as the particle phase space. In this case the quan-
tity of basic interest is a density function like the average number of particles
per unit volume of the particle state space. The population balance may thus
be considered an equation for the number density and regarded as a number
balance for particles of a particular state.

A model describing the evolution of this density function must consider
the various ways in which the particles of a specific state can either form or
disappear from the system. The change of the density function with respect to
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the external coordinates refers to motion through physical space, and that of
internal coordinates refers to motion through an abstract property space (e.g.,
particle growth). The physical processes that can be described by terms on
this form are collectively referred to as convective processes since they result
from motion in particle phase space. This group of physical processes, which
cause convective motion in particle phase space, may contribute to the rates
of formation and disappearance of the specific particle types. The number of
particles of a particular type can also change by processes that create new
particles (birth processes) and destroy existing particles (death processes).
In bubbly flow birth of new particles can occur both due to breakage and
coalescence processes. The bubble breakage and coalescence processes also
contribute to death processes, for a particle type that either breaks (into other
particles) or coalesce with another particle no longer exists as such following
the event. The phenomenological utility of population balance models lies in
the convective processes as well as the birth- and death processes.

Following the notation of Ramkrishna [94] we let f (1)(x, r, t) be the number
of particles per unit volume of the particle phase space at time t, at location
x ≡ (x1, x2, ..., xd) in property space (d representing the number of different
quantities associated with the particle) and r ≡ (r1, r2, r3) in physical space.
This number density function is considered a smooth function of its arguments
x, r and t, and f (1)(x, r, t) can be differentiated as many times as desired with
respect to any of its arguments. To describe the different convective processes
separate velocities are defined for the internal coordinates, vx(x, r,Y, t), and
for the external coordinates, vr(x, r,Y, t). It is thus possible to identify parti-
cle (number) fluxes. In this representation f (1)(x, r, t)vr(x, r,Y, t) designates
the particle flux through physical space and f (1)(x, r, t)vx(x, r,Y, t) denotes
the particle flux through internal coordinate space. The continuous phase vari-
ables are represented by a vector Y(r, t) ≡ (vc,vd, αc, αd, p, ρc, ρd, ...) which is
calculated from the governing transport equations and the problem dependent
boundary conditions.

If dVx and dVr denote infinitesimal volumes in property space and physical
space respectively located at (x, r), then the number of particles in dVxdVr is
given by f (1)(x, r, t)dVxdVr. The local (average) number density in physical
space, that is, the total number of particles per unit volume of physical space,
denoted N(r, t), is given by:

N(r, t) =
∫

Vx

f (1)(x, r, t)dVx (9.52)

For an arbitrary combined material volume element constituting a com-
bined sub-volume VSV (t) of the particle phase space the integral formulation
of the population balance states that the only way in which the number of
particles can change is by birth and death processes [95, 96, 35, 93, 94]. The
system balance is thus written on the form:
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{

The Time Rate of Change
of f (1) in the Sub-volume VSV (t)

}

=
{

The Net Generation of f (1)

Within the Sub-volume VSV (t)

}

This modeling approach thus considers the balance principle to the number
density function f (1)(x, r, t) for an arbitrary combined material sub-volume
VSV (t) of the particle phase space V (t):

D

Dt

∫

VSV (t)

f (1) dV ′ =
∫

VSV (t)

(B −D) dV ′ (9.53)

In this notation D/Dt represents a generalization of the substantial time
derivative operator. The B − D terms are the net birth and death terms
collectively representing the net rate of production of particles of state (x, r)
at time t in an environment of state Y.

In accordance with the standard approach in continuum fluid mechanics,
the abstract system or material control volume description is converted into
a combined Eulerian framework by use of a generalization of the conventional
Reynolds theorem. For general vector spaces the Reynolds theorem is written
as [95, 96, 93, 94]:

D

Dt

∫

VSV (t)

f (1) dV ′ =
∫

VSV

∂f (1)

∂t
dV ′ +

∫

ASA

(vf (1)) · n dA′ (9.54)

where v denotes the combined phase space velocity vector (≡ vx + vr) rela-
tive to a fixed combined control volume surface, dA′ = dA′

x + dA′
r are local,

infinitesimal surface areas in A = Ax + Ar, and n denotes a combined nor-
mal unit vector (≡ nx + nr). Moreover, V is considered a combined abstract
volume of a hypothetical continuous medium containing all the embedded
particles within Vr and Vx. For convenience we use the compact notation
dV ′ = dV ′

x dV
′
r , V = Vx ∪ Vr, and

∫

V
=

∫

Vx

∫

Vr
.

Likewise, one imagines that the surface integral in (9.54) can be rewritten
in terms of a volume integral using a generalization of the conventional Gauss’
theorem:

∫

ASA

(vf (1)) · n dA′ =
∫

VSV

∇ · (vf (1)) dV ′ (9.55)

By use of (9.54) the system balance (9.53) can be rewritten as a volume
integral for a fixed combined control volume in particle phase space:

∫

VSV

(

∂f (1)

∂t
+ ∇ · (vf (1)) − (B −D)

)

dV ′ = 0 (9.56)

Since VSV was arbitrary, (9.56) must be satisfied for any VSV , hence a neces-
sary condition for (9.56) to be true is that the integrand vanishes identically.
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A differential population balance for the number density function f (1) is thus
achieved:

∂f (1)

∂t
+ ∇ · (vf (1)) − (B −D) = 0

(

1
sm3[x]

)

(9.57)

Considering the fluid particle coalescence and breakage phenomena only,
the net source B(x, r,Y, t) and sink D(x, r,Y, t) terms are given as:

B(x, r,Y, t) = BC(x, r,Y, t) + BB(x, r,Y, t)
(

1
sm3[x]

)

(9.58)

D(x, r,Y, t) = DC(x, r,Y, t) + DB(x, r,Y, t)
(

1
sm3[x]

)

(9.59)

The local population balance becomes:

∂f (1)(x, r, t)
∂t

+ ∇r · (f (1)(x, r, t)vr) + ∇x · (f (1)(x, r, t)vx)

= BB(x, r,Y, t) −DB(x, r,Y, t) + BC(x, r,Y, t) −DC(x, r,Y, t).
(9.60)

where f (1)(x, r, t) is the bubble number probability density (1/m3[x]), which
varies with internal coordinates (x), spatial position (r) and time (t).

The first term on the LHS of (9.60) describes the change of the particle
number probability density with time. The second term designates the change
in the particle number probability density due to convection. The third term
represents the change in the bubble number probability density due to convec-
tion in the internal coordinates denoting several particle growth phenomena.
Collectively the terms on the RHS denote a net source term, representing the
change in the number probability density f (1) due to particle breakup and
coalescence. The BB and DB terms describe the birth and death rates of par-
ticles due to breakage, and the BC and DC terms account for the birth and
death rates of particles due to coalescence.

To close this model formulation constitutive equations are required for
both the growth and source term functions. This parameterization process is
of great importance as it represents the weakest part of the population bal-
ance modeling. The detailed functionality of the closure relations and even
the physical nature of these processes are generally unknown and require fur-
ther attention. The complexity of the growth terms may also dependent on
the choice of internal coordinates or particle properties used characterizing
the dispersed phase. In most bubbly flow investigations the particle diameter
(volume) is used, thus the gas expansion due to pressure-, temperature- and
composition changes as well as interfacial mass transfer fluxes has to be in-
corporated through some kind of growth terms. Contrary, using particle mass
as the internal coordinate, only the interfacial mass transfer fluxes has to be
incorporated through this term.

It is still not common to solve the local population balance equations de-
rived above by direct numerical simulations, instead some kind of averaging is
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performed to enable solution with reasonable time and (physical) space resolu-
tions. Another motivation for performing this averaging is to develop a PBE
modeling framework that is consistent with the averaged multi-fluid model
concept commonly used simulating multiphase flows. Adopting the conven-
tional time after volume averaging procedure, the local transport equation is
averaged over a physical averaging volume and thereafter in time. The result
is:

∂〈f (1)(x, t)〉
∂t

+ ∇r · (〈f (1)(x, t)〉〈vr〉) + ∇x · (〈f (1)(x, t)〉〈vx〉)

=〈BB(x,Y, t)〉 − 〈DB(x,Y, t)〉 + 〈BC(x,Y, t)〉 − 〈DC(x,Y, t)〉
(9.61)

We may now introduce number density weighted average velocities, thus:

〈f (1)(x, t)〉 〈vr〉 = 〈f (1)(x, t)〉 〈vr〉
f

(9.62)

and
〈f (1)(x, t)〉〈vx〉 = 〈f (1)(x, t)〉 〈vx〉

f
(9.63)

This approach makes the velocities in the population balance different from
the mass- or phase weighted average velocities obtained solving the two-fluid
model. This discrepancy is an argument for the formulation of a mass density
population balance instead of a number balance to achieve a consistently
integrated population balance within the two-fluid modeling framework.

We may also perform standard Reynolds decomposition of the variables
and then time average the equation. The typical low order turbulence model-
ing of the resulting covariance terms gives rise to diffusive terms in the balance
equation [25]. The physics involved in these terms is, however, not understood
making this modeling issue a challenging task:

〈f (1)(x, t)〉 〈vr〉 = 〈f (1)(x, t)〉 〈vr〉 + 〈f (1)(x, t)〉′〈vr〉′ (9.64)

and
〈f (1)(x, t)〉 〈vx〉 = 〈f (1)(x, t)〉 〈vx〉 + 〈f (1)(x, t)〉′〈vx〉′ (9.65)

If an appropriate relation for the contact area as a function of the inter-
nal coordinates is available, the particle growth term due to interfacial mass
transfer can be modeled in accordance with the well known film theory (al-
though still of semi-empirical nature) and the ideal gas law [68]. The modeling
of the source and sink terms due to fluid particle breakage and coalescence is
less familiar and still on an early stage of development. Moreover, the existing
theory is rather complex and not easily available. Further research is thus
needed in order to derive consistent multifluid-population balance models.

The Continuous Source Term Closures

In this section the conventional macroscopic continuum source term closures
are presented and the standard constitutive relations are examined.
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A fairly general framework has been formulated for the source terms con-
sidering particle breakage, fluid particle coalescence, solid particle agglomera-
tion/aggregation and similar processes (e.g., [109, 80, 81, 37, 114, 43, 25, 94]).
Detailed discussions of the particle breakage and coalescence modeling and
the mathematical properties of the constitutive equations can be found in the
papers by Barrow [4], Laurencot and Mischler [64, 65].

Considering the breakage terms, the physical breakage of the different
particles are assumed to be independent of each other. The average loss rate
of particles of state (x, r) per unit time by breakage is normally written as:

DB(x, r,Y, t) = bB(x, r,Y, t)f (1)(x, r, t) (9.66)

where bB(x, r,Y, t) has the dimension of reciprocal time (1/s) and is often
called the breakage frequency. It represents the fraction of particles of state
(x, r) breaking per unit time. The breakage processes are often considered of
random nature, thus the modeling work usually adopt probabilistic theory.

The average production rate for particles of state (x, r) originating from
breakage of particles of all other particles states, considering both internal
and external coordinates is frequently given by [94]:

BB(x, r,Y, t) =
∫

Vr,SV

∫

Vx,SV

ν(x′, r′,Y, t)bB(x′, r′,Y, t)PB(x, r|x′, r′,Y, t)f (1)(x′, r′, t)dV ′
rdV

′
x

(9.67)

where ν(x′, r′,Y, t) denotes the average number of particles formed from the
breakage of a single particle of state (x′, r′) in an environment of Y at time
t. PB(x, r|x′, r′,Y, t) designates the probability density function for creating
particles that have state (x, r) from the breakage of a particle of state (x′, r′)
in an environment of state Y at time t. In the engineering literature it is
commonly referred to as the daughter particle size distribution function [i.e.,
being a probability density with units (1/m3[x])] denoting the size distribution
of daughter particles produced upon breakage of a parent particle.

The integrand on the RHS represents the rate of formation of particles
of state (x, r) formed by breakage of particles of state (x′, r′). That is, the
number of particles of state (x′, r′) that breaks per unit time is
bB(x′, r′,Y, t)f (1)(x′, r′, t)dV ′

rdV
′
x. Multiplying the above expression by

ν(x′, r′,Y, t) gives the number of new particles resulting from the breakage
processes ν(x′, r′,Y, t) bB(x′, r′,Y, t) f (1)(x′, r′, t) dV ′

rdV
′
x of which a fraction

PB(x, r|x′, r′,Y, t)dV ′
rdV

′
x represents particles of state (x, r).

The probability density function PB must satisfy the normalization con-
dition (in the internal coordinates):

∫

Vx,SV

PB(x, r|x′, r′,Y, t) dV ′
x = 1 (9.68)
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Usually binary breakage is assumed for which ν(x′, r′,Y, t) = ν = 2. However,
experimental determination of this variable is recommended. The function
PB(x, r|x′, r′,Y, t) should also be determined from experimental observations.

In addition, the ν(x′, r′,Y, t) and PB(x, r|x′, r′,Y, t) functions are not
really independent, so it might be more convenient to define a breakage yield
redistribution function as follows:

HB(x, r|x′, r′,Y, t) = ν(x′, r′,Y, t)PB(x, r|x′, r′,Y, t) (9.69)

Dorao [18] and Dorao et al [19] introduced this function considering that (9.69)
should reflect the property that:

∫ x′

0

HB(x, r|x′, r′,Y, t)xNdx = x′N (9.70)

where N represents the moment of the parent particle properties that are
conserved.

In (9.67) the integral in physical space is strictly not appropriate as it
is based on the assumption that a parent particle that is breaking at one
location in physical space can produce daughter particles that occur elsewhere.
It is obvious that the birthplace of the daughter particles should be at the
same location as the parent particle did break. Ramkrishna [94](p 57) briefly
mentioned this model limitation and that the given source term formulations
have to be re-written for problems represented in the external coordinates. For
this reason we have to extend the presentation requiring that the the breakage
is a local phenomena in physical space. An appropriate modification can be
obtained by introducing a Dirac delta function δ(r′ − r) within the physical
space integral argument in the given source term definition. The breakage
source term is then be reduced to:

BB(x, r,Y, t) =
∫

Vx,SV

ν(x′, r,Y, t)bB(x′, r,Y, t)PB(x, r|x′, r,Y, t)f (1)(x′, r, t)dV ′
x

(9.71)

in which PB(x, r|x′, r,Y, t) is the daughter size distribution function ( 1
[x] ).

The population balance source term due to coalescence is usually defined
as [94]:

BC(x, r,Y, t)

=
∫

Vr,SV

∫

Vx,SV

1
δ
aC(x̃, r̃;x′, r′,Y)f (2)(x̃, r̃;x′, r′, t)

∂(x̃, r̃)
∂(x, r)

∣

∣

∣

∣

x′,r′
dV ′

xdV
′
r

(9.72)

where δ represents the number of times identical pairs have been considered
in the interval of integration, thus 1

δ corrects for the redundancy.
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aC(x̃, r̃;x′, r′,Y, t) denotes the coalescence frequency or the fraction of
particle pairs of states (x̃, r̃) and (x′, r′) that coalesce per unit time (1/s).
The coalescence frequency is defined for an ordered pair of particles, although
from a physical viewpoint the ordering of particle pairs should not alter the
value of the frequency. In other words, aC(x̃, r̃;x′, r′,Y, t) satisfies a symme-
try property: aC(x̃, r̃;x′, r′,Y, t) = aC(x′, r′; x̃, r̃,Y, t). It is thus essential to
consider only one of the above order for a given pair of particles.

In order to proceed, it is necessary to assume that it is possible to solve
for the particle state of one of the coalescing pair given those of the other
coalescing particle and the new particle (as the three variables are not inde-
pendent). Thus, given the state (x, r) of the new particle, the state (x′, r′) of
one of the two coalescing particles, the states of the other coalescing particle
are known and denoted by [x̃(x, r|x′, r′), r̃(x, r|x′, r′)].

As in the classical kinetic theory of gases, the pair density function f (2) is
impossible to determine analytically and some closure approximation has to
be made. In the population balance derivation we normally adopt a com-
mon assumption in kinetic theory and makes the coarse approximation:
f (2)(x̃, r̃;x′, r′, t) ≈ ˜f (1)(x̃, r̃, t)f

′(1)(x′, r′, t). This assumption implies that
there is no statistical correlation between particles of states (x′, r′) and (x̃, r̃)
at any instant t.

Again, as for the breakage source term, the integral in physical space is not
appropriate for the coalescence source term neither as the present model is
based on the assumption that two particles that are coalescing at a particular
location in space can produce a new larger particle elsewhere. It is obvious
that the birthplace of the particle should be at the same location as the parent
particles did coalesce. Again, we may extend the given model requiring that
coalescence is a local phenomena in physical space. This modification can be
achieved by introducing a Dirac delta function δ(r′ − r) within the physical
space integral argument in the given source term definition.

The coalescence source term is then reduced to:

BC(x, r,Y, t) =
∫

Vx,SV

1
δ
aC(x̃, r;x′, r,Y)f (2)(x̃, r;x′, r, t)

∂(x̃, r)
∂(x, r)

∣

∣

∣

∣

x′,r

dV ′
x

(9.73)

in which aC(x̃, r;x′, r,Y) denotes the coalescence frequency or the fraction of
particle pairs of states (x̃, r) and (x′, r) that coalesce per unit time multiplied
by a differential volume (m3/s). This quantity coincides with the quantity
referred to as the swept volume rate of the particle in the discrete macroscopic
PBE formulation.

The sink term due to coalescence is usually defined as:

DC(x, r,Y, t) =
∫

Vr,SV

∫

Vx,SV

aC(x′, r′;x, r,Y)f (2)(x′, r′;x, r, t)dV ′
xdV

′
r (9.74)
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As for the integral source terms considered hitherto, the integral in physical
space is not appropriate as it is based on the assumption that two particles
that coalesce at a particular location in space can produce a larger particle
elsewhere. Following the same procedure as described above, the sink term
due to coalescence can be re-defined as:

DC(x, r,Y, t) =
∫

Vx,SV

aC(x′, r;x, r,Y)f (2)(x′, r;x, r, t)dV ′
x (9.75)

To examine the derivation of the population balance source terms, the
bubble diameter is henceforth chosen as the only internal coordinate (i.e.,
x = d) as it is the most frequent choice.

The local source terms are listed below:

BB(d, r,Y, t) =

∞
∫

d

ν(d′, r,Y) bB(d′, r,Y) PB(d, r|d′, r,Y) f
′(1)(d′, r, t) dd′

(9.76)
DB(d, r,Y, t) = bB(d, r,Y) f (1)(d, r, t) (9.77)

BC(d, r,Y, t) =
1
2

d
∫

0

aC(d̃, r; d′, r,Y) ˜f (1)(d̃, r, t) f
′(1)(d′, r, t) dd′, (9.78)

DC(d, r,Y, t) =

∞
∫

0

f (1)(d, r, t)aC(d, r; d′, r,Y) f
′(1)(d′, r, t) dd′ (9.79)

All the source terms still have the common units, (1/sm3[m]).
Comparing the source term expressions (9.76) to (9.79) with (9.2) to (9.5)

it is clearly seen that only under particular conditions will the two formula-
tions give rise to identical expressions for the source terms. The macroscopic
formulation is explicitly expressed in terms of a discrete discretization scheme
and is very difficult to convert to other schemes.

In the following sections examining the source term parameterizations,
emphasis will be put on a selected number of the novel closures suitable for
bubbly flow modeling.

Coalescence Frequency Closures, aC(d, r; d′, r, Y)

Intuitively, bubble coalescence is related to bubble collisions. The collisions
are caused by the existence of spatial velocity difference among the particles
themselves. However, not all collisions necessarily lead to coalescence. Thus
modeling bubble coalescence on these scales means modeling of bubble colli-
sion and coalescence probability (efficiency) mechanisms. The pioneering work
on coalescence of particles to form successively larger particles was carried out
by Smoluchowski [109, 110].
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The more recent coalescence closures that were formulated directly within
the macroscopic framework [77, 113, 92, 73] are frequently transformed and
expressed in terms of probability densities and used within the average micro-
scopic balance framework without further considerations employing a discrete
numerical discretization scheme.

As for the collision density in the macroscopic model formulation, the
average collision frequency of fluid particles is usually described assuming
that the mechanisms of collision is analogous to collisions between molecules
as in the kinetic theory of gases. The volume average coalescence frequency,
aC(d; d′,Y), can thus be defined as the product of an effective swept volume
rate hC(d; d′,Y) and the coalescence probability, pC(d; d′,Y) (e.g., [16, 92,
114, 39, 46, 118]):

aC(d, r; d′, r,Y) = hC(d, r; d′,Y)pC(d, r; d′,Y)
(

m3

s

)

(9.80)

This relation expresses that not all collisions lead to coalescence. The modeling
of the coalescence processes thus means to find adequate physical expressions
for hC(d; d′,Y) and pC(d; d′,Y). Kamp et al [39], among others, suggested
that microscopic closures can be formulated in line with the macroscopic pop-
ulation balance approach, thus we may define:

hC(d, r; d′,Y) =
π

4
(d + d′)2(v̄2

t,d + v̄2
t,d′) (

m3

s
) (9.81)

and
pC(d, r; d′,Y) = exp(−Δtcoal

Δtcol
) (−) (9.82)

where suitable continuous closures are needed for the model variables like
the mean turbulent bubble approach velocities and the time scales. Multi-
fluid models may provide improved estimates for the mean turbulent bubble
approach velocities as individual velocity fields for each of the bubble phases
are calculated. However, the existing closures for the time scales are very crude
and need further considerations.

The coalescence terms in the average microscopic population balance can
then be expressed in terms of the local effective swept volume rate and the
coalescence probability variables:

BC(d, r,Y, t) =
1
2

d
∫

0

hC(d̃, r; d′,Y) pC(d̃, r; d′,Y) ˜f (1)(d̃, r, t) f
′(1)(d′, r, t) dd′

(9.83)

DC(d, r,Y, t) = f (1)(d, r, t)

∞
∫

0

hC(d, r; d′,Y) pC(d, r; d′,Y) ˜f (1)(d̃, r, t) dd′

(9.84)
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It is noted that all the terms in the continuum population balance equation
have common units, (1/m3s[m]). By discretizing the continuous bubble num-
ber density in groups or classes, a PBE formulation equivalent to the discrete
macroscopic framework is obtained.

Models for the Breakage Frequency, bB(d, r)

Formulating average microscopic source term closure laws for the breakage
processes usually means to derive relations for the time after volume average
breakage frequency, bB(d), the average number of daughter bubbles produced,
ν, and the average daughter particle size distribution, PB(d|d′).

During the last decades a few models have been developed for the bub-
ble breakage frequency, bB(d), under turbulent conditions ([58, 119]). Several
different categories of breakage frequency models are distinguished in the lit-
erature; models based on reaction kinetic concepts (e.g., [101]), phenomeno-
logical models based on the turbulent nature of the system (e.g., [114]), and
models based based on purely kinematic ideas (e.g., [78, 79]).

In an interesting attempt to overcome the limitations found in the tur-
bulent breakage models described above Mart́ınez-Bazán et al [78] (see also
Lasheras et al [58]) proposed an alternative model in the kinetic theory (mi-
croscopic) framework based on purely kinematic ideas to avoid the use of the
incomplete turbulent eddy concept and the macroscopic model formulation.

The basic premise of the model of Mart́ınez-Bazán et al [78] is that for
a bubble to break, its surface has to be deformed, and further, that this
deformation energy must be provided by the turbulent stresses produced by
the surrounding fluid. The minimum energy needed to deform a bubble of size
d is its surface energy,

Es(d) = πσId
2 (J) (9.85)

The surface restoring pressure is (Es/volume)

σs(d) =
6Es

πd3
= 6

σI

d
(Pa). (9.86)

The size of these bubbles is assumed to be within the inertial subrange of
turbulence, thus the average deformation stress, which results from velocity
fluctuations existing in the liquid between two points separated by a distance
d, was estimated as:

σt(d) =
1
2
ρcΔv2(d) (Pa) (9.87)

where Δv2(d) is the mean value of the velocity fluctuations between two points
separated by a characteristic distance d, and ρc is the density of the continuous
phase.

When the turbulent stresses are equal to the confining stresses, σt(d) =
σs(d), a critical diameter, dc, is defined such that bubbles with d < dc are
stable and will not break. A bubble d > dc has a surface energy smaller
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than the deformation energy σs(d) < σt(d), and thus, the bubble deforms
and may eventually breaks up in a time tb. Mart́ınez-Bazán et al [78] applied
Kolmogorov’s universal theory valid for homogeneous and isotropic turbu-
lent flow to estimate the mean value of the velocity fluctuations, Δv2(d) =
C(εd)2/3.

The critical diameter, dc = (12σI

Cρ )3/5ε−2/5, is defined by the crossing point
of the two curves determined by σs(d) and σt(d). Mart́ınez-Bazán et al [78]
postulated in accordance with Newton’s law that the acceleration of the bub-
ble interface during deformation is proportional to the difference between the
deformation and confinement forces acting on it. In other words, the prob-
ability of breaking a bubble of size d in time tb increases as the difference
between the pressure produced by the turbulent fluctuations on the surface of
the bubble, 1

2ρcΔv2(d), and the restoring pressure caused by surface tension,
6σI/d, increases. On the other hand, the breakage frequency should decrease
to a zero limit value as this difference of pressures vanishes. Thus, the bubble
breakage time can be estimated as:

tb ∝
d

vbreakage
=

d
√

Δv2(d) − 12 σI

ρcd

(s) (9.88)

where vbreakage is the characteristic velocity of the bubble breakage process.
The breakage frequency bB(d, ε) is given by:

bB(d, ε) =
1
tb

= Kg

√

Δv2(d) − 12 σI

ρcd

d
= Kg

√

β(εd)2/3 − 12 σI

ρcd

d
(9.89)

the constant C = 8.2 and the parameter Kg = 0.25 was found experimen-
tally for bubbly flows.

The breakage frequency is zero for bubbles of size d ≤ dc, and it increases
rapidly for bubbles larger than the critical diameter, d > dc. After reaching
a maximum at dbB ,max = (9/4)3/5dc ≈ 1.63dc, the breakage frequency de-
creases monotonically with the bubble size. The maximum breakage frequency,
achieved at dbB ,max, is given by bB,max(ε) = 0.538KgC

1/2ε3/5(12 σI

ρcβ )−2/5.
Although this approach avoids the eddy concept, it is still restricted to ho-

mogeneous and isotropic turbulent flows, it contains several hypotheses that
are not verified yet for bubble column flows, and contains a few additional ad-
justable parameters that need to be fitted to many sets of experimental data.
Furthermore, this model concept was originally applied to systems (i.e., tur-
bulent water jets, see e.g., Mart́ınez-Bazán et al [78, 79]; Rodr̀ıguez-Rodr̀ıguez
et al [100]; Eastwood et al [22]) where the turbulent dissipation rates are 2-3
orders of magnitude larger than what are observed in bubble columns. The
bubble sizes considered were also very small, up to about 1 (mm) only. On the
other hand, after careful investigations of the turbulent breakage processes in
bubble columns it may be possible to extend the application of this approach
to bubble column systems. The experimental techniques developed investigat-
ing breakage of bubbles on the centerline within the fully developed region of
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turbulent water jets [100, 22] may initiate ideas on how to study these phe-
nomena in bubble columns. The digital image-processing techniques used in
these studies [100, 22] gives satisfactory results in very dilute two-phase flows,
but the method is still questionable when the bubble concentration increases
considerably as for bubble columns operated in the heterogeneous flow regime.

A severe drawback for the integrated two-fluid/population balance models
is that all the kernels suggested in the literature are very sensitive to the
turbulent energy dissipation rate (ε). As mentioned earlier, the local ε variable
is difficult to calculate from the k-ε turbulence model since the equation for
the dissipation rate merely represents a fit of a turbulent length scale to
single phase pipe flow data. Therefore, further work is needed elucidating the
mechanisms of bubble breakage in turbulent flows. However, an alternative
to the eddy concept has been reported which may make the work on model
validation easier. Perhaps the greatest advantages lies in the fact that this
closure is formulated in the average microscopic modeling framework avoiding
the limitations of the macro scale formulation.

It is finally remarked that working with the macroscopic and average mi-
croscopic model formulations, care should be taken as the discrete macroscopic
breakage rate models (ΩB(di)) are sometimes erroneously assumed equal to
the average microscopic breakage frequency bB(b).

Number of Daughter Bubbles Produced, ν

In the average microscopic formulations this parameter determines the average
number of daughter bubbles produced by breakage of a parent bubble of size
d. The breakage of parent bubbles into two daughter bubbles is assumed in
most investigations reported (ν = 2).

In a recent paper Risso and Fabre [99] observed that the number of frag-
ments depended on the specific shape of the parent bubble during the de-
formation process and varies in a wide range. In their experiments a video
processing technique was used making studies of two groups of bubbles, one
group being of sizes in the range between 2 − 6 mm and the other of sizes in
the range 12.4− 21.4 mm. Two fragments were obtained in 48% of the cases,
between 3 to 10 in 37% of the cases, and more than 10 fragments in 15% of
the cases. The breakage process is certainly not purely binary. Implementing
this effect instead of binary breakage is expected to significantly alter the
number of smaller bubbles and the interfacial area concentration predicted by
the population balance equation.

The experimental data of Risso and Fabre [99] also indicate that an equal
size daughter distribution is more common for bubble breakage than an un-
equal one. Contrary, Hesketh et al [33, 34] investigated bubble breakage in
turbulent flows in horizontal pipes and concluded that an unequal size daugh-
ter distribution is more probable than an equal size one. The daughter bubble
size distribution model of Luo and Svendsen [74] rely on the assumption that
unequal sized is more probable than equal size breakage in accordance with
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the observations by Hesketh et al, as will be discussed in the next section.
The deviating experimental observations indicate that further experimental
investigations are needed determining reliable correlations for what physical
systems and under which flow conditions the equal- and unequal breakage
outcomes occur.

Daughter Particle Distribution, PB(d, r|d′)

Among the papers adopting the average microscopic formulation, two of the
earliest models for the daughter particle size distribution were proposed by
Valentas et al [115, 116]. The daughter particle probability distribution func-
tions suggested by Valentas et al [115, 116] were purely statistical relations.
The first was a discrete model, in which a parent particle of diameter d is
assumed to split into equally sized daughter particles of diameter d/ν, where
ν is the number of daughter particles formed. The second model proposed
by Valentas et al is a logical, continuous analogue of the discrete daughter
particle pdf. In this case it is assumed that the daughter particle sizes are
normally distributed about a mean value.

Ross and Curl [101], Coulaloglou and Travlarides [16] and Prince and
Blanch [92] argued that the particle breakage frequency should be a function
of the difference in surface energy between a parent particle and the daugh-
ter particles produced, and the kinetic energy of a colliding eddy. Although
Ross and Curl [101], Coulaloglou and Travlarides [16] and Prince and Blanch
[92] developed more physical models for the particle breakage frequency, the
daughter particle size distributions still relied upon statistical relations.

Among the most widely used phenomenological models based on surface
energy considerations is the one proposed by Tsouris and Tavlarides [114].
Their expression for the daughter particle pdf yields:

PB(d|d′) =
emin + [emax − e(d′)]

d
∫

dmin

emin + [emax − e(d′)]dd′

(

1
[m]

)

(9.90)

Considering binary breakage only, Tsouris and Tavlarides [114] postulated
that the probability of formation of a daughter particle of size d′ is inversely
proportional to the energy required to split a parent particle of size d into a
particle of size d′ and its complementary particle of size d̃ = (d3 − d

′3)1/3.
This energy requirement is proportional to the excess surface area gener-

ated by splitting the parent particle:

e(d′) = πσId
′2 + πσI d̃

2 − πσId
2 = πσId

2[(
d′

d
)2 + [1 − (

d′

d
)3]2/3 − 1] (9.91)

To avoid the singularity present in their daughter size distribution model
for d′ = 0 (i.e., the parent particle does not break), a minimum particle
size was defined, dmin. The excess surface area relation reaches a minimum
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value when a particle of minimum diameter, dmin, and a complementary one
of maximum size, dmax = (d3 − d3

min)1/3, are formed. The minimum energy,
emin, is given by:

e(dmin) = πσId
2[(

dmin

d
)2 + [1 − (

dmin

d
)3]2/3 − 1] (9.92)

This gives a minimum probability for the formation of two particles of the
same size, and a maximum probability for the formation of a pair made up
of a very large particle and a complementary very small one. The maximum
energy corresponding to the formation of two particles of equal volumes or of
diameters d′ = (d3 − d

′3)1/3 = d/21/3 is emax = πσId
2[21/3 − 1].

Luo and Svendsen [74] derived a discrete expression for the breakage den-
sity of a particle of diameter di into two daughter particles of size dj and
(d3

i − d3
j )

1/3 respectively, using energy arguments similar to those employed
by Tsouris and Tavlarides [114].

The significant difference between the Luo and Svendsen [74] model and its
predecessors is that it gives both a partial breakage rate, that is, the breakage
rate for a particle of size di splitting into a particle of size dj and its comple-
mentary bubble, and an overall breakage rate. The previous surface energy
models provided only an overall breakage rate. An expression for the daughter
particle size distribution function can thus be calculated by normalizing the
partial breakage rate by the overall breakage rate. As mentioned earlier, this
variable was not required for the population balance closure but is rather a
spin-off from the primary closures.

The Luo and Svendsen daughter particle size distribution is thus deter-
mined from the expression:

PB(di|dj) =
ΩB(di : dj)
ΩB(di)

(−) (9.93)

Note that the units of the discrete daughter bubble size distribution vari-
able are different from the units obtained deriving the continuous daughter
size distribution function from the microscopic formulations (1/[m]). It is thus
not trivial how to adopt the model of Luo [73] within a more fundamental
modeling approach.

However, like the model of Tsouris and Tavlarides [114], the model of
Luo and Svendsen [74] predicted that the probability of breaking a parent
particle into a very small particle and a complementary large particle is larger
than the probability of equal size breakage, Fig 9.5. The distribution has a
U -shape, with a minimum probability for the formation of two equally sized
daughter particles and a maximum probability for the formation of a very
large daughter particle and its complement dmin.



850 9 The Population Balance Equation

Fig. 9.5. A sketch of the breakage kernel of Luo and Svendsen [74]. An unequal
daughter size distribution is predicted by this model. In this case the parent diameter
size is, di = 0.006 (m), and the turbulent energy dissipation rate is set at, ε = 1
(m2/s3). Reprinted with permission from [38]. Copyright 2005 American Chemical
Society.

Although Hinze [36] and Risso and Fabre [99], among others, showed and
discussed the diversity of shapes of the bubbles that can be found in turbulent
flows, at present sufficient experimental data does not exist in the literature
to assist in developing adequate daughter bubble probability density functions
valid for bubble columns.

In an attempt to overcome the limitations found in the models for the
daughter particle size distribution function described above based on the eddy
collision concept, Mart́ınez-Bazán et al [79] proposed an alternative statistical
model based on energy balance principles. The model was originally intended
for the prediction of air bubble breakage at the centerline of a high Reynolds
number, turbulent water jet. It was assumed that when an air bubble is in-
jected into the turbulent water jet, the velocity fluctuations of the underlying
turbulence result in pressure deformation forces acting on the bubble’s sur-
face that, when greater than the confinement forces due to surface tension,
will cause breakage.
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The model assumes that when a parent particle breaks, two daughter par-
ticles are formed (ν = 2) with diameters d′ and (d3 − d

′3)1/3. The validity of
this assumption is supported by high-speed video images, given by Mart́ınez-
Bazán et al [79]. The diameters are related through the conservation of mass,
(d3−d

′3)1/3 = d[1−(d′

d )3]1/3. The particle-splitting process was not considered
purely random, as the pressure fluctuations and thus the deformation stress
(σt) in homogeneous and isotropic turbulence are not uniformly distributed
over all scales. It was further assumed that there is a minimum distance, dmin,
over which the turbulent stresses acting between two points separated by this
distance, 1

2ρcC(εdmin)2/3, are just equal to the confinement pressure due to
surface tension: σt(dmin) = σs(d). In other words, at this distance, the tur-
bulent pressure fluctuations are exactly equal to the confinement forces for a
parent particle of size d. The probability of breaking off a daughter particle
with d′ < d′min = ( 12σI

Cρcd )3/2ε−1 should therefore be zero.
The fundamental postulate of the Mart́ınez-Bazán et al [79] model is that

the probability of splitting off a daughter particle of any size such that d′min <
d′ < d is proportional to the difference between the turbulent stresses over
a length d′ and the confinement forces holding the parent particle of size d
together. For the formation of a daughter particle of size d′, the difference
in stresses is given by Δσt,d′ = 1

2ρcC(εd′)2/3 − 6σI/d. For each daughter
particle of size d′, a complementary daughter particle of size (d3 − d

′3)1/3 is
formed with a difference of stresses given by Δσt,(d3−d′3)1/3 = 1

2ρcC(ε(d3 −
d

′3)1/3)2/3 − 6σI/d.
The model states that the probability of forming a pair of complementary

daughter particles of size d′ and (d3 − d
′3)1/3 from splitting a parent particle

of size d is related to the product of the excess stresses associated with the
length scales corresponding to each daughter particle size. That is,

PB(d/d′) ∝ [
1
2
ρcC(εd′)2/3 − 6σI/d][

1
2
ρcC(ε(d3 − d

′3)1/3)2/3 − 6σI/d]. (9.94)

Relating d′ and (d3 −d
′3)1/3 through the mass balance given above yields:

PB(d/d′) ∝ (
1
2
ρcC(εd)2/3)2[(d′/d)2/3− (dc/d)5/3][(1− (d′/d)3)2/9− (dc/d)5/3]

(9.95)
or

PB(d∗) ∝ (
1
2
ρcC(εd)2/3)2[d2/3 − Λ5/3][(1 − d3)2/9 − Λ5/3] (9.96)

where Λ = dc/d, dc is the critical diameter defined as dc = (12σI

Cρc
)3/5ε−2/5.

The critical parent particle diameter defines the minimum particle size
for a given dissipation rate of turbulent kinetic energy for which breakage
can occur. The minimum daughter diameter defines the distance over which
the turbulent normal stresses just balance the confinement forces of a parent
particle of size d. The minimum diameter, therefore, gives the minimum length
over which the underlying turbulence can pinch off a piece of the parent
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particle. This length is not arbitrarily selected, rather, its determination is
based on kinematics.

This model further assumes that the size of the parent particles is in the
inertial subrange of turbulence. Therefore, it implies that dmin ≤ d′ ≤ dmax

provided that dmin > λd, where λd is the Kolmogorov length scale of the
underlying turbulence. Otherwise, dmin is taken to be equal to λd. However,
no assumption needs to be made about the minimum and maximum eddy size
that can cause particle breakage. All eddies with sizes between the Kolmogorov
scale and the integral scale are taken into account.

The daughter particle probability density function can be obtained from
the probability expression given above by utilizing the normalization condi-

tion:
d∗
max
∫

d∗
min

P (d∗)d(d∗) = 1.

The pdf of the ratio of diameters d∗ = d′/d, P ∗
B(d∗), can then be written

as:

P ∗
B(d∗) =

[d∗2/3 − Λ5/3][(1 − d∗3)2/9 − Λ∗5/3]
d∗
max
∫

d∗
min

[d∗2/3 − Λ5/3][(1 − d∗3)2/9 − Λ∗5/3]d(d∗)

(−) (9.97)

Note that PB(d′|d) = P ∗
B(d∗)/d, Λ = dc/d = (dmin/d)2/5.

Contrary to the collision based phenomenological models for the daughter
particle size distribution, this model predicts a symmetric distribution with
the highest probability for equal size particle breakage in accordance with the
pure statistical model of Konno et al [44], Fig 9.6.

In general, purely statistical models for the daughter particle size distribu-
tion lack physical support. As for the breakage frequency models, the existing
daughter particle size models based on the eddy collision arguments rely on
the assumption that turbulence consists of a collection of eddies that can be
treated using relationships from the kinetic theory of gases. Mart́ınez-Bazán et
al [79], on the other hand, made a first approach developing an average micro-
scopic kinematic/statistical model, where the physics where included through
a daughter size distribution function expressed based on kinematic arguments.
Alternatively, one may develop kinematic/statistical models where an effective
daughter size distribution function represents an average of a large number
of simulations of the physical breakage phenomena for a series of operating
conditions.

The deviating experimental observations reported in the literature indi-
cate that further experimental investigations are needed determining reliable
correlations for which physical systems and under which flow conditions the
equal- and unequal breakage outcomes occur.
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Fig. 9.6. A sketch of the breakage kernel of Konno et al [44]. An equal daughter size
distribution is predicted by this model. The kernel by Mart́ınez-Bazán et al [79] is
quite similar to this one, but the shape of the profile is a little different close to the

minimum and maximum d
′3

d3 values. Reprinted with permission from [38]. Copyright
2005 American Chemical Society.

9.1.3 The Statistical Mechanical Microscopic Population Balance
Formulation

The statistical description of multiphase flow is developed based on the Boltz-
mann theory of gases [37, 121, 93, 11, 94, 58, 61]. The fundamental variable is
the particle distribution function with an appropriate choice of internal coor-
dinates relevant for the particular problem in question. Most of the multiphase
flow modeling work performed so far has focused on isothermal, non-reactive
mono-disperse mixtures. However, in chemical reactor engineering the indus-
trial interest lies in multiphase systems that include multiple particle types
and reactive flow mixtures, with their associated effects of mixing, segregation
and heat transfer.

Defining a single distribution function, p(x, r, c, t)dxdrdc, as the probable
number of particles with internal coordinates in the range dx about x, located
in the spatial range dr about the position r, with a velocity range dc about c,
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at time t. A Boltzmann-type equation can be written to describe the temporal
and spatial rate of change of the single distribution function, p:

∂p

∂t
+∇r ·(cp)+∇c ·(Fp) = −∇x ·({

dx
dt

}p)+B′
B −D′

B +B′
C −D′

C +S′ (9.98)

where the rates of change of p with time due to breakage and coalescence are
denoted by B′

B−D′
B +B′

C−D′
C with units (1/[x](r)ms−1). The force per unit

mass acting on a particle is denoted by F, and the rate of change with time of
its internal coordinates is given by: vx. S′ represents the rate of change of the
distribution function caused by collisions which do not result in coalescence
(i.e., rebound). Integrating over the whole particle velocity space to eliminate
the particle velocity dependence, one obtains the following equation:

∂f

∂t
+ ∇r · (vrf) = −∇x · (vxf) + BB −DB + BC −DC

(

1
[x][r]s

)

(9.99)

where

f(x, r, t) =

∞
∫

−∞

pdc. (9.100)

The single distribution function f(x, r, t)dxdr thus denotes the probable num-
ber of particles within the internal coordinate space in the range dx about x,
in the external (spatial) range dr about r at time t. vr is the mean velocity of
all particles of properties x at a location r at time t. The velocity independent
birth and death terms are defined by:

BB −DB + BC −DC =

∞
∫

−∞

(B′
B −D′

B + B′
C −D′

C)dc. (9.101)

Integrating the force term over the whole velocity space no net contribution
appears explicitly in the population balance equation since the distribution
function vanishes as the velocity approaches ±∞. Furthermore, the S′-term
vanishes in the average equation as the number of particles is conserved dur-
ing the rebound processes. Note, however, that the two last mentioned terms
have direct effects on the size distribution as an consistent multi-fluid model
developed from the Boltzmann equation (i.e., a granular model based on the
population balance distribution function) would contain additional momen-
tum transfer terms due to particle bouncing (e.g., a particle pressure contri-
bution) and particle interactions with the wake of proceeding bubbles. These
phenomena may also affect the coalescence and breakage processes, and may
be accounted for by the corresponding closure laws.

To close the population balance problem, models are required for the
growth, birth and death kernels. In the kinetic theory context, as distinct
from the continuum mechanical approach, the continuum closure may be con-
sidered macroscopic in a similar manner as in the granular theory treating
macroscopic particle properties.
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Using Particle Diameter as Inner Coordinate

For non-reactive, isothermal, particle mixtures it is customary to assume that
all the relevant internal variables can be calculated in some way from the
particle volume or diameter. It is natural to use the particle diameter as
inner coordinate for the population balance analysis because this choice of
inner coordinate coincides with the classical kinetic theory of gases. This inner
coordinate is especially useful describing solid particle and incompressible fluid
particle dispersions. A statistical description of dispersed multiphase flow can
then be obtained by means of a distribution function fdp

(dp, r, t), defined so
that the number of particles with diameters in the range dp and dp + d(dp),
located in a volume dr around a spatial location r at time t is f(dp, r, t)d(dp)dr.

In this case the population balance (9.99) is usually expressed as:

∂f

∂t
+ ∇r · (vf) = −∂(Gf)

∂dp
+ BB −DB + BC −DC

(

1
[m](r)s

)

(9.102)

where G is a particle growth rate (m/s).
To close the population balance problem, models are required for the

growth, birth and death kernels. It is required that these kernels are con-
sistent with the inner coordinate used. The coalescence and breakage kernels
presented in this chapter are expressed in terms of the particle diameter.

Using Particle Mass as Inner Coordinate

For flows where compressibility effects in a gas are important the use of the
particle mass as internal coordinate may be advantageous because this quan-
tity is conserved under pressure changes [11]. In this approach it is assumed
that all the relevant internal variables can be derived from the particle mass,
so the particle number distribution is described by the particle mass, position
and time. Under these conditions, the dispersed phase flow fields are charac-
terized by a single distribution function f(m, r, t) such that f(m, r, t)drdm is
the number of particles with mass between m and m+dm, at time t and within
dr of position r. Notice that the use of particle diameter and particle mass as
inner coordinates give rise to equivalent population balance formulations in
the case of describing incompressible fluids.

By taking the mass moments of the distribution function we define the
following important multiphase flow parameters. The particle number density:

N(r, t) =

∞
∫

0

f(m, r, t)dm; (9.103)

The interfacial area density:

a(r, t) =

∞
∫

0

a(m, r)f(m, r, t)dm; (9.104)
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where a(m, r) is the interfacial area of a particle having mass m at the
location r.

The particle mass density:

ρm
p (r, t) = ρp(r, t)εp(r, t) =

∞
∫

0

mf(m, r, t)dm. (9.105)

The dispersed phase volume fraction is related to the mass density by:

εp(r, t) =
ρm

p (r, t)
ρp(r, t)

=
ρp(r, t)εp(r, t)

ρp(r, t)
(9.106)

where ρp(r, t) is the local particle density which includes the effects of local
pressure.

Assuming that the particle velocity for a given size is known, v =
v(m, r, t), one may express a Boltzmann type of transport equation for the
single distribution function:

∂f(m, r, t)
∂t

+ ∇r · [vr(m, r, t)f(m, r, t)] +
∂

∂m
[
dm

dt
f(m, r, t)] =

BB(m, r, t) −DB(m, r, t) + BC(m, r, t) −DC(m, r, t)
(

1
[kg]m3s

) (9.107)

where BB(m, r, t), DB(m, r, t), BC(m, r, t) and DC(m, r, t) are the corre-
sponding birth and death terms due to particle breakage and coalescence.
The third term on the left hand side is related to the mass change of the
particle that is caused by condensation, evaporation or dissolution.

Considering binary interactions only, as were assumed in the previous sec-
tion, the particle breakage terms can be written as:

BB(m, r, t) =

∞
∫

m

b(m,m′′;m′)f(m′, r, t)dm′ =

∞
∫

m

b(m,m′−m;m′)f(m′, r, t)dm′

(9.108)

DB(m, r, t) =

m
∫

0

b(m,m′′;m′)f(m, r, t)dm′ =

m
∫

0

b(m,m′−m;m′)f(m, r, t)dm′

(9.109)
where b(m,m′′;m′) is the breakage frequency and represents the probability
per unit time and mass that a particle of mass m′ splits creating a particle
of mass m′′ and a particle of mass m. As no mass is lost or gained in the
breakage (and coalescence) processes, we have used the mass conservation
principle m′ = m′′ + m to rewrite the particle breakage terms.

The corresponding coalescence terms yield:

BC(m, r, t) =
1
2

m
∫

0

ωC(m−m′;m′)pC(m−m′,m′, r, t)dm′ (9.110)
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DB(m, r, t) =

∞
∫

0

ωC(m′,m)pC(m,m′, r, t)dm′ (9.111)

where ωC denotes the collision density (i.e., probability per unit time) between
bubbles of mass m′ and m, and pC is the coalescence probability denoting the
probability of coalescence if a collision occurs. As for the breakage terms, the
mass conservation principle m′ = m′′ + m has been implemented to rewrite
the fluid particle coalescence terms.

The particles can change their mass if sublimation, condensation or evap-
oration occurs, or if mass is lost or gained due to interfacial mass transfer
(mass diffusion). The interfacial mass transfer rate can be represented by use
of the simple film model and expressed in terms of a mass transfer coefficient:

dmi

dt
= kia(ρi − ρ∗i )Vmix (

kg

s
) (9.112)

where ki denotes the mass transfer coefficient (m/s), a denotes the intefacial
area (m2/m3), ρi denotes the mass density of component i in the bulk of the
phase, and ρ∗i denotes the mass density of component i at the interface (i.e.,
for fluid particles it denotes the equilibrium mass density), and Vmix denotes
the volume of the mixture.

The growth term thus yields:

∂

∂m
[
dm

dt
f(m, r, t)] =

∂

∂m
[
∑

i

kia(ρi − ρ∗i )Vmixf(m, r, t)] (9.113)

Using Multiple Inner Coordinates

For non-isothermal, reactive multicomponent mixtures more advanced def-
initions of the distribution function is required. Adopting a kinetic theory
modeling framework the dispersed particle phases might be separated on the
basis of their physical properties (diameter, density,viscosity) or through their
thermo-chemical properties (reactive versus inert particles). From chap 4 we
reiterate that to enable the description of segregation effects a multi-fluid
approach is required where the macroscopic balance equations are derived
from the kinetic theory of granular flow using inelastic rigid-sphere models,
thereby accounting for collisional transfer in high-density regions. Separate
transport equations are constructed for each of the particle phases, as well as
for the equilibration processes whereby momentum and energy are exchanged
between the respective particle phases and the carrier fluid. Aimed at high-
density suspensions, such as fluidized bed reactors, the relations obtained for
the stress tensor are augmented by a model for frictional transfer, suitably
extended to polydispersed systems. For reactive chemical processes the model
are further extended to include heat and mass transfer, as well as chemical
reactions.
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To describe a chemical process in a fluid bed reactor Lathouwers and Bellan
[61] introduced an extended form of the single-particle distribution function
of particle phase i such that p(1)

i (m, r, c,Y, t) with Y = ωc, T is the probable
number of particles having their center of mass in the region r, r + dr, a
velocity in the region c, c+ dc, mass in the region m, m+ dm, mass fractions
in ωc, ωc + dωc, temperature in T, T + dT , at time t.

The application of similar advanced distribution functions in the context
of population balance analysis of polymerization processes is familiar in reac-
tion engineering [40, 97]. However, the microscopic balance equations used for
this purpose are normally averaged over the whole reactor volume so that sim-
plified macroscopic (global) reactor analysis of the chemical process behavior
is generally performed [35].

The Continuous Source Term Closures

Only a few continuous source term closures are available, hence the discrete
PBE model closures are used in practice. The macroscopic statistical me-
chanical PBE model thus coincides with the macroscopic PBE derived from
continuum mechanical principles. In this way there are little or no differences
in employing these two approaches. However, the formulation of the consti-
tutive equations are strongly influenced by the concepts of kinetic theory of
dilute gases. Nevertheless, the present closures are still at an early stage of
development and future work should continue developing more reliable pa-
rameterizations of the kernels. These must be validated for the application in
question.



References

1. Angelidou C, Psimopoulos M, Jameson GJ (1979) Size Distribution Functions
of Dispersions. Chem Eng Sci 34(5):671-676

2. Azbel D (1981) Two-phase flows in chemical engineering. Chambridge Univer-
ity Press, Cambride

3. Azbel D, Athanasios IL (1983) A Mechanism of Liquid Entrainment. p 473,
In: Cheremisinoff N (ed) Handbook of Fluids in Motion, Ann Arbor Science
Publishers, Ann Arbor, MI

4. Barrow JD (1981) Coagulation with fragmentation. Journal of physics A:
Mathematical and General 14:729-733

5. Batchelor GK (1953) The Theory of Homogeneous Turbulence. Cambridge
University Press, Cambridge

6. Batchelor GK (1956) The Theory of Homogeneous Turbulence. Cambridge
University Press, Cambridge

7. Batchelor GK (1982) The Theory of Homogeneous Turbulence. Cambridge
University Press, Cambridge

8. Bertola F, Grundseth J, Hagesaether L, Dorao C, Luo H, Hjarbo KW, Svend-
sen HF, Vanni M, Baldi G, Jakobsen HA (2005) Numerical Analysis and Exper-
imental Validation of Bubble Size Distribution in Two-Phase Bubble Column
Reactors. Multiphase Science & Technology 17(1-2):123-145

9. Brenn G, Braeske H, Durst F (2002) Investigation of the unsteady two-
phase flow with small bubbles in a model bubble column using phase-Doppler
anemometry. Chem Eng Sci 57(24):5143-5159

10. Buwa VV, Ranade VV (2002) Dynamics of gas-liquid flow in a rectangular
bubble column: Experimental and single/multigroup CFD simulations. Chem
Eng Sci 57(22-23):4715-4736

11. Carrica PM, Drew D, Bonetto F, Lahey Jr RT (1999) A Polydisperse Model
for Bubbly Two-Phase Flow Around a Surface Ship. Int J Multiphase Flow
25(2):257-305

12. Chen P, Dudukovic MP, Sanyal J (2005) Three-dimensional simulation of bub-
ble column flows with bubble coalescence and breakup. AIChE J 51(3):696-712

13. Chen P, Sanyal J, Dudukovic MP (2005) Numerical simulation of bubble
columns: effect of different breakup and coalescence closures. Chem Eng Sci
60:1085-1101



860 References

14. Chester AK (1991) The modelling of coalescence processes in fluid-fluid dis-
persions: A review of current understanding. Trans IchemE 69(A):259-270

15. Colella D, Vinci D, Bagatin R, Masi M, Bakr EA (1999) A study on coalescence
and breakage mechanisms in three different bubble columns. Chem Eng Sci 54
(21):4767-4777

16. Coulaloglou CA, Tavlarides LL (1977) Description of Interaction Processes in
Agitated Liquid-Liquid Dispersions. Chem Eng Sci 32(11):1289-1297

17. Danckwerts PV (1953) Continuous Flow Systems: Distribution of Residence
Times. Chem Eng Sci 2(1):1-18

18. Dorao CA (2006) High Order Methods for the Solution of the Population Bal-
ance Equation with Applications to Bubbly Flows. Dr ing thesis, Department
of Chemical Engineering, The Norwegian University of Science and Technology,
Trondheim

19. Dorao CA, Lucas D, Jakobsen HA (2007) Prediction of the Evolution of the
Dispersed Phase in Bubbly Flow Problems. Accepted for publication, Applied
Mathematical Modeling

20. Doubliez L (1991) The drainage and rupture of a non-foaming liquid film
formed upon bubble impact with a free surface. Int J Multiphase Flow
17(6):783-803

21. Drazin PG, Reid WH (1981) Hydrodynamic Stability. Cambridge Univerity
Press, Cambridge

22. Eastwood CD, Armi L, Lasheras JC (2004) The breakup of immersible fluids
in turbulent flows. J Fluid Mech 502:309-333

23. Fleischer C, Bierdel M, Eigenberger G (1994) Prediction of Bubble Size
Distributions in G/L-Contactors with Population Balances. Proc of Third
German/Japanese Symposium on Bubble Columns, Schwerte, Germany,
Jun 13-15, pp 229-235

24. Frank T, Zwart PJ, Shi J-M, Krepper E, Lucas D, Rohde U (2005) Inhomo-
geneous MUSIG Model - a Population Balance Approach for Polydispersed
Bubbly Flows. Int Conf Nuclear Energy for New Europe 2005, Bled, Slovenia,
September 5-8

25. Friedlander SK (2000) Smoke, Dust, and Haze:Fundamentals of Aerosol Dy-
namics, Second Edition, Oxford University Press, New York

26. Guido Lavalle G, Carrica PM, Clausse A, Qazi MK (1994) A bubble number
density constitutive equation. Nucl Engng Des 152:213-224

27. Hagesaether L, Jakobsen HA, Svendsen HF (1999) Theoretical Analysis of
Fluid Particle Collisions in Turbulent Flow. Chem Eng Sci 54(21):4749-4755

28. Hagesaether L, Jakobsen HA, Hjarbo K, Svendsen HF (2000) A Coalescence
and Breakup Module for Implementation in CFD-codes. Computer-Aided
Chemical Engineering 8:367-372

29. Hagesaether L, Jakobsen HA, Svendsen HF (2002) A Model for Turbulent
Binary Breakup of Dispersed Fluid Particles. Chem Eng Sci 57(16):3251-3267

30. Hagesaether L, Jakobsen HA, Svendsen HF (2002) Modeling of the Dispersed-
Phase Size Distribution in Bubble Columns. Ind Eng Chem Res 41(10):
2560-2570

31. Hagesaether L (2002) Coalescence and Break-up of Drops and Bubbles. Dr ing
Thesis, Department of Chemical Engineering, The Norwegian University of
Science and Technology, Trondheim



References 861

32. Havelka P, Gotaas C, Jakobsen HA, Svendsen HF (2004) Droplet Formation
and Interactions under Normal and High pressures. Proc at the 5th Int Conf
on Multiphase Flow, ICMF’04, Yokohama, Japan, May 30-June 4

33. Hesketh RP, Etchells AW, Russell TWF (1991) Experimental observations of
bubble breakage in turbulent flows. Ind Eng Chem Res 30(5):835-841

34. Hesketh RP, Etchells AW, Russell TWF (1991) Bubble breakage in pipeline
flows. Chem Eng Sci 46(1):1-9

35. Himmelblau DM, Bischoff KB (1968) Process Analysis and Simulation: Deter-
ministic Systems. John Wiley & Sons Inc, New York

36. Hinze JO (1955) Fundamentals of the Hydrodynamic Mechanism of Splitting
in Dispersion Processes. AIChE J 1(3):289-295

37. Hulburt HM, Katz S (1964) Some problems in particle technology: A statistical
mechanical formulation. Chem Eng Sci, 19(8):555-574

38. Jakobsen HA, Lindborg H, Dorao CA (2005) Modeling of Bubble Column
Reactors: Progress and Limitations. Ind Eng Chem Res 44:5107-5151

39. Kamp AM, Chesters AK, Colin C, Fabre J (2001) Bubble coalescence in tur-
bulent flows: A mechanistic model for turbulence-induced coalescence applied
to microgravity bubbly pipe flow. Int J Multiphase Flow 27(8):1363-1396

40. Kiparissides C (2006) Challenges in particulate polymerization reactor mod-
eling and optimization: A population balance perspective. J Process Control
16:205-224

41. Klaseboer E, Chevallier JP, Masbernat O, Gourdon C (1998) Drainage of the
liquid film between drops colliding at constant approach velocity. Proc of the
Third International Conference on Multiphase Flow, ICMF98, Lyon, France,
June 8-12

42. Klaseboer E, Chevallier JP, Gourdon C, Masbernat O (2000) Film drainage
between colliding drops at constant approach velocity: Experimental and mod-
eling. Journal of Colloide and Interface Science 229(1):274-285

43. Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area trans-
port equation and its closure relations. Int J Heat Mass Transfer 38(3):481-493

44. Konno M, Aoki M, Saito S (1980) Simulations model for break-up process in
an agitated tank. J Chem Eng Jpn 13:67-73

45. Kolev NI (1993) Fragmentation and Coalescence Dynamics in Multi-phase
Flows. Experimental Thermal and Fluid Science 6(3):211-251

46. Kolev NI (2002) Multiphase Flow Dynamics 2:Mechanical and Thermal Inter-
actions. Springer, Berlin

47. Kolmogorov AN (1941) Local Structure of Turbulence in Incompressible Vis-
cous Fluid for Very Large Reynolds Number. it Dokl Akad Nauk SSSR 30:
301-306

48. Kolmogorov AN (1949) On the Breakage of Drops in a Turbulent Flow. Dokl
Akad Navk SSSR 66:825-828

49. Krishna R, Urseanu MI, van Baten JM, Ellenberger J (1999) Influence of scale
on the hydrodynamics of bubble columns operating in the churn-turbulent
regime: experiments vs Eulerian simulations. Chem Eng Sci 54(21):4903-4911

50. Krishna R, van Baten JM, Urseanu MI (2000) Three-phase Eulerian simula-
tions of bubble column reactors operating in the churn-turbulent regime: a
scale up strategy. Chem Eng Sci 55(16):3275-3286

51. Krishna R, van Baten JM (2001) Scaling up Bubble column reactors with the
aid of CFD. Inst Chem Eng Trans IChemE 79(A3):283-309.



862 References

52. Krishna R, van Baten JM (2001) Eulerian simulations of bubble columns op-
erating at elevated pressures in the churn turbulent flow regime. Chem Eng Sci
56(21-22):6249-6258

53. Kuboi R, Komasawa I, Otake T (1972) Behavior of dispersed particles in tur-
bulent liquid flow. J Chem Eng Japan 5:349-355

54. Kuboi R, Komasawa I, Otake T (1972) Collision and coalescence of dispersed
drops in turbulent liquid flow. J Chem Eng Japan 5:423-424

55. Laakkonen M, Moilanen P, Alopaeus V, Aittamaa J (2007) Modelling local
bubble size distributions in agitated vessels. Chem Eng Sci 62:721-740

56. Laari A, Turunen I (2003) Experimental Determination of Bubble Coalescence
and Break-up Rates in a Bubble Column Reactor. The Canadian Journal of
Chemical Engineering 81(3-4):395-401

57. Lafi AY, Reyes JN (1994). General particle transport equations. Final Report
OSU-NE-9409. Department of Nuclear Engineering, Oregon State University

58. Lasheras JC, Eastwood C, Mart́ınez-Bazán C, Montañés JL (2002) A review
of statistical models for the break-up of an immiscible fluid immersed into a
fully developed turbulent flow. Int J Multiphase Flow 28(2):247-278

59. Lathouwers D, Bellan J (2000) Modeling of dense gas-solid reactive mixtures
applied to biomass pyrolysis in a fluidized bed. Proc of the 2000 U.S. DOE
Hydrogen Program Review. NREL/CP-570-28890

60. Lathouwers D, Bellan J (2000) Modeling and simulation of bubbling fluidized
beds containing particle mixtures. Proc of the Combustion Institute 28:2297-
2304

61. Lathouwers D, Bellan J (2001) Modeling of biomass pyrolysis for hydrogen
production: The fluidized bed reactor. Proc of the 2001 U.S. DOE Hydrogen
Program Review. NREL/CP-570-30535

62. Lathouwers D, Bellan J (2001) Yield Optimization and Scaling of Fluidized
Beds for Tar Production from Biomass. Energy & Fuels 15:1247-1262

63. Lathouwers D, Bellan J (2001) Modeling of dense gas-solid reactive mixtures
applied to biomass pyrolysis in a fluidized bed. Int J Multiphase Flow 27:2155-
2187

64. Laurencot P, Mischler S (2002) The continuous coagulation-fragmentation
equations with diffusion. Arch Rational Mech Anal 162:45-99

65. Laurencot P, Mischler S (2004) Modeling and computational methods for ki-
netic equations. Birkhäuser, Boston
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10

Fluidized Bed Reactors

In this chapter the characteristics of fluidized gas-solid suspensions are de-
scribed, and the basic designs of fluidized bed reactors are sketched. Several
modeling approaches that have been applied to described these units are out-
lined.

The term fluidization has been used in the literature to refer to dense-
phase and lean-phase systems, as well as circulation systems involving fast
fluidization, pneumatic transport or moving beds [56, 82]. The broad field of
fluidization engineering thus deals with all these modes of contacting, but the
two major groups of fluidized bed reactors are the dense phase and lean-phase
reactors. Among the dense phase reactors, the bubbling bed reactor design
is most common. The lean-phase flow regimes are employed in circulating
bed reactors. The first industrial applications of the fluidized bed technology
considered gasification of coal and the chemical fluid catalytic cracking (FCC)
process. Today, the FCC process and circulating fluidized bed combustion
(CFBC) are the major technologies for circulating fluidized beds.

Moving packed beds normally consist of a stack of catalyst particles inside
a tube thus resembling a fixed bed. In a moving packed bed reactor, as distinct
from fixed bed, the gravity force is generally utilized to shift the catalyst from
top to bottom. However, other arrangements like upwards, horizontal and
inclined beds exist as well. Therefore, the moving bed reactors have many
of the same properties as fixed beds, but allow continuous regeneration of
deactivated catalyst and lower pressure drop. Large scale operations of moving
beds can thus be employed for rapidly deactivated catalysts [82]. Temperature
gradients caused by extreme exothermic/endothermic reactions can also be
minimized with appropriate solid circulation. Nevertheless, very little is known
about the hydrodynamics, mixing, and transport characteristics of moving bed
reactors. Moving beds are thus not considered further in this book.

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 10,
c© Springer-Verlag Berlin Heidelberg 2008
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10.1 Solids Classification

When gas is passed through a bed of solid particles, various types of flow
regime are observed. Operating conditions, solid flux, gas flux and system
configuration and the solid particle properties (e.g., mean size, size distri-
bution, shape, density, and restitution coefficient) are factors that affect the
prevailing flow regime. Geldart [49] investigated the behavior of solid particles
of various sizes and densities fluidized by gases. From this study a four group
classification of solids was proposed to categorize the bed behavior based on
particle density and particle size:

• Group A: Solid particles having a small mean size 30 < dp < 100
μm [52, 142] and/or low particle density <∼ 1.4g/cm3. These solids
fluidize easily, with smooth fluidization at low gas velocities and bub-
bling/turbulent fluidization at higher gas velocities. Typical examples of
this class of solid particles are catalysts used for fluid catalytic cracking
(FCC) processes.

• Group B : Most solid particles of mean size 100μm < dp < 800μm [52]
and density in the range 1.4g/cm3 < ρs < 4g/cm3. These solids fluidize
vigorously with formation of bubbles that may grow in size. Sand particles
are representative for this group of solids.

• Group C : This class of solids includes very fine and cohesive powders.
For most cases dp <∼ 20μm [52]. With these particles normal fluidation
is extremely difficult because inter-particle forces are greater than those
resulting from the action of gas. Cement, face powder, flour, and starch
are representative for this group of solids.

• Group D : These solid particles are large dp >∼ 1mm [52] and/or dense,
and spoutable. Large exploding bubbles or severe channeling may occur in
fluidization of this type of solids. Drying grains and peas, roasting coffee
beans, gasifying coals, and some roasting metal ores are representative for
these solids.

Apart from density and particle size, several other solid properties, including
angularity, surface roughness and composition may also significantly affect the
quality of fluidization. However, in many cases Geldart’s classification chart
is still a useful starting point to examine fluidization quality of a specific
gas-solid system.

10.2 Fluidization Regimes for Gas-Solid Suspension Flow

Most gas-solid systems experience a range of flow regimes as the gas velocity
is increased. Several important gas-solid fluidization regimes for the chemical
process industry are sketched in Fig 10.1. In dense fluidized beds regions of
low solid density may be created. These gas pockets or voids are frequently
referred to as bubbles.
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Fig. 10.1. The primary gas-solid flow-regimes [52, 58]. Reprinted with permission
from the author 2007.

Each of the fluidization regimes has characteristic solids concentration pro-
files. A plot of the profile showing the solids concentration versus the height
above the distributor for the bubbling bed regime of fluidization takes a pro-
nounced s-shape. With increasing gas velocity the s-shape profile becomes
less pronounced and is almost upright or uniform for the pneumatic convey-
ing regime.

The main characteristics of the pertinent gas-solid flow regimes are [144,
56, 82, 47, 44]:

• Fixed bed : When a fluid is passing upward through a bed of fine particles
at a low flow rate, and the fluid merely seeps through the void spaces
between stationary particles.

• Expanded bed : With an increase in flow rate, a few particles vibrate and
move apart in restricted ranges.

• Minimum fluidization: At a still higher velocity, a point is reached where
all the particles are just suspended by the upward-flowing gas. At this
point the frictional force between particle and fluid just counterbalances
the weight of the particles, and the vertical component of the compressive
force between adjacent particles disappears. The pressure drop through
any section of the bed thus balance (approximately) the weight of fluid
and particles in that section. Further increase in the gas velocity flow rate
will not change the pressure drop noteworthy.
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• Smooth fluidization: In fine particle A beds, a limited increase in gas flow
rate above minimum fluidization can result in smooth, progressive expan-
sion of the bed. Bubbles do not appear as soon as the minimum fluidization
state is reached. There is a narrow range of velocities in which uniform ex-
pansion occurs and no bubbles are observed. Such beds are called a partic-
ulate fluidized bed, a homogeneously fluidized bed, or a smoothly fluidized
bed. However, this regime does not exist in beds of larger particles of type
B and D, in these cases bubbles do appear as soon as minimum fluidization
is reached.

• Bubbling fluidization: An increase in flow rate beyond the point of mini-
mum fluidization results in large instabilities with bubbling and channeling
of gas. At higher flow rates, agitation becomes more violent and the move-
ment of solids becomes more vigorous. Bubble coalescence and breakage
take place, and with increasing gas velocity the tendency of bubble coa-
lescence is normally enhanced. However, the bed does not expand much
beyond its volume at minimum fluidization.

• Slugging fluidization: The gas bubbles coalesce and grow as they rise, and
in a deep enough bed of small diameter they may eventually become large
enough to spread across the vessel. Fine particles flow smoothly down by
the wall around the rising void of gas. These voids are called axial slugs.
For coarser particle beds, the portion of the bed above the bubble is pushed
upward. Particles fall down from the slug, which finally disintegrates. Then
another slug forms, and this unstable oscillatory motion is repeated. This
is called a flat slug. Slugging normally occurs in long, narrow fluidized
beds.

• Turbulent fluidization: This is often regarded as a transition regime from
bubbling to lean phase fluidization. At relatively low gas velocities in this
regime, bubbles are present. Moreover, when fine Geldart A particles are
fluidized at a sufficiently high gas flow rate, the terminal velocity of the
solids is exceeded, thus the upper surface of the bed becomes more diffuse
with a large particle concentration in the freeboard, the solids entrainment
becomes appreciable, and a turbulent motion of solid clusters and voids of
gas of various sizes and shapes occurs. In contrast to the bubbling regime,
in this regime the tendency for bubble breakage is enhanced as the gas
velocity increases. For this reason the mean bubble size is significantly
smaller than in the bubbling regime, hence the suspension becomes more
uniform as the gas velocity further increases toward the lean phase fluidiza-
tion regimes. However, for very high gas velocities within this regime pro-
nounced radial gradients may occur, with a marked tendency for solids to
be present in much greater concentration in the wall region, while the core
of the column has a significantly smaller volume fractions of particles [56].

• Dense phase fluidization: Gas fluidized beds are considered dense phase
fluidized beds as long as there is a clearly defined upper limit or surface
to the dense bed. The dense-phase fluidization regimes include the smooth
fluidization, bubbling fluidization, slugging fluidization, and turbulent



10.2 Fluidization Regimes for Gas-Solid Suspension Flow 871

fluidization regimes. In a dense-phase fluidized bed the particle entrain-
ment rate is low but increases with increasing gas velocity.

• Spouting bed fluidization: Spouting can occur when the fluidizing gas is
injected vertically at a high velocity through a small opening into a bed
of Geldart D particles. The gas jet penetrates the whole bed and form a
dilute flow in the core region. A solids circulation pattern is created, as the
particles carried upwards to the top of the core region by the fluidizing
gas move downward in a moving bed mode in the annular region. The
gross scale particle circulation induced by the axial spout gives rise to
more regular and cyclic mixing behavior than in bubbling and turbulent
fluidization.

• Channeling : In a fluidized bed channeling frequently occur if the gas distri-
bution is nonuniform across the distributor. Channeling can also be caused
by aggregation effects of cohesive Geldard C particles due to inter-particle
contact forces.

• Lean phase fluidization: As the gas flow rate increases beyond the point
corresponding to the disappearance of bubbles, a drastic increase in the
entrainment rate of the particles occurs such that a continuous feeding
of particles into the fluidized bed is required to maintain a steady solid
flow. Fluidization at this state, in contrast to dense-phase fluidization, is
generally denoted lean phase fluidization. Lean phase fluidization encom-
passes two flow regimes, these are the fast fluidization and dilute transport
regimes.

• Fast fluidization: The fast fluidization regime is considered to be initiated
when there is no longer a clear interface between a dense bed and a more
dilute freeboard region. Instead, there is a continuous, gradual decrease in
solids content over the whole hight of the column. Particles are transported
out of the top of the vessel and must be replaced by adding solids near
the bottom. Clusters of particles move downwards near the wall, while gas
and entrained dispersed particles move upward in the core of the vessel.
The term clustering refers to the phenomenon that solids coalesce to form
a larger pseudo-particle.

• Dilute transport fluidization: The gas velocity is so large that all the par-
ticles are carried out of the bed with the gas. This solid transport by gas
blowing through a pipe is named pneumatic conveying. In vertical pneu-
matic transport, particles are always suspended in the gas stream mainly
because the direction of gravity is in line with that of the gas flow. The
radial particle concentration distribution is almost uniform. No axial vari-
ation of solids concentration except i the bottom acceleration section [58].

The model predictions of the transition borders between the different gas-
solid flow regimes shown in Fig 10.1 are still not reliable. The borders are
generally sharp and fairly well correlated for the minimum fluidization (mf)
and minimum bubbling (mb) transitions, whereas the transitions at higher
gas superficial velocities are diffuse and poorly understood.



872 10 Fluidized Bed Reactors

The general flow regime diagram shown i Fig 10.2 illustrates the progres-
sion of changes in behavior of a bed of solids as the gas velocity is progres-
sively increased. The letters A, B, C and D refer to the Geldart classification
of solids.

10.3 Reactor Design and Flow Characterization

The fluidized bed reactors can roughly be divided into two main groups in
accordance with the operating flow regimes employed. These two categories
are named the dense phase and lean phase fluidized beds.

Fig. 10.2. Flow regime map of gas-solid contacting. In the figure notation the
ordinate u∗ = Us

in[ρ2
g/{μ(ρp − ρg)g}]1/3 is a dimensionless gas velocity, the abscissa

d∗
p = dp[ρg(ρp − ρg)g/μ2]1/3 a dimensionless particle size, ut the terminal velocity

of a particle falling through the gas (m/s), and umf the gas velocity at minimum
fluidization (m/s). Reprinted from [83] with permission from Elsevier.
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10.3.1 Dense-Phase Fluidized Beds

A dense phase fluidized bed generally consist of a gas distributor, a cyclone,
a dipleg, a heat exchanger, an expanded section, and baffles [44]. A schematic
representation of a dense phase fluidized bed reactor is shown in Fig 10.3.

At the bottom of the vessel is the gas distributor which yields the desired
distribution of fluidizing gas and supports particles in the bed. A distrib-
utor with sufficient flow resistance to obtain a uniform distribution of gas
across the bed is required, and sometimes caps are used to avoid gas jetting
effects and plate clogging by fine particles. There are two basic designs of
distributors, some for use when the inlet gas contains solids and others for
use when the inlet gas is clean. For clean gases the distributor is designed
to prevent back flow of solids during normal operation, and in many cases it
is designed to prevent back flow during shutdown. Perforated plate distribu-
tors are widely used in industry because they are cheap and easy to fabricate
[82]. However, the perforated plate distributors cannot be used under severe
operating conditions, such as high temperature or highly reactive environ-
ment. The tuyere type of distributors are normally used in these situations,

Fig. 10.3. A typical dense phase bubbling bed reactor design. The reactor consists of
a gas distributor, an internal cyclone with solids recycle through a dipleg, and a heat
exchanger. The freeboard section of the vessel is expanded and the heat exchanger
may also function as a baffle. Reprinted with permission from [136]. Copyright 2004
American Chemistry Society.
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but these are more expensive than perforated plates. The tuyere distributor
design prevents solids from falling through the distributor. The high pressure
drop porous plate distributors are commonly used in laboratory scale units to
ensure even distribution of gas across the bed entrance.

A dense phase fluidized bed vessel has two zones, a dense phase having a
distinct upper surface separating it from an upper dilute phase. The section of
the vessel between the surface of the dense phase and the exit of the gas stream
is called the freeboard zone. In vessels containing fluidized beds, the gas leaving
the dense bed zone carries some suspended particles. Particle entrainment
refers to the ejection of particles from the dense bed into the freeboard by
the fluidizing gas. Particle elutriation refers to the separation of fine particles
from a mixture of particles and their ultimate removal from the freeboard.
The flux of solids leaving the freeboard with the gas is called carry-over. The
entrained solids are normally separated from the outlet gas by internal or
external cyclones and returned to the bed. In many cases several cyclones are
combined to form a multistage cyclone system. A dipleg returns the particles
separated by the internal cyclones into the vessel. The outlet of a dipleg may
be located in the freeboard or immersed in the dense bed. A standpipe can be
used to return the particles separated by the external cyclones into the dense
bed. Sometimes a heat exchanger device is placed in the dense bed or the
freeboard to control the temperature. The heat exchanger removes generated
heat from or adds required heat to the fluidized bed by a cooling or heating
fluid. An expanded freeboard section on the top of the vessel may be used to
reduce the local gas velocity in the freeboard so that settling of the particles
carried by the fluidizing gas can be efficiently achieved. Any internals other
than diplegs can be employed as baffles to restrict flow, enhance the breakage
of bubbles, promote gas-solid contact, and reduce particle entrainment.

The primary bubbling fluidized bed consists of gas bubbles flowing through
a dense emulsion phase with gas percolating through the bed of solids. A
fluidized bed reactor of this type designed for catalytic reactions operated
in the bubbling bed regime has been shown in Fig 10.3. In many cases the
particle entrainment rate is so low that the cyclone is considered superfluous.

In the turbulent fluidized bed larger amounts of particles are entrained
precluding steady state operations. To maintain steady state operation the
entrained particles have to be collected by cyclones and returned to the bed.
For vessels operating in the turbulent fluidization regime internal cyclones
may deal with the moderate rate of entrainment. This fluidization system, as
sketched in Fig 10.4, is sometimes called a fluid bed. Since smooth and steady
recirculation of solids through a solid trapping device is crucial for optimal
operations of these units, Kunii and Levenspiel [82] included the turbulent
fluidized beds in the reactor classification named circulating fluidized beds
(i.e., the main lean-phase reactor design). However, this is not a conventional
classification of the turbulent bed operation mode.

Bubbling and turbulent fluidized beds are operated with small granular or
powdery non-friable catalysts. Rapid deactivation of the solids can then be
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handled, and the efficient temperature control allows large scale operations.
The main advantages of a turbulent fluidized bed over a standard bubbling
fluidized bed are a more homogeneous fluidization that provides better con-
tacting between gas and catalyst (i.e., low gas bypassing), and higher heat
transfer coefficients between the suspension and heat transfer surfaces.

In design of fluidized bed systems the cross sectional area is determined
by the volumetric flow of gas and the allowable or required fluidizing velocity
of the gas at operating conditions. Generally, bed heights are not less than
0.3 m or more than 15 m [111]. For fluidized bed units operated at elevated
temperatures refractory-lined steel is the most economical material.

Fig. 10.4. A schematic representation of a turbulent fluidized bed. The illustration
shows that in a turbulent fluidized bed entrainment is significant and an internal
cyclone with solids recycle through a dipleg is required. Reprinted from [82] with
permission from Elsevier.

10.3.2 Lean-Phase Fluidized Beds

The primary exploitation of the lean-phase fluidized beds is associated with
the circulating fluidized bed (CFB) reactors.

The operation of circulating fluidized bed systems requires that both the
gas flow rate and the solids circulation rate are controlled, in contrast to the
gas flow rate only in a dense phase fluidized bed system. The solids circulation
is established by a high gas flow.
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The integral parts of a CFB loop are the riser, gas-solid separator, down-
comer, and solids flow control device [44]. The CFB is thus a fluidized bed
system in which solid particles circulate between the riser and the downcomer,
as illustrated in Fig 10.5. The riser is the main component of the system. The
name riser is generally used to characterize a tall vessel or column that pro-
vides the principal reaction zone. On average, the particles travel upwards
(or rise) in the riser, though the motion at the wall may be downwards. The
fluidized gas is introduced at the bottom of the riser, where solid particles
from the downcomer are fed via a control device and carried upwards in the
riser. The fast fluidization regime is the principal regime under which the
CFB riser is operated. The particles exit at the top of the riser into the gas-
solid separators which are normally cyclones. In lean-phase fluidized beds, the
rate of entrainment is far larger than in turbulent fluidized beds, and bigger
cyclone collectors outside the bed are usually necessary. The separated par-
ticles then flow to the downcomer and return to the riser. The entrance and
exit geometries of the riser often significantly affect the gas and solid flow
behavior in the reactor. The efficiency of the cyclones determine the particle
size distribution and solids circulation rate in the system. The downcomer
provides hold volume and a static pressure head for particle recycling to the
riser. The downcomer can be a large reservoir which aids in regulating the
solids circulation rate, a heat exchanger, a spent solid regenerator, hopper or
a standpipe. The main task in achieving smooth operation of a CFB system
is to control the solids recirculation rate to the riser. Several designs of valves
for solids flow control are used. The solids flow control device serves two main
functions, namely to seal the riser gas flow to the downcomer and to con-
trol the solids circulation rate. Rotary valves are effective sealing devices for
solids discharge. The L-valve can act as a seal and as a solids-flow control
valve. There are many other valve designs available to suit specific conditions.
The riser cannot be considered as an isolated entity in the CFB loop because
the pressure drop over the riser must be balanced by that imposed by the
flow through its accompanying components such as the downcomer and the
recirculation device.

In general, the high operating gas velocities for lean phase fluidization
yield a short contact time between the gas and solid phases. Fast fluidized
beds and co-current pneumatic transport are thus suitable for rapid reactions,
but attrition of catalyst may be serious.

However, it is not always easy to distinguish between the flow behav-
ior encountered in the fast fluidization and the transport bed reactors [56].
The transport reactors are sometimes called dilute riser (transport) reactors
because they are operated at very low solids mass fluxes. The dense riser
transport reactors are operated in the fast fluidization regime with higher
solids mass fluxes. The transition between these two flow regimes appears to
be gradual rather than abrupt. However, fast fluidization generally applies to
a higher overall suspension density (typically 2 to 15% by volume solids) and
to a situation wherein the flow continues to develop over virtually the entire
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Fig. 10.5. A schematic representation of a circulating fluidized bed. The CFB loop
consists of a riser, gas-solid cyclone separators, standpipe type of downcomer, and a
non-mechanical solids flow control device. Reprinted from [82] with permission from
Elsevier.

height of the reactor, whereas the flow usually associated with transport bed
reactors tends to be more dilute (typically 1 to 5 % by volume solids) and
uniform. However, in practice the differences in operation are generally small,
hence the names are often used in an indistinguishable manner1. This regime
overlap is also indicated in the regime map shown in Fig 10.2. The pertinent
characteristics that distinguish the CFB from the dense phase fluidized beds
and from the riser (transport) reactors are summarized in Table 10.1.

Advantages of the fast fluidization regime, relative to the dense phase flu-
idization regimes, include higher gas throughput per unit area, adjustable
retention time of solids, limited axial dispersion of gas coupled with near
uniformity of temperature and solids composition, reduced tendency for par-
ticles to undergo agglomeration, and possibility of staged addition of gaseous

1 Berruti et al [13], for example, used the term CFB to generically describe systems
like fast fluidized bed, riser reactor, entrained bed, transport bed, pneumatic
transport reactor, recirculating solid riser, highly expanded fluid bed, dilute phase
transported bed, transport line reactor and suspended catalyst bed in co-current
gas flow.
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reactants at different levels. Gas-solid contacting also tends to be very fa-
vorable. However, by increased overall reactor height and added complexity
in designing and operating the recirculating loop the CFB systems tend to
have higher capital costs than low-velocity systems, so that one or more of
the above advantages must be very significant for this option to be viable.
One of the most important factors inhibiting the commercialization of novel
processes operated in risers is scale-up uncertainties arising from the complex
hydrodynamic behavior of the CFB reactors.

Table 10.1. The key features that distinguish circulating fluidized bed reactors
from low-velocity fluidized beds and from lean-phase transport reactors [58].

Low-velocity FB Reactor CFB Reactor Transport Reactors

Particle residence Minutes or hours Seconds Once through
times in Reactor system
Flow regime Bubbling, slugging Fast fluidization Dilute transport

or turbulent,
distinct upper interface

Superficial Less than 2 m/s 3 to 16 m/s 15 to 20 m/s
gas velocity
Mean particle 0.03 to 3 mm 0.05 to 0.5 mm 0.02 to 0.08 mm
diameter
Net circulation 0.1-5 kg/m2s 15-1000 kg/m2s Up to ∼ 20 kg/m2s
of solids
Voidage 0.6-0.8 0.8-0.98 less than 0.99
Gas mixing Intense Intermediate Little

A combination of a circulating fluidized bed riser reactor operating in the
fast fluidization regime and a bubbling fluidized bed regenerator is frequently
used in industry for heterogeneous catalyzed gas phase reactions in cases where
the catalyst rapidly deactivates and has to be regenerated continuously. Such
a catalytic circulating fluidized bed reactor design is sketched in Fig 10.6.

The most prominent chemical reactions operated within such a reactor
design is the FCC process, which is widely used in the modern petroleum
refinery industry. In this catalytic chemical process vaporized heavy hydro-
carbons crack into lower-molecular-weight compounds. To explain the princi-
pal operating principles of this particular CFB unit, a FCC riser reactor can
be divided into four parts from bottom to top according to their functions
[45]: The prelift zone, the feedstock injection zone, the reaction zone, and
the quenching zone. In the prelift zone, catalysts enter the riser reactor from
the regenerator and are then conveyed by the prelift gas. In the feedstock
injection zone, feed oil is introduced into the riser through the feed nozzles,
and the heavy oil comes in contact with the high-temperature catalyst. Rapid
reactions are then taking place in the reaction zone.
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Apart from the mentioned application of CFB to the fluid catalytic
cracking (FCC) process, circulating fluidized beds utilizing the fast fluidiza-
tion regime have been used for a number of gas-solid reactions including
calcination, combustion of a wide variety of fuels, gasification, and dry scrub-
bing of gas streams [56]. Applications for catalytic reactions can be taken to
include the transport reactors employed in modern catalytic cracking opera-
tions in the petroleum industry and certain Fischer-Tropsch synthesis reactors.

Fig. 10.6. A typical catalytic circulating bed reactor design. This CFB loop consists
of a riser, gas-solid cyclone separators, and a downcomer. In this particular case
the downcomer consists of a spend solid regenerator. Reprinted from [135] with
permission from Elsevier.

Generally, to maximize profitability, the gas and solids residence times in
CFBs are chosen to achieve the highest product yield per unit volume [14]. In
FCC units, for example, a short and uniform catalyst residence time in the
riser reactor, with reduced back-mixing, leads to better reactor performance by
reducing the inventory of the deactivated catalyst in the riser. In other words,
a uniform radial profile of solids velocity and little solids back-mixing in the
riser is preferred, leading to shorter and more uniform solids residence times.
In a FCC unit axial mixing is disadvantageous. For other catalytic reactions,
lower gas velocities may be preferred because this gives higher solids holdup,
thus maximizing the specific activity per unit volume [13].



880 10 Fluidized Bed Reactors

Scale-up of CFBs is generally less of a problem than with bubbling beds
[111]. Moreover, the higher velocity in CFB means higher gas throughput,
which can minimize the reactor costs. Several CFB loop designs have been
proposed for getting smooth steady state circulation of solids. Basically, there
are two basic types of solids circulation loops distinct in that some include
a reservoir of solids while others do not. The solids circulation loops which
do not include a reservoir of solids (hopper) are less flexible in operation
compared to the circulation systems with reserviors.

10.3.3 Various Types of Fluidized Beds

Numerous types of fluidized bed reactor designs exist within each of the two
categories mentioned in the previous subsection, some of them are illustrated
in Fig 10.7. The key issues leading to re-design of the primary bubbling bed
are also indicated.

10.3.4 Experimental Investigations

The first experimental investigations of bubbling bed fluidization led to the
flow interpretation that the bubbles are flowing evenly through an essentially
stagnant emulsion phase without affecting the flow of the emulsion phase. This
picture of the bubbling bed hydrodynamics is named the two-phase theory
[130, 29].

The subsequent experimental investigations on solids mixing and circula-
tion in bubbling beds revealed that the bubbling phenomenon creates particle
circulation patterns [5, 53, 82, 116]. Moreover, the axial and radial transport
of solids within the fluidized bed influence many parameters governing the
chemical process performance in these units. Most important, the heat trans-
port within the bed is efficient due to the chaotic motion of solid particles
having the property of high heat capacity compared to the fluidizing gas,
making the bed close to isothermal.

Lin et al [90] were among the first to use the modern non-invasive Com-
puter Automated Radioactive Particle Tracer (CARPT) technique to mea-
sure the Lagrangian solid particle motion in gas-solid bubbling fluidized beds.
This advanced measuring technique determines the time-average solids ve-
locity components in all three space dimensions simultaneously so that the
derived Eulerian flow field map and various turbulence fields can be visu-
alized. A number of experiments were conducted measuring mean velocity
distributions for Geldart B glass beads of density 2.5 (g/cm3) and diameters
ranging from 0.42 − 0.60 (mm) in an air fluidized bed of 13.8 (cm) diameter,
at various superficial air velocities ranging from 32−89 (cm/s). The mean cir-
culating flow patterns observed are summarily presented in Figs 10.8 (a)-(d).
For bubbling fluidized beds consisting of Geldart A and B particles operating
well above the minimum fluidization conditions the bubble flow will cause the
solid particles to develop certain characteristic flow patterns. For a shallow
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Fig. 10.7. Types of fluidized bed reactors [77]. Reprinted with permission from the
authors.

The primary fluidized bed The key issues leading to re-design of
reactor types: the conventional bubbling fluid bed:

1: Bubbling Fluidized Bed A: Higher gas velocity
2: Turbulent Fluidized Bed B: Counter-current contacting is beneficial
3: Circulating Fluidized Bed C: Incompatible differences in desired environment
4: Riser D: Dusty environment
5: Downer E: Large particles/low gas load
6: Cross-current Fluid Bed
7: Counter-current Fluid Bed
8: Spouted Fluidized Bed
9: Floating Fluidized Bed
10: Twin Fluidized Bed

bed there is normally an upflow of particles near the wall and a downflow in
the center of the bed at low gas velocities, as shown in Figs 10.8 (a) and (b).
Increasing the gas velocity may reverse this flow pattern. In this case the bed
apparently consists of one circulating cell just above the distributor similar
to the one observed in shallow beds with upflow near the wall and down flow
in the center. In the upper part of the bed the solids have an upward motion
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in the center and downwards near the wall. This flow pattern is shown in
Figs 10.8 (c) and (d). An additional advantage associated with the CARPT
technique is that it can be used to characterize dense high flux suspensions
as emphasized in industrial practice such as fluid catalytic cracking (FCC)
units and CFB combustors. The CARPT measuring technique has thus been
applied by Bhusarapu et al [14] investigating the solids velocity field in gas

Fig. 10.8. Particle circulation patterns at various fluidizing velocities for a gas
fluidized bed ID 13.8 (cm) consisting of 0.42 − 0.6 (mm) diameter glass beads [90].
L∗ denotes the static bed height. Case a) Us

in = 32 (cm/s) and Us
in/Us

mf = 1.65,
Case b) Us

in = 45, 8 (cm/s) and Us
in/Us

mf = 2.36, Case c) Us
in = 64, 1 (cm/s) and

Us
in/Us

mf = 3.41, and Case d) Us
in = 89, 2 (cm/s) and Us

in/Us
mf = 4.6. Reprinted

with permission of John Wiley & Sons Inc, Copyright 1985.
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solid risers. Measurements were performed in two different risers at low and
high solid fluxes at varying superficial gas velocity spanning both the fast-
fluidized and dilute phase transport regimes.

Based on the experimental investigations reported in the literature, using
both invasive and non-invasive techniques [129], it is recognized that most
CFBs operating in the fast fluidization flow regime are subject to predom-
inantly downflow of relatively dense suspensions along the outer wall while
there is a net dilute upflow in the core [62, 99, 133, 73]. The fast fluidization
regime is also characterized by a dense region at the bottom of the riser and a
dilute region at the top. Due to the large reflux and density of the suspension,
the temperature gradients are normally very small.

In vertical pneumatic transport the radial particle concentration distribu-
tion is almost uniform, but some particle strands may still be identified near
the wall. Little or no axial variation of solids concentration except in the bot-
tom acceleration section is observed [58]. The flow associated with transport
bed reactors tends to be dilute (typically 1 to 5 % by volume solids) and
uniform. By virtue of the smaller reflux and density of the suspension within
the dilute pneumatic conveying regime, there might be larger temperature
gradients than within the fast fluidization regime [56].

Optical techniques like laser doppler anemometry (LDA) can be used to
obtain knowledge about the local solids hydrodynamics in CFB units close to
walls at low solids fluxes [14]. Such LDA measurements of FCC particles in a
riser in circulating fluidized bed have been reported by [119, 120].

An overview of sources of experimental data in the open literature charac-
terizing the hydrodynamics of CFB risers can be found in [13]. These investi-
gations might be useful for CFB riser model validation. However, despite the
development of novel experimental techniques and many experimental inves-
tigations, there is still considerable uncertainty and disagreement with regard
to the dependence of fine scale structures on the operating conditions. This
dependency is important in scale-up, design, and optimization of these units.

10.4 Fluidized Bed Combustors

Although the scope of this book is the fluidized bed vessels used as chem-
ical reactors, a brief outline of the combustor units representing the most
widespread use of this technology is considered very useful in understand-
ing the chemical reactor operation but also to orientate oneself in the vast
literature on fluidization technology. Recent reviews of fluidized bed combus-
tion systems are given by Anthony [2], Leckner [86], Longwell et al [93] and
Issangya et al [67].

The popularity of fluidized bed combustion is due largely to the technol-
ogy’s fuel flexibility and the capability of meeting sulfur dioxide and nitrogen
oxide emission requirements without the need for expensive flue-gas treatment.
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In the early 1960s engineers in Britain and China considered fluidized
bed combustion (FBC) to be an alternative future combustion technology
to enable utilization of low-grade coal and oil shale fines, fuels that can-
not be burned efficiently in conventional boiler furnaces [82]. Several power
generation cycles utilizing the fluidization technology were commercialized
[86, 18, 87]. The working principles of the conventional cycles can be out-
lined as follows. The fluidized bed boilers supply steam to a Rankine cycle.
The efficiency of the electric power production has been further increased in a
combined cycle with a pressurized FBC serving as the heat source for both the
steam and the gas turbine cycle. More advanced cycles, such as the air blown
gasification cycle and the integrated gasification combined cycle (IGCC), are
currently being developed.

In a fluidized bed combustor the bed is made up primarily of inert material
which may be ash, absorbent, or some other inert material such as sand. The
technology’s fuel flexibility arises from the fact that the fuel is present in the
combustor at a low level and are burnt surrounded by these inerts [2]. The
solid fuel normally represent between 0.5 and 5% of the total bed material.
In general, almost any solid, liquid, slurry or gas containing carbon, hydrogen
and sulfur can be used as fuels for energy production.

The first fluidized bed gasifiers were designed for burning coal. The second
generation units were utilizing petroleum fuels. However, in order to compen-
sate for the shortage of petroleum, the utilization of coal for combustion and
gasification has again become dominating. Currently almost half of the total
worldwide FBC capacity is primarily fueled by coals [87]. Other fossil fu-
els like oil and natural gas can also be burned effectively and efficiently in
a CFB unit. Nevertheless, other combustable materials like petroleum coke,
biomass and municipal waste are gaining in popularity. In particular, waste
and biomass are used to replace a part of the coal as CO2-neutral fuels. In
addition, co-firing coal and petroleum coke can also be beneficial.

The first fluidized bed applications employed bubbling bed boilers, but
problems with erosion of in-bed cooling tubes diverted the mainstream of
development towards the circulating fluidized bed boiler [86]. The first circu-
lating fluidized bed combustion (CFBC) systems were developed in the late
1970s by Ahlstrom Pyropower in Findland, Lurgi in Germany, and Studsvik
Energiteknik in Sweden [18]. However, bubbling beds remain important for
particular applications for which they have cost advantages.

Today the circulating fluidized bed (CFB) has become the dominating de-
sign for combustors operated at atmospheric pressure. Pressurized circulating
fluidized bed combustors are under development for combined power cycle
applications, but so far no clear advantages have been revealed yet. For this
reason the existing commercial pressurized fluid bed systems are bubbling
beds.

During the last decades several FBC technology’s have become available
for the combustion of coal and alternative fuels, with the trend that circulating
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fluidized bed combustion (CFBC) is prevailing over bubbling fluidized bed
combustion (BFBC) [4, 2].

One of the most attractive features of FBC, employing bubbling and cir-
culating beds, is the potential to use a low cost sorbent to capture sulfur (in
situ) within the fluidized bed in cases where high sulfur-fuels are burnt. The
sorbent is typically limestone or dolomite (minerals composed of calcium and
magnesium carbonates) and is fed to the bed either together with the fuel or
as a separate solid stream [88, 3]. More than 90 % of the sulfur pollutants in
coal can be captured by the sorbent. Low NOx emissions is enforced since the
fuel is burnt at temperatures of about 750 to 950◦C, well below the threshold
where nitrogen oxides form (i.e., nitrogen oxide pollutants are produced at
about 1400◦C). The environmental pollution by combustion ash containing
residual sorbents must also be treated properly [80].

It should be mentioned that the combustion technology is not limited to
these major designs. In catalytic fluidized bed combustion of low-sulfur natural
gas, for example, powder catalysts are operated in the turbulent flow regime
where the gas-solid contact is optimal so as to maintain a high combustion
efficiency [46].

Fig. 10.9. A typical circulating fluidized bed combustor design [63]. The furnace
(riser) is normally operated in the fast fluidization regime. The ash which is entrained
from the furnace is separated from the flue gas in the cyclone. Most of the ash
particles are sent into the siphon. The siphon is a small bubbling fluidized bed acting
as a pressure lock. From the siphon the ash flows back into the riser. Reprinted with
permission from Elsevier, copyright Elsevier 2007.
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The fast fluidization regime is most often encountered in circulating flu-
idized beds where provision for continuous return of a significant flow of en-
trained solids is an integral part of the equipment. In combustion systems,
the return is accomplished by capturing the entrained solids in one or more
external cyclones or in impingement separators. These key features of a circu-
lating fluidized bed combustion system are shown schematically in Fig 10.9.
The captured particles are sent back to the base of the reactor (riser) through
a vertical standpipe (downcomer), and then through a non-mechanical seal
or a non-mechanical valve (mechanical valves are more common in FCC in-
stallations). The bottom section of the riser might also be tapered to prevent
solids from sitting and agglomerating in the bottom section. In some cases,
the solids pass through a separate low-velocity fluidized bed heat exchanger
or a siphon only (equivalent to a catalyst regenerator in a FCC reactor instal-
lation) during their journey from cyclones capture to re-injection.

The design of CFB employed in chemical reactor engineering and circulat-
ing fluidized bed combustion may be distinguished by the aspect ratio (H/D)
of the riser [106, 67]. For chemical process analysis tall and narrow riser units
with an aspect ratio of the order of 20 or higher is normally used. A chemi-
cal reactor utilizing the fast fluidization regime typically operates at high net
solids fluxes for the purpose of producing product chemicals. A typical indus-
trial scale CFB combustor is designed as larger units, with a lower aspect ratio
typically less than 10, for the purpose of producing heat, electricity, fuel-gas
or combinations of these.

The group B solids normally used in large scale CFBC and circulating
fluidized bed gasification (CFBG) units consists of silica sand and/or primary
ashes, and sorbent in the case of coal-fired units. We reiterate that the com-
mon FCC particles belongs to the Geldart group A. In particular, the particle
sizes applied to fluid bed combustion are normally in the range 150 − 250
(μm), whereas for catalytic cracking and other chemical processes finer parti-
cles with sizes in the range 60−70 (μm) are used [67]. The flow pattern in CFB
gasifiers and combustors is similar since the overall riser geometry, fluidization
conditions and properties of the solids used are similar [106]. However, minor
differences in the flow behavior can occur because of corner effects since com-
bustors generally have a square or rectangular cross section and may partly
have bare membrane tube walls, whereas the riser of a gasifier normally has
a circular cross section with plane walls. Nevertheless, the flow pattern of the
large CFB combustors and the gasifier units differs significantly from those
of tall and narrow CFB reactor units (which normally have a circular cross
section) due to the dissimilar operating conditions employed, so the abundant
literature on CFBC and CFBG is seldom applicable for CFB reaction technol-
ogy and visa versa. The important features of the two principal applications
of the fast fluidizization regime, the fluid catalytic cracking riser reactor and
the solid fuel combustion vessel, are compared in Table 10.2.

Although considerable work has been done to understand the flow dynam-
ics of CFBs, much of the CFB data reported are for low density CFB systems
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representative of CFB combustors. Further work is thus required on high den-
sity systems to better understand the riser reactor behavior leading to more
reliable scale-up of these units.

Table 10.2. Comparison of typical operating conditions for the two principal ap-
plications of fast fluidization: fluid catalytic cracking and circulating fluidized bed
combustion [56, 67].

FCC Riser Reactor CFB Combustor

Particle density, (kg/m3) 1100-1500 1800-2600
Mean particle diameter, (μm) 60-70 150-250
Particle size distribution Broad Broad
Geldart powder group A B
Inlet Superficial gas velocity, (m3/m2s) 8-18 5-9
Exit temperature, (C) 500-550 850-900
Temperature uniformity Gradients Uniform
Pressure, (kPa) 150-300 110-120
Net Solid Flux, (kg/m2s) 400-1400 10-100
Suspension density, (kg/m3) 50-80 at the top 10-40 at the top
Exit geometry Various Abrupt
Riser cross-section geometry circular rectangular/square
Riser diameter (m) 0.7-1.5 8-10
Height-to-diameter-ratio > 20 < 5 − 10
Average solids residence time per pass (s) 2-4 20-40

Many of the modern combustion processes can be characterized by rela-
tively low reaction rates compared to the modern catalytic processes operated
in chemical reactors [67]. Therefore, these combustion processes do require
lower gas velocities and higher solids circulation rates. On the other hand,
many catalytic gas-phase reactions, including FCC, Fischer-Tropsch synthe-
sis and oxidation of butane, utilize a relatively high gas velocity in the riser
to promote plug flow operating conditions and short contact times between
the gas and solids.

The solids residence time distribution (RTD) in the riser may thus be
important in non-catalytic gas-solid reactions, as in a combustor, since this
distribution characterizes the degree of solids mixing and provides information
about the physical properties of the solid particles in the riser [14]. Moreover,
lateral mixing and internal recirculation of solids in a CFB combustor are
necessary to maintain uniform temperatures over the entire length of the riser.
Hence, lateral and longitudinal mixing is advantageous in a CFB combustor.

Prediction of the flow and transport processes is crucial in modeling the
heat transfer and combustion/gasification gas produced. The conventional
modeling of bubbling and circulating fluidized bed coal combustors were out-
lined by Arena et al [4].
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Saraiva et al [121] presented an extended model for a circulating atmo-
spheric fluidized bed combustor (CAFBC) which included hydrodynamics for
the fast section at the top of the bed as well a bubbling bed section at the
bottom of the CAFBC. For the fast section of the bed, one dimensional mo-
mentum and energy balances were used to predict the temperature and veloc-
ity profiles for gas and particles throughout the reactor. The model contain
species mass balances for five gas species including SO2, as well as a model of
SO2 retention by limestone particles. A bubbling bed model was considered
to simulate the chemical process at the bottom of the combustor.

Recently, Pallarés and Johnsson [106] presented an overview of the macro-
scopic semi-empirical models used for the description of the fluid dynamics of
circulating fluidized bed combustion units. They summarized the basic mod-
eling concepts and assumptions made for each model together with the major
advantages and drawbacks. In order to make a structured analysis of the pro-
cesses involved, the CFBC unit is often divided into 6 fluid dynamical zones
like the bottom bed, freeboard, exit zone, exit duct, cyclone and downcomer
and particle seal, which have been shown to exhibit different fluid dynamical
behavior.

10.5 Milestones in Fluidized Bed Reactor Technology

Fuel conversion in a fluidized bed was first introduced by Winkler who
patented a gasifier in 1922 [137]. The first large-scale use of fluidized beds, the
Winkler gas generator, was thus established for the process of gasification of
coal in 1926 [82, 47]. These units were 13 (m) high, 12 (m2) in cross section
and fed by powered coal to produce synthesis gas for the chemical indus-
tries2. A sketch of the pioneering Winkler gas generator is shown in Fig 10.10
(a). A number of more efficient bubbling bed and lean-phase CFB fluidiza-
tion technologies for gasifying coal have been developed over the years [37].
An informative overview of the gasification chemistry, gasifier types and coal
gasification reactor models is given by Denn and Shinnar [32].

In chemical reactor engineering, on the other hand, the fluidization tech-
nique is considered initiated by the cooperative work of the Standard Oil
Development Co, the MW Kellogg Co, and Standard Oil of Indiana devel-
oping the first FCC unit. With war threatening in Europe and the Far East
around 1940, the chemical engineering community in USA was urged to find
new ways of transforming kerosene and gas oil into high-octane gasoline fuels.
The real breakthrough of the fluidized bed technology was thus associated
with the catalytic cracking of gas-oil into gasoline, first practiced in 1942 at
the Baton Rouge refinery of Standard Oil of New Jersey (now Exxon) [82, 146].

2 The gasification process involves conversion of coal and air (or oxygen) into a
gaseous mixture of mainly CO, CO2, H2, H2O, CH4 and N2.
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Before that, the catalytic cracking was carried out in fixed bed reactors3 as
commercialized in 1937. Catalytic cracking deposits carbonaceous products
on the catalyst, causing rapid deactivation of the latter. To maintain the pro-
duction capacity, the coke had to be burned off. This regeneration required
switching the fixed bed reactor out of production. In order to eliminate the
cycling, attempts were made to circulate the catalyst and burn off the coke in
a separate vessel, the re-generator. Both the reactor and the regenerator were
operated under transport conditions. A sketch of the pioneering FCC reactor
is shown in Fig 10.10 (b). Today this reactor is classified as a CFB, but it was
then called an upflow unit [97]. The term circulating fluidized bed was first
applied to alumina calciners by Reh [113] in 1971.

The high turbulence created in the fluid-solid mixture leads to much higher
heat transfer coefficients than those which can be obtained in fixed beds.
The resulting uniformity of the fluidized bed makes it applicable for effecting
catalytic reactions, especially highly exothermic and temperature sensitive
reactions. However, the fluidization technology is much more complicated than
that associated with fixed bed reactors.

Fig. 10.10. Two pioneering fluidized bed reactors: (a) the Winkler gas generator;
(b) the first large-scale pilot plant for fluid catalytic cracking. Reprinted from [82]
with permission from Elsevier.

3 This fixed bed process itself was already representing a major improvement over
the earlier thermal-cracking methods yielding more gasoline of higher octane rat-
ing and less low-value, heavy fuel oil by-product [146].
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For the low activity FCC catalysts then available, the bubbling bed design
was a decided improvement over the first CFB reactor. Until the mid-1970s,
virtually all FCC units maintained a dense phase bubbling or turbulent bed in
the reactor vessel. A few of the second generation bubbling bed FCC reactors
are still in operation [97].

The contemporary commercial reactors used for sulphide ore roasting,
Ficher-Tropsch synthesis and acrylonitrile manufacture were routinely oper-
ated in the bubbling and turbulent fluidization regimes [56, 112].

With the introduction of zeolites in the early 1960s, the FCC catalyst
activity began to increase steadily [97]. By 1980 many units were again oper-
ating in a CFB mode to reduce the residence time of the gas reactants in the
reactor. Today, by far the greatest use of CFB reactors is for the FCC process
in petroleum refining.

There are processes in which the total amount of catalyst is entrained
by the gas. The reactors then belong to the category of transport reactors.
Examples are some of the present Fischer-Tropsch reactors for the production
of hydrocarbons from synthesis gas and the modern catalytic cracking units.
Fig 10.11 shows the Synthol circulating solids reactor. In the dilute side of
the circuit, reactant gases carry suspended catalyst upward, and the fluidized
bed and stand-pipe on the other side of the circuit provide the driving force
for the smooth circulation of the solid catalyst. For the removal of heat, heat
exchangers are positioned in the reactor.

Fig 10.12(a) shows a Fluid Catalytic Cracking (FCC) unit (Exxon’s model
IV), in which the catalyst is circulating through a pair of U-tubes. Liquid oil
is fed to the riser under the reactor, and on vaporization it reduces the bulk
density of the up-going mixture and promotes the circulation of catalyst. The
stacked unit in Fig 10.12(b) is an alternative design by Universal Oil Products
Company. It uses a higher pressure in the re-generator than in the reactor,
a single riser and a micro-spherical catalyst. Some of the synthetic crystalline
zeolite catalyst introduced were so active that the cracking mainly or entirely
took place in the riser, so that the reaction vessel caused over-cracking into
undesired light gases and coke. In recent versions of the catalytic cracker,
the catalyst is completely entrained in the riser-reactor to reduce the contact
time.

Table 10.3 presents a few examples of industrial applications of fluidized
beds for synthesis reactions. Other examples are given by [146, 82, 53, 58].

Other fluid bed applications have also used CFBs in preference to dense
phase fluidized beds, but the use of CFBs is limited to situations where the
higher capital and operational costs of higher gas velocity can be justified by
significant process advantages. In many applications, a well designed dense
phase fluidized bed may suffice and be less costly to construct and operate
than a CFB.
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Fig. 10.11. Synthol circulating fluid bed Fischer-Tropsch reactor. Reprinted from
[82] with permission from Elsevier.

Fig. 10.12. FCC units in their middle stage of development. (a) Exxon’s reactor
model IV. (b) Alternative design by Universal Oil Products Company. Reprinted
from [82] with permission from Elsevier.
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Table 10.3. Industrial Applications of Fluidized Bed Catalytic Reactors [82].

Product or Reaction Type

Fluidized bed catalytic cracking (FCC) Riser reactor: FFB
Regenerator: BB/FB

Phthalic anhydride FB
Fischer-Tropsch synthesis FFB
Vinyl acetate FB
Acrylonitrile BB/FB
Ethylene dichloride BB/FB
Chloromethan FB
Maleic anhydride FB
Polymerization of olefines: Polyethylene (low density) BB
Polymerization of olefines: Polypropylene FB
o-cresol and 2,6-xylenol FB
Calcination/roasting of ores BB/FB
Inclineration of solid waste BB/FB

FB = fluidized bed; FFB = fast fluidized bed; BB = bubbling fluidized bed

10.6 Advantages and disadvantages

In general, fluidized beds are of special interest when a high degree of gas to
solid contact coupled with large throughput of gas at fairly low pressure drop
is needed.

In industry many different reactor designs are employed for the catalytic
gas-solid processes, most important are the fixed bed, moving bed and flu-
idized bed designs. In fixed bed reactors the catalyst particles are arranged in
a vessel, generally a vertical cylinder, with the flux of reactants and products
passing through the stagnant bed. In moving bed reactors the bed can be
removed either continuously or periodically in portions. The fluid circulation
is similar to that in a fixed bed.

Among these vessels, the fixed bed reactors are the conventional workhorses
for these processes. The fixed bed reactors are generally used for very slow or
non-deactivating catalysts. For some of these processes serious temperature
control problems limit the size of the reactor units. In the fixed bed units the
catalyst particles must be fairly large and uniform, and with poor temperature
control the catalyst may sinter and clog the reactor. Bubbling and turbulent
fluidized beds are more suitable for small granular or powdery non-friable
catalysts. Rapid deactivation of the solids can then be handled, and excellent
temperature controlled allows large scale operations. In general, fluidized beds
are of special interest when a high degree of gas to solid contact coupled with
large throughput of gas at fairly low pressure drop is needed.

Comparing the fluidized bed and fixed bed reactor investment costs, phys-
ical characteristics and operation performance the important advantages and
disadvantages of fluidized beds relative to fixed beds can be summarized as
follows.
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Advantages of fluidized beds :

• The ability to withdraw and reintroduce solids continuously.
• Possibility of continuous regeneration of the catalyst particles. This is par-

ticularly useful for chemical processes where the catalyst is rapidly deac-
tivated.

• The rapid mixing of solids leads to close to isothermal conditions through-
out the reactor. Low risk of hot spots, runaway and thermal instability.
The fluidized bed is well suited for exothermic reactions.

• Low impact of internal and external diffusion phenomena because of the
small particle size.

• Efficient gas-solid contacting. Heat and mass transfer rates between gas
and particles are high when compared with fixed bed reactors.

• The convective heat transfer coefficients at the surfaces immersed in the
bed are high. This property indicates that internal heat exchangers require
relatively small surface areas.

Disadvantages of fluidized beds :

• For the same weight of catalyst, expansion of the bed requires an increase
in reactor volume.

• The random movement of the particles causing back-mixing result in an
overall reactor behavior that is closer to a CSTR than a plug flow reactor.
In many chemical processes, this leads to an increase in the reaction volume
and a loss of selectivity.

• The entrainment of solid particles necessitates the installation of a device
(like a cyclone) for separating and recycling fines.

• Friable solids are pulverized and entrained by the gas and must be replaced.
• Erosion of internals, pipes, and vessels from abrasion by particles can be

serious.
• Broad residence time distributions of solids due to intense mixing, erosion

of the bed internals, and attrition of the catalyst particles.
• Broad residence time distributions of the gas due to dispersion and gas-

bypass in the form of bubbles, especially when operated in the bubbling
bed regime.

• Reactor hydrodynamics and modeling are complex. Scale-up and design
thus presents serious challenges which limits the use of these reactors to
applications that can justify the significant research and development ef-
forts involved.

10.7 Chemical Reactor Modeling

Although many of the earliest fluidized beds were operated at high gas veloc-
ities, technical difficulties led to a decrease in superficial gas velocities in the
early years [56]. At the same time, the academic research focused mainly on
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the bubbles and slugs in fluidized beds. Call to mind that the characteristic
nature of basic science guides academic researchers to proceed analyzing any
problem in a systematic manner trying to understand the low velocity phe-
nomena before the more complex high velocity flow patterns were studied.
This naturally led to significant advances in the understanding of processes
carried out at relatively low gas velocities, high-velocity processes and hydro-
dynamics were all simply ignored.

In recent years renewed interest in fluidized beds operated at high gas ve-
locities (1.5 m/s or more) in hydrodynamic regimes beyond the bubbling and
slugging regimes arise, firstly because some industrial fluid bed reactor pro-
cesses were always operated at such high gas velocities. Secondly, the interest
has been increased by the development of new circulating fluidized bed (5-10
m/s) and substantial external recycle of entrained solids. Larger units were
constructed and operated to increase the profit and competitive ability.

10.7.1 Conventional Models for Bubbling Bed Reactors

In order to predict the performance of a chemical reactor information on the
reaction kinetics, thermodynamics, heat and mass transfer, and flow patterns
are generally required. For bubbling fluidized bed reactors in particular the
flow and the phase interaction phenomena are the most challenging model-
ing tasks. In the early days, ideal flow models such as plug flow, continuous
stirred tank or mixed flow, dispersion, and the tank in series approaches were
assessed. Then, led by Toomey and Johnstone [130] a number of two-region
models were proposed. The basic advantage of these models was that they en-
able the investigators to account for the observed non-homogeneity of dense
fluidized beds, identifying the dilute bubble and the dense emulsion phases.
The word phase in this context refers to a region which may include both gas
and solid particles. These regions are distinguished from one another in terms
of the volume fraction of solids, by physical appearance, and through their
flow characteristics [54].

Two major discoveries in the understanding of the gas/solid interaction
phenomena in bubbling fluidized beds were obtained in the 1960s [81]. Firstly,
the Davidson and Harrison [29] analysis of the flow of gas within and in the
vicinity of rising gas bubbles. Secondly, the Rowe and Partridge [115] and
Rowe [116] finding that a rising bubble was accompanied by a wake of solids
and that this was the main mechanism causing solids circulation in a dense
fluidized bed.

These developments led to a novel type of reactor models, the hydrody-
namic models, in which the bed behavior was based on the characteristics of
the rising bubbles. Several models of this kind were derived for the industrial
relevant fine particle suspensions in which the rising bubbles are surrounded
by very thin clouds of circulating gas. Various combinations of assumptions
have been used to represent the phase interaction phenomena in this region
[81]:
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• Two- or three phase models. In the three phase case the bubble, cloud, and
emulsion phases are treated as separate regions. The three-phase model can
be reduced to a two-phase model either by treating the bubble and cloud
phases as a single region, or by treating the cloud and emulsion phases as
a single region.

• The bubbles are spherical or non-spherical.
• The bubble wake region is accounted for or ignored.
• The simplest model versions consider one mean bubble size in the whole

bed. The simple model can be extended so that bubbles are allowed to
grow as they rise in the bed but are of the same size over the cross section
of the bed at any level in the bed. The most advanced models are similar
to the previous group of extended models but consider also a bubble size
distribution at any level in the bed.

• The solids in the bubbles are considered or ignored.

A few of the early bubbling bed modeling approaches are assessed in the
subsequent sub-sections. Reliable engineering models, at this simple level of
complexity, can only be derived based on appropriate empirical information
characterizing the important bed properties. The theory and typical param-
eterizations used to determine the relevant behavior of the gas and solids in
the bubble, cloud, emulsion and wake regions are outlined.

Pressure Drop and Minimum Fluidization Velocity

Increasing the gas flow just passing the point of minimum fluidization condi-
tions the onset of particle fluidization will occur when the drag forces acting
on the particles due to the upward moving gas are balanced by the weight of
the solid particles [30].

The cross sectional average global pressure drop over a fluidized bed op-
erated at minimum fluidization conditions is normally calculated by an ex-
trapolation of the Ergun [42] equation (6.13) for fixed packed beds, the flow
regime that is prevailing until the minimum fluidization flow rate has been
reached, as described in chap 6:

−Δpt

Lmf
= f

ρg(Us
mf )2

dp
(10.1)

where f denotes an appropriate friction factor, as for example (6.14), and Lmf

represents the height of the fixed bed at minimum fluidization conditions.
The weight of the cross sectional averaged bed at minimum fluidization is:

−Δpt

Lmf
= (1 − εmf )(ρp − ρg)g (10.2)

where εmf denotes the gas holdup (overall bed void fraction) in the bed at
minimum fluidization (generally a measured characteristic of the bed packing).
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The superficial gas velocity at minimum fluidization conditions Us
mf is

then found by combining the two relations for the pressure drop:

Us
mf =

√

dp(1 − εmf )(ρp − ρg)g
ρg f

(10.3)

Volumetric Gas Flow Rate and Bubble Rise Velocity

The volumetric gas flow rate to the bubble phase in a fluidized bed Qb is
defined as the average rate at which the bubble volume crosses any level in
the bed [22]. However, the flow of gas in the bubble phase is generally greater
than the volumetric gas flow rate in bubble because of the so-called bulk
throughflow of gas into and out of each bubble (i.e., convective interfacial
mass transfer).

A first estimate for Qb is given by the two-phase theory of fluidization,
proposed by Toomey and Johnstone [130] and developed by Davidson and
Harrison [29, 30]. In this theory a bubbling fluidized bed consists of two zones
or phases, referred to as the bubble phase consisting of pure gas and the
emulsion phase consisting of uniformly distributed particles in a supporting
gas steam. The emulsion phase is assumed to be operating at minimum flu-
idization conditions Us

e ≈ Us
mf , while the bubble phase carries the remaining

gas flow Us
b ≈ Us

in − Us
mf .

This simple model can then be used to estimate the volumetric gas flow
flow rate in bubble phase as the excess gas flow above that required for mini-
mum fluidization:

Qb ≈ (Us
in − Us

mf )A (m3/s) (10.4)

where A is the cross sectional area of the bed (m2).
Experimental investigations indicate that the actual Qb is 10−50% smaller

than the value given by the simple two-phase model [22]. Nevertheless, the
two-phase theory has been the basis for much work in fluidization technology.
For example, knowing the bubble phase volumetric gas flow rate the average
fraction of the bed area occupied by bubbles can be approximated as:

εb ≈
Qb

Aub
≈

Us
in − Us

mf

ub
(−) (10.5)

where ub is the average rise velocity of bubbles in the bubbling bed.
Moreover, the simple two-phase theory results (10.4) and (10.5) can be

adopted determining a first estimate of the bed expansion ΔL = L − Lmf

due to the bubble formation in dense beds. The expansion of the bed above
its depth at minimum fluidization is obtained from the bubble phase volume
balance:

AΔL = A

∫ L

0

(1 − εb)dz −A

∫ Lmf

0

(1 − εb)dz ≈
∫ L

Lmf

Qb

ub
dz (m3) (10.6)
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provided that the average rise velocity of bubbles is known (since the Lmf and
Us

in parameters are normally specified and Us
mf is calculated from suitable

semi-empirical models).
The rise velocity of a single bubble rising in an emulsion phase unaffected

by other bubbles and the walls is frequently calculated from an expression
derived for gas liquid flow. Bubbles in a fluidized bed behave in many ways
like bubbles in a low viscosity liquid [116, 82]. A small bubble is spherical, but
a bubble becomes deformed with increasing size and the larger ones have a
spherical capped shape. The smallest bubbles rise slowly. The larger bubbles
generally rise faster. Bubbles flowing in series may coalescence to produce
larger bubbles. Wall effects usually decreases the bubble rise velocity. How-
ever, in contrast to gas-liquid flow there is a high degree of gas interchange
between the bubbles and the gas in the dense emulsion phase. Davies and Tay-
lor [31] studied the rate of rise of large spherical cap bubbles of air through
nitrobenzene or water. An approximate calculation showed that the velocity
of rise of a single bubble is ubl,rise = 2

3 (gRn)1/2. In this formula Rn is the
radius of curvature at the nose of the gas bubble. Clift et al [23] (p 206) sum-
marized the experimental rate of rise data for gas bubbles in liquids found in
more recent publications.

For particular bubble Reynolds and Eötvös numbers, Reb = ρgdeubl,rise/
μg > 150 and Eo = gΔρd2

e/σI ≥ 40, the data on spherical cap bubbles
indicate that a semi-empirical relation for the terminal velocity expressed in
terms of the volume equivalent bubble diameter is appropriate [54]:

ubl,rise ≈
[

2
3

√

Rn

de

]

(gde)1/2 ≈ 0.711(gde)1/2 (m/s) (10.7)

where ubl,rise denotes the rise velocity of a spherical cap bubble in liquid
(m/s), and de is the equivalent bubble diameter (m). The term in the bracket
is generally a weak function of Reb, but for Reb > 100 the pre-factor is about
constant. For gas-liquid flows the modified coefficient value is confirmed fairly
well in several experimental investigations[28, 116, 138, 31].

Even though (10.7) is strictly valid in liquids, the formula is widely used
for calculations of the ideal rise velocity of single bubbles in fluidized beds,
when the ratio of bubble to bed diameters is db/dt < 0.125 [29, 82]:

ubr,0 ≈ 0.711(gdb)1/2 (10.8)

However, experimental data on rise velocities in fluidized beds consisting of
group A and B particles indicates that the pre-factor in (10.8) is about 2/3
as for a single spherical cap bubble in liquid. For group D particles the given
pre-factor of 0.711 seems appropriate.

Wall effects are found to retard the single bubbles when db/dt > 0.125.
Kunii and Levenspiel [82] proposed that for 0.125 < db/dt < 0.6 the rise
velocity of a single bubble can be estimated from:
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ubr,0 ≈ [0.711(gdb)1/2] × 1.2 × exp
(

− 1.49
db

dt

)

(10.9)

For db/dt > 0.6, the bed operates in the slugging regime which is not very
interesting from a chemical reactor engineering point of view.

In reactor modeling we need to deal with the behavior of the bubbling
bed as a whole rather than single rising bubbles. In extending the simple two-
phase theory, Davidson and Harrison [29] proposed that the average velocity
of bubbles in a freely bubbling bed can be approximated by 4:

ub = Us
b + ubr,0 ≈ Us

in − Us
mf + ubr,0 (10.10)

where ubr,0 is the ideal rise velocity of an isolated bubble of the same size
(10.8).

This relation is not generally valid but considered to give a fair approxima-
tion of the average flow rate of bubbles when Us

in is close to Us
mf for all types

of particles, and for all velocities of interest considering larger type B and type
D particles. However, in large diameter beds consisting of fine particles and
operated at higher gas velocities the real bubble rise velocity is several times
the velocity predicted by (10.10). This deviation is primarily caused by the
existence of preferred emulsion flow patterns [81, 82]. For small B and fine A
particles the emulsion phase gas and solids are not really stagnant but develop
distinct flow patterns, frequently referred to as gulf streaming , induced by the
uneven rise or channeling of gas bubbles. In these gulf streaming patterns the
bubbles rise in bubble rich regions with less friction thus a substantially higher
mean bubble rise velocity occur in these zones. In small and narrow beds this
flow pattern might be reduced or prevented by the wall friction. Several mod-
ified relations for the average bubble rise velocity in dense fluidized beds have
been reported over the years, each of them valid for particular Geldart solids,
bed designs and operating conditions. Kunii and Levenspiel [81], for example,
proposed a correlation for Geldart A solids with dt ≤ 1 (m):

ub = 1.55
{

(Us
in − Us

mf ) + 14.1(db + 0.005)
}

d0.32
t + ubr,0 (m/s) (10.11)

A similar correlation was given for Geldart B solids with dt ≤ 1 (m):

ub = 1.6
{

(Us
in − Us

mf ) + 1.13d0.5
b

}

d1.35
t + ubr,0 (m/s) (10.12)

The Davidson-Harrison Model for Gas Flow Around Bubbles

The first model for the movement of both gas and solids and the pressure
distribution around single rising bubbles was given by Davidson and Harrison
4 This expression and the arguments for its use were first presented by Nicklin [102]

for gas-liquid systems determining the rise velocity of a single bubble in a cloud
of gas bubbles rising through a stagnant liquid, and later used by Davidson and
Harrison [29] (p 28) for bubbles in fluidized beds.
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[29] (Chap 4). Two versions of the model were developed, considering two-
and three-dimensional fluidized beds. The theory is based on the following
assumptions:

• There is no solids in a gas bubble. A three-dimensional bubble is spherical,
whereas a two-dimensional bubble is cylindrical.

• As a bubble rises, the particles move aside, as would an incompressible
inviscid fluid having the same bulk density as the whole bed at incipient
fluidization ρs(1 − εmf ) + ρgεmf .

• The gas flows in the emulsion phase as an incompressible viscous fluid.
The relative velocity between the gas and the solid particles must satisfy
Darcy’s law:

vg − vs = −K∇p (10.13)

where K is a permeability constant characteristic of the particles and the
fluidizing fluid.

From potential flow theory, invoking the given model assumptions, the pres-
sure distribution in the bed can be found by solving a Laplace equation. The
boundary conditions used express that far from a single bubble an undis-
turbed pressure gradient exist as given by (10.2), and that the pressure in the
bubble is constant. Then, after the pressure distribution is known the flow
pattern for the solids and the gas in the vicinity of a rising bubble can be
calculated. The solution shows that the pressure in the lower part of the bub-
ble is lower than that in the surrounding bed, whereas in the upper part it is
higher. For this reason the gas flows into the bubble from below and leaves
at the top. A distinct difference in the gas flow pattern has been identified,
depending on whether the bubble rises faster or slower than the emulsion gas.
The gas flow pattern is thus classified dependent on the relative velocity be-
tween a single bubble ubr,0 and the emulsion gas ue = Us

mf/εmf far from the
bubble.

For slow bubbles (ubr,0 < ue) in beds consisting of large particles the
emulsion gas rises faster than the bubble, hence the faster rising emulsion gas
shortcuts through the rising bubble on its way through the bed. The emulsion
phase gas enters the bottom of the bubble and leaves at the top. Within the
bubble an annular ring of gas is forced to circulate as it moves upwards with
the bubble. For a fast bubble (ubr,0 > ue) in beds consisting of small particles
the emulsion gas rises slower than the bubble, but still the emulsion phase
gas enters the bottom of the bubble and leaves at the top. However, since
the bubble is rising faster than the emulsion gas, the gas leaving the top of
the bubble is swept around and returns to the base of the bubble. The region
around the bubble penetrated by this circulating gas is called the cloud. The
rest of the gas in the bed does not mix with the recirculating gas but moves
aside as the fast bubble with its cloud passes by. The cloud phase might
be considered infinite in thickness at ubr,0 = ue, but thins with increasing
bubble velocity. For very fast bubbles, ubr,0/ue > 5, the cloud is very thin
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and most of the gas stays within the bubble. In general slow cloudless bubbles
occurs in beds of coarse particles (group D, or B) while fast bubbles with
thin clouds are typically observed for group A and B particles at high gas
velocities.
For a two-dimensional bed the cloud size is given by [29, 30]:

R2
c

R2
b

=
ubr,0 + ue

ubr,0 − ue
(10.14)

For a three-dimensional bed the cloud size is given by [29, 30]:

R3
c

R3
b

=
ubr,0 + 2ue

ubr,0 − ue
(10.15)

For a two-dimensional bed the ratio of cloud to bubble size is defined as [82]:

fc =
R2

c

R2
b

≈ ubr,0 + ue

ubr,0 − ue
≈ 2ue

ubr,0 − ue
≈

2Us
mf/εmf

ubr,0 − Us
mf/εmf

(10.16)

For a three-dimensional bed the ratio of cloud to bubble volume is defined as
[82]:

fc =
R3

c

R3
b

=
ubr,0 + 2ue

ubr,0 − ue
≈ 3ue

ubr,0 − ue
≈

3Us
mf/εmf

ubr,0 − Us
mf/εmf

(10.17)

These estimates for fc are obtained considering the particular case when
ubr,0 ≈ ue.

The simple theory also provides estimates of the gas exchange between
the bubble and the emulsion phase. For a two-dimensional bed of unit thick-
ness the flow of gas through the bubble is v = 4ueεmfrb, and for a three-
dimensional bed the flow of gas through the bubble is v = 3ueεmfπr

2
b .

Rowe [116] and Davidson et al [30] summarized the experimental inves-
tigations of the properties of bubbles and clouds, explained the elementary
theories using nice illustrations and provided pictures of the physical phe-
nomena observed.

The Wake Region

In an early study Rowe and Partridge [115] (see also [116]) did show that
gas fluidized beds are characterized by the formation of bubbles which rise
through denser bed zones of the bed and determine a gross scale gas and solid
flow pattern.

It was observed that like a single bubble in liquid, a rising bubble in a
fluidized bed drags a wake of material consisting of a gas-solid mixture up the
bed behinds it. Close to the bottom of the bed, just above the gas distributor,
solids are entrained by the rising bubbles to form the bubble wake. There is
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also a continuous interchange of solids between the wake and emulsion as the
bubble rise. At the top of the bed the wake solids rejoin the emulsion to move
down the bed.

The bubble wake fraction is given by the volume ratio of the wake to the
bubble:

fw =
Vw

Vb
(10.18)

The wake volume Vw is defined as the volume occupied by the wake within
the sphere that circumscribes the bubble.

The wake fraction is normally determined from experimental analysis [82].

Bubble Size

In bubbling fluidized beds there are several mechanisms affecting the bubbles
properties [115, 116, 30, 82]. The main mechanisms determining the mean
bubble size are bubble growth, bubble coalescence and bubble breakage. The
primary bubble growth mechanism for a single bubble unaffected by other
bubbles is gas transfer from the emulsion phase into the bubble. In a freely
bubbling bed the main mechanism for bubble growth is bubble-bubble co-
alescence. Binary breakage of bubbles frequently occur as a result of small
disturbances, often proceeded by a slight flattening of the bubble, initiated
near the top of the roof of the bubble and these rapidly grow in a cutting
edge of particles that may divide the parent bubble into two equal or unequal
daughter bubbles. Later these daughter bubbles commonly re-combine either
by gas leakage from one bubble to the other or because a small bubble falling
behind the larger one is caught in its wake and coalescence.

Experiments have shown that in beds consisting of B type particles the
bubbles increase steadily, whereas in beds consisting of type A particles the
bubbles grow rapidly until they reach a stable size determined by a state of
equilibrium between the coalescence and breakage processes [82].

When performing experimental investigations of bubble properties two di-
mensional beds have proved to be useful [55]. These two-dimensional columns
are of rectangular cross section, the width being considerably greater than
the thickness. The fluidized particles are contained in the gap between two
transparent faces, separated by 2-3 cm. The bubbles span the bed thickness
and are thus viewed. However, while these two-dimensional columns are useful
for qualitative purposes, there are important quantitative differences between
the two- and three dimensional fluid bed flow behavior. These differences arise
from quantitative differences in rise velocities of isolated bubbles, bubble co-
alescence properties, bubble shape and wake characteristics, reduced solids
mixing, etc. To characterize the bubble properties in three dimensional dense
beds intrusive probes are normally used [129]. For modeling purposes it is
important to distinguish between the relations obtained characterizing two-
and three dimensional beds.
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The equivalent bubble diameter de, defined as the diameter of a spherical
bubble with a volume equal to the average bubble volume, is often used as a
measure of bubble size. A representative relation for the equivalent bubble di-
ameter in a three-dimensional bed with B particles supported by a perforated
plate distributor was given by [134]:

de = de,0[1 + 27.2(Us
in − Us

mf )]1/3(1 + 6.84z)1.21 (m) (10.19)

where de,0 denotes the initial bubble size at the distributor, and z is the
position above the distributor.

A more general relation for the equivalent bubble diameter in three-
dimensional beds was derived by Darton et al [27]:

de =
0.54
g1/5

(Us
in − Us

mf )2/5(z + 4
√

A0)4/5 (m) (10.20)

where A0 is the catchment area for the bubble stream at the distributor plate,
which characterize different distributors, and is usually the area of plate per
orifice. For a porous plate distributor a typical value A0 ≈ 5.6 × 10−5(m2)
was proposed.

To determine the growth of circular bubbles in two-dimensional fluidized
beds Lim et al [89] modified the relation of Darton et al [27] and proposed:

de =
[8(Us

in − Us
mf )(23/4 − 1)

πλg1/2
z + d

3/2
e,0

]2/3

(m) (10.21)

where the initial equivalent bubble diameter just above the distributor is given
by:

de,0 =
[8(Us

in − Us
mf )A0

πλg1/2

]2/3

(m) (10.22)

The dimensionless proportionality constant λ ∼ 2 is related to the distance a
bubble travels in a stream before coalescing with the adjacent stream to form
a single stream of larger bubbles.

The Basic Two-Phase Model

A number of fluidized bed reactor model versions are based on the cross
sectional averaged two-phase transport equations as presented in sect 3.4.7.
Due to the vigorous particle flow the fluidized beds are essentially isothermal,
so no energy balance is generally required5. In addition, the necessary species
mass (mole) balance can be deduced from (3.498). The solids are considered

5 In particular cases, considering extremely exothermic or endothermic processes,
a global CSTR heat balance may be employed to determine a uniform operating
temperature and the necessary heating/cooling capacity.
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to be completely mixed in the dense phase and is essentially stagnant, so only
an overall mass balance is needed for the solid phase.

For the particular case of an irreversible gas solid catalyzed reaction with
no accompanying volume change, the mass (mole) balance for a species A in
the interstitial gas phase moving through the emulsion phase is frequently
simplified assuming axially constant transport parameters (i.e., fe, ue, De,
and kbe) [141, 142, 58]:

fe
∂CAe

∂t
+ feue

∂CAe

∂z
= feDe

∂2CAe

∂z2
+ fekbe(CAb − CAe) + rAeρefe (10.23)

where CAe represents the cross sectional average mole concentration of A in
the emulsion phase gas (kmol/m3), Us

e = feue the superficial velocity of the
emulsion phase gas (m3/m2 s), ue the interstitial emulsion gas velocity (m/s),
De an effective diffusivity for the emulsion gas (m2/s), kbe an interchange mass
transfer rate coefficient per unit volume of bubble gas (m3/m3 s), rAe reaction
rate in emulsion phase (kmol/kg s), fe is the fraction of the bed gas volume
taken by the emulsion gas (m3/m3), and ρe the mass concentration of the
catalyst particles in the emulsion phase (kg/m3).

The corresponding mass (mole) balance for species A in the bubble phase
is:

fb
∂CAb

∂t
+ fbub

∂CAb

∂z
= fbDb

∂2CAe

∂z2
− fbkbe(CAb − CAe) + rAbρbfb (10.24)

where CAb represents the cross sectional average mole concentration of A in
the bubble phase (kmol/m3), Us

b = fbub the superficial velocity of the bubble
phase gas (m3/m2 s), Db an effective diffusivity for the bubble gas (m2/s),
rAb reaction rate in bubble phase (kmol/kg s), fb the volume fraction of the
bed gas taken by the bubble gas (m3/m3), and ρb the mass concentration of
the catalyst particles in the bubble phase (kg/m3).

The Davidson-Harrison Two-Phase Model

The Davidson and Harrison [29, 30] bubbling bed reactor model represents
one of the first modeling attempts that was based on bubble dynamics. The
model rest on the following assumptions:

• The reactor operates at steady state, thus the transient terms in (10.23)
and (10.24) disappear.

• The gas bubble are evenly distributed throughout the bed and are of equal
size.

• The bubble phase gas flow can be described by a plug flow model, hence
the bubble phase dispersion term in (10.24) vanishes.

• No solids in the bubbles, thus no catalytic reaction takes place in the
bubble phase gas.
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• The emulsion phase gas flows with a superficial velocity Us
mf and is either

considered completely mixed or plug flow.
• Gas is exchanged between the non-reactive bubble and the reactive emul-

sion phases by a combined molecular and convective transport flux.

Species mass balances were developed for the two phases and solved ana-
lytically for first order reactions. Thus, for the case of a completely mixed
emulsion phase the concentration of a reactant leaving this phase is given by:

Ce =
Cin(1 − fbe

−X)

1 − fbe−X + kLmf

Us

(10.25)

where X = KbeL/U
s
b is the interphase exchange parameter, L represents the

bed height and Us
b the bubble velocity, and fb = 1 − Us

mf/U
s.

For the bubble phase operated in plug flow:

Cb = Ce + (Cin − Ce)e−X (10.26)

The concentration of unconverted reactant Cout leaving the bed as a whole
was then found from:

Cout = fbCb + (1 − fb)Ce (10.27)

The overall fraction of unconverted reactant becomes:

Cout

Cin
= fbe

−X +
(1 − fbe

−X)2

1 − fbe−X + kLmf

Us

(10.28)

For the case when the emulsion phase gas is in plug flow, the overall
fraction unconverted reactant leaving the bed becomes:

Cout

Cin
=

1
m1 −m2

[

m1e
−m2L(1 −

m2LU
s
mf

XUs
) −m2e

−m1L(1 −
m1LU

s
mf

XUs
)
]

(10.29)
where m1 and m2 are obtained from:

2L(1− fb)m = (X − kLmf

Us
)± [(X − kLmf

Us
)2 − 4

kLmf

Us
X(1− fb)]1/2 (10.30)

In the latter expression m = m1 with the positive sign and m = m2 with the
negative sign.

The details of the model derivation and the analytical solution can be
found in [29, 141, 142, 141, 117]. It is noted that this model was developed
before the importance of bubble clouds and wakes were realized.

Although this model is derived from first principles and uses a minimum of
empirical information, the model predictions have been found to agree fairly
well with experimental data in a number of cases and may thus be adequate
for design purposes. However, the empirical relationships are derived from
experiments with laboratory scale equipment, and this has caused the validity
of their application to large industrial units to be questioned.
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The van Deemter Two-Phase Reactor Model

This model represents one of the first modeling approaches used to describe
large industrial beds that has been fully documented and discussed in the open
literature. The model was adopted by the Shell company designing a fluidized
bed reactor for their solid catalyzed hydrogen chloride oxygen process. How-
ever, the model has many of the same limitations as the Davidson-Harrison
model because is was developed before the importance of bubble clouds and
wakes were realized.

The fairly general transport equations constituting the basic two-phase
model, given in (10.23) and (10.24), were simplified making the van Deemter
model specific assumptions [132, 142, 47]:

• The reactor operates at steady state, thus the transient terms disappear.
• The bubble gas flow can be described by a plug flow model, hence the

bubble phase dispersion term vanishes.
• No solids in the bubbles so no catalytic reaction takes place in the bubble

phase, thus the reaction term disappears in the bubble gas mole balance.

For a single reaction, a generic cross sectional average species mole balance
for component A in the bubble phase gas can thus be written as:

fbub
dCAb

dz
+ fbkbe(CAb − CAe) = 0

(

kmol

m3s

)

(10.31)

The corresponding cross sectional average species mole balance for component
A in the emulsion phase gas is written as:

feue
dCAe

dz
−fbkbe(CAb−CAe)−feDe

d2CAe

dz2
+rAeρefe = 0

(

kmol

m3s

)

(10.32)

The overall outlet concentration CA,out is calculated as:

Us
inCA,out = fbubCAb + feueCAe (10.33)

in which Us
in denotes the overall superficial gas velocity (m3/m2s).

The model equations are normally solved applying the following initial and
boundary conditions :

Bubble phase: CAb = CAb|z=0

Emulsion phase [26]: −De
dCAe

dz

∣

∣

∣

∣

z=0

= ue(CAe|z=0 − CAe)

dCAe

dz

∣

∣

∣

∣

z=L

= 0

(10.34)

The undetermined model parameters like Us
b , ub, kbe, De, fe, fb, ue and Us

e

were approximated from empirical correlations determined by experimental
measurements. Us

in and εmf are generally measured or specified, thus Us
mf

can be determined from (10.3).
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A typical correlation for kbe is given by [117, 47]:

Us
in

fbkbe
≈ (1.8 − 1.06

d0.25
t

)(3.5 − 2.5
Z1.4

) (m) (10.35)

where Z is the total reactor height (m).
The effective diffusivity in the emulsion phase may be approximated by [6]:

De ≈ 0.35(gUs
in)1/3d

4/3
t (m2/s) (10.36)

In the basic two-phase model a prescribed fraction of the total gas flow rate
through the bed, which is coinciding with the minimum fluidization operating
conditions, is assumed to move through the emulsion phase [130, 29]. The
relative velocity between the interstitial gas and the solids in the emulsion
phase is thus ue = Us

mf/εmf . The rest of the gas constitutes the bubble
phase. The superficial bubble gas velocity is thus generally approximated as:

Us
b = fbub ≈ Us

in − Us
mf (m3/m2s) (10.37)

Likewise, the superficial emulsion gas velocity is approximated as:

Us
e = feue ≈ Us

mf = ueεmf (m3/m2s) (10.38)

The average bubble rise velocity (10.10) is approximated by the bubble rise
velocity among a swarm of bubbles [134]:

ub = Us
e − Us

mf + ubr,0 ≈ ubr,0 ≈ K
√

gdb (10.39)

where K = 0.64 when dt < 0.1 (m), K = 1.6d0.4
t when 0.1 < dt < 1.0 (m),

and K = 1.6 when dt > 1.0 (m).
The flow pattern for solids is generally downward near the wall and upward

in the central core. This particle movement also affects the gas flow in the
emulsion phase. In this model the net rise velocity of solids is neglected, hence
us = 0.

For a perforated plate distributor the bubble size might be approximated
by (10.19).

The Kunii-Levenspiel Three-Phase Model

The celebrated Kunii-Levenspiel [78, 79, 81, 82] (p 289) reactor model pre-
sented in this section was designed for the particular case of fast bubbles
in vigorously bubbling beds which is relevant for industrial applications with
Geldart A and AB solids. In such beds there are definite gross mixing patterns
for the solid, downward near the wall and upward in the central core. This
has a marked effect on the gas flow in the emulsion phase, which is also forced
downward near the wall. However, based on experimental data analysis, Kunii
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and Levenspiel found that at gas flow rates above Us
in/U

s
mf ∼ 6 − 11 there

are practically no net gas flow through the emulsion phase.
To take these observations into account a three phase model was proposed

in which many ideas from the Davidson bubble theory, the Davidson-Harrison
and the van Deemter reactor models were adapted. The Rowe cloud and wake
observations were also considered. The basic model assumptions were:

• The bed is assumed to consist of three phases, the bubble, cloud and
emulsion, with the wake region considered to be a part of the cloud phase.

• For industrial relevant operating conditions well above minimum fluidiza-
tion, Us

in � Us
mf and practically all the moving gas is transported in the

bubble phase. In this fast bubbling regime, for which ub > 5Us
mf/εmf , the

clouds are very thin.
• Interchange mass transfer coefficients are used to account for the mass

transfer between the phases.
• The rising bubbles contain no solid.
• The bubble phase operates under plug flow conditions.
• The cloud and emulsion phases are stagnant (ue ≈ uc ≈ 0).
• Spherical bubbles of uniform size accompanied by wakes throughout the

bed.
• First-order reaction is assumed. The catalytic reaction rate is given in

accordance with modern literature [47].

For a single catalytic reaction, a generic cross sectional average species
mole balance for component A in the bubble phase gas can be written as:

ub
dCAb

dz
+ kbc(CAb − CAc) + rAbρb = 0

(

kmol

m3s

)

(10.40)

where kbc denotes the interchange coefficient determining the mass transfer
between the bubble and cloud gas phases, referred to unit bubble gas volume
(m3/m3s), and CAc the molar concentration of species A in the cloud phase
gas (kmol/m3).

For a single reaction a generic species mole balance for component A in
the stagnant cloud phase gas is written as:

kbc(CAb − CAc) = rAcρc
Vc

Vb
+ kce(CAc − CAe)

(

kmol

m3s

)

(10.41)

where Vc denotes the volume of the cloud phase (m3), Vb the volume of the
bubble phase (m3), ρc the mass concentration of the catalyst particles in the
cloud phase (kg/m3), and kce denotes the interchange coefficient determining
the mass transfer between the cloud and emulsion phases, referred to unit
bubble volume (m3/m3s).

For a single reaction a generic species mole balance for component A in
the stagnant emulsion phase gas is written as:
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kce(CAc − CAe) = rAeρe
fe

fb
≈ rAeρe

1 − fb

fb

(

kmol

m3s

)

(10.42)

In general, the model can be solved numerically with appropriate initial
conditions for the plug flow ODE.

Bubble phase:
CAb = CAb|z=0 (10.43)

The model can be solved analytically for first order reactions. Eliminat-
ing the unknown CAc and CAe concentrations from the model equations, we
obtain:

fbub
dCAb

dz
= KrCAb

(

kmol

m3s

)

(10.44)

where the overall rate coefficient Kr contains all the interfacial transfer resis-
tances as well as the reaction resistance terms.

The overall rate coefficient Kr can be defined as [47]:

Kr = k

⎡

⎢

⎢

⎢

⎢

⎣

ρb +
1

k
kbc

+ 1
ρc

Vc
Vb

+ 1
k

kce
+ 1

ρe
(1−fb)

fb

⎤

⎥

⎥

⎥

⎥

⎦

(1/s) (10.45)

Integration over the whole reactor bed from z = 0 to z = L gives:

CAb = CA,in exp(−KrL

Us
b

)
(

kmol

m3

)

(10.46)

The celebrated K-L model did gain its popularity because it is very simple,
yet developed for large scale industrially relevant flows and considers most of
the pertinent bubbling bed phenomena.

Over the years the range of uses of the K-L model has been extended to
chemical processes that can not be described by first order kinetics. For these
problems no analytical solution can be obtained so the resulting set of DAE
equations are solved numerically. Gascon et al [48], for example, investigated
the behavior of a two zone fluidized bed reactor for the propane dehydro-
genation and n-butane partial oxidation processes employing the K-L model
framework.

In any case the undetermined model parameters are determined from ap-
propriate empirical correlations [78, 79, 81, 82]. The mass transfer coefficients,
all based on unit bubble volume, can be obtained from:

kbc = 4.5
us

mf

db
+ 5.85(

D
1/2
Amg1/4

d
5/4
b

) (m3/m2s) (10.47)
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kce = 6.78(
εmfDAmub

d3
b

)1
′/2 (m3/m2s) (10.48)

where DAm is the diffusivity for species A in the mixture (m2/s).
In the two-phase view the solids in the bubble phase is ignored (εb ≈ 1),

thus the overall void fraction in the bubbling bed is:

εov = fbεb + (1 − fb)εe ≈ fb + (1 − fb)εe (10.49)

If εov and fb are known from experiments, εe can be determined by this
equation.

However, in many cases εov and fb are unknown, so εe cannot be deter-
mined in this way. For modeling purposes Kunii and Levenspiel [81] proposed
some rough approximations. For beds of Geldart A solids, εe ≈ εmb, whereas
for beds of Geldart B and D solids, εe ≈ εmf .

In the latter case, where εe ≈ εmf , the volume balance over the bed can
be written as:

1 − εov ≈ (1 − fb)(1 − εmf ) (10.50)

The volume fraction of the bed consisting of bubbles fb is determined by the
prevailing flow regime. For fast bubbles in vigorously bubbling beds, where
ub > 5Us

mf/εmf and Us
in � Us

mf , the clouds are thin and one may use the
following approximation [81]:

fb =
Vb

Vr
≈

Us
in − Us

mf

ub − Us
mf

≈ Us
in

ub
(10.51)

The volume fraction of bed gas comprising the emulsion phase gas is:

fe = 1 − fb =
ub − Us

in

ub − Us
mf

(10.52)

The distribution of solids in the three regions were defined by:

γb =
Vbs

Vb
, γc =

Vcs

Vb
, γe =

Ves

Vb
(10.53)

A material balance for the solids and (10.50) then relates these γ-values:

fb(γb + γc + γe) = 1 − εov = (1 − εmf )(1 − fb) (10.54)

hence

γe =
(1 − εmf )(1 − fb)

fb
− γb − γc (10.55)

Values of γc have been estimated considering a spherical bubble and account-
ing for the solids in both the cloud and wake regions:

γc = (1−εmf )(
Vc

Vb
+
Vw

Vb
) ≈ (1−εmf )(

3Us
mf/εmf

0.711(gdb)1/2 − Us
mf/εmf

+fw) (10.56)
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where the volume of the cloud surrounding each of the fast rising bubbles is
given by:

Vc

Vb
≈

3Us
mf/εmf

0.711(gdb)1/2 − Us
mf

(10.57)

Like bubbles in liquids, it might be expected that every rising bubble in flu-
idized beds has an associated wake of material rising behind it. The ratio of
wake to bubble volume fw = Vw/Vb has to be determined by experiments, but
the void fraction of the wake is frequently assumed to be that of the emulsion
phase.

Moreover, experiments in beds of uniformly sized bubbles indicates that
γb ≈ 0.001 ∼ 0.01.

One may imagine that just above the distributor solid is entrained by the
rising bubbles to form the bubble wake. This solid is carried up the bed with
the bubbles at velocity ub and is continually exchanged with fresh emulsion
solid. At the top of the bed the wake solids rejoin the emulsion to move
down the bed at velocity us. The upward velocity of gas flowing through the
emulsion is thus:

ue =
umf

εmf
− us (10.58)

Under particular operating conditions the circulation of solids may then get
high enough so that the gas flow is directed downward in the emulsion. How-
ever, in vigorous bubbling beds the rise velocity of solids is about zero:

us ≈ 0 (10.59)

The distribution of solids γ used in the original Kunii and Levenspiel model
[82] can be linked to the bulk solid density in the following manner [47]. The
bulk density of solids in the bubble phase yields:

ρb = γbρs, (10.60)

where ρs is the mass density of the solid catalyst material.
The bulk density of solids in the cloud and wake phases is given by:

ρc = γcρs
Vb

Vc
(10.61)

in which Vc is the volume of the cloud phase, and Vb is the volume of the
bubble consisting of pure gas.

The bulk density of solids in the emulsion phase is obtained from:

ρe = γeρs
Vb

Ve
= γeρs

fb

fe
≈ γeρs

fb

1 − fb
(10.62)

In the latter relation the volume of the thin cloud phase is ignored.
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10.7.2 Turbulent Fluidized Beds

Models for turbulent fluidized bed reactors are normally based on one di-
mensional gas flow, despite the significant radial density gradients observed
experimentally [56, 57].

For reactors operated in the turbulent regime the following reactor mod-
eling approaches have been proposed:

• The first modeling attempts employed one dimensional pseudo- homoge-
neous plug flow models for the gas phase. For first order reactions the
model can be written as:

Us
g

dC

dz
+ k(1 − ε)C = 0

(

kmol

m3s

)

(10.63)

The customary initial condition is:

C = Cin (10.64)

• For non-ideal flows the modeling approach has been extended adapting
one dimensional pseudo-homogeneous axial dispersion models for the gas
phase.
The latter model can be written as:

d

dz
(Dg,ax

dC

dz
) + Us

g

dC

dz
+ k(1 − ε)C = 0

(

kmol

m3s

)

(10.65)

The boundary conditions are [26]:

CinU
s
g,in =CUs

g −Dg,ax
dC

dz
at z = 0 (10.66)

dC

dz
= 0 at z = L (10.67)

The dispersion coefficient for the turbulent regime has been determined
from correlations on the form:

Dg,ax ≈ 0.84ε−4.445
ov (m/s) (10.68)

where εov is the overall void fraction in the turbulent regime.

10.7.3 Circulating Fluidized Beds

For reactors operated in the fast fluidization and pneumatic conveying regimes
the following modeling approaches have been used [57, 96, 13]:

• One dimensional pseudo-homogeneous plug flow models for the species in
the gas phase.
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For pneumatic conveying all the particles are evenly dispersed in the gas.
This makes contacting ideal or close to ideal. The plug flow model is thus
well suited for the dilute transport reactors, but has also been used for the
denser fast fluidization regime neglecting gradients in the solids distribu-
tion. For first order reactions the model can be written as:

Us
g

dC

dz
+ k(1 − ε)C = 0

(

kmol

m3s

)

(10.69)

The initial condition is:
C = Cin (10.70)

• One dimensional pseudo-homogeneous axial dispersion model for the
species in the gas phase.
This model has been used for denser transport reactors and reactors op-
erated in a dilute fast fluidizartion regime intending to account for the
non-ideal flow behavior. For first order reactions the model can be written
as:

d

dz
(Dax

dC

dz
) + Us

g

dC

dz
+ k(1 − ε)C = 0

(

kmol

m3s

)

(10.71)

The boundary conditions are [26]:

CinU
s
g,in =CUs

g −Dax
dC

dz
at z = 0 (10.72)

dC

dz
= 0 at z = L (10.73)

The dispersion coefficient was determined by correlations on the form:

Dg,ax ≈ 0.1953 × ε−4.1197
ov (m/s) (10.74)

where εov is the overall void-age in the reactor. This correlation is valid for
all the regimes ranging from turbulent fluidization to pneumatic transport.

• Core/annulus models for the gas phase.
Most state of the art CFB reactor models operated in the fast fluidization
regime make use of the core/annulus approach, which dates back to the
work of [17]. These models are based on the experimental data interpre-
tation that two zones exist in the riser at every axial location, an upward
moving dilute core phase and a dense annulus phase with high solids con-
centration. The gas was assumed to pass upward in plug flow through the
central core. Some of this gas was exchanged with the outer annular region
where the gas is stationary. Each of the the two-regions was assumed to
be radially uniform. An inter-region mass transfer coefficient and the ra-
dius of the core, both assumed to be independent of height, were obtained
by fitting the models to experimental axial gas mixing data. The catalyst
particles were assumed to be small enough so that both intra particle dif-
fusion resistances and external particle mass transfer do not need to be
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considered. Applying this model to a first order reaction with steady state
operation leads to molar balances of the generic form [73]:
Core region:

Us
g (
R2

r2
c

)
dCc

dz
+

2K
rc

(Cc − Ca) + k(1 − εcs)Cc = 0
(

kmol

m3s

)

(10.75)

Annulus region:

(
r2
c

R2 − r2
c

)
2K
rc

(Cc − Ca) + k(1 − εas)Ca = 0
(

kmol

m3s

)

(10.76)

where K and k are the cross flow mass transfer coefficient and first order
kinetic rate constant, respectively. Furthermore, Kagawa et al [73] em-
ployed the following model parameters: kc = k(1 − εc), ka = k(1 − εa),
rc/R = 0.85, εc = 0.6〈εs〉A, εa = 2.0〈εs〉A, and Uc = U/0.852.
A common initial boundary condition is:

Cc = Cin at z=0 (10.77)

It is recognized that this model is formally analogous to the two-phase
bubbling bed model, with the annulus replacing the stagnant dense phase
and the dilute core replacing the bubble phase.

As the interest in high velocity fluidized beds operating in the turbulent,
fast fluidization and pneumatic conveying regimes has grown, several attempts
have been made to provide appropriate reactor models, often by extending the
models originally devised for the bubbling bed reactors.

Kunii and Levenspiel [81] presented models for bubbling beds for all types
of particles considering the lean phase freeboard and for fast fluidized beds. A
freeboard entrainment reactor model was developed to account for the extra
conversion taking place above dense bubbling beds. For fast fluidized bed
reactors the vessel was divided into two zones, a lower dense zone and an upper
free-board zone. Later, Kunii and Levenspiel [83, 84] deduced engineering
models for determining the performance behavior of a CFB reactor extending
the bubbling bed model by adjusting the parameters to the turbulent, fast
fluidization and pneumatic conveying regimes.

The Overall Pressure Balance Around a CFB Loop

In the CFB loop the pressure drop over the riser must be balanced by that
imposed by the flow through its accompanying components such as the down-
comer and the recirculation device. The pressure drops across the downcomer,
the solids circulation and control device, and the riser are the major elements
in the pressure balance around the CFB loop. The pressure drop balance is
thus such that the sum of the control device, fluidized bed riser and cyclone



914 10 Fluidized Bed Reactors

(piping) pressure drops must equal the downcomer and hopper pressure drops.
The hopper pressure drop is usually negligible so that:

ΔpR + ΔpC + ΔpCD ≈ ΔpD (10.78)

A balance of the pressure around the CFB loop requires quantitative infor-
mation for the pressure drops in each component. Typical design formulas for
the pressure drop associated with the major components in a CFB loop can
be outlined as follows [44, 20, 114, 1].

• Pressure Drop Across the Riser, ΔpR:
For the gas flow in the riser, kinetic energy in the gas phase is partially
transferred to the solids phase through gas-particle interactions and is par-
tially dissipated as a result of friction. Under most operating conditions in
fluidized beds, gravitational effects dominate the overall gas phase energy
consumption. Thus, neglecting the particle acceleration effects, the pres-
sure drop in the riser can be approximated by the weight of the particles:

ΔpR =
∫ L

0

ρpεpgdz = ρpεpgL (10.79)

where L is the riser hight.
• Pressure Drop Through the Cyclone, ΔpC :

Cyclone pressure drop is essentially a consequence of the vortex energy,
the solid loading and the gas-wall friction. The main contribution is the
suspension vortex energy. Generally, the pressure drop through a cyclone
is proportional to the velocity head and approximated by [111]:

ΔpC = kρg(Us
g,in)2 (10.80)

The value for the coefficient k may vary from 1-20, depending on the
cyclone design [44].

• Pressure Drop Across the Downcomer, ΔpD:
The solids flow in the downcomer is either in a dense fluidized state or in
a moving packed state.
The maximum pressure drop through in the downcomer is established
when particles are fluidized, a state that can be expressed in terms of the
pressure drop under the minimum fluidization condition as [44]:

Δp|D,max = LD(1 − αg,mf )ρpg (10.81)

where LD is the height of the solids in the downcomer.
• Pressure Drop Through the Solids Flow Control Devices, ΔpCD:

If the particles in the downcomer are fluidized, the pressure drop through
the mechanical solids flow control device can be expressed as [72]:

ΔpCD =
1

2ρp(1 − αg,mf )

(

Ws

C0A0

)2

(10.82)
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where Ws is the solids feeding rate and A0 is the opening area for the
mechanical valve. The coefficient C0 ∼ 0.7 − 0.8 over a variety of systems
and control device opening configurations.
The solids flow rate can be controlled by non-mechanical valves such as
an L-valve with a long horizontal leg. The overall pressure drop across an
L-valve is normally calculated as a linear sum of two terms accounting for
the pressure drop through the elbow and the pressure drop caused by the
gas-solid flow in the horizontal leg [140]:

ΔpCD = ΔpCD,elbow + ΔpCD,leg =
1

2ρp(1 − αg,mf )

(

Ws

C0A0

)2

(10.83)

where C0 = 0.5.

10.7.4 Simulating Bubbling Bed Combustors Using
Two-Fluid Models

In this section the application of multiphase flow theory to model the perfor-
mance of fluidized bed reactors is outlined. A number of models for fluidized
bed reactor flows have been established based on solving the average funda-
mental continuity, momentum and turbulent kinetic energy equations. The
conventional granular flow theory for dense beds has been reviewed in chap 4.
However, the majority of the papers published on this topic still focus on
pure gas-particle flows, intending to develop closures that are able to predict
the important flow phenomena observed analyzing experimental data. Very
few attempts have been made to predict the performance of chemical reactive
processes using this type of model.

Alternative Two-Fluid Model Closures

According to Enwald & Almstedt [40], the existing ensemble averaged two-
fluid model closures for bubbling beds, developed by Simonin and co-workers
(e.g., [123, 122, 33, 11, 64, 65, 7, 8, 126, 9, 100]), Drew [35], Drew and Lahey
[36], and the group at Chalmers University of Technology (e.g., [39, 108, 109,
110, 40, 41]), are frequently divided into four different model classes.

With increasing model complexity, these model versions are:

• Constant Particle Viscosity (CPV) models.
• Particle Turbulence (PT) models.
• Particle and Gas Turbulence (PGT) models.
• Particle and Gas Turbulence with Drift Velocity (PGTDV) models.

The continuity and momentum equations that are common for these model
versions are listed below. The model equations adopted for non-reactive mix-
tures can be deduced from the more general formulations (3.293) and (3.296),
respectively.
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The continuity equation used is expressed as:

∂

∂t

(

αk〈ρk〉Xk

)

+ ∇ ·
(

αk〈ρk〉Xk〈vk〉Xkρk

)

= 0 (10.84)

The momentum equation employed is given by:

∂

∂t

(

αk〈ρk〉Xk〈vk〉Xkρk

)

+ ∇ ·
(

αk〈ρk〉Xk〈vk〉Xkρk〈vk〉Xkρk

)

= −∇ ·
(

αk〈Tk〉Xk + αkTRe,Xk

k

)

+ αk〈ρk〉Xkg + 〈MkI〉
(10.85)

In order to separate the average of products into products of average, weighted
averaged values are commonly introduced. The phasic - and mass averages
have been defined by (3.277) and (3.278), respectively. Hence, the instanta-
neous velocity is decomposed into a weighted mean component and a fluctu-
ation component in accordance with (3.279).

The Reynolds stress tensor of phase k is given by:

TRe,Xk

k = 〈ρk〉Xk〈v′′
kv

′′
k〉Xkρk (10.86)

The total stress tensor is conventionally decomposed into a pressure term
and a viscous stress term. The average total stress term in the momentum
equations may thus be re-written as:

−∇ · (αk〈Tk〉Xk) = −∇ · [αk(〈pk〉Xke + 〈σk〉Xk)]

= −∇(αk〈pk〉Xk) −∇ · (αk〈σk〉Xk)
(10.87)

The viscous stress tensor of both phases can be modeled using the rigorous
Newtonian strain-stress relation:

〈σk〉Xk = −μB,k∇ · 〈vk〉Xkρke − 2μk(〈Sk〉Xkρk − 1
3
∇ · 〈vk〉Xkρke) (10.88)

where μB,k represents the bulk viscosity of phase k (kg/ms).
The average strain rate tensor is defined by:

〈Sk〉Xkρk =
1
2
(∇〈vk〉Xkρk + (∇〈vk〉Xkρk)T ) (10.89)

It was explained in chap 4 that the particulate phase pressure, 〈pp〉Xp , con-
sists of three effects, one kinetic contribution corresponding to momentum
transport caused by particle velocity fluctuation correlations, 〈pp,kin〉Xp , one
collisional contribution caused by particle interaction, 〈pp,coll〉Xp , and one be-
ing a contribution from the gas phase pressure, 〈pg〉Xp . The pressure in the
particulate phase is thus given by:

αp〈pp〉Xp = αp〈pp,kin〉Xp + αp〈pp,coll〉Xp + αp〈pg〉Xp (10.90)
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The particulate phase total stress tensor can then be written as:

−∇ · (αp〈Tp〉Xp) = −∇(αp〈pp,kin〉Xp) −∇(αp〈pp,coll〉Xp)

− 〈pg〉Xp∇αp − αp∇〈pg〉Xp −∇ · (αp〈σp〉Xp)
(10.91)

The interfacial momentum transfer to phase k is defined by [36, 39]:

〈MkI〉 = 〈Tk · ∇Xk〉 (10.92)

This relation can be reformulated adopting one out of several possible mod-
eling approaches. The conventional continuum mechanical approach for re-
writing the interfacial momentum transfer terms for dispersed flows was out-
lined in sect 3.4.3. Hence, an alternative approach for calculating the inter-
facial momentum transfer terms based on kinetic or probabilistic theories, as
proposed by Simonin and co-workers, is examined in this section.

The gradient of the phase indicator function, which appears in (10.92),
was defined by (3.288). The expression for MkI then becomes [36, 39]:

〈MkI〉 = 〈Tk · ∇Xk〉 = −〈Tk · nkδk〉 (10.93)

as we recall that ∇Xk = (∂Xk/∂n)nk, where (∂Xk/∂n) = −δk.
He & Simonin [65] argued that to find a relation for the drag force acting

on a single sphere in a suspension, the velocity field of the undisturbed flow is
needed. They derived a momentum equation for an undisturbed flow based on
probabilistic arguments. Based on the momentum equations for the disturbed
and undisturbed flow, they derived an expression for the interfacial momentum
transfer. The interfacial momentum transfer term was thus decomposed as
follows:

〈Tp · npδp〉 = −〈Tg · ngδg〉 = − 〈˜Tg · ngδg〉 − 〈δTg · ngδg〉
=〈˜Tg · ∇Xg〉 − 〈δTg · ngδg〉
≈〈p̃ge · ∇Xg〉 − 〈δTg · ngδg〉
=〈p̃g∇Xg〉 − 〈δTg · ngδg〉
=〈p̃g〉∇αg + 〈p̃′g∇Xg〉 − 〈δTg · ngδg〉
≈〈pg〉∇αg + Fg

(10.94)

where ˜Tg denotes the total stress tensor of the undisturbed flow. The undis-
turbed pressure is decomposed in accordance with the Reynolds procedure
p̃g = 〈p̃g〉 + p̃′g.

The interfacial momentum transfer terms for the disturbed flow are ap-
proximated by the steady drag force:

Fg ≈ −〈δTg · ngδg〉 ≈ 〈Xpρpvr/τgp〉 ≈ 〈Xpρp〉〈vr〉Xpρp/〈τgp〉Xpρp

≈ αp〈ρp〉Xp〈vr〉Xpρp/〈τgp〉Xpρp
(10.95)

where τgp is the particle relaxation time.
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We reiterate that for a dispersed flow Fp the macroscopic generalized drag
force normally contains numerous contributions, as outlined in chap 5. How-
ever, for gas-solid flows the lift force fL, the virtual mass force fV , and the
Besset history force fB components are usually neglected [39]. The conven-
tional generalized drag force given by (5.27) thus reduces to:

Fp ≈ Np(fD + fL + fV + fB) ≈ NpfD (10.96)

where the forces in the brackets on the right hand side are the forces acting
on a single particle in a suspension and Np is the number of particles per unit
volume.

The generalized drag force is then expressed as:

Fg = −Fp = −Xpρp

τgp
(vg − vp) (10.97)

in which the particle relaxation time τgp is defined by:

1
τgp

=
3

4dp

ρg

ρp
CD|vg − vp| (10.98)

The averaged drag force was approximated by [8]:

〈Fg〉 = −〈Fp〉 =〈−Xpρp

τgp
(vg − vp)〉

≈ − 3
4dp

αp〈CD〉Xpρp〈ρg〉Xp〈|vr|〉Xpρp〈vr〉Xpρp

(10.99)

The average drag coefficient used is [51]:

〈CD〉Xpρp =
(

17.3
〈Rep〉Xpρp

+ 0.336
)

α−1.8
g (10.100)

An alternative parameterization for the drag coefficient is given by [34, 50].
The particle Reynolds number is given by:

〈Rep〉Xpρp =
〈ρg〉Xp〈|vr|〉Xpρpdp

μg
(10.101)

The average particle relaxation time is given by:

〈τgp〉Xpρp =
4
3

〈ρp〉Xpdp

〈ρg〉Xg 〈CD〉Xpρp〈|vr|〉Xpρp
(10.102)

The resulting decomposition of the interfacial momentum transfer term is
equivalent to the conventional closure outlined in sect 3.4.3, and adopted by
several investigations on gas solids flow [64, 65, 39, 108]. Nevertheless, as for
the conventional formulation, several simplifying assumptions are invoked in
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this model closure as well. Most important, the viscous terms in the undis-
turbed flow were neglected, the average undesturbed pressure is approximated
by the mean pressure of the bulk phase, and the terms involving correlations
of the pressure fluctuations are negligible in gas-solid flows. Moreover, addi-
tional closures are needed for the stress tensors, the fluctuating terms and the
mean relative velocity.

According to Bel F’dhila & Simonin [11], the average of the relative velocity
between each particle and the surrounding fluid vr can be expressed as a
function of the mean relative velocity and a drift velocity due to the correlation
between the instantaneous distribution of the particles and the large scale
turbulent fluid motion with respect to the particle diameter:

〈Xpρpvr〉 = 〈Xpρpvp〉 − 〈Xpρpvg〉 (10.103)

Introducing weighted velocity variables in the first and second term in this
equation, while decomposing the instantaneous velocity in the third term into
its weighted and fluctuating components, we obtain:

〈Xpρp〉〈vr〉Xpρp = 〈Xpρp〉〈vp〉Xpρp − 〈Xpρp〉〈vg〉Xpρp − 〈Xpρpv′′
g 〉 (10.104)

Dividing all terms by the factor 〈Xpρp〉, we get:

〈vr〉Xpρp = 〈vp〉Xpρp − 〈vg〉Xpρp − 〈Xpρpv′′
g 〉/〈Xpρp〉 (10.105)

The last term on the right hand side of (10.105) is defined as the drift
velocity:

vdrift = 〈v′′
g 〉Xpρp = 〈Xpρpv′′

g 〉/〈Xpρp〉 (10.106)

where v′′
g is the gas fluctuating velocity.

The term 〈|vr|〉Xpρp is the average relative velocity length that is approx-
imated by [64, 65]:

〈|vr|〉Xpρp ≈
√

〈vr〉Xpρp · 〈vr〉Xpρp + 〈v′′
r · v′′

r 〉Xpρp (10.107)

where v′′
r is the fluctuating relative velocity.

The term 〈v′′
r · v′′

r 〉Xpρp is determined by:

〈v′′
r · v′′

r 〉Xpρp = 2(kp + kg − kgp) (10.108)

where kg represents the turbulent kinetic energy of the gas phase (m2/s2),
kgp the gas-particle fluctuation covariance (m2/s2), kp = 3θp/2 the turbulent
kinetic energy analogue of the particulate phase (m2/s2), and θp the granular
temperature of the particle phase (m2/s2).
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The Constant Particle Viscosity (CPV) model

The first attempts at describing the gas-particle flows in fluidized beds were
performed using rather simple models neglecting both the Reynolds stresses,
TRe,Xk

k in (10.86), and the kinetic pressure-gradient term, αp〈pp,kin〉Xp , in
(10.91). No turbulence models are thus used for any of the phases.

The momentum equation for the gas phase is thus given by:

∂

∂t

(

αg〈ρg〉Xg 〈vg〉Xgρg

)

+ ∇ ·
(

αg〈ρg〉Xg 〈vg〉Xgρg 〈vg〉Xgρg

)

=

− αg∇〈pg〉Xg −∇ ·
(

αg〈σg〉Xg

)

+ αg〈ρg〉Xgg + 〈Fg〉
(10.109)

The viscous stress tensor of the gas phase is modeled using a reduced form of
the Newtonian strain-stress relation (10.88):

〈σg〉Xg = −2μg

(

〈Sg〉Xgρg − 1
3
∇ · 〈vg〉Xgρge

)

(10.110)

The bulk viscosity is set to zero for the continuous gas phase, in line with
what is common practice for single phase flows.

The momentum equation for the particulate phase is written as:

∂

∂t

(

αp〈ρp〉Xp〈vp〉Xpρp

)

+ ∇ ·
(

αp〈ρp〉Xp〈vp〉Xpρk〈vp〉Xpρp

)

=

−∇ ·
(

αg〈Tp〉Xp

)

+ αp〈ρp〉Xpg + 〈MpI〉 =

−∇
(

αp〈pp〉Xp

)

−∇ ·
(

αp〈σp〉Xp

)

+ αp〈ρp〉Xpg + 〈MpI〉 =

−∇
(

αp〈pp,coll〉Xp

)

− αp∇〈pg〉Xp −∇ ·
(

αp〈σp〉Xp

)

+ αp〈ρp〉Xpg + 〈Fp〉

(10.111)

where 〈Fp〉 is given by (10.99) to (10.108). Since no turbulence closure is
employed in the CPV model, (10.107) is approximated as:

〈|vr|〉Xpρp ≈
√

〈vr〉Xpρp · 〈vr〉Xpρp , (10.112)

and the average relative velocity vector (10.105) is approximated by:

〈vr〉Xpρp = 〈vp〉Xpρp − 〈vg〉Xpρp (10.113)

The particle collisional pressure-gradient term in (10.91) is approximated
by [50]:

∇(αp〈pp,coll〉Xp) ≈ −G(αg)∇αg (10.114)
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This term is often referred to as a particle-particle interaction force and has
the effect of keeping the particles apart above a maximum possible parti-
cle packing. The particle-particle interaction coefficient G(αg) is named the
modulus of elasticity. A survey of different particle-particle interaction force
models are given by Massoudiet et al [98].

Enwald and Almstedt [40] adopted a relation for the particle-particle in-
teraction force proposed by Bouillard et al [16]:

∇(αp〈pp,coll〉Xp) ≈ −G0 exp(−c(αg − α∗))∇αg (10.115)

where G0, c and α∗ are empirical constants. Enwald and Almstedt [40] set
α∗ = 0.46 to limit the void-age from decreasing below this value. The other
two constants were chosen as G0 = 1.0 (kg/ms2) and c = 500.

In the CPV model the viscous stress tensor for the particulate phase is
modeled using a simplified version of the Newtonian strain-stress relation
(10.88), similar to that employed for the gas phase:

〈σp〉Xp = −2μp

(

〈Sp〉Xpρp − 1
3
∇ · 〈vp〉Xpρpe

)

(10.116)

In this particular model version, the bulk viscosity is set to zero for the par-
ticulate phase. The particle viscosity variable, μp, is set to a constant value.
Enwald and Almstedt [40] used a particle viscosity value of μp ≈ 1.0 (kg/ms),
being representative for the experimental data presented by [24](p 77).

The Particle Turbulence (PT) models

Over the years the CPV model has been shown not to be appropriate to repre-
sent important details of certain gas-particle flows. For this reason more rigor-
ous closures have been developed for the total stress tensor of the particulate
phase, intending to obtain better representations of the physical phenomena
involved.

The PT model represents an extension of the basic CPV model and con-
tains extended closures for the particle collisional pressure and the particle-
particle velocity correlation terms, as well as simple attempts to account for
some of the gas-particle interaction phenomena. For the gas phase, on the
other hand, the same set of transport equations as for the CPV model are
employed. The particulate phase continuity equation is also the same, but the
momentum equation for the particulate phase is modified.

To model the particle velocity fluctuation covariances caused by particle-
particle collisions and particle interactions with the interstitial gas phase, the
concept of kinetic theory of granular flows is adapted (see chap 4). This theory
is based on an analogy between the particles and the molecules of dense gases.
The particulate phase is thus represented as a population of identical, smooth
and inelastic spheres. In order to predict the form of the transport equations
for a granular material the classical framework from the kinetic theory of
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dense gases is used [21]. However, as explained by Peirano and Leckner [109],
to derive the closure laws for the fluxes that occur in these equations the
method of Grad [59] was preferred to that of Chapman-Enskog [21]. It is thus
emphasized that the work of Simonin and co-workers is based on the results
of Jenkins and Richman [69] that derived the necessary closure laws using the
Grad’s 13 moment system for a dense gas of inelastic spheres. It follows that
the transport equations discussed in this section are derived from the classical
results of the kinetic theory for dense gases [21], in combination with Grad’s
theory [59]. Bear in mind that in chap 4 the Chapman-Enskog method was
used, so the closure laws obtained by Simonin and co-workers are similar but
not completely identical to those given earlier.

Moreover, He & Simonin [64, 65] considered the early models developed
by Jenkins and Richman [69] appropriate for granular flows in vacuum, but
inaccurate in the dilute zones of the bed where the interstitial gas phase
fluctuations may affect the particles. He & Simonin [64, 65] thus extended
the kinetic theory of granular materials in vacuum to take into account the
influence of the interstitial gas.

In the PT model the extended momentum balance for the particle phase
yields:

∂

∂t

(

αp〈ρp〉Xp〈vp〉Xpρp

)

+ ∇ ·
(

αp〈ρp〉Xp〈vp〉Xpρp〈vp〉Xpρp

)

=

− αp∇
(

〈pg〉Xp

)

−∇
(

αp[〈pp,kin〉Xp + 〈pp,coll〉Xp ]
)

−∇ ·
(

αp〈σp〉Xp + αpT
Re,Xp
p

)

+ αp〈ρp〉Xpg + 〈Fp〉

(10.117)

where 〈Fp〉 is given by (10.99) to (10.108). However, in accordance with the
turbulence closure employed in the PT model, the relative velocity covariance
term (10.108) therein is approximated by:

〈v′′
r · v′′

r 〉Xpρp = 2kp (10.118)

Moreover, the average relative velocity vector (10.105) is approximated by
(10.113), as for the CPV model, because the drift velocity is neglected.

The effective stress tensor of the particulate phase can be expressed by
an analogy to Newton’s law of viscosity for viscous fluids (10.88), adopting
the well known gradient and Boussinesq hypotheses modeling the Reynolds
stresses (10.86):

−αp〈σp〉Xp − αpT
Re,Xp
p =αpμB,p∇ · 〈vp〉Xpρpe

+ 2αpμp,eff

(

〈Sp〉Xpρp − 1
3
∇ · 〈vp〉Xpρpe

)

(10.119)
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In the PT model the particle pressure terms in (10.91) are modeled by:

−∇
(

αp[〈pp,kin〉Xp + 〈pp,coll〉Xp ]
)

= −∇
(

αp〈ρp〉Xp(1 + 2αpg0(1 + e))θp

)

(10.120)
The transport equation for the granular temperature θp, written in terms

of the turbulent kinetic energy analogue of the particulate phase kp, is given
by [64, 65, 109]:

∂

∂t

(

αp〈ρp〉Xpkp

)

+ ∇ ·
(

αp〈ρp〉Xp〈vp〉Xpρpkp

)

=

∇ ·
(

αp〈ρp〉Xp(Kcoll
p + Kt

p)∇kp

)

−
(

αp〈σp〉Xp + αp〈TRe
p 〉Xp

)

: ∇〈vp〉Xpρp

− αp〈ρp〉Xp

〈τgp〉Xpρp
(2kp − kgp) + αp〈ρp〉Xp

e2 − 1
3τ c

p

kp

(10.121)

where kp = 3
2θp represents the turbulent kinetic energy analogue of the par-

ticulate phase (m2/s2), Kcoll
p the collisional diffusion coefficient (m2/s), Kt

p

the turbulent diffusion coefficient (m2/s), e the restitution coefficient, and τ c
p

the particle-particle collision time (s). Furthermore, it is emphasized that the
gas-particle covariance kgp is set to zero in the PT-model.

The bulk viscosity μB,p and the effective dynamic viscosity of the partic-
ulate phase μp,eff are given by:

μB,p =
4
3
dpαp〈ρp〉Xpg0(1 + e)

√

θp

π
(10.122)

μp,eff = 〈ρp〉Xp(νcoll
p + νt

p) (10.123)

in which νcoll
p and νt

p are the collisional and turbulent viscosities of the par-
ticulate phase.

The collisional and turbulent viscosity values were calculated from [64, 65,
109]:

νcoll
p =

4
5
g0(1 + e)(νt

p + dp

√

θp

π
) (10.124)

νt
p =

(

2
3

τ t
gp

〈τgp〉
kgp + θp(1 + αpg0A)

)

/

(

2
〈τgp〉Xpρp

+
B

τ c
p

)

(10.125)

where A = 2(1 + e)(3e− 1)/5 and B = (1 + e)(3− e)/5. The average particle
relaxation time 〈τgp〉Xpρp is obtained from (10.102). Moreover, it is emphasized
that the gas-particle covariance kgp and the interaction time between the
particle motion and the gas phase velocity fluctuations τ t

gp are set to zero in
the PT-model.
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In the formulation of the transport equations, several characteristic time
scales are defined. In this framework these time scales are considered funda-
mental in the classification and the understanding of the dominant mecha-
nisms in the suspension flow. The particle relaxation time τgp was already
defined in (10.98). The particle-particle collision time τ c

p , is defined by:

τ c
p =

dp

24αpg0

√

π

θp
(10.126)

The radial distribution function g0 accounts for the probability of particle
contact. A possible parameterization is given by [94]:

g0 = (1 − αp/αp,max)−2.5αp,max (10.127)

where αp,max is the maximum packing of the particulate phase (≈ 0.64).
Alternative parameterizations for g0 can be found in [34, 50, 95, 19, 104, 109].

The collisional and turbulent diffusion coefficients are modeled by
[126, 109]:

Kt
p =

θp(1 + αpg0C)
(

9
5〈τgp〉Xpρp

+ D
τc

p

) (10.128)

Kcoll
p = αpg0(1 + e)(

6
5
Kt

p +
4
3
dp

√

θp

π
) (10.129)

where C = 3(1 + e)2(2e− 1)/5 and D = (1 + e)(49 − 33e)/100.

The Particle and Gas Turbulence (PGT) model

The PGT model represents an extension of the PT models in that the gas
turbulence is taken into account by including the Reynolds stress tensor in
the momentum equation for the gas phase. The turbulence model used for
the gas phase is similar to the standard single phase k-ε turbulence model
presented in sect 1.3.5, although additional generation and dissipation terms
may be added to consider the presence of particles. In the PGT model the
drift velocity is neglected.

In the PGT momentum equations the average drag force 〈Fp〉 is given by
(10.99) to (10.108). Moreover, the average relative velocity vector (10.105) is
approximated by (10.113), as for the CPV and PT models, because the drift
velocity is neglected in the PGT model too.

In the momentum equation for the gas phase the Reynolds stress tensor is
approximated by the gradient and Boussinesq hypotheses and given by:

TRe,Xg
g =〈ρg〉Xg 〈v′′

gv
′′
g 〉Xgρg

=
2
3
〈ρg〉Xgkge − 2μt

g

(

〈Sg〉 −
1
3
∇ · 〈vg〉Xgρge

) (10.130)
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where μt
g is the dynamic turbulent viscosity of the gas phase. The viscous

stress tensor used is given by (10.110).
Simonin and Viollet [122] calculated the dynamic viscosity for the gas

phase from a modified k − ε model. The time scale of the large eddies of the
gas phase flow was given by:

τ t
g = 3Cμkg/(2εg) (10.131)

The dynamic turbulent viscosity of the gas phase flow was given by μt
g =

2〈ρg〉Xgkgτ
t
g/3, in accordance with the standard single phase turbulence the-

ory presented in sect 1.3.5.
The transport equation that was used for the turbulent kinetic energy of

the gas phase is written as [122, 126, 8]:

∂

∂t

(

αg〈ρg〉Xgkg

)

+∇ ·
(

αg〈ρg〉Xg 〈vg〉Xgρgkg

)

= ∇ ·
(

αg

μt
g

σk
∇kg

)

− αgT
Re,Xg
g : ∇〈vg〉Xgρg − αg〈ρg〉Xgεg + Πkg

(10.132)

where Πkg represents the gas-particle interaction phenomena (kg/ms3). This
interaction term is modeled by:

Πkg =
αp〈ρp〉Xp

〈τx
gp〉Xpρp

(

− 2kg + kgp + vdrift · 〈vr〉Xpρp

)

(10.133)

However, in the PGT model the drift velocity vdrift is neglected and set to
zero. The average particle relaxation time 〈τgp〉Xpρp is obtained from (10.102).

The transport equation for the dissipation rate of the gas-phase turbulent
kinetic energy is given by [122, 126, 8]:

∂

∂t

(

αg〈ρg〉Xgεg

)

+ ∇ ·
(

αg〈ρg〉Xg 〈vg〉Xgεg

)

= ∇ ·
(

αg

μt
g

σε
∇εg

)

−

αg
εg
kg

(

Cε1αgT
Re,Xg
g : ∇〈vg〉Xgρg + Cε2〈ρg〉Xgεg

)

+ Πεg

(10.134)

where Πεg denotes the interaction term in the εg equation (kg/ms4). This
interaction term is modeled by:

Πεg = Cε3
εg
kg

Πkg (10.135)

The parameter values chosen in the gas phase turbulence model are the same
as those used for the standard single phase k-ε model (see sect 1.3.5). The
additional interaction term parameter is set at a fixed value, Cε3 = 1.3, as
suggested by Elghobashi and Abou-Arab [38].

For the particulate phase, the PT-model equations that were described
in sect 10.7.4 are used with minor extensions. That is, in the PGT-model
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the transport equation for kp (10.121) contains the gas-particle fluctuation
covariance, kgp, to take into account the effect of the gas phase turbulence.

The effective particle phase viscosity is still obtained from (10.123). In
addition, the turbulent viscosity of the particulate phase is calculated from
(10.125) in which kgp is obtained from a separate balance equation. The in-
teraction time between the particle motion and the gas velocity fluctuations
τ t
gp, is modeled as suggested by Csanady [25]:

τ t
gp =

τ t
g

√

1 + 1.45
(

3〈vr〉Xpρp · 〈vr〉Xpρp/2kg

)

(10.136)

The transport equation for the gas-particle fluctuation covariance is given
by [126]:

∂

∂t

(

αp〈ρp〉Xpkgp

)

+ ∇ ·
(

αp〈ρp〉Xp〈vp〉Xpρpkgp

)

=

∇ ·
(

αp〈ρp〉Xp
νt

gp

σk
∇kgp

)

− αp〈ρp〉Xp〈v′′
gv

′′
p〉 : ∇〈vp〉Xpρp

− αp〈ρp〉Xp〈v′
gv

′
p〉 : ∇〈vg〉Xgρg − αp〈ρp〉Xpεgp + Πgp

(10.137)

where νt
gp denotes the gas-particle turbulent viscosity (m2/s), εgp the dissi-

pation rate of the gas-particle fluctuation covariance (m2/s3), and Πgp the
interaction term in the kgp model (kg/ms3).

The dissipation rate of the gas-particle fluctuation covariance εgp and the
gas-particle turbulent viscosity νt

gp are defined by:

εgp = kgp/τ
t
gp (10.138)

νt
gp = kgpτ

t
gp/3 (10.139)

The gas-particle fluctuation correlation tensor 〈v′′
gv

′′
p〉 is expressed by:

〈v′′
gv

′′
p〉 =

1
3
kgpe − νt

gp

(

〈Sgp〉 −
1
3
tr(〈Sgp〉)e

)

(10.140)

The average gas-particle strain rate tensor is given by:

〈Sgp〉 =
1
2

(

∇〈vg〉Xgρg + (∇〈vp〉Xpρp)T

)

(10.141)

The interaction term in (10.137) is modeled by:

Πgp = −αp〈ρp〉Xp

〈τx
gp〉Xpρp

(

(1 +
αp〈ρp〉Xp

αg〈ρg〉Xg
)kgp − 2kg − 2

αp〈ρp〉Xp

αg〈ρg〉Xg
kp

)

(10.142)
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The Particle and gas turbulence model with drift velocity
(PGTDV) Model

The PGTDV model consists of the same equations as the PGT model de-
scribed in sect 10.7.4, the only difference being that the drift velocity is con-
sidered in the PGTDV model. The drift velocity vdrift is included in (10.105)
and (10.133).

The drift velocity takes into account the dispersion effect due to the par-
ticle transport by the fluid turbulence. From the limiting case of particles
with diameter tending towards zero, for which the drift velocity reduces to
single turbulence correlation between the volumetric fraction of the dispersed
phase and the turbulent velocity fluctuations of the continuous phase. The
drift velocity: vdrift is modeled as [33]:

vdrift = Dt
gp(

1
αg

∇αg − 1
αp

∇αp) (10.143)

Based on semi-empirical analysis, the fluid-particle turbulent dispersion ten-
sor, Dt

gp, is expressed in terms of the covariance between the turbulent veloc-
ity fluctuations of the two phases and a fluid particle turbulent characteristic
time:

Dt
gp = τ t

gpkgp/3 (10.144)

The model assumes that the particles are suspended in a homogeneous field
of gas turbulence.

It is mentioned, although not used in the model evaluation by Enwald
and Almstedt [40], that a much simpler closure for the binary turbulent dif-
fusion coefficient Dt

gp has been derived by Simonin [123] by an extension of
Tchen’s theory. This simple closure has been used by Simonin and Viollet
[124], Simonin and Flour [125] and Mudde and Simonin [100] simulating sev-
eral dispersed two-phase flows.

Initial and Boundary Conditions

To simulate a rectangular fluidized bed reactor the bed vessel dimensions
have to be specified first. The vessel used for validation has a rectangular
cross section [40]. The bed vessel was 0.3 (m) wide, 2.22 (m) high and 0.2 (m)
deep.

Proper boundary conditions are generally required for the primary vari-
ables like the gas and particle velocities, pressures and volume fractions at all
the vessel boundaries as these model equations are elliptic. Moreover, bound-
ary conditions for the granular temperature of the particulate phase is required
for the PT, PGT and PGTDV models. For the models including gas phase
turbulence, i.e., PGT and PGTDV, additional boundary conditions for the
turbulent kinetic energy of the gas phase, as well as the dissipation rate of
the gas phase and the gas-particle fluctuation covariance are required. The



928 10 Fluidized Bed Reactors

boundary conditions for the primary variables are normally specified adopt-
ing the standard single phase flow approaches. For some of the variables like
the turbulence properties and the volume fractions one has to use empirical
or semi-empirical information obtained from experiments to approximate the
boundary values. The specification of the velocities at the inlet may require
special attention to consider the different geometries of the gas distributors.

The initial conditions are generally specified in correspondence with the
state of a fluidized bed operating at minimum fluidization conditions. The
bed height at minimum fluidization conditions is then set to Lmf , and the
gas volume fraction is set to αmf at the bed levels below Lmf and unity in
the freeboard. The pressure profile in the bed is initialized using the Ergun
[42] equation, whereas the pressure in the freeboard is set to the operational
pressure at the outlet. The horizontal velocity components of both phases and
the vertical particle velocity component are set to zero. The vertical interstitial
gas velocity in the bed is normally initiated as Us

mf/αmf , and Us
mf in the

freeboard.
The gas density is initiated by use of the ideal gas law requiring that the gas

pressure, species composition and temperature are known. When turbulence
is considered, kg, kp and εg are frequently set to small but non-zero values.
kgp is set to zero.

To obtain an asymmetrical flow, as observed for real cases, particular flow
perturbations are generally introduced for a short time period as the flow
develops in time from the start. Small jets at the bottom are often used for
this purpose.

Model Evaluations

Enwald and Almstedt [40] assessed the four different two-fluid model closures
given above to investigate the effect of the gas phase turbulence, drift veloc-
ity and three dimensionality on the fluid dynamics of a bubbling fluidized
bed. A few characteristics features of the different models were observed. The
CPV model results generally deviated from those obtained by the more rigor-
ous model versions. Nevertheless, the CPV model results were often in better
agreement with the experimental data than the other model predictions. Com-
paring the PGT and PT model results it was observed that at atmospheric
conditions the gas phase turbulence did not have any significant effect on the
bed behavior. However, at higher pressures significant changes in the results
were observed. Moreover, the drift velocity included in the most advanced
model version PGTDV did not have any noticeable effect on the results at
any pressure. Furthermore, strictly grid independent solutions were not ob-
tained, and the three-dimensional effects were considered considerable.

10.7.5 Bubbling Bed Reactor Simulations Using Two-Fluid Models

The bubbling bed reactor flow investigation performed by Lindborg [91] and
Lindborg et al [92] is assessed in this section.
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The kinetic theory closures applied in the PGT model employed by Lind-
borg [91] are in many ways distinct from those examined by Enwald and
Almstedt [40]. The model closures derived from kinetic theory and adopted
by Lindborg [91] are consistent with the theory presented in chap 4. It is em-
phasized that these closures are derived using the Chapman-Enskog method,
whereas Simonin and co-workers derived their closures using a combination
of the Chapman-Enskog and Grad methods. Moreover, in the work by Lind-
borg et al the granular temperature is not considered a particle turbulence
closure but a property of the granular material. Furthermore, the solid phase
stress closure is extended considering the impact of the long term particle-
particle interactions such as sliding or rolling contacts. This modification may
be necessary for certain flow problems because the internal momentum trans-
port closure derived from the kinetic theory of granular flows considers only
the contributions from particle translation and short term particle-particle
interactions. In particular dense flows at low shear rates the stress genera-
tion mechanism due to the long term particle-particle interactions in which
large amounts of energy is dissipated, may be significant. The stress ten-
sor closure proposed by Srivastava and Sundaresan [127] for the long term
particle-particle interactions was adopted.

Srivastava and Sundaresan [127] calculated the total stress as a linear
sum of the kinetic, collisional, and frictional stress components, where each of
the contributions are evaluated as if they were alone. The extended particle
pressure and viscosity properties are calculated as:

pp = pp,kin + pp,coll + pp,fric (10.145)

μp = μp,kin + μp,coll + μp,fric (10.146)

This model is supposed to capture the two extreme limits of granular flow,
which are designating the rapid shear and quasi-static flow regimes. In the
rapid shear flow regime the kinetic stress component dominates, whereas in
the quasi-static flow regime the friction stress component dominates [127].

The frictional stress closure derived by Srivastava and Sundaresan [127] is
based on the critical state theory of soil mechanics. Moreover, it was assumed
that the granular material is non-cohesive and has a rigid-plastic rheological
behavior. At the critical state the granular assembly deforms without volume
change, ∇ · vp = 0, and the frictional stress tensor equals the critical state
frictional stress tensor. This particular frictional stress closure, which strictly
speaking is valid only at the critical state, is frequently used as a simple
representation of these stresses in the granular assembly even when ∇·vp 
= 0.
In particular, based on a set of test simulations the simplified frictional stress
closure was found adequate for bubbling fluidized bed simulations.

The critical state pressure is given by [70]:

pp,crit =

{

F
(αp−αp,min)r

(αp,max−αp)s if αp > αp,min

0 if αp ≤ αp,min

(10.147)
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where F , r and s are empirical constants. The model asserts that the frictional
interactions do not occur for particle volume fractions less than αp,min.

At the critical state, the solids frictional viscosity is given by:

μp,crit =
pp,crit

√
2 sinφ

2αp

√

Sp : Sp + Θp/d2
p

(10.148)

The parameters adopted in the work of Lindborg et al [92] were taken from
Ocone et al [105]. Johnson et al [70] used a similar set of parameters. Both
sets of parameter values are listed in table 10.4.

Table 10.4. Empirical parameters for frictional stresses.

Ocone et al [105] Johnson et al [70]

φ Angle of internal friction [◦] 28 28.5
F Constant [N/m2] 0.5 0.5
r Constant 2 2
s Constant 3 5
αp,min Lower volume fraction 0.5 0.5

limit for friction

The solids frictional pressure and viscosity are thus approximated by:

pp,fric ≈ pp,crit (10.149)

μp,fric ≈ μp,crit (10.150)

The term β〈v′
g · Cp〉 in the granular temperature equation is normally

neglected due to a general lack of understanding of the physics represented
by this term [34, 50]. In most cases, the closures found in the literature have
no significant effect on the solution.

In one of the proposed modeling approaches the production of granular
temperature represented by the gas-particle velocity covariance term is in-
terpreted as a mechanism that breaks a homogeneous fluidized bed with no
shearing motion into a non-homogeneous distribution. Koch [74] proposed a
closure for these gas-particle interactions for dilute suspensions. Koch and
Sagani [75] extended the closure of Koch [74] accounting for the dense sus-
pensions effects. Lindborg et al [92] re-wrote the given closure in terms of the
particle relaxation time for Stokes flow τgp = ρpd

2
p/18μg as:

β〈v′
g · Cp〉 =

αpρpdp|vp − vg|2RsF
2

4τ2
gp

√

πθp

(10.151)

where Rs represents the energy source due to a specified mean force acting
on the particles.
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An expression for Rs obtained by a fit of lattice-Boltzmann simulations
was used:

Rs =
1

g0(1 + 3.5√αp + 5.9αp)
(10.152)

By applying the F definition of Benyahia et al [12], the closure can be ex-
pressed as a function of the friction coefficient β instead of the dimensionless
drag coefficient F [92]:

β〈v′
g · Cp〉 =

β2dp|vp − vg|2Rs

4α4
gαpρp

√

πθp

(10.153)

The Governing Equations

For reactive flows the governing equations used by Lindborg et al [92] resemble
those in sect 3.4.3, but the solid phase momentum equation contains several
additional terms derived from kinetic theory and a frictional stress closure for
slow quasi-static flow conditions based on concepts developed in soil mechan-
ics. Moreover, to close the kinetic theory model the granular temperature is
calculated from a separate transport equation. To avoid misconception the
model equations are given below (in which the averaging symbols are disre-
garded for convenience):

The continuity equation for phase k (= g, p) is:

∂

∂t
(αkρk) + ∇ · (αkρkvk) = MwCO2

Rk,CO2 (10.154)

The momentum equation for the gas phase is expressed as:

∂

∂t
(αgρgvg)+∇·(αgρgvgvg) = −αg∇pg −∇·(αgσg)+αgρgg+Mg (10.155)

The single phase gas phase viscous stress tensor (1.69), in which the
bulk viscosity of the gas is set to zero, is used. The resulting viscous
stress model coincides with (10.110):

σg = −μg

(

∇vg + (∇vg)T − 2
3
(∇ · vg)e

)

The drag force coefficient used was taken from Gibilaro et al [51]. From
(10.100) and (10.101) a derived coefficient was defined by:

β =
(

17.3
Rep

+ 0.336
)

ρg|vp − vg|
dp

αpα
−1.8
g (10.156)
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The momentum equation for the solid phase can be written as:
∂

∂t
(αpρpvp) + ∇ · (αpρpvpvp) = −αp∇pg −∇ · pp + αpρpg + Mp (10.157)

The solids phase pressure tensor is modeled in accordance with
(10.145). The pressure tensor is thus expressed as:

pp = −
(

− pp +αdμB,d∇·vk

)

e−αdμd

(

∇vk +(∇vk)T − 2
3
(∇·vk)e

)

(10.158)
The solid phase pressure is calculated from (4.89) and (10.149):

pp =pp,kin + pp,coll + pp,fric

=αpρpΘp [1 + 2(1 − e)αpg0] + pp,crit

(10.159)

The radial distribution function can be approximated from [95]:

g0 =
1 + 2.5αp + 4.5904α2

p + 4.515439α3
p

[

1 −
(

αp

αp,max

)3]0.67802 (10.160)

The solid phase bulk viscosity is calculated from (4.92):

μB,p =
4
3
αpρpdpg0(1 + e)

√

Θp

π

The particle phase viscosity is modeled in accordance with (10.146):

μp =μp,kin + μp,coll + μp,fric

=
2μdilute

p

αpg0(1 + e)

[

1 +
4
5
αpg0(1 + e)

]2

+
4
5
αpρpg0(1 + e)

√

Θp

π
+ μp,crit

(10.161)

The dilute particle viscosity is calculated from (4.93):

μdilute
p =

5
96

ρpdp

√

πΘp

The granular temperature equation for the particle phase is written:

3
2

[

∂

∂t
(αpρpΘp) + ∇ · (αpρpvpΘp)

]

= − (pp,kin + pp,coll + pp,fric) : ∇vp

−∇ · (−αpΓp∇θp)
− 3βΘp + β〈v′

c · Cd〉 − γp

+
3
2
(MwCO2

Rp,CO2)Θp

(10.162)
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The total heat flux is modeled in accordance with (4.95). Hence, the
conductivity of the granular temperature is calculated from [50]:

αpΓp =αp(Γp,kin + Γp,coll)

=
15
2

μdilute
p

(1 + e)g0

[

1 +
6
5
αpg0(1 + e)

]2

+ 2α2
pρpdpg0(1 + e)

√

Θp

π

The collisional energy dissipation term, as derived by [68], is given by
(4.98):

γp = 3(1 − e2)α2
pρpg0Θp

[

4
dp

√

Θp

π
−∇ · vp

]

The term β〈v′
c ·Cd〉 is normally neglected due to a general lack of un-

derstanding of the physics represented by this term. However, to verify
this assumption Lindborg et al [92] performed numerous simulations to
study the influence of these phenomena as represented by the closure
proposed by [75].

The molecular temperature equation for phase k (= g, p) is defined by:

∑

c

αkρkωk,cCpk,c
∂Tk

∂t
+

∑

c

αkρkωcCpk,cvk · ∇Tk =

∇ · (kk∇Tk) +
∑

j

(−ΔHr,k,j)Rk,j + Qk

(10.163)

For spherical particles the volumetric heat transfer coefficient is given
as the product of the specific surface area and the interfacial heat
transfer coefficient (10.177). The volumetric interfacial heat transfer
coefficient is modeled by (10.178)

.

The species mass balance for phase k (= g, p) yields:

∂

∂t
(αkρkωk,c)+∇· (αkρkvkωk,c) = ∇· (αkρkDk,c∇ωk,c)+Mwc

Rk,c (10.164)

in which Dk,c represents an effective mass diffusion coefficient of species
c in phase k.

Initial and Boundary Conditions

Initially, there is no gas flow through the reactor, and the true volume fraction
of solids in the bed is about that of maximum packing. However, Lindborg
et al [92] adopted the customary approach of specifying the initial conditions
in correspondence with the state of a bubbling bed operating at minimum
fluidization conditions. The bed height at minimum fluidization conditions
was thus set to an estimated value Lmf , and the gas volume fraction was set
to αmf at the bed levels below Lmf and unity in the freeboard. The pressure
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profile in the bed was initialized using the Ergun [42] equation, whereas the
pressure in the freeboard is set to the operational pressure at the outlet.
The horizontal velocity components of both phases and the vertical particle
velocity component are set to zero. The vertical interstitial gas velocity in the
bed is initiated as Us

in/αmf , and Us
mf in the freeboard.

The gas density was either initiated by a fixed value or calculated by use
of the ideal gas law requiring that the gas pressure, species composition and
temperature are known. When turbulence is considered, kg, kp and εg are
frequently set to small but non-zero values. Typical levels of the turbulent
kinetic energy and the dissipation rate are about 10−5 (m2s−2) and 10−5

(m2s−3), respectively. The granular temperature is set at about 10−5 (m2s−2).
To obtain an asymmetrical flow, as observed for real cases, particular flow

perturbations are generally introduced for a short time period as the flow
develops in time from the start. Heterogeneity was introduced by tilting the
gravity vector by 1 % the first second if axi-symmetry is not assumed.

The governing equations are elliptic so boundary conditions are required
at all boundaries. The normal velocity components for both phases are set to
zero at the vertical boundaries. The wall boundary conditions for the vertical
velocity component, k and ε are specified in accordance with the standard
wall function approach. The particle phase is allowed to slip along the wall
following the boundary condition given by (4.99).

Uniform flow is assumed at inlet. The gas pressure is set at outlet. The
particles are not allowed to leave the reactor. For the scalar variables, except
pressure, Dirichlet boundary conditions are used at inlet, whereas Neumann
conditions are employed at the other boundaries [92].

During start up the system is very unstable. To simplify the conditions in
the reactor, reactants are gradually introduced after 5 seconds to avoid large
variations of density in the gas phase.

Cold Flow Reactor Simulations

In a bubbling bed flow assessment performed by Lindborg [91] and Lindborg
et al [92], the CPV model was used to simulate the bed behavior in the
cylindrical vessel investigated experimentally by Lin et al [90]. The elasticity
modulus parameterization by Ettehadieh et al [43] was employed in these
simulations:

G(αg) = −10−10.46αg+6.577 (Nm−2) (10.165)

A particular set of cold flow simulations were run with the physical properties
and model parameters presented in table 10.5.

It was concluded that the CPV model is not able to reproduce the ex-
perimentally determined flow pattern, as is easily recognized by comparing
Fig 10.8 and Fig 10.13, using a physical μp value. The flow patterns predicted
are in many ways opposite to the measured ones. The simulations may give an
upward flow in the center region of the tube and downwards close to the wall,
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Table 10.5. Physical properties and model parameters [92] (case 1).

Cold Flow Simulations

pout
g Outlet pressure (atm) 1.0

ρg Gas density (kg/m3) 1.21
μg Gas viscosity (kg/ms3) 1.8 × 10−5

ρp Particle density (kg/m3) 2500
dp Particle diameter (μm) 500
e Restitution coefficient 0.997
αp,max Maximum particle packing 0.62
αp,mf Particle volume fraction 0.58

at minimum fluidization
up,mf Minimum fluidization velocity (m/s) 0.19
Lmf Bed height at minimum fluidization (m) 0.113
H Column height (m) 0.3164
D Reactor diameter (m) 0.1380
Δr Lateral resolution (mm) 3.450
Δz Axial resolution (mm) 2.825

whereas the measured data for the same case shows that the flow should be
downwards in the center and upwards close to the wall and visa versa. Never-
theless, by increasing the particle viscosity artificially by a factor of about 5
the simulated flow patterns coincide much better with the observed ones. The
deviation between the simulated and measured flow patterns may thus be ex-
plained by the limitations of the CPV model closures. However, the influence
of the axi-symmetry boundary condition applied in the two-dimensional flow
simulations is strictly not verified yet.

From the study by Enwald and Almstedt [40] it may be concluded that a
PT model can be sufficient simulating bubbling fluidized bed reactors. How-
ever, it was shown by Lindborg et al [92] that the gas phase turbulence is
important considering the species mixing within the gas phase. A PGT type
of model was thus recommended for the purpose of simulating reactive flows in
bubbling bed reactors. Moreover, using the (10.153) closure, the simulations
performed by Lindborg et al [92] confirmed that the β〈v′

c · Cd〉 term in the
granular temperature equation has no significant effect on the solution and
can be neglected.

Simulating the Lin et al data sets by use of a PGT model, Lindborg [91] and
Lindborg et al [92] obtained good predictions of the flow as shown comparing
the measured flow patterns Fig 10.8 and the predicted ones Fig 10.14. The
gas bubbles generally form close to the gas distributor near the wall, and
migrate towards the center as they rise. On their way up through the bed
they withdraw particles into the wake and thereby create a gulf streaming
circulation where the bubbles create a net upflow of solids in the low density
regions and a downflow of solids in the dense regions. On average, at the
lowest gas flow rate, descending particles are observed at the center of the
vessel while ascending closer to the wall (case (a)). With increasing gas flow



936 10 Fluidized Bed Reactors

a)

0.1

0.1
0.1

0.1
0.2

0.2 0.2

0.3

0.3

0.3

0.4

0.4

0.
4

0.40.5

0.
5

0.5

0.5

0.5

z 
[m

]

r [m]
−0.05 0 0.05

0

0.03

0.06

0.09

0.12

0.15

0.18

Vector scale
5 cm/s

b)

0.01

0.01

0.01

0.1 0.1 0.1
0.2

0.2
0.2

0.3

0.3
0.3

0.3

0.
3

0.
4

0.4

0.4
0.4

0.4

0.
4

0.4

0.5

0.
5

0.5

0.5

0.5
0.5

0.
5

0.5

z 
[m

]
r [m]

−0.05 0 0.05
0

0.03

0.06

0.09

0.12

0.15

0.18
Vector scale

10 cm/s

c)

0.1

0.1

0.1

0.2
0.2

0.2

0.2

0.3

0.
3

0.3

0.3

0.3

0.3 0.3

0.4
0.4

0.
4

0.4

0.4

0.4

0.
4

0.5

0.5

0.5

0.
5

0.5

0.
5

0.5

z 
[m

]

r [m]
−0.05 0 0.05

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Vector scale
25 cm/s

d)

0.1
0.1 0.1 0.1

0.2

0.
2

0.2

0.2

0.
20.3

0.
3

0.
3

0.
3

0.3

0.3

0.
3

0.4

0.
4

0.4
0.4

0.
4

0.4

0.
4

0.4

0.
5

0.5
0.

5

0.
5 0.5

z 
[m

]

r [m]
−0.05 0 0.05

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Vector scale
50 cm/s

Fig. 10.13. Particle circulation patterns at various fluidizing velocities for a gas
fluidized bed consisting of 0.42−0.6 (mm) diameter glass beads [90]. Simulated flow
patterns obtained with the CPV model of Lindborg [91]. (a) Us

in = 32 (cm/s) and
Us

in/Us
mf = 1.65, (b) Us

in = 45.8 (cm/s) and Us
in/Us

mf = 2.36, (c) Us
in = 64.1 (cm/s)

and Us
in/Us

mf = 3.31, (d) Us
in = 89.2 (cm/s) and Us

in/Us
mf = 4.6



10.7 Chemical Reactor Modeling 937

a)

0.01
0.01

0.01
0.1 0.1 0.10.2 0.2 0.20.3 0.3 0.30.4 0.4 0.4

0.5 0.5 0.5

z 
[m

]

r [m]
−0.05 0 0.05

0

0.03

0.06

0.09

0.12

0.15

0.18

Vector scale
5 cm/s

b)

0.01

0.01

0.01

0.1
0.1

0.1
0.2

0.2 0.2
0.3 0.3 0.3

0.4 0.4 0.4

0.5

0.5

0.5

0.
5

z 
[m

]
r [m]

−0.05 0 0.05
0

0.03

0.06

0.09

0.12

0.15

0.18
Vector scale

10 cm/s

c)

0.01

0.01 0.01

0.1
0.1

0.1
0.2

0.2
0.20.3 0.3 0.3

0.4 0.4 0.4

z 
[m

]

r [m]
−0.05 0 0.05

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Vector scale
25 cm/s

d)

0.01
0.01

0.01

0.1
0.1 0.1

0.2 0.2 0.2

0.3 0.3 0.3

0.4

0.4

0.4

0.4

z 
[m

]

r [m]
−0.05 0 0.05

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Vector scale
50 cm/s

Fig. 10.14. Particle circulation patterns at various fluidizing velocities for a gas
fluidized bed consisting of 0.42−0.6 (mm) diameter glass beads [90]. Simulated flow
patterns obtained with the PGT model of Lindborg [91]. (a) Us

in = 32 (cm/s) and
Us

in/Us
mf = 1.65, (b) Us

in = 45.8 (cm/s) and Us
in/Us

mf = 2.36, (c) Us
in = 64.1 (cm/s)

and Us
in/Us

mf = 3.31, (d) Us
in = 89.2 (cm/s) and Us

in/Us
mf = 4.6
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rate the center-directed bubble migration is more pronounced, hence the solids
circulation pattern gradually turns so that particles eventually ascend at the
center and descend near the wall (cases (b)-(d)). Although the transition
between the two main circulation patterns are not perfectly predicted, the
particle motion dependence on the superficial gas velocity is captured very well
since both the particle velocity magnitudes and circulation patterns coincide
with the experimental data. In addition to the gas and solid motion in the
bubbling bed, the bed expansion estimated from the same data corresponds
quite well with the simulations. Moreover, the simulated mean bubble size
and bubble rise velocity were in fair agreement with the frequently employed
correlations given in the literature.

Simulation of a Sorption Enhanced Steam reforming Process

Jørgensen [71] simulated a sorption enhanced steam reforming process em-
ploying an extended PGT model derived by Lindborg [91] and Lindborg et al
[92]. The reactor configuration used operating the novel chemical process is
defined in table 10.6.

Table 10.6. Circular axi-symmetric reactor configuration used by [71].

Reactor configuration

Column height (m) 1.5
Reactor diameter (m) 0.25
Bed height at minimum fluidization (m) 0.5
Particle volume fraction at minimum fluidization 0.61
Outlet pressure (bar) 5
Inlet gas velocity (m/s) 0.1
Density dispersed phase (kg/m3) 1500
Numerical resolution (m) 0.0125
Grid resolution 122 × 12
Particle diameter (μm) 500

The kinetic model used for the conventional steam reforming process was
taken from Xu and Froment [139]. The reaction takes place on a Ni/MgAl2O4

catalyst. The kinetics can be described by three equations, where two are
independent:

CH4 + H2O ←→ CO + 3H2 (10.166)

CH4 + 2H2O ←→ CO2 + 4H2 (10.167)

CO + H2O ←→ CO2 + H2 (10.168)

The rate equations are given by the following equations:

r1 =
k1

p2.5
H2

(pCH4pH2O − p3
H2

pCO

K1
)

DEN2
(10.169)
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r2 =
k2

pH2

(pCOpH2O − pH2pCO2
K2

)
DEN2

(10.170)

r3 =
k3

p3.5
H2

(pCH4p
2
H2O − p4

H2
pCO2

K3
)

DEN2
(10.171)

where

DEN = 1 + KCOpCO + KH2pH2 + KCH4pCH4 + KH2OpH2O/pH2 (10.172)

All equilibrium and kinetic constants are taken from Xu and Froment [139].
The removal of CO2 from hot streams is considered a possible future tech-

nology for energy production. The sorption enhanced reaction process (SERP)
has the potential to reduce the costs of hydrogen production by steam methane
reforming, in addition to removing CO2 from the product stream. In this pro-
cess, a CO2 acceptor is installed together with the catalyst for removal of CO2

from the gas phase, and hence pushing the equilibrium limits toward a higher
H2 yield. The steam reforming process may thus be run at lower tempera-
tures than conventional steam reforming (723-903 K), possibly reducing the
investment and operational costs significantly [103].

The Lithium Silicate equilibrium reaction is:

Li4SiO4 + CO2 ←→ Li2CO3 + Li2SiO3 (10.173)

The mathematical model for the sorption reactions is given by [118]:

dx

dt
= k1(PCO2 − PCO2,eq

)n1(1 − x)n2 (10.174)

where x is the fractional conversion of the reaction, defined as x = q/qmax.
q is defined as the mass of CO2 adsorbed divided by mass adsorbent. qmax

refers to maximum amount of CO2 that can be adsorbed.
The temperature dependence of k1 is given by:

k1 = k10e
−Ea

R ( 1
T − 1

T0
) (10.175)

The reaction rate for the sorption is then given by:

rad =
qmax

MwCO2

dx

dt
(10.176)

The parameters in the Li4SiO4 sorption kinetics are given in table 10.7.
A review of the heat transfer characteristics of fluidized beds has been given

by Yates [143]. It is generally accepted that the heat transfer between gas and
particles is very efficient in fluidized beds as a result of the high surface area
of the particle phase. The heat transfer fluxes between an immersed surface
and the gas-fluidized bed material are more important from a practical design
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Table 10.7. Parameters for the adsorption reaction kinetics [118].

Li4SiO4

k10 (s−1) 1.84e-4
Ea (J/kmol) 1.1e8
qmax (gCO2/gadsorbent) 0.20
n1 0.26
n2 2

point of view. Due to the efficient particle mixing in fluidized bed vessels, these
beds are frequently assumed to be operated in an isotermal mode. However, for
particular processes, the effective conductivity of the bed material is required
to predict possible temperature gradients within the bed.

The gas-particle interfacial heat transfer term in the temperature equa-
tions can be modeled by:

Qg = −Qp = −6αpkg

d2
p

Nup(Tp − Tg) = hv(Tp − Tg) (10.177)

A large number of empirical correlations is available for estimating the Nus-
selt number in both packed- and fluidized beds. A Nusselt number correlation
proposed by Gunn [60] was used. The Nusselt number parameterization rep-
resents a functional fit to experimental data for Reynolds number up to 105

in the porosity range 0.35 − 1:

Nup = (7 − 10αg + 5α2
g)(1 + 0.7Re0.2

p Pr0.3)

+ (1.33 − 2.4αg + 1.2α2
g)Re

0.7
p Pr0.3

(10.178)

where

Nup =
hgpdp

kg
, Rep =

αgρg|vg − vp|
μg

and Pr =
μgCp,g

kg
(10.179)

According to Natarajan and Hunt [101] the effective thermal conductivity
of the solids phase kp can be expressed as a linear sum of the kinetic- and
molecular thermal conductivities:

kp = kp,kin + kp,m (10.180)

The kinetic conductivity for a two-dimensional system is calculated from a
relation given by Hunt [66]:

kp,kin = ρpCppdp

√

θp
π3/2

32αpg0
(10.181)

For gas-particle systems the molecular conductivities of the different phases
are frequently calculated employing two semi-empirical relations deduced from
the model of Zehner and Schlünder [145]. The original model of Zehner and
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Schlünder was originally derived to describe the effective radial conductivity
in fixed beds. By using a cell concept the heat is assumed to be transferred by
molecular conduction both in a pure gas phase with surface fraction 1−√

αp,
and through a gas-solid bulk phase with the complimenting portion of the
surface fraction, √

αp. Deviations from sphericity and inter-particle point-
contacts were taken into account by further dividing the gas-solid bulk phase
into a surface fraction, φ, where heat is transferred through inter-particle
contact and 1 − φ for heat transfer through the remaining surface [10]. How-
ever, in the two-fluid model framework it is necessary to separate the overall
bulk thermal conductivity into individual conductivities for the gas and solid
phases. Such a division has been proposed by Syamlal and Gidaspow [128].
This two-fluid model correlation has later been adopted for calculating the
effective thermal conductivity of dense phase fluidized beds [15, 76, 107].

The effective thermal conductivity of the gas phase was given by:

kg,eff = kg

(1 −√
αp)

αg
(10.182)

The solid phase molecular conductivity was determined by:

km,p =
kg√
αp

(φA + (1 − φΛ)) (10.183)

where

Λ =
2

(1 −B/A)

(

(A− 1)
(1 −B/A)2

B

A
ln

(

A

B

)

− B − 1
1 −B/A

− 1
2
(B + 1)

)

(10.184)

The coefficients incorporated in these formulas are:

A =
kp

kg
, B = 1.25

(

αp

αg

)10/9

and φ = 7.26 · 10−3 (10.185)

The simulations were run with the feed gas composition presented in table
10.8. This composition represents a steam to carbon-ratio of 6. The feed gas
enters the column with a temperature of 848K.

Fig 10.15 shows the composition field (mole fractions under dry conditions)
in the reactor after 100 seconds. A rapid decrease in the methane and CO2

mole fractions, and a steep increase in the H2 mole fraction are observed. The
endothermic steam methane reforming process reactions are fast, so most of
the conversion is taking place immediately after the gas reactants enter the
reactor. The CO2-sorption process is slower and takes place in the entire
bed, removing CO2 from the gas and thus shifting the chemical equilibrium
limit for the SERP toward a higher H2 yield compared to the conventional
steam reforming process. The exothermic sorption reaction also reduces the
temperature drop compared to the conventional steam methane reforming
process. The temperature of the gas entering the vessel is 848 K.
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In Fig 10.16 a) instantaneous fields of the solids volume fraction and ve-
locity vectors after 50 seconds simulation time are shown. The black areas
indicate locations where the solid fraction is below 0.2. It is seen that the
solids in the bottom of the vessel have a tendency to move toward the center
of the tube and rise at a radial position halfway between the wall and the
center. The particles are moving down again away from the upflowing area
both closer the wall and the center of the vessel.

In Fig 10.16 b) instantaneous fields of the dry H2 mole fraction and the
gas velocity vectors after 10 seconds simulation time are shown. That is, the
reactions were turned on 5 seconds after the flow was initiated. The hydrogen
production is fast in the inlet zone and the hydrogen produced are transported
toward the exit.

It is also seen that the gas bubbles created in the bottom of the vessel have
a tendency to move toward the center of the tube and rise at a radial position
halfway between the wall and the center. These bubbles carry some of the
solids in their wakes producing the solids circulation pattern seen in (a).

There are no experimental data available for this process yet, so no firm
validation has been performed. Nevertheless, the flow pattern is deemed to
be reasonable and the chemical conversion is in fair agreement with those
obtained in fixed bed simulations [118].

Table 10.8. Feed gas composition

Component Weight fraction Mole fraction

CH4 0.129 0.143
H2O 0.871 0.857
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Fig. 10.15. Simulation of a chemical reactive mixture. Cross sectional average dry
mole fraction profiles of CH4, CO2, H2O, CO, H2 and temperate profile after 100
seconds. The results are averaged over the 2 last seconds to smooth the profiles.



944 10 Fluidized Bed Reactors

Fig. 10.16. Simulation of a chemical reactive mixture. (a) Instantaneous fields of
the solids volume fraction and the particle velocity vectors after 50 seconds. (b)
Contour plot of an instantaneous dry H2 mole fraction field during start up of the
process, 5 seconds after the reactants enter the column and 10 seconds after the
start up of the flow. The consistent gas velocity vector field is given in the same
plot.

a) b)
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11

Packed Bed Reactors

The discovery of solid catalysts led to a breakthrough of the chemical process
industry. Today most commercial gas-phase catalytic processes are carried
out in fixed packed bed reactors1. A fixed packed bed reactor consists of a
compact, immobile stack of catalyst pellets within a generally vertical vessel.
On macroscopic scales the catalyst bed behaves as a porous media. The fixed
beds are thus employed as continuous tubular reactors in which the reactive
species in the mobile fluid (gas) phase are reacting over the catalyst surface
(interior or exterior) in the stationary packed bed. Compared to other reac-
tor types or designs utilizing heterogeneous catalysts, the fixed packed bed
reactors are preferred because of simpler technology and ease of operation.

11.1 Processes Operated in Packed
Bed Reactors (PBRs)

Catalytic processes are carried out in several types of reactors like fixed bed,
moving bed, trickle bed, two- and three phase fluidized beds, bubble columns,
and stirred tanks. Examples of important fixed bed catalytic processes with
only one fluid phase are given in Table 11.1. Other fixed bed processes with
particular catalyst designs exist as well.

Several packed bed reactors are employed by the petroleum refining in-
dustries utilizing natural gas as feedstock. Different compositions of synthesis
gas (mixtures of carbon monoxide and hydrogen) or syngas are important

1 The word fixed is used to distinguish this particular reactor design from moving
bed reactors. The moving bed reactors also consists of a stack of catalyst pellets
inside a vessel. In this reactor the force of gravity causes the catalyst pellets to
move with respect to the wall from top to bottom while maintaining their relative
positions to one another. The moving bed thus offers the ability to withdraw
catalyst for regeneration outside the reactor in a continuous mode. A survey of
the moving bed technology is given by Trambouze and Euzen [12].

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 11,
c© Springer-Verlag Berlin Heidelberg 2008
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Table 11.1. Examples of fixed bed processes [3, 12].

Basic Chemical Industry Petrochemical Industry Petroleum Refining

Primary steam reforming Ethylene oxide Catalytic reforming
Secondary steam reforming Ethylene dichloride Isomerization
Carbon monoxide conversion Vinylacetate Polymerization
Carbon monoxide methanation Butadiene (Hydro)desulfurization
Ammonia synthesis Maleic anhydride Hydrocracking
Sulfuric acid synthesis Phthalic anhydride
Methanol synthesis Cyclohexane
Oxo synthesis Styrene

Hydrodealkylation

intermediate feedstocks for the production of large volume chemicals such as
ammonia, methanol, hydrogen and synthetic hydrocarbon liquids. The fixed
bed reactors used today are thus mainly large-capacity units due to the vast
market demand.

11.2 Packed Bed Reactor Design

Typical for strongly exothermic processes is that at some location in the re-
actor an extreme temperature occur, frequently named the hot spot. In some
processes with very strong exothermic reactions the hot spot temperature can
raise beyond permissible limits. This phenomenon is called runaway . An im-
portant task in reactor design and operation is thus to limit the hot spot
and avoid excessive sensitivity of the reactor performance to variations in
the temperature. The value of the temperature at the hot spot is determined
mainly by the reaction rate sensitivity to changes in temperature, the heat
of reaction potential of the process, and the heat transfer potential of the
heat exchanger units employed. A heat exchanger is characterized by the heat
transfer coefficient and heat transfer areas.

The selection of an appropriate fixed bed reactor design for a given pro-
cess is performed assessing the main limitations of these reactors. The fixed
packed bed reactors can be malfunctioning due to in-proper temperature con-
trol, pressure drop for processes with low tolerance, and deactivation of the
catalyst.

To optimize the performance of the fixed bed reactor operation several
constructions of fixed bed reactors have been investigated over the years.
Three of the most common reactor designs are:

• single-bed units
• multi-bed units
• multi-tube units

The single bed reactor is simply a vessel of relatively large diameter, as
sketched in Fig 11.1. This simple reactor design is best suited for adiabatic
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processes and not applicable for very exothermic or endothermic processes.
If the reaction is very endothermic, the temperature change may be such as
to extinguish the reaction before the desired conversion is attained. Strongly
exothermic reactions, on the other hand, can lead to a temperature rise that
is prohibitive due to its unfavorable influence on the equilibrium conversion,
the product selectivity, the catalyst stability, and in extreme cases unsafe
operation.

Fig. 11.1. Sketch of a single bed reactor.

For endothermic reactions the problem can be solved by dividing the
reactor into multiple stages, with intermediate heat exchangers, defining a
multi-bed reactor. In exothermic processes, the intermediate cooling may be
achieved by mean of heat exchangers or by injection of cold feed. A schematic
illustration of a multi-bed reactor is shown in Fig 11.2.

With very exothermic reactions the number of beds would have to be
uneconomically large to limit the temperature increase per bed. This problem
has been solved by introducing the multi-tube reactor. A schematic illustration
of a multi-tube reactor is shown in Fig 11.3. A representative multi-tube
reactor can contain hundreds or thousands of tubes with an inside diameter
of a few centimeters [3]. The diameter is limited to this small size to avoid
excessive temperature and hot spots.

The multi-tube reactor is more common than the other two fixed bed
designs because many of the important heterogeneous catalytic processes re-
quire effective heat transfer between the mobile fluid, catalyst bed and heat-
ing/cooling media.
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Fig. 11.2. Sketch of a multi-bed reactor.

Fig. 11.3. Sketch of a multi-tube reactor.

11.3 Modeling and Simulation of Packed Bed Reactors

In industrial reactors there are normally gradients in the species mass concen-
trations, temperature, pressure and velocity in all space directions. The fun-
damental microscopic equations give a detailed description of all the known
mechanisms involved. In the chemical reactor engineering approach we desire
to eliminate the mechanisms that is not essential for the reactor performance
from the equations to reduce the computational demand. An appropriate en-
gineering packed bed reactor model is thus tailored for its main purpose. It is
as simple as possible, but still include a sufficient representation of essential
mechanisms involved.
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The conventional classification of reactor models contains two main cat-
egories: The pseudo-homogeneous and heterogeneous models. The pseudo-
homogeneous models are mixture models and do not account explicitly for the
presence of catalyst, in contrast to the heterogeneous models which consist of
separate conservation equations for the interstitial fluid and catalyst phases.
The catalyst phase in this context refers to a region which may include both
gas and solid material. The solids mass is stagnant and inert thus disregarded
in both the pseudo-homogeneous and heterogeneous mass and momentum bal-
ances, but retained in the heat balances because the heat transfer processes
are generally much more effective in the solid material than in the gas. The
pseudo-homogeneous models are sufficient and can be used instead of hetero-
geneous models for processes where the intra-particle heat and mass transfer
limitations are small. Heterogeneous models are required for processes with
significant temperature and concentration differences between the phases.

The axial dispersion terms may be required to account for the mixing
phenomena created by a non-ideal flow. However, the ideal plug flow model is
often appropriate for packed bed reactors because the axial mixing is negligible
compared to the convective flux for many processes.

The basis for the modeling of packed bed reactors are thus the cross sec-
tional average homogeneous and heterogeneous model formulations. The ho-
mogeneous cross sectional average model equations were derived in sect 1.2.6
and simplified to the conventional single phase dispersion model in sect 1.2.7.
The microscopic species mass balance reduces to (1.301) and the correspond-
ing heat or temperature equation is given by (1.302). The heterogeneous two-
phase cross sectional average model equations were derived in sect 3.4.6 and
simplified to the two-phase dispersion model in sect 3.4.7. In this case the mi-
croscopic species mass balance reduces to (3.498) and the corresponding heat
or temperature equation is given by (3.499). However, this formulation is used
for the interstitial gas only. For the pellet similar equations are used for the
gas in the pores, whereas the inert solid mass is disregarded in the species
mass balances. The temperature equations for the pore gas and solid material
are normally added together which collectively amount to a single mixture
balance. The pseudo-homogeneous model equations are based on the classical
mixture model derived in sect 3.4.5. In this concept the multiphase mixture
is treated as a single homogeneous continuum. Thereby the balance principle
can be applied to derive conservation laws for the macroscopic pseudo-fluid in
analogy to the single phase formulation. The multiphase mixture properties
are postulated or approximated by a volume fraction weighted sum of the
phasic properties.

11.3.1 Fixed Bed Dispersion Models

The pseudo-homogeneous fixed bed dispersion models are divided into three
categories: The axial dispersion model, the conventional two-dimensional dis-
persion model, and the full two-dimensional axi-symmetrical model formu-
lation. The heterogeneous fixed bed dispersion models can be grouped in a
similar way, but one dimensional formulations are employed in most cases.
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Assuming that the bed packing is uniform, the local void fraction equals
the overall holdup thus the void parameter can be canceled out in several
model equations.

Pseudo-Homogeneous Axial Dispersion Model

For reactive flows in packed beds a set of cross sectional average balance
equations is written for the gas-solid multiphase mixture [3, 5].

Continuity for the interstitial gas phase:

ε
∂ρg

∂t
+

∂(ρgv
s
g)

∂z
= 0 (11.1)

Momentum balance for the interstitial gas phase:
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(11.2)
Within a porous body the flow of a fluid is resisted by viscous and geo-

metric (tortuosity) effects. A porous media friction term is therefore added
to the right hand side of the momentum equation. The physical meaning of
different terms in the equation is explained in sect 3.4.6.

For flows through a porous packed bed the pressure drop is generally dom-
inated by the bed friction and for fixed bed processes the velocity is normally
not very large, hence the momentum balance for the bulk gas phase can be
reduced to (6.13):

dp

dz
= −f

ρg(vs
g)

2

dp
(11.3)

Several parameterizations for the friction factor, f , are given in the literature.
A parameterization valid for spheres over a relatively broad range of particle
Reynolds numbers is frequently used [3]:

f = 6.8
(1 − ε)1.2

ε3
Re−0.2

p where Rep =
dpρ|vs

g|
μg

(11.4)

Species mass balance for the interstitial gas phase:
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Enthalpy balance for the gas-solid multiphase mixture:
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in which Ta represent the ambient temperature in the heating/cooling media.
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In the current notation, the transport coefficients for heat and species
mass are defined in terms of the superficial flow velocity. The species mass
diffusivity – and the heat conductivity parameters may alternatively be ex-
pressed in terms of the interstitial gas flow velocity applying the following
relations [3]: Dez = εD′

ez and kez = εk′ez.
The gas pressure or the gas mixture density can be calculated from an

appropriate EOS, frequently the ideal gas law is employed in fixed bed simu-
lations:

P = ρmixRT/Mωmix
(11.7)

To solve these model equations appropriate initial and boundary condi-
tions are required. Several conditions may be possible, a set of conditions for
the rigorous case, in which (11.2) is used instead of (11.3), is listed below.

Initial conditions (t=0):
Initially there is no flow in the reactor, the tube is filled with a stagnant

gas mixture having prescribed composition and temperature. The bed packing
has the same temperature as the gas.

ρg = ρg,0

vs
g = vs

g,0 = 0
p = p0
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ωc = ωc,0

⎫
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⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

for all z (11.8)

Boundary conditions (t > 0):

ρg = ρg,0

vs
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⎪
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⎬

⎪

⎪
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for z = 0 (11.9)

∂ρc

∂z
=

dT

dz
= 0 and p = p0 for z = L (11.10)

In specific cases the gas mixture is almost isotherm and the chemical pro-
cess are not altering the mixture molecular mass very much, thus the system
and transport properties may be considered constant. Otherwise, the system
and transport properties have to be considered temperature and composi-
tion dependent and calculated from approximate parameterizations or kinetic
theory relations.

Pseudo-Homogeneous Two-dimensional Dispersion Model

The conventional two-dimensional pseudo-homogeneous reactor model con-
sists of the continuity equation (11.1) and the simplified momentum equation
(11.3) defined in connection with the pseudo-homogeneous dispersion model.
The species mass and temperature equations are extended to 2D by adding
postulated diffusion terms in the radial space dimension [3].
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Species mass balance for the interstitial gas phase:
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Enthalpy balance for the gas-solid multiphase mixture:
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The gas pressure or the gas mixture density can be calculated from an appro-
priate EOS like (11.7).

To solve these model equations appropriate initial and boundary condi-
tions are required. Several conditions may be possible, a frequently used a set
of conditions for the classical formulation, in which (11.3) is used instead of
(11.2), is listed below.

Initial conditions (t=0): Initially there is a steady-state flow in the reac-
tor, and the tube contains a gas mixture having prescribed composition and
temperature. The bed packing has the same temperature as the gas.

ρg = ρg,0
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Boundary conditions (t > 0) are given as:
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= 0 at r = 0 all z (11.17)

∂T
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(T − Ta) at r = R all z (11.18)

In the past many process simulations were performed keeping vs
g, ρg, and the

system and transport properties constant to reduce the problem complexity [3].
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This pseudo-homogeneous two-dimensional dispersion model formulation
is strictly not consistant with the cross sectional averaging procedure out-
lined in sect 3.4.6 and sect 1.2.7 and should be treated with prudence and/or
avoided.

Full Pseudo-Homogeneous Two-Dimensional Axi-symmetric Model

A more rigorous pseudo-homogeneous two-dimensional axi-symmetric model
can be obtained reducing the governing averaged equations, that can be de-
rived using any of the local averaging procedures described in sect 3.4, for the
particular axi-symmetric tube flow problem.

Continuity for the interstitial gas phase:

∂ρg

∂t
+

∂(ρgvg,z)
∂z

+
1
r

∂(rρgvg,r)
∂r

= 0 (11.19)

Momentum balances for the interstitial gas phase:
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and
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Species mass balances for the interstitial gas phase:
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Enthalpy balance for the gas-solid multiphase mixture:
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The gas pressure or the gas mixture density can be calculated from an appro-
priate EOS like (11.7).
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The standard initial and boundary conditions for two-dimensional axi-
symmetric flows in a tube are generally used.

Initial conditions (t=0): Initially there is no flow in the reactor (vr =
vr0 = vz = vz0 = 0), the tube is filled with stagnant gas having prescribed
composition and temperature, as for the 2D dispersion model simulations.

Boundary conditions (t > 0): The standard conditions for axi-symmetric
flow in a 2D tube can be specified in the following manner. There is no flow
through the reactor wall. The normal velocity component is set to zero at the
symmetry boundary. Plug flow is assumed at the inlet. A prescribed pressure
is specified at the reactor outlet. For the scalar variables Dirichlet boundary
conditions are used at the inlet, whereas Neumann conditions are used at the
other boundaries, as for the 2D dispersion model simulations.

Full Heterogeneous Axial Dispersion Model

For reactive flows in packed porous beds a heterogeneous two-phase model
consists of two sets of model equations, one set for the interstitial gas phase
and one set for the pellet phase. The governing equations used by Rusten et
al [11] are outlined below.

Continuity for the interstitial gas phase:

ε
∂ρg

∂t
+

∂(ρgv
s
g)

∂z
= 0 (11.24)

Momentum balance for the interstitial gas phase:

∂

∂t
(ρg

vs
g

ε
)+

∂

∂z
(ρg

vs
gv

s
g

ε2
) = −∂p

∂z
−f

ρ|vs
g|vs

g

dp
+2

∂

∂z
(μ

∂vs
g

∂z
)+ρggz−

1
2
ρg

fD

dt
|vs

g|vs
g

(11.25)
Species mass balance for the interstitial gas phase:

ε
∂(ρgωc)

∂t
+

∂(ρgωcv
s
g)

∂z
=

∂

∂z
(ρgDez

∂ωc

∂z
) + askcρg(ωs,c − ωc) (11.26)

Enthalpy balance for the interstitial gas phase:
(

ερgCpg + (1 − ε)ρcatCpcat

)

∂T

∂t
+ ρgCpgv

s
g

∂T

∂z
=

∂

∂z
(kez

∂T

∂z
) − 4Ui

dt
(T − Ta)

+ ash(Ts − T )
(11.27)

Inside the pores of the catalyst pellets the convective terms are assumably
not significant, hence the species mass balance equations for the porous gas
are expressed by:

εp
∂ρgωp,c

∂t
=

1
r2

∂

∂r
(r2Dcmεp

τ
ρg

∂ωp,c

∂r
) + (1 − εp)ρpRc (11.28)
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The multicomponent diffusivities are generally calculated from the Wilke
equation. τ represents the tortuosity factor for the pellet.

The pellet temperature equation for the multiphase gas-solid mixture can
be expressed as:

(εpρgCpg + (1 − εp)ρpCpp)
∂Tp

∂t
=

1
r2

∂

∂r
(r2kp,g

∂Tp

∂r
)

+ (1 − εp)ρp

∑

r

(−ΔHR,r)rr

(11.29)

The gas pressure or the gas mixture density can be calculated from an appro-
priate EOS like (11.7).

To solve these model equations appropriate initial and boundary condi-
tions are required. Several conditions may be possible, a set of conditions for
the rigorous case, in which (11.25) is used instead of (11.3), is listed below.

Initial conditions (t=0): Initially there is no flow in the reactor, the tube
is filled with a stagnant gas mixture having prescribed composition and tem-
perature. The bed packing has the same temperature as the gas.

vs
g = vs

g,0 = 0
ρg = ρg,0

p = p0

T = T0

ωc = ωc,0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

for all z and r (11.30)

Boundary conditions (t > 0):

vs
g = vs

g,0

ρg = ρg,0

T = T0

ωc = ωc,0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

for z = 0 (11.31)

∂ωc

∂z
=

dT

dz
= 0 and p = p0 for z = L (11.32)

Neuman boundary conditions are used for the particle phase. These are
generally defined for all z and t:

−Dcmεp

τ

∂ωc

∂r

∣

∣

∣

∣

r=rp

= kc(ωp,c − ωc) (11.33)

−kp,g
∂Tp

∂r

∣

∣

∣

∣

r=rp

= h(Tp − T ) (11.34)

∂ωc

∂r

∣

∣

∣

∣

r=0

= 0 (11.35)

∂Tp

∂r

∣

∣

∣

∣

r=0

= 0 (11.36)
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11.3.2 Reactor Process Simulations

In the subsequent sections three examples of fixed bed reactor modeling are
given, summarizing the work of Jakobsen et al [5] and Lindborg et al [7] in-
vestigating the steam methane reforming (SMR) and methanol production
processes, and the simulations of the hydrogen production by sorption en-
hanced steam reforming of methane by Rusten et al [11].

Methanol Production Process

The last decades the discoveries of natural gas reserves are considerable, hence
the oil and gas companies are looking into the economics and technical fea-
sibility of building huge gas conversion plants to take fully advantage of the
economics of scale [9]. Among the most interesting gas conversion processes
are the methanol process, where natural gas is converted into fuel. It is ex-
pected that the methanol market will develop into a fuel market in the future.
Methanol can be used as a hydrogen source in future automobiles based on
fuel cell technology. It can also be used as an alternative to oil and LNG for
power generation.

Model simulations of reactor operation are convenient in order to study:

• The effect on products of changes in feed and catalyst.
• Scale up from laboratory to industry scales.
• Optimalization of the reactor performance.
• Optimalization of the operating conditions.
• Interpretations of laboratory measurements.

In this study the steady-state kinetic model for the methanol synthesis
on a commercial Cu/ZnO/Al2O3 catalyst developed by Vanden Bussche and
Froment [13] are used.

The chemistry mechanism is based on three overall reactions:

CO2 + 3H2 = CH3OH + H2O

CO + 2H2 = CH3OH

CO + H2O = H2 + CO2

The first and the second reaction are hydrogenation reactions of CO2 and CO,
respectively. The last reaction is the water gas shift reaction (WGS).

The reaction steps considered developing the reaction kinetics were given,
and the rate determining steps (RDS) are indentified:
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H2(g) + 2s = 2H-s (KH2)
CO2(g) + s = O-s + CO(g) (k1, K1) RDS

CO2(g) + O-s + s = CO32-s (K3)
CO32-s + H-s = HCO32-s + s (K4)

HCO22-s + H-s = H2CO2-s + s (k5a) RDS
H2CO22-s = H2CO-s + s (K5b)

H2CO-s + H-s = H3CO-s + s (K6)
H3CO-s + H-s = CH3OH(g) + 2-s (K7)

O-s + H-s = OH-s + s (K8)
OH-s + H-s = H2O-s + s (K9)

H2O-s = H2O(g) + s (KH2O)
The kinetic rate models for the conversion of synthesis gas over a Cu/ZnO/

Al2O3 catalyst is thus given by:

rMeOH =
k′5aK

′
2K3K4KH2pCO2pH2

(

1 − 1
K∗

1

pH2OpCH3OH

p3
H2

pCO2

)

(

1 + KH2O

K8K9KH2

pH2O

pH2
+

√

KH2pH2 + KH2OpH2O

)3 (11.37)

rRWGS =
k′1pCO2

(

1 −K∗
3

pH2OpCO

pH2pCO2

)

1 + KH2O

K8K9KH2

pH2O

pH2
+

√

KH2pH2 + KH2OpH2O

(11.38)

The production of methanol is given by rMeOH and the production of CO is
given by the expression for the reversed water gas shift reaction rRWGS .

These expressions can be re-written as:

rMeOH =
F4pCO2pH2

(

1 − 1
K∗

1

pH2OpCH3OH

p3
H2

pCO2

)

DENOM3
(11.39)

rRWGS =
F5pCO2

(

1 −K∗
3

pH2OpCO

pH2pCO2

)

DENOM
(11.40)

The denominator is defined by:

DENOM = 1 + F3
pH2O

pH2

+ F1
√
pH2 + F2pH2O (11.41)

The factors Fi were calculated from the Arrhenius or Van’t Hoff equation:

Fi = Ai × e
Bi
RT (11.42)

in which Bi represents either the activation energy E, or the reaction enthalpy
(-ΔH), or a combination of those. The parameter values for Ai and Bi are
given in table 11.2.
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Table 11.2. Parameters for the methanol synthesis

F1

√

KH2 A1 0.499 (bar−1/2)
B1 17197 (J/mol)

F2 KH2O A2 6.62 ×10−11 (bar−1)
B2 124119 (J/mol)

F3
KH2O

K8K9KH2
A3 3453.38 (-)
B3 - (J/mol)

F4 k′5aK
′
2K3K4KH2 A4 1.07 (mol/kgcat/s/bar2)

B4 36696 (J/mol)
F5 k′1 A5 1.22 × 1010 (mol/kgcat/s/bar)

B5 -94765 (J/mol)

To calculate the equilibrium constants K∗
1 and K∗

3, the following expres-
sions were applied:

log10(K∗
1 ) =

3066
T

− 10.592 (11.43)

log10(
1
K∗

3

) =
−2073
T

+ 2.029 (11.44)

The rate of formation of the different components in the system is given as:

rCH3OH = rMeOH

rCO = −rRWGS

rCO2 = rRWGS − rMeOH

rH2 = rRWGS − 3rMeOH

rHO
= rMeOH − rRWGS

rN2 = 0
rCH4 = 0

(11.45)

The reaction enthalpies were calculated from the the heat of formation for
the species in the hydrogenation of CO2 and water gas shift reactions. The
overall process is strongly exothermic.

Due to the cooling requirement, the industrial scale fixed bed reactors used
for this process are normally constructed based on the multi-tube design.

The operating conditions used for the methanol Bench Scale Reactor sim-
ulations are listed in the tables 11.3-11.5.

The pseudo-homogeneous two-dimensional dispersion model, consisting of
(11.11) to (11.18) and the pressure drop relations (11.3) and (11.4), was solved
for the methanol production process under non-adiabatic conditions.

The results from a simulation of the methanol process with external cooling
(non-adiabatic process) are given in Fig 11.4. The predicted profiles show that
methanol is produced at the expense of CO, CO2 and H2. The temperature
gradient at the reactor entrance is very steep. The temperature increases
to about 550 K in the center of the tube, but near the walls the maximum
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Table 11.3. Reactor Tube Data

Methanol process

Inner tube diameter (m) 0.016

Outer tube diameter (m) 0.026

Tube length (m) 0.15

Temperature outside the wall (K) 523.2

Heat coefficient for the metal (J/msK) 52

Table 11.4. Catalyst data

Methanol process

Catalyst density (kg/m3) 1775

Particle diameter (m) 0.0005

Void fraction in the bulk region 0.5

Table 11.5. Gas data

Methanol process

Mass fraction of CH4 0.1490 (6.00 mol%)

Mass fraction of CH3OH 0 (0.00 mol%)

Mass fraction of CO 0.1734 (4.00 mol%)

Mass fraction of CO2 0.2044 (3.00 mol%)

Mass fraction of H2 0.2564 (82.00 mol%)

Mass fraction of H2O 0 (0.00 mol%)

Mass fraction of N2 0.2168 (5.00 mol%)

Superficial inlet velocity (m/s) 0.0067184

Inlet temperature (K) 493.2

Inlet pressure (bar) 50

temperature is approximately 530 K. The temperature decreases further away
from the reactor inlet, and the radial profiles are almost flat at z = 0.3 meters
downstream from the inlet.

Vanden Bussche and Froment [13] simulated an adiabatic Bench Scale
Reactor using a pseudo-homogeneous one-dimensional model. Using a similar
pseudo-homogeneous axial dispersion model Jakobsen et al [5] obtained axial
concentration and temperature profiles that were hardly distinguishable from
the pseudo-homogeneous one-dimensional model results of Vanden Bussche
and Froment [13].

The adiabatic reactor case was used as a validation test for the two-
dimensional model.

Conventional Steam Methane Reforming

The most important reactions taking place in catalytic steam reforming are
the endothermic methane steam reforming reaction and the parallel exother-
mic water gas shift reaction, respectively [4]:

CH4 + H2O = CO + 3H2
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Fig. 11.4. Species mole fractions and temperature profiles predicted by the pseudo-
homogeneous two-dimensional dispersion model. Note, as a 2D axisymmetric tube
has been simulated, the model is solved for positive r-values only. Reprinted with
permission by Elsevier [5].

CO + H2O = CO2 + H2

The endothermic CO2 reforming reaction is frequently considered:

CH4 + 2H2O = CO2 + 4H2

These three reactions are not independent because the third reaction equals
the sum of the other two reactions. The reactions are catalysed by pellets
coated with nickel (Ni/MgAl2O3) and are highly endothermic overall. The
operating process conditions are typically 20-40 bar with inlet temperature of
300-650 ◦C and outlet temperature of 700-950 ◦C.

Coking reactions occur in parallel with the reforming reactions and are
undesirable as they cause poisoning of the surface of the catalyst pellets. This
leads to lower catalyst activity and the need for more frequently catalyst
reloading. The coking reactions are the CO-reduction, methane cracking and
Boudouard reaction, given by the respective equilibrium reactions [4]:

CO + H2 = C + H2O
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CH4 = C + 2H2

2CO = C + CO2

It can be seen from these reaction equations that low steam excess can lead
to critical conditions causing coke formation, according to the principle of Le
Chatelier.

The kinetics, physical data, correlations and operating conditions needed
for the synthesis gas conversion process are taken from Froment and Bischoff
[3], De Groote and Froment [1] and Xu and Froment [14, 15].

The most common reactor concept for steam reforming of natural gas is
the fired steam reformer that is a multi-tube fixed bed design [2]. The Topsøe
reformer design with tube and burner arrangement is shown in Fig 11.5. A
Natural gas and the tail gas from the synthesis loop are burned in a firebox
where several tubes packed with catalyst pellets are placed in rows with a
number of 40 to 400 tubes. The reactor tubes are about 10-12 m long, with
diameters of about 10 cm. The reactions for conversion of natural gas to syngas
take place over the catalytic surfaces in the reactor tubes. The burners can be
located in different places: On the roof, on the floor, on levelled terraces on
the walls, or on the walls. The top fired reformer is characterized by a defiant
peak in the tube wall temperature in the upper part of the reformer, and it
has the highest heat flux where the metal temperature is at its maximum. The
bottom fired type has an almost constant heat flux profile along the length of
the tube. The terrace wall fired reformer is a modification of the bottom fired
reformer and has some smaller problem with high metal temperatures. The
side fired reformer has the most effective design and is also the most flexible
reformer, both in design and in operation.

The operating conditions used in the simulations of the syngas process are
listed in the tables 11.6-11.8.

For steam reforming, both heterogeneous and pseudo-homogeneous mod-
els have been used to simulate the process. However, since the steam methane
reforming process is strongly intra-particular diffusion-controlled [3], an ap-
propriate reactor simulation generally requires a heterogeneous model. Nev-
ertheless, the use of pseudo-homogeneous models in which the diffusion resis-
tances are taken into account through efficiency factors can also be a sufficent
option provided that appropriate values of these factors are known.

The full pseudo-homogeneous 2D axi-symmetric model, consisting of
(11.19) to (11.23), was used to simulate the synthesis gas process. The model
was simulated with a grid 17×257 for 3 seconds until the steady state solution
was obtained. The time increment in the simulations was Δt = 10−3 s. To
ensure mass conservation the convergence criteria was set to an error limit of
10−18 of the residual error.

The results obtained from the 2D simulations with a uniform void distri-
bution are given in Fig 11.6 and Fig 11.7.
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Fig. 11.5. The Topsøe reformer design with tube and burner arrangement.
Reprinted from Rostrup-Nielsen [10] with permission from Springer.

Table 11.6. Reactor Tube Data

Syngas process

Inner tube diameter (m) 0.102

Outer tube diameter (m) 0.132

Tube length (m) 8

Temperature outside the wall (K) 1100

Heat coefficient for the metal (J/msK) 52

Table 11.7. Catalyst data

Syngas process

Catalyst density (kg/m3) 2355.2

Particle diameter (m) 0.0173

Void fraction in the bulk region 0.528
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Table 11.8. Gas data

Syngas process

Mass fraction of CH4 0.1911

Mass fraction of CO 0.0001

Mass fraction of CO2 0.0200

Mass fraction of H2 0.0029

Mass fraction of H2O 0.7218

Mass fraction of N2 0.0641

Superficial inlet velocity (m/s) 1.89

Inlet temperature (K) 793

Inlet pressure (bar) 29

Fig. 11.6. Velocity, density, pressure and temperature profiles from a 2D simulation
with a uniform void fraction profile. Reprinted with permission by Elsevier [7].

The axial velocity component is close to uniform and the radial velocity
component is very small, hence the flow pattern can be characterized as plug
flow.

In the synthesis gas process CO is produced from CH4 and H2O. The
reversed water gas shift reaction consumes CO in the z-interval from 0-1.5 m.
The mole fraction of CO2 is increasing from the reactor entrance and reaches
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Fig. 11.7. Mole fraction profiles for the components from a 2D simulation with a
uniform void fraction distribution. Reprinted with permission by Elsevier [7].

a maximum at a distance of 1.5 meters from the inlet. At z = 1.5 m the
reaction is reversed, and a maximum occurs in the CO2 profile. Then there is
a slight decrease to the point where equilibrium is achieved.

A radial temperature gradient with a maximum at the wall is observed
at the reactor entrance. Further away from the reactor entrance, the radial
profile is flat. The mole fraction profiles also contain marked radial gradients
within the first 1.5 meters of the reactor. The radial gradients observed in
the species concentration profiles are caused by the limited heat flux added
to the reactor through the wall. The reactions are endothermic and the heat
transferred through the wall and/or from the wall into the bed is not sufficient
to smooth out the temperature profile, thus the chemical conversion becomes
non-uniform.

The use of a full 2D pseudo-homogeneous axi-symmetric model has the
advantage, compared to the conventional 2D pseudo-homogeneous dispersion
model, that it enables an evaluation of the influence of a non-uniform void
distribution in the reactor.

To evaluate the importance of the radial variations in the void fraction
profiles, simulations with prescibed radial variations in the bed structure were
performed for the synthesis gas process. The velocity and pressure profiles were
significantly altered. Higher void fractions at the wall induces less friction from
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the bed, thus the gas flow increases and the pressure drop decreases. However,
the influence on the temperature and mole fraction profiles were very small
but noticeable. This particular process consists of very fast reactions that are
very much controlled by the operational temperature, hence provided that
sufficient heat is added the non-uniform bed packing has very little impact on
the conversion.

A customary simplification is to run the conventional dispersion model
simulations adopting prescribed values for the superficial velocity and the
mixture density throughout the reactor, in conjuntion with a linear pressure
profile as represented by (11.3). The superficial velocity and the mixture den-
sity values are then generally set to the inlet values. However, solving the full
2D pseudo-homogeneous model formulation for the synthesis gas process, it
is shown that the axial gradients predicted in the axial velocity component
and mixture density profiles are considerable and should be taken into ac-
count. However, the chemical species concentration and temperature profiles
obtained in the rigorous 2D simulations do not vary much from the corre-
sponding results obtained by use of a conventional 2D pseudo-homogeneous
dispersion model.

Sorption Enhanced Steam Methane Reforming

Hydrogen is an important raw material in the chemical and petroleum indus-
tries. Large quantities are used in the manufacture of ammonia and methanol
and in a variety of petroleum hydro treating processes. In addition, hydro-
gen might become a new generation clean energy source for transport, espe-
cially for fuel cell application, which would cause a huge increase in hydrogen
demand.

Steam methane reforming (SMR) is currently the major process for large-
scale production of hydrogen. For hydrogen production a more cost effective
process is desirable. Within the last few years the concept of multi-functional
reactors combining reaction and separation, especially the concept of sorption
enhanced reaction process (SERP), have received increased attention. A CO2-
acceptor can be installed together with catalyst to remove CO2 from the gas
phase, normal equilibrium limits of reforming and shift reactions are changed,
and a product containing more than 98% H2 (dry basis) is possible [8]. The
steam reforming can be run at a much lower temperature (450-630 ◦C) than
conventional steam reforming, which will significantly lower investment and
operation cost.

A fixed bed reactor for production of hydrogen by sorption enhanced steam
methane reforming (SE-SMR) using Li2ZrO3 as CO2-acceptor was investi-
gated by Rusten et al [11]:

CH4 + 2H2O + Li2ZrO3(s) ⇔ 4H2 + Li2CO3(s) + ZrO2(s)

The capture process is represented by an exothermic reaction (i.e., ΔH848K =
15 kJ/mol) contrary to the endothermic steam reforming and the heat of
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sorption makes the need for external heating less than for the traditional
steam reforming process.

An empirical parameterization of the sorption kinetics was employed:
dx

dt
= k1(pCO2 − peq,CO2)

2(1 − x) (11.46)

– The equilibrium partial pressure of CO2, peq,CO2 , was modeled using ther-
modynamical data [6].

– x is the fractional conversion, defined by:

x =
q

qmax
(11.47)

in which q is the mass of CO2 captured per mass of lithium zirconate,
qmax is q at maximum capture and is found to be 0.22 for this sample of
Li2ZrO3.

– k1 is the effective reaction rate constant for which an Arrhenius expression
is used for the temperature dependence:

k1 = k10e
−E

R ( 1
T − 1

T0
) (11.48)

The parameters in (11.48) have the values k10 = 8.07 × 10−13 (s−1) and
E = 7.7 × 104 (J/mol).

The sorption rate thus yields:

Rcap = RCO2 = qmax
dx

dt
(
kg

kgs
) (11.49)

Transient one-dimensional reactor models with axial dispersion were used to
simulate the fixed bed reactor process. Transient models were chosen because
the capture of CO2 has a time-dependent nature, and the axial dispersion
term was included because of the relatively low gas velocities that were used
in the simulations.

Three different versions of the basic one dimensional model were developed,
two heterogeneous models and a pseudo-homogeneous model. The difference
in the two heterogeneous models is the way the sorbent was installed in the
reactor bed. One model version considers that Li2ZrO3 and the reforming
catalyst are coated on two different particles, while in the other case there is
one particle with both catalytic and capture properties. The steam methane
reforming and the water-gas shift reaction kinetics are taken from Xu and
Froment [14], but corrected for different properties of the catalyst.

Using the pseudo-homogeneous axial dispersion model as a reference, the
governing equations are defined by (11.1) to (11.10).

The species mass balance (11.5) was solved for H2, CO, CH4 and CO2. The
mass fraction of H2O, the dominating species in the mixture, was calculated
from (11.50).

5
∑

c=1

ωc = 1 (11.50)
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To define the alternative model versions the effective reaction term Sc =
Mωc

rcρcat(1 − ε) = Rcρcat(1 − ε) in the basic model species mass balance
is substituted with a modified source term Sc being different in the various
model versions:

• For the heterogeneous one particle model, we can see from (11.26) that
the source term is a conventional particle-bulk interstitial gas phase mass
transfer term is defined by:

Sc = askcρg(ωs,c − ωc) (11.51)

• For the two-particle heterogeneous model the source term in the bulk gas
phase equation is given as the sum of the conventional particle-bulk phase
mass transfer terms for both the catalyst and CO2-acceptor particles. The
net source term is thus defined by:

Sc = as,catkcρg(ωcat
s,c − ωc) + as,capkcρg(ωcap

s,c − ωc) (11.52)

• For the pseudo-homogeneous model Sc represents an effective reaction rate.
For CO2 the source term for the pseudo-homogeneous model consists of
two effective reaction rate terms, one for the reforming reactions and one
for the CO2-capture kinetics:

SCO2 =
1 − εb

1 + α
εcap

p

εcat
p

(1−εcat
p )ρcatRCO2+

1 − εb

1 − εcat
p

εcat
p +εcap

p α

(1−εcap
p )ρcapRCO2,cap

(11.53)
The α represents the ratio between the solid mass of the CO2-acceptor
and the catalyst.
For the other species, the capture rate is zero so the source terms in these
equations reduce to the form:

Sc =
1 − εb

1 + α
εcap

p

εcat
p

(1 − εcat
p )ρcatRc (11.54)

The corresponding temperature equation for the interstitial gas is given by
(11.6). To define the alternative model versions the effective heat of reaction
term ST = ρcat(1 − ε)

∑

r(−ΔHR,r)rr in the basic model heat balance is
substituted with a modified source term ST being different in the various
model versions:

• For the heterogeneous one particle model, we see from (11.27) that the
source term equals the conventional particle-bulk gas phase heat transfer
term, defined by:

ST = ash(Ts − T ) (11.55)

• For the two-particle heterogeneous model the source term in the bulk gas
phase equation is given as the sum of the conventional particle-bulk phase
heat transfer terms for both the catalyst and CO2-acceptor particles.

ST = as,cath(T − T cat
s ) + as,caph(T cap

s − T ) (11.56)
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• For the pseudo-homogeneous model ST denotes an effective heat of reac-
tion term. The source term for the pseudo-homogeneous model consists of
two effective heat of reaction terms, one for the reforming reactions and
one for the CO2-acceptor kinetics:

ST =
1 − εb

1 + α
εcap

p

εcat
p

(1 − εcat
p )ρcat

3
∑

r

(−ΔHR,r)rr

1 − εb

1 − εcat
p

εcat
p +εcap

p α

(1 − εcap
p )ρcap(−ΔHcap)Rcap/Mωcap

(11.57)

The cross sectional average momentum and continuity equations were solved
for the velocity and pressure, respectively. The pseudo-homogeneous continu-
ity equation was written as:

εb
∂ρg

∂t
+

∂

∂z
(ρgv

s
g) = −Rcap (11.58)

The net acceptor reaction Rcap is included in the continuity equation since the
CO2 mass captured is removed from the interstitial gas phase. The pseudo-
homogeneous continuity equation was used for the heterogeneous models as
well due to numerical convergency problems. A truely heterogeneous conti-
nuity equation should not contain the sorption reaction rate but the sum of
all the species mass balance interfacial mass transfer terms. The sorption rate
should then be included in the pellet continuity equation instead.

The heterogeneous momentum equation for the interstitial gas phase is
written like (11.2).

The impact of two different ways of designing the packed bed were inves-
tigated, one case with one particle having both the sorbent and the catalyst
properties, and a second case with two different particle types each of them
having only one property.

The species mass balance for the gas mixture in the pellet pores are written
on the form (11.28). To define the alternative model versions the effective
reaction term Sc = Rcρcat(1 − ε) in the basic model species mass balance
is substituted with a modified source term Sc being different in the various
model versions:

• For the model with one type of particle the term SCO2 consists of both
the reforming reaction rates and the capture reaction rate. The net source
term in the SCO2 -balance yields:

SCO2 =
1 − εp

1 + α
ρcatRCO2 −

1 − εp

1 − 1
1+α

ρcapRCO2,cap (11.59)

For the other species the capture rate is zero, hence the effective reaction
rate in the pellet reduces to:

Sc =
1 − εp
1 + α

ρcatRc (11.60)



11.3 Modeling and Simulation of Packed Bed Reactors 977

• In the model with two types of particles, (11.28) is solved for both of them.
The catalyst particles are solved for all components, with the reforming
kinetics. Like the equations for the bulk transport, (11.28) is solved for
four components and H2O is calculated from the sum of the mass fractions
(11.50). The source term is then defined by:

Sc = (1 − εp,cat)ρcatRc (11.61)

In the sorbent particle, all components but CO2 are inert, hence only one
component equation is solved. The source term is defined by:

SCO2 = −(1 − εp,cap)ρcapRCO2,cap (11.62)

The pellet temperature equation considering the multiphase gas-solid mixture
was expressed on the form (11.29).

To define the two model versions the effective heat of reaction term
ST = (1− εp,cat)ρcat

∑

r(−ΔHR,r)rr in the basic pellet model heat balance is
substituted with a modified source term ST :

• For the model with one type of particle the ST term consists of both the
reforming heat of reaction and the capture heat of reaction. The net source
term ST yields:

ST =
1 − εp

1 + α
ρcat

3
∑

r

(−ΔHRr
)rr +

1 − εp

1 − 1
1+α

ρcaprCO2,cap(−ΔHr,cap)

(11.63)
• In the model with two types of particles, (11.29) is solved for both of them.

For the catalyst particles the source term is defined by:

ST = (1 − εp,cat)ρcat

3
∑

r

(−ΔHR,r)rr (11.64)

For the acceptor particles the source term is defined by:

ST = (1 − εp,cap)ρcap(−ΔHR,cap)rCO2,cap (11.65)

For the bulk gas phase Dirichlet boundary conditions were specified at the
reactor inlet for all the variables, and Neuman boundary condition were em-
ployed at the outlet for all the variables except for the pressure which is
specified by a Dirichlet boundary condition.

A tube reactor with dimensions given in Table 11.9 was simulated. A high
ratio between CO2-acceptor and catalyst was used because the reforming ki-
netics are fast compared to the sorption rate. The reactor was filled with steam
(97 mole%) and a small amount of hydrogen at the desired temperature, 848
K, at startup. The input to the reactor was methane and steam, in which the
steam to methane ratio is set to 6. A high steam to carbon ratio is necesarry
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to reach high conversions. Physical properties of the reactor and materials are
given in Table 11.9. A typical set of reactor conditions are presented in Ta-
ble 11.10. The inlet mass flux, which is set to 0.77 kg/m2s in the simulations,
corresponds to a superficial gas velocity of 0.3 m/s.

Table 11.9. Physical parameters used in the simulations

Pelled diameter, dp 0.005 (m)
Reactor tube inner diameter, dt 0.1 (m)
Reactor length, L 4 (m)
Gas holdup, ε 0.5 (-)
Tortuosity, τ 3 (-)
Acceptor density, ρcap,p 2500 (kg/m3)
Catalyst density, ρcat,p 2300 (kg/m3)
Pellet effective conductivity, kp,g 0.2 (W/mK)
Solids heat capacity, Cpp 1000 (J/kg K)

Table 11.10. Standard reactor conditions

Prescribed outlet pressure, Pout 10 (bar)

Inlet Temperature, Tf 848 (K)

Wall temperature Tw 848 (K)

ṁf 0.77 (kg/m2 s)

Particle mass ratio= mcap/mcat, α 4 (-)

A measure used for the performance of the reactor is the dry hydrogen
mole fraction, which is is the hydrogen mole fraction of the gas after steam is
removed. The dry mole fractions are calculated as:

ydry
c =

yc

1 − yH2O
(11.66)

The dry hydrogen mole fractions at t = 200 s predicted by the pseudo ho-
mogenous, one-particle heterogenous and two-particle heterogenous models
are shown in Fig 11.8. No significant differences were observed in the reac-
tor performances as simulated by the three models. The pseudo-homogeneous
model gives appropriate results for the particle size used. The capture of CO2

is the limiting step of the process. With larger particles the process may change
behavior as the intra-particle diffusion resistance increases.

The conversion in the reactor decreases with larger particles. The effect
is greater for the two-particle model and occurs at smaller particle sizes. The
reason for this is that for two particles the CO2 have to diffuse out of the cat-
alyst particle, through the bulk phase, and into the sorbent and this becomes
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Fig. 11.8. Comparison in dry hydrogen mole fraction with pseudo-homogeneous
model (——),one-particle heterogeneous model (· —) and two-particle heteroge-
neous model (— —) at t = 200 s, standard conditions. Reprinted with permission
from [11]. Copyright 2007 American Chemistry Society.

the limiting step. For one particle the diffusion to and from the bulk phase
becomes the limiting step at larger particle diameters.

A tube reactor of 20 meters was simulated to show the performance of
the reactor as a function of the length. The thermodynamic upper limit of
hydrogen purity on dry basis at 10 bar total pressure and a temperature of
848 K with lithium zirconate as acceptor is 91 mole%. Very long reactors
and low space velocities are required to reach the equilibrium composition
due to the limitations of the CO2-capture kinetics. A contour plot of the dry
hydrogen fraction is shown in Fig 11.9. It is observed that a dry hydrogen mole
fraction of 0.8 is reached just after 2 meters of the reactor, but to get close
to the thermodynamical limit a significantly longer reactor is needed. At 10
meters a dry mole fraction of 0.88 is reached, but after ten more meters the dry
hydrogen fraction has only increased by about 0.02 and equilibrium conversion
is not reached. The main reason for this is the slow capture kinetics at low
partial pressures of CO2. A reaction order of 2 with respect to partial pressures
of CO2 in (11.46) makes the process slow as it reaches the thermodynamical
limitation.

The same tendency as with longer reactors is observed when lowering the
gas velocity. Fig 11.10 shows dry hydrogen purity as function of axial position
in a 4 meter long reactor at t = 200 s, and the conversion is strongly dependent
of the gas velocity. The CO2-capture kinetics are dependent on the fractional
conversion of the CO2-acceptor. Thus, the sorption kinetics will be slower
with time. This lead to lower conversion in the reactor as shown in Fig 11.11.
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Fig. 11.9. Contour plots of the dry hydrogen mole fraction as function of time
and axial position at standard conditions. Reprinted with permission from [11].
Copyright 2007 American Chemistry Society.

Fig 11.11 shows that a dry hydrogen mole fraction above 0.84 only is
reached in the first minutes. After that the hydrogen content decreases, and
after 50 minutes it is down to just above 70%, which is close to the thermo-
dynamic limit for steam methane reforming without CO2-acceptor at these
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Fig. 11.10. Comparison in dry hydrogen mole fraction at different inlet superficial
gas velocities. vs

g = 0.6 m/s (— —), 0.3 m/s(——), 0.1 m/s (· —) at t = 200 s.
Reprinted with permission from [11]. Copyright 2007 American Chemistry Society.
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Fig. 11.11. Dry hydrogen mole fraction as a function of axial position at different
times: (-) after 5 min, (- - -) after 20 min, (···) after 40 min, and (- · -) after 70 min).
Reprinted with permission from [11]. Copyright 2007 American Chemistry Society.

conditions. The lower dry hydrogen mole fraction in the reactor is due to the
decreasing capture kinetics. The decrease in kinetics is mainly because of the
dependence of fractional conversion, but also because the temperature in the
reactor is lowered. The reactor is heated with a constant temperature at the
wall which is set equal to the inlet gas temperature. As observed in Fig 11.12
this is not sufficient to sustain the temperature in the reactor. This leads to
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Fig. 11.12. Temperature in the reactor as function of time and axial postion.
Reprinted with permission from [11]. Copyright 2007 American Chemistry Society.
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slower sorption kinetics and hence lower conversion. Dry hydrogen mole frac-
tions over 90 % can be reached in SE-SMR with Li2ZrO3 (s) as CO2-acceptor,
but require long reactors and low gas velocities. Simulations show that the ki-
netics of the CO2-capture is the rate-determining step in the process at the
given conditions and indicate that there are no significant intra-particular re-
sistances. This means that a pseudo-homogenous model with efficiency factor
of one can be used instead of more rigorous heterogeneous models.
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12

Numerical Solution Methods

In this chapter several numerical methods frequently employed in reactor en-
gineering are introduced. To simulate the important phenomena determining
single- and multiphase reactive flows, mathematical equations with different
characteristics have to be solved. The relevant equations considered are the
governing equations of single phase fluid mechanics, the multi-fluid model
equations for multiphase flows, and the population balance equation.

Computers generally make the study of fluid flow easier, more effective and
cheaper than using experimental analysis solely. Once the power of numeri-
cal simulations was recognized, the interest in numerical techniques increased
dramatically and the work of developing numerical solution methods for the
governing equations of fluid mechanics now constitutes a separate field of
research known as computational fluid dynamics (CFD). In engineering prac-
tice, the basic conservation equations of fluid mechanics are normally solved
by the Finite Difference- and the Finite Volume Methods. The CFD market is
currently dominated by four codes CFX/ANSYS, FLUENT, PHOENICS and
STAR-CD, that are all based on the finite volume method [201]. In this section,
the elementary theory required for the effective use of this type of commercial
codes to simulate single- and multiphase reactive flows in chemical reactors
is outlined. However, this chapter is not primarily aimed at supporting those
who have access to a commercial package, rather the theory is explored in
greater depth so that the interested reader is able to start developing codes
from scratch or to extend open source codes. Moreover, during the last decade
the use of open source CFD codes (e.g., OPEN FOAM, CFDLIB, MFIX, etc)
are continuously expanding both in academia and industry.

Other methods may be more appropriate for equations with particular
mathematical characteristics or when more accurate, robust, stable and effi-
cient solutions are required. The alternative spectral methods can be classified
as sub-groups of the general approximation technique for solving differential
equations named the method of weighted residuals (MWR) [51]. The relevant
spectral methods are called the collocation -, Galerkin, Tau- and Least squares
methods. These methods can also be applied to subdomains. The subdomain

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 12,
c© Springer-Verlag Berlin Heidelberg 2008
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methods are generally divided into two categories, named spectral element-
[34, 89], and finite element [75, 84, 35] methods. In the spectral element meth-
ods, the solution on each subdomain (or element) is approximated by a high
order polynomial expansion. In the finite element methods, on the other hand,
the solution on each element is normally approximated by a first order (low
order) polynomial expansion [22]. A few commercial CFD codes based on
the finite element method have entered the market (e.g., FIDAP1, COM-
SOL/FEMLAB2), but in general only research codes are developed based on
the spectral methods.

A brief summary of the relevant methods are given in the introductory
sections, then a more detailed description of the finite volume method is pre-
sented. The multi-fluid model is generally solved by methods that are repre-
senting extensions of the techniques used in single phase fluid dynamics. The
main extensions are related to the treatment of the volume fraction-pressure-
velocity coupling and the calculation of the phase distribution phenomena.
The two-fluid- and multi-fluid models containing population balance models
(PBEs) are solved adopting particular schemes for solving integro-differential
equations.

12.1 Limitations of Numerical Methods

Due to the strong coupling and the non-linearity of the transport equations
determining a reactor model, the usefulness of the numerical methods are
conditional on being able to solve the set of PDE’s accurately. This is difficult
for most flows of engineering interest.

There are several reasons for observing differences between the computed
results and experimental data. Errors arise from the modeling, discretization
and simulation sub-tasks performed to produce numerical solutions. First,
approximations are made formulating the governing differential equations.
Secondly, approximations are made in the discretization process. Thirdly, the
discretized non-linear equations are solved by iterative methods. Fourthly, the
limiting machine accuracy and the approximate convergence criteria employed
to stop the iterative process also introduce errors in the solution. The solution
obtained in a numerical simulation is thus never exact. Hence, in order to vali-
date the models, we have to rely on experimental data. The experimental data
used for model validation is representing the reality, but the measurements
1 FIDAP is a general purpose finite element code for simulating two-dimensional,

axisymmetric, or three dimensional equations of viscous incompressible Newto-
nian or non-Newtonian fluid flow, including the effects of heat transfer.

2 FEMLAB is an interactive FEM-based environment for modeling and solving sci-
entific and engineering problems involving PDE’s. This PDE Toolbox is a MAT-
LAB toolbox which gives MATLAB the ability to solve 2D PDE’s by the Finite
Element Method, including meshing, preprocessing and post processing capabil-
ities.
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are also containing errors or uncertainties. These errors have to be taken into
consideration comparing the experimental data and the model predictions.

A proper model validation procedure consists of a model verification part
and a part where the model predictions are compared to experimental data
[61]. The model verification may be performed by the method of manufac-
tured solutions[147, 163]. The method of manufactured solutions consists in
proposing an analytical solution, preferably one that is infinitely differentiable
and not trivially reproduced by the numerical approximation, and the pro-
duced residuals are simply treated as source terms that produce the desired
or prescribed solution. These source terms or residuals are referred to as the
consistent forcing functions. This method can be used to confirm that there
are no programming errors in the code and to monitor the truncation error
behavior during the iteration process.

Visualization of numerical solutions is generally the most effective means
of interpreting the huge amount of data produced by an unsteady reactor
simulation. In many ways these movies resembles the informative weather
forecasts on TV. However, there is the danger that an erroneous solution may
look good but may not correspond to the actual boundary conditions, fluid
properties, and so forth. Unexperienced users of commercial CFD codes must
thus be careful. Nice color pictures and videos make a great impression but
are of no value if they are not quantitatively or even qualitatively correct.
Numerical results must therefore be examined critically before they are be-
lieved. In engineering practice, CFD simulations are thus commonly used as
advanced learning aids because one may need to postulate expected trends
and unknown physics, and estimate the numerical errors in a simulation to
find realistic outcomes on which we base our process design decisions. Our
physical understanding is then to a large extent improved by the work ana-
lyzing the actual flow problem to define a proper benchmark test for model
validation, and not by the model predictions in itself solely.

12.2 Building Blocks of a Numerical Solution Method

The important ingredients of a numerical solution method are outlined in this
section [141, 49, 201].

The basis for any numerical reactor performance simulation is a mathe-
matical model, consisting of a set of ordinary differential-, partial differential-
or integro-differential equations and initial and boundary conditions. An opti-
mized solution method must then be designed for this particular set of equa-
tions.

The transport equations can be written in many different forms, depend-
ing on the coordinate system used. Generally, we may select the orthogo-
nal curvilinear Cartesian-, cylindrical-, and spherical coordinate systems, or
the non-orthogonal curvilinear coordinate systems, which may be fixed or
moving. In reactor engineering we frequently apply the simple curvilinear
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cylindrical – or Cartesian coordinates as most reactors have circular, quadratic
or rectangular cross sectional geometries. Spherical coordinates are generally
employed simulating the reactions and transport processes taking place in
spherical catalyst pellets.

By numerical grid generation we define the discrete locations at which
the variables are to be located. The numerical grid is essentially a discrete
representation of the geometric domain on which the problem is solved. It di-
vides the solution domain into a finite number of sub-domains named elements
or grid volumes. For reactors with quadratic and rectangular cross sectional
geometries structured (regular) grids are generally appropriate, but for the
more complex geometries like cylindrical reactors unstructured grids may be
required. The ill conditioned or singular points in origo at the center axis
are difficult to deal with in an accurate manner employing a cylindrical coor-
dinate representation. Similar problems may occur simulating the transport
phenomena taking place in spherical catalyst pellets.

The selected mathematical model is represented by a discretization method
for approximating the differential equations by a system of algebraic equations
for the variables at some set of discrete locations in space and time. Many
different approaches are used in reactor engineering3, but the most important
of them are the simple finite difference methods (FDMs), the flux conservative
finite volume methods (FVMs), and the accurate high order weighted residual
methods (MWRs).

The finite approximations to be used in the discretization process have to
be selected. In a finite difference method, approximations for the derivatives
at the grid points have to be selected. In a finite volume method, one has to se-
lect the methods of approximating surface and volume integrals. In a weighted
residual method, one has to select appropriate trail - and weighting functions.
A compromise between simplicity, ease of implementation, accuracy and com-
putational efficiency has to be made. For the low order finite difference- and
finite volume methods, at least second order discretization schemes (both in
time and space) are recommended. For the WRMs, high order approximations
are normally employed.

The discretization process generally gives rise to a large system of non-
linear algebraic equations, which has to be solved by an efficient and con-
vergent solution method. For linear 1D problems discretized by the low order
FDMs and FVMs the direct Tri-Diagonal-Matrix-Algorithm (TDMA) is fre-
quently used [141, 202]. For multi-dimensional problems the multigrid solvers
[20, 202, 207] and the Krylov sub-space methods like the conjugate gradient
solver [70, 166] are quite efficient. The problems that are discretized by the low
3 The high resolution lattice Boltzmann scheme, for example, is currently popular

in the CFD research community performing LES and direct numerical simulations
due to the simple implementation and high accuracy obtained, but this method
is still under development and yet not suitable for multiphase reactive flows. The
numerical scheme is constructed from and solves a kinetic theory representation
of the actual flow. A good review can be found in Chen and Doolen [27].
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order methods generally give rise to large systems of linear equations whose
coefficient matrices are sparse4, thus a sparse matrix solver is required. Non-
linear equations are solved by an iteration scheme and successive linearization
of the equations.

A proper convergence criterion is important, from both the accuracy and
efficiency points of view, because it is deciding when to stop the iterative
process. Research codes are generally iterating until the machine accuracy is
reached, whereas the commercial codes are less accurate as efficiency is com-
monly desired by the customers. In commercial CFD codes, a convergence
criterion defined by the reduction of the normalized residual, as calculated
from the initial guess variable values, by a factor of 10−3 is frequently con-
sidered sufficient by contract research- and salespersons. However, for com-
plex multiphase reactive flows this approach may easily lead to unphysical
solutions.

12.3 Properties of Discretization Schemes

For most multiphase reactive flow problems, it is not possible to analyze all the
operators in the complete solution method simultaneously. Instead the differ-
ent operators of the method are analyzed separately one by one. The working
hypothesis is that if the operators do not possess the desired properties solely,
neither will the complete method. Unfortunately, the reverse is not necessar-
ily true. In practical calculation we can only use a finite grid resolution, and
the numerical results will only be physically realistic when the discretization
schemes have certain fundamental properties. The usual numerical terminol-
ogy employed in the CFD literature is outlined in this section [141, 202, 49].

A consistent numerical scheme produces a system of algebraic equations
which can be shown to be equivalent to the original model equations as the grid
spacing tends to zero. The truncation error represents the difference between
the discretized equation and the exact one. For low order finite difference
methods the error is usually estimated by replacing all the nodal values in the
discrete approximation by a Taylor series expansion about a single point. As
a result one recovers the original differential equation plus a remainder, which
represents the truncation error.

A numerical solution method is said to be stable if the method does not
magnify the errors that appear during the numerical solution process. This
property is relevant as a consistent discretization scheme provides no guar-
antee that the solution of the discretized equation system will become an
accurate solution of the differential equation in the limit of small step size.
The stability of low order numerical schemes applied to idealized problems
can be analyzed by the von Neumann’s method . However, when solving rele-
vant, non-linear and coupled reactor model equations with complex boundary

4 A matrix which is n × m with k non-zero entries is sparse if k � n × m.
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conditions, there are no methods available for stability analysis so we have to
rely on experience and intuition.

A numerical method is convergent if the solution of the discretized equa-
tions tends to the exact solution of the differential equation as the grid spacing
tends to zero. For simple problems convergence is frequently checked using
numerical experiments repeating the calculation on a series of successively
refined grids. If the method is stable and if all approximations used in the dis-
cretization process are consistent, we may experience that the solution does
converge to a grid-independent solution. The overall order of the method
can then be estimated from the convergence behavior of the error in the
solution. For industrial multiphase reactive flows we generally do not have
the computational resources available to perform numerical experiments re-
peating the calculation on a series of successively refined grids. In this case
we are stuck and have to rely on experience, intuition, and experimental
data.

In the cases where the transport equations to be solved express a conser-
vation law, the numerical scheme should also both on a local and a global
basis represent conservative properties. Conservative schemes are normally
preferred. Numerical solution methods should also produce realistic results.
In the absence of sources, the model equations require that the minimum
and maximum values of the variables should be found on the boundaries
of the domain. These conditions should be reflected by the numerical ap-
proximation as well. Only a few first order schemes guarantee the so-called
boundedness property , but the higher-order schemes generally produce un-
bounded solutions. Closure models for the unresolved phenomena, which we
cannot describe directly due to computational restrictions, should be designed
to guarantee physically realistic solutions. Basically, this is a modeling issue,
but models that are not realizable generally result in unphysical solutions or
cause the numerical methods to diverge. In multiphase reactor models real-
izability is particularly important considering the interfacial coupling terms
in the average multi-fluid models and the kernels in the population balance
equation.

Numerical simulations of any non-linear reactive flow problem provide only
approximate solutions. Errors in the solution might be introduced by mistakes
when deriving the solution algorithm, in programming, and in setting up the
boundary conditions. In addition, there are systematic errors caused by ap-
proximations in the model derivation, discretization, and convergence criteria
[49]. An accurate solution is customarily said to be achieved when the overall
truncation error in the solution is small and less than a prescribed threshold.
From a Taylor series analysis this means that a fine grid resolution provides
accurate solutions. The different errors may also cancel each other, so that
sometimes a solution obtained on a coarse grid may agree better with the ex-
periment than a solution on a finer grid, which by definition should be more
accurate.
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12.4 Initial and Boundary Condition Requirements

The formulation of initial- and boundary conditions for a given mathematical
problem is of course basically a modeling issue, but models that are not solved
with correct type, number and composition of conditions will result in unphys-
ical solutions or cause the numerical methods to diverge. It is recognized that
both the formulation of proper initial and/or boundary conditions for a given
equation and the choice of an appropriate numerical method that can be used
to solve a given PDE, are intimately tied to the mathematical character of
the governing equations. The classification of a PDE problem may be difficult
as the equation may be an initial value problem with respect to one variable
and a boundary value problem in another. However, the overall classification
of a PDE is generally governed by the behavior of the terms containing the
highest order derivatives.

The elementary theory concerning the character of partial differential
equations has developed mainly from the study of the simplified two dimen-
sional, quasi-linear second order equation defined by [55, 174]:

a
∂2ψ

∂x2
+ b

∂2ψ

∂x∂y
+ c

∂2ψ

∂y2
+ d

∂ψ

∂x
+ e

∂ψ

∂y
+ fφ + g = 0 (12.1)

where a, b, c, d, e, f , and g may be non-linear functions of the independent
variables x, y, ψ, ∂ψ

∂x and ∂ψ
∂y , but not of the second derivative of ψ (hence the

term quasi-linear in the second derivative).
Based on mathematical analysis it has been found that the character of

this equation changes depending upon the sign of the function5 b2 − 4ac:

if b2 − 4ac

⎧

⎪

⎨

⎪

⎩

< 0 the equation is elliptic
= 0 the equation is parabolic
> 0 the equation is hyperbolic

(12.2)

A method for more advanced analysis of the eigenvalues of the governing
equation matrix is examined by Flescher [53], Jiang [84], sect 4.7, Roache
[158], among many others.

We generally distinguish between two principal categories of physical be-
havior, represented by equilibrium and marching problems [202]. The prob-
lems in the first category are governed by elliptic equations. Elliptic equations
have no real characteristics. These problems, which are called boundary-value
problems, require boundary conditions over the entire boundary of the cal-
culation domain. An important feature of elliptic boundary value problems
is that a disturbance in the interior of the solution changes the solution ev-
erywhere else. Many steady-state viscous fluid flow problems belong to this
5 The names elliptic, parabolic, and hyperbolic that denote the different charac-

ters of the equation, have arisen by analogy with the conic sections of analytic
geometry [208, 174].
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group. Supersonic steady-state inviscid fluid flow problems may behave dif-
ferently because the fluid velocity is greater than the propagation speed of
disturbances and the pressure is unable to influence events in the upstream
direction. Supersonic steady-state inviscid fluid flow problems are generally
hyperbolic. Subsonic steady-state inviscid flows are normally elliptic because
the pressure can propagate disturbances at the speed of sound, which is greater
than the flow speed. The problems in the second category of physical behav-
ior are governed by parabolic or hyperbolic equations. Most unsteady viscous
fluid flow problems are parabolic, whereas many unsteady inviscid flow prob-
lems are hyperbolic with discontinuous solutions. It is noted that the viscous
marching problems contain dissipation terms, whereas the inviscid marching
problems contain no dissipation terms. Hyperbolic equations have two sets of
real characteristics and arise in systems with finite propagation speeds. These
problems, which are termed initial-boundary-value problems, may be classi-
fied as an initial value problem with respect to one variable and boundary
value problems in the other variables. The spatial domain may or may not
be bounded. If the spatial region is bounded, there may also be boundary
conditions (one at each boundary). Otherwise, we have a pure initial value
problem. An initial value problem requires only an initial condition at one
boundary, that is within the domain of dependence of the solution. Thus,
hyperbolic equations are always posed in domains that extend to infinity in
a time like coordinate. Parabolic equations can be regarded as the limiting
case of hyperbolic equations in which the propagation speed of the signals
becomes infinite. Such equations are often obtained when it is assumed that
the propagation speed (e.g., the speed of sound) is very large compared to
any other velocity in the problem, so that the propagation speed may be set
to infinity (e.g., the incompressible limit in gas dynamics). The initial and
boundary conditions typically applied to parabolic equations are similar to
those for hyperbolic problems with one important exception. Only one initial
condition in time or space is necessary. This is related to the fact that there
is only one set of characteristics. However, the spatial domain may be open
or closed. In the case of a closed spatial domain, the boundary conditions
are the same as those applied in the hyperbolic case. Recall, however, that
for hyperbolic equations the signals propagate at a finite speed over a finite
region. This property distinguishes hyperbolic equations from the two other
types. Compressible flows at speeds close to and above the speed of sound
exhibit shockwaves and it turns out that the inviscid flow equations are hy-
perbolic (i.e., not parabolic) at these speeds. The shockwave discontinuities
are manifestations of the hyperbolic nature of such flows. Numerical solution
algorithms for hyperbolic problems are designed for the need to allow for the
possible existence of such discontinuities in the interior of the solution. In con-
trast algorithms designed for parabolic and elliptic problems assume infinite
propagation speeds.

The mathematical character of the transport equations determining reac-
tive flows are often too complicated to fit into the generalized form of the
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quasi-linear second order PDE. For a reactive mixture the equations are often
strongly coupled through the variable thermodynamic properties and trans-
port coefficients, and may be elliptic, parabolic, hyperbolic or mixtures of
all three types of equations, depending on the specific chemical process, flow
conditions and geometry. For multiphase flows, additional complications are
observed making the multi-fluid equations ill-posed under certain conditions,
as mentioned in chap 3.5.

12.5 Discretization Approaches

In this section an outline of a selection of discretization methods frequently
used in chemical reactor engineering is given.

12.5.1 The Finite Difference Method

The finite difference method is the oldest method for numerical solution of
PDE’s, presumably introduced by Euler in the 18th century [71, 49, 174, 167].
It is a convenient method to use for simple geometries.

The starting point for the FDM discretization is the transport equation
in differential form. The first step in obtaining a numerical solution is to dis-
cretize the geometric domain by defining a numerical grid. The domain of
interest is replaced by a set of discrete points. In FDMs the grid is normally
structured. At each grid point, the differential equation is approximated by re-
placing the partial derivatives by approximations in terms of the nodal values
of the functions. On staggered grids, interpolation is used to obtain variable
values that are required at locations other than grid nodes. The result is one
algebraic equation per grid node, in which the variable value at that and a
few neighboring nodes appear as unknowns.

Taylor series expansions can be used to obtain approximations to the first
and second order derivatives of the variables with respect to the coordinates.
When necessary, these methods are used to obtain variable values at locations
other than grid nodes (interpolation). The Taylor series expansion can be
defined by:

ψ(z ±Δz) ≈ ψ(z) ±Δz
∂ψ

∂z

∣

∣

∣

∣

z

+
(Δz)2

2!
∂2ψ

∂z2

∣

∣

∣

∣

z

± ... +
(Δz)k

k!
∂kψ

∂zk

∣

∣

∣

∣

z

(12.3)

By forming linear combinations of the values of the function at various grid
points z, z ± Δz, z ± 2Δz, and so on, we can obtain approximations to the
derivatives.

The truncation error is usually proportional to a power of the grid spacing
Δxi and/or the time step Δt. If the most important error term is proportional
to (Δxi)n or (Δt)n we call the method an nth-order approximation, often
simply indicated by O(Δxn

i ) or O(Δtn), respectively. n > 0 is required to
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obtain an accurate solution as the grid spacing tends to zero. Ideally, all
terms should be discretized with approximations of the same order of accuracy.
However, certain terms may be dominant in a particular flow and it may be
reasonable to treat them with more accuracy than the others. The order of
the approximation tell us the rate at which the error decreases as the mesh
spacing is reduced. It gives no information about the error on a single grid.

The simplest approximations for the first derivative are given below.
Forward differences, first order explicit Euler method:

∂ψ

∂z
|z ≈ ψ(z + Δz) − ψ(z)

Δz
+ O(Δz) (12.4)

Backward differences, first order implicit Euler method:

∂ψ

∂z
|z ≈ ψ(z) − ψ(z −Δz)

Δz
+ O(Δz) (12.5)

Central differences, second order:

∂ψ

∂z
|z ≈ ψ(z + Δz) − ψ(z −Δz)

2Δz
+ O(Δz2) (12.6)

The simplest approximation for the second derivative can be obtained in a
similar manner.

Central differences, second order:

∂2ψ

∂z2
|z ≈ ψ(z + Δz) − 2ψ(z) − ψ(z −Δz)

(Δz)2
+ O(Δz2) (12.7)

Any approximation of the derivative of a function in terms of values of that
function at a discrete set of points is called a finite difference approximation.
There are several ways of constructing such approximations, the Taylor series
approach illustrated above is frequently used in numerical analysis because
it supplies the added benefit that information about the error is obtained.
Another method uses interpolation to provide estimates of derivatives. In
particular, we use interpolation to fit a smooth curve through the data points
and differentiate the resulting curve to get the desired result. A collection of
low order approximations (i.e., first to fourth order polynomial approxima-
tions) of first and second order derivative terms can be found in textbooks
like [49, 50, 167].

At boundary nodes where the variable values are given by Dirichlet con-
ditions, no model equations are solved. When the boundary condition involve
derivatives as defined by Neumann conditions, the boundary condition must
be discretized to provide the required equation. The governing equation is
thus solved on internal points only, not on the boundaries. Mixed or Robin
conditions can also be used. These conditions consist of linear combinations
of the variable value and its gradient at the boundary. A common problem
does arise when higher order approximations of the derivatives are used at
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interior nodes in the vicinity of the boundaries, because these approximations
may demand data at points beyond the boundary. It may then be necessary
to use one-sided (i.e., upwind, and sometimes even down-wind) or lower order
approximations for the derivatives at points close to the boundaries.

For many problems the solution changes rapidly in some parts of the solu-
tion domain and more gradually in others, hence it is required to use a grid in
which the discretization points are more concentrated where the derivatives
of the function are larger to distribute the error uniformly over the domain.
On such non-uniform grids it is more difficult to construct finite difference ap-
proximations to derivatives and the errors tend to be larger. An introduction
to finite difference approximations on non-uniform grids can for example be
found in books like [49, 50, 71].

The main disadvantages of FDMs are low accuracy, low convergency rates
and that the conservation is not enforced unless special care is taken. The
restriction to simple geometries is a significant disadvantages in complex flows.

12.5.2 The Finite Volume Method

The finite volume method has become a very popular method of deriving
discretizations of partial differential equations because these schemes preserve
the conservation properties of the differential equation better than the schemes
based on the finite difference method.

The FVM uses the integral form of the conservation or transport equations
as its starting point. The solution domain is subdivided into a number of
continuous grid of cell volumes, and the equations are applied to each cell
volume. At the centroid of each cell volume lies a computational node at which
the values are to be calculated. Interpolation is used to express variable values
at the cell surface in terms of the nodal (cell volume-center) values. Surface
and volume integrals are approximated using a suitable quadrature formula.
As a result, one obtains an algebraic equation for each cell volume, in which
a few of the neighboring nodal values appear. The FVM can accommodate
any type of grid, so it is suitable for complex geometries. The method is
conservative by construction, so long as the surface integrals which represent
convective and diffusive fluxes are the same for the cell volumes sharing the
boundary.

The main disadvantages of FVMs are low accuracy and low convergency
rates. Compared to FDMs, the main disadvantage of the FVM is that meth-
ods of order higher than second are more difficult to develop in 3D because
the FVM approach requires two levels of approximation considering the inter-
polation and integration processes. The FDM only requires approximations
of the derivatives and interpolation.

12.5.3 The Method of Weighted Residuals

In some sense the method of weighted residuals (MWR) uses the integral form
of the conservation or transport equations as its starting point. In particular,
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the MWR is a general concept for minimizing a residual defined based on the
integral form of the governing equations [51, 89].

The key elements of the MWR are the expansion functions (also called
the trail-, basis- or approximating functions) and the weight functions (also
known as test functions). The trial functions are used as the basis functions
for a truncated series expansion of the solution, which, when substituted into
the differential equation, produces the residual. The test functions are used
to ensure that the differential equation is satisfied as closely as possible by
the truncated series expansion. This is achieved by minimizing the residual,
i.e., the error in the differential equation produced by using the truncated
expansion instead of the exact solution, with respect to a suitable norm. An
equivalent requirement is that the residual satisfy a suitable orthogonality
condition with respect to each of the test functions.

The choice of test function distinguishes between the most commonly used
spectral schemes, the Galerkin, tau, collocation, and least squares versions
[22, 51, 84, 89] (see also [60, 132, 54, 17]). In the Galerkin approach, the
test functions are the same as the trail functions, whereas in the collocation
approach the test functions are translated Dirac delta functions centered at
special, so-called collocation points. The collocation approach thus requires
that the differential equation is satisfied exactly at the collocation points.
Spectral tau methods are close to Galerkin methods, but they differ in the
treatment of boundary conditions.

For particular problems, it is possible to formulate spectral methods start-
ing out from variational principles [84, 89]. The variational methods provide
a means to obtain approximate solutions to differential equations based on
minimizing the functional of the equation. A variational method that is based
on the principle of minimum potential energy, is known as the Rayleigh-Ritz
method or just the Ritz method. Many attempts have been made to formulate
variational principles patterned after Hamilton’s principle (i.e., the principle
of least action), which governs the equations of mechanics and dynamics of
discrete particles as outlined in sect 2. The form of the Lagrangian is thus
common to many of the variational principles and given by the kinetic energy
minus the potential energy. However, the variational method cannot always
be applied because there are no variational principle that can be employed for
many problems.

The Galerkin method, on the other hand, represents a sub-class of the
method of residuals and is always applicable because it does not depend on the
existence of a variational principle. Hence, in some cases both the Rayleigh-
Ritz method and the Galerkin method are applicable for the same problem. In
these situations the Galerkin method is thus associated with the variational
principle. In one view, the Galerkin methods may thus be interpreted as either
variational principles or regular methods of weighted residual. To distinguish
the two methods, a system of equations is said to be self-adjoint when we
can formulate a variational principle for the corresponding problem. Because
the Rayleigh-Ritz method is applicable only for equations with self-adjoint
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operators, the Galerkin method is commonly considered a more universal
approach to construction of spectral methods. The variational and Galerkin
methods give identical results. However, the self-adjointness can be destroyed
by combining the equations or by improper non-dimensionalization. There
may be several ways to apply the Galerkin method, but only one of which
corresponds to the variational methods. There is always a Galerkin method
that corresponds to the variational method, but the reverse is not true.

Orthogonal collocation in the chemical engineering literature refers to the
family of collocation methods with discretization grids associated to Gaus-
sian quadrature methods [34, 204]. Spectral collocation methods for partial
differential equations with an arbitrary distribution of collocation points are
sometimes termed pseudospectral methods [22].

In one view the choice of trial functions is one of the features which dis-
tinguishes the spectral methods (SMs) from the spectral element Methods
(SEMs). The finite element methods (FEMs) can thus be regarded as SEMs
with linear expansion- and weight functions. The trial functions for spectral
methods are infinitely differentiable global functions. In the case of spectral
element methods, the domain is divided into small elements, and the trail
function is specified in each element. The trial and test functions are thus
local in character, and well suited for handling complex geometries.

It has been shown that several spectral-, spectral element-, finite volume-
, and finite difference methods are related [51, 102, 89]. The comparison of
MWR-, finite difference- and finite volume calculations may in some cases be
best revealed through a spectral element method because in this framework
the calculation domain is divided into small elements so the trail and test
functions are local in character. The finite difference- and finite volume trial
functions are likewise local [89]. With particular trail functions certain SEMs
may be regarded as equivalent to finite difference methods. In other cases
certain spectral element methods may be regarded as equivalent to particular
finite volume methods [49, 141]. However, no formal mathematical general-
ization of these methods has been defined yet. Nevertheless, in engineering
analysis and notation such a heuristic generalization may sometimes be use-
ful, in which the FDMs and FVMs may be considered members of a broader
class of methods called spectral- or spectral element methods.

The general method of weighted residuals is outlined next in terms of a
simple one dimensional model example [51, 102, 89].

Let a linear differential operator D act on a function ψ to produce a
function p. ψ(z) is the function sought.

D(ψ(z)) = p(z) (12.8)

in Ω which is the domain of the region governed by ψ(z).
The solution is required to satisfy a set of boundary conditions:

G(ψ(z)) = 0 (12.9)
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on Γ representing the boundary of Ω.
In the general method of residuals we desire to approximate ψ(z) by a

function ˜ψ(z; a1, a2, a3, ..., an), which is a linear combination of the basis func-
tions chosen from a linearly independent set. That is, the approximation of
the solution is written as [62]:

ψ(z) ≈ ˜ψ(z; a1, a2, a3, ..., an) =
n

∑

i=1

aiϕi(z) (12.10)

in which n is the number of basis functions used.
The ˜ψ(z; a1, a2, a3, ..., an) function has one or more unknown parameters,

ai, that are constant and satisfies exactly the boundary conditions.
Then, when substituted into the differential operator D, the result of the

operations is not, in general, p(z). Hence a residual error will exist:

R(z; a1, a2, a3, ..., an) = D( ˜ψ(z; a1, a2, a3, ..., an)) − p(z) 
= 0 (12.11)

The notation in the MWR is to force the residual to zero in some average
sense over the domain. That is, the MWR requires that the parameters ai are
determined satisfying the integral:

∫

Ω

R(z; a1, a2, ..., an)Wi(z)dΩ = 0 (12.12)

where Wi(z) are the n arbitrary weighting functions.
The number of weighting functions Wi(z) is exactly equal to the number

of unknown constants ai in ˜ψ(z; a1, a2, a3, ..., an). The result is a set of n
algebraic equations for the unknown constants ai.

There are several sub-groups of MWR methods, according to the particular
choices for the weighting function Wi(z) employed. The performance of the
resulting MWR is to a certain extent tied to the properties of the resulting
coefficient matrix. To enable an efficient solution process it is desired that
the coefficient matrix is symmetric, positive definite and characterized by a
small condition number. At the same time the work needed to assemble the
coefficient values should be minimized.

The most popular weighted residual methods are:

• collocation method
In this method, the weighting functions Wi(z) are taken from the family
of Dirac δ functions in the domain. That is, Wi(z) = δ(z − zi). The Dirac
δ functions are defined such that:

∫ b

a

δ(z − zi)dz = 1 for z = zi (12.13)

∫ b

a

δ(z − zi)dz = 0 for z 
= zi (12.14)
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Substitution of this choice of Wi(z) gives:
∫

Ω

R(z; a1, a2, ..., an) δ(x− xi)dΩ = 0 for i = 1, 2, ..., n (12.15)

which when evaluated at n collocation points z1, z2, ..., zn results in n al-
gebraic equations in n unknowns:

R(z1; a1, a2, ..., an) = 0 (12.16)
R(z2; a1, a2, ..., an) = 0 (12.17)

.

.

.

R(zn; a1, a2, ..., an) = 0 (12.18)

Hence the integration of the weighted residual statement results in the
forcing of the residuals to zero at specific points in the domain.
The collocation methods can be shown to give rise to symmetric, posi-
tive definite coefficient matrices that is characterized with a acceptable
condition number for diffusion dominated problems or other higher order
even derivative terms. For convection dominated problems the collocation
method produces non-symmetric coefficient matrices that are not positive
definite and characterized with a large condition number. This method is
thus frequently employed in reactor engineering solving problems contain-
ing second order derivatives of smooth functions. A typical example is the
pellet equations in heterogeneous dispersion models.
The work needed to assemble the coefficient values is generally minimized
when the collocation points are chosen freely. However, better convergence
performance is normally achieved by the orthogonal collocation methods
because a more optimal distribution of the collocation points is achieved.
In the orthogonal collocation methods (i.e., sometimes named by the syn-
onym pseudospectral methods) the discretization points are chosen as the
zeros in certain orthogonal polynomials. Because pseudospectral methods
are generally implemented via orthogonal collocation, the pseudospectral
and orthogonal collocation are essentially interchangeable6. Referring to

6 In the historical survey of the spectral methods given by Canuto et al [22], it
was assumed that Lanczos [101] was the first to reveal that a proper choice of
trial functions and distribution of collocation points is crucial to the accuracy
of the solution of ordinary differential equations. Villadsen and Stewart [203]
developed this method for boundary value problems. The earliest applications of
the spectral collocation method to partial differential equations were made for
spatially periodic problems by Kreiss and Oliger [94] and Orszag [139]. However,
at that time Kreiss and Oliger [94] termed the novel spectral method for the
Fourier method while Orszag [139] termed it a pseudospectral method.



1000 12 Numerical Solution Methods

the orthogonal collocation method, researchers in some communities use
the term pseudospectral method [60, 54, 1] while in the chemical engineer-
ing literature the term orthogonal collocation is normally used [204, 203].

• Least Squares method
The method of Least Squares (LS) requires that the integral I of the
Square of the residuals R(z) is minimized:

I =
∫

Ω

[R(z; a1, a2, ..., an)]2dΩ (12.19)

In order to achieve a minimum of this scalar function, the derivatives of I
with respect to all the unknown parameters must be zero. That is:

∂I

∂ai
=

∂

∂ai

∫

Ω

[R(z; a1, a2, ..., an)]2dΩ =
∫

Ω

∂

∂ai
[R(z; a1, a2, ..., an)]2dΩ

=2
∫

Ω

R(z; a1, a2, ..., an)
∂

∂ai
R(z; a1, a2, ..., an)dΩ = 0

(12.20)

Compared to (12.12), the weight functions are found to be:

Wi(z) = 2
∂

∂ai
R(z; a1, a2, ..., an), i = 1, 2, ..., n (12.21)

The constant pre-factor 2 can be dropped, since it cancels out in the equa-
tion. Therefore, the weight functions for the Least Squares Method are
just the derivatives of the residual with respect to the unknown constants:

Wi(z) =
∂R(z; a1, a2, ..., an)

∂ai
, i = 1, 2, ..., n (12.22)

The determination of ai is achieved from the solution of the general MWR
integral statement (12.12):

∫

Ω

R(z; a1, a2, ..., an)
∂R(z; a1, a2, ..., an)

∂ai
dΩ = 0 (12.23)

The Least squares method is generally applied to problems containing first
order derivatives. A differential equation containing second order deriva-
tives is thus re-written as a set of two equations containing only first order
derivatives.
The LSMs can be shown to give rise to symmetric, positive definite coeffi-
cient matrices that are characterized with a acceptable condition number
for convection dominated problems or other higher order odd derivative
terms. For diffusion (even derivatives) dominated problems the LSMs still
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produce symmetric and positive definite coefficient matrices but these are
now generally characterized with large condition numbers. In particular,
the errors in these LSM solutions grow faster with the condition number
than the error induced by the other MWR methods.
The LSMs are thus generally best suited solving convection dominated
problems. However, in reactor engineering a few successful attempts have
been made applying this method to solve convection-diffusion problems,
by reformulating the second order derivatives into a set of two first order
derivative equations.
This method has been employed by Dorao [38] and Dorao and Jakobsen
[39, 40, 41, 42, 43, 44] solving the population balance equation and single
phase flow problems.

• Galerkin method
This method may be viewed as a modification of the Least Squares
Method. In that is the case, rather than using the derivatives of the resid-
ual with respect to the unknown ai, the derivative of the approximating
function is used. That is, since the approximation of the ψ(z) function is
(12.10), then the weight functions are:

Wi(z) =
∂ ˜ψ(z; a1, a2, ..., an)

∂ai
, i = 1, 2, ..., n (12.24)

We note that these weights are identical to the original basis functions
appearing in (12.10):

Wi(z) =
∂ ˜ψ

∂ai
= ϕi(z), i = 1, 2, ..., n (12.25)

The Galerkin methods have many of the same characteristics as the col-
location methods because both of them give rise to symmetric, positive
definite coefficient matrices that are characterized with a acceptable con-
dition number for diffusion dominated problems. An important advantage
is that the basis functions used in the Galerkin methods satisfy the bound-
ary conditions (and sometimes other useful properties too). However, it
may not always be feasible to require that the basis functions also satisfy
the boundary conditions. The way around this problem is to derive formu-
las for the boundary coefficients requiring that the solution satisfies the
boundary conditions instead of the PDEs. This method was invented by
Cornelius Lanczos [101] in 1938 and is called the (Lanczos) tau method 7.
For convection dominated problems the Galerkin methods produce non-
symmetric coefficient matrices that are not positive definite and charac-
terized with a large condition number. Several upwind-like modifications
of the original Galerkin method have been introduced (e.g., the Petrov-
Galerkin method [35, 84]) to overcome this limitation. Nevertheless, this

7 The (Lanczos) method was named the tau method because Lanczos used the
letter τ to represent the error.
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method has rarely been employed in reactor engineering even for solving
problems containing second order derivatives of smooth functions.
Fernandino et al [48] did study the use of Galerkin methods for solv-
ing typical convection-diffusion reaction engineering models expressed in
spherical and cylindrical coordinate systems containing singular points at
the origo. In particular, cylindrical and spherical coordinates can lead to a
degeneracy in the global system of equations. This difficulty was removed
by incorporating the factor r into the weight function which is introduced
naturally by using Jacobi polynomials Pα,β

k with α = 0 and β = 1, 2. In
this way, an unified framework is obtained for treating the typical reactor
geometries.

• Method of Moments
In this method, the weight functions are chosen from the family of poly-
nomials. That is:

Wi(z) = zi i = 0, 1, 2, ..., n− 1 (12.26)

In the event that the basis functions for the approximation, the ϕ’s, were
chosen as polynomials, then the method of moments may be identical to
the Galerkin method.

In the finite element and spectral element methods the entire domain Ω
is divided into sub-domains or in a number of elements. Piecewise continuous
trail (expansion) functions are defined for each element instead of using only
one global trail function. Different continuity requirements for connecting the
elements can be used.

12.5.4 The Finite Element Method

The finite element method originated in the 1950s from the needs for solv-
ing complex elasticity, structural analysis problems in civil engineering and
aeronautical engineering. The standard nomenclature thus comes from the
mechanics of solids, the field in which the method was first developed. The
early development of the finite element method in these fields was based on the
finite element form of the Rayleigh-Ritz method [84, 89, 35]. This method is
based on an energy principle (i.e., the minimum total potential energy prin-
ciple), and in these particular applications this concept provides a general,
intuitive and physical basis that has a great appeal to structural engineers.

In the early 1970s, the standard finite element approximations were based
upon the Galerkin formulation of the method of weighted residuals. This
technique did emerge as a powerful numerical procedure for solving ellip-
tic boundary value problems [102, 75, 53, 84, 50, 89, 17, 35]. The Galerkin
finite element methods are preferable for solving Laplace-, Poisson- and and
diffusion equations because they do not require that a variational principle
exists for the problem to be analyzed. However, the power of the method is
still best utilized in systems for which a variational principle exists, and it
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is the preferred method for such problems. In reactor modeling, the balance
equations frequently used for analyzing the heat and species mass transport
phenomena in porous catalyst pellets constitute an elliptic boundary value
problem, provided there are no fluid convection through the pores of the par-
ticles. However, most of the classical reactor models consist of convection
dominated species mass balances and temperature equations. For self-adjoint
problems it is generally possible to define an energy norm of the Galerkin
method that result in symmetric coefficient matrices. With regard to simulat-
ing convection-dominated transport phenomena by the finite element method,
severe problems frequently occur due to the presence of non-symmetric convec-
tion operators. Solutions to convection dominated transport problems by the
Galerkin method are thus often corrupted by spurious oscillations. These can
only be removed by severe grid and time refinements. A remedy is to exchange
the standard Galerkin formulation with alternative formulations, called sta-
bilization techniques, avoiding these oscillations without requiring mesh or
time step refinement. In recent years, generalized finite element methods of
the Petrov-Galerkin type have been designed to produce stable and accurate
results in the presence of highly convective effects. Adequate FEMs for solv-
ing convection-diffusion transport equations have thus been established and
are to some extent used to simulate the performance of chemical reactor pro-
cesses. However, very few single- and multiphase reactive flow models have
been solved by the FEM yet.

The finite element method is similar to the finite volume method in that
it describes the behavior of a continuum using a subdivision of the continuum
domain into smaller subregions. In the FEM nomenclature each subregion
of the domain is referred to as an element and the process of subdividing a
domain into a finite number of simple elements is referred to as discretization.
In 1D line element can be used. In 2D the elements are usually triangles or
quadrilaterals, while in 3D tetrahedrals or hexahedrals are most often used.

The basic idea of the FEM is piecewise approximation, in which the so-
lution of a complex problem is approximated by piecewise linear functions
in each element. The function used to approximate the solution in each el-
ement is called the interpolation function, basis function, shape function or
approximating function, depending upon the discipline in which the method
is being applied. The overall accuracy of the finite element solution depends
on the choice of the approximating function. Polynomial type of interpola-
tion functions are most widely used in the finite element method literature.
In selecting the order of the polynomials, a compromise has to be made be-
tween accuracy and computational effort. A higher order polynomial usually
approximates an arbitrary function better, hence it may be desirable to use
a higher order polynomial. However, a low order polynomial simplifies the
computations. The simplest method of approximation is to assume a linear
distribution of the unknown function within the element domain. Besides, the
accuracy is normally low when using only a few large elements, more accu-
rate solutions are generally obtained with a large number of small elements.
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Computational costs, on the other hand, may increase significantly as the
number of elements in a model increases. Thus, it may be more practical to
use fewer elements, and ones that have a higher order of interpolation.

To illustrate the finite element method, the basic steps in the formulation
of the standard Galerkin finite element method for solving a one-dimensional
Poisson equation is outlined in the following.

The governing equations with boundary conditions are called the strong
form of the problem. Let the strong form be defined by:

d2ψ(z)
dz2

= p0 (12.27)

ψ(0) = 0 (12.28)

dψ

dz

∣

∣

∣

∣

z=L

= 0 (12.29)

The derivation of the governing FEM discretization equations is quite similar
to the derivation of the spectral methods presented in the previous section.

The first task is to reformulate the problem into the weak form. The weak
form is a variational statement of the problem in which we integrate against a
weighting function. This has the effect of relaxing the problem, meaning that
instead of finding an exact solution everywhere we are requiring a solution
that satisfies the strong form in an average manner over the domain.

Following the MWR framework, the residual function can be defined as:

R(z) =
d2

˜ψ(z)
dz2

− p0 (12.30)

Multiplying the residual function with a weighting function W (z), we get the
weak form:

∫ L

0

R(z)W (z)dz = 0 (12.31)

In the spectral form of the method we approximate ψ(z) by a function
˜ψ(z; a1, a2, a3, ..., an), representing a linear combination of the basis functions:

ψ(z) ≈ ˜ψ(z; a1, a2, a3, ..., an) =
n

∑

i=1

aiϕi(z) (12.32)

The ai are constants and ϕi are linearly independent basis functions of z,
which are chosen to satisfy the boundary conditions and n is the total number
of basis functions used.

In the Galerkin method, the weights Wi(z) are taken to be the basis func-
tions ϕi(z) used in the approximate solution of (12.32). In this case, the con-
tinuous residual function (12.30) can be approximated by:

˜R(z; a1, a2, a3, ..., an) =
d2

˜ψ(z; a1, a2, a3, ..., an)
dz2

− p0 (12.33)
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Thus, in the Galerkin method the weak form (12.31) becomes 8:

∫ L

0

˜R(z; a1, a2, ..., an)ϕi(z)dz = 0, i = 1, 2, ..., n. (12.34)

Equation (12.34) represents n simultaneous equations in the n unknowns
a1, a2, ..., an. Thus, the solution of (12.34) gives the approximation solution
through (12.32).

Now we substitute the approximate solution (12.32) into the approximate
weak form (12.34), the result is:

∫ L

0

(
d2

˜ψ(z; a1, a2, a3, ..., an)
dz2

− p0)ϕjdz =
n

∑

i=1

ai

∫ L

0

d2ϕi

dz2
ϕjdz −

∫ L

0

p0ϕjdz

(12.35)
We can then use integration by parts to simplify the first term on the LHS

of the equation:

∫ L

0

d2ϕi

dz2
ϕjdz =

dϕi

dz
ϕj

∣

∣

∣

∣

z=L

z=0

−
∫ L

0

dϕi

dz

dϕj

dz
dz = −

∫ L

0

dϕi

dz

dϕj

dz
dz (12.36)

where we have invoked the conditions that the basis functions and the first
derivative of the basis functions vanish at the respective global boundaries.
Hence, it is required that ϕj(0) = 0 and dϕi

dz |z=L = 0.
The weak form for the spectral method becomes:

−
n

∑

i=1

ai

∫ L

0

dϕi

dz

dϕj

dz
dz =

∫ L

0

p0ϕjdz for all j = 1, 2, ..., n (12.37)

If a FEM is to be used instead, we need to replace the global basis functions
with element basis functions. In this case, we need to discretize the domain.
In general we may discretize z = [0, L] into K + 1 elements with K internal
node points in addition to the boundaries.

Next, we construct a finite dimensional subspace Ωh consisting of piece-
wise linear functions. We define subintervals of length Δz = zj+1 − zj ,
j = 1, 2, ...,K. As parameters to describe how the function change over the
subintervals, we choose the basis functions as the set of triangular functions
defined as:

ϕj(z) =

⎧

⎪

⎨

⎪

⎩

1
Δz (z − zj−1) for zj−1 ≤ z ≤ zj ,
1

Δz (zj+1 − z) for zj ≤ z ≤ zj+1,

0 otherwise
(12.38)

for j = 1, 2, ...,K. Note that the basis functions have the following property:

8 This is an L2 inner product. The orthogonality condition states that the residual
is orthogonal to the space of basis functions.
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ϕj(z) =

{

1 if i = j

0 otherwise
(12.39)

If the segments are equal, the interval [0, L] is divided into K + 1 equal seg-
ments of length Δz. Each basis function is an isosceles triangle, displaced
from the previous one by a distance equal to one-half of the length of the base
line. This means that the solution to ψ between any two points zj and zj+1

is approximated by a piecewise linear function:

˜ψ = aj(1 − z − zj

zj+1−zj

) + aj+1(
z − zj

zj+1 − zj
) (12.40)

where aj has the physical meaning of being the value of ψ at the nodes z = zj .
The first-order derivatives of the basis functions are:

dϕj(z)
dz

=

⎧

⎪

⎨

⎪

⎩

1
Δz for zj−1 ≤ z ≤ zj ,
1

Δz for zj ≤ z ≤ zj+1,

0 otherwise
(12.41)

which have discontinuities for z = zj , j = 1, 2, ...,K.
Introducing (12.38) into (12.37), we get:

n
∑

j=1

Aij
˜ψj = fj (12.42)

where Aij =
∫ L

0
dϕi

dz
dϕj

dz dz and fj =
∫ L

0
p0ϕjdz.

The assembly of the complete system contributions to the discrete weak
form results in a matrix equation of the form:

A˜ψ = f (12.43)

where ˜ψ is the vector of the unknown nodal values.
Due to the local nature of the basis functions chosen the system can be as-

sembled based on local element contributions. The result is an element matrix
equation of the form:

Ae
˜ψe = fe (12.44)

where ˜ψe is the vector of the unknown nodal values in element e, and Ae and
fe are the element characteristic matrix and vector, respectively.

It is important to note that in order to combine each element approx-
imation of the field variable to obtain a global solution certain continuity
conditions must be satisfied at the element boundaries. The value of the field
variable at a node must be the same for each element that shares that node.
Such an approximation is said to have C0 continuity. If the first derivatives of
the field variable were continuous between elements, then the approximation
would have C1 continuity. In general, with n the highest order derivative that
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appears in the element equations, a function is Cn continuous if the derivatives
up to the n-th order are continuous. The compatibility condition requires that
Cn−1 continuity exists at the element interfaces. The completeness condition
requires that there is Cn continuity of the field variable within the element.
It has been shown that the finite element solution will converge to the exact
solution as the number of elements increases provided that the compatibility
and completeness conditions are satisfied.

It is further noted that one may also proceed in the reverse order, starting
out deriving a weak form for a generalized element e instead. In this case, the
global system matrix A and global system vector f result from the assembly
of element contributions. The addition of the element contributions to the
appropriate locations in the global system matrix A and global system vector
f can be represented through the action of an assembly operator acting on
the local element matrix and nodal vector as follows:

A =
K

∑

e=1

Ae (12.45)

f =
K

∑

e=1

fe (12.46)

where the summation sign indicates assembly over all finite elements. The
summation does not indicate the usual algebraic summation, but is based on
the requirement of compatibility at the element nodes. With the standard
C0 continuity requirement at the element boundaries, this means that at the
nodes where the elements are connected, the value of the unknown ψe,i is set
to be equal for all the elements joining at the node.

In the implementation of the method one may thus either assemble infor-
mation obtained on an element by element basis into a global representation
of the problem or assemble the information from the complete system form
instead. Some assembling techniques are outlined by Jiang [84], chap 15. Fi-
nally, standard numerical techniques may be used to solve the global system
matrix equation for the unknown field variables.

Basic Steps of a Standard Finite Element Analysis

• Discretization of the Continuum Calculation Domain.
The continuum domain is generally replaced by a series of interconnected
subdomains or elements. We must then determine which types of elements
are appropriate for a given problem and the density of elements required
to sufficiently approximate the solution.

• Selection of Interpolation Functions
Once an element shape has been chosen, we must determine how the vari-
ation of the field variable across the element domain is to be represented
or approximated. The method of approximating the solution across each
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element is referred to as element interpolation. In most cases, a polyno-
mial interpolation function is used. The number of nodes assigned to an
element dictates the order of the interpolation function which can be used.
The degree to which the approximate solution is sufficient to accurately
model the problem is affected by the type of interpolation function used.
The simplest method of approximation is to assume a linear distribution
of the unknown function within the element domain.

• Find the Element Properties
Once the interpolation functions have been chosen, the field variables in
the domain of the element are approximated in terms of the discrete values
at the nodes.
The Galerkin finite element spatial discretization of the boundary value
problem is formulated as an equivalent weak or variational form to the
strong form of the boundary value problem.
A system of equations is formed which expresses the element properties in
terms of the quantities at the nodes.

• Assembly the Element Properties
The assembly procedure combines each element approximation of the field
variable with the specified compatibility and completeness requirements
between the elements to form a piecewise approximation of the behavior
over the entire solution domain.
A standard FEM require C0 continuity at the element boundaries.

• Apply the Boundary Conditions
The global system of equations created by the previous FEM steps cannot
be solved, pending application of the boundary conditions.

• Solve the System of Equations
Once the boundary conditions have been applied to the assembled ma-
trix of equations, standard numerical techniques can be used to solve the
global system matrix equation for the unknown field variables. The ma-
trix equations generated by the finite element process are often sparse and
sometimes also symmetrical.

Among the basic attributes of the method are the ease in modeling complex
geometries, the consistent treatment of differential type boundary conditions
and the possibility to be programmed in a flexible and general purpose format.

12.6 Basic Finite Volume Algorithms Used
in Computational Fluid Dynamics

The purpose of this section is to outline the design of the basic finite volume
solution algorithms used in computational fluid dynamics. Other methods like
finite difference, finite elements and spectral methods have been in widespread
use in computational fluid dynamics for years. However, only finite volume
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algorithms are examined in further details in this book, mainly because of
length constraints.

The design of solution strategy for particular flow problems is strongly
related to the mathematical characteristics of the governing equations. The
mathematical nature of the governing equations for single phase flow was dis-
cussed in sect 12.4. For compressible flows, for which the pressure property
equals the thermodynamic pressure, the continuity and momentum equations
are strongly coupled to the energy equation through energy dissipation and
reversible conversion of kinetic energy into internal energy. It follows that both
the pressure gradient and the magnitude of the pressure are important prop-
erties in compressible flows. Transonic and greater Mach number flows usually
exhibit shockwaves, which allow for nearly discontinuous changes in the flow
field properties. The main difficulty encountered when constructing numerical
methods for the compressible flow equations is thus the possible presence of
discontinuities in the solution. One remedy devised to solve these equations
is known as the shock-capturing methodology. One of the basic ingredients of
the shock-capturing schemes is the high-resolution mechanism (implemented
in the form of flux-limiters) that allows one to combine higher-order accuracy
with shock-capturing capabilities to circumvent Gudunov’s theorem [64]. The
governing equations for compressible unsteady viscous flow collectively consti-
tute an incomplete parabolic system of equations, as there are no second-order
derivative terms in the continuity equation. The particular system form con-
stituting the continuity, momentum, and temperature equations in addition
to the ideal gas law is referred to as the compressible Navier-Stokes equations.
The governing compressible equations for unsteady inviscid flows, called the
Euler equations, are hyperbolic. This system admits discontinuous solutions,
and it can also describe the transition from a subsonic flow (where |v| < c)
to supersonic flow (where |v| > c), where c = (γRT )1/2 is the speed of sound.
The two basic sets of compressible equations are generally treated numeri-
cally within a generic system framework on the form of scalar convection laws
[72, 4, 158, 173]. That is, the use of the conservation form of the unsteady
governing conservation equations assures conservation of mass, momentum
and energy so that the simulations performed may convergence to physically
valid solutions [105]. The solution of the generic conservation law form of all
the governing equations (i.e., continuity, momentum, and energy) takes the
form of a time-marching solution where the dependent flow field variables are
solved progressively in steps of time. Note that in this formalism the computa-
tions provide the fluid density ρ and the flux variables ρv and ρE, and not the
primary variables v and E. However, these methods are specifically designed
for compressible flows and may become very inefficient when applied to in-
compressible flows [72, 158, 33]. In one view, the reason for this inefficiency is
that in compressible flows the continuity equation contains a time derivative
which drops out in the incompressible limit. As a result, the equations become
extremely stiff in the limit of weak compressibility, necessitating the use of
very small time steps or implicit methods. Another interpretation, of the same
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effects, is that the compressible equations support sound waves which have a
definite speed associated with them. As some information propagates at the
flow velocity, the larger of the two velocities determines the allowable time
step in an explicit method. In the low speed limit, one is forced to take a time
step inversely proportional to the sound speed for any fluid velocity. This step
size may be much smaller than the one a method designed for incompressible
flows (which support sound waves that propagates at an infinite speed) might
allow.

For incompressible flows, the pressure quantity acts as a surface force and
the system of governing equations becomes parabolic (dynamic flow) or elliptic
(steady-state flow), the continuity and momentum equations are not coupled
to the energy equation because the fluid velocity is so low that no signifi-
cant heat is produced thus the flow is isothermal. This means that only the
pressure gradient, and not the magnitude of the pressure, is important char-
acterizing the flow. Moreover, for these low Mach number flows, the pressure
gradient required to force the fluid to move is so small that the density is not
significantly affected. The density is thus almost constant and the transient
term in the continuity equation drops out. For this reason, the continuity can
no longer be considered as an equation for density but acts as a constraint on
the velocity field. However, the pressure is closely connected to the velocity
components in the continuity equation thus for a sequential solution of the
equations, it is necessary to device a mechanism to couple the continuity and
momentum equations through the pressure field. It is further noted that for
parabolic and elliptic equations the propagation speed of the signals is in-
finite. A Poisson-like equation for the pressure is frequently used to correct
the intermediate velocity field and enforce continuity. In this formalism the
computations provide the primary variables ρ and v.

In computational fluid dynamics, the central part of a solution algorithm
for the governing equations denotes the procedure used to resolve the cou-
pling that arises between the pressure, density and velocity. Two families of
algorithms, the pressure-based methods and density-based methods, have been
developed for solving the governing equations for single phase flow. Pressure-
based methods use a Poisson-like equation for updating the pressure instead of
the continuity equation in the fundamental form, while density-based methods
use the continuity equation to update density. For this reason, for compress-
ible fluids an equation of state is used to provide density in pressure based
schemes and pressure in density based schemes.

The pressure-based method was introduced by Harlow and Welch [67]
and Chorin [30] for the calculation of unsteady incompressible viscous flows
(parabolic equations). In Chorin’s fractional step method , an incomplete form
of the momentum equations is integrated at each time step to yield an ap-
proximate velocity field, which will in general not be divergence free, then a
correction is applied to that velocity field to produce a divergence free ve-
locity field. The correction to the velocity field is an orthogonal projection
in the sense that it projects the initial velocity field into the divergence free
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field without changing the vorticity. This step is called the projection step,
and schemes that use this approach are often called projection methods. The
original Chorin method was modified for use with finite volumes defined on a
staggered grid by Kim and Moin [92]. An alternative to the basic projection
method is the pressure correction method, which is similar to the basic projec-
tion method, but with the pressure gradient term retained in the momentum
equations. The Poisson’s equation is then solved for a pressure correction
quantity which is used to correct the intermediate velocity field and enforce
continuity. This approach was proposed by Patankar and Spalding [140] and
Patankar [141].

In classical gas dynamics much research effort has been devoted to the
development of accurate and efficient numerical algorithms suitable for solv-
ing flows in the different Mach number regimes. The magnitude of the Mach
number dictates the type of algorithm to be employed in the solution proce-
dure. The density-based methods are generally used for high Mach number
flows, and the pressure-based methods for low Mach number flows. However,
the fundamental equations of motion are uniformly valid as the Mach number
ranges from zero (incompressible limit) to infinite (supersonic limit). During
the years, many researchers have thus aimed at developing unified algorithms
capable of solving flow problems in all the Mach number regimes. In any nu-
merical method designed to be capable of predicting both incompressible and
compressible fluid flows the pressure must play its dual role and act on both
velocity and density to satisfy continuity. Several researchers have worked on
extending the range of pressure-based methods, that were originally devel-
oped for incompressible flows at low Mach numbers, to high Mach numbers
[78, 192, 87, 33, 172, 133, 121]. It is noted that Harlow and Amsden [68] devel-
oped one of the first pressure-based finite difference methods of this kind. On
the other hand, the density-based methods were originally developed for com-
pressible transonic flows and have been extended down to low Mach numbers
through the use of preconditioning techniques [29, 184, 127, 100, 45].

Incompressible steady flows are commonly solved by pressure-based meth-
ods and methods based on the concept of artificial compressibility [183, 45].
The extension of pressure correction methods to steady flows, generally elliptic
equations, has been performed by Patankar and Spalding [140] and Patankar
[141]. The artificial compressibility method for calculating steady incompress-
ible flows was proposed by Chorin [29]. In this method, an artificial compress-
ibility term is introduced in the continuity equation, and the unsteady terms
in the momentum equations are retained. Hence, the system of equations be-
comes hyperbolic and many of the methods developed for hyperbolic systems
can be applied.

Generally, the design of modern solution algorithms for fluid flow prob-
lems is associated with the choice of primitive variables, the grid arrangement,
and the solution approach [133]. In the class of pressure-based solution algo-
rithms, both fully coupled and segregated approaches have been proposed. In
the coupled approach, the discretized forms of the momentum and continuity
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equations are linked together and the resulting system of equations is solved
simultaneously [23]. This technique thus ensures a close connection between
the velocity components and pressure, which may enhance the convergence
rate and hence the efficiency of the method. However, the memory required
to store the coefficients and variables at all grid nodes is often prohibitive
for multidimensional flows. This storage problem may be alleviated by sub-
dividing the domain into parts and solving the system of equations over each
subdomain separately. However, these subdomain solvers artificially decouple
the equations in the various parts of the domain and may thus lead to reduced
convergence rates. In the segregated approach, the discretized equations are
solved separately, but over the whole domain. This has the advantage of re-
quiring considerably less computer storage than the semi-coupled method in
addition to providing the flexibility of easily solving additional PDEs when
needed. Two different grid arrangements have been used in implementations
of the numerical methods, staggered grids [67] with different grid cell vol-
umes for velocities and pressure and collocated grids [155, 125, 126] with the
same grid cell volume for all variables. For the collocated variable schemes
special interpolation procedures for evaluating the grid cell volume face veloc-
ities are required. The use of staggered grids [67], in which pressure is stored
at the grid cell center and velocities at the grid cell faces, removes the need
for interpolation of pressure in the momentum equations and of velocity in
the continuity equation. The primary disadvantage of the staggered grid ar-
rangement is the greater complexity associated with the use of different grid
systems for the various variables, which becomes overwhelming in curvilinear
coordinates.

Many other methods for solving flow problems can be devised. It is impos-
sible to describe all of them here. In this book, emphasis is placed on describing
elements of particular pressure-based methods originally developed for incom-
pressible flows. The basic methods are extended and used to simulate reactive
flows. The standard algorithms used to solve multi-fluid models are extensions
of particular pressure-based methods for single phase flows.

12.7 Elements of the Finite Volume Method for Flow
Simulations

In this section, a survey of the basic elements of the finite volume method, as
applied to single phase flows, is provided [141, 201, 202, 49, 158]. The numer-
ical issues considered are the approximations of surface and volume integrals,
time discretizations, and space discretization of diffusive and convective (or
advective) terms.

Consider the generic transport equation for the property ψ and assume
that the velocity field and the fluid properties are known. The starting point
for the FVM is the integral form of the balance equation:
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∫

t

∫

V

∂(ρψ)
∂t

dvdt +
∫

t

∫

A

ρψv · n dadt =
∫

t

∫

A

Γψ∇ψ · n dadt +
∫

t

∫

V

Sψ dvdt

(12.47)
The finite volume integration of (12.47) over a grid volume is essentially the
same for both steady and dynamic systems to treat convection, diffusion and
source terms. The first observation is that for steady problems the transient
term vanishes, and the finite volume integration consists of the space dimen-
sions only. It makes sense to consider the common features first.

The first task is to discretize the domain. The computational domain is
subdivided into a finite number of small grid cell volumes (GCVs) by a grid
which defines both the grid cell volume boundaries and the computational
nodes. Note that in the finite difference method, the grid defines the location
of the computational nodes solely.

In the FVM a general 3D cell containing the central node P has six neigh-
boring nodes identified as west, east, south, north, bottom and top nodes (W ,
E, S, N , B, T ), as sketched in Fig 12.2). The notation, w, e, s, n, b and t
are used to refer to the west, east, south, north, bottom and top cell faces,
respectively. The algorithms are illustrated using Cartesian grids.

The usual approach in the FVM is to define GCVs by a suitable grid
and assign the computational node to the GCV center. However, one could
as well define the nodal locations first and construct GCVs around them,
so that GCV faces lie midway between nodes. The advantage of the first
approach is that the nodal value represents the mean over GCV volume to
higher accuracy (second order) than in the second approach, since the node
is located at the centroid of the GCV. The advantage of the second approach
is that CDS approximations of derivatives at GCV faces are more accurate
when the face is midway between two nodes. The discretization principles are
the same for both variants. One only has to take into account the relation
between the various locations within the integration volume. The first variant
is used more often than the second approach.

The transport equation on the integral form (12.47) applies to each GCV,
as well as to the solution domain as a whole. If we employ consistent dis-
cretization schemes and sum the equations for all GCVs, the global transport
equation is obtained, since the surface integrals over the inner GCV faces
cancel out. To obtain an algebraic equation for each GCV, the surface and
volume integrals need to be approximated using appropriate quadrature for-
mulas [149, 50, 134, 93]. In some cases, depending on the approximations
used, these equations are equal to those obtained from the FDM.

Special treatment of the boundary grid cells may be required for the im-
plementation of boundary conditions. The volume integrals are calculated in
the same way as for every GCV, but the fluxes through the GCV faces coin-
ciding with the domain boundary require special treatment. These boundary
fluxes must either be known, or be expressed as a combination of interior val-
ues and boundary data. The convective fluxes are normally prescribed at the
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inflow boundary. Convective fluxes are zero at impermeable walls and sym-
metry planes, and are generally assumed to be independent of the coordinate
normal to an outflow boundary. Diffusive fluxes are sometimes specified at a
wall or boundary values of variables are prescribed.

12.7.1 Numerical Approximation of Surface and Volume Integrals

In Figs 12.1 and 12.2, typical 2D and 3D Cartesian cell volumes are shown
together with the notation commonly used. In 3D the GCV surface is subdi-
vided into six plane surfaces, denoted by lower case letters corresponding to
their direction (e, w, n, s, t, and b) with respect to the central node P . The 2D
case can be regarded as a special case of the 3D one in which the dependent
variables are independent of z, hence the GCV surface is subdivided into four
plane surfaces (e, w, n, and s). The net flux through the GCV boundary is
the sum of integrals over the GCV faces:

∫

A

f da =
∑

k

∫

Ak

f da (12.48)

where f is the component of the convective (ρψv · n) or diffusive (Γψ∇ψ · n)
vector in the direction normal to the GCV face. The only unknown is ψ, since
the velocity field and the fluid properties are assumed known. If the velocity
field is not prescribed, it can be calculated from a more complex problem
involving non-linear coupled equations, which are examined shortly.

To demonstrate the method, a representative GCV face labeled e in
Fig 12.2 is considered. Analogous expressions can be derived for all faces
by making appropriate index substitutions.

To calculate the surface integral in (12.48) accurately by a high order
quadrature, the integrand f must be known at a large number of points on
the surface Ae. This information is generally not available, rather only the

Fig. 12.1. A typical grid volume and the notation used for a Cartesian 2D grid.
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Fig. 12.2. A typical grid volume and the notation used for a Cartesian 3D grid.

nodal GCV center values are known so a low order quadrature approximation
must suffice. The low order integral approximation consists in calculating the
integral in terms of the variable values at one or only a few locations on the
grid cell face. These cell face values are generally unknown and subsequently
approximated by interpolation of the nodal GCV center values. The low order
quadrature formula thus contains two levels of approximation.

Many quadrature formulas approximate the integral by a weighted sum of
the values of the integrand at particular points on the interval of integration,
that is, by [149, 50, 134, 93]:

b
∫

a

f(x)dx =
n

∑

i=1

wif(xi) (12.49)

where a ≤ x1 < x2 < ... < xn ≤ b. The numbers wi are called the weights
and the points xi at which the function is evaluated are called the abscissas.
Both the abscissas and weights depend on the method and on the number of
intervals, n. A quadrature formula is defined by the prescription of the weights
and abscissas.

One of the easiest ways to obtain useful quadrature formulas for our pur-
pose is to use Lagrangian interpolation on an equally spaced mesh and inte-
grate the result. This class of quadrature formulas is called the Newton-Cotes



1016 12 Numerical Solution Methods

formulas. The closed quadrature formulas includes the endpoints of the range
of integration as abscissas, whereas the open quadrature formulas do not in-
clude the endpoints of the range of integration as abscissas.

The open formulas are not as accurate as the closed ones, hence most of the
open formulas are rarely used. However, in engineering practice the simplest
open formula, known as the midpoint rule, is frequently used as basis for the
FVM.

The midpoint rule is obtained by a polynomial of order zero which passes
through the midpoint assuming that the function is constant over the integral
of integration. The surface integral can thus be approximated as a product of
the mean value over the surface and the cell face area [49]. The integrand at
the cell face center is frequently used as an approximation to the mean value
over the surface. In this case the surface integral is written as:

Fe =
∫

Ae

f da = 〈f〉Ae ≈ feAe (12.50)

This integral approximation is of second order, provided that the value of
f at location e is known. However, the value of f is generally not available
at cell faces, hence they have to be obtained by interpolation from the node
values. In order to preserve the second order accuracy of the midpoint rule
approximation of the surface integral, the value of fe must be obtained with
at least second order accuracy.

An alternative closed Newton-Cotes quadrature formula of second order
can be obtained by a polynomial of degree 1 which passes through the end
points. This quadrature formula is called the trapezoid rule. In 2D this surface
integral approximation requires the integrand values at the GCV corners.

For higher order approximations of the surface integrals, the integrand is
needed at more than two locations. To apply the fourth-order Simpson’s rule
approximation, the values of f are required at three locations, the cell face
center e and, the two corners ne and se. In order to retain the fourth order
accuracy of the surface integral approximation, the corner values have to be
obtained by interpolation of the nodal values providing the same or higher
order accuracy.

Several terms in the transport equations require integration over the vol-
ume of a grid cell. The midpoint rule is again the simplest second order ap-
proximation available. The second-order approximation thus consists in re-
placing the volume integral by the product of the mean value and the GCV.
The mean value is approximated as the value at the GCV center:

SP =
∫

GCV

sdv = 〈s〉ΔV ≈ sPΔV (12.51)

where sP is the value of s at the GCV center. Since all the variables are
available at node P , no interpolation is necessary.
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Higher order approximations are possible but require the value of s at more
locations than just the GCV center. If the intervals between the interpolation
points are allowed to vary, other groups of quadrature formulas can be used,
such as the Gaussian-, Clenshaw-Curtis- and Fejér quadrature formulas.

It is noted that in engineering practice the simple second order midpoint
approximation formulas are normally used for the surface and volume inte-
grals.

12.7.2 Solving Unsteady Problems

In transient problems the time coordinate must be discretized in a similar
manner as the space coordinates [141, 66, 71, 72, 158, 49, 202]. The major
difference between the space and time coordinates lies in the direction of
influence. The time dependent variables will affect the flow only in the future,
thus there is no backward influence. This has a strong influence on the choice
of solution strategy.

In general, two different solution strategies can be adopted for the time
coordinate and used together with the finite volume space discretization of
the generic unsteady transport equation. In one approach, the standard fi-
nite volume space integration is subsequently followed by discretication of
the resulting ordinary differential equation in time. This approach is named
the numerical method of lines [167]. Numerical methods for solving ODEs
are easily available in standard textbooks. However, a second alternative ap-
proach is commonly used in the basic textbooks on the finite volume method.
In the standard finite volume discretization of the generic transport equation
(12.47), integrations are performed over the GCV shown in Fig 12.2 and over
the time interval from t to t+Δt. In this framework the time integrals have to
be approximated by use of appropriate quadrature formulas. These formulas
may not be as easily accessible as the differential methods. To illuminate this
topic, henceforth we follow the standard finite volume approach integrating
both in time and space.

Integration of the convective flux terms over the GCV surface gives:
∫

A

n · (ρvψ)dA =(ρvxψA)e − (ρvxψA)w + (ρvyψA)n − (ρvyψA)s

+ (ρvzψA)t − (ρvzψA)b

(12.52)

Integration of the diffusive flux terms over the GCV surface gives:
∫

A

n · (Γψ∇ψ)dA =(ΓψA
∂ψ

∂x
)e − (ΓψA

∂ψ

∂x
)w + (ΓψA

∂ψ

∂y
)n − (ΓψA

∂ψ

∂y
)s

+ (ΓψA
∂ψ

∂z
)t − (ΓψA

∂ψ

∂z
)b

(12.53)
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Introducing these standard finite volume space integrations, and changing the
order of integration in the rate of change term we get:

t+Δt
∫

t

(ρvxψA)e dt−
t+Δt
∫

t

(ρvxψA)w dt +

t+Δt
∫

t

(ρvyψA)n dt−
t+Δt
∫

t

(ρvyψA)s dt+

t+Δt
∫

t

(ρvzψA)t dt−
t+Δt
∫

t

(ρvzψA)b dt = −
[

t+Δt
∫

t

d(ρψ)
dt

dt

]

ΔV +

t+Δt
∫

t

(ΓψA
∂ψ

∂x
)edt−

t+Δt
∫

t

(ΓψA
∂ψ

∂x
)wdt +

t+Δt
∫

t

(ΓψA
∂ψ

∂y
)ndt−

t+Δt
∫

t

(ΓψA
∂ψ

∂y
)sdt

+

t+Δt
∫

t

(ΓψA
∂ψ

∂z
)t dt−

t+Δt
∫

t

(ΓψA
∂ψ

∂z
)b dt +

t+Δt
∫

t

〈Sψ〉ΔV dt

(12.54)

In the framework of the FVM it is generally assumed that the transient term
prevails over the whole grid volume. To make further progress we need ap-
proximate numerical techniques for evaluating the time integral from tn to
tn+1.

It is observed that after the spatial terms have been approximated with ap-
propriate discretizations, as outlined in the subsequent sections, the equation
can be cast into the form of an ordinary differential equation on the form:

tn+Δt
∫

tn

dψ(t)
dt

dt = ψn+1 − ψn =

tn+Δt
∫

tn

f(t, ψ(t))dt (12.55)

where we have used the standard shorthand notation ψn+1 = ψ(tn+1).
Even though the time integration on the LHS is exact, the term on the

RHS cannot be evaluated without knowing the solution9 so some approxi-
mation is necessary. The time integral approximations are naturally viewed
as obtained by use of some of the same quadrature rules as employed dis-
cussing the surface and volume integral approximations. However, there are
more than one way to derive some of the time discretization methods consid-
ered in this section. Naturally, one way to derive these methods starts from
the integrated form of differential equation, defining a quadrature problem.
Nevertheless, another approach is to approximate the derivative in the dif-
ferential equation, defining a numerical differentiation problem. Single-step
9 In an attempt to find an exact formula for the integral, we may resort to the mean

value theorem of calculus. This theorem states that if the integrand is evaluated
at a particular known instant t = τ between tn and tn+1, the integral is equal to
f(τ, ψ(τ))Δt. However, in the present case the theorem is of little use since the
instant τ is unknown.
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methods can thus be introduced in a natural way by means of Taylor series.
The Taylor series method is conceptually simple and capable of high accuracy.
Its basis is truncated Taylor Series about a particular point. The family of
backward differentiation formulas, BDFs, are primarily viewed as arising from
numerical differentiation [170]. These methods employ previously computed
information at more than two points.

A brief survey of the different classes of ODE methods that are commonly
applied solving the governing equations of fluid mechanics, is given in the
following. The elementary notation and the basic properties of these ODE
discretizations are briefly mentioned. Analysis of these methods can be found
in numerous textbooks on the numerical solution of ordinary differential equa-
tions and will not be repeated here [156, 66, 170, 158, 134, 93, 28].

Basic Single-Step Methods

The single-step methods10 utilize the information at a single point on the
solution curve to compute the next point. These methods are derived by use
of low order quadrature formulas.

Four low order single-step approximations are frequently used:

• If the integral on the right side of (12.55) is estimated using the value of
the integrand at the initial point, we get:

ψn+1 = ψn + f(tn, ψn)Δt (12.56)

which is known as the first order explicit or forward Euler method.
• If the integral on the right side of (12.55) is estimated using the value

of the integrand at the final point, we obtain the first order implicit or
backward Euler Method:

ψn+1 = ψn + f(tn+1, ψ
n+1)Δt (12.57)

• If the integral on the right side of (12.55) is estimated using the value of
the integrand at the midpoint point of the time interval, we obtain the
midpoint rule:

ψn+1 = ψn + f(tn+1/2, ψ
n+1/2)Δt (12.58)

Depending on what further approximations are employed, the midpoint
rule may give rise to single-step or multistep methods.
For example, the second order (two-step) Leapfrog method frequently used
in meteorology and oceanography can be deduced from the midpoint rule
[66, 49, 158]:

ψn+1 = ψn−1 + 2f(tn, ψn)Δt (12.59)

10 In a few textbooks these methods are referred to as two-level methods because
they involve the values of the unknown at two time levels [49].
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• Finally, if the integral on the right side of (12.55) is estimated using a value
of the integrand that is obtained by a straight line interpolation between
the initial and final points, we get:

ψn+1 = ψn +
1
2
[f(tn, ψn) + f(tn+1, ψ

n+1)]Δt (12.60)

This approximation is called the trapezoid rule and is the basis for the
popular second order Crank-Nicholson method.

Several methods require the value of ψ(t) at some point other than t = tn
and these cannot be solved without further approximation or iteration. The
class of methods that only require information from time level n, or previous
time levels, is called explicit methods. The other class of methods that require
information from time level n + 1 and thus solved by an iterative procedure
are named implicit. Explicit methods are relatively easy to program and use
little computer memory and computation time per step but are unstable if
the time step is large. On the other hand, implicit methods require iterative
solution to obtain the values at the new time step. This makes them harder
to program and they use more computer memory and time per time step,
but they are more stable. Problems including a wide range of time scales are
called stiff. In general, for stiff problems implicit methods tend to behave well,
whereas explicit methods often become unstable. For a single small time step
it is possible to use Taylor series to estimate the order of the error for the
methods. The order determines the rate at which the error goes to zero as
the step size goes to zero, and this only after the step size has become small
enough.

Runge-Kutta Methods

The Runge-Kutta methods are classified as a group of single-step methods that
employs points between tn and tn+1 to approximate the solution preferably
with higher order accuracy. The Runge-Kutta methods are designed to imitate
the desirable features of the Taylor series method, but with the replacement
of the requirement for the evaluation of higher order derivatives of the original
differential equation with the requirement to evaluate f(t, ψ) at some points
within the step tn to tn+1. In one view, the Runge-Kutta methods arise from
underlying quadrature formulas that use data only from [tn, tn+1].

The basic idea of the Runge-Kutta methods is illustrated through a simple
second order method that consists of two steps. The integration method is
constructed by making an explicit Euler-like trail step to the midpoint of the
time interval, and then using the values of t and ψ at the midpoint to make
the real step across the whole time interval:

ψ
n+1/2
* = ψn +

Δt

2
f(tn, ψn) (12.61)
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ψn+1 = ψn + Δtf(tn+1/2, ψ
n+1/2
* ) (12.62)

A major disadvantage with higher order Runge-Kutta methods is that the
derivative must be calculated many times per time step, making these methods
more expensive than midpoint methods of comparable order. However, the
Runge-Kutta methods are more stable than the multistep methods of the
same order and need no data other than the initial condition required by the
differential equation itself (self-starting).

Predictor-Corrector and Multistep Methods

Predictor-Corrector methods have been constructed attempting to combine
the best properties of the explicit and implicit methods. The multistep meth-
ods are using information at more than two points. The additional points are
ones at which data has already been computed. In one view, Adams methods
arise from underlying quadrature formulas that use data outside of [tn, tn+1],
specifically approximate solutions computed prior to tn.

Numerous predictor-corrector methods have been developed over the years.
A simple second order predictor-corrector method can be constructed by first
approximating the solution at the new time step using the first order explicit
Euler method:

ψn+1
* = ψn + f(tn, ψn)Δt (12.63)

where the ∗ indicates that this is not the final value of the solution at tn+1.
Then, the solution is corrected by applying a second order trapezoid rule

using ψn+1
* to compute the derivative:

ψn+1 = ψn +
1
2
[f(tn, ψn) + f(tn+1, ψ

n+1
* )]Δt (12.64)

The formula is known both as the improved Euler formula and as Heun’s
method [170]. This method has roughly the stability of the explicit Euler
method. Unfortunately, the stability may not be improved by iterating the
corrector because this iteration procedure converges to the trapezoid rule
solution only if Δt is small enough.

In order to construct higher-order approximations one must use infor-
mation at more points. The group of multistep methods, called the Adams
methods, are derived by fitting a polynomial to the derivatives at a num-
ber of points in time. If a Lagrange polynomial is fit to f(tn−m, ψn−m),
f(tn−m+1, ψ

n−m+1), ..., f(tn, ψn), and the result is used to compute the inte-
grals in (12.55), we obtain an explicit method of order m+1. Methods of this
type are called Adams-Bashforth methods. It is noted that only the lower or-
der methods are used for the purpose of solving partial differential equations.
The first order method coincides with the explicit Euler method, the second
order method is defined by:

ψn+1 = ψn +
1
2
[3f(tn, ψn) − f(tn−1, ψ

n−1)]Δt (12.65)
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and, the third order method is expressed by:

ψn+1 = ψn +
1
12

[23f(tn, ψn)− 16f(tn−1, ψ
n−1)+5f(tn−2, ψ

n−2)]Δt (12.66)

If data at tn+1 is included in the interpolation polynomial, implicit methods,
known as Adams-Moulton methods, are obtained. The first order method co-
incides with the implicit Euler method, and the second order method coincides
with the trapezoid rule. The third order method is written as:

ψn+1 = ψn +
1
12

[5f(tn+1, ψ
n+1) + 8f(tn, ψn) − f(tn−1, ψ

n−1)]Δt (12.67)

The Adam-Bashforth methods are frequently used as predictors and the
Adam-Moulton methods are often used as correctors. The combination of
the two formulas results in predictor-corrector schemes.

The multistep methods are quite cheap as they require only one evaluation
of the derivative per time step. However, these methods require data from
many points prior to the current one, thus they cannot be started using only
data at the initial point. One has to use other methods to get the calculation
started. A common approach is to use a small step size and a lower order
method to achieve the desired accuracy, and slowly increase the order as more
data becomes available. Moreover, the multistep methods often give accurate
solutions for some time and then begin to behave badly as they can produce
non-physical solutions that may grow. A useful remedy for this problem is to
restart the method at certain intervals. However, this trick may reduce the
accuracy and/or the efficiency of the scheme.

12.7.3 Approximation of the Diffusive Transport Terms

In order to study the principles of spatial discretization, we consider the steady
state diffusion of a property ψ in a one dimensional domain as sketched in
Fig 12.3. In Cartesian coordinates the process is governed by:

d

dx
(Γψ

dψ

dx
) + Sψ = 0 (12.68)

where Γψ is a diffusion coefficient and Sψ a source term. Boundary values of
ψ at the end points are prescribed.

Considering the 1D system in x-direction, the west side face of the grid
volume is referred to by w and the east side grid volume face by e. The
distances between the nodes W and P , and between nodes P and E, are
identified by δxWP and δxPE , respectively. Similarly, the distances between
face w and point P and between P and face e are denoted by δxwP and δxPe,
respectively.

The key step of the finite volume method is the integration of the governing
equation over the grid cell volume to yield a discretized equation at the nodal
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Fig. 12.3. A typical grid volume and the grid spacing notation used for a Cartesian
1D grid.

point P . By use of the Gauss theorem and the midpoint quadrature formula,
we obtain:
∫

ΔV

d

dx
(Γψ

dψ

dx
) dv +

∫

ΔV

Sψ dv = (ΓψA
dψ

dx
)e − (ΓψA

dψ

dx
)w + 〈Sψ〉ΔV (12.69)

in which A is the cross section area of the GCV face, ΔV is the grid cell
volume and 〈Sψ〉 is the average value of Sψ over the GCV.

In order to achieve useful forms of the discretized equation, the interface
diffusion coefficient Γψ and the property gradient dψ/dx at the east e and west
w faces are required. Linear approximations are frequently used to calculate
the interface values and the gradients.

The linear profile approximation of the property gradient is second order
and widely used for the evaluation of the diffusive fluxes in (12.68). For the
diffusive flux at position e, the approximation is then written as:

Γψ,e(
∂ψ

∂x
)e ≈ Γψ,e

(ψE − ψP )
xE − xP

(12.70)

The parameter value of Γψ,e at the surface position e is determined by linear
interpolation between points P and E (not formally derived yet, meanwhile
we foresee the Taylor series expansion (12.97)). For uniform grids, and when
the interface e is midway between the grid node points, Γψ,e is approximated
as the arithmetic mean of Γψ,P and Γψ,E , given by Γψ,e ≈ (Γψ,P + Γψ,E)/2.

The source term 〈Sψ〉 may be a function of the dependent variable, hence
a common practice in the FVM is to approximate the source term by means
of a linear function, 〈Sψ〉 ≈ Sψ,u +Sψ,pψP . The discretized equation can then
be approximated by:

Γψ,eAe(
ψE − ψP

δxPE
) − Γψ,wAw(

ψP − ψW

δxWP
) + (Sψ,u + Sψ,pψP )ΔV (12.71)
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This relation can be rearranged and written on the following algebraic form:

aPψP = aWψW + aEψE + Sψ,uΔV (12.72)

The corresponding coefficients are defined as:

aW =
Γψ,w

δxWP
Aw (12.73)

aE =
Γψ,e

δxPE
Ae (12.74)

aP =
Γψ,e

δxPE
Ae +

Γψ,w

δxWP
Aw − Sψ,pΔV = aW + aE − Sψ,pΔV (12.75)

The truncation error of the linear approximation of the property gradient
(∂ψ

∂x )e can be calculated in terms of two Taylor series expansions around ψe.
The Taylor series expansion of ψP about ψe yields [202]:

ψP = ψe − δxeP (
∂ψ

∂x
)e +

(δxeP )2

2
(
∂2ψ

∂x2
)e −

(δxeP )3

6
(
∂3ψ

∂x3
)e + O((δxeP )4)

(12.76)
The Taylor series expansion of ψE about ψe yields:

ψE = ψe + δxEe(
∂ψ

∂x
)e +

(δxEe)2

2
(
∂2ψ

∂x2
)e +

(δxEe)3

6
(
∂3ψ

∂x3
)e + O((δxEe)3)

(12.77)
Subtracting the first expansion formula from the second one, recognizing

that δEP = δeP + δEe, the result is:

ψE − ψP =(δxeP + δEe)(
∂ψ

∂x
)e +

(

(δxEe)2

2
− (δxeP )2

2

)

(
∂2ψ

∂x2
)e

+
(

(δxEe)3 + (δxeP )3

6

)

(
∂3ψ

∂x3
)e + O((δxEe)4) + O((δxeP )4)

(12.78)

The central difference approximation of the first derivative term becomes:

(
∂ψ

∂x
)e =

ψE − ψP

(δxeP + δxEe)
−

(

(δxEe)2 − (δxeP )2

2(δxeP + δxEe)

)

(
∂2ψ

∂x2
)e

+
(

(δxEe)3 + (δxeP )3

6(δxeP + δxEe)

)

(
∂2ψ

∂x2
)e + O((δxEe)4) −O((δxeP )4)

(12.79)

When the location e is midway between P and E, and for uniform grids, this
scheme is of second order because the first error term on the RHS vanishes
and the leading error term becomes proportional to the square of the grid
spacing. When the grid is non-uniform, the leading error term is proportional
to the grid spacing and is thus formally of first order.
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12.7.4 Approximation of the Convective Transport Terms

An important aspect of Eulerian reactor models is the truncation errors caused
by the numerical approximation of the convection/advection terms [82]. Very
different numerical properties are built into the various schemes proposed
for solving these operators. The numerical schemes chosen for a particular
problem must be consistent with and reflect the actual physics represented by
the model equations.

The transient equation describing the advection of a scalar property ψ
yields:

∂ψ

∂t
+ v · ∇ψ = 0 (12.80)

The conservative form of the advection equation is obtained by use of the
continuity equation, hence:

∂(ρψ)
∂t

+ ∇ · (vρψ) = 0 (12.81)

Numerical methods constructed based on the advective form (non-conservative
form) of the transport operator are shape preserving, but not conservative
[82]. Schemes constructed based on the conservative form (or flux form) of
the transport operator are preferable when strict conservation is required.

The truncation error associated with convection/advection schemes can
be analyzed by using the modified equation method [205]. By use of Taylor
series all the time derivatives except the 1. order one are replaced by space
derivatives. When the modified equation is compared with the basic advection
equation, the right-hand side can be recognized as the error. The presence of
Δx in the leading error term indicate the order of accuracy of the scheme.
The even-ordered derivatives in the error represent the diffusion error, while
the odd-ordered derivatives represent the dispersion (or phase speed) error.

Another method for analyzing the truncation error of advection schemes
is the Fourier (or von Neumann method) [135, 174, 136]. This method is used
to study the effects of numerical diffusion on the solution.

A Taylor series analysis on the 1D transport equation shows that the
transient artificial viscosity coefficients for explicit upwind differencing is given
by [157, 158]:

νnumerical =
vΔx

2
(1 − CFL) (12.82)

whereas the implicit method gives:

νnumerical =
vΔx

2
(1 + CFL) (12.83)

It can be noted that at least the explicit upwind method for the constant
equation model gives the exact answer for CFL = 1, whereas the implicit
upwind differencing method never does. The numerical viscosity of the implicit
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method may increase a lot for CFL = 1. For this reason, many research
codes for dynamic flows requiring high accuracy are solved using explicit time
discretizations.

Over the years numerous discretization methods for the convection
/advection terms have been proposed, some of them are stable for steady-
state simulations solely, others were designed for transient simulations solely,
but many techniques can be used for both types of problems.

In order to study properties of the schemes, we principally consider the
steady state convection and diffusion of a property ψ with a source term in
a one dimensional domain as sketched Fig 12.3 using a staggered grid for
the velocity components so that the x-velocity components are located at the
w and e GCV faces. Preliminary, we assume that the velocity is constant
and constant fluid properties. The convective and diffusive processes are then
governed by a balance equation of the form:

d

dx
(ρvxψ) =

d

dx
(Γψ

dψ

dx
) + Sψ (12.84)

where ρ denotes the mixture density and vx the velocity component in the
x-direction. Boundary values of ψ at the end points are prescribed.

The one dimensional flow must also satisfy the continuity equation:

d

dx
(ρvx) = 0 (12.85)

As for the pure diffusion problem, the key step of the finite volume method is
the integration of the governing equations over the grid cell volume to yield a
set of discretized equations at the nodal point P . By use of the Gauss theorem
and the midpoint quadrature formula, we obtain:

(ρvxAψ)e − (ρvxAψ)w = (ΓψA
dψ

dx
)e − (ΓψA

dψ

dx
)w + 〈Sψ〉ΔV = 0 (12.86)

The continuity yields:
(ρvxA)e − (ρvxA)w = 0 (12.87)

In order to obtain useful forms of the discretized equations, the GCV surface
terms at the east e and west w faces are required. As in the pure diffusion
problem, the diffusive terms are approximated using linear approximations to
calculate the surface values of the diffusion coefficients and the gradients. The
result is:

Feψe − Fwψw = De(ψE − ψP ) −Dw(ψP − ψW ) + Sψ,uΔV (12.88)

Temporarily, for convenience, we let the face values of the property ψ be
unknown.

The continuity yields:
Fe − Fw = 0 (12.89)
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in which we have defined two variables F and D to represent the convective
mass flux and the product of the diffusion conductance and cell face area
F = ρvxA and D = ΓA/δx.

Let us temporary assume that the velocity and density fields are known,
hence Fw and Fe can be determined. By that means (12.88) reduces to a
transport equation for the property ψ with only one unknown variable. How-
ever, in order to solve the convection-diffusion equation we need to approxi-
mate the transport property ψ at the e and w faces. A few classical convec-
tion/advection schemes are outlined in the subsequent sections.

Upwind Differencing Scheme (UDS)

The first order explicit upwind scheme was introduced by Courant, Isaacson
and Reeves [31], and later on several extensions to second order accuracy and
implicit time integrations have been developed.

In the upwind scheme ψe is approximated by the ψ value at the node
upstream of the surface location e:

ψe =

{

ψP if (v · n)e > 0,
ψE if (v · n)e < 0.

(12.90)

By use of the UDS, the coefficients in (12.88) can be defined as:

aW =Dw + max(Fw, 0) (12.91)
aE =De + max(−Fe, 0) (12.92)
aP =aW + aE + (Fe − Fw) − Sψ,pΔV (12.93)

SUDS
ψ,u ΔV =Sψ,uΔV (12.94)

The main advantage of this scheme is that it satisfies the boundedness criteria
unconditionally. A severe disadvantage associated with the UDS is that it is
very numerically diffusive.

A Taylor series expansion about P gives (for Cartesian grid and (v ·n)e >
0) [49]:

ψe = ψP + (xe − xP )(
∂ψ

∂x
)P +

(xe − xP )2

2
(
∂2ψ

∂x2
)P + O((xe − xP )3) (12.95)

The UDS approximation retains only the first term on the right hand side,
hence the leading truncation error term term is of first order in δxPe = (xe −
xP ) so it is a first order scheme.

The leading truncation error term obtained descretizing the convective
terms in the convection-diffusion equation (12.88) by use of the UDS resembles
a diffusive flux. For (v·n)e > 0), the UDS for the convective flux at the location
e becomes:
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(ρvxA)eψe ≈ (ρvxA)eψe −
(ρvxA)eδxPe

2
(
∂ψ

∂x
)P (12.96)

in which the second term on the RHS represents the leading truncation error.
In view of the diffusive form of this term, the numerical truncation error
is sometimes named numerical-, artificial-, or false diffusion. The truncation
error may be magnified in multidimensional problems if the flow is oblique to
the grid.

Central Difference Scheme (CDS)

Another classical approximation for the value at GCV face center is obtained
by linear interpolation between the two nearest nodes. The linear interpolation
corresponds to the central difference approximation of the first derivative in
FDMs. At location e on a non-uniform Cartesian grid we have [49, 202]:

ψe ≈ ψP +
(xe − xP )
(xE − xP )

(ψE − ψP ) (12.97)

On a uniform grid the geometric pre-factor equals 1/2 and the CDS reduces to
the simple relation ψe ≈ (ψP + ψE)/2. In this case, the coefficients in (12.88)
are defined as:

aW =Dw +
Fw

2
(12.98)

aE =De −
Fe

2
(12.99)

aP =aW + aE + (Fe − Fw) − Sψ,pΔV (12.100)

SCDS
ψ,u ΔV =Sψ,uΔV (12.101)

The main advantage of this scheme is that it is not numerically diffusive.
However, the scheme is dispersive and a severe disadvantage associated with
the CDS is that it does not always satisfy the boundedness criteria. The CDS
may become unstable when Fe/De < 2, because the east coefficient will be
negative. This scheme is thus conditionally stable. For this reason, the CDS
may produce oscillatory solutions like all approximations of order higher than
one.

For a non-uniform grid a Taylor series expansion of ψE about ψP is defined
by:

ψE = ψP +(xE −xP )(
∂ψ

∂x
)P +

(xE − xP )2

2
(
∂2ψ

∂x2
)P +O((xE −xP )3) (12.102)

Using (12.102) to eliminate the first derivative in (12.95), the result is:

ψe = ψP +
(xe − xP )
(xE − xP )

(ψE −ψP )+
(xe − xP )(xE − xP )

2
(
∂2ψ

∂x2
)P + ... (12.103)
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Comparing (12.97) and (12.103), it is seen that the leading truncation error
term in CDS is proportional to the square of the grid spacing, hence the central
difference scheme is second order accurate both on uniform and non-uniform
grids.

Quadratic Upwind Interpolation for Convective Kinematics
(QUICK) Scheme

The quadratic upstream interpolation for convective kinetics (QUICK) scheme
of Leonard [106] uses a three-point upstream-weighted quadratic interpolation
for the cell face values. In the third order QUICK scheme the variable profile
between P and E is thus approximated by a parabola using three node values.
At location e on a uniform Cartesian grids, ψe is approximated as:

ψe =

{

6
8ψP + 3

8ψE − 1
8ψW if (v · n)e > 0,

6
8ψW + 3

8ψP − 1
8ψWW if (v · n)e < 0.

(12.104)

The main advantage of this scheme is that it is less numerically diffusive than
the UDS. However, the scheme is dispersive and a severe disadvantage asso-
ciated with the QUICK scheme is that it it does not satisfy the boundedness
criteria unconditionally. The QUICK scheme is therefore conditionally stable.
The explicit QUICK scheme is unstable in the absence of diffusion.

The implicit QUICK scheme may become unstable due to the possible ap-
pearance of negative coefficients in the coefficient matrix, hence a reallocation
of the terms in the coefficient matrix is required to alleviate these stability
problems. To retain positive coefficients in the coefficient matrix the trouble-
some negative terms (possibly amongst others) are placed in the source term.
One approach is to put the upwind coefficients into the coefficient matrix
and the deviation between the upwind and QUICK coefficient values into the
source term. The corresponding coefficients in (12.88) are defined as:

aW =Dw + max(Fw, 0) (12.105)
aE =De + max(0,−Fe) (12.106)
aP =aW + aE + (Fe − Fw) − Sψ,pΔV (12.107)

SQUICK
ψ,u ΔV =(Sψ,u + SDCS

ψ,u )ΔV (12.108)

By use of the deferred correction method some of the terms naturally belong-
ing to the coefficient matrix are allocated to the source term because otherwise
they may give rise to negative coefficients. The deferred correction method can
only be applied when the scheme is being applied as part of an iterative loop
structure. The iterative correction of these terms are thus deferred by one iter-
ation, so at the ν-th iteration the source term is evaluated using values known
at the end of the previous (ν-1)-th iteration. When convergence is reach, the
solution is the same as without the deferred solution but the iterative process
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is usually more stable. The method was first introduced by Khosla and Rubin
[91], and later outlined by several authors like [115, 49, 202].

The deferred correction source (DCS) term obtained for the QUICK im-
plementation can be defined by:

SDCS
ψ,u =

1
8

[

(3ψP − 2ψW − ψWW )max(Fw, 0) + (ψE + 2ψP − 3ψE)max(Fe, 0)

+ (3ψW − 2ψP − ψE)max(−Fw, 0) + (2ψE + ψEE − 3ψP )max(−Fe, 0)
]

(12.109)

The advantage of this approach is that the main coefficients are positive and
satisfy the requirement for conservativeness, boundedness and transportive-
ness.

The deferred correction method can also be employed to improve the con-
vergence properties of high order schemes, rewriting a high order flux approx-
imation as the sum of a stable low order flux and a higher order correction in
the following manner:

(FH
e )ν+1 = (FL

e )ν+1 + (FH
e − FL

e )ν (12.110)

in which FL
e denotes a low order scheme like the upwind scheme consisting

of a small computational molecule, and FH
e represents a high order scheme

leading to a larger computational molecule. The term in the bracket is moved
to the source term and calculated using values from the previous iteration.

The quadratic interpolation has a third order truncation error on both
uniform and non-uniform grids [114, 49]. However, when this interpolation
scheme is used in conjunction with the midpoint rule approximation of the
surface integral, the overall approximation is still of second order accuracy
(i.e., the accuracy of the quadrature approximation). Although the QUICK
approximation is slightly more accurate than CDS, both schemes converge
asymptotically in a second order manner and the difference are rarely large
[49].

It can be shown that the leading truncation error associated with the
QUICK scheme is proportional to the grid spacing in the power 3. It is noted
that, for cases where (v · n)e > 0, for a general GCV on a uniform grid the
QUICK scheme determines the value of ψe at the grid cell face e by the first
approximation in (12.104).

The three relevant Taylor series expansions about the e face value in a
Cartesian grid are given by [202]:

ψP = ψe −
Δx

2
(
∂ψ

∂x
)e +

(−Δx
2 )2

2
(
∂2ψ

∂x2
)e +

(−Δx
2 )3

6
(
∂3ψ

∂x3
)e + O((

Δx

2
)4)

(12.111)

ψE = ψe +
Δx

2
(
∂ψ

∂x
)e +

(Δx
2 )2

2
(
∂2ψ

∂x2
)e +

(Δx
2 )3

6
(
∂3ψ

∂x3
)e +O((

Δx

2
)4) (12.112)
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ψW = ψe −
3
2
Δx(

∂ψ

∂x
)e +

(− 3
2Δx)2

2
(
∂2ψ

∂x2
)e +

(− 3
2Δx)3

6
(
∂3ψ

∂x3
)e + O((

3
2
Δx)4)

(12.113)
If we add together 3

8 × (12.112) + 6
8 × (12.111) − 1

8 × (12.113), we obtain:

ψe =
6
8
ψP +

3
8
ψE − 1

8
ψW − 3

48
Δx3 + O(Δx4) (12.114)

For non-uniform grids, the coefficients of the three nodal values involved in
the interpolation are much more complex [49].

Bounded High Resolution Convection schemes

A large number of numerical approximations to the convective fluxes have
been proposed on structured grids within the framework of the finite volume
method. The main challenge of the numerical approximation of hyperbolic
transport equations is to obtain high accuracy of the solution in both discon-
tinuous and smooth regions. The upwind scheme eliminate possible spurious
oscillations in the neighborhood of sharp gradients and guarantee the reso-
lution of discontinuities without wiggles. However, as already mentioned, the
UDS possesses a strong numerical diffusion which spreads discontinuities over
many grid nodes, hence it produces a low accuracy in the smooth region of
the solution. The central difference scheme, on the other hand, gives good
resolution in smooth regions, but introduces spurious oscillations near steep
gradients that may lead to nonlinear instability. To avoid these difficulties,
various high resolution schemes have been developed in recent years. These
schemes, often called shock-capturing schemes in gas dynamics, are at least of
second order accuracy in the smooth part of the solution and sharply resolve
discontinuities without generating spurious oscillations. The high-resolution
schemes often use flux/slope limiters to limit the gradient around shocks or
discontinuities.

One such approach is based on the concepts of non-linear flux limiters
introduced by van Leer [193] and Boris and Book [13]. The work of Boris and
Book [13] and Zalesak [213] determine the basis for a group of methods called
flux correction transport (FCT) schemes . The schemes of Smolarkiewicz [175]
is representative for this group. In the FCT schemes a first order accurate
monotone scheme is converted to a high resolution scheme by adding limited
amounts of an anti-diffusive flux. The work of van Leer [193, 195], on the other
hand, represents an extension of the ideas of Gudunov [64] to higher order
accuracy.

In 1959, Godunov [64] introduced a novel finite volume approach to com-
pute approximate solutions to the Euler equations of gas dynamics that ap-
plies quite generally to compute shock wave solutions to non-linear systems
of hyperbolic conservation laws. In the method of Godunov, the numerical
approximation is viewed as a piecewise constant function, with a constant
value on each finite volume grid cell at each time step and the time evolution
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is determined by the exact solution of the Riemann problem (shock tube) at
the inter-cell boundaries [72]. Solving the Riemann problem at the interface
between grid cells gives a way to estimate the flux at the interface, and dif-
ferencing these numerical fluxes gives a robust conservative shock-capturing
method. This method is only first-order accurate, however, and introduces
considerable numerical diffusion that tends to greatly smear out steep gradi-
ents. Nevertheless, the Godunov concept determines the basis for many finite
volume methods that provides high accuracy numerical solutions to hyperbolic
equations which can involve solutions that exhibit shocks, discontinuities or
large gradients. Moreover, Godunov [64] proved the famous order barrier the-
orem stating that no linear convection scheme of second order accuracy or
higher can be monotonic.

The remedy to achieve higher accuracy has been the use of non-linear
discretizations, which adjust themselves according to the local solution so
as to maintain a bounded behavior. The basic methodology of van Leer was
published in a series of five papers in the journal of computational physics
[198]. In this work, the oscillations are regarded as the result of oscillatory
interpolation of the discrete initial values. The novel idea of van Leer [195]
was to enforce non-oscillatory initial-value reconstruction by use of mono-
tonicity preserving interpolation replacing the piecewise constant approxima-
tion of Godunov’s scheme by reconstructed states, derived from cell-averaged
states obtained from the previous time-step. For each cell, slope limited, re-
constructed left and right states are obtained and used to calculate fluxes at
the cell boundaries. Then, following Godunov, the van Leer’s scheme includes
fluxes derived from the solution of Riemann problems. When combined with
higher-order reconstruction this leads to upwind-biased differencing. The first
method based on the above principles was thus named MUSCL (Monotone
Upstream Scheme for Conservative Laws). In a later paper, van Leer [196]
introduced a computationally efficient alternative to the original Godunov
algorithm by replacing the exact Riemann solver by Roe’s approximate Rie-
mann solver [159]. Henceforth, the Godunov-type schemes may be defined as
non-oscillatory finite-volume schemes that incorporate the solution (exact or
approximate) to Riemann’s initial-value problems11 [197].

These ideas of Godunov and van Leer were later generalized via the concept
of total variation diminishing (TVD) schemes, introduced by Harten [69],
whereby the variation of the numerical solution is controlled in a non-linear
way, such as to forbid the appearance of any new extremum. Such methods
give higher order accuracy without dispersive ripples.

Let ψn
i be a discrete approximation to ψ in the i-th GCV at time step n.

The total variation (TV) at time step n is defined by:

TV n =
∑

i

|ψn
i+1 − ψn

i | (12.115)

11 The conservation law together with piecewise constant data having a single dis-
continuity is known as the Riemann problem [117].
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A convection/advection scheme is TVD if it ensures that TV n+1 ≤ TV n.
It is further noticed that in the sense of preserving monotonicity of the so-

lution a difference between the limiting processes of TVD and FCT schemes
lies in that the TVD schemes usually are of one step, while the FCT is of
two steps. FCT schemes are widely used for simulating time-dependent flows,
but are less suited for steady-state calculations and therefore have had little
influence in computational fluid dynamics applied to chemical reactor engi-
neering. The TVD schemes, on the other hand, can be easily implemented
into standard CFD codes by means of the deferred correction approach using
flux limiters without enlarging the stencil.

Some commonly used TVD limiters are:

• MC (Monotonic centered) limiter of van Leer [194]:

φ(r) = (r + |r|)/(1 + r), (12.116)

• MinMod limiter of Harten [69] (see also Sweby [182]):

φ(r) = MinMod(r, 1) = max(0,min(r, 1)), (12.117)

• SUPERBEE limiter of Roe [160, 161]:

φ(r) = max[0,min(2r, 1),min(r, 2)], (12.118)

The use of first order down-winding (i.e., φ(r) = 2r) in regions of high res-
olution curvature leads to an over-compressive behavior in smooth regions
that may be responsible for artificial steepening of what should be weak
gradients.

• MUSCL (Monotonic Upwind Scheme for Convective Laws) limiter of van
Leer [194, 195]:

φ(r) = max[0,min(2, 2r, (1 + r)/2)]. (12.119)

• SMART (Sharp and Monotonic Algorithm for Realistic Transport) limiter
of Gaskell and Lau [58]:

φ(r) = max[0,min(4,
3
4

+
1
4
r, 2r)], (12.120)

• QUICK (Quadratic Upstream Interpolation for Convective Kinematics) of
Leonard [106, 107]:

φ(r) =
3
4

+
1
4
r, (12.121)

• ISNAS (Interpolation Scheme which is Non-oscillatory for Advected Scalars)
of Zijlema [214]:

φ(r) =
1
2
(r + |r|) r + 3

(1 + r)2
, (12.122)
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• SHARP (Simple High-Accuracy Resolution Program) scheme of Leonard
[107]:

φ(r) = min[max(0, 2r(r1/2 − 1)/(r − 1)),max(
3
4
r +

1
4
,−5

4
)] (12.123)

The SHARP and SMART schemes are monotone versions of the QUICK
scheme.

The TVD limiters are functions of smoothness monitors determining the local
gradient of the variable field. Several monitors were outlined by Yang and
Przekwas [212]. Three of these monitors are [193, 161, 117]:

re =
(ψE−σ − ψP−σ)

(ψE − ψP )
(12.124)

re =
(|ve−σ| − Δt

Δz v
2
e−σ)(ψE−σ − ψP−σ)

[(|ve| − Δt
Δz v

2
e)(ψE − ψP )]

(12.125)

re =
ve−σ(ψE−σ − ψP−σ)

[ve(ψE − ψP )]
(12.126)

in which σ = sign(ve). The first of these monitors is most frequently used.
The face values of the property ψ can be constructed in the hybrid form of

a non-linear sum of low order ψL and high order ψH approximations. For flow
in the positive x-direction (v · n)e > 0, the TVD value of ψe may be written
as [212]:

ψTV D
e = φ(re)ψH

e + (1 − φ(re))ψL
e = ψL

e + φ(re)(ψH
e − ψL

e ) (12.127)

The simplest TVD schemes are constructed combining the first-order (and
diffusive) upwind scheme and the second order dispersive central difference
scheme. These TVD schemes are globally second order accurate, but reduce
to first order accuracy at local extrema of the solution.

In terms of the deferred correction method the corresponding coefficients
in (12.88) are defined as:

aW =Dw + max(Fw, 0) (12.128)
aE =De + max(0,−Fe) (12.129)
aP =aW + aE + (Fe − Fw) − Sψ,pΔV (12.130)

STV D
ψ,u ΔV =(Sψ,u + SDCS

ψ,u )ΔV (12.131)

The advantage of this approach is that the main coefficients are positive and
satisfy the requirement for conservativeness, boundedness and transportive-
ness.

The deferred correction source (DCS) term obtained for the TVD imple-
mentation can be defined by:
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SDCS
ψ,u =

[

1
2
φ(r−e )(ψE − ψP )max(−Fe, 0) − 1

2
φ(r+

e )(ψE − ψP )max(Fe, 0)

− 1
2
φ(r−w )(ψP − ψW )max(−Fw, 0) +

1
2
φ(r+

w)(ψP − ψW )max(Fw, 0)
]

(12.132)

The corresponding monitors for each face flux term equals the ratio of the
upstream to the downstream gradient. For the e face, these are defined by:

r+
e =

ψP − ψW

ψE − ψP
(12.133)

r−e =
ψEE − ψE

ψE − ψP
(12.134)

The superscripts + and − are used to indicate the positive and negative flow
directions.

Another approach to construct monotonic high-resolution convection
schemes employs non-linear slope limiters around discontinuities to constrain
the approximation of the grid cell face values, initially estimated on the basis
of a higher-order approximation, to lie within specific limits. These non-linear
slope limiters are generally designed based on the normalized-variable (NV)
approach proposed by Leonard [109, 107] and further developed by Gaskell
and Lau [58].

The normalized variable (NV) approach of Leonard [109, 107] uses the
locally normalized variable ψ∗ to predict the local behavior of the converted
variable ψ:

ψ∗ =
ψ − ψU

ψD − ψU
(12.135)

where ψU is the upwind node value and ψD the downstream value. In terms
of normalized variables, ψ∗

U = 0 and ψ∗
D = 1. Let ψ∗

f be the normalized face
value on the downstream GCV face. For locally monotonic node-values, the
interpolative constraints on ψ∗

f are:

ψ∗
C ≤ ψ∗

f ≤ 1 for 0 ≤ ψ∗
C ≤ 1 (12.136)

where ψ∗
C is the normalized central node value. The basic idea behind the

universal limiter is that, for locally monotone node values, the normalized
face values must lie between the upstream and downstream normalized node-
values. Otherwise, the interpolative monotonicity would be destroyed.

In addition, to enforce local monotonicity in initially non-monotonic ranges
(i.e., ψ∗

C < 0 or ψ∗
C > 1), ψ∗

C must be corrected. A simple strategy is to use a
first order UDS approximation that satisfies the limiter constraints, hence we
can write:

ψ∗
f = ψ∗

C if ψ∗
C > 1 or ψ∗

C < 0 (12.137)

Other higher-order functional relationships are possible [111, 114].
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The normalized variable diagram [107, 109] was used as basis for devel-
opment of the universal limiter. The universal limiter banishes unphysical
oscillations without corrupting the accuracy of the underlying method.

The monotonic SHARP (Simple High-Accuracy Resolution Program)
scheme of Leonard [107] consist in using the universal slope limiter concept for
monotonic resolution to modify the standard third-order steady-state QUICK
approximations of the face values. The SHARP scheme was the first multi-
dimensional monotonic convection schemes designed with high accuracy based
on the NV approach.

Later, Leonard [109] developed the 1D ULTIMATE (Universal Limiter for
Transient Interpolation Modeling of Advective Transport Equations) scheme
based on the NV approach. The ULTIMATE scheme consist of using an ex-
tended universal limiter for transient interpolation modeling of the advective
transport equations. The ULTIMATE strategy was basically designed for ex-
plicit schemes of arbitrary high order. However, with minor modifications, the
ULTIMATE strategy can be applied to steady-flow multi-dimensional sim-
ulations. The steady-state ULTIMATE scheme thus gives ULTRA-SHARP
simulations of steady multi-dimensional flows containing discontinuities [108].

A cost-effective strategy for highly convective flows containing discontinu-
ities, without distorting smooth profiles or clipping narrow local extrema was
introduced by Leonard and Niknafs [110]. This scheme represents an exten-
sion of the transient ULTIMATE scheme. In smooth regions the unlimited
third order QUICKEST (QUICK with Estimated Streaming Terms) scheme
was used. In relatively large-gradient or strong-curvature regions, higher-order
upwinding with the universal limiter was employed.

The ULTRA (Universal Limiter for Tight Resolution and Accuracy) ap-
proach of Leonard and Mokhtari [108, 111] was designed to guarantee mono-
tonicity for high-resolution non-oscillatory multidimensional steady-state high-
speed convective modeling.

The ULTIMATE 1D universal limiter of Leonard [109], was later extended
to multi-dimensional flows by Thuburn [188]. The multi-dimensional method
was designed for advected passive scalars in either compressible or incom-
pressible flow and on arbitrary grids.

Recently, the flux limiters (FL) and the normalized variables (NV) design
principles that are employed to construct non-linear high resolution convec-
tion schemes have been shown to lead to the same constraints on the fluxes
[107, 189, 206]. However, three different boundedness criteria are frequently
employed, these are the total variational diminishing (TVD) [69], positivity
[141] and the convection boundedness criterion (CBC) [58]. Thus, although
these schemes have slightly different conceptual bases, the two approaches
lead to mathematically equivalent schemes [189]. In multidisciplinary research
fields, it happens now and then that mathematically equivalent schemes are
invented independently more than once, often with different conceptual bases
[189].
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It follows that the NV variable ψ∗
C is analogous to the TVD monitor r

and the two quantities are related by the simple expression r = ψ∗
C/(1 − ψ∗

C)
which allows the conversion of NV schemes to FL and visa versa [107, 109].
The two distinct notations did emerge because the same methods were derived
independently in different communities of science and engineering.

Other Convection/advection schemes

High-order convection/advection schemes are widely used in meteorological
applications solving hyperbolic equations. For example, in European weather
forecast models the explicit non-flux-based modified methods of characteristics
have been very popular as they are very fast. Typical examples of this type of
schemes are the semi-Lagrangian advection schemes of Bates and McDonald
[9], McDonald [129] and McDonald [130]. These methods have an unrestricted
time step advantage, but also an important disadvantage that they are not
strictly conservative due to their non-flux-based formulation.

Moreover, in the last decades a lot of work has been focused on designing
explicit schemes for passive scalars. These schemes have been applied solving
the transport equations for the scalar variables in the the weather forecast
models (e.g., [186]), and especially for the air pollution dispersion models
solving the convection-diffusion equation (e.g., [187, 10, 85, 137]).

A large number of explicit numerical advection algorithms were described
and evaluated for the use in atmospheric transport and chemistry models by
Rood [162], and Dabdub and Seinfeld [32]. A requirement in air pollution
simulations is to calculate the transport of pollutants in a strictly conserva-
tive manner. For this purpose, the flux integral method has been a popular
procedure for constructing an explicit single step forward in time conservative
control volume update of the unsteady multidimensional convection-diffusion
equation. The second order moments (SOM) [164, 148], Bott [14, 15], and
UTOPIA (Uniformly Third-Order Polynomial Interpolation Algorithm) [112]
schemes are all derived based on the flux integral concept.

A limitation for long term dynamic simulations is the restrictions on
the size of the time step for explicit schemes. The meteorological mod-
els are often solved applying operator splitting methods. The second order
explicit two step method derived by MacCormack [120] from a combined
space and time splitting discretization is sometimes used. The fractional
step, time splitting and Strang splitting [181] techniques are more commonly
used. In the ongoing quest for an explicit, single-time-step, conservative,
flux-based, highly accurate, non-oscillatory finite volume scheme for multidi-
mensional advection dominated flows, without restrictions on the time-step,
Leonard et al [113] developed the NIRVANA (Non-oscillatory, Integrally Re-
stricted, Volume-Averaged Numerical Advection) Scheme for one-dimensional
advection.

The explicit operator splitting techniques based on sequential one-dimen-
sional updates may contain large splitting errors. To reduce the splitting errors
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associated with these splitting techniques, Leonard et al [116] developed the
MACHO (Multidimensional Advective Conservative Hybrid Operator) and
COSMIC (Conservative Operator Splitting for Multidimensions with Inherent
Consistancy) splitting strategies. These multidimensional methods have the
unrestricted time step advantages of semi-Lagrangian schemes, but with the
important additional attribute of strict conservation due to their flux-based
formulation.

The fast and conservative versions of the flux-based modified method of
characteristics may also be a useful for this purpose [157].

12.7.5 Brief Evaluation of Convection/Advection Schemes

The first order upwind scheme and several variations of this scheme are very
diffusive and should be avoided. Much better results can be obtained with
bounded higher-order schemes. The choice of smoothness monitor is not very
important for the performance of the TVD schemes, whereas the choice of lim-
iter can be crucial [82]. For some limiters, inherent oscillations, rather than
being suppressed, are converted into a series of small monotonic steps, a phe-
nomena known as stair-casting [109]. In general, the performance of most of
the limiter functions has been found to be fairly similar giving solutions that
are free from non-physical wiggles. The second- and third order schemes rep-
resent a trade-off between accuracy and computational time. Interpolation of
order higher than third makes sense only if the integrals are approximated us-
ing higher-order quadrature formulas. Furthermore, since such schemes often
produce oscillatory solutions when the grid is not sufficiently fine and are dif-
ficult to program, they are rarely used. The second- and third-order schemes
are thus preferable, as the improved accuracy gained by higher order schemes
are much more costly.

Implicit time integration schemes are not as efficient as the correspond-
ing explicit schemes due to the computational time required on the iterative
process. With larger time steps the accuracy of implicit schemes decrease
rapidly. The widespread use of the implicit schemes with Courant numbers
ten- or even hundredfold the magnitude of what is used in an explicit method,
is not justifiable in the presence of gradients or steps in the convected variable.

12.8 Implicit Upwind Discretization of the Scalar
Transport Equation

The governing transport equation for a scalar property ψ in an unsteady flow
has the general form:

∂(ρψ)
∂t

+ ∇ · (ρvψ) = ∇ · (Γψ∇ψ) + Sψ (12.138)
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To illustrate the principles of the finite volume method, as a first approach,
the implicit upwind differencing scheme is used for a multi-dimensional prob-
lem. Although the upwind differencing scheme is very diffusive, this scheme
is frequently recommended on the grounds of its stability as the preferred
method for treatment of convection terms in multiphase flow and determines
the basis for the implementation of many higher order upwinding schemes.

Introducing the standard finite volume space integrations and integrating
over the time interval tn to tn+1 using the implicit Euler approximation, we
get:

[(ρψ)n+1 − (ρψ)n]
ΔV

Δt
+ (ρvxψA)n+1

e − (ρvxψA)n+1
w

+ (ρvyψA)n+1
n − (ρvyψA)n+1

s + (ρvzψA)n+1
t − (ρvzψA)n+1

b =

(ΓψA
∂ψ

∂x
)n+1
e − (ΓψA

∂ψ

∂x
)n+1
w + (ΓψA

∂ψ

∂y
)n+1
n − (ΓψA

∂ψ

∂y
)n+1
s

+ (ΓψA
∂ψ

∂z
)n+1
t − (ΓψA

∂ψ

∂z
)n+1
b + 〈Sψ〉n+1ΔV

(12.139)

The upwind scheme is obtained by substituting the UDS approximation of the
convective terms and central difference approximation of the diffusive terms
into the equation.

For unsteady problems the discretized algebraic equation, for the upwind
scheme example, is generally written:

an+1
P ψn+1

P =an+1
W ψn+1

W + an+1
E ψn+1

E + an+1
S ψn+1

S + an+1
N ψn+1

N

+ an+1
B ψn+1

B + an+1
T ψn+1

T + Sn+1
C

(12.140)

where

an+1
P = an+1

W + an+1
E + an+1

S + an+1
N + an+1

B + an+1
T

− Fn+1
w + Fn+1

e − Fn+1
s + Fn+1

n − Fn+1
b + Fn+1

t − Sn+1
P

(12.141)

and

an+1
W = max(Fn+1

w , 0) + Dn+1
w (12.142)

an+1
E = max(−Fn+1

e , 0) + Dn+1
e (12.143)

an+1
S = max(Fn+1

s , 0) + Dn+1
s (12.144)

an+1
N = max(−Fn+1

n , 0) + Dn+1
n (12.145)

an+1
B = max(Fn+1

b , 0) + Dn+1
b (12.146)

an+1
T = max(−Fn+1

t , 0) + Dn+1
t (12.147)

Sn+1
C = (Sn+1

C +
(ρnφn)
Δt

)ΔV (12.148)

Sn+1
P = (Sn+1

P − ρn+1

Δt
)ΔV (12.149)
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The quantities SC,ψ and SP,ψ arise from the source term linearization of the
form: Sψ = SC,ψ + SP,ψψP .

Higher-order integration schemes in time and space can be used to im-
prove on the accuracy of the calculations, for example, using the higher order
convection schemes presented above. For reactor simulations, any appropriate
second- and third-order approximations are recommended.

12.9 Solution of the Momentum Equation

In this section, particular pressure-based methods designed to solve the mo-
mentum equation are outlined. The numerical methods for solving the mo-
mentum component equations differ considerably from those designed to solve
the generic scalar transport equation, because the velocity is a vector quan-
tity. The special treatment of the terms in the momentum equations that are
different from those in the generic transport equation is summarized.

The survey of the numerical methods for single phase flow given here is,
to a considerable extent, based on standard textbooks on CFD [141, 49, 202].
The elementary theory is included in this chapter to form a sound basis for the
extended algorithms employed solving multiphase problems. The multiphase
methods are presented in a sect 12.11.

12.9.1 Discretization of the Momentum Equations

The unsteady term in the momentum equation has the same form as the
transient term in the generic transport equation and is discretized in the
same manner.

The treatment of the convective term in the momentum equation basically
follows that of the convective term in the generic equation. However, some ex-
tra linearization is required as the convective term in the momentum equation
is non-linear in the velocity components.

The viscous shear stress terms in the momentum equation basically cor-
respond to the diffusive term in the generic equation. However, since the mo-
mentum equation is a vector equation, the viscous term is more complicated
than the generic diffusive term. The first part of the viscous shear stress term
in the momentum equations corresponds formally to the diffusive term in the
generic transport equation. This shear stress term can be discretized using
the approaches described for the corresponding terms of the generic equation.
The second viscous shear stress term has no analog in the generic equation but
vanishes when the viscosity is constant due to continuity. On the other hand,
when the viscosity is spatially variable, this term is non-zero. When solving
the resulting algebraic equations, the latter term is conveniently placed as part
of the source term. In reactor modeling the bulk viscosity term is normally
set to zero for any single phase flow, as discussed in chap 1 and 2. An addi-
tional normal stress contribution may be considered for single phase flows, as
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explained in chap 1. For incompressible flow with constant fluid properties,
the viscous normal stress contributions vanish as can be shown by use of the
continuity equation (the bulk viscosity term also vanishes for incompressible
flow). In the particular cases when these terms are non-zero, the mean value
approach is normally used thus these terms are assumed constant over the
GCV and approximated by appropriate Taylor series expansions.

The momentum equation also contains a contribution from the pressure,
which has no analog in the generic equation. This term is treated as a surface
force. The pressure force term is thus approximated using the same quadra-
ture rule as employed for the surface integrals in the generic transport equa-
tion. However, due to the close connection of the pressure and the continuity
equation, the treatment of this term and the arrangement of variables on the
grid play an important role in order to construct stable and accurate solution
methods for the pressure-velocity coupling.

The body forces, like the gravity term, are integrated over the grid volume.
Usually, the mean value approach is used, so that the value at the grid center
is multiplied by the grid volume. The apparent forces that may occur in par-
ticular coordinate systems, are often considered as body forces and integrated
in the same way as the gravity term.

12.9.2 Numerical Conservation Properties

In this section the numerical conservation properties of finite volume schemes
for inviscid incompressible flow are examined12. Emphasis is placed on the
theory of kinetic energy conservation. Numerical issues associated with the
use of kinetic energy non-conservative schemes are discussed [158, 49, 47].

The approximations of the continuity and momentum equations by the
finite volume method automatically ensure that mass and momentum are
conserved by the discretized equations, provided that the surface fluxes for
adjacent grid volumes are identical. These conservative properties are then
valid both for a local grid cell and the overall calculation domain. Energy
conservation is more difficult to deal with. In incompressible isothermal flow,
the only energy form of significance is kinetic energy. In chap 1 it was shown
that the kinetic energy equation can be derived by taking the scalar prod-
uct of the momentum equation with the velocity. Furthermore, in contrast to
compressible flow, for which there is a separate conservation equation for the
total energy, in incompressible isothermal flows the momentum and energy
balances are consequences of the same equation. This poses specific prob-
lems constructing proper solution methods for these flow situations. Principal
12 The early meteorological finite difference studies of long-term numerical time

integrations of the equations of fluid motion, which involve non-linear convection
terms, revealed the presence of non-linear instabilities due to aliasing errors [143,
144, 7, 145, 210]. To avoid the occurrence of these non-linear instabilities, Arakawa
[7] was the first to recognize the importance of the use of numerical schemes which
conserve kinetic energy.
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interest has thus be given to the kinetic energy balance for a macroscopic vol-
ume. The volume of interest may be either the entire calculation domain or a
generic grid cell volume. If the local kinetic energy equation (1.124) obtained
in sect 1.2.4 is integrated over a grid volume, we obtain, after using Gauss’
theorem:

∂

∂t

∫

V

(ρ
v2

2
)dv = −

∫

A

ρ
v2

2
v · nda−

∫

A

pv · nda +
∫

A

(σ · v) · nda−

∫

V

(σ : ∇v − p∇ · v + v ·
N

∑

c=1

ρcgc)dv

(12.150)

The first three terms on the RHS are integrals over the surface of the macro-
scopic volume. It is noted that the kinetic energy in the macroscopic volume
is not changed by the action of convection and pressure. The fourth term on
the RHS is an integral over the macroscopic volume. The first term in this
volume integral disappears if the flow is inviscid. The second term is zero
if the flow is incompressible. The third term is zero in the absence of body
forces. In this particular case, the inviscid flow of energy through the grid cell
surface and the work done by the pressure force acting at this surface are
the only processes that can affect the kinetic energy within the macroscopic
volume. The kinetic energy is thus globally preserved in this sense. If we run
a simulation under the same extreme conditions, this energy property must
be preserved by the numerical method as well. However, under the prevailing
conditions, this property cannot be enforced separately because the kinetic
energy balance is a consequence of the momentum conservation and not by
an independent equation.

If a numerical method is energy conservative and the net energy flux
through the surface is zero, then the overall kinetic energy in the domain
does not grow with time. If such a method is used, the velocity at every point
in the domain must remain bounded, hence the method reflect a kind of sta-
bility. Otherwise, if we devise a numerical scheme that is not strictly energy
conservative, the net energy flux through the surface may not be zero and/or
the overall kinetic energy in the domain can grow with time and create nu-
merical instabilities in our simulations. In many of these schemes the leading
truncation error in the kinetic energy equation has the form of an extra dis-
sipation term. In low speed incompressible flows the addition to the internal
energy is rarely significant but the loss of kinetic energy is often quite impor-
tant to the flow. For compressible flows, both effects of the truncation error
can be significant. The truncation errors in the time and spatial discretization
methods can both destroy the energy conservation property. Kinetic energy
preservation is thus especially important in computing unsteady flows. Typi-
cal examples are long-term time dependent geophysical flow simulations and
dynamic turbulent simulations. For this reason, the interaction between dy-
namic model dissipation and numerical dissipation is a very important topic
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in these fields of computational dynamics. For steady flows, energy conserva-
tion has generally got less attention. However, it is rather obvious that these
truncation errors are analogous to the terms in the generic transport equation
which we did referred to as artificial diffusion or numerical diffusion. For ob-
vious reasons, in some fields of science the truncation error terms occurring
in the kinetic energy equation are named numerical dissipation or artificial
dissipation. In a broader view, in dynamics it is implied that when the pure
convection/advection equation (which is free of physical diffusion) is solved
for any property by a numerical approximation method that reduces the am-
plitude and changes the shape of the initial wave in a way analogous to a
diffusional process, the method is said to contain numerical dissipation.

From the above discussion it may be inferred that for geophysical flow
simulations and simulations of turbulent flow, using either direct numerical
simulations (DNS) or large eddy simulations (LES), it is highly desirable to
employ schemes that conserve mass, momentum, and kinetic energy [47]. How-
ever, many numerical methods approximate the transport of kinetic energy
from the large scale vortices to the smaller ones in an erroneous manner.
Hence, the kinetic energy stored at the smaller vortex scales may grow and
the solution method can become unstable. In such situations some apparent
dissipation that have no connection to physics are sometimes added to provide
stability of numerical methods. It is noted that kinetic energy conservation
is associated with numerical stability but not to the convergence or accuracy
properties of a method. However, the physical dissipation used in the simu-
lation is determined by the sum of the dynamic model dissipation and the
apparent dissipation added.

12.9.3 Choice of Variable Arrangement on the Grid

In this section, attention is given to the numerical discretization of the finite
volume calculation domain and the choice of variable arrangement on the grid.

In the coordinate discretization process one selects the node points in
the domain at which the values of the unknown dependent variables are to
be computed. In the finite volume method one also selects the location of
the grid cell surfaces at which the property fluxes are determined. In this
way the computational domain is sub-divided into a number of smaller, non-
overlapping sub-domains. There are many variants of the distribution of the
computational node points and grid cell surfaces within the solution domain.
The grid arrangements associated with the finite volume discretization of the
momentum equation are generally more complicated than the one employed
for a scalar transport equation.

As a first approach, it may be natural to employ a collocated grid arrange-
ment and store all the variables at the same set of grid points and to use the
same grid volumes for all of them. In this case the number of coefficients that
must be computed and stored is minimized, because many of the terms in
each of the equations are essentially identical. However, it is not required that
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all the variables share the same grid. A different arrangement has been shown
to be advantageous. In the orthogonal curvilinear coordinates, the staggered
grid arrangement introduced by Harlow and Welsh [67] offers several advan-
tages over the collocated arrangement. The most important advantage of the
staggered arrangement is that a stronger coupling between the velocities and
the pressure is achieved. This helps to avoid some types of convergence prob-
lems and oscillations in the pressure and velocity fields [141]. In addition,
several terms that require interpolation with the collocated arrangement, can
be calculated to a second-order approximation without interpolation in the
staggered arrangement. The numerical approximation on a staggered grid is
also preserving the local and overall kinetic energy.

Other grid arrangements have not gained wide popularity in engineering
studies of single- and multiphase flows. Numerous analysis of the impact of the
grid arrangement on the accuracy and stability of numerical simulations have
been performed in other branches of physical science. The arrangement of the
grids is, for example, particularly important for dynamic flows in meteorology
and oceanography. For further studies of the grid arrangements employed in
these geophysical flows, the pioneering work of Arakawa and Lamb [8] may
be considered.

12.9.4 Calculation of Pressure

In this section, several strategies for determining the pressure in the incom-
pressible flow limit is outlined for pressure-based methods. The extension of
the pressure-correction approach to arbitrary Mach numbers is examined.

For pressure-based techniques, the lack of an independent equation for the
pressure complicates the solution of the momentum equation. Furthermore,
the continuity equation does not have a transient term in incompressible flows
because the fluid transport properties are constant. The continuity reduces
to a kinematic constraint on the velocity field. One possible approach is to
construct the pressure field so as to guarantee satisfaction of the continuity
equation. In this case, the momentum equation still determines the respec-
tive velocity components. A frequently used method to obtain an equation
for the pressure is based on combining the two equations. This means that
the continuity equation, which does not contain the pressure, is employed to
determine the pressure. If we take the divergence of the momentum equation,
the continuity equation can be used to simplify the resulting equation.

The Poisson equation for the pressure becomes:

∇ · (∇p) = −∇ · [∇ · (ρvv + σ) − ρg +
∂(ρv)
∂t

]

= −∇ · [∇ · (ρvv + σ)] −∇ · (ρg) +
∂2ρ

∂t2

(12.151)

in which the transient term is rewritten by use of the continuity equation.
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For the case of constant fluid properties (e.g., density and viscosity), the
equation reduces to:

∇ · (∇p) = −∇ · [∇ · (ρvv)] (12.152)

This simplification is obtained by use of the continuity equation.
The Laplacian operator on the LHS of the pressure equation is the product

of the divergence operator originating from the continuity equation and the
gradient operator that comes from the momentum equations. The RHS of the
pressure equation consists of a sum of derivatives of the convective terms in
the three components of the momentum equation. In all these terms, the outer
derivative stems from the continuity equation while the inner derivative arises
from the momentum equation. In a numerical approximation, it is essential
that the consistency of these operators is maintained. The approximations
of the terms in the Poisson equations must be defined as the product of the
divergence and gradient approximations used in the basic equations. Violation
of this constraint may lead to convergence problems as the continuity equation
is not appropriately satisfied.

Even though the original derivation of this method was based on the gov-
erning equations for incompressible flows, in which the fluid properties are
constant, this concept can be adapted to many flows with variable fluid prop-
erties and weak compressibility.

Explicit Projection Method for Unsteady Flow

In this section, an explicit time advance scheme for unsteady flow problems is
outlined [30]. The momentum equation is discretized by an explicit scheme,
and a Poisson equation is solved for the pressure to enforce continuity. The
continuity is discretized in an implicit manner. In the original formulation,
the spatial derivatives were approximated by finite difference schemes.

To illustrate the basic principles of the projection method, the semi-
discretized momentum equations are written symbolically as:

∂(ρvi)
∂t

= −δ(ρvivj)
δxj

− δp

δxi
− δσij

δxj
= −Ci −Di −

δp

δxi
(12.153)

where δ/δx represents a discretized spatial derivative, and Ci and Di are
shorthand notations for the convective and viscous terms.

For simplicity, the momentum equation (12.153) is solved with the explicit
Euler method in time. Then, we obtain:

(ρvi)n+1 − (ρvi)n = −Δt(Cn
i + Dn

i +
δpn

δxi
) (12.154)

The velocity at time step n is used to compute Cn
i and Dn

i , whereas the pres-
sure at time step n is used to compute the pressure gradient terms δpn/δxi.



1046 12 Numerical Solution Methods

This gives an estimate of ρvi at the new time step n + 1. However, in gen-
eral, this velocity field does not satisfy the continuity equation. The continuity
equation is generally discretized in an implicit manner:

∂ρ

∂t
+

δ(ρvi)n+1

δxi
= 0 (12.155)

The transient term vanishes for incompressible flows, as the fluid properties are
constant. The transient term is retained here to emphasize that this method
can be applied for compressible flows as well. For compressible flow both
velocity and density appear as dependent variables in the continuity equation.
Nevertheless, the discrete form of the mass balance can still be interpreted as
a constraint equation for pressure. Compressible and reactive variable density
flows are considered shortly in the present section.

In the design of an approach to enforced continuity, we take the numerical
divergence of (12.154). The result is:

δ(ρvi)n+1

δxi
− δ(ρvi)n

δxi
= −Δt[

δ

δxi
(Cn

i + Dn
i +

δpn

δxi
)] (12.156)

The first term is the divergence of the new mass fluxes, for which we must
enforce continuity. The second term is known if continuity was enforced at
time step n.

With minor manipulation, the result is a discrete Poisson equation for the
pressure pn:

δ

δxi
(
δpn

δxi
) = − δ

δxi
(Cn

i + Dn
i ) +

1
Δt

[
δρ

δt
+

δ(ρvi)n

δxi
] (12.157)

In this relation, the operator δ/δxi outside the parentheses on the LHS is the
divergence operator inherited from the continuity equation, while δpn/δxi is
the pressure gradient from the momentum equation. The operator δρ/δt is
the time advancement of the continuity equation. If the pressure pn satisfies
the discrete Poisson equation, the velocity field at time step n + 1 will fulfill
continuity (and be divergence free for constant density flows).

The algorithm for time-integration of the momentum equation can then
be sketched as follows:

1. Start with a velocity field vn
i that satisfy continuity at time tn.

2. Compute the convective Cn
i and viscous Dn

i terms and their divergences.
3. Solve the Poisson equation for the pressure pn.
4. Compute the mass conservative velocity field at the new time step.
5. Go to the next time step.

Methods similar to this are commonly used to solve the momentum equation
when an accurate time history of the flow is required. In these particular cases,
more accurate time advancement methods than the first order Euler method
must be used. Explicit methods are preferred for (fast) transient flows because
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they are more accurate and less computationally demanding than implicit
methods with the same time step size. To allow longer time steps to be used
and for stability reasons, some of the terms may also be treated implicitly.

Implicit Pressure-Correction Methods

In this section, an implicit pressure correction method is outlined [140, 141,
49, 202].

Implicit methods are preferred for slow-transient flows because they have
less stringent time step restrictions than explicit schemes. However, the time
step must still be chosen small enough so that an accurate history is obtained.
It is further noted that implicit methods can also be used to solve steady
problems. In this particular approach, we have to solve an unsteady form of
the problem until a steady state is reached. For the artificial time integration,
large time steps are often used intending to reach the steady state quickly.

If an implicit method is used to advance the momentum equation in time,
the discretized equations for the velocities at the new time step are non-linear.
Implicit methods thus require an iterative solution process. Several restric-
tions must be placed on the coefficient matrix to ensure a stable and efficient
solution procedure, most important all the coefficients must be positive [141].

The discretized x-component of the momentum equation at the surface
point e, for example, can be written as:

an+1
e vn+1

x,e =
∑

nb

an+1
nb vn+1

x,nb + Sn+1
e − (

δpn+1

δx
)e (12.158)

For convenience, explaining the solution methods, the pressure gradient term
is written separately and not included in the source term. Furthermore, in
this discrete momentum equation we have used the scalar grid notation. The
index e refers to a surface point in the scalar grid used for the continuity
equation, this surface point coincides with a velocity node in a staggered
velocity grid. The index nb denotes the neighbor nodes that appears in the
discretized momentum equation. The source term Se contains all of the terms
that may be explicitly computed in terms of vn

x as well as any body force or
other linearized terms that may depend on the vn+1

x or other variables at the
new time level.

When simulating unsteady flows and time accuracy is required, the iter-
ations must be continued within each time step until the entire system of
non-linear equations is satisfied in accordance with an appropriate conver-
gence criterion. For steady flows, it is common either to take an infinite time
step and iterate until the steady non-linear equations are satisfied, or march
in time without requiring full satisfaction of the non-linear equations at each
time step. However, both of these approaches may become unstable if the
initial guesses are not sufficiently close to the exact solution, hence in some
complex cases the time step must be restricted to ensure that the simulation
does not diverge/explode.
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For unsteady flows the system of non-linear equations are linearized in the
iteration process within each time step, since all the solvers are limited to
linear systems. The iterative process is thus performed on two different levels.
The solver iterations are performed on provisional linear systems with fixed
coefficients and source terms until convergence. Then, the system coefficients
and sources are updated based on the last provisional solution and a new
linearized system is solved. This process is continued until the non-linear sys-
tem is converged, meaning that two subsequent linear systems give the same
solution within the accuracy of a prescribed criterion. A standard notation
used for the different iterations within one time step is that the coefficient
and source matrices are updated in the outer iterations, whereas the inner it-
erations are performed on provisionally linear systems with fixed coefficients.
On each outer iteration, the equations solved are on the form:

aev
ν*
x,e =

∑

nb

anbv
ν*
x,nb + Sν−1

e − (
δpν−1

δx
)e (12.159)

where vν*
x,e represents a provisional value of vn+1

x,e .
We normally drop the time step index n + 1 and introduced an outer

iteration counter ν. vν
x thus represents the current estimate of the solution

vn+1
x . At the beginning of each outer iteration, the two last terms on the right

hand side of (12.159) are evaluated using the variables at the preceding outer
iteration.

The components of the momentum equation are usually solved sequen-
tially, meaning that the components of the momentum equation are solved
one by one. Since the pressure used in these iterations has been obtained
from the previous outer iteration or time step, the velocities computed from
(12.159) do not generally satisfy the discretized continuity equation. The pre-
dicted velocities do not satisfy the continuity equation, so the vν*

i,e at iteration
ν are not the final values of the velocity components. To enforce the continuity
equation, the velocities need to be corrected. This is achieved by modifying
the pressure field.

The solution algorithm for this class of methods are outlined in the follow-
ing. The first task is to correct the velocity. In order to calculate the velocity
correction, the velocity at the surface point e is obtained by solving the lin-
earized momentum equations (12.159) for vν*

x,e:

vν*
x,e =

Sν−1
e +

∑

nb anbv
ν*
x,nb

ae
− 1

ae
(
δpν−1

δx
)e (12.160)

The next task is to correct the velocities so that they satisfy the continuity
equation:

δρ

δt
+

δ(ρvν
i )

δxi
= 0 (12.161)

which is achieved by correcting the pressure field. Recall that in the pressure-
based methods the continuity is transformed to an equation for pressure or a
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pressure correction quantity. The transient term in the continuity vanishes for
incompressible flows, as the fluid properties are constant. The transient term
is retained here to emphasize that this method can be applied for compressible
flows as well. In this case, the discrete form of the mass balance can still be
interpreted as a constraint equation for pressure. Compressible and reactive
variable density flows are considered shortly in the present section.

The corrected velocities and pressure are linked by relations on the form:

vν
x,e =

Sν−1
e +

∑

nb anbv
ν*
x,nb

ae
− 1

ae
(
δpν

δx
)e (12.162)

Continuity is then enforced by inserting the corresponding expressions for
all the velocity components vν

i into the continuity equation (12.161), to yield
a discrete Poisson equation for the pressure:

[

δρ

δt
+

δ

δxi
(ρvν

i )
]

P

=
[

δρ

δt

]

P

+
δ

δxi

[

ρ

(

Sν−1 +
∑

nb anbv
ν*
i,nb

a
− 1
a
(
δpν

δxi
)
)]

P

= 0

(12.163)
or

δ

δxi

[

ρ

a
(
δpν

δxi
)
]

P

=
[

δρ

δt

]

P

+
δ

δxi

[

ρ

(

Sν−1 +
∑

nb anbv
ν*
i,nb

a

)]

P

(12.164)

After solving the Poisson equation for the pressure, by use of (12.164), the
final velocity field at the new iteration, vν

i , is calculated from relations on
the form (12.162). At this point, we have a velocity field which satisfies the
continuity condition, but the velocity and pressure fields do not necessarily
satisfy the momentum equations on the form (12.160). We begin another outer
iteration and the process is continued until the velocity field which satisfies
both the momentum and continuity equations is obtained.

In the most common family of methods constructed for correcting the
pressure, a pressure-correction is used instead of the actual pressure. The
velocities computed from the linearized momentum equations and the pressure
pν−1 are taken as provisional values to which a small correction must be added:

vν
i = vν*

i + v
′

i and pν = pν−1 + p′ (12.165)

To initiate the iteration process a pressure field pν−1 is guessed. The dis-
cretized momentum component equations on the form like (12.160) are solved
using the guessed pressure field to obtain the corresponding approximate val-
ues for the velocity components. Substitution of the correct pressure field into
the momentum equations yields the correct velocity field. The discretized
equations on the form (12.160) link the correct velocity fields with the cor-
rect pressure field. Subtraction of the approximate momentum equations from
the exact ones (neglecting any changes in the source term S), we obtain the
necessary relations between the velocity and pressure corrections on the form:
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v
′

x,e = vν
x,e − vν*

x,e =

∑

nb anbv
′

x,nb

ae
− 1

ae
(
δp

′

δx
)e (12.166)

Application of the discretized continuity equation (12.161) and velocity cor-
rections on the form (12.166) produces the following pressure-correction equa-
tion:

δ

δxi

[

ρ

a
(
δp

′

δxi
)
]

P

=
[

δρ

δt

]

P

+
δ

δxi

[

(ρvν*
i )

]

P

+
δ

δxi

[

(ρ

∑

nb anbv
′

i,nb

a
)
]

P

(12.167)

The velocity corrections at the neighbor nodes
∑

nb anbv
′

i,nb are unknown at
this point, so it is common practice to disregard them. The omission of these
terms is the main approximation in this algorithm and the major reason why
the resulting method does not converge very rapidly.

Once the pressure correction has been solved for, the velocities are updated
using (12.165) and (12.166). This procedure is known as the SIMPLE (Semi-
Implicit Method for Pressure-Linked Equations) algorithm [140, 141].

Another way of treating the last term in the pressure-correction equation
(12.167) is to approximate it rather than neglecting it. One could approximate
the velocity correction term

∑

nb anbv
′

i,nb at the neighbor nodes by use of the
center point velocity correction:

∑

nb

anbv
′

i,nb ≈
∑

nb

anbv
′

x,e (12.168)

In one view, the unknown velocity corrections at any node are approximated
by a weighted mean of the neighbor values.

If we insert this approximation into (12.166), the following approximate
relation between v

′

x and p
′
is obtained:

v
′

x,e = − 1
ae +

∑

nb anb
(
δp

′

δx
)e (12.169)

With this approximation the a-coefficient in front of the pressure gradient
in (12.167) is replaced by a +

∑

nb anb and the last term disappears. This is
known as the SIMPLEC (SIMPLE Consistent) algorithm [191].

An alternative method of this type is derived by neglecting
∑

nb anbv
′

x,nb in
the first correction step as in the SIMPLE method but following the correction
with another corrector step. The second correction to the velocity v

′′

x is defined
in analogy to (12.166):

v
′′

x,e =

∑

nb anbv
′

x,nb

ae
− 1

ae
(
δp

′′

δx
)e (12.170)

where
∑

nb anbv
′

x,nb is approximated after v
′

x has been calculated from (12.166)
with

∑

nb anbv
′

x,nb neglected. Application of the discretized continuity equa-
tion to correct velocities leads to a second pressure-correction equation on the
form:
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δ

δxi

[

ρ

avi

P

(
δp

′′

δxi
)
]

P

=
[

δ

δxi
(ρ

∑

nb anbv
′

i,nb

a
)
]

P

(12.171)

This procedure is essentially a truncated iterative method for solving (12.167)
with one correction only, so that the last term is treated explicitly. It is known
as the PISO (Pressure Implicit with Splitting of Operators) algorithm [79].

The PISO algorithm solves the costly pressure correction equation twice,
and under-relaxation is still required to stabilize the iteration process. How-
ever, this non-iterative method (only two outer corrections per time step) has
been found to be quite efficient for certain single phase flows. An adapted,
steady state version of the PISO algorithm has been deduced as well [202].
The original PISO algorithm can also be applied to steady state calculations
starting with guessed initial conditions and solving as a transient problem for
a long period of time until a steady solution is achieved.

Yet another similar method of this kind called SIMPLER (SIMPLE Re-
vised) was proposed by Patankar [141] to improve the convergence rate, as
compared to the SIMPLE procedure. In this method, the pressure-correction
equation (12.167) is solved first with the last term neglected as in SIMPLE.
The pressure correction so obtained is used only to correct the velocity field
vν*

i to obtain vν
i so that it satisfies continuity by use of (12.166) in which the

first term on the RHS is neglected. The new pressure field is calculated from
pressure equation (12.164) using

∑

nb anbv
ν
i,nb instead of

∑

nb anbv
ν*
i,nb.

The convergence of the SIMPLE algorithm can be improved by under-
relaxation so that only a portion of p

′
is added to pν−1 after the pressure-

correction equation is solved:

pν = pν−1 + αP p
′

(12.172)

In the under-relaxation procedure, the under-relaxation parameter αP may
take values in the rang: 0 ≤ αP ≤ 1. In particular cases, the SIMPLEC,
SIMPLER and PISO approaches are more stable and do not require any
under-relaxation of the pressure correction.

The solution algorithm for this class of methods can be summarized as
follows:

1. Start calculation of the fields at the new time tn+1 using the latest solution
vn

i and pn (i.e., the initial conditions are used when n = 1) as starting
estimates for vn+1

i and pn+1.
2. Assemble and solve the linearized algebraic equation systems for the ve-

locity components (momentum equations) to obtain vν*
i .

3. Assemble and solve the pressure-correction equation to obtain p
′
.

4. Correct the velocities and pressure to obtain the velocity field vν
i , which

satisfies the continuity equation, and the new pressure pν .
For the PISO algorithm, solve the second pressure-correction equation and
correct both velocities and pressure again.
For SIMPLER, solve the pressure equation for pν after vν

i is obtained
above.
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5. Return to step 2 and repeat, using vν
i and pν as improved estimates for

vn+1
i and pn+1, until all corrections are negligible small.

6. Advance to the next time step.

To obtain the solution at the new time step in the implicit method, several
outer iterations are performed. If the time step is small, only a few outer
iterations per time step are necessary. For steady problems, the time step
may be infinite and the under-relaxation parameter acts like a pseudo-time
step.

Methods of this kind are quite efficient for solving single phase steady state
problems.

Pressure-Correction Method for Compressible Flow

In this section the pressure correction method for incompressible flow is ex-
tended to arbitrary Mach numbers [78, 87, 192, 33, 49].

The governing conservation equations for compressible flows are the con-
tinuity, momentum and energy equations. In addition, the pressure, density,
and temperature are linked by an equation of state. It was shown in chap 1
that for compressible flows, the interactions between the mechanical and ther-
mal processes are important. In particular, the viscous dissipation term may
be a significant heat source and the conversion of internal energy to kinetic
energy (and visa versa) by means of flow dilatation may also be significant.
Most of the terms in the governing equations presented in chap 1 must then
be retained. For low Mach number (almost) incompressible flows, however,
the total energy or the heat equation can be approximated by a scalar trans-
port equation for the temperature and only the transient, convection and heat
conduction terms are important.

The discretization of the compressible flow equations can still be carried
out using the same, or very similar, methods as already presented. However,
the solution algorithms designed for incompressible (low Mach number) flow
must be adapted to the novel (high Mach number) compressible properties of
the governing equations. The relevant changes required are associated with
the boundary conditions (since different conditions are required for hyper-
bolic equations compared to parabolic or elliptic equations), and the nature
and treatment of the coupling between the density and the pressure. For com-
pressible flows both velocity and density appear as dependent variables in
the mass conservation equation. Nevertheless, the algebraic representation of
mass conservation can still be interpreted as a constraint equation for pres-
sure and the modified interpretation of the role of pressure for the segregated
approach to solve compressible flow becomes that the pressure must influence
the velocity through the momentum equation and the density through the
equation of state such that together the resulting velocities and the resulting
densities conserve mass.

To explain the modifications required to the pressure-correction equation
previously presented for incompressible flow to deal with compressible flows,
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we consider a segregated solution method, in which the linearized equations for
the velocity components, pressure correction, temperature, and other scalar
variables are known.

The velocities obtained by solving the linearized momentum equations on
the form (12.160), by use of the previous outer iteration values for the pres-
sure and the density, do not satisfy the mass conservation equations (12.161).
When the mass fluxes computed from these velocities and the previous outer
iteration density (denoted by F *) are inserted into the discretized continuity
equation, we obtain:

(ρν−1 − ρn)ΔV

Δt
+ F *

e + F *
w + F *

n + F *
s + F *

t + F *
b = S*

m (12.173)

The imbalance S*
m must be eliminated by a correction method.

In compressible flows, the mass flux depends on both the velocity compo-
nent normal to the cell face and the variable density. To correct the mass flux
imbalance, both the density and the velocity must be corrected. The corrected
mass flux on the e face of a grid volume can be expressed as:

F ν
e =(ρνvνA)e = (ρν−1 + ρ

′
)e(vν*

x + v
′

x)eAe

=(ρν−1vν*
x A)e + (ρν−1v

′

xA)e + (ρ
′
vν*

x A)e + (ρ
′
v

′

xA)e

(12.174)

where ρ
′
and v

′

x,e represent the density and velocity corrections, respectively.
The overall mass flux correction is defined as the sum of all the correction

terms:

F
′

e = (ρν−1v
′

xA)e +(ρ
′
vν*

x A)e +(ρ
′
v

′

xA)e ≈ (ρν−1v
′

xA)e +(ρ
′
vν*

x A)e (12.175)

The second order correction term is normally neglected as this term becomes
zero more rapidly than the two first order correction terms.

The first of the two remaining terms in the mass flux correction is identi-
cal to the one obtained for incompressible flows (e.g., adopting the SIMPLE
assumption in (12.166)):

(ρν−1v
′

xA)e = −(ρν−1A)e(
1
ae

)(
δp

′

δx
)e (12.176)

The second term in the mass flux correction relation (12.175), is due to the
compressibility effects. It involves the correction to the density at the grid cell
volume face. If the SIMPLE method is to be extended to compressible flows,
we must thus express the density correction in terms of the pressure correc-
tion to enable an efficient update of the density corrections in the pressure
correction equation.

For one outer iteration, the temperature may be regarded as provisionally
fixed, hence by use of the ideal gas law we may write:

ρ
′ ≈

(

∂ρ

∂p

)

T

p
′
=

Mω

RT
p

′
(12.177)
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When the solution is converged, all the variable corrections are zero. How-
ever, it is important that the connection between the density and pressure
corrections becomes qualitatively correct, because the intermediate results
may strongly influence the stability and convergence rate of the method.

The second correction term in the mass flux correction can then be written
as:

(ρ
′
vν*

x A)e =
( (∂ρ

∂p )T F *

ρν−1

)

e

p
′

e (12.178)

The overall mass flux correction on the e face of a grid volume is thus:

F
′

e = −(ρν−1A)e(
1
ae

)(
δp

′

δx
)e +

( (∂ρ
∂p )T F *

ρν−1

)

e

p
′

e (12.179)

The value of p
′

at the cell face center and the normal component of the
gradient of p

′
at the cell face center need to be approximated, using consistent

convection schemes for the term that stems from the density correction and
normally a central difference approximation to the term due to the velocity
correction.

The continuity equation (12.173), which must be satisfied by the corrected
mass fluxes and density, can now be written as:

ρ
′

PΔV

Δt
+ F

′

e + F
′

w + F
′

n + F
′

s + F
′

t + F
′

b + S*
m = 0 (12.180)

If (12.177) is used to express ρ
′

P in terms of p
′

P and the approximation (12.175)
of the mass flux correction is substituted into the latter form of continu-
ity equation, we obtain an algebraic system of equations for the pressure-
correction:

aP p
′

P =
∑

nb

anbp
′

nb − S*
m (12.181)

The coefficients in this equation depend on the approximations used for the
gradients and cell face values of the pressure correction. The part which stems
from the velocity correction is identical to that for the incompressible case.
The second part depends on the approximation used for the term which cor-
responds to the convective contribution to the conservation equations. The
presence of convective terms in the compressible pressure equation makes the
solution unique.

It is noted that the given pressure-correction method can be applied for
arbitrary Mach number flows. At low Mach numbers (almost incompressible
flow), the Laplacian term dominates and we recover the Poisson equation. On
the other hand, at high Mach number (highly compressible flow), the convec-
tive term dominates, reflecting the hyperbolic nature of the flow. Solving the
pressure-correction equation is then equivalent to solving the continuity equa-
tion for density. Thus, the pressure correction method automatically adjusts



12.9 Solution of the Momentum Equation 1055

to the local nature of the flow and the same method can be applied to the en-
tire flow. Using this unified method the standard boundary conditions applied
for incompressible flows also hold for compressible flow and are treated in the
same way as for incompressible flow simulations. However, in compressible
flow additional boundary conditions are required. Most important, the total
pressure must be prescribed.

Pressure-Correction Methods for Reactive Flows

Most chemical reactor flows can be characterized as low Mach number flows.
The governing equations for low Mach number reactive flows were derived in
sect 1.2.5. Models for low Mach number reactive flows generally consist of
the continuity, momentum, species mass and heat balances. The heat balance
is generally expressed in terms of temperature. In general, for non-isothermal
reactive low Mach number flows, the mixture density may vary due to changes
in temperature, pressure and chemical composition. The temperature changes
may be created by the chemical process through the chemical reactions, the
heats of reaction, non-ideal fluid mixing, and the external heating or cooling
devices. The thermodynamic pressure may be changed by external expansion
or compression of the fluid mixture. The local pressure variations caused by
the flow are generally very small in chemical reactors, except in the initial
phase of flow in multiphase reactors and packed (porous) beds in which the
axial pressure drop may be significant but not changing much after a short ini-
tial start-up period. The gravity force term may be important for tall liquid
columns. The chemical composition can be changed by the chemical reac-
tions in the process. In reactive processes, the fluid transport coefficients and
the mixture thermodynamic properties vary basically due to changes in the
chemical composition, temperature, thermodynamic pressure created by the
chemical process, and not because of any particular flow phenomena.

The basic elements of the solution methods presented above for solving in-
compressible and compressible flows can be adapted for reactive flows as well.
However, special attention must be attributed to the novel system character-
istics that the multicomponent fluid mixture properties and temperature may
change due to chemical reactions, non-ideal fluid mixing and external heat
sources, although the low Mach number indicates that the transport prop-
erties should be about constant. Most important, an appropriate algorithm
for reactive flows must enable accurate solutions of non-isothermal flows with
changes in composition due to chemical reactions. For non-isothermal reactive
flows, the interactions between the species mass balances, mixture continuity
and momentum equations, and the heat or temperature equation must be con-
sidered and they are generally distinct from those of high Mach number com-
pressible flow. In particular, the viscous dissipation term and the conversion
of internal heat to kinetic energy (and visa versa) by means of flow dilatation
can both be neglected in most cases. The heat equation can thus be approx-
imated by a scalar transport equation for the enthalpy or the temperature
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in which only the transient, convection/advection, heat conduction, heat of
reaction and external heat source terms are important. To calculate the pres-
sure for gas mixtures an appropriate EOS is needed to convert the density
correction term into a pressure correction. The ideal gas law is often used. If
the external pressure is changed, expansion or compression of the fluid mix-
ture within the reactor take place. In this case, the conversion of internal heat
to kinetic energy (and visa versa) by means of flow dilatation can not be ne-
glected. A complete heat balance must be used. However, the present reactor
simulations do not consider any variations of the external pressure during op-
eration, another simulation with different operating conditions are performed
instead. For many liquid mixtures the standard incompressible flow solvers
can be adopted to solve isothermal reactive flows with negligible changes in
the mixture density due to chemical reactions. No energy equation is then
required as the flow and the chemical process are independent of tempera-
ture. To solve isothermal reactive flows with limited changes in the mixture
density due to chemical reactions, a modified incompressible solver with no
energy balance may be used. For chemical processes creating small tempera-
ture changes (for liquid mixtures in particular), the incompressible methods
may be extended with a temperature equation provided that in all conserva-
tion laws temperature dependent transport coefficients and thermodynamic
properties are considered.

12.10 Fractional Step Methods

The fractional step, or time splitting, concept is more a generic operator split-
ting approach than a particular solution method [30, 211, 124, 92, 49]. It is
essentially an approximate factorization of the methods applied to the differ-
ent operators in an equation or a set of equations. The overall set of operators
can be solved explicitly, implicitly or by a combination of both implicit and
explicit discretization schemes.

Scalar Transport Equation

The fractional step concept is frequently used to solve scalar transport equa-
tions on the generic form [10, 85, 137]:

∂(ρψ)
∂t

+ ∇ · (vψ) = ∇(Γψ∇ψ) + Sψ (12.182)

This balance equation is written on the conservative flux form, the non-
conservative form of the equation is easily obtained by use of the continuity
equation.

To illustrate the fractional step method, the explicit Euler advancement
of the property ψ can be written in symbolic form:



12.10 Fractional Step Methods 1057

(ρψ)n+1 = (ρψ)n + (−Cψ + Dψ + Sψ)n Δt

ΔV
(12.183)

where Cψ, Dψ, and Sψ represent the discretized form of the convective, dif-
fusive, and source terms, respectively.

The fractional step, or time splitting, concept can be adapted to the dis-
cretized equation by splitting the discrete scalar equation into a three step
method:

(ρψ)* = (ρψ)n − Cn
ψ

Δt

ΔV
(12.184)

(ρψ)** = (ρψ)* + Dn
ψ(ψ∗)

Δt

ΔV
(12.185)

(ρψ)n+1 = (ρψ)∗∗∗ = (ρψ)** + Sn
ψ(ψ∗∗)

Δt

ΔV
(12.186)

In this example the property ψ is advanced using the explicit Euler scheme
for all the operators. However, both implicit and explicit methods can be
employed. In order to take a larger time steps, implicit methods are generally
preferred. The convective and diffusive terms can be further split into their
components in the various coordinate directions, for example, by use of the
Strang [181] operator factorization scheme.

Incompressible Viscous Flow

The fractional-step concept can be used to solve the governing equations for
the fluid motion as well. To illustrate the overall method with emphasis on
the pressure-velocity coupling, a FVM variant of the fractional-step method
used by Chorin [30], Fortin et al [56] and Andersson and Kristoffersen [3]
for solving the unsteady Navier-Stokes and continuity equations for incom-
pressible viscous flows is outlined. We consider the equations of motion of an
incompressible viscous fluid:

∂vi

∂t
+

∂vivj

∂xj
= − ∂p

∂xi
+ ν

∂2vi

∂xjδxj
(12.187)

and the continuity equation on the form:

∂vi

∂xi
= 0 (12.188)

By use of the explicit Euler scheme, the discrete form of the governing equa-
tions can be written as [3]:

vn+1
i − vn

i

Δt
= −Cn

i − β
δpn+1

δxi
+ Dn

i (12.189)

It is assumed that the solution at time level n is known, satisfying the conti-
nuity equation.
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The solution at the next time level n+1 is then obtained from the discrete
form of the above momentum equation subject to the continuity constraint
on the form:

δvn+1
i

δxi
= 0 (12.190)

The time-splitting method can be adapted to the governing equations by
splitting the momentum equation into two intermediate steps:

(

v∗i − vn
i

Δt

)

ΔV = − Cn
i + Dn

i − β
δpn

δxi
(12.191)

(

vn+1
i − v∗i
Δt

)

ΔV = − δ

δxi
(pn+1 − βpn) (12.192)

where β is a constant and v∗i is an intermediate value of the velocity compo-
nent. If β = 0, the intermediate velocity is advanced by the convective and
viscous terms while the pressure term is ignored. By taking, β = 1 instead,
more information is carried over from vn

i to v∗i via the first step. Thus, if
the solution tends to a steady state, the velocity vn+1

i at the new time level
becomes equal to v∗i .

An essential feature of the two-step decomposition of the momentum equa-
tion is that the tentative velocity v∗i can be calculated explicitly in the first
step, while the new velocity vn+1

i is related to the new pressure field in the
second step. By taking the divergence of the equation in the second step,
and making subsequent use of the implicit continuity equation, we obtain the
Poisson equation for the potential function φn+1:

δ

δxj

[

δφn+1

δxj

]

P

=
ΔV

Δt

δv∗i
δxi

(12.193)

where the potential function φ is defined as:

φn+1 = pn+1 − βpn (12.194)

With φn+1 known from the solution of the Poisson equation, the pressure and
velocities at the new time level n + 1 are obtained from:

pn+1 =pn + φn+1 (12.195)

vn+1
i =v∗i − Δt

ρn+1ΔV

δ

δxi
(12.196)

In application of the fractional step method to the incompressible Navier-
Stokes equations, the pressure may be interpreted as a projection operator
which projects an arbitrary vector field into a divergence-free vector field.

Fractional step methods have become quite popular. There are many vari-
ations of them, due to a vast choice of approaches to time and space dis-
cretizations, but they are all based on the principles described above. To
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predict an accurate time history of the flow, higher order discretizations must
be employed. Kim and Moin [92], for example, used a second order explicit
Adams-Bashforth scheme for the convective terms and a second order implicit
Crank-Nicholson scheme for the viscous terms. Boundary conditions for the
intermediate velocity fields in time-splitting methods are generally a complex
issue [92, 3].

Chemical Reactive Flow

Jakobsen et al [81] and Lindborg et al [118] did apply similar algorithms for
variable density flows to simulate the performance of chemical processes in
fixed bed reactors. The fractional steps defining the elements of these algo-
rithms are sketched in the following:

In a set of introductory steps, the mixture composition and the tempera-
ture are calculated. A set of scalar transport equations on the form (12.183)
is generally solved for the species mass densities and the mixture enthalpy
at the next time level n + 1. However, in reactor simulations, the enthalpy
balance is frequently expressed in terms of temperature. The discrete form of
the governing equations is thus written as:

ρn+1
c =ρn

c + (−Cn
c + Dn+1

c + Sn+1
c )

Δt

ΔV
(12.197)

Tn+1
c =Tn

c + (−An
T + Dn+1

T + Sn+1
T )

Δt

ΔV
(12.198)

where A is a shorthand notation for the advective terms.
The mixture density ρn+1 is then obtained by the sum of the species

densities ρn+1
c :

ρn+1 =
∑

c

ρn+1
c (12.199)

In a set of intermediate steps, the evolution of the mixture pressure and
velocity components are calculated. The variable density form of the Navier-
Stokes equations are split into two intermediate steps.

(

ρn+1v∗i − (ρvi)n

Δt

)

ΔV = − Cn
i + Dn

i − δpn

δxi
+ Sn

i (12.200)
(

(ρvi)n+1 − (ρn+1v∗i )
Δt

)

ΔV = − δ

δxi
(pn+1 − pn) (12.201)

where S represents the gravity term.
By taking the divergence of the momentum equation in the second step,

we obtain the Poisson equation for the potential function φn+1:

δ

δxj

[

δφn+1

δxj

]

P

=
ΔV

Δt

[

δ(ρn+1v∗i )
δxi

− δ(ρvi)n+1

δxi

]

(12.202)
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The solution at the next time level n + 1 is then obtained from the discrete
form of the momentum equation subject to the continuity constraint on the
form:

δρ

δt
+

δ(ρvi)n+1

δxi
= 0 (12.203)

The continuity equation for the reactive mixture is used to construct a stable
approximation of the RHS of the Poisson equation for the potential function
φ. The transient term in the continuity equation may be approximated by an
explicit high order scheme, or an implicit scheme can be used.

With φn+1 known from the solution of the Poisson equation, the pressure
and velocities at the new time level n + 1 are obtained from:

pn+1 =pn + φn+1 (12.204)

vn+1
i =v∗i − Δt

ρn+1ΔV

δφn+1

δxi
(12.205)

For reactive variable density flows, the pressure is interpreted as a projection
operator which projects an arbitrary vector field into a vector field which fulfill
the continuity equation.

For gas mixtures, the solution of the species mass balances, the tempera-
ture equation and the Navier-Stokes equations may be followed by a density
update. For an ideal gas, the density changes may be determined by a com-
plete differential of the density that is estimated by use of the ideal gas law
in a new intermediate step:

ρn+1,∗ = ρn+1 +
pn

RTn
(Mn+1

ω −Mn
ω ) − ρn

Tn
(Tn+1 − Tn) +

Mn
ω

RTn
(pn+1 − pn)

(12.206)
In order to allow longer time steps to be used, implicit schemes must be used
for the C, D and S operators in the first step of the momentum equation
solution.

12.11 Finite Volume Methods for Multi-fluid Models

In this section, the path-breaking approximate implicit interphace slip algo-
rithm (IPSA) framework by Spalding [176, 177, 178] is outlined. Different de-
signs of the basic algorithm for the novel multiphase properties are examined.
A stable and efficient semi-implicit fractional step algorithm for the solution
of unsteady two-fluid models is presented in the subsequent section. This par-
ticular numerical procedure has been used simulating bubble column flows.
Finally, a summary of a similar semi-implicit fractional step algorithm for the
solution of the unsteady two-fluid granular flow model equations is given. This
particular numerical procedure has been employed describing reactive flow in
fluidized beds.
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12.11.1 Special Challenges in Solving the Two-fluid Model
Equations

In this section, a survey of a selection of path-breaking procedures that have
been designed for the numerical solution of the two-fluid model equations is
given. It is emphasized that most of the standard procedures for solving mul-
tiphase problems represent more or less adequate extensions of the analogous
procedures for single phase flow. The important procedure extensions required
in order to solve the two-fluid model equations starting out from the standard
single phase finite volume method algorithms, are pointed out and examined
in further detail.

The basic discretization of the two-fluid model equations is similar to the
approximations of the corresponding transport equations for single phase flow.
A minor difference is that the two-fluid model equations contain the novel
phase fraction variables that have to be approximated in an appropriate man-
ner. More important, to design robust, stable and accurate solution procedures
with appropriate convergence properties for the two-fluid model equations,
emphasis must be placed on the treatment of the interface transfer terms in
the phasic momentum, heat and mass transport equations. Because of these
extra terms, the coupling between the different equations is even more severe
for multiphase flows than for single phase flows.

A property of the finite volume method is that numerous schemes and pro-
cedures can be designed in order to solve the two-fluid model equations. In
addition, the coupling terms can be approximated and manipulated in differ-
ent ways. Besides, it is very difficult to predict the convergence and stability
properties of novel solution methods. These aspects collectively increase the
possibility of devising a numerical procedure which, when put to the test, does
not converge.

In an early attempt to calculate the phase fractions in an approxi-
mate implicit volume fraction-velocity-pressure correction procedure, Spald-
ing [176, 177, 178, 180] calculated the phase fractions from the respective
phase continuity equations. However, experience did show that it was dif-
ficult to conserve mass simultaneously for both phases when the algorithm
mentioned above was used. For this reason, Spalding [179] suggested that
the volume fraction of the dispersed phase may rather be calculated from a
discrete equation that is derived from a combination of the two continuity
equations. An alternative form of the latter volume fraction equation, par-
ticularly designed for fluids with large density differences, was later proposed
by Carver [26]. In this method the continuity equations for each phase were
normalized by a reference mass density to balance the weight of the error for
each phase.

Most of the present finite volume procedures that are used to solve
the continuity and momentum equations are derived from the approximate
implicit interphase slip algorithm (IPSA) framework proposed by Spalding
[176, 177, 178, 180]. Rather than representing a particular algorithm and
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discrete equations, the IPSA framework represents various extensions of the
SIMPLE-like algorithms13 that have been employed to solve the two-fluid
model equations. Different procedure manipulations have been proposed to en-
sure high convergence rates depending on the coupling between the pressure,
velocity and volume fractions and on the need of consideration of both fluids.
The original IPSA of Spalding [176] was designed to comprise an approximate
implicit coupling between the simultaneous changes of volume fraction and ve-
locity with pressure. The pressure correction equation was designed from the
two continuity equations in order to minimize the local imbalance in volume
fractions as computed separately from the individual continuity equations. To
improve the solution procedure mass conservation treatment for the individ-
ual phases and thus the convergence rate, Spalding [177, 178, 180] derived
a pressure correction equation which contains a somewhat different attempt
to approximate the simultaneous change of volume fraction and velocity with
pressure for both phases. A similar third alternative IPSA pressure-correction
equation was suggested by Carver [25]. For bubbly flows, Grienberger [63] ar-
gued that the two-fluid model contains only one pressure and thus designed
a pressure-correction equation from the liquid continuity equation and the
liquid velocity corrections formulas in the same way as for single phase flows
[141].

One of the most important contributions of Spalding [176, 177] is the
partial elimination algorithm (PEA). Due to the tight coupling between the
velocities caused by the interface friction terms, manipulation of the discrete
discretization equations for the velocity components was considered necessary
to ensure sufficiently high convergence rates. The working principle of the
PEA is thus to weaken the strong coupling between the phases through the
partial elimination of the variables in the interphase coupling term. Linear
algebra is basic to the computer solution of any kind of PDE problem. The
mathematical impact of the partial elimination algorithm on the solver for the
resulting system of algebraic equations is to reduce the effect of the strong
coupling between the phasic momentum equations on the algebraic equations
matrix condition number and thereby improve the convergence properties
of the problem. Without this manipulation of the equations the condition
number is very large as the matrix is almost singular. The PEA can also
be generalized and applied to any of the two-fluid model equations that are
strongly coupled, as illustrated in the following subsection.

No significant differences in convergence performance are generally ob-
served assessing the above mentioned alternative schemes for the solution of
the two-fluid model equations [80]. A main limitation associated with these
procedures is that it is impossible to ensure that both the overall mixture con-
tinuity and the individual phase continuities are satisfied at the same time. In

13 The velocity- and pressure correction equations in IPSA are frequently derived
using the SIMPLEC method (i.e., the SIMPLE- Consistent approximation) by
van Doormal and Raithby [191].
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addition, to solve these problems, a more implicit treatment of the interphase
coupling terms is required.

In the modern solution algorithms for the two-fluid model equations, the
latter problem is generally relaxed by coupled strategies solving the corre-
sponding transport equations of both phases simultaneously [90, 103, 104, 99,
98, 6, 119].

Numerous multiphase codes for dispersed flows have been developed to
date, including both commercial multi-purpose codes and special purpose in-
house codes. However, as indicated in the above summary, most of these codes
have been originated as computational tools for multidimensional single-phase
problems. Improved robustness and higher convergence rates are still impor-
tant tasks for the code developers. A key feature of the next generation mul-
tiphase codes is that from the outset the software design has to be focused
on the development of a reliable solver for multiphase flows with the capabil-
ity to model an arbitrary number of fluid components and phases. One way
to improve the convergence rate is to solve all the model equations simulta-
neously, at least all the momentum-, phase fraction- and pressure equations
must be fully coupled in all the three space dimensions. The potential advan-
tages of such a coupled treatment over a non-coupled or segregated approach
are robustness, efficiency, generality and simplicity. The principal drawback
is the higher storage needed for all the coefficients which did prevent such an
algorithm to be used in the past.

Solving Strongly Coupled Equations

In multiphase reactive flows, the interfacial transfer fluxes of momentum, heat
and species mass are of great importance. These interfacial transfer fluxes are
generally modeled as a product of the interfacial area concentration and a
mean interfacial flux. It is normally assumed that the mean interfacial fluxes
are, in turn, given as the product of the difference in the phase values of the
primitive variables (driving force) multiplied by the transfer (proportionality)
coefficients. Mathematically, a generic flux Ik can be expressed on the form:

Ik = K(ψl − ψk), l 
= k (12.207)

In multiphase reactor simulations, the momentum, heat and species mass
balances may thus contain several terms that can be placed in this framework.
However, in these problem solvers, the generalized proportionality coefficient
K is usually derived from the steady drag force, and the convective heat and
mass transfer fluxes, respectively.

Several strategies have been proposed to treat these interfacial coupling
terms in the design of appropriate numerical solution methods. A simple way
to implement these interphase coupling terms is to apply an explicit discretiza-
tion scheme. Alternatively, an alternating direction implicit (ADI)-like method
can be applied in which the current phase variable in the coupling term can
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be approximated by an implicit scheme while the corresponding variable in
the other phase is approximated by an explicit scheme. The model equations
are then solved one by one in a sequential manner in an iterating process until
convergence is achieved for each of the equations. These solution procedures
apply only to situations where the interphase coupling is weak [138, 86, 88].
For strongly coupled equations these techniques generally give slow conver-
gence or even convergence problems since the coupling terms are based on
lagged or deferred information. To solve these problems, a more implicit treat-
ment of the interphase coupling terms is required. One option is to solve the
corresponding transport equations of both phases simultaneously.

Consider that the system of linear discretization equations for phase k
can be expressed on the general form Akxk = bk. The xk and bk vectors
contain the variable solution and source terms for the whole calculation do-
main, respectively. Ak is a banded matrix containing the coefficients of the
discretized equation. In three-dimensional problems, the neighbor coefficients
are arranged in two sub-diagonals located next to the main diagonal and four
peripherical diagonals:

Ak =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−aT,k

−aS,k

−aW,k aP,k −aE,k

−aN,k

−aB,k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12.208)
In two-dimensional problems, the neighbor coefficients are arranged in two
sub-diagonals located next to the main diagonal and two peripherical diago-
nals:

Ak =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−aS,k

−aW,k aP,k −aE,k

−aN,k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12.209)

The combined system of equations for both phases can be written as:
(

Ac Dc

Ad Dd

)(

xc

xd

)

=
(

bc

bd

)

where the coupling terms of the current phase variables aP,k + KΔV are
included in their respective A-matrices, whereas Dc and Dd are diagonal ma-
trices containing the coupling terms of the complementing phases KΔV .
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Although the interphase coupling terms are treated in a more implicit
manner in this solution procedure, the weight of the intraphase coupling terms
are weakened. A strong coupling between the phases diminishes the influence
of the convection-diffusion coefficients, in particular for the lightest phase. The
resulting solution of the equations for these phases is thus controlled primarily
by the local value in the densest phase. An optimal solution procedure design
must thus treat both the interphase- and intraphase coupling terms in an
appropriate manner.

For this aim, Lindborg et al [119] used a coupled solver in combination
with the partial elimination algorithm (PEA) proposed by Spalding [177]. The
combined PEA-coupled solver used in their work is outlined in the following.

From the discretized form of the generic transport equation (12.183), the
interphase coupling terms can be singled out. With an implicit approximation
of the interphase coupling terms, the terms in the discretized equation for the
continuous phase can be rearranged and written as:

(aP,c + KΔV )ψP,c =
∑

nb

anb,cψnb,c + Sc + KψP,dΔV (12.210)

For the dispersed phase, a similar equation yields:

(aP,d + KΔV )ψP,d =
∑

nb

anb,dψnb,d + Sd + KψP,cΔV (12.211)

By using deferred estimates of the dispersed phase variable in the continuous
phase equation and vice versa, the two equations can be solved sequentially
using a standard equation solver. This procedure corresponds to the standard
PEA implementation.

Alternatively, the dispersed phase variable in the continuous phase equa-
tion can be eliminated by use of the dispersed phase transport equation. Re-
arranging the continuous phase equation we get:

(aP,c + fdaP,d)ψP,c =
∑

nb

anb,cψnb,c +Sc + fd

(

∑

nb

anb,dψnb,d +Sd

)

(12.212)

The corresponding equation representing the dispersed phase can be ob-
tained with a corresponding procedure:

(aP,d + fdaP,c)ψP,d =
∑

nb

anb,dψnb,d +Sd + fc

(

∑

nb

anb,cψnb,c +Sc

)

(12.213)

where
fk =

KΔV

aP,k + KΔV
(12.214)

By implicit approximations of all the variables in both phases, the solution
can now be obtained by solving the two sets of equations simultaneously.
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Then, a merged equation matrix formulation has to be solved, in which the
sub-matrices and the source terms are somewhat different compared to those
presented above. The diagonal terms in the Ac-matrices are changed from
aP,c +KΔV to aP,c +fdaP,d and the source terms in the Sc-vector from Sc to
Sc + fdSd. The Dc-matrix contains the neighbor coefficients of the dispersed
phase multiplied by fd which gives a tetra-diagonal matrix or rather a penta-
diagonal matrix where the center diagonal is removed. The vector and matrices
for the dispersed phase are modified in the same way.

In three dimensional problems, the neighbor coefficients are arranged in
two sub-diagonals located next to the main diagonal and four peripherical
diagonals (l 
= k):

Dk =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−flaT,k

−aS,k

−flaW,k −flaE,k

−aN,k

−flaB,k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12.215)

In two-dimensional problems, the neighbor coefficients are arranged in two
sub-diagonals located next to the main diagonal and two peripherical diago-
nals (l 
= k):

Dk =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−flaS,k

−flaW,k −flaE,k

−flaN,k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12.216)

Approximations of the Grid Cell Interface Diffusion Coefficients

Non-uniform transport coefficients can arise from non-homogeneity of the mul-
tiphase mixture. Consider the diffusive transport of a generic property ψ, for
which Γψ represents a generalized diffusivity. The grid cell interface diffusivity
Γψ is generally approximated by some kind of interpolation between the nodal
values. The formulas for interpolation of the diffusivities at all the surfaces
can be written similarly, hence to explain the procedure a single interface case
is used as example.

For flows with almost uniform transport coefficients, a simple approxima-
tion of the grid cell interface diffusivity Γψ,w, for example, may be obtained
by linear interpolation between the nodal points W and P [141]:
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Γψ,w = (1 − fw)Γψ,W + fwΓψ,P (12.217)

where the interpolation factor fW is given by

fw =
δzWw

δzWw
+ δzwP

(12.218)

For a uniform grid the w is midway between the nodes, fw = 0.5 and the
interpolated value of Γψ,w reduces to the arithmetic mean of Γψ,W and ΓY,P :

Γψ,w =
1
2
(Γψ,W + Γψ,P ) (12.219)

The linear interpolation approach cannot accurately treat the abrupt changes
of diffusivity that may occur in some locations in multiphase reactors where
the phase fractions change rapidly (e.g., across the transition zone from the
dense bed to the freeboard section in a bubbling fluidized bed). To improve
the interpolation procedure, one seeks an approximation of the diffusivity
that gives an accurate approximation of the diffusive flux for cases with large
changes in the material properties.

Consider that the grid cell volume surrounding the grid node P is filled
with a material mixture of uniform diffusivity Γψ,P , and the one around W
with a material mixture of uniform diffusivity Γψ,W . For the phase mixture
between node P and W , a steady one dimensional analysis of the flux leads
to [141]:

Γψ,w =
(

1 − fw

Γψ,W
+

fw

Γψ,P

)−1

(12.220)

For uniform grids, the grid cell interface is placed midway between P and W ,
and fw = 0.5, hence the interpolation reduced to the the harmonic mean of
Γψ,W and Γψ,P :

Γw,ψ =
2Γψ,WΓψ,P

Γψ,W + Γψ,P
(12.221)

In bubbling fluidized bed reactor simulations harmonic mean values are nor-
mally used for the grid cell interface values of the scalar variable diffusivities
[119]. Due to malfunctioning interpolation issues, the grid cell interface values
of the diffusive momentum fluxes are generally approximated by arithmetic
mean values. For bubble column and packed bed simulations arithmetic mean
values can be used for the grid cell interface values of the generalized diffu-
sivities, provided that no abrupt changes of diffusivity occur in any locations
in the calculation domain.

12.11.2 Explicit Fractional Step Algorithm for Solving
the Two-Fluid Model Equations Applied to Bubble Column Flow

In this section the solution method employed by Jakobsen et al [83] simulating
bubble column flows is outlined.
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The governing two-fluid model equations were discretized by a finite vol-
ume algorithm. A staggered grid arrangement was used. A fractional step
scheme similar to those used by Tomiyama and Shimada [190] and Lathouw-
ers [104] was employed. In particular, the single phase algorithms developed by
Jakobsen et al [81] and Lindborg et al [118] for porous media were extended to
two phase bubbly flows. Based on a semi-discrete formulation (discretized in
time only) of the governing equations for incompressible fluids, the fractional
steps defining the solution algorithm are sketched in the following:

1. First, intermediate volume fraction values were calculated solving the
continuity equation for the dispersed phase by an explicit discretization
scheme:

∫

V

(

α∗
dρ

n
d − αn

dρ
n
d

Δt

)

dv = −
∫

V

∇ · (αn
dρ

n
dvn

d ) dv (12.222)

The corresponding continuous phase volume fraction estimate is found by
use of (8.11), α∗

c = 1 − α∗
d.

2. Intermediate velocity values were then obtained by solving the momen-
tum balances without the interfacial coupling terms using explicit dis-
cretization schemes for all variables except for the volume fractions. The
intermediate volume fraction estimates obtained in step 1 were used in all
terms except from the convective terms:
∫

V

(

α∗
kρ

n
kv∗

k − αn
kρ

n
kvn

k

Δt

)

dv = −
∫

V

∇ · (αn
kρ

n
kvn

kvn
k ) dv +

∫

V

∇ · (α∗
kσn

k ) dv

−
∫

V

α∗
k∇pn dv +

∫

V

α∗
kρ

n
kg dv

(12.223)

3. The lift force was approximated with an explicit Euler time discretization
scheme:

∫

V

(

α∗
kρ

n
kv∗∗

k − α∗
kρ

n
kv∗

k

Δt

)

dv =
∫

V

F∗
L,k dv (12.224)

In this step the volume fractions were assumed independent of time.
The steady-drag, virtual mass, turbulent dispersion, and wall lift forces
were approximated using a semi-implicit time discretization scheme:
∫

V

((

α∗
kρ

n
kv∗∗∗

k − α∗
kρ

n
kv∗∗

k

Δt

)

− α∗
c [F

∗∗∗
D,k + F∗∗∗

V,k + F∗∗∗
TD,k + F∗∗∗

W,k]
)

dv = 0

(12.225)
Like in the previous step, the volume fractions were assumed independent
of time.
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4. A Poisson equation for the pressure like variable φn+1 was derived from
a discrete form of the momentum equation in which the volume fractions
and densities were assumed independent of time:

∫

V

(

α∗
kρ

n
kvn+1

k − α∗
kρ

n
kv∗∗∗

k

Δt

)

dv = −
∫

V

α∗
k∇φn+1 dv (12.226)

where φn+1 = pn+1 − pn.
Applying the continuity divergence operator on the terms in this relation,
and recognizing that the first divergence term in the resulting relation
represents an extended estimate of the transient term in the continuity
equation, yields:

∫

V

(∇ · (α∗
kρ

n
kvn+1

k ) −∇ · (α∗
kρ

n
kv∗∗∗

k )
Δt

)

dv =

∫

V

(

− ∂
∂t (αkρ

n
k ) −∇ · (α∗

kρ
n
kv∗∗∗

k )
Δt

)

dv = −
∫

V

∇ · (α∗
k∇φn+1) dv

(12.227)

The volume fraction variables were assumed to be time dependent in the
semi-implicit discretization scheme used to solve the continuity equations.
Considering the last two terms in the above relation, the transient term
was then approximated by an explicit Euler time discretization scheme
followed by volume integration in which the transient term was kept con-
stant. If we thereafter multiply the resulting relation by Δt/ρn

k , the rela-
tion can be rewritten as:

αn
k − αn+1

k

Δt
ΔV − 1

ρn
k

∫

V

∇ · (α∗
kρ

n
kv∗∗∗

k ) dv = −Δt

ρn
k

∫

V

∇ · (α∗
k∇φn+1) dv

(12.228)
If we take the sum of the corresponding equations for both phases and
requiring that (8.11) is fulfilled both at time n and n+1, a Poisson equation
for the pressure like variable is obtained:

− 1
ρn

d

∫

V

∇ · (α∗
dρ

n
dv∗∗∗

d ) dv − 1
ρn

c

∫

V

∇ · (α∗
cρ

n
c v∗∗∗

c ) dv

= −Δt

ρn
d

∫

V

∇ · (α∗
d∇φn+1) dv − Δt

ρn
c

∫

V

∇ · (α∗
c∇φn+1) dv

(12.229)

5. The volume fraction values at the new time level n + 1 were obtained by
solving the continuity equation for the dispersed phase using the latest
estimate of the αk and vk variables:
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∫

V

(

αn+1
d ρn

d − αn
dρ

n
d

Δt

)

dv = −
∫

V

∇ · (α∗
dρ

n
dvn+1

d ) dv (12.230)

6. The remaining scalar transport equations, like the k-ε turbulence model,
are solved in the same way as the discrete scalar transport equation
(12.183).
The fractional step concept applied to the scalar equations consists of suc-
cessive applications of the methods for the different operators determining
parts of the transport equations. The convective and diffusive terms are
further split into their components in the various coordinate directions as
explained in sect 12.9.4.

The convective terms were solved using a second order TVD scheme in space,
and a first order explicit Euler scheme in time. The TVD scheme applied
was constructed by combining the central difference scheme and the classical
upwind scheme by adopting the smoothness monitor of van Leer [193] and the
monotonic centered limiter [194]. The diffusive terms were discretized with a
second order central difference scheme. The time-splitting scheme employed
is of first order.

12.11.3 Implicit Fractional Step Method for Solving
the Two-Fluid Granular Flow Model Equations Applied
to Fluidized Bed Flow

In this section the solution method employed by Lindborg et al [119] simulat-
ing fluidized bubbling bed reactors is outlined.

The governing two-fluid equations for granular flows were discretized on
a staggered grid arrangement using the finite volume method. A fractional-
step scheme similar to those reported in the literature [104, 190, 83] is de-
veloped on the basis of the single-phase algorithms reported by Jakobsen et
al [81, 118]. The fractional steps defining the algorithm are sketched in the
following:

1. Mixture composition calculation
For reactive mixtures, the species mass fractions at time level n + 1 were
calculated implicitly in accordance with the species mass balances on the
generic form:

∫

V

(

αn
c ρ

n
c ω

n+1
i − αn

c ρ
n
c ω

n
i

Δt

)

dv = −
∫

V

∇ · (αn
c ρ

n
c vn

c ω
n+1
i )dv

+
∫

V

∇ ·
(

αn
c ρ

n
cDm,i∇ωn+1

i

)

dv +
∫

V

Mωi
Rn+1

i dv

(12.231)

The integration of the species transport equations was followed by a den-
sity update due to the change in the ideal gas mixture composition:
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ρ∗c = ρn
c +

pn

RTc
(Mn+1

ωc
−Mn

ωc
) (12.232)

2. Temperature calculation
The chemical process and the external heating or cooling devices may give
rise to temperature changes. The evolution of the temperature was thus
computed as:

∫

V

αn
kρ

∗
kCpk

(

Tn+1
k − Tn

Δt

)

dv =

−
∫

V

αn
kρ

∗
kCpkvn

k · ∇Tn+1
k dv +

∫

V

∇ ·
(

kk∇Tn+1
k

)

dv

+
∫

V

∑

r

(−ΔHR,r,k)Rn+1
r,k dv +

∫

V

Qn+1
k dv

(12.233)

The solution of the heat balance is followed by a density update.

ρ∗∗c = ρ∗c +
pnMn+1

R

(

1
Tn+1

c

− 1
Tn

c

)

(12.234)

3. Volume fraction calculation - Iteration loop comprising steps 3-5
Estimates of the volume fraction values at the new time level n + 1 were
predicted by solving the dispersed phase continuity equation implicitly
using the latest values of the dispersed phase velocity field:
∫

V

(

αν
dρ

n+1
d − αn

dρ
n
d

Δt

)

dv = −
∫

V

∇·(αν
dρ

n+1
d vν

d)dv+
∫

V

ΓV,d dv (12.235)

The corresponding continuous phase volume fraction value was calculated
from (8.11), αν

c = 1 − αν
d .

4. Granular temperature calculation - Iteration loop comprising steps 3-5
An intermediate granular temperature field was computed by use of the
latest estimates of the volume fraction- and velocity fields (i.e., calculated
within the iteration loop):
∫

V

3
2

[

αν
dρ

n+1
d Θν − αn

dρ
n
dΘ

n

Δt

]

dv = −
∫

V

3
2
∇ · (αν

dρ
n+1
d vν

dΘ) dv

+
∫

V

σν
d : ∇vν

d dv +
∫

V

∇ · (Γd∇Θν) dv

−
∫

V

3βνΘν dv +
∫

V

βν < Cc · Cd >ν dv −
∫

V

γ dv

(12.236)

The particle pressure is then calculated based on the preliminary estimates
of the volume fractions and the granular temperature:

pν
d = αν

dρ
n+1
d Θν [1 + 2(1 − e)αν

dg
ν
0 ] (12.237)
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5. Particle pressure- and velocity correction - Iteration loop comprising steps
3-5
A preliminary estimate of the dispersed phase velocity was obtained with
a simplified form of the momentum equation, assuming that the particle
pressure and drag forces are the dominant forces:

∫

V

(

αν
dρ

n+1
d vν+1

d − αn
dρ

n
dvn

d

Δt

)

dv =

−
∫

V

∇pν
d dv −

∫

V

Kν(vν+1
d − vν+1

c ) dv
(12.238)

This simplification reduces the overall computational costs drastically.
It was further assumed that the continuous phase momentum equation is
dominated by the drag force only:

∫

V

(

αν
cρ

n+1
c vν+1

c − αn
c ρ

n
c vn

c

Δt

)

dv =
∫

V

Kν(vν+1
d − vν+1

c ) dv (12.239)

An estimate of the continuous phase velocity was obtained by reformulat-
ing the equation:

vν+1
c =

αn
c ρ

n
c vn

c + ΔtKνvν+1
d

D
(12.240)

where D = αν
cρ

n+1
c + ΔtKν .

If (12.238) is solved with respect to the velocity estimate of the dispersed
phase, followed by eliminating the unknown velocity of the continuous
phase by use of (12.240), we get:

vν+1
d =

αn
dρ

n
dvn

d −Δt∇pν
d + ΔtKναn

c ρ
n
c vn

c /D

αn
dρ

n
d + ΔtKν (1 −ΔtKν/D)

(12.241)

The steps 2 − 4 were performed in an iterating manner until the overall
squared change in volume fraction ε =

∑

V (αν+1
d − αν

d)2 for two consec-
utive iterations was less than a predefined criterion typically of the order
of the machine precision.

6. Iterative velocity calculation After the iteration loop in steps 3-5 is con-
verged with the simplified momentum equation, improved velocity esti-
mates were obtained from the complete momentum equation.
The discrete momentum balance was solved for the velocity using an im-
plicit Euler discretization scheme:
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∫

V

(

αn+1
k ρnew

k v∗
k − αn

kρ
n
kvn

k

Δt

)

dv =

−
∫

V

∇ · (αn+1
k ρnew

k vn
kv∗

k) dv

+
∫

V

∇ · σ∗
k dv −

∫

V

αn+1
k ∇pn dv

+
∫

V

αn
kρ

new
k g dv +

∫

V

M∗
k dv

(12.242)

The density estimate ρnew
k denotes the latest obtained density of phase

k. In the dispersed phase ρnew
d = ρn+1

d , while in the continuous phase
ρnew

c = ρ∗∗c .
7. Iterative gas pressure- and velocity corrections

A gas pressure update was then performed to correct the pressure- and
velocity fields:

∫

V

(

αn+1
k ρnew

k vn+1
k − αn+1

k ρnew
k v∗

k

Δt

)

dv =

−
∫

V

αn+1
k ∇δp dv ±

∫

V

K (δvl − δvk) dv, l 
= k

(12.243)

where the pressure correction δp = pn+1 − pn, is obtained by solving the
Poisson equation (the derivation is outlined below):

∑

k

(

1
ρ0

k

∇ ·
(

αn+1
k ρnew

k Gk∇δp
)

)

=

∑

k

(

1
ρ0

k

∇ ·
(

αn+1
k ρnew

k v∗
k

)

)

+
∑

k

(

1
ρ0

k

∂

∂t
(αkρk)

)

−
∑

k

(

Γk

ρ0
k

)

(12.244)

When the pressure correction, δp, is known, the velocities of the dispersed
and continuous phases were corrected according to (12.251) and (12.252),
respectively.
Finally, the gas density is updated in accordance with the ideal gas law:

ρn+1
c = ρ∗∗c +

Mn+1
ω

RTn+1
c

(pn+1 − pn) (12.245)

8. Update of turbulence fields
The k − ε turbulence model equations were discretized by an implicit
fractional step scheme similar to (12.183).
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Summary of the algorithm

• Integration of species mass balance for the mass fractions including a den-
sity update due to change in mixture composition.

• Iterative loop solving for the particle volume fraction, granular tempera-
ture and velocity estimates.

• Re-calculation of the velocities by solving the full momentum equations.
• Iterative calculation of the gas pressure and velocities.
• Solution of turbulence model equations.

In the work of Lindborg et al [119], the resulting linear equation systems were
solved with preconditioned Krylov subspace projection methods [166]. The
Poisson equation was solved by a conjugate gradient (CG)-solver, while the
other transport equations were solved using a bi-conjugate gradient (BCG)-
solver which can handle also non-symmetric equations systems. The solvers
were preconditioned with a Jacobi preconditioner.

Derivation of the Poisson equation for the gas pressure

First, to balance the residual contributions from both phases, the continuity
equations are normalized with respect to a constant representative density of
the respective phases ρ0

k. Then, we take the sum of the normalized continuity
equations for the two phases. The result can be written as:

∑

k

(

1
ρ0

k

∂

∂t
(αkρk)

)

+
∑

k

(

1
ρ0

k

∇ ·
(

αn+1
k ρnew

k vn+1
k

)

)

= (
Γk

ρ0
k

) (12.246)

The velocity corrections δvk = vn+1
k − v∗

k were introduced into (12.246):

∑

k

(

1
ρ0

k

∂

∂t
(αkρk

)

+
∑

k

(

1
ρ0

k

∇ ·
(

αn+1
k ρnew

k δvk

)

)

= −
∑

k

(

1
ρ0

k

∇ ·
(

αn+1
k ρnew

k v∗
k

)

) (12.247)

The velocity corrections in (12.247) were then substituted by the pressure
corrections employing appropriately defined pressure-velocity correction rela-
tionships. The pressure-velocity correction relationships were constructed by
subtracting the discrete momentum equations with the pressure at the old
time level n and the preliminary estimates for velocity fields (12.242) from
the semi-implicit discretization of the momentum equation with the corrected
pressure and the estimates for the velocity fields that satisfy the continuity
equations. The desired relationships are the given on the form:

∫

V

αn+1
k ρn+1

k

Δt
δvk dv = −

∫

V

αn+1
k ∇δp dv +

∫

V

K (δvl − δvk) dv, l 
= k

(12.248)
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Introducing a new variable Tk = αn+1
k ρn+1

k

Δt and rearranging these two relations
to determine the velocity corrections for the two phases, we obtain:

δvc =
Kδvd − αn+1

c ∇δp

Tc + K
(12.249)

δvd =
Kδvc − αn+1

d ∇δp

Td + K
(12.250)

Eliminating the continuous phase velocity correction in (12.250) by use of
(12.249), the required pressure-velocity correction relation for the dispersed
phase is achieved:

δvd = −
[

αn+1
d Tc + K

TcTd + K(Tc + Td)

]

∇δp = −Gd∇δp (12.251)

where Gd = αn+1
d Tc+K

TcTd+K(Tc+Td) .
By use of (12.251) eliminating the dispersed phase velocity in (12.249), the

pressure-velocity correction relation for the continuous phase can be written
as:

δvc = −
[

αn+1
c + KGd

Tc + K

]

∇δp = −Gc∇δp (12.252)

where Gc = αn+1
c +βGd

Tc+K .
A Poisson equation (12.244) was then obtained by inserting the pressure-

velocity correction relationships into (12.247).

Convergence Problems and Failure of Well-posedness of Granular
theory closures

A common problem encountered when developing algorithms intended for
simulation of fluidized beds is that numerical problems may occur in the dense
regions of the domain. A high solids volume fraction restricts the fluctuating
particle movement and thus reduces the granular temperature, which in turn
reduces the solid pressure. As a result, local compactions may get even more
compact. If the solids volume fraction approaches maximum packing, even
small variations in the packing have extreme impact on the radial distribution
function that instantly causes very steep gradients in the particle pressure,
which in the worst case results in convergence problems. Thus, some kind of
modification is commonly made in order to obtain convergence.

In the work by Lindborg et al [119], for example, the solid pressure is
assumed to change its dependency from pkc

d (θ, αd) to pkc
d (αd) if the tempera-

ture sinks below a certain threshold (θcrit = max|θmin, θ|). The lower limit is
dependent on the magnitude of the energy dissipation. A threshold value of
θmin = 1 × 10−6 m2/s2 was applied.

This model modification was not necessary when including frictional
stresses since these mechanisms cause extra resistance to particle motion in
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the dense areas and thereby reduce the probability of large, rapid fluctuations
in the distribution function. In addition, the convergence rate is generally
improved.

12.11.4 Solution of Multi-fluid Models

The multi-fluid model framework is required to simulate chemical processes
containing dispersed phases of multiple sizes. Two different designs of the
multi-fluid model have emerged over the years representing very different lev-
els of complexity. For dilute flows the dispersed phases are assumed not to
interact, so no population balance model is needed. For denser flows a pop-
ulation balance equation is included to describe the effects of the dispersed
phases interaction processes. Further details on the multi-fluid model formu-
lations are given in chap 8 and chap 9.

To solve the multi-fluid model version without the population balance, a
relatively simple generalization of the two-fluid IPSA algorithms to multiple
dispersed phases [21] are often used [96, 142]. In the referred three-fluid models
only two dispersed phases were included in the simulations. Tomiyama and
Shimada [190] made a similar four-fluid model which was solved by a pressure-
based finite difference algorithm similar to the single phase SMAC [2] or SOLA
[73] methods. In recent years, coupled solver technology is employed in some
codes solving the three-fluid models [21, 6].

No attempts has been made to solve the complete multi-fluid model version
with a population balance for a continuous distribution of the dispersed phases
together with the continuous phase equations. However, a few attempts have
been made to solve the complete multi-fluid model version for a few dispersed
phases only. In the Multi-Phase-Multi-Group Model [168, 169] and the N×M
MUSIG model [171, 57, 95], N particle size groups are used to describe the
size distribution within the M phases (or velocity groups). The two model
versions referred above were both implemented and solved in ANSYS CFX
codes. However, the former model was solved using a multi-fluid algorithm
that is similar to the IPSA procedures [176, 178, 179, 180], while the latter
model was solved by a coupled solver for the velocities and pressure avoiding
the SIMPLE-like approximation [21].

Bove [16] proposed a different approach to solve the multi-fluid model
equations in the in-house code FLOTRACS. To solve the unsteady multi-
fluid model together with a population balance equation for the dispersed
phases size distribution, a time splitting strategy was adopted for the popu-
lation balance equation. The transport operator (convection) of the equation
was solved separately from the source terms in the inner iteration loop. In this
way the convection operator which coincides with the continuity equation can
be employed constructing the pressure-correction equation. The population
balance source terms were solved in a separate step as part of the outer iter-
ation loop. The complete population balance equation solution provides the
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volume fractions of the dispersed phases. When the outer iteration loop was
converged, a consistent solution of the dense multi-fluid model was achieved.

12.12 Numerical Solution of the Population Balance
Equation

This part of the chapter is devoted to a few of the popular numerical dis-
cretization schemes used to solve the population balance equation for the
(fluid) particle size distribution. In this section we discuss the method of mo-
ments, the quadrature method of moments (QMOM), the direct quadrature
method of moments (DQMOM), the discrete method , the class method , the
multi-group method , and the least squares method .

For the continuous microscopic formulations, the closures and the numer-
ical discretizations are split so an optimal numerical solution method has to
be found after the closure laws are derived. The numerical solution methods
are in general problem dependent and optimized for particular applications.
For the discrete macroscopic formulations, the closures and the numerical dis-
cretizations are not split thus the numerical solution method is determining
a basis for the closure laws that are derived. The numerical solution method
chosen is thus a part of the model closure and cannot be optimized for par-
ticular applications.

In mathematical terms the population balance equation (PBE) is classified
as a non-linear partial integro-differential equation (PIDE). Since analytical
solutions of this equation are not available for most cases of practical interest,
several numerical solution methods have been proposed during the last two
decades as discussed by Williams and Loyalka [209] and Ramkrishna [151].

In general, the numerical solution of PIDEs consists of a three step pro-
cedure. First the basic set of PIDEs is discretized in the internal coordinates
and expressed as a set of partially differential equations (PDEs). The PDEs
are then discretized in time and the physical space coordinates using standard
PDE discretization techniques in a second step. Finally the resulting set of
algebraic equations are solved by use of a suitable solver.

For most engineering calculations in the past, fluxes and integral results
are considered sufficient interpreting growth-, agglomeration-, nucleation- and
breakage data and for fitting the mechanistic kernels for solid particle sus-
pensions. Therefore, only the first moments of the size density distribution
function of the population (i.e., the mean, the standard deviation, etc.) are
required. For the more complex fluid particle applications investigated in re-
cent studies local or semi-local size distributions are required enabling better
understanding of the physical phenomena involved and proper model valida-
tion. However, many of the present CFD codes still resort to integral formu-
lations minimizing the computational time and memory requirements. It thus
seems convenient to divide the numerical solution methods into two groups,
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the methods solving the models for the moments of the size distribution and
the methods solving the models for the size distribution itself.

Methods for the Moments of the Distribution

Basically, the method of moments converts the set of PIDEs into a set of PDEs
where each PDE represents a given moment of the population size density
function. Defining the j-th moment of the population density function like

μj =

∞
∫

0

djf(r, d, t)dd (12.253)

The PBE can be reduced to a set of PDEs by integrating the basic trans-
port equation over the whole particle size distribution,

∞
∫

0

[
∂f

∂t
+∇r · (vrf)+∇x · (vxf)−DC +BC −DB +BB ]djdd for j = 0, 1, ...

(12.254)
or in terms of the moments:

∂μj

∂t
+

∞
∫

0

[∇r · (vrf)]djdd+

∞
∫

0

[∇x · (vxf)]djdd =

∞
∫

0

[DC +BC −DB +BB ]djdd

(12.255)
for j = 0, 1, ...

Assuming that the convective velocities are independent of the property
coordinate (i.e., the particle diameter), one may integrate by parts:

∂μj

∂t
+djfvr|∞0 −∇r · vr

∞
∫

0

jdj−1fdd + djvxf |∞0 −∇x · vx

∞
∫

0

jdj−1fdd

=

∞
∫

0

[DC + BC −DB + BB]djdd, for j = 0, 1, ...

(12.256)

Since the f (r, d, t)-function goes to zero at the maximum and minimum
boundaries, the equation can be simplified and rewritten as:

∂μj

∂t
−j∇r·(vrμj−1)−j∇x·(vxμj−1) =

∞
∫

0

[DC+BC−DB+BB]djdd, for j = 0, 1, ...

(12.257)
with initial conditions μj(r, d, t = 0) = μ̂j(r, d) for j=0,1, ...
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The mathematical model characteristics of the source terms, i.e., DC , BC ,
DB and BB , determines whether the system of equations are closed or not.

To illustrate this problem a pure breakage process is considered, i.e., DC =
BC = 0, while DB 
= 0 and BB 
= 0. In addition, as an example only, a
generalized formulation of the breakage death term (DB) is analyzed in the
following. Assuming that the breakage frequency, bB(d), can be represented

by a polynomial relation like: bB(d) =
N
∑

i=0

bBi
PBi

(d), where PBi
(d) = dj ,

integration of the source term gives:
∞
∫

0

bBi
f(r, d, t)djdd =

N
∑

i=0

bBi

∞
∫

0

djf(r, d, t)djdd =
N

∑

i=0

bBi
μi+j (12.258)

This implies that higher order moments are introduced, thus the system of
PDEs cannot be closed analytically. It is possible to show that similar effects
will occur for the other source terms as well. This problem limits the appli-
cation of the exact method of moments to the particular case where we have
constant kernels only. In other cases one has to introduce approximate closures
in order to eliminate the higher order moments ensuring that the transport
equations for the moments of the particle size distribution can be expressed in
terms of the lower order moments only (i.e., a modeling process very similar
to turbulence modeling).

For bubbly flows most of the early papers either adopted a macroscopic
population balance approach with an inherent discrete discretization scheme
as described earlier, or rather semi-empirical transport equations for the con-
tact area and/or the particle diameter. Actually, very few consistent source
term closures exist for the microscopic population balance formulation. The
existing models are usually solved using discrete semi-integral techniques, as
will be outlined in the next sub-section.

Therefore, the approximate integral method is not widely used solving the
population balance model for bubbly flows as the kernels involved for these
systems are rather complex, thus it is very difficult to eliminate the higher
order moments developing closures with sufficient accuracy.

Hounslow et al [74] suggested that the difficulty incurred by the inclusion
of complex closures for the source terms investigating nucleation, growth and
aggregation of particulate suspensions can be relaxed discretizing the popula-
tion balance equation. The moments of the size distribution were calculated
from the discrete data resulting from the simulations. However, the direct so-
lution of the equations containing physical source term parameterizations by
use of conventional finite difference techniques is complicated by the presence
of the integral terms and results in computational loads far greater than is
desirable. Hounslow et al. thus placed substantial emphasis on determining
correctly both the moments and the particle size distribution. The novel nu-
merical technique developed, later referred to as the class method, reinforces
the conservative properties of a few lower order moments by transforming the
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equation introducing a constant volume correction factor that was found valid
for several cases. Further details will be given later on discussing the discrete
semi-integral and differential methods in general. The class method containing
volume correction factors has not been widely used for bubbly flows mainly
due to the complexity of the bubble breakage closures.

When the population balance is written in terms of one internal coordinate
(e.g., particle diameter or particle volume), the closure problem mentioned
above for the moment equation has been successfully relaxed for solid particle
systems by the use of a quadrature approximation.

In the quadrature method of moments (QMOM) developed by McGraw
[131], for the description of sulfuric acid-water aerosol dynamics (growth), a
certain type of quadrature function approximations are introduced to approx-
imate the evolution of the integrals determining the moments. Marchisio et al
[122, 123] extended the QMOM for the application to aggregation-breakage
processes. For the solution of crystallization and precipitation kernels the
size distribution function is expressed using an expansion in delta functions
[122, 123]:

f(d, t) ≈
P

∑

α=0

ωαδ(d− dα) (12.259)

where ωα is the weight of the delta function centered at the characteristic
particle size dα.

Defining the i-th moment of the population density function as

μi =

∞
∫

0

dif(d, t)dd (12.260)

Using a quadrature rule in order to approximate the integral yields:

μi =

∞
∫

0

dif(d, t)dd ≈
P

∑

α=1

ωα(t)di
α (12.261)

Inserting the same quadrature approximation to the source term integrals
provides an approximate numerical type of closure avoiding the higher order
moments closure problem on the cost of model accuracy [131]. This numerical
approximation actually neglects the physical effects of the higher order mo-
ments. No reports applying this procedure to bubbly flows have been found
so far.

Methods for the Number Density Distribution

This group of methods contains a large variety of solution strategies, but only
a few popular techniques like the finite volume (FVM) methods and the direct
quadrature method of moments (DQMOM) will be discussed.
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The main premise of these methods is that one in practice is not necessarily
interested in the number density probability f1, but rather in the number
density Ni (i.e., the number of bubbles of a particular size or size interval
per unit volume). The methods within this category either divide the size
domain into finite regions on which the number density is integrated to provide
balances between the number of particles in each bin, or solve the balance
equations accurately for a limited number of discretization points on the size
domain.

A group of discrete techniques is based on the conventional finite volume
and finite difference concepts and can be classified as finite volume methods
(FVM). The wide use of the FVMs to solve PBEs is due to the simple con-
struction and their conservative characteristics, in a similar manner as the
FVM is often preferred formulating the CFD discretization algorithms. That
is, the flux of a given property leaving through one face of the grid volume
must equal the flux entering the neighboring ones. Adopting this method thus
enforces the conservation of the conservative quantities. The growth terms are
simply treated as flux processes, whereas the coalescence and breakage pro-
cesses are more difficult to handle as the particles can disappear and appear
in different regions of the domain. In order to fulfill the conservation prop-
erties considering these processes, it is necessary to employ some kind of ad
hoc numerical tricks analogue to the linear source term manipulations in the
CFD algorithms. The different tricks employed in the literature on PBEs have
been characterized determining the so-called discrete-, class- and multi-group
methods.

Since either the discrete- or the multi-group FVMs are adopted in nearly
all multi-fluid CFD simulations, emphasis in the next paragraph is placed
on these two schemes as described by Ramkrishna [151] and Carrica et al
[24]. In principle the discrete- and multi-group methods are very similar. A
slight difference is observed in the way the number density is approximated.
The discrete method approximate the functional values at discrete pivotal
points within the size interval using delta functions, whereas the multi-group
method divide the size spectrum into a number of continuous sub-integrals or
groups. In addition, the mean value theorem is sometimes applied in different
ways. The multi-group method substitutes the mean value of the population
density in each interval in each integrand by fi = Ni/(di+1−di) and withdraw
this factor from the integral, whereas the discrete method can be based on
the multi-group approach or alternatively derived by estimating the kernels
at the pivots and assign the size interval definition to the remaining factors
of the integrals. The two names used referring to these methods originate
from the parallel historical development within two different fields of science.
The discrete method was developed in chemical engineering investigating bio-
populations, whereas the multi-group approach is developed in neutron- and
nuclear reactor physics. A well established approach in nuclear engineering
solving the neutron density transport equations resorts to the multiple energy
group equations using transfer cross sections. Similar ideas were later used to
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determine a detailed description of the dynamic interactions among groups of
particles.

First, the dispersed phase is divided into size intervals according to some
criteria, in this case we have chosen the bubble diameter di. The interval
[di, di+1] is denoted Ii and the total number of particles in the interval Ii is:

Ni(t) ≡
∫ di+1

di

fi(d, t)dd. (12.262)

The population balance is integrated in particle size over the subinterval:
∫ di+1

di

∂f(d, t)
∂t

dd +
∫ di+1

di

∇ · (f(d, t)vp)dd

=
∫ di+1

di

(BB(d, t) −DB(d, t) + BC(d, t) −DC(d, t)) dd.

(12.263)

The class boundaries are independent of time and spatial position so the
time derivation and the divergence operator can be moved outside the integral:

∂

∂t

∫ di+1

di

f(d, t)dd + ∇ ·
∫ di+1

di

(f(d, t)v)dd

=
∫ di+1

di

(BB(d, t) −DB(d, t) + BC(d, t) −DC(d, t)) dd.

(12.264)

The result of the integration is a balance equation for the number densities Ni,
in terms of the unknown number density probability, f1(d, t), and is, hence,
still unresolvable.

A number average particle velocity may be introduced to simplify the
expression for the convective terms:

∫ di+1

di

(f(d, t)v)dd =
∫ di+1

di

f(d, t)dd〈v〉Ni
= Ni〈v〉Ni

(12.265)

Inserting (12.262) and (12.265) into (12.264), yields:

∂Ni

∂t
+ ∇ · (Ni〈v〉Ni

)

=
∫ di+1

di

(BB(d, t) −DB(d, t) + BC(d, t) −DC(d, t)) dd.
(12.266)

The integrals (with respect to d′) in the source terms (see (9.76) to (9.79))
are expressed as the sum of integrals over sub-intervals. Replacing the integral
in all the source terms with a sum yields:

BB(d, t) =
M
∑

j=i

∫ dj+1

dj

v(d′) bB(d′)PB(d|d′)f1(d′, t) dd′ (12.267)
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DB(d, t) =bB(d)f1(d, t) (12.268)

BC(d, t) =
1
2

i−1
∑

j=0

dj
∫

dj+1

aC((d3 − d
′3)1/3, d′)f1((d3 − d

′3)1/3, t)f1(d′, t) dd′

(12.269)

DC(d, t) =f1(d, t)
M
∑

j=0

∫ dj+1

dj

aC(d, d′)f1(d′, t) dd′ (12.270)

The above expressions contain the continuous bubble number probability
density, f(d, t). The source terms must be expressed entirely in terms of the
dependent variable Ni. This can be achieved by using the mean value the-
orem [151]. Note, as mentioned before, at this point the discrete method of
Ramkrishna [151] may deviate slightly from the multi-group method.

The mean value theorem is used to cast the equations (12.267) to (12.270)
entirely in terms of Ni and Nj . In each interval the variables are replaced by
a mean value.

For example, using the discrete method the mean value theorem can be
used to express that

∫ di+1

di

DC(d, t) dd =
∫ di+1

di

f1(d, t)
M
∑

j=0

∫ dj+1

dj

aC(d, d′)f1(d′, t) dd′dd

≈ aC(xi, xj)
∫ di+1

di

f1(d, t)dd
M
∑

j=0

∫ dj+1

dj

f1(d′, t) dd′ = Ni

M
∑

j=0

aC(xi, xj)Nj ,

(12.271)

where xi and xj are pivotal points in Ii and Ij , respectively. The pivot
concentrates the particles in the interval at a single representative point. Thus
one may write the number probability density f1(d, t) as being given by:

f1(d, t) =
M
∑

i=0

Niδ(d− xi). (
1

m3(m)
) (12.272)

The RHS of equation (12.272) is zero for d 
= xi and equals Ni when d = xi.
Applying the mean value theorem on the source terms yields:

∫ di+1

di

BB(d, t) dd =
M
∑

j=i

Njv(xj) bB(xj)
∫ di+1

di

PB(d|xj)dd (12.273)

∫ di+1

di

DB(d, t) dd = bB(xi)Ni (12.274)
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∫ di+1

di

BC(d, t) dd =
1
2

i−1
∑

j=0

Nj

∑

(xj+xk)∈Ii

Nk aC(xk, xj) (12.275)

∫ di+1

di

DC(d, t) dd = Ni

M
∑

j=0

Nj aC(xi, xj) (12.276)

Inserting these expressions into (12.266) gives:

dNi

dt
+ ∇ · (Ni〈v〉Ni

)

=
M
∑

j=i

Njv(xj)bB(xj)
∫ di+1

di

PB(d|xj)dd− bB(xi)Ni

+
1
2

i−1
∑

j=0

Nj

∑

(xj+xk)∈Ii

Nk aC(xk, xj) −Ni

M
∑

j=0

Nj aC(xi, xj), i = 0, 1, ...,M

(12.277)

Equation (12.277) is not necessary conservative due to the finite (i.e., in
practice rather coarse) size grid resolution, and some sort of numerical trick
must be used to enforce the conservative properties. It is mainly at this point
in the formulation of the numerical algorithm that the class method of Houn-
slow et al [74], the discrete method of Ramkrishna [151] and the multi-group
approach used by Carrica et al [24], among others, differs to some extent as
discussed earlier.

The problem in question is related to the birth terms only. In the discrete
method of Ramkrishna [151], the formation of a bubble of size d′ in size
range (xi, xi+1) due to breakage or coalescence is represented by assigning
fractions γ1(d, xi) and γ2(d, xi+1) to bubble population at pivots xi and xi+1,
respectively. This is necessary because not all coalescence and breakage result
in a bubble which has a legitimate size. For the non-valid daughter particles
one has to distribute the new bubble in fractions γ1(d, xi) and γ2(d, xi+1) of
the two neighboring size pivots. To determine these two fractions, one needs
two balance equations. The first balance equation relates to the total volume
or mass of the bubbles, to ensure mass conservation. The second balance
equation is the number balance for the bubbles involved in the breakage and
coalescence processes.

The balances are thus written:

γ1(d, xi)Vb,i(d) + γ2(d, xi+1)Vb,i+1(d) = Vb(d) (12.278)

γ1(d, xi) + γ2(d, xi+1) = 1 (12.279)

Alternatively, the second balance equation is sometimes substituted by a
bubble surface balance since one wants to ensure good estimates of the contact
area. The surface area balance is stated like:
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γ1(d, xi) ab,i + γ2(d, xi+1) ab,i+1 = ab(d) (12.280)

The fractions γ1(d, xi) and γ2(d, xi+1) need to be embedded in the source
terms as part of the discretization procedure. Thus, the source terms are
modified to:

dNi

dt
+ ∇ · (Ni〈v〉Ni

)

=
M
∑

j=i

γ1(d, xi)Njv(xj)bB(xj)
∫ xi

xi−1

PB(d|xj)dd

+
M
∑

j=i

γ2(d, xi)Njv(xj)bB(xj)
∫ xi+1

xi

PB(d|xj)dd− bB(xi)Ni

+
1
2

i−1
∑

j=0

Nj

∑

(xj+xk)∈Ii

Nk γ1(d, xi)a(xk, xj)

+
1
2

i−1
∑

j=0

Nj

∑

(xj+xk)∈Ii−1

Nk γ2(d, xi)a(xk, xj) −Ni

M
∑

j=0

Nj aC(xi, xj)

(12.281)

The breakage function, PB(d|d′)dd, is the number of particles formed between
size d′ and d′ + dd′ divided by the total number of size d particles broken. At
the pivots, the corresponding breakage function is defined as PB(xi|xk):

PB(xi|xk) =
∫ xi

xi−1

PB(d|xk)dd +
∫ xi+1

xi

PB(d|xk)dd (−) (12.282)

The multi-group approach of Carrica et al [24] will be outlined next using
particle mass as the internal coordinate. All the particles of mass between
mg−1/2 and mg+1/2 are thus represented in a group, g, by a single particle
mass, mg. mg−1/2 and mg+1/2 are chosen such that a reasonable representa-
tion of the distribution is obtained.

Integrating the population balance equation between mg−1/2 and mg+1/2

one obtains:

∂ng(r, t)
∂t

+ ∇r · [vg(r, t)ng(r, t)] + [
dm

dt
f(m, r, t)]mg+1/2

mg−1/2 =
mg+1/2

∫

mg−1/2

[BB(m, r, t) −DB(m, r, t) + BC(m, r, t) −DC(m, r, t) + S(m, r, t)]dm

(12.283)

The average particle velocity in the group g can be calculated as:
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vg(r, t) =
1

ng(r, t)

mg+1/2
∫

mg−1/2

v(m, r, t)f(m, r, t) dm (12.284)

The group number density is defined as:

ng(r, t) =

mg+1/2
∫

mg−1/2

f(m, r, t) dm (12.285)

Carrica et al [24] further assumed that the distribution function, the particle
velocities, the particle mass exchange rate and the breakage and coalescence
probability are assumed constant in each group. Under these restrictions, the
balance equation yields:

∂ng

∂t
+ ∇r · (vgng) =

BB,g −DB,g + BC,g −DC,g + Sg − [
dm

dt
f(m, r, t)]mg+1/2

mg−1/2

(12.286)

The growth terms need some further attention. Considering that for fluid
particles the mass change rate (or an imaginary velocity in the internal coor-
dinates) of the particle, dm

dt , is negative for the case of condensation or particle
dissolution, and is positive in the case of evaporation or mass diffusion into
the particle the distribution function was discretized using an upwinding ap-
proach.

In an imaginary finite volume approach the distribution function dis-
cretizations at the corresponding imaginary grid cell interface, g + 1/2, thus
yield:

fg+1/2 ≈ ng+1

mg+1 −mg
, for

dm

dt
< 0 (12.287)

fg+1/2 ≈ ng

mg+1 −mg
, for

dm

dt
> 0 (12.288)

Consistent discretization schemes are used at the other grid cell interfaces.
For the case of condensation or particle dissolution, the growth terms can

thus be expresses as:

[
dm

dt
f(m, r, t)]mg+1/2

mg−1/2 = [
dm

dt
f(m, r, t)]mg+1/2 − [

dm

dt
f(m, r, t)]mg−1/2

≈[
dm

dt
]mg+1/2 [f(m, r, t)]mg+1/2 − [

dm

dt
]mg+1/2 [f(m, r, t)]mg+1/2

≈[
dm

dt
]mg+1/2

ng+1

mg+1 −mg
− [

dm

dt
]mg−1/2

ng

mg −mg−1

(12.289)

For the case of evaporation or mass diffusion into the particle the dis-
cretization scheme is modified accordingly:
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[
dm

dt
f(m, r, t)]mg+1/2

mg−1/2 = [
dm

dt
f(m, r, t)]mg+1/2 − [

dm

dt
f(m, r, t)]mg−1/2

≈[
dm

dt
]mg+1/2 [f(m, r, t)]mg+1/2 − [

dm

dt
]mg+1/2 [f(m, r, t)]mg+1/2

≈[
dm

dt
]mg+1/2

ng

mg+1 −mg
− [

dm

dt
]mg−1/2

ng−1

mg −mg−1

(12.290)

To generalize the mass loss (or gain) rate term formulation, a staggered
grid arrangement is used shifting the velocity index notation:

[
dm

dt
f(m, r, t)]mg+1/2

mg−1/2 = [
dm

dt
f(m, r, t)]mg+1/2 − [

dm

dt
f(m, r, t)]mg−1/2

≈ ng+1

mg+1 −mg
min([

dm

dt
]mg+1 , 0) − ng

mg −mg−1
min([

dm

dt
]mg−1/2 , 0)

+
ng

mg+1 −mg
max([

dm

dt
]mg+1/2) −

ng−1

mg −mg−1
max([

dm

dt
]mg−1/2)

(12.291)

Introducing these approximations, the balance equation yields:

∂ng

∂t
+ ∇r · (vgng) = BB,g −DB,g + BC,g −DC,g + Sg

− ng+1

mg+1 −mg
min([

dm

dt
]mg+1 , 0) +

ng

mg −mg−1
min([

dm

dt
]mg−1/2 , 0)

− ng

mg+1 −mg
max([

dm

dt
]mg+1/2) +

ng−1

mg −mg−1
max([

dm

dt
]mg−1/2)

(12.292)

The groups must be chosen so as to cover all the possible relevant masses,
as estimated from the maximum and minimum particle sizes in the distribu-
tion for the problem in question. Furthermore, the group masses are deter-
mined by the constant lower and upper limit masses which are assumed to be
m1−1/2,m1+1/2, ...,mg−1/2,m1+1/2, ...,mNG+1/2, where NG is the total num-
ber of groups, and the average mass for each group is m1,m2, ...,mg, ...,mNG.

The particle volume fraction is related to the group number density by:

αg(r, t) =
NG
∑

g=1

mgng(r, t)
ρg(r, t)

(12.293)

This multi-group model can be solved in combination with the multi-fluid
model to calculate the dispersed phase velocity field for each group.

Furthermore, due to the limited internal coordinate resolution, the calcu-
lation of the coalescence and breakage terms requires some “trick” to enable
an accurate determination of the mass of each group. The numerical imple-
mentation of the coalescence source terms is rather complex and requires a
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model for the mass transfer between the groups. With the basic multi-group
model assumptions we can define a group collision kernel as:

∫

ml

∫

mk

pC(m,m′)ωC(m,m′)dmdm′ ≈ CklpC,klnknl (12.294)

The coalescence source term can then be calculated as:

BC,g ≈ 1
2

∑

k≤g

CklpC,klXgklnknl (12.295)

where l is such that mg−1 < mk + ml < mg+1 and Xgkl is a matrix with
components having a value between 0 and 1 that accounts for the fraction
of mass that is transferred from the coalescence of two fluid particles from
groups k and l to the group g

Xgkl =
mk + ml −mg

mg −mg−1
, when (mk + ml < mg) (12.296)

and

Xgkl =
mk + ml −mg+1

mg −mg+1
, when (mk + ml > mg) (12.297)

If the group masses are chosen such as the mass interval is constant, the
matrix Xgkl will be filled with 1 and 0, because the sum of the masses of
any two groups will be coincident with the mass of other groups. However, if
the group masses are chosen with non-constant intervals in mass, the daughter
particle will generally not have a mass coincident with one of the group masses.
In this model the particle mass is transferred to the two nearest groups to the
sum of the masses k and l using a linear distribution. This implies that the
total mass mk +ml will be distributed linearly between the groups g and g+1,
or between the groups g − 1 and g.

On the same grounds, the losses due to coalescence can be calculated as:

DC,g ≈
NG
∑

k=1

CgkpC,gkngnk (12.298)

For the breakage sources, the procedure is similar. After integration of the
population balance source terms we can write the particle breakage source
terms for group g as:

BB,g ≈
NG
∑

k=g

bkXgknk (12.299)

where bk is the total breakage rate evaluated at the mass of group k. The
matrix Xgk is defined using the same assumptions as in the case of the mass
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conservation matrix Xgkl for the coalescence case, thus resulting in a mass
conservation matrix of the form:

Xgk = 2
mk

2 −mg−1

mg −mg−1
, when (mg−1 <

mk

2
< mg), (12.300)

Xgk = 2
mk

2 −mg+1

mg −mg+1
, when (mg+1 >

mk

2
> mg) (12.301)

Xgk = 0, otherwise (12.302)

The sink terms are calculated as

DB,g = bgng (12.303)

In the multi-group implementation, the particles of the minimum size
group that were dissolving were considered lost.

In all the FVMs the smallest bubbles do not break up and the largest
bubbles are not involved in the coalescence process. In order to cover a broad
range in the bubble size distribution (i.e., mass, volume or diameter), a large
number of classes, bins or groups are needed making these algorithms rather
time consuming. However, these methods provide information on the bubble
size distribution that is needed in the multi-fluid framework and can also be
used for proper validation of the source term closures. The simpler method
of moments containing transport equations for only a few moments like the
mean bubble size, the variance, etc. cannot be used in a multi-fluid framework
due to the lack of any bubble size resolution and can thus only be validated in
an average sense even if experimental data on the size distribution is provided.
For very simple distribution functions it may be possible to reconstruct the
physical size distributions with sufficient accuracy utilizing the information
provided by a few moments only (i.e., as provided by the moment models).
However, as the existing integral models provide two to five moments only, it
is believed that the complex bubble size distributions cannot be reproduced
with sufficient accuracy. It is then an open question whether the computational
costs solving transport equations for about 10-15 moments, ensuring sufficient
accuracy, are less than the corresponding costs solving for the whole size
distributions using spectral methods. Further work in our group continuous
to elucidate this issue.

Another method representing an extension of the QMOM method has
obtained increasing attention for particulate systems during the last years.
According to Fan et al [46], one of the main limitations of the QMOM is that
the solid phase is represented through the moments of the distribution, thus
the phase-average velocity of the different solid phases must be used to solve
the transport equations for the moments. Thus, in order to use this method
in the context of multiphase flows, it is necessary to extend QMOM to handle
cases where each particle size is convected by its own velocity. In order to
address these issues, a direct quadrature method of moments (DQMOM) has
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been formulated by Fan et al [46]. DQMOM is based on the direct solution of
the transport equations for weights and abscissas of the quadrature approx-
imation (i.e., being quadrature approximations for the moments). Moreover,
each node of the quadrature approximation is treated as a distinct solid phase.
DQMOM is thus used as a module in multi-fluid models describing polydis-
perse solid phases undergoing segregation, growth, aggregation and breakage
processes in the context of CFD simulations.

Dorao and Jakobsen [40, 41] did show that the QMOM is ill conditioned
(see, e.g., Press et al [149]) and not reliable when the complexity of the prob-
lem increases. In particular, it was shown that the high order moments are
not well represented by QMOM, and that the higher the order of the mo-
ment, the higher the error becomes in the predictions. Besides, the nature
of the kernel functions determine the number of moments that must be used
by QMOM to reach a certain accuracy. The higher the polynomial order of
the kernel functions, the higher the number of moments required for getting
reliable predictions. This can reduce the applicability of QMOM in the simu-
lation of fluid particle flows where the kernel functions can have quite complex
functional dependences. On the other hand, QMOM can still be used in some
applications where the kernel functions are given as low order polynomials
like in some solid particle or crystallization problems.

There is still no reports published evaluating the behavior of this proce-
dure for fluid particle flows. In practical applications, the stability problems
are commonly adjusted by numerous tricks that reduce the accuracy of the
method.

Methods for the Continuous Distribution

This group of methods consists of a number of weighted residual methods that
are based on spectral solution strategies, but only the least squares spectral
method is discussed.

The main premise of these methods is to predict a continuous number
density probability f1. If the discrete number density Ni is of interest, it can
be calculated from the solution of the continuous number density probability
function.

The Least Squares Method (LSM) is a well established numerical method
for solving a wide range of mathematical problems [84, 12, 150, 146]. The basic
idea in the LSM is to minimize the integral of the square of the residual over
the computational domain. In the case when the exact solutions are sufficiently
smooth the convergence rate is exponential. In particular, the application of
LSM to PBE as has been discussed by [38, 39, 36, 37].

The Least-Squares formulation is based on the minimization of a norm-
equivalent functional. This method consists in finding the minimizer of the
residual in a certain norm. Consider the following linear problem:

Lf(ξ) + g(ξ) = 0, in Ω (12.304)



12.12 Numerical Solution of the Population Balance Equation 1091

where L is a linear first order differential operator. The norm–equivalent func-
tional for equation (12.304) can be given by

J (f ; g) ≡1
2
‖ Lf + g ‖2

Y (Ω) (12.305)

with the norm ‖ • ‖2
Y (Ω) defined like:

‖ • ‖2
Y (Ω)= 〈•, •〉Y (Ω) =

∫

Ω

• • dΩ (12.306)

in general the L2-norm is used.
Based on variational analysis, the minimization statement is equivalent to:

Find f ∈ X(Ω) such that

lim
ε→0

dJ (f + ε v; g)
dε

= 0 ∀v ∈ X(Ω) (12.307)

where X(Ω) is the space of the admissible functions. Consequently, the nec-
essary condition can be written as:

Find f ∈ X(Ω) such that

A(f, v) = F(v) ∀v ∈ X(Ω) (12.308)

with

A(f, v) = 〈Lf,Lv〉Y (Ω) (12.309)
F(v) = 〈g,Lv〉Y (Ω) (12.310)

where A : X × X is a symmetric, continuous bilinear form, and F : X a
continuous linear form.

The discretization statement consists of searching the solution in a reduced
subspace, i.e. fN (ξ) ∈ XN (Ω) ⊂ X(Ω). Therefore, fN can be expressed like:

fN (ξ) =
N

∑

l=0

fl ϕl(ξ), (12.311)

where ϕl(ξ) are basis functions. One possibility, the basis functions may
consist of Lagrangian interpolants polynomials through the Gauss-Lobatto-
Legendre (GLL) collocation points.

Inserting approximation (12.311) into equation (12.308), and choosing sys-
tematically v = ϕ0, . . . , ϕN , we get the final algebraic system:

A f = F (12.312)

where the matrix A, and vectors F ,f are defined as:
[

A
]

ij
= A(ϕj , ϕi) = 〈Lϕj ,Lϕi〉Y (Ω) (12.313)
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[

F
]

i
= F(ϕi) = 〈g,Lϕi〉Y (Ω) (12.314)

[

f
]

i
= fi (12.315)

The final system of equations is symmetric, positive definite, hence the so-
lution of such a system can be obtained in an efficient way using standard
matrix solvers like conjugate gradient method.

12.13 Solution of Linear Equation Systems

For steady-state models and models discretized by implicit schemes the result
of a discretization process is a system of algebraic equations, which are linear
or non-linear according to the nature of the partial differential equation(s)
from which they are derived. However, all the existing equation solvers are
designed for linear systems. In the non-linear case, the discretized equations
must thus be solved in an iterative manner that involves guessing a solution,
linearizing the equations about that solution, solving the linearized equations
by a linear equation solver, and improving the solution. This process is re-
peated until a converged result is obtained. Although many procedures can
be used to solve the algebraic equations, the available computer resources is a
serious constraint. This means that, whether the equations are linear or not,
efficient methods for solving linear systems of algebraic equations are required.

There are two basic families of solution techniques for linear algebraic
equations: Direct- and iterative methods. A well known example of direct
methods is Gaussian elimination. The simultaneous storage of all coefficients
of the set of equations in core memory is required. Iterative methods are
based on the repeated application of a relatively simple algorithm leading to
eventual convergence after a number of repetitions (iterations). Well known
examples are the Jacobi and Gauss-Seidel point-by-point iteration methods.

The discretization of the dynamic 3D multi-fluid model equations, for ex-
ample, normally leads to a large number of sparse linear algebraic equations.
Computer efficiency and storage are thus important aspects to consider when
selecting an optimal solver for these problems. Direct methods are usually ro-
bust at the cost of large storage requirements. In contrast, iterative methods
need less storage capacity while their performance may be problem depen-
dent. Iterative solvers that take advantage of the sparsity of the discretization
matrix are thus generally preferable for problems comprising a large number
of variables.

12.13.1 Point-Iterative Methods

Consider a system of n equations and n unknowns in matrix form, Ax = b.
This problem can be expressed in an element form where the coefficients of
matrix A can be seen explicitly:
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n
∑

j=1

aijxj = bi (12.316)

In the Jacobi method, we rearrange the system of equations to place the
contribution due to xi on the LHS of the ith equation and the other terms
on the RHS, and we divide both sides of the equation by aii. The iteration
equation for the Jacobi method is written as:

xν
i = −

n
∑

j=1
j �=i

aij

aii
xν−1

j +
bi

aii
, i = 1, 2, 3, ..., n (12.317)

The iteration equation for the Gauss-Seidel method is obtained employing the
last available values within the iteration process:

xν
i = −

i−1
∑

j=1

aij

aii
xν

j −
n

∑

j=i+1

aij

aii
xν−1

j +
bi

aii
, i = 1, 2, 3, ..., n (12.318)

The convergence rate of the Jacobi and Gauss-Seidel methods depends on the
properties of the iteration matrix. By experience, it has been found that these
methods can be improved by the introduction of a relaxation parameter α.
Consider the Gauss-Seidel method, it can be rewritten as:

xν
i = xν−1

i − α

[ i−1
∑

j=1

aij

aii
xν

j −
n

∑

j=i

aij

aii
xν−1

j +
bi

aii

]

, i = 1, 2, 3, ..., n (12.319)

When α = 1, the original Gauss-Seidel method is recovered. Other values of
the parameter α yields different iterative sequences. If 0 < α < 1 then the
procedure is an under-relaxation method, else with α > 1 we have obtained
an approach that is called the successive over-relaxation (SOR) technique.

Unfortunately, the optimum value of the relaxation parameter is problem
and grid dependent, hence it is difficult to give precise guidance. Besides, the
convergence rate of the point-iterative methods rapidly reduces as the grid is
refined.

12.13.2 The Tri-Diagonal Matrix Algorithm (TDMA)

The matrices derived from partial differential equations are always sparse, i.e.
most of their elements are zero. For one-dimensional systems the discretiza-
tion process leads to tri-diagonal systems, a system with only three non-zero
coefficients per equation. Since the systems are often very large we find that
iterative methods are generally much more economical than direct methods.

Jacobi and Gauss-Seidel iterative methods are easy to implement in simple
computer programs, but they can be slow to converge when the system of
equations is large. Hence they are not considered suitable for CFD simulations.
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The tri-diagonal matrix algorithm (TDMA) of Thomas [185] was commonly
used in the period from the late 1960s to the early 1990s. The TDMA is a
direct method for one-dimensional situations, but it can be applied iteratively,
in a line-by-line fashion, to solve multi-dimensional problems (in a line wise
Gauss-Seidel approach). There are, however, other algorithms which may be
more robust concerning stability, but TDMA requires a minimum of storage
and is often less expensive than the alternative techniques.

For convenience in presenting the TDMA algorithm, a somewhat different
nomenclature will be used [141]. Suppose the grid points were numbered 1,
2, 3, ..., N , with points 1 and N denoting the boundary points. Consider a
system of equations that has a tri-diagonal form:

aiφi = biφi+1 − ciφi−1 + di (12.320)

for i = 1, 2, 3, ..., N. Thus, the variable φi is related to the neighboring vari-
ables φi+1 and φi−1. To account for the special form of the boundary-point
equations, set c1 = 0 and bN = 0, so that the variables φ0 and φN+1 will
not have any meaningful role to play. When the boundary values are given,
these boundary point equations take a rather trivial form. For example, if φ1

is given, we have a1 = 0, b1 = 0, c1 = 0, and d1 = the given value of φ1.
The basic equation above can be rewritten as:

φi =
bi

ai
φi+1 −

ci

ai
φi−1 +

di

ai
(12.321)

These equations can be solved by forward elimination and back-substitution.
In the forward elimination process we seek a relation:

φi = Piφi+1 + Qi (12.322)

after we have just obtained

φi−1 = Pi−1φi + Qi−1 (12.323)

Substitution of equation (12.323) into (12.320) leads to:

aiφi = biφi+1 − ci(Pi−1φi + Qi−1) + di (12.324)

which can be rearranged to the form of equation (12.322). In other words, the
coefficients Pi and Qi is then given by:

Pi =
bi

ai − ciPi−1
(12.325)

Qi =
di + ciQi−1

ai − ciPi−1
(12.326)

These are recurrence relations, since they give Pi and Qi in terms of Pi−1 and
Qi−1. At the boundary points we see that for i = 1, P1 = b1

a1
and Q1 = d1

a1
,

and for i = N we obtain PN = 0 and φN = QN .
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For the back-substitution we use the general form of the recurrence rela-
tionship (12.322).

The iterative procedure is considered to give a converged solution if the
absolute normalized residuals for all the variables as well as the mass source b
of the pressure correction equation are less than a prescribed small value, de-
noting the convergence criterion. The absolute normalized residual is defined
as:

Rν
ψ =

∑

all nodes |
∑

nb anbψnb + SC − aPψP |ν
Fin,ψ

(12.327)

and for the pressure correction equation:

Rν
mass =

∑

all nodes |b|ν
Min,mass

(12.328)

The Fin,ψ denotes the total inflow of the property ψ into the calculation
domain and Min,mass represents the total inflow of mass. The prescribed small
threshold value used to define the convergence criterion is problem dependent
and may vary with grid resolution. Nevertheless, the iteration is generally
aborted when the normalized residuals for all the variables fall below 10−3.

Note that this solver fail to converge when applied to algebraic equa-
tion systems which are not diagonally dominant. For non-linear and multi-
dimensional problems, the algorithm is used in a line-wise Gauss-Seidel ap-
proach. The convergence rate for linear multi-dimensional problems is gen-
erally severely degraded when only one dimension can be considered at the
time, so multidimensional iterative algorithms may be preferable.

12.13.3 Krylov Subspace Methods

The conjugate gradient algorithm of Hestenes and Stiefel [70] and the bi-
conjugate gradient algorithm of Fletcher [52] and their preconditioned versions
[166] are presented in the following sections .

Consider a system of linear algebraic equations written on the form
Ax = b. The basic idea of the Krylov subspace methods is to project a large
problem onto a Krylov subspace by constructing a basis of the subspace. The
Krylov subspace methods form an orthogonal basis of the sequence of suc-
cessive matrix powers times the initial residual (the Krylov sequence). The
approximations to the solution are then formed by minimizing the residual
over the subspace formed. The projected subspace problem is solved by a
standard well established technique before an approximate solution of the
original problem is recovered from the solution of the projected problem.
The numerous variants of the Krylov subspace methods arise from different
choices of basis of the Krylov subspace. The prototype method in this class is
the conjugate gradient method (CG). Another popular method in this class,
the bi-conjugate gradient method (BCG) is more advanced and better suited
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for solving problems giving rise to unsymmetric A-matrices. Several exten-
sions of the BCG-method have been developed (e.g., the Conjugate Gradi-
ent Squared (CGS) method, the bi-orthogonal Conjugate Gradient Stabilized
(BCGSTAB), etc.), intending to reduce the the computational costs of the
BCG method. The generalized minimal residual method (GMRES) proposed
by Saad and Shultz [165] is also designed for unsymmetric matrices and is one
of the most advanced methods in this class that among other things may treat
nearly singular systems, but also one of the most computationally intensive
methods.

In cases where iterative methods are employed to solve large, sparse linear
systems, both the efficiency and robustness of these methods can be signifi-
cantly improved by use of preconditioners. A preconditioner M of a matrix
A is a matrix such that M−1A has a smaller condition number than A. The
condition number associated with such a problem is a measure of that prob-
lem’s amenability to digital computation, that is, how numerically well-posed
the problem is. A problem with a low condition number is said to be well-
conditioned, while a problem with a high condition number is said to be ill-
conditioned. In particular, if M is a symmetric, positive definite matrix14 that
approximates the original A matrix but is easier to invert, the original prob-
lem Ax = b can be solved indirectly by solving M−1Ax = M−1b. However,
the advanced preconditioners are generally more computationally expensive
than the simpler ones. Although the number of iterations is normally reduced
with increasing complexity of the preconditioner, the total computational cost
may not necessarily be improved. An aim when designing appropriate precon-
ditioners is to find a suitable balance between the computational time required
by the preconditioner and the solver. One simple, but computationally inex-
pensive and effective preconditioner suitable for diagonally dominant matrices
is the Jacobi preconditioner . This preconditioner contains only the diagonal
elements of the A-matrix:

M = diag(A) (12.329)

More complex preconditioners are the incomplete LU-preconditioners (ILU)
given on the form:

M = LU (12.330)

in which L and U are the lower- and upper triangular matrices, derived by
Gauss-elimination where certain fill elements are ignored (hence the name
incomplete).

The best known Krylov subspace method is the method of Conjugate Gra-
dients (CG) by Hestenes and Stiefel [70]. If A is symmetric positive definite,
the solution of the problem Ax = b corresponds to determining a local mini-
mum of the quadratic function:

14 The matrix M is symmetric if A = AT . The matrix is said to be positive definite if
the Euclidean inner product (x,Mx) > 0 whenever x �= 0 [166]. The Euclidean in-
ner product between two vectors x and y is defined as (x,y) = xT y =

∑n
l=1 xlyl.
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f(x) =
1
2
xTAx − bT x (12.331)

The basis used in this method is conjugate search directions and orthogonal
residuals15 which is equivalent to finding a minimum point along the search
directions.

The Conjugate Gradient Algorithm

In a linear system Ax = b where the matrix A is symmetric and positive defi-
nite, the solution is obtained by minimizing the quadratic form (12.331). This
implies that the gradient, f ′(x) = Ax− b, is zero. In the iteration procedure
an approximate solution, xm+1, can be expressed as a linear combination of
the previous solution and a search direction, pm, which is scaled by a scaling
factor αm:

xm+1 = xm + αmpm (12.332)

An indication of how far the approximated solution is from the real solution
is given by the residual:

rm+1 = −f ′(xm+1) = b −Axm+1 = rm − αmApm (12.333)

In order to determine scaling factor and thereby the step length, the
quadratic function f(xm+1) has to be minimized with respect to αm:

d

dαm
f(xm+1) = f ′(xm+1)T dxm+1

dαm
= −rT

m+1pm = 0 (12.334)

By using the definition the residual (12.333) in (12.334) and switching to
the inner product notation rT

m+1pm = (rm+1,pm) results in:

αm =
(rm,pm)

(Apm,pm)
(12.335)

If the next search direction is a linear combination of the previous search
direction scaled by a factor βm and the residual rm+1:

pm+1 = rm+1 + βmpm (12.336)

a consequence of this relation and (12.334) is:

(rm,pm) = (rm, rm + βm−1pm−1) = (rm, rm) (12.337)

Then (12.335) becomes:

15 If the matrix A is symmetric, then two vectors x and y are conjugate or A-
orthogonal if the A-inner product (x,y)A = (Ax,y) = (x,Ay) = 0 holds [166].
Vectors are orthogonal if (x,y) = 0.
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αm =
(rm, rm)

(Apm,pm)
(12.338)

Moreover, it can be shown that the residuals are orthogonal when requiring
conjugate search directions, i.e. (pm,Apm−1) = (Apm,pm−1) = 0

(rm+1,pm) = (rm+1, rm + βm−1pm−1)
= (rm+1, rm) + (rm − αApm, βm−1pm−1)
= (rm+1, rm) = 0 (12.339)

The conjugacy constrain is also applied when determining the scaling fac-
tor, βm, from (12.336):

βm = − (rm+1,Apm)
(pm,Apm)

(12.340)

This equation can be reformulated by using (12.333), (12.339) and (12.338):

βm

(12.333)
=

1
αm

(rm+1, rm+1 − rm)
(pm,Apm)

(12.339)
=

1
αm

(rm+1, rm+1)
(pm,Apm)

(12.338)
=

(rm+1, rm+1)
(rm, rm)

(12.341)

Putting these relations together gives the following algorithm:

ALGORITHM 1 The conjugate gradient (CG) algorithm.
m = 0
pm = rm = b −Axm

while not convergence do

αm =
(rm, rm)

(Apm,pm)
xm+1 = xm + αmpm

rm+1 = rm − αmApm

βm =
(rm+1, rm+1)

(rm, rm)
pm+1 = rm+1 + βmpm

m = m + 1
end while

The result is xm+1.

12.13.4 Preconditioning

Preconditioning is a technique which improves the condition number of a ma-
trix and thereby increases the convergence rate of Krylov subspace meth-
ods. Thus, if the preconditioner M is a symmetric, positive definite ma-
trix, the original problem Ax = b can be solved indirectly by solving
M−1Ax = M−1b. The the residual can then be written as:
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zm+1 = M−1rm+1 = zm −M−1αmApm (12.342)

Using this relation, the condition (12.334) can be expressed in terms of
the M-inner product:

(rm+1,pm) = (Mzm+1,pm) = (zm+1,pm)M = 0 (12.343)

The new search direction is now a linear combination of the previous search
direction and zm+1:

pm+1 = zm+1 + βmpm (12.344)

With the same procedures used in the previous section the scaling factors,
αm and βm, then becomes:

αm =
(zm, zm)M

(M−1Apm,pm)M
=

(zm, rm)
(Apm,pm)

(12.345)

βm =
(zm+1, zm+1)M

(zm, zm)M
=

(rm+1, zm+1)
(rm, zm)

(12.346)

This result comprises an algorithm that can be summarized as follows:

ALGORITHM 2 The preconditioned conjugate gradient (CG) algorithm
m = 0
rm = b −Axm

pm = zm = M−1rm

while not convergence do

αm =
(zm, rm)

(Apm,pm)
xm+1 = xm + αmpm

rm+1 = rm − αmApm

zm+1 = M−1rm+1

βm =
(zm+1, rm+1)

(zm, rm)
pm+1 = zm+1 + βmpm

m = m + 1
end while

A weakness of the CG-method is thew restriction to symmetric matrices.
Thus, there is no guarantee for convergence when applying the algorithm
to equation systems that are not symmetric. For that reason, for the flow
models only the Poisson equation is normally solved using the CG-method,
the other equations are solved using the bi-conjugate gradient method (BCG)
of Fletcher [52] which is a generalization of the CG-method for solving systems
of equations that are not necessarily symmetric or positive definite. With a
doubling of the computational costs per iteration, non-symmetric systems can
be converted into a symmetric system of double size:
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[

0 Ak

AT
k 0

] [

x∗
k

xk

]

=
[

bk

b∗
k

]

(12.347)

However, since the expanded system is indefinite the minimization argu-
ment of the CG-method becomes ineffective. The CG-method is thus modified
by replacing the orthogonal sequence of residuals by two mutually orthogonal
sequences. In addition, the conjugacy constraint of the search directions is
replaced by a corresponding conjugacy constraint of the two mutual search
directions.

The Bi-Conjugate Gradient Algorithm

The BCG-method is an extension of the CG-method for systems that are not
symmetric or positive definite. Systems involving non-symmetric matrices, can
be turned into symmetric systems on the form (12.347). Due to the indefinite
matrix in this expanded system, the original CG-method is somewhat modified
since the minimization argument becomes ineffective. The residual norm may
even increase during iterations. With the following constrains:

(rm+1, r∗m) = (rm, r∗m+1) = 0 (12.348)
(Apm+1,p∗

m) = (Apm,p∗
m+1) = 0 (12.349)

the BCG-method can be derived in the same manner as the CG-method.

ALGORITHM 3 The bi-conjugate gradient algorithm
m = 0
p∗

m = pm = r∗m = rm = b −Axm

while not convergence do

αm =
(rm, r∗m)

(p∗
m,Apm)

xm+1 = xm + αmpm

rm+1 = rm − αmApm

r∗m+1 = r∗m − αmAT p∗
m

βm =
(rm+1, r∗m+1)

(rm, r∗m)
pm+1 = rm+1 + βmpm

p∗
m+1 = r∗m+1 + βmp∗

m

m = m + 1
end while

The preconditioner is introduced in the same manner as in the CG-
algorithm, leading to Algorithm 4.

ALGORITHM 4 The preconditioned bi-conjugate gradient algorithm
m = 0
r∗m = rm = b −Axm
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p∗
m = pm = z∗m = zm = Mrm

while not convergence do

αm =
(zm, r∗m)

(p∗
m,Apm)

xm+1 = xm + αmpm

rm+1 = rm − αmApm

r∗m+1 = r∗m − αmAT p∗
m

zm+1 = αmM−1rm+1

z∗m+1 = αmM−1r∗m+1

βm =
(zm+1, r∗m+1)

(zm, r∗m)
pm+1 = rm+1 + βmpm

p∗
m+1 = r∗m+1 + βmp∗

m

m = m + 1
end while

The initial guess required in the iteration process is normally set equal to the
variable values at the previous time step. The variable values at the current
time level are expected to be close to the values at the previous time level.
This is not necessarily true for the pressure correction due to the short time
scales associated with the pressure. Thus, the initial guess for the pressure
corrections are normally set to zero.

Both preconditioners are normally very robust and efficient, but the ILU-
preconditioner can introduce small numerical perturbations due to floating
point round-off error. Thus, simulations of symmetric problems may give non-
symmetric results after some time. For this reason the Jacobi preconditioner
is recommended.

Convergence Criteria

The solver must stop when an acceptable accurate solution is found. A stop
criterion must thus be defined by a sufficiently small residual value or prefer-
ably a norm16 of the residual [166]. In the non-preconditioned CG-method it
is natural to use the 2-norm since the euclidean inner product (r, r) is already
calculated as part of the algorithm. This is not the case neither in the precon-
ditioned version of the CG-solver nor the BCG-methods. In these methods
extra computations are thus required to calculate the stop criterion. For that
reason, the less expensive infinity-norm is frequently used as stop criterion
for these solvers. One possible criterion is that the norm of the residual must
fall below a specific value |r|m < ε. However, this criterion is difficult to use
when employing the p-norm since this norm is grid dependent. Besides, the
tolerance ε has to be fit to the system under consideration since the residuals

16 Several stop criteria can be defined in terms of different norms of the residual
[166]. The general p-norm of a vector is defined as ||r||p = (

∑n
i=1 |ri|p)1/p. When

p tends to infinity, the vector norm becomes ||r||∞ = max |r|.



1102 12 Numerical Solution Methods

in the various systems may approach different values due to roundoff errors.
The first issue may be solved by requiring the norm of the residual to fall
below some small fraction of the norm of the initial residual ||rm|| < ε||r0||.
However, situations where the initial guess is close to the solution may cause
infinite looping since the algorithm is not able to fulfill the stop criterion due
to the roundoff errors. The most frequently used stop criterion is defined re-
quiring that the norm of the residual must fall below a small fraction of the
norm of the source term ||rm|| < ε||b||.

12.13.5 Multigrid Solvers

In this section the basic concepts of the multigrid solvers are outlined. De-
tails of the advanced multigrid procedures may be found in the appropriate
literature [18, 19, 65, 76, 77, 20, 207, 153, 154, 158, 202].

Multigrid acceleration of the Gauss-Seidel point-iterative method is cur-
rently used in many commercial CFD codes to solve the system of algebraic
equations resulting from the discretization of the governing equations. For this
reason, the basic principles and nomenclature must be known by the users of
commercial codes and in particular for researchers that are making their own
codes.

Consider a large system of algebraic equations arising from the discretiza-
tion of the governing equations on a reactor flow domain:

Ax = b (12.350)

If we solve this system with an iterative method, we obtain an intermedi-
ate solution xν after ν iterations. This intermediate solution does not satisfy
(12.350) exactly, and to determine the error in xν we define the residual as
follows:

rν = b −Axν (12.351)

In the multigrid concept it is essential to define an error vector e as the
difference between the true solution and the intermediate solution:

eν = x − xν (12.352)

Subtracting Axν = b − rν , i.e., a rearranged form of (12.351), from (12.350)
gives the following relationship between the error and the residual vector:

Aeν = rν (12.353)

The residual vector can then be calculated at any stage of the iteration process
by substituting the intermediate solution into (12.351).

Multigrid methods are designed to exploit the inherent differences of the
error behavior when performing iterations on grids of different sizes. It has
been established theoretically that the solution error has components with
a range of wavelengths that are multiples of the grid spacing. The iteration
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methods cause rapid reduction of the error components with short wavelengths
up to a few multiples of the grid spacing. However, the long-wavelength com-
ponents of the error representing several multiples of the grid spacing tend
to decay very slowly as the iteration count increases. The short-wavelength
errors in a particular problem are thus effectively reduced on high resolution
grids, whereas the long-wavelength errors decrease rapidly on low resolution
grids. Besides, the computational cost of the iterations is larger on finer high
resolution grids than on coarse low resolution grids. The extra cost due to it-
erations on the coarse grids may thus be offset by the benefit of the improved
convergence rates.

The basic principles of multigrid solvers may be made clear by a brief
sketch of a simple two-stage procedure comprising one fine (h) and one coarse
(2h) grid. In principle, the fine grid solution can be transferred from the
fine grid with spacing h onto any coarse grid with spacing ch, where c > 1.
However, the process of transferring can be greatly simplified if we use a coarse
grid with twice the mesh spacing of the fine grid.

A two-stage procedure:

1. Fine grid iterations
In this step we perform iterations on the finest grid with grid spacing h to
generate an intermediate solution xν to system Ahx = b. The number of
iterations is normally chosen sufficiently large so that the short-wavelength
oscillatory component of the error is reduces, but no attempt is made to
eliminate the long -wavelength error component. The residual vector rh,ν

for the solution on this grid satisfies rh,ν = b − Ahxh,ν and the error
vector eh,ν is given by eh,ν = x − xh,ν . The error and the residual is
related through the formula: Aheh,ν = rh,ν .

2. Restriction
The solution is now transferred from the fine grid with spacing h onto the
coarse grid with spacing 2h. Due to the larger grid spacing of the coarse
grid, the long-wavelength error observed on the fine grid now appears as
a short-wavelength error on the new grid and will reduce rapidly.
Instead of solving for the solution vector x2h,ν we work with the error
equation A2he2h,ν = r2h,ν on the coarse grid starting with an initial guess
of e2h,ν = 0.

To perform the solution process we need values of the residual vector
and the matrix of coefficients. Given the values of rh,ν on the fine grid
we must use a suitable averaging or interpolation procedure to find the
residual vector r2h,ν on the coarse grid. The coefficients of matrix A2h can
be recomputed from scratch on the coarser grid or evaluated from the fine
grid grid coefficient matrix Ah by use of a similar averaging/interpolation
procedure as employed for the residual vector.

The cost per iteration on the coarse grid is generally less than on the
fine grid, hence we may afford to perform a sufficient number of iterations
to get a converged solution of the error vector e2h,ν .
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3. Prolongation
After obtaining the converged solution of the error vector e2h,ν for the
coarse grid, we need to transfer the solution back to the fine grid. However,
we have fewer solution points in the coarse grid than nodes in the fine grid.
A convenient interpolation operator is required to generate values for the
prolonged error vector ẽh,ν at intermediate points in the fine grid. Linear
interpolation is commonly used for this purpose.

4. Correction and final iterations
Once we have calculated the prolonged error vector ẽh,ν we may correct
the intermediate fine grid solution by use of the formula:

ximproved,ν = xh,ν + ẽh,ν (12.354)

Because the long-wavelength error has been eliminated, the improved so-
lution ximproved,ν is generally closer to the true solution vector x. However,
several approximations were made, hence a few additional iterations are
performed with the improved solution to iron out any errors that may
have been introduced during the restriction and prolongation processes.

In practice, the illustrative two-stage procedure is replaced by more advanced
multigrid cycles in which coarsening and refinement are used with special
schedules of restriction and prolongation at different refinement levels. Com-
mon choices of multigrid cycles are the so-called V- and W-cycles.

The simple V-cycle consists of two legs. The calculation starts at the finest
level. Iterations at any level are called relaxation. After a few relaxation sweeps
on the finest level the residuals are restricted to the next coarse level and
relaxation on that level the residuals are passed on to the next coarse level,
and so on until the coarsest level is reached. After final relaxation on the
coarsest level the prolongation steps are performed on the upward leg of the
V-cycle until the finest level is reached. In the W-cycle additional restriction
and prolongation sweeps are used at coarser levels to obtain better reduction
of long-wavelength errors.

The residual rν
i of the i-th equation after ν-iterations can be defined as:

rν
i = bi −

n
∑

j=1

aijx
ν
j , i = 1, 2, ..., n (12.355)

The average residual r̄ν over all n equations in the system may be a useful
indicator of the iterative convergence for a given problem:

r̄ν =
1
n
|rν

i | (12.356)

If the iteration process is convergent the average residual tend to zero, since
all contributing residuals rν

i → 0 as ν → ∞. The average residual for a trans-
ported property ψ is frequently normalized considering the ratio of the average
residual after ν iterations and its value at the beginning of the iterations:
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Rν
norm =

r̄ν

r̄0
(12.357)

The iteration is aborted when the normalized residuals for all the variables
fall below 10−3.

12.13.6 Parallelization and Performance Optimization

Recent experimental studies on the flow structures of multi-phase chemical
reactors like bubble column, fluidized bed and stirred tank reactors have pro-
vided insight and evidence of the dynamic nature of these systems. Transient
multi-phase flow models are thus required to describe the multi-phase flow
structure. Furthermore, due to the relatively high holdup of the dispersed
phases in operating reactors, the Euler-Euler multi-fluid modeling framework
has been adopted in most cases. An important inherent limitation of dynamic
multiphase reactor flow simulations is the computational time requirements,
making long time statistics intractable. To reduce the computational time of
these reactor model simulations, performance optimization may be performed
by selecting optimal solvers for the problem in question and by compiler opti-
mization of the problem dependent code. For very large grids, the optimized
code must be parallelized.

The compiler is the primary interface to the processor. High level languages
like Fortran and C are translated into the level instructions that can be ex-
ecuted on the processor. Compiler optimization and instruction generation
decisions can be influenced with compiler switches. These switches may cor-
respond directly to individual modules for optimization, or influence settings
of several modules. The compiler performs many optimizations on the source
code based on various assumptions about the program. Typical assumptions
are:

• The program is large (does not fit into the cache).
• The program does not violate language standards.
• The program is insensitive to roundoff errors.
• All data in the program is alias-ed, unless it can prove otherwise.

If one or more of the basic assumptions do not hold, the compiler should
be tuned to the program by changing the compiler switches. Otherwise, the
outcome may be erroneous. The source of the problem should be located, and
the files where the problem occurs should be optimized with a less aggressive
optimization.

For one-dimensional problems the direct TDMA algorithm is an efficient
solver. In these cases the solver is computationally inexpensive and has the
advantage that it requires a minimum amount of storage. For direct solvers,
the number of operations to be performed to obtain the solution of a system
of equations can be determined beforehand. However, for multi-dimension
problems the TDMA algorithm is applied line by line on a selected plane
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and then the calculation is moved to the next plane, scanning the domain
plane by plane. The method is comprising a line-wise Gauss-Seidel iterative
approach, hence the transfer of the boundary information into the calculation
domain can be very slow. In these simulations the convergence rate depends
on the sweep direction, with sweeping from upstream to downstream along
the flow direction producing faster convergence than sweeping against the flow
or parallel to the flow direction.

For multi-dimensional flow problems iterative methods are preferred com-
pared to direct methods due to less storage requirements. However, the it-
erative methods generally converge slower than the direct methods and the
number of operations to be performed to obtain the solution of a system
of equations can generally not be determined beforehand. The convergence
rates of the Jacobi and Gauss-Seidel point-iteration methods can be very slow
when the system of equations is large. However, the multigrid acceleration
techniques that have been developed recently do improve the convergence
rates of these iterative solvers to such an extent that they are now commonly
used in commercial codes. The Krylov subspace methods are used in many
cases as their convergence rates are comparable with those of the multigrid
solvers.

Lindborg et al [118] did evaluate the performance of several methods for
solving the Poisson equations in dynamic 2D fixed bed reactor model simu-
lations. The solvers evaluated were the TDMA-algorithm with and without
a global block correction (multigrid) procedure [76, 77] and several variants
of the CG and BCG Krylov subspace methods with and without precondi-
tioners (Jacobi and ILU). Compiler optimization did have a larger impact on
the computational time than the parallelization of the code. The BCG meth-
ods were considered the optimal Krylov subspace method alternatives as they
are designed to solve problems on the form Ax = b with non-symmetric A
matrices. The GMRES methods are designed to solve problems on the same
form and may be even more reliable and converge also for almost singular A
matrix systems but is also more complex to program and computational time
intensive, hence not included in the test program. The CG-algorithms are
also designed to solve problems on the same form and are much less compu-
tationally expensive for symmetric problems and may also converge for some
non-symmetric problems. The plain and the preconditioned conjugated gra-
dients algorithms were shown to be the best performing solvers in the test by
Lindborg et al [118] solving the close to symmetric set of Poisson equations.

Parallel computers can be divided into two classes, based on whether the
processors in the system have their own private memory or share a com-
mon memory. In a distributed memory system, the processors communicate
with each other by sending and receiving messages through a communication
network connecting all the processors. The problem to be solved must be ex-
plicitly partitioned by the programmer onto the various processors in such a
way that load balancing is maintained and communication between processors
is minimized and well ordered. For some problems it may not be easy or even
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possible to find a satisfactory means of doing such a partitioning. From a pro-
grammers point of view, a shared memory multiprocessor is easier to program.
All the processors share access to a common memory via a bus or a hierarchy
of buses, and communicate with each other through shared variables in the
common memory. This makes it possible for the compiler to find parallelism
in scalar programs. The compiler analyzes data dependencies in each loop and
if data updated is separate from data used for that update, that loop can be
computed in parallel. However, this type of parallelization strategy is usually
far from being optimal and explicit parallelism have to be introduced using
compiler directives. The drawback with single memory device is limitations in
performance, and as processors get faster it is harder to connect a consider-
able number of them to the same memory. To solve this problem, the shared
memory is physically distributed to the nodes which may be a processor or
a small group of processors. The memory elements have generally different
access times to the processors in the system, hence the machines are called
non-uniform memory access-machines (NUMA). The use of caches introduce
a problem in finding the right copy of a variable among the multiple copies
present in the concurrent hierarchical memory system. Some machines pro-
vides a full hardware support for keeping the cashes coherent. These machines
are called cache coherent non-uniform memory access-machines (CC-NUMA).
Programs developed for distributed systems can also execute efficiently on
shared memory machines, because shared memory permits an efficient imple-
mentation of message passing. The lifetime of supercomputers is relatively
short, and when updating the computer, different machine architectures may
be chosen. Hence, it is often chosen to program models in such a way that the
model domain is explicitly partitioned onto the processors, making it portable
between supercomputers of both architectures.

The scaling of the model performance with the number of processors is
usually better with message passing programming (MPI; message passing in-
terface) than with a compiler parallelized code (Open MP) for relatively small
problems. However, the preference of the different programming techniques is
under debate.

A widely used technique for partitioning the solution of a partial differen-
tial equation onto a number of processors is the domain decomposition method
[128]. The space domain is divided into many sub-domains which have their
own sub-boundaries. Each sub-domain is assigned to one processor such that
the discretized equation system, which is split into sub-systems, one for each
sub-domain, may be computed concurrently. This may decrease the conver-
gence rate, but it offers more flexibility and, in most cases, yields a shorter
computing time than global parallelization of the single domain solver. The
method ensures reasonable load balancing, since the number of grid cells in
each sub-domain is approximately equal and the work required for each grid
cell is roughly the same.

Numerical algorithms, data structures and spatial data dependencies are
thus important issues when parallelizing a code. It follows from the single- and
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multi-fluid models and the standard numerical discretization schemes that the
discretized equations may contain both explicit and implicit variable depen-
dencies. The Explicit dependencies require local data communication only,
whereas the implicit dependencies may require both local and global commu-
nication. The bottleneck in the Poisson equation algorithms is generally the
pressure or pressure correction data communication that is required for every
iteration performed within each time step of the integration.

Introduction of preconditioners on parallel architectures may not be as
favorable as on a single processor due to extra communication costs. In the test
by Lindborg et al [118], the CG Jacobi method was the most efficient algorithm
tested for large computational loads. The optimal processor configuration for
a tube with a large length to diameter ratio was shown to be the one which
have all the processors in one line in the axial dimension, provided that the
resolution in the radial direction is not too high.
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A

Mathematical Theorems

The mathematical theorems needed in order to derive the governing model
equations are defined in this appendix.

A.1 Transport Theorem for a Single Phase Region

The transport theorem is employed deriving the conservation equations in
continuum mechanics.

The mathematical statement is sometimes attributed to, or named in
honor of, the German Mathematician Gottfried Wilhelm Leibnitz (1646-1716)
and the British fluid dynamics engineer Osborne Reynolds (1842-1912) due to
their work and contributions related to the theorem. Hence it follows that the
transport theorem, or alternate forms of the theorem, may be named the Leib-
nitz theorem in mathematics and Reynolds transport theorem in mechanics.

In a customary interpretation the Reynolds transport theorem provides
the link between the system and control volume representations, while the
Leibnitz’s theorem is a three dimensional version of the integral rule for dif-
ferentiation of an integral. There are several notations used for the transport
theorem and there are numerous forms and corollaries.

A.1.1 Leibnitz’s Rule

The Leibnitz’s integral rule gives a formula for differentiation of an integral
whose limits are functions of the differential variable [2, 36, 8, 16, 9, 3, 28, 33,
18]. The formula is also known as differentiation under the integral sign.

d

dt

b(t)
∫

a(t)

f(t, x) dx =

b(t)
∫

a(t)

∂f(t, x)
∂t

dx + f(t, b)
db

dt
− f(t, a)

da

dt
(A.1)

The first term on the RHS gives the change in the integral because the function
itself is changing with time, the second term accounts for the gain in area as

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 13,
c© Springer-Verlag Berlin Heidelberg 2008



1126 A Mathematical Theorems

the upper limit is moved in the positive axis direction, and the third term
accounts for the loss in area as the lower limit is moved. The formal derivation
of the Leibnitz’s rule can be found elsewhere [16, 3].

A.1.2 Leibnitz Theorem

A three dimensional extension of the Leibnitz rule for differentiating an inte-
gral is relevant for the derivation of the governing transport equations1.

In the material (Lagrangian) representation of continuum mechanics a rep-
resentative particle of the continuum occupies a point in the initial configura-
tion of the continuum at time t = 0 and has the position vector ξ = (ξ1, ξ2, ξ3).
In this ξ-space the coordinates are called the material coordinates. In the
Eulerian representation the particle position vector in r-space is defined by
r = (r1, r2, r3). The coordinates r1, r2, r3 which gives the current position of
the particle are called the spatial coordinates. Let ψ(r, t) be any scalar, vector
or tensor function of time and position and V (t) a material volume. We may
then define a variable Ψ(t) as the volume integral [1]:

Ψ(t) =
∫

V (t)

(ρψ) dv (A.2)

It is desired to find an expression for differentiating the integral Ψ(t) with
time:

DΨ(t)
Dt

=
D

Dt

∫

V (t)

(ρψ)(r, t) dv (A.3)

The integral is over the material volume V (t) that is a function of t, hence we
cannot take the differentiation through the integration sign.

However, if the integration were with respect to a volume in the material
ξ-coordinates it would be possible to interchange the differentiation and inte-
gration, since D/Dt is defined as differentiation with respect to time keeping
ξ constant. A transformation of the volume from r-space to ξ-space allows us
to do the desired operation. The position vector in r-space, r = (r1, r2, r3),
is transformed as r = r(ξ, t) in ξ-space. If the coordinate system is changed
from r-space to ξ-space, the volume element changes according to:

dv =
∂(r1, r2, r3)
∂(ξ1, ξ2, ξ3)

dξ1dξ2ξ3 = Jdv0 (A.4)

in which dξ1dξ2ξ3 denotes the material volume dv0 about a given point ξ at
the initial instant.
1 The theory has been outlined by Truesdell and Toupin [35] (p 347), Aris [1]

(p 84), Malvern [20](p 210), Slattery [30] (p 17), Slattery [31](p 21), Bird et
al [2](p 732), Fan and Zhu [15](p 167), Kundu [18](p 75), Delhaye and Achard
[8](p 9), Delhaye [9](p 42), Bouré and Delhaye [4](p 1-37), Whitaker [36], Donea
and Huerta [10](sects 1.3-1.4), Donea et al [11], and Collado [6].
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The Jacobian determinant of transformation between the material and
fixed coordinate systems, is defined by:

J =
∂(r1, r2, r3)
∂(ξ1, ξ2, ξ3)

=
dv

dv0
(A.5)

The quantity J may be thought of as the ratio of an elementary material
volume to its initial volume.

The differentiation of the integral Ψ(t) with respect to time can then be
proven:

DΨ

Dt
=

D

Dt

∫

V (t)

(ρψ)(r, t) dv =
D

Dt

∫

V0

(ρψ)(r(ξ, t), t)Jdv0

=
∫

V0

(

D(ρψ)
Dt

J + (ρψ)
DJ

Dt

)

dv0

=
∫

V0

(

D(ρψ)
Dt

+ (ρψ)(∇ · u)
)

Jdv0

=
∫

V (t)

(

D(ρψ)
Dt

+ (ρψ)(∇ · u)
)

dv

=
∫

V (t)

(

∂(ρψ)
∂t

+ ∇ · ((ρψ)u)
)

dv

(A.6)

in which we have adopted, without proof, the following Lemma2:

DJ

Dt
= J(∇ · u) (A.7)

Applying the divergence theorem (A.19) to the second integral on the RHS
of (A.6) we get a particular three dimensional form of the Leibnitz theorem:

DΨ

Dt
=

D

Dt

∫

V (t)

(ρψ)(r, t) dv =
∫

V (t)

∂(ρψ)
∂t

dv +
∫

A(t)

(ρψ)u · n da (A.8)

where A(t) is the surface of V (t), and u represents the velocity of the con-
trol surface with respect to the coordinate reference frame. This kinematical
transport theorem is due to Reynolds [27]. For this reason it is sometimes
referred to as the Reynolds theorem.

The given theorem can be extended to a general case considering an arbi-
trary geometric volume with a closed surface moving with an arbitrary velocity
uS . Truesdell and Toupin [35] (p 347) presented the corollary that the above

2 The proofs of the transport theorem are given by Slattery [32].
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relation remains valid if we replace the derivatives with respect to time while
following material particles, D/Dt, by derivatives with respect to time while
following fictitious system particles d/dt, and the velocity vector for a material
particle u by the velocity vector for a fictitious system particle uS . Let us thus
consider a geometric volume VS(t), not necessarily a material volume, which
is moving in space and bounded by a closed surface AS(t). At a given point
belonging to this surface, n is the unit normal vector outwardly directed. The
speed of the displacement of the surface at that point is denoted by uS · n.
The generalized Leibnitz theorem enables the time derivative of the volume
integral to be transformed into the sum of a volume integral and a surface
integral [9, 4, 18]:

d

dt

∫

VS(t)

(ρψ)(r, t) dv =
∫

VS(t)

∂(ρψ)
∂t

dv +
∫

AS(t)

(ρψ)uS · n da (A.9)

in which uS is the velocity of the points on the control volume surface with
respect to the coordinate reference frame. Slattery [32] named this mathemat-
ical statement the generalized transport theorem. This kinematical transport
theorem was asserted, not proven, by Reynolds [27].

Comparing (A.8) and (A.9) we note that to make these relations coin-
cide the total time derivative must be specified equal to the substantial time
derivative. In this way the substantial derivative may be considered a spe-
cial kind of the total time derivative [2, 28], and thus the Reynolds transport
theorem is a special kind of the Leibnitz theorem.

In the case that the integral boundaries are fixed, the surface integral
vanishes because the surface velocity is zero [8, 9, 18, 14]:

d

dt

∫

V

f dv =
∫

V

∂f

∂t
dv (A.10)

A.1.3 Reynolds Theorem

In fluid mechanics the laws governing the fluid motion are expressed using
both system concepts in which we consider a given mass of the fluid, and
control volume concepts in which we consider a given volume [34, 16, 23, 37].
Basically the physical laws are defined for a system, thus we need a mathemat-
ical link between control volume and system concepts to convert the governing
equations to apply to a specific region rather than to individual masses. The
Reynolds transport theorem is precisely the analytical tool required to trans-
form the laws from one representation to the other.

Let Ψsys(t) be an extensive property of the system at time t, ψ(r, t) is the
corresponding intensive property. If Vsys(t) denotes a system material volume
at time t, CV a control volume, and CS the control volume surface, the
extensive system property can be defined by:
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Ψsys(t) =
∫

Vsys(t)

ρψ dv (A.11)

The corresponding extensive control volume property is defined by:

ΨCV (t) =
∫

CV

ρψ dv (A.12)

The system is defined by the fluid mass within the control volume at the initial
time t. The values of the analogous extensive properties of the system and the
fluid within control volume are thus equal at this time, Ψsys(t0) = ΨCV (t0).
A short time later a portion of the system fluid may have exited from the
control volume and some of the surrounding fluid may have entered the control
volume. Then we seek to determine how the rate of change of Ψsys within the
system is related to the rate of change of ΨCV within the control volume at any
instant. Based on a physical understanding of the concepts of the system and
control volume motion, the kinematic Reynolds transport theorem relating
system concepts to control volume concepts can be derived by geometrical
analysis.

The most general form of the Reynolds transport theorem is defined for
an arbitrary moving and deforming control volume [6]:

DΨsys(t)
Dt

=
D

Dt

∫

Vsys(t)

ρψ dv =
D

Dt

∫

CV (t)

ρψ dv +
∫

CS(t)

ρψw · n da (A.13)

in which w is the velocity of the fluid at the control surface with respect to
the control surface, and ρ is the fluid density.

For a fixed control volume, the integral limits are fixed thus the order of
differentiation and integration may be interchanged, so the substantial deriva-
tive of the CV integral in (A.13) can be written in the equivalent form [37]:

D

Dt

∫

CV

ρψ dv =
∫

CV

∂(ρψ)
∂t

dv (A.14)

Hence, for a fixed control volume, the Reynolds theorem (A.13) reduces to:

DΨsys(t)
Dt

=
D

Dt

∫

Vsys(t)

ρψ dv =
∫

CV

∂(ρψ)
∂t

dv +
∫

CS

ρψv · n da (A.15)

in which the velocity v represents the velocity of the fluid at the control
surface with respect to the control surface that coincides with the coordinate
reference frame.

This form of the Reynolds transport theorem is a special version of the
more general mathematical statement (A.13). However, the latter version is
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particularly important because fixed control volumes are commonly employed
in fluid mechanics and reactor modeling.

In chap 1 the derivation of the governing Eulerian equations for single
phase flow is performed employing (A.15).

Let us now consider the Leibnitz theorem (A.8) and the Reynolds theorem
(A.13). The volume integral on the RHS of the Reynolds theorem is defined
over a control volume CV (t) which coincides with the geometric volume on the
LHS of Leibnitz theorem at the considered instant t in time. At that instant
the integrals cover precisely the same space, so we can substitute the Leibnitz
theorem (A.8) expression for differentiating the integral into the Reynolds
theorem (A.13). The Reynolds theorem can then be written as [6]:

DΨsys(t)
Dt

=
∫

CV (t)

∂

∂t
(ρψ) dv +

∫

CS(t)

(ρψ)v · n da (A.16)

The vector quantity v = w + u represents the velocity of the fluid at the
control surface with respect to the coordinate reference frame. This is the
conventional Reynolds transport theorem.

A.2 Gauss Theorem

In general, consider a geometric volume, V (t), bounded by a closed surface,
A(t), which may either be material or not, moving or not. At a given point
belonging to this surface A(t), the unit normal vector n is outwardly directed.
For any scalar (f), vector or tensor fields (f), Gauss theorem3 enable a surface
integral to be transformed into a volume integral according to the following
relation:

Gauss’ theorem for a scalar

For single phase flows:
∮

A(t)

fn da =
∫

V (t)

∇f dv (A.17)

For two phase flows we need to consider the interface, and a modified form
of the theorem is applied (e.g., [8, 9]). Now we may consider a geometric
volume, Vk(t), bounded by a closed surface, Ak(t) + AI(t), which may either
be material or not, moving or not. At a given point belonging to this surface
Ak(t) + AI(t), the unit normal vector n is outwardly directed.

∫

Ak(t)

fn da +
∫

AI(t)

fn da =
∫

Vk(t)

∇f dv (A.18)

3 The Gauss’ theorem is also known as the divergence theorem, Green’s theorem,
and Ostrogradsky’s theorem [36]. In particular, the vector form of Gauss’s theo-
rem is normally referred to as the divergence theorem [18].
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Gauss’ theorem for a vector or tensor

For single phase flows:
∮

A(t)

f · n da =
∫

V (t)

∇ · f dv (A.19)

For two phase flows we need to consider the interface, and a modified form
of the theorem is applied. Now we may consider a geometric volume, Vk(t),
bounded by a closed surface, Ak(t) + AI(t), which may either be material or
not, moving or not. At a given point belonging to this surface Ak(t) + AI(t),
the unit normal vector n is outwardly directed.

∫

Ak(t)

f · n da +
∫

AI(t)

f · n da =
∫

Vk(t)

∇ · f dv (A.20)

A.3 Surface Theorems

These theorems can be found in the books of [1, 22] [31] (p 73) [13], pp 48-52
and in the papers of [7] [5], pp 428-432, and pp 436-438.

A.3.1 Leibnitz Transport Theorem for a Surface

The surface transport theorem ([31], p. 73) can be used to reformulate the
term:

dI

dt

∫

AI(t)

ρIψI da (A.21)

where ψI is any scalar-, vector-, or tensor function of time and position on
the dividing surface. The indicated integration is to be performed over the
dividing surface in its current configuration AI . We allow AI or the limits of
the this integration to be a function of time. Slattery ([31], page 74) presents
the surface transport theorem:

dI

dt

∫

AI(t)

(ρIψI) da =
∫

AI(t)

(

dI(ρIψI)
dt

+ ρIψI∇I · vI

)

da (A.22)

Note that this theorem can be reformulated into more generalized forms, but
the formulation given here is used in most papers on reactor modeling.
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A.3.2 Gauss Theorem for a Surface

In a 3D space, the Gauss theorems enable the transformation of a surface
integral into a volume integral. Similarly, in a 2D space, the Gauss theorems
enable the transformation of a line integral into a surface integral. The surface
divergence theorem can be expressed in a generic form as follows [13]:

∮

lI(t)

RINIdl =
∫

AI(t)

∇I ·(eIRI)da =
∫

AI

(

∇IRI−(∇I ·nI)RInI

)

da (A.23)

where RI is a generic field of arbitrary tensorial order. The generic identity
may be specialized by inserting a dot- or cross-product operational sign into
identical tensorial positions on both sides of the equality sign. The scalar fields
RI is defined by RINI .

The frequently used forms of the theorem are given as illustrative exam-
ples:

For interfacial vector fields

∮

lI(t)

f I · NIdl =
∫

AI(t)

∇I · f Ida (A.24)

where NI is the unit normal vector at a given point belonging to the curve
l(t), the boundary of AI . The vector NI is directed outward the area AI and
located in the tangent plane. ∇I is the surface del operator. f I is a vector
tangent to the surface AI .

For interfacial tensor fields

∮

lI(t)

fI · NIdl =
∫

AI(t)

∇I · fIda (A.25)

where fI is any interfacial tensor field.

For interfacial scalar fields

∮

lI

fIdl =
∫

AI

∇I · (eIfI)da =
∫

AI

(∇IfI − (∇I · nI)fInI) da (A.26)

where fI is any interfacial scalar field, eI is the dyadic idemfactor ([13], p 46),
and ∇I · nI is the surface divergence (equal to twice the mean curvature).
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Static Force Balance at a Fluid Interface

Brenner ([5], pp. 428-432, and pp. 436-438), Middleman [21] (pp. 39-42) and
Edwards et al. ([13], pp. 48-52) address the basic nature of macro-scale inter-
facial force balances at an arbitrary curved fluid in the state of hydrostatic
equilibrium (a state that serves as a standard from which non-equilibrium
interfacial transport processes depart).

Analogous to 3D fluid continua, applying Newton second law the macro-
scale fluid interfaces are acted upon by two fundamental types of forces, sur-
face body forces per unit area, f I , and surface contact stress component,
TI · NI , being a force per unit length. The apparent surface body force den-
sities denote forces originating outside of the 2D interface itself, whereas the
apparent surface stresses denote forces acting lineally by virtue of intimate
contact between adjacent 2D interfacial fluid elements.

Considering an interface existing in a state of hydrostatic equilibrium, an
integral force balance over an element of area, AI , lying on a fluid interface
may be expressed as :

∫

AI

FIda +
∮

lI

TI · dl = 0 (A.27)

where dl = NIdl is an outwardly directed, differential line element to the
closed contour lI of the area domain AI .

To derive the differential counterpart of the integral balance, starting from
(A.27) we need to express the second term (line integral) as an area integral.
Thereafter, analogous to the 3D approach used in chap. 1 deriving the govern-
ing conservation equations, the differential form emerges requiring that the
resulting relation is valid for an arbitrary chosen surface domain so that the
integrand itself must vanish.

To transform the line integral in (A.27) to a surface integral, the version of
(A.23) that is defined inserting the dot product sign is relevant. Accordingly,
introducing the dot product and a tensor field into (A.23), a specific version
of the surface divergence theorem can be derived:
∮

lI

RI · dl =
∫

AI

∇I · (eI · RI)da =
∫

AI

∇I · RIda

=
∫

AI

(RI · ∇I · eI + eI · ∇I · RI) da =
∫

AI

(RI · 2HInI + ∇I · RI) da

(A.28)

where the following relationships have been used: eT
I = eI , eI · ∇I = ∇I ,

∇I · eI = 2HInI , and nI · TI = 0.
To proceed we need to determine the nature of the interface defining

the surface pressure- or stress tensor. For the general non-equilibrium cir-
cumstances TI is a non-isotropic and non-symmetric tensor, containing six
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independent components. Four of these components are analogous to the
normal- and shear stresses in 3D fluids, while the so-called bending forces
have no analog in ordinary 3D fluids. Fortunately, in practice most fluid in-
terfaces are assumed to be inviscid and isotropic. For an isotropic interface
existing in a state of hydrostatic equilibrium the surface-excess pressure ten-
sor is given by TI = σIeI , where the scalar σI is the interfacial tension. This
scalar quantity is an apparent macro-scale property of the physicochemical
system, generally interpreted as the 2D analog of the thermodynamic pres-
sure, p, for 3D continua. From thermodynamic analysis it is concluded that
σI dependents only upon macro-scale pressure, temperature and interfacial
composition at the point rI . eI denotes the dyadic idem-factor ([13], p 46),
defined as eI = e− nInI , with the dyadic e being the 3D spatial idem-factor.

For the special case of RI = TI , (A.28) reduces to:
∮

lI

TI · dl =
∫

AI

∇I · (eI · TI)da =
∫

AI

∇I · TI da =
∫

AI

∇I · (σIeI)da

=
∫

AI

(σI∇I · eI + eI · ∇IσI) da =
∫

AI

(2HIσInI + ∇IσI) da
(A.29)

Thereby, for an isotropic interfacial tensor existing in a state of hydrostatic
equilibrium (A.27) yields,

∫

AI

(FI + ∇I · TI) da =
∫

AI

(FI + 2HIσInI + ∇IσI) da = 0 (A.30)

As the choice of local surface domain, AI , is arbitrary, and since the field
variables FI(rI) and TI(rI) are independent of this choice, this requires at
each point (rI) that:

FI + ∇I · TI = FI + ∇IσI + 2HIσInI = 0 (A.31)

which constitutes the local surface force balance at a static fluid interface4.
Nevertheless, the net surface tension force on a closed surface equals zero
[26, 12, 25, 24].
4 This is the analog of the corresponding hydrostatic equation:

ρg −∇ · T = 0 (A.32)

for a 3D fluid continuum, where the isotropic stresses are given by T = pe, with
p = p(r) the thermodynamic pressure.

Note also that in typical textbooks on mechanical engineering this relation will
be given as T = −pe, as the hydrostatic equation yields:

ρg + ∇ · T = 0 (A.33)
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Finally, we note that the surface body force term constitutes the sum of
the surface-excess body force and the bulk-phase body force vector densities.
The surface-excess body force is the 2D analog of continuum body forces in 3D
fluids (e.g., gravitational force, electromagnetic force, etc). This force is often
neglected. The bulk-phase body force has no counterpart for 3D fluids, as it
denotes the stresses applied intimately at the interface by the surrounding 3D
bulk phases. The normal component of this force equals the pressure difference
between the two bulk phases, a relationship often referred to as the Young-
Laplace equation.
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B

Equation of Change for Temperature
for a Multicomponent System

The equation of change for temperature can be derived from the enthalpy
equation. For completeness, in this appendix we outline the procedure de-
scribed by Bird et al ([2], Problem 19D.2., pp 608-609) and Instructor’s re-
source CD-ROM to accompany TRANSPORT PHENOMENA, Second Edi-
tion, pp 19-15 and pp 19-16.

B.1 The Problem Definition

In this appendix we will derive the equation of change for temperature:

ρCP
DT

Dt
= −∇ · q − σ : ∇v +

N
∑

c=1

Jc · gc −
T

ρ
(
∂ρ

∂T
)p,ω

Dp

Dt

+
N

∑

c=1

h̄c

(

∇ · ( Jc

Mωc

) − (
Rc

Mωc

)
)

(B.1)

starting out from the enthalpy equation:

ρ
Dh

Dt
= −∇ · q − σ : ∇v +

N
∑

c=1

Jc · gc +
Dp

Dt
(B.2)

In the next section the sequence of steps for the derivation of (B.1) from (B.2)
will be described in detail.

B.2 Deriving the Equation of Change for Temperature

For a closed system the enthalpy is given by Ĥ = Ĥ(P, T ), while for an
open system that can exchange mass with its surroundings the total en-
thalpy depends also on the possible changes in masses Mc of each com-
ponent c. This implies that for an open system the enthalpy is written as

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 14,
c© Springer-Verlag Berlin Heidelberg 2008
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Ĥ = Ĥ(T, p,M1,M2,M3, ...,MN ), where N is the number of chemical com-
ponents. An extensive quantity can be divided by the mass of the system
constituting a new variable defining a specific quantity ([3], p 103). The spe-
cific enthalpy (per unit mass) is then expressed as:

H = H(T, p, ω1, ω2, ω3, ..., ωN−1) =
N

∑

c=1

ωcȞc (B.3)

where the partial specific enthalpy of species c is given by Ȟc = ( ∂Ĥ
∂Mc

)M ′,p,T =

(∂(MH)
∂Mc

)M ′,p,T . Note also that these intensive quantities may be computed
both per unit mass, per unit volume, or per mole.

In the given notation the LHS of (B.2) can be reformulated in terms of
a complete differential if we consider the enthalpy per unit mass to be a
thermodynamic function of T , p and the first (N − 1) mass fractions:

dH = (
∂H

∂p
)T,ω′dp + (

∂H

∂T
)p,ω′dT +

N−1
∑

c=1

(
∂H

∂ωc
)p,T,ω′dωc (B.4)

and then apply the principle of local instantaneous equilibrium:

Dh

Dt
= (

∂h

∂p
)T,ω′

Dp

Dt
+ (

∂h

∂T
)p,ω′

DT

Dt
+

N−1
∑

c=1

(
∂h

∂ωc
)p,T,ω′

Dωc

Dt
(B.5)

The capital letters for the quantities (e.g., H = H(T, p, ω1, ω2, ω3, ..., ωN−1))
indicate that we are considering the variable as a thermodynamic function,
whereas the corresponding variables used in continuum mechanics are defined
by lower case letters (e.g., h = h(t, r, T, p, ω1, ω2, ω3, ..., ωN−1)).

Next, the term Dωc

Dt can be eliminated from (B.5) using the transport
equation for the chemical species:

ρ
Dωc

Dt
= −∇Jc + Rc (B.6)

The coefficient in front of Dωc

Dt in (B.5) is usually reformulated in terms of
molar quantities known from thermodynamic theory. This is a rather complex
task, thus a detailed description of this part of the model derivation is given
shortly.

The theoretical basis for the model derivation used at this point origi-
nates from thermodynamics. The corresponding variables used in continuum
mechanics are then defined in analogy to the thermodynamic quantities apply-
ing the principle of local instantaneous equilibrium, in line with the approach
adopted above obtaining (B.5) from (B.4). Following the same approach,
the thermodynamic quantities and relations needed in order to reformulate
the coefficient in front of Dωc

Dt in (B.5) will be described before we introduce
the corresponding extensions approved in continuum mechanic theory.
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If we first consider the enthalpy variable as a thermodynamic quantity, the
total enthalpy, Ĥ = Ĥ(T, p,M1,M2,M3, ...,MN ), and the specific enthalpy
(per unit mass), H = H(T, p, ω1, ω2, ω3, ..., ωN−1), can be defined character-
izing an open thermodynamic system. Since enthalpy is an extensive thermo-
dynamic property, we may write:

Ĥ(M1,M2,M3, ...,MN ) = MH(ω1, ω2, ω3, ..., ωN−1) (B.7)

in which the Mα are the masses of the various species, M is the sum of the
Mα’s, and ωα = Mα/M are the corresponding mass fractions. Both H and
Ĥ are understood to be functions of T , p and as well as of composition (i.e.,
T and p have been left out for simplicity in the mathematical manipulation
below).

By use of the chain rule of partial differentiation we find for α 
= N :

(
∂Ĥ

∂Mα
)Mγ

=
N−1
∑

β=1

(
∂(MH)
∂ωβ

)ωγ ,M (
∂ωβ

∂Mα
)Mγ

+ (
∂(MH)
∂M

)ωγ
(
∂M

∂Mα
)Mγ

= M

N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(
∂(Mβ/M)

∂Mα
)Mγ

+ H(
∂M

∂M
)ωγ

· 1

= M

N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(
1
M

∂Mβ

∂Mα
− Mβ

M2

∂M

∂Mα
) + H · 1 · 1

= M

N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(
δαβ

M
− Mβ

M2
) + H

=
N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(δαβ − Mβ

M
) + H

(B.8)

The corresponding expression for α = N can be found in a similar way:

(
∂Ĥ

∂MN
)Mγ

=
N−1
∑

β=1

(
∂(MH)
∂ωβ

)ωγ ,M (
∂ωβ

∂MN
)Mγ

+ (
∂(MH)
∂M

)ωγ
(
∂M

∂M N
)Mγ

= M

N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(
1
M

∂Mβ

∂MN
− Mβ

M2

∂M

∂MN
) + H · 1

= M
N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(−Mβ

M2
) + H

=
N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(−Mβ

M
) + H

(B.9)

The subscript ωγ means that all other mass fractions should be held constant.
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Subtraction then gives for α 
= N :

(
∂Ĥ

∂Mα
)Mγ

− (
∂Ĥ

∂MN
)Mγ

=
N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(δαβ − Mβ

M
) + H − [

N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(−Mβ

M
) + H]

=
N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

(δαβ − Mβ

M
+

Mβ

M
)

=
N−1
∑

β=1

(
∂H

∂ωβ
)ωγ

δαβ = (
∂H

∂ωα
)ωγ

(B.10)

In the last paragraph the coefficient of dωc in (B.4) has been expressed in terms
of species masses rather than species mass fractions by use of thermodynamic
theory and a complete differential regarding the specific enthalpy to be a
function of T , p and the first (N − 1) mass fractions. These species mass
based functions may then more easily be converted to the appropriate molar
quantities which we can obtain from thermodynamic models.

On the equivalent molar basis1 the total enthalpy content (or the enthalpy)
Ĥ may be defined by Ĥ = MH = nH. This means that Ĥ(T, p,M1,M2,
M3, ...,MN ) may equivalently be written as Ĥ(T, p, n1, n2, n3, ..., nN ).

The specific molar enthalpy (per mole) is then expressed as:

H = H(T, p, x1, x2, x3, ..., xN−1) =
N

∑

c=1

xcHc (B.11)

where the partial (specific) molar enthalpy of species c is given by Hc =
( ∂Ĥ

∂nc
)n′,p,T = (∂(nH)

∂nc
)n′,p,T . Thus, we can easily see that Ȟc = ( ∂Ĥ

∂Mc
)M ′,p,T =

1
Mwc

( ∂Ĥ
∂nc

)n′,p,T = 1
Mwc

Hc. The specific molar enthalpy for an ideal gas is
denoted by H∗, and for ideal gases we have the following relations: H =

H∗ =
N
∑

c=1
xcH

∗
c and Hc = H∗

c .

The LHS of (B.2) can now be expressed as:

ρ
Dh

Dt
=ρ(

1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)

Dp

Dt
+ CP

DT

Dt

+
N−1
∑

c=1

[(
∂ĥ

∂Mc
)M ′ − (

∂ĥ

∂MN
)M ′ ](−∇ · Jc + Rc)

(B.12)

1 For further studies of these thermodynamic quantities the reader is referred to
standard thermodynamic - and continuum mechanic textbooks [1, 2, 4, 5, 6, 3].
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where we have applied the principle of local instantaneous equilibrium to
obtain an expression for the coefficient in front of Dωc

Dt in (B.5) based on the
result we obtained from thermodynamic theory as given in (B.10).

Because of the relations Mc = ncMwc
and ĥ = Mh = nh, the differential

quotients in the last term in (B.12) can be rewritten in terms of partial molar
quantities:

ρ
Dh

Dt
= ρ(

1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)

Dp

Dt
+ ρCP

DT

Dt

+
N−1
∑

c=1

[
1

Mwc

(
∂ĥ

∂nc
)n′ − 1

MwN

(
∂ĥ

∂nN
)n′ ](−∇ · Jc + Rc)

= ρ(
1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)

Dp

Dt
+ ρCP

DT

Dt

+
N−1
∑

c=1

[
h̄c

Mwc

− h̄N

MwN

](−∇ · Jc + Rc)

= ρ(
1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)

Dp

Dt
+ ρCP

DT

Dt

+
N−1
∑

c=1

h̄c

Mwc

(−∇ · Jc + Rc) −
N−1
∑

c=1

(−∇ · Jc + Rc)
h̄N

MwN

= ρ(
1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)

Dp

Dt
+ ρCP

DT

Dt

+
N−1
∑

c=1

h̄c(−∇ · ( Jc

Mwc

) + (
Rc

Mwc

)) + (−∇ · JN + RN )
h̄N

MwN

= ρ(
1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)

Dp

Dt
+ ρCP

DT

Dt

+
N−1
∑

c=1

h̄c(−∇ · ( Jc

Mwc

) + (
Rc

Mwc

)) + h̄N (−∇ · ( JN

MwN

) + (
RN

MwN

))

= ρ(
1
ρ
− T (

∂( 1
ρ )

∂T
)p,ω)

Dp

Dt
+ ρCP

DT

Dt
+

N
∑

c=1

h̄c(−∇ · ( Jc

Mwc

) + (
Rc

Mwc

))

(B.13)

where we have used the relations that
N
∑

c=1
Jc = 0 and

N
∑

c=1
Rc = 0.

Inserted into (B.2) this result coincides with the temperature equation on
the form (B.1).
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C

Trondheim Bubble Column Model

The 2D steady-state two-fluid model presented in this section is based on the
early work by Torvik and Svendsen [22], Svendsen et al [21], and Jakobsen [12].
The two-fluid model was derived based on the time-after volume averaging
procedure, described in sect 3.4.4.

The model was later implemented in a commercial code PHOENICS. The
input files specifying the calculations have been deposited in the PHOENICS
library of two-phase flow examples [5]. This early bubble column model is in-
cluded in this book because it is considered particularly useful for educational
purposes.

The model derivation is outlined in Cartesian coordinates. The govern-
ing equations are then more conveniently written in vector notation (vector
symbolism). For practical applications and simulations these vector equations
are converted into cylindrical coordinates and finally reduced to the 2D axi-
symmetric bubble column problem. The axi-symmetric model is discretized
by use of the IPSA-SIMPLEC solution algorithm in sect C.4.1.

C.1 Model Formulation

The elementary Two-fluid model derivation is outlined in this section.

Conservation of mass

The instantaneous volume averaged conservation of mass of the continuous
liquid and dispersed gas phases were expressed as:

∂

∂t
(αlρl) + ∇ · (αlρlvl) = Γl (C.1)

∂

∂t
(αgρg) + ∇ · (αgρgvg) = Γg (C.2)

H.A. Jakobsen, Chemical Reactor Modeling, doi: 10.1007/978-3-540-68622-4 15,
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The void fractions must fulfill the compatibility condition:

αl + αg = 1 (C.3)

The mass exchange terms must satisfy the constraint:

Γl + Γg = 0 (C.4)

Conservation of momentum

The instantaneous volume averaged Navier-Stokes equations for the two
phases are:

∂

∂t
(αlρlvl,i) +

∂

∂xj
(αlρlvl,jvl,i) = − αl

∂pl

∂xi
+

∂

∂xj

(

αlμl(
∂vl,i

∂xj
+

∂vl,j

∂xi
)
)

− ∂

∂xj

(

δijαl(
2
3
μl − μbl)

∂vl,k

∂xk

)

+ ρlαlgi + FC
l,i

(C.5)

∂

∂t
(αgρgvg,i) +

∂

∂xj
(αgρgvg,jvg,i) = − αg

∂pg

∂xi
+

∂

∂xj

(

αgμg(
∂vg,i

∂xj
+

∂vg,j

∂xi
)
)

− ∂

∂xj

(

δijαg(
2
3
μg − μbg)

∂vg,k

∂xk

)

+ ρgαggi + FC
g,i

(C.6)

where μbl is the bulk viscosity of the liquid, and μbg is the bulk viscosity of
the gas.

The surface tension force was neglected so the interfacial momentum trans-
fer terms satisfy:

FC
l + FC

g = 0 (C.7)

The pressure inside individual bubbles may vary, but this was assumed to
have no relation to the flow of the continuous phase. The volume averaged
pressure of the two phases were assumed to be equal, pl = pg. The dispersed
phase approximation neglects internal flow inside the dispersed phases. The
viscous terms of the gas equation were thus neglected. The bulk viscosity terms
were also neglected since they are generally small, as discussed in chap 2. These
assumptions and approximations simplify the momentum equations.

The instantaneous volume averaged liquid phase equation was written:

∂

∂t
(αlρlvl,i) +

∂

∂xj
(αlρlvl,jvl,i) = − αl

∂p

∂xi
+

∂

∂xj
(αlμl(

∂vl,i

∂xj
+

∂vl,j

∂xi
))

− ∂

∂xj
(
2
3
δijαlμl

∂vl,k

∂xk
) + ρlαlgi + FC

l,i

(C.8)
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The corresponding gas phase equation was written:

∂

∂t
(αgρgvg,i) +

∂

∂xj
(αgρgvg,jvg,i) = −αg

∂p

∂xi
+ ρgαggi + FC

g,i (C.9)

Turbulence Modeling

Reynolds decomposition and time averaging were then applied to the instan-
taneous variables in the volume average model equations. However, it was
assumed that none of the densities fluctuate. The terms of fluctuating quan-
tities with order higher than two were considered small compared to those of
first and second order and thus neglected.

Developed versions of the gradient and Boussinesq hypotheses were em-
ployed to model the second-order covariance terms. The liquid phase volume
fraction-velocity covariance and the Reynolds stresses, for example, were ap-
proximated by:

α′
lv

′
l,j = − νl,t

σαl,t

∂αl

∂xj
(C.10)

and

v′l,jv
′
l,i = σt

l,ij +
2
3
kδij

= − νl,t

σl,t
(
∂vl,i

∂xj
+

∂vl,j

∂xi
− 2

3
δij

∂vl,k

∂xk
) +

2
3
kδij

= − νl,t

σl,t
(
∂vl,i

∂xj
+

∂vl,j

∂xi
) +

2
3
δij(

νl,t

σl,t

∂vl,k

∂xk
+ k)

(C.11)

The turbulent Schmidt numbers (σt
ψ) were included for all variables that are

modeled via the gradient and Boussinesq hypotheses. These Schmidt numbers
were set to 1.0. The only exception was σε = 1.3.

Turbulence Modeling of the Liquid Phase Continuity Equation

Time averaging the volume averaged liquid mass balance (C.1) gives for the
transient term:

∂

∂t
(ρlα̃l) =

∂

∂t
(ρl(αl + α′

l)) =
∂

∂t
(ρlαl) (C.12)

and for the convective terms:

∂

∂xi
(ρlα̃lṽl,i) =

∂

∂xi
(ρl(αl + α′

l)(vl,i + v′l,i)) =
∂

∂xi
(ρl(αlvl,i + α′

lv
′
l,i))

=
∂

∂xi
(ρlαlvl,i − ρl

νl,t

σαl,t

∂αl

∂xi
)

(C.13)
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The Modeled Liquid Phase Continuity Equation

For none reactive flow calculations there are no mass exchange between the
phases, the continuity equation was reduced to:

∂

∂t
(αlρl) +

∂

∂xi
(αlρlvl,i) =

∂

∂xi
(
μl,t

σαl,t

∂αl

∂xi
) (C.14)

In vector notation:

∂

∂t
(αlρl) + ∇ · (αlρlvl) = ∇ · ( μl,t

σαl,t
∇αl) (C.15)

Turbulence Modeling of the Liquid Phase Momentum Equation

Time averaging the volume averaged momentum balance (C.8) gives for the
transient term:

∂

∂t
(α̃lρlṽl,i) =

∂

∂t
(ρl(αl + α′

l)(vl,i + v′l,i)) =
∂

∂t
(ρl(αlvl,i + α′

lv
′
l,i))

≈ ∂

∂t
(ρlαlvl,i)

(C.16)

The turbulent covariance terms were neglected. The transient term did
serve as a means of under-relaxation.

Modeling the convection terms:

∂

∂xj
(α̃lρlṽl,j ṽl,i) =

∂

∂xj
(ρl(αl + α′

l)(vl,j + v′l,j)(vl,i + v′l,i))

=
∂

∂xj
(ρl(αlvl,jvl,i + α′

lv
′
l,jvl,i + α′

lv
′
l,ivl,j + αlv′l,jv

′
l,i))

=
∂

∂xj

[

αlρlvl,jvl,i − ρl
νl,t

σαl,t

∂αl

∂xj
vl,i

− ρl
νl,t

σαl,t

∂αl

∂xi
vl,j − αlρl

νl,t

σl,t
(
∂vl,i

∂xj
+

∂vl,j

∂xi
)

+
2
3
δijαlρl(

νl,t

σl,t

∂vl,k

∂xk
+ k)

]

(C.17)

The time after volume averaged pressure-volume fraction term was mod-
eled as:

α̃l
∂p̃

∂xi
= (αl + α′

l)
∂

∂xi
(p + p′) = αl

∂p

∂xi
+ α′

l

∂p′

∂xi

= αl
∂p

∂xi
+ ρl

νl,t

σαl,t

∂αl

∂xj

∂vl,i

∂xj
+ ρlvl,j

∂

∂xj
(
νl,t

σαl,t

∂αl

∂xi
)

(C.18)
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The pressure-volume fraction covariance terms were deduced from the in-
stantaneous steady state equations for conservation of mass and momentum
of the continuous phase [12]. The instantaneous steady state continuity was
written as:

∂

∂xi

(

ρl(αlvl,i + αlv
′
l,i + α′

lvl,i + α′
lv

′
l,i)

)

= 0 (C.19)

The time after volume averaged continuity equation became:

∂

∂xi

(

ρl(αlvl,i + α′
lv

′
l,i)

)

= 0 (C.20)

The steady state equation for the instantaneous mass fluctuations was found
by subtracting (C.20) from (C.19) giving:

∂

∂xi

(

ρl(αlv
′
l,i + α′

lvl,i + α′
lv

′
l,i − α′

lv
′
l,i)

)

= 0 (C.21)

The instantaneous void fractions always satisfy (C.3), hence:

αl + α′
l + αg + α′

g = 1 (C.22)

Time averaging the instantaneous volume averaged compatibility relation
gives:

αl + αg = 1 (C.23)

By subtracting the time averaged compatibility relation (C.23) from (C.22),
the fluctuations were shown to satisfy:

α′
l + α′

g = 0 (C.24)

Since the two phases share the same pressure, the phasic pressure–volume
fraction covariance terms were related through:

α′
l

∂p′

∂xi
= −α′

g

∂p′

∂xi
(C.25)

The pressure-volume fraction covariance terms appear with opposite signs
in the equations for the gas and liquid phases. The pressure-volume fraction
covariance terms thus describe momentum transfer fluxes between the phases.

A steady state equation for the instantaneous momentum fluctuations was
found by subtracting the time averaged steady state equation from the instan-
taneous steady state equation. The resulting steady state relations were then
simplified by the use of (C.22) and (C.24). The resulting equation was then
multiplied through with α′

l/αl and time averaged. Covariances of fluctuating
quantities with order larger than two were assumed small compared to the
other terms and thus neglected. The fluctuating interphase forces and viscous
interaction terms were also neglected.
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The factor:
α

′2
l

α2
l

(C.26)

is now a common factor for three of the remaining terms in the equation for the
pressure–volume fraction covariance terms. By assuming that this pre-factor
term was close to zero, all the terms with this prefactor factor were neglected.
The pressure–volume fraction covariance terms were then approximated by:

α′
l

∂p′

∂xi
= −ρlα′

lv
′
l,j

∂vl,i

∂xj
− ρlvl,jα′

l

∂v′l,i
∂xj

(C.27)

The first term on the RHS can be modeled using the gradient and Boussinesq
hypotheses. The covariance within the second term was written as:

α′
l

∂vl,i

∂xj
=

∂

∂xj
(α′

lv
′
l,i) − v′l,i

∂α′
l

∂xj
(C.28)

A weakly justified approximation was then introduced [12]:

α′
l

∂v′l,i
∂xj

≈ ∂

∂xj
(α′

lv
′
l,i) (C.29)

The final equation for the turbulent pressure–volume fraction covariance terms
was then obtained:

α′
l

∂p′

∂xi
= −ρlα′

lv
′
l,j

∂vl,i

∂xj
− ρlvl,j

∂

∂xj
(α′

lv
′
l,i) (C.30)

The closure is completed by use of the gradient and Boussinesq hypotheses
on the form (C.10).

Time averaging the volume averaged gravity force yield:

α̃lρlgi = (αl + α′
l)ρlgi = αlρlgi (C.31)

The time after volume averaged viscous shear terms became:

∂

∂xj
(α̃lμl(

∂ṽl,i

∂xj
+

∂ṽl,j

∂xi
))

=
∂

∂xj

(

μl(αl + α′
l)(

∂(vl,i + v′l,i)
∂xj

+
∂(vl,j + v′l,j

∂xi
)
)

=
∂

∂xj

(

μlαl(
∂vl,i

∂xj
+

∂vl,j

∂xi
) + μlα′

l(
∂v′l,i
∂xj

+
∂v′l,j
∂xi

)
)

≈ ∂

∂xj
(μlαl(

∂vl,i

∂xj
+

∂vl,j

∂xi
))

(C.32)
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and

− ∂

∂xj
(
2
3
δijα̃lμl

∂ṽl,k

∂xk
) = −2

3
∂

∂xi
(μl(αl + α′

l)
∂(vl,k + v′l,k)

∂xk
)

= −2
3

∂

∂xi
(μlαl

∂vl,k

∂xk
+ μlα′

l

∂v′l,k
∂xk

)

≈ −2
3

∂

∂xi
(μlαl

∂vl,k

∂xk
)

(C.33)

To make the notation used for the latter term consistent with the other
equations, index j is substituted for k :

− ∂

∂xj
(
2
3
δijα̃lμl

∂ṽl,j

∂xj
) ≈ −2

3
∂

∂xi
(μlαl

∂vl,j

∂xj
) (C.34)

In abbreviated form the viscous shear can thus be written as:

F̃V
l,i = FV

l,i + FV ′
l,i (C.35)

in which the FV ′
l,i terms are ignored. The modeled viscous term was thus

approximated as:

F̃V
l,i ≈ FV

l,i ≈
∂

∂xj
(μlαl(

∂vl,i

∂xj
+

∂vl,j

∂xi
)) − 2

3
∂

∂xi
(μlαl

∂vl,j

∂xj
) (C.36)

The time averaged interphase forces were modeled as:

F̃C
l,i = FC

l,i + FC′
l,i (C.37)

It is noted that FC′
l,i is made up of terms which are of order higher than one

in the fluctuating quantities, so by time averaging they are not zero. The
interphase forces and the turbulence modeling of the drag force are described
shortly in this section.

The Modeled Liquid Phase Momentum Equation

After all the modeled terms were substituted into the averaged conservation
equation for momentum, the balance equation became:
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∂

∂t
(αlρlvl,i)

︸ ︷︷ ︸

Transient term

+
∂

∂xj
(αlρlvl,jvl,i)

︸ ︷︷ ︸

Convection term

=

∂

∂xj
(ρl

νl,t

σαl,t

∂αl

∂xj
vl,i + ρl

νl,t

σαl,t

∂αl

∂xi
vl,j + αlρl

νl,t

σl,t
(
∂vl,i

∂xj
+

∂vl,j

∂xi
))

︸ ︷︷ ︸

From convection term

− ∂

∂xj
(
2
3
δijαlρl(k +

νl,t

σl,t

∂vl,k

∂xk
))

︸ ︷︷ ︸

From convection term

−αl
∂p

∂xi
− ρl

νl,t

σαl,t

∂αl

∂xj

∂vl,i

∂xj
︸ ︷︷ ︸

From pressure term

−ρlvl,j
∂

∂xj
(
νl,t

σαl,t

∂αl

∂xi
)

︸ ︷︷ ︸

From pressure term

+ ρlαlgi
︸ ︷︷ ︸

Gravity term

+
∂

∂xj
(αlμl(

∂vl,i

∂xj
+

∂vl,j

∂xi
)) − ∂

∂xi
(
2
3
αlμl

∂vl,k

∂xk
)

︸ ︷︷ ︸

Viscous terms

+ FC
l,i + FC′

l,i
︸ ︷︷ ︸

Interphasial forces term

(C.38)

The viscous terms were joined with the turbulent diffusion terms that come
from the modeling of the convection terms. The notations μl,eff = μl + μl,t

σl,t

and νl,eff = νl + νl,t

σl,t
are used, giving:

∂

∂t
(αlρlvl,i) +

∂

∂xj
(αlρlvl,jvl,i) =

∂

∂xj
(ρl

νl,t

σαl,t

∂αl

∂xj
vl,i + ρl

νl,t

σαl,t

∂αl

∂xi
vl,j + αlρlνl,eff(

∂vl,i

∂xj
+

∂vl,j

∂xi
))

− ∂

∂xi
(
2
3
αlρl(k + νl,eff

∂vl,k

∂xk
)) − αl

∂p

∂xi
− ρl

νl,t

σαl,t

∂αl

∂xj

∂vl,i

∂xj

− ρlvl,j
∂

∂xj
(
νl,t

σαl,t

∂αl

∂xi
) + ρlαlgi + FC

l,i + FC′
l,i

(C.39)

These equations can be written in vector notation giving:

∂

∂t
(αlρlvl) + ∇ · (αlρlvlvl) =

∇ · (ρl
νl,t

σαl,t
∇αlvl + ρl

νl,t

σαl,t
vl∇αl + αlρlνl,eff(∇vl + (∇vl)T ))

−∇(
2
3
αlρl(k + νl,eff∇ · vl)) − αl∇p− ρl

νl,t

σαl,t
∇αl · ∇vl

− ρlvl · ∇(
νl,t

σαl,t
∇αl) + ρlαlg + FC

l + FC′
l

(C.40)

This equation can be transformed into cylindrical coordinates as shown shortly
in this appendix. The resulting equations in 2D cylindrical are listed in
sect C.4.
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The Modeled Gas Phase Continuity Equation

The continuity equation was modeled in an identical manner to that of the
liquid phase. The result is:

∂

∂t
(αgρg) +

∂

∂xi
(αgρgvg,i) =

∂

∂xi
(
μg,t

σαg,t

∂αg

∂xi
) (C.41)

In vector notation this is:
∂

∂t
(αgρg) + ∇ · (αgρgvg) = ∇ · ( μg,t

σαg,t
∇αg) (C.42)

The Modeled Gas Phase Momentum Equation

The turbulence modeling of the transient and convective terms of the mo-
mentum balance (C.9) gives analogous results to that of the liquid phase. The
pressure term is determined from [12]:

α′
g

∂p′

∂xi
= −α′

l

∂p′

∂xi
(C.43)

The gravitational and interphase forces are also analogous to those of the
liquid phase.

The momentum balance was thus be written as:
∂

∂t
(αgρgvg,i)

︸ ︷︷ ︸

Transient term

+
∂

∂xj
(αgρgvg,jvg,i)

︸ ︷︷ ︸

Convection term

=

∂

∂xj
(ρg

νg,t

σαg,t

∂αg

∂xj
vg,i + ρg

νg,t

σαg,t

∂αg

∂xi
vg,j + αgρg

νg,t

σg,t
(
∂vg,i

∂xj
+

∂vg,j

∂xi
))

︸ ︷︷ ︸

From convection term

− ∂

∂xj
(
2
3
δijαgρg(k +

νg,t

σg,t

∂vg,k

∂xk
))

︸ ︷︷ ︸

From convection term

−αg
∂p

∂xi
+ ρl

νl,t

σαl,t

∂αl

∂xj

∂vl,i

∂xj
︸ ︷︷ ︸

From pressure term

+ρlvl,j
∂

∂xj
(
νl,t

σαl,t

∂αl

∂xi
)

︸ ︷︷ ︸

From pressure term

+ ρgαggi
︸ ︷︷ ︸

Gravity term

+ FC
g,i + FC′

g,i
︸ ︷︷ ︸

Interphasial forces term

(C.44)

In vector notation this equation becomes:

∂

∂t
(αgρgvg) + ∇ · (αgρgvgvg) =

∇ · (ρg
νg,t

σαg,t
∇αgvg + ρg

νg,t

σαg,t
vg∇αg + αgρg

νg,t

σαg,t
(∇vg + (∇vg)T ))

−∇(
2
3
αgρg(k +

νg,t

σαg,t
∇ · vg)) − αg∇p + ρl

νl,t

σαl,t
∇αl · ∇vl

+ ρlvl · ∇(
νl,t

σαl,t
∇αl) + ρgαgg + FC

g + FC′
g

(C.45)
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The mass and momentum conservation equations are written in cylindrical
coordinates in a later section in this appendix.

The Liquid Phase Turbulence Model

The k− ε model is chosen as the turbulence model [14]. It is assumed that the
turbulence inside the dispersed phase (gas bubbles) does not affect the liquid
phase turbulence. Both k and ε are determined from transport equations, as
described in sect 5.1.

In vector notation the equations are:

∂

∂t
(αlρlk) + ∇ · (αlρlvlk) = ∇ · (αl

μl,t

σk
∇k) + αl(Pk + Pb − ρlε) (C.46)

and

∂

∂t
(αlρlε)+∇·(αlρlvlε) = ∇·(αl

μl,t

σε
∇ε)+αl

ε

k
(Cε1(Pk+Pb)−Cε2ρlε) (C.47)

with
Pk = μl,t(∇vl + (∇vl)T ) : ∇vl (C.48)

and
Pb = CbFD,l · (vl − vg) (C.49)

The Cb parameter takes values between 0 and 1, and generally depends on
bubble size and shape, and on the turbulent length scale. The empirical co-
efficients in the turbulence model were kept equal to the standard values for
the original single phase model.

Interphase Forces

The interphase forces considered were steady drag, added (virtual) mass and
lift. The steady drag force on a collection of dispersed bubbles with a given
average diameter was described by (5.48) and (5.34). The transversal lift force
was determined by the conventional model (5.65), whereas the added mass
force was approximated by (5.112).

Jakobsen [12] used a drag coefficient formulation for the bubbles formu-
lated by Johansen and Boysan [13] based on the terminal velocities for ellip-
soidal bubbles given by Clift et al [7].

CD =
0.622

1.0
Eo + 0.235

(C.50)

By applying turbulence modeling to the drag force, negative transversal
forces arise. The resulting transversal force was written as [12]:
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F i
T,g =

3
4
αlαg

μl

d2
S

CD
Cτ

(1 + τL

tP
)
(
dS

νl
)2

(vl − vg)k

ReP

(−νl,t(
∂vl,i

∂xk
+

∂vl,k

∂xi
))(1 − δik)

(C.51)
where ReP is the time averaged turbulent particle Reynolds number:

ReP =
dS

√

(vl,i + v′l,i − vg,i − v′g,i)2

νl
(C.52)

Variable Local Bubble Size Model

Jakobsen [59] developed a simple model for the bubble size postulating that
the bubble diameter was proportional to the turbulence length scale deter-
mined by the k-ε turbulence model. The bubble diameter was thus approxi-
mated by:

ds = CSMD
k

3
2

ε
(C.53)

in which CSMD = 0.04 was considered a constant system parameter tuned to
the air-water system.

C.2 Tensor Transformation Laws

Thus far the two-fluid model has been derived in Cartesian coordinates. How-
ever, for working problems it is often more natural to use curvilinear coordi-
nates like cylindrical and spherical coordinates. In reactor modeling cylindrical
coordinates are of particular interest because many reactors have the shape
of a tube.

In this section we are thus primarily interested in knowing how to convert
the various differential operations written in Cartesian coordinates into vector
notation and from thence into curvilinear coordinates. The first operation is
relatively easy to perform since the elementary operators can be found in many
introductory textbooks on fluid mechanics. The second operation can also be
achieved in a rigorous manner provided that we know, for the coordinate
being used, two mathematical characteristics1: The expressions for ∇ and the
spatial derivatives of the unit vectors in curvilinear coordinates.

In the following subsections we define the formulas that are necessary to
convert the equations from the general vector notation to cylinder coordinates.
Finally, the governing equations for the two-fluid model are given in cylinder
coordinates.

1 The textbooks by Bird et al [3], Aris [2], Malvern [15], Slattery [17], Irgens [10]
[11] and Borisenko and Tarapov [6] may be consulted for thoroughgoing studies
of the extensive theory of vector and tensor analysis.
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C.2.1 Curvilinear Coordinate Systems

The position of a point P in any coordinate system may be specified by three
coordinates . To determine these we must first establish a frame of reference
by taking any point O as the origin and drawing through it three lines, the
coordinates. A reference frame with origin O consists of three base vectors
pointing in three different directions which do not all lie in the same plane.
The set of three base vectors is called a basis. A coordinate system is said to
be curvilinear if its coordinate curves are not straight lines. A characteristic
property of curvilinear coordinate systems is that the orientation of the axes
vary from point to point. Considering the general non-orthogonal curvilinear
coordinate systems the base vectors are not orthogonal and need not be the
same at different points in space. In these non-orthogonal curvilinear coordi-
nate systems, two distinct frames of basis vectors exist at any point. One frame
follows the coordinate lines, i.e., the covariant basis vectors are tangents to the
coordinate curves. In the other frame, the contravariant basis vectors are nor-
mal to the coordinate surface. The orthogonal curvilinear coordinates can be
considered a special case of the non-orthogonal curvilinear coordinates. These
orthogonal coordinate systems are characterized by tangential basis vectors
to the coordinate lines which are mutually perpendicular at every point. In
this book only orthogonal coordinate systems are considered. The Cartesian
coordinate system is defined by three mutually orthogonal unit vectors with
equal units of measurement. The unit vectors may then be thought of as lines
of unit length lying along the three axes. The orthogonal curvilinear coor-
dinate systems, like the cylindrical and spherical coordinates, are defined by
three mutually orthogonal unit vectors with unequal units of measurement.

Considering a generalized orthogonal coordinate system, the orthogonal
curvilinear coordinates are defined as qα. In this O-system the base vectors
eα are defined as unit vectors along the coordinates. The position of the point
P is given by the coordinates, or by the position vector r = r(qα, t).

C.2.2 The Tensor Concept

A scalar is a quantity associated with a point in space, whose specification
requires just one number. For example, the fluid density, mass fraction, tem-
perature, pressure and work are all scalar quantities. Scalars can be compared
only if they have the same physical dimensions. Scalars measured in the same
system of units are said to be equal if they have the same magnitude and
sign. A vector is an entity that possesses both magnitude and direction and
obeys certain laws. For example, velocity, acceleration, force are all vectors.
Two vectors are equal if they have the same direction and the same magni-
tude. Moreover, a direction has to be specified in relation to a given frame of
reference and this frame of reference is just as arbitrary as the system of units
in which the magnitude is expressed. We distinguish therefore between the
vector as an entity and its components which allow us to reconstruct it in a
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particular system of reference. Second-order tensors (also called second-rank
tensors2) are next in order of complexity after scalars and vectors. Scalars
and vectors are both special cases of the more general mathematical entity
called a tensor of order n, whose specification in any given coordinate system
requires 3n numbers for 3D tensors, these are called the components of the
tensor. In this way, we may consider that scalars are tensors of order 0, with
30 = 1 components, and vectors are tensors of order 1, with 31 = 3 compo-
nents. By a second-order tensor is thus meant a quantity uniquely specified
by 32 = 9 numbers denoting the components of the tensor. Higher-order ten-
sors can naturally be defined too, but the second-order tensors are the ones
of primary interest in this book. For brevity, we often use the word tensor
to mean second-order tensor. The stress tensor is customarily considered the
primary tensor in fluid mechanics. A fluid stress has the units of a force per
unit area. This tensor is thus an entity associated with two directions (those
of the force and the normal to the area). The Cauchy’s stress principle es-
tablishes that the stress in fluids can be represented by a tensor (e.g., Aris
[2], chap 5; Borisenko and Tarapov [6], sect 2.4.2; Slattery [17], sect 2.2.2).
Basically, Cauchy’s stress principle asserts that f/δA, tends towards a finite
limit as δA → 0. This limit is called the stress vector. To elucidate the nature
of the stress system at a point P one considers a fluid element with shape like
a small tetrahedron with three of its faces perpendicular to the coordinate
axes, while the fourth has an area δA with normal n. The three faces are
mutually orthogonal and coincide with a set of Cartesian coordinate planes
intersecting at z. By the law of action and reaction, the stress forces acting
on the inside faces of the tetrahedron are equal and opposite to those acting
on the outside faces. Applying the principle of local equilibrium then shows
that if the tetrahedral fluid element shrink in volume toward a point P , the
net surface force will approach zero. It follows that the stress vector can be
re-written as f = −(f1n1 + f2n2 + f3n3). With the convention that −Tmk is
the kth component of the stress vector acting upon the positive side of the
plane zm = constant, we project f onto the axes of the system:

f = −niTijej , (C.54)

where Tij is a matrix of nine stress components constituting a tensor. This
allow us to write (C.54) as:

f = −n · T (C.55)

Thus, in order to describe completely the state of stress at a point in a con-
tinuum, we must specify the stress tensor T.

A key property of a tensor is the transformation law of its components.
This law expresses the way in which the tensor components in one coordinate
system are related to its components in another coordinate system. The precise

2 The rank of a particular tensor is the number of array indices required to describe
such a quantity.
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form of this transformation law is a consequence of the physical or geometric
meaning of the tensor.

C.2.3 Coordinate Transformation Prerequisites

In this section we explain how to determine ∇ and the spatial derivatives of
the unit vectors in cylindrical coordinates.

In Cartesian coordinates the position vector is given by:

r = xex + yey + zez (C.56)

The nabla operator yields:

∇ =
∂

∂x
ex +

∂

∂y
ey +

∂

∂z
ez (C.57)

The gradient of a scalar field ψ is defined by:

∇ψ =
∂ψ

∂x
ex +

∂ψ

∂y
ey +

∂ψ

∂z
ez (C.58)

The divergence of a vector field v is defined by:

∇ · v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
(C.59)

The divergence of a tensor field σ is defined by:

∇ · σ =
∑

i

∂

∂xi
ei · (σjkejek) =

∑

k

ek
∂

∂xi
σik (C.60)

The Laplacian of a scalar field ψ is defined by:

∇2ψ =
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
(C.61)

The Curl of a vector field v is defined by:

∇× v =
ex ey ez
∂
∂x

∂
∂y

∂
∂z

vx vy vz

(C.62)

The governing equations can be transformed directly from Cartesian coordi-
nates into cylindrical coordinates without considering the vector notation. In
this appendix the relationships between the Cartesian coordinates and the
cylindrical coordinates are defined solely, but the method of coordinate trans-
formation is generic and can thus be applied to any orthogonal coordinate
system.
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In cylindrical coordinates, instead of locating a point in space by x,y,z as
in Cartesian coordinates, we desingnate the coordinates of the point by r,θ,z.
The Cartesian coordinates are related to the cylindrical coordinates by [3]:

x = r cos θ, y = r sin θ, z = z (C.63)

To convert the derivatives of scalars with respect to x,y,z into derivatives with
respect to r,θ,z, the chain rule of partial differentiation is used. The derivative
operators are thus related as:

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ
r

∂

∂θ
,

∂

∂z
=

∂

∂z
(C.64)

Trigonometrical arguments lead to the following relations between the unit
vectors:

er = cos θex + sin θey, eθ = − sin θex + cos θey, ez = ez (C.65)

From these equations one can derive the formulas required for the spatial
derivatives of the unit vectors er,eθ,ez.

The given trigonometrical relationships may also be solved for ex,ey,ez,
giving:

ex = cos θer − sin θeθ, ey = sin θer + cos θeθ, ez = ez (C.66)

To obtain the formula for ∇ in cylindrical coordinates we employ the definition
of the ∇-operator in Cartesian coordinates (C.57), eliminate the Cartesian
unit vectors by (C.66) and eliminate the Cartesian derivative operators by
(C.64). The resulting formula for the ∇ operator in cylindrical coordinates can
then be used to calculate all the necessary differential operators in cylindrical
coordinates provided that the spatial derivatives of the unit vectors er,eθ,ez

are used to differentiate the unit vectors on which ∇ operates.
The spatial derivatives of the unit vectors er,eθ,ez can be determined from

(C.65):

∂

∂r
er = 0

∂

∂r
eθ = 0

∂

∂r
ez = 0 (C.67)

∂

∂θ
er = eθ

∂

∂θ
eθ = −er

∂

∂θ
ez = 0 (C.68)

∂

∂z
er = 0

∂

∂z
eθ = 0

∂

∂z
ez = 0 (C.69)

By use of (C.56), (C.63) and (C.68) the position vector can be transformed
into cylindrical coordinates:

r = rer(θ) + zez (C.70)
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C.2.4 Orthogonal Curvilinear Coordinate Systems and Differential
Operators

In this section the relevant differential operators are defined for generalized
orthogonal curvilinear coordinate systems.

Let (q1,q2,q3) be curvilinear orthogonal coordinates connected with the
Cartesian coordinates (x,y,z) by the vector relation r = r(q1, q2, q3), where r
is the radius vector of the point P considered. The Cartesian coordinates are
then related to the generalized curvilinear coordinates by:

x = x(q1, q2, q3), y = y(q1, q2, q3), z = z(q1, q2, q3) (C.71)

If the Jacobian is nonzero,

∂(x, y, z)
∂(q1, q2, q3)


= 0, (C.72)

then
q1 = q1(x, y, z), q2 = q2(x, y, z), q3 = q3(x, y, z) (C.73)

form a basis for the orthogonal curvilinear coordinate system.
The basis vectors (not necessarily unit vectors) in the generalized curvi-

linear coordinate system are defined as (e.g., [1], p 193; [24], p 6; [3], p 737):

gα =
∂r
∂qα

=
∂r
∂xk

∂xk

∂qα
=

∂xk

∂qα
ek or ek =

∂qα

∂xk
gα (C.74)

where xk is the Cartesian coordinates, and gα are the tangent basis vectors
which are tangents to the coordinate lines.

From these basis vectors we can define the Lamé coefficients denoting the
length of the basis vectors (also named scale factors) and expressed by:

hqα
= |gα| = | ∂r

∂qα
| = hα =

√
gα · gα =

√

∂r
∂qα

· ∂r
∂qα

=

√

∂xk

∂qα

∂xk

∂qα
(C.75)

thus the unit tangent vectors to the coordinate lines qα can be determined by:

eα =
gα

|gα|
=

gα√
gαgα

=
gα

hα
(C.76)

For orthogonal coordinate systems, we can write:

√
gα · gβ =

√

∂xk

∂qα

∂xk

∂qβ
= 0, forα 
= β. (C.77)

We may then present a generalization of (C.75), the relation for hα:
√

∂xk

∂qα

∂xk

∂qβ
= hαδαβ (C.78)
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Moreover, since:
∂qα

∂qβ
=

∂qα

∂xk

∂xk

∂qβ
= δαβ (C.79)

the equality relation between the last two terms in the above expression can
be rewritten as:

(

∂qα

∂xk

)

=
(

∂xk

∂qα

)−1

(C.80)

Combining the latter three relationships, we obtain:
(

∂qα

∂xk

∂qβ

∂xk

)

=
(

∂xk

∂qα

∂xk

∂qβ

)−1

=
1
h2

α

δαβ (C.81)

In Cartesian coordinates the position vector (C.56) is expressed in terms of
the unit base vectors ex,ey,ez, hence a position vector increment dr between
two infinitely close points yields: dr = dxex + dyey + dzez. The base vectors
gα in the curvilinear system, called the natural basis of the curvilinear system
(also called covariant base vectors), is defined such that the same position
vector increment dr is given in terms of the curvilinear increments dgα by:
dr = dgαeα. The distance element in curvilinear coordinate systems is then
computed as the square of the element of arc length between the two infinitely
close points:

(ds)2 = |dr| = dr · dr = gαγdqαdqγ (C.82)

where gαγ = eα · eγ is called the metric tensor.
The basic quantities describing an orthogonal coordinate system are the

metric coefficients h1 =
√
g11, h2 =

√
g22, h3 =

√
g33, which satisfy the

formula:
(ds)2 = dr · dr = (h1dq1)2 + (h2dq2)2 + (h3dq3)2 (C.83)

For the cylindrical coordinates the metric coefficients can be determined from
(C.75):

hr =

√

∂r
∂r

· ∂r
∂r

= 1, hθ =

√

∂r
∂θ

· ∂r
∂θ

= r, hz =

√

∂r
∂z

· ∂r
∂z

= 1 (C.84)

using the following relations

∂r
∂r

= er,
∂r
∂θ

= r
∂er

∂θ
= reθ,

∂r
∂z

= ez (C.85)

which are deduced from (C.70).
The del operator can then be written in a generalized form using (C.56),

(C.74) and (C.81):

∇ = ek
∂()
∂xk

= (
∂qα

∂xk
gα)(

∂()
∂qβ

∂qβ

∂xk
) =

∑

α

(
1
h2

α

δαβ)gα
∂()
∂qβ

=
∑

α

1
h2

α

gα
∂()
∂qα

=
∑

α

1
hα

eα
∂()
∂qα

(C.86)
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where ek denotes the unit vectors in the Cartesian coordinate system and
eα = gα

hα
is the unit tangent vectors to the coordinate lines qα.

The resulting expression for the nabla operator (C.86) are then employed
to deduce the transformation formulas for the gradient, divergence, and curl
operators in any orthogonal curvilinear coordinate system [11]:

∇ψ =
∑

α

1
hα

eα
∂ψ

∂qα
(C.87)

∇ · v =
∑

α

1
hα

eα · ∂(vβeβ)
∂qα

(C.88)

curl(v) = rot(v) = ∇× v =
∑

α

1
hα

eα × ∂(vβeβ)
∂qα

(C.89)

∇v =
∑

α

1
hα

eα
∂(vβeβ)
∂qα

(C.90)

∇ · σ =
∑

α

1
hα

eα
∂(σβγeβeγ)

∂qα
(C.91)

in which the vector v is presented in terms of its physical components vα in
such a way that:

v = vα eα (C.92)

where eα is the unit tangent vector to the coordinate lines in the orthogonal
qα -system.

The orthogonal curvilinear unit vectors just introduced obay certain laws,
which are used in the subsequent paragraphs. The scalar or dot product of
two unit vectors yields:

eα · eβ = δαβ (C.93)

The vector or cross product of two unit vectors is defined by:

eα × eβ =
3

∑

γ=1

εαβγeγ (C.94)

Many formulas in tensor analysis are expressed compactly in terms of the
Kronecker delta, δαβ , and the alternating unit tensor, εαβγ . These entities are
defined as:

δαβ =

{

+1 if α = β

0 if α 
= β
(C.95)

εαβγ =

⎧

⎪

⎨

⎪

⎩

+1 if αβγ = 123, 231, or312
−1 if αβγ = 321, 132, or213
0 if any two indices are alike

(C.96)
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C.2.5 Differential Operators in Cylindrical Coordinates

In this section the cylindrical coordinate transforms are deduced from the
formulas presented in the preceding subsections.

From (C.92) we recognize that a vector in cylindrical coordinates yields:

v = vr er + vθ eθ + vz ez (C.97)

where er, eθ, and ez are the unit vectors in the radial, azimuthal, and axial
directions respectively.

The nabla-operator is given by (C.86):

∇ =
∑

α

1
hα

eα
∂

∂qα
= er

∂

∂r
+ eθ

1
r

∂

∂θ
+ ez

∂

∂z
(C.98)

Gradient of a scalar

The gradient of a scalar ψ is:

grad (ψ) = ∇ψ =
∑

α

1
hα

eα
∂ψ

∂qα
= er

∂ψ

∂r
+ eθ

1
r

∂ψ

∂θ
+ ez

∂ψ

∂z (C.99)

which is a vector.

Divergence of a vector

If v is a vector, the divergence of v is:

div (v) = ∇ · v =
∑

α

1
hα

eα · ∂

∂qα
(vβeβ)

= er ·
∂

∂r
(vβeβ) + eθ

1
r
· ∂

∂θ
(vβeβ) + ez ·

∂

∂z
(vkek)

=
∂vr

∂r
+ eθ

1
r
· ∂

∂θ
(vrer + vθeθ) +

∂vz

∂z

=
∂vr

∂r
+ eθ

1
r
· (vr

∂er

∂θ
+ er

∂vr

∂θ
+

∂

∂θ
(vθeθ)) +

∂vz

∂z

=
∂vr

∂r
+ eθ

1
r
· (vreθ + er

∂vr

∂θ
+

∂

∂θ
(vθeθ)) +

∂vz

∂z

=
∂vr

∂r
+

1
r
(vr +

∂vθ

∂θ
) +

∂vz

∂z

=
1
r

∂

∂r
(rvr) +

1
r

∂vθ

∂θ
+

∂vz

∂z

(C.100)

which is scalar.
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Gradient of a vector

Let v represent a vector, the gradient of v is:

grad (v) = ∇v =
∑

α

1
hα

eα
∂

∂qα
(vβeβ)

= er
∂

∂r
(vrer + vθeθ + vzez)

+
1
r
eθ

∂

∂θ
(vrer + vθeθ + vzez)

+ ez
∂

∂z
(vrer + vθeθ + vzez)

= erer
∂vr

∂r
+ ereθ

∂vθ

∂r
+ erez

∂vz

∂r

+
1
r
eθer

∂vr

∂θ
+

1
r
eθeθvr + +

1
r
eθeθ

∂vθ

∂θ
− 1

r
eθervθ +

1
r
eθez

∂vz

∂θ

+ ezer
∂vr

∂z
+ ezeθ

∂vθ

∂z
+ ezez

∂vz

∂z

= erer
∂vr

∂r
+ ereθ

∂vθ

∂r
+ erez

∂vz

∂r

+ eθer
∂

∂θ
(
1
r

∂vr

∂θ
− 1

r
vθ) + eθeθ(

1
r

∂vθ

∂θ
+

1
r
vr) + eθez

1
r

∂vz

∂θ

+ ezer
∂vr

∂z
+ ezeθ

∂vθ

∂z
+ ezez

∂vz

∂z
(C.101)

The product is a second-order tensor, or a dyadic product.

Divergence of a second-order tensor

The unit dyads may be multiplied with each other and with the unit vectors:

eα : eβ = δακδβγ (C.102)

eαeβ · eγ = eαδβγ (C.103)

eα · eβeγ = δαβeγ (C.104)

eαeβ · eγeκ = δβγeαeκ (C.105)
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Then, if A is a second order tensor, or a dyad, the divergence of A is:

div (A) = ∇ · A =
∑

α

1
hα

∂

∂qα
(Aγκeγeκ · eα)

=
∂

∂r
(Aγκeγeκ) · er +

1
r

∂

∂θ
(Aγκeγeκ) · eθ +

∂

∂z
(Aγκeγeκ) · ez

=
∂

∂r
(Aγκ)eγeκ · er + Aγκ

∂

∂r
(eγeκ) · er

+
1
r

∂

∂θ
(Aγκ)eγeκ · eθ +

1
r
Aγκ

∂

∂θ
(eγeκ) · eθ

+
∂

∂z
(Aγκ)eγeκ · ez + Aγκ

∂

∂z
(eγeκ) · ez

=
∂

∂r
(Arr)er +

∂

∂r
(Aθr)eθ +

∂

∂r
(Azr)ez

+
1
r

∂

∂θ
(Arθ)er +

1
r

∂

∂θ
(Aθθ)eθ +

1
r

∂

∂θ
(Azθ)ez

+
1
r
Akrek +

1
r
Akθ(

∂ek

∂θ
eθ · eθ)

+
∂

∂z
(Arz)er +

∂

∂z
(Aθz)eθ +

∂

∂z
(Azz)ez

=
∂

∂r
(Arr)er +

∂

∂r
(Aθr)eθ +

∂

∂r
(Azr)ez

+
1
r

∂

∂θ
(Arθ)er +

1
r

∂

∂θ
(Aθθ)eθ +

1
r

∂

∂θ
(Azθ)ez

+
1
r
Arrer +

1
r
Aθreθ +

1
r
Azrez +

1
r
Aθθeθ −

1
r
Aθθer

+
∂

∂z
(Arz)er +

∂

∂z
(Aθz)eθ +

∂

∂z
(Azz)ez

= er[
∂

∂r
(Arr) +

1
r

∂

∂θ
(Arθ) +

1
r
Arr −

1
r
Aθθ +

∂

∂z
(Arz)]

+ eθ[
∂

∂r
(Aθr) +

1
r

∂

∂θ
(Aθθ) +

1
r
Aθr +

1
r
Arθ +

∂

∂z
(Aθz)]

+ ez[
∂

∂r
(Azr) +

1
r

∂

∂θ
(Azθ) +

1
r
Azr +

∂

∂z
(Azz)]

= er[
1
r

∂

∂r
(rArr) +

1
r

∂

∂θ
(Arθ) +

∂

∂z
(Arz) −

1
r
Aθθ]

+ eθ[
1
r

∂

∂r
(rAθr) +

1
r

∂

∂θ
(Aθθ) +

∂

∂z
(Aθz) +

1
r
Arθ]

+ ez[
1
r

∂

∂r
(rAzr) +

1
r

∂

∂θ
(Azθ) +

∂

∂z
(Azz)]

(C.106)

which is a vector.



1168 C Trondheim Bubble Column Model

The Laplacian of a Scalar Field

If we take the divergence of the gradient of the scalar function ψ, as is done
for the pressure field formulating an equation for the pressure, we obtain:

∇2ψ =∇ · ∇ψ = ∇ · grad (ψ)

=(er
∂

∂r
+ eθ

1
r

∂

∂θ
+ ez

∂

∂z
) · (er

∂ψ

∂r
+ eθ

1
r

∂ψ

∂θ
+ ez

∂ψ

∂z
)

=
∂2ψ

∂r2
+ er

∂

∂r
· eθ

1
r

∂ψ

∂θ
+ eθ

1
r

∂

∂θ
· er

∂ψ

∂r
+

1
r2

∂2ψ

∂θ2
+

∂2ψ

∂z2

=
∂2ψ

∂r2
+ (er ·

1
r

∂ψ

∂θ

∂eθ

∂r
) + er · eθ

∂

∂r
(
1
r

∂ψ

∂θ
)

+ eθ
1
r
· ∂

∂θ
(er

∂ψ

∂r
) +

1
r2

∂2ψ

∂θ2
+

∂2ψ

∂z2
)

=
∂2ψ

∂r2
+ eθ

1
r
· (∂α

∂r

∂er

∂θ
+ er

∂

∂θ

∂ψ

∂r
) +

1
r2

∂2α

∂θ2
+

∂2ψ

∂z2

=
∂2ψ

∂r2
+ eθ

1
r
· ∂α
∂r

eθ +
1
r2

∂2ψ

∂θ2
+

∂2ψ

∂z2

=
∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2

∂2ψ

∂θ2
+

∂2ψ

∂z2

=
1
r

∂

∂r
(r
∂ψ

∂r
) +

1
r2

∂2ψ

∂θ2
+

∂2ψ

∂z2

(C.107)

The result is a scalar.

The Curl of a Vector Field

curl(v) = rot(v) = ∇× v =
∑

α

1
hα

eα × ∂(vβeβ)
∂qα

= er ×
∂(vβeβ)

∂r
+

1
r
eθ ×

∂(vβeβ)
∂θ

+ ez × ∂(vβeβ)
∂z

= er ×
∂

∂r
(vrer + vθeθ + vzez) +

1
r
eθ ×

∂

∂θ
(vrer + vθeθ + vzez)

+ ez × ∂

∂z
(vrer + vθeθ + vzez)

= er × (vr
∂er

∂r
+

∂vr

∂r
er + vθ

∂eθ

∂r
+

∂vθ

∂r
eθ + vz

∂ez

∂r
+

∂vz

∂r
ez)

+
1
r
eθ × (vr

∂er

∂θ
+

∂vr

∂θ
er + vθ

∂eθ

∂θ
+

∂vθ

∂θ
eθ + vz

∂ez

∂θ
+

∂vz

∂θ
ez)

+ ez × (vr
∂er

∂z
+

∂vr

∂z
er + vθ

∂eθ

∂z
+

∂vθ

∂z
eθ + vz

∂ez

∂z
+

∂vz

∂z
ez)
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= er × (
∂vr

∂r
er +

∂vθ

∂r
eθ +

∂vz

∂r
ez)

+
1
r
eθ × (vreθ +

∂vr

∂θ
er − vθer +

∂vθ

∂θ
eθ +

∂vz

∂θ
ez)

+ ez × (
∂vr

∂z
er +

∂vθ

∂z
eθ +

∂vz

∂z
ez)

= er × (
∂vθ

∂r
eθ +

∂vz

∂r
ez) +

1
r
eθ × (

∂vr

∂θ
er − vθer +

∂vz

∂θ
ez)

+ ez × (
∂vr

∂z
er +

∂vθ

∂z
eθ)

The vector or cross product of two unit vectors was defined by (C.94),
hence in cylindrical coordinates the following relations are valid:

er × eθ = εrθγeγ = εrθzez = ez (C.108)
er × ez = εrzθeθ = −eθ (C.109)
eθ × er = εθrzez = −ez (C.110)
eθ × ez = εθzrer = er (C.111)
ez × er = εzrθeθ = eθ (C.112)
ez × eθ = εzθrer = −er (C.113)

Introducing these relations into the above expression for the Curl operator
gives:

curl(v) =
∂vθ

∂r
ez −

∂vz

∂r
eθ −

1
r

∂vr

∂θ
ez +

vθ

r
ez +

1
r

∂vz

∂θ
er +

∂vr

∂z
eθ −

∂vθ

∂z
er

= er(
1
r

∂vz

∂θ
− ∂vθ

∂z
) + eθ(

∂vr

∂z
− ∂vz

∂r
) + ez(

∂vθ

∂r
− 1

r

∂vr

∂θ
+

vθ

r
)

= er(
1
r

∂vz

∂θ
− ∂vθ

∂z
) + eθ(

∂vr

∂z
− ∂vz

∂r
) + ez(

1
r

∂(rvθ)
∂r

− 1
r

∂vr

∂θ
)

C.2.6 Differential Operators Required for the Two-fluid Model

In this section the govening equations are transformed from vector notation
to cylindrical coordinates.

Gradient of a scalar

The pressure gradient is one of the gradients of a scalar variable that are part
of the equations in question. In cylindrical coordinates it is determined as:

∇p =
∂p

∂r
er +

1
r

∂p

∂θ
eθ +

∂p

∂z
ez (C.114)
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Divergence of a vector

In all the scalar equations a convective term on the form ∇ · (αlρlvl) is in-
cluded. In cylindrical coordinates this term is expressed as:

∇ · (αlρlvl) =
1
r

∂

∂r
(rαlρlvl,r) +

1
r

∂

∂θ
(αlρlvl,θ) +

∂

∂z
(αlρlvl,z) (C.115)

Divergence of a gradient

In the scalar equations there are also terms like ∇ · (μl,t

σt
∇αl). This term is

identical in form to the previous one, since the gradient is just a vector. In
cylindrical coordinates the term is written as:

∇ · (μl,t

σt
∇αl) =

1
r

∂

∂r
(r
μl,t

σt

∂αl

∂r
) +

1
r

∂

∂θ
(
μl,t

σt

1
r

∂αl

∂θ
) +

∂

∂z
(
μl,t

σt

∂αl

∂z
) (C.116)

Divergence of a dyad

Generally, the divergence of a dyad or 2. order tensor, say σ, is transformed
as:

∇ · σ =
(

1
r

∂

∂r
(rσrr) +

1
r

∂

∂θ
(σθr) −

1
r

σθθ +
∂

∂z
(σzr)

)

er

+
(

1
r

∂

∂θ
(σθθ) +

1
r

∂

∂r
(rσrθ) +

1
r

σθr +
∂

∂z
(σzθ)

)

eθ

+
(

1
r

∂

∂r
(rσrz) +

1
r

∂

∂θ
(σθz) +

∂

∂z
(σzz)

)

ez

(C.117)

The dyad v v is symmetric. In cylindrical coordinates ∇ · (αρvv) is given
as:

∇ · (αρvv) =
(

1
r

∂

∂r
(rαρvrvr) +

1
r

∂

∂θ
(αρvθvr) −

1
r
αρvθvθ +

∂

∂z
(αρvzvr)

)

er

+
(

1
r

∂

∂θ
(αρvθvθ) +

1
r

∂

∂r
(rαρvrvθ) +

1
r
αρvθvr +

∂

∂z
(αρvzvθ)

)

eθ

+
(

1
r

∂

∂r
(rαρvrvz) +

1
r

∂

∂θ
(αρvθvz) +

∂

∂z
(αρvzvz)

)

ez

(C.118)
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The terms similar to ∇ · ( μl,t

σα,t
∇αv) are also divergences of a dyad. ∇αv

is not symmetric.

∇ · ( μl,t

σα,t
∇αv) =

(

1
r

∂

∂r
(r

μl,t

σα,t

∂α

∂r
vr) +

1
r

∂

∂θ
(
μl,t

σα,t

1
r

∂α

∂θ
vr) −

μl,t

σα,t

1
r2

∂α

∂θ
vθ +

∂

∂z
(
μl,t

σα,t

∂α

∂z
vr)

)

er

+
(

1
r

∂

∂θ
(
μl,t

σα,t

1
r

∂α

∂θ
vθ) +

1
r

∂

∂r
(r

μl,t

σα,t

∂α

∂r
vθ) +

μl,t

σα,t

1
r2

∂α

∂θ
vr +

∂

∂z
(
μl,t

σα,t

∂α

∂z
vθ)

)

eθ

+
(

1
r

∂

∂r
(r

μl,t

σα,t

∂α

∂r
vz) +

1
r

∂

∂θ
(
μl,t

σα,t

1
r

∂α

∂θ
vz) +

∂

∂z
(
μl,t

σα,t

∂α

∂z
vz)

)

ez

(C.119)

The term ∇ · ( μl,t

σα,t
v∇α) is very similar to the previous one:

∇ · ( μl,t

σα,t
v∇α) =

(

1
r

∂

∂r
(r

μl,t

σα,t
vr

∂α

∂r
) +

1
r

∂

∂θ
(
μl,t

σα,t
vθ

∂α

∂r
) − μl,t

σα,t

1
r2
vθ

∂α

∂θ
+

∂

∂z
(
μl,t

σα,t
vz

∂α

∂r
)
)

er

+
(

1
r

∂

∂θ
(
μl,t

σα,t
vθ

1
r

∂α

∂θ
) +

∂

∂r
(
μl,t

σα,t
vr

1
r

∂α

∂θ
) +

1
r2

μl,t

σα,t
vr
∂α

∂θ
+

μl,t

σα,t

1
r
vθ
∂α

∂r

+
∂

∂z
(
μl,t

σα,t
vz

1
r

∂α

∂θ
)
)

eθ

+
(

1
r

∂

∂r
(r

μl,t

σα,t
vr

∂α

∂z
) +

1
r

∂

∂θ
(
μl,t

σα,t
vθ

∂α

∂z
) +

∂

∂z
(
μl,t

σα,t
vz

∂α

∂z
)
)

ez

(C.120)

In cylindrical coordinates the term ∇ · (αμ∇v) is expressed as:

∇ · (αμ∇v) =
(

1
r

∂

∂r
(rαμ

∂vr

∂r
) +

1
r

∂

∂θ
(αμ(

1
r

∂vr

∂θ
− vθ

r
)) − 1

r
αμ(

1
r

∂vθ

∂θ
+

vr

r
)

+
∂

∂z
(αμ

∂vr

∂z
)
)

er

+
(

1
r

∂

∂θ
(αμ(

1
r

∂vθ

∂θ
+

vr

r
)) +

1
r
αμ(

1
r

∂vr

∂θ
− vθ

r
) +

1
r

∂

∂r
(rαμ

∂vθ

∂r
)

+
∂

∂z
(αμ

∂vθ

∂z
)
)

eθ

+
(

1
r

∂

∂r
(rαμ

∂vz

∂r
) +

1
r

∂

∂θ
(αμ

∂vz

∂θ
) +

∂

∂z
(αμ

∂vz

∂z
)
)

ez

(C.121)
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The divergence of the transpose of the gradient of a vector ∇(αμ(∇v)T )
in cylindrical coordinates is written:

∇ · (αμ(∇v)T ) =
(

1
r

∂

∂r
(rαμ

∂vr

∂r
) +

1
r

∂

∂θ
(αμ

∂vθ

∂r
) − 1

r
αμ(

1
r

∂vθ

∂θ
+

vr

r
) +

∂

∂z
(αμ

∂vz

∂r
)
)

er

+
(

1
r

∂

∂r
(rαμ(

1
r

∂vr

∂θ
− vθ

r
)) +

1
r

∂

∂θ
(αμ(

1
r

∂vθ

∂θ
+

vr

r
)) +

1
r
αμ

∂vθ

∂r

+
∂

∂z
(αμ

1
r

∂vz

∂θ
)
)

eθ

+
(

1
r

∂

∂r
(rαμ

∂vr

∂z
) +

1
r

∂

∂θ
(αμ

∂vθ

∂z
) +

∂

∂z
(αμ

∂vz

∂z
)
)

ez

(C.122)

Gradient of a vector

The gradient of v is part of the momentum equations. In cylindrical coordi-
nates it is expressed as:

∇v =
∂vr

∂r
erer +

∂vθ

∂r
ereθ +

∂vz

∂r
erez

+ (
1
r

∂vr

∂θ
− vθ

r
)eθer + (

1
r

∂vθ

∂θ
+

vr

r
)eθeθ +

1
r

∂vz

∂θ
eθez

+
∂vr

∂z
ezer +

∂vθ

∂z
ezeθ +

∂vz

∂z
ezez

(C.123)

The dot product ∇α · ∇v

In cylindrical coordinates this term is written as:

∇α · ∇v =
(

∂α

∂r

∂vr

∂r
+

1
r

∂α

∂θ
(
1
r

∂vr

∂θ
− vθ

r
) +

∂α

∂z

∂vr

∂z

)

er

+
(

∂α

∂r

∂vθ

∂r
+

1
r

∂α

∂θ
(
1
r

∂vθ

∂θ
+

vr

r
) +

∂α

∂z

vθ

z

)

eθ

+
(

∂α

∂r

∂vz

∂r
+

1
r

∂α

∂θ

1
r

∂vz

∂θ
+

∂α

∂z

∂vz

∂z

)

ez

(C.124)
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The dot product v · ∇( μl,t

σα,t
∇α)

In cylindrical coordinates this term is written as:

v · ∇(
μl,t

σα,t
∇α)

=
(

vr
∂

∂r
(
μl,t

σα,t

∂α

∂r
) + vθ

1
r

∂

∂θ
(
μl,t

σα,t

∂α

∂r
) − vθ

1
r2

μl,t

σα,t

∂α

∂θ
+ vz

∂

∂z
(
μl,t

σα,t

∂α

∂r
)
)

er

+
(

vr
∂

∂r
(
μl,t

σα,t

1
r

∂α

∂θ
) + vθ

1
r

μl,t

σα,t

∂α

∂r
+ vθ

1
r

∂

∂θ
(
μl,t

σα,t

1
r

∂α

∂θ
) + vz

∂

∂z
(
μl,t

σα,t

1
r

∂α

∂θ
)
)

eθ

+
(

vr
∂

∂r
(
μl,t

σα,t

∂α

∂z
) + vθ

1
r

∂

∂θ
(
μl,t

σα,t

∂α

∂z
) + vz

∂

∂z
(
μl,t

σα,t

∂α

∂z
)
)

ez

(C.125)

C.3 Two-Fluid Equations in Cylindrical Coordinates

By use of the transformations defined above, the governing 3D equations are
written in cylindrical coordinates.

Liquid Phase Continuity Equation in Cylindrical Coordinates

∂

∂t
(αlρl) +

1
r

∂

∂r
(rαlρlvl,r) +

1
r

∂

∂θ
(αlρlvl,θ) +

∂

∂z
(αlρlvl,z) =

1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
) +

1
r

∂

∂θ
(
μl,t

σαl,t

∂αl

∂θ
) +

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
)

(C.126)

Liquid Phase Radial Momentum Balance in Cylindrical
Coordinates

∂

∂t
(αlρlvl,r)

+
1
r

∂

∂r
(rαlρlvl,rvl,r) +

1
r

∂

∂θ
(αlρlvl,θvl,r) −

1
r
αlρlvl,θvl,θ) +

∂

∂z
(αlρlvl,zvl,r) =

1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
vl,r) +

1
r

∂

∂θ
(
μl,t

σαl,t

1
r

∂αl

∂θ
vl,r) −

1
r2

μl,t

σαl,t

∂αl

∂θ
vl,θ

+
∂

∂z
(
μl,t

σαl,t

vl,r
∂αl

∂z
) +

1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
vl,r) +

1
r

∂

∂θ
(
μl,t

σαl,t

vl,θ
∂αl

∂r
)
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− 1
r2

μl,t

σαl,t

vl,θ
∂αl

∂θ
+

∂

∂z
(
μl,t

σαl,t

vl,z
∂αl

∂r
) +

1
r

∂

∂r
(rαlμl,eff

∂vl,r

∂r
)

+
1
r

∂

∂θ
(αlμl,eff(

1
r

∂vl,r

∂θ
− vl,θ

r
)) − 1

r
αlμl,eff(

1
r

∂vl,θ

∂θ

+
vl,r

r
) +

∂

∂z
(αlμl,eff

∂vl,r

∂z
) +

1
r

∂

∂r
(rαlμl,eff

∂vl,r

∂r
) +

1
r

∂

∂θ
(αlμl,eff

∂vl,θ

∂r
)

− 1
r
αlμl,eff(

1
r

∂vl,θ

∂θ
+

vl,r

r
) +

∂

∂z
(αlμl,eff

∂vl,z

∂r
)

− ∂

∂r
(
2
3
αlρl(k + νl,eff(

1
r

∂

∂r
(rvl,r) +

1
r

∂vl,θ

∂θ
+

∂vl,z

∂z
)))

− αl
∂p

∂r
− μl,t

σαl,t

(
∂αl

∂r

∂vl,r

∂r
+

1
r

∂αl

∂θ
(
1
r

∂vl,r

∂θ
− vl,θ

r
) +

∂αl

∂z

∂vl,r

∂z
)

− vl,r
∂

∂r
(
μl,t

σαl,t

∂αl

∂r
) − vl,θ

1
r

∂

∂θ
(
μl,t

σαl,t

∂αl

∂r
) + vl,θ

1
r2

μl,t

σαl,t

∂αl

∂θ

− vl,z
∂

∂z
(
μl,t

σαl,t

∂αl

∂r
) + αlρlgr + FC

l,r + FC′
l,r

(C.127)

Liquid Phase Azimuthal Momentum Balance in Cylindrical
Coordinates

∂

∂t
(αlρlvl,θ)

+
1
r

∂

∂r
(rαlρlvl,rvl,θ) +

1
r

∂

∂θ
(αlρlvl,θvl,θ) +

1
r
αlρlvl,θvl,r +

∂

∂z
(αlρlvl,zvl,θ) =

1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
vl,θ) +

μl,t

σαl,t

1
r2

∂αl

∂θ
vl,r +

1
r

∂

∂θ
(
μl,t

σαl,t

1
r

∂αl

∂θ
vl,θ)

+
∂

∂z
(
μl,t

σαl,t

vl,θ
∂αl

∂z
) +

∂

∂r
(
μl,t

σαl,t

1
r

∂αl

∂θ
vl,r) +

1
r2

μl,t

σαl,t

vl,r
∂αl

∂θ
+

1
r

μl,t

σαl,t

vl,θ
∂αl

∂r

+
1
r

∂

∂θ
(
μl,t

σαl,t

vl,θ
1
r

∂αl

∂θ
) +

∂

∂z
(
μl,t

σαl,t

vl,z
1
r

∂αl

∂θ
) +

1
r

∂

∂r
(rαlμl,eff

∂vl,θ

∂r
)

+
1
r

∂

∂θ
(αlμl,eff(

1
r

∂vl,θ

∂θ
+

vl,r

r
)) +

1
r
αlμl,eff(

1
r

∂vl,r

∂θ
− vl,θ

r
) +

∂

∂z
(αlμl,eff

∂vl,θ

∂z
)

+
1
r

∂

∂r
(rαlμl,eff(

1
r

∂vl,r

∂θ
− vl,θ

r
)) +

1
r

∂

∂θ
(αlμl,eff(

1
r

∂vl,θ

∂θ
+

vl,r

r
)) +

αlμl,eff

r

∂vl,θ

∂r
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+
∂

∂z
(αlμl,eff

1
r

∂vl,z

∂θ
) − ∂

∂θ
(
2
3
αlρl(k + νl,eff(

1
r

∂

∂r
(rvl,r) +

1
r

∂vl,θ

∂θ
+

∂vl,z

∂z
)))

− αl
∂p

∂θ
− μl,t

σαl,t

(
∂αl

∂r

∂vl,θ

∂r
+

1
r

∂αl

∂θ
(
1
r

∂vl,θ

∂θ
+

vl,r

r
) +

∂αl

∂z

∂vl,θ

∂z
)

− vl,r
∂

∂r
(
μl,t

σαl,t

1
r

∂αl

∂θ
) − vl,θ

1
r

μl,t

σαl,t

∂αl

∂r
− vl,θ

1
r

∂

∂θ
(
μl,t

σαl,t

1
r

∂αl

∂θ
)

− vl,z
∂

∂z
(
μl,t

σαl,t

1
r

∂αl

∂θ
) + αlρlgr + FC

l,θ + FC′
l,θ

(C.128)

Liquid Phase Axial Momentum Balance in Cylindrical Coordinates

∂

∂t
(αlρlvl,z) +

1
r

∂

∂r
(rαlρlvl,rvl,z) +

1
r

∂

∂θ
(αlρlvl,θvl,z) +

∂

∂z
(αlρlvl,zvl,z) =

1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
vl,z) +

1
r

∂

∂θ
(
μl,t

σαl,t

1
r

∂αl

∂θ
vl,z) +

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
vl,z)

+
1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂z
vl,r) +

1
r

∂

∂θ
(
μl,t

σαl,t

∂αl

∂z
vl,θ) +

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
vl,z)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,z

∂r
) +

1
r

∂

∂θ
(αlμl,eff

∂vl,z

∂θ
) +

∂

∂z
(αlμl,eff

∂vl,z

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,r

∂z
) +

1
r

∂

∂θ
(αlμl,eff

∂vl,θ

∂z
) +

∂

∂z
(αlμl,eff

∂vl,z

∂z
)

− ∂

∂z
(
2
3
αlρl(k + νl,eff(

1
r

∂

∂r
(rvl,r) +

1
r

∂vl,θ

∂θ
+

∂vl,z

∂z
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− αl
∂p

∂z
− μl,t

σαl,t

(
∂αl

∂r

∂vl,z

∂r
+

1
r2

∂αl

∂θ

∂vl,z

∂θ
+

∂αl

∂z

∂vl,z

∂z
)

− (vl,r
∂

∂r
(
μl,t

σαl,t

∂αl

∂z
) + vl,θ

1
r

∂

∂θ
(
μl,t

σαl,t

∂αl

∂z
) + vl,z

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
))

+ αlρlgz + FC
l,z + FC′

l,z

(C.129)

Turbulence Model

The transport equation for turbulent kinetic energy in cylindrical coordinates
is written as:

∂

∂t
(αlρlk) +

1
r

∂

∂r
(rαlρlvl,rk) +

1
r

∂

∂θ
(αlρlvl,θk) +

∂

∂z
(αlρlvl,zk) =

1
r

∂

∂r
(rαl

μl,eff

σk

∂k

∂r
) +

1
r

∂

∂θ
(αl

μl,eff

σk

1
r

∂k

∂θ
) +

∂

∂z
(αl

μl,eff

σk

∂k

∂z
)

+ αl(Pk + Pb − ρlε)

(C.130)
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The transport equation for the turbulent energy dissipation rate in cylin-
drical coordinates is written as:

∂

∂t
(αlρlε) +

1
r

∂

∂r
(rαlρlvl,rε) +

1
r

∂

∂θ
(αlρlvl,θε) +

∂

∂z
(αlρlvl,zε) =

1
r

∂

∂r
(rαl

μl,eff

σε

∂ε

∂r
) +

1
r

∂

∂θ
(αl

μl,eff

σε

1
r

∂ε

∂θ
) +

∂

∂z
(αl

μl,eff

σε

∂ε

∂z
)

+ αl
ε

k
(C1(Pk + Pb) − C2ρlε)

(C.131)

where

Pk =2μl,t

[

(
∂vl,r

∂r
)2 + (

1
r

∂vl,θ

∂θ
+

vl,r

r
)2 + (

∂vl,z

∂z
)2

]

+

μl,t

[

(
∂vl,z

∂r
+

∂vl,r

∂z
)2 + (

1
r

∂vl,z

∂θ
+

∂vl,θ

∂z
)2 + (

∂vl,θ

∂r
+ (

1
r

∂vl,r

∂θ
− vl,θ

r
))2

]

(C.132)

and

Pb = Cb

(

FD,r(vg,r − vl,r) + FD,θ(vg,θ − vl,θ) + FD,z(vg,z − vl,z)
)

(C.133)

Gas phase equations in cylindrical coordinates

The gas phase continuity and momentum equations are almost identical to
those for the liquid phase, and are not repeated to save space.

C.4 The 2D Axi-Symmetric Bubble Column Model

Liquid phase equations in cylindrical coordinates:

In an axi-symmetric case the liquid phase continuity equation simplifies to:

∂

∂t
(αlρl)+

1
r

∂

∂r
(rαlρlvl,r) +

∂

∂z
(αlρlvl,z) =

1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
) +

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
)

(C.134)
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The corresponding radial liquid phase momentum balance reduces to:

∂

∂t
(αlρlvl,r) +

1
r

∂

∂r
(rαlρlvl,rvl,r) +

∂

∂z
(αlρlvl,zvl,r) =

1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
vl,r) +

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
vl,r)

+
1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
vl,r) +

∂

∂z
(
μl,t

σαl,t

∂αl

∂r
vl,z)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,r

∂r
) − 1

r
αlμl,eff

vl,r

r
+

∂

∂z
(αlμl,eff

∂vl,r

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,r

∂r
) − 1

r
αlμl,eff

vl,r

r
+

∂

∂z
(αlμl,eff

∂vl,z

∂r
)

− ∂

∂r
(
2
3
αlρl(k + νl,eff(

1
r

∂

∂r
(rvl,r) +

∂vl,z

∂z
)))

− αl
∂p

∂r
− μl,t

σαl,t

(
∂αl

∂r

∂vl,r

∂r
+

∂αl

∂z

∂vl,r

∂z
)

− (vl,r
∂

∂r
(
μl,t

σαl,t

∂αl

∂r
) + vl,z

∂

∂z
(
μl,t

σαl,t

∂αl

∂r
))

+ αlρlgr + FC
l,r + FC′

l,r

(C.135)

Using the product rule of calculus a few terms cancel out and the equation
yields:

∂

∂t
(αlρlvl,r) +

1
r

∂

∂r
(rαlρlvl,rvl,r) +

∂

∂z
(αlρlvl,zvl,r) =

vl,r

r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
) + vl,r

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,r

∂r
) − 1

r
αlμl,eff

vl,r

r
+

∂

∂z
(αlμl,eff

∂vl,r

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,r

∂r
) − 1

r
αlμl,eff

vl,r

r
+

∂

∂z
(αlμl,eff

∂vl,z

∂r
)

− ∂

∂r
(
2
3
αlρl(k + νl,eff(

1
r

∂

∂r
(rvl,r) +

∂vl,z

∂z
)))

+
μl,t

σαl,t

∂αl

∂r
[
1
r

∂

∂r
(rvl,r) +

∂vl,z

∂z
] − αl

∂p

∂r

+ αlρlgr + FC
l,r + FC′

l,r

(C.136)

Assuming axi-symmetry the azimuthal liquid phase momentum balance
vanishes completely.
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The liquid phase axial momentum balance becomes:

∂

∂t
(αlρlvl,z) +

1
r

∂

∂r
(rαlρlvl,rvl,z) +

∂

∂z
(αlρlvl,zvl,z) =

1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
vl,z) +

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
vl,z)

+
1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂z
vl,r) +

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
vl,z)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,z

∂r
) +

∂

∂z
(αlμl,eff

∂vl,z

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,r

∂z
) +

∂

∂z
(αlμl,eff

∂vl,z

∂z
)

− ∂

∂z
(
2
3
αlρl(k + νl,eff(

1
r

∂

∂r
(rvl,r) +

∂vl,z

∂z
)))

− αl
∂p

∂z
− μl,t

σαl,t

(
∂αl

∂r

∂vl,z

∂r
+

∂αl

∂z

∂vl,z

∂z
)

− (vl,r
∂

∂r
(
μl,t

σαl,t

∂αl

∂z
) + vl,z

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
))

+ αlρlgz + FC
l,z + FC′

l,z

(C.137)

Using the product rule of calculus a few terms cancel out and the equation
yields:

∂

∂t
(αlρlvl,z) +

1
r

∂

∂r
(rαlρlvl,rvl,z) +

∂

∂z
(αlρlvl,zvl,z) =

vl,z
1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
) + vl,z

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
)

+
μl,t

σαl,t

∂αl

∂z
(
1
r

∂

∂r
(rvl,r) +

∂vl,z

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,z

∂r
) +

∂

∂z
(αlμl,eff

∂vl,z

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl,r

∂z
) +

∂

∂z
(αlμl,eff

∂vl,z

∂z
)

− ∂

∂z
(
2
3
αlρl(k + νl,eff(

1
r

∂

∂r
(rvl,r) +

∂vl,z

∂z
)))

− αl
∂p

∂z
+ αlρlgz + FC

l,z + FC′
l,z

(C.138)

A generalized transport equation for a scalar quantity in the liquid phase
can be formulated as:

∂

∂t
(αlρlφl) +

1
r

∂

∂r
(rαlρlvl,rφl) +

∂

∂z
(αlρlvl,zφl) =

1
r

∂

∂r
(rαlΓφl,eff

∂φl

∂r
) +

∂

∂z
(αlΓφl,eff

∂φl

∂z
) + Sφ,l

(C.139)
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The particular scalar transport equation for the liquid phase turbulent
kinetic energy is written:

∂

∂t
(αlρlk)+

1
r

∂

∂r
(rαlρlvl,rk) +

∂

∂z
(αlρlvl,zk) =

1
r

∂

∂r
(rαl

μl,eff

σk

∂k

∂r
) +

∂

∂z
(αl

μl,eff

σk

∂k

∂z
) + αl(Pk + Pb − ρlε)

(C.140)

where

Pk = μl,t(2[(
∂vl,r

∂r
)2 + (

∂vl,z

∂z
)2 + (

vl,r

r
)2] + (

∂vl,r

∂z
+

∂vl,z

∂r
)2) (C.141)

and
Pb = Cb(FD,z(vg,z − vl,z) + FD,r(vg,r − vl,r)) (C.142)

The particular transport equation for the liquid phase turbulent energy
dissipation rate is written:

∂

∂t
(αlρlε)+

1
r

∂

∂r
(rαlρlvl,rε) +

∂

∂z
(αlρlvl,zε) =

1
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∂r
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) +
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σε

∂ε

∂z
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ε
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(C1(Pk + Pb) − C2ρlε)

(C.143)

Gas phase equations in cylindrical coordinates:

The gas phase mass balance equation for the axisymmetric case is:

∂

∂t
(αgρg)+

1
r

∂

∂r
(rαgρgvg,r) +

∂

∂z
(αgρgvg,z) =

1
r
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∂αg
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∂z
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∂z
)

(C.144)

The radial gas phase momentum balance equation is:

∂
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1
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∂
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∂
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1
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)
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+
1
r
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∂r
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Assuming axi-symmetry the azimuthal gas phase momentum balance van-
ishes completely.

The axial gas phase momentum balance equation is:

∂
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(
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(
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+
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∂z
) + vl,z

∂
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A generalized transport equation for a scalar quantity in the gas phase can
be formulated:

∂

∂t
(αgρgφg) +

1
r

∂

∂r
(rαgρgvg,rφg) +

∂

∂z
(αgρgvg,zφg) =

1
r

∂

∂r
(rαgΓφg,t

∂φg

∂r
) +

∂

∂z
(αgΓφg,t

∂φg

∂z
) + Sφ,g

(C.147)

C.4.1 Discretization of the Trondheim Bubble Column Model

In this section the Trondheim Bubble Column model is discretized using the
finite volume technique on a staggered grid. The Trondheim Bubble Column
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model consists of a two-dimensional two-fluid model written in cylindrical
coordinates. The governing equations are defined in appendix C.

In the first subsection, the discretization of the continuity equations is
outlined. The discretization of these equations follows the basic principles as
outlined earlier for single phase flow. In the second subsection the generic part
of the discretization procedure, being similar for all the transport equations,
is outlined for a generalized variable ψ of phase k. The discretization con-
cepts applied are the same as those used for the generic equation for single
phase flow. In the third section the discretization scheme used for the volume
fraction is presented. The volume fraction of the gas phase is calculated using
a combination of the two continuity equations based on a scheme given by
Spalding [20]. In the fourth section the discretization procedure used for the
momentum equations is presented. The momentum equation was solved us-
ing the SIMPLEC method (the SIMPLE- Consistent approximation) by van
Doormal and Raithby [23], and the PEA method (Partial Elimination Algo-
rithm) by Spalding [18, 19]. The pressure-correction was calculated by use
of the liquid phase continuity equation only, based on the scheme given by
Grienberger [9] and the single phase algorithm of Patankar [16].

The two-fluid model discretization procedure outlined in this appendix is
to a large extent based on the single phase flow algorithm implemented in the
pioneering TEACH-T code [8]. In order to simulate two phase bubble driven
flow in bubble columns, the original TEACH-T code was extended to enable
solution of the two-fluid model described previously in this appendix.

Uniform Staggered Grid Arrangement

The first step in any discretization procedure is to define the grid to be used by
dividing the computational domain into a number of grid cells and distribute
the variables on the grid. In this work a uniform staggered grid arrangement
was used as sketched in Fig C.1 using the scalar cell notation.

The indices of the nodes (i,j) vary between 1 and NI and 1 and NJ in the
z- and r- directions, respectively. Boundary nodes are located at i = 1, NI
and j = 1, NJ , thus the equations are solved in the range 2 < i < NI−1 and
2 < j < NJ − 1.

Scalar Grid Cell Definition
The uniform distance between two node points in the axial direction is

given by:

Δz =
Hight of reactor

(number of discretization points − 2)
=

L

NI − 2
(C.148)

The location of the different points in the z-direction can then calculated as
follows, for i > 1:

zi = zi−1 + Δz where z1 = −Δz/2 (C.149)
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Fig. C.1. Staggered Cartesian grid arrangement in the scalar cell notation. The
scalar variables are located in the cell centers, while the velocity components are
centered around the cell faces. The velocity components are located in the centers
of their own grid cell volumes (not shown) which are staggered in one dimension
compared to the scalar grid.

For i ≥ 1:

δzEP,i =zi+1 − zi, (C.150)
δzPW,i =zi − zi−1 (C.151)

δzEW,i =
1
2
(δzEP,i + δzPW,i) (C.152)

The uniform distance between two node points in the radial direction is given
by:

Δr =
Radius of reactor

(number of discretization points − 2)
=

R

NJ − 2
(C.153)

The location of the node points in the r-direction can then calculated as
follows, for j > 1:

rj = rj−1 + Δr where r1 = −Δr/2 (C.154)

For j ≥ 1:

δrNP,j =rj+1 − rj , (C.155)
δrPS,j =rj − rj−1 (C.156)

δrNS,j =
1
2
(δrNP,j + δrPS,j) (C.157)
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In cylindrical coordinates, a typical three dimensional volume integral of
a function ψ(r, θ, z) would be of the form [4](A 8):

∫ z2

z1

∫ θ2

θ1

∫ r2

r1

ψ(r, θ, z)r dr dθ dz (C.158)

Integration can also be performed on one of the surfaces of the coordinate
system. In cylindrical coordinates there are three different kinds of surfaces,
defined by keeping one of the coordinates constant at the time:

∫ z2

z1

∫ θ2

θ1

ψ(r0, θ, z)r0 dθ dz, On the surface r = r0. (C.159)
∫ z2

z1

∫ r2

r1

ψ(r, θ0, z) dr dz, On the surface θ = θ0. (C.160)

∫ θ2

θ1

∫ r2

r1

ψ(r, θ, z0)r dr dθ, On the surface z = z0. (C.161)

In two-dimensional problems, the volume and surface integrals reduce ac-
cordantly. The scalar grid cell surface areas and cell volume are defined as
follows:

Aw = Ae =rp × δrNS,j = rj ×
1
2
(δrNP,j + δrPS,j), (C.162)

An =rn × δzEW,i = rv
j+1 ×

1
2
(δzEP,i + δzPW,i), (C.163)

As =rs × δzEW,i = rv
j × 1

2
(δzEP,i + δzPW,i) (C.164)

and

ΔV = rp × δzEW,i × δrNS,j = rj ×
1
2
(δzEP,i + δzPW,i) ×

1
2
(δrNP,j + δrPS,j)

(C.165)
Staggered Axial Velocity Component (w) Grid Cell Definition
The location of the different points in the z-direction are calculated as

follows, for i > 1:

Δzw =
1
2
(zi + zi−1) where zw

1 = 0 (C.166)

For i ≥ 1:

δzw
EP,i =zw

i+1 − zw
i , (C.167)

δzw
PW,i =zw

i − zw
i−1, (C.168)

δzw
EW,i =

1
2
(δzw

EP,i + δzw
PW,i) (C.169)
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The radial position of the grid for the axial velocity component (w) coincides
with that of the scalar grid cell.

The staggered axial velocity component grid cell surface areas and cell
volume are defined by:

Aw = Ae =rp × δrNS,j = rp × 1
2
(δrNP,j + δrPS,j), (C.170)

An =rn × δzw
EW,i = rv

j+1 ×
1
2
(δzw

EP,i + δzw
PW,i), (C.171)

As =rs × δzw
EW,i = rv

j × 1
2
(δzw

EP,i + δzw
PW,i) (C.172)

and

ΔV = rp × δzw
EW,i × δrNS,j = rj ×

1
2
(δzw

EP,i + δzw
PW,i) ×

1
2
(δrNP,j + δrPS,j)

(C.173)
Staggered Radial Velocity Component (v) Grid Cell Definition
The axial position of the grid cell for the radial velocity component (v)

coincides with that of the scalar grid cell defined above.
The location of the different points in the r-direction can then calculated

as follows, for j > 1:

rv
j =

1
2
(rj + rj−1) where r1 = 0 (C.174)

For j ≥ 1:

δrv
NP,j =rv

j+1 − rv
j , (C.175)

δrv
PS,j =rv

j − rv
j−1 (C.176)

δrv
NS,j =

1
2
(δrv

NP,j + δrv
PS,j) (C.177)

For the radial velocity component (v) grid cell, the surface areas and cell
volume are defined by:

Aw = Ae =rv
p × δrv

NS,j = rv
j × 1

2
(δrv

NP,j + δrv
PS,j), (C.178)

An =rn × δzEW,i = rj+1 ×
1
2
(δzEP,i + δzPW,i), (C.179)

As =rs × δzEW,i = rj ×
1
2
(δzEP,i + δzPW,i) (C.180)

and

ΔV = rv
p × δzEW,i × δrv

NS,j = rv
j × 1

2
(δzEP,i + δzPW,i) ×

1
2
(δrv

NP,j + δrv
PS,j)

(C.181)
To discretize the governing equations using the finite volume method, the
differential equations are written on the integral form by integrating over a
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grid cell volume. The volume integrals of the convective and diffusive flux
terms are transformed into surface integrals by use of the Gauss theorem. It
is further assumed that the source term is constant throughout the grid cell
volume, and the fluxes are uniform over the cell faces. The resulting semi-
discrete equation is then integrated over a time step. After the integrations
all the terms are divided by the time step length Δt. The transient term is
approximated by the midpoint rule, hence it is considered an average value
representative for the whole grid cell volume. The order of the time and volume
integration is interchangeable.

The solution of the discretized forms of the governing equations can be
based on general geometrical dimensions such as δzEP , δzPW , δrNP and δrPS

which are valid for non-uniform grids as well as for uniform grids. However, the
implementation of the discretized equations on uniform grids into a computer
code can be simplified adopting a grid dependent notation which is faster to
compute.

C.4.2 The Continuity Equation

The phasic continuity equations are defined by:

∂

∂t
(αkρk) +

1
r

∂

∂r
(rαkρkvk) +

∂

∂z
(αkρkwk) =

1
r

∂

∂r
(r Γ

∂αk

∂r
) +

∂

∂z
(Γ

∂αk

∂z
) + S

The continuity equation is re-written on the integral form, integrated in time
and over a grid cell volume in the non-staggered grid for the scalar variables
sketched in Fig C.2. The transient terms are discretized with the implicit
Euler scheme.

((αkρk)P − (αkρk)o
P )ΔV

Δt
+ Δz((rαkρkvk)n − (rαkρkvk)s)

+ rpΔr((αkρkwk)e − (αkρkwk)w) = Δz((rΓ
∂αk

∂r
)n − (rΓ

∂αk

∂r
)s)

+ rpΔr((Γ
∂αk

∂z
)e − (Γ

∂αk

∂z
)w) + SΔV

(C.182)

The gradient terms were then approximated by the central difference
scheme. For simplicity, the variables δrPN ,δrSP ,δzPE , δzWP , A, C, D and
F are commonly introduced. The resulting equation can thus be written as:

(αkρk)PΔV

Δt
+ Cn − Cs + Ce − Cw =

(αkρk)o
PΔV

Δt
+ Dn(αk,N − αk,P )

−Ds(αk,P − αk,S) + De(αk,E − αk,P ) −Dw(αk,P − αk,W ) + SΔV

(C.183)

The novel variables are defined as follows:
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Fig. C.2. A sketch of a scalar Cartesian grid cell showing the distribution of the
variables in the grid and the configuration of the staggered velocity grids. In cylin-
drical coordinates equivalent grid cells can be defined.

Cn = An Fn = An(αkρkvk)n,

Cs = As Fs = As(αkρkvk)s,

Ce = Ae Fe = Ae(αkρkwk)e,

Cw = Aw Fw = Aw(αkρkwk)w

(C.184)

The C-variables represent the convective fluxes through the grid cell surfaces
and are normally approximated by the central difference scheme.

Dn = An
Γn

δrNP
,

Ds = As
Γs

δrPS
,

De = Ae
Γe

δzEP
,

Dw = Aw
Γw

δzPW

(C.185)

The D-variables represent the generalized diffusion conductance and are re-
lated to the diffusive fluxes through the grid cell surfaces. In order to approxi-
mate these terms the gradients of the transported properties and the diffusion
coefficients Γ are required. The property gradients are normally approximated
by the central difference scheme. In a uniform grid the diffusion coefficients are
obtained by linear interpolation from the node values (i.e., using arithmetic
mean values):

N

w

E

S

i-1 i i+1

j+
1

j
j-1

W P

s

Staggered grid for 
the W-velocity component

Staggered grid for 
the V-velocity component

Non-staggered grid for 
all the scalar variables

w e

n
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Γn =
1
2
(ΓP + ΓN ),

Γs =
1
2
(ΓP + ΓS),

Γe =
1
2
(ΓP + ΓE),

Γw =
1
2
(ΓP + ΓW )

(C.186)

We can re-organize (C.183) to:

Cn − Cs + Ce − Cw = transient + mC1 + mC2 (C.187)

where

transient =
(αkρk)o

PΔV

Δt
− (αkρk)PΔV

Δt
mC1 = Dnαk,N + Dsαk,S + Deαk,E + Dwαk,W

mC2 = −(Dn + Ds + De + Dw)αk,P

(C.188)

The LHS of (C.187) can be recognized as part of the aP -factor of the dis-
cretized equations for all the other variables. To keep the aP -coefficient always
positive during the iterative process, the LHS terms can be substituted by the
RHS terms.

C.4.3 The Generalized equation

∂

∂t
(αkρkψk) +

1
r

∂

∂r
(rαkρkvkψk) +

∂

∂z
(αkρkwkψk)

=
1
r

∂

∂r
(rαkρk

μk,t

σαk,t

∂Φ

∂r
) +

∂

∂z
(αkρk

μk,t

σαk,t

∂Φ

∂z
)

The finite volume discretization of the generalized multi-fluid equation coin-
cides with the corresponding equation for single phase flows as outlined in the
preceding subsections.

The Transient term

The transient term is discretized using the implicit Euler scheme.
∫

ΔV

∫

Δt

∂

∂t
(αkρkψk) dt dz r dr =

[

(αkρkψk)P − (αkρkψk)o
P

]

ΔV

=
ΔV

Δt
(αkρkψk)PΔt− ΔV

Δt
(αkρkψk)o

PΔt

=
ΔV

Δt
(αkρkψk)PΔt− ao

Pψ
o
k,PΔt

(C.189)

where
ao

P =
ΔV

Δt
(αkρk)o

P (C.190)
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The Convection terms

Radial direction:
∫

Δt

∫

ΔV

1
r

∂

∂r
(rαkρkvkψk)dz r dr dt = Δz[(rαkρkvkψk)n − (rαkρkvkψk)s]Δt

= An(αkρkvkψk)nΔt−As(rαkρkvkψk)sΔt

= AnFnψnΔt−AsFsψsΔt

= CnψnΔt− CsψsΔt

(C.191)

where

Fn = (αkρkvk)n

Fs = (αkρkvk)s

(C.192)

Axial direction:
∫

Δt

∫

ΔV

∂

∂z
(αkρkwkψk)dz r dr dt = rΔr[(αkρkwkψk)e − (αkρkwkψk)w]Δt

= Ae(αkρkwkψk)eΔt−Aw(αkρkwkψk)wΔt

= AeFeψeΔt−AwFwψwΔt

= CeψeΔt− CwψwΔt

(C.193)

where

Fe = (αkρkwk)e

Fw = (αkρkwk)w

(C.194)

The Diffusion terms

The the diffusion terms are discretized using the central-difference scheme.
Radial direction:

∫

Δt

∫

ΔV

1
r

∂

∂r
(rαk

μk,eff

σψ

∂ψk

∂r
) rdr dz dt

= Δz[(rαk
μk,eff

σψ

∂ψk

∂r
)n − (rαk

μk,eff

σψ

∂ψk

∂r
)s]Δt

= AnΓn

(

ψk,N − ψk,P

δrPN

)

Δt−AsΓs

(

ψk,P − ψk,S

δrSP

)

Δt

= Dn(ψk,N − ψk,P )Δt−DS(ψk,P − ψk,S)Δt

(C.195)

where
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Γn = (αk
μk,eff

σψ
)n and Γs = (αk

μk,eff

σψ
)s

Dn =
AnΓn

δrPN
and Ds =

AsΓs

δrSP

(C.196)

Axial direction:
∫

Δt

∫

ΔV

∂

∂z
(αk

μk,eff

σψ

∂ψk

∂z
)dz rdr dt

= rpΔr(αk
μk,eff

σψ

∂ψk

∂z
)eΔt− rpΔr(αk

μk,eff

σψ

∂ψk

∂z
)wΔt

= AeΓe

(

ψk,E − ψk,P

δzEP

)

Δt−AwΓw

(

ψk,P − ψk,W

δzWP

)

Δt

= De(ψk,E − ψk,P )Δt−Dw(ψk,P − ψk,W )Δt

(C.197)

where

Γw = (αk
μk,eff

σψ
)w and Γe = (αk

μk,eff

σψ
)e

De =
AeΓn

δzEP
and Dw =

AwΓs

δzWP

(C.198)

The Source terms

The the source terms are approximated by the midpoint rule, in which S is
considered an average value representative for the whole grid cell volume.

Upwind Discretized Form of the Generalized Equation

After the given approximations of the terms have been substituted into the
generic equation, and dividing all the terms by Δt, the balance equation yields:

ΔV

Δt
(αkρk)Pψk,P − ao

Pψ
o
k,P + Cnψk,n − Csψk,s + Ceψk,e − Cwψk,w =

Dn(ψk,N − ψk,P ) −Ds(ψk,P − ψk,S) + De(ψk,E − ψk,P ) −Dw(ψk,P − ψk,W )
+ SΔV

(C.199)

By use of the upwind scheme for the convective terms, the generalized trans-
port equation becomes:
(

ΔV

Δt
(αkρk)P + aN + aS + aE + aW + Cn − Cs + Ce − Cw − SP,1ΔV

)

ψk,P

= aNψk,N + aSψk,S + aEψk,E + aWψk,W + SC,1ΔV + ao
Pψ

o
k,P

(C.200)
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The discretized equation can then be written on the standard algebraic form:

aPψP = aNψN + aSψS + aEψE + aWψW + b (C.201)

in which the coefficients are defined as follows:

aN = Dn + max[−Cn, 0]
aS = Ds + max[Cs, 0]
aE = De + max[−Ce, 0]
aW = Dw + max[Cw, 0]

b = SC,1 + a0
Pψ

0
k,P

aP =
ΔV

Δt
(αkρk)P + aN + aS + aE + aW + Cn − Cs + Ce − Cw − SP,1ΔV

(C.202)

To avoid negative coefficients, the relation for the coefficient aP can be mod-
ified using the continuity equation (C.187). The result is:

aP =
(αkρk)0PΔV

Δt
+ aN + aS + aE + aW + mC1 + mC2 − SP,1ΔV (C.203)

The negative mC2-term must then be moved to the RHS of the discretized
transport equation and included as part of the b-term (multiplied with ψν

k ,
the value at the previous iteration). The alternative a∗P and b∗ coefficients are
defined by:

b∗ = −mC2ψ
ν
k,P + SC,1 + a0

Pψ
0
k,P

a∗P =
ΔV

Δt
(αkρk)0P + aN + aS + aE + aW + mC1 − SP,1ΔV

(C.204)

C.4.4 The liquid phase radial momentum balance

The radial momentum balance is given in (C.135).

∂

∂t
(αlρlvl) +

1
r

∂

∂r
(rαlρlvlvl) +

∂

∂z
(αlρlwlvl) =

vl

r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
) + vl

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl

∂r
) − 1

r
αlμl,eff

vl

r
+

∂

∂z
(αlμl,eff

∂vl

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl

∂r
) − 1

r
αlμl,eff

vl

r
+

∂

∂z
(αlμl,eff

∂wl

∂r
)

− ∂

∂r

(

2
3
αlρl[k + νl,eff(

1
r

∂

∂r
(rvl) +

∂wl

∂z
)]

)

+
μl,t

σαl,t

∂αl

∂r
[
1
r

∂

∂r
(rvl) +

∂wl

∂z
] − αl

∂p

∂r

+ αlρlgr + FC
l,r + FC′

l,r

(C.205)
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In the FVM, the integral form of the momentum equation is used. The differ-
ential equation is thus integrated in time and over a grid cell volume in the
staggered grid for the v-velocity sketched in Fig C.4.4.

Fig. C.3. A sketch of the staggered v-grid cell in Cartesian coordinates. The figure
shows the distribution of the variables in this grid, and the configuration of the stag-
gered w-velocity grid and the non-staggered scalar grid. In cylindrical coordinates
equivalent grid cells can be defined.

The transient term

∫

ΔV

t+Δt
∫

t

∂

∂t
(αlρlvl)dt dV =

[

(αlρlvl)P − (αlρlvl)o
P

]

ΔV (C.206)

To approximate the scalar grid cell variables α and ρ at the staggered velocity
grid cell nodes, arithmetic interpolation is needed:

(αlρlvl)P =
1
2

[

(αl,P ρl,P ) + (αl,Sρl,S)
]

vl,P (C.207)

(αlρlvl)o
P =

1
2

[

(αl,P ρl,P )o + (αl,Sρl,S)o

]

vo
l,P (C.208)

The convection terms

The locations of the node points in the staggered grid for the v-velocity are
shown in Fig C.4.4.
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Radial direction:
∫

Δt

∫

ΔV

1
r

∂

∂r
(rαlρlvlvl) r dr dz dt = Δz

[

(rαlρlvl)nvl,n − (rαlρlvl)svl,s

]

Δt

= Cnvl,nΔt− Csvl,sΔt

(C.209)

To approximate the scalar grid cell mass fluxes at the staggered velocity grid
cell surface points, arithmetic interpolation is frequently used:

Cn = An
1
2
[FN + FP ]

Cs = As
1
2
[FP + FS ]

FN = (αlρlvl)N =
1
2
[αl,Nρl,N + αl,P ρl,P ]vl,N

FP = (αlρlvl)P =
1
2
[αl,P ρl,P + αl,Sρl,S ]vl,P

FS = (αlρlvl)S =
1
2
[αl,Sρl,S + αl,SSρl,SS ]vl,S

(C.210)

Axial direction:
∫

Δt

∫

ΔV

∂

∂z
(αlρlwlvl)dz r dr dt = [(r Δrαlρlwl)evl,e − (r Δrαlρlwl)wvl,w]Δt

= Cevl,eΔt− Cwvl,wΔt

(C.211)

To approximate the scalar grid cell mass fluxes at the staggered velocity grid
cell surface points, arithmetic interpolation is frequently used:

Ce = Ae
1
2
[FE + FSE ]

Cw = Aw
1
2
[FW + FSW ]

FE = (αlρlu)E =
1
2
[αl,Eρl,E + αl,P ρl,P ]ul,E

FSE = (αlρlu)SE =
1
2
[αl,Sρl,S + αl,SEρl,SE ]ul,SE

FW = (αlρlu)W =
1
2
[αl,P ρl,P + αl,W ρl,W ]ul,P

FSW = (αlρlu)SW =
1
2
[αl,Sρl,S + αl,SW ρl,SW ]ul,S

(C.212)

The Diffusion terms

The location of the node points in the staggered grid for the v-velocity are
shown in Fig C.4.4.
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Radial direction:
∫

Δt

∫

ΔV

1
r

∂

∂r
(rαlμl,eff

∂vl

∂r
) rdr dz dt = Δz[(rαlμl,eff

∂vl

∂r
)n − (rαlμl,eff

∂vl

∂r
)s]Δt

= AnΓn

[

vl,N − vl,P

δrNP

]

Δt−AsΓs

[

vl,P − vl,S

δrPS

]

Δt

= Dn(vl,N − vl,P )Δt−Ds(vl,P − vl,S)Δt

(C.213)

To approximate the scalar grid cell mass fluxes at the staggered velocity grid
cell surface points, arithmetic interpolation is frequently used:

Dn =
AnΓn

δrNP

Ds =
AsΓs

δrPS

Γn = (αlμl,eff )n = αl,Pμl,eff,P

Γs = (αlμl,eff )s = αl,Sμl,eff,S

(C.214)

Axial direction:
∫

Δt

∫

ΔV

∂

∂z
(αlμl,eff

∂v

∂z
)dz rdr dt = [rpΔr(αlμl,eff

∂v

∂z
)e − rpΔr(αlμl,eff

∂v

∂z
)w]Δt

= AeΓe

[

vl,E − vl,P

δzEP

]

Δt−AwΓw

[

vl,P − vl,W

δzPW

]

Δt

= De(vl,E − vl,P )Δt−Dw(vl,P − vl,W )Δt

(C.215)

To approximate the scalar grid cell mass fluxes at the staggered velocity grid
cell surface points, arithmetic interpolation is frequently used:

De =
AeΓe

δzEP

Dw =
AwΓw

δzPW

Γe = (αlμl,eff )e

=
1
4
[αl,Pμl,eff,P + αl,Eμl,eff,E + αl,Sμl,eff,S + αl,SEμl,eff,SE ]

Γw = (αlμl,eff )w

=
1
4
[αl,Pμl,eff,P + αl,Wμl,eff,W + αl,Sμl,eff,S + αl,SWμl,eff,SW ]

(C.216)



1194 C Trondheim Bubble Column Model

The source terms

The the source terms are approximated by the midpoint rule, in which S is
considered an average value representative for the whole grid cell volume. The
derivatives are represented by an abbreviated Taylor series expansion, usually
a central difference expansion of second order is employed.

Term 1 on the RHS of the momentum equation:
∫

Δt

∫

ΔV

vl

r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
)dV dt =

vl,PΔVΔt

rv
P

1
2 (δrNP + δrPS)

[(rμl,t
∂αl

∂r
)n − (rμl,t

∂αl

∂r
)s]

(C.217)

This term is implemented through the source term SC as:

SC,1 =
vl,PΔVΔt

rv
P

1
2 (δrNP + δrPS)

[rPμl,P (
∂αl

∂r
)n − rSμl,S(

∂αl

∂r
)s] (C.218)

To approximate derivatives of scalar grid cell variables and scalar grid
cell variables at the staggered velocity grid cell surface points, arithmetic
interpolation is frequently used:

(
∂αl

∂r
)n =

(αl)N − (αl)P

δrNP
=

1
2 (αl,N + αl,P ) − 1

2 (αl,P + αl,S)
δrNP

(
∂αl

∂r
)s =

(αl)P − (αl)S

δrPS
=

1
2 (αl,P + αl,S) − 1

2 (αl,S + αl,SS)
δrPS

(C.219)

Term 2 on the RHS of the momentum equation:
∫

Δt

∫

ΔV

vl
∂

∂z
(
μl,t

σαl,t

∂αl

∂z
)dV dt =

vl,PΔVΔt
1
2 (δzEP + δzPW )

[(
μl,t

σαl,t

∂αl

∂z
)e − (

μl,t

σαl,t

∂αl

∂z
)w]

(C.220)

This term is implemented through the source term SC as:

SC,2 =
vl,PΔVΔt

1
2 (δzEP + δzPW )

[(μl)e(
∂αl

∂z
)e − (μl)w(

∂αl

∂z
)w] (C.221)

To approximate derivatives of scalar grid cell variables and scalar grid cell
variables at the staggered velocity grid cell surface points, arithmetic interpo-
lation is frequently used:

(
∂αl

∂z
)e =

(αl)E − (αl)P

δzPE
=

1
2 (αl,E + αl,SE) − 1

2 (αl,E + αl,SE)
δzPE

(
∂αl

∂z
)w =

(αl)P − (αl)W

δzWP
=

1
2 (αl,P + αl,S) − 1

2 (αl,W + αl,SW )
δzWP

(μl)e =
1
4
(μl,P + μl,E + μl,S + μl,SE)

(μl)w =
1
4
(μl,P + μl,W + μl,S + μl,SW )

(C.222)
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The 3rd and 6th terms on the RHS of the momentum equation are identical
and are approximated as follows:

∫

Δt

∫

ΔV

1
r

∂

∂r
(rαlμl,eff

∂vl

∂r
) dV dt

=
ΔVΔt

rv
P

1
2 (δrv

NP + δrv
PS)

[(rαlμl,eff
∂vl

∂r
)n − (rαlμl,eff

∂vl

∂r
)s]

(C.223)

This term is implemented through the source term SC as:

SC,3 =
ΔVΔt

rv
P

1
2 (δrv

NP + δrv
PS)

[

rPαl,Pμl,P (
vl,N − vl,P

δrv
NP

) − rSαl,Sμl,S(
vl,P − vl,S

δrv
PS

)
]

(C.224)

The scalar grid cell variables at the staggered velocity grid cell surface points
coincide with center nodes, hence no interpolation is needed.

The 4th and 7th terms on the RHS of the momentum equation are iden-
tical. They are approximated as follows:

− 2
∫

Δt

∫

ΔV

1
r
αlμl,eff

vl

r
dV dt = −2(αlμl,eff )P

vl,P

r2v
P

ΔVΔt

= −2 × 1
2
(αl,Pμl,eff,P + αl,eff,Sμl,S)

vl,P

r2,v
P

ΔVΔt

(C.225)

This term is implemented through the source term Sp as:

SP,1 = −2 × 1
2
(αl,Pμl,eff,P + αl,Sμl,eff,S)

1
r2,v
P

ΔVΔt (C.226)

To approximate scalar grid cell variables at the staggered velocity grid cell
surface points, arithmetic interpolation is used:

(μl)P =
1
2
(μl,P + μl,S) (C.227)

The 5th term on the RHS of the momentum equation:
∫

Δt

∫

ΔV

∂

∂z
(αlμl,eff

∂vl

∂z
)dV dt

=
ΔVΔt

1
2 (δzEP + δzPW )

[(αlμl,eff
∂vl

∂z
)e − (αlμl,eff

∂vl

∂z
)w]

(C.228)

This term is implemented through the source term SC as:

SC,4 =
ΔVΔt

1
2 (δzEP + δzPW )

[(αlμl)e(
∂vl

∂z
)e − (αlμl)w(

∂vl

∂z
)w] (C.229)
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To velocity derivatives are approximated by use of the central difference
scheme:

(
∂vl

∂z
)e =

vlE − vlP

δzPE

(
∂vl

∂z
)w =

vl,P − vl,W

δzWP

(C.230)

The 8th term on the RHS of the momentum equation:
∫

Δt

∫

ΔV

∂

∂z
(αlμl,eff

∂wl

∂r
)dV dt

=
ΔVΔt

1
2 (δzPW + δrv

EP )

[

(αlμl,eff
∂wl

∂r
)e − (αlμl,eff

∂wl

∂r
)w

]

(C.231)

This term is implemented through the source term SC as:

SC,5 =
ΔVΔt

1
2 (δzPW + δrv

EP )

[

Γe
(wl,E − wl,SE)
1
2 (δrv

NP + δrv
PS)

− Γw
(wl,P − wl,S)

1
2 (δrv

NP + δrv
PS)

]

(C.232)

Term 9A on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

∂

∂r
(
2
3
αlρlk) dV dt = − 2ΔVΔt

3 × 1
2 (δrv

NP + δrv
PS)

[(αlρlk)n − (αlρlk)s]

(C.233)

This term is implemented through the source term SC as:

SC,6 =
2ΔVΔt

3 1
2 (δrv

NP + δrv
PS)

[αl,P ρl,P kP − αl,Sρl,SkS ] (C.234)

The scalar grid cell variables at the staggered velocity grid cell surface points
coincide with center nodes, hence no interpolation is needed.

Term 9B on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

∂

∂r
(
2
3
αlρlνl,eff

1
r

∂(rvl)
∂r

) dV dt

= − 2ΔVΔt

3 × 1
2 (δrv

NP + δrv
PS)

[(

αlμl,eff

r

∂(rvl)
∂r

)

n

−
(

αlμl,eff

r

∂rvl

∂r

)

s

]

(C.235)

This term is implemented through the source term SC as:

SC,7 = − 2ΔVΔt

3 × 1
2 (δrv

NP + δrv
PS)

[

αl,Pμl,eff,P

rP

∂(rvl)
∂r

|n − αl,Wμl,eff,W

rS

∂(rvl)
∂r

|s
]

(C.236)
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where

∂(rvl)
∂r

|n =
(rvl)N − (rvl)P

δrv
NP

=
rv
Nvl,N − rv

P vl,P

δrv
NP

∂(rvl)
∂r

|s =
(rvl)P − (rvl)S

δrv
PS

=
rv
P vl,P − rv

Svl,S

δrv
PS

(C.237)

Term 9C on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

∂

∂r
(
2
3
αlρlνl,eff

∂wl

∂z
) dV dt

= − 2ΔVΔt

3 × 1
2 (δrv

NP + δrv
PS)

[

(αlμl,eff
∂wl

∂z
)n − (αlμl,eff

∂wl

∂z
)s

]

(C.238)

This term is implemented through the source term SC as:

SC,8 = − 2ΔVΔt

3 × 1
2 (δrv

NP + δrv
PS)

[

αl,Pμl,eff,P
(wl,E − wl,P )

1
2 (δzEP + δzPW )

]

+
2ΔVΔt

3 × 1
2 (δrv

NP + δrv
PS)

[αl,Wμl,eff,W
(wl,P − wl,W )

1
2 (δzEP + δzPW )

]
(C.239)

Term 10 on the RHS of the momentum equation:
∫

Δt

∫

ΔV

μl,t

σα,t

∂αl

∂r
(
1
r

∂

∂r
(rvl) +

∂wl

∂z
) dV dt = (

μl,t

σα,t

∂αl

∂r
)P [

1
r

∂

∂r
(rvl) +

∂wl

∂z
]PΔVΔt

(C.240)

This term is implemented through the source term SC as:

SC,9 =
1
2 (μl,t,P

σα,t
+ μl,t,S

σα,t
)

σα,t
(
∂αl

∂r
)P [

1
rv
P

(rP vn − rSvs)
δrPS

+ (
∂wl

∂z
)P ]ΔVΔt

(C.241)

To approximate derivatives of velocity variables and scalar grid cell variables
at the staggered velocity grid cell node points, arithmetic interpolation is
frequently used:

(
∂αl

∂r
)P =

(αl)n − (αl)s
1
2 (δrv

NP + δrv
PS)

=
αl,P − αl,S

1
2 (δrv

NP + δrv
PS)

(μl)P =
1
2
(μl,P + μl,S)

(
∂wl

∂z
)P =

(wl)e − (wl)w
1
2 (δzPW + δzEP )

=
1
2 (wE + wSE) − 1

2 (wP + wS)
1
2 (δzPW + δzEP )

(C.242)
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Pressure force:

−
∫

Δt

∫

ΔV

αl
∂p

∂r
dV dt = −1

2
(αl,P + αl,S)

(PP − PS)
1
2 (δrv

NP + δrv
PS)

ΔVΔt (C.243)

This term is implemented through the source term SC as:

SC,10 = −(αl)P
(PP − PS)

δrPS
ΔVΔt (C.244)

To approximate scalar grid cell variables at the staggered velocity grid cell
node points, arithmetic interpolation is frequently used:

(αl)P =
1
2
(αl,P + αl,S) (C.245)

Gravity force:

There is no gravity force in radial direction.

Added Mass force:

−
∫

Δt

∫

ΔV

αlαgρlfv[wl
∂vl

∂z
+ vl

∂vl

∂r
− (wg

∂vg

∂z
+ vg

∂vg

∂r
)] dV dt =

− fv(αl)P (αg)P (ρl)P [wl
∂vl

∂z
+ vl

∂vl

∂r
− (wg

∂vg

∂z
+ vg

∂vg

∂r
)]PΔVΔt

(C.246)

This term is implemented through the source term SC as:

SC,11 = −fv
1
2
(αl,P + αl,S)

1
2
(αg,P + αg,S)

1
2
(ρl,P + ρl,S)×

[wl
∂vl

∂z
+ vl

∂vl

∂r
− (wg

∂vg

∂z
+ vg

∂vg

∂r
)]PΔVΔt

(C.247)

To approximate derivatives of velocity variables and scalar grid cell variables
at the staggered velocity grid cell node points, arithmetic interpolation is
frequently used:

(αl)P =
1
2
(αl,P + αl,S)

(wl)P =
1
4
(vl,P + vl,S + vl,E + vl,SE)

(
∂vl

∂r
)P =

vl,n − vl,s
1
2 (δrv

NP + δrv
PS)

=
1
2 (vl,P + vl,N ) − 1

2 (vl,P + vl,S)
1
2 (δrv

NP + δrv
PS)

(
∂vl

∂z
)P =

vl,e − vl,w
1
2 (δzPW + δzEP )

=
1
2 (vl,P + vl,E) − 1

2 (vl,P + vl,W )
1
2 (δzPW + δzEP )

(C.248)
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Transversal force:

−
∫

Δt

∫

Δt

αlαgρlCL(wl − wg)
∂wl

∂r
dV dt =

− (αl)P (αg)P (ρl)PCLΔwP (
∂wl

∂r
)PΔVΔt

(C.249)

This term is implemented through the source term SC as:

SC,12 = −1
2
(αl,P + αl,S)

1
2
(αg,P + αg,S)

1
2
(ρl,P + ρl,S)CLΔwP (

∂wl

∂r
)PΔVΔt

(C.250)

To approximate derivatives of velocity variables and scalar grid cell variables
at the staggered velocity grid cell node points, arithmetic interpolation is used:

(αl)P =
1
2
(αl,P + αl,S)

ΔwP =(wl − wg)P

=
1
4
(wl,P − wg,P + wl,E − wg,E + wl,S − wg,S + wl,SE − wg,SE)

(
∂wl

∂r
)P =

wl,n − wl,s
1
2 (δrv

NP + δrv
PS)

=
1
2 (wl,P + wl,E) − 1

2 (wl,S + wl,SE)
1
2 (δrv

NP + δrv
PS)

CL = fL − 3
4
νl,t

νl

CDCτ

(1 + τL

tp
)Rep

(C.251)

Steady drag force:

∫

Δt

∫

ΔV

3
4
αlαgρl

CD

dS
|vl − vg|(vl − vg) dV dt ≈ (K)P (vl,P − vg,P )ΔVΔt

(C.252)

To approximate scalar grid cell variables at the staggered velocity grid cell
node points, arithmetic interpolation is used:

(K)P =
1
2
(KP + KS)

KP = [
3
4
αlαgρl

CD

dS
|vl − vg|]P = [αlαgCW ]P =

3
4
αl,Pαg,P ρl,P (

CD

dS
)P |vl − vg|P

(C.253)

and the relative speed at the center node in the staggered v-grid cell volume
is approximated by:
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|vl − vg|P ≈
[

[
1
2
(wl,P + wl,S) − 1

2
(wg,P + wg,S)]2

+ [
1
2
(vl,P + vl,W ) − 1

2
(vg,P + vg,W )]2

]1/2 (C.254)

To deal with the strong coupling between the phasic momentum equations, the
partial elimination algorithm (PEA)-method proposed by Spalding [18, 19] is
frequently used.

To outline the PEA-method, the discretized momentum equations for the
gas phase at the e location in the staggered grid for the w variable (i.e.,
between the P and E grid points in the scalar grid) is re-written pulling the
drag force out of the source term:

ag,nvg,n =
∑

nb

ag,nbvg,nb + K(vl,n − vg,n)ΔV + Sg (C.255)

One part of the drag term is put on the LHS of the equation, thus we may
write:

vg,n(ag,n + KΔV ) =
∑

nb

ag,nbvg,nb + KΔV vl,n + Sg (C.256)

The vg,n is then given by:

vg,n =
∑

nb ag,nbwg,nb + KΔV vl,n + Sg

ag,n + KΔV
(C.257)

In the same way we can write for the liquid velocity (shown shortly):

vl,n =
∑

nb al,nbvl,nb + KΔV vg,n + Sl

al,n + KΔV
(C.258)

Combining these two equations to take out vl,n in the gas calculations and
vg,n in the liquid calculations we get:

vg,n =

∑

nb ag,nbvg,nb + KΔV
∑

nb al,nbvl,nb+KΔV vg,n+Sl

al,n+KΔV + Sg

ag,n + KΔV
(C.259)

and

vl,n =

∑

nb al,nbvl,nb + KΔV
∑

nb ag,nbvg,nb+KΔV vl,n+Sg

ag,n+KΔV + Sl

al,n + KΔV
(C.260)

In the equation for phase k all the vk,n terms can be regrouped on the left,
hence for k = g, l we get:

vg,n(ag,n + KΔV − (KΔV )2

al,n + KΔV
) =

∑

nb

ag,nbvg,nb

+ KΔV

∑

nb al,nbvl,nb + Sl

al,n + KΔV
+ Sg

(C.261)
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vl,n(al,n + KΔV − (KΔV )2

ag,n + KΔV
) =

∑

nb

al,nbvl,nb

+ KΔV

∑

nb ag,nbvg,nb + Sg

ag,n + KΔV
+ Sl

(C.262)

This means that the modified coupling terms KΔV
∑

ak,ivk,i+Sk

ak,n+KΔV and KΔV −
(KΔV )2

ak,n+KΔV must be calculated separately for the momentum balance com-
ponents in each phase, then transferred and employed in the corresponding
equation for the other phase. In particular, after the coupling terms have
been received from the phase where they are calculated, the modified terms
are added to the source Se and the coefficient ae terms in the other phase,
respectively. In this case, Sk denotes the sum of all source terms except the
drag force.

Algebraic discretization equation

Finally, after dividing all the terms by Δt, the discretized equation can be
written on the standard algebraic form:

aP vl,P = aNvl,N + aSvl,S + aEvl,E + aW vl,W + bvl
(C.263)

in which the coefficients are defined by:

aN = Dn + max[−Cn, 0]
aS = Ds + max[Cs, 0]
aE = De + max[−Ce, 0]
aW = Dw + max[Cw, 0]

b =
∑

m

SC,m + a0
P v

0
l,P

aP =
ΔV

Δt
(αlρl)P + aN + aS + aE + aW + Cn − Cs + Ce − Cw −

∑

q

SP,qΔV

(C.264)

To avoid negative coefficients, the relation for the coefficient aP can be mod-
ified using the continuity equation (C.187). The negative mC2-term is then
moved to the RHS of the discretized transport equation and included as part
of the b-term. The alternative a∗P and b∗ coefficients are defined by:

b∗ = −mC2v
ν
l,P +

∑

m

SC,m,l + a0
P v

0
l,P

a∗P =
ΔV

Δt
(αlρl)0P + aN + aS + aE + aW + mC1 −

∑

q

SP,q,lΔV
(C.265)
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C.4.5 The Liquid phase axial momentum balance

The axial component of the momentum balance is given in (C.137).

∂

∂t
(αlρlwl) +

1
r

∂

∂r
(rαlρlvlwl) +

∂

∂z
(αlρlwlwl) =

wl
1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
) + wl

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
)

+
μl,t

σαl,t

∂αl

∂z
(
1
r

∂

∂r
(rvl) +

∂wl

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂wl

∂r
) +

∂

∂z
(αlμl,eff

∂wl

∂z
)

+
1
r

∂

∂r
(rαlμl,eff

∂vl

∂z
) +

∂

∂z
(αlμl,eff

∂wl

∂z
)

− ∂

∂z
(
2
3
αlρl(k + νl,eff(

1
r

∂

∂r
(rvl) +

∂wl

∂z
)))

− αl
∂p

∂z
+ αlρlgz + FC

l,z + FC′
l,z

(C.266)

In the FVM, the integral form of the momentum equation is used. The differ-
ential equation is thus integrated in time and over a grid cell volume in the
staggered grid for the w-velocity sketched in Fig C.4.

Fig. C.4. A staggered Cartesian w-grid cell, the distribution of the variables in this
grid and the configuration of the staggered v-velocity grid cell and the non-staggered
scalar grid. In cylindrical coordinates equivalent grid cells can be defined.
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The Transient term

∫

ΔV

t+Δt
∫

t

∂

∂t
(αlρlwl) dt dV =

[

(αlρlwl)P − (αlρlwl)o
P

]

ΔV (C.267)

To approximate the scalar grid cell variables α and ρ at the staggered velocity
grid cell nodes, arithmetic interpolation is needed:

(αlρlwl)P =
1
2
[(αl,P ρl,P ) + (αl,W ρl,W )]wl,P (C.268)

(αlρlwl)o
P =

1
2
[(αl,P ρl,P )o + (αl,W ρl,W )o]wo

l,P (C.269)

The convection term

The locations of the node points in the staggered grid for the w-velocity
component are shown in Fig C.4.

Radial direction:
∫

Δt

∫

ΔV

1
r

∂

∂r
(rαlρlvlwl) r dr dz dt = Δz[(rαlρlvlwl)n − (rαlρlvlwl)s]Δt

= Cnul,nΔt− Csul,sΔt

(C.270)

To approximate the scalar grid cell mass fluxes at the staggered velocity grid
cell surface points, arithmetic interpolation is frequently used:

Cn = AnFn = An
1
2
[FN + FNW ]

Cs = AnFn = As
1
2
[FS + FSW ]

FN = (αlρlvl)N =
1
2
[αl,Nρl,N + αl,P ρl,P ]vl,N

FNW = (αlρlvl)NW =
1
2
[αl,W ρl,W + αl,NW ρl,NW ]vl,NW

FS = (αlρlvl)S =
1
2
[αl,Sρl,S + αl,P ρl,P ]vl,P

FSW = (αlρlvl)SW =
1
2
[αl,W ρl,W + αl,SW ρl,SW ]vl,W

(C.271)
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Axial direction:
∫

Δt

∫

ΔV

∂

∂z
(αlρlwlwl)dz r dr dt = [rp Δr(αlρlwlwl)e − rp Δr(αlρlwlwl)w]Δt

= Ceul,eΔt− Cwul,wΔt

(C.272)

To approximate the scalar grid cell mass fluxes at the staggered velocity grid
cell surface points, arithmetic interpolation is frequently used:

Ce = AeFe = Ae
1
2
[FE + FP ]

Cw = AwFw = Aw
1
2
[FP + FW ]

FE = (αlρlwl)E =
1
2
[αl,P ρl,P + αl,Eρl,E ]wl,E

FP = (αlρlwl)P =
1
2
[αl,P ρl,P + αl,W ρl,W ]wl,P

FW = (αlρlwl)W =
1
2
[αl,W ρl,W + αl,WW ρl,WW ]wl,W

(C.273)

The diffusion terms

The locations of the node points in the staggered grid for the w-velocity are
shown in Fig C.4.

Radial direction:
∫

Δt

∫

ΔV

1
r

∂

∂r
(rαlμl,eff

∂wl

∂r
) rdr dz dt

=
[

(Δzrαlμl,eff
∂wl

∂r
)n − (Δzrαlμl,eff

∂wl

∂r
)s

]

Δt

= AnΓn

(

wl,N − wl,P

δrNP

)

Δt−AsΓs

(

wl,P − wl,S

δrPS

)

Δt

= Dn(wl,N − wl,P )Δt−Ds(wl,P − wl,S)Δt

(C.274)

To approximate the scalar grid cell mass fluxes at the staggered velocity grid
cell surface points, arithmetic interpolation is frequently used:

Dn =
AnΓn

δrNP

Ds =
AsΓs

δrPS

Γn = (αlμl,eff )n =
1
4
(αl,Pμl,P + αl,Nμl,N + αl,Wμl,W + αl,NWμl,NW )

Γs = (αlμl,eff )s =
1
4
(αl,Pμl,P + αl,Sμl,S + αl,Wμl,W + αl,SWμl,SW )

(C.275)
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Axial direction:
∫

Δt

∫

ΔV

∂

∂z
(αlμl,eff

∂wl

∂z
)dz rdr dt

= [rpΔr(αlμl,eff
∂wl

∂z
)e − rpΔr(αlμl,eff

∂wl

∂z
)w]Δt

= AeΓe

(

wl,E − wl,P
1
2 (δzPW + δzEP )

)

Δt−AwΓw

(

wl,P − wl,W
1
2 (δzPW + δzEP )

)

Δt

= De(wl,E − wl,P )Δt−Dw(wl,P − wl,W )Δt

(C.276)

To approximate the scalar grid cell mass fluxes at the staggered velocity
grid cell surface points, arithmetic interpolation is frequently used:

De =
AeΓe

1
2 (δzPW + δzEP )

Dw =
AwΓw

1
2 (δzPW + δzEP )

Γe = (αlμl,eff )e = αl,Pμl,P

Γw = (αlμl,eff )w = αl,Wμl,W

(C.277)

The source terms

The the source terms are approximated by the midpoint rule, in which S is
considered an average value representative for the whole grid cell volume. The
derivatives are represented by an abbreviated Taylor series expansion, usually
a central difference expansion of second order is employed.

Term 1 on the RHS of the momentum equation:
∫

Δt

∫

ΔV

wl
1
r

∂

∂r
(r

μl,t

σαl,t

∂αl

∂r
) dV dt

=
wP

rP

[

(r
μl,t

σαl,t

∂αl

∂r
)n − (r

μl,t

σαl,t

∂αl

∂r
)s

]

ΔVΔt
1
2 (δrNP + δrPS)

(C.278)

This term is implemented through the source term SC as:

SC,1 =
wP

rP

[

rv
N (

μl,t

σαl,t

)n(
∂αl

∂r
)n − rv

P (
μl,t

σαl,t

)s(
∂αl

∂r
)s

]

ΔVΔt
1
2 (δrNP + δrPS)

(C.279)

To approximate derivatives of scalar grid cell variables and scalar grid cell
variables at the staggered velocity grid cell surface points, arithmetic interpo-
lation is frequently used:
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(
∂αl

∂r
)n =

(αl)N − (αl)P

δrNP
=

1
2 (αl,N + αl,NW ) − 1

2 (αl,P + αl,W )
δrNP

(
∂αl

∂r
)s =

(αl)P − (αl)S

δrPS
=

1
2 (αl,P + αl,W ) − 1

2 (αl,S + αl,SW )
δrPS

(C.280)

Term 2 on the RHS of the momentum equation:
∫

Δt

∫

ΔV

wl
∂

∂z
(
μl,t

σαl,t

∂αl

∂z
) dV dt = wl,P

[

(
μl,t

σαl,t

∂αl

∂z
)e − (

μl,t

σαl,t

∂αl

∂z
)w

]

ΔVΔt

δzPW

(C.281)

This term is implemented through the source term SC as:

SC,2 = wl,P
ΔVΔt

δzPW

(

μl,t,P

σαl,t

(
∂αl

∂z
)e −

μl,t,W

σαl,t

(
∂αl

∂z
)w

)

(C.282)

where

(
∂αl

∂z
)e =

(αl)E − (αl)P
1
2 (δzPW + δzEP )

=
1
2 (αl,E + αl,P ) − 1

2 (αl,P + αl,W )
1
2 (δzPW + δzEP )

(
∂αl

∂z
)w =

(αl)P − (αl)W
1
2 (δzPW + δzEP )

=
1
2 (αl,P + αl,W ) − 1

2 (αl,W + αl,WW )
1
2 (δzPW + δzEP )

(C.283)

Term 3 on the RHS of the momentum equation:
∫

Δt

∫

ΔV

[

μl,t

σαl,t

∂αl

∂z
(
1
r

∂

∂r
(rvl) +

∂wl

∂z
)
]

dV dt

= (
μl,t

σαl,t

∂αl

∂z
)P

(

1
rP

(rvl)n − (rvl)s
1
2 (δrNP + δrPS)

+ (
∂wl

∂z
)P

)

ΔVΔt

(C.284)

This term is implemented through the source term SC as:

SC,3 = (
μl,t

σαl,t

∂αl

∂z
)P

(

1
rP

rv
N

1
2 (vl,N + vl,NW ) − rv

P
1
2 (vl,P + vl,W )

1
2 (δrNP + δrPS)

)

ΔVΔt

+ (
μl,t

σαl,t

∂αl

∂z
)P (

∂wl

∂z
)PΔVΔt

(C.285)

To approximate derivatives of scalar grid cell variables and scalar grid cell
variables at the staggered velocity grid cell surface points, arithmetic interpo-
lation is frequently used:

(μl,t)P =
1
2
(μl,P + μl,W )

(
∂αl

∂z
)P =

(αl)e − (αl)w

δzPW
=

αl,P − αl,W

δzPW

(
∂wl

∂z
)P =

ul,e − ul,w

δzPW
=

1
2 (ul,P + ul,E) − 1

2 (ul,P + ul,W )
δzPW

(C.286)



C.4 The 2D Axi-Symmetric Bubble Column Model 1207

Term 4 on the RHS of the momentum equation:
∫

Δt

∫

ΔV

1
r

∂

∂r
(rαlμl,eff

∂wl

∂r
) dV dt

=
ΔVΔt

rP

[

(αlrμl,eff
∂wl

∂r
)n − (αlrμl,eff

∂wl

∂r
)s

]

(C.287)

This term is implemented through the source term SC as:

SC,4 =
ΔVΔt

rP

[

Γnr
v
N

(

wl,N − wl,P

δrNP

)

− Γsr
v
P

(

wl,P − wl,S

δrPS

)

] (C.288)

Term 5th and 7th terms on the RHS of the momentum equation are iden-
tical and both of them are approximated as follows:

∫

Δt

∫

ΔV

∂

∂z
(αlμl

∂wl

∂z
) dV dt =

ΔVΔt

δzPW

[

(αlμl
∂wl

∂z
)e − (αlμl

∂wl

∂z
)w

]

(C.289)

This term is implemented through the source term SC as:

SC,5 =
ΔVΔt

δzPW

[

αl,Pμl,P
(wl,E − wl,P )

1
2 (δzEP + δzPW )

− αl,Wμl,W
(wl,P − wl,W )

1
2 (δzEP + δzPW )

]

(C.290)

The staggered velocity grid cell surface points coincide with center nodes in
the scalar grid, so no interpolation is needed.

Term 6 on the RHS of the momentum equation:
∫

Δt

∫

ΔV

1
r

∂

∂r
(rαlμl,eff

∂vl

∂z
) dV dt

=
ΔVΔt

rP

[

(αlrμl,eff
∂vl

∂z
)n − (αlrμl,eff

∂vl

∂z
)s

]

(C.291)

This term is implemented through the source term SC as:

SC,6 =
ΔVΔt

rP

[

Γnr
v
N

(

vl,N − vl,NW

δzPW

)

− Γsr
v
P

(

vl,P − vl,W

δzPW

)

] (C.292)

Term 8A on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

∂

∂z
(
2
3
αlρlkl) dV dt = −2

3
ΔVΔt

δzPW
[(αlρlkl)e − (αlρlkl)w]

= −2
3
ΔVΔt

δzPW

[

αl,P ρl,P kl,P − αl,W ρl,W kl,W

]

(C.293)
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This term is implemented through the source term SC as:

SC,7 =
2
3
ΔVΔt

δzPW
[αl,W ρl,W kW − αl,P ρl,P kP ] (C.294)

The staggered velocity grid cell surface points coincide with center nodes in
the scalar grid, so no interpolation is needed.

Term 8B on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

∂

∂z
(
2
3
αlρlνl,eff

1
r

∂(rvl)
∂r

) dV dt

= −2ΔVΔt

3 δzPW

[(

αlμl,eff

r

∂(rvl)
∂r

)

e

−
(

αlμl,eff

r

∂(rvl)
∂r

)

w

]

(C.295)

This term is implemented through the source term SC as:

SC,8 = −2ΔVΔt

3 δzPW
[
αl,Pμl,eff,P

rP

∂(rvl)
∂r

|e −
αl,Wμl,eff,W

rP

∂(rvl)
∂r

|w] (C.296)

The staggered velocity grid cell surface points coincide with center nodes in
the scalar grid, so no interpolation is needed for the scalar grid variables.

The velocity derivatives are approximated by central difference discretiza-
tions:

∂(rvl)
∂r

|e =
(rvl)ne − (rvl)se
1
2 (δrNP + δrPS)

=
rv
Nvl,N − rv

P vl,P
1
2 (δrNP + δrPS)

∂(rvl)
∂r

|w =
(rvl)nw − (rvl)sw
1
2 (δrNP + δrPS)

=
rv
NW vl,NW − (rv

P vl,W
1
2 (δrNP + δrPS)

(C.297)

Term 8C on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

∂

∂z
(
2
3
αlρlνl,eff

∂wl

∂z
) dV dt

= −2ΔVΔt

3 δzPW

[

(αlμl,eff
∂wl

∂z
)e − (αlμl,eff

∂wl

∂z
)w

]

(C.298)

This term is implemented through the source term SC as:

SC,9 = − 2ΔV

3 δzPW
αl,Pμl,eff,P

(wl,E − wl,P )
1
2 (δzEP + δzPW )

+
2ΔV

3 δzPW
αl,Wμl,eff,W

(wl,P − wl,W )
1
2 (δzEP + δzPW )

(C.299)

The staggered velocity grid cell surface points coincide with center nodes in
the scalar grid, so no interpolation is needed for the scalar grid variables. The
velocity gradients are approximated by central difference expansions.
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Pressure force

−
∫

Δt

∫

ΔV

αl
∂p

∂z
dV dt = −1

2
(αl)P

(PP − PW )
δzPW

ΔVΔt (C.300)

This term is implemented through the source term SC as

SC,10 = −1
2
(αl,P + αl,W )

PP − PW

δzPW
ΔV (C.301)

To approximate scalar grid cell variables at the staggered velocity grid cell
node points, arithmetic interpolation is frequently used:

(αl)P =
1
2
(αl,P + αl,W ) (C.302)

Gravity force

∫

Δt

∫

ΔV

αlρlg dV dt = g(αlρl)PΔVΔt (C.303)

This term is implemented through the source term SC as:

SC,11 = g
1
2
(αl,P ρl,P + αl,W ρl,W )ΔVΔt (C.304)

To approximate scalar grid cell variables at the staggered velocity grid cell
node points, arithmetic interpolation is frequently used:

(αlρl)P =
1
2
(αl,P ρl,P + αl,W ρl,W ) (C.305)

Added Mass force

∫

Δt

∫

ΔV

− αlαgρlfv[(wl
∂wl

∂z
+ vl

∂wl

∂r
) − (ug

∂ug

∂z
+ vg

∂ug

∂r
)] dV dt

= −fv(αl)P (αg)P (ρl)P×

[(wl(
∂wl

∂z
) + (vl)(

∂wl

∂r
)) − (wg(

∂wg

∂z
) + (vg)(

∂wg

∂r
))]PΔVΔt

(C.306)

This term is implemented through the source term SC as:

SC,12 = −fv
1
2
(αl,P + αl,W )

1
2
(αg,P + αg,W )

1
2
(ρl,P + ρl,W )×

[

wl
∂wl

∂z
+ vl

∂wl

∂r
) − (wg

∂ug

∂z
+ (vg)

∂ug

∂r
)
]

P

ΔVΔt
(C.307)
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To approximate scalar grid cell variables at the staggered w-velocity grid
cell center node point, arithmetic interpolation is frequently used. The radial
velocity component is discretized in the staggered v-grid cell volume and need
to be interpolated to the w-grid cell center node point. The derivatives of the
w-velocity component is approximated by a central difference scheme. When
needed, arithmetic interpolation is used for the velocity components as well.

(αg)P =
1
2
(αg,P + αg,W )

(ρl)P =
1
2
(ρl,P + ρl,W )

(vl)P =
1
4
(vl,P + vl,N + vl,W + vl,NW )

(
∂wl

∂r
)P =

wl,n − wl,s
1
2 (δrNP + δrPS)

=
1
2 (wl,P + wl,N ) − 1

2 (wl,P + wl,S)
1
2 (δrNP + δrPS)

(
∂wl

∂z
)P =

wl,e − wl,w

δzPW
=

1
2 (wl,P + wl,E) − 1

2 (wl,P + wl,W )
δzPW

(C.308)

The corresponding terms for the gas phase are discretized in the same way.

Steady Drag force

The steady drag term is treated in the same way as described for the radial
velocity component.

Algebraic discretization equation

After dividing all the terms by Δt, the discretized equation can be written on
the standard algebraic form:

aPwl,P = aNwl,N + aSwl,S + aEwl,E + aWwl,W + bwl
(C.309)

in which the coefficients are defined by:

aN = Dn + max[−Cn, 0]
aS = Ds + max[Cs, 0]
aE = De + max[−Ce, 0]
aW = Dw + max[Cw, 0]

b =
∑

m

SC,m + a0
P v

0
l,P

aP =
ΔV

Δt
(αlρl)P + aN + aS + aE + aW + Cn−Cs+Ce − Cw −

∑

q

SP,qΔV

(C.310)

To avoid negative coefficients, the relation for the coefficient aP can be mod-
ified using the continuity equation (C.187). The negative mC2-term is then
moved to the RHS of the discretizedtransport equation and included as part
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of the b-term. The alternative a∗P and b∗ coefficients are defined by:

b∗ = −mC2w
ν
l,P +

∑

m

SC,m,l + a0
Pw

0
l,P

a∗P =
ΔV

Δt
(αlρl)0P + aN + aS + aE + aW + mC1 −

∑

q

SP,q,lΔV
(C.311)

C.4.6 The gas phase radial momentum balance

The radial component of the momentum balance for the gas phase is given in
(C.145):

∂

∂t
(αgρgvg) +

1
r

∂

∂r
(rαgρgvgvg) +

∂

∂z
(αgρgwgvg) =

1
r

∂

∂r
(r

μg,t

σαg,t

∂αg

∂r
vg) +

∂

∂z
(
μg,t

σαg,t

∂αg

∂z
vg)

+
1
r

∂

∂r
(r

μg,t

σαg,t

∂αg

∂r
vg) +

∂

∂z
(
μg,t

σαg,t

∂αg

∂r
wg)

+
1
r

∂

∂r
(rαg

μg,t

σg,t

∂vg

∂r
) − 1

r
αg

μg,t

σg,t

vg

r
+

∂

∂z
(αg

μg,t

σg,t

∂vg

∂z
)

+
1
r

∂

∂r
(rαg

μg,t

σg,t

∂vg

∂r
) − 1

r
αg

μg,t

σg,t

vg

r
+

∂

∂z
(αg

μg,t

σg,t

∂wg

∂r
)

− ∂

∂r
(
2
3
αgρg(k +

νg,t

σg,t
(
1
r

∂

∂r
(rvg) +

∂wg

∂z
)))

− αg
∂p

∂r
+

μl,t

σαl,t

(
∂αl

∂r

∂vl

∂r
+

∂αl

∂z

∂vl

∂z
)

+ vl
∂

∂r
(
μl,t

σαl,t

∂αl

∂r
) + wl

∂

∂z
(
μl,t

σαl,t

∂αl

∂r
)

+ αgρggr + FC
g,r + FC′

g,r

In the FVM, the integral form of the momentum equation is used. The differ-
ential equation is thus integrated in time and over a grid cell volume in the
staggered grid for the v-velocity.

The transient, convective and diffusive terms are discretized just like the
corresponding terms in the liquid phase (i.e., see sect C.4.4).

The source terms

The the source terms are approximated by the midpoint rule, in which S is
considered an average value representative for the whole grid cell volume. The
derivatives are represented by an abbreviated Taylor series expansion, usually
a central difference expansion of second order is employed.
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Term 1 on the RHS of the momentum equation is split into two parts,
term 1a and term 1b:

1
r

∂

∂r
(r

μg,t

σαg,t

∂αg

∂r
vg) = −vg

∂

∂r
(
μg

σαg,t

∂αl

∂r
) − 1

r

μg

σαg,t

∂αl

∂r

∂

∂r
(rvg) (C.311)

By use of (8.11), the gas-volume fractions has been substituted with the liquid
volume fraction. The gradient of the gas phase volume fraction is thus related
to the liquid phase volume fraction in accordance with:

∇αg = ∇(1 − αl) = −∇αl (C.312)

Term 1a on the RHS of the momentum equation:
∫

Δt

∫

ΔV

− vg
∂

∂r
(
μg

σαg,t

∂αl

∂r
) dV dt

= − vg,PΔVΔt
1
2 (δrNP + δrPS)

[(
μg

σαg,t

∂αl

∂r
)n − (

μg

σαg,t

∂αl

∂r
)s]

(C.313)

This term is implemented through the source term SC as:

SC,1 = − vg,PΔVΔt
1
2 (δrNP + δrPS)

[μg,P (
∂αl

∂r
)n − μg,S(

∂αl

∂r
)s] (C.314)

The staggered velocity grid cell surface points coincide with center nodes in
the scalar grid, so no interpolation is needed for the scalar grid variables. The
scalar gradient terms in the staggered velocity cell volume are approximated
by central difference expansions and arithmetic interpolation:

(
∂αl

∂r
)n =

(αl)N − (αl)P

δrNP
=

1
2 (αl,N + αl,P ) − 1

2 (αl,P + αl,S)
δrNP

(
∂αl

∂r
)s =

(αl)P − (αl)S

δrPS
=

1
2 (αl,P + αl,S) − 1

2 (αl,S + αl,SS)
δrPS

(C.315)

Term 1b on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

1
r

μg

σαg,t

∂αl

∂r

∂

∂r
(rvg) dV dt = −(

1
r

μg

σαg,t

∂αl

∂r
)P

[(rvg)n − (rvg)s]
1
2 (δrNP + δrPS)

ΔVΔt

(C.316)

This term is implemented through the source term SC as:

SC,2 = − (μg)P

rv
P

(
∂αl

∂r
)P

rP
1
2 (vg,P + vg,N ) − rS

1
2 (vg,P + vg,S)

1
2 (δrNP + δrPS)

ΔVΔt (C.317)

The scalar variables at the staggered velocity grid cell surface points is usually
obtained by arithmetic interpolation. The scalar gradient terms in the stag-
gered velocity cell volume are approximated by central difference expansions.
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The scalar properties at the staggered grid cell surface points coincide with
the scalar grid central nodes.

(μg)P =
1
2
(μg,P + μg,S)

(
∂αl

∂r
)P =

(αl)n − (αl)s
1
2 (δrNP + δrPS)

=
αl,P − αl,S

1
2 (δrNP + δrPS)

(C.318)

Term 2 on the RHS of the momentum equation is split into two parts,
term 2a and term 2b:

∂

∂z
(
μg,t

σαg,t

∂αg

∂z
vg) = −vg

∂

∂z
(
μg,t

σαg,t

∂αl

∂z
) − μg,t

σαg,t

∂αl

∂z

∂vg

∂z
(C.319)

Term 2a on the RHS of the momentum equation:
∫

Δt

∫

ΔV

− vg
∂

∂z
(
μg,t

σαg,t

∂αl

∂z
) dV dt

= − vg,PΔV
1
2 (δzPW + δzEP )

[(
μg,t

σαg,t

∂αl

∂z
)e − (

μg,t

σαg,t

∂αl

∂z
)w]

(C.320)

This term is implemented through the source term SC as:

SC,3 = − vg,PΔV
1
2 (δzPW + δzEP )

[(μg,t
∂αl

∂z
)e − (μg,t

∂αl

∂z
)w] (C.321)

To approximate the scalar variables at the staggered velocity grid cell sur-
face points, arithmetic interpolation is frequently applied. The derivatives are
approximated by a central difference scheme.

(
∂αl

∂z
)e =

(αl)E − (αl)P

δzEP
=

1
2 (αl,E + αl,SE) − 1

2 (αl,E + αl,SE)
δzEP

(
∂αl

∂z
)w =

(αl)P − (αl)W

δzPW
=

1
2 (αl,P + αl,S) − 1

2 (αl,W + αl,SW )
δzPW

(μg)e =
1
4
(μg,P + μg,E + μg,S + μg,SE)

(μg)w =
1
4
(μg,P + μg,W + μg,S + μg,SW )

(C.322)

Term 2b on the RHS of the momentum equation:
∫

Δt

∫

ΔV

− μg,t

σαg,t

∂αl

∂z

∂vg

∂z
dV dt = −(

μg,t

σαg,t

∂αl

∂z
)P

(vg,e − vg,w)
1
2 (δzEP + δzPW )

ΔVΔt

(C.323)

This term is implemented through the source term SC as:
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SC,4 = −(μg,t
∂αl

∂z
)P

1
2 (vg,P + vg,E) − 1

2 (vg,P + vg,W )
1
2 (δzEP + δzPW )

ΔVΔt (C.324)

where

(
∂αl

∂z
)P =

(αl)e − (αl)w
1
2 (δzEP + δzPW )

=
1
4 (αl,P + αl,E + αl,S + αl,SE) − 1

4 (αl,P + αl,W + αl,S + αl,SW )
1
2 (δzEP + δzPW )

(C.325)

Term 3 on the RHS of the momentum equation is split into two parts,
term 3a and term 3b:

1
r

∂

∂r
(r

μg,t

σαg,t

∂αg

∂r
vg) = −vg

r

∂

∂r
(r

μg,t

σαg,t

∂αl

∂r
) − μg,t

σαg,t

∂αl

∂r

∂vg

∂r
(C.326)

Term 3a on the RHS of the momentum equation:

∫

Δt

∫

ΔV

− vg

r

∂

∂r
(r

μg,t

σαg,t

∂αl

∂r
) dV dt = −vg,P

rv
P

[ (r
μg,t

σαg,t

∂αl
∂r

)n − (r
μg,t

σαg,t

∂αl
∂r

)s

1
2
(δrNP + δrPS)

]

ΔV Δt

(C.327)

This term is implemented through the source term SC as

SC,5 = −vg,P

rv
P

[rP
μg,t,P

σαg,t
(∂αl

∂r )n − rS
μg,t,S

σαg,t
(∂αl

∂r )s

1
2 (δrNP + δrPS)

]

ΔVΔt (C.328)

where

(
∂αl

∂r
)n =

(αl)N − (αl)P

δrNP
=

1
2 (αl,N + αl,P ) − 1

2 (αl,P + αl,S)
δrNP

(
∂αl

∂r
)s =

(αl)P − (αl)S

δrPS
=

1
2 (αl,P + αl,S) − 1

2 (αl,S + αl,SS)
δrPS

(C.329)

Term 3b on the RHS of the momentum equation:
∫

Δt

∫

ΔV

− μg,t

σαg,t

∂αl

∂r

∂vg

∂r
dV dt = −(

μg,t

σαg,t

)P (
∂αl

∂r
)P

(vg,n − vg,s)
1
2 (δrNP + δrPS)

ΔV

(C.330)
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This term is implemented through the source term SC as:

SC,6 = −(
μg,t

σαg,t

)P (
∂αl

∂r
)P

1
2 (vg,N + vg,P ) − 1

2 (vg,P + vg,S)
1
2 (δrNP + δrPS)

ΔVΔt (C.331)

where the staggered grid variables are expressed in terms of the node values
in the scalar grid:

(μg)P =
1
2
(μg,P + μg,S)

(
∂αl

∂r
)P =

(αl)n − (αl)s
1
2 (δrNP + δrPS)

=
αl,P − αl,S

1
2 (δrNP + δrPS)

(C.332)

Term 4 on the RHS of the momentum equation is split into two parts,
term 4a and term 4b:

∂

∂z
(
μg,t

σαg,t

∂αg

∂r
wg) = −wg

∂

∂z
(
μg,t

σαg,t

∂αl

∂r
) − μg,t

σαg,t

∂αl

∂r

∂wg

∂z
(C.333)

Term 4a on the RHS of the momentum equation:

∫

Δt

∫

ΔV

− wg
∂

∂z
(
μg,t

σαg,t

∂αl

∂r
) dV dt = −wg,P

[ ( μg,t

σαg,t

∂αl

∂r )e − ( μg,t

σαg,t

∂αl

∂r )w

1
2 (δzEP + δzPW )

]

ΔVΔt

(C.334)

This term is implemented through the source term SC as:

SC,7 = −(wg)P

[ ( μg,t

σαg,t

∂αl

∂r )e − ( μg,t

σαg,t

∂αl

∂r )w

1
2 (δzEP + δzPW )

]

ΔVΔt (C.335)

where the staggered grid variables are expressed in terms of the node values
in the scalar grid:

(wg)P =
1
4
(vg,P + vg,S + vg,E + vg,SE) (C.336)

Term 4b on the RHS of the momentum equation:
∫

Δt

∫

ΔV

− μg,t

σαg,t

∂αl

∂r

∂wg

∂z
dV dt = −(

μg,t

σαg,t

∂αl

∂r
)P

[

(wg)e − (wg)w
1
2 (δzEP + δzPW )

]

ΔVΔt

(C.337)

This term is implemented through the source term SC as:

SC,8 = − (
μg,t

σαg,t

∂αl

∂r
)P

[

(wg)e − (wg)w
1
2 (δzEP + δzPW )

]

ΔVΔt

= − (
μg,t

σαg,t

∂αl

∂r
)P

[ 1
2 (vg,E + vg,SE) − 1

2 (vg,P + vg,S)
1
2 (δzEP + δzPW )

]

ΔVΔt

(C.338)
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The 5th and 8th terms on the RHS of the radial component of the mo-
mentum equation for the gas phase are identical and discretized in the same
way as the corresponding terms in the liquid phase equation, as discussed in
sect C.4.4.

∫

Δt

∫

ΔV

1
r

∂

∂r
(rαg

μg,t

σαg,t

∂vg

∂r
) dV dt =

ΔVΔt

rv
P

[ (rαg
μg,t

σαg,t

∂vg

∂r )n − (rαg
μg,t

σαg,t

∂vg

∂r )s

1
2 (δrNP + δrPS)

]

(C.339)

This term is implemented through the source term SC as:

SC,9 =
ΔVΔt

rv
P

rPαg,Pμg,P (∂vg

∂r )n − rSαg,Sμg,S(∂vg

∂r )s

1
2 (δrNP + δrPS)

(C.340)

in which the scalar variables at the staggered grid surface are expressed in
terms of the node values in the scalar grid. The derivatives of staggered grid
variables are approximated by use of the central difference scheme:

(
∂vg

∂r
)n =

vg,N − vg,P

δrNP

(
∂vg

∂r
)s =

vg,P − vg,S

δrPS

(C.341)

The 6th and 9th terms on the RHS of the radial component of the mo-
mentum equation for the gas phase are identical and discretized in the same
way as the corresponding terms in the liquid phase equation, as discussed in
sect C.4.4.

−2
∫

Δt

∫

ΔV

1
r
αg

μg,t

σαg,t

vg

r
dV dt = −2(αg

μg,t

σαg,t

)P
vg,P

r2,v
P

ΔVΔt

= −2 × 1
2
(αg,P

μg,t,P

σαg,t

+ αg,S
μg,t,S

σαg,t

)
vg,P

r2,v
P

ΔVΔt

(C.342)

This term is implemented through the source term SP as:

Sp,1 = −2 × 1
2
(αg,P

μg,t,P

σαg,t

+ αg,S
μg,t,S

σαg,t

)
ΔVΔt

r2v
P

(C.343)

in which the scalar variables at the staggered grid surface are expressed in
terms of the node values in the scalar grid.

Term 7 on the RHS of the radial momentum equation is discretized in the
same way as the corresponding term in the liquid phase equation, as discussed
in sect C.4.4. The formulation is not repeated here.

Term 10 on the RHS of the radial momentum equation is discretized in the
same way as the corresponding term in the liquid phase equation, as discussed
in sect C.4.4.
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∫

Δt

∫

ΔV

∂

∂z
(αg

μg,t

σαg,t

∂wg

∂r
) dV dt

=
ΔVΔt

1
2 (δzPW + δzEP )

[

(αg
μg,t

σαg,t

∂wg

∂r
)e − (αg

μg,t

σαg,t

∂wg

∂r
)w

]

=
ΔVΔt

1
2 (δzPW + δzEP )

[

Γe
(wg,E − wg,SE)
1
2 (δrNP + δrPS)

− Γw
(wg,P − wg,S)

1
2 (δrNP + δrPS)

]

(C.344)

This term is implemented through the source term SC as:

SC,10 =
ΔVΔt

SEW,P

[

Γe
(wg,E − wg,SE)
1
2 (δrNP + δrPS)

− Γw
(wg,P − wg,S)

1
2 (δrNP + δrPS)

]

(C.345)

in which the scalar variables at the staggered grid surface are expressed in
terms of the node values in the scalar grid.

Term 11A on the RHS of the radial momentum equation is discretized
in the same way as the corresponding term in the liquid phase equation, as
discussed in sect C.4.4.

−
∫

Δt

∫

ΔV

∂

∂r
(
2
3
αgρgk) dV dt = −2

3
ΔVΔt

1
2 (δrNP + δrPS)

(

(αgρgk)n − (αgρgk)s

)

(C.346)

This term is implemented through the source term SC as:

SC,11 =
2
3

ΔV
1
2 (δrNP + δrPS)

[αg,P ρg,P kP − αg,Sρg,SkS ] (C.347)

in which the scalar variables at the staggered grid surface are expressed in
terms of the node values in the scalar grid.

Term 11B on the RHS of the radial momentum equation is discretized
in the same way as the corresponding term in the liquid phase equation, as
discussed in sect C.4.4.

−
∫

Δt

∫

ΔV

∂

∂r
(
2
3
αgρg

μg,t

σαg,t

1
r

∂(rvg)
∂r

) dV dt

= −2
3

ΔV
1
2 (δrNP + δrPS)

[

(
αg

μg,t

σαg,t

r

∂(rvg)
∂r

)n − (
αg

μg,t

σαg,t

r

∂rvg

∂r
)s

]

(C.348)

This term is implemented through the source term SC as:

SC,12 = −2
3

ΔV
1
2 (δrNP + δrPS)

[αg,P
μg,t,P

σαg,t

rP
(
∂(rvg)
∂r

)n −
αg,W

μg,t,W

σαg,t

r∗S
(
∂(rvg)
∂r

)s

]

(C.349)
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where

(
∂(rvg)
∂r

)n =
(rvg)N − (rvg)P

δrNP
=

rv
Nvg,N − (rv

P vg,P

δrNP

(
∂(rvg)
∂r

)s =
(rvg)P − (rvg)S

δrPS
=

rv
P vg,P − (rv

Svg,S

δrPS

(C.350)

Term 11C on the RHS of the radial momentum equation is discretized
in the same way as the corresponding term in the liquid phase equation, as
discussed in sect C.4.4.

∫

Δt

∫

ΔV

− ∂

∂r
(
2
3
αgρg

μg,t

σαg,t

∂wg

∂z
) dV dt

= −2
3

ΔVΔt
1
2 (δrNP + δrPS)

[

(αg
μg,t

σαg,t

∂wg

∂z
)n − (αg

μg,t

σαg,t

∂wg

∂z
)s

]

(C.351)

This term is implemented through the source term SC as:

SC,13 = − 2
3

ΔV
1
2 (δrNP + δrPS)

[

αg,P
μg,t,P

σαg,t

(wg,E − wg,P )
1
2 (δzEP + δzPW )

]

+
2
3

ΔV
1
2 (δrNP + δrPS)

[

αg,W
μg,t,W

σαg,t

(wg,P − wg,W )
1
2 (δzEP + δzPW )

] (C.352)

Term 13A on the RHS of the momentum equation:
∫

Δt

∫

ΔV

μl,t

σαl,t

∂αl

∂r

∂vl

∂r
dV dt = (

μl,t

σαl,t

∂αl

∂r

∂vl

∂r
)PΔVΔt (C.353)

This term is implemented through the source term SC as:

SC,14 =
1
2
(
μl,t,P

σαl,t

+
μl,t,S

σαl,t

)(
∂αl

∂r

∂vl

∂r
)PΔVΔt (C.354)

in which the scalar variables at the staggered grid center node are obtained
by arithmetic interpolation of the node values in the scalar grid. Moreover,
the velocity gradient is approximated by use of the central difference scheme
and the surface values are obtained by arithmetic interpolation of the node
values in the stagged velocity grid.

(
∂vl

∂r
)P =

vl,n − vl,s
1
2 (δrNP + δrPS)

=
1
2 (vl,P + vl,N ) − 1

2 (vl,P + vl,S)
1
2 (δrNP + δrPS)

(C.355)

Term 13B on the RHS of the momentum equation:

∫

Δt

∫

ΔV

μl,t

σαl,t

∂αl

∂z

∂vl

∂z
dV dt = ΔVΔt(

μl,t

σαl,t

∂αl

∂z

∂vl

∂z
)P (C.356)
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This term is implemented through the source term SC as:

SC,15 = ΔVΔt(
μl,t

σαl,t

∂αl

∂z
)P

1
2 (vl,E + vl,P ) − 1

2 (vl,P + vl,W )
1
2 (δzEP + δzPW )

(C.357)

where

(
∂αl

∂z
)P =

(αl)e − (αl)w
1
2 (δzEP + δzPW )

=
1
4 (αl,P + αl,E + αl,S + αl,SE) − 1

4 (αl,P + αl,W + αl,S + αl,SW )
1
2 (δzEP + δzPW )

(C.358)

Term 14 on the RHS of the momentum equation:

∫

Δt

∫

ΔV

vl
∂

∂r
(
μl,t

σαl,t

∂αl

∂r
) dV dt = vl,P

[

(μl,t
∂αl

∂r )n − (μl,t
∂αl

∂r )s

1
2 (δrNP + δrPS)

]

ΔVΔt (C.359)

This term is implemented through the source term SC as:

SC,16 = vP

[

μl,P (∂αl

∂r )n − μl,S(∂αl

∂r )s

1
2 (δrNP + δrPS)

]

ΔVΔt (C.360)

in which the scalar variables at the staggered grid center node are obtained
by arithmetic interpolation of the node values in the scalar grid.

Term 15 on the RHS of the momentum equation:

∫

Δt

∫

ΔV

wl
∂

∂z
(
μl,t

σαl,t

∂αl

∂r
) dV dt = (wl)P

[ ( μl,t

σαl,t

∂αl

∂r )e − ( μl,t

σαl,t

∂αl

∂r )w

1
2 (δzEP + δzPW )

]

ΔVΔt

(C.361)

This term is implemented through the source term SC as:

SC,17 = (wl)P

[

(μl,t
∂αl

∂r )e − (μl,t
∂αl

∂r )w

1
2 (δzEP + δzPW )

]

ΔVΔt (C.362)

Pressure force

The pressure force term is treated in the same way as described for the radial
liquid velocity component.

Added mass force

The added mass force term is treated in the same way as described for the
radial liquid velocity component.
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Transversal force

The transversal force term is treated in the same way as described for the
radial liquid velocity component.

Steady drag force

The steady drag force term is treated in the same way as described for the
radial liquid velocity component.

Algebraic discretization equation

After dividing all the terms by Δt, the discretized equation can be written on
the standard algebraic form:

aP vg,P = aNvg,N + aSvg,S + aEvg,E + aW vg,W + bvg
(C.363)

in which the coefficients are defined by:

aN = Dn + max[−Cn, 0]

aS = Ds + max[Cs, 0]

aE = De + max[−Ce, 0]

aW = Dw + max[Cw, 0]

b =
∑

m

SC,m + a0
P v0

g,P

aP =
ΔV

Δt
(αgρg)P + aN + aS + aE + aW + Cn− Cs + Ce − Cw −

∑

q

SP,qΔV

(C.364)

To avoid negative coefficients, the relation for the coefficient aP can be mod-
ified using the continuity equation, as shown for the liquid phase equations.
The alternative a∗P and b∗ coefficients are defined by:

b∗ = −mC2v
ν
g,P +

∑

m

SC,m,g + a0
P v

0
g,P

a∗P =
ΔV

Δt
(αgρg)0P + aN + aS + aE + aW + mC1 −

∑

q

SP,q,gΔV
(C.365)
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C.4.7 The gas phase axial momentum balance

The axial momentum balance for gas is given in (C.146).

∂

∂t
(αgρgwg) +

1
r

∂

∂r
(rαgρgvgwg) +

∂

∂z
(αgρgwgwg) =

1
r

∂

∂r
(r

μg,t

σαg,t

∂αg

∂r
wg) +

∂

∂z
(
μg,t

σαg,t

∂αg

∂z
wg)

+
1
r

∂

∂r
(r

μg,t

σαg,t

∂αg

∂z
vg) +

∂

∂z
(
μg,t

σαg,t

∂αg

∂z
wg)

+
1
r

∂

∂r
(rαg

μg,t

σg,t

∂wg

∂r
) +

∂

∂z
(αg

μg,t

σg,t

∂wg

∂z
)

+
1
r

∂

∂r
(rαg

μg,t

σg,t

∂vg

∂z
) +

∂

∂z
(αg

μg,t

σg,t

∂wg

∂z
)

− ∂

∂z
(
2
3
αgρg(k +

νg,t

σg,t
(
1
r

∂

∂r
(rvg) +

∂wg

∂z
)))

− αg
∂p

∂z
+

μl,t

σαl,t

(
∂αl

∂r

∂wl

∂r
+

∂αl

∂z

∂wl

∂z
)

+ (vl
∂

∂r
(
μl,t

σαl,t

∂αl

∂z
) + wl

∂

∂z
(
μl,t

σαl,t

∂αl

∂z
))

+ αgρggz + FC
g,z + FC′

g,z

The transient, convective and the diffusive terms are discretized just like
the corresponding terms in the liquid phase as shown in sect C.4.5. Only the
novel source terms found only in the axial gas phase momentum equation are
considered in this section.

The source terms

The the source terms are approximated by the midpoint rule, in which S is
considered an average value representative for the whole grid cell volume. The
derivatives are represented by an abbreviated Taylor series expansion, usually
a central difference expansion of second order is employed.

Term 1 on the RHS of the momentum equation is split into two parts,
term 1a and term 1b:

1
r

∂

∂r
(r

μg,t

σαg,t

∂αg

∂r
wg) = −wg

r

∂

∂r
(r

μg,t

σαg,t

∂αl

∂r
) − μg,t

σαg,t

∂αl

∂r

∂wg

∂r
(C.366)
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Term 1a on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

wg

r

∂

∂r
(r

μg,t

σαg,t

∂αl

∂r
) dV dt

= − wg,PΔVΔt

rP
1
2 (δrNP + δrPS)

[(r
μg,t

σαg,t

∂αl

∂r
)n − (r

μg,t

σαg,t

∂αl

∂r
)s]

(C.367)

This term is implemented through the source term SC as:

SC,1 = − wg,PΔVΔt

rP
1
2 (δrNP + δrPS)

[rv
N (

μg,t

σαg,t

)n(
∂αl

∂r
)n − rv

P (
μg,t

σαg,t

)s(
∂αl

∂r
)s]

(C.368)

where

(μl,t)n =
1
4
(μl,P + μl,N + μl,W + μl,NW )

(μl,t)s =
1
4
(μl,P + μl,S + μl,W + μl,SW )

(
∂αl

∂r
)n =

(αl)N − (αl)P

δrNP
=

1
2 (αl,N + αl,NW ) − 1

2 (αl,P + αl,W )
δrNP

(
∂αl

∂r
)s =

(αl)P − (αl)S

δrPS
=

1
2 (αl,P + αl,W ) − 1

2 (αl,S + αl,SW )
δrPS

(C.369)

Term 1b on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

μg,t

σαg,t

∂αl

∂r

∂wg

∂r
dV dt = −(

μg,t

σαg,t

∂αl

∂r
)P

(wg,n − wg,s)
1
2 (δrNP + δrPS)

ΔVΔt

(C.370)

This term is implemented through the source term SC as:

SC,2 = −1
2
(
μg,t,P

σαg,t

+
μg,t,W

σαg,t

)(
∂αl

∂r
)P

[ 1
2 (wP + wN ) − 1

2 (wP + wS)
1
2 (δrNP + δrPS)

]

ΔVΔt

(C.371)

where

(
∂αl

∂r
)P =

(αl)n − (αl)s

SNS,P

=
1
4 (αl,P + αl,N + αl,W + αl,NW ) − 1

4 (αl,P + αl,S + αl,W + αl,SW )
1
2 (δrNP + δrPS)

(C.372)
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Term 2 on the RHS of the momentum equation is split into two parts,
term 2a and term 2b:

∂

∂z
(
μg,t

σαg,t

∂αg

∂z
wg) = −wg

∂

∂z
(
μg,t

σαg,t

∂αl

∂z
) − μg,t

σαg,t

∂αl

∂z

∂wg

∂z
(C.373)

Term 2a on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

wg
∂

∂z
(
μg,t

σαg,t

∂αl

∂z
) dV dt = −wg,P

[ ( μg,t

σαg,t

∂αl

∂z )e − ( μg,t

σαg,t

∂αl

∂z )w

δzPW

]

ΔVΔt

(C.374)

This term is implemented through the source term SC as:

SC,3 = −wg,P

[

μg,t,P

σαg,t
(∂αl

∂z )e − μg,t,W

σαg,t
(∂αl

∂z )w

δzPW

]

ΔVΔtΔt (C.375)

where

(
∂αl

∂z
)e =

(αl)E − (αl)P
1
2 (δzPW + δzEP )

=
1
2 (αl,E + αl,P ) − 1

2 (αl,P + αl,W )
1
2 (δzPW + δzEP )

(
∂αl

∂z
)w =

(αl)P − (αl)W
1
2 (δzPW + δzEP )

=
1
2 (αl,P + αl,W ) − 1

2 (αl,W + αl,WW )
1
2 (δzPW + δzEP )

(C.376)

Term 2b on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

μg,t,P

σαg,t

∂αl

∂z

∂wg

∂z
dV dt = −(

μg,t,P

σαg,t

∂αl

∂z
)P

(wg,e − wg,w)
δzPW

ΔVΔt (C.377)

This term is implemented through the source term SC as:

SC,4 = −1

2
(
μg,t,P

σαg,t

+
μg,t,W

σαg,t

)(
∂αl

∂z
)P

[ 1
2
(wg,E + wg,P ) − 1

2
(wg,P + wg,W )

δzPW

]

ΔV Δt

(C.378)

where

(
∂αl

∂z
)P =

(αl)e − (αl)w

δzPW
=

(αl)P − (αl)W

δzPW
(C.379)



1224 C Trondheim Bubble Column Model

Term 3 on the RHS of the axial momentum equation is split into two parts,
term 3a and term 3b:

1
r

∂

∂r
(r

μg,t

σαg,t

∂αg

∂z
vg) = −vg

∂

∂r
(
μg

σαg,t

∂αl

∂z
) − 1

r

μg

σαg,t

∂αl

∂z

∂

∂r
(rvg) (C.380)

Term 3a on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

vg
∂

∂r
(

μg

σαg,t

∂αl

∂z
) dV dt = −(vg)P [(μg

∂αl

∂z
)n − (μg

∂αl

∂z
)s]

ΔV Δt
1
2
(δrNP + δrPS)

(C.381)

This term is implemented through the source term SC as:

SC,5 = −vg,P [(μg
∂αl

∂z
)n − (μg

∂αl

∂z
)s]

ΔVΔt
1
2 (δrNP + δrPS)

(C.382)

where

(vg)P =
1
4
(vg,P + vg,N + vg,W + vg,NW )

(μl,t)n =
1
4
(μl,P + μl,N + μl,W + μl,NW )

(μl,t)s =
1
4
(μl,P + μl,S + μl,W + μl,SW )

(
∂αl

∂z
)n =

1
2 (αl,P + αl,N ) − 1

2 (αl,W + αl,NW )
δzPW

(
∂αl

∂z
)s =

1
2 (αl,P + αl,S) − 1

2 (αl,W + αl,SW )
δzPW

(C.383)

Term 3b on the RHS of the axial momentum equation:

−
∫

Δt

∫

ΔV

1
r

μg,t

σαg,t

∂αl

∂z

∂

∂r
(rvg) dV dt = −(

μg,t

σαg,t

r

∂αl

∂r
)P

[

(rvl)n − (rvl)s
1
2 (δrNP + δrPS)

]

ΔVΔt

(C.384)

This term is implemented through the source term SC as:

SC,6 = −
1
2 (μg,t,P

σαg,t
+ μg,t,S

σαg,t
)

rP
(
∂αl

∂r
)P

[ 1
2 (vN + vNW ) − 1

2 (vP + vW )
1
2 (δrNP + δrPS)

]

ΔVΔt

(C.385)

where

(
∂αl

∂r
)P =

(αl)n − (αl)s

δrNP + δrPS)

=
1
4 (αl,P + αl,N + αl,W + αl,NW ) − 1

4 (αl,P + αl,S + αl,W + αl,SW )
δrNP + δrPS)

(C.386)
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Term 4 on the RHS of the axial momentum equation is split into two parts,
term 4a and term 4b:

∂

∂z
(
μg,t

σαg,t

∂αg

∂z
wg) = −wg

∂

∂z
(
μg,t

σαg,t

∂αl

∂z
) − μg,t

σαg,t

∂αl

∂z

∂wg

∂z
(C.387)

Term 4a on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

wg
∂

∂z
(
μg,t

σαg,t

∂αl

∂z
) dV dt = −wg,P

[ ( μg,t

σαg,t

∂αl

∂z )e − ( μg,t

σαg,t

∂αl

∂z )w

δzPW

]

ΔVΔt

(C.388)

This term is implemented through the source term SC as:

SC,7 = −wg,P

[ (μg,t,P

σαg,t

∂αl

∂z )e − (μg,t,W

σαg,t

∂αl

∂z )w

δzPW

]

ΔVΔt (C.389)

Term 4b on the RHS of the momentum equation:

−
∫

Δt

∫

ΔV

μg,t

σαg,t

∂αl

∂z

∂wg

∂z
dV dt = −(

μg,t

σαg,t

∂αl

∂z
)P

[

wg,e − wg,w

δzPW

]

ΔVΔt (C.390)

This term is implemented through the source term SC as:

SC,8 = −1
2
(μg,P + μg,W )(

∂αl

∂z
)P

[ 1
2 (wg,E + wg,P ) − 1

2 (wg,P + wg,W )
δzPW

]

ΔVΔt

(C.391)

The 5th to 9th terms on the RHS of the axial component of the gas momen-
tum equation are discretized in the same way as the corresponding equations
in the liquid phase equation, discussed in sect C.4.5.

Term 11A on the RHS of the axial momentum equation:
∫

Δt

∫

ΔV

μl,t

σαl,t

∂αl

∂r

∂wl

∂r
dV dt = (

μl,t

σαl,t

∂αl

∂r

∂wl

∂r
)PΔVΔt (C.392)

This term is implemented through the source term SC as:

SC,14 =
1
2
(
μl,t,P

σαl,t

+
μl,t,W

σαl,t

)(
∂αl

∂r
)P (

∂wl

∂r
)PΔVΔt (C.393)

where

(
∂wl

∂r
)P =

wl,n − wl,s
1
2 (δrNP + δrPS)

=
1
2 (wl,P + wl,N ) − 1

2 (wl,P + wl,S)
1
2 (δrNP + δrPS)

(C.394)
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Term 11B on the RHS of the axial momentum equation:
∫

Δt

∫

ΔV

μl,t

σαl,t

∂αl

∂z

∂wl

∂z
dV dt = (

μl,t

σαl,t

∂αl

∂z

∂ul

∂z
)PΔVΔt (C.395)

This term is implemented through the source term SC as:

SC,15 =
1
2
(
μl,t,P

σαl,t

+
μl,t,W

σαl,t

)(
∂αl

∂z
)P (

∂ul

∂z
)PΔVΔt (C.396)

Term 12 on the RHS of the axial component of the momentum equation:
∫

Δt

∫

ΔV

vl
∂

∂r
(
μl,t

σαl,t

∂αl

∂z
) dV dt =

(vl)PΔVΔt
1
2 (δrNP + δrPS)

[(
μl,t

σαl,t

∂αl

∂z
)n − (

μl,t

σαl,t

∂αl

∂z
)s]

(C.397)

This term is implemented through the source term SC as:

SC,16 =
(vl)PΔVΔt

1
2 (δrNP + δrPS)

[
μl,t,P

σαl,t

(
∂αl

∂r
)n − μl,t,S

σαl,t

(
∂αl

∂r
)s] (C.398)

Term 13 on the RHS of the axial component of the momentum equation:
∫

Δt

∫

ΔV

wl
∂

∂z
(
μl,t

σαl,t

∂αl

∂z
) dV dt =

wl,PΔVΔt

δzPW
[(
μl,t

σαl,t

∂αl

∂z
)e − (

μl,t

σαl,t

∂αl

∂z
)w]

(C.399)

This term is implemented through the source term SC as:

SC,17 =
wl,PΔV

δzPW
[
μl,t,P

σαl,t

(
∂αl

∂z
)e −

μl,t,W

σαl,t

(
∂αl

∂z
)w] (C.400)

Pressure force term

The pressure force term in the axial component of the gas momentum equa-
tion is discretized in the same way as described when considering the liquid
momentum equation in sect C.4.5.

Gravity force term

The gravity force term in the gas momentum equation is discretized in the
same way as described when considering the liquid momentum equation in
sect C.4.5.

Virtual mass force term

The virtual mass force term in the gas momentum equation is discretized
in the same way as described when considering the liquid phase momentum
equation in sect C.4.5.
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Steady drag force term

The steady drag force term in the axial component of the gas momentum
equation is treated in the same way as described when considering the liquid
momentum equation, as discussed in sect C.4.5.

Algebraic discretization equation

After dividing all the terms by Δt, the discretized equation can be written on
the standard algebraic form:

aPwg,P = aNwg,N + aSwg,S + aEwg,E + aWwg,W + bwg
(C.401)

in which the coefficients are defined by:

aN = Dn + max[−Cn, 0]

aS = Ds + max[Cs, 0]

aE = De + max[−Ce, 0]

aW = Dw + max[Cw, 0]

b =
∑

m

SC,m + a0
P w0

g,P

aP =
ΔV

Δt
(αgρg)P + aN + aS + aE + aW + Cn − Cs + Ce − Cw −

∑

q

SP,qΔV

(C.402)

To avoid negative coefficients, the relation for the coefficient aP can be mod-
ified using the continuity equation, as shown for the liquid phase equations.
The alternative a∗P and b∗ coefficients are defined by:

b∗ = −mC2w
ν
g,P +

∑

m

SC,m,g + a0
Pw

0
g,P

a∗P =
ΔV

Δt
(αgρg)0P + aN + aS + aE + aW + mC1 −

∑

q

SP,q,gΔV
(C.403)

C.4.8 The Turbulent Kinetic Energy

The equation for the turbulent kinetic energy is discretized in accordance with
the generalized equation in sect C.4.3, with ψ = k and phase k = l.

The source terms

The the source terms are approximated by the midpoint rule, in which 〈S〉 is
considered an average value representative for the whole grid cell volume. The
derivatives are represented by an abbreviated Taylor series expansion, usually
a central difference expansion of second order is employed.
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∫

Δt

∫

ΔV

αl(Pk + Pb − ρlε) dV dt = αl(Pk + Pb − ρlε)ΔVΔt (C.404)

where

SC,1ΔVΔt =[αl,PPkΔV + αl,PPb]ΔVΔt (C.405)
Sp,1ΔVΔt =αl,P ρl,P εΔV Δt (C.406)

in which the production terms are approximated as:

Pk = μl,t,P (2[(
∂vl

∂r
)2P + (

∂wl

∂z
)2P + (

vl

r
)2P ] + (

∂vl

∂z
+

∂wl

∂r
)2P )

(
∂vl

∂r
)P =

(vl)n − (vl)s
1
2 (δrNP + δrPS)

=
vl,N − vl,S

1
2 (δrNP + δrPS)

(
∂wl

∂z
)P =

(wl)e − (wl)w
1
2 (δPW + δEP )

=
wl,E − wl,P

1
2 (δPW + δEP )

(
vl

r
)P =

1
2 (vl,P + vl,N )
1
2 (rv

P + rv
N )

(
∂vl

∂z
)P =

1
4 (vl,P + vl,E + vl,N + vl,NE) − 1

4 (vl,P + vl,W + vl,N + vl,NW )
1
2 (δPW + δEP )

(
∂wl

∂r
)P =

1
4 (wl,P + wl,E + wl,N + wl,NE) − 1

4 (wl,P + wl,W + wl,N + wl,NW )
1
2 (δrNP + δrPS)

(C.407)

and

Pb = Cd[FD,z((wg)P − (wl)P ) + FD,r((vg)P − (vl)P )]

= Cd

[

FD,z

(

1
2
(wg,P + wg,E) − 1

2
(wl,P + wl,E)

+ FD,r(
1
2
(vg,P + vg,N ) − 1

2
(vl,P + vl,N

)]

(C.408)

Algebraic discretization equation

After dividing all the terms by Δt, the discretized equation can be written on
the standard algebraic form:

aP kl,P = aNkl,N + aSkl,S + aEkl,E + aW kl,W + bkl
(C.409)

in which the coefficients are defined by:
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aN = Dn + max[−Cn, 0]

aS = Ds + max[Cs, 0]

aE = De + max[−Ce, 0]

aW = Dw + max[Cw, 0]

b =
∑

m

SC,m + a0
P k0

l,P

aP =
ΔV

Δt
(αlρl)P + aN + aS + aE + aW + Cn − Cs + Ce − Cw −

∑

q

SP,qΔV

(C.410)

To avoid negative coefficients, the relation for the coefficient aP can be mod-
ified using the continuity equation, as shown for the liquid phase velocity
equations. The alternative a∗P and b∗ coefficients are defined by:

b∗ = −mC2k
ν
l,P +

∑

m

SC,m + a0
P k

0
l,P

a∗P =
ΔV

Δt
(αlρl)0P + aN + aS + aE + aW + mC1 −

∑

q

SP,q,lΔV
(C.411)

The convective and diffusive fluxes are approximated in the following way:

Cn = An(αlρlvr)n = An
1
2
(αNρN + αP ρP )vr,N

Cs = As(αlρlvr)s = As
1
2
(αP ρP + αSρS)vr,P

Ce = Ae(αlρlvz)e = Ae
1
2
(αEρE + αP ρP )vz,E

Cw = Aw(αlρlvz)w = Aw
1
2
(αP ρP + αW ρW )vz,P

Dn =
AnΓn

δrNP

Ds =
AsΓs

δrPS

De =
AeΓe

δzEP

Dw =
AwΓw

δzPW

Γn = (
μl,eff

σk
)n =

1
2σk

(αNμN + αNμN )

Γs = (
μl,eff

σk
)s =

1
2σk

(αPμP + αSμS)

Γw = (
μl,eff

σk
)w =

1
2σk

(αWμW + αPμP )

Γe = (
μl,eff

σk
)e =

1
2σk

(αPμP + αWμW )

(C.412)
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C.4.9 The Turbulent Kinetic Energy Dissipation Rate

The equation for the turbulent energy dissipation rate is discretized in ac-
cordance with the generalized equation in sect C.4.3, with ψ = ε and phase
k = l.

The source term

The source terms in the equation for the turbulent kinetic energy dissipation
rate are implemented through the source terms SP and SC in the following
way:
∫

Δt

∫

ΔV

αl
ε

k
(C1(Pk + Pb) − C2ρlε) dV dt = [αl

ε

k
(C1(Pk + Pb) − C2ρlε)]PΔVΔt

(C.413)

where

SC,1ΔVΔt =[αl
ε

k
C1Pk + αl

ε

k
C1Pb]PΔVΔt (C.414)

Sp,1ΔVΔt =[αlρlC2
ε

k
]PΔVΔt (C.415)

The production terms Pk and Pb are defined in section C.4.8.

Algebraic discretization equation

After dividing all the terms by Δt, the discretized equation can be written on
the standard algebraic form:

aP εl,P = aNεl,N + aSεl,S + aEεl,E + aW εl,W + bεl
(C.416)

in which the coefficients are defined by:

aN = Dn + max[−Cn, 0]

aS = Ds + max[Cs, 0]

aE = De + max[−Ce, 0]

aW = Dw + max[Cw, 0]

b =
∑

m

SC,m + a0
P k0

l,P

aP =
ΔV

Δt
(αlρl)P + aN + aS + aE + aW + Cn − Cs + Ce − Cw −

∑

q

SP,qΔV

(C.417)

To avoid negative coefficients, the relation for the coefficient aP can be mod-
ified using the continuity equation, as shown for the liquid phase velocity
equations. The alternative a∗P and b∗ coefficients are defined by:
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b∗ = −mC2ε
ν
l,P +

∑

m

SC,m + a0
P ε

0
l,P

a∗P =
ΔV

Δt
(αlρl)0P + aN + aS + aE + aW + mC1 −

∑

q

SP,q,lΔV
(C.418)

The convective and diffusive fluxes are approximated in the following way:

Cn = An(αlρlvr)n = An
1
2
(αNρN + αP ρP )vr,N

Cs = As(αlρlvr)s = As
1
2
(αP ρP + αSρS)vr,P

Ce = Ae(αlρlvz)e = Ae
1
2
(αEρE + αP ρP )vz,E

Cw = Aw(αlρlvz)w = Aw
1
2
(αP ρP + αW ρW )vz,P

Dn =
AnΓn

δrNP

Ds =
AsΓs

δrPS

De =
AeΓe

δzEP

Dw =
AwΓw

δzPW

Γn = (
μl,eff

σε
)n =

1
2σε

(αNμN + αNμN )

Γs = (
μl,eff

σε
)s =

1
2σε

(αPμP + αSμS)

Γw = (
μl,eff

σε
)w =

1
2σε

(αWμW + αPμP )

Γe = (
μl,eff

σε
)e =

1
2σε

(αPμP + αWμW )

(C.419)

C.4.10 The Volume fraction

The gas volume fraction is calculated from the continuity equation for phase
k which is discretized by the scheme proposed by Spalding [20].

The continuity equation for phase k (k = l, g) is derived in appendix C:

∂

∂t
(αkρk) +

1
r

∂

∂r
(rαkρkvk,r) +

∂

∂z
(αkρkvk,z) =

1
r

∂

∂r
(r

μk,t

σαk,t

∂αk

∂r
) +

∂

∂z
(
μk,t

σαk,t

∂αk

∂z
) + S

In the FEM, this equation is integrated in time and over a grid cell volume.
The resulting terms are then approximated in accordance with the approach
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presented for the generalized equation. The derivatives of the volume fraction
in the diffusive terms are approximated by central differences and for the
convection terms the upwind scheme is employed.

The discretized liquid phase continuity equation (k = l) can then be ex-
pressed as:

αl,P

[

ρlΔV

Δt
+ (max[Cn, 0] + Dn) + (max[−Cs, 0] + Ds)

+ (max[Ce, 0] + De) + (max[−Cw, 0] + Dw)
]

=
(αlρl)o

PΔV

Δt
+ αl,N (max[−Cn, 0] + Dn) + αl,S(max[Cs, 0] + Ds)

+ αl,E(max[−Ce, 0] + De) + αl,W (max[Cw, 0] + Dw) + SΔV

(C.420)

where

Cn = AnFn = An(ρlvl)n = Anvr,N
1
2
(ρl,P + ρl,N )

Cs = AsFs = As(ρlvl)s = Asvr,P
1
2
(ρl,P + ρl,S)

Ce = AeFe = Ae(ρlwl)e = Aewl,E
1
2
(ρl,P + ρl,E)

Cw = AwFw = Aw(ρlwl)w = Anwl,P
1
2
(ρl,P + ρl,W )

(C.421)

and

Dn =
AnΓn

δrNP

Ds =
AsΓs

δrPS

De =
AeΓe

δzEP

Dw =
AwΓw

δzPW

Γn = (
μl,t

σαl,t

)n =
1
2

(

μl,t,P

σαl,t

+
μl,t,N

σαl,t

)

Γs = (
μl,t

σαl,t

)s =
1
2

(

μl,t,P

σαl,t

+
μl,t,S

σαl,t

)

Γw = (
μl,t

σαl,t

)w =
1
2

(

μl,t,P

σαl,t

+
μl,t,W

σαl,t

)

Γe = (
μl,t

σαl,t

)e =
1
2

(

μl,t,P

σαl,t

+
μl,t,E

σαl,t

)

(C.422)
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For convenience two new variables m and Sl,1 are introduced, hence the equa-
tion can be written in a more compact form:

αl,P

∑

i

ml,i,out −
∑

i

αl,i,inml,i,in − Sl,1 = Rl = 0 (C.423)

where
∑

i

ml,i,out =
ρlΔV

Δt
+ (max[Cn, 0] + Dn) + (max[−Cs, 0] + Ds)

+ (max[Ce, 0] + De) + (max[−Cw, 0] + Dw)
∑

i

αl,i,inml,i,in = αl,N (max[−Cn, 0] + Dn) + αl,S(max[Cs, 0] + Ds)

+ αl,E(max[−Ce, 0] + De) + αl,W (max[Cw, 0] + Dw)

Sl,1 =
(αlρl)o

PΔV

Δt
(C.424)

A similar equation can be obtained for the gas phase as well. If both equations
are solved for αP yields:

αl,P + αg,P =
∑

i αl,i,inml,i,in + Sl
∑

i ml,i,out
+

∑

i αg,i,inmg,i,in + Sg
∑

i mg,i,out
= 1 (C.425)

With minor manipulation of the equation, we get:
∑

i

ml,i,out =

(
∑

i αl,i,inml,i,in + Sl)
∑

i mg,i,out + (
∑

i αg,i,inmg,i,in + Sg)
∑

i ml,i,out
∑

i mg,i,out

(C.426)

This relation is used to substitute for the
∑

i ml,i,out term in (C.423), hence
we get:

αl,P

[

(
∑

i αl,i,inml,i,in + Sl)
∑

i mg,i,out + (
∑

i αg,i,inmg,i,in + Sl)
∑

i ml,i,out
∑

i mg,i,out

]

=
∑

i

αl,i,inml,i,in + Sl

(C.427)

Algebraic discretization equation

The algebraic equation that must be solved for the gas volume fraction variable
can thus be written as:
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aPαl,P = aNαl,N + aSαl,S + aEαl,E + aWαl,W + Sl (C.428)

in which the coefficients are defined as follows:

aN = Dn + max[−Cn, 0]
aS = Ds + max[Cs, 0]
aE = De + max[−Ce, 0]
aW = Dw + max[Cw, 0]

SC =
(αlρl)PΔV

Δt
+ SΔV

aP =
(
∑

i αl,i,inml,i,in + Sl)
∑

i mg,i,out + (
∑

i αg,i,inmg,i,in + Sg)
∑

i ml,i,out
∑

i mg,i,out

(C.429)

C.4.11 The Pressure-Velocity Correction Equations

The pressure correction equation is derived from the liquid continuity equation
and the liquid velocity correction equation formulas. The SIMPLE Consistent
(SIMPLEC) -approximation proposed by van Doormal and Raithby [23] is
used to derive the velocity correction formulas.

The continuity equation for the liquid phase is given in appendix C. The
discretization of this equation is discussed in sect C.4.10. The discretized form
of the continuity equation thus yields:

[(αlρl)P − (αlρl)o
P ]ΔV

Δt
+

An(αlρlvl,r)n −As(αlρlvl,r)s + Ae(αlρlvl,z)e −Aw(αlρlvl,z)w

= Dn(αl,N − αl,P ) −Ds(αl,P − αl,S) + De(αl,E − αl,P ) −Dw(αl,P − αl,W )
+ SΔV

(C.430)

The pressure correction is given by the difference between the correct pressure,
p, and the guessed pressure, p∗. The velocity correction v′ is given by the
difference between the correct velocity, v, and the guessed velocity v∗:

p = p∗ + p′

u = u∗ + u′ (C.431)

The relationship between the liquid velocity correction at the grid cell surface
e and the pressure corrections, i.e., the velocity correction formula, is given
as:

w′
l,e =

Aeαl,e(p′P − p′E)
al,e −

∑

nb

anb
= de(p′P − p′E) (C.432)
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where
de =

Aeαl,e

al,e −
∑

nb

al,nb
(C.433)

The correction formulas for the liquid velocity components in the other direc-
tions, as well as the corresponding correction formulas for the gas phase, can
be deduced in a similar manner.

Algebraic discretization equation

The transport equation for the pressure corrections is obtained substituting
all the velocity components in (C.430) by the sum of the guessed and corrected
velocities, and then substituting the velocity corrections by the corresponding
pressure corrections employing the liquid phase velocity correction formulas.
The resulting algebraic equation to be solved is written:

aP p′P = aN p′N + aS p′S + aE p′E + aW p′W + b (C.434)

where the coefficients are given as:

aN = An(αlρl)ndn = Andn
1
2
(αl,P ρl,P + αl,Nρl,N )

aS = As(αlρl)sds = Asds
1
2
(αl,P ρl,P + αl,Sρl,S)

aE = Ae(αlρl)ede = Aede
1
2
(αl,P ρl,P + αl,Eρl,E)

aW = Aw(αlρl)wdw = Awdw
1
2
(αl,P ρl,P + αl,W ρl,W )

aP = aN + aS + aE + aW

b =
((αlρl)P − (αlρl)o

P )ΔV

Δt
−An(αlρlv

∗
l,r)n + As(αlρlv

∗
l,r)s −Ae(αlρlv

∗
l,z)e + Aw(αlρlv

∗
l,z)w

+ Dn(αl,N − αl,P ) −Ds(αl,P − αl,S)
+ De(αl,E − αl,P ) −Dw(αl,P − αl,W ) + SCΔV

(C.435)
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activity coefficient, 674
affinity, thermodynamic forces, 64
agitation, 679
algebraic-slip mixture model, 467
angular momentum balance, 67
apse-line, 232
averaging, 394

area averaging, 86, 90, 93, 473
ensemble averaging, 118, 429
Maxwellian, 211, 246, 249
statistics, 118
time averaging, 118, 419
time- after volume averaging, 441
volume averaging, 118, 397

balance equations, 6
balance laws, 7
balance principle, 12
BBGKY-hierarchy, 207
Bernoulli equation, 82
billiard ball model, 208
blending, 679
Boltzmann equation, 218, 245, 246
Boltzmann stosszahlansatz, 223
breakage probability, 832
bubble wall friction force, 796
bulk expansion coefficient, 69

Capillary number, 573
Carnot cycle, 191
Cauchy equation, 250
centrifugal force, 195
centripetal force, 195

chemical reaction engineering, CRE,
336

chemical reaction equilibrium, 666

Chilton-Colburn relation, 633

classical thermodynamics, 36

closure law

constitutive, 543

topological, 543

transfer, 543

coalescence time, 822

coefficient of restitution, 228

collision cylinder, 244

collision frequency, 243

collision time, 823

complete differential, 54

compressible

flow, 3

fluid, 4

concentration diffusion, 20

configuration space, 203

conservative forces, 45

constitutive equations, 7, 543

continuous stirred tank reactor model,
CSTR, 337

continuous surface force, CSF, 352

continuum hypothesis, 319

continuum mechanics, 5

continuum surface stress, CSS, 352

control volume

arbitrary Lagrangian-Eulerian (ALE),
10

Eulerian, 10

Lagrangian, 10
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material, 10
control volume approach, 8, 11
Coriolis force, 195
curvature

mean curvature of surface, 348
principal curvatures of a surface, 349
principal radii of curvature, 349

curvilinear coordinate systems, 1158

Damköhler number, 708
Danckwerts boundary conditions, 665,

769, 905, 912
Darcy friction factor, 479
Darcy-Weisbach equation, 698
degrees of freedom, 197
diffusion barrier, 271
diffusion mixture model, 469
diffusion velocity, 263
dilute gas, 192, 318
dirac delta function, 350
Dirichlet boundary conditions, 994
dispersed flows, 339
dispersion reactor models, 337

axial, 98
heterogeneous, 484, 957
homogeneous, 957
pseudo-homogeneous, 485

distribution function, 190, 210
drift-flux model, 472
Dufour effect, 42, 266
dusty gas model, 274

Eötvös number, 572
eddy viscosity hypothesis, 545
effective swept volume rate, 816
elastic collision, 209
embedded interface method, EI, 344,

362
ensemble, 203
Enskog equation, 246, 248, 323
Enskog expansion method, 256
equations of transfer, 191
equipartition theorem, 217
ergodic hypothesis, 119, 189
Euler equations, 215, 258
Eulerian-Eulerian models, 340
Eulerian-Lagrangian models, 340
excess property, 372
extent of reaction, 56, 670

Fanning friction factor, 86, 92, 479
Fick’s law of viscosity, 597
fluid mechanics, 3
fluidization, 867

CPV model, 920
drift velocity, 919, 927
flow regimes, 869
Geldart classification of particles, 868
gulf streaming, 898
PGT model, 924
PGTDV model, 927
PT model, 921
riser, 876
transport reactor, 876

forced diffusion, 21
form drag, 556, 559
Fourier’s law, 597
free surface flow, 349
friction drag, 556, 559
front tracking method, FT, 344
fugacity, 672
fugacity coefficient, 674

Galilean transformation, 64
Galileo law, 194
Gauss’ theorem, 1130

divergence theorem, 1130
Green’s theorem, 1130
Ostrgradsky’s theorem, 1130
surface, 1132

generalized coordinates, 196, 197
generalized drag force, 554, 555, 558
generalized Eulerian transport equation,

12
generalized transport theorem, 379
generalized velocities, 197
Gibbs-Duhem equation, 295
granular flow, 503
granular material, 503
granular temperature, 505

H-theorem, 223, 252, 253
Hagen-Poiseuille law, 122
Hamiltonian variational principle, 198
heat of reaction, 58
heat transfer models, 588
heaviside function, 358
high resolution models, 340
history force, 586
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hydraulic diameter, 92

ideal gas law, 218
ill-posed model system, 486
incompressible, 3

flow, 4, 68
fluids, 4

inelastic collision, 209
interface model

macroscopic 2D dividing surface, 370
microscopic 3D transition region, 370

interfacial coupling, 341
four way, 341
one way, 341
two way, 341

irreversible thermodynamics, 37
transport properties, 309

isentropic, 84
isothermal compressibility, 69

jump condition formulation, 344

kinetic theory, 189
kinetic theory of dense gases, 319, 510
Knudsen number, 367

Lagrange multiplier, 669
least squares method, 996
Leibnitz theorem, 1128
Leibnitz’ theorem

surface, 1131
Leibnitz’s integral rule, 1125
level set method, LS, 344, 357
lift force, 557
Liouville equations, 205
Liouville theorem, 205, 218
local equilibrium, 223

Mach number, 72
macro mixing, 707
Magnus lift force, 564
maker and cell method, MAC, 344, 345
mass transfer models, 588

film theory, 612
Frössling equation, 634
laminar boundary layer theory, 618
penetration theory, 615
surface-renewal theory, 615
turbulent boundary layer theory, 624

Maxwell-Stefan equations, 269
Maxwellian molecules, 191, 209
Maxwellian velocity distribution, 254
mean free path, 5, 309, 312

concept, 191
mean value theorem, 1083
mechanics, 187

chaos, 188
classical, 187
continuum, 188
dynamics, 188
fluid, 188
Hamiltonian, 194, 201
Hamiltonian integral principle, 197
kinematics, 188
kinetics, 188
Lagrangian, 194, 197
Newton, 194
Newtonian, 194
non-linear dynamics, 188
quantum, 187
solid, 188
statics, 188
statistical, 188, 203

method of manufactured solutions, 987
micro mixing, 707
mixed or Robin boundary conditions,

994
mixing, 679
mixture model, 463
molar heat of formation, 59
molecular chaos, 223
moment equations, 191
momentum balance, 25
Morton number, 572
moving bed, 867
multifluid model, 343, 391
multiphase control volume, 372
mutual diffusion, 315

Navier-Stokes equations, 262
Neumann boundary conditions, 994
Newton’s first law, 194, 195
Newton’s law of cooling, 593
Newton’s law of viscosity, 597
Newton’s second law, 194, 340, 554
Newton’s third law, 194, 195, 342
normal stresses, 214
numerical methods
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approximation function, 996
arithmetic mean values, 1067
basis function, 996
boundary-value problems, 991
boundedness, 990
central difference scheme, 1028
class method, 1077
collocation method, 996, 998
convergent, 990
deferred correction method, 1029
density-based methods, 1010
discrete method, 1077
domain decomposition parallelization

method, 1107
FCT schemes, 1031
finite difference method, 993
finite volume method, 995
fractional step methods, 1010
Galerkin method, 996, 1001
Gauss-Seidel point iteration method,

1093
harmonic mean values, 1067
initial value problem, 992
initial-boundary-value problems, 992
Jacobi point iteration method, 1093
Jacobi preconditioner, 1096
Krylov subspace methods, 1095
least squares method, 1000, 1077,

1090
method of lines, 1017
method of moments, 1002, 1077
method of weighted residuals, 985,

995
multi-group method, 1077
multigrid solvers, 1102
multistep methods, 1021
numerical accuracy, 990
numerical stability, 989
ODE solution methods, 1019
orthogonal collocation, 997
predictor-corrector methods, 1021
pressure-based methods, 1010
projection methods, 1011
quadrature formulas, 1013
quadrature method of moments, 1077
QUICK scheme, 1029
Rayleigh-Ritz method, 996
Runge-Kutta methods, 1020
strong form, 1004

tau method, 996
test function, 996
trail function, 996
TVD schemes, 1032
upwind differencing scheme, 1027
von Neumann method, 989
weak form, 1004
weight function, 996

Nusselt number, 611

osmotic diffusion, 271

packed bed reactor
hot spot, 954
runaway, 954

partial molar enthalpy, 58
partial specific enthalpy, 58
particle Reynolds number, 573
peculiar velocity, 212
perimeter, 92
phase change, interfacial momentum

transfer closure, 587
phase space, 210
phase trajectory, 203
plug flow reactor model, PFR, 337
pressure diffusion, 21
pressure tensor, 214

radii of curvature, 378
reactor flow characteristics, 338
realizable models, 990
reduced mass, 227, 230, 242
reverse diffusion, 271
reversible adiabatic, 84
Reynolds number, 611

Saffman lift force, 564
scalar quantity, 1158
scattering cross section, 235, 236
self-diffusion, 315
separated flows, 339
shear stresses, 214
Sheerwood number, 611
solid angle, 233
Soret effect, 42, 266
specific chemical potentials, 62
specific enthalpy, 52
specific entropy, 39
specific molar enthalpy, 57
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speed of sound, 72
standard drag curve, 562
Stanton number, 611
state vector, 210
statistical thermodynamics, 189
steady drag force, 556
steady flow, 68
superficial velocity, 484
surface tension, 382

static force balance, 1133
surface theorem, 379
symmetry of stress tensor, 67
system approach, 8

temperature equation, 1143
tensor quantity, 1159
tensor transformation laws, 1157
thermal diffusion, 21
thermal radiation, 635

absorptivity, 642
blackbody, 640
emissivity, 641
gray surface, 643
incident, 639
irradiation, 639
Kirchhoff’s law, 643
Lambert’s cosine law, 641
radiosity, 640
Stefan-Boltzmann law, 641

thermodynamic pressure, 214
thermodynamics, 36, 39

entropy, 191
first law, 40
second law, 61, 63, 191

torque, 566, 687, 688
transport properties, 309
turbulence

k-ε model, 139
auto-covariance, 106
autocorrelation coefficient, 106
Batchelor spectrum, 709
Boussinesq turbulent viscosity

hypothesis, 626
buffer layer, 125
coherent structures, 102
cross-term stress, 169
definitions, 99
dispersion force, 796
eddy concept, 105

eddy turnover time, 112
energy cascade, 106
energy dissipation rate, 110, 112
energy spectrum, 103, 115
Eulerian longitudinal integral length

scale, 109
Eulerian transverse integral length

scale, 109
friction velocity, 124
gradient transport hypothesis, 161,

626
homogeneous turbulence, 108
inner wall layer, 124
intensity, 120
isotropic turbulence, 108
Kolmogorov five-third law, 116
Kolmogorov hypotheses, 113
Kolmogorov microscales, 114
Kolmogorov similarity hypothesis,

114
Kolmogorov structure function, 116
Kolmogorov two-third-law, 116
Kolmogorov-Prandtl relationship, 142
Lagrangian integral time scale, 106
Lagrangian microscale, 106
large eddy simulation, LES, 161
law of the wall, 127, 628
Leonard stresses, 169
local isotropic turbulence, 113
log-law sublayer, 125
longitudinal autocorrelation function,

108
mixing length, 105
modulation, 796
one-point two-time correlation, 106
outer wall layer, 124
overlap wall region, 124
passive scalar spectra, 708
power law velocity profile, 122
Prandtl’s Mixing length model, 123
residual stresses, 169
Reynolds analogy, 629
Reynolds averaging, 104, 129
Reynolds stress models, 133
rms-velocity, 110
Smagorinsky constant, 172
Smagorinsky eddy-viscosity model,

171
standard k-ε model parameters, 143



1244 Index

statistical theory, 104
sub-grid-scale, SGS, 164
Taylor’s hypothesis, 111
transverse autocorrelation function,

108
turbulent dispersion, 796
two-point correlation function, 108
universal velocity profile, 628
velocity-defect law, 127
viscous sub-layer, 125
wall functions, 150

turbulent impeller, 680
two-fluid

continuity, 384
energy balance, 387
internal energy, 387
momentum balance, 385
species mass balance, 385

variable density flow, 75
vector quantity, 1158
velocity distribution function, 190
virtual mass force, 581
viscous stress tensor, 29
volume of fluid method, VOF, 344, 346

Piecewise Linear Interface Construc-
tion, PLIC, 351

Simple Line Interface Calculation,
SLIC, 351

SOLA-VOF method, 349

wall lift force, 796
Weber number, 573
well-posed model system, 486
well-posedness, 485
whole field formulation, 344, 350
Wilke equation, 273
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