
Mathematical Statistics for Applied Econometrics covers the ba-
sics of statistical inference in support of a subsequent course on 
classical econometrics. The book shows how mathematical statistics 
concepts form the basis of econometric formulations. It also helps 
you think about statistics as more than a toolbox of techniques.

The text explores the unifying themes involved in quantifying sample 
information to make inferences. After developing the necessary prob-
ability theory, it presents the concepts of estimation, such as conver-
gence, point estimators, confidence intervals, and hypothesis tests. 
The text then shifts from a general development of mathematical sta-
tistics to focus on applications particularly popular in economics. It 
delves into matrix analysis, linear models, and nonlinear econometric 
techniques.

Features
• Shows how mathematical statistics is useful in the analysis of 

economic decisions under risk and uncertainty
• Describes statistical tools for inference, explaining the “why” 

behind statistical estimators, tests, and results 
• Provides an introduction to the symbolic computer programs 

Maxima and Mathematica®, which can be used to reduce the 
mathematical and numerical complexity of some formulations

• Gives the R code for several applications
• Includes summaries, review questions, and numerical exercises 

at the end of each chapter 

Avoiding a cookbook approach to econometrics, this book develops 
your theoretical understanding of statistical tools and econometric 
applications. It provides you with the foundation for further econo-
metric studies.
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Preface

This book is drawn from the notes that I developed to teach AEB 6571 –
Econometric Methods I in the Food and Resource Economics Department at
the University of Florida from 2002 through 2010. The goal of this course was
to cover the basics of statistical inference in support of a subsequent course
on classical introductory econometrics. One of the challenges in teaching a
course like this is the previous courses that students have taken in statistics
and econometrics. Specifically, it is my experience that most introductory
courses take on a cookbook flavor. If you have this set of data and want to
analyze that concept – apply this technique. The difficulty in this course is to
motivate the why. The course is loosely based on two courses that I took at
Purdue University (Econ 670 and Econ 671).

While I was finishing this book, I discovered a book titled The Lady Tast-
ing Tea: How Statistics Revolutionized Science in the Twentieth Century by
David Salsburg. I would recommend any instructor assign this book as a com-
panion text. It includes numerous pithy stories about the formal development
of statistics that add to numerical discussion in this textbook. One of the
important concepts introduced in The Lady Tasting Tea is the debate over
the meaning of probability. The book also provides interesting insight into
statisticians as real people. For example, William Sealy Gosset was a statisti-
cian who developed the Student’s t distribution under the name Student while
working in his day job with Guiness.

Another feature of the book is the introduction of symbolic programs Max-
ima and MathematicaTM in Appendix A. These programs can be used to re-
duce the cost of the mathematical and numerical complexity of some of the
formulations in the textbook. In addition, I typically like to teach this course
as a “numbers” course. Over the years I have used two programs in the class-
room – GaussTM by Aptech and R, an open-source product of the R-Project.
In general, I prefer the numerical precision in Gauss. However, to use Gauss
efficiently you need several libraries (i.e., CO – Constrained Optimization).
In addition, Gauss is proprietary. I can typically make the code available to
students through Gauss-Lite based on my license. The alternative is R, which
is open-source, but has a little less precision. The difficulties in precision are
elevated in the solve() command for the inverse. In this textbook, I have given
the R code for a couple of applications.

Of course, writing a book is seldom a solitary enterprise. It behooves me
to recognize several individuals who contributed to the textbook in a variety
of ways. First, I would like to thank professors who taught my econometric

xix
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courses over the years, including Paul Beaumont of Florida State University,
who taught Econ 670 and Econ 671 at Purdue University; James Binkley,
who taught Ag Econ 650 at Purdue; and Wade Brorson of Oklahoma State
University, who taught Ag Econ 651 at Purdue University during my time
there. I don’t think that any of these professors would have pegged me to
write this book. In addition, I would like to thank Scott Shonkwiler for our
collaboration in my early years at the University of Florida. This collaboration
included our work on the inverse hyperbolic sine transformation to normality.
I also would like to thank the students who suffered through AEB 6571 –
Econometrics Methods I at the University of Florida. Several, including Cody
Dahl, Grigorios Livanis, Diwash Neupane, Matthew Salois, and Dong Hee
Suh, have provided useful comments during the writing process. And in a
strange way, I would like to thank Thomas Spreen, who assigned me to teach
this course when he was the Food and Resource Economics Department’s
graduate coordinator. I can honestly say that this is not a course that I would
have volunteered to teach. However, I benefitted significantly from the effort.
My econometric skills have become sharper because of the assignment.

Finally, for the convenience of the readers and instructors, most of
my notes for AEB 6571 are available online at http://ricardo.ifas.ufl.edu/
aeb6571.econometrics/. The datasets and programs used in this book are avail-
able at http://www.charlesbmoss.com:8080/MathStat/.



1

Defining Mathematical Statistics

CONTENTS

1.1 Mathematical Statistics and Econometrics . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Econometrics and Scientific Discovery . . . . . . . . . . . . . . . . . . 5
1.1.2 Econometrics and Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Mathematical Statistics and Modeling Economic Decisions . . . . . 14
1.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

At the start of a course in mathematical statistics students usually ask three
questions. Two of these questions are typically what is this course going to be
about and how is this different from the two or three other statistics courses
that most students have already taken before mathematical statistics? The
third question is how does the study of mathematical statistics contribute to
my study of economics and econometrics? The simplest answer to the first
question is that we are going to develop statistical reasoning using mathe-
matical techniques. It is my experience that most students approach statistics
as a toolbox, memorizing many of the statistical estimators and tests (see
box titled Mathematical Statistics – Savage). This course develops the
student’s understanding of the reasons behind these tools. Ultimately, math-
ematical statistics form the basis of econometric procedures used to analyze
economic data and provide a firm basis for understanding decision making
under risk and uncertainty.

Mathematical statistics share the same linkage to statistics that mathe-
matical economics has to economics. In mathematical economics, we develop
the consequences of economic choice of such primal economic concepts as con-
sumer demand and producer supply. Focusing on demand, we conceptualize
how a concave set of ordinal preferences implies that consumers will choose a
unique bundle of goods given any set of prices and level of income. By exten-
sion, we can follow the logic to infer that these conditions will lead to demand
curves that are downward sloping and quasi-convex in price space by Roy’s
identity. Thus, any violation of these conditions (i.e., downward sloping and
quasi-convexity) implies that the demand curve is not consistent with a unique
point on an ordinal utility map. Hence, the development of logical connections
using mathematical precision gives us a logical structure for our analysis.

1
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Mathematical Statistics – Savage

In the present century there has been and continues to be extraordi-
nary interest in mathematical treatment of problems of inductive
inference. For reasons I cannot and need not analyze here, this
activity has been strikingly concentrated in the English-speaking
world. It is known under several names, most of which stress some
aspects of the subject that seemed of overwhelming importance at
the moment when the name was coined. “Mathematical statistics,”
one of its earliest names, is still the most popular. In this name,
“mathematical” seems to be intended to connote rational, theoret-
ical, or perhaps mathematically advanced, to distinguish the sub-
ject from those problems of gathering and condensing numerical
data that can be considered apart from the problem of inductive
inference, the mathematical treatment of which is generally triv-
ial. The name “statistical inference” recognizes that the subject is
concerned with inductive inference. The name “statistical decision”
reflects the idea that inductive inference is not always, if ever, con-
cerned with what to believe in the face of inconclusive evidence,
but that at least sometimes it is concerned with what action to
decide upon under such circumstances [41, p. 2].

The linkage between mathematical statistics and statistics is similar. The
theory of statistical inference is based on primal concepts such as estima-
tion, sample design, and hypothesis testing. Mathematical statistics allow for
the rigorous development of this statistical reasoning. Conceptually, we will
define what is meant by a random variable, how the characteristics of this
random variable are linked with a distribution, and how knowledge of these
distributions can be used to design estimators and hypothesis tests that are
meaningful (see box titled the Role of Foundations – Savage).

The Role of Foundations – Savage

It is often argued academically that no science can be more se-
cure than its foundations, and that, if there is controversy about
the foundations, there must be even greater controversy about the
higher parts of the science. As a matter of fact, the foundations are
the most controversial parts of many, if not all sciences. Physics
and pure mathematics are excellent examples of this phenomenon.
As for statistics, the foundations include, on any interpretation of
which I have ever heard, the foundations of probability, as contro-
versial a subject as one could name. As in other sciences, contro-
versies over the foundations of statistics reflect themselves to some
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extent in everyday practice, but not nearly so catastrophically as
one might imagine. I believe that here as elsewhere, catastrophe
can be avoided, primarily because in practical situations common
sense generally saves all but the most pedantic of us from flagrant
error [41, p. 1].

However, in our development of these mathematical meanings in statistics,
we will be forced to consider the uses of these procedures in economics. For
much of the twentieth century, economics attempted to define itself as the
science that studies the allocation of limited resources to meet unlimited and
competing human wants and desires [4]. However, the definition of economics
as a science may raise objections inside and outside the discipline. Key to the
definition of a field of study as a science is the ability or willingness of its
students and practitioners to allow its tenets to be empirically validated. In
essence, it must be possible to reject a cherished hypothesis based on empirical
observation. It is not obvious that economists have been willing to follow
through with this threat. For example, remember our cherished notion that
demand curves must be downward sloping and quasi-convex in price space.
Many practitioners have estimated results where these basic relationships are
violated. However, we do not reject our so-called “Law of Demand.” Instead we
expend significant efforts to explain why the formulation yielding this result
is inadequate. In fact, there are several possible reasons to suspect that the
empirical or econometric results are indeed inadequate, many of which we
develop in this book. My point is that despite the desire of economists to
be classified as a scientists, economists are frequently reticent to put theory
to an empirical test in the same way as a biologist or physicist. Because of
this failure, economics largely deserves the suspicion of these white coated
practitioners of more basic sciences.

1.1 Mathematical Statistics and Econometrics

The study of mathematical statistics by economists typically falls under a
broad sub-discipline called econometrics. Econometrics is typically defined as
the use of statistics and mathematics along with economic theory to describe
economic relationships (see the boxes titled Tinbergen on Econometrics
and Klein on Econometrics). The real issue is what do we mean by de-
scribe? There are two dominant ideas in econometrics. The first involves the
scientific concept of using statistical techniques (or more precisely, statistical
inference) to test implications of economic theory. Hence, in a traditional sci-
entific paradigm, we expose what we think we know to experience (see the box
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titled Popper on Scientific Discovery). The second use of econometrics in-
volves the estimation of parameters to be used in policy analysis. For example,
economists working with a state legislature may be interested in estimating
the effect of a sales tax holiday for school supplies on the government’s sales
tax revenue. As a result, they may be more interested in imposing economi-
cally justified restrictions that add additional information to their data rather
than testing these hypotheses. The two uses of econometrics could then be
summarized as scientific uses versus the uses of planners.

Tinbergen on Econometrics

Econometrics is the name for a field of science in which
mathematical-economic and mathematical-statistical research are
applied in combination. Econometrics, therefore, forms a border-
land between two branches of science, with the advantages and
disadvantages thereof; advantages, because new combinations are
introduced which often open up new perspectives; disadvantages,
because the work in this field requires skill in two domains, which
either takes up too much time or leads to insufficient training of
its students in one of the two respects [51, p. 3].

Klein on Econometrics

The purely theoretical approach to econometrics may be envisioned
as the development of that body of knowledge which tells us how
to go about measuring economic relationships. This theory is often
developed on a fairly abstract or general basis, so that the results
may be applied to any one of a variety of concrete problems that
may arise. The empirical work in econometrics deals with actual
data and sets out to make numerical estimates of economic rela-
tionships. The empirical procedures are direct applications of the
methods of theoretical econometrics [24, p. 1].

Popper on Scientific Discovery

A scientist, whether theorist or experimenter, puts forward state-
ments, or systems of statements, and tests them step by step. In the
field of the empirical sciences, more particularly, he constructs hy-
potheses, or systems of theories, and tests them against experience
by observation and experiment.
I suggest that it is the task of the logic of scientific discovery, or
logic of knowledge, to give a logical analysis of this procedure; that
is to analyse the method of empirical sciences [38, p. 3].



Defining Mathematical Statistics 5

1.1.1 Econometrics and Scientific Discovery

The most prominent supporters of the traditional scientific paradigm to econo-
metrics are Theil, Kmenta, and Spanos. According to Theil,

Econometrics is concerned with the empirical determination of eco-
nomic laws. The word “empirical” indicates that the data used for
this determination have been obtained from observation, which may
be either controlled experimentation designed by the econometrician
interested, or “passive” observation. The latter type is as prevalent
among economists as it is among meterologists [49, p.1].

Kamenta [26] divides statistical applications in economics into descriptive
statistics and statistical inference. Kmenta contends that most statistical ap-
plications in economics involve applications of statistical inference, that is, the
use of statistical data to draw conclusions or test hypotheses about economic
behavior. Spanos states that “econometrics is concerned with the systematic
study of economic phenomena using observed data” [45, p. 3].

How it all began – Haavelmo

The status of general economics was more or less as follows. There
were lots of deep thoughts, but a lack of quantitative results. Even
in simple cases where it can be said that some economic magnitude
is influenced by only one causal factor, the question of how strong
is the influence still remains. It is usually not of very great practical
or even scientific interest to know whether the influence is positive
or negative, if one does not know anything about the strength. But
much worse is the situation when an economic magnitude to be
studied is determined by many different factors at the same time,
some factors working in one direction, others in the opposite di-
rections. One could write long papers about so-called tendencies
explaining how this factor might work, how that factor might work
and so on. But what is the answer to the question of the total net
effect of all the factors? This question cannot be answered without
measures of the strength with which the various factors work in
their directions. The fathers of modern econometrics, led by the
giant brains of Ragnar Frisch and Jan Tinbergen, had the vision
that it would be possible to get out of this situation for the science
of economics. Their program was to use available statistical mate-
rial in order to extract information about how an economy works.
Only in this way could one get beyond the state of affairs where
talk of tendencies was about all one could have as a result from
even the greatest brains in the science of economics [15].
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Nature of Econometrics – Judge et al.

If the goal is to select the best decision from the economic choice
set, it is usually not enough just to know that certain economic
variables are related. To be really useful we must usually also know
the direction of the relation and in many cases the magnitudes
involved. Toward this end, econometrics, using economic theory,
mathematical economics, and statistical inference as an analytical
foundation and economic data as the information base, provides an
inferential basis for:
(1) Modifying, refining, or possibly refuting conclusions contained
in economic theory and/or what represents current knowledge
about economic processes and institutions.
(2) Attaching signs, numbers, and reliability statements to the co-
efficient of variables in economic relationships so that this informa-
tion can be used as a basis for decision making and choice [23, p.
1].

A quick survey of a couple of important economics journals provides a look
at how econometrics is used in the development of economic theory. Ashraf and
Galor [2] examine the effect of genetic diversity on economic growth. Specifi-
cally, they hypothesize that increased genetic diversity initially increases eco-
nomic growth as individuals from diverse cultures allow the economy to quickly
adopt a wide array of technological innovations. However, this rate of increase
starts to decline such that the effect of diversity reaches a maximum as the
increased diversity starts to impose higher transaction costs on the economy.
Thus, Ashraf and Galor hypothesize that the effect of diversity on population
growth is “hump shaped.” To test this hypothesis, they estimate two empirical
relationships. The first relationship examines the effect of genetic diversity on
each country’s population density.

ln (Pi) = β0+β1Gi+β2G
2
i +β3 ln (Ti)+β4 ln (X1i)+β5 ln (X2i)+β6 ln (X3i)+εi

(1.1)
where ln (Pi) is the natural logarithm of the population density for country
i, Gi is a measure of genetic diversity in country i, Ti is the time in years
since the establishment of agriculture in country i, X1i is the percentage of
arable land in country i, X2i is the absolute latitude of country i, X3i is a
variable capturing the suitability of land in country i for agriculture, and εi is
the residual. The second equation then estimates the effect of the same factors
on each country’s income per capita.

ln (yi) = γ0+γ1Ĝi+γ2Ĝ
2
i +γ3 ln (Ti)+γ4 ln (X1i)+γ5 ln (X2i)+γ6 ln (X3i)+νi

(1.2)
where yi represents the income per capita and Ĝi is the estimated level of ge-
netic diversity. Ashraf and Galor use the estimated genetic diversity to adjust
for the relationship between genetic diversity and the path of development
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TABLE 1.1
Estimated Effect of Genetic Diversity on Economic Development

Population Income
Variable Density per Capita
Genetic Diversity (Gi) 225.440∗∗∗ 203.443∗∗

(73.781)a (83.368)
Genetic Diversity Squared (G2

i ) -3161.158∗∗ -142.663∗∗

(56.155) (59.037)
Emergence of Agriculture (ln(Ti)) 1.214∗∗∗ -0.151

(0.373) (0.197)
Percent of Arable Land (ln(X1i)) 0.516∗∗∗ -0.112

(0.165) (0.103)
Absolute Latitude (ln(X2i)) -0.162 0.163

(0.130) (0.117)
Land Suitability (ln(X3i)) 0.571∗ -0.192∗∗

(0.294) (0.096)

R2 0.89 0.57
a Numbers in parenthesis denote standard errors. ∗∗∗ denotes statistical
significance at the 0.01 level of confidence, ∗∗ denotes statistical
significance at the 0.05 level of confidence, and ∗ denotes statistical
significance at the 0.10 level of confidence.
Source: Ashraf and Galor [2]

from Africa to other regions of the world (i.e., the “Out of Africa” hypothe-
sis). The statistical results of these estimations presented in Table 1.1 support
the theoretical arguments of Ashraf and Galor.

In the same journal, Naidu and Yuchtman [35] examine whether the “Mas-
ter and Servant Act” used to enforce labor contracts in Britain in the nine-
teenth century affected wages. At the beginning of the twenty-first century a
variety of labor contracts exist in the United States. Most hourly employees
have an implicit or continuing consent contract which is not formally bind-
ing on either the employer or the employee. By contrast, university faculty
typically sign annual employment contracts for the upcoming academic year.
Technically, this contract binds the employer to continue to pay the faculty
member the contracted amount throughout the academic year unless the fac-
ulty member violates the terms of this contract. However, while the faculty
member is bound by the contract, sufficient latitude is typically provided for
the employee to be released from the contract before the end of the academic
year without penalty (or by forfeiting the remaining payments under the con-
tract). Naidu and Yuchtman note that labor laws in Britain (the Master and
Servant Act of 1823) increased the enforcement of these labor contracts by
providing both civil and criminal penalties for employee breach of contract.
Under this act employees who attempted to leave a job for a better opportu-
nity could be forced back into the original job under the terms of the contract.
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TABLE 1.2
Estimates of the Effect of Master and Servant Prosecutions on Wages

Variable Parameter
Fraction of Textiles × ln(Cotton Price) 159.3∗∗∗

(42.02)a

Iron County × ln(Iron Price) 51.98∗∗

(19.48)
Coal County × ln(Coal Price) 41.25∗∗∗

(10.11)
ln(Population) 79.13∗∗

(35.09)
a Numbers in parenthesis denote standard errors. ∗∗∗ denotes statistical
significance at the 0.01 level of confidence, and ∗∗ denotes statistical
significance at the 0.05 level of confidence.
Source: Naidu and Yuchtman [35]

Naidu and Yuchtman develop an economic model which indicates that the en-
forcement of this law will reduce the average wage rate. Hence, they start their
analysis by examining factors that determine the number of prosecutions un-
der the Master and Servant laws for counties in Britain before 1875.

Zit = α0 + α1Si ×X1,t + α2I2,i × ln (X2,t) + α3I3,i ln (X3,t)

+ α4 ln (pi,t) + εit (1.3)

where Zit is the number of prosecutions under the Master and Servant Act in
county i in year t, Si is the share of textile production in county i in 1851,
X1,t is the cotton price at time t, I2,i is a dummy variable that is 1 if the
county produces iron and 0 otherwise, X2,t is the iron price at time t, I3,i is
a dummy variable that is 1 if the county produces coal and 0 otherwise, X3,t

is the price of coal, pi,t is the population of county i at time t, and εit is the
residual. The results for this formulation are presented in Table 1.2. Next,
Naidu and Yuchtman estimate the effect of these prosecutions on the wage
rate.

wit = β0 + β1I4,t × ln
(
Z̄i
)

+ β2X5,it + β3X6,it + β4 ln (X7,it)

+ β5 ln (pit) + β6X8,it + νit (1.4)

where wit is the average wage rate in county i at time t, It is a dummy variable
that is 1 if t > 1875 (or after the repeal of the Master and Servant Act) and
0 otherwise, X5,it is the population density of county i at time t, X6,it is the
proportion of the population living in urban areas in county i at time t, X7,it is
the average income in county i at time t, X8,it is the level of union membership
in county i at time t, and νit is the residual. The results presented in Table 1.3
provide weak support (i.e., at the 0.10 level of significance) that prosecutions
under the Master and Servant Act reduced wages. Specifically, the positive
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TABLE 1.3
Effect of Master and Servant Prosecutions on the Wage Rate

Variable Parameter
Post-1875 × ln(Average Prosecutions) 0.0122∗

(0.0061)
Population Density -0.0570

(0.0583)
Proportion Urban -0.0488

(0.0461)
ln(Income) 0.0291

(0.0312)
ln(Population) 0.0944∗∗

(0.0389)
Union Membership 0.0881

(0.0955)
a Numbers in parenthesis denote standard errors. ∗∗ denotes statistical
significance at the 0.05 level of confidence and ∗ denotes statistical
significance at the 0.10 level of confidence.
Source: Naidu and Yuchtman [35]

coefficient on the post-1875 variable indicates that wages were 0.0122 shillings
per hour higher after the Master and Servant Act was repealed in 1875.

As a final example, consider the research of Kling et al. [25], who examine
the role of information in the purchase of Medicare drug plans. In the Medicare
Part D prescription drug insurance program consumers choose from a menu of
drug plans. These different plans offer a variety of terms, including the price
of the coverage, the level of deductability (i.e., the lower limit required for the
insurance to start paying benefits), and the amount of co-payment (e.g., the
share of the price of the drug that must be paid by the senior). Ultimately con-
sumers make a variety of choices. These differences may be driven in part by
differences between household circumstances. For example, some seniors may
be in better health than others. Alternatively, some households may be in
better financial condition. Finally, the households probably have different at-
titudes toward risk. Under typical assumptions regarding consumer behavior,
the ability to choose maximizes the benefits from Medicare Part D to seniors.
However, the conjecture that consumer choice maximizes the benefit from the
Medicare drug plans depends on the consumer’s ability to understand the
benefits provided by each plan. This concept is particularly important given
the complexity of most insurance packages. Kling et al. analyze the possibil-
ity of comparison friction. Comparison friction is a bias from switching to a
possibly better product because the two products are difficult to compare. To
analyze the significance of comparison friction Kling et al. construct a sample
of seniors who purchase Medicare Part D coverage. Splitting this sample into
a control group and an intervention (or treatment) group, the intervention
group was then provided personalized information about how each alternative
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would affect the household. The control group was then given access to a web-
page which could be used to construct the same information. The researchers
then observed which households switched their coverage. The sample was then
used to estimate

Di = α0 + α1Zi + α2X1i + α3X2i + α4X3i + α5X4i + α6X5i

α7X6i + α8X7i + α9X8i + α10X9i + α11X10i + εi
(1.5)

where Di is one if the household switches its plan and zero otherwise, Zi is
the intervention variable equal to one if the household was provided individual
information, X1i is a dummy variable which is one if the head of household is
female, X2i is one if the head of household is married, X3i is one if the indi-
vidual finished high school, X4i is one if the participant finished college, X5i is
one if the individual completed post-graduate studies, X6i is one if the partic-
ipant is over 70 years old, X7i is one if the participant is over 75 years old, X8i

is one if the individual has over four medications, X9i is one if the participant
has over seven medications, and X10i is one if the household is poor.

Table 1.4 presents the empirical results of this model. In general these
results confirm a comparison friction since seniors who are given more in-
formation about alternatives are more likely to switch (i.e., the estimated
intervention parameter is statistically significant at the 0.10 level). However,
the empirical results indicate that other factors matter. For example, mar-
ried couples are more likely to switch. In addition, individuals who take over
seven medications are more likely to switch. Interestingly, individual levels of
education (i.e., the high school graduate, college graduate, and post-college
graduate variables) are not individually significant. However, further testing
would be required to determine whether education was statistically informa-
tive. Specifically, we would have to design a statistical test that simultaneously
restricted all three parameters to be zero at the same time. As constructed, we
can only compare each individual effect with the dropped category (probably
that the participant did not complete high school).

In each of these examples, data is used to test a hypothesis about individual
behavior. In the first study (Ashraf and Galor [2]), the implications of indi-
vidual actions on the aggregate economy (i.e., nations) are examined. Specif-
ically, does greater diversity lead to economic growth? In the second study,
Naidu and Yuchtman [35] reduced the level of analysis to the region, asking
whether the Master and Servant Act affected wages at the parish (or county)
level. In both scenarios the formulation does not model the actions themselves
(i.e., whether genetic diversity improves the ability to carry out a variety of
activities through a more diverse skill set or whether the presence of labor re-
strictions limited factor mobility) but the consequences of those actions. The
last example (Kling et al. [25]) focuses more directly on individual behavior.
However, in all three cases an economic theory is faced with observations.

On a somewhat related matter, econometrics positions economics as a pos-
itive science. Econometrics is interested in what happens as opposed to what
should happen (i.e., a positive instead of a normative science; see box The
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TABLE 1.4
Effect of Information on Comparison Friction

Variable Parameter
Intervention 0.098∗

(0.041)
Female −0.023

(0.045)
Married 0.107∗

(0.045)
High School Graduate −0.044

(0.093)
College Graduate 0.048

(0.048)
Post-college Graduate −0.084

(0.062)
Age 70+ −0.039

(0.060)
Age 75+ 0.079

(0.048)
4+ Medications −0.054

(0.050)
7+ Mediations 0.116∗

(0.052)
Poor 0.097∗

(0.045)
a Numbers in parenthesis denote standard errors. ∗ denotes statistical
significance at the 0.10 level of confidence.
Source: Kling et al. [25]

Methodology of Positive Economics – Friedman). In the forgoing dis-
cussion we were not interested in whether increased diversity should improve
economic growth, but rather whether it could be empirically established that
increased diversity was associated with higher economic growth.

The Methodology of Positive Economics – Friedman

... the problem how to decide whether a suggested hypothesis or
theory should be be tentatively accepted as part of the “body of
systematized knowledge concerning what is.” But the confusion
[John Neville] Keynes laments is still so rife and so much a hin-
drance of the recognition that economics can be, and in part is,
a positive science that it seems to preface the main body of the
paper with a few remarks about the relation between positive and
normative economics.
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... Self-proclaimed “experts” speak with many voices and can
hardly all be regarded as disinterested; in any event, on questions
that matter so much, “expert” opinion could hardly be accepted
soley on faith even if the “experts” were nearly unanimous and
clearly disinterested The conclusions of positive economics seem
to be, and are, immediately relevant to important normative prob-
lems, to questions of what ought to be done and how any given goal
can be attained. Laymen and experts alike are inevitably tempted
to shape positive conclusions to fit strongly held normative pre-
conceptions and to reject positive conclusions if their normative
implications – or what are said to be their normative implications
– are unpalatable.

Positive economics is in principle independent of any partic-
ular ethical position or normative judgments. As Keynes says, it
deals with “what is,” not with “what ought to be.” Its task is to
provide a system of generalizations that can be used to make cor-
rect predictions about the consequences of any change in circum-
stances. Its performance is to be judged by the precision, scope,
and conformity with experience of the predictions it yields [13, pp.
3–5].

1.1.2 Econometrics and Planning

While the interaction between governments and their economies is a subject
beyond the scope of the current book, certain features of this interaction are
important when considering the development of econometrics and the role of
mathematical statistics within that development. For modern students of eco-
nomics, the history of economics starts with the classical economics of Adam
Smith [44]. At the risk of oversimplication, Smith’s insight was that markets
allowed individuals to make choices that maximized their well-being. Aggre-
gated over all individuals, these decisions acted like an invisible hand that
allocated resources toward the production of goods that maximized the over-
all well-being of the economy. This result must be viewed within the context
of the economic thought that the classical model replaced – mercantilism [43].
Historically the mercantile system grew out of the cities. Each city limited the
trade in raw materials and finished goods in its region to provide economic
benefits to the city’s craftsmen and merchants. For example, by prohibiting
the export of wool (or by imposing significant taxes on those exports) the re-
sulting lower price would benefit local weavers. Smith’s treatise demonstrated
that these limitations reduced society’s well-being.

The laissez-faire of classical economics provided little role for econometrics
as a policy tool. However, the onset of the Great Depression provided a sig-
nificantly greater potential role for econometrics (see box Government and
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Economic Life – Staley). Starting with the Herbert Hoover administra-
tion, the U.S. government increased its efforts to stimulate the economy. This
shift to the managed economy associated with the administration of Franklin
Roosevelt significantly increased the use of econometrics in economic policy.
During this period, the National Income and Product Accounts (NIPA) were
implemented to estimate changes in aggregate income and the effect of a va-
riety of economic policies on the aggregate economy. Hence, this time period
represents the growth of econometrics as a planning tool which estimates the
effect of economic policies such as changes in the level of money supply or in-
creases in the minimum wage (see box Economic Planning – Tinbergen).

Government and Economic Life – Staley

The enormous increase in the economic role of the state over the
last few years has the greatest possible importance for the future
of international economic relationships. State economic activities
have grown from such diverse roots as wartime needs, the fear of
war and the race for rearmament and military self-sufficiency, the
feelings of the man in the street on the subject of poverty in the
midst of plenty, innumerable specific pressures from private inter-
ests, the idea of scientific management, the philosophy of collec-
tivist socialism, the totalitariam philosophy of the state, the sheer
pressure of economic emergency in the depression, and the accep-
tance of the idea that it is the state’s business not only to see that
nobody starves but also to ensure efficient running of the economic
machine....

Governments have taken over industries of key importance, such
as munition factories in France, have assumed the management
of public utility services, as under the Central Electricity Board in
Great Britian, and have set up public enterprises to prepare the way
for development of whole regions and to provide “yardsticks” for
private industries, as in the case of the Tennessee Valley Authority
in the United States [46, pp. 128–129].

Economic Planning – Tinbergen

This study deals with the process of central economic planning, or
economic planning by governments. It aims at a threefold treat-
ment, which may be summarized as follows: (a) to describe the
process of central planning, considered as one of the service in-
dustries of the modern economy; (b) to analyze its impact on the
general economic process; (c) to indicate, as far as possible, the
optimal extent and techniques of central planning [52, p. 3]

The orign of the planning techniques applied today clearly
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springs from two main sources: Russian communist planning and
Western macroplanning....

Western macroeconomic planning had a very different origin,
namely the desire to understand the operation of the economy as a
whole. It was highly influenced by the statistical concepts relevant
to national or social accounts and by Keynesian concepts, combined
with market analysis, which later developed into macroeconomic
econometric models. There was still a basic belief that many de-
tailed decisions could and should be left to the decentralized system
of single enterprises and that guidance by the government might
confine itself to indirect intervention with the help of a few instru-
ments only [52, pp. 4–5].

While Tinbergen focuses on the role of econometrics in macroeconomic
policy, agricultural policy has generated a variety of econometric applications.
For example, the implementation of agricultural policies such as loan rates [42]
results in an increase in the supply of crops such as corn and wheat. Econo-
metric techniques are then used to estimate the effect of these programs on
government expenditures (i.e., loan deficiency payments). The passage of the
Energy Independence and Security Act of 2007 encouraged the production of
biofuels by requiring that 15 billion gallons of ethanol be added to the gaso-
line consumed in the United States. This requirement resulted in corn prices
significantly above the traditional loan rate for corn. The effect of ethanol on
corn prices increased significantly with the drought in the U.S. Midwest in
2012. The combination of the drought and the ethanol requirement caused
corn prices to soar, contributing to a significant increase in food prices. This
interaction has spawned numerous debates, including pressure to reduce the
ethanol requirements in 2014 by as much as 3 billion gallons. At each step of
this policy debate, various econometric analyses have attempted to estimate
the effect of policies on agricultural and consumer prices as well as government
expenditures. In each case, these econometric applications were not intended
to test economic theory, but to provide useful information to the policy pro-
cess.

1.2 Mathematical Statistics and Modeling Economic
Decisions

Apart from the use of statistical tools for inference, mathematical statistics
also provides several concepts useful in the analysis of economic decisions
under risk and uncertainty. Moss [32] demonstrates how probability theory
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FIGURE 1.1
Standard Normal Density Function.

contributes to the derivation of the Expected Utility Hypothesis. Apart from
the use of mathematical statistics in the development of theory, these tools are
also important for the development of several important applied methodologies
for dealing with risk and uncertainty, such as the Capital Asset Pricing Model,
Stochastic Dominance, and Option Pricing Theory.

Skipping ahead a little bit, the normal distribution function depicts the
probability density for a given outcome x as a function of the mean and
variance of the distribution.

f
(
x;µ, σ2

)
=

1

σ
√

2π
exp

(
− (x− µ)

2

2σ2

)
. (1.6)

Graphically, the shape of the function under the assumptions of the “standard
normal” (i.e., µ = 0 and σ2 = 1) is depicted in Figure 1.1. This curve is
sometimes referred to as the Bell Curve. Statistical inference typically involves
designing a probabilistic measure for testing a sample of observations drawn
from this data set against an alternative assumption, for example, µ = 0
versus µ = 2. The difference in these distributions is presented in Figure 1.2.

An alternative economic application involves the choice between the two
distribution functions. For example, under what conditions does a risk averse
producer prefer the alternative that produces each distribution?1 Figure 1.3

1The optimizing behavior for risk averse producers typically involves a choice between
combinations of expected return and risk. Under normality the most common measure of
risk is the variance. In the scenario where the expected return (or mean) is the same, decision
makers prefer the alternative that produces the lowest risk (or variance).
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Alternative Normal Distributions.

presents the distribution functions of profit (π) for two alternative actions that
a decision maker may choose. Alternative 1 has a mean of 0 and a variance of
1 (i.e., is standard normal) while the second distribution has a mean of 0.75
with a standard deviation of 1.25. There are a variety of ways to compare these
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tion Functions.

two alternatives; one is first degree stochastic dominance, which basically asks
whether one alternative always has a higher probability of producing a higher
return [32, pp. 150–152]. First degree stochastic dominance involves comparing
the cumulative distribution function (i.e., the probability the random variable
will be less than or equal to any value) for each alternative. As presented
in Figure 1.4, Alternative 2 dominates (i.e., provides a higher return for the
relative risk) Alternative 1.

1.3 Chapter Summary

• Mathematical statistics involves the rigorous development of statistical
reasoning.

– The goal of this textbook is to make the student think about statistics
as more than a toolbox of techniques.

– These mathematical statistic concepts form the basis of econometric
formulations.

• Our analysis of mathematical statistics raises questions regarding our def-
inition of economics as a science versus economics as a tool for decision
makers.
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– Following Popper, a science provides for the empirical testing of a
conjecture.

– Popper does not classify the process of developing conjectures as a
science, but the scientific method allows for experimental (or experi-
ential) testing of its precepts.

– This chapter reviews some examples of empirical tests of economic
hypotheses. However, it also points to cases where simple tests of
rather charished economic theories provide dubious results.

• In addition to using econometric/statistical concepts to test theory, these
procedures are used to inform economic decisions.

– Econometric analysis can be used to inform policy decisions. For ex-
ample, we may be interested in the gains and losses from raising the
minimum wage. However, econometric analysis may indicate that this
direct effect will be partially offset by increased spending from those
benefiting from the increase in the minimum wage.

– In addition, mathematical statistics helps us model certain decisions
such as producer behavior under risk and uncertainty.

1.4 Review Questions

1-1R. What are the two primary uses of econometrics?

1-2R. Review a recent issue of the American Economic Review and discuss
whether the empirical applications test economic theory or provide es-
timates useful for policy analysis.

1-3R. Review a recent issue of the American Economic Journal: Economic
Policy and discuss whether the empirical applications test economic
theory or provide estimates useful for policy analysis.

1-4R. Discuss a scenario where mathematical statistics informs economic the-
ory in addition to providing a means of scientific testing.
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A primary building block of statistical inference is the concept of probability.
However, this concept has actually been the subject of significant debate over
time. Hacking [16] provides a detailed discussion of the evolution of the concept
of probability:

Probability has two aspects. It is connected with the degree of belief
warranted by evidence, and it is connected with the tendency, displayed
by some chance devices, to produce stable relative frequencies [16, p. 1].

As developed by Hacking, the concept of probability has been around for thou-
sands of years in the context of games of chance. This concept of probability
follows the idea of the tendency of chance displayed by some device – dice or
cards. The emergence of a formal concept of probability can be found in corre-
spondence between the mathematical geniuses Pierre de Fermat (1601–1665)
and Blaise Pascal (1623–1662).

The correspondence between Fermat and Pascal attempts to develop a rule
for the division of an incomplete game. The incomplete game occurs when a
multiple stage contest is interrupted (i.e., the game is completed when one
individual rolls a certain value eight times but the play is interrupted after
seven rolls).

Let us say that I undertake to win a point with a single die in eight
rolls; if we agree, after the money is already in the game, that I will
not make my first roll, then according to my principle it is necessary

21
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that I take out 1/6 of the pot to be bought out, since I will be unable
to roll to win in the first round (Letter of Fermat to Pascal [9]).

The first textbook on probability following this gaming approach was then
produced by Christiaan Huygens [20] in 1657.

Typically, econometrics based its concept of probability loosely on this
discrete gaming approach. As described by Tinbergen,

A clear example which tells us more than abstract definitions is the
number of times we can throw heads with one or more coins. If we
throw with one coin, that number can be 0 or 1 on each throw; if we
throw with three coins, it can be 0, 1, 2, or 3. The number of times each
of these values appears is its frequency; the table of these frequencies
is the frequency distribution. If the latter is expressed relatively, i.e., in
figures the sum of the total of which is 1 and which are proportionate to
the frequencies, we speak of probability distribution. The probability
or relative frequency of the appearance of one certain result indicates
which part of the observations leads to that outcome [51, pp. 60–61].

This pragmatic approach differs from more rigorous developments offered by
Lawrence Klein [24, pp. 23–28].

Skipping some of the minutiae of the development of probability, there are
three approaches.

1. The frequency approach – following Huygens, probability is simply de-
fined by the relative count of outcomes.

2. Personal probabilities where individuals anticipate the likelihood of
outcomes based on personal information. This approach is similar to the
concept of utility developed in consumer theory. The formulation is pri-
marily based on Leonard Savage [41] and Bruno de Finetti [10].

3. Axiomatic probabilities where the properties of a probability function
are derived from basic conjectures. The axiomatic approach is typically
attributed to Andrei Kolmogorov [39, pp. 137–143].

The frequency approach has the advantage of intuition. A variety of board
games involve rolling dice, from MonopolyTMto RiskTM. The growth in pop-
ularity of state lotteries from the late 1980s through the early 2000s to fund
various government programs has increased the popular knowledge of drawing
without replacement. Finally, the growth of the casino industries in states such
as Mississippi and on Indian reservations has extended participation in games
of chance beyond the traditional bastions of Las Vegas and Reno, Nevada,
and Atlantic City, New Jersey.

However, some central concepts of probability theory are difficult for a
simple frequency motivation. For example, the frequency approach is intu-
itively appealing for discrete outcomes (i.e., the number of points depicted on
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the top of a die or whether a coin lands heads or tails up). The intuition of
the frequentist vanishes when the variable of interest is continuous, such as
the annual rainfall or temperature in a crop region. In these scenarios, the
probability of any particular outcome is numerically zero. Further, there are
some outcomes that are actually discrete but the possible number of outcomes
is large enough that the frequency of outcomes approaches zero. For example,
the observed Dow Jones Industrial Average reported in the news is a discrete
number (value in hundredths of a dollar or cents). Similarly, for years stock
prices were reported in sixteenths of a cent.

As one example, consider the rainfall in Sayre, Oklahoma, for months im-
portant for the production of hard red winter wheat (Table 2.1). Typically
hard red winter wheat is planted in western Oklahoma in August or Septem-
ber, so the expected rainfall in this period is important for the crop to sprout.
Notice that while we may think about rainfall as a continuous variable, the
data presented in Table 2.1 is discrete (i.e., there is a countable number of
hundreths of an inch of rainfall). In addition, we will develop two different
ways of envisioning this data. From an observed sample framework we will
look at the outcomes in Table 2.1 as equally likely like the outcomes of the
roll of dice. From this standpoint, we can create the empirical distribution
function (i.e., the table of outcomes and probabilities of those outcomes that
we will develop more fully in Chapter 3) for rainfall in August and September
presented in Table 2.2. An interesting outcome of the empirical distribution
function is that the outcome of 7.26 inches of rainfall is twice as likely as any
other outcome. Looking ahead at more empirical approaches to probability,
suppose that we constructed a histogram by counting the number of times the
rainfall occurred between inches (i.e., in three years the rainfall was between
1 and 2 inches). Note that the table excludes the rainfall of 17.05 inches in
the 95/96 crop year. In the terms of probability, I am tentatively classifying
this outcome as an outlier. This data is presented in Table 2.3. This table
shows us that different rainfall amounts are really not equally likely, for ex-
ample, the empirical probability that rainfall between 5 and 7 inches is more
likely than between 3 and 4 inches (i.e., 0.170 is greater than 0.094). This
general approach of constructing probability functions can be thought of as a
frequentist application to continuous data.

In addition to the practical problem of continuous distributions, the fre-
quentist approach did not provide a rigorous concept of the properties of
probability:

By the end of the seventeenth century the mathematics of many sim-
ple (and some not-so-simple) games of chance was well understood and
widely known. Fermat, Pascal, Hugens, Leibniz, Jacob Bernoulli, and
Arbutnot all examined the ways in which the mathematics of permu-
tations and combinations could be employed in the enumeration of
favorable cases in a variety of games of known properties. But this
early work did not extend to the consideration of the problem: How,
from the outcome of a game (or several outcomes of the same game),
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TABLE 2.2
Empirical Probability Distribution of Rainfall

Rainfall Count Rainfall Count Rainfall Count Rainfall Count
0.00 1 3.26 1 4.77 1 7.68 1
0.76 1 3.34 1 5.41 1 7.79 1
0.99 1 3.37 1 5.72 1 7.91 1
1.32 1 3.78 1 5.89 1 7.92 1
1.59 1 3.90 1 5.98 1 8.09 1
1.63 1 4.11 1 6.12 1 9.81 1
2.29 1 4.19 1 6.26 1 10.15 1
2.30 1 4.25 1 6.36 1 10.69 1
2.46 1 4.36 1 6.41 1 11.02 1
2.79 1 4.38 1 6.46 1 11.52 1
2.98 1 4.42 1 6.62 1 12.34 1
3.09 1 4.44 1 6.67 1 13.17 1
3.10 1 4.72 1 7.28 2 17.05 1

TABLE 2.3
Histogram of Rainfall in August and September in Sayre, Oklahoma

Rainfall Count Fraction of Sample
0–1 0 0.000
1–2 3 0.057
2–3 3 0.057
3–4 5 0.094
4–5 7 0.132
5–6 9 0.170
6–7 4 0.075
7–8 7 0.132
8–9 6 0.113
9–10 1 0.019
10–11 1 0.019
11–12 2 0.038
12–13 2 0.038
13–14 1 0.019
14–15 1 0.019

could one learn about the properties of the game and how could one
quantify the uncertainty of our inferred knowledge of the properties?
[47, p. 63]

Intuitively, suppose that you were playing a board game such as backgammon
and your opponent rolls doubles 6 out of 16 rolls, advancing around the board
and winning the game. Could you conclude that the die were indeed fair?
What is needed is a systematic formulation of how probability works. For
example, Zellner [54] defines the direct probability as a probability model where
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the form and nature of the probability structure are completely known (i.e.,
the probability of rolling a die). Given this formulation, the only thing that is
unknown is the outcome of a particular roll of the dice. He contrasts this model
with the inverse probability, where we observe the outcomes and attempt to
say something about the probability generating process (see the Zellner on
Probability box).

Zellner on Probability

On the other hand, problems usually encountered in science are
not those of direct probability but those of inverse probability. That
is, we usually observe data which are assumed to be the outcome
or output of some probability process or model, the properties of
which are not completely known. The scientist’s problem is to infer
or learn the properties of the probability model from observed data,
a problem in the realm of inverse probability. For example, we may
have data on individual’s incomes and wish to determine whether
they can be considered as drawn or generated from a normal proba-
bility distribution or by some other probability distribution. Ques-
tions like these involve considering alternative probability models
and using observed data to try to determine from which hypothe-
sized probability model the data probably came, a problem in the
area of statistical analysis of hypotheses. Further, for any of the
probability models considered, there is the problem of using data
to determine or estimate the values of parameters appearing in it,
a problem of statistical estimation. Finally, the problem of using
probability models to make predictions about as yet unobserved
data arises, a problem of statistical prediction [54, p. 69].

Three Views of the Interpretation of Probability

Objectivistic: views hold that some repetitive events, such
as tosses of a penny, prove to be in reasonably close agreement
with the mathematical concept of independently repeated random
events, all with the same probability. According to such views, ev-
idence for the quality of agreement between the behavior of the
repetitive event and the mathematical concept, and for the mag-
nitude of the probability that applies (in case any does), is to be
obtained by observation of some repetitions of the event, and from
no other source whatsoever.

Personalistic: views hold that probability measures the
confidence that a particular individual has in the truth of a par-
ticular proposition, for example, the proposition that it will rain
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tomorrow. These views postulate that the individual concerned is
in some ways “reasonable,” but they do not deny the possibility
that two reasonable individuals faced with the same evidence may
have different degrees of confidence in the truth of the same propo-
sition.

Necessary: views hold that probability measures the ex-
tent to which one set of propositions, out of logical necessity and
apart from human opinion, confirms the truth of another. They are
generally regarded by their holders as extensions of logic, which
tells when one set of propositions necessitates the truth of another
[41, p. 3].

2.1 Two Definitions of Probability for Econometrics

To begin our discussion, consider two fairly basic definitions of probability.

• Bayesian — probability expresses the degree of belief a person has about
an event or statement by a number between zero and one.

• Classical — the relative number of times that an event will occur as the
number of experiments becomes very large.

lim
N→∞

P [O] =
rO
N
. (2.1)

The Bayesian concept of probability is consistent with the notion of a per-
sonalistic probability advanced by Savage and de Fenetti, while the classical
probability follows the notion of an objective or frequency probability.

Intuitively, the basic concept of probability is linked to the notion of a
random variable. Essentially, if a variable is deterministic, its probability is
either one or zero – the result either happens or it does not (i.e., if x =
f (z) = z2 the probability that x = f (2) = 4 is one, while the probability that
x = f (2) = 5 is zero). The outcome of a random variable is not certain. If x is
a random variable it can take on different values. While we know the possible
values that the variable takes on, we do not know the exact outcome before
the event. For example, we know that flipping a coin could yield two outcomes
– a head or a tail. However, we do not know what the value will be before
we flip the coin. Hence, the outcome of the flip – head or tail – is a random
variable. In order to more fully develop our notion of random variables, we
have to refine our discussion to two general types of random variables: discrete
random variables and continuous random variables.
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A discrete random variable is some outcome that can only take on a
fixed number of values. The number of dots on a die is a classic example of a
discrete random variable. A more abstract random variable is the number of
red rice grains in a given measure of rice. It is obvious that if the measure is
small, this is little different from the number of dots on the die. However, if
the measure of rice becomes large (a barge load of rice), the discrete outcome
becomes a countable infinity, but the random variable is still discrete in a
classical sense.

A continuous random variable represents an outcome that cannot be
technically counted. Amemiya [1] uses the height of an individual as an ex-
ample of a continuous random variable. This assumes an infinite precision
of measurement. The normally distributed random variable presented in Fig-
ures 1.1 and 1.3 is an example of a continuous random variable. In our forego-
ing discussion of the rainfall in Sayre, Oklahoma, we conceptualized rainfall
as a continuous variable while our measure was discrete (i.e., measured in a
finite number of hundreths of an inch).

The exact difference between the two types of random variables has an
effect on notions of probability. The standard notions of Bayesian or Classical
probability fit the discrete case well. We would anticipate a probability of
1/6 for any face of the die. In the continuous scenario, the probability of any
specific outcome is zero. However, the probability density function yields
a measure of relative probability. The concepts of discrete and continuous
random variables are then unified under the broader concept of a probability
density function.

2.1.1 Counting Techniques

A simple method of assigning probability is to count how many ways an event
can occur and assign an equal probability to each outcome. This methodology
is characteristic of the early work on objective probability by Pascal, Fermat,
and Huygens. Suppose we are interested in the probability that a die roll will
be even. The set of all even events is A = {2, 4, 6}. The number of even events
is n (A) = 3. The total number of die rolls is S = {1, 2, 3, 4, 5, 6} or n (S) = 6.
The probability of these countable events can then be expressed as

P [A] =
n(A)

n(S)
(2.2)

where the probability of event A is simply the number of possible occurrences
of A divided by the number of possible occurrences in the sample, or in this
example P [even die rolls] = 3/6 = 0.50.

Definition 2.1. The number of permutations of taking r elements out of n
elements is a number of distinct ordered sets consisting of r distinct elements
which can be formed out of a set of n distinctive elements and is denoted Pnr .
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The first point to consider is that of factorials. For example, if you have
two objects A and B, how many different ways are there to order the object?
Two:

{A,B} or {B,A} . (2.3)

If you have three objects, how many ways are there to order the objects? Six:

{A,B,C} {A,C,B} {B,A,C} {B,C,A}
{C,A,B} or {C,B,A} . (2.4)

The sequence then becomes – two objects can be drawn in two sequences,
three objects can be drawn in six sequences (2 × 3). By inductive proof, four
objects can be drawn in 24 sequences (6 × 4).

The total possible number of sequences is then for n objects n! defined as:

n! = n (n− 1) (n− 2) . . . 1. (2.5)

Theorem 2.2. The (partial) permutation value can be computed as

Pnr =
n!

(n− r)!
. (2.6)

The term partial permutation is sometimes used to denote the fact that we
are not completely drawing the sample (i.e., r ≤ n). For example, consider
the simple case of drawing two out of two possibilities:

P 2
1 =

2!

(2− 1)!
= 2 (2.7)

which yields the intuitive result that there are two possible values of drawing
one from two (i.e., either A or B). If we increase the number of possible
outcomes to three, we have

P 3
1 =

3!

(3− 1)!
=

6

2
= 3 (2.8)

which yields a similarly intuitive result that we can now draw three possible
first values A, B, or C. Taking the case of three possible outcomes one step
further, suppose that we draw two numbers from three possibilities:

P 3
2 =

3!

(3− 2)!
=

6

1
= 6. (2.9)

Table 2.4 presents these results. Note that in this formulation order matters.
Hence {A,B} 6= {B,A}.

To develop the generality of these formulas, consider the number of per-
mutations for completely drawing four possible numbers (i.e., 4! = 24 possible
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TABLE 2.4
Partial Permutation of Three Values

Low First High First
{A,B} {B,A}
{A,C} {C,A}
{B,C} {C,B}

TABLE 2.5
Permutations of Four Values

A First B First C First D First
1 {A,B,C,D} {B,A,C,D} {C,A,B,D} {D,A,C,B}
2 {A,B,D,C} {B,A,D,C} {C,A,D,B} {D,A,B,C}
3 {A,C,B,D} {B,C,A,D} {C,B,A,D} {D,B,A,C}
4 {A,C,D,B} {B,C,D,A} {C,B,D,A} {D,B,C,A}
5 {A,D,B,C} {B,D,A,C} {C,D,A,B} {D,C,A,B}
6 {A,D,C,B} {B,D,C,A} {C,D,B,A} {D,C,B,A}

sequences, as depicted in Table 2.5). How many ways are there to draw the
first number?

P 4
1 =

4!

(4− 1)!
=

24

6
= 4. (2.10)

The results seem obvious – if there are four different numbers, then there are
four different numbers you could draw on the first draw (i.e., see the four
columns of Table 2.5). Next, how many ways are there to draw two numbers
out of four?

P 4
2 =

4!

(4− 2)!
=

24

2
= 12. (2.11)

To confirm the conjecture in Equation 2.11, note that Table 2.5 is grouped
by combinations of the first two numbers. Hence, we see that there are three
unique combinations where A is first (i.e., {A,B}, {A,C}, and {A,D}). Given
that the same is true for each column 4× 3 = 12.

Next, consider the scenario where we don’t care which number is drawn
first – {A,B} = {B,A}. This reduces the total number of outcomes pre-
sented in Table 2.4 to three. Mathematically we could say that the number of
outcomes K could be computed as

K =
P 3

1

2
=

3!

1!× 2!
= 3. (2.12)

Extending this result to the case of four different values, consider how many
different outcomes there are for drawing two numbers out of four if we don’t
care about the order. From Table 2.5 we can have six (i.e., {A,B} = {B,A},
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{A,C} = {C,A}, {A,D} = {D,A}, {B,C} = {C,B}, {B,D} = {D,B},
and {C,D} = {D,C}). Again, we can define this figure mathematically as

K =
P 4

1

2
=

4!

(4− 2)!2!
= 6. (2.13)

This formulation is known as a combinatorial. A more general form of the
formulation is given in Definition 2.3.

Definition 2.3. The number of combinations of taking r elements from n
elements is the number of distinct sets consisting of r distinct elements which
can be formed out of a set of n distinct elements and is denoted Cnr .

Cnr =

(
n
r

)
=

n!

(n− r)!r!
. (2.14)

Apart from their application in probability, combinatorials are useful for
binomial arithmetic.

(a+ b)
n

=
n∑
k=0

(
n
k

)
akbn−k. (2.15)

Taking a simple example, consider (a+ b)
3
.

(a+ b)
3

=

(
3
0

)
a(3−0)b0+

(
3
1

)
a(3−1)b1+

(
3
2

)
a(3−2)b2+

(
3
3

)
a(3−3)b3.

(2.16)
Working through the combinatorials, Equation 2.16 yields

(a+ b)
3

= a3 + 3a2b+ 3ab2 + b3 (2.17)

which can also be drived using Pascal’s triangle, which will be discussed in
Chapter 5. As a direct consequence of this formulation, combinatorials al-
low for the extension of the Bernoulli probability form to the more general
binomial distribution.

To develop this more general formulation, consider the example from
Bierens [5, Chap. 1]; assume we are interested in the game Texas lotto. In
this game, players choose a set of 6 numbers out of the first 50. Note that the
ordering does not count so that 35, 20, 15, 1,5, 45 is the same as 35, 5, 15,
20, 1, 45. How many different sets of numbers can be drawn? First, we note
that we could draw any one of 50 numbers in the first draw. However, for the
second draw we can only draw 49 possible numbers (one of the numbers has
been eliminated). Thus, there are 50 × 49 different ways to draw two numbers.
Again, for the third draw, we only have 48 possible numbers left. Therefore,
the total number of possible ways to choose 6 numbers out of 50 is

5∏
j=1

(50− j) =

50∏
k=45

k =

∏50
k=1 k∏50−6
k=1 k

=
50!

(50− 6)!
. (2.18)
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Finally, note that there are 6! ways to draw a set of 6 numbers (you could
draw 35 first, or 20 first, . . .). Thus, the total number of ways to draw an
unordered set of 6 numbers out of 50 is(

50
6

)
=

50!

6!(50− 6)!
= 15,890,700. (2.19)

This description of lotteries allows for the introduction of several defini-
tions important to probability theory.

Definition 2.4. Sample space The set of all possible outcomes. In the Texas
lotto scenario, the sample space is all possible 15,890,700 sets of 6 numbers
which could be drawn.

Definition 2.5. Event A subset of the sample space. In the Texas lotto
scenario, possible events include single draws such as {35, 20, 15, 1, 5, 45} or
complex draws such as all possible lotto tickets including {35, 20, 15}. Note
that this could be {35, 20, 15, 1, 2, 3} , {35, 20, 15, 1, 2, 4} , . . . .

Definition 2.6. Simple event An event which cannot be expressed as a union
of other events. In the Texas lotto scenario, this is a single draw such as
{35, 20, 15, 1, 5, 45}.

Definition 2.7. Composite event An event which is not a simple event.

Formal development of probability requires these definitions. The sample space
specifies the possible outcomes for any random variable. In the roll of a die
the sample space is {1, 2, 3, 4, 5, 6}. In the case of a normal random variable,
the sample space is the set of all real numbers x ∈ (−∞,∞). An event in the
roll of two dice could be the number of times that the values add up to 4 –
{1, 3} , {2, 2} , {3, 1}. The simple event could be a single dice roll for the two
dice – {1, 3}.

2.1.2 Axiomatic Foundations

In our gaming example, the most basic concept is that each outcome si =
1, 2, 3, 4, 5, 6 is equally likely in the case of the six-sided die. Hence, the prob-
ability of each of the events is P [si] = 1/6. That is, if the die is equally
weighted, we expect that each side is equally likely. Similarly, we assume that
a coin landing heads or tails is equally likely. The question then arises as to
whether our framework is restricted to this equally likely mechanism. Sup-
pose we are interested in whether it is going to rain tomorrow. At one level,
we could say that there are two events – it could rain tomorrow or not. Are we
bound to the concept that these events are equally likely and simply assume
that each event has a probability of 1/2? Such a probability structure would
not make a very good forecast model.

The question is whether there is a better way to model the probability
of raining tomorrow. The answer is yes. Suppose that in a given month over
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TABLE 2.6
Outcomes of a Simple Random Variable

Sample Samples
Draw 1 2 3

1 1 0 0
2 0 0 1
3 1 0 1
4 0 0 1
5 1 0 0
6 0 1 0
7 1 1 1
8 1 0 1
9 1 1 0
10 1 0 1
11 0 0 1
12 0 0 1
13 0 1 0
14 1 1 1
15 0 1 0
16 1 1 1
17 1 0 0
18 1 1 1
19 1 1 1
20 1 1 1
21 1 0 1
22 0 0 0
23 1 1 1
24 1 1 0
25 1 1 0
26 1 1 1
27 1 1 0
28 0 1 1
29 1 1 1
30 1 0 1

Total 21 17 19
Percent 0.700 0.567 0.633

the past thirty years that it rained five days. We could conceptualize a game
of chance, putting five black marbles and twenty five white marbles into a
bag. Drawing from the bag with replacment (putting the marble back each
time) could be used to represent the probability of raining tomorrow. Notice
that the chance of drawing each individual marble remains the same – like
the counting exercise at 1/30. However, the relative difference is the number
of marbles in the sack. It is this difference in the relative number of marbles
in the sack that yields the different probability measure.
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TABLE 2.7
Probability of the Simple Random Sample

Observation Draw Probability
1 1 p
2 0 1− p
3 1 p
4 0 1− p
5 1 p

It is the transition between these two concepts that gives rise to more
sophisticated specifications of probability than simple counting mechanics.
For example, consider the blend of the two preceding examples. Suppose that
I have a random outcome that yields either a zero or a one (heads or tails).
Suppose that I want to define the probability of a one. As a starting place, I
could assign a probability of 1/2 – equal probability. Consider the first column
of draws in Table 2.6. The empirical evidence from these draws yields 21 ones
(heads) or a one occurs 0.70 of the time. Based on this draw, would you
agree with your initial assessment of equal probability? Suppose that we draw
another thirty observations as depicted in column 2 of Table 2.6. These results
yield 17 heads. In this sample 57 percent of the outcomes are ones. This sample
is closer to equally likely, but if we consider both samples we have 38 ones out
of 60 or 63.3 percent heads.

The question is how to define a set of common mechanics to compare the
two alternative views (i.e., equally versus unequally likely). The mathematical
basis is closer to the marbles in the bag than to equally probable. For example,
suppose that we define the probability of heads as p. Thus, the probability of
drawing a white ball is p while the probability of drawing a black ball is 1−p.
The probability of drawing the first five draws in Table 2.6 are then given in
Table 2.7.

As a starting point, consider the first event. To rigorously develop a notion
of the probability, we have to define the sample space. To define the sample
space, we define the possible events. In this case there are two possible events
– 0 or 1 (or E = 1 or 0). The sample space defined on these events can then
be represented as S = {0, 1}. Intuitively, if we define the probability of E = 1
as p, then by definition of the sample space the probability of E = 0 is 1− p
because one of the two events must occur. Several aspects of the last step
cannot be dismissed. For example, we assume that one and only one event
must occur – the events are exclusive (a 0 and a 1 cannot both occur) and
exhaustive (either a 0 or a 1 must occur). Thus, we denote the probability of
a 1 occurring to be p and the probability of 0 occurring to be q. If the events
are exclusive and exhaustive,

p+ q = 1⇒ q = 1− p (2.20)
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because one of the events must occur. In addition, to be a valid probability
we need p ≥ 0 and 1− p ≥ 0. This is guaranteed by p ∈ [0, 1].

Next, consider the first two draws from Table 2.7. In this case the sample
space includes four possible events – {0, 0}, {0, 1}, {1, 0}, and {1, 1}. Typically,
we aren’t concerned with the order of the draw so {0, 1} = {1, 0}. However, we
note that there are two ways to draw this event. Thus, following the general
framework from Equation (2.20),

2∑
r=0

(
2
r

)
p(2−r)qr = p2 + 2pq + q2 ⇒ p2 + 2p (1− p) + (1− p)2

. (2.21)

To address the exclusive and exhaustive nature of the event space, we need to
guarantee that the probabilities sum to one – at least one event must occur.

p2 + 2p (1− p) + (1− p)2
= p2 + 2p− 2p2 + 1− 2p+ p2 = 1. (2.22)

In addition, the restriction that p ∈ [0, 1] guarantees that each probability is
positive.

By induction, the probability of the sample presented in Table 2.7 is

P [S |p ] = p3 (1− p)2
(2.23)

for a given value of p. Note that for any value of p ∈ [0, 1]

5∑
r=1

(
5
r

)
p(5−r) (1− p)r = 1, (2.24)

or a valid probability structure can be defined for any value p on the sample
space.

These concepts offer a transition to a more rigorous way of thinking about
probability. In fact, the distribution functions developed in Equations 2.20
through 2.24 are typically referred to as Bernoulli distributions for Jacques
Bernoulli, who offered some of the very first rigorous proofs of probability
[16, pp. 143–164]. This rigorous development is typically refered to as an
axiomatic development of probability. The starting point for this axiomatic
development is set theory.

Subset Relationships

As described in Definitions 2.4, 2.5, 2.6 and 2.7, events or outcomes of random
variables are defined as elements or subsets of the set of all possible outcomes.
Hence, we take a moment to review set notation.

(a) A ⊂ B ⇔ x ∈ A⇒ x ∈ B.

(b) A = B ⇔ A ⊂ B andB ⊂ A.
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(c) Union: The union of A and B, written A ∪ B, the set of elements that
belong either to A or B.

A ∪B = {x : x ∈ A orx ∈ B} . (2.25)

(d) Intersection: The intersection of A and B, written A ∩ B, is the set of
elements that belong to both A and B.

A ∩B = {x : x ∈ B andx ∈ B} . (2.26)

(e) Complementation: The complement of A, written AC , is the set of all
elements that are not in A.

AC ∈ {x : x /∈ A} . (2.27)

Combining the subset notations yields Theorem 2.8.

Theorem 2.8. For any three events A, B, and C defined on a sample space
S,

(a) Commutativity: A ∪B = B ∪A, A ∩B = B ∩A.

(b) Associativity: A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∪ C) = (A ∪B) ∪ C.

(c) Distributive Laws: A ∩ (B ∪ C) = (A ∪B) ∩ (A ∪ C), A ∪ (B ∩ C) =
(A ∩B) ∪ (A ∩ C).

(d) DeMorgan’s Laws: (A ∪B)
C

= AC ∪BC , (A ∩B)
C

= AC ∪BC .

Axioms of Probability

A set {ωj1 , ...ωjk} of different combinations of outcomes is called an event.
These events could be simple events or compound events. In the Texas lotto
case, the important aspect is that the event is something you could bet on (for
example, you could bet on three numbers in the draw 35, 20, 15). A collection
of events F is called a family of subsets of sample space Ω. This family consists
of all possible subsets of Ω including Ω itself and the null set ∅. Following the
betting line, you could bet on all possible numbers (covering the board) so
that Ω is a valid bet. Alternatively, you could bet on nothing, or ∅ is a valid
bet.

Next, we will examine a variety of closure conditions. These are conditions
that guarantee that if one set is contained in a family, another related set
must also be contained in that family. First, we note that the family is closed
under complementarity: If A ∈ F then Ac ∈ Ω |A ∈ F . In this case Ac ∈
Ω |A ∈ F denotes all elements of Ω that are not contained in A (i.e., Ac =
{x : x ∈ Ω |x /∈ A}). Second, we note that the family is closed under union: If
A,B ∈ F then A ∪B ∈ F .
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Definition 2.9. A collection F of subsets of a nonempty set Ω satisfying
closure under complementarity and closure under union is called an algebra
[5].

Adding closure under infinite union is defined as: If Aj ∈ F for j = 1, 2, 3, ...
then ∪∞j=1Aj ∈ F .

Definition 2.10. A collection F of subsets of a nonempty set Ω satisfying
closure under complementarity and infinite union is called a σ-algebra (sigma-
algebra) or a Borel Field [5].

Building on this foundation, a probability measure is the measure which
maps from the event space into real number space on the [0,1] interval. We
typically think of this as an odds function (i.e., what are the odds of a winning
lotto ticket? 1/15,890,700). To be mathematically precise, suppose we define a
set of events A = {ω1, ...ωj} ∈ Ω, for example, we choose n different numbers.
The probability of winning the lotto is P [A] = n/N . Our intuition would
indicate that P [Ω] = 1, or the probability of winning given that you have
covered the board is equal to one (a certainty). Further, if you don’t bet, the
probability of winning is zeros or P [∅] = 0.

Definition 2.11. Given a sample space Ω and an associated σ-algebra F , a
probability function is a function P [A] with domain F that satisfies

• P (A) ≥ 0 for all A ∈ F .

• P (Ω) = 1.

S

1A

2A

1P A
1 0,1p

2P A
1 0,1p

FIGURE 2.1
Mapping from Event Space to Probability Space.
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• If A1, A2, ... ∈ F are pairwise disjoint, then P (∪∞i=1) =
∑∞
i=1 P (Ai).

Breaking this down a little at a time, P [A] is a probability measure that is
defined on an event space. The concept of a measure will be developed more
fully in Chapter 3, but for our current uses, the measure assigns a value to an
outcome in event space (see Figure 2.1). This value is greater than or equal
to zero for any outcome in the algebra. Further, the value of the measure for
the entire sample space is 1. This implies that some possible outcome will
occur. Finally, the measure is additive over individual events. This definition
is related to the required axioms of probability

P

[ ∞⋃
i=1

Ai

]
=
∞∑
i=1

P [Ai] . (2.28)

Stated slightly differently, the basic axioms of probability are:

Definition 2.12. Axioms of Probability:

1. P [A] ≥ 0 for any event A.

2. P [S] = 1 where S is the sample space.

3. If {A} i = 1, 2, . . . are mutually exclusive (that it Ai∩Aj = ∅ for all i 6= j,
then P [A1 ∩A2 ∩ . . . ] = P [A1] + P [A2] + · · · .

Thus, any function obeying these properties is a probability function.

2.2 What Is Statistics?

Given an understanding of random variables and probability, it is possible to
offer a definition of statistics. Most definitions of statistics revolve around the
synthesis of data into a smaller collection of numbers that contain the mean-
ingful information in the sample. Here we consider three standard definitions
of statistics.

Definition 2.13. Statistics is the science of assigning a probability of an
event on the basis of experiments.

Definition 2.14. Statistics is the science of observing data and making in-
ferences about the characteristics of a random mechanism that has generated
the data.

Definition 2.15. Statistics is the science of estimating the probability distri-
bution of a random variable on the basis of repeated observations drawn from
the same random variable.
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These definitions highlight different facets of statistics. Each definition
contains a notion of probability. Two of the definitions make reference to
estimation. As developed in Kmenta’s [26] definition in Chapter 1, estimation
can imply description or inference. In addition, one of the definitions explicitly
states that statistics deals with experiments.

2.3 Chapter Summary

• Probability is a primary building block of statistical inference.

• Most of the early development of probability theory involved games of
chance (aleatoric, from alea, a dice game).

• In general, probability theory can be justified using three approaches:

– Frequency – based on the relative number of times an event occurs.

– Personal Probability – based on personal belief. This approach is
similar to the construction of utility theory.

– Axiomatic Probability – based on the mathematics of measure
theory.

• Most econometric applications involve the estimation of unknown parame-
ters. As developed by Zellner, a direct probability is a probability model
where we know the probability structure completely. For example, we know
the probability structure for the unweighted die. An alternative approach
is the inverse probability formulation, where we observe the outcomes
of the probability model and wish to infer something about the true na-
ture of the probability model. Most econometric applications involve an
inverse probability formulation.

• While there are three different approaches to probability theory, most
econometric applications are interested in two broad categories of proba-
bility:

– Bayesian – the probability structure based on the degree of belief.

– Classical – where we are interested in the empirical or observed
frequency of events.

• The concept of a probability is related to the notion of a random variable.
This concept is best described by contrasting the notion of a deterministic
outcome with a random outcome.

– We always know the outcome of a deterministic process (or function).
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– The outcome of a random variable may take on at least two different
values. The exact outcome is unknowable before the event occurs.

– Counting techniques provide a mechanism for developing classical
probabilities. These models are related to the frequency approach.

– The Sample Space is the set of all possible outcomes.

– An Event can either be simple (i.e., containing a single outcome) or
composite (i.e., including several simple events). The event of an even
numbered die roll is complex. It contains the outcomes s = {2, 4, 6}.

• The axiomatic development of probability theory allows us to generalize
models of random events which allow for tests of consistency for random
variables.

2.4 Review Questions

2-1R. What are the three different approaches to developing probability?

2-2R. Consider two definitions of the same event – whether it rains tomor-
row. We could talk about the probability that it will rain tomorrow or
the rainfall observed tomorrow. Which event is more amenable to the
frequency approach to probability?

2-3R. Consider two physical mechanisms – rolling an even number given a six-
sided die and a flipped coin landing heads up. Are these events similar
(i.e., do they have the same probability function)?

2.5 Numerical Exercises

2-1E. What is the probability that you will roll an even number given the
standard six-sided die?

a. Roll the die 20 times. Did you observe the anticipated number of even
numbered outcomes?

b. Continue rolling until you have rolled the die 40 times. Is the number
of outcomes closer to the theoretical number of even-numbered rolls?

2-2E. Continuing from Exercise 2-1E, what is the probability of rolling a 2 or
a 4 given a standard six-sided die?
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a. Roll the die 20 times. Did you observe the anticipated number of 2s
and 4s?

b. Continue rolling until you have rolled the die 40 times. Is the number
of outcomes closer to the theoretical number of rolls?

c. Are the rolls of 2 or 4 closer to the theoretical results than in Exercise
2-1E?

2-3E. Construct an empirical model for rainfall in the October–December
time period using a frequency approach using intervals of 1.0 inch of
rainfall.

2-4E. How many ways are there to draw 2 events from 5 possibilities? Hint:
S = {A,B,C,D,E}.

2-5E. What is the probability of s = {C,D} when the order is not important?

2-6E. Consider a random variable constructed by rolling a six-sided die and
flipping a coin. Taking x = {1, 2, 3, 4, 5, 6} to be the outcome of the die
roll and y = {1 if heads,−1 if tails} to be the outcome of the coin toss,
construct the random variable z = x× y.

– What is the probability that the value of y will be between −2 and
2?

– What is the probability that the value of y will be greater than 2?
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Much of the development of probability in Chapter 2 involved probabilities in
the abstract. We briefly considered the distribution of rainfall, but we were
largely interested in flipping coins or rolling dice. These examples are typically
referred to as aleatoric – involving games of chance. In this chapter we develop
somewhat more complex versions of probability which form the basis for most
econometric applications. We will start by developing the uniform distribution
that defines a frequently used random variable. Given this basic concept, we
then develop several probability relationships. We then discuss more general
specifications of random variables and their distributions.
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3.1 Uniform Probability Measure

I think that Bierens’s [5] discussion of the uniform probability measure pro-
vides a firm basis for the concept of a probability measure. First, we follow
the conceptual discussion of placing ten balls numbered 0 through 9 into a
container. Next, we draw an infinite sequence of balls out of the container,
replacing the ball each time. In ExcelTM, we can mimic this sequence using
the function floor(rand()*10,1). This process will give a sequence of random
numbers such as presented in Table 3.1. Taking each column, we can gener-
ate three random numbers: {0.741483, 0.029645, 0.302204}. Note that each
of these sequences is contained in the unit interval Ω = [0, 1]. The primary
point of the demonstration is that the number drawn {x ∈ Ω = [0, 1]} is a
probability measure. Taking x = 0.741483 as the example, we want to prove
that P ([0, x = 0.741483]) = 0.741483. To do this we want to work out the
probability of drawing a number less than 0.741483. As a starting point, what
is the probability of drawing the first number in Table 3.1 less than 7? It
is 7 ∼ {0, 1, 2, 3, 4, 5, 6}. Thus, without considering the second number, the
probability of drawing a number less than 0.741483 is somewhat greater than
7/10. Next, we consider drawing a second number given that the first number
drawn is greater than or equal to 7. As a starting point, consider the scenario
where the number drawn is equal to seven. This occurs 1/10 of the time.
Note that the two scenarios are disjoint. If the first number drawn is less than
seven, it is not equal to seven. Thus, we can rely on the summation rule of
probabilities:

If Ai ∩Aj = ∅ then P

[
n⋃
k=1

Ak

]
=

n∑
k=1

P [Ak] . (3.1)

The probability of drawing a number less than 0.74 is the sum of drawing
the first number less than 7 and the second number less than 4 given that
the first number drawn is 7. The probability of drawing the second number
less than 4 is 4/10 ∼ {0, 1, 2, 3}. Given that the first number equal to 7 only

TABLE 3.1
Random Draws of Single Digits

Ball Drawn Draw 1 Draw 2 Draw 3
1 7 0 3
2 4 2 0
3 1 9 2
4 4 6 2
5 8 4 0
6 3 5 4
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occurs 1/10 of the time, the probability of the two events is

P ([0, x = 0.74]) =
7

10
+

4

10

(
1

10

)
=

7

10
+

4

100
= 0.74. (3.2)

Continuing to iterate this process backward, we find that P ([0, x = 0.741483]) =
0.741483. Thus, for x ∈ [0, 1] we have P ([0, x]) = x.

Before we complete Bieren’s discussion, let us return to Definition 2.12.
We know that a function meets our axioms for a probability function if (1) the
value of the function is non-negative for any event, (2) the probability of the
sample space is equal to one, and (3) if a set of events are mutually exclusive
their probabilities are additive. For our purposes in econometrics, it is typically
sufficient to conceptualize probability as a smooth function F (x1, x2) where
x1 and x2 are two points defined on the real number line. Given that we define
an event ω such that ω ⇒ x ∈ [x1, x2], the probability of ω is defined as

F [x1, x2] =

∫ x2

x1

f (x) dx (3.3)

where f (x) ≥ 0 for all x ∈ X implied by Ω (where ω ∈ Ω) and∫
X

f (x) dx = 1. (3.4)

Hence, given that f (x) ≥ 0∀x ∈ X we meet the first axiom of Definition 2.12.
Second, the definition of f (x) in Equation 3.4 implies the second axiom. And,
third, given that we can form mutually exclusive events by partitioning the
real number line, this specificaiton meets the third axiom. Thus, the uniform
distribution defined as

U [0, 1]⇒ f (x) = 1 forx ∈ [0, 1] and 0 otherwise (3.5)

meets the basic axioms for a valid probability function.
While the definition of a probabilty function in Equation 3.3 is sufficient for

most econometric applications, more rigorous proofs and formulations are fre-
quently developed in the literature. In order to understand these formulations,
consider the Reimann sum, which is used in most undergraduate calculus texts
to justify the integral∫ xN

x1

f (x) dx = lim
K→∞

∑
k

|xk − xk−1| f (xk) , k = 1, · · · (N − 1)/K. (3.6)

Taking some liberty with the mathematical proof, the concept is that as the
number of intervals K becomes large, the interval of approximation xk−xk−1

becomes small and the Riemann sum approaches the antiderivative of the
function. In order to motivate our development of the Lebesgue integral, con-
sider a slightly more rigorous specification of the Riemann sum. Specifically,
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we define two formulations of the Riemann sum:

S1 (K) =
∑
k

|xk − xk−1| sup
[xk−1,xk]

f (x)

S2 (K) =
∑
k

|xk − xk−1| inf
[xk−1,xk]

f (x)
(3.7)

where S1 (K) is the upper bound of the integral and S2 (K) is the lower
bound of the integral. Notice that sup (supremum) and inf (infimum) are
similar to max (maximum) and min (minimum). The difference is that the
maximum and minimum values are inside the range of the function while
the supremum and infimum may be limits (i.e., greatest lower bounds and
least upper bounds). Given the specification in Equation 3.7 we know that
S1 (K) ≥ S2 (K). Further, we can define a residual

ε (K) = S1 (K)− S2 (K) . (3.8)

The real value of the proof is that we can make ε (K) arbitrarily small by
increasing K.

As complex as the development of the Riemann sum appears, it is simpli-
fied by the fact that we only consider simple intervals on the real number line.
The axioms for a probability (measure) defined in Definitions 2.9 and 2.10
refer to a sigma-algebra. As a starting point, we need to develop the concept
of a measure a little more rigorously. Over the course of a student’s education,
most become so comfortable with the notion of measuring physical phenom-
ena that they take it for granted. However, consider the problem of learning
to count, basically the development of a number system. Most of us were in-
troduced to the number system by counting balls or marbles. For example,
in Figure 3.1 we conceptualize a measure (µ (A)), defined as the number of
objects in set S).1 In this scenario, the defined set is the set of all objects A
so the measure can be defined as

µ (A)→ R1
+ ⇒ µ (A) = 18. (3.9)

Notice that if we change the definition of the set slightly, the mapping changes.
Instead of A, suppose that I redefined the set as that set of circles — B. The
measure then becomes µ (B) = 15.

Implicitly, this counting measure has several imbedded assumptions. For
example, the count is always positive. (actually the count is always a natural
number). In addition, the measure is additive. I can divide the sets in S into
circles (set B) and triangles (C, which has a count of µ (C) = 3). Note that

1To be terribly precise, the count function could be defined as

µ (A) =
∑
i∈A

1

where n (A) = µ (A) from Chapter 2.
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S

A
1R

FIGURE 3.1
Defining a Simple Measure.

the set of circles and triangles is mutually exclusive – no element in the set is
both a circle and a triangle. A critical aspect of a measure is that it is additive.

µ (B ∪ C) = µ (B) + µ (C)⇒ 15 + 3 = 18. (3.10)

Stochastic Process – Doob

The theory of probability is concerned with the measure proper-
ties of various spaces, and with the mutual relations of measurable
functions defined on those spaces. Because of the applications, it is
frequently (although not always) appropriate to call these spaces
sample spaces and their measurable sets events, and these terms
should be borne in mind in applying the results.

The following is the precise mathematical setting. . .. It is sup-
posed that there is some basic space Ω, and a certain basic collec-
tion of sets of points of Ω. These sets will be called measurable sets;
it is supposed that the class of measurable sets is a Borel field. It is
supposed that there is a function P {.}, defined for all measurable
sets, which is a probability measure, that is, P {.} is a completely
additive non-negative set function, with value 1 on the whole space.
The number P {Λ} will be called the probability or measure of Λ
[11, p. 2].

The concept of a measure is then a combination of the set on which the mea-
sure is defined and the characteristics of the measure itself. In general, the
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properties of a set that make a measure possible are defined by the charac-
teristics of a Borel set, which is a specific class of σ-algebras. To build up
the concept of a σ-algebra, let us start by defining an algebra. Most students
think of algebra as a freshman math course, but an (abstract) algebra can be
defined as

Stochastic Methods in Economics and Finance – Malliaris

Let Ω be an arbitrary space consisting of points ω. Certain classes
of subsets of Ω are important in the study of probability. We now
define the class of subsets called σ-field or σ-algebra. denoted F . . . .
We call the elements of F measurable sets [30, p. 2].

Definition 3.1. A collection of subsets A defined on set X is said to be an
algebra in X if A has the following properties.

i. X ∈ A.

ii. XC ∈ A⇒ Xc is the complement of X relative to A.

iii. If A, B ∈ A then A ∪B ∈ X [6, p. 7].

Notice that the set defined in Figure 3.1 is an algebra.

Definition 3.2. A collection of sets M of subsets X is said to be a σ-algebra
in X if An ∈M for all n ∈ N+; then ∪∞n=1An ∈M [6, p. 7].

In Defintion 3.2 An is a sequence of subsets and N+ denotes the set of all
natural numbers. Basically, a σ-algebra is an abstract algebra that is closed
under infinite union. In the case of the set depicted in Figure 3.1, the set of
all possible unions is finite. However, the algebra is closed under all possible
unions so it is a σ-algebra. The Borel set is then the σ-algebra that contains
the smallest number of sets (in addition, it typically contains the whole set X
and the null set).

Given this somewhat lengthy introduction, we can define the σ-algebra
and Borel set for Bierens’s [5] discussion as

Definition 3.3. The σ-algebra generated by the collection

C = {(a, b) : ∀a < b, a, b ∈ <} (3.11)

of all open intervals in Re is called the Euclidean Borel field, denoted B, and
its members are called Borel sets.

In this case, we have defined a = 0 and b = 1.
Also, note that for any x ∈ [0, 1], P [{x} ] = P ([x, x]) = 0. This has the

advantage of eliminating the lower end of the range. Specifically,

P ([0, x]) = P ([0]) + P ((0, x]) . (3.12)
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Further, for a < b, a, b ∈ [0, 1]

P ([a, b]) = P ((a, b]) = P ([a, b)) = P ((a, b)) = b− a. (3.13)

In the Bierens formulation

F0 = {(a, b) : [a, b] , (a, b] , [a, b) ,∀a, b ∈ [0, 1] , a < b,
and their countable union} (3.14)

This probability measure is a special case of the Lebesgue measure.
Building on the uniform distribution, we next define the Lebesgue measure

as a function λ that measures the length of the interval (a, b) on any Borel set
B in R.

λ (B) = inf
B⊂
⋃∞
j=1 (aj ,bj)

∞∑
j=1

λ ((aj , bj)) = inf
B⊂
⋃∞
j=1 (aj ,bj)

∞∑
j=1

(bj − aj). (3.15)

It is the total length of the Borel set taken from the outside. Based on the
Lebesgue measure, we can then define the Lebesgue integral based on the
basic definition of the Reimann integral.

b∫
a

f (x) dx = sup
n∑

m=1

(
inf
x∈Im

f (x)

)
λ (Im). (3.16)

Note that the result in Equation 3.16 is similar in concept to the simple forms
of the Riemann sum presented in Equation 3.6. Replacing the interval of the
summation, the Lebegue integral becomes∫

A

f (x) dx = sup
n∑

m=1

(
inf
x∈Bn

f (x)

)
λ (Bm). (3.17)

Hence, the probability measure in Equation 3.17 is a more general version of
the integral.

Specifically, the real number line which forms the basis of the Riemann
sum is but one of the possible Borel sets that we can use to construct a
probability measure. In order to flush out this concept, consider measuring
the pH (acidity) of a pool using Phenol red. Phenol red changes color with
the level of pH, ranging from yellow when the water is relatively acidic to a
red/purple when the water is alkaline. This concept of acidity is mapped onto
a pH scale running from 6.8 when the result is yellow to 8.2 when the result
is red/purple. This mapping is constructed using a kit which tells me the pH
level associated with each color. In this case we have a measure outside the
typical concept of counting – it does not necessarily fit on the real number line.
The mechanics given above insure that we can develop a probability measure
associated with the pH level (i.e., without first mapping through the numeric
pH measure).
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3.2 Random Variables and Distributions

Now we have established the existence of a probability measure based on a
specific form of σ-algebras called Borel fields. The question is, can we extend
this rather specialized formulation to broader groups of random variables?
Of course, or this would be a short textbook. As a first step, let’s take the
simple coin-toss example. In the case of a coin there are two possible outcomes
(heads or tails). These outcomes completely specify the sample space. To add
a little structure, we construct a random variable X that can take on two
values X = 0 or 1 (as depicted in Table 2.6). If X = 1 the coin toss resulted
in a head, while if X = 0 the coin toss resulted in a tail. Next, we define each
outcome based on an event space ω:

P (X = 1) = P ({ω ∈ Ω : X (ω) = 1} ) = P ([H])
P (X = 0) = P ({ω ∈ Ω : X (ω) = 0} ) = P ([T ]) .

(3.18)

In this case the physical outcome of the experiment is either a head (ω =
heads) or a tail (ω = tails). These events are “mapped into” number space –
the measure of the event is either a zero or a one.

The probability function is then defined by the random event ω. Defining
ω as a uniform random variable from our original example, one alternative
would be to define the function as

X (ω) = 1 if ω ≤ 0.50. (3.19)

This definition results in the standard 50-50 result for a coin toss. However,
it admits more general formulations. For example, if we let

X (ω) = 1 if ω ≤ 0.40 (3.20)

the probability of heads becomes 40 percent.
Given this intuition, the next step is to formally define a random variable.

Three alternative definitions should be considered

Definition 3.4. A random variable is a function from a sample space S into
the real numbers.

Definition 3.5. A random variable is a variable that takes values according
to a certain probability.

Definition 3.6. A random variable is a real-valued function defined over a
sample space.

In this way a random variable is an abstraction. We assumed that there was
a random variable defined on some sample space like flipping a coin. The
flipping of the coin is an outcome in an abstract space (i.e., a Borel set).

S = {s1, s2, · · · sn} . (3.21)
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We then define a numeric value to this set of random variables.

X : S → R1
+

xi = X (si)
or

X (ω) : Ω→ R1
+

xi = X (ωi) .
(3.22)

There are two ways of looking at this tranformation. First, the Borel set is
simply defined as the real number line (remember that the real number line
is a valid Borel set). Alternatively, we can view the transformation as a two
step mapping. For example, a measure can be used to define the quantity of
wheat produced per acre. Thus, we are left with two measures of the same
phenomena — the quantity of wheat produced per acre and the probability
of producing that quantity of wheat. The probability function (or measure) is
then defined based on that random variable for either case defined as

PX (X = xi) = P ({si ∈ S : X (si) = xi})
P (X (ω) = xi) = P ({ω ∈ Ω : X (ω) = xi}) .

(3.23)

Using either justification, for the rest of this text we are simply going to
define a random variable as either a discrete (xi = 1, 2, · · ·N) or real number
(x = (−∞,∞)).

3.2.1 Discrete Random Variables

Several of the examples used thus far in the text have been discrete random
variables. For example, the coin toss is a simple discrete random variable where
the outcome can take on a finite number of values – X = {Tails,Heads} or in
numeric form X = {0, 1}. Using this intuition, we can then define a discrete
random variable as

Definition 3.7. A discrete random variable is a variable that takes a count-
able number of real numbers with certain probability.

In addition to defining random variables as either discrete or continuous we
can also define random variables as either univariate or multivariate. Con-
sider the dice rolls presented in Table 3.2. Anna rolled two six-sided dice (one
blue and one red) while Alex rolled one eight-sided die and one-six sided die.
Conceptually, the die rolled by each individual is a bivariate discrete set of
random variables as defined in Definition 3.8.

Definition 3.8. A bivariate discrete random variable is a variable that takes
a countable number of bivariate points on the plane with certain probability.

For example, the pair {2, 1} is the tenth outcome of Anna’s rolls. In most
board games the sum of the outcomes of the two dice is the important num-
ber – the number of spaces moved in MonopolyTM. However, in other games
the outcome may be more complex. For example, the outcome may be whether
a player suffers damage defined by whether the eight-sided die is greater than
three while the amount of damage suffered is determined by the six-sided
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TABLE 3.2
Anna and Alex’s Dice Rolls

Anna Alex
Eight Six

Roll Blue Red Sided Sided
1 6 4 5 6
2 6 3 8 9
3 5 4 1 1
4 5 3 7 6
5 3 5 5 1
6 5 1 4 5
7 3 6 6 1
8 4 4 5 1
9 5 2 5 5
10 2 1 2 5
11 4 2 6 4
12 2 5 3 1
13 5 3 1 4
14 3 2 1 3
15 1 4 6 6
16 2 3 6 6
17 3 3 3 2
18 5 4 2 3
19 3 3 1 3
20 6 6 7 2

die. Thus, we may be interested in defining a secondary random variable (the
number of spaces moved as the sum of the result of the blue and red die or
the amount of damage suffered by a character of a board game based on a
more complex protocal) based on the outcomes of the bivariate random vari-
ables. However, at the most basic level we are interested in a bivariate random
variable.

3.2.2 Continuous Random Variables

While discrete random variables are important in some econometric applica-
tions, most econometric applications are based on continuous random variables
such as the price of consumption goods or the quantity demanded and supplied
in the market place. As discussed in Chapter 2, defining a continuous random
variable as some subset on the real number line complicates the definition of
probability. Because the number of real numbers for any subset of the real
number line is infinite, the standard counting definition of probability used
by the frequency approach presented in Equation 2.2 implies a zero proba-
bility. Hence, it is necessary to develop probability using the concept of a
probability density function (or simply the density function) as pre-
sented in Definition 3.9.
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Definition 3.9. If there is a non-negative function f(x) defined over the
whole line such that

P (x1 ≤ X ≤ x2) =

∫ x2

x1

f(x)dx (3.24)

for any x1 and x2 satisfying x1 ≤ x2, then X is a continuous random variable
and f(x) is called its density function.

By the second axiom of probability (see definition 2.12)∫ ∞
−∞

f(x)dx = 1. (3.25)

The simplest example of a continuous random variable is the uniform distri-
bution

f (x) =

{
1 if 0 ≤ x ≤ 1
0 otherwise.

(3.26)

Using the definition of the uniform distribution function in Equation 3.26,
we can demonstrate that the probability of the continuous random variable
defined in Equation 3.24 follows the required axioms for probability. First,
f (x) ≥ 0 for all x. Second, the total probability equals one. To see this,
consider the integral∫ ∞

−∞
f(x)dx =

∫ 0

−∞
f(x)dx+

∫ 1

0

f(x)dx+

∫ ∞
1

f(x)dx

=

∫ 1

0

f(x)dx =

∫ 1

0

dx =
(
x|10 + C = (1− 0) + C.

(3.27)

Thus the total value of the integral is equal to one if C = 0.
The definition of a continuous random variable, like the case of the univari-

ate random variable, can be extended to include the possibility of a bivariate
continuous random variable. Specifically, we can extend the univariate uni-
form distribution in Equation 3.26 to represent the density function for the
bivariate outcome {x, y}

f (x, y) =

{
1 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.
(3.28)

The fact that the density function presented in Equation 3.28 conforms to the
axioms of probability are left as an exercise.

Definition 3.10. If there is a non-negative function f(x, y) defined over the
whole plane such that

P (x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) =

∫ y2

y1

∫ x2

x1

f (x, y) dxdy (3.29)

for x1, x2, y1, and y2 satisfying x1 ≤ x2, y1 ≤ y2, then (X,Y ) is a bivariate
continuous random variable and f (X,Y ) is called the joint density function.
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Much of the work with distribution functions involves integration. In order
to demonstrate a couple of solution techniques, I will work through some
examples.

Example 3.11. If f (x, y) = xy exp (−x− y), x > 0, y > 0 and 0 otherwise,
what is P (X > 1, Y < 1)?

P (X > 1, Y < 1) =

∫ 1

0

∫ ∞
1

xye−(x+y)dxdy. (3.30)

First, note that the integral can be separated into two terms:

P (X > 1, Y < 1) =

∫ ∞
1

xe−1dx

∫ 1

0

ye−ydy. (3.31)

Each of these integrals can be solved using integration by parts:

d (uv) = v du+ u dv
v du = d (uv)− u dv∫
v du = uv −

∫
u dv.

(3.32)

In terms of a proper integral we have∫ b

a

v du = (uv|ba −
∫ b

a

u dv. (3.33)

In this case, we have∫ ∞
1

xe−xdx⇒
{

v = x, dv = 1
du = e−x, u = −e−x∫ ∞

1

xe−xdx =
(
−xe−x

∣∣∞
1

+

∫ ∞
1

e−xdx = 2e−1 = 0.74.

(3.34)

Working on the second part of the integral,∫ 1

0

ye−ydy =
(
−ye−1

∣∣1
0

+

∫ 1

0

e−ydy

=
(
−ye−1

∣∣1
0

+
(
−e−y

∣∣1
0

=
(
−e−1 + 0

)
+
(
−e−1 + 1

)
.

(3.35)

Putting the two parts together,

P (X > 1, Y < 1) =

∫ ∞
1

xe−xdx

∫ 1

0

ye−ydy

= (0.735) (0.264) = 0.194.

(3.36)
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Definition 3.12. A T-variate random variable is a variable that takes a
countable number of points on the T -dimensional Euclidean space with certain
probabilities.

Following our development of integration by parts, we have attempted to
keep the calculus at an intermediate level throughout this textbook. However,
the development of certain symbolic computer programs may be useful to stu-
dents. Appendix A presents a brief discussion of two such symbolic programs –
Maxima (an open source program) and Mathematica (a proprietary program).

3.3 Conditional Probability and Independence

In order to define the concept of a conditional probability, it is necessary
to discuss joint probabilities and marginal probabilities. A joint probability
is the probability of two random events. For example, consider drawing two
cards from the deck of cards. There are 52×51 = 2,652 different combinations
of the first two cards from the deck. The marginal probability is the overall
probability of a single event or the probability of drawing a given card. The
conditional probability of an event is the probability of that event given that
some other event has occurred. Taking the roll of a single die, for example –
what is the probability of the die being a one if you know that the face number
is odd? (1/3). However, note that if you know that the roll of the die is a one,
the probability of the roll being odd is 1.

As a starting point, consider the requirements (axioms) for a conditional
probability to be valid.

Definition 3.13. Axioms of Conditional Probability:

1. P (A |B ) ≥ 0 for any event A.

2. P (A |B ) = 1 for any event A ⊃ B.

3. If {Ai ∩B} i = 1, 2, . . . are mutually exclusive, then

P (A1 ∪A2 ∪ . . . ) = P (A1 |B ) + P (A2 |B ) + · · · (3.37)

4. If B ⊃ H, B ⊃ G, and P (G) 6= 0 then

P (H |B )

P (G |B )
=

P (H)

P (G)
. (3.38)

Note that Axioms 1 through 3 follow the general probability axioms with the
addition of a conditional term. The new axiom (Axiom 4) states that two
events conditioned on the same probability set have the same relationship as
the overall (as we will develop shortly – marginal) probabilities. Intuitively,
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the conditioning set brings in no additional information about the relative
likelihood of the two events.

Theorem 3.14 provides a formal definition of conditional probability.

Theorem 3.14. P (A |B ) = P (A ∩B) /P (B) for any pair of events A and
B such that P (B) > 0.

Taking this piece by piece – P (A ∩B) is the probability that both A and B
will occur (i.e., the joint probability of A and B). Next, P (B) is the probability
that B will occur. Hence, the conditional probability P (A|B) is defined as
the joint probability of A and B given that we know that B has occurred.
Some texts refer to Theorem 3.14 as Bayes’ theorem; however, in this text we
will define Bayes’ theorem as depicted in Theorem 3.15.

Theorem 3.15 (Bayes’ Theorem). Let Events A1, A2, . . . An be mutually
exclusive events such that P (A1 ∪A2 ∪ · · ·An) = 1 and P (Ai) > 0 for each i.
Let E be an arbitrary event such that P (E) > 0. Then

P (Ai |E ) =
P (E |A ) P (Ai)

n∑
j=1

P (E |Aj ) P (Aj)

. (3.39)

While Equation 3.39 appears different from the specification in Theorem 3.14,
we can demonstrate that they are the same concept. First, let us use the
relationship in Theorem 3.14 to define the probability of the joint event E∩Ai.

P (E ∩Ai) = P (E |Ai ) P (Ai) . (3.40)

Next, if we assume that events A1, A2, · · · are mutually exclusive and exhaus-
tive, we can rewrite the probability of event E as

P (E) =
n∑
i=1

P (E |Ai ) P (Ai) . (3.41)

Combining the results of Equations 3.40 and 3.41 yields the friendlier version
of Bayes’ theorem found in Thereom 3.14:

P (Ai |E ) =
P (E ∩Ai)

P (E)
. (3.42)

Notice the direction of the conditional statement – if we know that event E
has occurred, what is the probability that event Ai will occur?

Given this understanding of conditional probability, it is possible to de-
fine statistical independence. One random variable is independent of the
probability of another random variable if

Definition 3.16. Events A and B are said to be independent if P (A) =
P (A|B).
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Hence, the random variable A is independent of the random variable B if
knowing the value of B does not change the probability of A. Extending the
scenario to the case of three random variables:

Definition 3.17. Events A, B, and C are said to be mutually independent
if the following equalities hold:

a) P (A ∩B) = P (A) P (B)

b) P (A ∩ C) = P (A) P (C)

c) P (B ∩ C) = P (B) P (C)

d) P (A ∩B ∩ C) = P (A) P (B) P (C)

3.3.1 Conditional Probability and Independence for Discrete
Random Variables

In order to develop the concepts of conditional probability and independence,
we start by analyzing the discrete bivariate case. As a starting point, we define
the marginal probability of a random variable as the probability that a given
value of one random variable will occur (i.e., X = xi) regardless of the value
of the other random variable. For this discussion, we simplify our notation
slightly so that P [X = xi ∩ Y = yj ] = P [X = xi, Y = yj ] = P [xi, yj ]. The
marginal distribution for xi can then be defined as

P [xi] =
m∑
j=1

P [xi, yj ] . (3.43)

Turning to the binomial probability presented in Table 3.3, the marginal prob-
ability that X = x1 (i.e., X = 0) can be computed as

P [x1] = P [x1| y1] + P [x1| y2] + · · ·P [x1| y6]

= 0.01315 + 0.04342 + 0.05790 + 0.03893 + 0.01300 + 0.00158 = 0.16798.
(3.44)

By repetition the marginal value for each Xi and Yj is presented in Table 3.3.
Applying a discrete form of Bayes’ theorem,

P [xi| yj ] =
P (xi, yj)

P (yj)
(3.45)

we can compute the conditional probability of X = 0 given Y = 2 as

P [x1| y3] =
0.581

0.3456
= 0.16881. (3.46)
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TABLE 3.4
Binomial Conditional Probabilities

X P [X,Y = 2] P [Y = 2] P [XY = 2] P [X]
0 0.05790 0.34469 0.16798 0.16798
1 0.12408 0.34469 0.35998 0.35998
2 0.10640 0.34469 0.30868 0.30870
3 0.04574 0.34469 0.13270 0.13270
4 0.00978 0.34469 0.02837 0.02838
5 0.00079 0.34469 0.00229 0.00227

Table 3.4 presents the conditional probability for each value of X given Y = 2.
Next, we offer a slightly different definition of independence for the discrete

bivariate random variable.

Definition 3.18. Discrete random variables are said to be independent if
the events X = xi and Y = yj are independent for all i, j. That is to say,
P (xi, yj) = P (xi) P (yj).

To demonstrate the consistency of Definition 3.18 with Definition 3.16, note
that

P [xi] = P [xi| yj ]⇒ P [xi] =
P [xi, yj ]

P [yj ]
. (3.47)

Therefore, multiplying each side of the last equality in Equation 3.47 yields
P [xi]× P [yj ] = P [xi, yj ].

Thus, we determine independence by whether the P [xi, yj ] values equal
P [xi]× P [yj ]. Taking the first case, we check to see that

P [x1]× P [y1] = 0.1681× 0.0778 = 0.0131 = P [x1, y1] . (3.48)

Carrying out this process for each cell in Table 3.3 confirms the fact that
X and Y are independent. This result can be demonstrated in a second way
(more consistent with Definition 3.18). Note that the P [X|Y = 2] column in
Table 3.4 equals the P [X] column – the conditional is equal to the marginal
in all cases.

Next, we consider the discrete form of the uncorrelated normal distribution
as presented in Table 3.5. Again, computing the conditional distribution of X
such that Y = 2 yields the results in Table 3.6.

Theorem 3.19. Discrete random variables X and Y with the probability dis-
tribution given in Table 3.1 are independent if and only if every row is pro-
portional to any other row, or, equivalently, every column is proportional to
any other column.

Finally, we consider a discrete form of the correlated normal distribution
in Table 3.7. To examine whether the events are independent, we compute
the conditional probability for X when Y = 2 and compare this conditional
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TABLE 3.6
Uncorrelated Normal Conditional Probabilities

X P [X,Y = 2] P [Y = 2] P [XY = 2] P [X]
0 0.02520 0.35222 0.07155 0.07154
1 0.08503 0.35222 0.24141 0.24142
2 0.13191 0.35222 0.37451 0.37451
3 0.08488 0.35222 0.24099 0.24098
4 0.02259 0.35222 0.06414 0.06413
5 0.00261 0.35222 0.00741 0.00741

distribution with the marginal distribution of X. The results presented in
Table 3.8 indicate that the random variables are not independent.

3.3.2 Conditional Probability and Independence for
Continuous Random Variables

The development of conditional probability and independence for continu-
ous random variables follows the same general concepts as discrete random
variables. However, constructing the conditional formulation for continuous
variables requires some additional mechanics. Let us start by developing the
conditional density function.

Definition 3.20. Let X have density f (x). The conditional density of X
given a ≤ X ≤ b, denoted by f (x| a ≤ X ≤ b), is defined by

f (x| a ≤ X ≤ b) =
f(x)∫ b

a

f(x)dx

for a ≤ x ≤ b,

= 0 otherwise.

(3.49)

Notice that Definition 3.20 defines the conditional probability for a single
continuous random variable conditioned on the fact that the random variable
is in a specific range (a ≤ X ≤ b). This definition can be expanded slightly by
considering any general range of the random variable X (X ∈ S).

Definition 3.21. Let X have the density f(x) and let S be a subset of the
real line such that P (X ∈ S) > 0. Then the conditional density of X given
X ∈ S, denoted by f (x|S), is defined by

f (x|S) =
f (x)

P (X ∈ S)
forx ∈ S

= 0 otherwise.

(3.50)
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TABLE 3.8
Correlated Normal Conditional Probabilities

X P [X,Y = 2] P [Y = 2] P [XY = 2] P [X]
0 0.02632 0.36260 0.07259 0.07890
1 0.08774 0.36260 0.24197 0.24057
2 0.13529 0.36260 0.37311 0.36216
3 0.08711 0.36260 0.24024 0.23962
4 0.02343 0.36260 0.06462 0.06962
5 0.00271 0.36260 0.00747 0.00916

To develop the conditional relationship between two continuous random
variables (i.e., f (x| y)) using the general approach to conditional density func-
tions presented in Definitions 3.20 and 3.21, we have to define the marginal
density (or marginal distribution) of continuous random variables.

Theorem 3.22. Let f (x, y) be the joint density of X and Y and let f (x) be
the marginal density of X. Then

f (x) =

∫ ∞
−∞

f (x, y) dy. (3.51)

Going back to the distribution function from Example 3.11, we have

f (x, y) = xye−(x+y). (3.52)

To prove that this is a proper distribution function, we limit our consideration
to non-negative values of x and y (i.e., f (x, y) ≥ 0 if x, y ≥ 0). From our
previous discussion it is also obvious that∫ ∞

0

∫ ∞
0

f (x, y) dxdy =

(∫ ∞
0

xe−xdx

)(∫ ∞
0

ye−ydy

)

=

(
−
(
xe−x

∣∣∞
0

+

∫ ∞
0

e−xdx

)(
−
(
ye−y

∣∣∞
0

+

∫ ∞
0

e−ydy

)
= (− (∞ · 0− 0 · 1)− (0− 1)) (− (∞ · 0− 0 · 1)− (0− 1)) = 1.

(3.53)

Thus, this is a proper density function. The marginal density function for x
follows this formulation:

f (x) =

∫ ∞
0

f (x, y) dy =
(
xe−x

) ∫ ∞
0

ye−ydy

=
(
xe−x

)(
−
(
ye−y

∣∣∞
0

+

∫ ∞
0

e−ydy

)
= xe−x.

(3.54)
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FIGURE 3.2
Quadratic Probability Density Function.

Example 3.23. Consider the continuous bivariate distribution function

f (x, y) =
3

2

(
x2 + y2

)
for x, y ∈ [0, 1] (3.55)

which is depicted graphically in Figure 3.2. First, to confirm that Equa-
tion 3.55 is a valid distribution function,

3

2

∫ 1

0

(
x2 + y2

)
dx =

3

2

(
1

3
x3 +

1

3
y3

∣∣∣∣1
0

=
3

2

(
1

3
+

1

3

)
= 1.

(3.56)

Further, f (x, y) ≥ 0 for all x, y ∈ [0, 1]. To prove this rigorously we would
show that f (x, y) is at a minimum at {x, y} = {0, 0} and that the derivative
of f (x, y) is positive for all x, y ∈ [0, 1].

This example has a characteristic that deserves discussion. Notice that
f (1, 1) = 3 > 1; thus, while the axioms of probability require that f (x, y) ≥ 0,
the function can assume almost any positive value as long as it integrates
to one. Departing from the distribution function in Equation 3.55 briefly,
consider the distribution function g (z) = 2 for z ∈ [0, 1/2]. This is a uniform
distribution function with a more narrow range than the U [0, 1]. It is valid
because g (z) ≥ 0 for all z and∫ 1/2

0

2dz = 2
(
z|1/20 = 2

(
1

2
− 0

)
= 1. (3.57)
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Hence, even though a distribution function has values greater than one, it may
still be a valid density function.

Returning to the density function defined in Equation 3.55, we derive the
marginal density for x:

f (x) =

∫ 1

0

3

2

(
x2 + y2

)
dy

=
3

2
x2

∫ 1

0

dy +
3

2

∫ 1

0

y2dy

=
3

2
x2 (y|10 +

3

2

(
1

3
y3

∣∣∣∣1
0

=
3

2
x2 +

1

2
.

(3.58)

While the result of Equation 3.58 should be a valid probability density function
by definition, it is useful to make sure that the result conforms to the axioms
of probability (e.g., it provides a check on your mathematics). First, we note
that f (x) ≥ 0 for all x ∈ [0, 1]. Technically, f (x) = 0 if x /∈ [0, 1]. Next, to
verify that the probability is one for the entire sample set,∫ 1

0

(
3

2
x2 +

1

2

)
=

3

2

∫ 1

0

x2dx+
1

2

∫ 1

0

dx

=
3

2

(
1

3
x3

∣∣∣∣1
0

+
1

2

(
x|10

=
1

2
+

1

2
= 1.

(3.59)

Thus, the marginal distribution function from Equation 3.58 meets the criteria
for a probability measure.

Next, we consider the bivariate extension of Definition 3.21.

Definition 3.24. Let (X,Y ) have the joint density f (x, y) and let S be
a subset of the plane which has a shape as in Figure 3.3. We assume that
P [(X,Y ) ∈ S] > 0. Then the conditional density of X given (X,Y ) ∈ S,
denoted f (x|S), is defined by

f (x|S) =


∫ g(x)

h(x)

f (x, y) dy

P [(X,Y ) ∈ S]
for a ≤ x ≤ b,

0 otherwise.

(3.60)
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FIGURE 3.3
Conditional Distribution for a Region of a Bivariate Uniform Distribution.

Building on Definition 3.24, consider the conditional probability of x < y for
the bivariate uniform distribution as depicted in Figure 3.3.

Example 3.25. Suppose f (x, y) = 1 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0
otherwise. Obtain f (x|X < Y ).

f (x|X < Y ) =

∫ 1

x

dy∫ 1

0

∫ 1

x

dydx

=
(y|1x∫ 1

0

(y|1x dx

=
1− x∫ 1

0

(1− x) dx

=
1− x(

x− 1

2
x2

∣∣∣∣1
0

= 2 (1− x) .

(3.61)
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FIGURE 3.4
Conditional Distribution of a Line for a Bivariate Uniform Distribution.

Notice the downward sloping nature of Equation 3.61 is consistent with the
area of the projection in the upper right diagram of Figure 3.3. Initially each
increment of y implies a fairly large area of probability (i.e., the difference
1− x). However, as y increases, this area declines.

Suppose that we are interested in the probability of X along a linear
relationship Y = y1 + cX. As a starting point, consider the simple bivariate
uniform distribution that we have been working with where f (x, y) = 1.
We are interested in the probability of the line in that space presented in
Figure 3.4. The conditional probability that X falls into [x1, x2] given Y =
y1 + cX is defined by

P (x1 ≤ X ≤ x2|Y = y1 + cX) =

lim
y2→y1

P (x1 ≤ X ≤ x2|y1 + cX ≤ Y ≤ y2 + cX)
(3.62)

for all x1, x2 satisfying x1 ≤ x2. Intuitively, as depicted in Figure 3.5, we are
going to start by bounding the line on which we want to define the conditional
probability (i.e., Y = y1 + cX ≤ Y = y∗1 + cX ≤ Y = y2 + CX). Then we
are going to reduce the bound y1 → y2, leaving the relationship for y∗1 . The
conditional density of X given Y = y1 + cX, denoted by f (x|Y = y1 + cX),
if it exists, is defined to be a function that satisfies

P (x1 ≤ X ≤ x2|Y = y1 + cX) =

∫ x2

x1

f (x|Y = y1 + cX) dx. (3.63)
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FIGURE 3.5
Bounding the Conditional Relationship.

In order to complete this proof we will need to use the mean value theorem
of integrals.

Theorem 3.26. Let f (x) be a continuous function defined on the closed
interval [a, b]. Then there is some number X in that interval (a ≤ X ≤ b)
such that ∫ b

a

f (x) dx = (b− a) f (X) . (3.64)

[48, p. 45]

The intuition for this proof is demonstrated in Figure 3.6. We don’t know what
the value of X is, but at least one X satisfies the equality in Equation 3.64.

Theorem 3.27. The conditional density f (x|Y = y1 + cX) exists and is
given by

f (x|Y = y1 + cX) =
f (x, y1 + cx)∫ ∞

−∞
f (x, y + cx) dx

(3.65)

provided the denominator is positive.
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FIGURE 3.6
Mean Value of Integral.

Proof. We have

lim
y2→y1

P (x1 ≤ X ≤ x2| y1 + cX ≤ Y ≤ y2 + cX)

= lim
y2→y1

∫ x2

x1

∫ y2+cx

y1+cx

f (x, y) dydx∫ ∞
−∞

∫ y2+cx

y1+cx

f (x, y) dxdy

.

(3.66)

Thus, by the mean value of integration,

lim
y2→y1

∫ x2

x1

∫ y2+cx

y1+cx

f (x, y) dydx∫ ∞
−∞

∫ y2+cx

y1+cx

f (x, y) dxdy

= lim
y1→y2

∫ x2

x1

f (x, y∗ + cx) dx∫ ∞
−∞

f (x, y∗ + cx) dx

(3.67)

where y1 ≤ y∗ ≤ y2. As y2 → y1, y∗ → y1, hence

lim
y1→y2

∫ x2

x1

f (x, y∗ + cx) dx∫ ∞
−∞

f (x, y∗ + cx) dx

=

∫ x2

x1

f (x, y1 + cx) dx∫ ∞
−∞

f (x, y1 + cx) dx

. (3.68)
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The transition between Equation 3.67 and Equation 3.68 starts by assuming
that for some

y∗ ∈ [y1, y2]⇒
∫ y2+cx

y1+cx

f (x, y) dxdy = f (x, y∗ + cx) . (3.69)

Thus, if we take the limit such that y2 → y1 and y1 ≤ y∗ ≤ y2, then y∗ → y1

and
f (x, y∗ + cx)→ f (x, y1 + cx) . (3.70)

Finally, we consider the conditional probability of X given that Y is re-
stricted to a single point.

Theorem 3.28. The conditional density of X given Y = y1, denoted by
f (x| y1), is given by

f (x| y1) =
f (x, y1)

f (y1)
. (3.71)

Note that a formal statement of Theorem 3.28 could follow Theorem 3.27,
applying the mean value of the integral to a range of X.

One would anticipate that continuous formulations of independence could
follow the discrete formulation such that we attempt to show that f (x) =
f (x| y). However, independence for continuous random variables simply re-
lates to the separability of the joint distribution function.

Definition 3.29. Continuous random variables X and Y are said to be in-
dependent if f (x, y) = f (x) f (y) for all x and y.

Again returning to Example 3.11,

f (x, y) = xy exp [− (x+ y)] = (x exp [−x]) (y exp [−y]) . (3.72)

Hence, X and Y are independent. In addition, the joint uniform distri-
bution function is independent because f (x, y) = 1 = g (x)h (y) where
g (x) = h (y) = 1. This simplistic definition of independence can be easily
extended to T random variables.

Definition 3.30. A finite set of continuous random variables X,Y, Z, · · · are
said to be mutually independent if

f (x, y, z, · · · ) = g (x)h (y) i (z) · · · . (3.73)

A slightly more rigorous statement of independence for bivariate continu-
ous random variables is presented in Theorem 3.31.

Theorem 3.31. Let S be a subset of the plane such that f (x, y) > 0 over S
and f (x, y) = 0 outside of S. Then X and Y are independent if and only if
S is a rectangle (allowing −∞ or ∞ to be an end point) with sides parallel
to the axes and f (x, y) = g (x) /h (y) over S, where g (x) and h (y) are some
functions of x and y, respectively. Note that g (x) = cf (x) for some c, h (y) =
c−1f (y).
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3.4 Cumulative Distribution Function

Another transformation of the density function is the cumulative density func-
tion, which gives the probability that a random variable is less than some
specified value.

Definition 3.32. The cumulative distribution function of a random variable
X, denoted F (x), is defined by

F (x) = P (X < x) (3.74)

for every real x. In the case of a discrete random variable

F (xi) =
∑
xj≤xi

P (xj) . (3.75)

In the case of a continuous random variable

F (x) =

∫ x

−∞
f (t) dt. (3.76)

In the case of the uniform distribution

F (x) =

∫ x

−∞
dt⇒

 0 if x ≤ 0
(t|x0 if 0 < x < 1

1 if x > 1.
(3.77)

The cumulative distribution function for the uniform distribution is presented
in Figure 3.7.

We will develop the normal distribution more fully over the next three
sections, but certain aspects of the normal distribution add to our current
discussion. The normal distribution is sometimes referred to as the bell curve
because its density function, presented in Figure 3.8, has a distinctive bell
shape. One of the vexing characteristics of the normal curve is the fact that its
anti-derivative does not exist. What we know about the integral of the normal
distribution we know because we can integrate it over the range (−∞,∞).
Given that the anti-derivative of the normal does not exist, we typically rely
on published tables for finite integrals. The point is that Figure 3.9 presents
an empirical cumulative distribution for the normal density function.

3.5 Some Useful Distributions

While there are an infinite number of continuous distributions, a small number
of distributions account for most applications in econometrics.
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FIGURE 3.7
Cumulative Distribution of the Uniform Distribution.

FIGURE 3.8
Normal Distribution Probability Density Function.
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FIGURE 3.9
Normal Cumulative Distribution Function.

A. Uniform distribution: In our discussion we have made frequent use of
the U [0, 1] distribution. A slightly more general form of this distribution
can be written as

f (x|a, b) =

{ 1

b− a
if a ≤ x ≤ b

0 otherwise.
(3.78)

Apart from the fact that it is relatively easy to work with, the uniform
distribution is important for a wide variety of applications in econometrics
and applied statistics. Interestingly, one such application is sampling
theory. Given that the cumulative density function for any distribution
“maps” into the unit interval (i.e., F (x)→ [0, 1]), one way to develop sam-
ple information involves drawing a uniform random variable (z ∼ U [0, 1]
read as z is distributed U [0, 1]) and determining the value of x associated
with that probability (i.e., x = F−1 (z) where F−1 (z) is called the inverse
mapping function).

B. Gamma distribution: The gamma distribution has both pure statisti-
cal uses and real applications to questions such as technical inefficiency
or crop insurance problems. Taking the statistical applications first, the
χ2 distribution is a form of a gamma distribution. The χ2 distribution
is important because if x is a standard normal distribution (i.e., a nor-
mal distribution with a mean of zero and a standard deviation of one)
x2 ∼ χ2. Thus, variances tend to have a χ2 distribution. From a technical
inefficiency or crop yield perspective, the one-sided nature (i.e., the fact
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that x > 0) makes it useful. Essentially, we assume that every firm is tech-
nically inefficient to some degree. Thus, we use the gamma distribution by
letting x be the level of technical inefficiency. Mathematically, the gamma
distribution can be written as

f (x |α, β ) =


1

Γ (α)βα
xα−1e−x/β given 0 < x <∞, α > 0, β > 0

0 otherwise.

(3.79)

Unfortunately, the gamma function Γ (α) is also another numerical func-
tion (e.g., like the cumulative distribution function presented in Section
3.4). It is defined as

Γ (α) =

∫ ∞
0

tα−1etdt. (3.80)

C. Normal distribution: The normal distribution is to the econometrician
what a pair of pliers is to a mechanic. Its overall usefulness is related to the
central limit theorem, which essentially states that averages tend to be
normally distributed. Given that most estimators including ordinary least
squares are essentially weighted averages, most of our parameter estimates
tend to be normally distributed. In many cases throughout this textbook
we will rely on this distribution. Mathematically, this distribution can be
written as

f
(
x
∣∣µ, σ2

)
=

1√
2πσ

exp

[
− (x− µ)

2

2σ2

]
for all −∞ < x <∞ (3.81)

where µ is the mean and σ2 is the variance.

D. Beta distribution: The bounds on the beta distribution make it useful
for estimation of the Bernoulli distribution. The Bernoulli distribution
is the standard formulation for two-outcome random variables like coin
tosses.

P [xi] = pxi
(
1− p1−xi

)
, xi = {0, 1} , 0 ≤ p ≤ 1. (3.82)

Given the bounds of the probability of a “heads,” several Bayesian estima-
tors of p often use the beta distribution, which is mathematically written

f (p |α, β ) =


1

B (α, β)
pα−1 (1− p)β−1

, for 0 < p < 1, α > 0, β > 0

0 otherwise.

(3.83)

The beta function (B (α, β)) is defined using the gamma function:

B (α, β) =
Γ (α) Γ (β)

Γ (α+ β)
. (3.84)



Random Variables and Probability Distributions 75

3.6 Change of Variables

Change of variables is a technique used to derive the distribution function
for one random variable by transforming the distribution function of another
random variable.

Theorem 3.33. Let f (x) be the density of X and let Y = φ (X), where φ is
a monotonic differentiable function. Then the density g (y) of Y is given by

g (y) = f
[
φ−1 (y)

]
×
∣∣∣∣dφ−1 (y)

d y

∣∣∣∣ . (3.85)

The term monotonic can be simplified to a “one-to-one” function. In other
words, each x is associated with one y over the range of a distribution func-
tion. Hence, given an x, a single y is implied (e.g., the typical definition of a
function) and for any one y, a single x is implied.

Example 3.34. Suppose f (x) = 1 for 0 < x < 1 and 0 otherwise. Assuming
Y = X2, what is the distribution function g (y) for Y ? First, it is possible
to show that Y = X2 is a monotonic or one-to-one mapping over the rele-
vant range. Given this one-to-one mapping, it is possible to derive the inverse
function:

φ (x) = x2 ⇒ φ−1 (y) =
√
y. (3.86)

Following the definition:

g (y) = 1

∣∣∣∣12y− 1
2

∣∣∣∣ =
1

2
√
y
. (3.87)

Extending the formulation in Equation 3.33, we can envision a more com-
plex mapping that is the sum of individual one-to-one mappings.

Theorem 3.35. Suppose the inverse of φ (x) is multivalued and can be written
as

xi = ψi (y) i = 1, 2, . . . ny. (3.88)

Note that ny indicates the possibility that the number of values of x varies
with y. Then the density g (y) of Y is given by

g (y) =

ny∑
i=1

f [ψi (y)]

|φ′ [ψi (y)]|
(3.89)

where f (.) is the density of X and φ′ is the derivative of φ.
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One implication of Theorem 3.35 is for systems of simultaneous equations.
Consider a very simplified demand system:[

1 1/2
1 −1/3

] [
y1

y2

]
=

[
10 4
−3 0

] [
x1

x2

]
(3.90)

where y1 is the quantity supplied and demanded, y2 is the price of the good,
x1 is the price of an alternative good, and x2 is consumer income. We develop
the matrix formulations in Chapter 10, but Equation 3.90 can be rewritten

y1 =
11

5
x1 +

8

5
x2

y2 =
78

5
x1 +

24

5
x2.

(3.91)

The question is then – if we know something about the distribution of x1 and
x2, can we derive the distribution of y1 and y2? The answer of course is yes.

Theorem 3.36. Let f (x1, x2) be the joint density of a bivariate random
variable (X1, X2) and let (Y1, Y2) be defined by a linear transformation

Y1 = a11X1 + a12X2

Y2 = a21X1 + a22X2.
(3.92)

Suppose a11a22 − a12a21 6= 0 so that the equations can be solved for X1 and
X2 as

X1 = b11Y1 + b12Y2

X2 = b21Y1 + b22Y2.
(3.93)

Then the joint density g (y1, y2) of (Y1, Y2) is given by

g (y1, y2) =
f (b11y1 + b12y2, b21y1 + b22y2)

|a11a22 − a12a21|
(3.94)

where the support of g, that is, the range of (y1, y2) over which g is positive,
must be appropriately determined.

Theorem 3.36 is used to derive the Full Information Maximum Likeli-
hood for systems with endogenous variables (i.e., variables with values that
are determined inside the system like the quantity supplied and demanded,
and the price that clears the market). Appendix B presents the maximum
likelihood formulation for a system of equations.

3.7 Derivation of the Normal Distribution Function

As stated in Section 3.5, the normal distribution forms the basis for many
problems in applied econometrics. However, the formula for the normal distri-
bution is abstract to say the least. As a starting point for understanding the



Random Variables and Probability Distributions 77

normal distribution, consider the change in variables application presented in
Example 3.37.

Example 3.37. Assume that we want to compute the probability of an event
that occurs within the unit circle given the standard bivariate uniform dis-
tribution function (f (x, y) = 1 with Y 2 ≤ 1 − X2 given 0 ≤ x, y ≤ 1). The
problem can be rewritten slightly – Y ≤

√
1−X2 → Y 2 + X2 ≤ 1. Hence,

the problem can be written as

P
(
X2 + Y 2 < 1

)
=

∫ 1

0

(∫ √1−x2

0

dy

)
dx =

∫ 1

0

√
1− x2dx. (3.95)

As previously stated, we will solve this problem using integration by change
in variables. By trigonometric identity 1 = sin2 (x) + cos2 (x). Therefore,
sin2 (x) = 1 − cos2 (x). The change in variables is then to let x = cos (t).
The integration by change in variables is then∫ x2

x1

f (x) dx =

∫ t2

t1

f [φ (t)]φ′ (t) dt (3.96)

such that t1 = φ−1 (x1) and t2 = φ−1 (x2). Thus, in explicit form our trans-
formation becomes∫ x2

x1

√
1− x2dx =

∫ t2

t1

√
1− cos2 (t)

∂ cos (t)

∂t
dt. (3.97)

Given that

1 = sin2 (t) + cos2 (t) implies sin (t) =
√

1− cos2 (t) and

∂ cos (t)

∂t
= − sin (t)

(3.98)

the transformed integral becomes∫ t2

t1

sin (t)×− sin (t) dt =

∫ t2

t1

− sin2 (t) dt. (3.99)

To complete the transformation we derive the bounds of integration. However,
notice that t1 = cos−1 (0) = π/2 (or 90 degrees) while t2 = cos−1 (1) = 0,
implying ∫ 0

π/2

− sin2 (t) dt (3.100)

or that the order of the bounds of the integral are opposite from the standard
case. The solution is to reverse the order of integration:∫ 0

π/2

− sin2 (t) dt =

∫ π/2

0

sin2 (t) dt. (3.101)
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FIGURE 3.10
Simple Quadratic Function.

The value of the integral is then∫ π/2

0

sin2 (t) dt =

[
−1

2
sin (t) cos (t) +

1

2
t

∣∣∣∣π/2
0

=
π

4
. (3.102)

While Example 3.37 appears simple enough, it opens the door to some very
powerful tools of functional analysis. Specifically, while most transformations
appear minor (i.e., taking the square root of a variable in Example 3.34 or a
linear transformation of two variables in Theorem 3.36) more radical trans-
formations of the variable space are possible. One such transformation is the
polar functional form.

Refer to the quadratic function

y = f (x) = 5− x2

5
x ∈ [−5, 5] (3.103)

depicted in Figure 3.10. Consider the point f(4.0) = 1.8; the length of the ray
from the origin to that point on the function can be computed as

r (4, 1.8) =
√

42 + 1.82 = 4.38. (3.104)

We can also compute the value of the inscribed angle. To do this we start by
noting that

tan (θ (4, 1.8)) =
1.8

4
= 0.45⇒ θ (4, 1.8) = tan−1 (0.45) = 0.1346π. (3.105)

Repeating the process for f (2) = 4.2 yields r (2, 4.2) = 4.20 and θ (2, 4.2) =
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FIGURE 3.11
Polar Transformation of Simple Quadratic.

0.3585π. Applying this transformation at a sequence of points between x = −5
and x = 5 yields the transformation presented in Figure 3.11. Given that
we can define a function g (θ, r (θ)) that defines these points, we have an
alternative respresentation of the simple quadratic function in Equation 3.103.
For example, we could approximate the function as

r (θ) = 4.6584. (3.106)

The approximation error could be reduced by adding additional terms (i.e.,
r (θ) = a+ bθ + cθ2 – see the discussion in Appendix C).

Intuitively, we could integrate the simple quadratic following Example 3.37,
but it is obvious that such an integration would be more trouble than it is
worth. However, the polar transformation simplifies some complex integrals
such as the normal density function.

To develop the normal distribution, we start with the standard normal
(i.e., x ∼ N (0, 1)), which can be written as

f (x) =
1√
2π
e
−x

2

2 . (3.107)

First, we need to demonstrate that the distribution function does integrate
to one over the entire sample space, which is −∞ to ∞. This is typically
accomplished by proving the constant. Let us start by assuming that

I =

∫ ∞
−∞

e
−y

2

2 dy. (3.108)
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Squaring this expression yields

I2 =

∫ ∞
−∞

e
−y

2

2 dy

∫ ∞
−∞

e
−x

2

2 dx

=

∫ ∞
−∞

e
−y

2 + x2

2 dydx.

(3.109)

The trick to this integration is changing the variables into a polar form. Fol-
lowing the preceding discussion,

r =
√
x2 + y2

θ = tan−1 (x/y)
y = r cos (θ)
x = r sin (θ) .

(3.110)

We apply the change in variable technique to change the integral into the
polar space. First, we transform the variables of integration

dydx = rdrdθ. (3.111)

Folding these two results together we get

I2 =

∫ 2π

0

∫ ∞
0

re
−r

2

2 drdθ =

∫ 2π

0

dθ = 2π. (3.112)

A couple of points about the result in Equation 3.112; first note that

∂e
−r

2

2

∂r
= −2r

2
e
−r

2

2 ⇒
∫
re
−r

2

2 dr = e
−r

2

2 . (3.113)

Second, the distance function is non-negative by definition (i.e.,
√
x2 + y2 ≥

0). Hence, the range of the inner integral in Equation 3.112 is r ∈ [0,∞).
Taking the square root of each side yields

I =
√

2π. (3.114)

Thus, we know that ∫ ∞
−∞

1√
2π
e−

y2

2 dy = 1. (3.115)

The expression in Equation 3.115 is referred to as the standard normal.
A more general form of the normal distribution function can be derived by
defining a transformation function. Defining

y = a+ bx

x =
y − a
b

.
(3.116)
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by the change in variable technique, we have

f (x) =
1√
2π
e
− (y − a)

2

2b2
∣∣∣∣1b
∣∣∣∣ . (3.117)

As presented in Section 3.5 we typically denote a as µ (i.e., the mean) and b
as σ2 (i.e., the variance).

3.8 An Applied Sabbatical

In the past, farmers received assistance during disasters (i.e., drought or
floods) through access to concessionary credit. Increasingly, during the last
10 years of the 20th century, agricultural policy in the United States shifted
toward market-based crop insurance. This insurance was supposed to be ac-
tuarially sound so that producers would make decisions that were consistent
with maximizing economic surplus. Following the discussion of [36], the loss
of a crop insurance event could be parameterized as

L = AC −AR (3.118)

where C is the level of coverage (i.e., the number of bushels guaranteed under
the insurance policy, typically 10, 20, or 40 percent of some expected level of
yield), A is the probability of that level of yield, R is the expected value of the
yield given that an insured event has occurred, L is the insurance indemnity or
actuarially fair value of the insurance. Given these definitions, the insurance
indemnity becomes

L =

∫ C

∞
(C − y) dF (y) . (3.119)

This loss is in yield space; it ignores the price of the output. Apart from the
question of prices, a critical part of the puzzle is the distribution function

dF (y) = f (y) dy. (3.120)

Differences in the functional form of the distribution function imply differ-
ent insurance premiums for producers. The goal of the selection of a distribu-
tion function is for the distribution function to match the actual distribution
function of crop yields. Differences between the actual distribution function
and the empirical form used to estimate the premium leads to an economic
loss. If a distribution systematically understates the probability of lower re-
turn, farmers could make an arbitrage gain by buying crop insurance. If a
distribution systematically overstates the probability of a lower return, farm-
ers would not buy the insurance (it is not a viable instrument).

The divergence between the relative probabilities is a function of the flex-
ibility of the distribution’s moments (developed more fully in Chapter 4).
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• Expected value: First moment

µ1 =

∫ ∞
−∞

xf (x) dx. (3.121)

• Variance: Second central moment

µC2 =

∫ ∞
−∞

(x− µ1)
2
f (x) dx. (3.122)

• Skewness: Third central moment

µCc =

∫ ∞
−∞

(x− µ1)
3
f (x) dx. (3.123)

• Kurtosis: Fourth central moment

µC4 =

∫ ∞
−∞

(x− µ1)
4
f (x) dx. (3.124)

Each distribution implies a certain level of flexibility between the moments.
For the normal distribution, all odd central moments are equal to zero, which
implies that the distribution function is symmetric. In addition, all even mo-
ments are a function of the second central moment (i.e., the variance). Moss
and Shonkwiler [33] propose a distribution function that has greater flexibility
based on the normal (specifically in the third and fourth moments). This new
distribution (presented in Figure 3.12) is accomplished by parametric trans-
formation to normality. The distribution is called an inverse hyperbolic sine
transformation:

et =

ln

(
θet +

[
(θet)

2
+ 1
] 1

2

)
θ

εt = zt − δ.

(3.125)

Norwood, Roberts, and Lusk [37] evaluate the goodness of yield distributions
using a variant of Kullback’s [28] information criteria:

I =

∫ ∞
−∞

f (X|θf ) ln

(
f (X|θf )

g (X|θg)

)
≥ 0. (3.126)

Like most informational indices, this index reaches a minimum of zero if the
two distribution functions are identical everywhere. Otherwise, a positive num-
ber reflects the magnitude of the divergence. The Norwood, Roberts, and Lusk
[37] model then suggests that a variety of models can be tested against each
other by comparing their out-of-sample measure. This measure is actually
constructed byletting the probability of an out-of-sample forecast equal 1/N
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FIGURE 3.12
Inverse Hyperbolic Sine Transformation of the Normal Distribution.

where N is the number of out-of-sample draws.

Î =
N∑
i=1

1

N
ln

(
1/N

g (X|θg)

)

=
N∑
i=1

[
1

N
ln

(
1

N

)
− 1

N
ln (g (X|θg))

]

=
N

N
ln

(
1

N

)
− 1

N

N∑
i=1

ln (g (X|θg))

⇒ Î ∝ Ĩ = − 1

N

N∑
i=1

ln (g (X|θg)) .

(3.127)

Ignoring the constants, the measure of goodness becomes negative. The
more negative the number, the less good is the distributional fit. Norwood,
Roberts, and Lusk then construct a number of out-of-sample measures of I.

3.9 Chapter Summary

• Random Variables are real numbers whose outcomes are elements of a
sample space following a probability function.
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– Discrete Random Variables take on a finite number of values.

– Continuous Random Variables can take on an infinite number of
values. Hence, the probability of any one number occurring is zero.

• In econometrics, we are typically interested in a continuous distribution
function (f (x)) defined on a set of real numbers (i.e., a subset of the
real number line – f (x) is defined on x ∈ [x0, x1]). The properties of the
distribution function then become:

– f (x) ≥ 0 with f (x) > 0 for x ∈ [x0, x1].

–
∫ x1

x0
f (x) dx = 1.

– Additivity is typically guaranteed by the definition of a single valued
function on the real number line.

• Measure theory allows for a more general specification of probability func-
tions. However, in econometrics we typically limit our considerations to
simplier specifications defining random variables as subsets of the real
number space.

• If two (or more) random variables are independent, their joint probability
density function can be factored f (x, y) = f1 (x) f2 (y).

• The conditional relationship between two continuous random variables can
be written as

f (x| y) =
f (x, y0)∫ ∞

−∞
f (x, y) dx

∣∣∣∣
y=y0

. (3.128)

3.10 Review Questions

3-1R. Demonstrate that the outcomes of dice rolls meet the criteria for a
Borel set.

3-2R. Construct the probability of damage given the outcome of two die, one
with eight sides and one with six sides. Assume that damage occurs
when the six-sided die is 5 or greater, while the amount of damage
is given by the outcome of the eight-sided die. How many times does
damage occur given the outcomes from Table 3.2? What is the level
of that damage? Explain the outcome of damage using a set-theoretic
mapping.

3-3R. Explain why the condition that f (x, y) = f1 (x) f2 (y) is the same re-
lationship for independence as the condition that the marginal distri-
bution for x is equal to its conditional probability given y.
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TABLE 3.9
Discrete Distribution Functions for Bivariate Random Variables

Outcome Outcome for X
for Y 1 2 3

Density 1
1 0.075 0.150 0.075
2 0.100 0.200 0.100
3 0.075 0.150 0.075

Density 2
1 0.109 0.130 0.065
2 0.087 0.217 0.087
3 0.065 0.130 0.109

3.11 Numerical Exercises

3-1E. What is the probability of rolling a number less than 5 given that two
six-sided dice are rolled?

3-2E. Is the function

f (x) =
3

100

(
5− x2

5

)
(3.129)

a valid probability density function for x ∈ [−5, 5]?

3-3E. Derive the cumulative density function for the probability density
function in Equation 3.129.

3-4E. Is the function

f (x) =



x

2
, x ∈ [0, 1]

3

8
, x ∈ [2, 4]

0 otherwise

(3.130)

a valid probabilty density function?

3-5E. Given the probability density function in Equation 3.129, what is the
probability that x ≤ −0.75?

3-6E. Given the probability density function in Equation 3.130, what is the
probability that 0.5 ≤ x ≤ 3?

3-7E. Are the density functions presented in Table 3.9 independent?
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FIGURE 3.13
Continuous Joint Distribution.

3-8E. Consider the joint probability density function

f (x, y) = 0.9144xy exp (−x− y + 0.05
√
xy) (3.131)

as depicted in Figure 3.13. Are x and y independent?

3-9E. Consider the joint distribution function

f (x, y) =
1

4
for x ∈ [0, 2] y ∈ [0, 2] . (3.132)

Suppose that we transform the distribution by letting z =
√
x. Derive

the new distribution function and plot the new distribution function
over the new range.

3-10E. For Equation 3.132 compute the conditional probability density func-
tion for x given that y ≥ x.
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Given our discussion of random variables and their distributions in Chapter 3,
we can now start to define statistics or functions that summarize the informa-
tion for a particular random variable. As a starting point, Chapter 4 develops
the definition of the moments of the distribution. Moment is a general term
for the expected kth power of the distribution

E
[
xk
]

=

∫ ∞
∞

xkf (x) dx. (4.1)

The first moment of a distribution (i.e., k = 1) is typically referred to as the
mean of the distribution. Further, the variance of a distribution can be derived
using the mean and the second moment of the distribution. As a starting point,
we need to develop the concept of an expectation rigorously.

4.1 Expected Values

In order to avoid circularity, let us start by defining the expectation of a
function (g (X)) of a random variable X in Definition 4.1.

Definition 4.1. The expected value or mean of a random variable g (X)
denoted E [g (x)] is

87
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E [g (X)] =


∫ ∞
∞

g (x) f (x) dx if x is continuous∑
x∈X

g (x) fx if x is discrete.
(4.2)

Hence, the expectation is a weighted sum – the result of the function is
weighted by the distribution or density function. To demonstrate this con-
cept, consider the mean of the distribution (i.e., g (X) = X):

E [x] =

∫ ∞
−∞

xf (x) dx. (4.3)

For example, derive the mean of the exponential distribution

E [x] =

∫ ∞
0

1

λ
xe−λxdx

= −
(
xe−

x
λ

∣∣∞
0

+

∫ ∞
0

e−λxdx

= −
(
λe−

x
λ

∣∣∞
0

= λ.

(4.4)

The exponential distribution function can be used to model the probability
of first arrival. Thus, f (x = 1) would be the probability that the first arrival
will occur in one hour.

Given the definition of the expectation from Definition 4.1, the properties
of the expectation presented in Theorem 4.2 follow.

Theorem 4.2. Let X be a random variable and let a, b, and c be constants.
Then for any functions g1 (X) and g2 (X) whose expectations exist:

1. E [ag1 (X) + bg2 (X) + c] = aE [g1 (X)] + bE [g2 (X)] + c.

2. If g1 (X) ≥ 0 for all X, then E [g1 (X)] ≥ 0.

3. If g1 (X) ≥ g2 (X) for all X, then E [g1 (X)] ≥ E [g2 (X)].

4. If a ≤ g1 (X) ≤ b for all X, then a ≤ E [g1 (X)] ≤ b.

Result 1 follows from the linearity of the expectation. Result 2 can be further
strengthened in Jensen’s inequality (i.e., E [g (x)] ≥ g [E [x]] if ∂g (x) /∂x ≥ 0
for all x). Result 3 actually follows from result 1 (i.e., if a = 1 and b = −1
then g1 (x)− g2 (x) = 0⇒ E [g1 (x)]− E [g2 (x)] = 0).

A critical concept in computing expectations is whether either the sum (in
the case of discrete random variables) or the integral (in the case of continuous
random variables) is bounded. To introduce the concept of boundedness, con-
sider the expectation of a discrete random variable presented in Defintion 4.3.
In this discussion we denote the sum of the positive values of xi as

∑
+ and

the sum over negative values as
∑
−.
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TABLE 4.1
Expected Value of a Single-Die Roll

Number Probability xiP (xi)
1 0.167 0.167
2 0.167 0.333
3 0.167 0.500
4 0.167 0.667
5 0.167 0.833
6 0.167 1.000

Total 3.500

Definition 4.3. Let X be a discrete random variable taking the value x
with probability P (xi) , i = 1, 2, · · · . Then the expected value (expectation
or mean) of X, denoted E [X], is defined to be E [X] =

∑∞
i=1 xiP (xi) if the

series converges absolutely.

1. We can write E [X] =
∑

+ xiP (xi) +
∑
− xiP (xi) where in the first sum-

mation we sum for i such that xi > 0 (
∑

+ xi > 0) and in the second
summation we sum for i such that xi < 0 (

∑
− xi < 0).

2. If
∑

+ xiP (xi) =∞ and
∑
− xiP (xi) = −∞ then E [X] does not exist.

3. If
∑

+ xiP (xi) =∞ and
∑
− xiP (xi) is finite then we say E [X] =∞.

4. If
∑
− xiP (xi) = −∞ and

∑
+ xiP (xi) is finite then we say that E [X] =

−∞.

Thus the second result states that −∞ +∞ does not exist. Results 3 and 4
imply that if either the negative or positive sum is finite, the expected value
is determined by −∞ or ∞, respectively.

Consider a couple of aleatory or gaming examples.

Example 4.4. Given that each face of the die is equally likely, what is the
expected value of the roll of the die? As presented in Table 4.1, the expected
value of a single die roll with values xi = {1, 2, 3, 4, 5, 6} and each value being
equally likely is 3.50.

An interesting aspect of Example 4.4 is that the expected value is not part of
the possible outcomes – it is impossible to roll a 3.5.

Example 4.5. What is the expected value of a two-die roll? This time the
values of xi are the integers between 2 and 12 and the probabilities are no
longer equal (as depicted in Table 4.2). This time the expected value is 7.00.

The result in Example 4.5 explains many of the dice games from casinos.
Turning from the simple game expectations, consider an application from

risk theory.
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TABLE 4.2
Expected Value of a Two-Die Roll

Die 1 Die 2 Number xiP (xi) Die 1 Die 2 Number xiP (xi)
1 1 2 0.056 1 4 5 0.139
2 1 3 0.083 2 4 6 0.167
3 1 4 0.111 3 4 7 0.194
4 1 5 0.139 4 4 8 0.222
5 1 6 0.167 5 4 9 0.250
6 1 7 0.194 6 4 10 0.278
1 2 3 0.083 1 5 6 0.167
2 2 4 0.111 2 5 7 0.194
3 2 5 0.139 3 5 8 0.222
4 2 6 0.167 4 5 9 0.250
5 2 7 0.194 5 5 10 0.278
6 2 8 0.222 6 5 11 0.306
1 3 4 0.111 1 6 7 0.194
2 3 5 0.139 2 6 8 0.222
3 3 6 0.167 3 6 9 0.250
4 3 7 0.194 4 6 10 0.278
5 3 8 0.222 5 6 11 0.306
6 3 9 0.250 6 6 12 0.333

Total 7.000

Example 4.6. Expectation has several applications in risk theory. In general,
the expected value is the value we expect to occur. For example, if we assume
that the crop yield follows a binomial distribution, as depicted in Figure 4.1,
the expected return on the crop given that the price is $3 and the cost per
acre is $40 becomes $95 per acre, as demonstrated in Table 4.3.

Notice that the expectation in Example 4.6 involves taking the expectation of
a more general function (i.e., not simply taking the expected value of k = 1).

E [pXX − C] =
∑
i

[pxxi − C] P (xi) (4.5)

or the expected value of profit.
In the parlance of risk theory, the expected value of profit for the wheat

crop is termed the actuarial value or fair value of the game. It is the value
that a risk neutral individual would be willing to pay for the bet [32].

Another point about this value is that it is sometimes called the popula-
tion mean as opposed to the sample mean. Specifically, the sample mean is
an observed quantity based on a sample drawn from the random generating
function. The sample mean is defined as

x̄ =
1

N

N∑
i=1

xi. (4.6)
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FIGURE 4.1
Wheat Yield Density Function.

Table 4.4 presents a sample of 20 observations drawn from the theoretical
distribution above. Note that the sample mean for yield is smaller than the
population mean (33.75 for the sample mean versus 45.00 for the population
mean). It follows that the sample mean for profit is smaller than the population
mean for profit.

Another insight from the expected value and gambling is the Saint Peters-
burg paradox. The Saint Petersburg paradox involves the valuation of gambles
with an infinite value. The simplest form of the paradox involves the value of
a series of coin flips. Specifically, what is the expected value of a bet that pays
off $2 if the first toss is a head and 2 times that amount for each subsequent

TABLE 4.3
Expected Return on an Acre of Wheat

X P [X] xiP [xi] (pxxi − C) P (xi)
15 0.0001 0.0016 0.0005
20 0.0016 0.0315 0.0315
25 0.0106 0.2654 0.3716
30 0.0425 1.2740 2.1234
35 0.1115 3.9017 7.2460
40 0.2007 8.0263 16.0526
45 0.2508 11.2870 23.8282
50 0.2150 10.7495 23.6490
55 0.1209 6.6513 15.1165
60 0.0403 2.4186 5.6435
65 0.0060 0.3930 0.9372

Total 45.0000 95.0000
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TABLE 4.4
Sample of Yields and Profits

Observation Yield Profit
1 40 80
2 40 80
3 40 80
4 50 110
5 50 110
6 45 95
7 35 65
8 25 35
9 40 80
10 50 110
11 30 50
12 35 65
13 40 80
14 25 35
15 45 95
16 35 65
17 35 65
18 40 80
19 30 50
20 45 95

Mean 38.75 76.25

head? If the series of coin flips is HHHT, the payoff is $8 (i.e., 2 × 2 × 2 or
23). In theory, the expected value of this bet is infinity, but no one is willing
to pay an infinite price.

E [G] =
∞∑
i=1

2i2−i =
∞∑
i=1

1 =∞. (4.7)

This unwillingness to pay an infinite price for the gamble led to expected
utility theory.

Turning from discrete to continuous random variables, Definition 4.7
presents similar results for continuous random variables as developed for dis-
crete random variables in Definition 4.3.

Definition 4.7. Let X be a continuous random variable with density f (x).
Then, the expected value of X, denoted E [X], is defined to be E [X] =∫∞
−∞ xf (x) dx if the integral is absolutely convergent.

1. If
∫∞

0
xf (x) dx = ∞ and

∫ 0

−∞ xf (x) dx = −∞, we say that the expecta-
tion does not exist.

2. If
∫∞

0
xf (x) dx =∞ and

∫ 0

−∞ xf (x) dx is finite, then E [X] =∞.

3. If
∫ 0

−∞ xf (x) dx = −∞ and
∫∞

0
xf (x) dx is finite, then we write E [X] =

−∞.
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FIGURE 4.2
Standard Normal and Cauchy Distributions.

As in our discussion of the boundedness of the mean in the discrete probabil-
ity distributions, Definition 4.7 provides some basic conditions to determine
whether the continuous expectations are bounded. To develop the point, con-
sider the integral over the positive tails of two distribution functions: the
standard normal and Cauchy distribution functions. The mathematical form
of the standard normal distribution is given by Equation 3.107, while the
Cauchy distribution can be written as

g (x) =
1

π
(
1 + x2

) . (4.8)

Figure 4.2 presents the two distributions; the solid line depicts the standard
normal distribution while the broken line depicts the Cauchy distribution.
Graphically, these distributions appear to be similar. However, to develop the
boundedness we need to evaluate

x× f (x)⇒
∫ x

0

z × 1√
2π
e−z

2/2dz

x× g (x)⇒
∫ x

0

z × 1

π (1 + z)
dz.

(4.9)

Figure 4.3 presents the value of the variable times each density function. This
comparison shows the mathematics behind the problem with boundedness —
the value for the normal distribution (depicted as the solid line) converges
much more rapidly than the value for the Cauchy distribution (depicted with
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Function for Integration.

the broken line). The integral for each of the distributions (i.e., the left-hand
sides of Equation 4.9) are presented in Figure 4.4. Confirming the intuition
from Figure 4.3, the integral for the normal distribution is bounded (reach-
ing a maximum around 0.40) while the integral for the Cauchy distribution
is unbounded (increasing almost linearly throughout its range). Hence, the
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FIGURE 4.4
Integrals of the Normal and Cauchy Expectations.
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expectation for the normal exists, but the expectation of the Cauchy distri-
bution does not exist (i.e., −∞+∞ does not exist).

Moving to expectations of bivariate random variables, we start by defining
the expectation of a bivariate function defined on a discrete random variable
in Theorem 4.8.

Theorem 4.8. Let (X,Y ) be a bivariate discrete random variable taking value
(xi, yj) with probability P (xi, yj), i, j = 1, 2, · · · and let φ (xi, yi) be an arbi-
trary function. Then

E [φ (X,Y )] =
∞∑
i=1

∞∑
j=1

φ (xi, yj) P (xi, yj) . (4.10)

Implicit in Theorem 4.8 are similar boundedness conditions discussed in Def-
inition 4.3. Similarly, we can define the expectation of a bivariate continuous
random variable as

Theorem 4.9. Let (X,Y ) be a bivariate continuous random variable with
joint density function f (x, y), and let φ (x, y) be an arbitrary function. Then

E [φ (X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

φ (x, y) f (x, y) dxdy. (4.11)

Next, consider a couple of special cases. First, consider the scenario where
the bivariate function is a constant (φ (x, y) = α).

Theorem 4.10. If φ (x, y) = α is a constant, then E [α] = α.

Next, we consider the expectation of a linear function of the two random
variables (φ (x, y) = αx+ βy).

Theorem 4.11. If X and Y are random variables and α and β are constants,

E [αX + βY ] = αE [X] + βE [Y ] . (4.12)

Finally, we consider the expectation of the multiple of two independent ran-
dom variables (φ (x, y) = xy where x and y are independent).

Theorem 4.12. If X and Y are independent random variables, then
E [XY ] = E [X] E [Y ].

The last series of theorems is important to simplify decision making under
risk. In the crop example we have

π = pX − C (4.13)

where π is profit, p is the price of the output, X is the yield level and C is
the cost per acre. The distribution of profit along with its expected value is
dependent on the distribution of p,X, and C. In the example above, we assume
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that p and C are constant at p̃ and C̃. The expected value of profit is then

E [π = φ (p,X,C)] = E [pX − C] = p̃E [X]− C̃. (4.14)

As a first step, assume that cost is a random variable; then

E [π = φ (p,X,C)] = E [pX − C] = p̃E [x]− E [C] . (4.15)

Next, assume that price and yield are random, but cost is constant:

E [π = φ (p,X,C)] = E [pX]− C̃ =

∫ ∞
−∞

∫ ∞
−∞

pxf (x, y) dx dp− C̃. (4.16)

By assuming that p and X are independent (e.g., the firm level assumptions),

E [π = φ (p,X,C)] = E [p] E [X]− C̃. (4.17)

4.2 Moments

Another frequently used function of random variables is the moments of the
distribution function

µr (X) = E [Xr] =

∫ ∞
−∞

xrf (x) dx (4.18)

where r is a non-negative integer. From this definition, it is obvious that the
mean is the first moment of the distribution function. The second moment is
defined as

µ2 (X) = E
[
X2
]

=

∫ ∞
−∞

x2f (x) dx. (4.19)

The higher moments can similarly be represented as moments around the
mean or central moment:

µ̃r (X) = E [X − E [X]]
r
. (4.20)

The first, second, third, and fourth moments of the uniform distribution
can be derived as

µ1 (X) =

∫ 1

0

x (1) dx =
1

2

(
x2
∣∣1
0

=
1

2

µ2 (X) =

∫ 1

0

x2dx =
1

3

(
x3
∣∣1
0

=
1

3

µ3 (X) =

∫ 1

0

x3dx =
1

4

(
x4
∣∣1
0

=
1

4

µ4 (X) =

∫ 1

0

x4dx =
1

5

(
x5
∣∣1
0

=
1

5
.

(4.21)

The variance is then the second central moment.
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Definition 4.13. The second central moment of the distribution defines the
variance of the distribution

V (X) = E [X − E [x]]
2

= E
[
X2
]
− E [X]

2
. (4.22)

The last equality is derived by

E [X − E [X]]
2

= E [(X − E [X]) (X − E [X])]

= E
[
X2 − 2XE [X] + E [X]

2
]

= E
[
X2
]
− 2E [X] E [X] + E [X]

2

= E
[
X2
]
− E [X]

2
.

(4.23)

Put another way, the variance can be derived as

V (X) = σ2 = µ2 − (µ1)
2

= µ̃2. (4.24)

From these definitions, we see that for the uniform distribution

V (X) = µ2 − (µ1)
2

=
1

3
−
(

1

2

)2

=
1

3
− 1

4
=

1

12
. (4.25)

This can be verified directly by

V (X) =

∫ 1

0

(
x− 1

2

)2

dx

=

∫ 1

0

(
x2 − x+

1

4

)
dx

=

∫ 1

0

x2dx−
∫ 1

0

xdx+
1

4

∫ 1

0

dx

=
1

3
− 1

3
+

1

4
=

4

12
− 6

12
+

3

12
=

1

12
.

(4.26)

4.3 Covariance and Correlation

The most frequently used moments for bivariate and multivariate random
variables are their means (again the first moment of each random variable)
and covariances (which are the second own moments and cross moments with
the other random variables). Consider the covariance between two random
variables X and Y presented in Definition 4.14.
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Definition 4.14. The covariance between two random variables X and Y
can be defined as

Cov (X,Y ) = E [(X − E [X]) (Y − E [Y ])]

= E [XY −XE [Y ]− E [x]Y + E [X] [Y ]]

= E [XY ]− E [X] E [Y ]− E [X] E [Y ] + E [X] E [Y ]

= E [XY ]− E [X] E [Y ] .

(4.27)

Note that this is simply a generalization of the standard variance formulation.
Specifically, letting Y → X yields

Cov (XX) = E [XX]− E [X] E [X]

= E
[
X2
]
− (E [X])

2
.

(4.28)

Over the next couple of chapters we will start developing both theoretical
and empirical statistics. Typically, theoretical statistics assume that we know
the parameters of a known distribution. For example, assume that we know
that a pair of random variables are distributed bivariate normal and that
we know the parameters of that distribution. However, when we compute
empirical statistics we assume that we do not know the underlying distribution
or parameters. The difference is the weighting function. When we assume
that we know the distribution and the parameters of the distribution, we will
use the known probabilty density function to compute statistics such as the
variance and covariance coefficients. In the case of empirical statistics, we
typically assume that observations are equally likely (i.e., typically weighting
by 1/N where there are N observations).

These assumptions have implications for our specification of the vari-
ance/covariance matrix. For example, assume that we are interested in the
theoretical variance/covariance matrix. Assume that the joint distribution
function can be written as f (x, y| θ) where θ is a known set of parameters.
Using a slight extension of the moment specification, we can compute the first
moment of both x and y as

µx (θ) =

∫ xb

xa

∫ yb

ya

xf (x, y| θ) dxdy

µy (θ) =

∫ xb

xa

∫ yb

ya

yf (x, y| θ) dxdy.

(4.29)

where x ∈ [xa, xb] and y ∈ [ya, yb]. Note that we are dropping the subscript
1 to denote the first moment and use the subscript to denote the variable
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(µx (θ) ← µ1 (θ)). Given these means (or first moments), we can the define
the variance for each variable as

σ2
x (θ) = σxx (θ) =

∫ xb

xa

∫ yb

ya

(x− µx (θ))
2
f (x, y| θ) dxdy

σ2
y (θ) = σyy (θ) =

∫ xb

xa

∫ yb

ya

(y − µy (θ))
2
f (x, y| θ) dxdy.

(4.30)

The covariance coefficient can then be expressed as

σxy (θ) =

∫ xb

xa

∫ yb

ya

(x− µx (θ)) (y − µy (θ)) f (x, y| θ) dxdy. (4.31)

Notice that the covariance function is symmetric (i.e., σxy (θ) = σyx (θ)).
The coefficients from Equations 4.30 and 4.31 can be used to populate the
variance/covariance matrix conditional on θ as

Σ (θ) =

[
σxx (θ) σxy (θ)
σxy (θ) σyy (θ)

]
. (4.32)

Example 4.15 presents a numerical example of the covariance matrix using a
discrete (theoretical) distribution function.

Example 4.15. Assume that the probability for a bivariate discrete random
variable is presented in Table 4.5. We start by computing the means

µx = (0.167 + 0.083 + 0.167)× 1 + (0.083 + 0.000 + 0.083)

× 0 + (0.167 + 0.083 + 0.167)×−1

= 0.417× 1 + 0.167× 0 + 0.417×−1 = 0.

µy = (0.167 + 0.083 + 0.167)× 1 + (0.083 + 0.000 + 0.083) (4.33)

× 0 + (0.167 + 0.083 + 0.167)×−1

= 0.417× 1 + 0.167× 0 + 0.417×−1 = 0.

TABLE 4.5
Discrete Sample

Y Marginal
X −1 0 1 Probability
−1 0.167 0.083 0.167 0.417
0 0.083 0.000 0.083 0.167
1 0.167 0.083 0.167 0.417

Marginal
Probability 0.417 0.167 0.417
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Given that the means for both variables are zero, we can compute the variance
and covariance as

V [X] =
∑

i∈{1,0,1}

∑
j∈{1,0,1}

x2
iP (xi, yi) = (−1)

2 × 0.167 + (0)
2 × 0.083 + · · ·

(1)
2 × 0.167 = 0.834

V [Y ] =
∑

i∈{1,0,1}

∑
j∈{1,0,1}

y2
i P (xi, yi) = (−1)

2 × 0.167 + (0)
2 × 0.083 + · · ·

(1)
2 × 0.167 = 0.834

Cov [X,Y ] =
∑

i∈{1,0,1}

∑
j∈{1,0,1}

xiyiP (xi, yi) = −1×−1× 0.167+

−1× 0× 0.083 + · · · 1× 1× 0.167 = 0.
(4.34)

Thus, the variance matrix becomes

Σ =

[
0.834 0.000
0.000 0.834

]
. (4.35)

The result in Equation 4.35 allows for an additional definition of independence
– two distributions are independent if their covariance is equal to zero.

From a sample perspective, we can compute the variance and covariance
as

sxx =
1

N

N∑
i=1

x2
i − x̄2

syy =
1

N

N∑
i=1

y2
i − ȳ2

sxy =
1

N

N∑
i=1

xiyi − x̄ȳ

(4.36)

where x̄ = 1/N
∑N
i=1 xi and ȳ = 1/N

∑N
i=1 yi. Typically, a lower case Ro-

man character is used to denote individual sample statistics. Substituting the
sample measures into the variance matrix yields

S =

[
sxx sxy
syx syy

]
=

[
1
N

∑N
i=1 xixi − x̄x̄

1
N

∑N
i=1 xiyi − x̄ȳ

1
N

∑N
i=1 yixi − ȳx̄

1
N

∑N
i=1 yiyi − ȳȳ

]

=
1

N

[ ∑
i=1 xixi

∑N
i=1 xiyi∑N

i=1 yixi
∑N
i=1 yiyi

]
−
[
x̄x̄ x̄ȳ
ȳx̄ ȳȳ

] (4.37)
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where the upper case Roman letter is used to denote a matrix of sample statis-
tics. While we will develop the matrix notation more completely in Chapter
10, the sample covariance matrix can then be written as

S =
1

N

[
x1 · · · xN
y1 · · · yN

] x1 y1

· · · · · ·
xN yN

− [ x̄
ȳ

] [
x̄ ȳ

]
. (4.38)

Next, we need to develop a couple of theorems regarding the variance
of linear combinations of random variables. First consider the linear sum or
difference of two random variables X and Y .

Theorem 4.16. V (X ± Y ) = V (X) + V (Y )± Cov (X,Y ).

Proof.

V [X ± Y ] = E [(X ± Y ) (X ± Y )]

= E [XX ± 2XY + Y Y ] (4.39)

= E [XX] + E [Y Y ]± E [XY ]

= V (X) + V (Y )± 2Cov (X,Y ) .

Note that this result can be obtained from the variance matrix. Specifically,
X + Y can be written as a vector operation:

[
X Y

] [ 1
1

]
= X + Y. (4.40)

Given this vectorization of the problem, we can define the variance of the sum
as [

1 1
] [ σxx σxy

σxy σyy

] [
1
1

]
=
[
σxx + σxy σxy + σyy

] [ 1
1

]
= σxx + 2σxy + σyy.

(4.41)

Next, consider the variance for the sum of a collection of random variables Xi

where i = 1, · · ·N .

Theorem 4.17. Let Xi, i = 1, 2, · · · be pairwise independent (i.e., where
σij = 0 for i 6= j, i, j = 1, 2, · · ·N). Then

V

(
N∑
i=1

Xi

)
=

N∑
i=1

V (Xi) . (4.42)
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Proof. The simplest proof to this theorem is to use the variance matrix. Note
in the preceding example, if X and Y are independent, we have

[
1 1

] [ σxx σxy
σxy σyy

] [
1
1

]
= σxx + σyy (4.43)

if σxy = 0. Extending this result to three variables implies 1
1
1

′  σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 1
1
1

 = σ11 + 2σ12 + 2σ13 + σ22 + 2σ23 + σ33

(4.44)
if the xs are independent, the covariance terms are zero and this expression
simply becomes the sum of the variances.

One of the difficulties with the covariance coefficient for making intuitive
judgments about the strength of the relationship between two variables is that
it is dependent on the magnitude of the variance of each variable. Hence, we
often compute a normalized version of the covariance coefficient called the
correlation coefficient.

Definition 4.18. The correlation coefficient for two variables is defined as

Corr (X,Y ) =
Cov (X,Y )√
σxx
√
σyy

. (4.45)

Note that the covariance between any random variable and a constant is
equal to zero. Letting Y equal zero, we have

E [(X − E [X]) (Y − E [Y ])] = E [(X − E [X]) (0)] = 0. (4.46)

It stands to reason the correlation coefficient between a random variable and
a constant is also zero.

It is now possible to derive the ordinary least squares estimator for a linear
regression equation.

Definition 4.19. We define the ordinary least squares estimator as that set
of parameters that minimizes the squared error of the estimate.

min
α,β

= E
[
(Y −α−βX)

2
]

= min
α,β

E
[
Y 2− 2αY− 2βXY +α2 + 2αβX +β2X2

]
.

(4.47)
The first order conditions for this minimization problem then become

∂S

∂α
= −2E [Y ] + 2α+ 2βE [X] = 0

∂S

∂β
= −2E [XY ] + 2αE [X] + 2βE

[
X2
]

= 0.
(4.48)
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Solving the first equation for α yields

α = E [Y ]− βE [X] . (4.49)

Substituting this expression into the second first order condition yields

−E [XY ] + (E [Y ]− βE [X]) E [X] + βE
[
X2
]

= 0

−E [XY ] + E [Y ] E [X] + β
(

E
[
X2
]
− (E [X])

2
)

= 0

−Cov (X,Y ) + βV (X) = 0

⇒ β =
Cov (X,Y )

V (X)
.

(4.50)

Theorem 4.20. The best linear predictor (or more exactly, the minimum
mean-squared-error linear predictor) of Y based on X is given by α∗ + β∗X,
where α∗ and β∗ are the least square estimates where α∗ and β∗ are defined
by Equations 4.49 and 4.50, respectively.

4.4 Conditional Mean and Variance

Next, we consider the formulation where we are given some information about
the bivariate random variable and wish to compute the implications of this
knowledge for the other random variable. Specifically, assume that we are
given the value of X and want to compute the expectation of φ (X,Y ) given
that information. For the case of the discrete random variable, we can define
this expectation, called the conditional mean, using Definition 4.21.

Definition 4.21. Let (X,Y ) be a bivariate discrete random variable taking
values (xi, yj) i, j = 1, 2, · · · . Let P (yj |X) be the conditional probability of
Y = yj given X. Let φ (xi, yj) be an arbitrary function. Then the conditional
mean of φ (X,Y ) given X, denoted E [φ (X,Y ) |X] or by EY |X [φ (X,Y )], is
defined by

EY |X [φ (X,Y )] =
∞∑
i=1

φ (X, yi) P (yi|X) . (4.51)

Similarly, Definition 4.22 presents the conditional mean for the continuous
random variable.

Definition 4.22. Let (X,Y ) be a bivariate continuous random variable with
conditional density f (y|x). Let φ (x, y) be an arbitrary function. Then the
conditional mean of φ (X,Y ) given X is defined by

EY |X [φ (X,Y )] =

∫ ∞
−∞

φ (X, y) f (y|X) dy. (4.52)
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Building on these definitions, we can demonstrate the Law of Iterated
Means given in Theorem 4.23.

Theorem 4.23 (Law of Iterated Means). E [φ (X,Y )] = EXEY |X [φ (X,Y )].
(where the symbol Ex denotes the expectation with respect to X).

Proof. Consider the general expectation of φ (X,Y ) assuming a continuous
random variable.

E [φ (X,Y )] ≡
∫ xb

xa

∫ yb

ya

φ (x, y) f (x, y) dydx (4.53)

as developed in Theorem 4.9. Next we can group without changing the result,
yielding

E [φ (X,Y )] =

∫ xb

xa

[∫ yb

ya

φ (x, y) f (x, y) dy

]
dx. (4.54)

Notice that the term in brackets is the EY |X [φ (X,Y )] by Definition 4.22. To
complete the proof, we rewrite Equation 4.54 slightly.

E [φ (X,Y )] =

∫ xb

xa

EY |X [φ (X,Y )] f (x) dx (4.55)

basically rewriting f (x, y) = f (y|x) f (x).

Building on the conditional means, the conditional variance for φ (X,Y )
is presented in Theorem 4.24.

Theorem 4.24.

V(φ(X,Y )) = EX [VY |X [φ(X,Y )]] + VX [EY |X [φ(X,Y )]]. (4.56)

Proof.
VY |X [φ] = EY |X [φ2]− (EY |X [φ])2 (4.57)

implies
EX [VY |X(φ)] = E[φ2]− EX [EY |X [φ]]. (4.58)

By the definition of conditional variance,

VX

(
EY |X [φ]

)
= EX

[
EY |X [φ]

]2 − (E [φ])
2
. (4.59)

Adding these expressions yields

EX
[
VY |X (φ)

]
+ VX

(
EY |X [φ]

)
= E

[
φ2
]
− (E [φ]) = V (φ) . (4.60)

Finally, we can link the least squares estimator to the projected variance
in Theorem 4.20 using Theorem 4.25.

Theorem 4.25. The best predictor (or the minimum mean-squared-error pre-
dictor) of Y based on X is given by E [Y |X].
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4.5 Moment-Generating Functions

The preceding sections of this chapter have approached the moments of ran-
dom variables one at a time. One alternative to this approach is to define a
function called a Moment Generating Function that systematically gen-
erates the moments for random variables.

Definition 4.26. Let X be a random variable with a cumulative distribution
function F (X). The moment generating function of X (or F (X)), denoted
MX (t), is

MX (t) = E
[
etX
]

(4.61)

provided that the expectation exists for t in some neighborhood of 0. That is,
there is an h > 0 such that, for all t in −h < t < h, E

[
etX
]

exists.

If the expectation does not exist in a neighborhood of 0, we say that the
moment generating function does not exist. More explicitly, the moment gen-
erating function can be defined as

MX (t) =

∫ ∞
−∞

etxf (x) dx for continuous random variables, and

Mx (t) =
∑
x

etxP [X = x] for discrete random variables.

(4.62)

Theorem 4.27. If X has a moment generating function MX (t), then

E [Xn] = M (n)
x (0) (4.63)

where we define

M
(n)
X (0) =

dn

dtn
MX (t)|t→0 . (4.64)

First note that etX can be approximated around zero using a Taylor series
expansion.

MX (t) = E
[
etx
]

= E
[
e0 + tet0 (x− 0) +

1

2
t2et0 (x− 0)

2
+

1

6
t3et0 (x− 0)

3
+ · · ·

]

= 1 + E [x] t+ E
[
x2
] t2

2
+ E

[
x3
] t3

6
+ · · · .

(4.65)

Note for any moment n

M (n)
x (t) =

dn

dtn
MX (t) = E [xn] + E

[
xn+1

]
t+ E

[
xn+2

]
t2 + · · · . (4.66)

Thus, as t→ 0,
M (n)
x (0) = E [xn] . (4.67)
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Definition 4.28. Leibnitz’s Rule: If f (x, θ), a (θ), and b (θ) are differen-
tiable with respect to θ, then

d

dθ

∫ b(θ)

a(θ)

f (x, θ) dx = −f (b (θ) , θ)
d

dθ
a (θ) + f (a (θ))

d

dθ
b (θ)∫ b(θ)

a(θ)

∂

∂θ
f (x, θ) dx.

(4.68)

Lemma 4.29. Casella and Berger’s proof: Assume that we can differen-
tiate under the integral using Leibnitz’s rule; we have

d

dt
MX (t) =

d

dt

∫ ∞
−∞

etxf (x) dx

=

∫ ∞
−∞

(
d

dt
etx
)
f (x) dx

=

∫ ∞
−∞

xetxf (x) dx.

(4.69)

Letting t→ 0, this integral simply becomes∫ ∞
−∞

xf (x) dx = E [x] (4.70)

[7].

This proof can be extended for any moment of the distribution function.

4.5.1 Moment-Generating Functions for Specific
Distributions

The moment generating function for the uniform distribution is

MX (t) =

∫ b

a

etx

b− a
dx =

1

b− a
1

t

(
etx
∣∣b
a

=
ebt − eat

t (b− a)
. (4.71)

Following the expansion developed earlier, we have

MX (t) =
(1− 1) + (b− a) t+

1

2

(
b2 − a2

)
t2 +

1

6

(
b3 − a3

)
t3 + · · ·

(b− a) t

= 1 +

(
b2 − a2

)
t2

2 (b− a) t
+

(
b3 − a3

)
t3

6 (b− a) t
+ · · ·

= 1 +
1

2

(b− a) (b+ a)

(b− a)

t2

t
+

1

6

(b− a)
(
b2 + ab+ a2

)
(b− a)

t3

t
+ · · ·

= 1 + 1
2 (a+ b) t+ 1

6

(
a2 + ab+ b2

)
t2 + · · · .

(4.72)
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Letting b = 1 and a = 0, the last expression becomes

MX (t) = 1 +
1

2
t+

1

6
t2 +

1

24
t3 + · · · . (4.73)

The first three moments of the uniform distribution are then

M
(1)
X = 1

2

M
(2)
X = 1

62 = 1
3

M
(3)
X = 1

246 = 1
4 .

(4.74)

The moment generating function for the univariate normal distribution

MX (t) =
1

σ
√

2π

∫ ∞
−∞

etxe
−1

2

(x− µ)
2

σ2
dx

=
1

σ
√

2π

∫ ∞
−∞

exp

[
tx− 1

2

(x− µ)
2

σ2

]
dx.

(4.75)

Focusing on the term in the exponent, we have

tx− 1

2

(x− µ)
2

σ2 = −1

2

(x− µ)
2 − 2txσ2

σ2

= −1

2

x2 − 2xµ+ µ2 − 2txσ2

σ2

= −1

2

x2 − 2
(
xµ+ txσ2

)
+ µ2

σ2

= −1

2

x2 − 2x
(
µ+ tσ2

)
+ µ2

σ2 .

(4.76)

The next step is to complete the square in the numerator.

x2 − 2x
(
µ+ tσ2

)
+ µ2 + c = 0(

x−
(
µ+ tσ2

))2
= 0

x2 − 2x (µ+ tσ) + µ2 + 2tσ2µ+ t2σ4 = 0

c = 2tσ2µ+ t2σ4.

(4.77)
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The complete expression then becomes

tx− 1

2

(x− µ)
2

σ2 = −1

2

(
x− µ− tσ2

)
− 2µσ2t− σ4t2

σ2

= − 1
2

(
x− µ− tσ2

)
σ2 + µt+ 1

2σ
2t2.

(4.78)

The moment generating function then becomes

MX (t) = exp

(
µt+

1

2
σ2t2

)
1

σ
√

2π

∫ ∞
−∞

exp

(
−1

2

(
x− µ− tσ2

)
σ2

)
dx

= exp

(
µt+

1

2
σ2t2

)
.

(4.79)
Taking the first derivative with respect to t, we get

M
(1)
X (t) =

(
µ+ σ2t

)
exp

(
µt+

1

2
σ2t2

)
. (4.80)

Letting t→ 0, this becomes

M
(0)
X = µ. (4.81)

The second derivative of the moment generating function with respect to t
yields

M
(2)
X (t) = σ2 exp

(
µt+

1

2
σ2t2

)
+

(
µ+ σ2t

) (
µ+ σ2t

)
exp

(
µt+

1

2
σ2t2

)
.

(4.82)

Again, letting t→ 0 yields

M
(2)
X (0) = σ2 + µ2. (4.83)

Let X and Y be independent random variables with moment generating
functions MX (t) and MY (t). Consider their sum Z = X +Y and its moment
generating function.

MZ (t) = E
[
etz
]

= E
[
et(x+y)

]
= E

[
etxety

]
=

E
[
etx
]

E
[
ety
]

= MX (t)MY (t) .

(4.84)

We conclude that the moment generating function for two independent ran-
dom variables is equal to the product of the moment generating functions of
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each variable. Skipping ahead slightly, the multivariate normal distribution
function can be written as

f (x) =
1√
2π
|Σ|−1/2 exp

(
−1

2
(x− µ)

′
Σ−1 (x− µ)

)
. (4.85)

In order to derive the moment generating function, we now need a vector t̃.
The moment generating function can then be defined as

MX̃

(
t̃
)

= exp

(
µ′t̃+

1

2
t̃′Σt̃

)
. (4.86)

Normal variables are independent if the variance matrix is a diagonal matrix.
Note that if the variance matrix is diagonal, the moment generating function
for the normal can be written as

MX̃ (x̃) = exp

µ′t̃+
1

2
t̃′

 σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 t̃


= exp

(
µ1t1 + µ2t2 + µ3t3 +

1

2

(
t21σ

2
1 + t22σ

2
2 + t23σ

2
3

))

= exp

((
µ1t1 +

1

2
σ2

1t
2
1

)
+

(
µ2t2 +

1

2
σ2

2t
2
2

)
+

(
µ3t3 +

1

2
σ2

3t
2
3

))
= MX1

(t)MX2
(t)MX3

(t) .

(4.87)

4.6 Chapter Summary

• The moments of the distribution are the kth power of the random variable.

– The first moment is its expected value or the mean of the distribution.
It is largely a measure of the central tendancy of the random variable.

– The second central moment of the distribution (i.e., the expected

value of (x− µ)
2
) is a measure of the expected distance between the

value of the random variable and its mean.

• The existence of an expectation is dependent on the boundedness of each
side of the distribution.

– Several random variables have an infinite range (i.e., the normal dis-
tribution’s range is x ∈ (−∞,∞)).
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– The value of the expectation depends on whether the value of the
distribution function converges to zero faster than the value of the
random variable.

– Some distribution functions such as the Cauchy distribution have no
mean.

• The variance of the distribution can also be defined as the expected
squared value of the random variable minus the expected value squared.

– This squared value specification is useful in defining the covari-
ance between two random variables (i.e., Cov (X,Y ) = E [XY ] −
E [X] E [Y ].

– The correlation coefficient is a normalized form of the covariance
ρXY = Cov [X,Y ] /

√
V [X] V [Y ].

• This chapter also introduces the concepts of sample means and variances
versus theoretical means and variances.

• Moment generating functions are functions whose derivatives give the mo-
ments of a particular function. Two random variables with the same mo-
ment generating function have the same distribution.

4.7 Review Questions

4-1R. What are the implications of autocorrelation (i.e., yt = α0 +α1xt+εt+
ρεt−1) for the covariance between t and t+ 1?

4-2R. What does this mean for the variance of the sum yt and yt−1?

4-3R. Derive the normal equations (see Definition 4.19) of a regression with
two independent variables (i.e., yi = α0 + α1x1i + α2x2i + εi).

4-4R. Use the moment generating function for the standard normal distri-
bution to demonstrate that the third central moment of the normal
distribution is zero and the fourth central moment of the standard nor-
mal is 3.0.

4.8 Numerical Exercises

4-1E. What is the expected value of a two-die roll of a standard six-sided die?
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4-2E. What is the expected value of the roll of an eight-sided die and a six-
sided die?

4-3E. Compute the expectation and variance of a random variable with the
distribution function

f (x) =
3

4

(
x2 − 1

)
x ∈ (−1, 1) . (4.88)

4-4E. What is the expected value of the negative exponential distribution

f (x|λ) = λ exp (−λx) x ∈ (0,∞)? (4.89)

4-5E. Compute the correlation coefficient for the rainfall in August–
September and October–December using the data presented in Ta-
ble 2.1.
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At several points in this textbook, we have encountered the normal distribu-
tion. I have noted that the distribution is frequently encountered in applied
econometrics. Its centrality is due in part to its importance in sampling the-
ory. As we will develop in Chapter 6, the normal distribution is typically the
limiting distribution of sums of averages. In the vernacular of statistics, this
result is referred to as the Central Limit Theorem. However, normality
is important apart from its asymptotic nature. Specifically, since the sum
of a normal distribution is also a normal distribution, we sometimes invoke
the normal distribution function in small samples. For example, since a typ-
ical sample average is simply the sum of observations divided by a constant
(i.e., the sample size), the mean of a collection of normal random variables is
also normal. Extending this notion, since ordinary least squares is simply a
weighted sum, then the normal distribution provides small sample statistics
for most regression applications.

The reasons for the importance of the normal distribution developed above
are truly arguments that only a statistician or an applied econometrician could
love. The normal distribution in the guise of the bell curve has spawned a
plethora of books with titles such as Bell Curve: Intelligence and Class Struc-
ture in American Life, Intelligence, Genes, and Success: Scientists Respond
to the Bell Curve, and Poisoned Apple: The Bell-Curve Crisis and How Our
Schools Create Mediocrity and Failure. Whether or not the authors of these
books have a firm understanding of the mathematics of the normal distribu-
tion, the topic appeals to readers outside of a narrow band of specialists. The

113
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popular appeal is probably due to the belief that the distribution of observable
characteristics is concentrated around some point, with extreme characteris-
tics being relatively rare. For example, an individual drawn randomly from a
sample of people would agree that height would follow a bell curve regardless
of their knowledge of statistics.

In this chapter we will develop the binomial distribution based on
simple Bernoulli distributions. The binomial distribution provides a bridge
between rather non-normal random variables (i.e., the X = 0 and X = 1
Bernoulli random variable) and the normal distribution as the sample size be-
comes large. In addition, we formally develop the bivariate and multivariate
forms of the normal distribution.

5.1 Bernoulli and Binomial Random Variables

In Chapter 2, we developed the Bernoulli distribution to characterize a random
variable with two possible outcomes (i.e., whether a coin toss was a heads
(X = 1) or a tails (X = 0) or whether or not it would rain tomorrow). In
these cases the probability distribution function P [X] can be written as

P [X] = px (1− p)x (5.1)

where p is the probability of the event occurring. Extending this basic formu-
lation slightly, consider the development of the probability of two independent
Bernoulli events. Suppose that we are interested in the outcome of two coin
tosses or whether it will rain two days in a row. Mathematically we can specify
this random variable as Z = X + Y . If X and Y are identically distributed
(both Bernoulli) and independent, the probability becomes

P [X,Y ] = P [X] P [Y ] = pxpy (1− p)1−x
(1− p)1−y

= px+y (1− p)2−x−y
.

(5.2)

This density function is only concerned with three outcomes, Z = X + Y =
{0, 1, 2}. Notice that there is only one way each for Z = 0 or Z = 2. Specif-
ically, Z = 0, X = 0, and Y = 0. Similarly, Z = 2, X = 1, and Y = 1.
However, for Z = 1, either X = 1 and Y = 0 or X = 0 and Y = 1. Thus, we
can derive

P [Z = 0] = p0 (1− p)2−0

P [Z = 1] = P [X = 1, Y = 0] + P [X = 0, Y = 1]

= p1+0 (1− p)2−1−0
+ p0+1 (1− p)2−0−1

= 2p1 (1− p)1

P [Z = 2] = p2 (1− p)0
.

(5.3)
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Next we expand the distribution to three independent Bernoulli events
where Z = W +X + Y = {0, 1, 2, 3}.

P [Z] = P [W,X, Y ]

= P [W ] P [X] P [Y ]

= pwpxpy (1− p)1−w
(1− p)1−x

(1− p)1−y

= pw+x+y (1− p)3−w−x−y

= pz (1− p)3−z
.

(5.4)

Again, there is only one way for Z = 0 and Z = 3. However, there are now
three ways for Z = 1 or Z = 2. Specifically, Z = 1 if W = 1, X = 1, or Y = 1.
In addition, Z = 2 if W = 1, X = 1, and Y = 0, or if W = 1, X = 0, and
Y = 1, or if W = 0, X = 1, and Y = 1. Thus the general distribution function
for Z can now be written as

P [Z = 0] = p0 (1− p)3−0

P [Z = 1] = p1+0+0 (1− p)3−1−0−0
+ p0+1+0 (1− p)3−0−1−0

+

p0+0+1 (1− p)3−0−0−1
= 3p1 (1− p)2

P [Z = 2] = p1+1+0 (1− p)3−1−1−0
+ p1+0+1 (1− p)3−1−0−1

+

p0+1+1 (1− p)3−0−1−1
= 3p2 (1− p)1

P [Z = 3] = p3 (1− p)0
.

(5.5)

Based on our discussion of the Bernoulli distribution, the binomial distri-
bution can be generalized as the sum of n Bernoulli events.

P [Z = r] =

(
n
r

)
pr (1− p)n−r (5.6)

where Cnr is the combinatorial of n and r developed in Defintion 2.14. Graph-
ically, the combinatorial can be depicted as Pascal’s triangle in Figure 5.1.
The relationship between the combinatorial and the binomial function can be
developed through the general form of the polynomial. Consider the first four
polynomial forms:

(a+ b)
1

= a+ b

(a+ b)
2

= a2 + 2ab+ b2

(a+ b)
3

= a3 + 3a2b+ 3ab2 + b3

(a+ b)
4

= a4 + 4a3b+ 6a2b2 + 4ab3 + b4.

(5.7)
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FIGURE 5.1
Pascal’s Triangle.

Based on this sequence, the general form of the polynomial form can then be
written as

(a+ b)
n

=
n∑
r=1

Cnr a
rbn−r. (5.8)

As a first step, consider changing the polynomial from a+ b to a− b. Hence,
(a− b)n can be written as

(a− b)n = (a+ (−1) b)
n

=
n∑
r=1

Cnr a
r (−1)

n−4
bn−r

=
n∑
r=1

(−1)
n−r

Cnr a
rbn−r.

(5.9)

This sequence can be linked to our discussion of the Bernoulli system by
letting a = p and b = 1− p. Thus, the binomial distribution X ∼ B (n, p) can
be written as

P (X = k) = Cnk p
k (1− p)n−k . (5.10)

In Equation 5.5 above, n = 3. The distribution function can be written as

P [Z = 0] =

(
3
0

)
p0 (1− p)3−0

P [Z = 1] =

(
3
1

)
p1 (1− p)3−1

P [Z = 2] =

(
3
2

)
p2 (1− p)3−2

P [Z = 3] =

(
3
3

)
p3 (1− p)3−3

.

(5.11)
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Next, recalling Theorem 4.11, (E [aX + bY ] = aE [X] + bE [Y ]), the ex-
pectation of the binomial distribution function can be recovered from the
Bernoulli distributions.

E [X] =
n∑
k=0

Cnk p
k (1− p)n−k k

=
n∑
i=1

[∑
Xi

pXi (1− p)1−Xi Xi

]

=
n∑
i=1

[
p1 (1− p)0

(1) + p0 (1− p)1
(0)
]

=
n∑
i=1

p = np.

(5.12)

In addition, by Theorem 4.17

V

(
n∑
i=1

Xi

)
=

n∑
i=1

V (Xi) . (5.13)

Thus, the variance of the binomial is simply the sum of the variances of the
Bernoulli distributions or n times the variance of a single Bernoulli distribu-
tion.

V (X) = E
[
X2
]
− (E [X])

2

=
[
p1 (1− p)0 (

12
)

+ p0 (1− p)1 (
02
)]
− p2

= p− p2 = p (1− p)

V

(
n∑
i=1

)
= np (1− p) .

(5.14)

5.2 Univariate Normal Distribution

In Section 3.5 we introduced the normal distribution function as

f (x) =
1

σ
√

2π
exp

[
−1

2

(x− µ)
2

σ2

]
−∞ < x <∞, σ > 0. (5.15)

In Section 3.7 we demonstrated that the standard normal form of this distri-
bution written as

f (x) =
1√
2π
e
−x

2

2 (5.16)

integrated to one. In addition, Equations 3.116 and 3.117 demonstrate how
the more general form of the normal distribution in Equation 5.15 can be
derived from Equation 5.16 by the change in variables technique.
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Theorem 5.1. Let X be N
(
µ, σ2

)
as defined in Equation 5.15; then E [X] = µ

and V [X] = σ2.

Proof. Starting with the expectation of the normal function as presented in
Equation 5.15,

E [X] =

∫ ∞
−∞

1

σ
√

2π
x exp

[
−1

2

(x− µ)
2

σ2

]
dx. (5.17)

Using the change in variables technique, we create a new random variable z
such that

z =
x− µ
σ
⇒ x = zσ + µ

dx = σdz.
(5.18)

Substituting into the original integral yields

E [X] =

∫ ∞
−∞

1

σ
√

2π
(zσ + µ) exp

[
−1

2
z2

]
dz

=

∫ ∞
−∞

1√
2π
z exp

[
−1

2
z2

]
+ µ

∫ ∞
−∞

1√
2π

exp

[
−1

2
z2

]
dz.

(5.19)

Taking the integral of the first term first, we have∫ ∞
−∞

1√
2π
z exp

[
−1

2
z2

]
dx = C

∫ ∞
−∞

z exp

[
−1

2
z2

]
dz

= C

(
− exp

[
−1

2
z2

]∣∣∣∣∞
−∞

= 0.

(5.20)

The value of the second integral becomes µ by polar integration (see Section
3.7).

The variance of the normal is similarly defined except that the initial
integral now becomes

V [X] =
1

σ
√

2π

∫ ∞
−∞

(x− µ)
2

exp

[
−1

2

(x− µ)
2

σ2

]
dx

=
1

σ
√

2π

∫ ∞
−∞

(zσ + µ− µ)
2

exp

[
−1

2
z2

]
σdz

=
1√
2π

∫ ∞
−∞

z2σ2 exp

[
−1

2
z2

]
dz.

(5.21)
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This formulation is then completed using integration by parts.

u = −z ⇒ d = −1

dv = −z exp

[
−1

2
z2

]
⇒ v = exp

[
−1

2
z2

]
∫ ∞
−∞

zz exp

[
−1

2
z2

]
dz = −

(
z exp

[
−1

2
z2

]∣∣∣∣∞
−∞

+

∫ ∞
−∞

exp

[
−1

2
z2

]
dz.

(5.22)
The first term of the integration by parts is clearly zero, while the second is
defined by polar integral. Thus,

V [X] = 0 + σ2

∫ ∞
−∞

1√
2π

exp

[
−1

2
z2

]
= σ2. (5.23)

Theorem 5.2. Let X be distributed N
(
µ, σ2

)
and let Y = α + βY . Then

Y ∼ N
(
α+ βµ, β2σ2

)
.

Proof. This theorem can be demonstrated using Theorem 3.33 (the theorem
on changes in variables).

g (y) = f
[
φ−1 (y)

] ∣∣∣∣dφ−1 (y)

dy

∣∣∣∣ . (5.24)

In this case

φ (x) = α+ βx⇔ φ−1 (y) =
y − α
β

dφ−1 (y)

dy
=

1

β
.

(5.25)

The transformed normal then becomes

g (y) =
1

σ|β|
√

2π
exp

−1

2

(
y − α
β
− µ

)2

σ2



=
1

σ|β|
√

2π
exp

[
−1

2

(y − α− βµ)
2

σ2β2

]
.

(5.26)

Note that probabilities can be derived for any normal based on the
standard normal integral. Specifically, in order to find the probability that
X ∼ N (10, 4) lies between 4 and 8 (P [4 < X < 8]) implies

P [4 < X < 8] = P [X < 8]− P [X < 4] . (5.27)
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Transforming each boundary to standard normal space,

z1 =
x1 − 10

2
=
−6

2
= −3

z2 =
x2 − 10

2
=
−2

2
= −1.

(5.28)

Thus, the equivalent boundary becomes

P [−3 < z < −1] = P [z < −1]− P [z < −3] (5.29)

where z is a standard normal variable. These values can be found in a standard
normal table as P [z < −1] = 0.1587 and P [z < −3] = 0.0013.

5.3 Linking the Normal Distribution to the Binomial

To develop the linkage between the normal and binomial distributions, con-
sider the probabilities for binomial distributions with 6, 9, and 12 draws pre-
sented in columns two, three, and four in Table 5.1. To compare the shape
of these distributions with the normal distribution, we construct normalized

TABLE 5.1
Binomial Probabilities and Normalized Binomial Outcomes

Random Probability Normalized Outcome
Variable 6 9 12 6 9 12

0 0.016 0.002 0.000 −2.449 −3.000 −3.464
1 0.094 0.018 0.003 −1.633 −2.333 −2.887
2 0.234 0.070 0.016 −0.816 −1.667 −2.309
3 0.313 0.164 0.054 0.000 −1.000 −1.732
4 0.234 0.246 0.121 0.816 −0.333 −1.155
5 0.094 0.246 0.193 1.633 0.333 −0.577
6 0.016 0.164 0.226 2.449 1.000 0.000
7 0.070 0.193 1.667 0.577
8 0.018 0.121 2.333 1.155
9 0.002 0.054 3.000 1.732
10 0.016 2.309
11 0.003 2.887
12 0.000 3.464

Mean 3.00 4.50 6.00
Variance 1.50 2.25 3.00
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FIGURE 5.2
Comparison of Binomial and Normal Distribution.

outcomes for each set of outcomes.

z̃i =
xi − µ1

xi√
µ2
xi −

(
µ1
xi

)2 (5.30)

where µ1
xi and µ2

xi are the first and second moments of the binomial distri-
bution. Basically, Equation 5.30 is the level of the random variable minus the
theoretical mean divided by the square root of the theoretical variance. Thus,
taking the outcome of x = 2 for six draws as an example,

z̃i =
2− 3√

1.5
= −0.816. (5.31)

We frequently use this procedure to normalize random variables to be consis-
tent with the standard normal. The sample equivalent to Equation 5.30 can
be expressed as

z̃ =
x− x̄√
s2
x

. (5.32)

Figure 5.2 presents graphs of each distribution function and the standard
normal distribution (i.e., x ∼ N [0, 1]). The results in Figure 5.2 demonstrate
the distribution functions for normalized binomial variables converge rapidly
to the normal density function. For 12 draws, the two distributions are almost
identical.

This convergence to normality extends to other random variables. Table 5.2
presents 15 samples of eight uniform draws with the sum of the sample and
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FIGURE 5.3
Limit of the Sum of Uniform Random Variables.

the normalized sum using the definition in Equation 5.30. Figure 5.3 presents
the distribution of the normalized random variable in Table 5.2 for sample
sizes of 100, 200, 400, and 800. These results demonstrate that as the sample
size increases, the empirical distribution of the normalized sum approaches
the standard normal distribution.

It is important to notice that the limiting results behind Figures 5.2 and 5.3
are similar, but somewhat different. The limiting result for the binomial dis-
tribution presented in Figure 5.2 is due to a direct relationship between the
binomial and the normal distribution. The limiting result for the sum of uni-
form random variables in Figure 5.3 is the result of the central limit theorem
developed in Section 6.5.

5.4 Bivariate and Multivariate Normal Random
Variables

In addition to its limiting characteristic, the normal density function provides
for a simple way to conceptualize correlation between random variables. To
develop this specification, we start with the bivariate form of the normal distri-
bution and then expand the bivariate formulation to the general multivariate
form.
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5.4.1 Bivariate Normal Random Variables

In order to develop the general form of the bivariate normal distribution,
consider a slightly expanded form of a normal random variable:

f
(
x|µ, σ2

)
=

1

σ
√

2π
exp

[
− (x− µ)

2

σ2

]
. (5.33)

The left-hand side of Equation 5.33 explicitly recognizes that the general form
of the normal distribution function is conditioned on two parameters – the
mean of the distribution µ and the variance of the distribution σ2. Given this
specification, consider a bivariate normal distribution function where the two
random variables are independent.

f
(
x, y|µx, µy, σ2

x, σ
2
y

)
=

1

σxσy2π
exp

[
− (x− µx)

2

2σ2
x

− (y − µy)
2

2σ2
y

]
. (5.34)

Equation 5.34 can be easily factored into forms similar to Equation 5.33.
Definition 5.3 builds on Equation 5.34 by introducing a coefficient that

controls the correlation between the two random variables (ρ).

Definition 5.3. The bivariate normal density is defined by

f (x, y|µx, µy, σx, σy, ρ) =
1

2πσxσy
√

1− ρ2

exp

{
− 1

2
(
1− ρ2

) [(x− µxσx

)2

+
(
y − µy
σy

)2

− 2ρ
(
x− µx
σx

)(
y − µy
σy

)]}
.

(5.35)

Theorem 5.4 develops some of the conditional moments of the bivariate normal
distribution presented in Equation 5.35.

Theorem 5.4. Let (X,Y ) have the bivariate normal density. Then the
marginal densities fX (X) and fY (Y ) and the conditional densities f (Y |X)
and f (X|Y ) are univariate normal densities, and we have E [X] = µX ,
E [Y ] = µY , V [X] = σ2

X , V [Y ] = σ2
Y , Corr (X,Y ) = ρ, and

E [Y |X] = µY + ρ
σY
σX

(X − µX)

V [Y |X] = σ2
Y

(
1− ρ2

)
.

(5.36)

Proof. Let us start by factoring (x− µx) /σx out of the exponent term in
Equation 5.35. Specifically, suppose that we solve for K such that

1

2
(
1− ρ2

) (x− µx
σx

)2

=
1

2

(
x− µx
σx

)2

+K

(
x− µx
σx

)2

. (5.37)
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Technically, this solution technique is referred to as the method of unknown
coefficients – we introduce an unknown coefficient, in this case K, and attempt
to solve for the original expression. Notice that (x− µx) /σx is irrelevant. The
problem becomes to solve for K such that

1

2
(
1− ρ2

) =
1

2
+K

K =
1

2
(
1− ρ2

) − (
1− ρ2

)
2
(
1− ρ2

) =
ρ2

2
(
1− ρ2

) . (5.38)

Therefore we can rewrite Equation 5.37 as

1

2
(
1− ρ2

) (x− µx
σx

)2

=
1

2

(
x− µx
σx

)2

+
ρ2

2
(
1− ρ2

) (x− µx
σx

)2

. (5.39)

Substituting the result of Equation 5.39 into the exponent term in Equa-
tion 5.35 yields

− 1

2
(
1− ρ2

) [ρ2

(
x− µx
σx

)2

+

(
y − µy
σy

)2

− 2ρ

(
x− µx
σx

)(
y − µy
σy

)2
]

−1

2

(
x− µx
σx

)2

.

(5.40)
We can rewrite the first term (in brackets) of Equation 5.40 as a square.

ρ2

(
x− µx
σx

)2

+

(
y − µy
σy

)2

− 2ρ

(
x− µx
σx

)(
y − µy
σy

)2

=

[(
y − µy
σy

)
− ρ

(
x− µx
σx

)]2

.

(5.41)

Multiplying the last result in Equation 5.41 by σ2
y/σ

2
y yields

1

σ2
y

[
y − µy − ρ

σy
σx

(x− µx)

]
. (5.42)

Hence the density function in Equation 5.35 can be rewritten as

f =
1

σY
√

2π
√

1− ρ2
exp

{
− 1

2σ2
y

(
1− ρ2

) [y − µy − ρσy
σx

(x− µx)

]2
}

× 1

σx
√

2π
exp

[
− 1

2σx
(x− µx)

2

]
= f 2|1f1

(5.43)
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where f1 is the density of N
(
µx, σ

2
x

)
and f 2|1 is the conditional density func-

tion of N
(
µy + ρσyσ

−1
x (x− µx) , σ2

Y

(
1− ρ2

))
. To complete the proof, start

by taking the expectation with respect to Y .

f (x) =

∫ ∞
−∞

f1f 2|1dy

= f1

∫ ∞
−∞

f 2|1dy

= f1.

(5.44)

This gives us x ∼ N
(
µX , σ

2
X

)
. Next, we have

f (y|x) =
f (x, y)

f (x)
=
f 2|1f1

f1
= f 2|1 (5.45)

which proves the conditional relationship.
By Theorem 4.23 (Law of Iterated Means), E [φ (X,Y )] = EXEY |X [φ (X,Y )]

where EX denotes the expectation with respect to X.

E [XY ] = EXE [XY |X] = EX [XE [Y |X]]

= EX

[
XµY + ρ

σY
σX

X (X − µX)

]
= µXµY + ρσXσY .

(5.46)

Also notice that if the random variables are uncorrelated then ρ→ 0 and by
Equation 5.46 E [XY ] = µXµY .

Following some of the results introduced in Chapter 4, a linear sum of
normal random variables is normal, as presented in Theorem 5.5.

Theorem 5.5. If X and Y are bivariate normal and α and β are constants,
then αX + βY is normal.

The mean of a sample of pairwise independent normal random variables is also
normally distributed with a variance of σ2/N , as depicted in Theorem 5.6.

Theorem 5.6. Let
{
X̄i

}
, i = 1, 2, . . . N be pairwise independent and iden-

tically distributed sample means where the original random variables are dis-
tributed N

(
µ, σ2

)
. Then x̄ = 1/N

∑N
i=1 X̄i is N

(
µ, σ2/N

)
.

And, finally, if two normally distributed random variables are uncorrelated,
then they are independent.

Theorem 5.7. If X and Y are bivariate normal and Cov (X,Y ) = 0, then
X and Y are independent.
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5.4.2 Multivariate Normal Distribution

Expansion of the normal distribution function to more than two variables
requires some matrix concepts introduced in Chapter 10. However, we start
with a basic introduction of the multivariate normal distribution to build on
the basic concepts introduced in our discussion of the bivariate distribution.

Definition 5.8. We say X is multivariate normal with mean µ and variance-
covariance matrix Σ, denoted N (µ,Σ), if its density is given by

f (x) = (2π)
−n/2 |Σ|−1/2

exp

[
−1

2
(x− µ)

′
Σ−1 (x− µ)

]
. (5.47)

Note first that |Σ| denotes the determinant of the variance matrix (discussed in
Section 10.1.1.5). For our current purposes, we simply define the determinant
of the 2× 2 matrix as

|Σ| =
∣∣∣∣ σ11 σ12

σ21 σ22

∣∣∣∣ = σ11σ22 − σ12σ21. (5.48)

Given that the variance matrix is symmetric (i.e., σ12 = σ21), we could write
|Σ| = σ11σ22 − σ2

12.
The inverse of the variance matrix (i.e., Σ−1 in Equation 5.47) is a lit-

tle more complex. We will first invert the matrix where the coefficients are
unknown scalars (i.e., single numbers) by row reduction.[

1 0

−σ21
σ11

1

] [
σ11 σ12 1 0
σ21 σ22 0 1

]

=

[
σ11 σ12 1 0

0 σ22 − σ12σ21
σ11

−σ21
σ11

1

]
[

1 0

0 σ11
σ11σ22 − σ12σ21

][
σ11 σ12 1 0

0 σ12σ22 − σ12σ21
σ11

−σ21
σ11

1

]

=

[
σ11 σ12 1 0

0 1 − σ21
σ11σ22 − σ12σ21

σ11
σ11σ22 − σ12σ21

]
[

1 −σ12
σ11

0 1

][
1 σ12

σ11

1
σ11

0

0 1 − σ21
σ11σ22 − σ12σ21

σ11
σ11σ22 − σ12σ21

]

=

[
1 0 1

σ11
+ σ12σ21
σ11 (σ11σ22 − σ12σ21)

− σ12
σ11σ22 − σ12σ21

0 1 − σ21
σ11σ22 − σ12σ21

σ11
σ11σ22 − σ12σ21

]
.

(5.49)
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Focusing on the first term in the inverse,

1

σ11
+

σ12σ21

σ11 (σ11σ22 − σ12σ21)
=
σ11σ22 − σ12σ21 + σ12σ21

σ11 (σ11σ22 − σ12σ21)

=
σ11σ22

σ11 (σ11σ22 − σ12σ21)
=

σ11

σ11σ22 − σ12σ22
.

(5.50)

Next, consider inverting a matrix of matrices by row reduction following
the same approach used in inverting the matrix of scalars.[

ΣXX ΣXY I 0
ΣY X ΣY Y 0 I

]
Σ−1
XXR1

[
I Σ−1

XXΣXY Σ−1
XX 0

ΣY X ΣY Y 0 I

]
R2 − ΣY XR1[

I Σ−1
XXΣXY Σ−1

XX 0
0 ΣY Y − ΣY XΣ−1

XXΣXY −ΣY XΣ−1
XX I

]
.

(5.51)

Multiplying the last row of Equation 5.51 by
(
ΣY Y − ΣY XΣ−1

XXΣXY
)−1

and

then subtracting Σ−1
XXΣXY times the second row from the first row yields[

Σ−1
XX + Σ−1

XXΣXY
(
ΣY Y − ΣY XΣ−1

XXΣXY
)−1

ΣY XΣ−1
XX

−
(
ΣY Y − ΣY XΣ−1

XXΣXY
)−1

ΣY XΣ−1
XX

−Σ−1
XXΣXY

(
ΣY Y − ΣY XΣ−1

XXΣXY
)−1(

ΣY Y − ΣY XΣ−1
XXΣXY

)−1

]
.

(5.52)

As unwieldy as the result in Equation 5.52 appears, it yields several useful
implications. For example, suppose we were interested in the matrix relation-
ship

y = Bx⇒
[
y1

y2

]
=

[
I B
0 I

] [
x1

x2

]
(5.53)

so that y1 = x1 +Bx2 and y2 = x2. Notice that the equation leaves open the
possibility that both y1 and y2 are vectors and B is a matrix.

Next, assume that we want to derive the value of B so that y1 is uncorre-
lated with y2 (i.e., E

[
(y1 − µ1)

′
(y2 − µ2)

]
= 0). Therefore,

E
[
(x1 +Bx2 − µ1 −Bµ2)

′
(x2 − µ2)

]
= 0

E [{(x1 − µ1) +B (x2 − µ2)} ′ (x2 − µ2)] = 0

E
[
(x1 − µ1)

′
(x2 − µ2) +B (x2 − µ2)

′
(x2 − µ2)

]
= 0

Σ12 +BΣ22 = 0

⇒ B = −Σ12Σ−1
22 and y1 = x1 − Σ12Σ−1

22 x2.

(5.54)



Binomial and Normal Random Variables 129

Not to get too far ahead of ourselves, but Σ12Σ−1
22 is the general form of

the regression coefficient presented in Equation 4.50. Substituting the result
from Equation 5.54 yields a general form for the conditional expectation and
conditional variance of the normal distribution.(

Y1

Y2

)
=

(
I −Σ12Σ−1

22

0 I

)(
X1

X2

)

E

(
Y1

Y2

)
=

(
I −Σ12Σ−1

22

0 I

)(
µ1

µ2

)
=

(
µ1 − Σ12Σ−1

22 µ2

µ2

)

V

(
Y1

Y2

)
=

(
Σ11 − Σ12Σ−1

22 Σ21 0
0 Σ22

)
.

(5.55)

5.5 Chapter Summary

• The normal distribution is the foundation of a wide variety of econometric
applications.

– The Central Limit Theorem (developed in Chapter 6) depicts how the
sum of random variables (and hence their sample averages) will be
normally distributed regardless of the original distribution of random
variables.

– If we assume a random variable is normally distributed in small sam-
ples, we know the small sample distribution of a variety of sample
statistics such as the mean, variance, and regression coefficients. As
will be developed in Chapter 7, the mean and regression coefficients
follow the Student’s t distribution while the variance follows a chi-
squared distribution.

• The multivariate normal distribution provides for the analysis of relation-
ships between random variables within the distribution function.

5.6 Review Questions

5-1R. Derive the general form of the normal variable from the standard nor-
mal using a change in variables technique.

5-2R. In Theorem 5.4, rewrite the conditional expectation in terms of the
regression β (i.e., β = Cov [XY ] /V [X]).

5-3R. Prove the variance portion of Theorem 5.6.
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5.7 Numerical Exercises

5-1E. Derive the absolute approximation error for 6, 9, 12, and 15. Draw
binomial variables and compute the percent absolute deviation between
the binomial variable and a standard normal random variable. Does this
absolute deviation decline?

5-2E. Given that a random variable is distributed normally with a mean of
5 and a variance of 6, what is the probability that the outcome will be
less than zero?

5-3E. Construct a histogram for 10 sums of 10 Bernoulli draws (normalized
by subtracting their means and dividing by their theoretical standard
deviations). Compare this histogram with a histogram of 20 sums of
10 Bernoulli draws normalized in the same manner. Compare each his-
togram with the standard normal distribution. Does the large sample
approach the standard normal?

5-4E. Compute the sample covariance matrix for the farm interest rate for
Alabama and the Baa Corporate bond rate using the data presented
in Appendix D. What is the correlation coefficient between these two
series?

5-4E. Appendix D presents the interest rate and the change in debt to asset
ratio in the southeastern United States for 1960 through 2003 as well
as the interest rate on Baa Corporate bonds from the St. Louis Federal
Reserve Bank. The covariance matrix for interest rates in Florida, the
change in debt to asset ratio for Florida, and the Baa Corporate bond
rate is

S =

 0.0002466 −0.0002140 0.00031270
−0.0002140 0.0032195 −0.00014738
0.0003127 −0.00014738 0.00065745

 . (5.56)

Compute the projected variance of the interest rate for Florida condi-
tional on Florida’s change in debt to asset ratio and the Baa Corporate
bond rate.
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In this chapter we want to develop the foundations of sample theory. First
assume that we want to make an inference, either estimation or some test,
based on a sample. We are interested in how well parameters or statistics based
on that sample represent the parameters or statistics of the whole population.

6.1 Convergence of Statistics

In statistical terms, we want to develop the concept of convergence. Specifi-
cally, we are interested in whether or not the statistics calculated on the sample
converge toward the population values. Let {Xn} be a sequence of samples.
We want to demonstrate that statistics based on {Xn} converge toward the
population statistics for X.

133



134 Mathematical Statistics for Applied Econometrics

50
200

800
3200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.56 -0.48 -0.40 -0.32 -0.24 -0.16 -0.08 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56

Sa
m

pl
e 

Si
ze

Fr
eq

ue
nc

y

Sample Mean

FIGURE 6.1
Probability Density Function for the Sample Mean.

As a starting point, consider a simple estimator of the first four central
moments of the standard normal distribution.

M̂1 (x) =
1

N

N∑
i=1

xi

M̂2 (x) =
1

N

N∑
i=1

(
xi − M̂1 (x)

)2

M̂3 (x) =
1

N

N∑
i=1

(
xi − M̂1 (x)

)3

M̂4 (x) =
1

N

N∑
i=1

(
xi − M̂1 (x)

)4

.

(6.1)

Given the expression for the standard normal distribution developed in Chap-
ter 5, the theoretical first four moments are µ1 (x) = 0, µ2 (x) = 1, µ3 (x) = 0,
and µ4 (x) = 3. Figure 6.1 presents the empirical probability density functions
for the first empirical moment (the sample mean) defined in Equation 6.1 for
samples sizes of 50, 100, 200, 400, 800, 1600, and 3200. As depicted in Fig-
ure 6.1, the probability density function of the sample mean concentrates (or
converges) around its theoretical value as the sample size increases.
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Another way of looking at the concept of convergence involves examining
the quantiles of the distribution of the sample moments. The quantile is a
measure that asks what level of random variable X yields a probability of a
value less than p. Mathematically, the quantile is defined as

x∗ (p)⇒
∫ x∗

−∞
f (z) dz (6.2)

where f (z) is a valid density function. If p = {0, 0.25, 0.50, 0.75, 1.0}, this
measure defines the quartiles of the distribution. Table 6.1 presents the

TABLE 6.1
Quartiles for Sample Moments of the Standard Normal

Quartiles Interquartile Range
0% 25% 50% 75% 100% Raw Normalized

Mean – First Moment
50 −0.3552 −0.0979 −0.0128 0.0843 0.2630 0.1821

100 −0.3485 −0.0586 0.0012 0.0622 0.2028 0.1208
200 −0.2264 −0.0510 −0.0028 0.0377 0.1412 0.0888
400 −0.1330 −0.0323 0.0010 0.0439 0.1283 0.0762
800 −0.0991 −0.0172 0.0052 0.0259 0.0701 0.0431

1600 −0.0622 −0.0220 0.0029 0.0213 0.0620 0.0433
3200 −0.0425 −0.0164 −0.0003 0.0110 0.0397 0.0274

Variance – Second Central Moment
50 0.5105 0.8676 0.9481 1.0918 1.5562 0.2242

100 0.7115 0.8947 0.9862 1.0927 1.3715 0.1980
200 0.8024 0.9248 0.9971 1.0857 1.3140 0.1609
400 0.8695 0.9491 0.9966 1.0419 1.2266 0.0928
800 0.9160 0.9540 0.9943 1.0287 1.1443 0.0747

1600 0.9321 0.9771 1.0047 1.0267 1.0933 0.0495
3200 0.9414 0.9856 0.9978 1.0169 1.0674 0.0313

Skewness – Third Central Moment
50 −0.7295 −0.1412 −0.0333 0.1582 0.8134 0.2994

100 −0.6869 −0.1674 −0.0008 0.1646 0.7121 0.3320
200 −0.4252 −0.0968 −0.0116 0.1392 0.4867 0.2361
400 −0.3163 −0.0797 −0.0036 0.0703 0.3953 0.1500
800 −0.2185 −0.0601 −0.0133 0.0605 0.1841 0.1205

1600 −0.1397 −0.0428 −0.0011 0.0448 0.1356 0.0877
3200 −0.1288 −0.0208 0.0058 0.0285 0.1068 0.0493

Kurtosis – Fourth Central Moment
50 0.7746 2.0197 2.6229 3.3221 7.9826 1.3025 0.4342

100 1.3950 2.1279 2.7092 3.4366 6.1016 1.3086 0.4362
200 1.5611 2.4127 2.8683 3.5025 5.0498 1.0898 0.3633
400 1.9865 2.6823 2.8981 3.3730 4.7347 0.6907 0.2302
800 2.4249 2.7026 3.0089 3.2071 3.9311 0.5045 0.1682

1600 2.5575 2.8189 2.9881 3.2241 4.0558 0.4052 0.1351
3200 2.6229 2.9042 3.0351 3.1240 3.6167 0.2198 0.0733
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quartiles for each sample statistics and sample size. Next, consider the in-
terquartile range defined as

R (p) = x∗ (0.75)− x∗ (0.25) . (6.3)

Examining the quartile results in Table 6.1, notice that the true value of the
moment is contained in the quartile range. In addition, the quartile range
declines as the sample size increases. Notice that the quartile range for the
fourth moment is normalized by its theoretical value. However, even with
this adjustment, the values in Table 6.1 indicate that higher order moments
converge less rapidily than lower order moments (i.e., kurtosis converges more
slowly than the mean).

Taking a slightly different tack, the classical assumptions for ordinary least
squares (OLS) as presented in White [53] are identified by Theorem 6.1.

Theorem 6.1. The following are the assumptions of the classical linear
model.

(i) The model is known to be y = Xβ + ε, β <∞.

(ii) X is a nonstochastic and finite n× k matrix.

(iii) X ′X is nonsingular for all n ≥ k.

(iv) E (ε) = 0.

(v) ε ∼ N
(
0, σ2

0I
)
, σ2

0 <∞.

Given these assumptions, we can conclude that

a) Existence given (i) – (iii) βn exists for all n ≥ k and is unique.

b) Unibiasedness given (i) – (v) E [βn] = β0.

c) Normality given (i) – (v) βn ∼ N
(
β0, σ

2 (X ′X)
−1
)

.

d) Efficiency given (i) – (v) βn is the maximum likelihood estimator and
the best unbiased estimator in the sense that the variance of any other
unbiased estimator exceeds that of βn by a positive semi-definite matrix
regardless of the value of β0.

Existence, unbiasedness, normality, and efficiency are small sample analogs
of asymptotic theory. Unbiased implies that the distribution of βn is centered
around β0. Normality allows us to construct t-distribution or F -distribution
tests for restrictions. Efficiency guarantees that the ordinary least squares
estimates have the greatest possible precision.

Asymptotic theory involves the behavior of the estimator under the failure
of certain assumptions – specifically, assumptions (ii) or (v). The possible fail-
ure of assumption (ii) depends on the ability of the econometrician to control
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the sample. Specifically, the question is whether to control the experiment by
designing or selecting the levels of exogenous variables. The alternative is the
conjecture that the econometrician observed a sample of convenience. In
other words, the economy generated the sample through its normal operation.
Under this scenario, the X matrix was in fact stochastic or random and the
researcher simply observes one possible outcome.

Failure of assumption (v) also pervades economic applications. Specifically,
the fact that residual or error is normally distributed may be one of the
primary testable hypotheses in the study. For example, Moss and Shonkwiler
[33] found that corn yields were non-normally distributed. Further, the fact
that the yields were non-normally distributed was an important finding of the
study because it affected the pricing of crop insurance contracts.

The potential non-normality of the error term is important for the classical
linear model because normality of the error term is required to strictly apply
t-distributions or F -distributions. However, the central limit theorem can be
used if n is large enough to guarantee that βn is approximately normal.

Given that the data collected by the researcher conforms to the classical
linear model, the estimated coefficients are unbiased and hypothesis tests on
the results are correct (i.e., the parameters are distributed t and linear com-
binations of the paramters are distributed F ). However, if the data fails to
meet the classical assumptions, the estimated parameters converge to their
true value as the sample size becomes large. In addition, we are interested in
modifying the statistical test of significance for the model’s parameters.

6.2 Modes of Convergence

As a starting point, consider a simple mathematical model of convergence for
a nonrandom variable. Most students have seen the basic proof that

lim
x→∞

1

x
= 0 (6.4)

which basically implies that as x becomes infinitely large, the function value
f (x) = 1/x can be made arbitrarily close to zero. To put a little more math-
ematical rigor on the concept, let us define δ and ε such that

f (x+ δ) =

∣∣∣∣ 1

x+ δ
− 0

∣∣∣∣ ≤ ε. (6.5)

Convergence implies that for any ε there exists a δ that meets the criteria
in Equation 6.5. The basic concept in Equation 6.5 is typically used in cal-
culus courses to define derivatives. In this textbook we are interested in a
slightly different formulation – the limit of a sequence of numbers as defined
in Definition 6.2.
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Definition 6.2. A sequence of real numbers {αn}, n = 1, 2, · · · is said to
converge to a real number α if for any ε > 0 there exists an integer N such
that for all n > N we have

|αn − α| < ε. (6.6)

This convergence is expressed αn → α as n→∞ or limn→∞ αn = α.
This definition must be changed for random variables because we cannot

require a random variable to approach a specific value. Instead, we require
the probability of the variable to approach a given value. Specifically, we want
the probability of the event to equal 1 or zero as n goes to infinity. This
concept defines three different concepts or modes of convergence. First, the
convergence in probability implies that the distance between the sample
value and the true value (i.e., the absolute difference) can be made small.

Definition 6.3 (Convergence in Probability). A sequence of random variables
{Xn}, n = 1, 2, · · · is said to converge to a random variable X in probability
if for any ε > 0 and δ > 0 there exists an integer N such that for all n > N
we have P (|Xn −X| < ε) > 1− δ. We write

Xn
P−→ X (6.7)

plimn→∞Xn = X. The last equality reads – the probability limit of Xn is X.
(Alternatively, the clause may be paraphrased as lim P (|Xn −X| < ε) = 1 for
any ε > 0).

Intuitively, this convergence in probability is demonstrated in Table 6.1. As
the sample size expands, the quartile range declines and |Xn −X| becomes
small.

A slightly different mode of convergence is convergence in mean
square.

Definition 6.4 (Convergence in Mean Square). A sequence {Xn} is said to

converge to X in mean square if limn→∞ E (Xn −X)
2

= 0. We write

Xn
M−→ X. (6.8)

Table 6.2 presents the expected mean squared errors for the sample statistics
for the standard normal distribution. The results indicate that the sample
statistics converge in mean squared error to their theoretical values – that
is, the mean squared error becomes progressively smaller as the sample size
increases.

A final type of convergence, convergence in distribution, implies that
the whole distribution of Xn approaches the distribution function of X.

Definition 6.5 (Convergence in Distribution). A sequence {Xn} is said to
converge to X in distribution if the distribution function Fn of Xn converges
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TABLE 6.2
Convergence in Mean Square for Standard Normal

Sample Size
Statistic 50 100 200 400 800 1600 3200
Mean 0.03410 0.01148 0.00307 0.00073 0.00018 0.00005 0.00001
Variance 0.07681 0.01933 0.00535 0.00130 0.00029 0.00007 0.00002
Skewness 0.17569 0.06556 0.01614 0.00379 0.00092 0.00021 0.00006
Kurtosis 3.40879 0.98780 0.25063 0.06972 0.01580 0.00506 0.00110

to the distribution function F of X at every continuity point of F . We
write

Xn
d−→ X (6.9)

and call F the limit distribution of {Xn}. If {Xn} and {Yn} have the same
limit distribution, we write

Xn
LD
= Yn. (6.10)

Figures 5.2 and 5.3 demonstrate convergence in probability. Figure 5.2 demon-
strates that the normalized binomial converges to the standard normal, while
Figure 5.3 shows that the normalized sum of uniform random variables con-
verges in probability to the standard normal.

The differences in types of convergence are related. Comparing Defi-
nition 6.3 with Definition 6.4, E (Xn −X)

2
will tend to zero faster than

|Xn −X|. Basically, the squared convergence is faster than the linear con-
vergence implied by the absolute value. The result is Chebyshev’s theorem.

Theorem 6.6 (Chebyshev).

Xn
M−→ X ⇒ Xn

P−→ X. (6.11)

Next, following Definition 6.5, assume that fn (x)→ f (x), or that the sample
distribution converges to a limiting distribution.∫ ∞

−∞
(z − z̄)k fn (z) dz −

∫ ∞
−∞

(z − z̄)k f (z) dz∫ ∞
−∞

(z − z̄)k [fn (z)− f (z)] dz = 0.
(6.12)

Therefore convergence in distribution implies convergence in mean square.

Theorem 6.7.
Xn

P−→ X ⇒ Xn
d−→ X. (6.13)
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The convergence results give rise to Chebyshev’s inequality,

P
[
g (Xn) ≥ ε2

]
≤ E [g (Xn)]

ε2
(6.14)

which can be used to make probabilistic statements about a variety of statis-
tics. For example, replacing g (Xn) with the sample mean yields a form of the
confidence interval for the sample mean. Extending the probability statements
to general functions yields

Theorem 6.8. Let Xn be a vector of random variables with a fixed finite
number of elements. Let g be a function continuous at a constant vector point
α. Then

Xn
P−→ α⇒ g (Xn)

P−→ g (α) . (6.15)

Similar results are depicted in Slutsky’s theorem.

Theorem 6.9 (Slutsky). If Xn
d→ X and Yn

d→ α, then

Xn + Yn
d−→ X + α

XnYn
d−→ αX(

Xn

Yn

)
d−→ X

α
if α 6= 0.

(6.16)

6.2.1 Almost Sure Convergence

Let ω represent the entire random sequence {Zt}. As before, our interest
typically centers around the averages of this sequence.

bn (ω) =
1

n

n∑
t=1

Zt. (6.17)

Definition 6.10. Let {bn (ω)} be a sequence of real-valued random variables.
We say that bn (ω) converges almost surely to b, written

bn (ω)
a.s.−→ b (6.18)

if and only if there exists a real number b such that

P [ω : bn (ω)→ b] = 1. (6.19)

The probability measure P describes the distribution of ω and determines
the joint distribution function for the entire sequence {Zt}. Other common
terminology is that bn (ω) converges to b with probability 1 or that bn (ω) is
strongly consistent for b.
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Example 6.11. Let

Z̄n =
1

n

n∑
i=1

Zt (6.20)

where {Zt} is a sequence of independently and identically distributed (i.i.d.)
random variables with E [Zt] = µ <∞. Then

Z̄n
a.s.−→ µ (6.21)

by Kolmogorov’s strong law of large numbers, Proposition 6.22 [8, p. 3].

Proposition 6.12. Given g : Rk → Rl (k, l <∞) and any sequence {bn}
such that

bn
a.s.−→ b (6.22)

where bn and b are k × 1 vectors, if g is continuous at b, then

g (bn)
a.s.−→ g (b) . (6.23)

This result then allows us to extend our results to include the matrix
operations used to define the ordinary least squares estimators.

Theorem 6.13. Suppose

a) y = Xβ0 + ε;

b) X ′ε
n

a.s.−→ 0;

c) X ′X
n

a.s.−→M is finite and positive definite.

Then βn exists a.s. for all n sufficiently large, and βn
a.s.−→ β0.

Proof. Since X ′X/n
a.s.−→ M , it follows from Proposition 2.11 that

det (X ′X/n)
a.s.−→ det (M). Because M is positive definite by (c), det (M) > 0.

It follows that det (X ′X/n) > 0 a.s. for all n sufficiently large, so (X ′X)
−1

exists for all n sufficiently large. Hence

β̂n ≡
(
X ′X

n

)−1
X ′y

n
(6.24)

exists for all n sufficiently large. In addition,

β̂n = β0 +

(
X ′X

n

)−1
X ′ε

n
. (6.25)

It follows from Proposition 6.12 that

β̂n
a.s.−→ β0 +M−10 = β0. (6.26)
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The point of Theorem 6.13 is that the ordinary least squares estimator β̂n
converges almost surely to the true value of the parameters β. The concept is
very powerful. Using the small sample properties, we are sure that the ordinary
least squares estimator is unbiased. However, what if we cannot guarantee the
small sample properties? What if the error is not normal, or what if the values
of the independent variables are random? Given Theorem 6.13, we know that
the estimator still converges almost surely to the true value.

6.2.2 Convergence in Probability

A weaker stochastic convergence concept is that of convergence in probability.

Definition 6.14. Let {bn (ω)} be a sequence of real-valued random variables.
If there exists a real number b such that for every ε > 0,

P [ω : |bn (ω)− b| < ε]→ 1 (6.27)

as n→∞, then bn (ω) converges in probability to b.

The almost sure measure of probability takes into account the joint dis-
tribution of the entire sequence {Zt}, but with convergence in probability,
we only need to be concerned with the joint distribution of those elements
that appear in bn (ω). Convergence in probability is also referred to as weak
consistency.

Theorem 6.15. Let {bn (ω)} be a sequence of random variables. If

bn
a.s.−→ b , then bn

P−→ b. (6.28)

If bn converges in probability to b, then there exists a subsequence
{
bnj
}

such
that

bnj
a.s.−→ b. (6.29)

Given that we know Theorem 6.13, what is the point of Theorem 6.15?
Theorem 6.13 states that the ordinary least squares estimator converges al-
most surely to the true value. Theorem 6.15 states that given Theorem 6.13,
then bn converges in probability to b. The point is that we can make fewer
assumptions to guarantee Theorem 6.15. Making fewer assumptions is always
preferred to making more assumptions – the results are more robust.

6.2.3 Convergence in the rth Mean

Earlier in this chapter we developed the concept of mean squared convergence.
Generalizing the concept we consider the rth power of the expectation yielding

Definition 6.16. Let {bn (ω)} be a sequence of real-valued random variables.
If there exists a real number b such that

E [|bn (ω)− b|r]→ 0 (6.30)
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Expected Utility.

as n→∞ for some r > 0, then bn (ω) converges in the rth mean to b, written
as

bn (ω)
r.m.−→ b. (6.31)

Next, we consider a proposition that has applications for both estimation
and economic applications – Jensen’s inequality. Following the development
of expected utility in Moss [32, pp. 57–82], economic decision makers choose
among alternatives to maximize their expected utility. As depicted in Fig-
ure 6.2, the utility function for risk averse decision makers is concave in in-
come. Hence, the expected utility is less than the utility at the expected level
of income.

E [U (Y )] = pU (y1) + (1− p)U (y2) < U [p× y1 + (1− p)× y2] = U [E (Y )] .
(6.32)

Hence, risk averse decision makers are worse off under risk. Jensen’s inequality
provides a general statement of this concept.

Proposition 6.17 (Jensen’s inequality). Let g : R1 → R1 be a convex
function on the interval B ⊂ R1 and Z be a random variable such that
P [Z ∈ B] = 1. Then g [E (Z)] ≤ E [g (Z)]. If g is concave on B, then
g [E (Z)] ≥ E [g (Z)].

In addition, the development of the convergence of the rth mean allows
for the statement of a generalized version of Chebychev’s inequality presented
in Equation 6.14.
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Proposition 6.18 (Generalized Chebyshev Inequality). Let Z be a random
variable such that E |Z|r <∞, r > 0. Then for every ε > 0

P [|Z| ≥ ε] ≤ E (|Z|r)
εr

. (6.33)

Another useful inequality that follows the rth result is Holder’s inequality.

Proposition 6.19 (Holder’s Inequality). If p > 1, 1
p + 1

q = 1, and if E |Y |p <
∞ and E |Z|q <∞, then

E |Y X| ≤ [E |y|p]1/p [E |X|q]1/q . (6.34)

If p = q = 2, we have the Cauchy–Schwartz inequality

E [|Y Z|] ≤ E
[
Y 2
]1/2

E
[
Z2
]1/2

(6.35)

The rth convergence is also useful in demonstrating the ordering of con-
vergence presented in Theorem 6.6.

Theorem 6.20. If bn (ω)
r.m.−→ b for some r > 0, then bn (ω)

p−→ b.

The real point to Theorem 6.21 is that we will select the estimator that min-
imizes the mean squared error (i.e., r = 2 in the root mean squared error).
Hence, Theorem 6.21 states that an estimator that converges in mean squared
error also converges in probability.

6.3 Laws of Large Numbers

Given the above convergence results, we can show that as the size of the
sample increases, the sample statistic converges to the underlying population
statistic. Taking our initial problem as an example,

lim
n→∞

M̂1 (xn) = µ1 (x)⇐ lim
n→∞

M1 (xn)− µ1 (x) = 0

lim
n→∞

M̂2 (xn) = µ2 (x)⇐ lim
n→∞

M2 (xn)− µ2 (x) = 0.
(6.36)

Proposition 6.21. Given restrictions on the dependence, heterogeneity, and
moments of a sequence of random variables {Xt},

X̄n − µ̄n
a.s.−→ 0 (6.37)

where

X̄n =
1

n

n∑
i=1

Xt and µ̄n = E
(
X̄n

)
. (6.38)
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Specifically, if we can assume that the random variables in the sample (Xt)
are independently and identically distributed then

Theorem 6.22 (Kolmogorov). Let {Xt} be a sequence of indepedently and
identically distributed (i.i.d.) random variables. Then

X̄n
a.s.−→ µ (6.39)

if and only if E |Xt| <∞ and E (Xt) = µ.

Thus, the sample mean converges almost surely to the population mean.
In addition, letting {Xi} be independent and identically distributed with
E [Xi] = µ,

X̄n
P−→ µ. (6.40)

This result is known as Khintchine’s law of large numbers [8, p. 2].

6.4 Asymptotic Normality

Under the traditional assumptions of the linear model (fixed regressors and
normally distributed error terms), βn is distributed multivariate normal with

E
[
β̂n

]
= β0

V
[
β̂n

]
= σ2

0 (X ′X)
−1

(6.41)

for any sample size n. However, when the sample size becomes large the dis-
tribution of βn is approximately normal under some general conditions.

Definition 6.23. Let {bn} be a sequence of random finite-dimensional vectors
with joint distribution functions {Fn}. If Fn (z)→ F (z) as n→∞ for every
continuity point z, where F is the distribution function of a random variable
Z, then bn converges in distribution to the random variable Z, denoted

bn
d−→ Z. (6.42)

Intuitively, the distribution of bn becomes closer and closer to the distribution
function of the random variable Z. Hence, the distribution F can be used as
an approximation of the distribution function of bn. Other ways of stating this
concept are that bn converges in law to Z.

bn
L−→ Z. (6.43)
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Or, bn is asymptotically distributed as F

bn
A∼ F. (6.44)

In this case, F is called the limiting distribution of bn.

Example 6.24. Let {Xt} be an i.i.d. sequence of random variables with mean
µ and variance σ2 <∞. Define

bn =
X̄n − E

[
X̄n

](
V
[
X̄n

])1/2 =

(
1

n

)1/2 n∑
t=1

(Xt − µ)

σ
. (6.45)

Then by the Lindeberg–Levy central limit theorem (Theorem 6.24),

bn
A∼ N (0, 1) . (6.46)

Theorem 6.25 (Lindeberg–Levy). Let {Xi} be i.i.d. with E [Xi] = µ and
V (Xi) = σ2. Then, defining Zn as above, Zn → N (0, 1).

In this textbook, we will justify the Lindeberg–Levy theory using a general
characteristic function for a sequence of random variables. Our demonstra-
tion stops a little short of a formal proof but contains the essential points nec-
essary to justify the result. The characteristic function of a random variable
X is defined as

φX (t) = E
[
eitX

]
= E [cos (tX) + i sin (tX)]

= E [cos (tX)] + iE [sin (tX)] .
(6.47)

This function may appear intimidating, but recalling our development of
the normal distribution in Section 3.7, we can rewrite the function f (x) =

(x− 5)
2
/5 as

φ (θ) = r (θ) cos (θ) (6.48)

where the imaginary term is equal to zero. Hence, we start by defining the
characteristic function of a random variable in Definition 6.26.

Definition 6.26. Let Z be a k× 1 random vector with distribution function
F . The characteristic function of F is defined as

f (λ) = E [exp (iλ′Z)] (6.49)

where i2 = −1 and λ is a k × 1 real vector.

Notice the similarity between the definition of the moment generating func-
tion and the characteristic function.

MX (t) = E [exp (tx)]

f (λ) = E [exp (iλ′z)] .
(6.50)
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In fact, a weaker form of the central limit theorem can be demonstrated using
the moment generating function instead of the characteristic function.

Next, we define the characteristic function for the standard normal distri-
bution as

Definition 6.27. Let Z ∼ N
(
µ, σ2

)
. Then

f (λ) = exp

(
iλµ− λ2σ2

2

)
. (6.51)

It is important that the characteristic function is unique given the den-
sity function for any random variable. Two random variables with the same
characteristic function also have the same density function.

Theorem 6.28 (Uniqueness Theorem). Two distribution functions are iden-
tical if and only if their characteristic functions are identical.

This result also holds for moment generating functions. Hence, the point of
the Lindeberg–Levy proof is to demonstrate that the characteristic function
for Zt (the standardized mean) approaches the distribution function for the
standard normal distribution as the sample size becomes large.

Lindeberg–Levy. First define f (λ) as the characteristic function for
(Zt − µ) /σ and let fn (λ) be the characteristic function of

√
n
(
Z̄n − µ̄n

)
σ̄n

=

(
1

n

)1/2 n∑
t=1

(
Zt − µ
σ

)
. (6.52)

By the structure of the characteristic function we have

fn (λ) = f

(
λ

σ
√
n

)

ln (fn (λ)) = n ln

(
f

(
λ

σ
√
n

))
.

(6.53)

Taking a second order Taylor series expansion of f (λ) around λ = 0 gives

f (λ) = 1− σ2λ2

2
+ o

(
λ2
)
. (6.54)

Thus,

ln (fn (λ)) = n ln

[
1− λ2

2n
+ o

(
λ2

n

)]
→ λ2

2
as n→∞. (6.55)
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Another proof of the central limit theorem involves taking a Taylor series
expansion of the characteristic function around the point t = 0, yielding

φz (t) = φz (0) +
1

1!
φ′z (0) t+

1

2!
φ′′z (0) t2 + o

(
t2
)

s.t.Z =
X − µ
σ
√
n
.

(6.56)

To work on this expression we note that

φX (0) = 1 (6.57)

for any random variable X, and

φ
(k)
X (0) = ikE

(
Xk
)
. (6.58)

Putting these two results into the second-order Taylor series expansion,

1 +
E (Z)

i
t+

E
(
Z2
)

i2
t2

2
+ o

(
t2
)

= 1− t2

2
+ o

(
t2
)

3: E (Z) = 0 , E
(
Z2
)

= 1.

(6.59)

Thus,

φz (t) = φz (0) +
1

1!
φ′z (0) t+

1

2!
φ′′z (0) t2 + o

(
t2
)

= 1 +
E (Z)

i
t+

E (Z)

i2
t2

2
+ o

(
t2
)

= 1− t2

2
+ o

(
t2
)
⇔ 1− t2

2
= E

(
eiy
)
3: y ∼ N (0, 1)

(6.60)

or Z is normally distributed. This approach can be used to prove the central
limit theorem from the moment generating function.

For completeness, there are other characteristic functions that the limit
does not approach. The characteristic function of the uniform distribution
function is

φX (t) = eit − 1. (6.61)

The gamma distribution’s characteristic function is

φX (t) =
1(

1− it

α

)r . (6.62)

Thus, our development of the Lindeberg–Levy theorem does not assume the
result. The fact that the sample means converge to the true population mean
and the variance of the means converges to a fixed value drives the result.
Essentially, only the first two moments matter asymptotically.
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6.5 Wrapping Up Loose Ends

Finally, we can use some of the implications of convergence to infer results
about the correlation coefficient between any two random variables, bound
the general probabilities, and examine the convergence of the binomial distri-
bution to the normal.

6.5.1 Application of Holder’s Inequality

Using Holder’s inequality it is possible to place a general bound on the corre-
lation coefficient regardless of the distribution.

Example 6.29. If X and Y have means µX , µY and variances σ2
X , σ2

Y , re-
spectively, we can apply the Cauchy–Schwartz Inequality (Holder’s inequality
with p = q = 1/2 ) to get

E |(X − µX) (Y − µY )| ≤
{

E
[
(X − µx)

2
]}

1/2
{

E
[
(Y − µy)

2
]}1/2

. (6.63)

Squaring both sides and substituting for variances and covariances yields

(Cov (X,Y ))
2 ≤ σ2

Xσ
2
Y (6.64)

which implies that the absolute value of the correlation coefficient is less than
one.

6.5.2 Application of Chebychev’s Inequality

Using Chebychev’s inequality we can bound the probability of an outcome of
a random variable (x) being different from the mean for any distribution.

Example 6.30. The most widespread use of Chebychev’s inequality involves
means and variances. Let g (x) = (x− µ)

2
/σ2, where µ = E [X] and σ2 =

V (X). Let r = t2.

P

(
(X − µ)

2

σ2 ≥ t2
)
≤ 1

t2
E

[
(X − µ)

2

σ2

]
=

1

t2
. (6.65)

Since
(X − µ)

2

σ2 ≥ t2 ⇒ (X − µ)
2 ≥ σ2t2 ⇒ |X − µ| ≥ σt

P (|X − µ| ≥ σt) ≤ 1

t2

(6.66)

letting t = 2, this becomes

P (|X − µ| ≥ 2σ) ≤ 1

4
= 0.25. (6.67)
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However, this inequality may not say much, since for the normal distribution

P (|X − µ| ≥ 2σ) =

[
1−

∫ 2σ

−∞

1√
2πσ

exp

[
− (x− µ)

2

2σ2

]
dx

]

= 2× (0.0227) = 0.0455.

(6.68)

Thus, the actual probability under the standard normal distribution is much
smaller than the Chebychev inequality. Put slightly differently, the Chebychev
method gives a very loose probability bound.

6.5.3 Normal Approximation of the Binomial

Starting from the binomial distribution function

b (n, r, p) =
n!

(n− r)!r!
pr (1− p)n−r (6.69)

first assume that n = 10 and p = 0.5. The probability of r ≤ 3 is

P (r ≤ 3) = b (10, 0, 0.5) + b (10, 1, 0.5) + b (10, 3, 0.5) = 0.1719. (6.70)

Note that this distribution has a mean of 5 and a variance of 2.5. Given this
we can compute

z∗ =
3− 5√

2.5
= −1.265. (6.71)

Integrating the standard normal distribution function from negative infinity
to −1.265 yields

P (z∗ ≤ −1.265) =

∫ −1.265

−∞

1√
2π

exp

[
−z

2

2

]
dz = 0.1030. (6.72)

Expanding the sample size to 20 and examining the probability that r ≤ 6
yields

P (r ≤ 6) =

6∑
i=0

b (20, i, 5) = 0.0577. (6.73)

This time the mean of the distribution is 10 and the variance is 5. The resulting
z∗ = −1.7889. The integral of the normal distribution function from negative
infinity to −1.7889 is 0.0368.

As the sample size increases, the binomial probability approaches the nor-
mal probability. Hence, the binomial converges in probability to the normal
distribution, as depicted in Figure 5.2.

6.6 Chapter Summary

• Small sample assumptions such as the assumption that the set of in-
dependent variables is fixed by the choice of the experimenter and the
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normality of residuals yield very powerful identification conditions for
estimation.

• Econometricians very seldom are able to make these assumptions. Hence,
we are interested in the limiting behavior of estimators as the sample size
becomes very large.

• Of the modes of convergence, we are typically most interested in conver-
gence in distribution. Several distributions of interest converge in probabil-
ity to the normal distribution such as ordinary least squares and maximum
likelihood estimators.

• Jensen’s inequality has implications for economic concepts such as ex-
pected utility.

6.7 Review Questions

6-1R. A couple of production functions are known for their numerical limits.
For example, the Spillman production function

f (x1) = α0 (1− exp (α1 − α2x1)) (6.74)

and its generalization called the Mitcherlich–Baule

f (x1, x2) = β0 (1− exp (β1 − β2x1)) (1− exp (β3 − β4x2)) (6.75)

have limiting levels. Demonstrate the limit of each of these functions
as x1, x2 →∞.

6-2R. Following the discussion of Sandmo [40], demonstrate that the expected
value of a concave production function lies below the production func-
tion at its expected value.

6.8 Numerical Exercises

6-1E. Construct 10 samples of a Bernoulli distribution for 25, 50, 75, and
100 draws. Compute the mean and standard deviations for each draw.
Demonstrate that the mean and variance of the samples converge nu-
merically.

6-2E. Compare the probability that fewer than 10 heads will be tossed out of
50 with the comparable event under a normal distribution.
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We will divide the discussion into the estimation of a single number such as a
mean or standard deviation, or the estimation of a range such as a confidence
interval. At the most basic level, the definition of an estimator involves the
distinction between a sample and a population. In general, we assume that we
have a random variable (X) with some distribution function. Next, we assume
that we want to estimate something about that population, for example, we
may be interested in estimating the mean of the population or probability
that the outcome will lie between two numbers. In a farm-planning model,
we may be interested in estimating the expected return for a particular crop.
In a regression context, we may be interested in estimating the average effect
of price or income on the quantity of goods consumed. This estimation is
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typically based on a sample of outcomes drawn from the population instead
of the population itself.

7.1 Sampling and Sample Image

Focusing on the sample versus population dichotomy for a moment, the sample
image of X, denoted X∗, and the empirical distribution function for f (X) can
be depicted as a discrete distribution function with probability 1/n.

Consider an example from production economics. Suppose that we observe
data on the level of production for a group of firms and their inputs (e.g., the
capital (K), labor (L), energy (E), and material (M) data from Dale Jorgen-
son’s KLEM dataset [22] for a group of industries i = 1, · · ·N). Next, assume
that we are interested in measuring the inefficiency given an estimate of the
efficient amount of production associated with each input (ŷi (ki, li, ei,mi)).

εi = yi − ŷi (ki, li, ei,mi) . (7.1)

For the moment assume that the efficient level of production is known without
error. One possible assumption is that −εi ∼ Γ (α, β), or all firms are at most
efficient (yi − ŷi (ki, li, ei,mi) ≤ 0). An example of the gamma distribution is
presented in Figure 7.1.

Given this specification, we could be interested in estimating the charac-
teristics of the inefficiency for a firm in a specific industry – say the average
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FIGURE 7.1
Density Function for a Gamma Distribution.
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TABLE 7.1
Small Sample of Gamma Random Variates

Obs. ε F̂ (εi) F (εi) Obs. ε F̂ (εi) F (εi)
1 0.4704 0.02 0.0156 26 1.7103 0.52 0.4461
2 0.4717 0.04 0.0157 27 1.7424 0.54 0.4601
3 0.5493 0.06 0.0256 28 1.8291 0.56 0.4971
4 0.6324 0.08 0.0397 29 1.9420 0.58 0.5436
5 0.6978 0.10 0.0532 30 1.9559 0.60 0.5491
6 0.7579 0.12 0.0676 31 1.9640 0.62 0.5524
7 0.9646 0.14 0.1303 32 2.1041 0.64 0.6061
8 0.9849 0.16 0.1375 33 2.2862 0.66 0.6698
9 0.9998 0.18 0.1428 34 2.3390 0.68 0.6868
10 1.0667 0.20 0.1677 35 2.3564 0.70 0.6923
11 1.0927 0.22 0.1778 36 2.5629 0.72 0.7522
12 1.1193 0.24 0.1883 37 2.6581 0.74 0.7766
13 1.1895 0.26 0.2169 38 2.8669 0.76 0.8234
14 1.2258 0.28 0.2321 39 2.9415 0.78 0.8381
15 1.3933 0.30 0.3051 40 3.0448 0.80 0.8566
16 1.4133 0.32 0.3140 41 3.0500 0.82 0.8575
17 1.4354 0.34 0.3238 42 3.0869 0.84 0.8637
18 1.5034 0.36 0.3543 43 3.1295 0.86 0.8705
19 1.5074 0.38 0.3561 44 3.1841 0.88 0.8788
20 1.5074 0.40 0.3561 45 4.0159 0.90 0.9585
21 1.5459 0.42 0.3733 46 4.1773 0.92 0.9667
22 1.5639 0.44 0.3814 47 4.2499 0.94 0.9699
23 1.5823 0.46 0.3896 48 4.4428 0.96 0.9770
24 1.5827 0.48 0.3898 49 4.4562 0.98 0.9774
25 1.6533 0.50 0.4211 50 4.6468 1.00 0.9828

technical inefficiency of firms in the Food and Fiber Sector. Table 7.1 presents
one such sample for 50 firms in ascending order (i.e., this is not the order
the sample was drawn in). In this table we define the empirical cumulative
distribution as

F̂ (εi) =
i

N
(7.2)

where N = 50 (the number of oberservations). The next column gives the
theoretical cumulative density function (F (εi)) – integrating the gamma den-
sity function from 0 to εi. The relationship between the empirical and theo-
retical cumulative distribution functions is presented in Figure 7.2. From this
graphical depiction, we conclude that the sample image (i.e., the empirical cu-
mulative distribution) approaches the theoretical distibution. Given the data
presented in Table 7.1, the sample mean is 2.03 and the sample variance is 1.27.

Next, we extend the sample to N = 200 observations. The empirical
and theoretical cumulative density functions for this sample are presented in
Figure 7.3. Intuitively, the sample image for the larger sample is closer to the
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FIGURE 7.2
Empirical versus Theoretical Cumulative Distribution Functions — Small
Sample.
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FIGURE 7.4
Probability and Cumulative Beta Distributions.

underlying distribution function than the smaller sample. Empirically, the
mean of the larger sample is 2.03 and the variance is 1.02. Given that the true
underlying distribution is a Γ (α = 4, β = 2), the theoretical mean is 2 and
the variance is 1. Hence, while there is little improvement in the estimate of
the mean from the larger sample, the estimate of the variance for the larger
sample is much closer to its true value.

To develop the concept of sampling from a distribution, assume that we are
interested in estimating the share of a household’s income spent on housing.
One possibility for this effort is the beta distribution, which is a two parameter
distribution for a continuous random variable with values between zero and
one (depicted in Figure 7.4). Assume that our population is the set of 40
faculty of some academic department. Further assume that the true underlying
beta distribution is the one depicted in Table 7.2. Assume that it is too costly
to sample all 40 faculty members for some reason and that we will only be able
to collect a sample of 8 faculty (i.e., there are two days remaining in the spring
semester so the best you can hope for is to contact 8 faculty). The question
is how does our sample of eight faculty relate to the true beta distribution?

First, assume that we rank the faculty by the percent of their income
spent on housing from the lowest to the highest. Next, assume that we draw
a sample of eight faculty members from this list (or sample) at random.

s = {34, 27, 19, 29, 33, 12, 23, 35} . (7.3)

Taking the first point, 34/40 is equivalent to a uniform outcome of 0.850.
Graphically, we can map this draw from a uniform random outcome into a
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TABLE 7.2
Density and Cumulative Density Functions for Beta Distribution

x f (x|α, β) F (x|α, β)) x f (x|α, β) F (x|α, β))
0.025 0.2852 0.0036 0.525 1.4214 0.7240
0.050 0.5415 0.0140 0.550 1.3365 0.7585
0.075 0.7701 0.0305 0.575 1.2463 0.7908
0.100 0.9720 0.0523 0.600 1.1520 0.8208
0.125 1.1484 0.0789 0.625 1.0547 0.8484
0.150 1.3005 0.1095 0.650 0.9555 0.8735
0.175 1.4293 0.1437 0.675 0.8556 0.8962
0.200 1.5360 0.1808 0.700 0.7560 0.9163
0.225 1.6217 0.2203 0.725 0.6579 0.9340
0.250 1.6875 0.2617 0.750 0.5625 0.9492
0.275 1.7346 0.3045 0.775 0.4708 0.9621
0.300 1.7640 0.3483 0.800 0.3840 0.9728
0.325 1.7769 0.3926 0.825 0.3032 0.9814
0.350 1.7745 0.4370 0.850 0.2295 0.9880
0.375 1.7578 0.4812 0.875 0.1641 0.9929
0.400 1.7280 0.5248 0.900 0.1080 0.9963
0.425 1.6862 0.5675 0.925 0.0624 0.9984
0.450 1.6335 0.6090 0.950 0.0285 0.9995
0.475 1.5711 0.6491 0.975 0.0073 0.9999
0.500 1.5000 0.6875 1.000 0.0000 1.0000

beta outcome, as depicted in Figure 7.5, yielding a value of the beta random
variable of 0.6266. This value requires a linear interpolation. The uniform
value (i.e., the value of the cumulative distribution for beta) lies between
0.8484 (x = 0.625) and 0.8735 (x = 0.650).

x = 0.625 + (0.8500− 0.8484)× 0.650− 0.625

0.8735− 0.8484
= 0.6266. (7.4)

Thus, if our distribution is true (B (α = 3, β = 2)), the 34th individual in the
sample will spend 0.6266 of their income on housing. The sample of house
shares for these individuals are then

t = {0.6266, 0.4919, 0.3715, 0.5257, 0.6038, 0.2724, 0.4295, 0.6516} . (7.5)

Table 7.3 presents a larger sample of random variables drawn according to
the theoretical distribution. Figure 7.6 presents the sample and theoretical
cumulative density functions for the data presented in Table 7.3.

The point of the discussion is that a sample drawn at random from a
population that obeys any specific distribution function will replicate that
distribution function (the sample converges in probability to the theoretical
distribution). The uniform distribution is simply the collection of all individ-
uals in the population. We assume that each individual is equally likely to be
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Inverse Beta Distribution.

TABLE 7.3
Random Sample of Betas

Obs. U [0, 1] B (α, β) Obs. U [0, 1] B (α, β)
1 0.3900 0.3235 21 0.3944 0.3260
2 0.8403 0.6177 22 0.0503 0.0977
3 0.3312 0.2902 23 0.5190 0.3967
4 0.5652 0.4236 24 0.4487 0.3566
5 0.7302 0.5295 25 0.7912 0.5753
6 0.4944 0.3826 26 0.4874 0.3785
7 0.3041 0.2748 27 0.7320 0.5307
8 0.3884 0.3227 28 0.4588 0.3623
9 0.2189 0.2241 29 0.1510 0.1799
10 0.9842 0.8357 30 0.9094 0.6915
11 0.8840 0.6616 31 0.6834 0.4973
12 0.0244 0.0657 32 0.6400 0.4694
13 0.0354 0.0806 33 0.6833 0.4973
14 0.0381 0.0837 34 0.3476 0.2996
15 0.8324 0.6105 35 0.3600 0.3066
16 0.0853 0.1302 36 0.0993 0.1417
17 0.5128 0.3931 37 0.5149 0.3943
18 0.7460 0.5409 38 0.7397 0.5364
19 0.4754 0.3717 39 0.0593 0.1066
20 0.0630 0.1101 40 0.4849 0.3771
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drawn for the sample. We order the underlying uniform distribution in our
discussion as a matter of convenience. However, given that we draw the sample
population randomly, no assumption about knowing the underlying ordering
of the population is actually used.

7.2 Familiar Estimators

As a starting point, let us consider a variety of estimators that students have
seen in introductory statistics courses. For example, we start by considering
the sample mean

X̄ =
1

n

n∑
i=1

Xi. (7.6)

Based on this accepted definition, we ask the question – what do we know
about the properties of the mean? Using Theorem 4.23, we know that

E
[
X̄
]

= E [X] (7.7)

which means that the population mean is close to a “center” of the distribution
of the sample mean. Suppose V (X) = σ2 is finite. Then, using Theorem 4.17,
we know that

V (X) =
σ2

n
(7.8)
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which shows that the degree of dispersion of the distribution of the sample
mean around the population mean is inversely related to the sample size n.
Using Theorem 6.22 (Khinchine’s law of large numbers), we know that

plimn→∞X̄ = E [X] . (7.9)

If V (X) is finite, the same result follows from Equations 7.7 and 7.8 above
because of Chebychev’s inequality.

Other familiar statistics include the sample variance.

S2
X =

1

n

n∑
i=1

(
Xt − X̄

)2
=

1

n

n∑
i=1

X2
t −

(
X̄
)2
. (7.10)

Another familiar statistic is the kth sample moment around zero

Mk =
1

n

n∑
i=1

Xk
i . (7.11)

and the kth moment around the mean

M̃k =
1

n

n∑
i=1

(
Xi − X̄

)k
. (7.12)

As discussed in a previous example, the kth moment around the mean is used
to draw conclusions regarding the skewness and kurtosis of the sample. In
addition, most students have been introduced to the sample covariance

Cov (X,Y ) = Sxy =
1

n

n∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
(7.13)

and the sample correlation

ρxy =
Sxy√
SxxSyy

. (7.14)

In each case the student is typically introduced to an intuitive meaning of
each statistic. For example, the mean is related to the expected value of
a random variable, the variance provides a measure of the dispersion of
the random variables, and the covariance provides a measure of the ten-
dency of two random variables to vary together (either directly or indirectly).
This chapter attempts to link estimators with parameters of underlying
distributions.

7.2.1 Estimators in General

In general, an estimator is a function of the sample, not based on population
parameters. First, the estimator is a known function of random variables.

θ̂ = φ (X1, X2, X3, · · ·Xn) . (7.15)
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The value of an estimator is then a random variable. As with any other random
variable, it is possible to define the distribution of the estimator based on
distribution of the random variables in the sample. These distributions will
be used in the next chapter to define confidence intervals. Any function of the
sample is referred to as a statistic. Most of the time in econometrics, we focus
on the moments as sample statistics. Specifically, we may be interested in the
sample means, or may use the sample covariances with the sample variances
to define the least squares estimator.

Other statistics may be important. For example, we may be interested in
the probability of a given die role (for example, the probability of a three).
If we define a new set of variables, Y , such that Y = 1 if X = 3 and Y = 0
otherwise, the probability of a three becomes

p̂3 =
1

n

n∑
i=1

Yi. (7.16)

Amemiya [1, p. 115] suggests that this probability could also be estimated
from the moments of the distribution. Assume that you have a sample of 50
die rolls. Compute the sample distribution for each moment k = 0, 1, 2, 3, 4, 5

mk =
1

50

n∑
i=1

Xk
i (7.17)

where Xi is the value of the die roll. The method of moments estimate of each
probability pi is defined by the solution of the five equation system

M
(0)
θ (0) =

6∑
j=1

θj

M
(1)
θ (0) =

6∑
j=1

jθj

M
(2)
θ (0) =

6∑
j=1

j2θj

M
(3)
θ (0) =

6∑
j=1

j3θj

M
(4)
θ (0) =

6∑
j=1

j4θj

M
(5)
θ (0) =

6∑
j=1

j5θj

(7.18)
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TABLE 7.4
Sample of Die Rolls

Observation Outcome Observation Outcome Observation Outcome
1 1 18 3 35 6
2 5 19 5 36 4
3 3 20 5 37 6
4 2 21 3 38 2
5 6 22 2 39 1
6 5 23 1 40 3
7 4 24 5 41 3
8 2 25 1 42 5
9 1 26 2 43 4
10 3 27 1 44 2
11 1 28 6 45 1
12 5 29 2 46 1
13 6 30 1 47 3
14 1 31 6 48 3
15 6 32 2 49 3
16 5 33 2 50 3
17 1 34 2

where θ = (θ1, θ2, θ3, θ4, θ5, θ6) are the probabilities of rolling a 1, 2, · · · 6,
respectively. Consider the sample of 50 observations presented in Table 7.4.
We can solve for the method of moments estimator for the parameters in θ by
solving

M
(0)
θ (0) =

6∑
j=1

θj = m̂0 =
1

50

50∑
i=1

1 = 1

M
(1)
θ (0) =

6∑
j=1

jθj = m̂1 =
1

50

50∑
i=1

xi = 3.12

M
(2)
θ (0) =

6∑
j=1

j2θj = m̂2 =
1

50

50∑
i=1

x2
i = 12.84

M
(3)
θ (0) =

6∑
j=1

j3θj = m̂3 =
1

50

50∑
i=1

x3
1 = 61.32

M
(4)
θ (0) =

6∑
j=1

j4θj = m̂4 =
1

50

50∑
i=1

x4
i = 316.44

M
(5)
θ (0) =

6∑
j=1

j5θj = m̂5 =
1

50

50∑
i=1

x5
i = 1705.32.

(7.19)
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The method of moments estimator can then be written as


1 1 1 1 1 1
1 2 3 4 5 6
1 8 27 64 125 216
1 16 81 256 625 1296
1 32 243 1024 3125 7776





θ̂1

θ̂2

θ̂3

θ̂4

θ̂5

θ̂6


=


1

3.12
12.84
61.32
316.44
1705.32



⇒



θ̂1

θ̂2

θ̂3

θ̂4

θ̂5

θ̂6


=


0.24
0.20
0.20
0.06
0.16
0.14

 .
(7.20)

Thus, we can estimate the parameters of the distribution by solving for that
set of parameters that equates the theoretical moments of the distribution
with the empirical moments.

For another example of a method of moments estimator, consider the
gamma distribution. The theoretical moments for this distribution are

M
(1)
α,β = αβ M̃

(2)
α,β = αβ2 (7.21)

where M̃
(2)
α,β is the central moment. Using the data from Table 7.1, we have

αβ = 2.0331
αβ2 = 1.2625

}
⇒ β̂MOM =

1.2625

2.0331
= 0.6210. (7.22)

Next, returning to the theoretical first moment

α̂MOM =
2.0311

0.6210
. (7.23)

Each of these estimators relies on sample information in the guise of the
sample moments. Further, the traditional estimator of the mean and vari-
ance of the normal distribution can be justified using a method of moments
estimator.

7.2.2 Nonparametric Estimation

At the most general level, we can divide estimation procedures into distri-
bution specific estimators and nonparameteric or distribution free estima-
tors. Intuitively, distribution specific methods have two sources of informa-
tion – information from the sample and information based on distributional
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assumptions. For example, we can assume that the underlying random vari-
able obeys a normal distribution. Given this assumption, the characteristics
of the distribution are based on two parameters – the mean and the variance.
Hence, the estimators focus on the first two moments of the sample. The es-
timation procedure can be tailored to the estimation of specific distribution
parameters.

Extending our intuitive discussion, if the distributional assumption is cor-
rect, tailoring the estimation to parameters of the distribution improves our
ability to describe the random variable. However, if our assumption about
the distribution form is incorrect, the distribution specific characteristics of
the estimator could add noise or confuse our ability to describe the dis-
tribution. For example, suppose that we hypothesized the random variable
was normally distributed but the true underlying distribution was negative
exponential

f (x|λ) = λe−λx x ≥ 0 and 0 otherwise. (7.24)

The negative exponential distribution has a theoretical mean of 1/λ and a
variance of 1/λ2. Hence, the negative exponential distribution provides more
restrictions than the normal distribution.

Nonparametric or distribution free methods are estimators that are not
based on specific distributional assumptions. These estimators are less efficient
in that they cannot take advantage of assumptions such as the relationship
between the moments of the distribution. However, they are not fragile to
distributional assumptions (i.e., assuming that the distribution is a normal
when it is in fact a gamma distribution could significantly affect the estimated
parameters).

7.3 Properties of Estimators

In general, any parameter such as a population mean or variance (i.e., the
µ and σ2 parameters of the normal distribution) may have several different
estimators. For example, we could estimate a simple linear model

yi = α0 + α1x1i + α2x2i + νi (7.25)

where yi, x1i, and x2i are observed and α0, α1, and α2 are parameters us-
ing ordinary least squares, maximum likelihood, or a method of moments
estimator. Many of the estimators are mathematically similar. For example,
if we assume that the error in Equation 7.25 is normally distributed, the
least squares estimator is also the maximum likelihood estimator. In the cases
where the estimators are different, we need to develop criteria for comparing
the goodness of each estimator.



166 Mathematical Statistics for Applied Econometrics

7.3.1 Measures of Closeness

As a starting point for our discussion, consider a relatively innocuous criteria
— suppose that we choose the parameter that is close to its true value. For
example, suppose that we want to estimate the probability of a Bernoulli event
being 1 (i.e., the probability that the coin toss results in a head). The general
form of the distribution becomes

f (Z| θ) = θZ (1− θ)(1−Z)
. (7.26)

Next, assume that we develop an estimator

X =
1

N

N∑
i=1

zi (7.27)

where zis are observed outcomes where zi = 1 denotes a head and zi = 0
denotes a tail. Next, suppose that we had a different estimator

Y =
N∑
i=1

wizi (7.28)

where wi is a weighting function different from 1/N . One question is whether
X produces an estimate closer to the true θ than Y .

Unfortunately, there are several different possible measures of closeness:

1. P (|X − θ| ≤ |Y − θ|) = 1.

2. E [g (X − θ)] ≤ E [g (Y − θ)] for every continuous function g (.) which is
nonincreasing for x < 1 and nondecreasing for x > 0.

3. E [g (|X − θ|)] ≤ E [g (|Y − θ|)] for every continuous function and nonde-
creasing g (.).

4. P (|X − θ| > ε) ≤ P (|Y − θ| > ε) for every ε.

5. E (X − θ)2 ≤ E (Y − θ)2
.

6. P (|X − θ| < |Y − θ|) ≥ P (|X − θ| > |Y − θ|).

Of these possibilities, the most widely used in econometrics are minimize mean
error squared (5) and a likelihood comparison (akin to 2).

7.3.2 Mean Squared Error

To develop the mean squared error comparison, we will develop an example
presented by Amemiya [1, p. 123]. Following our Bernoulli example, suppose
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that we have a sample of two outcomes and want to estimate θ using one of
three estimators,

T =
(z1 + z2)

2
S = z1

W =
1

2
.

(7.29)

Note that the first estimator corresponds with the estimator presented in
Equation 7.27, while the second estimator corresponds with the estimator in
Equation 7.28 with w1 = 1 and w2 = 0. The third estimator appears ridiculous
– no matter what the outcome, I think that θ = 1/2.

As a starting point, consider constructing a general form of the mean
squared error for each estimator. Notice that the probability of a single event
z1 in the Bernoulli formulation becomes

f (z1| θ) = θz1 (1− θ)(1−z1) ⇒

{
f (z1 = 1| θ) = θ

f (z1 = 0| θ) = (1− θ) .
(7.30)

Given the probability function presented in Equation 7.30, we can express the
expected value of estimator S as

E [S (z1)] = (z1 = 1)× θ + (z1 = 0) (1− θ) = θ. (7.31)

Thus, even though the estimator always estimates either a zero (z1 = 0) or
a one (z1 = 1), on average it is correct. However, the estimate may not be
very close to the true value using the mean squared error measure. The mean
squared error of the estimate for this estimator can then be written as

MSES (θ) =
∑
z1

f (z1| θ) (S (z1)− θ)2

= f (z1 = 0| θ) (0− θ)2
+ f (z1 = 1| θ) (1− θ)2

= (1− θ)× θ2 + θ × (1− θ)2
.

(7.32)

Next, consider the same logic for estimator T . In the case of T , there are
three outcomes: z1 + z2 = 0, z1 + z2 = 1, and z1 + z2 = 2. In the case of
z1 + z2 = 1, either z1 = 1 and z2 = 0 or z1 = 0 and z2 = 1. In other
words, there are two ways to generate this event. Following our approach in
Equation 7.30, we write the distribution function as

f (z1, z2| θ) = θ(z1+z2) (1− θ)(1−z1−z2) ⇒



f (z1 = 1, z2 = 1| θ) = θ2

f (z1 = 1, z2 = 0| θ) = θ (1− θ)

f (z1 = 0, z2 = 1| θ) = θ (1− θ)

f (z1 = 0, z2 = 0| θ) = (1− θ)2
.

(7.33)
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The expected value of the estimator T can then be derived as

E [T (z1, z2)] =
z1 + z2 = 0

2
(1− θ)2

+ 2
z1 + z2 = 1

2
θ (1− θ) +

z1 + z2 = 2

2
θ2 =

(
θ − θ2

)
+ θ2 = θ.

(7.34)

Again, the expected value of the estimator is correct, but the estimator only
yields three possible values – T (z1, z2) = 0, T (z1, z2) = 0.5, or T (z1, z2) = 1.
We derive the mean squared error as a measure of closeness.

MSET (θ) =
∑
z1+z2

f (z1 + z2| θ) (T (z1, z2)− θ)2

= (1− θ)2
(0− θ)2

+ 2θ (1− θ)
(

1

2
− θ
)2

+ θ2 (1− θ)2

= 2

(
(1− θ)2

θ2 + θ (1− θ)
(

1

2
− θ
)2
)
.

(7.35)

Finally, for completeness we define the mean squared error of the W esti-
mator as

MSEW (θ) = (1− θ)
(

1

2
− θ
)2

+ θ

(
1

2
− θ
)2

. (7.36)

The mean squared error for each estimator is presented in Figure 7.7. The
question (loosely phrased) is then which is the best estimator of θ? In answer-
ing this question, however, two kinds of ambiguities occur. For a particular
value of the parameter, say θ = 3/4, it is not clear which of the three estima-
tors is preferred. T dominates W for θ = 0, but W dominates T for θ = 1/2.

Definition 7.1. Let X and Y be two estimators of θ. We say that X is better
(or more efficient) than Y if E (X − θ)2 ≤ E (Y − θ)2

for all θ ∈ Θ and strictly
less than for at least one θ ∈ Θ.

When an estimator is dominated by another estimator, the dominated esti-
mator is inadmissable.

Definition 7.2. Let θ̂ be an estimator of θ. We say that θ̂ is inadmissible if
there is another estimator which is better in the sense that it produces a lower
mean square error of the estimate. An estimator that is not inadmissible is
admissible.

Thus, we assume that at least one of these estimators is inadmissible and
in fact T always performs better than S, so S is dominated and inadmissible.
However, this criterion does not allow us to rank S and W .
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FIGURE 7.7
Comparison of MSE for Various Estimators.

7.3.3 Strategies for Choosing an Estimator

Subjective strategy: This strategy considers the likely outcome of θ and selects
the estimator that is best in that likely neighborhood. Minimax Strategy: Ac-
cording to the minimax strategy, we choose the estimator for which the largest
possible value of the mean squared error is the smallest.

Definition 7.3. Let θ̂ be an estimator of θ. It is a minimax estimator if, for
any other estimator of θ̃, we have

max
θ

E

[(
θ̂ − θ

)2
]
≤ max

θ
E

[(
θ̃ − θ

)2
]
. (7.37)

Returning to our previous example, T is chosen over W according to the
minimax strategy because the maximum MSE for T is 0.10 while the maximum
MSE for W is 0.25.

7.3.4 Best Linear Unbiased Estimator

To begin our development of the best linear unbiased estimator, we need to
develop the concept of an unbiased estimator in Definition 7.4.

Definition 7.4. θ̂ is said to be an unbiased estimator of θ if E
[
θ̂
]

for all

θ ∈ Θ. We call E
[
θ̂ − θ

]
the bias.
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In our previous discussion T and S are unbaised estimators while W is biased.

Theorem 7.5. The mean squared error is the sum of the variance and the
bias squared. That is, for any estimator θ̂ of θ,

E

[(
θ̂ − θ

)2
]

= V (θ) +
(

E
[
θ̂
]
− θ
)2

. (7.38)

Next, consider an unbiased estimator of the mean

µ̂ = x̄ =
N∑
i=1

aixi. (7.39)

Comparing the T and S estimators, for T , ai = 1/2 = 1/N while for S, a1 = 1
and a2 = 0. The conjecture from our example was that T was better than S.
It produced a lower MSE or a lower variance of the estimate. To formalize
this conjecture, consider Theorem 7.6.

Theorem 7.6. Let {Xi}, i = 1, 2, · · · , N be independent and have a common
mean µ and variance σ2. Consider the class of linear estimators of µ which
can be written in the form

µ̂ = X̄ =

N∑
i=1

aiXi (7.40)

and impose the unbiasedness condition

E

[
N∑
i=1

aiXi

]
= µ. (7.41)

Then

V
(
X̄
)
≤ V

(
N∑
i=1

aiXi

)
(7.42)

for all ai, satisfying the unbiasedness condition. Further, this condition holds
with equality only for ai = 1/N .

To prove these points, note that the ais must sum to one for unbiasedness.

E

[
N∑
i=1

aiXi

]
=

N∑
i=1

aiE [Xi] =
N∑
i=1

aiµ = µ
N∑
i=1

ai. (7.43)

Therefore,
∑N
i=1 ai = 1 results in an unbiased estimator. The final condition

can be demonstrated through the identity

N∑
i=1

(
ai −

1

N

)2

=
N∑
i=1

a2
i −

2

N

N∑
i=1

ai +
1

N
. (7.44)
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If ai = 1/N then
∑N
i=1 (ai − 1/N)

2
= 0. Thus, any other ai must yield a

higher variance
(∑N

i=1 (ai − 1/N)
2 ≥ 0

)
N∑
i=1

(
ai −

1

N

)2

σ2 ≥ 0⇒
N∑
i=1

a2
iσ

2 ≥
(

1

N

)
σ2. (7.45)

Theorem 7.7. Consider the problem of minimizing

N∑
i=1

a2
i (7.46)

with respect to {ai} subject to the condition

N∑
i=1

aibi = 1. (7.47)

The solution to this problem is given by

ai =
bi
N∑
j=1

b2j

. (7.48)

Proof. Consider the Lagrange formulation for this minimization problem

L =
N∑
i=1

a2
i + λ

(
1−

N∑
i=1

aibi

)
(7.49)

yielding the general first order condition

∂L

∂ai
= 2ai − λbi = 0⇒ ai =

λ

2
bi. (7.50)

Substituting this result back into the constraint

1− λ

2

N∑
i=1

b2i = 0⇒ λ =
2

N∑
i=1

b2i

. (7.51)

Substituting Equation 7.51 into Equation 7.50 yields Equation 7.48. Holding

λ =
2ai
bi

=
2aj
bj
∀i, j (7.52)

implying that bi = bj = 1⇒ ai = 1/N .

Thus, equally weighting the observations yields the minimum variance es-
timator.
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7.3.5 Asymptotic Properties

Unbiasedness works well for certain classes of estimators such as the mean.
Other estimators are somewhat more complicated. For example, the maximum
likelihood estimator of the variance can be written as

σ̂2
x =

1

N

N∑
i=1

(xi − x̄)
2
. (7.53)

However, this estimator is biased. As we will develop in our discussion of the
χ2 distribution, the unbiased estimator of the variance is

σ̃2
x =

1

N − 1

N∑
i=1

(xi − x̄)
2
. (7.54)

Notice that as the sample size becomes large the maximum likelihood esti-
mator of the variance converges to the unbiased estimator of the variance.
Rephrasing the discussion slightly, the maximum likelihood estimator of the
variance is a consistent estimator of the underlying variance, as decribed in
Definition 7.8.

Definition 7.8. We say that θ̂ is a consistent estimator of θ if

plimn→∞θ̂ = θ. (7.55)

Certain estimators such as Bayesian estimators are biased, but consistent. As
the sample size increases, the parameter will converge to its true value. In the
case of the Bayesian estimator the bias introduced by the prior becomes small
as the sample size expands.

7.3.6 Maximum Likelihood

The basic concept behind maximum likelihood estimation is to choose that set
of parameters that maximizes the likelihood of drawing a particular sample.
For example, suppose that we know that a sample of random variables has a
variance of one, but an unknown mean. Let the sample be X = {5, 6, 7, 8, 10}.
The probability of each of these points based on the unknown mean (µ) can
be written as

f (5|µ) =
1√
2π

exp

[
− (5− µ)

2

2

]

f (6|µ) =
1√
2π

exp

[
− (6− µ)

2

2

]
...

f (10|µ) =
1√
2π

exp

[
− (10− µ)

2

2

]
.

(7.56)
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Assuming that the sample is independent so that the joint distribution func-
tion can be written as the product of the marginal distribution functions, the
probability of drawing the entire sample based on a given mean can then be
written as

L (X|µ) =
1

(2π)
−5/2

exp

[
− (5− µ)

2

2
− (6− µ)

2

2
− · · · (10− µ)

2

2

]
. (7.57)

The function L (X|µ) is typically referred to as the likelihood function.
The value of µ that maximizes the likelihood function of the sample can then
be defined by

max
µ

L (X|µ) . (7.58)

Under the current scenario, we find it easier, however, to maximize the natural
logarithm of the likelihood function

max
µ

ln (L (X|µ))⇒ ∂

∂µ

[
K − (5− µ)

2

2
− (6− µ)

2

2
− · · · (10− µ)

2

2

]

= − (5− µ)− (6− µ)− · · · (10− µ) = 0

µ̂MLE =
5 + 6 + 7 + 8 + 9 + 10

6
= 7.5

(7.59)
where K = −5/2 ln (2π). Note that the constant does not affect the estimate
(i.e., the derivative ∂K/∂µ = 0).

7.4 Sufficient Statistics

There are a number of ways to classify statistical distribution. One of the most
popular involves the number of parameters used to specify the distribution.
For example, consider the set of distribution functions with two parameters
such as the normal distribution, the gamma distribution, and the beta distri-
bution. Each of these distributions is completely specified by two parameters.
Intuitively, all their moments are functions of the two identifying parameters.
The sufficient statistic is the empirical counterpart of this concept. Specifically,
two empirical moments of the distribution contain all the relevent information
regarding the distribution. Put slightly differently, two empirical moments (or
functions of those moments) are sufficient to describe the distribution.

7.4.1 Data Reduction

The typical mode of operation in statistics is to use information from a sample
X1, · · ·XN to make inferences about an unknown parameter θ. The researcher
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summarizes the information in the sample (or the sample values) with a statis-
tic. Thus, any statistic T (X) summarizes the data, or reduces the information
in the sample to a single number. We use only the information in the statistic
instead of the entire sample. Put in a slightly more mathematical formulation,
the statistic partitions the sample space into two sets defining the sample space
for the statistic

T = {t : t = T (x) , x ∈ X} . (7.60)

Thus, a given value of a sample statistic T (x) implies that the sample
comes from a space of sets At such that t ∈ T , At = {x : T (x) = t}. The
second possibility (that is ruled out by observing a sample statistic of T (x))
is ACt = {x : T (x) 6= t}. Thus, instead of presenting the entire sample, we
could report the value of the sample statistic.

7.4.2 Sufficiency Principle

Intuitively, a sufficient statistic for a parameter is a statistic that captures all
the information about a given parameter contained in the sample. Sufficiency
Principle: If T (X) is a sufficient statistic for θ, then any inference about θ
should depend on the sample X only through the value of T (X). That is, if x
and y are two sample points such that T (x) = T (y), then the inference about
θ should be the same whether X = x or X = y.

Definition 7.9 (Cassela and Berger). A statistic T (X) is a sufficient statistic
for θ if the conditional distribution of the sample X given T (X) does not
depend on θ [7, p. 272].

Definition 7.10 (Hogg, McKean, and Craig). Let X1, X2, · · ·Xn denote a
random sample of size n from a distribution that has a pdf (probability
density function) or pmf (probability mass function) f (x |θ ), θ ∈ Θ. Let
Y1 = u1 (X1, X2, · · ·Xn) be a statistic whose pdf or pmf is fy1 (y1 |θ ). Then
Y1 is a sufficient statistic for θ if and only if

f (x1 |θ ) f (x2 |θ ) · · · f (xn |θ )

fY1 [u1 (x1, x2, · · ·xn) |θ ]
= H (x1, x2, · · ·xn) (7.61)

where H (x1, x2, · · ·xn) does not depend on θ ∈ Θ [18, p. 375].

Theorem 7.11 (Cassela and Berger). If p (x|θ) is the joint pdf (probability
density function) or pmf (probability mass function) of X and q (t|θ) is the
pdf or pmf of T (X), then T (X) is a sufficient statistic for θ if, for every x
in the sample space, the ratio of

p (x|θ)
q (T (x) |θ)

(7.62)

is a constant as a function of θ [7, p. 274].
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Example 7.12. Normal sufficient statistic: Let X1, · · ·Xn be independently
and identically distributed N

(
µ, σ2

)
where the variance is known. The sample

mean T (X) = X̄ = 1/n
∑n
i=1Xi is the sufficient statistic for µ. Starting with

the joint distribution function

f (x|µ) =
n∏
i=1

1√
2πσ2

exp

[
− (xi − µ)

2

2σ2

]

=
1(

2πσ2
)n/2 exp

[
n∑
i=1

(xi − µ)
2

2σ2

]
.

(7.63)

Next, we add and subtract x̄, yielding

f (x|µ) =
1(

2πσ2
)n/2 exp

[
−

n∑
i=1

(xi − x̄+ x̄− µ)
2

2σ2

]

=
1(

2πσ2
)n/2 exp

−
n∑
i=1

(xi − x̄)
2

+ n (x̄− µ)
2

2σ2


(7.64)

where the last equality derives from

n∑
i=1

(xi − x̄) (x̄− µ) = (x̄− µ)

n∑
i=1

(xi − x̄) = 0. (7.65)

The distribution of the sample mean is

q (T (X) |θ) =
1(

2π
σ2

n

)1/2
exp

[
−n (x̄− µ)

2

2σ2

]
. (7.66)

The ratio of the information in the sample to the information in the statistic
becomes

f (x|θ)
q (T (x) |θ)

=

1(
2πσ2

)n/2 exp

[
−

n∑
i=1

(xi − x̄+ x̄− µ)
2

2σ2

]
1(

2π
σ2

n

)1/2
exp

[
−n (x̄− µ)

2

2σ2

]

=
1

n1/2
(
2πσ2

)n−1/2
exp

[
−σ

n
i=1 (xi − µ)

2

2σ2

]
(7.67)

which does not depend on µ.
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Theorem 7.13 (Cassela and Berger, Factorization Theorem). Let f (x|θ)
denote the joint pdf (probability density function) or pmf (probability mass
function) of a sample X. A statistic T (X) is a sufficient statistic for θ if and
only if there exist functions g (t|θ) and h (x) such that, for all sample points
x and all parameter points θ,

f (x|θ) = g (T (x) |θ)h (x) (7.68)

[7, p. 276].

Definition 7.14 (Cassela and Berger). A sufficient statistic T (X) is called
a minimal sufficient statistic if, for any other sufficient statistic T ′ (X), T (X)
is a function of T ′ (X) [7, p. 280].

Basically, the mimimal sufficient statistics for the normal are the sum of
the sample observations and the sum of the sample observations squared. All
the parameters of the normal can be derived from these two sample moments.
Similarly, the method of moments estimator for the gamma distribution pre-
sented in Section 7.2.1 uses the first two sample moments to estimate the
parameters of the distribution.

7.5 Concentrated Likelihood Functions

In our development of the concept of maximum likelihood in Section 7.3.6 we
assumed that we knew the variance of the normal distribution, but the mean
was unknown. Undoubtedly, this framework is fictional. Even if we know that
the distribution is normal, it would be a rare event to know the variance. Next,
consider a scenario where we concentrate the variance out of the likelihood
function. Essentially, we solve for the maximum likelihood estimate of the
variance and substitute that estimate into the original normal specification to
derive estimates of the sample mean. The more general form of the normal
likelihood function can be written as

L
(
X|µ, σ2

)
=

n∏
i=1

1√
2πσ2

exp

[
− (Xi − µ)

2

2σ2

]
. (7.69)

Ignoring the constants, the natural logarithm of the likelihood function can
be written as

ln (L) = −n
2

ln
(
σ2
)
− 1

2σ2

n∑
i=1

(Xi − µ)
2
. (7.70)
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This expression can be solved for the optimal choice of σ2 by differentiating
with respect to σ2.

∂ ln (L)

∂σ2 = − n

2σ2 +
1

2
(
σ2
)2 n∑

i=1

(Xi − µ)
2

= 0

⇒ −nσ2 +
n∑
i=1

(Xi − µ)
2

= 0

⇒ σ̂2
MLE =

1

n

n∑
i=1

(Xi − µ)
2
.

(7.71)

Substituting this result into the original logarithmic likelihood yields

ln (L) = −n
2

ln

(
1

n

n∑
i=1

(Xi − µ)
2

)
− 1

2
1

n

n∑
j=1

(Xj − µ)
2

n∑
i=1

(Xi − µ)
2

= −n
2

ln

(
1

n

n∑
i=1

(Xi − µ)
2

)
− n

2
.

(7.72)
Intuitively, the maximum likelihood estimate of µ is that value that mini-

mizes the mean squared error of the estimator. Thus, the least square estimate
of the mean of a normal distribution is the same as the maximum likelihood
estimator under the assumption that the sample is independently and identi-
cally distributed.

7.6 Normal Equations

If we extend the above discussion to multiple regression, we can derive the
normal equations. Specifically, if

yi = α0 + α1xi + εi (7.73)

where εi is distributed independently and identically normal, the concentrated
likelihood function above can be rewritten as

ln (L) = −n
2

ln

(
1

n

n∑
i=1

[yi − α0 − α1xi]
2

)

= −n
2

ln

(
1

n

n∑
i=1

[
y2
i − 2α0yi − 2α1xiyi + α2

0 + 2α0α1xi + α2
1x

2
i

]]
.

(7.74)
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Taking the derivative with respect to α0 yields

−n
2

n∑
j=1

[
(yi − α0 − α1xi)

2
] n∑
i=1

[−2yi + 2α0 + 2α1xi] = 0

⇒ − 1

n

n∑
i=1

yi + α0 + α1
1

n

n∑
i=1

xi = 0

⇒ α0 =
1

n

n∑
i=1

yi − α1
1

n

n∑
i=1

xi.

(7.75)

Taking the derivative with respect to α1 yields

−n
2

n
n∑
j=1

[yi − α0 − α1xi]
2

n∑
i=1

[
−2xiyi + 2α0xi + 2α1x

2
i

]
= 0

⇒ − 1

n

n∑
i=1

xiyi +
1

n
α0

n∑
i=1

xi +
1

n

n∑
i=1

α1x
2
i .

(7.76)

Substituting for α0 yields

− 1

n

n∑
i=1

xiyi +

(
1

n

n∑
i=1

yi

)(
1

n

n∑
i=1

xi

)

+ α1

(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

xi

)
+ α1

1

n

n∑
i=1

x2
i = 0.

(7.77)

Hence,

α1 =

1

n

(
n∑
i=1

xiyi −

[
n∑
i=1

xi

][
n∑
i=1

yi

])
1

n

 n∑
i=1

x2
i −

[
n∑
i=1

x2
i

]2
 . (7.78)

Hence, the estimated coefficients for the linear model can be computed
from the normal equations.

7.7 Properties of Maximum Likelihood Estimators

To complete our discussion of point estimators, we want to state some of the
relevant properties of the general maximum likelihood estimator. First, the
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maximum likelihood provides a convenient estimator of the variance of the
estimated parameters based on the Cramer–Rao Lower Bound.

Theorem 7.15 (Cramer–Rao Lower Bound). Let L (X1, X2, · · ·Xn|θ) be the

likelihood function and let θ̂ (X1, X2, · · ·Xn) be an unbiased estimator of θ.
Then, under general conditions, we have

V
(
θ̂
)
≥ − 1

E

[
∂2 ln (L)

∂θ2

] . (7.79)

Intuitively, following the Lindeberg–Levy theorem, if the maximum likelihood
estimator is consistent then the distribution of the estimates will converge to
normality

Theorem 7.16 (Asymptotic Normality). Let the likelihood function be
L (X1, X2, · · ·Xn|θ). Then, under general conditions, the maximum likelihood
estimator of θ is asymptotically distributed as

θ̂
A∼ N

(
θ,−

[
∂2 ln (L)

∂θ2

]−1
)
. (7.80)

Using the second-order Taylor series expansion of the log of the likelihood
function,

ln (L (θ)) ≈ ln (L (θ0)) +
∂ ln (L (θ))

∂θ

∣∣∣∣
θ=θ0

(θ − θ0)

+
1

2

∂2 ln (L (θ))

∂θ2

∣∣∣∣
θ=θ0

(θ − θ0)
2
.

(7.81)

Letting θ0 be the estimated value, as the estimated value approaches the true
value (i.e., assume that θ0 maximizes the log-likelihood function),

∂ ln (L (θ))

∂θ

∣∣∣∣
θ=θ0

→ 0. (7.82)

To meet the maximization conditions

∂2 ln (L (θ))

∂θ2

∣∣∣∣
θ=θ0

� 0. (7.83)

Taking a little freedom with these results and imposing the fact that the
maximum likelihood estimator is consistent,

2
ln (L (θ))− ln

(
L
(
θ̂
))

∂2 ln (L (θ))

∂θ2

∣∣∣∣
θ=θ̂

≈
(
θ − θ̂

)2

(7.84)
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Taking the expectation of Equation 7.84, and then inserting the results into
the characteristic function

f (λ) = exp

iλ(θ − θ̂)− λ2
(
θ − θ̂

)2

2

 (7.85)

yields a result consistent with the Cramer–Rao lower bound.

7.8 Chapter Summary

• A basic concept is that randomly drawing from a population allows the
researcher to replicate the distribution of the full population in the sample.

• Many familiar estimators are point estimators. These estimators estimate
the value of a specific sample parameter or statistic. Chapter 8 extends our
discussion to interval estimators which allow the economist to estimate a
range of parameter or statistic values.

• There are a variety of measures of the quality of an estimator. In this
chapter we are primarily interested in measures of closeness (i.e., how
close the estimator is to the true population value).

– One measure of closeness is the mean squared error of the estimator.

– An estimator is inadmissable if another estimator yields a smaller or
equal mean squared error for all possible parameter values.

– There may be more than one admissable estimator.

– Measures of closeness allow for a variety of strategies for choosing
among estimators including the minimax strategy – minimizing the
maximum mean squared error.

• In econometrics we are often interested in the Best Linear Unbiased Esti-
mator (BLUE).

• An estimator is unbiased if the expected value of the estimator is equal to
its true value. Alternatively, estimators may be consistent, implying that
the value of the estimator converges to the true value as the sample size
grows.

• Sufficient statistics are the collection of sample statistics that are not de-
pendent on a parameter of the distribution and contain all the informa-
tion in the sample regarding a particular distribution. For example, the
expected first and second moment of the sample are sufficient statistics
for the normal distribution.
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7.9 Review Questions

7-1R. Describe the relationship between P (|T − θ| > ε) ≤ P (|S − θ| > ε) and

E (T − θ)2 ≤ E (S − θ)2
using the convergence results in Chapter 6.

7-2R. A fellow student states that all unbiased estimators are consistent, but
not all consistent estimators are unbiased. Is this statement true or
false? Why?

7.10 Numerical Exercises

7-1E. Using the distribution function

f (x) =
3

4

(
1− (1− x)

2
)
, x ∈ (0, 2) (7.86)

generate a sample of 20 random variables.

a. Derive the cumulative distribution function.

b. Derive the inverse function of the cumulative distribution function.

c. Draw 20 U [0, 1] draws and map those draws back into x space using
the inverse cumulative density function.

d. Derive the mean and variance of your new sample. Compare those
values with the theoretical value of the distribution.

7-2E. Extend the estimation of the Bernoulli coefficient (θ) in Section 7.3.2 to
three observations. Compare the MSE for two and three sample points
graphically.

7-3E. Using a negative exponential distribution

f (x|λ) = λ exp (−λx) (7.87)

compute the maximum likelihood estimator of λ using each column in
Table 7.5.

7-4E. Compute the variance for the estimator of λ in Exercise 7-3E.

7-5E. Compute the normal equations for the regression

yt = α0 + α1xt + εt (7.88)

where yt is the interest rate on agricultural loans to Florida farmers
and xt is the interest rate on Baa Corporate bonds in Appendix D.
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TABLE 7.5
Exercise 7-3E Data

Obs. 1 2 3
1 10.118 1.579 0.005
2 3.859 0.332 0.283
3 1.291 0.129 0.523
4 0.238 0.525 0.093
5 3.854 0.225 0.177
6 0.040 2.855 0.329
7 0.236 0.308 0.560
8 1.555 2.226 0.094
9 5.013 0.665 0.084
10 1.205 1.919 0.041
11 0.984 0.088 0.604
12 2.686 0.058 1.167
13 7.477 0.097 0.413
14 14.879 0.644 0.077
15 1.290 0.203 0.218
16 3.907 2.618 0.514
17 2.246 0.059 0.325
18 5.173 0.052 0.270
19 2.052 1.871 0.134
20 8.649 0.783 0.072
21 6.544 0.603 0.186
22 6.297 0.189 0.099
23 4.640 0.260 0.389
24 10.924 0.677 0.088
25 10.377 2.259 0.187



8

Interval Estimation

CONTENTS

8.1 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.3 Bayesian Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.5 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.6 Numerical Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

As we discussed when we talked about continuous distribution functions, the
probability of a specific number under a continuous distribution is zero. Thus,
if we conceptualize any estimator, either a nonparametric estimate of the
mean or a parametric estimate of a function, the probability that the true
value is equal to the estimated value is obviously zero. Thus, we usually talk
about estimated values in terms of confidence intervals. As in the case when
we discussed the probability of a continuous variable, we define some range of
outcomes. However, this time we usually work the other way around, defining a
certain confidence level and then stating the values that contain this confidence
interval.

8.1 Confidence Intervals

Amemiya [1, p. 160] notes a difference between confidence and probability.
Most troubling is our classic definition of probability as “a probabilistic state-
ment involving parameters.” This is troublesome due to our inability, without
some additional Bayesian structure, to state anything concrete about proba-
bilities.

Example 8.1. Let Xi be distributed as a Bernoulli distribution, i =
1, 2, · · ·N . Then

T = X̄
A∼ N

(
θ,
θ (1− θ)

N

)
. (8.1)

183
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TABLE 8.1
Confidence Levels

k γ/2 γ
1.0000 0.1587 0.3173
1.5000 0.0668 0.1336
1.6449 0.0500 0.1000
1.7500 0.0401 0.0801
1.9600 0.0250 0.0500
2.0000 0.0228 0.0455
2.3263 0.0100 0.0200

Breaking this down a little more – we will construct the estimate of the
Bernoulli parameter as

T = X̄ =
1

N

N∑
i=1

Xi (8.2)

where T = θ̂. If the Xi are independent, then

V (T ) =
1

N
V (Xi) =

1

N
θ (1− θ) . (8.3)

Therefore, we can construct a random variable Z that is the difference between
the true value of the parameter θ and the value of the observed estimate.

Z =
T − θ√
θ (1− θ)

N

A∼ N (0, 1) . (8.4)

Why? By the Central Limit Theory. Given this distribution, we can ask ques-
tions about the probability. Specifically, we know that if Z is distributed
N (0, 1), then we can define

γk = P (|Z| < k) . (8.5)

Essentially, we can either choose a k based on a target probability or we can
define a probability based on our choice of k. Using the normal probability, the
one tailed probabilities for the normal distribution are presented in Table 8.1.
Taking a fairly standard example, suppose that I want to choose a k such
that γ/2 = 0.025, or that we want to determine the values of k such that
the probability is 0.05 that the true value of γ will lie outside the range. The
value of k for this choice is 1.96. This example is comparable to the standard
introductory example of a 0.95 confidence level.

The values of γk can be derived from the standard normal table as

P

 |T − θ|√
θ (1− θ)

n

< k

 = γk. (8.6)
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Assuming that the sample value of T is t, the confidence interval (C[.]) is
defined by

C

 |T − θ|√
θ (1− θ)

N

< k

 = γk. (8.7)

Building on the first term,

P

 |t− θ|√
θ (1− θ)

N

< k

 = P

[
|t− θ| < k

√
θ (1− θ)

N

]

= P

[
(t− θ)2

< k2 θ (1− θ)
N

]

= P

[
t2 − 2tθ + θ2 − k2

N
θ +

k2

N
θ2 < 0

]

= P

[
θ2

(
1 +

k2

N

)
+ θ

(
2t+

k2

N

)
+ t2 < 0

]
< γk.

(8.8)

Using this probability, it is possible to define two numbers h1 (t) and h2 (t)
for which this inequality holds. Mathematically, applying the quadratic equa-
tion,

P [h1 (t) < p < h2 (t)] ≤ γk where

h1 (t) , h2 (t) =

2t+
k2

N
±

√(
2t+

k2

N

)2

− 4

(
1 +

k2

N

)
t2

2

(
1 +

k2

N

) .

(8.9)

In order to more fully develop the concept of the confidence interval, con-
sider the sample estimates for four draws of two different Bernoulli distribu-
tions presented in Table 8.2. The population distribution for the first four
columns is for θ = 0.40 while the population distribution for the second four
columns holds θ = 0.80. Further, the samples are nested in that the sample of
100 for draw 1 includes the sample of 50 for draw 1. Essentially, each column
represents an empirical limiting process.

Starting with draw 1 such that θ = 0.40, the sample value for t is 0.3800.
In this discussion, we are interested in constructing an interval that contains
the true value of the parameter with some degree of confidence. The question
is, what are our alternatives? First, we could use the overly simplistic version
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of the standard normal to conclude that

θ ∈ (t− 1.96× St, t+ 1.96× St) (8.10)

where 1.96 corresponds to a “two-sided” confidence region under normality.
Obviously the range in Equation 8.10 is much too broad (i.e., the range in-
cludes values outside legitimate values of θ). Why is this the case? The con-
fidence interval implicitly assumes that t is normally distributed. Next, if we
use the estimate of the variance associated with the Bernoulli distribution in
Equation 8.4, we have

θ ∈

(
t− 1.96×

√
t (1− t)
N

, t+ 1.96×
√
t (1− t)
N

)
⇒ θ ∈ (0.2455, 0.5145)

(8.11)
for N = 50 of draw 1. This interval includes the true value of θ, but we
would not know that in an application. Next, consider what happens to the
confidence interval as we increase the number of draws to N = 100.

θ ∈ (0.2472, 0.4328) . (8.12)

Notice that the confidence region is somewhat smaller and still contains the
true value of θ.

Next, we consider the confidence interval computed from the results in
Equation 8.9 for the same distributions presented in Table 8.3. In this case
we assume k = 0.95 as in Equations 8.11 and 8.12. However, the linear term
in Table 8.3 is computed as

2t+
k2

N

2

(
1 +

k2

N

) (8.13)

while the square root involves the√(
2t+

k2

N

)2

− 4

(
1 +

k2

N

)
t2

2

(
1 +

k2

N

) (8.14)

term. The lower and upper bounds are then computed by adding and sub-
tracting Equation 8.14 from Equation 8.13. In the case of N = 50, the confi-
dence interval is (0.3175, 0.4468) while for N = 100, the confidence interval is
(0.2966, 0.3863).

It is clear that the values of the confidence intervals are somewhat differ-
ent. In practice, the first approach, based on the limiting distribution of the
maximum likelihood formulation, is probably more typical.

Next, consider the confidence interval for the mean of a normally dis-
tributed random variable where the variance is known.
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Example 8.2. Let Xi ∼ N
(
µ, σ2

)
, i = 1, 2, · · ·n where µ is unknown and σ2

is known. We have

T = X̄ ∼ N

(
µ,
σ2

N

)
. (8.15)

Define

P

 |T − µ|√
σ2

N

< k

 = γk. (8.16)

Example 8.2 is neat and tidy, but unrealistic. If we do not know the mean
of the distribution, then it is unlikely that we will know the variance. Hence,
we need to modify the confidence interval in Example 8.2 by introducing the
Student’s t-distribution.

Example 8.3. Suppose that Xi ∼ N
(
µ, σ2

)
, i = 1, 2, · · ·n with both µ and

σ2 unknown. Let
T = X̄ (8.17)

be an estimator of µ and

S2 =
1

n

n∑
i=1

(
Xi − X̄

)2
(8.18)

be the estimator of σ2. Then the probability distribution is

tn−1 = S−1 (T − 1)
√
n− 1. (8.19)

This distribution is known as the Student’s t-distribution with n−1 degrees of
freedom.

Critical to our understanding of the Student’s t-distribution is the amount of
information in the sample. To develop this, consider a simple two observation
sample

S2 →
(
X1 − X̄

)2
+
(
X2 − X̄

)2
=

(
X1 −

X1 +X2

2

)2

+

(
X2 −

X1 +X2

2

)2

=

(
X1

2
− X2

2

)2

+

(
X2

2
− X1

2

)2

=
1

2
(X1 −X2)

2
.

(8.20)

Thus, two observations on Xi only give us one observation on the variance
after we account for the mean – two observations only give us one degree
of freedom on the sample variance. Theorem 8.4 develops the concept in a
slightly more rigorous fashion.
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Theorem 8.4. Let X1, X2, · · ·Xn be a random sample from a N
(
µ, σ2

)
dis-

tribution, and let

X̄ =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
. (8.21)

Then

a) X̄ and S2 are independent random variables.

b) X̄ ∼ N
(
µ, σ2/n

)
.

c) (n− 1)S2/σ2 has a chi-squared distribution with n−1 degrees of freedom.

The proof of independence is based on the fact that S2 is a function of
the deviations from the mean which, by definition, must be independent of
the mean. More interesting is the discussion of the chi-squared statistic. The
chi-squared distribution is defined as

f (x) =
1

Γ
(p

2

)
2p/2

x
p
2−1e−x/2. (8.22)

In general, the gamma distribution is defined through the gamma function

Γ (α) =

∫ ∞
0

tα−1e−tdt. (8.23)

Dividing both sides of the expression by Γ (α) yields

1 =
1

Γ (α)

∫ ∞
0

tα−1e−tdt⇒ f (t) =
tα−1e−t

Γ (α)
. (8.24)

Substituting X = βt gives the traditional two parameter form of the distri-
bution function

f (x|α, β) =
1

Γ (α)βα
xα−1e−x/β . (8.25)

The expected value of the gamma distribution is αβ and the variance is αβ2.

Lemma 8.5 (Facts about chi-squared random variables). We use the notation
χ2
p to denote a chi-squared random variable with p degrees of freedom.

• If Z is a N (0, 1) random variable, then Z2 ∼ χ2
1, that is, the square of a

standard normal random variable is a chi-squared random variable.

• If X1, X2, · · ·Xn are independent, and X2
i ∼ χ2

pi , then X2
1 +X2

2 + · · ·X2
n ∼

χ2
p1+p2+···pn , that is, independent chi-squared variables add to a chi-squared

variable, and the degrees of freedom also add.
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The first part of Lemma 8.5 follows from the transformation of random
variables for Y = X2, which yields

fY (y) =
1

2
√
y

(fX (
√
y) + fX (−√y)) . (8.26)

Returning to the proof at hand, we want to show that (n− 1)S2/σ2 has a
chi-squared distribution with n− 1 degrees of freedom. To demonstrate this,
note that

(n− 1)S2
n = (n− 2)S2

n−1 +

(
n− 1

n

)(
Xn − X̄n−1

)2

S2
n =

1

n− 1

n∑
i=1

Xi −
1

n

n∑
j=1

Xj

2

(n− 1)S2
n =

Xn −
1

n

n∑
j=1

Xj −
1

n
Xn

2

+
n∑
i=1

Xi −
1

n

n−1∑
j=1

Xj −
1

n
Xn

2

(n− 1)S2
n =

(
(n−1)

n
Xn−

(n−1)

n
X̄n−1

)2

+
n−1∑
i=1

Xi −
1

n

n−1∑
j=1

Xj

− 1

n
Xn

2

.

(8.27)
If n = 2, we get

S2
2 =

1

2
(X2 −X1)

2
. (8.28)

Given (X2 −X1) /
√

2 is distributed N (0, 1), S2
2 ∼ χ2

1 and by extension for
n = k, (k − 1)S2

k ∼ χ2
k−1.

Given these results for the chi-squared, the distribution of the Student’s t
then follows.

X̄ − µ
S√
n

=

(
X̄ − µ

)
σ/
√
n√

S2

σ2

. (8.29)

Note that this creates a standard normal random variable in the numerator
and a random variable distributed√

χ2
n−1

n− 1
(8.30)

in the denominator. The complete distribution is found by multiplying the
standard normal times the chi-squared distribution times the Jacobian of the
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transformation yields

fT (t) =

Γ

(
p+ 1

2

)
Γ
(p

2

)√
pπ

1(
1 + t2/p

)p+ 1
2

. (8.31)

8.2 Bayesian Estimation

Implicitly in our previous discussions about estimation, we adopted a clas-
sical viewpoint. We had some process generating random observations. This
random process was a function of fixed, but unknown parameters. We then
designed procedures to estimate these unknown parameters based on observed
data. Specifically, if we assumed that a random process such as students ad-
mitted to the University of Florida generated heights, then this height process
can be characterized by a normal distribution. We can estimate the parameters
of this distribution using maximum likelihood. The likelihood of a particular
sample can be expressed as

L
(
X1, X2, · · ·Xn|µ, σ2

)
=

1

(2π)
n/2

σn
exp

[
− 1

2σ2

n∑
i=1

(Xi − µ)
2

]
. (8.32)

Our estimates of µ and σ2 are then based on the value of each parameter that
maximizes the likelihood of drawing that sample.

Turning this process around slightly, Bayesian analysis assumes that we
can make some kind of probability statement about parameters before we
start. The sample is then used to update our prior distribution. First, assume
that our prior beliefs about the distribution function can be expressed as a
probability density function π (θ) where θ is the parameter we are interested
in estimating. Based on a sample (the likelihood function), we can update our
knowledge of the distribution using Bayes rule.

π (θ|X) =
L (X|θ)π (θ)∫ ∞

−∞
L (X|θ)π (θ) dθ

. (8.33)

To develop this concept, assume that we want to estimate the probability of
a Bernoulli event (p) such as a coin toss. The standard probability is then

P [x] = px (1− p)(1−x)
. (8.34)

However, instead of estimating this probability using the sample mean, we
use a Bayesian approach. Our prior is that p in the Bernoulli distribution is
distributed B (α, β).
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The beta distribution is defined similarly to the gamma distribution.

f (p |α, β ) =
1

B (α, β)
pα−1 (1− p)β−1

. (8.35)

B (α, β) is defined as

B (α, β) =

∫ 1

0

xα−1 (1− x)
β−1

dx =
Γ (α) Γ (β)

Γ (α+ β)
. (8.36)

Thus, the beta distribution is defined as

f (p |α, β ) =
Γ (α+ β)

Γ (α) Γ (β)
pα−1 (1− p)β−1

. (8.37)

Assume that we are interested in forming the posterior distribution after
a single draw.

π (p |X ) =

pX (1− p)1−X Γ (α+ β)

Γ (α) Γ (β)
pα−1 (1− p)β−1

∫ 1

0

pX (1− p)1−X Γ (α+ β)

Γ (α) Γ (β)
pα−1 (1− p)β−1

dp

=
pX+α−1 (1− p)β−X∫ 1

0

pX+α−1 (1− p)β−X dp
.

(8.38)

Following the original specification of the beta function,∫ 1

0

pX+α−1 (1− p)β−X dp =

∫ 1

0

pα
∗

(1− p)β
∗−1

dp

where α∗ = X + α and β∗ = β −X + 1

⇒
∫ 1

0

pX+α−1 (1− p)β−X dp =
Γ (X + α) Γ (β −X + 1)

Γ (α+ β + 1)
.

(8.39)

The posterior distribution (the distribution of P after the value of the obser-
vation is known) is then

π (p |X ) =
Γ (α+ β + 1)

Γ (X + α) Γ (β −X + 1)
pX+α−1 (1− p)β−X . (8.40)

The Bayesian estimate of p is then the value that minimizes a loss function.
Several loss functions can be used, but we will focus on the quadratic loss
function consistent with the mean squared error.

min
p

E
[
(p̂− p)2

]
⇒

∂E
[
(p̂− p)2

]
∂p̂

= 2E [p̂− p] = 0

⇒ p̂ = E [p] .

(8.41)
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Taking the expectation of the posterior distribution yields

E [p] =

∫ 1

0

Γ (α+ β + 1)

Γ (X + α) Γ (β −X + 1)
pX+α (1− p)β−X dp

=
Γ (α+ β + 1)

Γ (X + α) Γ (β −X + 1)

∫ 1

0

pX+α (1− p)β−X dp.

(8.42)

As before, we solve the integral by creating α∗ = α+X+1 and β∗ = β−X+1.
The integral then becomes∫ 1

0

pα
∗−1 (1− p)β

∗−1
dp =

Γ (α∗) Γ (β∗)

Γ (α∗ + β∗)

=
Γ (α+X + 1) Γ (β −X + 1)

Γ (α+ β + 2)
.

(8.43)

Hence,

E [p] =
Γ (α+ β + 1)

Γ (α+ β + 2)

Γ (α+X + 1)

Γ (α+X)

Γ (β −X + 1)

Γ (β −X + 1)
(8.44)

which can be simplified using the fact

Γ (α+ 1) = αΓ (γ) . (8.45)

Therefore

Γ (α+ β + 1)

Γ (α+ β + 2)

Γ (α+X + 1)

Γ (α+X)
=

Γ (α+ β + 1)

(α+ β + 1) Γ (α+ β + 1)

× (α+X) Γ (α+X)
Γ (α+X)

=
(α+X)

(α+ β + 1)
.

(8.46)

To make this estimation process operational, assume that we have a prior
distribution with parameters α = β = 1.4968 that yields a beta distribution
with a mean p of 0.5 and a variance of the estimate of 0.0625. Next assume
that we flip a coin and it comes up heads (X = 1). The new estimate of p
becomes 0.6252. If, on the other hand, the outcome is a tail (X = 0), the new
estimate of p is 0.3747.

Extending the results to n Bernoulli trials yields

π (p|X) =
Γ (α+ β + n)

Γ (α+ Y ) Γ (β − Y + n)
pY+α−1 (1− p)β−Y+n−1

(8.47)

where Y is the sum of individual Xs or the number of heads in the sample.
The estimated value of p then becomes

p̂ =
Y + α

α+ β + n
. (8.48)
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If the first draw is Y = 15 and n = 50, then the estimated value of p is
0.3112. This value compares with the maximum likelihood estimate of 0.3000.
Since the maximum likelihood estimator in this case is unbiased, the results
imply that the Bayesian estimator is biased.

8.3 Bayesian Confidence Intervals

Apart from providing an alternative procedure for estimation, the Bayesian
approach provides a direct procedure for the formulation of parameter confi-
dence intervals. Returning to the simple case of a single coin toss, the proba-
bility density function of the estimator becomes

π (p|X) =
Γ (α+ β + 1)

Γ (X + α) Γ (β −X + 1)
pX+α−1 (1− p)β−X . (8.49)

As previously discussed, we know that given α = β = 1.4968 and a head, the
Bayesian estimator of p is 0.6252. However, using the posterior distribution
function, we can also compute the probability that the value of p is less than
0.5 given a head.

P [p < 0.5] =

∫ 0.5

0

Γ (α+ β + 1)

Γ (X + α) Γ (β −X + 1)
pX+α−1 (1− p)β−X dP

= 0.2976.

(8.50)

Hence, we have a very formal statement of confidence intervals.

8.4 Chapter Summary

• Interval estimation involves the estimation of a range of parameter values
that contains the true population value. This range is typically referred to
as the confidence interval.

• The Student’s t-distribution is based on the fact that the variance coef-
ficient used for a sample of normal random variables is estimated. If the
variance parameter is known, then the confidence interval can be con-
structed using the normal distribution.

• The posterior distribution of the Bayesian estimator allows for a direct
construction of the confidence interval based on the data.
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TABLE 8.4
Data for Exercise 8-1E

Obs. xi Obs xi Obs. xi
1 1 11 1 21 1
2 0 12 0 22 1
3 1 13 1 23 1
4 1 14 1 24 1
5 0 15 0 25 1
6 1 16 1 26 1
7 1 17 1 27 0
8 1 18 1 28 1
9 1 19 1 29 1
10 1 20 1 30 1

8.5 Review Questions

8-1R. Demonstrate that

S2 =
3∑
i=1

(xi − µ)
2

(8.51)

can be written as

S2 = (x1 − x2)
2

+ (x2 − x3)
2
. (8.52)

8-2R. Discuss the implications of 8-1R for the term degrees of freedom.

8-3R. Construct the posterior distribution for the parameter θ from the
Bernoulli distribution based on a prior of U [0, 1]. Assume that T ob-
servations out of N are positive. (Hint, use the definition of the beta
distribution.)

8.6 Numerical Exercises

8-1E. Compute the confidence interval for the θ parameter of the Bernoulli
distribution given in Table 8.4 using the maximum likelihood estimate
of the standard deviation of the parameter.

8-E2. Construct the confidence interval for the mean of each sample using
the data in Table 8.5.

8-E3. Construct the posterior distribution from review question 8-3R using
the first ten observations in Table 8.4.
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TABLE 8.5
Normal Random Variables for Exercise 8-E2

Sample
Obs. 1 2 3

1 −2.231 −4.259 1.614
2 −1.290 −7.846 1.867
3 −0.317 −0.131 3.001
4 −1.509 −5.188 0.174
5 −1.324 −5.387 3.009
6 −0.396 4.795 −0.148
7 −2.048 −0.224 −0.110
8 −3.089 4.389 2.030
9 −0.717 −0.380 2.549
10 −2.311 −1.008 0.413
11 3.686 −0.464 −1.384
12 −1.985 1.577 2.313
13 2.153 −8.507 −3.697
14 −1.205 −6.396 3.075
15 −3.798 8.004 −1.167
16 −1.063 1.526 −0.897
17 −0.593 −2.890 0.589
18 0.213 2.600 2.357
19 0.175 8.166 −0.005
20 −1.804 −1.880 3.101
21 −1.566 0.266 −1.223
22 −1.953 1.814 1.936
23 1.045 4.248 −2.907
24 2.677 2.316 0.622
25 −6.429 3.454 2.658
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In general, there are two kinds of hypotheses: one type concerns the form of
the probability distribution (i.e., is the random variable normally distributed)
and the second concerns parameters of a distribution function (i.e., what is
the mean of a distribution?).

The second kind of distribution is the traditional stuff of econometrics. We
may be interested in testing whether the effect of income on consumption is
greater than one, or whether the effect of price on the level consumed is equal
to zero. The second kind of hypothesis is termed a simple hypothesis. Under
this scenario, we test the value of a parameter against a single alternative.
The first kind of hypothesis (whether the effect of income on consumption is
greater than one) is termed a composite hypothesis. Implicit in this test is
several alternative values.

Hypothesis testing involves the comparison between two competing hy-
potheses, or conjectures. The null hypothesis, denoted H0, is sometimes re-
ferred to as the maintained hypothesis. The competing hypothesis to be ac-
cepted if the null hypothesis is rejected is called the alternative hypothesis.

The general notion of the hypothesis test is that we collect a sample of
data X1, · · ·Xn. This sample is a multivariate random variable, En (refers to
this as an element of a Euclidean space). If the multivariate random variable
is contained in space R, we reject the null hypothesis. Alternatively, if the
random variable is in the complement of the space R, we fail to reject the null

199
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hypothesis. Mathematically,

if X ∈ R then rejectH0;

if X /∈ R then fail to rejectH0.
(9.1)

The set R is called the region of rejection or the critical region of the test.
In order to determine whether the sample is in a critical region, we con-

struct a test statistic T (X). Note that, like any other statistic, T (X) is a
random variable. The hypothesis test given this statistic can then be written
as

T (X) ∈ R⇒ rejectH0;

T (X) ∈ R̄⇒ fail to rejectH0.
(9.2)

A statistic used to test hypotheses is called a test statistic.

Definition 9.1. A hypothesis is called simple if it specifies the values of all
the parameters of a probability distribution. Otherwise, it is called composite.

As an example, consider constructing a standard t test for the hypothesis
H0 : µ = 0 against the hypothesis H1 : µ = 2. To do this we will compute the
t statistic for a sample (say 20 observations from the potential population).
Given this scenario, we define a critical value of 1.79 (that is, the Student’s
t value for 19 degrees of freedom at a 0.95 level of confidence). This test is
depicted graphically in Figure 9.1. If the sample value of the t statistic is
greater than t∗ = 1.79, we reject H0. Technically, t ∈ R, so we reject H0.
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FIGURE 9.1
Type I and Type II Error.
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9.1 Type I and Type II Errors

Whenever we develop a statistical test, there are two potential errors – the
error of rejecting a hypothesis (typically the null hypothesis or the hypothesis
of no effect) when it is true versus the error of failing to reject a hypothesis
when it is false. These errors represent a tradeoff – we can make the first error
essentially zero by increasing the amount of information (i.e., the level of t∗

in Figure 9.1). However, increasing this critical value implies an increase in
the second error – the probability of failing to reject the hypothesis when it
is indeed false.

Definition 9.2. A Type I error is the error of rejecting H0 when it is true.
A Type II error is the error of accepting H0 when it is false (that is, when H1

is true).

We denote the probability of Type I error as α and the probability of Type
II error as β. Mathematically,

α = P [X ∈ R|H0]

β = P
[
X ∈ R̄|H1

]
.

(9.3)

The probability of a Type I error is also called the size of a test.
Assume that we want to compare two critical regions R1 and R2. Assume

that we choose either confidence region R1 or R2 randomly with probabilities
δ and 1− δ, respectively. This is called a randomized test. If the probabilities
of the two types of errors for R1 and R2 are (α1, β1) and (α2, β2), respectively,
the probability of each type of error becomes

α = δα1 + (1− δ)α2

β = δβ1 + (1− δ)β2.
(9.4)

The values (α, β) are called the characteristics of the test.

Definition 9.3. Let (α1, β1) and (α2, β2) be the characteristics of two tests.
The first test is better (or more powerful) than the second test if α1 ≤ α2,
and β1 ≤ β2 with a strict inequality holding for at least one point.

If we cannot determine that one test is better by the definition, we could
consider the relative cost of each type of error. Classical statisticians typically
do not consider the relative cost of the two errors because of the subjective
nature of this comparison. Bayesian statisticians compare the relative cost of
the two errors using a loss function.

As a starting point, we define the characteristics of a test in much the
same way we defined the goodness of an estimator in Chapter 8.

Definition 9.4. A test is inadmissable if there exists another test which is
better in the sense of Definition 9.3, otherwise it is called admissible.
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FIGURE 9.2
Hypothesis Test for Triangular Distribution.

Definition 9.5. R is the most powerful test of size α if α (R) = α and for
any test R1 of size α, β (R) ≤ β (R1).

Definition 9.6. R is the most powerful test of level α if for any test R1 of
level α (that is, such that α (R1) ≤ α ), β (R) ≤ β (R1).

Example 9.7. Let X have the density

f (x) = 1− θ + x for θ − 1 ≤ x ≤ θ

= 1 + θ − x for θ ≤ x ≤ θ + 1.
(9.5)

This funny looking beast is a triangular probability density function, as de-
picted in Figure 9.2. Assume that we want to test H0 : θ = 0 against H1 : θ = 1
on the basis of a single observation of X.

Type I and Type II errors are then defined by the choice of t, the cut off
region

α =
1

2
(1− t)2

β =
1

2
t2.

(9.6)

Specifically, assume that we define a sample statistic such as the mean of the
sample or a single value from the distribution (x). Given this statistic, we fail
to reject the null hypothesis (H0 : θ = 0) if the value is less than t. Alter-
natively, we reject the null hypothesis in favor of the alternative hypothesis
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FIGURE 9.3
Tradeoff of the Power of the Test.

(H1 : θ = 1) if the statistic is greater than t. In either case, we can derive the
probability of the Type I error as the area of the triangle formed starting at
t = 1 to the point t. Similarly, we can derive the Type II error starting from
the origin (t = 0) to the point t.

Further, we can derive β in terms of α, yielding

β =
1

2

(
1−
√

2α
)2

. (9.7)

Specifically, Figure 9.3 depicts the relationship between the Type I and Type
II error for the hypothesis derived in Equation 9.7.

Theorem 9.8. The set of admissible characteristics plotted on the α, β plane
is a continuous, monotonically decreasing, convex function which starts at a
point with [0, 1] on the β axis and ends at a point within the [0, 1] on the α
axis.

Note that the choice of any t yields an admissible test. However, any random-
ized test is inadmissible.

9.2 Neyman–Pearson Lemma

How does the Bayesian statistician choose between tests? The Bayesian
chooses between the test H0 and H1 based on the posterior probability of
the hypotheses: P (H0|X) and P (H1|X). Table 9.1 presents the loss matrix
for hypothesis testing.

The Bayesian decision is then based on this loss function.

Reject H0 if γ1P (H0|X) < γ2P (H1|X) . (9.8)
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TABLE 9.1
Loss Matrix in Hypothesis Testing

State of Nature

Decision H0 H1

H0 0 γ1

H1 γ2 0

The critical region for the test then becomes

R0 = {x |γ1P (H0|x) < γ2P (H1|x)} . (9.9)

Alternatively, the Bayesian problem can be formulated as that of determining
the critical region R in the domain X so as to

minφ (R) = γ1P (H0|X ∈ R) P (X ∈ R)

+ γ2P
(
H1|X ∈ R̄

)
P
(
X ∈ R̄

)
.

(9.10)

We can write this expression as

φ (R) = γ1P (H0) P (R |H0 ) + γ2P (H1) P (R |H1 )

= η0α (R) + η1β (R)

η0 = γ1P (H0)

η1 = γ2P (H1) .

(9.11)

Choosing between admissible test statistics in the (α, β) plane then becomes
like the choice of a utility maximizing consumption point in utility theory.
Specifically, the relative tradeoff between the two characteristics becomes
−η0/η1.

The Bayesian optimal test R0 can then be written as

R0 =

{
x

∣∣∣∣L (x|H1)

L (x|H0)
>
η0

η1

}
. (9.12)

Theorem 9.9 (Neyman–Pearson Lemma). If testing H0 : θ = θ0 against
H1 : θ = θ1, the best critical region is given by

R =

{
x

∣∣∣∣L (x|θ1)

L (x|θ0)
> c

}
(9.13)

where L is the likelihood function and c (the critical value) is determined to
satisfy

P (R |θ0 ) = α (9.14)

provided c exists.
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FIGURE 9.4
Optimal Choice of Type I and Type II Error.

Theorem 9.10. The Bayes test is admissible.

Thus, the choice of Type I and Type II error is depicted in Figure 9.4.

9.3 Simple Tests against a Composite

Mathematically, we now can express the tests as testing between H0 : θ = θ0

against H1 : θ ∈ Θ1, where Θ1 is a subset of the parameter space. Given this
specification, we must modify our definition of the power of the test because
the β value (the probability of accepting the null hypothesis when it is false)
is not unique. In this regard, it is useful to develop the power function.

Definition 9.11. If the distribution of the sample X depends on a vector of
parameters θ, we define the power function of the test based on the critical
region R by

Q (θ) = P (X ∈ R|θ) . (9.15)

Definition 9.12. Let Q1 (θ) and Q2 (θ) be the power functions of two tests,
respectively. Then we say that the first test is uniformly better (or uniformly
most powerful) than the second in testing H0 : θ = θ0 against H1 : θ ∈ Θ1 if
Q1 (θ0) = Q2 (θ0) and Q1 (θ) ≥ Q2 (θ) for all θ ∈ Θ1 and Q1 (θ) > Q2 (θ) for
at least one θ ∈ Θ1.
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Definition 9.13. A test R is the uniformly most powerful (UMP) test of size
(level) α for testing H0 : θ = θ0 against H1 : θ ∈ Θ1 if P (R|θ0) = (≤)α and
any other test R1 such that P (R|θ0) = (≤)α, we have P (R|θ) ≥ P (R1|θ) for
any θ ∈ Θ1.

Definition 9.14. Let L (x|θ) be the likelihood function and let the null and
alternative hypotheses be H0 : θ = θ0 and H1 : θ ∈ Θ1, where Θ1 is a subset
of the parameter space Θ. Then the likelihood ratio test of H0 against H1 is
defined by the critical region

Λ =
L (θ0|x)

sup
θ0∪Θ1

L (θ|x)
< c (9.16)

where c is chosen to satisfy P (Λ < c|H0) = α for a certain value of α.

Example 9.15. Let the sample be Xi ∼ N
(
µ, σ2

)
, i = 1, 2, · · ·n where σ2 is

assumed to be known. Let xi be the observed value of Xi. Testing H0 : µ = µ0

against H1 : µ > µ0, the likelihood ratio test is to reject H0 if

Λ =

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)
2

]

sup
µ≥µ0

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)
2

] < c. (9.17)

Assume that we had the sample X = {6, 7, 8, 9, 10} from the preceding
example and wanted to construct a likelihood ratio test for µ > 7.5.

Λ =

exp

[
− 1

2σ2

(
[6− 7.5]

2
+ [7− 7.5]

2
+ · · · [10− 7.5]

2
)]

exp

[
− 1

2σ2

(
[6− 8]

2
+ [7− 8]

2
+ · · · [10− 8]

2
)]

=
exp (−2.5000)

exp (−2.2222)
= 0.7574.

(9.18)

where 8 is the maximum likelihood estimate of µ, assuming a standard devi-
ation of 1.5 yields a likelihood ratio of 0.7574.

Theorem 9.16. Let Λ be the likelihood ratio test statistic. Then −2 ln (Λ) is
asymptotically distributed as chi-squared with the degrees of freedom equal to
the number of exact restrictions implied by H0.

Thus, the test statistic from Equation 9.18 is 0.5556, which is distributed χ2
1.

The probability of drawing a test statistic greater than 0.5556 is 0.46, so we
fail to reject the hypothesis at any conventional level of significance.
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9.4 Composite against a Composite

Testing a simple hypothesis against a composite is easy because the numerator
has a single value – the value of the likelihood function evaluated at the
single point θ0. Adding a layer of complexity, consider a test that compares
two possible ranges. For example, assume that we are interested in testing
the hypothesis that the demand is inelastic. In this case we would test the
hypothesis that −1 ≤ η ≤ 0 with the valid range of demand elasticities for
normal goods η ≤ 0. In this case we compare the likelihood function for the
restricted range (−1 ≤ η ≤ 0) with the general range η ≤ 0.

Definition 9.17. A test R is the uniformly most powerful test of size
(level) α if supθ∈Θ P (R|θ) = (≤)α and for any other test R1 such that
supθ∈Θ P (R1|θ) = (≤)α we have P (R|θ) ≥ P (R1|θ) for any θ ∈ Θ.

Definition 9.18. Let L (x|θ) be the likelihood function. Then the likelihood
ratio test of H0 against H1 is defined by the critical region

Λ =

sup
θ0

L (θ|x)

sup
θ0∪Θ1

L (θ|x)
< c (9.19)

where c is chosen to satisfy supΘ P (Λ < c|θ) for a certain specified value of α.

Example 9.19. Let the sample Xi ∼ N
(
µ, σ2

)
with unknown σ2, i =

1, 2, · · ·n. We want to test H0 : µ = µ0 and 0 < σ2 < ∞ against H1 : µ > µ0

and 0 < σ2 <∞.

L [θ] = (2π)
−n/2 (

σ2
)−n/2

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)
2

]
. (9.20)

Using the concentrated likelihood function at the null hypothesis,

sup
Θ0

L (θ) = (2π)
−n/2 (

σ̄2
)−n/2

exp
[
−n

2

]
σ̄2 =

1

n

n∑
i=1

(xi − µ0)
2
.

(9.21)

The likelihood value can be compared with the maximum likelihood value of

sup
Θ0

L (θ) = (2π)
−n/2 (

σ̂2
)−n/2

exp
[
−n

2

]
σ̂2 =

1

n

n∑
i=1

(xi = x̄)
2

x̄ =
1

n

n∑
i=1

xi.

(9.22)
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The critical region then becomes(
σ̄2

σ̂2

)−n2
< c. (9.23)

Turning back to the Bayesian model, the Bayesian would solve the problem
testing H0 : θ ≤ θ0 against H1 : θ > θ0. Let L2 (θ) be the loss incurred by
choosing H0 and L1 (θ) be the loss incurred by choosing H1. The Bayesian
rejects H0 if ∫ ∞

−∞
L1 (θ) f (θ|x) dθ <

∫ ∞
−∞

L2 (θ) f (θ|x) dθ (9.24)

where f (θ|x) is the posterior distribution of θ.

Example 9.20 (Mean of a Binomial Distribution). Assume that we want
to know whether a coin toss is biased based on a sample of ten tosses. Our
null hypothesis is that the coin is fair (H0 : p = 1/2) versus an alternative
hypothesis that the coin toss is biased toward heads (H1 : p > 1/2). Assume
that you tossed the coin ten times and observed eight heads. What is the
probability of drawing eight heads from ten tosses of a fair coin?

P [n ≥ 8] =

(
10
10

)
p10 (1− p)0

+

(
10
9

)
p9 (1− 9)

1
+

(
10
8

)
p8 (1− p)2

.

(9.25)
If p = 1/2, P [n ≥ 8] = 0.054688. Thus, we reject H0 at a confidence level of
0.10 and fail to reject H0 at a 0.05 confidence level.

Moving to the likelihood ratio test,

Λ =
0.58 (1− 0.5)

2

0.88 (1− 0.8)
2 = 0.1455⇐

{
p̄ = 0.5

p̂MLE = 0.8.
(9.26)

Given that
−2 ln (Λ) ∼ χ2

1 (9.27)

we reject the hypothesis of a fair coin toss at a 0.05 confidence level.
−2 ln (Λ) = 3.854 and the critical region for a chi-squared distribution at
one degree of freedom is 3.84.

Example 9.21. Suppose the heights of male Stanford students are distributed
N
(
µ, σ2

)
with a known variance of 0.16. Assume that we want to test whether

the mean of this distribution is 5.8 against the hypothesis that the mean of the
distribution is 6. What is the test statistic for a 5 percent level of confidence
and a 10 percent level of confidence? Under the null hypothesis,

X̄ ∼ N

(
5.8,

0.16

10

)
. (9.28)
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The test statistic then becomes

Z =
6− 5.8

0.1265
= 1.58 ∼ N (0, 1) . (9.29)

Given that P [Z ≥ 1.58] = 0.0571, we have the same decisions as above,
namely, that we reject the hypothesis at a confidence level of 0.10 and fail
to reject the hypothesis at a confidence level of 0.05.

Example 9.22 (Mean of Normal with Variance Unknown). Assume the same
scenario as above, but that the variance is unknown. Given the estimated
variance is 0.16, the test becomes(

X̄ − 6
)

0.16√
10

∼ t9. (9.30)

The computed statistic becomes P [t9 > 1.58] = 0.074.

Example 9.23 (Differences in Variances). In Section 8.1, we discussed the
chi-squared distribution as a distribution of the sample variance. Following
Theorem 8.5, let X1, X2, · · ·Xn be a random sample from a N

(
µ, σ2

)
distri-

bution, and let

X̄ =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
. (9.31)

Then X̄ and S2 are independent random variables, X̄ ∼ N

(
µ, σ

2

n

)
, and

(n− 1)S2

σ2 has a chi-squared distribution with n− 1 degrees of freedom.

Given the distribution of the sample variance, we may want to compare
two sample variances,

nXS
2
X

σ2
X

∼ χ2
nX−1 and

nY S
2
Y

σ2
Y

∼ χ2
nY −1. (9.32)

Dividing the first by the second and correcting for degrees of freedom yields

(nY − 1)nXS
2
X

(nX − 1)nY S
2
Y

∼ F (nX − 1, nY − 1) . (9.33)

This statistic is used to determine the statistical significance of regressions.
Specifically, let S2

X be the standard error of a restricted model and S2
Y be the

standard error of an unrestricted model. The ratio of the standard errors be-
comes a test of the restrictions. However, the test actually tests for differences
in estimated variances.
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9.5 Testing Hypotheses about Vectors

Extending the test results beyond the test of a single parameter, we now want
to test H0 : θ = θ0 against H1 : θ 6= θ0 where θ is a k×1 vector of parameters.
We begin by assuming that

θ̂ ∼ N (θ,Σ) (9.34)

where Σ is a known variance matrix.
First, assuming that k = 2, we have(

θ̂1

θ̂2

)
∼ N

[(
θ1

θ2

)
,

(
σ11 σ12

σ12 σ22

)]
. (9.35)

A simple test of the null hypothesis, assuming that the parameters are uncor-
related, would then be

R :

(
θ̂1 − θ1

)2

σ11
+

(
θ̂2 − θ2

)2

σ22
> c. (9.36)

Building on this concept, assume that we can design a matrix A such that
AΣA′ = I. This theorem relies on the eigenvalues of the matrix (see Chapter
10). Specifically, the eigenvalues of the matrix (λ) are defined by the solution
of the equation det (Σ− Iλ) = 0. These values are real if the Σ matrix is
symmetric, and positive if the Σ matrix is positive definite. In addition, if the
matrix is positive definite, there are k distinct eigenvalues. Associated with
each eigenvalue is an eigenvector u, defined by u (Σ− Iλ) = 0. Carrying the
eigenvector multiplication through implies AΣ−AΛ = 0 where A is a matrix
of eigenvectors and Λ is a diagonal matrix of eigenvalues. By construction, the
eigenvectors are orthogonal so that AA′ = I. Thus, AΣA′ = Λ. The above
decomposition is guaranteed by the diagonal nature of Λ.

This transformation implies

R :
(
Aθ̂ −Aθ

)′ (
Aθ̂ −Aθ

)
> c

⇒
[
A
(
θ̂ − θ

)]′ [
A
(
θ̂ − θ

)]
=
(
θ̂ − θ

)′
A′A

(
θ̂ − θ

)
=
(
θ̂ − θ

)′
Σ−1

(
θ̂ − θ

)
> c.

(9.37)

Note that the likelihood ratio test for this scenario becomes

Λ =

exp

[
−1

2

(
θ̂ − θ

)′
Σ−1

(
θ̂ − θ

)]
max
θ̂MLE

exp

[
−1

2

(
θ̂MLE − θ

)′
Σ−1

(
θ̂MLE − θ

)] . (9.38)
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Given that θ̂MLE goes to θ, the numerator of the likelihood ratio test becomes
one and (

θ̂ − θ0

)′
Σ−1

(
θ̂ − θ0

)
∼ χ2

k. (9.39)

A primary problem in the construction of these statistics is the assumption
that we know the variance matrix. If we assume that we know the variance
matrix to a scalar ( Σ = σ2Q where Q is known and σ2 is unknown), the test
becomes (

θ̂ − θ0

)′
Q−1

(
θ̂ − θ0

)
σ2 > c. (9.40)

Using the traditional chi-squared result,

W

σ2 ∼ χ
2
M (9.41)

dividing Equation 9.40 by Equation 9.41 yields(
θ̂ − θ0

)′
Q−1

(
θ̂ − θ0

)
W

M

∼ F (K,M) . (9.42)

9.6 Delta Method

The hypotheses presented above are all linear – H0 : β = 2 or in vector space
H0 : 2β1 + β2 = 0. For the test in vector space we have[

2β̂1

β̂2

]′
Σ−1

[
2β̂1

β̂

]
∼ χ2

1. (9.43)

A little more complex scenario involves the testing of nonlinear constraints or
hypotheses.

Nonlinearity in estimation may arise from a variety of sources. One ex-
ample involves the complexity of estimation, as discussed in Chapter 12. One
frequent problem involves the estimation of the standard deviation instead
of the variance in maximum likelihood. Specifically, using the normal den-
sity function to estimate the Cobb–Douglas production function with normal
errors yields

L ∝ −N
2

ln
[
σ2
]
− 1

2σ2

N∑
i=1

(
yi − α0x

α1
1i x

1−α1
2i

)2
. (9.44)

This problem is usually solved with iterative techniques as presented in Ap-
pendix E. These techniques attempt to improve on an initial guess by com-
puting a step (i.e., changes in the parameters σ2, α0, and α1) based on the
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derivatives of the likelihood function. Sometimes the step takes the parame-
ters into an infeasible region. For example, the step may cause σ2 to become
negative. As a result, we often estimate the standard deviation rather than
the variance (i.e., σ instead of σ2). No matter the estimate of σ (i.e., negative
or positive), the likelihood function presented in Equation 9.44 is always valid
(i.e., σ̂2 > 0). The problem is that we are usually interested in the distribution
of the variance and not the standard deviation.

The delta method is based on the first order Taylor series approximation

g (β) = g
(
β̂
)

+
∂g (β)

∂β

∣∣∣∣
β=β̂

(
β − β̂

)
. (9.45)

Resolving Equation 9.45, we conjecture that

lim
β̂→β

[
g (β)− g

(
β̂
)]

= lim
β→β̂

∂g (β)

∂β

∣∣∣∣
β=β̂

(
β − β̂

)
= 0. (9.46)

Using the limit in Equation 9.46, we conclude that

V (g (β)) =

[
∂g (β)

∂β

∣∣∣∣
β=β̂

]
Σβ

[
∂g (β)

∂β

∣∣∣∣
β=β̂

]′
(9.47)

where Σβ is the variance (or variance matrix) for the β parameter(s).
In our simple case, assume that we estimate s (the standard deviation). The

variance of the variance is then computed given that σ2 = s2. The variance of
σ2 is then 22ŝ2Σs.

9.7 Chapter Summary

• The basic concept in this chapter is to define regions for statistics such
that we can fail to reject or reject hypotheses. This is the stuff of previous
statistics classes – do we reject the hypothesis that the mean is zero based
on a sample?

• Constructing these regions involves balancing two potential errors:

– Type I error – the possibility of rejecting the null hypothesis when it
is correct.

– Type II error – the possibility of failing to reject the null hypothesis
when it is incorrect.

• From an economic perspective there is no free lunch. Decreasing Type I
error implies increasing Type II error.
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• A simple hypothesis test involves testing against a single valued alternative
hypothesis – H0 : µ = 2.

• A complex hypothesis involves testing against a range of alternatives H0 :
µ ∈ [0, 1].

9.8 Review Questions

9-1R. Given the sample s = {6.0, 7.0, 7.5, 8.0, 8.5, 10.0}, derive the likelihood
test for H0 : µ = 7.0 versus H1 : µ = 8.0 assuming normality with a
variance of σ2 = 2.

9-2R. Using the sample from review question 9-1R, derive the likelihood test
for H0 : µ = 7.0 versus H1 : µ 6= 7.0 assuming normality with a known
variance of σ2 = 2.

9.9 Numerical Exercises

9-1E. Consider the distribution functions

f (x) =
3

4

(
1− (x+ 1)

2
)
x ∈ [−2, 0]

g (x) =
1

18

(
9

2
− (x− 2)

2

2

)
x ∈ [−1, 5]

(9.48)

where the mean of f (x) is −1 and g (x) is 2. What value of T defined
as a draw from the sample gives a Type I error of 0.10? What is the
associated Type II error?

9-2E. Using the data in Table 8.4, test H0 : θ = 0.50 versus H1 : θ = 0.75.

9-3E. Using the data in Table 8.5, test whether the mean of sample 1
equals the mean of sample 3.

9-4E. Using the sample from review question 9-1R, compute the same test
with an unkown variance.
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Many of the traditional econometric applications involve the estimation of
linear equations or systems of equations to describe the behavior of individuals
or groups of individuals. For example, we can specify that the quantity of an
input demanded by a firm is a linear function of the firm’s output price, the
price of the input, and the price of other inputs

xDt = α0 + α1pt + α2w1t + α2w2t + α3w3t + εt (10.1)

where xDt is the quantity of the input demanded at time t, pt is the price of
the firm’s output, w1t is the price of the input, w2t and w3t are the prices
of other inputs used by the firm, and εt is a random error. Under a variety
of assumptions such as those discussed in Chapter 6 or by assuming that
εt ∼ N

(
0, σ2

)
, Equation 10.1 can be estimated using matrix methods. For

example, assume that we have a simple linear specification

yi = α0 + α1xi + εi. (10.2)

Section 7.6 depicts the derivation of two sets of normal equations.

− 1

N

N∑
i=1

yi + α0 + α1
1

N

N∑
i=1

xi = 0

− 1

N

N∑
i=1

xiyi + α0
1

N

N∑
i=1

xi + α1
1

N

N∑
i=1

x2
i = 0.

(10.3)
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Remembering our discussion regarding sufficient statistics in Section 7.4, we
defined Ty = 1/N

∑N
i=1 yi, Tx = 1/N

∑N
i=1 xi, Txy = 1/N

∑N
i=1 xiyi, and

Txx = 1/N
∑N
i=1 x

2
i . Given these sufficient statistics, we can rewrite the nor-

mal equations in Equation 10.3 as a linear system of equations.

Ty = α0 + α1Tx

Txy = α0Tx + α1Txx.
(10.4)

The system of normal equations in Equation 10.4 can be further simplified
into a matrix form [

Ty
Txy

]
=

[
1 Tx
Tx Txx

] [
α0

α1

]
. (10.5)

Further, we can solve for the set of parameters in Equation 10.5 using some
fairly standard (and linear) operations.

This linkage between linear models and linear estimators has led to a his-
torical reliance of econometrics on a set of linear estimators including ordinary
least squares and generalized method of moments. It has also rendered the
Gauss–Markov proof of the ordinary least squares (the proof that orindary
least squares is the Best Linear Unbiased Estimator (BLUE)) an essen-
tial element of the econometrician’s toolbox. This chapter reviews the basic
set of matrix operations; Chapter 11 provides two related proofs of the BLUE
property of ordinary least squares.

10.1 Review of Elementary Matrix Algebra

It is somewhat arbitrary and completely unnecessary for our purposes to draw
a sharp demarkation between linear and matrix algebra. To introduce matrix
algebra, consider the general class of linear problems similar to Equation 10.4:

y1 = α10 + α11x1 + α12x2 + α13x3

y2 = α20 + α21x1 + α22x2 + α23x3

y3 = α30 + α31x1 + α32x2 + α33x3

y4 = α40 + α41x1 + α42x2 + α43x4.

(10.6)

In this section, we develop the basic mechanics of writing systems of equations
such as those depicted in Equation 10.6 as matrix expressions and develop
solutions to these expressions.

10.1.1 Basic Definitions

As a first step, we define the concepts that allow us to write Equation 10.6 as
a matrix equation.
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Matrices and Vectors

A matrix A of size m× n is an m× n rectangular array of scalars:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 . (10.7)

As an example, we can write the coefficients from Equation 10.6 as a matrix:

A =


α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

α40 α41 α42 α43

 . (10.8)

It is sometimes useful to partition matrices into vectors.

A =
[
a·1 a·2 · · · a·n

]
⇒ a·1 =


a11

a21

...
am1

 · · · a·n =


a1n

a2n

...
amn

 (10.9)

A =


a1·
a2·
...
am·

⇒
a1· =

[
a11 a12 · · · a1n

]
a2· =

[
a21 a22 · · · a2n

]
...

am· =
[
am1 am2 · · · amn

] (10.10)

Operations of Matrices

The sum of two identically dimensioned matrices can be expressed as

A+B = [aij + bij ] . (10.11)

In order to multiply a matrix by a scalar, multiply each element of the matrix
by the scalar. In order to discuss matrix multiplication, we first discuss vector
multiplication. Two vectors x and y can be multiplied together to form z
(z = x · y) only if they are conformable. If x is of order 1×n and y is of order
n× 1, then the vectors are conformable and the multiplication becomes

z = xy =
n∑
i=1

xiyi. (10.12)

Extending this discussion to matrices, two matrices A and B can be multiplied
if they are conformable. If A is of order k × n and B is of order n × 1 then
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the matrices are conformable. Using the partitioned matrix above, we have

C = AB =


a1·
a2·
...
ak·

 [ b·1 b·2 · · · b·l
]

=


a1·b·1 a1·b·2 · · · a1·b·l
a2·b·1 a2·b·2 · · · a2·b·l

...
...

. . .
...

ak·b·1 ak·b·2 · · · ak·b·l

 .
(10.13)

These mechanics allow us to rewrite the equations presented in Equation 10.6
in true matrix form.

y =


y1

y2

y3

y4

 =


α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

α40 α41 α42 α43




1
x1

x2

x3

 = Ax. (10.14)

Theorem 10.1 presents some general matrix results that are useful. Basi-
cally, we can treat some matrix operations much the same way we treat scalar
(i.e., single number) operations. The difference is that we always have to be
careful that the matrices are conformable.

Theorem 10.1. Let α and β be scalars and A, B, and C be matrices. Then
when the operations involved are defined, the following properties hold:

a) A+B = B +A

b) (A+B) + C = A+ (B + C)

c) α (A+B) = αA+ αB

d) (α+ β) = αA+ βB

e) A−A = A+ (−A) = [0]

f) A (B + C) = AC +BC

g) (A+B)C = AC +BC

h) (AB)C = A (BC)

The transpose of an m×n matrix is a n×m matrix with the rows and columns
interchanged. The transpose of A is denoted A′.

Theorem 10.2. Let α and β be scalars and A and B be matrices. Then when
defined, the following hold:



Elements of Matrix Analysis 221

a) (αA)
′

= αA′

b) (A′)
′

= A

c) (αA+ βB)
′

= αA′ + βB′

d) (AB)
′

= B′A′

Traces of Matrices

The trace is a function defined as the sum of the diagonal elements of a square
matrix.

tr (A) =

m∑
i=1

aii. (10.15)

Theorem 10.3. Let α be scalar and A and B be matrices. Then when the
appropriate operations are defined, we have:

a) tr (A′) = tr (A)

b) tr (αA) = αtr (A)

c) tr (A+B) = tr (A) + tr (B)

d) tr (AB) = tr (B′A′)

e) tr (A′A) = 0 if and only if A = [0]

Traces can be very useful in statistical applications. For example, the natural
logarithm of the normal distribution function can be written as

Λn (µ,Ω) = −1

2
mn ln (2π)− 1

2
n ln (|Ω|)− 1

2
tr
(
Ω−1Z

)
Z =

∑
i = 1n (yi − µ) (yi − µ)

′
.

(10.16)

Determinants of Matrices

The determinant is another function of square matrices. In its most technical
form, the determinant is defined as

|A| =
∑

(−1)
f(i1,i2,···im)

a1i1a2i2 · · · amim
=
∑

(−1)
f(i1,i2,···im)

ai11ai22 · · · aimm
(10.17)

where the summation is taken over all permutations (i1, i2, · · · im) of the set
of integers (1, 2, · · ·m), and the function f (i1, i2, · · · im) equals the number of
transpositions necessary to change (i1, i2, · · · im) to (1, 2, · · ·m).
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In the simple case of a 2 × 2, we have two possibilities, (1, 2) and (2, 1).
The second requires one transposition. Under the basic definition of the de-
terminant,

|A| = (−1)
0
a11a22 + (−1)

1
a12a21. (10.18)

In the slightly more complicated case of a 3 × 3, we have six possibilities,
(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2), (1, 3, 2). Each one of these differs
from the previous one by one transposition. Thus, the number of transpositions
is 0, 1, 2, 3, 4, 5. The determinant is then defined as

|A| = (−1)
0
a11a22a33 + (−1)

1
a12a21a33 + (−1)

2
a12a23a31

+ (−1)
3
a13a22a31 (−1)

4
a13a21a32 + (−1)

5
a11a23a32

= a11a22a33 − a12a21a33 + a12a23a31 − a13a22a31

+ a13a21a32 − a11a23a32.

(10.19)

A more straightforward definition involves the expansion down a column
or across the row. In order to do this, I want to introduce the concept of
principal minors. The principal minor of an element in a matrix is the matrix
with the row and column of the element removed. The determinant of the
principal minor times negative one raised to the row number plus the column
number is called the cofactor of the element. The determinant is then the sum
of the cofactors times the elements down a particular column or across the
row.

|A| =
m∑
j=1

aijAij =
∑

aij

[
(−1)

i+j
mij

]
. (10.20)

In the 3 × 3 case

|A| = a11 (−1)
1+1

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣+ a21 (−1)
2+1

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣
+ a31 (−1)

3+1

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣ .
(10.21)

Expanding this expression yields

|A| = a11a22a33 − a11a23a32 − a12a21a33 + a13a21a32

+ a12a23a31 − a13a22a31.
(10.22)

Theorem 10.4. If α is a scalar and A is an m×m matrix, then the following
properties hold:

a) |A′| = |A|
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b) |αA| = αm |A|

c) If A is a diagonal matrix |A| = a11a22 · · · amm

d) If all the elements of a row (or column) of A are zero then |A| = 0

e) If two rows (or columns) of A are proportional then |A| = 0

f) The interchange of two rows (or columns) of A changes the sign of |A|

g) If all the elements of a row (or a column) of A are multiplied by α then
the determinant is multiplied by α

h) The determinant of A is unchanged when a multiple of one row (or col-
umn) is added to another row (or column)

The Inverse

Any m×m matrix A such that |A| 6= 0 is said to be a nonsingular matrix and
possesses an inverse denoted A−1.

AA−1 = A−1A = Im. (10.23)

Theorem 10.5. If α is a nonzero scalar, and A and B are nonsingular m×m
matrices, then:

a) (αA)
−1

= α−1A−1

b) (A′)
−1

=
(
A−1

)′
c)
(
A−1

)−1
= A

d)
∣∣A−1

∣∣ = |A|−1

e) If A = diag (a11, · · · amm) then A−1 = diag
(
a−1

11 , · · · a−1
mm

)
f) If A = A′ then A−1 =

(
A−1

)′
g) (AB)

−1
= B−1A−1

The most general definition of an inverse involves the adjoint matrix (de-
noted A#). The adjoint matrix of A is the transpose of the matrix of cofactors
of A. By construction of the adjoint, we know that

AA# = A#A = diag (|A| , |A| , · · · |A|) = |A| Im. (10.24)

In order to see this identity, note that

ai·b·i = |A| where B = A#

aj·b·i = 0 where B = A# i 6= j.
(10.25)
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Focusing on the first point,

[AA#]11 =
[
a11 a12 a13

]


(−1)
1+1

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣
(−1)

1+2

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣
(−1)

1+3

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣


= (−1)

1+1
a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣+ (−1)
1+2

a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣
+ (−1)

1+3
a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ = |A| .

(10.26)

Given this expression, we see that

A−1 = |A|−1
A#. (10.27)

A more applied view of the inverse involves row operations. For example,
suppose we are interested in finding the inverse of a matrix

A =

 1 9 5
3 7 8
2 3 5

 . (10.28)

As a first step, we form an augmented solution matrix with the matrix we
want on the left-hand side and an identity on the right-hand side, as depicted
in Equation 10.29.  1 9 5 1 0 0

3 7 8 0 1 0
2 3 5 0 0 1

 . (10.29)

Next, we want to derive a sequence of elementry matrix operations to trans-
form the left-hand matrix into an identity. These matrix operations will leave
the inverse matrix in the right-hand side. From the matrix representation in
Equation 10.29, the first series of operations is to subtract 3 times the first
row from the second row and 2 times the first row from the third row. The
elemental row operation to accomplish this transformation is 1 0 0

−3 1 0
−2 0 1

 . (10.30)

Multiplying Equation 10.29 by Equation 10.30 yields 1 9 5 1 0 0
0 −20 −7 −3 1 0
0 −15 −5 −2 0 1

 (10.31)
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which implies the next elemental transformation matrix 1 9/20 0
0 −1/20 0
0 −15/20 1

 . (10.32)

Multiplying Equation 10.31 by Equation 10.32 yields 1 0 −37/5 −7/20 9/20 0
0 1 −7/5 3/20 −1/20 0
0 0 1/4 1/4 −3/4 1

 (10.33)

which implies the final elementry operation matrix 1 0 −37/5
0 1 −7/5
0 0 4

 . (10.34)

The final result is then 1 0 0 −11/5 6 −37/5
0 1 0 −1/5 1 −7/5
0 0 1 1 −3 4

 (10.35)

so the inverse matrix becomes

A−1 =

 −11/5 6 −37/5
−1/5 1 −7/5

1 −3 4

 . (10.36)

Checking this result, 1 9 5
3 7 8
2 3 5

 −11/5 6 −37/5
−1/5 1 −7/5

1 −3 4

 =

 −11/5 6 −37/5
−1/5 1 −7/5

1 −3 4

 1 9 5
3 7 8
2 3 5

 =

 1 0 0
0 1 0
0 0 1

 .
(10.37)

Rank of a Matrix

The rank of a matrix is the number of linearly independent rows or columns.
One way to determine the rank of any general matrix m× n is to delete rows
or columns until the resulting r× r matrix has a nonzero determinant. What
is the rank of the above matrix? If the above matrix had been

A =

 1 9 5
3 7 8
4 16 13

 (10.38)
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note |A| = 0. Thus, to determine the rank, we delete the last row and column,
leaving

A1 =

(
1 9
3 7

)
⇒ |A1| = 7− 27 = −20 (10.39)

The rank of the matrix is 2.
The rank of a matrix A remains unchanged by any of the following opera-

tions, called elementary transformations: (a) the interchange of two rows (or
columns) of A, (b) the multiplication of a row (or column) of A by a nonzero
scalar, and (c) the addition of a scalar multiple of a row (or column) of A to
another row (or column) of A.

For example, we can derive the rank of the matrix in Equation 10.38 using
a series of elemental matrices. As a starting point, consider the first elementary
matrix to construct the inverse as discussed above. 1 0 0

−3 1 0
−4 0 1

 1 9 5
3 7 8
4 16 13

 =

 1 9 5
0 −20 −7
0 −20 −7

 . (10.40)

It is obvious in Equation 10.40 that the third row is equal to the second row
so that 1 0 0

0 1 0
0 −1 1

 1 9 5
0 −20 −7
0 −20 −7

 =

 1 9 5
0 −20 −7
0 0 0

 . (10.41)

Hence, the rank of the original matrix is 2 (there are two leading nonzero
elements in the reduced matrix).

Orthogonal Matrices

An m×1 vector p is said to be a normalized vector or a unit vector if p′p = 1.
The m×1 vectors p1, p2, · · · pn where n is less than or equal to m are said to be
orthogonal if p′ipj = 0 for all i not equal to j. If a group of n orthogonal vectors
is also normalized, the vectors are said to be orthonormal. An m×m matrix
consisting of orthonormal vectors is said to be orthogonal. It then follows

P ′P = I. (10.42)

It is possible to show that the determinant of an orthogonal matrix is either
1 or −1.

Quadratic Forms

In general, a quadratic form of a matrix can be written as

x′Ay =
m∑
i=1

m∑
j=1

xiyjaij . (10.43)

We are most often interested in the quadratic form x′Ax.
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Every matrix A can be classified into one of five categories:

a) If x′Ax > 0 for all x 6= 0, then A is positive definite.

b) If x′Ax ≥ 0 for all x 6= 0 and x′Ax = 0 for some x 6= 0, then A is positive
semidefinite.

c) If x′Ax < 0 for all x 6= 0, then A is negative definite.

d) If x′Ax ≤ 0 for all x 6= 0 and x′Ax = 0 for some x 6= 0, then A is negative
semidefinite.

e) If x′Ax > 0 for some x and x′Ax < 0 for some x, then A is indefinite.

Positive and negative definiteness have a wide array of applications in econo-
metrics. By its very definition, variance matrices are positive definite.

E (x− x̄)
′
(x− x̄)⇒ Z ′Z

N
= Σxx (10.44)

where x is a vector of random variables, x̄ is the vector of means for those
random variables, and Σxx is the variance matrix. Typically, we write the
sample as

Z =


x11 − x̄1 x12 − x̄2 · · · x1r − x̄4

x21 − x̄1 x22 − x̄2 · · · x2r − x̄r
...

...
. . .

...
xN1 − x̄1 xN2 − x̄2 · · · xNr − x̄r

 . (10.45)

Therefore Z ′Z/N = Σxx is an r× r matrix. Further, we know that the matrix
is at least positive semidefinite because

x′ (Z ′Z)x (Zx)
′
(Zx) ≥ 0. (10.46)

Essentially, Equation 10.46 is the matrix equivalent to squaring a scalar num-
ber.

10.1.2 Vector Spaces

To develop the concept of a vector space, consider a simple linear system: y1

y2

y3

 =

 5 3 2
4 1 6
9 4 8

 x1

x2

x3

 . (10.47)

Consider a slight reformulation of Equation 10.47: y1

y2

y3

 =

 5
4
9

x1 +

 3
1
4

x2 +

 2
7
8

x3. (10.48)
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FIGURE 10.1
Vector Space.

This formulation is presented graphically in Figure 10.1. The three vectors in
Equation 10.48 represent three points in a three-dimensional space. The ques-
tion is what space does this set of three points span – can we explain any point
in this three-dimensional space using a combination of these three points?

Definition 10.6. Let S be a collection of m× 1 vectors satisfying the follow-
ing: (1) x1 ∈ S and x2 ∈ S, then x1 + x2 ∈ S and (2) if x ∈ S and α is a real
scalar then αx ∈ S. Then S is called a vector space in m-dimensional space.
If S is a subset of T , which is another vector space in m-dimensional space,
S is called a vector subspace of T .

Definition 10.7. Let {x1, · · ·xn} be a set of m×1 vectors in the vector space
S. If each vector in S can be expressed as a linear combination of the vectors
x1, · · ·xn, then the set {x1, · · ·xn} is said to span or generate the vector space
S, and {x1, · · ·xn} is called a spanning set of S.

Linear Independence and Dependence

At most the set of vectors presented in Equation 10.48 can span a three-
dimensional space. However, it is possible that the set of vectors may only
span a two-dimensional space. In fact, the vectors in Equation 10.48 only
span a two-dimensional space – one of the dimensions is linearly dependent.
If all the vectors are linearly independent, then the vectors would span a
three-dimensional space. Taking it further, it is even possible that all three
points lie on the same ray from the origin, so the set of vectors only spans
a one-dimensional space. More formally, we state the conditions for linear
independence in Definition 10.8.
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Definition 10.8. The set of m× 1 vectors {x1, · · ·xn} is said to be linearly
independent if the only solution to the equation

n∑
i=1

αixi = 0 (10.49)

is the zero vector α1 = · · · = αn = 0.

Going back to the matrix in Equations 10.40 and 10.41, 1 9 5
3 8 8
4 16 13

⇒
 1 0 37/20

0 1 7/20
0 0 0

 . (10.50)

This reduction implies that

37

20

 1
3
4

+
7

20

 9
7
16

 =

 5
8
13

 (10.51)

or that the third column of the matrix is a linear combination of the first two.

Orthonormal Bases and Projections

Assume that a set of vectors {x1, · · ·xr} forms a basis for some space S in Rm

space such that r ≤ m. For mathematical simplicity, we may want to forms
an orthogonal basis for this space. One way to form such a basis is the Gram–
Schmit orthonormalization. In this procedure, we want to generate a new set
of vectors {y1, · · · yr} that are orthonormal. The Gram–Schmit process is

y1 = x1

y2 = x2 −
x′2y1

y′1y1
y1

y3 = x3 −
x′3y1

y′1y1
y1 −

x′3y2

y′2y2
y2

(10.52)

which produces a set of orthogonal vectors. Then the set of vectors zi defined
as

zi =
yi√
y′iyi

(10.53)

spans a plane in three-dimensional space. Setting y1 = x1 (from Equa-
tion 10.48), y2 is derived as

y2 =

 9
7
16

−
(

9 7 16
) 1

3
4


(

1 3 4
) 1

3
4


 1

3
4

 =

 70/13
−50/13
20/13

 . (10.54)



230 Mathematical Statistics for Applied Econometrics

The vectors can then be normalized to one. However, to test for orthogonality,

(
1 3 4

) 70/13
−50/13
20/13

 = 0. (10.55)

Theorem 10.9. Every r-dimensional vector space, except the zero-
dimensional space {0}, has an orthonormal basis.

Theorem 10.10. Let {z1, · · · zr} be an orthonomal basis for some vector space
S, of Rm. Then each x ∈ Rm can be expressed uniquely as

x = u+ v (10.56)

where u ∈ S and v is a vector that is orthogonal to every vector in S.

Definition 10.11. Let S be a vector subspace of Rm. The orthogonal com-
plement of S, denoted S⊥, is the collection of all vectors in Rm that are or-
thogonal to every vector in S: that is, S⊥ = (x : x ∈ Rm andx′y = 0,∀y ∈ S}.

Theorem 10.12. If S is a vector subspace of Rm, then its orthogonal com-
plement S⊥ is also a vector subspace of Rm.

10.2 Projection Matrices

The orthogonal projection of an m× 1 vector x onto a vector space S can be
expressed in matrix form. Let {z1, · · · zr} be any othonormal basis for S while
{z1, · · · zm} is an orthonormal basis for Rm. Any vector x can be written as

x = (α1z1 + · · ·αrzr) + (αr+1zr+1 + · · ·αmzm) = u+ v. (10.57)

Aggregating α = (α′1 α2
′)′ where α1 = (α1 · · · α) and α2 = (αr+1 · · · αm)

and assuming a similar decomposition of Z = [Z1 Z2], the vector x can be
written as

X = Zα = Z1α1 + Z2α2

u = Z1α1

v = Z2α2.

(10.58)

Given orthogonality, we know that Z ′1Z1 = Ir and Z ′1Z2 = [0], and so

Z1Z
′
1x = Z1Z

′
1[Z1 Z2]

[
α1

α2

]
= [Z1 0]

[
α1

α2

]
= Z1α1 = u. (10.59)

Theorem 10.13. Suppose the columns of the m × r matrix Z1 form an or-
thonormal basis for the vector space S, which is a subspace of Rm. If x ∈ Rm,
the orthogonal projection of x onto S is given by Z1Z

′
1x.
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Projection matrices allow the division of the space into a spanned space
and a set of orthogonal deviations from the spanning set. One such separation
involves the Gram–Schmit system. In general, if we define the m × r matrix
X1 = (x1, · · ·xr) and define the linear transformation of this matrix that
produces an orthonormal basis as A,

Z1 = X1A. (10.60)

We are left with the result that

Z ′1Z1 = A′X ′1X1A = Ir. (10.61)

Given that the matrix A is nonsingular, the projection matrix that maps any
vector x onto the spanning set then becomes

PS = Z1Z
′
1 = X1AA

′X ′1 = X1 (X ′X)
−1
X ′1. (10.62)

Ordinary least squares is also a spanning decomposition. In the traditional
linear model

y = Xβ + ε

ŷ = Xβ̂
(10.63)

within this formulation β is chosen to minimize the error between y and esti-
mated ŷ.

(y −Xβ)
′
(y −Xβ) . (10.64)

This problem implies minimizing the distance between the observed y and the
predicted plane Xβ, which implies orthogonality. If X has full column rank,
the projection space becomes X (X ′X)

−1
X ′ and the projection then becomes

Xβ = X (X ′X)
−1
X ′y. (10.65)

Premultiplying each side by X ′ yields

X ′Xβ = X ′X (X ′X)
−1
X ′y

β = (X ′X)
−1
X ′X (X ′X)

−1
X ′y

β = (X ′X)
−1
X ′y.

(10.66)

Essentially, the projection matrix is defined as that spanning space where the
unexplained factors are orthogonal to the space α1z1 + · · ·αrz4. The spanning
space defined by Equation 10.65 is identical to the definition of the spanning
space in Equation 10.57. Hence, we could justify ordinary least squares as
its name implies as that set of coefficients that minimizes the sum squared
error, or as that space such that the residuals are orthogonal to the predicted
values. These spanning spaces will also become important in the construction
of instrumental variables in Chapter 11.
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10.3 Idempotent Matrices

Idempotent matrices can be defined as any matrix such that AA = A. Note
that the sum of square errors (SSE) under the projection can be expressed
as

SSE = (y −Xβ)
′
(y −Xβ)

=
(
y −X (X ′X)

−1
X ′y

)′ (
y −X (X ′X)

−1
X ′y

)
=
((
In −X (X ′X)

−1
X ′
)
y
)′ (

In −X (X ′X)
−1
X ′
)
y

y′
(
In −X (X ′X)

−1
X ′
)(

In −X (X ′X)
−1
X ′
)
y.

(10.67)

The matrix In −X (X ′X)
−1
X ′ is an idempotent matrix.(

In −X (X ′X)
−1
X ′
)(

In −X (X ′X)
−1
X ′
)

=

In −X (X ′X)
−1
X ′ −X (X ′X)

−1
X ′ +X (X ′X)

−1
X ′X (X ′X)

−1
X ′

= In −X (X ′X)
−1
X ′.

(10.68)
Thus, the SSE can be expressed as

SSE = y′
(
In −X (X ′X)

−1
X ′
)
y

= y′y − y′X (X ′X)
−1
X ′y = v′v

(10.69)

which is the sum of the orthogonal errors from the regression.

10.4 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors (or more appropriately latent roots and charac-
teristic vectors) are defined by the solution

Ax = λx (10.70)

for a nonzero x. Mathematically, we can solve for the eigenvalue by rearranging
the terms

Ax− λx = 0

(A− λI)x = 0.
(10.71)
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Solving for λ then involves solving the characteristic equation that is implied
by

|A− λI| = 0. (10.72)

Again using the matrix in the previous example,∣∣∣∣∣∣
 1 9 5

3 7 8
2 3 5

− λ
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1− λ 9 5

3 7− λ 8
2 3 5− λ

∣∣∣∣∣∣
= −5 + 14λ+ 13λ2 − λ3 = 0.

(10.73)

In general, there are m roots to the characteristic equation. Some of these
roots may be the same. In the above case, the roots are complex. Turning to
another example,

A =

 5 −3 3
4 −2 3
4 −4 5

⇒ λ = {1, 2, 5} . (10.74)

The eigenvectors are then determined by the linear dependence in the A−λI
matrix. Taking the last example (with λ = 1),

[A− λI] =

 4 −3 3
4 −3 3
4 −4 4

 . (10.75)

The first and second rows are linear. The reduced system then implies that as
long as x1 = x2 and x3 = 0, the resulting matrix is zero.

Theorem 10.14. For any symmetric matrix A there exists an orthogonal
matrix H (that is, a square matrix satisfying H ′H = I) such that

H ′AH = Λ (10.76)

where Λ is a diagonal matrix. The diagonal elements of Λ are called the char-
acteristic roots (or eigenvalues) of A. The ith column of H is called the char-
acteristic vector (or eigenvector) of A corresponding to the characteristic root
of A.

This proof follows directly from the definition of eigenvalues. Letting H be
a matrix with eigenvalues in the columns, it is obvious that

AH = ΛH (10.77)

by our original discussion of eigenvalues and eigenvectors. In addition, eigen-
vectors are orthogonal and can be normalized to one. H is an orthogonal
matrix. Thus,

H ′AH = H ′ΛH = ΛH ′H = Λ. (10.78)
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One useful application of eigenvalues and eigenvectors is the fact that
the eigenvalues and eigenvectors of a real symmetric matrix are also real.
Further, if all the eigenvalues are positive, the matrix is positive definite.
Alternatively, if all the eigenvalues are negative, the matrix is negative definite.
This is particularly useful for econometrics because most of our matrices are
symmetric. For example, the sample variance matrix is symmetric and positive
definite.

10.5 Kronecker Products

Two special matrix operations that you will encounter are the Kronecker prod-
uct and vec (.) operators. The Kronecker product is a matrix of an element by
element multiplication of the elements of the first matrix by the entire second
matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 . (10.79)

The vec (.) operator then involves stacking the columns of a matrix on top of
one another.

The Kronecker product and vec (.) operators appear somewhat abstract,
but are useful in certain specifications of systems of equations. For example,
suppose that we want to estimate a system of two equations,

y1 = α10 + α11x1 + α12x2

y2 = α20 + α21x1 + α22x2.
(10.80)

Assuming a small sample of three observations, we could express the system
of equations in a sample as y11 y12

y21 y22

y31 y32

 =

 1 x11 x12

1 x21 x22

1 x31 x32

 α10 α20

α11 α21

α21 α22

 . (10.81)

As will be developed more fully in Chapter 11, we can estimate both equations
at once if we rearrange the system in Equation 10.81 as

y11

y12

y21

y22

y31

y32

 =


1 x11 x12 0 0 0
0 0 0 1 x11 x12

1 x21 x22 0 0 0
0 0 0 1 x21 x22

1 x31 x32 0 0 0
0 0 0 1 x31 x32




α10

α11

α12

α20

α21

α22

 . (10.82)
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Taking each operation in turn, the first operation is usually written as vecr (y)
or making a vector by rows

vecr

 y11 y12

y21 y22

y31 y32





[
y11

y12

]
[
y21

y22

]
[
y31

y32

]


=


y11

y12

y21

y22

y31

y32

 (10.83)

(this is equivalent to vec (y′)). The next term involves the Kronecker product

I2×2 ⊗X =

[
1 0
0 1

]
⊗

 1 x11 x12

1 x21 x22

1 x31 x32



=



1×
[

1 x11 x12

]
0×

[
1 x11 x12

]
0×

[
1 x11 x12

]
1×

[
1 x11 x12

]
1×

[
1 x21 x22

]
0×

[
1 x21 x22

]
0×

[
1 x21 x22

]
1×

[
1 x21 x22

]
1×

[
1 x11 x12

]
0×

[
1 x11 x12

]
0×

[
1 x11 x12

]
1×

[
1 x11 x12

]



(10.84)

Following the operations through gives the X matrix in Equation 10.82. Com-
pleting the formulation vec (α) is the standard vectorization

vec

 α10 α20

α11 α21

α21 α22

 =



 α10

α11

α12


 α20

α21

α22




=


α10

α11

α12

α20

α21

α22

 . (10.85)

Thus, while we may not refer to it as simplified, Equation 10.81 can be written
as

vecr (y) = [I2×2 ⊗X] vec (α) . (10.86)

At least it makes for simpler computer coding.
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10.6 Chapter Summary

• The matrix operations developed in this chapter are used in ordinary least
squares and the other linear econometric models presented in Chapter 11.

• Matrix algebra allows us to specify multivariate regression equations and
solve these equations relatively efficiently.

• Apart from solution techniques, matrix algebra has implications for spanning
spaces – regions that can be explained by a set of vectors.

– Spanning spaces are related to the standard ordinary least squares es-
timator – the mechanics of the ordinary least squares estimator guar-
antees that the residuals are orthogonal to the estimated regression
relationship.

– The concept of an orthogonal projection will be used in instrumental
variables techniques in Chapter 11.

10.7 Review Questions

10-1R. If tr [A] = 13, then what is tr [A+ k × Im×m]?

10.8 Numerical Exercises

10-1E. Starting with the matrix

A =

 5 3 2
3 1 4
2 4 7

 (10.87)

compute the determinant of matrix A.

10-2E. Compute B = A+ 2× I3×3 where I3×3 is the identity matrix (i.e.,
a matrix of zeros with a diagonal of 1).

10-3E. Compute the inverse of B = A+ 2× I3×3 using row operations.

10-4E. Compute the eigenvalues of B. Is B negative definite, positive
definite, or indefinite?
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10-5E. Demonstrate that AA# = |A| I.

10-6E. Compute the inverse of A using the cofactor matrix (i.e., the fact
that AA# = |A| I). Hint – remember that A is symmetric.

10-7E. As a starting point for our discussion, consider the linear model

rt = α0 + α1Rt + α2∆ (D/A)t + εt (10.88)

where rt is the interest rate paid by Florida farmers, Rt is the Baa
Corporate bond rate, and ∆ (D/A)t is the change in the debt to
asset ratio for Florida agriculture. For our discussion, we assume

rt
1
Rt

∆ (D/a)t



∼ N




0.07315
1.00000
0.08534
0.00904

 ,


0.00559 0.07315 0.00655 0.00045
0.07315 1.00000 0.08535 0.00905
0.00655 0.08535 0.00793 0.00063
0.00045 0.00905 0.00063 0.00323


 .

(10.89)

– Defining

ΣXX =

 1.00000 0.08535 0.00905
0.08535 0.00793 0.00063
0.00905 0.00063 0.00323

 (10.90)

and

ΣXY =

 0.07315
0.00655
0.00045

 (10.91)

compute β = Σ−1
XXΣXY .

– Compute ΣY Y − ΣY XΣ−1
XXΣXY where ΣY Y = 0.00559.
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The purpose of regression analysis is to explore the relationship between two
variables. In this course, the relationship that we will be interested in can be
expressed as

yi = α+ βxi + εi (11.1)

where yi is a random variable and xi is a variable hypothesized to affect or
drive yi.

(a) The coefficients α and β are the intercept and slope parameters,
respectively.

(b) These parameters are assumed to be fixed, but unknown.

(c) The residual εi is assumed to be an unobserved, random error.

(d) Under typical assumptions E [εi] = 0.

239
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(e) Thus, the expected value of yi given xi then becomes

E [yi] = α+ βxi. (11.2)

The goal of regression analysis is to estimate α and β and to say something
about the significance of the relationship. From a terminology standpoint, y
is typically referred to as the dependent variable and x is referred to as the
independent variable. Casella and Berger [7] prefer the terminology of y as
the response variable and x as the predictor variable. This relationship is a
linear regression in that the relationship is linear in the parameters α and β.
Abstracting for a moment, the traditional Cobb–Douglas production function
can be written as

yi = αxβi . (11.3)

Taking the natural logarithm of both sides yields

ln (yi) = ln (α) + β ln (xi) . (11.4)

Noting that ln (α) = α∗, this relationship is linear in the estimated parameters
and thus can be estimated using a simple linear regression.

11.1 Simple Linear Regression

The setup for simple linear regression is that we have a sample of n pairs of
variables (x1, y1) , · · · (xn, yn). Further, we want to summarize this relationship
by fitting a line through the data. Based on the sample data, we first describe
the data as follows:

1. The sample means

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi. (11.5)

2. The sums of squares

Sxx =
n∑
i=1

(xi − x̄)
2
, Syy =

n∑
i=1

(yi − ȳ)
2

Sxy =
n∑
i=1

(xi − x̄) (yi − ȳ) .

(11.6)

3. The most common estimators given this formulation are then given by

β =
Sxy
Sxx

, α = ȳ − βx̄. (11.7)
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11.1.1 Least Squares: A Mathematical Solution

Following our theme in the discussion of linear projections, this definition
involves minimizing the Residual Squared Error (RSS) by the choice of α
and β.

min
α,β

RSS =
n∑
i=1

(yi − (α+ βxi))
2
. (11.8)

Focusing on α first,

n∑
i=1

(yi − (α− βxi))2
=

n∑
i=1

((yi − βxi)− α)
2

⇒ ∂RSS

∂α
= 2

n∑
i=1

((yi − βxi)− α) = 0

⇒
n∑
i=1

yi − β
n∑
i=1

xi = nα

ȳ − β̂x̄ = α̂.

(11.9)

Taking the first-order conditions with respect to β yields

∂RSS

β
=

n∑
i=1

((yi − βxi)− (ȳ − βx̄))xi

=
n∑
i=1

((yi − ȳ)− β (xi − x̄))xi

−
n∑
i=1

(yi − ȳ)xi − β
n∑
i=1

(xi − x̄)xi.

(11.10)

Going from this result to the traditional estimator requires the statement
that

Sxy =
n∑
i=1

(yi − ȳ) (xi − x̄) =
n∑
i=1

((yi − ȳ)xi − (yi − ȳ) x̄)

=
n∑
i=1

(yi − ȳ)xi

(11.11)

since nȳ −
∑N
i=1 yi = 0 by definition of ȳ. The least squares estimator of β

then becomes

β̂ =
Sxy
Sxx

. (11.12)
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TABLE 11.1
U.S. Consumer Total and Food Expenditures, 1984 through 2002

Total Food Food Share
Year Expenditure (E) Expenditure ln (E) of Expenditure
1984 21,975 3,290 10.00 14.97
1985 23,490 3,477 10.06 14.80
1986 23,866 3,448 10.08 14.45
1987 24,414 3,664 10.10 15.01
1988 25,892 3,748 10.16 14.48
1989 27,810 4,152 10.23 14.93
1990 28,381 4,296 10.25 15.14
1991 29,614 4,271 10.30 14.42
1992 29,846 4,273 10.30 14.32
1993 30,692 4,399 10.33 14.33
1994 31,731 4,411 10.37 13.90
1995 32,264 4,505 10.38 13.96
1996 33,797 4,698 10.43 13.90
1997 34,819 4,801 10.46 13.79
1998 35,535 4,810 10.48 13.54
1999 36,995 5,031 10.52 13.60
2000 38,045 5,158 10.55 13.56
2001 39,518 5,321 10.58 13.46
2002 40,677 5,375 10.61 13.21

Example 11.1 (Working’s Law of Demand). Working’s law of demand is
an economic conjecture that the percent of the consumer’s budget spent on
food declines as income increases. One variant of this formulation presented
in Theil, Chung, and Seale [50] is that

wfood,t =
pfood,tqfood,t

E =
∑
i

piqi
= α+ β ln (E) (11.13)

where wfood,t represents the consumer’s budget share for food in time period
t, and E is the total level of expenditures on all consumption categories. In
this representation β < 0, implying that α > 0. Table 11.1 presents consumer
income, food expenditures, the natural logarithm of consumer income, and
food expenditures as a percent of total consumer expenditures for the United
States for 1984 through 2002. The sample statistics for these data are

x̄ = 10.3258 ȳ = 14.1984

Sxx = 0.03460 Sxy = −0.09969

β̂ = −2.8812 α̂ = 43.9506.

(11.14)

The results of this regression are depicted in Figure 11.1. Empirically the data
appear to be fairly consistent with Working’s law. Theil, Chung, and Seale find
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FIGURE 11.1
Working’s Model of Food Expenditures.

that a large portion of the variation in consumption shares across countries
can be explained by Working’s law.

In order to bring the results from matrix algebra into the discussion, we
are going to use the unity regressor form and rewrite the x and y matrices as

X =



1 9.9977
1 10.0643
1 10.0802
1 10.1029
1 10.1617
1 10.2332
1 10.2535
1 10.2960
1 10.3038
1 10.3318
1 10.3650
1 10.3817
1 10.4281
1 10.4579
1 10.4783
1 10.5185
1 10.5465
1 10.5845
1 10.6134



y =



14.9700
14.8000
14.4500
15.0100
14.4800
14.9300
15.1400
14.4200
14.3200
14.3300
13.9000
13.9600
13.9000
13.7900
13.5400
13.6000
13.5600
13.4600
13.2100



. (11.15)
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First, we derive the projection matrix

Pc = X (X ′X)
−1
X ′ (11.16)

which is a 19 × 19 matrix (see Section 10.2). The projection of y onto the
dependent variable space can then be calculated as

Pcy = X (X ′X)
−1
X ′y (11.17)

in this case a 19× 1 space. The numerical result of this projection is then

Pcy =



15.14521
14.95329
14.90747
14.84206
14.67262
14.46659
14.40809
14.28563
14.26315
14.18247
14.08680
14.03867
13.90497
13.81910
13.76031
13.64447
13.56379
13.45429
13.37101



. (11.18)

Comparing these results with the estimated values of y from the linear model
yields 

α+ 9.9977β = 15.14521
α+ 10.0643β = 14.95329

...
α+ 10.6134β = 13.37101

 . (11.19)

11.1.2 Best Linear Unbiased Estimator: A Statistical
Solution

From Equation 11.2, the linear relationship between the xs and ys is

E [yi] = α+ βxi (11.20)

and we assume that
V (yi) = σ2. (11.21)
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The implications of this variance assumption are significant. Note that we
assume that each observation has the same variance regardless of the value
of the independent variable. In traditional regression terms, this implies that
the errors are homoscedastic.

One way to state these assumptions is

yi = α+ βxi + εi

E [εi] = 0, V (εi) = σ2.
(11.22)

This specification is consistent with our assumptions, since the model is ho-
moscedastic and linear in the parameters.

Based on this formulation, we can define the linear estimators of α and β
as

n∑
i=1

diyi. (11.23)

An unbiased estimator of β can further be defined as those linear estimators
whose expected value is the true value of the parameter

E

[
n∑
i=1

diyi

]
= β. (11.24)

This implies that

β = E

[
n∑
i=1

diyi

]

=
n∑
i=1

diE [yi]

=
n∑
i=1

di (α+ βxi)

= α

(
n∑
i=1

di

)
+ β

(
n∑
i=1

dixi

)
⇒


n∑
i=1

di = 0

n∑
i=1

dixi = 1.

(11.25)

The linear estimator that satisfies these unbiasedness conditions and yields
the smallest variance of the estimate is referred to as the best linear unbiased
estimator (or BLUE). In this example, we need to show that

di =
(xi − x̄)

Sxx
⇒ β̂ =

n∑
i=1

(xi − x̄) yi

Sxx
(11.26)
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minimizes the variance for all such linear models. Given that the yis are un-
correlated, the variance of the linear model can be written as

V

(
n∑
i=1

diyi

)
=

n∑
i=1

d2
iV (yi) = σ2

n∑
i=1

d2
i . (11.27)

The problem of minimizing the variance then becomes choosing the dis to
minimize this sum subject to the unbiasedness constraints

min
di

σ2
n∑
i=1

d2
i

s.t.
n∑
i=1

dixi = 1

n∑
i=1

di = 0.

(11.28)

Transforming Equation 11.28 into a Lagrangian form,

L = σ2
n∑
i=1

d2
i + λ

(
1−

n∑
i=1

dixi

)
− µ

(
n∑
i=1

di

)
∂L

∂di
= 2σ2di − λxi − µ = 0

⇒ di =
λ

2σ2xi +
µ

2σ2

∂L

∂λ
= 1−

n∑
i=1

dixi = 0

∂L

∂µ
= −

n∑
i=1

di = 0.

(11.29)

Using the results from the first n first-order conditions and the second con-
straint, we have

−
n∑
i=1

(
λ

2σ2xi +
µ

2σ2

)
= 0

⇒ λ

2σ2

n∑
i=1

xi = − nµ

2σ2

⇒ µ = −
λ

n∑
i=1

xi

n
= −λx̄.

(11.30)
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Substituting this result into the first n first-order conditions yields

di =
λ

2σ2xi −
λ

2σ2 x̄

=
λ

2σ2 (xi − x̄) .

(11.31)

Substituting these conditions into the first constraint, we get

1−
n∑
i=1

λ

2σ2 (xi − x̄)xi = 0

⇒ λ =
2σ2

n∑
i=1

(xi − x̄)xi

⇒ di =
(xi − x̄)

n∑
i=1

(xi − x̄)xi

=
(xi − x̄)

Sxx
.

(11.32)

This proves that the simple least squares estimator is BLUE on a fairly
global scale. Note that we did not assume normality in this proof. The only
assumptions were that the expected error term is equal to zero and that the
variances were independently and identically distributed.

11.1.3 Conditional Normal Model

The conditional normal model assumes that the observed random variables
are distributed

yi ∼ N
(
α+ βxi, σ

2
)
. (11.33)

The expected value of y given x is α + βx and the conditional variance of yi
equals σ2. The conditional normal can be expressed as

E [yi|xi] = α+ βxi. (11.34)

Further, the εi are independently and identically distributed:

εi = yi − α− βxi
εi ∼ N

(
0, σ2

) (11.35)

(consistent with our BLUE proof).
Given this formulation, the likelihood function for the simple linear model

can be written

L
(
α, β, σ2|x

)
=

n∏
i=1

1√
2πσ

exp

[
− (yi − (α+ βxi))

2

2σ2

]
. (11.36)
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Taking the log of this likelihood function yields

ln (L) = −n
2

ln (2π)− n

2
ln
(
σ2
)
− 1

2σ2

n∑
i=1

(yi − α− βxi)2
. (11.37)

Thus, under normality the ordinary least squares estimator is also the maxi-
mum likelihood estimator.

11.1.4 Variance of the Ordinary Least Squares Estimator

The variance of β can be derived from the results presented in Section 11.1.2.
Note from Equation 11.32,

β̂ =
n∑
i=1

diyi =
n∑
i=1

(xi − x̄)

Sxx
(α+ βxi + εi)

=

n∑
i=1

diα+

n∑
i=1

diβxi +

n∑
i=1

diεi.

(11.38)

Under our standard assumptions about the error term, we have

E

(
n∑
i=1

diεi

)
=

n∑
i=1

diE (εi) = 0. (11.39)

In addition, by the unbiasedness constraint of the estimator, we have

n∑
i=1

diα = 0. (11.40)

Leaving the unbiasedness result

E
(
β̂
)

= β if

n∑
i=1

di = 1. (11.41)

However, remember that the objective function of the minimization problem
that we solved to get the results was the variance of parameter estimate

V
(
β̂
)

= σ2
n∑
i=1

d2
i . (11.42)

This assumes that the errors are independently distributed. Thus, substituting
the final result for di into this expression yields

V
(
β̂
)

= σ2
n∑
i=1

(xi − x̄)
2

S2
xx

= σ2Sxx

S2
xx

=
σ2

Sxx
. (11.43)

Noting that the numerator of this fraction is the true sample variance yields
the Student’s t-distribution for statistical tests of the linear model. Specifically,
the slope coefficient is distributed t with n− 2 degrees of freedom.
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11.2 Multivariate Regression

Given that the single cause model is restrictive, we next consider a multivariate
regression. In general, the multivariate relationship can be written in matrix
form as

y =
(

1 x1 x2

) β0

β1

β2

 = β0 + β1x1 + β2x2. (11.44)

If we expand the system to three observations, this system becomes y1

y2

y2

 =

 1 x11 x12

1 x21 x22

1 x31 x32

 β0

β1

β2



=

 β0 + β1x11 + β2x12

β0 + β1x21 + β2x22

β0 + β1x31 + β2x32

 .

(11.45)

Given that the X matrix is of full rank, we can solve for the βs. In a statistical
application, we have more rows than coefficients.

Expanding the exactly identified model in Equation 11.45, we get
y1

y2

y3

y4

 =


1 x11 x12

1 x21 x22

1 x31 x32

1 x41 x42


 β0

β1

β2

+


ε1
ε2
ε3
ε4

 . (11.46)

In matrix form, this can be expressed as

y = Xβ + ε. (11.47)

The sum of squared errors can then be written as

SSE = (y − ŷ)
′
(y − ŷ) = (y −Xβ)

′
(y −Xβ)

= (y′ − β′X ′) (y −Xβ) .
(11.48)

Using a little matrix calculus,

dSSE = d
{

(y −Xβ)
′}

(y −Xβ) + (y −Xβ)
′
d {(y −Xβ)}

= − (dβ)
′
X ′ (y −Xβ)− (y −Xβ)

′
Xdβ

(11.49)

(see Magnus and Nuedecker [29] for a full development of matrix calculus).
Note that each term on the left-hand side is a scalar. Since the transpose of a
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scalar is itself, the left-hand side can be rewritten as

dSSE = −2 (y −Xβ)
′
Xdβ

⇒ dSSE

dβ
= −2 (y −Xβ)

′
X = 0

y′X − β′X ′X = 0

y′X = β′X ′X

X ′y = X ′Xβ

(X ′X)
−1
X ′y = β.

(11.50)

Thus, we have the standard result β̂ = (X ′X)
−1
X ′y. Note that as in the two-

parameter system we do not make any assumptions about the distribution of
the error (ε).

11.2.1 Variance of Estimator

The variance of the parameter matrix can be written as

V
(
β̂
)

= E

[(
β̂ − β

)(
β̂ − β

)′]
. (11.51)

Working backward,

y = Xβ + ε⇒ β̂ = (X ′X)
−1
X ′y

= (X ′X)
−1
X ′ (Xβ + ε)

= (X ′X)
−1
X ′Xβ + (X ′X)

−1
X ′ε

= β + (X ′X)
−1
X ′ε.

(11.52)

Substituting this back into the variance relationship in Equation 11.51 yields

V
(
β̂
)

= E
[
(X ′X)

−1
X ′εε′X (X ′X)

−1
]
. (11.53)

Note that εε′ = σ2I (i.e., assuming homoscedasticity); therefore

V
(
β̂
)

= E
[
(X ′X)

−1
X ′εε′X (x′x)

−1
]

= (X ′X)
−1
X ′σ2IX (X ′X)

−1

= σ2 (X ′X)
−1
X ′X (X ′X)

−1

= σ2 (X ′X)
−1
.

(11.54)
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Again, notice that the construction of the variance matrix depends on the
assumption that the errors are independently and identically distributed, but
we do not assume a specific distribution of the ε (i.e., we do not assume
normality of the errors).

11.2.2 Gauss–Markov Theorem

The fundamental theorem for most econometric applications is the Gauss–
Markov theorem, which states that the ordinary least squares estimator is the
best linear unbiased estimator. The theory developed in this section represents
a generalization of the result presented in Section 11.1.2.

Theorem 11.2 (Gauss–Markov). Let β∗ = C ′y where C is a T ×K constant

matrix such that C ′X = I. Then, β̂ is better than β∗ if β∗ 6= β̂.

Proof. Starting with
β∗ = β + C ′u (11.55)

the problem is how to choose C. Given the assumption C ′X = 1, the choice
of C guarantees that the estimator β∗ is an unbiased estimator of β. The
variance of β∗ can then be written as

V (β∗) = E [C ′uu′C]

= C ′E [uu′]C

= σ2C ′C.

(11.56)

To complete the proof, we want to add a special form of zero. Specifically, we
want to add σ2 (X ′X)

−1 − σ2 (X ′X)
−1

= 0.

V (β∗) = σ2 (X ′X)
−1 − σ2C ′C − σ2 (X ′X)

−1
. (11.57)

Focusing on the last terms, we note that by the orthogonality conditions for
the C matrix,

Z ′Z =
(
C −X (X ′X)

−1
)′ (

C −X (X ′X)
−1
)

= C ′C − C ′X (X ′X)
−1 − (X ′X)

−1
X ′C + (X ′X)

−1
X ′X (X ′X)

−1
.

(11.58)
Substituting backwards,

σ2C ′C − σ2 (X ′X)
−1

= σ2
[
C ′C − (X ′X)

−1
]

= σ2
[
C ′C − C ′X (X ′X)

−1 − (X ′X)
−1
X ′C + (X ′X)

−1
X ′X (X ′X)

−1
]

= σ2

[(
C −X (X ′X)

−1
)′ (

C −X (X ′X)
−1
)]
.

(11.59)
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Thus,

V (β∗) = σ2 (X ′X)
−1

+ σ2
[(
C ′ − (X ′X)

−1
X ′
)(

C −X (X ′X)
−1
)]
.

(11.60)

The minimum variance estimator is then C = X (X ′X)
−1

, which is the ordi-
nary least squares estimator.

Again, notice that the only assumption that we require is that the residuals
are independently and identically distributed – we do not need to assume
normality to prove that ordinary least squares is BLUE.

11.3 Linear Restrictions

Consider fitting the linear model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε (11.61)

to the data presented in Table 11.2. Solving for the least squares estimates,

β̂ = (X ′X)
−1

(X ′y) =


4.7238
4.0727
3.9631
2.0185
0.9071

 . (11.62)

Estimating the variance matrix,

ŝ2 =
y′y − (y′X) (X ′X)

−1
(X ′y)

30− 5
= 1.2858

V
(
β̂
)

= ŝ2 (X ′X)
−1

=


0.5037 −0.0111 −0.0460 0.0252 −0.0285
−0.0111 0.0079 −0.0068 0.0044 −0.0033
−0.0460 −0.0068 −0.0164 −0.0104 0.0047

0.0252 0.0044 −0.0104 0.0141 −0.0070
−0.0285 −0.0033 0.0047 −0.0070 0.0104

 .
(11.63)

Next, consider the hypothesis that β1 = β2 (which seems plausible given
the results above). As a starting point, consider the least squares estimator
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TABLE 11.2
Regression Data for Restricted Least Squares

Observation y x1 x2 x3 x4

1 75.72173 4.93638 9.76352 4.39735 2.27485
2 45.11874 6.95106 3.11080 −1.96920 3.59838
3 51.61298 4.69639 4.17138 3.84384 2.73787
4 92.53986 10.22038 8.93246 1.73695 5.36207
5 118.74310 12.05240 12.22066 6.40735 4.92600
6 80.78596 10.42798 5.58383 1.61742 9.30154
7 43.79312 2.94557 5.16446 1.21681 4.75092
8 47.84554 3.54233 5.58659 2.18433 3.65499
9 63.02817 4.56528 6.52987 4.40254 5.36942
10 88.83397 11.47854 8.82219 0.70927 2.94652
11 104.06740 11.87840 8.53466 5.21573 8.91658
12 57.40342 7.99115 7.42219 −3.62246 −2.19067
13 76.62745 7.14806 7.39096 5.19569 3.00548
14 109.96540 10.34953 9.82083 7.82591 7.09768
15 72.66822 7.74594 4.79418 5.39538 6.29685
16 68.22719 4.10721 8.51792 4.00252 3.88681
17 122.50920 12.77741 11.57631 6.85352 7.63219
18 70.71453 9.69691 6.54209 0.53160 0.79405
19 70.00971 6.46460 6.62652 4.31049 5.03634
20 75.82481 6.31186 8.49487 3.38461 5.53753
21 38.82780 3.04641 2.99413 2.69198 6.26460
22 79.15832 8.85780 7.29142 3.33994 2.86917
23 62.29580 5.82182 6.16096 4.18066 1.73678
24 80.63698 4.97058 9.83663 6.71842 3.47608
25 77.32687 5.90209 8.56241 5.42130 4.70082
26 23.34500 1.57363 2.82311 0.95729 0.69178
27 81.54044 9.25334 6.43342 5.02273 3.84773
28 67.16680 10.77622 5.21271 −0.87349 −1.17348
29 47.92786 6.96800 2.39798 −0.56746 6.08363
30 48.58950 7.06326 3.24990 −0.77682 3.09636

as a constrained minimization problem.

L (β) = (y −Xβ)
′
(y −Xβ) + 2λ′ (r −Rβ)

= (y′ − β′X ′) (y −Xβ) + 2λ′ (r −Rβ)

∇β′L (β) = X ′ (y −Xβ) +X ′ (y −Xβ)− 2R′λ = 0

(11.64)

where ∇β′L (β) is the gradient or a row vector of derivatives.1 The second

1Technically, the gradient vector is defined as

∇β′L (β) =

[
∂L (β)
∂β1

∂L (β)
∂β2

· · · ∂L (β)
∂βk

]
.
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term in the gradient vector depends on the vector derivative

∇β′ (Xβ) = ∇β′ (β′X ′)
′

= (∇β′ (β′X ′))
′

= (X ′)
′

= X. (11.65)

Solving for the first-order condition for β,

X ′ (y −Xβ) +X ′ (y −Xβ)− 2R′λ = 0

2 (X ′y)− 2 (X ′X)β − 2R′λ = 0

(X ′X)β = (X ′y)−R′λ

β = (X ′X)
−1

(X ′y)− (X ′X)
−1
R′λ.

(11.66)

Taking the gradient of the Lagrange formulation with respect to λ yields

∇λ′L (β) = r −Rβ = 0. (11.67)

Substituting the solution of β into the first-order condition with respect to
the Lagrange multiplier,

r −R
[
(X ′X)

−1
(X ′y)− (X ′X)

−1
R′λ

]
= 0

R−R (X ′X)
−1

(X ′y) +R (X ′X)
−1
R′λ = 0

R (X ′X)
−1
R′λ = R (X ′X)

−1
(X ′y)− r

λ =
[
R (X ′X)

−1
R′
] (
R (X ′X)

−1
(X ′y)− r

)
.

(11.68)

Note that substituting β = (X ′X)
−1

(X ′y) into this expression yields

λ =
[
R (X ′X)

−1
R′
]−1

(Rβ − r) . (11.69)

Substituting this result for λ back into the first-order conditions with respect
to β yields

βR = (X ′X)
−1

(X ′y)−

(X ′X)
−1
R′
[
R′ (X ′X)

−1
R′
]−1

(R (X ′X) (X ′y)− r)

= β − (X ′X)
−1
R′ [R (X ′X)R′]

−1
(Rβ − r) .

(11.70)

Thus, the ordinary least squares estimates can be adjusted to impose the
constraint Rβ − r = 0.
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11.3.1 Variance of the Restricted Estimator

Start by deriving β − E [β] based on the previous results.

β = (X ′X)
−1

(X ′Xβ +X ′ε)− (X ′X)
−1
R′
[
R (X ′X)

−1
R′
]−1

×
(
R (X ′X)

−1
X ′β +R (X ′X)

−1
X ′ε− r

)
E [β] = (X ′X)

−1
(X ′X)β − (X ′X)

−1
R
[
R (X ′X)

−1
R′
]−1

×
(
R (X ′X)

−1
X ′β − r

)
β − E [β] = (X ′X)

−1
X ′ε− (X ′X)

−1
R′
[
R (X ′X)

−1
R′
]−1

R

× (X ′X)
−1
X ′ε.

(11.71)

Computing (β − E [β]) (β − E [β])
′

based on this result,

(β − E [β]) (β − E [β])
′

= (X ′X)
−1
X ′εε′X (X ′X)

−1

− (X ′X)
−1
X ′εε′X (X ′X)

−1
R′ [R (X ′X)R′]

−1
R (X ′X)

−1

− (X ′X)
−1
R′
[
R (X ′X)

−1
R′
]−1

R (X ′X)
−1
X ′εε′X (X ′X)

−1

+ (X ′X)
−1
R′
[
R (X ′X)

−1
R′
]−1

R (X ′X)
−1
X ′εε′

×X (X ′X)
−1
R′
[
R (X ′X)

−1
R′
]−1

R (X ′X)
−1
.

(11.72)

Taking the expectation of both sides and noting that E [εε′] = σ2I,

V (β) = E
[
(β − E [β]) (β − E [β])

′]
= σ2

[
(X ′X)

−1 − (X ′X)
−1
R′
[
R (X ′X)

−1
R′
]
R (X ′X)

−1
]
.

(11.73)

Again, the traditional ordinary least squares estimate of the variance can be
adjusted following the linear restriction Rβ − r = 0 to produce the variance
matrix for the restricted least squares estimator.

11.3.2 Testing Linear Restrictions

In this section we derive the F-test of linear restrictions. Start with the deriva-
tion of the error under the restriction

εR = y −XβR

= y −Xβ −X (βR − β) .
(11.74)
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Compute the variance under the restriction

ε′RεR = (ε−X (βR − β))
′
(ε−X (βR − β))

= ε′ε− ε′X (βR − β)− (βR − β)
′
X ′ε+ (βR − β)

′
X ′X (βR − β) .

(11.75)
Taking the expectation of both sides (with E [ε] = 0),

E (ε′RεR) = E (ε′ε) + (βR − β)
′
X ′X (βR − β)

⇒ E (ε′RεR)− E (ε′ε) = (βR − β)
′
X ′X (βR − β) .

(11.76)

From our foregoing discussion,

βR − β = (X ′X)
−1
R′
[
R (X ′X)

−1
R′
]−1

(r −Rβ) . (11.77)

Substituting this result back into the previous equation yields

E (ε′RεR)− E (ε′ε) = (r −Rβ)
′
[
R (X ′X)

−1
R′
]−1

R (X ′X)
−1
X ′X (X ′X)

−1
R′
[
R (X ′X)

−1
R′
]−1

(r −Rβ)

= (r −Rβ)
′
[
R (X ′X)

−1
R′
]−1

(r −Rβ) .

(11.78)

Therefore, the test for these linear restrictions becomes

F (q, n− k) =
(ε′RεR − ε′ε) /q
ε′ε/ (n− k)

=
(r −Rβ)

′
[
R (X ′X)

−1
R′
]−1

(r −Rβ) /q

ε′ε/ (n− k)

(11.79)

where there are q restrictions, n observations, and k independent variables.

11.4 Exceptions to Ordinary Least Squares

Several departures from the assumptions required for BLUE are common in
econometrics. In this chapter we address two of the more significant departures
– heteroscedasticity and endogeneity. Heteroscedasticity refers to the case
where the errors are not identically distributed. This may happen due to a
variety of factors such as risk in production. For example, we may want to
estimate a production function for corn that is affected by weather events that
are unequal across time. Alternatively, the risk of production may be partially
a function of one of the input levels (i.e., the level of nitrogen interacting
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with weather may affect the residual by increasing the risk of production).
Endogeneity refers to the scenario where one of the regressors is determined
in part by the dependent variable. For example, the demand for an input is
affected by the price, which is affected by the aggregate level of demand.

11.4.1 Heteroscedasticity

Using the derivation of the variance of the ordinary least squares estimator,

β̂ = β + (X ′X)
−1

(X ′ε)

⇒ V
(
β̂
)

= (X ′X)
−1
X ′εε′X (X ′X)

−1

V
(
β̂
)

= (X ′X)
−1
X ′SX (X ′X)

−1 3: S = E [εε′]

(11.80)

under the Gauss–Markov assumptions S = E [εε′] = σ2IT×T .
However, if we assume that S = E [εε′] 6= σ2IT×T , the ordinary least

squares estimator is still unbiased, but is no longer efficient. In this case, we
use the generalized least squares estimator

β̃ = (X ′AX)
−1

(X ′Ay) . (11.81)

The estimator under heteroscedasticity (generalized least squares) implies

β̃ = (X ′AX)
−1

(X ′AXβ +X ′Aε)

= (X ′AX)
−1

(X ′AX)β + (X ′AX)
−1
X ′Aε

= β + (X ′AX)
−1
X ′Aε.

(11.82)

The variance of the generalized least squares estimator then becomes

V
(
β̃ − β

)
= (X ′AX)

−1
X ′Aεε′A′X (X ′AX)

−1

= (X ′AX)
−1
X ′ASA′X (X ′AX)

−1
.

(11.83)

Setting A = S−1,

V
(
β̃ − β

)
= (X ′AX)

−1
X ′AX (X ′AX)

−1 3: A′ = A

= (X ′AX)
−1
.

(11.84)

The real problem is that the true A matrix is unknown and must be es-
timated. For example, consider Jorgenson’s KLEM (Capital, Labor, Energy,
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TABLE 11.4
Estimated Parameters for the Agricultural Production Function

Parameter Estimate
α0 −18.7157∗∗∗

(2.3003)a

α1 1.5999∗∗∗

(0.3223)
α2 0.3925∗∗

(0.1364)
α3 −0.9032∗∗∗

(0.1741)
α4 1.4807

(0.2590)
Where ∗∗∗ and ∗∗ denotes statistical significance
at the 0.01 and 0.05 level of respectively.
aNumbers in parenthesis denote standard errors.

and Materials) data for the agricultural sector presented in Table 11.3. Sup-
pose that we want to estimate the Cobb–Douglas production function using
the standard linearization.

ln (yt) = α0 + α1 ln (x1t) + α2 ln (x2t) + α3 ln (x3t) + α4 ln (x4t) + εt. (11.85)

The ordinary least squares estimates of Equation 11.85 are presented in Ta-
ble 11.4. For a variety of reasons, there are reasons to suspect that the residuals
may be correlated with at least one input. As depicted in Figure 11.2, in this
case we suspect that the residuals are correlated with the level of energy used.
In order to estimate the possibility of this relationship, we regress the esti-
mated error squared from Equation 11.85 on the logarithm of energy used in
agriculture production.

ε̂2t = β0 + β1 ln (x3t) + νt. (11.86)

The estimated parameters in Equation 11.86 are significant at the 0.05 level
of confidence. Hence, we can use this result to estimate the parameters of the
A matrix in Equation 11.81.

Âtt = β̂0 + β̂1 ln (x3t)⇒ β̃ =
(
X ′ÂX

)−1 (
X ′Ây

)
(11.87)

where β̃ is the estimated generalized least squares (EGLS) estimator.
One important point to remember is that generalied least squares is al-

ways at least as efficient as ordinary least squares (i.e., A could equal the
identity matrix). However, estimated generalized least squares is not neces-
sarily as efficient as ordinary least squares – there is error in the estimation
of Â.
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FIGURE 11.2
Estimated Residual Squared.

Seemingly Unrelated Regressions

One of the uses of generalized least squares is the estimation of simul-
taneous systems of equations without endogeneity. Derived input demand
equations derived from cost minimization implies relationships between the
parameters

x1 = α1 +A11w1 +A12w2 + Γ11y + ε1
x2 = α2 +A21w1 +A22w2 + Γ21y + ε2

(11.88)

where x1 and x2 are input levels, w1 and w2 are the respective input prices,
y is the level of output, and α1, α2, A11, A12, A21, A22, Γ11, and Γ21 are
estimated parameters.

Both relationships can be estimated simultaneously by forming the regres-
sion matrices as

x11

x12

...
x1n

x21

x22

...
x2n


=



1 w11 w22 y1 0 0 0 0
1 w12 w22 y2 0 0 0 0
...

...
...

...
...

...
...

...
1 w1n w2n yn 0 0 0 0
0 0 0 0 1 w11 w21 y1

0 0 0 0 1 w12 w22 y2

...
...

...
...

...
...

...
...

0 0 0 0 1 w1n w2n yn





α1

A11

A12

Γ11

α2

A21

A22

Γ21


+



ε11

ε12

...
ε1n
ε21

ε22

...
ε2n


.

(11.89)
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It would be tempting to conclude that this formulation implies that the in-
put demand system requires generalized least squares estimation. Specifically,
using a two-step methodology, we can estimate the parameter vector using
ordinary least squares. The ordinary least squares coefficients could then be
used to estimate the variance for each equation. This variance could then be
used to estimate the A matrix.

A =



1
s21

0 · · · 0 0 0 · · · 0

0 1
s21
· · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1
s21

0 0 · · · 0

0 0 · · · 0 1
s22

0 · · · 0

0 0 · · · 0 0 1
s22
· · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 1
s22


. (11.90)

However, the separable nature of the estimation implies that there is no change
in efficiency. To introduce changes in efficiency, we need to impose the restric-
tion that A12 = A21. Imposing this restriction on the matrix of independent
variables implies

x11

x12

...
x1n

x21

x22

...
x2n


=



1 w11 w22 y1 0 0 0
1 w12 w22 y2 0 0 0
...

...
...

...
...

...
...

1 w1n w2n yn 0 0 0
0 0 w11 0 1 w21 y1

0 0 w12 0 1 w22 y2

...
...

...
...

...
...

...
0 0 w1n 0 1 w2n yn





α1

A11

A12

Γ11

α2

A22

Γ21


+



ε11

ε12

...
ε1n
ε21

ε22

...
ε2n


.

(11.91)
In the latter case, generalized least squares will yield efficiency gains.

The estimation Equation 11.91 requires a combination Kronecker product
(see Equations 10.81 through 10.86), implying Equation 11.89 can be written
as

vecr (y) = X ⊗ I2×2vecβ + vec (ε) (11.92)

and then restricting A12 = A21 using restricted least squares using Equa-
tion 11.70. Given these estimates, the researcher can then construct a sample
estimate of the variance matrix to adjust for heteroscedasticity.

11.4.2 Two Stage Least Squares and Instrumental Variables

The foregoing example does not involve dependency between equations. For
example, assume that the supply and demand curves for a given market can
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TABLE 11.5
Ordinary Least Squares

Ordinary Least
Parameter Squares

α0 1.2273
(1.4657)

α1 3.3280
(0.1930)

α2 −0.7181
(0.1566)

be written as
qs = −3 + 4p1 − p2 + ε1

qd = 10− p1 + 2y + ε2.
(11.93)

Solving this two equation system yields

p1 =
13

5
+

1

5
p2 +

2

5
y − ε1 + ε2. (11.94)

Ignoring the problem of simultaneity, the supply equation can be estimated
as

qs = α0 + α1p1 + α2p2 + ε̃1. (11.95)

The results for this simple estimation are presented in Table 11.5. Obviously,
these results are not close to the true values. Why? The basic problem is a
simultaneous equation bias. Substituting the solution of p1 into the estimated
equation yields

qs = α0 + α1

(
13

5
+

1

5
p2 +

2

5
y − ε2 + ε2

)
+ α2p2 + ε1. (11.96)

Substituting

p̃1 =
13

5
+

1

5
p2 +

2

5
y + ε2 ⇒ p1 = p̃1 − ε1 (11.97)

we note that the x matrix is now correlated with the residual vector. Specifi-
cally

E [p1ε1] = −σ2
1 6= 0. (11.98)

Essentially the ordinary least squares results are biased.

Two Stage Least Squares

The first approach developed by Theil [55] was to estimate the reduced form
of the price model and then use this estimated value in the regression. In this
example,

p̂1 = γ0 + γ1p2 + γ3y + ν. (11.99)
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TABLE 11.6
First-Stage Estimation

Ordinary Least
Parameters Squares

γ0 2.65762
(0.23262)

γ1 0.15061
(0.03597)

γ2 0.40602
(0.01863)

TABLE 11.7
Second-Stage Least Squares Estimator of the Demand Equation

Two Stage
Parameter Least Sqares

β̃0 9.9121
(0.9118)

β̃1 −1.0096
(0.2761)

β̃2 2.0150
(0.1113)

The parameter estimates for Equation 11.99 are presented in Table 11.6. Given
the estimated parameters, we generate p̂1 and then estimate

qS = α̃0 + α̃1p̂1 + α̃2p2 + ε2. (11.100)

In the same way, estimate the demand equation as

qd = β̃0 + β̃1p̂1 + β̃2y + ε2. (11.101)

The results for the second stage estimates of the demand equation are pre-
sented in Table 11.7.

Generalized Instrumental Variables

The alternative would be to use variables as instruments to remove the cor-
relation between endogenous variables. In this case, we assume that

y = Xβ + ε. (11.102)

Under the endogeneity assumption,

1

N
X ′ε9 0. (11.103)

But, we have a set of instruments (Z) which are correlated with the residu-
als and imperfectly correlated with X. Thegeneralized instrumental variable
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solution is
βIV = (X ′PZX)

−1
(X ′PZy) (11.104)

where PZ = Z (Z ′Z)
−1
Z ′ (see the derivation of the projection matrix in

ordinary least squares in Section 10.2).
In the current case, we use Z = [1 p2 y], yielding

βIV =

 −3.2770
3.9531
−0.7475

 . (11.105)

The estimates in Equation 11.105 are very close to the original supply function
in Equation 11.93.

11.4.3 Generalized Method of Moments Estimator

Finally we introduce the generalized method of moments estimator (GMM),
which combines the generalized least squares estimator with a generalized
instrumental variable approach. Our general approach follows that of Hall
[17]. Starting with the basic linear model,

yt = x′tθ0 + ut (11.106)

where yt is the dependent variable, xt is the vector of independent variables, θ0

is the parameter vector, and ut is the residual. In addition to these variables,
we will introduce the notion of a vector of instrumental variables denoted zt.
Reworking the original formulation slightly, we can express the residual as a
function of the parameter vector.

ut (θ0) = yt − x′tθ0. (11.107)

Based on this expression, estimation follows from the population moment
condition.

E [ztut (θ0)] = 0. (11.108)

Or more specifically, we select the vector of parameters so that the residuals
are orthogonal to the set of instruments.

Note the similarity between these conditions and the orthogonality condi-
tions implied by the linear projection space.

Pc = X (X ′X)
−1
X ′. (11.109)

Further developing the orthogonality condition, note that if a single θ0

solves the orthogonality conditions, or that θ0 is unique, then

E [ztut (θ)] = 0 if and only if θ = θ0. (11.110)

Alternatively,
E [ztut (θ)] 6= 0 if θ 6= θ0. (11.111)
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Going back to the original formulation,

E [ztut (θ)] = E [zt (yt − x′tθ)] . (11.112)

Taking the first-order Taylor series expansion,

E [zt (yt − x′tθ)] = E [zt (yt − x′tθ0)]− E [ztx
′
t] (θ − θ0)

⇐ ∂

∂θ
(yt − x′tθ) = −x′t.

(11.113)

Given that E [zt (yt − x′tθ0)] = E [ztut (θ0)] = 0, this expression implies

E [zt (yt − x′tθ)] = E [ztx
′
t] (θ0 − θ) . (11.114)

Given this background, the most general form of the minimand (objective
function) of the GMM model (Qt (θ)) can be expressed as

QT (θ) =

{
1

T
u (θ)

′
Z

}
WT

{
1

T
Z ′u (θ)

}
(11.115)

where T is the number of observations, u (θ) is a column vector of residuals,
Z is a matrix of instrumental variables, and WT is a weighting matrix (akin
to a variance matrix).

Given that WT is a type of variance matrix, it is positive definite, guaran-
teeing that

z′WT z > 0 (11.116)

for any vector z. Building on the initial model,

E [ztut (θ)] =
1

T
Z ′u (θ) . (11.117)

In the linear case,

E [ztut (θ)] =
1

T
Z ′ (y −Xθ) . (11.118)

Given that WT is positive definite, the optimality condition when the resid-
uals are orthogonal to the variances based on the parameters is

E [ztut (θ0)]⇒ 1

T
Z ′u (θ0) = 0⇒ QT (θ0) = 0. (11.119)

Working the minimization problem out for the linear case,

QT (θ) =
1

T 2

[
(y −Xθ)′ Z

]
WT [Z ′ (y −Xθ)]

=
1

T 2 [y′ZWt − θ′X ′ZWT ] [Z ′y − Z ′Xθ]

=
1

T 2 [y′ZWTZ
′y − θ′X ′ZWTZ

′y − y′ZWTZ
′Xθ + θ′X ′ZWTZ

′Xθ] .

(11.120)
Note that since QT (θ) is a scalar, θ′X ′ZWTZ

′y = y′ZWTZ
′Xθ. Therefore,

QT (θ) =
1

T 2 [y′ZWTZ
′y + θ′X ′ZWTZ

′Xθ − 2θ′X ′ZWTZ
′y] . (11.121)
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Solving the first-order conditions,

∇θQT (θ) =
1

T 2 [2X ′ZWTZ
′Xθ − 2X ′ZWTZ

′y] = 0

⇒ θ̂ = (X ′ZWTZ
′X)
−1

(X ′ZWTZ
′y) .

(11.122)

An alternative approach is to solve the implicit first-order conditions above.
Starting with

∇θQT (θ) =
1

T 2 [2X ′ZWTZ
′Xθ − 2X ′ZWTZ

′y] = 0

⇒ 1

2
∇θQT (θ) =

(
1

T
X ′Z

)
WT

(
1

T
Z ′Xθ

)
−(

1

T
X ′Z

)
WT

(
1

T
Z ′y

)
= 0

=

(
1

T
X ′Z

)
WT

(
1

T
Z ′Xθ − Z ′y

)
= 0

=

(
1

T
X ′Z

)
WT

(
1

T
Z ′ {y −Xθ}

)
= 0

⇒ 1

2
∇θQT (θ) =

(
1

T
X ′Z

)
WT

(
1

T
Z ′ {y −Xθ}

)
= 0

=

(
1

T
X ′Z

)
WT

(
1

T
Zu (θ)

)
= 0.

(11.123)

Substituting u (θ) = y−Xθ into Equation 11.123 yields the same relationship
as presented in Equation 11.122.

The Limiting Distribution

By the Central Limit Theorem,

1√
T
Z ′u (θ) =

1√
T

T∑
t=1

ztut (θ)
d→ N (0, S) . (11.124)

Therefore

1√
T

(
θ̂ − θ0

)
d→ N (0,MSM ′)

M = (E [xtz
′
t]WE [ztx

′
t])
−1

E [xtz
′
t]W

S = lim
T→∞

1

T

T∑
s=1

T∑
t=1

E [utusztz
′
s] = E

[
u2zz′

]
MSM ′ = {E [ztx

′
t]} S−1 {E [xtz

′
t]} .

(11.125)



Regression Applications in Econometrics 267

Under the classical instrumental variable assumptions,

ŜT =
1

T

T∑
t=1

û2
t ztz

′
t

ŜCIV =
σ̂2
T

T
Z ′Z.

(11.126)

Example 11.3 (Differential Demand Model). Following Theil’s model for the
derived demands for inputs,

fid ln [qi] = θid ln [O] +
n∑
j=1

πijd ln [pj ] + εi (11.127)

where fi is the factor share of input i (fi = piqi/C such that pi is the price
of the input, qi is the level of the input used, and C is the total cost of
production), O is the level of output, and εi is the residual. The model is
typically estimated as

f̄itD [qit] = θiD [Ot] +

n∑
j=1

πijD [pjt] + εt (11.128)

such that f̄it = 1
2 (fit + fi,t−1) and D [xt] = ln [xt]− ln [xt−1].

Applying this to capital in agriculture from Jorgenson’s [22] database, the
output is an index of all outputs and the inputs are capital (pct), labor (plt),
energy (pet), and materials (pmt). Thus,

X =
[
Ot pct plt pet pmt

]T
t=1

Z =
[
Ot pct plt pet pmt O2

t p2
ct p2

lt p2
et p2

mt

]T
t=1

.

(11.129)

Rewriting the demand model,

y = Xθ. (11.130)

The objective function for the generalized method of moments estimator is

QT (θ) = (y −Xθ)′ ZWTZ
′ (y −Xθ) . (11.131)

Initially we let WT = I and minimize QT (θ). This yields a first approximation
to the estimates in the second column of Table 11.8. Updating WT ,

ŜCIV =
σ̂2
T

T
Z ′Z (11.132)

and resolving yields the second stage generalized method of moments estimates
in the second column of Table 11.8.
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TABLE 11.8
Generalized Methods of Moments Estimates of Differential Demand Equation

First Stage Second Stage Ordinary Least
Parameter GMM GMM Squares
Output 0.01588 0.01592 0.01591

(0.00865) (0.00825) (0.00885)
Capital −0.00661 −0.00675 −0.00675

(0.00280) (0.00261) (0.00280)
Labor 0.00068 0.00058 0.00058

(0.03429) (0.00334) (0.00359)
Energy 0.00578 0.00572 0.00572

(0.00434) (0.00402) (0.00432)
Materials 0.02734 0.02813 0.02813

(0.01215) (0.01068) (0.01146)

11.5 Chapter Summary

• Historically ordinary least squares has been the standard empirical
method in econometrics.

• The classical assumptions for ordinary least squares are:

– A general linear model y = Xβ + ε.

∗ Sometimes this model is generated by a first-order Taylor series
expansion of an unknown function

y = f (x) = f (x0) +X

 β1 ≈
∂f (x)
∂x1i

β2 ≈
∂f (x)
∂x2i

+ εi (11.133)

where the residual includes the approximation error. Note that this
construction may lead to problems with heteroscedasticity.

∗ Alternatively, it may be possible to transform the model in such a
way as to yield a linear model. For example, taking the logarithm
of the Cobb–Douglas production function (y = α0x

α1
1 xα2

2 ) yields a
linear model. Of course this also has implications for the residuals,
as discussed in Chapter 12.

– The independent variables have to be fixed (i.e., nonstochastic).

– The residuals must be homoscedastic (i.e., εε′ = σ2IN×N ).

– Given that the model obeys the assumptions, the estimates are best
linear unbiased regardless of the distribution of the errors.
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• If the residuals of a general linear model are normally distributed, the
ordinary least squares estimates are also maximum likelihood.

• One frequently encountered exception to the conditions for best linear
unbiased estimator involves differences in the variance (εε′ 6= σ2IN×N ).

– This condition is referred to as heteroscedasticity. The problem is
typically corrected by the design of a weighting matrix A such that
εAε′ = σ2IN×N .

– This correction for heteroscedasticity opens the door to the estimation
of simultaneous equations. Specifically, we can estimate two different
equations at one time by realizing that the variance of the equation is
different (i.e., seemingly unrelated regression).

– It is important that generalized least squares is always at least as good
as ordinary least squares (i.e., if A is known – in fact if regression is
homoscedastic, then A = IT×T ). However, estimated generalized least
squares need not be as efficient as ordinary least squares because the
estimate of A may contain error.

• One of the possible failures for the assumption that X is fixed involves
possible correlation between the independent variables and the residual
term (i.e., E [X ′ε] 6= 0).

– These difficulties are usually referred to as endogeneity problems.

– The two linear corrections for endogeneity are two-stage least squares
and instrumental variables.

11.6 Review Questions

11-1R. True or false – we have to assume that the residuals are normally
distributed for ordinary least squares to be best linear unbiased?
Discuss.

11-2R. Why are the estimated ordinary least squares coefficients normally
distributed in a small sample if we assume that the residuals are
normally distributed?

11-3R. When are ordinary least squares coefficients normally distributed
for large samples?

11-4R. Demonstrate Aitkin’s theorem [49, p. 238] that β = (X ′AX)X ′Ay
yields a minimum variance estimator of β.
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11.7 Numerical Exercises

10-1E. Regress

rt = α0 + α1Rt + α2∆ (D/A)t + εt (11.134)

using the data in Appendix A for Georgia. Under what conditions
are the estimates best linear unbaised? How would you test for
heteroscedasticity?
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The techniques developed in Chapter 11 estimate using linear (or iteratively
linear in the case of two-stage least squares and the generalized method
of moments) procedures. The linearity was particularly valuable before the
widespread availability of computers and the development of more complex
mathematical algorithms. However, the innovations in computer technology
coupled with the development of statistical and econometric software have lib-
erated our estimation efforts from these historical techniques. In this chapter
we briefly develop three techniques that have no closed-form (or simple linear)
solution: nonlinear least squares and maximum likelihood, applied Bayesian
estimators, and least absolute deviation estimators.

12.1 Nonlinear Least Squares and Maximum Likelihood

Nonlinear least squares and maximum likelihood are related estimation tech-
niques dependent on numerical optimization algorithms. To develop these rou-
tines, consider the Cobb–Douglas production function that is widely used in

271
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both theoretical and empirical economic literature:

y = α0x
α1
1 xα2

2 (12.1)

where y is the level of output, and x1 and x2 are input levels. While this
model is nonlinear, many applications transform the variable by taking the
logarithm of both sides to yield

ln (y) = α̃0 + α1 ln (x1) + α2 ln (x2) + ε (12.2)

where α̃0 = ln (α0). While the transformation allows us to estimate the pro-
duction function using ordinary least squares, it introduces a significant as-
sumption about the residuals. Specifically, if we assume that ε ∼ N

(
0, σ2

)
so

that we can assume unbiasedness and use t-distributions and F -distributions
to test hypotheses, the error in the original model becomes log-normal. Specif-
ically,

ln (y) = α̃0 + α1 ln (x1) + α2 ln (x2) + ε⇒ y = α0x
α1
1 xα2

2 eε (12.3)

which yields a variance of exp
(
σ2 + 1/2µ

)
. In addition, the distribution is

positively skewed, which is inconsistent with most assumptions about the
error from the production function (i.e., the typical assumption is that most
errors are to the left [negatively skewed] due to firm level inefficiencies).

The alternative is to specify the error as an additive term:

y = α0x
α1
1 xα2

2 + ε. (12.4)

The specification in Equation 12.4 cannot be estimated using a simple lin-
ear model. However, the model can be estimated using either nonlinear least
squares,

min
α0,α1,α2

L (α0, α1, α2) =

N∑
i=1

(yi − α0x
α1
1i x

α2
2i )

2
(12.5)

which must be solved using iterative nonlinear or maximum likelihood tech-
niques.

Consider the corn production data presented in Table 12.1 (taken from the
first 40 observations from Moss and Schmitz [34]). As a first step, we simplify
the general form of the Cobb–Douglas in Equation 12.5 to

min
α0,α1,α2

L (α1) =
40∑
i=1

(yi − 50xα1
1i )

2
(12.6)

(i.e., we focus on the effect of nitrogen on production). Following the standard
formulation, we take the first derivative of Equation 12.6, yielding

∂L (α1)

∂α1
= 2

40∑
i=1

(− ln (x1i)× 50xα1
1i ) (yi − 50xα1

1i ) (12.7)
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FIGURE 12.1
Minimum of the Nonlinear Least Squares Formulation.

and then solve this expression for the α1 that yields ∂L (α1) /∂α1 = 0. While
this expression may be tractable, we typically solve for the α1 using a numer-
ical method known as Newton–Raphson.

To motivate this numerical procedure, notice that we are actually trying
to find the zero of a function

g (α1) = −50
40∑
i=1

(ln (x1i)x
α1
1i ) (yi − 50xα1

1i ) . (12.8)

Figure 12.1 presents the squared error and the derivative (gradient) of the
least squares function for α1 ∈ (0.01, 0.23). From the graphical depiction, it is
clear that the minimum error squared occurs at around 0.185. The question
is how to find the exact point in a systematic way.

Newton’s method finds the zero of a function (in this case the zero of
the gradient g (α1) in Equation 12.8) using information in the derivative. For
example, assume that we start at a value of α1 = 0.15, which yields a value
of g (α1) of -1,051,808. Graphically, draw a triangle based on the tangency
of g (α1) at that point and solve for the value of α̃1 such that g (α̃1) = 0.
To develop this concept a little further, consider the first-order Taylor series
expansion of g (α1):

g (α1) ≈ g
(
α0

1

)
+
∂g (α1)

∂α1

∣∣∣∣
α1=α0

1

(
α1 − α0

1

)
. (12.9)

Solving for α̃1 such that g (α̃1) = 0 implies

α̃1 = α0
1 −

g
(
α0

1

)
∂g (α1)

∂α1

∣∣∣∣
α1=α0

1

. (12.10)
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TABLE 12.2
Newton–Raphson Iterations for Simple Cobb–Douglas Form

α0
1 g (α1) L (α1) ∂g (α1) /∂α1 ∆α1 α̃1

0.15000 −1,051,807.80 46,762.50 18,698,025.70 −0.056252 0.20625
0.20625 695,878.17 29,446.05 46,600,076.03 0.014933 0.19132
0.19132 71,859.09 23,887.35 37,253,566.76 0.001929 0.18939
0.18939 1,055.24 23,817.36 36,163,659.92 0.000029 0.18936
0.18936 0.24 23,817.35 36,147,366.06 0.000000 0.18936

Given that the derivative of g (α1) is

∂g (α1)

∂α1
= −100

40∑
i=1

[(
ln (x1i)

2
xα1

1i

)
(y − 50xα1

1i )− 50 ln (ln (x1i)x
α1
1i )

2
]

(12.11)
the value of the derivative of g (α1) at 0.15 is 18,698,026. Thus, the next
estimate of the α1 that minimizes the nonlinear least squares is

α̃1 = 0.15− −1, 051, 808

18, 698, 026
= 0.20625. (12.12)

Evaluating L (α1) at this point yields a smaller value (29,446.05 compared
with 46,762.50). Table 12.2 presents the solution of the minimization problem
following the Newton–Raphson algorithm. To clean up the proof a little, note
that g (α1) = ∂L (α1) /∂α1; the Newton–Raphson algorithm to minimize the
nonlinear least squares is actually

α̃1 = α0
1 −

∂L (α1)

∂α1

∂2L (α1)

∂α2
1

∣∣∣∣∣∣∣∣∣
α1=α0

1

. (12.13)

To expand the estimation process to more than one parameter, we return to
the problem in Equation 12.5. In addition, we need to introduce the concept
of a gradient vector, which is essentially a vector of scalar derivatives. The
gradient of Equation 12.5 with respect to the three parameters ({α0, α1, α2})
is a 3× 1 vector

∇αL (α) =


∂L (α)

∂α0
∂L (α)

∂α1
∂L (α)

∂α2

 =



−2
40∑
i=1

xα1
1i x

α2
2i (y − α0x

α1
1i x

α2
2i )

−2α0

40∑
i=1

xα1
1i x

α2
2i ln (x1i) (y − α0x

α1
1i x

α2
2i )

−2α0

40∑
i=1

xα1
1i x

α2
2i ln (x2i) (y − α0x

α1
1i x

α2
2i )


.

(12.14)



276 Mathematical Statistics for Applied Econometrics

The Hessian matrix, which is the 3×3 matrix equivalent to the second deriva-
tive, is defined as

∇2
ααL (α) =



∂2L (α)

∂α2
0

∂2L (α)

∂α0∂α1

∂2L (α)

∂α0∂α2

∂2L (α)

∂α1∂α0

∂2L (α)

∂α2
1

∂2L (α)

∂α1∂α2

∂2L (α)

∂α2∂α0

∂2L (α)

∂α2∂α2

∂2L (α)

∂α2
2

 . (12.15)

The matrix form of Equation 12.13 can then be expressed as

α̃ = α0 −
[
∇2
ααL (α)

]−1∇αL (α)
∣∣∣
α=α0

. (12.16)

The numerical solution to the three parameter Cobb–Douglas is presented in
Appendix A.

To develop the distribution of the nonlinear least squares estimator, con-
sider a slight reformulation of Equation 12.5:

L (x, y|α) = [y − f (x, α)]
′
[y − f (x, α)] . (12.17)

So we are separating the dependent variable y from the predicted component
f (x, α). Given this formulation, we can then define the overall squared error
of the estimate (s∗ (α)):

s∗ (α) = σ2 +

∫
X

[f (x, α∗)− f (x, α)]
2
dµ (x) (12.18)

where α∗ is the level of the parameters that minimize the overall squared error
and α is a general value of the parameters. Also notice that Gallant [14] uses
measure theory. Without a great loss in generality, we rewrite Equation 12.18
as

s∗ (α) = σ2 +

∫ ∞
−∞

[f (x, α∗)− f (x, α)]
2
dG (x) (12.19)

where dG (x) = g (x) dx is the probability density function of x. Next, we
substitute a nonoptimal value (α0) for α∗, yielding an error term f

(
x, α0

)
+

e = f (x, α∗). Substituting this result into Equation 12.20,

s
(
e, α0, α

)
= σ2 +

∫ ∞
−∞

[
e+ f

(
x, α0

)
− f (x, α)

]2
dG (x) . (12.20)

Looking forward, if α0 → α∗ then e+ f
(
x, α0

)
→ f (x, α∗) and s

(
e, α0, α

)
→

s∗ (α). Next, we take the derivative (gradient) of Equation 12.20,

∇αs
(
e, α0, α

)
= −2

∫ ∞
−∞

[
e+ f

(
x, α0

)
− f (x, α)

]
∇αf (x, α) dG (x) .

(12.21)
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Notice that in this formulation
(
e+ f

(
x, α0

)
− f (x, α)

)
is a scalar number

while ∇αf (x, α) is a vector with the same number of rows as the number
of parameters in the nonlinear expression. Taking the second derivative of
Equation 12.20 with respect to the parameter vector (or the gradient of Equa-
tion 12.21) yields

∇2
ααs

(
e, α0, α

)
= 2

∫ ∞
−∞

[
∇αf (x, α)∇αf (x, α)

′

−2
[
e+ f

(
x, α0

)
− f (x, α)

]
∇2
ααf (x, α)

]
dG (x) .

(12.22)

A couple of things about Equations 12.21 and 12.22 are worth noting.
First, we can derive the sample equivalents of Equations 12.21 and 12.22 as

∇αs
(
e, α0, α

)
⇒ 2

[
e+ F

(
x, α0

)
− F (x, α)

]′∇αF (x, α)

∇2
ααs

(
e, α0, α

)
⇒ 2∇αF (x, α)

′∇αF (x, α)

−2
N∑
i=1

[
ei + f

(
xi, α

0
)
− f (xi, α)

]
∇2
ααf (xi, α) .

(12.23)

Second, following the concept of a limiting distribution,

1√
N
∇αF

(
α0
) LD→ Np

(
0, σ2 1

N
∇αF (α)

′∇αF (α)

)
(12.24)

where p is the number of parameters. This is basically the result of the central
limit theorem given that 1/N

[
e+ F

(
x, α0

)
− F (x, α)

]′
1 → 0 (where 1 is a

conformable column vector of ones). By a similar conjecture,

√
N
(
α̂− α0

) LD→ Np

(
0, σ2 1

N

[
∇αF (α)

′∇αF (α)
]−1
)
. (12.25)

Finally, the standard error can be estimated as

s2 =
1

N − p
[y − F (x, α)]

′
[y − F (x, α)] . (12.26)

Of course the derivation of the limiting distributions of the nonlinear least
squares estimator is typically superfluous given the assumption of normal-
ity. Specifically, assuming that the residual is normally distributed, we could
rewrite the log-likelihood function for the three parameter Cobb–Douglas
problem as

ln
(
L
(
x, y|α, σ2

))
∝ −N

2
ln
(
σ2
)
− 1

2σ2

N∑
i=1

(yi − α0x
α1
1i x

α2
2i )

2
. (12.27)

Based on our standard results for maximum likelihood,

α̂ ∼ N

α,− 1

N

[
N∑
i=1

∇2
αα (yi − α0x

α1
1i x

α2
2i )

2

]−1
 . (12.28)
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Comparing the results of Equation 12.24 with Equation 12.28, any real differ-
ences in the distribution derive from ∇αF (α)

′∇αF (α) ≈ ∇2
ααF (α).

12.2 Bayesian Estimation

Historically, Bayesian applications were limited by the existence of well formed
conjugate families. In Section 8.2 we derived the Bayesian estimator of a
Bernoulli parameter with a beta prior. This combination led to a closed-form
posterior distribution – one that we could write out. Since the late 1990s ad-
vances in both numerical procedures and computer power have opened the
door to more general Bayesian applications based on simulation.

12.2.1 Basic Model

An empirical or statistical model used for research purposes typically assumes
that our observations are functions of unobservable parameters. Mathemati-
cally,

p (y |θ ) (12.29)

where p (.) is the probability of y – a set of observable outcomes (i.e., crop
yields) and θ is a vector of unobservable parameters (or latent variables). Un-
der normality p

(
y
∣∣µ, σ2

)
means that the probability of an observed outcome

(y = 50.0) is a function of unobserved parameters such as the mean of the
normal (µ) and its variance (σ2). The formulation in Equation 12.29 is for any
general outcome (i.e., any potential level of y). It is important to distinguish
between general outcome – y — and a specific outcome that we observe – y0.
In general, we typically refer to a specific outcome as “data.”

If we do not know what the value of θ is, we can depict the density function
for θ as p (θ). We can then combine the density function for θ (p (θ)) with
our formulation of the probability of the observables (p (y |θ )) to produce
information about the observables that are not conditioned on knowing the
value of θ.

p (y) =

∫
p (θ) p (y |θ ) dθ. (12.30)

Next, we index our relation between observables and unobservables as model
A. Hence, p (y |θ ) becomes p (y |θA, A ), and p (θ) becomes p (θA |A ). We shall
denote the object of interest on which decision making depends, and which
all models relevant to the decision have something to say, by the vector ω.
We shall denote the implications of the model A for ω by p (ω |y, θA, A ).
In summary, we have identified three components of a complete model, A,
involving unobservables (often parameters) θA, observables y, and a vector of
interest ω.
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12.2.2 Conditioning and Updating

Given this setup, we can sketch out the way to build on information from
our prior beliefs about the unobservable parameters using sample informa-
tion. As a starting point, we denote the prior distribution as p (θA |A ). This
captures our initial intuition about the probability of the unobservable pa-
rameters (i.e., the mean and variance of the distribution). These expectations
are conditioned on a model – A (i.e., normality). In part, these prior beliefs
specify a distribution for the observable variables p (y |θA, A ). Given these
two pieces of information, we can derive the probability of the unobservable
parameters based on an observed sample (y0).

p
(
θA
∣∣y0, A

)
=
p
(
θA, y

0 |A
)

p
(
y0 |A

) =
p (θA |A ) p

(
y0 |θA, A

)
p
(
y0 |A

) (12.31)

where p
(
θA
∣∣y0, A

)
is referred to as the posterior distribution.

As a simple example, assume that we are interested in estimating a simple
mean for a normal distribution. As a starting point, assume that our prior
distribution for the mean is a normal distribution with a mean of µ̃ and a
known variance of 1. Our prior distribution then becomes

f1 (µ |µ̃, 1) =
1√
2π

exp

[
− (µ− µ̃)

2

2

]
. (12.32)

Next, assume that the outcome is normally distributed with a mean of µ from
Equation 12.32.

f2 (y |µ, k ) =
1√
2πk

exp

[
− (y − µ)

2

2k

]
(12.33)

where k is some fixed variance. The posterior distribution then becomes

f
(
µ
∣∣y0, k

)
∝ f1 (µ |µ̃, 1) f2

(
y0 |µ, k

)
=

1

2π
√
k

exp

[
− (µ− µ̃)

2

2
−
(
y0 − µ

)2
2k

] (12.34)

(ignoring for the moment the denominator of Equation 12.32). One application
of this formulation is to assume that we are interested in the share of cost
associated with one input (say the constant in the share equation in a Translog
cost function). If there are four inputs, we could assume a priori (our prior
guess) that the average share for any one input would be 0.25. Hence, we set
µ̃ = 0.25 in Equation 12.34. The prior distribution for any y0 would then
become

f
(
µ
∣∣y0, k

)
∝ 1

2π
√
k

exp

[
− (µ− 0.25)

2

2
−
(
y0 − µ

)2
2k

]
. (12.35)
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Next, assume that we have a single draw from the sample y0 = 0.1532 – the
empirical posterior distribution would then become

f
(
µ
∣∣y0 = 0.1532, k

)
∝ 1

2π
√
k

exp

[
− (µ− 0.25)

2

2
− (0.1532− µ)

2

2k

]
.

(12.36)
Returning to the denominator from Equation 12.32, p

(
y0 |A

)
is the proba-

bility of drawing the observed sample unconditional on the value of θ, in this
case, unconditioned on the value of µ. Mathematically,

f (0.1532) =

∫ ∞
−∞

(
1

2π
√
k

exp

[
− (µ− 0.25)

2

2
− (0.1532− µ)

2

2k

])
dµ = 0.28144

(12.37)

(computed using Mathematica). The complete posterior distribution can then
be written as

f
(
µ
∣∣y0 = 0.1532, k

)
=

1

2π
√
k

exp

[
− (µ− 0.25)

2

2
− (0.1532− µ)

2

2k

]
0.28144

.

(12.38)
One use of the posterior distribution in Equation 12.38 is to compute a
Bayesian estimate of µ. This is typically accomplished by minimizing the loss
function

MinµBL (µ, µB) ≡ E [µ− µB ]
2 ⇒ µB = E [µ]

⇒ E [µ] =

∫ ∞
−∞

f
(
µ
∣∣y0 = 0.1532, k

)
µdµ = 0.2016

(12.39)

again relying on Mathematica for the numeric integral.
Next, consider the scenario where we have two sample points y0 =

{0.1532, 0.1620}. In this case the sample distribution becomes

f2

(
y0 |µ, k

)
=

1√
2πk2

exp

[
− (0.1532− µ)

2
+ (0.1620− µ)

2

2k

]
. (12.40)

The posterior distribution can then be derived based on

f
(
µ
∣∣y0, k

)
∝

1

2π
√
k2

exp

[
− (µ− 0.25)

2

2
− (0.1532− µ)

2
+ (0.1620− µ)

2

2k

]
.

(12.41)
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Integrating the denominator numerically yields 0.2300. Hence, the posterior
distribution becomes

f
(
µ
∣∣y0, k

)
=

1

2π
√
k2

exp

[
− (µ− 0.25)

2

2
− (0.1532− µ)

2
+ (0.1620− µ)

2

2k

]
0.2300

(12.42)

which yields a Bayesian estimate for µ of 0.1884. Note that this estimator is
much higher than the standard mean of 0.1576 – the estimate is biased upward
by the prior.

In the foregoing development we have been playing a little fast and loose
with the variance of the normal. Let us return to the prior distribution for the
mean.

f1

(
µ
∣∣µ̃, σ2

µ

)
=

1√
2πσ2

µ

exp

[
− (µ− µ̃)

2

2σ2
µ

]
. (12.43)

Here we explicitly recognize the fact that our prior for µ (based on the normal
distribution) has a variance parameter σ2

µ. For the next wrinkle, we want to
recognize the variance of the observed variable (y):

f2

(
y
∣∣µ, σ2

y

)
=

1√
2πσ2

y

exp

[
− (y − µ)

2

2σ2
y

]
(12.44)

where σ2
y is the variance of the normal distribution for our observed variable.

Based on the formulation in Equation 12.44 we have acquired a new un-
known parameter – σ2

y. Like the mean, we need to formulate a prior for this
variable. In formulating this variable we need to consider the characteristics
of the parameter – it needs to be always positive (say V ≡ σ2

y � 0). Following
Section 3.5, the gamma distribution can be written as

f (V |α, β ) =


1

Γ (α)βα
V α−1 exp

[
−V
β

]
such that 0 < v <∞

0 otherwise.
(12.45)

Letting α = 2.5 and β = 2, the graph of the gamma function is depicted in
Figure 12.2.

Folding Equation 12.43 and Equation 12.45 together gives the complete
prior (i.e., with the variance terms)

f1

(
µ, V

∣∣µ̃, σ2
µ, α, β

)
= f11

(
µ
∣∣µ̃, σ2

µ

)
× f12 (V |α, β )

=
1√

2πσ2
µ

exp

[
− (µ− µ̃)

2

2σ2
µ

]

× 1

Γ (α)βα
V α−1 exp

[
−V
β

]
.

(12.46)
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Gamma Distribution Function.

The sample distribution then becomes

f2

(
y
∣∣µ, σ2

y

)
=

1

V
√

2π
exp

[
− (y − µ)

2

2V

]
. (12.47)

The posterior distribution then becomes

f
(
µ̃, σ2

µ, α, β |y
)

= 1√
2πσ2

µ

(√
2πV

)
Γ (α)βα

V α−1

× exp

[
− (µ− µ̃)

2

2σ2
µ

− (y − µ)
2

2V
− V

β

]

=
1

2πσµV
1/2Γ (α)βα

V α−1

× exp

[
− (µ− µ̃)

2

2σ2
µ

− (y − µ)
2

2V
− V

β

]
.

(12.48)

For simplification purposes, the gamma distribution is typically replaced with
the inverse gamma.

Focusing on the exponential term in Equation 12.48, we can derive a form
of a mixed estimator. The first two terms in the exponent of Equation 12.48
can be combined.

− (µ− µ̃)
2

2σ2
µ

− (y − µ)
2

2V
= −

(µ− µ̃)
2
V + (y − µ)

2
σ2
µ

2σ2
µV

. (12.49)
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With a little bit of flare, we are going to divide the numerator by σ2
µ and let

φ = V/σ2
µ, yielding

− (µ− µ̃)
2

2σ2
µ

− (y − µ)
2

2V
= −φ (µ− µ̃)

2
+ (y − µ)

2

2V
. (12.50)

Maximizing Equation 12.50 with respect to µ gives an estimator of µ condi-
tional on µ̃ and φ:

µ̂ =
φµ̃+ y

1 + φ
. (12.51)

Next, let us extend the sample distribution to include two observations,

f̃2

(
y1, y2

∣∣µ, σ2
y

)
=

2∏
i=1

f2

(
yi
∣∣µ, σ2

y

)
=

(
1√

2πV

)2

exp

[
− (y1 − µ)

2
+ (y2 − µ)

2

2V

]
.

(12.52)

Folding the results for Equation 12.52 into Equation 12.48 implies a two ob-
servation form of Equation 12.53.

− (µ− µ̃)
2

2σ2
µ

− (y1 − µ)
2

+ (y2 − µ)
2

2V
= −φ (µ− µ̃)

2
+ (y1 − µ)

2
+ (y2 − µ)

2

2V
.

(12.53)
With a little bit of effort, the value of µ that maximizes the exponent can be
derived as

µ̂ =

φ

2
µ̃+

y1 + y2

2

1 +
φ

2

. (12.54)

Defining ȳ = (y1 + y2) /2, this estimator becomes

µ̂ =

φ

2
µ̃+ ȳ

1 +
φ

2

. (12.55)

This formulation clearly combines (or mixes) sample information with prior
information.

Next, consider extending the sample to n observations. The sample distri-
bution becomes

f̃2

(
y1, y2, · · · yn

∣∣µ, σ2
y

)
=

n∏
i=1

f2

(
yi
∣∣µ, σ2

y

)

=

(
1√

2πV

)n
exp

−
n∑
i=1

(yi − µ)
2

2V

 .
(12.56)
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TABLE 12.3
Capital Share in KLEM Data

Year Share
1960 0.1532
1961 0.1620
1962 0.1548
1963 0.1551
1964 0.1343
1965 0.1534
1966 0.1587
1967 0.1501
1968 0.1459
1969 0.1818

Combining the exponent term for posterior distribution yields

− (µ− µ̃)
2

2σ2
µ

−

n∑
i=1

(yi − µ)
2

2V
= −

φ (µ− µ̃)
2

+

n∑
i=1

(yi − µ)
2

2V
. (12.57)

Following our standard approach, the value of µ that maximizes the exponent
term is

µ̂ =
φ
nµ̃+ ȳ

1 +
φ

n

s.t. ȳ =

n∑
i=1

yi

n
. (12.58)

Consider the data on the share of cost spent on capital inputs for agri-
culture from Jorgenson’s KLEM data presented in Table 12.3. Let us assume
a prior for this share of 0.25 (i.e., 1/4 of overall cost). First, let us use only
the first observation and assume φ = 2.0. The mixed estimator of the average
share would be

µ̂ =
2.0× 0.25 + 0.1532

1 + 2.0
= 0.2177. (12.59)

Next, consider an increase in φ to 3.0.

µ̂ =
3.0× 0.25 + 0.1532

1 + 3.0
= 0.2258. (12.60)

Finally, consider reducing φ to 1.0.

µ̂ =
1.0× 0.25 + 0.1532

1 + 1.0
= 0.2016. (12.61)

As φ increases, more weight is put on the prior. The smaller the φ, the closer
the estimate is to the sample value.
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Next, consider using the first two data points so that ȳ = 0.1576. Assuming
φ = 2.0,

µ̂ =
2.0
2 × 0.25 + 0.1576

1 +
2.0

2

= 0.2038. (12.62)

Notice that this estimate is closer to the sample average than for the same φ
with one observation. Expanding to the full sample, φ = 2.0 and ȳ = 0.1549
yields

µ̂ =
2.0
10 × 0.25 + 0.1549

1 +
2.0

10

= 0.1708. (12.63)

Finally, notice that as n → ∞ the weight on the prior vanishes so that the
estimate converges to the sample average.

12.2.3 Simple Estimation by Simulation

Consider the small sample on the share of capital cost for production agricul-
ture from the KLEM data. Suppose we assume a prior normal distribution
with a mean of µ̃ = 0.25 and a coefficient of variation of 1.25. The variance
would then be (0.25× 1.25)

2
= 0.097656. The posterior distribution would

then be

f
[
α
∣∣y0
]

=
1√

2π × 0.096757
exp

[
− (α− 0.25)

2

2× 0.096757

]

×

 1√
2πσ2

y

10

exp

[
− (0.1532− α)

2
+ (0.1620− α)

2
+ · · · (0.1818− α)

2

2σ2
y

]
.

(12.64)
The concept is then to estimate α by integrating the probability density func-
tion by simulation. Specifically,

α̂Bayes =

∫ ∞
−∞

αf
[
α
∣∣y0
]
dα. (12.65)

As a starting point, assume that we draw a value of α based on the prior
distribution. For example, in the first row of Table 12.4 we draw α = 0.8881.
Given this draw, we compute the likelihood function of the sample.

L
(
α
∣∣y0
)
∝ exp

×

[
− (0.1532− 0.8881)

2
+ (0.1620− 0.8881)

2
+ · · · (0.1818− 0.8881)

2

2× 0.096757

]
= 8.5594E − 13. (12.66)



286 Mathematical Statistics for Applied Econometrics

TABLE 12.4
Simulation Share Estimator

Draw α L
(
α
∣∣y0
)

α× L
(
α
∣∣y0
)

1 0.8881 8.5594E-13 7.6018E-13
2 0.1610 9.9130E-01 1.5960E-01
3 0.1159 9.1806E-01 1.0642E-01
4 0.3177 2.5264E-01 8.0261E-02
5 0.0058 3.1454E-01 1.8129E-03
6 −0.0174 2.1401E-01 −3.7269E-03
7 0.2817 4.3307E-01 1.2198E-01
8 0.9582 3.2764E-15 3.1395E-15
9 0.3789 7.4286E-02 2.8149E-02
10 −0.1751 3.5680E-03 −6.2479E-04
11 −0.0477 1.1906E-01 −5.6766E-03
12 0.2405 6.8021E-01 1.6360E-01
13 0.2461 6.4644E-01 1.5908E-01
14 0.2991 3.3906E-01 1.0143E-01
15 0.7665 3.9991E-09 3.0655E-09
16 0.0952 8.2591E-01 7.8617E-02
17 −0.0060 2.6062E-01 −1.5565E-03
18 0.2745 4.7428E-01 1.3020E-01
19 0.6151 1.7537E-05 1.0787E-05
20 0.3079 2.9626E-01 9.1228E-02

Summing over the 20 observations,

α̂Bayes =

20∑
i=1

αiL
[
αi
∣∣y0
]

∑20
i=1 L [αi |y0 ]

= 0.1769. (12.67)

Expanding the sample to 200 draws, α̂Bayes = 0.1601.

12.3 Least Absolute Deviation and Related Estimators

With the exception of some of the maximum likelihood formulations, we have
typically applied a squared error weighting throughout this textbook.

ε = yi −Xiβ

ρ (εi) =
(
ε2i
)

L (β) =
1

N

N∑
i=1

ρ (εi) .

(12.68)
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FIGURE 12.3
Alternative Residual Functions.

However, the squared error choice is to some extent arbitrary. Figure 12.3
presents three different residual functions: the standard residual squared
function, the absolute value function, and a Huber weighting function [19].
The absolute value function assumes

ρ (εi) = |εi| (12.69)

while the Huber function is

ρ (εi) =

{
1
2ε

2
i for |εi| ≤ k

k |εi| − 1
2k

2 for |εi| > k
(12.70)

with k = 1.5 (taken from Fox [12]). Each of these functions has implications
for the weight given observations farther away from the middle of the dis-
tribution. In addition, each estimator has slightly different consequences for
the “middle” of the distribution. As developed throughout this textbook, the
“middle” for Equation 12.68 is the mean of the distribution while the “middle”
for Equation 12.69 yields the median (δ).

δ s.t. F (εi) = 1− F (εi) = 0.50 (12.71)

where F (εi) is the cumulative density function of εi. The “middle” of the
Huber function is somewhat flexible, leading to a “robust” estimator.
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12.3.1 Least Absolute Deviation

Following the absolute value formulation of ρ (εi) in Equation 12.69, we can
formulate the Least Absolute Deviation Estimator (LAD) as

min
β

1

N

N∑
i=1

ρ (yi − β0 − β1xi) =
1

N

N∑
i=1

|yi − β0 − β1xi| (12.72)

where yi are observed values for the dependent variable, xi are observed values
of the independent variables, and β is the parameters to be estimated. To
develop the concept of the different weighting structures, consider the first-
order conditions for the general formulation in Equation 12.72.

∂L (y, x|β, ρ)

∂β0
=

1

N

N∑
i=1

ρ′ (yi − β0 − β1xi) (−1)

∂L (y, x|β, ρ)

∂β1
=

1

N

N∑
i=1

ρ′ (yi − β0 − β1xi) (−xi) .
(12.73)

If ρ (εi) is the standard squared error, Equation 12.73 yields the standard set
of normal equations.

∂ρ (yi − β0 − β1xi)

∂β1
= 2 (yi − β0 − β1xi)xi. (12.74)

However, if ρ (εi) is the absolute value, the derivative becomes

∂ρ (yi − β0 − β1xi)

∂β1
=

{
xi for yi < β0 + β1xi
−xi for yi > β0 + β1xi

(12.75)

which cannot be solved using the standard calculus (i.e., assuming a smooth
derivative).

Bassett and Koenker [3] develop the asymptotic distribution of the param-
eters as √

N (β∗n − β)
LD→ N

(
0,

1

N
ω2 [X ′nXn]

−1
)

(12.76)

where ω2 is an asymptotic estimator of the variance (i.e., ω2 = 1/N
∑N
i=1

(yi −Xiβ)
2
).

In order to demonstrate the applications of the LAD estimator, consider
the effect of gasoline and corn prices on ethanol.

pet = β0 + β1pgt + β2pct + εt (12.77)

where pet is the price of ethanol at time t, pgt is the price of gasoline at time
t, pct is the price of corn at time t, εt is the residual, and β0, β1, and β2

are the parameters we want to estimate. Essentially, the question is whether
gasoline or corn prices determine the price of ethanol. The data for 1982
through 2013 are presented in Table 12.5. The parameter estimates using
OLS, LAD, quantile regression with τ = 0.50 discussed in the next section,
and two different Huber weighting functions are presented in Table 12.6.
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TABLE 12.5
Ethanol, Gasoline, and Corn Prices 1982–2013

Nominal Prices Real Prices
Year Ethanol Gasoline Corn PCE Ethanol Gasoline Corn
1982 1.71 1.00 2.55 50.479 3.631 2.123 5.415
1983 1.68 0.91 3.21 52.653 3.420 1.853 6.535
1984 1.55 0.85 2.63 54.645 3.040 1.667 5.159
1985 1.60 0.85 2.23 56.581 3.031 1.610 4.225
1986 1.07 0.51 1.50 57.805 1.984 0.946 2.781
1987 1.21 0.57 1.94 59.649 2.174 1.024 3.486
1988 1.13 0.54 2.54 61.973 1.954 0.934 4.393
1989 1.23 0.61 2.36 64.640 2.040 1.012 3.913
1990 1.35 0.75 2.28 67.439 2.146 1.192 3.624
1991 1.27 0.69 2.37 69.651 1.954 1.062 3.647
1992 1.33 0.64 2.07 71.493 1.994 0.960 3.103
1993 1.16 0.59 2.50 73.278 1.697 0.863 3.657
1994 1.19 0.56 2.26 74.802 1.705 0.802 3.238
1995 1.15 0.59 3.24 76.354 1.614 0.828 4.548
1996 1.35 0.69 2.71 77.980 1.856 0.948 3.725
1997 1.15 0.55 2.43 79.326 1.554 0.743 3.283
1998 1.05 0.43 1.94 79.934 1.408 0.577 2.601
1999 0.98 0.59 1.82 81.109 1.295 0.780 2.405
2000 1.35 0.93 1.85 83.128 1.741 1.199 2.385
2001 1.48 0.88 1.97 84.731 1.872 1.113 2.492
2002 1.12 0.81 2.32 85.872 1.398 1.011 2.896
2003 1.35 0.98 2.42 87.573 1.652 1.199 2.962
2004 1.69 1.25 2.06 89.703 2.019 1.494 2.462
2005 1.80 1.66 2.00 92.260 2.091 1.929 2.324
2006 2.58 1.94 3.04 94.728 2.919 2.195 3.440
2007 2.24 2.23 4.20 97.099 2.473 2.462 4.636
2008 2.47 2.57 4.06 100.063 2.646 2.753 4.349
2009 1.79 1.76 3.55 100.000 1.919 1.886 3.805
2010 1.93 2.17 5.18 101.654 2.035 2.288 5.462
2011 2.70 2.90 6.22 104.086 2.780 2.986 6.405
2012 2.37 2.95 6.89 106.009 2.396 2.983 6.967
2013 2.47 2.90 4.50 107.187 2.470 2.900 4.500

12.3.2 Quantile Regression

The least absolute deviation estimator in Equation 12.72 provides a transition
to the Quantile Regression estimator. Specifically, following Koenker and
Bassett [27] we can rewrite the estimator in Equation 12.72 as

min
β

 ∑
i∈i:yi≥xiβ

θ |yi − xiβ|+
∑

i∈i:yi<xiβ

(1− θ) |yi − xiβ|

 (12.78)
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TABLE 12.6
Least Absolute Deviation Estimates of Ethanol Price

M-Robust Estimator
OLS LAD Q (τ = 0.50) 1.25 1.5

β0 0.952 1.254 1.254 1.045 1.028
(0.245) (0.245) (0.220) (0.216)

β1 0.308 0.325 0.325 0.338 0.335
(0.136) (0.135) (0.114) (0.114)

β2 0.189 0.090 0.090 0.137 0.145
(0.079) (0.079) (0.073) (0.072)

TABLE 12.7
Quantile Regression Estimates for Ethanol Prices

Quantile Regression (τ)
Parameter 0.2 0.4 0.6 0.8 OLS LAD

β0 1.1085 1.1729 1.1481 0.4874 0.9519 1.2537
Lower Bound 0.6278 0.5184 0.1691 −0.0264 0.4504 0.7526

Upper Bound 1.2898 1.5508 1.5706 0.8447 1.4535 1.7548

β1 0.3248 0.3962 0.3112 0.6733 0.3084 0.3254
Lower Bound −0.1656 0.2543 0.0840 0.1721 0.0313 0.0485

Upper Bound 0.5374 0.5180 0.8321 1.3640 0.5855 0.6023

β1 0.0520 0.0662 0.1475 0.2772 0.1886 0.0902
Lower Bound −0.0469 −0.0523 0.0435 0.2413 0.0266 −0.0717

Upper Bound 0.2925 0.4022 0.3903 0.4312 0.3506 0.2521

where θ = 0.5. Intuitively, the first sum in Equation 12.78 corresponds to
the observations where yi ≥ xiβ or the observation is above the regression
relationship, while the second sum corresponds to the observations where yi <
xiβ or the observation is below the regression relationship.

Generalizing this relationship slightly,

Q (τ) = min
β

 ∑
i∈i:yi≥xiβ

τ |yi − xiβ|+
∑

i∈i:yi<xiβ

(1− τ) |yi − xiβ|

⇒ β (τ)

(12.79)
for any τ ∈ (0, 1).

Turning to the effect of the price of gasoline and corn on ethanol prices
reported in Table 12.7, the effect of gasoline on ethanol prices appears to
be the same for quantiles 0.2 through 0.6. However, the effect of gasoline on
ethanol prices increases significantly at the 0.8 quantile. On the other hand,
the regression coefficients for the price of corn on ethanol prices increase rather
steadily throughout the entire sample range.
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TABLE 12.8
Quantile Regression on Factors Affecting Farmland Values

Selected Quantiles
Coefficient 20 40 50 70 90
Constant 41l.71∗∗∗ 1172.27∗∗∗ 1395.03∗∗∗ 1868.91∗∗∗ 3164.32∗∗∗

(64.78)a (56.44) (56.57) (139.98) (258.88)
Cash Income/ 0.004 0.07∗∗ 0.10∗∗∗ 0.25∗∗∗ 0.64∗∗∗

Owned Acre (0.010) (0.03) (0.027) (0.043) (0.126)
CRP/ 0.08 −0.78 −1.06∗ −1.59∗∗∗ −2.89∗∗∗

Owned Acre (0.325) (0.492) (0.603) (0.355) (1.119)
Direct Payment/ −0.06 −.34∗ 0.46∗∗∗ 1.00∗∗∗ 1.85∗∗∗

Owned Acre (0.084) (0.212) (0.167) (0.24) (0.94)
Indirect Payment/ 0.01 0.006 0.07∗∗ 0.28∗∗ 0.74∗∗

Owned Acre (0.058) (0.162) (0.030) (0.090) (0.34)
Off-Farm Income/ 0.10∗∗ 0.24∗∗∗ 0.39∗∗∗ 0.86∗∗∗ 2.12∗∗∗

Owned Acre (0.021) (0.033) (0.042) (0.080) (0.190)
∗∗∗, ∗∗, and ∗ denote statistical significance at the 0.01, 0.05, and
0.10 levels of confidence, respectively. a Numbers in parenthesis denote
standard errors.

Quantile regressors are sometimes used to develop the distributional effect
of an economic policy. Mishra and Moss [31] estimate the effect of off-farm
income on farmland values using a quantile regression approach. Table 12.8
presents some of the regression estimates for selected quantiles. These results
indicate that the amount that each household is willing to pay for farmland
increases with the quantile of the regression. In addition, the effect of govern-
ment payments on farmland values increases with the quantile.

12.4 Chapter Summary

• One of the factors contributing to the popularity of linear econometric
models such as those presented in Chapter 11 is their simplicity. As long
as the independent variables are not linearly dependent, β = (X ′X)X ′y
exists and is relatively simple to compute.

• The advances in computer technology and algorithms have increased the
use of nonlinear estimation techniques. These techniques largely involve
iterative optimization algorithms.

• Nonlinear least squares allows for flexible specifications of functions and
distributions (i.e., the Cobb–Douglas production function can be estimated
without assuming that the residuals are log-normal).

• There are similarities between nonlinear maximum likelihood and nonlin-
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ear least squares. One of the differences is the derivation of the variance
matrix for the parameters.

• The development of the Gibbs sampler and other simulation techniques
provides for the estimation of a variety of priors and sampling probabilities.
Specifically, we are no longer bound to conjugate families with simple
closed form solutions.

• Least absolute deviation models provide one alternative to the traditional
concept of minimizing the squared error of the residual.

• The least absolute deviation is a special case of the quantile regression
formulation.

• Another weighting of the residual is the M-robust estimator proposed by
Huber [19].

12.5 Review Questions

12-1R. What information is required to estimate either nonlinear least squares
or maximum likelihood using Newton–Raphson?

12-2R. How do the least absolute deviation and M-robust estimators reduce
the effect of outliers?

12.6 Numerical Exercises

12-1E. Estimate the Cobb–Douglas production function for three inputs given
the data in Table 12.1 using nonlinear least squares. Compare the re-
sults to the linear transformation using the same data. Are the results
close?

12-2E. Using the 1960 through 1965 data for the interest rate paid by Al-
abama farmers in Appendix A, construct a Bayesian estimator for
the average interest rate given the prior distribution for the mean is
N (0.05, 0.005).

12-3E. Given the setup in Exercise 12-2E, use simulation to derive an empir-
ical Bayesian estimate of the average interest rate.

12-4E. Estimate the effect of the market interest rate (Rt) and changes in the
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debt to asset level (∆ (D/A)t) on the interest rate paid by farmers in
South Carolina (rt),

rt = α0 + α1Rt + α2∆ (D/A)t + εt (12.80)

using least absolute deviation and ordinary least squares. How differ-
ent are the results?
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Conclusions

As I stated in Chapter 1, one of the biggest problems in econometrics is that
students have a tendency to learn statistics and econometrics as a set of tools.
Typically, they do not see the unifying themes involved in quantifying sample
information to make inferences. To introduce this concept, Chapter 1 starts
by reviewing how we think of science in general and economics as a science.
In addition to the standard concepts of economics as a science, Chapter 1
also introduces econometrics as a policy tool and framework for economic
decisions.

Chapter 2 develops the concept of probabilities, starting with a brief dis-
cussion of the history of probability. I have attempted to maintain these de-
bates in the text, introducing not only the dichotomy between classical and
Bayesian ideas about probability, but also introducing the development of
Huygens, Savage and de Finetti, and Kolmogorov.

Chapter 3 then builds on the concepts of probability introduced in Chap-
ter 2. Chapter 3 develops probability with a brief introduction to the concept
of measure theory. I do not dwell on it, but I have seen significant discussions
of measure theory in econometric literature – typically in the time series lit-
erature. After this somewhat abstract introduction, Chapter 3 proceeds with
a fairly standard development of probability density functions. The chapter
includes a fairly rigorous development of the normal distribution – including
the development of trigonometric transformations in Appendix C.

Chapter 4 presents the implications of the probability measures developed
in Chapter 3 on the moments of the distribution. Most students identify with
the first and second moments of distribution because of their prominence
in introductory statistical classes. Beginning with the anomaly that the first
moment (i.e., the mean) need not exist for some distributions such as the
Cauchy distribution, this chapter develops the notion of boundedness of an
expectation. Chapter 4 also introduces the notion of sample, population, and
theoretical moments. In our discussion of the sample versus population mo-
ments, we then develop the cross-moment of covariance and its normalized
version, the correlation coefficient. The covariance coefficient then provides
our initial development of the least squares estimator.

The development of the binomial and normal distributions are then pre-
sented in Chapter 5. In this chapter, we demonstrate how the binomial dis-
tribution converges to the normal as the sample size increases. After linking

295



296 Mathematical Statistics for Applied Econometrics

these distributions, Chapter 5 generalizes the univariate normal distribution
to first the bivariate and then the more general multivariate normal. The ex-
tension of the univariate normal to the bivariate normal is used to develop
the role of the correlation coefficient.

Given these foundations, the next part of the textbook develops the con-
cepts of estimation. Chapter 6 presents the concept of large samples based
on the notion of convergence. In its simplest form, the various modes of con-
vergence give us a basis for saying that sample parameters will approach (or
converge to) the true population parameters. Convergence is important for
a variety or reasons, but in econometrics we are often interested in the con-
vergence properties of ordinary least squares estimates. In general, Chapter
6 demonstrates that ordinary least squares coefficients converge to their true
values as the sample size becomes large. In addition, Chapter 6 develops the
central limit theorem, which states that the linear estimators such as ordinary
least squares estimators are asymptotically distributed normal.

Chapter 7 focuses on the development of point estimators – the estimation
of parameters of distributions or functions of parameters of distribution. As a
starting point, the chapter introduces the concept of the sample as an image
of the population. Given that the sample is the image of the population, we
can then use the estimates of the sample parameters to make inferences about
the population parameters. As a starting point, Chapter 7 considers some
familiar estimators such as the sample mean and variance. Given these esti-
mators, we introduce the concept of a measure of the goodness of an estimator.
Specifically, Chapter 7 highlights that an estimator is a random variable that
provides a value for some statistic (i.e., the value of some parameter of the
distribution function). Given that the estimator is a random variable with a
distribution, we need to construct a measure of closeness to describe how well
the estimator represents the sample. Chapter 7 makes extensive use of two
such measures – mean squared error of the estimator and the likelihood of the
sample. Using these criteria, the chapter develops the point estimators.

Given that most estimators are continuous variables, the probability that
any estimate is correct is actually zero. As a result, most empirical studies
present confidence intervals (i.e., ranges of values that are hypothesized to
contain the true parameter value with some level of statistical confidence).
Chapter 8 develops the mathematics of confidence intervals.

Chapter 9 presents the mathematical basis for testing statistical hypothe-
ses. The dominant themes in this chapter include the development of Type I
and Type II errors and the relative power of hypothesis tests. In addition to
the traditional frequentist approach to hypothesis testing, Chapter 9 presents
an overview of the Neyman–Pearson Lemma, which provides for the selection
of an interval of rejection with different combinations of Type I and Type II
error.

The third part of the textbook shifts from a general development of math-
ematical statistics to focus on applications particularly popular in economics.
To facilitate our development of these statistical methodologies, Chapter 10
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provides a brief primer on matrix analysis. First, the chapter reviews the ba-
sic matrix operations such as matrix addition, multiplication, and inversion.
Using these basic notions, Chapter 10 turns to the definition of a vector space
spanned by a linear system of equations. This development allows for the
general development of a projection matrix which maps points from a more
general space into a subspace. Basically, ordinary least squares is simply one
formulation for such a projection.

With this background, Chapter 11 develops the typical linear models ap-
plied in econometrics. As a starting point, we prove that ordinary least squares
is a best linear unbiased estimator of the typical linear relationship under ho-
moscedasticity (i.e., the assumption that all the errors are independently and
identically distributed). After this basic development, we generalize the model
by first allowing the residuals to be heteroscedastic (i.e., have different vari-
ances or allowing the variances to be correlated across observations). Given
the possibility of heteroscedasticity, we develop the generalized least squares
estimator. Next, we allow for the possibility that some of the regressors are
endogenous (i.e., one of the “independent variables” is simultaneously deter-
mined by the level of a dependent variable). To overcome endogeneity, we de-
velop Theil’s two stage least squares and the instrumental variable approach.
Finally, Chapter 11 develops the linear form of the generalized method of
moments estimator.

The textbook presents three nonlinear econometric techniques in Chap-
ter 12. First, nonlinear least squares and numerical applications of maximum
likelihood are developed. These extensions allow for more general formulations
with fewer restrictions on the distribution of the residual. Next, the chapter
develops a simple Bayesian estimation procedure using simulation to inte-
grate the prior distribution times the sampling distribution. Simulation has
significantly expanded the variety of models that can be practically estimated
using Bayesian techniques. Finally, Chapter 12 examines the possibility of
nonsmooth error functions such as the least absolute deviation estimator and
quantile regression. The least absolute deviation estimator is a robust estima-
tor – less sensitive to extreme outliers. On the other hand, quantile regression
allows the researcher to examine the distributional differences in the results.

In summation, this textbook has attempted to provide “bread crumbs” for
the student to follow in developing a theoretical understanding of econometric
applications. Basically, why are the estimated parameters from a regression
distributed Student’s t or normal? What does it mean to develop a confidence
interval? And, why is this the rejection region for a test? It is my hope that
after reading this textbook, students will be at least partially liberated from
the cookbook approach to econometrics. If they do not know the why for a
specific result, at least they will have a general reason.

There are some things that this book is not. It is not a stand-alone book
on econometrics. Chapters 11 and 12 barely touch on the vast array of econo-
metric techniques in current use. However, the basic concepts in this book
form a foundation for serious study of this array of techniques. For example,
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maximum likelihood is the basis for most models of limited dependent vari-
ables where only two choices are possible. Similarly, the section on matrix
algebra and the mathematics of projection matrices under normality form the
basis for many time series technique such as Johansen’s [21] error correction
model. This book is intended as an introductory text to provide a foundation
for further econometric adventures.
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Beginning in the late 1980s, several computer programs emerged to solve sym-
bolic and numeric representations of algebraic expressions. In this appendix,
we briefly introduce two such computer programs – Maxima and Mathematica.

A.1 Maxima

Maxima is a an open-source code for symbolic analysis. For example, suppose
we are interested in solving for the zeros of

f (x) = 8− (x− 4)
2

2
(A.1)

and then plotting the function. To accomplish this we write a batch (ASCII)
file:

/*************************************************************/

/* Setup the simple quadratic function */

f(x):=8-(x-4)^2/2;

/* Solve for those points where f(x) = 0 */

solve(f(x)=0,x);

/* Plot the simple function */

plot2d(f(x),[x,0,8]);

/*************************************************************/

299
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FIGURE A.1
Maxima Plot of Simple Quadratic Function.

Executing this batch file yields:

(%i2) f(x):=8-(x-4)^2/2

(%o2) f(x):=8-(x-4)^2/2

(%i3) solve(f(x) = 0,x)

(%o3) [x=0,x=8]

(%i4) plot2d(f(x),[x,0,8])

and the graphic output presented in Figure A.1. The output (%o3) presents
the solutions to f (x) = 0 as x = 0 and x = 8.

Next, consider using Maxima to compute the mean, variance, skewness,
and kurtosis of the simple quadratic distribution. The Maxima code for these
operations becomes:

/*************************************************************/

/* Integrating f(x) for 0 to 8 */

f(x):=8-(x-4)^2/2;

k: integrate(f(x),x,0,8);

/* Setup a valid probability density function */

g(x):= f(x)/k;
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/* Verify that the new function integrates to one */

integrate(g(x),x,0,8);

/* Compute the expected value of the distribution */

avg: integrate(x*g(x),x,0,8);

/* Compute the variance of the distribution */

var: integrate((x-avg)^2*g(x),x,0,8);

/* Compute the skewness of the distribution */

skw: integrate((x-avg)^3*g(x),x,0,8);

/* Compute the kurtosis of the distribution */

krt: integrate((x-avg)^4*g(x),x,0,8);

/*************************************************************/

The output for these computations is then:

(%i2) f(x):=8-(x-4)^2/2

(%o2) f(x):=8-(x-4)^2/2

(%i3) k:integrate(f(x),x,0,8)

(%o3) 128/3

(%i4) g(x):=f(x)/k

(%o4) g(x):=f(x)/k

(%i5) integrate(g(x),x,0,8)

(%o5) 1

(%i6) avg:integrate(x*g(x),x,0,8)

(%o6) 4

(%i7) var:integrate((x-avg)^2*g(x),x,0,8)

(%o7) 16/5

(%i8) skw:integrate((x-avg)^3*g(x),x,0,8)

(%o8) 0

(%i9) krt:integrate((x-avg)^4*g(x),x,0,8)

(%o9) 768/35

From this output we see that the constant of integration is k = 128/3. The
valid probability density function for the quadratic is then

f (x) =

3

(
8− (x− 4)

2

2

)
128

. (A.2)
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As demonstrated in the Maxima output
∫ 8

0
f (x) dx = 1 so f (x) is a valid

probability density function. Next, we develop the Maxima code to derive the
cumulative density function:

/*************************************************************/

/* Starting with the valid probability density function */

f(x):=3/128*(8-(x-4)^2/2);

/* We derive the general form of the cumulative density */

/* function */

r1: integrate(f(z),z,0,x);

/* We can then plot the cumulative density function */

plot2d(r1,[x,0,8]);

/* Next, assume that we want to compute the value of the */

/* cumulative density function at x = 3.5 */

subst(x=3.5,r1);

/*************************************************************/

The result of this code is then:

(%i2) f(x):=3*(8-(x-4)^2/2)/128

(%o2) f(x):=(3*(8-(x-4)^2/2))/128

(%i3) r1:integrate(f(z),z,0,x)

(%o3) -(x^3-12*x^2)/256

(%i4) plot2d(r1,[x,0,8])

(%o4)

(%i5) subst(x = 3.5,r1)

(%o5) 0.40673828125

with the plot depicted in Figure A.2.

A.2 MathematicaTM

Mathematica is a proprietary program from Wolfram Research. To use Math-
ematica efficiently, the user writes a Notebook file using Mathematica’s fron-
tend program. In this section, we will present some of the commands and
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FIGURE A.2
Maxima Cumulative Distribution Function for Quadratic Distribution.

responses from Mathematica. We will not discuss the frontend program in
detail.

As a starting point, consider the same set of operations from our Maxima
example. We start by defining the quadratic function

f[x_] := 8 - (x - 4)^2/2;

Print[f[x]];

Mathematica responds with the general form of the function (i.e., from the
Print command):

8-1/2 (-4+x)^2

The input command and resulting output for solving for the zeros of the
quadratic function is then:

sol1 = Solve[f[x] == 0, x];

Print[sol1];

{{x->0},{x->8}}

We can then generate the plot of the quadratic function:

Print[Plot[f[x],{x,0,8}]];

The plot for this input is presented in Figure A.3. Following the Maxima
example, we integrate the quadratic function over its entire range to derive
the normalization factor:
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FIGURE A.3
Mathematica Plot of Simple Quadratic Function.

k = Integrate[f[x], {x, 0, 8}];

Print[k];

g[x_] := f[x]/k;

Print[g[x]];

128/3

3/128 (8-1/2 (-4+x)^2)

Next we test the constant of integration and compute the average, variance,
skewness, and kurtosis:

tst = Integrate[g[x], {x, 0, 8}];

Print[tst];

1

avg = Integrate[x g[x], {x, 0, 8}];

Print[avg];

4

var = Integrate[(x - avg)^2 g[x], {x, 0, 8}];

Print[var];

16/5

skw = Integrate[(x - avg)^3 g[x], {x, 0, 8}];

Print[skw];

0
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FIGURE A.4
Mathematica Cumulative Distribution Function for Quadratic Distribution.

krt = Integrate[(x - avg)^4 g[x], {x, 0, 8}];

Print[krt];

768/35

To finish the example, we derive the cumulative density function by integrating
the probability density function. The graph of the cumulative density function
is shown in Figure A.4.

h[x_] := Integrate[g[z], {z, 0, x}];

Print[h[x]];

(3 x^2)/64-x^3/256
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One of the more vexing problems in econometrics involves the estimation of
simultaneous equations. Developing a simple model of supply and demand,

qS = α10 + α11p+ α12p
A + α13w + ε1

qD = α20 + α21p+ α24p
B + α25Y + ε2

(B.1)

where qS is the quantity supplied, qD is the quantity demanded, p is the price,
pA is the price of an alternative good to be consided in the production (i.e.,
another good that the firm could produce using its resources), pB is the price
of an alternative good in the consumption equation (i.e., a complement or
substitute in consumption), w is the price of an input, Y is consumer income,
ε1 is the error in the supply relationship, and ε2 is the error in the demand
relationship. In estimating these relationships, we impose the market clearing
condition that qS = qD. As developed in Section 11.4.2, a primary problem
with this formulation is the correlation between the price in each equation and
the respective residual. To demonstrate this correlation we solve the supply
and demand relationships in Equation B.1 to yield

p =
−α10 − α12p

A − α13w + α20 + α24p
B + α25Y − ε1 + ε2

α11 − α21
. (B.2)

Given the results in Equation B.2, it is apparent that E [pε1] , E [pε2] 9 0.
Thus, the traditional least squares estimator cannot be unbiased or asymp-
totically consistent. The simultaneous equations bias will not go away.

Chapter 11 presents two least squares remedies for this problem – two stage
least squares and instrumental variables. However, in this appendix we develop
the likelihood for this simultaneous problem to develop the Full Information
Maximum Likelihood (FIML) estimator.
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B.1 Linear Change in Variables

To develop the FIML estimator we return to the linear change in variables
notion developed in Theorem 3.36. The transformation envisioned in Chapter
3 is

Y1 = a11X1 + a12X2

Y2 = a21X1 + a22X2

}
⇒
{
X1 = b11Y1 + b12Y2

X2 = b21Y1 + b22Y2.
(B.3)

Given this formulation, the contention was Equation 3.94:

g (y1, y2) =
f (b11y1 + b12y2, b21y1 + b22y2)

|a11a22 − a12a21|
.

The real question is then, what does this mean? The overall concept is that I
know (or at least hypothesize that I know) the distribution of X1 and X2 and
want to use it to derive the distribution of a function of Y1 and Y2.

Consider a simple example of the mapping in Equation B.3:

Y1 = X2 +
1

2
X2

Y2 =
3

4
X2

(B.4)

such that f (X1, X2) = 1. Applying Equation 3.94, the new probability density
function (i.e., in terms of Y1 and Y2) is then

g (Y1, Y2) =
1∣∣∣∣1× 3

4

∣∣∣∣ . (B.5)

The problem is that the range of Y1 and Y2 (depicted in Figure B.1) is not
Y1, Y2 ∈ [0, 1]. Specifically Y2 ∈

[
0, 4

3

]
, but the range of Y1 is determined by

the linear relationship Y1 = X1 − 3
2X2. This range is a line with an intercept

at Y1 = 0 and a slope of − 2
3 . In order to develop the ranges, consider the

solution of Equation B.4 in terms of X1 and X2:

X1 = Y1 −
2

3
Y2

X2 =
4

3
Y2.

(B.6)

First we solve for the bounds of Y1:

Y1 = X1 −
2

3
Y2 and X1 ∈ [0, 1]⇒ Y1 ∈

[
−2

3
Y2, 1−

2

3
Y2

]
. (B.7)

If you want to concentrate on the “inside integral,”∫ 1− 2
3Y2

− 2
3Y2

dY1 =
3

4

[(
1− 2

3
Y2

)
−
(
−2

3
Y2

)]
= 1. (B.8)
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FIGURE B.1
Transformed Range of Y1 and Y2.

The “outside integral” is then determined by

Y2 =
4

3
X2 and X2 ∈ [0, 1]⇒ Y2 ∈

[
0,

3

4

]
. (B.9)

Integrating over the result from Equation B.8 then gives

4

3

∫ 3
4

0

dY2 =
4

3

[
3

4
− 0

]
= 1. (B.10)

The complete form of the integral is then

4

3

∫ 3
4

0

∫ 1− 2
3Y2

− 2
3Y2

dY1dY2 = 1. (B.11)

The implication of this discussion is simply that the probability function is
valid.

Next, consider the scenario where the f (X1, X2) is a correlated normal
distribution:

f (X1, X2|µ,Σ) = (2π)
−1 |Σ|−

1
2 exp

[
−1

2

([
X1

X2

]
− µ

)′
Σ−1

([
X1

X2

]
− µ

)]
.

(B.12)
In order to simplify our discussion, let µ = 0 and Σ = I2. This simplifies the
distribution function in Equation B.12 to

f (X1, X2) = (2π)
−1

exp

[
−1

2

(
X1

X2

)′(
X1

X2

)]
. (B.13)
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FIGURE B.2
Transformed Normal Distribution.

Next, consider rewriting f (X1, X2) (in Equation B.13) as g (Y1, Y2). Following
Equation 3.94 yields

g (Y1, Y2) =
1∣∣∣∣1× 3

4

∣∣∣∣ (2π)
−1

exp

[
−1

2

(
Y1 − 2

3Y2
3
4Y2

)′(
Y1 − 2

3Y2
3
4Y2

)]
(B.14)

which is presented graphically in Figure B.2.
Next, we redevelop the results in matrix terms.[

X1

X2

]
=

[
1 − 2

3
0 3

4

] [
Y1

Y2

]
⇔ X = ΓY. (B.15)

Substituting Equation B.15 into Equation B.14 yields

g (Y1, Y2) =
1∣∣∣∣1× 3

4

∣∣∣∣ (2π)
−1

× exp

[
−1

2

([
1 − 2

3
0 3

4

] [
Y1

Y2

])′([
1 − 2

3
0 3

4

] [
Y1

Y2

])]

⇒ 1∣∣∣∣1× 3

4

∣∣∣∣ (2π)
−1

× exp

[
−1

2

[
Y1

Y2

]′ [
1 − 2

3
0 3

4

]′ [
1 − 2

3
0 3

4

] [
Y1

Y2

]]
.

(B.16)
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Using the X = ΓY form in Equation B.15, we can rewrite Equation B.16 as

g (Y1, Y2) = (2π)
−1

exp

[
−1

2
Y ′Γ′ΓY

]
|Γ|−1

. (B.17)

Going back to the slightly more general formulation,

g (Y1, Y2) = (2π)
− p2 |Σ|−

1
2 exp

[
−1

2
Y ′Γ′Σ−1ΓY

]
|Γ|−1

(B.18)

where p is the number of variables in the multivariate distribution.

B.2 Estimating a System of Equations

Next, we return to an empirical version of Equation B.1.

qs = 115.0 + 6.0p− 2.5pA − 12.0w + ε1
qd = 115.5− 10.0p+ 3.3333pB + 0.00095Y + ε2.

(B.19)

We can write Equation B.19 in the general form

ΓY = AX + ε⇒ Y − Γ−1AX = Γ−1ε (B.20)

as

[
1 −6.0
1 10.0

] [
q
p

]
=

[
115.0 −2.5 −12.0 0.0 0.0
115.5 0.0 0.0 3.3333 0.00095

]
1
pA

w
pB

Y


+

[
ε1
ε2

]
.

(B.21)
Using this specification, we return to the general likelihood function implied
by Equation B.18.

f (Y ) = (2π)
− p2 |Σ|−

1
2

× exp

[
−1

2

[
Y − Γ−1AX

]′
(Γ′)

−1
Σ−1

(
Γ−1

) [
Y − Γ−1AX

]] ∣∣Γ−1
∣∣−1

.

(B.22)

Since
∣∣Γ−1

∣∣−1
= |Γ|, Equation B.22 can be rewritten as

f (Y ) = (2π)
− p2 |Σ|−

1
2

× exp

[
−1

2

[
Y − Γ−1AX

]′
(Γ′)

−1
Σ−1

(
Γ−1

) [
Y − Γ−1AX

]]
|Γ| .

(B.23)
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Consider the simulated data for Equation B.21 presented in Table B.1.
We estimate this system of equations using an iterative technique similar to
those presented in Appendix D. Specifically, we use a computer algorithm that
starts with an estimated set of parameters and then attempts to compute a
set of parameters closer to the optimal. As an additional point of complexity,
Equation B.23 includes a set of variance parameters (Σ). In our case the Σ ma-
trix involves three additional parameters (σ11, σ12, and σ22). While we could
search over these parameters, it is simpler to concentrate these parameters
out of the distribution function. Notice that these parameters are the vari-
ance coefficients for the untransformed model (i.e., the model as presented in
Equation B.19). Hence, we can derive the estimated variance matrix for each
value of parameters as

ε (α) =

[
q − α10 − α11p− α12p

A − α13w
q − α20 − α21p− α24p

B − α25Y

]

Σ̂ (α) =
1

N
ε (α)

′
ε (α) .

(B.24)

Further simplifying the optimization problem by taking the natural logarithm
and discarding the constant yields

α = {α10, α11, α12, α13, α20, α21, α24, α25}

Γ =

[
1 −α11

1 −α21

]

A =

[
α10 α12 α13 0 0
α20 0 0 α24 α25

]

Yi =

[
qi
pi

]
Xi =

[
1 pAi wi pBi Yi

]
νi (α) = Yi − ΓAXi

Σ̂ (α) =
1

N

N∑
i=1

νi (α) νi (α)
′

l (α) =
N∑
i=1

[
−1

2
ln
∣∣∣Σ̂ (α)

∣∣∣− 1

2
νi (α)

′
(Γ′)

−1
Σ̂ (α)

−1
Γ−1νi (α) + |Γ|

]
.

(B.25)
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TABLE B.1
Data Set for Full Information Maximum Likelihood

Obs. Q p pA w pb y
1 101.013 5.3181 5.7843 2.6074 8.7388 1007.20
2 91.385 5.6342 6.1437 3.5244 6.8113 1005.17
3 103.315 4.6487 6.4616 1.9669 7.4628 1001.18
4 105.344 4.1317 6.1897 1.6157 6.5012 1002.51
5 98.677 4.8446 6.2839 2.3121 6.5719 1006.60
6 106.015 4.6119 5.9365 1.7852 8.1629 990.01
7 100.507 4.8681 5.2442 2.6392 7.2785 1001.22
8 97.746 5.1389 5.5195 2.8337 7.2162 1003.83
9 104.609 4.5759 4.9144 2.1443 7.5860 1011.73
10 100.274 5.2478 6.4346 2.4840 8.3292 999.61
11 105.011 4.3364 4.8738 1.9210 7.0101 997.99
12 99.311 5.0234 5.9073 2.5028 7.3492 998.36
13 100.133 4.9524 5.6071 2.5546 7.4004 1001.29
14 99.163 4.8527 7.0464 2.3681 6.8731 986.34
15 100.986 4.9196 6.0364 2.3506 7.5375 1001.05
16 97.317 5.5198 6.9735 2.8430 8.2804 999.71
17 101.919 4.5613 5.2070 2.3069 6.7528 999.88
18 98.571 5.2390 6.1843 2.7258 7.7439 1014.08
19 97.835 5.8442 5.3252 3.2269 9.4427 979.63
20 93.062 5.3741 4.5755 3.4441 6.4937 1004.44
21 96.886 5.5546 5.5188 3.1334 8.1915 1004.27
22 102.866 4.7970 6.0927 2.0457 7.7434 992.51
23 101.721 4.7528 5.1983 2.4157 7.2560 1007.71
24 98.433 5.3295 6.4392 2.5720 8.0082 992.39
25 95.441 5.3400 6.1446 2.9980 7.1166 1021.44
26 101.268 4.7685 5.5490 2.3263 7.1841 996.66
27 100.197 5.1127 6.9770 2.2818 7.8262 1016.34
28 96.613 4.6348 6.9509 2.3346 5.3826 991.89
29 97.385 4.9461 6.7019 2.5715 6.5967 986.52
30 103.915 4.6871 6.3564 1.9521 7.7442 1001.89
31 95.602 5.1170 6.4526 2.8207 6.5441 990.76
32 102.136 4.7981 7.0438 2.0735 7.5421 1005.92
33 93.416 5.4138 6.6783 3.1374 6.7559 1001.24
34 95.716 5.4084 6.3358 2.9980 7.4294 998.78
35 94.905 5.0263 6.0993 3.0018 6.0674 1004.53
36 99.439 4.7399 6.2888 2.3126 6.5385 1005.63
37 110.629 3.9795 5.7451 1.1964 7.6438 1003.48
38 100.805 4.5947 5.6510 2.3125 6.4995 1008.28
39 100.951 5.1130 5.0394 2.6601 8.1279 1006.28
40 104.540 4.4065 5.7951 1.8974 7.0803 994.11
41 103.274 4.8168 6.5948 2.1816 7.9596 1006.27

Continued on Next Page
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Obs. Q p pA w pb y
42 94.083 5.2631 5.1958 3.3148 6.5127 996.84
43 99.577 5.3378 6.0798 2.7206 8.4150 992.78
44 96.338 4.9589 5.9935 2.8168 6.2990 990.47
45 104.351 4.7474 5.3707 2.1632 8.0089 1011.81
46 100.210 4.9229 6.6945 2.3060 7.3371 994.40
47 94.072 5.7720 5.5735 3.4364 8.0373 995.79
48 100.460 5.1441 5.3778 2.7249 8.1262 989.14
49 99.129 5.3715 6.4842 2.6675 8.3774 997.82
50 102.551 4.8758 6.2919 2.1630 7.8877 997.69
51 97.505 4.7343 6.3408 2.5109 5.9771 989.90
52 97.932 5.2163 6.2582 2.8204 7.5332 1010.31
53 100.669 5.2442 6.6273 2.4942 8.4434 1012.06
54 102.016 5.1210 4.8340 2.6142 8.4602 999.90
55 102.327 4.6689 6.6954 1.9703 7.1832 1007.31
56 96.758 5.3178 6.8145 2.7339 7.4476 1002.68
57 100.947 5.1529 5.8795 2.5656 8.2317 1007.66
58 93.441 5.7598 5.1249 3.6586 7.8207 1006.79
59 99.241 5.1567 6.9333 2.4682 7.7528 996.58
60 98.562 4.6966 6.7658 2.2488 6.1362 1008.28
61 109.635 4.3500 5.6216 1.4074 8.4442 998.47
62 97.033 5.2723 6.8122 2.7122 7.3950 1014.60
63 98.975 4.7467 6.1962 2.3677 6.4070 1001.00
64 101.968 4.8730 5.3569 2.5012 7.7700 995.71
65 104.448 4.5595 6.2224 1.8166 7.4865 998.85
66 101.025 5.1205 6.8176 2.3072 8.1799 993.81
67 104.936 4.3629 5.5058 1.9391 7.0954 1007.82
68 106.865 4.0540 5.5562 1.5484 6.7380 993.36
69 97.024 4.9168 5.4087 2.8418 6.3121 1007.82
70 97.513 5.1881 6.3041 2.7227 7.2752 1010.94
71 89.772 5.9486 7.7699 3.4693 7.2697 1003.00
72 105.279 4.3413 5.2095 1.9837 7.1083 1000.92
73 106.535 4.1015 6.0280 1.5198 6.7768 994.72
74 97.998 5.2607 5.7413 2.8433 7.6496 1006.89
75 101.167 4.8004 6.1460 2.2469 7.2899 983.29
76 97.666 4.9058 5.7852 2.6019 6.5298 991.44
77 102.534 4.6082 5.0741 2.3579 7.1192 995.70
78 101.353 4.5451 6.0791 2.1908 6.5430 1001.58
79 95.475 5.8495 5.4118 3.4785 8.7392 988.47
80 95.387 5.0495 5.9921 2.9921 6.2858 1000.46
81 102.550 4.9486 7.3503 2.1588 8.1570 998.02
82 99.617 5.1257 4.7759 2.9729 7.7619 1003.14
83 98.207 4.8788 5.9363 2.5928 6.5777 1004.16

Continued on Next Page
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Obs. Q p pA w pb y
84 107.700 4.3114 6.3258 1.4821 7.7802 1001.08
85 94.616 5.1705 6.5016 2.8974 6.4460 981.95
86 96.412 5.3390 5.8664 2.9854 7.5201 980.00
87 104.131 4.5881 5.6296 2.0724 7.5209 998.92
88 98.171 4.8662 7.1715 2.3646 6.5489 1003.12
89 100.330 4.7532 4.3557 2.7301 6.8322 1010.36
90 102.046 4.5079 6.2594 1.9468 6.6121 997.16
91 102.058 4.8524 7.2229 2.0469 7.6635 1008.76
92 101.538 5.1086 6.6352 2.2712 8.2555 1007.75
93 106.127 4.3825 5.9567 1.6748 7.4946 999.99
94 96.395 4.9926 6.7225 2.6088 6.4035 988.35
95 100.459 4.9249 5.8115 2.4600 7.4220 991.86
96 97.746 5.1175 5.9726 2.5973 7.1797 986.47
97 96.813 5.0942 6.7325 2.6480 6.8318 995.47
98 98.187 5.0592 4.8647 2.9029 7.1851 982.71
99 106.491 4.6461 6.2315 1.7326 8.3240 1014.81
100 95.846 5.2445 5.8738 2.9156 6.9860 1003.44

The R Code for Full Information Maximum Likelihood

######################################################################

# Read the data from a comma separated variables file #

dta <- read.csv("AppendixD.csv")

# Setup the X matrix for each operation #

xx <- as.matrix(cbind(dta[,1],matrix(1,nrow=nrow(dta),1),dta[,2:6]))

# Defining the maximum likelihood function #

ml <- function(b) {

g <- cbind(rbind(1,1),rbind(-b[2],-b[6]))

a <- cbind(rbind(b[1],b[5]),rbind(b[3],0),rbind(b[4],0),

rbind(0,b[7]),rbind(0,b[8]))

aa <- cbind(rbind(1,1),-rbind(b[1],b[5]),-rbind(b[2],b[6]),

-rbind(b[3],0),-rbind(b[4],0),-rbind(0,b[7]),

-rbind(0,b[8]))

vv <- var(xx%*%t(aa))

for (i in 1:nrow(dta)) {

err <- rbind(dta[i,1],dta[i,2]) - solve(g)%*%a%*%rbind(1,

dta[i,3],dta[i,4],dta[i,5],dta[i,6])

li <- 1/2*log(det(vv))+1/2*t(err)%*%solve(t(g))%*%solve(vv)

%*%solve(g)%*%err - det(g) }

return(li) }
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TABLE B.2
Full Information Maximum Likelihood Estimates

Estimates
Parameter α α∗ α̂ OLS

α10 115.000 115.677 116.495 116.460
(12.379) (12.350) (1.321)

α11 6.000 5.320 5.222 5.327
(4.561) (4.582) (0.469)

α12 −2.500 −2.414 −2.442 −2.392
(0.980) (0.992) (0.125)

α13 −12.000 −11.507 −11.530 −11.489
(3.655) (3.670) (0.378)

α20 115.500 115.732 115.602 116.600
(7.363) (7.358) (0.793)

α21 −10.000 −9.991 −9.981 −9.979
(0.178) (0.178) (0.018)

α24 −3.333 3.331 3.330 3.308
(0.101) (0.101) (0.010)

α25 0.00095 0.00920 0.00918 0.00848
(0.00535) (0.00535) (0.00079)

######################################################################

# Call for the values used in the simulation as the initial values #

b0 <- rbind(115,6,-2.5,-12,115.5,-10,3.333,0.00095)

res <- optim(b0,ml,control=list(maxit=3000))

print(res)

h <- optimHess(res$par,ml)

######################################################################

# Estimate ordinary least squares to use as initial values #

b1 <- lm(dta[,1] ~ dta[,2] + dta[,3] + dta[,4])

b2 <- lm(dta[,1] ~ dta[,2] + dta[,5] + dta[,6])

b0 <- rbind(as.matrix(b1$coefficients),as.matrix(b2$coefficients))

res <- optim(b0,ml,control=list(maxit=3000))

print(res)

h <- optimHess(res$par,ml)

######################################################################

Table B.2 presents the true values of the parameters (i.e., those values
used to simulate the data) along with three different sets of estimates. The
first set of estimates (presented in column 3) uses the true values as the initial
parameter values for the iterative techniques. The second set of estimates in
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column 4 uses the ordinary least squares estimates in the fifth column as the
initial parameter values.

Each set of paramters is fairly close to the true values – even the ordi-
nary least squares results. The primary difference between the ordinary least
squares results is the relatively small standard deviation of the parameter es-
timates. For example, the maximum likelihood estimate for the standard de-
viation of α13 is 3.670 in the fourth column compared to a standard deviation
of 0.378 under ordinary least squares. To compare the possible consequences
of this difference, we construct the z values for the difference between the
estimated value and the true value for the FIML and OLS estimates.

zFIML =
|−11.000 + 11.530|

3.670
= 0.128� 1.354 =

|−11.000 + 11.489|
0.378

= zOLS .

(B.26)
Hence, the confidence interval under ordinary least squares is smaller. How-
ever, in this case that may not be a good thing since the estimated interval
is less likely to include the true value because of the simultaneous equations
bias.
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Section 3.7 integrates the normal distribution by transforming from the stan-
dard Cartesian space ({x, y}) into polar space ({r, θ}). In this appendix, we
develop this transformation in a little more detail.

C.1 Continuing the Example

We continue with the formulation from Equation 3.103:

y = f (x) = 5− x2

5
x ∈ [−5, 5] .

Table C.1 presents the value of x in column 1, the value of f (x) in column
2, and the radius (r) in column 3. Given these results, there are two ways
to compute the inscribed angle (θ). The way described in the text involves
solving for the inverse of the tangent function:

θ = tan−1

(
f (x)

x

)
. (C.1)

Column four of Table C.1 gives the value of f (x) /x while column 5 presents
the inverse tangent value (note that the values are in radians – typically
radians are given in ratios of π, so for x = 4.0 the value of the angle is
θ = 0.4229 = 0.1346π, as discussed in the text). The other method is implied
by the cosine result in Equation 3.110:

y = r cos (θ)⇒ θ = cos−1

(
f (x)

r

)
. (C.2)

Columns 6 and 7 of Table C.1 demonstrate this approach.
Examining the results for θ in columns 5 and 7 of Table C.1, we see that

the computed values of the inscribed angle are the same up until x = 0.
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FIGURE C.1
Standard Table for Tangent.

Consider a couple of things about that point. First, x = 0 represents the
90o angle – the tangent at this point is positive infinity from the right and
negative infinity from the left. Second, the inverse functions for the tangent are
typically defined on the interval θ ∈

(
−π2 ,

π
2

)
, as depicted in Figure C.1. Given

that we are interested in the range θ ∈ [0, π], we transform the inverse tangent
in column 8 of Table B.1 by adding π to each value. Given this adjustment,
the θs based on the tangents are the same as the θs based on the cosines.
Figure C.2 presents the transformed relationship between r (θ) and θ.

Based on the graphical results in Figure C.2, we can make a variety of
approximations to the original function. First, we could use the average value
of the radius (r̄ = 4.6548). Alternatively, we can regress

r (θ) = γ0 + γ1θ + γ2θ
2 + γ3θ

3. (C.3)

Figure C.3 presents each approximation in the original Cartesian space. The
graph demonstrates that the linear approximation lies slightly beneath the
cubic approximation.

Given that we can approximate the function in a polar space, we demon-
strate the integration of the transformed function. Using the result from Equa-
tion 3.111,

dydx = rdrdθ

we can write the integral of the transformed problem as∫ π

0

∫ 4.6548

0

rdrdθ = 34.0347. (C.4)
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FIGURE C.3
Approximation in (x, y) Space.

This result can be compared with the integral of the original function of∫ 5

−5

(
5− x2

5

)
dx =

100

3
≈ 33.3333. (C.5)

Hence, the approximation is close to the true value of the integral.
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Obviously the polar integral is much more difficult for the quadratic func-
tion in Equation 3.103. The point of the exercise is that some functions such
as the normal distribution function are more easily integrated in polar space.
If the original function is not integrable, the polar space may yield a close ap-
proximation. The most viable candidates for transformation involve the sum
of squared terms – such as the exponent in the normal distribution.

C.2 Fourier Approximation

A related but slightly different formulation involving trigonometric forms is
the Fourier approximation. To develop this approximation, consider the second
order Taylor series expansion that we use to approximate a nonlinear function.

f (x) = f (x̃) +

 ∂f (x)
∂x1
∂f (x)
∂x2

′ [ x1 − x̃1

x2 − x̃2

]
+

1

2

[
x1 − x̃1

x2 − x̃2

]′ 
∂2f (x)
∂x2

1

∂2f (x)
∂x2∂x1

∂2f (x)
∂x1∂x2

∂2f (x)
∂x2

2

[ x1 − x̃1

x2 − x̃2

]
.

(C.6)

Letting the first and second derivatives be constants and approximating
around a fixed point (x̃), we derive a standard quadratic approximation to
an unknown function.

y = a1 +

[
a1

a2

]′ [
x1

x2

]
+

[
x1

x2

]′ [
a11 a12

a12 a22

] [
x1

x2

]
. (C.7)

We can solve for the coefficients in Equation C.7 that minimize the approxima-
tion error to produce an approximation to any nonlinear function. However,
the simple second order Taylor series expansion may not approximate some
functions – the true function may be a third or higher order function.

An alternative approximation is the Fourier approximation

f (x) = α0 +
N∑
j=1

[
α1 cos

(
x× π
ki

)
+ α2 sin

(
x× π
ki

)]
(C.8)

where ki is a periodicity. Returning to our example, we hypothesize two period-
icities k1 = 5/π and k2 = 5/2π. The approximations for the two periodicities
are estimated by minimizing the squared difference between the function and
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FIGURE C.4
Fourier Approximations.

Equation C.8 and are presented in Figure C.4. Given that the original function
is a quadratic, the second order Taylor series expansion is exact. However, the
Fourier approximation is extremely flexible. A variant of this approximation
is used in Theorem 6.24.



Appendix D

Farm Interest Rate Data

TABLE D.1
Farm Interest Rates for Southeastern United States

Alabama Florida Georgia South Carolina Baa
Year Int Rate ∆ (D/A) Int Rate ∆ (D/A) Int Rate ∆ (D/A) Int Rate ∆ (D/A) Rate
1960 0.0553 0.1127 0.0511 −0.0588 0.0507 0.0789 0.0595 0.1232 0.0506
1961 0.0547 0.0501 0.0500 0.0771 0.0514 0.0008 0.0584 0.0427 0.0495
1962 0.0551 0.0580 0.0512 0.0864 0.0516 0.1405 0.0584 0.0793 0.0490
1963 0.0546 0.0278 0.0558 0.0651 0.0521 0.0286 0.0589 0.0561 0.0474
1964 0.0537 0.0269 0.0586 0.0826 0.0516 0.0462 0.0602 0.0105 0.0472
1965 0.0543 0.0290 0.0509 0.0612 0.0541 0.0324 0.0547 0.0378 0.0475
1966 0.0545 −0.0024 0.0517 0.1083 0.0550 0.0339 0.0549 0.0462 0.0551
1967 0.0551 0.0059 0.0542 0.0093 0.0580 0.0113 0.0585 −0.0232 0.0604
1968 0.0573 −0.0299 0.0556 0.0063 0.0603 −0.0362 0.0595 −0.0277 0.0671
1969 0.0601 0.0247 0.0575 −0.0277 0.0631 0.0443 0.0628 0.1077 0.0752
1970 0.0609 −0.0486 0.0627 −0.0138 0.0669 −0.0079 0.0681 0.0292 0.0871
1971 0.0614 0.0166 0.0603 −0.0001 0.0651 −0.0185 0.0650 −0.0145 0.0822
1972 0.0588 0.0791 0.0592 −0.0273 0.0624 0.0208 0.0647 0.0449 0.0784
1973 0.0630 −0.1264 0.0622 −0.0522 0.0653 −0.0443 0.0631 0.0483 0.0792
1974 0.0695 0.0566 0.0682 0.0987 0.0731 0.0577 0.0753 0.0392 0.0907
1975 0.0700 0.0404 0.0716 −0.0057 0.0760 0.1529 0.0794 0.1296 0.1008
1976 0.0718 −0.0079 0.0720 −0.0459 0.0757 −0.0232 0.0750 −0.0006 0.0930
1977 0.0724 0.1041 0.0675 0.0208 0.0716 0.0539 0.0708 0.1041 0.0859
1978 0.0743 −0.0040 0.0706 −0.0417 0.0754 −0.0371 0.0861 −0.0805 0.0906
1979 0.0825 −0.0585 0.0768 −0.0094 0.0817 0.0485 0.0829 0.0075 0.1016
1980 0.0912 0.0273 0.0830 −0.0070 0.0889 0.0720 0.0907 0.0674 0.1281
1981 0.1014 0.1143 0.0877 0.1584 0.1028 0.1242 0.1018 0.1199 0.1488
1982 0.1081 0.0499 0.0946 0.0059 0.1133 0.0158 0.1129 0.0757 0.1494
1983 0.1059 0.0065 0.0950 0.0002 0.1134 0.0103 0.1139 0.0424 0.1271
1984 0.1017 0.0121 0.0900 0.0729 0.1122 −0.0143 0.1113 −0.0145 0.1327
1985 0.0903 −0.0327 0.0942 0.0100 0.1010 −0.0017 0.1030 0.0099 0.1197
1986 0.0928 −0.1189 0.0916 −0.0917 0.1044 −0.1526 0.1008 0.0116 0.0989
1987 0.0943 −0.1231 0.0982 −0.1512 0.0926 −0.0528 0.0961 −0.1878 0.1005
1988 0.0963 −0.1058 0.0971 −0.0111 0.0951 −0.1124 0.0978 −0.2189 0.1028
1989 0.0993 −0.0577 0.0990 −0.0733 0.0987 −0.1397 0.0978 −0.1068 0.0969
1990 0.0962 −0.0414 0.0973 0.0214 0.0965 −0.0423 0.0908 −0.0842 0.0985
1991 0.0867 −0.0321 0.0915 0.0014 0.0887 0.0421 0.0848 −0.0705 0.0935
1992 0.0816 −0.0744 0.0842 −0.0003 0.0836 −0.0455 0.0800 −0.0210 0.0860
1993 0.0831 −0.0680 0.0757 0.0470 0.0772 −0.0241 0.0769 −0.0640 0.0763
1994 0.0835 −0.0427 0.0787 0.0366 0.0785 −0.0113 0.0784 −0.0468 0.0827
1995 0.0814 0.0472 0.0810 −0.0303 0.0768 0.0475 0.0775 −0.0131 0.0788
1996 0.0849 0.0292 0.0836 0.0409 0.0836 −0.0147 0.0815 0.0408 0.0775
1997 0.0830 0.0212 0.0789 0.0466 0.0801 0.0029 0.0791 −0.0102 0.0757
1998 0.0805 0.0518 0.0766 0.0512 0.0789 −0.0212 0.0770 0.0020 0.0697
1999 0.0794 0.0000 0.0752 0.0004 0.0790 −0.0909 0.0779 0.0521 0.0758
2000 0.0794 0.0287 0.0756 −0.0053 0.0777 −0.0278 0.0673 0.1619 0.0803
2001 0.0682 0.0169 0.0668 −0.0176 0.0671 −0.0100 0.0603 0.0272 0.0765
2002 0.0629 0.0097 0.0628 −0.0151 0.0619 −0.0265 0.0611 −0.0019 0.0751
2003 0.0509 −0.0229 0.0528 −0.0251 0.0506 −0.0319 0.0498 −0.0248 0.0655
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Nonlinear Optimization
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As an introduction to numerical procedures for nonlinear least squares and
maximum likelihood, this appendix presents the solution for the three param-
eter Cobb–Douglas production function presented in Section 12.1. Then we
present R code that solves the maximum likelihood formulation of the same
problem. After the maximum likelihood example, the appendix then presents
a simple application of Bayesian estimation using simulation. Finally, the ap-
pendix presents the iterative solution to the Least Absolute Deviation problem
using a conjugate gradient approach.

E.1 Hessian Matrix of Three-Parameter Cobb–Douglas

As a starting point, we derive the Hessian matrix (Equation 12.15) for the
three parameter Cobb–Douglas production function. Notice that by Young’s
theorem (i.e., ∂2f/∂x1∂x2 = ∂2f/∂x2∂x1) we only have to derive the upper
triangle part of the Hessian.

327



328 Mathematical Statistics for Applied Econometrics
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(E.1)
Using α0 = {60.00, 0.25, 0.15} as the starting value, the first gradient vector
becomes

∇αL (α)

100,000
=

 1.408
459.680
383.507

 (E.2)

where we have normalized by 100,000 as a matter of convenience. The Hessian
matrix for the same point becomes

∇2
ααL (α)

100,000
=

 0.037 18.955 15.791
18.955 5860.560 4874.010
15.791 4874.010 4092.800

 . (E.3)

The next point in our sequence is then α0

α1

α2

 =

 60.00
0.25
0.15

−
 −0.130

0.053
0.031

 =

 60.130
0.197
0.119

 . (E.4)

The first six iterations of this problem are presented in Table E.1. A full
treatment of numeric Newton–Raphson is beyond the scope of this appendix,
but if we accept that the last set of gradients is “close enough to zero,” the
estimated Cobb–Douglas production function becomes

f (x1, x2) = 62.946x0.160
1 x−0.019

2 . (E.5)
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TABLE E.1
Newton–Raphson Iterations

Parameters Function Gradient
Iteration α0 α1 α2 Value α0 α1 α2

1 60.000 0.250 0.150 3,058,700 1.491 459.680 383.507
2 60.130 0.197 0.119 816,604 0.508 156.642 130.767
3 60.259 0.161 0.082 180,003 0.160 49.278 41.197
4 60.410 0.149 0.038 41,179 0.041 12.733 10.684
5 60.747 0.157 −0.001 24,492 0.006 1.942 1.645
6 62.946 0.160 −0.019 24,003 0.000 0.032 0.030

E.2 Bayesian Estimation

Applications of applied Bayesian econometric techniques have increased sig-
nificantly over the past twenty years. As stated in the text, most of this ex-
pansion is due to the development of empirical integration techniques. These
technical advancements include the development of the Gibbs sampler. While
a complete development of these techniques is beyond the scope of the current
text, we develop a small R code to implement the simple example from the
textbook.

The code presented below inputs the data (i.e., the dta< − rbind(...)) com-
mand and then draws 200 random draws from the prior distribution (i.e., a
< − rnorm(2000,mean=0.25,sd=sqrt(0.096757))). Given each of these draws,
the code then computes the likelihood function for the sample and saves the
simulated value, the likelihood value, and the likelihood value times the ran-
dom draw (i.e., a[i]*exp(l)). The last line of the program then computes the
Bayesian estimation

â =

200∑
i=1

a [i]× L [x| a [i]]

200∑
i=1

L [x| a [i]]

(E.6)

R Code for Simple Bayesian Estimation

dta <- rbind(0.1532,0.1620,0.1548,0.1551,0.1343,0.1534,0.1587,

0.1501,0.1459,0.1818)

a <- rnorm(200,mean=0.25,sd=sqrt(0.096757))

for (i in 1:200) {

for (t in 1:10) {
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if (t == 1) l <- 0

l <- l -((dta[t]-a[i])^2)/(2*0.096757) }

if (i == 1) res <- cbind(a[i],exp(l),a[i]*exp(l)) else \$

res <- rbind(res,cbind(a[i],exp(l),a[i]*exp(l))) }

ahat <- sum(res[,3])/sum(res[,2])

print(res)

print(ahat)

E.3 Least Absolute Deviation Estimator

Section E.1 presented the overall mechanics of the Newton–Raphson algo-
rithm. This algorithm is efficient if the Hessian matrix is well behaved. How-
ever, because of the difficulty in computing the analytical Hessian and possi-
ble instability of the Hessian for some points in the domain of some functions,
many applications use an approximation to the analytical Hessian matrix.
Two of these approximations are the Davidon–Fletcher–Powel (DFP) and the
Broyden–Fletcher–Goldfarb–Shanno (BFGS). These algorithms are typically
referred to as conjugate gradient routines – they conjugate or build informa-
tion from the gradients to produce an estimate of the Hessian.

These updates start from the first-order Taylor series expansion of the
gradient

∇xf (xt + st) = ∇xf (xt) +∇2
xxf (xt) st (E.7)

where xt is the current point of approximation and st is the step or change
in xt produced by the algorithm. Hence, the change in the gradient gives
information about the Hessian

∇xf (xt + st)−∇xf (xt) = ∇2
xxf (xt) st. (E.8)

The information in the Hessian can be derived from

s′t (∇xf (xt + st)−∇xf (xt)) = s′t∇2
xxf (xt) st. (E.9)

Many variants of this code are implemented in numerical codes. In R, these
codes can be used in the function optim. The code presented below provides an
example of this code based on the estimation of the Least Absolute Deviation
estimator.
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R Code for Least Absolute Deviation Estimator

dta <- read.csv("EthanolGasoline.csv")

bols <- lm(dta[,6]~dta[,7] + dta[,8])

print(summary.lm(bols))

x <- as.matrix(cbind(matrix(1,nrow=nrow(dta),ncol=1),dta[,7:8]))

lad <- function(b) {

bvec <- rbind(b[1],b[2],b[3])

ll <- abs(dta[,6] - x%*%bvec)

return(1/nrow(dta)*sum(ll)) }

b0 <- cbind(0.95,0.31,0.19)

blad <- optim(b0,lad)





Glossary

actuarial value a fair market value for a risky payoff – typically the expected
value.

aleatoric involving games of chance.

asymptotic the behavior of a function f (x) as x becomes very large (i.e.,
x→∞).

Bayes’ theorem the theorem defining the probability of a conditional event
based on the joint distribution and the marginal distribution of the condi-
tioning event.

best linear unbiased estimator the linear unbiased estimator (i.e., an es-
timator that is a linear function of sample observations) that produces the
smallest variance for the estimated parameter.

binomial probability the probability function of repeated Bernoulli draws.

Borel set an element of a σ-algebra.

composite event an event that is not a simple event.

conditional density the probability density function – relative probability
– for one variable conditioned or such that the outcome of another random
variable is known.

conditional mean the mean of a random variable or a function of random
variables given that you know the value of another random variable.

continuous random variable a random variable such that the probability
of any one outcome approaches zero.

convergence for our purposes, the tendency of sample statistics to approach
population statistics or the tendency of unknown distributions to be arbi-
trarily close to known distributions.

convergence in distribution when the distribution function F of sequence
of random variables {Xn} becomes infinitely close to the distribution func-
tion of the random variable X.
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convergence in mean square a sequence of random variables {Xn} con-

verges in mean square if limn→∞E [Xn −X]
2

= 0.

convergence in probability a sequence of random variables {Xn} con-
verges in probability to a random variable X if P (|Xn −X| < ε) 1− δ.

correlation coefficient normalized covariance between two random vari-
ables.

discrete random variable a random variable that can result in a finite
number of values such as a coin toss or the number of dots visible on the
roll of a die.

endogeneity the scenario where one of the regressors is correlated with the
error of the regression.

Euclidean Borel field a Borel field defined on real number space for multi-
ple variables.

event a subset of the sample space.

expected utility theory the economic theory that suggests that economic
agents choose the outcome that maximizes the expected utility of the out-
comes.

frequency approach probability as defined by the relative frequency or rel-
ative count of outcomes.

Generalized Instrumental Variables using instruments that are corre-
lated with the residuals and imperfectly correlated with X, to remove en-
dogeneity.

gradient vector a vector of scalar derivatives for a multivariate function.

heteroscedasticity the scenario where either the variances for the residuals
are different and/or the variances are correlated across observations.

homoscedastic the scenario where the errors are independently and identi-
cally distributed (σ2IT×T ) .

joint probability the probability that two or more random variables occur
at the same time.

kurtosis the normalized fourth moment of the distribution. The kurtosis is
3.0 for the standard normal.



Glossary 335

Lebesgue integral a broader class of integrals covering a broader group of
functions than the Riemann sum.

marginal distribution the function depicting the relative probability of one
variable in a multivariate distribution regardless or independent of the value
of the other random variables.

nonparametric statistics that do not assume a specific distribution.

ordinary least squares typically refers to the linear estimator that mini-
mizes the least squares of the residual β̂ = (X ′X)

−1
(X ′Y ).

probability density function a function that gives the relative probability
for a continuous random variable.

quantile the random variable such that k percent of the other random vari-
ables in the sample are less than x∗ (k)⇒

∫ x
∞ f (z) dz.

quartiles the random variable at the sample such that 25%, 50%, and 75%
of the random variables are smaller.

Reimann sum the value of the integral of a function – typically the an-
tiderivative of the function.

Saint Petersburg paradox basically the concept of a gamble with an in-
finite value that economic agents are only willing to pay a finite amount
for.

sample of convenience a sample that was not designed by the researcher
– typically a sample that was created for a different reason.

sample space the set of all possible outcomes.

sigma-algebra a collection F of subsets of a nonempty set Ω satisfying clo-
sure under complementarity and infinite union.

simple event an event which cannot be expressed as a union of other events.

skewness the third central moment of the distribution. Symmetric distribu-
tions such as the normal and Cauchy have a zero skewness. Thus, a simple
description of the skewness is that skewness is a measure of nonsymmetry.

statistical independence where the value of one random variable does not
affect the probability of the value of another random variable.
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Two Stage Least Squares a two stage procedure to eliminate the effect
of endogeneity. In the first stage the endogenous regressor is regressed on
the truly exogenous variables. Then the estimated values of the endogenous
regressors are used in a standard regression equation.

Type I error the possibility of rejecting the null hypothesis when it is cor-
rect.

Type II error the possibility of failing to reject the null hypothesis when it
is incorrect.

Uniform distribution the uniform distribution has a constant probability
for each continuous outcome of a random variable over a range x ∈ [a, b].
The standard uniform distribution is the U [0, 1] such that f (x) = 1 for
x ∈ [0, 1].

Working’s law of demand the conjecture that the share of the consumer’s
expenditure on food declines as the natural logarithm of income increases.
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