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Preface

The theory of dynamic games provides important instruments for economic analy-
sis. At the same time, the progress of this theory and the associated analytical and
numerical methods is largely driven by problems arising in dynamic economic con-
siderations. With the aim of promoting and facilitating the development of optimal
control and dynamic games and their applications in economics, the Vienna Uni-
versity of Technology founded a conference series named “Viennese Workshop on
Optimal Control, Dynamic Games and Nonlinear Dynamics” (abbreviated as VW),
in which specialists in optimal control, dynamic games and dynamical systems gath-
ered with economists, demographers, and social scientists. The research covered by
the 12 VWs organized to date ranges from “strange and chaotic behavior” (in the
first few workshops) to games involving stochastic dynamics that dominate the dy-
namic games component (in the last VW).

The present book originates from the most recent, 12" VW, held in Vienna be-
tween May 30 and June 279, 2012. However, the aim of the editors was to collect
papers that present, together, a broader view of the state of the art of dynamic games
in economics. Therefore, along with contributions of selected participants in the 121"
VW, the book includes several additional contributions by specially invited distin-
guished scientists in the area. Each chapter consists of a single contribution (paper)
and the chapters are ordered alphabetically according to the name of the first author.

The first chapter (“Robust Markov Perfect Equilibria in a Dynamic Choice Model
with Quasi-hyperbolic Discounting”) deals with intergenerational game setup with
an infinite (countable) number of descendants (copies) of an agent as players against
Nature in which each copy represents a generation. The utility of each generation
depends on its own choice as well as on the utility of consumption of all descen-
dants. Unlike existing publications, in which the transition probability function is
completely known, in the present chapter this function depends on uncertain param-
eters. The chapter applies the concept of quasi-hyperbolic discounting to an infinite
horizon stochastic game and proves two existence theorems for a robust Markov
perfect equilibrium.

Chapter “Stochastic Differential Games and Intricacy of Information Structures”
deals with the analysis of information structural problems in the context with two-
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player zero-sum stochastic dynamic games. First, the chapter recapitulates results
for constructing saddle point equilibria (SPE) for stochastic games with a noisy
measurement channel, especially through the concept of certainty equivalence. The
innovative part of the chapter extends existing results for the construction of SPE
to a case in which the noisy measurement channel fails intermittently. The general
analysis of the information structural problem is illustrated by the complete solution
of a two-stage zero-sum game.

The main contribution of chapter “Policy Interactions in a Monetary Union:
An Application of the OPTGAME Algorithm” is the analysis of a small nonlinear
two-country macroeconomic model of a monetary union in which the governments
control the fiscal policy while the central bank controls the monetary policy (the
central bank sets monetary instruments). It is assumed that the players have dif-
ferent objective functions and the conflict is analyzed using concepts of dynamic
game theory. The chapter follows a numerical approach based on a previous study
(forthcoming) in which the authors have described the algorithm OPTGAME. The
algorithm proved to be flexible enough to accommodate several scenarios and four
game strategies (one cooperative and three non-cooperative).

Chapter “The Dynamics of Lobbying Under Uncertainty: On Political Liberal-
ization in Arab Countries” presents an extension of a topical lobbying differential
game between a conservative elite and a reformist group by introducing uncertain-
ties to the model; the conservative elite pushes against political liberalization in
opposition to the reformist group. It applies a rarely used approach of differential
games that introduces multiple equilibria in different kinds and through a different
mechanism.

Chapter “A Feedback Stackelberg Game of Cooperative Advertising in a Durable
Goods Oligopoly” analyses a deterministic infinite horizon hierarchical game, in
which the manufacturer as the leader decides strategically what fraction of retailers’
advertising expenditures will be recompensed/subsidized. The retailers, themselves,
determine as followers their individual advertising strategy. Postulating durable
goods the authors use the concept of feedback Stackelberg equilibrium to compute
optimal advertising policies and subsidy rates for various setups, for example, in
case of N identical or in case of two non-identical retailers. In the case of a retail
channel with two retailers, the authors explore the impact of cooperative advertising
on channel and supply chain coordination.

Chapter “Strategies of Foreign Direct Investment in the Presence of Technologi-
cal Spillovers” focuses on the effects of technological spill-overs, generated by for-
eign direct investments, have on the evolution of the technology gap. More specif-
ically, a differential game is employed to model the dynamic strategic interaction
between two competing firms located in high and low-tech countries, respectively.
Due to the highly non-linear structure, numerical methods are utilized to character-
ize the Markov perfect equilibria of the game.

Chapter “Differential Games and Environmental Economics” provides a review
of several publications (including such by the author) that aims to explain several
concepts and techniques in the differential games and their applications to environ-
mental and resource economics. However, it is more than a simple compilation of
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results. The chapter moves from the basics of differential games to recent scientific
outcomes in the resolution of two very well-known examples: the game of inter-
national pollution and the lake game. The chapter presents the main questions and
results in a unified framework. These examples are simple enough to have some
analytical solutions, but rich enough to capture the principal techniques and the in-
formational difficulties when solving differential games. The chapter makes it clear
that differential games are not a simple and straightforward extension of optimal
control problems to the case of several agents.

Chapter “Capacity Accumulation Games with Technology Constraints” consid-
ers a dynamic bilateral monopoly of two firms, one of which is the provider of
input to the other, where the firms must work together to obtain surplus. Taking the
strategy of the other firm into account, the firms decide on their own investment
strategies in order to gain higher individual payoffs. A crucial point of the chapter is
that, given overall technology constraints, technology interdependences are allowed.
The authors investigate how different types of contracts (based on input quantities
and on final revenues, respectively) affect efficiency and market power. In a frame-
work of a linear-quadratic non-cooperative deterministic two-player dynamic game
example, the authors numerically derive Markov perfect equilibria and point out the
influence of the two types of long-term contracting.

Chapter “Dynamic Analysis of an Electoral Campaign” considers a deterministic
differential game, in which political parties as players invest in order to maximize
their individual aggregated benefits resulting from their particular patronage of vot-
ers over a finite planning horizon. The scientific work of this chapter investigates,
which impact political parties’ strategies and the number of political parties have
on the social optimum. The social optimum is defined as to minimize the number
of non-voters in a cooperative solution of the game. The main result is that a po-
litical party will have lesser votes in its noncooperative optimum than will have in
the cooperative case, as long as its campaign is aggressive enough to destroy po-
litical rivals’ consensus substantially. Further the chapter shows that in the social
optimum (cooperative game) the optimal number of political parties is lower than
the number of political parties that gain a positive share of consensus (votes) in the
noncooperative game.

Chapter “Multi-agent Optimal Control Problems and Variational Inequality
Based Reformulations” deals with multi-agent dynamic games, the novelty of which
is that each player’s cost functional and strategy set are dependent on her rivals’
decisions. In this context, a publication in the journal Mathematical Programming
studies a reformulation of the game as a system of differential equations constrained
by parameterized variational inequalities, along with some boundary conditions.
This chapter of the book extends this reformulation to stochastic multi-agent dy-
namic games in which the state dynamics is noisy.

Chapter “Time-Consistent Equilibria in a Differential Game Model with Time
Inconsistent Preferences and Partial Cooperation” studies differential games with
time-inconsistent preferences. Non-cooperative Markovian Nash equilibria are de-
rived as a benchmark. Time-consistent solutions under partial cooperation—in
which players can cooperate at every instant of time—are also obtained. Coop-
eration is partial in the sense that, although players cooperate at every moment ¢



viii Preface

forming a coalition, due to the time inconsistency of the time preferences, coali-
tions at different times value the future in a different way and are treated as different
agents. Finally, Markovian subgame perfect equilibria in the cooperative sequential
game are derived.

Chapter “Interactions Between Fiscal and Monetary Authorities in a Three-
Country New-Keynesian Model of a Monetary Union” presents important issues
concerning the macroeconomic policy coordination of fiscal (governmental) and
monetary (central bank) authorities in the European Monetary Union in the pres-
ence of different types of economic shocks. The authors have used continuous-
time linear-quadratic differential games based on a multi-country New-Keynesian
monetary union framework to investigate strategic interactions of n heterogeneous
countries that are both cooperative or in conflict with the (single) central bank. The
novelty of this chapter is that the authors consider various types of coalitions in-
cluding non-cooperative regimes, partial fiscal cooperations, full fiscal cooperation
of all countries, and the grand coalition (including the central bank). Numerical
simulations for different types of shocks reveal some interesting results, including
unexpected main results and policy suggestions, and the fact that full cooperation
without an appropriate transfer system is not a stable configuration.

The final chapter (“Subgame Consistent Cooperative Provision of Public Goods
Under Accumulation and Payoff Uncertainties”) deals with discrete-time dynamic
games, in which both state dynamics and payoffs are uncertain. In detail, the authors
consider noisy stock accumulation dynamics and derive subgame consistent coop-
erative solutions for n asymmetric players, who try to optimize distributed expected
future payoffs gained from public goods. To ensure subgame perfect solutions upon
optimality principle, the authors develop a suitable payoff distribution procedure.

We are confident that the material presented in this book will be appreciated by
researchers and graduate students in applied mathematics and economics. For the
latter group especially, we recommend chapters “Policy Interactions in a Monetary
Union: An Application of the OPTGAME Algorithm,” “A Feedback Stackelberg
Game of Cooperative Advertising in a Durable Goods Oligopoly,” “Strategies of
Foreign Direct Investment in the Presence of Technological Spillovers,” “Differ-
ential Games and Environmental Economics,” “Dynamic Analysis of an Electoral
Campaign,” and the first two sections of chapter “Multi-agent Optimal Control Prob-
lems and Variational Inequality Based Reformulations.”

Finally, we would like to thank all the contributors and referees for the time and
the efforts they have devoted to this book.

Vienna, Austria Josef Haunschmied
Vladimir M. Veliov
Stefan Wrzaczek
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Robust Markov Perfect Equilibria in a Dynamic
Choice Model with Quasi-hyperbolic
Discounting

Lukasz Balbus, Anna Jaskiewicz, and Andrzej S. Nowak

Abstract A stochastic dynamic choice model with the transition probability de-
pending on an unknown parameter is specified and analysed in this chapter. The
main feature in our model is an application of the quasi-hyperbolic discounting con-
cept to describe the situation in which agent’s preferences may hinge on time. This
requirement, in turn, leads to a non-cooperative infinite horizon stochastic game
played by a countably many selves representing him during the play. As a result, we
provide two existence theorems for a robust Markov perfect equilibrium (RMPE)
and discuss its properties.

1 Introduction

In a number of real-life problems, the preferences of an economic agent change over
time. Rational behaviour of such agents was analysed by Strotz (1956) and Pollak
(1968), who considered so-called “consistent plans”. In a related paper, Phelps and
Pollak (1968) introduced the notion which is nowadays called “quasi-hyperbolic
discounting” (Montiel Olea and Strzalecki 2014). This concept is a modification of
the classical paradigm (discounted utility), proposed in 1937 by Samuelson (1937),
that was extensively used in the analysis of intertemporal choice for a great deal
of time (Stokey et al. 1989). Within such a framework an economic agent is rep-
resented by a sequence of selves, who play a non-cooperative dynamic game with
appropriate defined payoff functions. A Markov perfect equilibrium in this game,
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if exists, constitutes a time-consistent, optimal (in a certain sense) plan for the
agent. The meaning of the equilibrium is adequately explained in Maskin and Tirole
(2001). The concept of capturing time-inconsistency, suggested by Phelps and Pol-
lak (1968), was applied in various intergenerational games (Fudenberg and Tirole
1991), with altruism between generations. In such games it is assumed that each
generation lives, saves and consumes over just one period. Moreover, each genera-
tion cares about the consumption of the following generations, in the sense that it
wants to leave a bequest to the successors. Therefore, such generation derives util-
ity from its own consumption and those of its descendants. The next generation’s
inheritance or capital is described by a certain production function. Dynamic games
with quasi-hyperbolic discounting (or intergenerational games) have numerous ap-
plications in economics or management, for instance, see Di Corato (2012), Nowak
(2006b, 2010) as well as Haurie (2005), Karp (2005), Krusell and Smith (2003), and
Krusell et al. (2003).

The existence of a Markov perfect equilibrium in an intergenerational game with
an uncountable state space is equivalent to the existence of a fixed point in an appro-
priately defined function space. This problem was successfully solved by Bernheim
and Ray (1987), Leininger (1986), and Harris (1985) for certain classes of deter-
ministic games. Some extensions to continuous-time models are given in Marin-
Solano and Shevkoplyas (2011). The models with finite time horizon and produc-
tion uncertainty, on the other hand, were first examined in Bernheim and Ray (1986).
Furthermore, Amir (1996a), Nowak (2006a), and Balbus et al. (2012a) are among
those who dealt with stochastic bequest games that possess specific transition struc-
ture. The results in these papers are formulated for intergenerational games, where
each generation has finitely many descendants. The intergenerational games involv-
ing infinitely many descendants were studied by Alj and Haurie (1983) (with finite
state space), Harris and Laibson (2001), Balbus and Nowak (2008), Jaskiewicz and
Nowak (2014), and Balbus et al. (2012b). In all the aforementioned works it is as-
sumed that the transition probability function is completely known. A novel feature
in this chapter is a dependence of transition probabilities on an unknown parame-
ter. Then, the natural solution for such a model is a concept stemming from robust
control theory, called a robust Markov perfect equilibrium. Roughly speaking, this
solution is based upon the assumption that the players involved in the game are risk-
sensitive and accept some kind of a maxmin utility. For the application of the con-
cept of a robust Markov perfect equilibrium in various economic models the reader
is referred to Gilboa and Schmeidler (1989), Hansen and Sargent (2001, 2003),
Jaskiewicz and Nowak (2011), Maccheroni et al. (2006), Strzalecki (2011) and ref-
erences cited therein. In this chapter, we provide sufficient conditions for the exis-
tence of a RMPE in models with non-atomic transitions and in models where some
atoms are admissible. The question of monotonicity of the functions determined by
a RMPE is also addressed. A detailed discussion of our assumptions and their re-
lationships with the conditions used in the literature is given in Remarks 1 and 2.
Finally, we would like to emphasise that this paper, to the best of our knowledge, is
a first study of a RMPE in stochastic games with quasi-hyperbolic discounting.
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2 The Model and Main Results

2.1 The Dynamic Game with Quasi-hyperbolic Discounting

We start with some preliminaries and notation. Let R be the set of all real numbers
and R = RU{—o0}. Let N denote the set of all positive integers. By a Borel space Y
we mean a non-empty Borel subset of a complete separable metric space endowed
with the Borel o-algebra B(Y). We use P(Y) to denote the space of all proba-
bility measures on Y endowed with the weak topology and the Borel o-algebra,
see Billingsley (1968) or Chap. 7 in Bertsekas and Shreve (1978). If Y is a Borel
space, then P (Y) is a Borel space too, see Corollary 7.25.1 in Bertsekas and Shreve
(1978). Further, let us assume that X and Y are Borel spaces. A transition prob-
ability or a stochastic kernel from X to Y is a function ¢ : B(Y) x X — [0, 1]
such that ¢(B]-) is a Borel measurable function on X for every B € B(Y) and
o(-|x) € P(Y) for each x € X. It is well-known that every Borel measurable map-
ping g : X — P(Y) induces a transition probability ¢ from X to Y. Namely,
o(D|x) =gx)(D), D € B(Y), x € X, see Proposition 7.26 in Bertsekas and Shreve
(1978). We shall write g(dy|x) instead of g(x)(dy).

The set B C X is universally measurable, if it is measurable with respect to every
complete probability measure on X that measures all Borel subsets of X, i.e., it
is measurable with respect to the o-algebra U := mpEP(X) B,(X), where B,(X)
is the completion of B(X) with respect to p. We say that the function f : X —
R is universally measurable, if f~!(B) is universally measurable in X for every
B € B(R).

Definition 1 The function f : X — R is lower semianalytic, if the set {x € X :
f(x) < c} is analytic for each ¢ € R.

Since every analytic set is universally measurable, we conclude that any lower
semianalytic function is universally measurable. For further properties of univer-
sally measurable and lower semianalytic functions and their applications, the reader
is referred to Bertsekas and Shreve (1978) and Shreve and Bertsekas (1979).

Put S :=10,5] and Sy := (0, 5] for some fixed s > 0. Let a(-) and a(-) be non-
decreasing and continuous functions on S such that a(0) =a(0) =0and 0 < a(s) <
a(s) <s foreach s € S;. We set

A(s) = [c_z(s), E(s)] and A(s) = [s —a(s),s — g(s)]
for each s € S and
D := {(s,a) :s€S,ae A(s)} and D:= {(s,y) :seS,ye A(s)}.

In a dynamic choice model with quasi-hyperbolic preferences and unknown
transition probabilities, we envision an individual consumer as a sequence of au-
tonomous temporal selves. These selves are indexed by the respective periods
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t € T := N in which they make their consumption choices. More precisely, for a
given state s; € S at the beginning of ¢-th period, self ¢ chooses a consumption level
a; € A(s;) and the remaining part y; := s; — a; is invested for future selves. Self t’s
satisfaction is reflected in some way in an instantaneous utility function u : S — R
that remains unchanged over all periods. Let ® be a non-empty Borel subset of
the Euclidean space R™ (m > 1). The next state 5,4 is determined by a transition
probability g from S x ® to S and depends on y; € A(s,) and a parameter 9; € ©.
This parameter is chosen according to a certain probability measure y; € P, where
‘P denotes the action set of Nature and it is assumed to be a Borel subset of P(®).
Let @ be the set of Borel measurable functions ¢ : S — S such that ¢ (s) € A(s)
for each s € S. A strategy for self ¢ is a function ¢; € @. If ¢, =c forall t € T and
some ¢ € @, then we say that the selves employ a stationary strategy. The transition
probability g (-|i (s), &) induced by ¢, any c € @ and & € P is defined as follows

CI(BII'(S),E)Z/()Q(Bli(S)ﬁ)E(dQ)
where i(s) =5 — c(s) and B € B(S).

Let I' be the set of all sequences (y;);er of Borel measurable mappings
yi:Dr>P.Forany t € T and y = (y;)er € I', we set y' := (yr)r>,. Clearly,
y' € I'. A Markov strategy for Nature' is a sequence y = (y;);er € I'. Note that '
can be called a Markov strategy used by Nature from period ¢ onwards.

For any ¢ € T, define H' as the set of all sequences

ht = (alv 0[» St+1, At +1, 91-‘1—13 .. -)1 Where (skv ak) €D and k > 1.

H'! is the set of feasible future histories of the process from period ¢ onwards. Endow
H' with the product o -algebra. Assume that u < 0 and is Borel measurable. Assume
that the selves employ a stationary strategy ¢ € @ and Nature chooses some y € I".
Then the choice of Nature is a probability measure depending on (s;, c(s;)). The
Tonescu-Tulcea theorem (see Proposition V.1.1 in Neveu 1965 or Chap. 7 in Bert-

sekas and Shreve 1978) guarantees the existence of a unique probability measure
c

Py,
Markov strategy of Nature '’ € I" and the transition probability g. Let Ef,’yt denote

7" on H' induced by a stationary strategy ¢ € @ used by each self t (v > 1), a

t
the expectation operator corresponding to the measure Psf’y .
If self ¢ knew y, his expected utility would be

W, y") o) = E7 (u(c(s,))+aﬂ > ﬂ“‘u(cm))),

T=t+1

where 8 € (0, 1) is a long-run discount factor and o (« > 0) is a short-run discount
factor (see Harris and Laibson 2001; Montiel Olea and Strzalecki 2014). Assuming

'One can allow for a general class of strategies for Nature, i.e., strategies that may depend on the
history of the game. However, this extension does not change our main results, see Remark 3.
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that in each period k (k > ) Nature chooses a probability y, from the set P with
the objective of minimising self ¢’s utility and that the choice of Nature may de-
pend on a current state and consumption level performed by self k, we may accept
an idea coming from robust dynamic programming programming (see for example
Jaskiewicz and Nowak 2011),> and say that the preferences of self ¢ are represented
by the following utility function

W(e)(s) := inf W(c,y")(sp).
ytell

This interpretation of a dynamic choice model with quasi-hyperbolic preferences
provides an intuitive notion of ambiguity aversion, which can be regarded as the
selves’ diffidence for any lack of precise definition of uncertainty, something that
provides room for the malevolent influence of Nature.

Foranyce @,y €l’, j>2ands; € S, put

J(e,vi)sp=ES (Z BT u(c(sr))>; (1)

T=j

then we have
W (e, y")(s0) = u(c(sn)
+a5/ / Y Y Gse0)q (dsisrlse — (), 0) v (dBlsy, c(s1)).

By Theorem 1 in Shreve and Bertsekas (1979), the function s; — J(c)(s;), defined
by

J(e)(sj) = inf J(c,y?)(s)),
ylel’
is universally measurable (lower semianalytic) on S. Using standard dynamic pro-

gramming arguments (see Bertsekas and Shreve 1978 or Shreve and Bertsekas
1979), one can show that

W(e)(s:) = u(c(s)) +§i27f;aﬁ/5J(C)(Sm)q(dmllsl —c(s1). ).
Forany s € S,a € A(s) and c € @, let us define
P(a,c)(s) =u(a) +§in7f3a,3/ J(©)(s")q(ds|s —a,£).
E s

If s = s;, then P (a, ¢)(s) is the utility for self # choosing a € A(s;) in this state when
all future selves employ a stationary strategy c € @.

2Similar concepts have been also examined in Hansen and Sargent (2001, 2003), Maccheroni et al.
(2006), and Strzalecki (2011).
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Definition 2 A Robust Markov Perfect Equilibrium (RMPE) is a function ¢* € @
such that for every s € S we have

Sl;]()) P(a, c*)(s) = P(c*(s), c*)(s) = W(c*)(s). 2)

Note that (2) says that if the followers of any self ¢ are going to employ ¢*, then
the best choice for him in state s = s; € S is to choose ¢*(s).

The model considered in this chapter can be described in terms of intergener-
ational stochastic games as studied for example in Balbus and Nowak (2008) or
Nowak (2010). Then every self ¢ represents a short-lived generation. The utility of
each generation ¢ depends on its own choice and consumptions of all (infinitely
many) descendants. The number « > 0 is called an altruism factor towards follow-
ing generations (descendants). The equilibrium concept is the same.

2.2 The Existence of Markov Perfect Equilibria

We now formulate our basic assumptions:

(AO) The functions s — a(s), s > a(s) and s > s — a(s), s —> s — a(s) are non-
decreasing and continuous.

(A1) u <0 is unbounded from below and u(0) = —oo. Moreover u is strictly con-
cave, increasing and continuous on S and a(s) > 0 foreach s € S..

(A2) u <0 is strictly concave, increasing and continuous on S and a(s) > 0 for
each s € S;.

(A3) There exist probability measures u?, e, uf’ on S and functions gi1,..., g :
S+ [0, 1] such that

1
qCls —a,0) =" gls —a)uf (),

k=1
where gj are continuous and

)
ng(s —a)=1 forall (s,a) € D.

k=1
(A4) There exist probability measures vy, ..., v; such that “Z < v for each k =
1, ..., 1. In other words, each ,u,g has a density function fk(-, 0). It is assumed

that ﬁ(-, -) is Borel measurable on S x @. In addition, there exist functions
fr : S = [0, c0) such that

Tl 0) < i) mdtﬂﬂmwww<+w

forall6e®andk=1,..., 1.
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(AS) maxi<k< [lu(als)| fi(s)ve(ds) < +oo.

Remark 1

(a) Let $=[0, 1]and u(a) =loga fora € A(s), s € S. Assume that vy is a uniform
distribution on S and 0 < g1 < fk(s 0) < &, for all (s/,80). Let c(s') = el
for s’ € §4. Then fs u(c(s"))q(ds'|s — a, ) = —o0, if such consumption func-
tion is employed. This example explains the role of our assumptions (A1) and
(A5). In the case of unbounded from below function u, one can observe that
very small consumption may lead to minus infinite expectations calculated with
respect to the transition probability. A typical example of ¢ is a linear function,
i.e., a(s) = As, where A > 0.

(b) Under condition (A0), D and D are complete lattices with the usual component-
wise order.

(c) The density functions in (A4) are assumed to depend on ¢ € R™. However, a
specific function fi(-,6) may only hinge on some coordinates of 8. We avoid
describing it for convenience of our notation.

(d) By adding a positive constant to # one can extend the results of this chapter to
instantaneous utilities bounded from above.

Remark 2 The additivity assumption (A3) was extensively used in the study of
Nash equilibria in standard stochastic games Nowak (2003) and stochastic bequest
games Balbus et al. (2012a), and Nowak (2006a). Recently, Jaskiewicz and Nowak
in Jaskiewicz and Nowak (2014) proposed a pretty general model of intergenera-
tional stochastic game with additive transitions and risk-sensitive players. Related
conditions together with additional stronger requirements were suggested in Balbus
and Nowak (2008), and Balbus et al. (2012b). In particular, Balbus et al. (2012b)
assume that p is a Dirac measure concentrated at zero, u is bounded, #(0) = 0 and
the functions gy are strictly concave and increasing. These assumptions, however, al-
low them to examine extra aspects of equilibria such as uniqueness or computational
methods. Finally, it is worth mentioning that the transition probability function used
by Harris and Laibson (2001) is of different type. Namely, they study a model whose
dynamics evolves according to the following equation s;+1 = p(s; — as) + 6;, where
p > 0 and 6, is a random shock that occurred at time ¢. Moreover, it is assumed that
the sequence (6;) is i.i.d. and satisfies some boundedness condition. We would like
to point out that all aforementioned papers deal with completely known transition
functions, which correspond to the case with ® being a singleton.

Remark 3 Let X/ be the set of general (history dependent) strategies used by Nature
from period j onwards. Such a strategy o/ € X/ is defined in a usual manner as in
the discrete-time Markov control processes (see Bertsekas and Shreve 1978). The
expected utility (1), for any o/ € X/, is then also well-defined with the aid of the
Ionescu—Tulcea theorem. By Theorem 3 in Shreve and Bertsekas (1979),

J(c)(sj) = inf f(c,y )(sj)— 1nf J(c o )(s])
ylell
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Hence, our results remain true, if we assume that Nature uses general strategies.

Let I denote the set of non-decreasing lower semicontinuous functions ¢ : S
R such that ¢(s) € A(s) for each s € S. Note that every ¢ € [ is continuous from
the left and has a countable set of discontinuity points. Define

Fi={ced:c(s)=s—i(s),iel}. 3)

Every ¢ € F is upper semicontinuous and continuous from the left.
Our first main results concerns the model with non-atomic transitions.

Theorem 1 Assume that either (A0)—(Al), (A3)—(AS5) or (A0), (A2)—(A4) hold. If,
in addition, the probability measures vy, ..., v are non-atomic, then there exists a
RMPE ¢* € F.

Our second results allows for transitions having some atoms, but then we make
some additional assumptions:

(C) The functions g3, ..., g in (A3) are continuous, non-decreasing and concave.
Moreover, uz > M? forall 9 € ® and k =2, ...,1, that is, /‘Z (first order)
stochastically dominates ,u?.

Note that

l
gis—a)=1-Y gls—a), (s,a)€D.
k=2
Recall that Mi > u? if and only if for any non-decreasing function v : S — R, hav-
ing finite integrals with respect to every u?, we have

/SU(S)Mf(dS)zfsv(sm?(dS)-

If ce @, theni € @ is defined as i(s) :=s — c(s) for each s € S. Define
FL:={c € @ : c and i are non-decreasing}. @)

It is easy to see that FLL consists of Lipschitz functions with constant one.
Here is our second main result.

Theorem 2 Assume that either (AO)—(Al), (A3)—(AS) or (A0), (A2)—(A4) hold. If
in addition (C) holds, then there exists a RMPE c* € FL and the corresponding equi-
librium functions are non-decreasing and continuous on Sy (S) in the unbounded
(bounded) case.

Clearly, Theorem 2 can also be applied to the non-atomic case, but at the cost
of an additional condition (C). However, in that case we obtain a stronger asser-
tion concerning the monotonicity and continuity of both RMPE and the equilibrium
utility functions.
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Remark 4 Bernheim and Ray (1987) were the first who proposed the set F' of strate-
gies in the search of equilibria in deterministic bequest games. Their idea was suc-
cessfully applied to the study of certain classes of dynamic games, for instance, see
Dutta and Sundaram (1992). Lipschitz equilibria, on the other hand, were exten-
sively examined in the following papers Amir (1996a, 1996b), Balbus et al. (2012a,
2012b), Curtat (1996), Harris and Laibson (2001), Jaskiewicz and Nowak (2014),
Leininger (1986), Nowak (2006a), and references cited therein.

3 Proofs

We recall that the function u is strictly concave and continuous on S;. Let w: S+
R be a continuous function. Define

Uts,y):=u(s —y)+w(y), (s,y)€D.
Put

Ao(s) :=arg max l}(s, y) and ig(s):= minAo(s), seS.
yeA(s)

Clearly, Ao(s) # () and compact for each s € S and AO(O) = {0}. Therefore the
function ig is well-defined.
The following result is related to Theorem 6.3 in Topkis (1978).

Lemma 1 Assume that (AO) holds. Then the correspondence s +—> Ao(s)Ahas a
closed graph and is strongly ascending, i.e., if s1 < 52 and y1 € Ap(s1), Y2 € Ag(s2),
then y1 < yy. Moreover, the function iy is lower semicontinuous and non-decreasing.

Proof Suppose that the correspondence s — Ao (s) is not strongly ascending. Then
there exist 51 <82 and y; € Ao(sl) Y € A()(sz) such that y; > 2. Under assump-
tion (AO0), D is a lattice. Thus (s2, ¥1) and (s1, y2) belong to D. Since u is strictly
concave, from the arguments given in Lemma 2 in Nowak (2006a) or Lemma 0.2 in
Amir (1996b), we obtain

u(s2, y1) —u(s2, y2) > u(sy, y1) — u(sq, y2). )

édding w(y1) — w(yz) to both sides of (5) and knowing that y; € Ao(sl) and y; €
Ag(s2), we obtain

0> U(s2, y1) — U(s2, y2) > Ucs1, y1) — Ucsy, y2) = 0.

This contradiction implies that the correspondence s +—> Ag(s) is strongly ascend-
ing. Obviously, it has a closed graph. Thus, the function i is non-decreasing and
continuous from the left. Hence iy is lower semicontinuous. Il

Remark 5 Lemma 1 does not directly follow from Theorem 6.3 in Topkis (1978).
The reason is that we should know that U can be extended from D to a supermodular
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function on the product space S x §. That is not true, for example, if S = [0, 1] and

u(s,y)=./s —y.

Lemma 2 Assume that (AQ) holds. Let ¢ : S +— S be a non-decreasing function
such that ¢ (s) € Ao(s) for each s € S. If so € S+ is a continuity point of ¢, then
Ao(so) is a singleton.

Proof Suppose that y; and y, belong to Ao(so) and y; < y;. Since s — Ao(s) is
strongly ascending, we get that limg_.5,— ¢ (s) < y1 < y2 < limy_, 5+ ¢ (s). This
contradicts our assumption that ¢ is continuous at the point sg € S4. 0

Example 1 Let S =[0, 1], a(s) =0 and a(s) = s for each s € S. Let u(s — y) =
2(s — y) — (s — y)? and w(y) = 2y? for (s, y) € D. It is easy to verify that Ag(s) =
{0} for s € [0,2/3), Ao(s) = {s} for s € (2/3, 1] and Ao(2/3) = {0,2/3}. Hence
ip(s) =0 fors €[0,2/3] and ix(s) = s for s € (2/3, 1].

Assume now that w is concave and continuous on S. Then

Ao(s) = arg max U(s,i) = {io(s)} foreverys e S.
icA(s)

Let U(s,a) :=u(a) + w(s —a) forall (s,a) € D and

Ap(s) :=arg max U(s,a) forseS.
acA(s)

Clearly, Ao (s) is a singleton, so there exists a function cq : S +— S such that Ayg(s) =
{co(s)} for each s € S. Moreover from our concavity assumptions on # and w, it
follows that co(s) = s — ig(s) for every s € S. Additional useful information on the
function cg is given below.

Lemma 3 Assume that (AO) holds and w is continuous concave on S. Then the
function cq defined above is Lipschitz with constant one.

Proof Note that Ag(s) is a singleton for each s € S. Write Ag(s) = {co(s)}. Under
assumption (A0), D is a lattice. Assume first that w is strictly concave. A simple
modification of the arguments used in the proof of Lemma 1 yields that the cor-
respondence s — Ap(s) is strongly ascending. Thus, cg is non-decreasing. Since
s+ ig(s) = s — co(s) is also non-decreasing (Lemma 1) we conclude that ¢ (and
also ig) is Lipschitz with constant one; for this assume that 51 < s, then we have

0 < co(s2) — cos1) = |co(s2) — cols1)| = |s2 — io(s2) — (51 — io(s1))]
=53 —io(s2) — (s1 —io(s1) <52 — 51 =52 — 51l

Assume now that w is concave on S. Then there exists a sequence (w,,) of strictly
concave functions converging uniformly to w on the set S. Define U, (s, a) :=
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u(a) + wy(s —a) for all (s,a) € D and Ag(s) ‘= argmaxgea(s) Un(s,a) for s € S.
Then, for each n € N, there exists a Lipschitz function ¢ : § = § such that
Ap(s) = {cy(s)} for all s € S. Without loss of generality (by the Arzela—Ascoli the-
orem), we can assume that the sequence (c;;) converges uniformly to some function
co on S. Clearly, Ag(s) = {co(s)} for each s € S and ¢y is Lipschitz with constant
one. U

3.1 Non-atomic Transition Probability Functions

Let X be the vector space of continuous from the left real-valued functions with
bounded variations on S. Let (h,) be a sequence of functions in X. It is said that
(hy) converges weakly to h € X, if lim,_, 5 h,,(s) = h(s) for any continuity point
of h. The weak convergence of (h,) to & is denoted by 4, = h.

We endow I C X with the fopology of weak convergence (see (3)). Let M be
the space of all regular signed measures on S with bounded variation and C(S)
the Banach space of all continuous real-valued functions on S endowed with the
supremum norm. It is well-known that M is the dual of C(S) (see Theorem 14.14
in Aliprantis and Border 2006) and is a linear metrizable topological space when
equipped with the weak-star topology. Moreover, there is a homeomorphism 7 be-
tween I and a set of measures u such that 5§ — a(s) < u(S) <5 — a(s). Denote
this set of measures by M. An example of such a homeomorphism is the mapping
H(w) = ¢u(-), where ¢, (x) = u([0,x)), x € Sy, ¢, (0) =0. Using the Banach—
Alaoglu theorem, we infer that Mg is compact in the weak-star topology, see also
Helly’s theorem in Billingsley (1968). Since I = H (M), I is compact in the space
X endowed with the topology of weak convergence. It is obvious that F' C X is con-
vex and is obtained by a continuous transformation of 7, namely: c(s) =s — i(s),
s € S,i € 1. Thus, we have the following auxiliary result.

Lemma 4 F is a convex sequentially compact subset of the space X endowed with
the topology of weak convergence.

For ¢ € F and any lower semianalytic function v : § — R integrable with respect
to each measure uz, wherek =1,...,/ and 0 € ®, define the operator T, as follows

T v(s) :=u(c(s))+ infﬂ/v(y)q(dy|s—c(s),§'), ses. (6)
geP Js

By Propositions 7.47 and 7.48 in Bertsekas and Shreve (1978), it follows that T,.v
is also lower semianalytic. Let us now consider vyp = 0, where v is a function that
assigns 0 to each s € S. Taking n-th composition of the operator 7, with itself on
vo and using dynamic programming argument (see Proposition 8.2 in Bertsekas and
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Shreve 1978) we obtain that

j4+n—1
vo(sj)— 1nf ECV <Z B"u C(Sf)> (7

Moreover, the function s; — T/'vo(s;) is lower semianalytic. Since u is non-
positive we have that

T!vo(s;) = J(c)(sj) foreveryne N. (8)

On the other hand, for any y/ € I

j4+n—1
CV}( Z B"u(c(so)) ) > T vo(s).

From the monotone convergence theorem we have that
j4+n—1
5
EgV ( Z B Fu(c(sr)) ) — J(c 77)(sj) asn— oo.
Since p/ was arbitrary it follows that
J(c)(sj) = lim Tvo(s;). 9)
n—oo
Letting n tend to infinity in (7) and combining (8) and (9) we infer that
J(c)(sj) = lim Tvo(s;). (10)
n— 00 ;

Assume for the moment that u is unbounded. Then, by assumption (AS5) and the
monotone convergence theorem for any ¢ € F and y/ € I we get that

1@ 6] < (e v/ 5] < B (Z ﬂf‘flu(cm))\)
T=j

= (Zﬂf‘jEf;Vj|u(c(sf))|) < (Zﬁf‘fEEJth|u(g(s,))|>.

T=j T=j

Next observe that using assumptions (A3)—(AS) for m > 1 we obtain that

ES u(asjom)| = ESY [ fs lu(a(s"))] g (ds'li(sjem1), mml)]

< max fs lu(a(s')) | () (ds') = € < o0, (1)
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where i(sj4m—1) =$j4+m—-1 — ¢(5j+m—1). Therefore, by assumption (A1)

[T < ulasp)[+C Y T

T=j+1

= |u(g(sj))| + ﬂ < +00
-y
forall s; € Sy. Clearly, if u is bounded, i.e., assumption (A2) holds instead of (A1),
then sup,. |/ (c)(s;)] is finite for all s; € S.
In the proofs of Lemmas 5-7 we heavily exploit the assumption that the mea-
sures vi, ..., v are non-atomic. This means that the weak convergence denotes the
convergence almost everywhere.

Lemma 5 Let (AO)—(Al), (A3)—(AS) or (A0), (A2)-(A4) hold. Assume that

c’”—w>cinF.Then,f0reachneN,andk:l,...,l
sup / \T;ﬁn vo(s) — TC”vo(s)|,uz(ds) —0 asm— oo. (12)
fe®@ JS

Proof Let us first consider the case with the unbounded function « and apply the in-
duction argument. The proof for bounded function u is analogous. Let n = 1. Then,

by (A1) u(c™) g u(c). Obviously, the function u(c) has at most countable num-
ber of discontinuity points. Therefore, making use of (A3)—(A4) and the dominated
convergence theorem it follows that

/S|u(cm(s)) - u(c(s)) |,uz(ds)

< /;‘u(cm(s)) — u(c(s))’fk(s)vk(ds) -0 (13)

foreachk=1,...,1.
Assume now that (12) holds true for some n € N. We show that it is satisfied for
n + 1. Indeed, recall first that

T vg(s) = u(c(s)) + inf ,8/ T vo(s")q (ds'|i (s), &)
£eP Js
with i(s) = s — c(s). Similarly, we put i” (s) = s — ¢ (s). Hence,
/|Tc’£,+1v0(s) — T g ()| wd (ds) (14)
s

< /S Ju (" () = u(c())|uf (ds) + /S Zn($)pf (ds),
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where
I
Z(s) := sup ng(im(s))/ Tcrﬁnvo(s/),uZ(ds’)
0e® k=1 S
I
_ ng(i(s))f TC”vo(s'),uz (ds')|.
k=1 S
Obviously,
Zin(s) < Yp(s)
+ sup ng " () / T vo(s") i (ds”)
fe® k=1
l
—ng(i(s))/;Tcnvo(s/),uz(ds’) , (15)
k=1
where
Y (s) = sup g (i (5)) / Tavo(s )/Lz (ds”)
6€0 |2
- ng (") [ 72wl (as) |
The induction hypothesis and (A3) imply that
sup|Ym(s)|—>0 as m — 0o. (16)
seS
Observe that foreachk =1, ...,1
g (i™) = g (i), 17)
which implies by the dominated convergence theorem that
/ " (5)) — Z g (i())|1f (ds)
k/
< / - ng/(i(n) flom@ds) = 0. (18)
Sle=1 k=1
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Making use of (7) and (11), the second term in (15) can be estimated as follows

)
" (s)) ng(us))‘ /S |72 w0 (s") |14 (ds)
k=1
1

" (s)) Z (i)

1—p

Therefore, the above display, (18), (16) and (15) yield that

/|Zm(s)}ui(ds) < / |Zn($)] fe(s)vi(ds) — 0 as m — oo.
N s
This fact, (13) and (14) finish the proof. O

Lemma 6 Ler (AO)-(Al), (A3)—(AS5) or (A0), (A2)—(A4) hold. Assume that
2 cinF. Then, for eachk =1,...,1

supf!](cm)(s)—J(c)(s)|,u2(ds)—>0 as m — 0.
0e® JS

Proof Assume first that u is unbounded. In view of Lemma 5, it is sufficient to show
that the convergence in (10) is uniform with respect to ¢ € F and s € S;. Observe
that

sup|J (c)(s;) — T/ vo(s;)| < sup sup B"
ceF ceFyier

<sup sup "E5) (Zﬂ Ju( c(s,+]+n>)|>

cerIe[‘ =0

ESY (Z BT u(c(se+ j+n>)> ‘

=0

Assumption (A1) and the monotone convergence theorem yield that

o0
j
E?,y (Z,BT’M(C(SHJ'H) ) Z,B E u(c(se4j4n))|-
=0
Making use of (11), forany ¢ € F, y/ € I' and n € N we obtain that
j
Egjy |M(C(Sj+n+r))| <C,

and consequently,

sup sup|J (c)(s) — T/ vo(s)| < B" Zﬂ C=p" ——>0

SESy ceF =0 :3
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as n — oo. This fact yields the proof. We note again that the case with bounded u
can be treated analogously. g

Lemma 7 Let (AO)-(Al), (A3)—(AS5) or (A0), (A2)—(A4) hold. Assume that

w .
¢™ — cin F. Then,

sup P(a, cm)(s) — sup P(a,c)(s) foreachs€S.
acA(s) acA(s)

Proof Note that

sup P(a,c™)(s)— sup P(a,c)(s)
acA(s) acA(s)

< sup af X_:/Sw(cm)(s’) - J(c)(s’)|ui (ds').

0e®

Thus, the result follows from Lemma 6. O

Proof of Theorem I Let us set

Ag(c)(s) :=arg max P(y,c)(s),
yeA(s)

where
IS(y, c)(s) =u(s —y) +of inf / J(c)(s/)q(ds/|y, E)
§€PJs
Define

io(s) = min Ag(c)(s). (19)

From Lemma 1, it follows that ig € I. Let co(s) = s —ig(s). Then, ¢ € F. Moreover,
we define

Lc(s) :==co(s).

We show that L is weakly continuous. Assume that ¢ 2 cin F. Let us consider
co(s) = Lc(s) and ¢ (s) = Lc™(s). Clearly, (c') is relatively compact in F. Let
o be any accumulation point of (cj') in the sequentially compact space F (see
Lemma 4). By S; we denote the set of discontinuity points of ¢y. If s € Sy \ Sy,
then from Lemma 7, we conclude that

P(co(s), c)(s) :arg?()i)[u(a) + aB Eig’/s J(c)(s )q(ds |s —a, é‘)]
Hence, ¢o(s) € argmaxgea(s) P(a,c)(s). Consequently, ?o(s) =35 — ¢o(s) €

AO (c)(s) and s is a continuity point of 70. From Lemma 2, we deduce that Ao(c) (s)
is a singleton. Therefore, Co(s) = co(s). If, on the other hand, s € S; and s # 0, then
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we may take a sequence (si) such that sy < s, sx € S+ \ Sq. Applying the above rea-
soning to every s, we get that ¢o(sg) = co(sg). Since both ¢y and ¢g are continuous
from the left at s, we obtain that

Co(s) = lim ¢o(sg) = lim co(sg) = co(s).
k— 00 k— 00

Hence, ¢o(s) = Lc(s) for all s € S. Thus L is weakly continuous on F.
Now from the Schauder-Tychonoff fixed point theorem there exists ¢* € F such
that ¢* = Lc* and this fact completes the proof. O

3.2 Transition Probability Functions with Atoms

We endow the space FL (see (4)) with the topology of uniform convergence. By the
Arzela—Ascoli theorem FL is a compact metric space. Obviously, FL is a convex
subset of C(S).

Lemma 8 Let (AO)-(Al), (A3)—(AS5) or (A0), (A2)~(A4) hold. Assume that
¢ — cin FL. Then, for eachn € N,and k=1, ...,1

sup / |T5vo(s) — T vo(s) |l (ds) — 0 (20)
0e® JS

asm — Q.

Proof Observe first that assumption (AS5) implies that in the case of unbounded u,
uz({O}) =0 foreachk=1,...,] and all 6 € ®. This fact yields that u(c”(s)) —
u(c(s)) for all s € S. Therefore, by the dominated convergence theorem it follows
that (13) holds.

In the case of bounded u, the convergence of u(c¢™) to u(c) is uniform on S.
Hence, (13) is also satisfied. The remaining part of the proof goes by induction and
is analogous to the proof of Lemma 5 except that the weak convergence in (17) is
replaced by the uniform convergence of g (i"") — gr(i) foreachk=1,...,1. O

The next result is a repetition of Lemma 6.

Lemma 9 Let (AO)—(Al), (A3)—(AS5) or (A0), (A2)—(A4) hold. Assume that
¢ — cin FL. Then, for eachk =1, ...,1

sup/!](cm)(s)—J(c)(s)’,ui(ds)—>0 as m — oo.
fe®@ JS

Lemma 9 implies the following fact.
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Lemma 10 Ler (AO)—(Al), (A3)—(AS) or (A0), (A2)—(A4) hold. Assume that
¢™ — cin FL. Then,

sup P(a, cm)(s) — sup P(a,c)(s) foreachs¢eS.
acA(s) acA(s)

Lemma 11 Ler (AO)—(A1l), (A3)—(AS) or (AO), (A2)—(A4) hold. If, in addition,
Assumption (C) is satisfied, then for any c € FL it follows that the function s +>
J(¢)(s) is non-decreasing.

Proof We consider the operator 7, defined in (6). We show that the function

s = T!vp(s) described in (7) is non-decreasing for every n € N. We proceed by
induction. Clearly, for n = 1, the function

T.vo() = u(c(~)) is non-decreasing. 21

Assume now that T/"vo(-) is non-decreasing and consider 7"*!v,. Observe that

TC”'HUO(S) = u(c(s)) + 51271;,3/ TC”vo(s’)q(ds’|s —c(s), é)

=u(c(s)) + mfﬁ/ [(1 —ng s—C(S)))/Tf'vo(S’)u?(dS’)

k=2

+ i fs T2 vo(s") g (ds”) gk (s — c(s))]swe)
=u(c(s)) + 51271;,3/@[/5 Tc,"vo(s’)u? (ds')
+Z( [ (st as) - [ 7w @)

x gk (s — C(S)):|§(d9)~
By (C) and induction assumption, we have that

/TC"vo(s’)uZ(ds’) — / T vo(s")d (ds) = 0
N N

for all € ® and k = 2,...,[. This inequality, and the fact that s +> s — c(s) is
non-decreasing, allow to deduce that the function

s ([ eyt (as) = [ runs et @s) (s = )
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is non-decreasing forevery 6 € @ and k =2, ..., [. This fact and (21), in turn, imply
that Tf“ vo(-) is non-decreasing. From (10) it follows that the function J(c)(-) is

non-decreasing. g

Proof of Theorem 2 Observe first that for any ¢ € FL the function
y > inf / J(©)(s")g(ds'ly, §) is concave. (22)
§eP Js

Indeed, by (A3)

/S J©(s)g(ds' 1. £)

-[ [ [ s@Emitas)

+Z( / J@(s)ui(ds) - /S J(C)(S')M?(dS/)>gk(y)]§(d9)

for any & € P. By Assumption (C) and Lemma 11, we obtain that

/S J()(s")ug(ds') — fs J(©)(s")ni(ds") =0 (23)

forall@ e ® and k=2,...,[. Since g7, ..., gk are concave, we infer that

y»Z( / J(©)(s")uf (ds) — /S J(c)(s/)u?(ds’))gk(y)

is concave for all # € @, and therefore (22) is follows.
For ¢ € FL let us set

Ao(c)(s) :=arg max P(a,c)(s).
acA(s)

From (22) and the strict concavity of u, we deduce that Ap(c)(s) is a singleton,
and therefore there exists cg : S — § such that Ag(c)(s) = {co(s)}. Moreover, our
concavity assumptions imply that co(s) = s — ig(s), where ig is defined in (19).
From Lemma 3, we have that co(-) is Lipschitz with constant one. As in the proof
of Theorem 1 we define Lc(s) := co(s).

Assume now that ¢ — ¢ in FL and that u is unbounded. We show that L is
continuous on FL. Set ¢; = Lc™ and ¢o = Lc. Clearly, (cg') is relatively compact.
Let ¢y be an accumulation point of (c6”) in FL. Since ¢y is continuous on S, from
Lemma 10 it follows that

P(Co(s), c)(s) :arenf();)[u(a) + aB éiél?g,/s J(c)(s )q(ds s —a, E)]
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But Ag(c)(s) is a singleton and therefore ¢o(s) = co(s) forall s € S.
By the Schauder—Tychonoff fixed point theorem there exists ¢* € FL such that

P(c (s),c )(s) =aglfg§)[u(a)+aﬂ;£7f)'[g](c )(s )q(ds |s —a,é)i|.

Finally, we have to show that s — P(c*(s),c*)(s) is continuous and non-
decreasing. But it follows from the following two facts that both

= u(c*(s)) and s+ / J(c*)(s/)q(ds/|s —c*(s), E)
S

are non-decreasing and continuous on S . Indeed, by (A3) we have that

/S J(e*)(s)a(ds'ls — ¢*(s),8)
= [| [)6utas)

+Z( [ - [

S

J(c*)(s'),uff (ds’))gk (s —c*(s)) |£(dO).

Now the conclusion easily follows from Assumption (C) and (23) with ¢ replaced
by c*. O
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Stochastic Differential Games and Intricacy
of Information Structures

Tamer Basar

Abstract This chapter discusses, in both continuous time and discrete time, the is-
sue of certainty equivalence in two-player zero-sum stochastic differential/dynamic
games when the players have access to state information through a common noisy
measurement channel. For the discrete-time case, the channel is also allowed to fail
sporadically according to an independent Bernoulli process, leading to intermittent
loss of measurements, where the players are allowed to observe past realizations of
this process. A complete analysis of a parametrized two-stage stochastic dynamic
game is conducted in terms of existence, uniqueness and characterization of saddle-
point equilibria (SPE), which is shown to admit SPE of both certainty-equivalent
(CE) and non-CE types, in different regions of the parameter space; for the latter,
the SPE involves mixed strategies by the maximizer. The insight provided by the
analysis of this game is used to obtain through an indirect approach SPE for three
classes of differential/dynamic games: (i) linear-quadratic-Gaussian (LQG) zero-
sum differential games with common noisy measurements, (ii) discrete-time LQG
zero-sum dynamic games with common noisy measurements, and (iii) discrete-time
LQG zero-sum dynamic games with intermittently missing perfect state measure-
ments. In all cases CE is a generalized notion, requiring two separate filters for the
players, even though they have a common communication channel. Discussions on
extensions to other classes of stochastic games, including nonzero-sum stochastic
games, and on the challenges that lie ahead conclude the chapter.

1 Introduction

In spite of decades long research activity on stochastic differential games, there
still remain some outstanding fundamental questions on existence, uniqueness, and
characterization of non-cooperative equilibria when players have access to noisy
state information. Even in zero-sum games and with common measurement channel
that feeds noisy state information to both players, derivation of saddle-point poli-
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cies is quite an intricate task, as first identified in Bagar (1981). That paper also
addressed the issue of whether saddle-point equilibria (SPE) in such games is of the
certainty-equivalent (CE) type (Witsenhausen 1971a), that is whether the solution of
a similarly structured game but with perfect state measurements for both players can
be used in the construction of SPE for the stochastic game with noisy measurement,
by simply replacing the state with an appropriately constructed conditional estimate.
The answer was a “cautious conditional yes,” in the sense that not all SPE are of the
CE type, and when they are in both the construction of the conditional estimate and
the derivation of conditions for existence many perils exist. This chapter picks up
where Bagar (1981) had left, and develops further insights into the intricacies and
pitfalls in the derivation of SPE of the CE as well as non-CE types. It also provides
a complete solution to a two-stage stochastic game of the linear-quadratic-Gaussian
(LQG) type where the common measurement channel is not only noisy but also fails
intermittently.

Research on stochastic differential games with noisy state measurements goes
back to the 1960’s, where two-person zero-sum games with linear dynamics and
measurement equations, Gaussian statistics, and quadratic cost functions (that is,
LQG games) were addressed when players have access to different measurements,
within however some specific information structures (Behn and Ho 1968; Rhodes
and Luenberger 1969; Willman 1969). A zero sum differential game where one
player’s information is nested in the other player’s was considered in Ho (1974), and
a class of zero-sum dynamic games where one player has noisy state information
while the other one plays open loop was considered in Basar and Mintz (1973)
which showed that the open-loop player’s saddle-point strategy is mixed. A class
of zero-sum stochastic games where the information structure is of the nonclassical
type was considered in Basar and Mintz (1972), which showed that some zero-sum
games could be tractable even though their team counterparts, as in Witsenhausen
(1968), Bansal and Basar (1987), Ho (1980) are not; see also Basar (2008).

When a game is not of the zero-sum type, derivation of equilibria (which in
this case would be Nash equilibria) is even more challenging, even when players
have access to common noisy measurements, with or without delay, as discussed
in Bagar (1978a) where an indirect approach of the backward-forward type was
developed and employed; see also Basar (1978b) for a different formulation and
approach for derivation. Recently, a new class of discrete-time nonzero-sum games
with asymmetric information was introduced in Nayyar and Bagar (2012), where the
evolution of the local state processes depends only on the global state and control
actions and not on the current or past values of local states. For this class of games, it
was possible to obtain a characterization of some Nash equilibria by lifting the game
and converting it to a symmetric one, solving the symmetric one in terms of Markov
equilibria, and then converting it back. Among many others, two other papers of
relevance to stochastic nonzero-sum dynamic games are Altman et al. (2009) and
Hespanha and Prandini (2001), and one of relevance to teams with delayed sharing
patterns is Nayyar et al. (2011).

The paper is organized as follows. In the next section, we introduce LQG zero-
sum stochastic differential/dynamic games (ZSDGs) with common noisy measure-
ments, first in continuous time and then in discrete time, and for the latter we also
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include the possibility of intermittent failure of the measurement channel (modeled
through a Bernoulli process), leading to occasionally missing measurements. In the
section we also introduce the concept of certainty equivalence, first in the context of
the classical LQG optimal control problem and then generalized (in various ways) to
the two classes of games formulated. In Sect. 3, we introduce a two-stage stochastic
dynamic game, as a special case of the general discrete time LQG game of Sect. 2,
which is solved completely for its SPE in both pure and mixed strategies, some of
the CE type and others non-CE (see Theorem 1 for the complete solution). Analysis
of the two-stage game allows us to develop insight into the intricate role information
structures play in the characterization and existence of SPE for the more general ZS-
DGs of Sect. 2, and what CE means in a game context. This insight is used in Sect. 4
in the derivation of generalized CE SPE for the continuous-time LQG ZSDG with
noisy state measurements (see Theorem 2 for the penultimate result) as well as for
the continuous-time LQG ZSDG with noisy state measurements and perfect state
measurements with intermittent losses. The paper ends with a recap of the results of
the paper and a discussion on extensions and open problems, in Sect. 5.

2 Zero-Sum Stochastic Differential and Discrete-Time Games
with a Common Measurement Channel and Issue of Certainty
Equivalence

2.1 Formulation of the Zero-Sum Stochastic Differential Game

We first consider the class of so-called Linear-Quadratic-Gaussian zero-sum differ-
ential games (LQG ZSDGs), where the two players’ actions are inputs to a linear
system driven also by a Wiener process, and the players have access to the system
state through a common noisy measurement channel which is also linear in the state
and the driving Wiener noise process. The objective function, to be minimized by
one player and maximized by the other, is quadratic in the state and the actions of
the two players.

For a precise mathematical formulation, let {x;, y;, > 0}, be respectively the
n-dimensional state and m-dimensional measurement processes, generated by

dx[=(Axl+Bu,+Dv,)dt+Fdw,, IZO, (])
dy[ = Hx,dl + del‘v [ 0, (2)
where {u;,t > 0} and {v;,t > 0} are respectively Player 1’s and Player 2’s con-
trols (say of dimensions r; and r, respectively), nonanticipative with respect to the

measurement process, and generated by measurable control policies {y;} and {u;},
respectively, that is

ur = y:(yo,n), v = (yo,n), t=0. (3)
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In (1) and (2), xq is a zero-mean Gaussian random vector with covariance Ag (that is
xo ~ N (0, Ap)), {wy, t > 0} is a vector-valued standard Wiener process independent
of xo,and A, B, D, F, H, G are constant! matrices of appropriate dimensions, with
(to avoid singularity) FFT >0, GGT > 0, and FGT = 0, where the last condition
assures that system and channel noises are independent. We let I” and M denote
the classes of admissible control policies for Player 1 and Player 2, respectively,
with elements y := {y;} and p := {u,}, as introduced earlier. The only restriction on
these policies is that when (3) is used in (1), we have unique second-order stochastic
process solutions to (1) and (2), with almost sure continuously differentiable sam-
ple paths. Measurability and uniform Lipschitz continuity will be sufficient for this
purpose.

To complete the formulation of the differential game, we now introduce a
quadratic performance index over a finite interval [0, 7 7]:

Iy
Ty, ) = E{lxthQf +f0 (x| + Aue|* — |vf|2]dr\u =y()v= u(-)}, )

where expectation E{-} is over the statistics of x¢ and {w;}; further, |x |2Q =xTQx,
O and Q s are non-negative definite matrices, and A > 0 is a scalar parameter. Note
that any objective function with nonuniform positive weights on u and v can be
brought into the form above by a simple rescaling and re-orientation of # and v and
a corresponding transformation applied to B and D, and hence the structure in (4)
does not entail any loss of generality as a quadratic performance index.

The problem of interest in the context of LQG ZSDGs is to find conditions for
existence and characterization of saddle-point strategies, that is (y* € I', u* € M)
such that

J(*w) <J(y* )< J(y.n*), Yyel peM. (5)

A question of particular interest in this case is whether the saddle-point equilibrium
(SDE) has the certainty equivalence property, that is whether it can be obtained di-
rectly from the perfect state-feedback SPE of the corresponding deterministic differ-
ential game, by simply replacing the state by its “best estimate,” as in the one-player
version, the so-called LQG optimal control problem. This will be discussed later in
the section.

If a saddle-point equilibrium (SDE) does not exist, then the next question is
whether the upper value of the game is bounded, and whether there exists a con-
trol strategy for the minimizer that achieves it, that is existence of a y € I" such
that

infsup J(y, u) =sup J (¥, n). (6)
V ou "

Note that the lower value of the game, sup,, inf) J(y, 1), is always bounded away
from zero, and hence its finiteness is not an issue.

I They are taken to be constant for simplicity in exposition; the main message of the paper and
many of the expressions stand for the time-varying case as well, with some obvious modifications.
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2.2 Formulation of the Discrete-Time Zero-Sum Stochastic
Dynamic Game with Failing Channels

A variation on the LQG ZSDG is its discrete-time version, which will allow us also
to introduce intermittent failure of the common measurement channel. The system
equation (1) is now replaced by

xt+1=Axt+But+Dv,+Fw,, t=0,1,..., (7)
and the measurement equation (2) by
ye=pBi(Hx; + Gwy), 1=0,1,..., (8)

where xo ~ N (0, Ag); {w;} is a zero-mean Gaussian process, independent across
time and of xo, and with E{w,w!}=1,V¥t€[0,T —1]:={0,1,...,T — 1}; and
{B:} is a Bernoulli process, independent across time and of x¢ and {w;}, with
Probability(8; = 0) = p, Vt. This essentially means that the channel that carries
information on the state to the players fails with equal probability p at each stage,
and these failures are statistically independent. A different expression for (8) which
essentially captures the same would be

ytzﬂtth—l-th, t=0,1,..., (9)

where what fails is the sensor that carries the state information to the channel and
not the channel itself. In this case, when B; = 0, then this means that the channel
only carries pure noise, which of course is of no use to the controllers.

Now, if the players are aware of the failure of the channel or the sensor when it
happens (which we assume to be the case), then what replaces (3) is

ur =y (y[0,11, Blo.11)» v = e (0,15 Broe)s t=0,1,..., (10)

where {y;} and {u;} are measurable control policies; let us again denote the spaces
where they belong respectively by I" and M.

The performance index replacing (4) for the discrete-time game, over the interval
0,1,...,T —1}is?

T-1
T ) =EY [1xglg + A - |v1|2]dt\u =y(),v= u(-)}, (11)
t=0

where the expectation is over the statistics of xq, {w;} and {5;}.
The goal is again the one specified in the case of the LQG ZSDG—to study exis-
tence and characterization of SPE (defined again by (5), appropriately interpreted),

2We are using “T” to denote the number of stages in the game; the same notation was used to
denote transpose. These are such distinct usages that no confusion or ambiguity should arise.
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boundedness of upper value if a SPE does not exist, and certainty-equivalence prop-
erty of the SPE. We first recall below the certainty-equivalence property of the stan-
dard LQG optimal control problem, which is a special case of the LQG ZSDG ob-
tained by leaving out the maximizer, that is by letting D = 0. We discuss only the
continuous-time case; an analogous result holds for the discrete-time case (Witsen-
hausen 1971a; Yiiksel and Bagar 2013).

2.3 The LQG Optimal Control Problem and Certainty Equivalence

Consider the LQG optimal control problem, described by the linear state and mea-
surement equations

dxl‘ = (Ax, + Bu,)dl‘ + Fdwt, t 2 07 (12)
dy[ =thdt+det, ZZO, (13)

and the quadratic cost function

Iy
J(y)= E{|xt_,»|%2f +/0 [Ix15 +A|ut|2]dt\u = y(-)}, (14)

where F and G satisfy the earlier conditions, and as before y € I'.

It is a standard result in stochastic control (Fleming and Soner 1993) that there
exists a unique y* € I" that minimizes J(y) defined by (14), and y,*(y[0,s)) is linear
in y[o,s). Specifically,

* * ~ n 1 T ~
u (1) =y (y[o,z))=yz(xz)=—xB P(t)x;, t=0, (15)

where P is the unique non-negative definite solution of the retrograde Riccati dif-
ferential equation

. 1
P+PA~|—ATP—XPBBTP+Q=O, P(ty)=Qy, (16)

where {X,} is generated by the Kalman Filter:

dx; = (AX; + Buy)dt + K(t)(dy: — Hx,dt), Xp=0,1>0, a7y

1

K(@t)=AWH"[GG"]” (18)

with A being the unique non-negative definite solution of the forward Riccati dif-
ferential equation

A—AA—AAT + AHT[GGT) '"HA-FF" =0, AO)=40. (19
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Note that this is a certainty-equivalent (CE) controller, because it has the structure
of the optimal controller for the deterministic problem, that is —%BTP(t)x,, with
the state x; replaced by its conditional mean, E[x;|y[0,s), 4[0,r)], Which is given by
(17). The controller gain (—%BTP(Z)) is constructed independently of what the
estimator does, while the estimation or filtering is also essentially an independent
process with however the past values of the control taken as input to the Kalman
filter. Hence, in a sense we have a separation of estimation and control, but not
complete decoupling. In that sense, we can say that the controller has to cooperate
with the estimator as the latter needs to have access to the output of the control box
for the construction of the conditional mean. Of course, an alternative representation
for (17) would be the one where the optimal controller is substituted in place of u:

1
dz, = ((A — XBBTP(z)>)et)dt + Kt)(dy; — HRdt), %0=0,t>0, (20)

but in this representation also there is a need for collaboration or sharing of infor-
mation, since the estimator has to have access to P(-) or the cost parameters that
generate it. Hence, the solution to the LQG problem has an implicit cooperation
built into it, but this does not create any problem or difficulty in this case, since the
estimator and the controller are essentially a single unit.

2.4 The LQG ZSDG and Certainty Equivalence

Now we move on to the continuous-time (CT) LQG ZSDG, to obtain a CE SPE,
along the lines of the LQG control problem discussed above. The corresponding
deterministic LQ ZSDG, where both players have access to perfect state measure-
ments, admits the state-feedback SPE (Basar and Olsder 1999):

1
u*(t) = V;*(X[O,t]) =9 (x) = —XBTZ(t)xt, >0, (21)
V(1) = Wi (xjo.) = e (x)) = DT Z(t)x,, >0, (22)

where Z is the unique non-negative definite continuously differentiable solution of
the following Riccati differential equation (RDE) over the interval [0, ¢ 7]:

. 1
Z+ATZ4+7A —Z<XBBT —DDT)Z—i— 0=0, Zitp)=Qr  (23)

Existence of such a solution (equivalently nonexistence of a conjugate point in the
interval (0, ¢ 7), or no finite escape) to the RDE (23) is also a necessary condition for
existence of any SPE (Basar and Bernhard 1995), in the sense that even if any (or
both) of the players use memory on the state, the condition above cannot be further
relaxed. This conjugate-point condition translates, in this case, on a condition on A,
in the sense that there exists a critical value of A, say A* (which will depend on the
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parameters of the game and the length of the time horizon, and could actually be
any value in (0, 00)), so that for each A € (0, 1*), the pair (21)—(22) provides a SPE
to the corresponding deterministic ZSDG.

Now, if a natural counterpart of the CE property of the solution to the LQG
optimal control problem would hold for the LQG ZSDG, we would have as SPE:

u (1) = v Oo,n) = v (%) = —%BTZ(I))@, 1>0, (24)
(1) = i o) = (&) = DT Z(DF, 120, (25)
where
X = E[xily0.0 {us = v 50.5)s vs = 1 0jo,5)), 0 < s < 1}]

is generated by (as counterpart of (20)):

d%; = AXdt + K () (dy, — HRdt), f0=0,1>0, (26)
where
. 1. -
A=A— ~BB" —DD Z(t) (27)

and K is the Kalman gain, given by (18), with A now solving
A—AA— AAT + AHT[GGT]*‘HA —FFT =0, A(0) = Ao. (28)

The question now is whether the strategy pair (y*, u*) above constitutes a SPE
for the LQG ZSDG, that is whether it satisfies the pair of inequalities (5). We will
address this question in Sect. 4, after discussing in the next section some of the
intricacies certainty equivalence entails, within the context of a two-stage discrete-
time stochastic dynamic game. But first, we provide in the subsection below the
counterpart of the main result of this subsection for the discrete-time dynamic game.

2.5 The LQG Discrete-Time ZS Dynamic Game and Certainty
Equivalence

Consider the discrete-time (DT) LQG ZS dynamic game (DG) formulated in
Sect. 2.2, but with non-failing channels (that is, with p = 0). We provide here a
candidate CE SPE for this game, by following the lines of the previous subsection,
but in discrete time. First, the corresponding deterministic LQ ZSDG, where both
players have access to perfect state measurements admits the state-feedback SPE
(Bagar and Olsder 1999) (as counterpart of (21)—(22))
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. 1 =1
u;"=y,*(x[o,,p=yt(xt>=—xBth+1(N, N7 Ax, t=0,1,..., (29
- —_1\—1
vf = i (o) = () = DT Z (N7 T Axg, 1=0,1,.., (30)
where
1 T T
Ny =1+ XBB —DD" |\Z;y,, t=0,1,..., (31)

and Z; is a non-negative definite matrix, generated by the following discrete-time
game Riccati equation (DTGRE):

_I\T
Zi=Q+A"Zn(N7) A, Z(D=0. (32)
Under the additional condition
I-D'2,,,D>0, t=0,1,....,T —1, (33)

which also guarantees invertibility of N, the pair (29)—(30) constitutes a SPE. If, on
the other hand, the matrix (33) has a negative eigenvalue for some 7, then the upper
value of the game is unbounded (Bagar and Bernhard 1995). As in the CT conjugate
point condition, the condition (33) translates into a condition on A, in the sense that
there exists a critical value of A, say A, (which will depend on the parameters of the
game and the number of stages in the game), so that for each A € (0, A.), the pair
(29)-(30) provides a SPE to the corresponding deterministic ZSDG.
Now, the counterpart of (24)—(25), as a candidate CE SPE, would be

o 1 INT A
M;k = Vt*(}’[o,t]) =y (X)) = —XBTZHI (N, l) Axye, t=0,1,..., (34)
R T A
Vi =i 0. = @) =DT Zo (N7 ARy, t=0,1,...,  (35)
where
X = E[x/|y0.0, {us = v 50,51, vs = i Gpo,s1), s =0, ..., 1 — 1}]
is generated by, with xg;—; = 0:
R R -1 R
R =X + A HT(HAHT +GGT) ™ (v — Hiye—p)
Rrr = (N~ AR (36)
+ (N AAHT (HAHT +GGT) ™ (3 = Hiy),
where the sequence {A;,t =1,2,..., T} is generated by
_ -1 I\T
Ap1 = (N)T'AA I = HT(HAHT + GGT) 7 HAJAT ((N) ™) -
+FFT,

with the initial condition A¢ being the covariance of xg.
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Now, if instead of the noisy channel, we have intermittent failure of a channel
which otherwise carries perfect state information, modeled as in Sect. 2.2 but with
clean transmission when the channel operates (failure being according to an inde-
pendent Bernoulli process as before), then as a candidate CE SPE, the pair (34)—(35)
is replaced by

N 1 _

u = Ot = 7ele) = =B Zia (N; Nag, 1=0,1,..., (38
~ _I\T

vf = w0 = e (&) = DT Zo (N1 AL, 1=0,1,.., (39)

where the stochastic sequence {¢;,t =0, 1, ...} is generated by

1
{l:ﬂ,yt—i—(l—ﬂ,)(l—(XBBT—i—DDT)ZH_l(Nt1)T>A§,_1, o = yo- (40)

We will explore in Sect. 4 whether these CE policies are in fact SPE policies, and
under what conditions.

3 A Two-Stage Discrete-Time Game with Common
Measurement

To explicitly demonstrate the fact that certainty equivalence generally fails in games
(but holds in a restricted sense), we consider here a specific 2-stage version of the
formulation (7), (8), (11):

Xo=Xx] —u+wi; X1 =x0 + 2v + wy, 41
yi =B1(x1 +r1); Yo = Bo(xo + ro), (42)
Ty ) = E{x2)? + au® — v lu=y (), v=pn()}, (43)

with u = y (y1, yo0; B1, Bo), v = u(yo; Bo), where the random variables xg, wg, wi,
ro, r1 are independent, Gaussian, with zero mean and unit variance, and B, Bp are
independent Bernoulli random variables with Probability(8; = 0) = p, fort =0, 1.

3.1 Certainty-Equivalent SPE

The deterministic version of the game above, with u = y (x1, x9), v = u(xp), admits
a unique saddle-point solution (Basar and Olsder 1999), given by

2)
1-3x

y*(x1,x0) = X1, W (xo) = X0, (44)

I+
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whenever

1
0<A<§, 45)

and for A > 1/3, the upper value is unbounded.

Now, a certainty-equivalent (CE) SPE for the original stochastic game, if exists,
would be one obtained from the SPE of the related deterministic dynamic game, as
above, by replacing xo and x; by their conditional means, which in the case of x
would require the SP policy at the earlier stage (that is, stage 0). Carrying this out,
we have

w* (yo; Bo) = 1 3/\E[xolyo;ﬂo]= Y0, (46)

1—-3x
and

1
Y 00,11 Bo,1) = ——E[x11y1, yo; Bi, Bo; v = ¥ (yo; Bo) ]

1+ X
1 3 6
1+A|:ﬂl< Y= g0 T H *(yo: ﬂo))
1 1
+ﬂo<—gy1 + = y0+2M (os ﬁo))} 47

Note that if the channel does not fail at all (that is, 8o = 81 = 1), then one can have
a simpler expression for (47), given by:

1

N _ 3
Y (1, y0) = saan Tsaane (48)

3.2 Analysis for p =0 for CE SPE and Beyond

We assume in this subsection that p = 0, in which case the CE SPE (whose SPE
property is yet to be verified) is given by (46)—(48). It is easy to see that J(y*, v),
with y* as in (48) is unbounded in v unless A < 3/25, which means that the CE pair
(46)—(48) cannot be a SPE for A € [3/25, 1/3), even though the pair (44) was for the
deterministic game. For the interval A € (0, 3/25), however, the CE pair (46)—(48) is
a SPE for the stochastic game, as it can easily be shown to satisfy the pair of inequal-
ities (5). Further, for this case, since ©* is the unique maximizer to J(y*, u), and y*
is the unique minimizer to J (y, u*), it follows from the ordered interchangeability
property of multiple SP equilibria (Basar and Olsder 1999) that the SPE is unique.
Hence, for the parametrized stochastic dynamic game, a “restricted” CE property
holds—restricted to only some values of the parameter.

Now the question is whether the parametrized stochastic game admits a SPE for
A €[3/25,1/3). Clearly, it cannot be a CE SPE, that is the SPE of the determinis-
tic version cannot be used to obtain it. Note that, for A € [3/25, 1/3), if one picks
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y (1, y0) =[1/(1 + A)]y1 in J(y, n), then the maximum of this function with re-
spect to u exists and is bounded, which means that the upper value of the stochastic
game is bounded. Its lower value is also clearly bounded (simply pick v = 0).

Again working with the special case p = 0 (that is no failure of the noisy chan-
nels), we now claim that there indeed exists a SPE for A € [3/25, 1/3), but it entails
a mixed strategy for the maximizer (Player 2) and still a pure strategy for the mini-
mizer (Player 1). These are:

A
*
= = E =
v=p (30 =75 Elxolyol +&=7—=-yo + £, w
) 5, 4—-5J1-3x )
E~N(0,0%), o’=———,
81— 34
and
u=y*(y yO):LE[xlb’l ¥0. v = 1*(30)]
, T .0,
2—J/1-3x 1
= Y1+ Y0 (50)
2(14 ) 41=3n

First note that o> > 0 for A € (3/25,1/3), and 0> =0 at A = 3/25, and further
that the policies (49)—(50) agree with (46)—(47) at A = 3/25, and hence transition
from CE SPE to the non-CE one is continuous at A = 3/25. Now, derivation of (49)—
(50) as a SPE uses the conditional equalizer property of the minimizer’s policy (that
is (50)). One constructs a policy y for the minimizer, under which (that is, with
u =y (y0, y1)) the conditional cost

E{(x2)* + 2u* — v?|yo}

becomes independent of v, and (50) is such a policy; it is in fact the unique such
policy in the linear class. Hence, any choice of p, broadened to include also mixed
policies, would be a maximizing policy for Player 2, and (49) is one such policy.
This establishes the left-hand-side inequality in (5). For the right-hand-side inequal-
ity, it suffices to show that (50) minimizes J (y, u*); this is in fact a strictly convex
LQG optimization problem, whose unique solution is (50). Because of this unique-
ness, and ordered interchangeability of multiple SPE (Bagar and Olsder 1999), the
SPE (49)—(50) is unique.

3.3 The Case p > 0

We now turn to the case where the channels fail with positive probability, for which
a candidate pair of SPE policies, based on CE, was given by (46)—(47). Their SPE
property is yet to be shown, as well as the range of values of A for which it is valid as
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a SPE is yet to be determined, which we address in this subsection. Toward that end,
let us first consider, as a benchmark, the special case with noise-free (but still failure
prone) measurement channel. This would therefore correspond to the formulation
where (42) is replaced by

1 = Bx1; Yo = Boxo.

The counterpart of (46)—(47) in this case would be (this can also be obtained directly
from the perfect-state SPE):

21
1-3x

v=pu*(yo; fo) = Yo, (5D

1 1

1—
lekY1+( ,51)1_HL

u =y*(y0.11: Bo,11) = B [Yo+2u*(o)].  (52)
Now, if Player 2 employs (51), then the unique response of Player 1 will be (1/(1 +
M)xy for By =1, and (1/(1 + 1)) E[x1]xo] = (1/(1 + 1)) (xo + 2u*(x0)) if f1 =0
and Bo = 1, which agrees with (52); if both 8’s are zero, then clearly Player 1’s
response will also be zero. Note that the responses by Player 1 in all these cases are
unique.

If Player 1 employs (52), then the conditional cost (conditioned on yp, Bo) seen
and to be maximized by Player 2 is:

For Bg =1 (after some simplifications):

1+P+(1—p)L[1+(XO+2U)2]+P . xo+2v—iu*<yo> 2p
14+ A 14+ 14+ A

)\' *
+ m[xo +2u ()’0)]217 —v? (53)

and for By = 0 (after some simplifications):

A 3A+4p—-1 ,
1 —Q2 - —_— - 54
+p+1+x( p)+ T Y (54)
Both (53) and (54) are strictly concave in v if and only if
L and <1292 (55)
< - an < ,
P=7 3

in which case the unique maximizing solution to (54) is v* = 0, and likewise to
(53) is v* = u*(xg) = (21/1 — 31)xp, both of which agree with (51). Hence, the
CE pair (51)—(52) indeed provides a SPE if the condition (55) holds, that is the
failure probability should be less than 1/4, and the parameter A should be less than
a specific threshold, which decreases with increasing p. Note that if p =0, we
recover the earlier condition (45) for the deterministic game, where we know that
if A > 1/3, then the upper value is unbounded. The question is whether the same
applies here, for A > (1 —4p)/3. This indeed is the case, as one can easily argue that
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the concavity condition of (54) cannot be improved further as universally optimal
choice for y when Player 1 has access to x; but not x¢ has led to that conditional
cost. Hence, the pair (51)—-(52) is the complete set of SPE for the game of this
subsection (with channel failure but no noise in the channel), and the condition (55)
is tight.

We are now in a position to discuss the SPE of the original stochastic game of
this section, to find the conditions (if any) under which the CE policies (46)—(47)
are in SPE, and whether those conditions can be relaxed by employing structurally
different policies (as in Sect. 3.2).

3.4 CE SPE and Beyond for the 2-Stage Game

To obtain the complete set of SPE for the original stochastic 2-stage game, our
starting point will be the pair of CE policies (y*, u*) given by (47) and (46), and to
find the region in the A — p space for which these policies constitute a SPE. Clearly,
we would expect that region (if exists) to be no larger than the one described by (55)
since that one corresponded to the noise-free channel.

Let us first consider the right-hand inequality of (5) for this game, with
w*(yo; Bo) given by (46). In terms of y this is a strictly convex quadratic opti-
mization problem, which one minimizes with respect to u after conditioning the
cost on yjo,1] and Bo,1]; the result is the unique solution given by (47). This part of
the inequality does not bring in any additional restriction on A and p, other than the
condition A < 1/3 needed in the expression for u*.

The left-hand inequality of (5) for this game is a bit more involved. We now pick
y* as given by (47), and maximize the resulting cost over w, which is equivalent to
maximizing the conditional cost with respect to v where conditioning is with respect
to yo and Byp. Even though this is also a quadratic optimization problem, existence
and uniqueness of maximum are not guaranteed for all values of A and p, and we
have to find (necessary and sufficient) conditions for strict concavity (in v). Now,
the conditional cost (conditioned on (yg, Bo), and with v = (yg, Bo)) is:

For By = 1 (after some simplifications):

, 2 | 2451 5 1 ?
P[x0+ U—myo} +( _p)[m(x(H- v)_myo}
(1 & 2 : e
+ A( _p)l:m(xo-l- v)-l-m)’o} —v
5012 + 88x + 38 Ap 2

and for By = 0 (after some simplifications):
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245 2
(1I- p)[—(xo +2v)} +i( - p)[

2
2
5AT7) (x0+2v)i| v

_3
5(1+ 1)

5002 + 88\ + 38

20 +2 1—
+ plxo+2v]" +2p+ (1 - p) 50172

(57)

Both (56) and (57) are strictly concave in v if and only if the coefficients of the
quadratic terms in v (identical in the two cases) are negative, that is

424 51)2 361
25(14+4)2 251 4 A)2

2
(l—p)|: ] +4p—-1<0,

which is equivalent to

3-28p
25

3

p< % and A< (58)
We note that the upper bound on the failure probability p is precisely the condition
that makes the upper bound on A in (58) positive. Another point worth making is
that we naturally would expect the conditions on p and A as given above in (58) to
be more stringent than the ones in (55), for the noise-free case. Clearly the condition
on p is more restrictive, as 3/28 < 1/4. For the bound on A, it again immediately
follows that

3—28p 1—4p
25 3 )
whenever p < 1.

Now, to complete the verification of the SPE property of the pair (47) and (46),
we still have to show that the unique maximizers of the strictly concave (under (58))
quadratic conditional costs (57) and (56) are given by (46). For the former, the result
follows readily since its maximizer is v = 0. For the latter, a simple differentiation
with respect to v, and using E[x¢|yo, Bo = 1] = (1/2)y0, leads after some extensive
calculations and simplifications to v = [A/(1 — 3X)]yo, which is the same as (46).

Hence, the SPE for the 2-stage game of this section (with noisy channels and
nonzero failure probabilities) is a CE SPE, but for a more restrictive set of values
for p and X (compare (58) with (55), as we have noted earlier). The question now is
whether the gap can be closed by using non-CE policies, as was done in the failure-
free case (p = 0). Clearly, the upper bound of the game is finite for the entire set of
values of p and A in (55) (simply substitute (52) into the cost for u, with additive
noise in y; and yp) and note that the presence of additive noise in the channels does
not alter the required concavity condition, and hence we have a well-defined strictly
concave quadratic maximization problem for v under the same condition (55).

As already mentioned, the region in the parameter space A — p that corresponds
to the CE SPE (47) and (46) is smaller than the region corresponding to the SPE of
the noise-free channel case, and the question now is whether region of existence of
a SPE can be enlarged by transitioning to a pair of non-CE policies, as it was done
in Sect. 3.4 for the case when p = 0. We will see that this is indeed the case, and
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an equalizer policy for Player 1 does the job. Its derivation, however, is a bit more
complicated than the one of Sect. 3.4 because the possibility of channel failures
brings in an additional element of complexity (even though the basic idea is still
the same). Let us first assume that 8y = 1, and start with a general linear policy for
Player 1:

u=7y(y1,yo, B1) = ary1 +ao(B1)yo, (60)

where a1, ap(B1 = 1) =: a(l), ao(B1 =0) =: ag are constant parameters yet to be

determined.? They will be determined in such a way that with (60) used in J(y, v),
the latter expression becomes independent of v (when conditioned on yg). Skipping
the details, the expression for

J@, ) = E{(x1 =P G1, 0, B0 +w1) AP (1, 0, B))* =01y, o =1} (61)
is
plxo+2v = afyo]” + (1 = p[(1 = an)(xo +2v) — agyo]’
+ (1 = p)[ar (0 +20) + adyo]” = v2 + (1 = pIr(2(an)® + (ap)” + 1)
+2p+ (1= p(@)*+ (1 = a)? + 1) + Ap(f)* (0)* + 1. (62)
This is a quadratic function of v; the coefficient of v? can be annihilated by choosing

1 [1 _J(d—-4p-3nd —p)]

(63)

o] =
14+ A 2(1—p)

which is a well-defined expression provided that 4p + 31 < 1, and naturally (since

A > 0) also p < 1/4 which are identical to (55). For annihilation of the coefficient

of v, on the other hand, we need the following relationship between Olé and ag :

1
2pa +agy/(L—4p =30 (1~ p) = . (64)

Now, we have to show that these are best responses to some policy by Player 2,
which will necessarily be a mixed strategy, as in Sect. 3.4. The process now is to
assume that v has the form*

v=[(yo) =koyo +&, &~ N(0,07%), (65)

for some k¢ and o2; find the best response of Player 1 to this by minimizing J (y, /1)
with respect to y (which, by strict convexity, will clearly be unique, and be in

3We have taken o1 not to be dependent on S, because when 81 =0, y; =0, making «; superflu-
ous.

4One can take any form here, since 7 had annihilated v, but we take linear-plus-Gaussian in antic-
ipation of y to be in equilibrium with v.
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the structural form (60)); require consistency with (63)—(64); and solve for ko, o2,

oc(l), oeg. The outcome is the following set of unique expressions:

kzL o2—=_ vV V(l_p)_é (66)
0T T30 2/ —4p—3n) 8
Lo L _VTa =3 —p) ©
0721 =-30)" 0 41— p)(1 —32)

To complete the construction of the SPE, we still have to find the conditions under
which o2 as given above is well defined (that is, it is positive). The required con-
dition (both necessary and sufficient, provided that (55) holds, which is a natural
condition) is

41— p) > 5\/(1 —4p-30)(1—-—p) & Ai> max(O, 3 —2§8p>. (68)

Note that the (lower) bound on A matches exactly the upper bound in (58), and hence
non-CE SPE policies make up for the restriction brought in by the CE SPE.

To gain further insight (for purposes of establishing continuity) we can look at
two limiting cases: (i) For p = 0, the non-CE solution matches exactly the one
given in Sect. 3.2 for the failure-free case. (ii) At A = (3 —28p) /25, with p > 3/28,
which is the boundary between the two regions corresponding CE and non-CE SPE,
a1 in (63) is 3/[5(1 4 A)], which is exactly the coefficient of y; in (47) with 81 =
Bo=1; aé in (67) is 1/[5(1 — 3X)], which is exactly the coefficient of yg in (47)
with 81 = Bp = 1; and finally, ag in (67) (which does not depend on p) is exactly
the coefficient of yg in (47) with 1 =0, Bo = 1, and this one is for all A satisfying
all other conditions, and not only at the boundary.

The remaining case to analyze is Sy = 0. The CE SPE in this case would be (from
(46)—(47)):

y ()’1,/31)—3(1+)L))’17 v _07 (69)

which is a valid one (that is the cost under y* is strictly concave in v) if and only if
the multiplying term for v? is negative, that is

4031+ 1)2 16X
(1 )[( +1)

—1+44p <0,
9(1 4 1)2 9(1+A)2] =

which simplifies to A < (5 —32p)/27, for which we need p < 5/32 (for positivity).
To extend the solution to a larger region, we again have to look for an equalizer
policy that annihilates v, and is also best response to v = £ ~ N (0, o'2) for some 2.
Following the same process as earlier, we start with u = o1y, and compute the cost

faced by Player 2, where the multiplying term for v? is:

401 = p)[(1 —a1)® +A(an)*] = 1 +4p.
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Setting this equal to zero, and solving for «¢; we obtain the expression given by (63).
Now, the best response by Player 1 to v =§ is

1 1 1
= — E[xo+2 = —(1—=vT=3x )y,
“=T0 [xo0 + 2§ + woly1] k( 5 )yl

where we then invoke the multiplying term above to equal o1 given by (63), which

leads to the following unique expression for o'2:
1-— 3
R (s (70)
2J1—4p—-31 4
which is well-defined and positive provided that
5-32 1—4
max| 0, P <A< p' 71
27 3

Note that the lower bound on A matches the upper bound in the case of the CE
SPE, and that the SPE policy of Player 1 is continuous across the boundary A =
(5—-32p)/27.

We now collect all this in the following theorem, which is the main result of this
section.

Theorem 1 The two stage discrete-time stochastic game formulated in this section
admits a saddle-point equilibrium (SPE) provided that

otherwise, the upper value of the game is unbounded. The SPE policies of the play-
ers, (y*, u*), admit different characterizations in two different regions of the pa-
rameter space, and also depending on whether By =1 or 0:

e For A <(5—32p)/27 and p < 5/32 when By =0, and » < (3 —28p)/25 and
p < 3/28 when By =1, y* and u* are given by (47) and (46), respectively; this
constitutes a certainty-equivalent (CE) SPE.

e For max(0, (5 —32p)/27) <A <1 —(4p/3) and p < 1/4 when By =0, and
max(0, (3 —28p)/25) <A <1 — (4p/3) and p < 1/4 when By = 1, the SPE
policies are of the non-CE type, given by

Y*(r1, 503 B, Bo) = a1 y1 + (Brag + (1 —ﬂl)ag)yo (72)
w* (yo; Bo) = koyo + &,
— (73)
£~ N(0,0%), 02—# §+lﬂo,

T 2/1—45—-3x1 4 38

where o is given by (63), and the pair (otg, aé) is given by (67).
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4 CE SPE of the LQG ZSDG in Continuous and Discrete Time

4.1 Various Approaches Toward Construction of SPE

For a two-person ZSDG (in normal or strategic form), with strategy spaces I" (for
Player 1, the minimizer) and M (for Player 2, the maximizer), with (expected) cost
function J, defined on I" x M, let us recall from (5) that a pair (y* € I', u* € M)
is in SPE if

J(y*m) Iy ) <J(y.u¥), VYyerl.peM.

The general direct approach toward derivation of a SPE would be:

e Fix u € M as an arbitrary policy for Player 2, and minimize J (y, u) with respect
toyonl'.

e Fix y € I" as an arbitrary policy for Player 1, and maximize J (y, i) with respect
to u on M.

e Look for a fixed point, which would then be a SPE.

Even though direct, this approach would entail a very complex process for dynamic
games (in continuous or discrete time), even if they are of the linear-quadratic type.
Unless the information structure is static, the optimization problems involved struc-
turally depend on the selection of arbitrarily fixed policies, rendering the underlying
optimization problems unwieldy.

An alternative (still direct) approach would be a recursive (backward-forward)
one, applicable to discrete-time dynamic games with particular information struc-
tures, and possibly extendable to some classes of continuous-time ZSDGs:

e Proceed recursivelyatr =7 — 1,7 —2,....

e At t, solve for SPE (if exists) of the 1-stage game by fixing in J policies for
t+1,...,T —1 at their optimum choices and for O, ..., ¢ — 1 arbitrarily, with
the former possibly depending on the optimum policies (yet to be determined) at
0,1,...,t.

Such a construction is doable, but it is quite tedious (and depends on the specific in-
formation structure, and applies primarily to discrete-time games); for such a deriva-
tion, in a broader Nash equilibrium context, see Bagar (1978a).

A third, indirect approach, entails expansion of information structures of the
players, obtaining a SPE in the induced expanded (richer) policy spaces, and then
projecting the solution (contracting it) back to the original policy spaces. Such an
approach works when the SPE values of the two games (one on original policy
spaces and the other one on the expanded ones) are the same, and this is generally
the case if the expansion involves only past actions of the players. Hence, we have
the following process:

e Endow both players with past actions, assuming that they already have access to
the past measurements in terms of which the actions were generated.
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e Any SPE to the original stochastic dynamic game (SDG) is also a SPE to the new
one (but naturally not vice versa).

e Any two SPE of the new SDG are ordered interchangeable.

e Solve for some (conveniently constructed) SP policies for the new SDG, and find
representations (Basar and Olsder 1999) in the original policy spaces.

e Verify for the original SDG that the policies arrived at are indeed in SPE (this step
is a verification of existence, which is much simpler than verifying characteriza-
tion).

A further justification of this indirect approach can be found in Bagar (1981). In
the next two subsections, we illustrate the approach on the two LQ ZSDGs intro-
duced and discussed in Sects. 2.1, 2.2, 2.4, and 2.5. While doing this, we have to
keep in mind the features we have observed within the context of the 2-stage ZS
SDG of Sect. 3.

4.2 SPE Property of CE Policies of the LOG ZSDG

We turn here to the continuous-time LQG ZSDG of Sect. 2.1, for which the CE
policies (24)—(25) were offered as a candidate SPE for the original SDG with noise
in the common channel. We now investigate whether these policies are indeed in
SPE for at least some region of the parameter space (as was the case for the 2-stage
game of Sect. 3). Toward this end, we first enlarge the policy spaces of the players to
include also past actions, that is, the players now have access to (y[0,r), 4[0,1), V[0,1))
at time ¢. Denote the corresponding expanded policy spaces for Players 1 and 2
by I" and M, respectively. If yjo ;) was replaced by x; (that is, the perfect state
measurement case) and still allowing players to have access to past actions, the
pair of policies (21)—(22) would still be in SPE (Basar and Olsder 1999), whose CE
counterpart in I" x M would still be of the form (24)—(25), with however {x;, t > 0}
replaced by {¢;, t > 0}, generated by

dty = (Ag + Bug + Dv)dt + K () (dy; — HGdt), 5o =0,1=0. (714)

Note that the above is still the Kalman filter equation, but driven not only by the
measurement but also by the past actions. Now, one can show using the ordered
interchangeability property of multiple SPE policies that any pair of SP policies
in I" x M also constitute a SPE in the expanded policy spaces I" x M (but not
vice versa) (Basar and Olsder 1999; Basar 1981), and further that by some standard
properties of the LQG control problem discussed in Sect. 2.3, the pair (24)-(25)
indeed constitutes a SPE for the new SDG with expanded policy spaces, provided
that the RDE (23) does not have a conjugate point in the interval [0, ], which
is exactly the condition of existence of SPE to the LQG ZSDG with perfect-state
measurements.

Clearly, however, the SP policies above for the SDG with expanded policy spaces
are not implementable even for that game, because they require cooperation on the
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generation of the conditional mean of x, or that estimate ¢ (as in (74)) to be gen-
erated by a third party, and supplied to the two antagonistic players, which is not
realistic. To make it real-time implementable, and in line with the adversarial aspect
of the game, we have to replace these policies with ones that allow players to run
their own filters, driven by the common measurement (but not with actions of the
players), as given below:

1
u* (1) = ¥ Oo.n) = v () = —XBTZ(%, 1>0, (75)

V() = i (o) = wy - = DT Z(tme, 120, (76)
where z and 7 are generated by (as counterpart of (74)):

dz; = Az;dt + K(t)(dy; — Hz;dt), zo=0,1>0, (77)
dn; = Anedt + K (1)(dy, — Hnedt), no=0,1>0, (78)

where
. 1
A=A— (XBBT — DDT)Z(I),

K is the Kalman gain, given again by (18), with A solving (28).

The policies (yCE, /,LCE) given by (75)—(76) constitute representations of the SP
policies in the expanded policy spaces and now belong to I" x M, and as such also
constitute SPE for the original SDG, as argued earlier, provided that the response
of Player 1 to (76) and that of Player 2 to (75) are well defined, leading to bounded
costs. For the former, it can be shown easily (and in fact argued without any explicit
computation) that

: CE CE |, CE
;nelpl(y,u )=J(r" ),
and particularly that the quadratic function J (u, u©F) is strictly convex in u. This
establishes the right-hand-side of the SP inequality (5). For the left-hand-side in-
equality, on the other hand, we have the LQG optimal control problem

CE

max J()/ ,u),

nemM
with 2n-dimensional differential constraints:
dx; = (Ax + Dv,)dt — %BTZ(t)z,dt + Fdwt, t>0,
dz; = Azdt + K (t)(dy, — Hz;dt), z0=0,1>0.
The conjugate-point condition on (23) is not sufficient for this LQG optimal con-

trol problem to be well defined, as the cost J (yCE, v) could be non-concave in v.
Strict concavity here is in fact the only condition that would be needed for the pair
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(yCE, /,LCE) in (75)—(76) to constitute a SPE. Now note that J (yCE, v) can be written
as

iy 1 P
J(y<Ev) = E{|x,_f|%2f +f0 [|x,|2Q + BT 20w - |vt|2]dt}

ty
=: E{|mtf|zéf +/O [lme 1% — |v,|2]dz},

where m 1= (xTz1)T, Qf :=block diag(Q 7, 0), and 0 := block diag(Q, (1/1) x
ZBBT 7). Further, m evolves according to

dm[ = A~m[dt + thdt + Fdwl,

where D := (DT, 017, F:= [FT,GTKT]", and A is a 2n x 2n matrix, whose ij-
th block is, for i, j = 1,2: [Al11 := A, [Al»1 := KH, [Al12 := —(1/A)BBT Z, and
[Al»:=A—KH.

The condition for strict concavity for this optimization problem, regardless of
the nature of the information available to Player 2, is (Basar and Bernhard 1995)
nonexistence of a conjugate point to the RDE below on the interval [0, ]:

S+SA+ATS+SDDTS+0=0, S(tr)=0;. (79)
‘We now collect all this in the theorem below.

Theorem 2 The continuous-time LQG ZSDG of Sect. 2.1 admits a pure-strategy
SPE provided that the RDEs (23) and (79) have well-defined nonnegative-definite
solutions on the interval [0, ty], in which case the corresponding policies for the
players, in SPE, are given by (75)—(76). These feature a restricted certainty equiva-
lence property.

Remark 1 A number of observations are in order here. First, the policies in SPE for
the SDG are not simple CE versions of the SPE of the deterministic game, that is
they are not the pair (24)—(25), even though they can be derived from the SPE of
the deterministic game by endowing the players with two separate filter equations
even though the players have access to a common measurement channel. Second,
the condition of existence of a pure-strategy SPE for the SDG is more restrictive
than its counterpart for the perfect-state version (or essentially equivalently the de-
terministic game). This would not be surprising in view of the results of Sect. 3
for perhaps the simplest stochastic dynamic game, where the gap between the two
conditions (for existence of pure-strategy SPE in the games with perfect state and
noisy state information) was completely covered by allowing for mixed strategies
(for the maximizing player). It is quite plausible that the same would hold here, but
derivation of such a mixed-strategy SPE for the continuous-time LQG ZSDG still
remains a challenging task.
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4.3 SPE Property of CE Policies of the LQG Discrete-Time ZSDG

We now proceed with an analysis that is the counterpart of the one above (in
Sect. 4.2) for the discrete-time game of Sect. 2.2 and Sect. 2.5, not for the most
general case, but for two scenarios: (i) when there is no failure of channels (that
is p =0, as in Sect. 3.2), and (ii) the channel provides perfect state measurement,
but intermittently fails (as in Sect. 3.3). In both cases, we obtain restricted CE SPE.
The derivation is a direct counterpart of the one in Sect. 4.2), and hence to avoid
duplication we will just provide the basic results without providing details of the
reasoning and the pathway.

Let us first discuss case (i). In Sect. 2.5, we had offered (34)—(35) as a candidate
SPE pair for this scenario, but as we have argued in the previous subsection, having
a single filter to be shared by both players is not a realistic situation, and hence we
will have to introduce individualized compensators. In view of this, (34)—(35) will
have to be modified as follows:

1 _I\T
uy :yz*(y[O,t])ZVtCE(Ztlt)z_XBTZH-](N, YAz, 1=0,1,..., (80)

_I\T
v = 1 o.) = M) = DT Zep (NTY) Ange, £=0,1,. ., (81)

where z;; and 7|, are generated by, with zg;_; = O0:

-1
)t = Zt|t—1 +AtHT(HAzHT+GGT) ()’Z—HZW—I)
2t = (N) " Az (82)

_ —1
+(N)T'AAHT(HAHT +GGT) ™ (3 — Hze),

and, with nol—-1 = 0,

—1
Nejr = Nejr—1 +AtHT(HAtHT+GGT) e — Hnje-1)
et = (N~ Ay (83)

_ —1
+(N)T'AAHT (HAHT + GG (3 — Hnge—1),

and the sequence {A;,t =1,2,..., T} is as in (37). By going through similar argu-
ments as in the previous subsection, the pair (80)—(81) provides a SPE, provided that
(33) holds and the quadratic function J (yCE, v) is strictly concave in v. An explicit
condition can be obtained for the latter in terms of a 2n x 2n discrete-time Riccati
equation, which involves a recursive verification as in (33).

For case (ii), that is when y; = B;x;,t =0, 1, ..., T — 1, the starting point is the
pair of policies (38)—(39), where as before we endow the players with two separate
compensators, with states g“l and {2, generated by, fori =1, 2,
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] 1 . .
& =By + (1 - ﬁz)<1 - (XBBT + DDT)Zz+1(N,_1)T)A§;_1, & = yo.

(84)
Hence, the players’ CE policies become
- 1 11
ui =y o) =7 @) == B Zi (N7 AL, 1=0,1,..., (89)
- —1y—1
vf = i o) = Ar (&) = DT Ze (N7 T AL, 1=0.1,.., (86)

which, by an argument similar to the earlier case, are in SPE provided that (33)
holds and the quadratic function J ()7CE, v) is strictly concave in v. As before, an
explicit condition can be obtained for the latter in terms of a 2n x 2n discrete-time
Riccati equation, which involves a recursive verification as in (33).

In view of the complete set of results of Sect. 3 for a 2-stage version of this
game, for case (ii), we would not expect a less stringent condition to be obtained
(that is, there would not be any need to expand the policy spaces to include mixed
strategies), whereas for case (i) the extra condition introduced in terms of strict
concavity of J(y“E, v) in v can be dispensed with by inclusion of mixed strategies.
We do not pursue this any further here.

For the more general case, however, when the channel is noisy and failure prob-
ability is p > 0, still a restricted CE will hold, with z and 7 in (82)—(83) now in-
corporating the possibility of failures, as in the case of derivation of Kalman filters
with missing measurements (Shi et al. 2010). Here also a strict concavity condition
will be needed for the existence of a pure-strategy SPE, in addition to the one for
p =0, which however can be dispensed with by inclusion of mixed strategies.

5 Discussion, Extensions, and Conclusions

One important message that this chapter conveys (which applies to more general
differential/dynamic games with similar information structures) is that in zero-sum
stochastic differential/dynamic games (ZS SDGs) a restricted certainty equivalence
(CE) applies if players have a common measurement channel, but the adversarial
nature of the problem creates several caveats not allowing the standard notions of
certainty equivalence or separation prominent in stochastic control problems (Wit-
senhausen 1971a, 1971b; Fleming and Soner 1993; Yiiksel and Bagar 2013) to find
an immediate extension. Expansion of information structures to include also action
information compatible with the original information, and without increasing payoff
relevant information, appears to be a versatile tool in an indirect derivation of pure-
strategy saddle-point equilibria (SPE), which however does not apply to derivation
of mixed-strategy SPE, as it relies heavily on the ordered interchangeability prop-
erty of multiple pure-strategy SPE. For the same reason, the indirect approach does
not apply to nonzero-sum dynamic games; in fact, Nash equilibria of genuinely



Stochastic Differential Games and Intricacy of Information Structures 47

nonzero-sum stochastic games (unless they are strategically equivalent to zero-sum
games or team problems) never satisfy CE (Basar 1978b). Now, coming back to ZS
SDGs, when a generalized CE SPE exists in some region of the parameter space,
this is not the full story because the game may also admit mixed-strategy SPE out-
side that region, which however has to be obtained using a different approach—using
notions of annihilation and conditional equalization, as it has been demonstrated in
Sect. 3. Hence, expansion of strategy (policy) spaces from pure to mixed helps to
recover the missing SPE.

We have deliberately confined our treatment in this paper to ZS SDGs with sym-
metric information, to be able to introduce a restricted (and in some sense gener-
alized) notion of CE and to show that any attempt of directly extending CE from
stochastic optimal control to games is a path full of pitfalls, even though the prob-
lem (of derivation of SPE) is still tractable, but using an indirect approach (that
makes use of expansion of strategy spaces and ordered interchangeability property
of multiple pure-strategy SPE). As indicated earlier, this approach does not extend
to nonzero-sum games (NZSGs), because expansion of strategy spaces (through
actions) leads to multiplicity of Nash equilibria, and in fact a continuum of them
(Bagar and Olsder 1999), and multiple Nash equilibria (NE) are not orderly inter-
changeable. Still, there is another approach to derivation of NE with nonredundant
information, as briefly discussed in Sect. 1, provided that we have a discrete-time
game, with complete sharing of information (that is, a common measurement chan-
nel) or sharing of observations with one step delay (Basar 1978a). The same ap-
proach would of course apply to ZSDGs as well (with one-step delayed sharing),
but then the SPE will not be of the CE type. If there is no sharing of information
(or with delay of two units or more), and players receive noisy state information
through separate channels, then the problem remains to be challenging in both ZS
and NZS settings, unless there is a specific structure of the system dynamics along
with the information structure, as in Nayyar and Bagar (2012).

Several fairly direct extensions of the results of this chapter are possible, all in
the ZS setting. First, it is possible to introduce intermittent failure of the common
measurement channel (2) in the continuous-time case, by mimicking (8):

dy; = Bt (Hx;dt + Gdw;) or dy; =B:Hx;dt + Gdw;, t>0,

where B; is an independent two-state Markov jump process (or a piecewise deter-
ministic process) with a given rate (jumps are between f; = 1 and B; = 0), and
both players observe realization of this process. The counterpart of the analysis for
the discrete-time case could be carried over to this case also (for a related frame-
work, see Pan and Basar 1995). A variant of this, in both discrete and continuous
time, is the more challenging class of problems where the failure of the transmis-
sion of the common noisy measurement of the state to the players is governed by
two independent Bernoulli processes with possibly different rates. Such ZS SDGs
would involve primarily two scenarios: (i) the players are not aware of the failure of
links corresponding to each other, and (ii) this information is available (that is play-
ers share explicitly or implicitly the failure information) but with one step delay.
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Further extensions to (i) multi-player ZS SDGs (with teams playing against teams,
where agents in each team do not have identical information), and (ii) nonzero-
sum stochastic differential games (with particular type of asymmetric information
among the players) constitute yet two other classes of challenging problems. In all
these problems, including the ones discussed in Sect. 4, characterization of mixed-
strategy SPE (as extension of the analysis of Sect. 3) or NE stand out as challenging
but tractable avenues for future research.
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Policy Interactions in a Monetary Union:
An Application of the OPTGAME Algorithm

Dmitri Blueschke and Reinhard Neck

Abstract In this chapter we present an application of the dynamic tracking games
framework to a monetary union. We use a small stylized nonlinear two-country
macroeconomic model (MUMODI1) of a monetary union to analyse the interac-
tions between fiscal (governments) and monetary (common central bank) policy
makers, assuming different objective functions of these decision makers. Using the
OPTGAME algorithm we calculate equilibrium solutions for four game strategies:
one cooperative (Pareto optimal) and three non-cooperative games: the Nash game
for the open-loop information pattern, the Nash game for the feedback information
pattern, and the Stackelberg game for the feedback information pattern. Applying
the OPTGAME algorithm to the MUMOD1 model we show how the policy makers
react to demand and supply shocks according to different solution concepts. Some
comments are given on possible applications to the recent sovereign debt crisis in
Europe.

1 Introduction

The economic situation in the European Monetary Union (EMU) is relatively unsta-
ble nowadays due to the economic crisis of 2007-2010 and a wide range of struc-
tural problems in the affected countries. At the breakout of the last economic crisis
policy makers tried to cooperate and to use coordinated countercyclical fiscal and
monetary policies to reduce the negative impact of the crisis, placing great emphasis
on the GDP growth rate and unemployment. Unfortunately, the public debt situation
worsened dramatically and we have been facing a severe sovereign debt crisis in Eu-
rope since 2010. Today, there is no consensus among politicians on what is the best
way out of the crisis. The European Monetary Union does not appear to be acting
like a union of cooperating partners speaking with one voice but like a pool of inde-
pendent players seeking gains for their own country only. The core of the problem
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seems to be a lack of agreement about objectives and strategies to pursue. This is
a typical problem of dynamic strategic interaction. Hence, it is appropriate to run a
study of a monetary union using concepts of dynamic game theory.

The framework of dynamic games is most suitable to describe the dynamics of
a monetary union because a monetary union consists of several players with inde-
pendent and different aims and instruments. Even if there are common, union-wide
objectives, each of the players may assign different importance (weights) to these
targets. In addition, the willingness to cooperate to achieve the common goal is
country-specific as well. For these reasons it is necessary to model the conflicts
(‘non-cooperation’) between the players. Such problems can best be modeled us-
ing the concepts and methods of dynamic game theory, which has been developed
mostly by engineers and mathematicians but which has proved to be a valuable an-
alytical tool for economists, too (see, e.g., Basar and Olsder 1999; Van Aarle et al.
2002).

In this chapter we present an application of the dynamic tracking game frame-
work to a macroeconomic model of a monetary union. Dynamic games have been
used by several authors (e.g., Petit 1990) for modeling conflicts between monetary
and fiscal policies. There is also a large body of literature on dynamic conflicts be-
tween policy makers from different countries on issues of international stabilization
(e.g., Hamada and Kawai 1997). Both types of conflict are present in a monetary
union, because a supranational central bank interacts strategically with sovereign
governments as national fiscal policy makers in the member states. Such conflicts
can be analysed using either large empirical macroeconomic models or small styl-
ized models. We follow the latter line of research and use a small stylized non-
linear two-country macroeconomic model of a monetary union (called MUMOD1)
for analysing the interactions between fiscal (governments) and monetary (common
central bank) policy makers, assuming different objective functions of these de-
cision makers. Using the OPTGAME algorithm we calculate equilibrium solutions
for four game strategies, one cooperative (Pareto optimal) and three non-cooperative
game types: the Nash game for the open-loop information pattern, the Nash game
for the feedback information pattern, and the Stackelberg game for the feedback in-
formation pattern. Applying the OPTGAME algorithm to the MUMOD1 model we
show how the policy makers react optimally to demand and supply shocks. Some
comments are given about possible applications to the recent sovereign debt crisis
in Europe.

2 Nonlinear Dynamic Tracking Games

The nonlinear dynamic game-theoretic problems which we consider in this chapter
are given in tracking form. The players are assumed to aim at minimizing quadratic
deviations of the equilibrium values (according to the respective solution concept)
from given target (desired) values. Thus each player minimizes an objective function
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J' given by:

min J' = ZL’ x,,u,,...,uﬁv), i=1,...,N, (1)

“1’ uy t=1
with

. 1 ~. .
Li(xrul, ... ul) =5[x - X)X, -X1], i=1....,N. (2

The parameter N denotes the number of players (decision makers). 7T is the ter-
minal period of the finite planing horizon, i.e. the duration of the game. X, is an
aggregated vector

Xe=[x u u? - ulM], 3)

which consists of an (n, x 1) vector of state variables

we=ly o At “
and N (n; x 1) vectors of control variables determined by the playersi =1,..., N:
I O
227
2= i@ .
®)
u = et u? up "
Thus X; (forallt =1,...,T) is an r-dimensional vector, where
r:=ny+ny+ny+---+ny. (6)

The desired levels of the state variables and the control variables of each player
enter the quadratic objective functions (as given by equations (1) and (2)) via the
terms

Xp=[% ' a? o @, 7
Each player i = 1,..., N is assumed to be able to observe and monitor the con-
trol variables of the other players, i.e. deviations of other control variables can be
punished in one’s own objective function. For example, the central bank in a mon-
etary union, which controls monetary policy, can also penalize ‘bad’ fiscal policies
of member countries.
Equation (2) contains an (r X r) penalty matrix 9; (i=1,...,N), weighting
the deviations of states and controls from their desired levels in any time period ¢
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(t =1,...,T). Thus the matrices

o 0 - 0

, il :
=0 R0 o Na=1T (8)

: o . 0

0 --- 0 RN

are of block-diagonal form, where the blocks Qi and R;j (,j=1,...,N) are

symmetric. These blocks Q' and R’ correspond to penalty matrices for the states
and the controls respectively. The matrices Q; > 0 are positive semi-definite for

alli =1,..., N; the matrices R, are positive semi-definite for i # j but positive
definite for i = j. This guarantees that the matrices Rfi > ( are non-singular, a nec-
essary requirement for the analytical tractability of the algorithm.

In a frequent special case, a discount factor « is used to calculate the penalty
matrix £2! in time period :

Q=o' 02h 9)

where the initial penalty matrix (26 of player i is given.
The dynamic system, which constrains the choices of the decision makers, is
given in state-space form by a first-order system of nonlinear difference equations:

1 N =
xI:f(x[—lvxtvuta'“aut 1Z[)7 X0 = XQ- (10)

X contains the initial values of the state variables. The vector z; contains non-
controlled exogenous variables. f is a vector-valued function where f* (k =
1,...,ny) denotes the kth component of f. For the algorithm, we require that the
first and second derivatives of the system function f with respect to x;, x;—; and
utl e, uﬁv exist and are continuous.

Equations (1), (2) and (10) define a nonlinear dynamic tracking game problem.
The task, for each solution concept, is to find N trajectories of control variables
u§ i=1,..., N, which minimize the postulated objective functions subject to the
dynamic system. In the next section, the OPTGAME3 algorithm, which is designed

to solve such types of problems, is presented.

3 The OPTGAME3 Algorithm

We apply the OPTGAME3 algorithm in order to solve the nonlinear dynamic track-
ing games as introduced in the previous section. This section briefly describes the
OPTGAMES algorithm; for more details about the solution procedures and the nu-
merical methods used, see Blueschke et al. (2013). OPTGAME3 was programmed
in C# and MATLAB. The source code of the algorithm is available from the authors
on request. A very simplified structure of the OPTGAME algorithm is presented in
Table 1.
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Table 1 Algorithm: Rough structure of the OPTGAME algorithm

1: initialize input parameters xo, (ﬁf)thl, (i,i)szl, (ﬁij)thl, (Zt),T:1 and f(---)
2: calculate tentative paths for states x; = f(x;—1, X;, utl, e, u{v, z),t=1,...,T
3: while the stopping criterion is not met (nonlinearity loop) do
4: for T to 1 (backward loop) do
5: linearize the system of equations: x; = A;x;—1 + Z[N: 1 B,’u; + ¢
6: min J¢, get feedback matrices: Gf and gf
7: end for
8: for 1 to T (forward loop) do
9: calculate the solution: ul* = Gix} | + gl and x} = f(x} |, x; ul*, ... ul*, z))
10: end for
11: at the end of the forward loop, the solution for the current iteration of the nonlinearity
loop is calculated: (u{*, x})’_,
12: end while
13: final solution is calculated: (ui* [T=1, (x/f [Tzl, Jix J*

The algorithm starts with the input of all required data. As indicated in step (1),
tentative paths of the control variables (iiﬁ)tT:l are given as inputs. In order to find
a tentative path for the state variables we apply an appropriate system solver like
Newton—Raphson, Gauss—Seidel, Levenberg—Marquardt or Trust region in step (2).
After that the nonlinearity loop can be started where we approximate the solution
of the nonlinear dynamic tracking game. To this end we linearize the nonlinear
system f along the tentative path determined in the previous steps. Note that we do
not globally linearize the system prior to optimization but repeatedly linearize the
system during the iterative optimization process. Accordingly, for each time period ¢
we compute the reduced form of the linearization of equation (10) and approximate
the nonlinear system by a linear system with time-dependent parameters in step (5).

The dynamic tracking game can then be solved for the linearized system using
known optimization techniques, which results in feedback matrices G and g’ in step
(6). These feedback matrices allow us to calculate in a forward loop the solutions
(ug* and x;) of the current iteration of the nonlinearity loop and, at the end of the
nonlinearity loop, the final solutions. The convergence criterion for the nonlinearity
loop requires the deviations of solutions of the current from previous iterations to
be smaller than a pre-specified number.

The core of the OPTGAME3 algorithm occurs in step (6) where the lin-
earized system has to be optimized. The optimization technique for minimizing
the objective functions depends on the type of the game or solution concept. The
OPTGAMES3 algorithm determines four game strategies: one cooperative (Pareto
optimal) and three non-cooperative games: the Nash game for the open-loop infor-
mation pattern, the Nash game for the feedback information pattern, and the Stack-
elberg game for the feedback information pattern.

Generally, open-loop Nash and Stackelberg equilibrium solutions of affine linear-
quadratic games are determined using Pontryagin’s maximum principle. Feedback
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Nash and Stackelberg equilibrium solutions are calculated using the dynamic pro-
gramming (Hamilton—Jacobi—Bellman) technique. A detailed discussion on how to
calculate the dynamic game solutions depending on the type of the game is given
in Blueschke et al. (2013). Here we apply the algorithm to a model of a monetary
union.

4 The MUMODI1 Model

In this chapter we use a simplified model of a monetary union called MUMODI,
which improves on the one introduced in Blueschke and Neck (2011) in order to
derive optimal fiscal and monetary policies for the economies in a monetary union.
The model is calibrated so as to deal with the problem of public debt targeting (a sit-
uation that resembles the one currently prevailing in the European Union), but no
attempt is made to describe the EMU in every detail. The model builds on discrete
data, which is a popular way in economics but there are similar frameworks in con-
tinuous time, see, for example, Van Aarle et al. (2002). One of the most important
features of our model is the fact that it allows for different kinds of exogenous shocks
acting on the economies in the monetary union in an asymmetric way. Analyzing
the impact of these different shocks allows us to gain insights into the dynamics of
a monetary union.

In this chapter, we investigate three different shocks on the monetary union:
a negative demand side shock and two negative supply side shocks. Before we
present these three studies it is appropriate to describe the model in detail.

In the following, capital letters indicate nominal values, while lower case letters
correspond to real values. Variables are denoted by Roman letters, model parameters
are denoted by Greek letters. Three active policy makers are considered: the gov-
ernments of the two countries responsible for decisions about fiscal policy and the
common central bank of the monetary union controlling monetary policy. The two
countries are labeled 1 and 2 or core and periphery respectively. MUMODI is a styl-
ized model of a monetary union consisting of two homogeneous blocs of countries,
which in the current European context might be identified with the stability-oriented
bloc (core) and the PIIGS bloc (countries with problems due to high public debt).

The model is formulated in terms of deviations from a long-run growth path. The
goods markets are modeled for each country by a short-run income-expenditure
equilibrium relation (IS curve). The two countries under consideration are linked
through their goods markets, namely exports and imports of goods and services. The
common central bank decides on the prime rate, that is, a nominal rate of interest
under its direct control (for instance, the rate at which it lends money to private
banks).

Real output (or the deviation of short-run output from a long-run growth path)
in country i (i =1,2) attime ¢t (¢t =1,...,T) is determined by a reduced form
demand-side equilibrium equation:

Vit =06i(7jr — 7ie) — Vi(rie — 0) + 0i yjr — BiTir + ki Yig—1) — Ni&ir +2dir, (11)
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for i # j (i, j = 1, 2). The variable m;; denotes the rate of inflation in country i,
ri; represents country i’s real rate of interest and g;; denotes country i’s real fiscal
surplus (or, if negative, its fiscal deficit), measured in relation to real GDP. g;; in
(11) is assumed to be country i’s fiscal policy instrument or control variable. The
natural real rate of output growth, 6 € [0, 1], is assumed to be equal to the natural
real rate of interest. The parameters 6;, yi, pi, Bi, ki, i, in (11) are assumed to be
positive. The variables zdj; and zdp, are non-controlled exogenous variables and
represent demand-side shocks in the goods market.

Fort=1,..., T, the current real rate of interest for country i (i = 1, 2) is given
by:

”it=1it—7T,~e}, (12)

where 7/, denotes the expected rate of inflation in country i and /;; denotes the
nominal interest rate for country i, which is given by:

Iit = Rt — Aigir + Xi Dir + zhpis, (13)

where Rp; denotes the prime rate determined by the central bank of the monetary
union (its control variable); —A; and x; (X; and y; are assumed to be positive)
are risk premiums for country i’s fiscal deficit and public debt level. This allows
for different nominal (and hence also real) rates of interest in the union in spite
of a common monetary policy due to the possibility of default or similar risk of a
country (a bloc of countries) with high government deficit and debt. zhp;; allows
for exogenous shocks on the nominal rate of interest, e.g. negative after-effects of a
haircut or a default (see Blueschke and Neck 2012, for such an analysis).

The inflation rates for each country i = 1,2 and f =1, ..., T are determined ac-
cording to an expectations-augmented Phillips curve, i.e. the actual rate of inflation
depends positively on the expected rate of inflation and on the goods market excess
demand (a demand-pull relation):

iy =70, + & Vir + 2Sit, (14)

where &1 and &, are positive parameters; zs1; and zsy; denote non-controlled ex-
ogenous variables and represent supply-side shocks, such as oil price increases, in-
troducing the possibility of cost-push inflation; 7/, denotes the rate of inflation in
country i expected to prevail during time period ¢, which is formed at (the end of)
time period ¢ — 1. Inflationary expectations are formed according to the hypothesis
of adaptive expectations:

nietzgi”i(t—l)+(l_Ei)”ie(tfl), (15)
where ¢; € [0, 1] are positive parameters determining the speed of adjustment of

expected to actual inflation.
The average values of output and inflation in the monetary union are given by:
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Table 2 Parameter values for

an asymmetric monetary 0 o 8is Bismis & Vi, piskisEis ki Xi
union, i = 1,2
30 3 0.6 0.5 0.25 0.0125
YEt=0)}’11+(1_0))y2n Cl)e[(),l], (16)
wgr =own; + (1 —w)my,  wel0,1]. a7

The parameter w expresses the weight of country 1 in the economy of the whole
monetary union as defined by its output level. The same weight w is used for calcu-
lating union-wide inflation in equation (17).

The government budget constraint is given as an equation for government debt
of country i (i =1, 2):

Di; = (1 +rig-1))Di¢—-1) — &ir + zhis, (18)

where D; denotes real public debt of country i measured in relation to (real) GDP.
No seigniorage effe