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Preface......................

Since the birth of Econometrics almost eight decades ago, theoretical and applied
Econometrics and Statistics has, for the most part, proceeded along ‘Classical lines
which typically invokes the use of rigid user-specified parametric models, often linear.
However, during the past three decades a growing awareness has emerged that results
based on poorly specified parametric models could lead to misleading policy and fore-
casting results. In light of this, around three decades ago the subject of nonparametric
Econometrics and nonparametric Statistics emerged as a field with the defining fea-
ture that models can be ‘data-driven’—hence tailored to the data set at hand. Many
of these approaches are described in the books by Prakasa Rao (1983), Härdle (1990),
Fan and Gijbels (1996), Pagan and Ullah (1999), Yatchew (2003), Li and Racine (2007),
and Horowitz (2009), and they appear in a wide range of journal outlets. The recogni-
tion of the importance of this subject along with advances in computer technology has
fueled research in this area, and the literature continues to increase at an exponential
rate. This pace of innovation makes it difficult for specialists and nonspecialists alike
to keep abreast of recent developments. There is no single source available for those
seeking an informed overview of these developments.

This handbook contains chapters that cover recent advances and major themes in
the nonparametric and semiparametric domain. The chapters contained herein pro-
vide an up-to-date reference source for students and researchers who require definitive
discussions of the cutting-edge developments in applied Econometrics and Statistics.
Contributors have been chosen on the basis of their expertise, their international rep-
utation, and their experience in exposing new and technical material. This handbook
highlights the interface between econometric and statistical methods for nonparamet-
ric and semiparametric procedures; it is comprised of new, previously unpublished
research papers/chapters by leading international econometricians and statisticians.
This handbook provides a balanced viewpoint of recent developments in applied sci-
ences with chapters covering advances in methodology, inverse problems, additive
models, model selection and averaging, time series, and cross-section analysis.

Methodology

Semi-nonparametric (SNP) models are models where only a part of the model is
parameterized, and the nonspecified part is an unknown function that is represented
by an infinite series expansion. SNP models are, in essence, models with infinitely many
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parameters. In Chapter 1, Herman J. Bierens shows how orthonormal functions can be
constructed along with how to construct general series representations of density and
distribution functions in a SNP framework. Bierens reviews the necessary Hilbert space
theory involved as well.

The term ‘special regressor’ originates in Lewbel (1998) and has been employed
in a wide variety of limited dependent variable models including binary, ordered,
and multinomial choice as well as censored regression, selection, and treatment
models and truncated regression models, among others (a special regressor is an
observed covariate with properties that facilitate identification and estimation of a
latent variable model). In Chapter 2, Arthur Lewbel provides necessary background
for understanding how and why special regressor methods work, and he details
their application to identification and estimation of latent variable moments and
parameters.

Inverse Problems

Ill-posed problems surface in a range of econometric models (a problem is ‘well-posed’
if its solution exists, is unique, and is stable, while it is ‘ill-posed’ if any of these con-
ditions are violated). In Chapter 3, Marine Carrasco, Jean-Pierre Florens and Eric
Renault study the estimation of a function ϕ in linear inverse problems of the form
Tϕ = r, where r is only observed with error and T may be given or estimated. Four
examples are relevant for Econometrics, namely, (i) density estimation, (ii) deconvolu-
tion problems, (iii) linear regression with an infinite number of possibly endogenous
explanatory variables, and (iv) nonparametric instrumental variables estimation. In
the first two cases T is given, whereas it is estimated in the two other cases, respectively
at a parametric or nonparametric rate. This chapter reviews some main results for these
models such as concepts of degree of ill-posedness, regularity of ϕ, regularized estima-
tion, and the rates of convergence typically obtained. Asymptotic normality results of
the regularized solution ϕ̂α are obtained and can be used to construct (asymptotic)
tests on ϕ.

In Chapter 4, Victoria Zinde-Walsh provides a nonparametric analysis for several
classes of models, with cases such as classical measurement error, regression with
errors in variables, and other models that may be represented in a form involving
convolution equations. The focus here is on conditions for existence of solutions, non-
parametric identification, and well-posedness in the space of generalized functions
(tempered distributions). This space provides advantages over working in function
spaces by relaxing assumptions and extending the results to include a wider variety of
models, for example by not requiring existence of and underlying density. Classes of
(generalized) functions for which solutions exist are defined; identification conditions,
partial identification, and its implications are discussed. Conditions for well-posedness
are given, and the related issues of plug-in estimation and regularization are
examined.
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Additive Models

Additive semiparametric models are frequently adopted in applied settings to mitigate
the curse of dimensionality. They have proven to be extremely popular and tend to be
simpler to interpret than fully nonparametric models. In Chapter 5, Joel L. Horowitz
considers estimation of nonparametric additive models. The author describes meth-
ods for estimating standard additive models along with additive models with a known
or unknown link function. Tests of additivity are reviewed along with an empirical
example that illustrates the use of additive models in practice.

In Chapter 6, Shujie Ma and Lijian Yang present an overview of additive regres-
sion where the models are fit by spline-backfitted kernel smoothing (SBK), and they
focus on improvements relative to existing methods (i.e., Linton (1997)). The SBK
estimation method has several advantages compared to most existing methods. First,
as pointed out in Sperlich et al. (2002), the estimator of Linton (1997) mixed up differ-
ent projections, making it uninterpretable if the real data generating process deviates
from additivity, while the projections in both steps of the SBK estimator are with
respect to the same measure. Second, the SBK method is computationally expedient,
since the pilot spline estimator is much faster computationally than the pilot kernel
estimator proposed in Linton (1997). Third, the SBK estimator is shown to be as effi-
cient as the “oracle smoother” uniformly over any compact range, whereas Linton
(1997) proved such ‘oracle efficiency’ only at a single point. Moreover, the regular-
ity conditions needed by the SBK estimation procedure are natural and appealing and
close to being minimal. In contrast, higher-order smoothness is needed with grow-
ing dimensionality of the regressors in Linton and Nielsen (1995). Stronger and more
obscure conditions are assumed for the two-stage estimation proposed by Horowitz
and Mammen (2004).

In Chapter 7, Enno Mammen, Byeong U. Park and Melanie Schienle give an
overview of smooth backfitting estimators in additive models. They illustrate their
wide applicability in models closely related to additive models such as (i) nonpara-
metric regression with dependent errors where the errors can be transformed to
white noise by a linear transformation, (ii) nonparametric regression with repeat-
edly measured data, (iii) nonparametric panels with fixed effects, (iv) simultaneous
nonparametric equation models, and (v) non- and semiparametric autoregression
and GARCH-models. They review extensions to varying coefficient models, additive
models with missing observations, and the case of nonstationary covariates.

Model Selection and Averaging

“Sieve estimators” are a class of nonparametric estimator where model complexity
increases with the sample size. In Chapter 8, Bruce Hansen considers “model selection”
and “model averaging” of nonparametric sieve regression estimators. The concepts of
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series and sieve approximations are reviewed along with least squares estimates of sieve
approximations and measurement of estimator accuracy by integrated mean-squared
error (IMSE). The author demonstrates that the critical issue in applications is selec-
tion of the order of the sieve, because the IMSE greatly varies across the choice.
The author adopts the cross-validation criterion as an estimator of mean-squared
forecast error and IMSE. The author extends existing optimality theory by showing
that cross-validation selection is asymptotically IMSE equivalent to the infeasible best
sieve approximation, introduces weighted averages of sieve regression estimators, and
demonstrates how averaging estimators have lower IMSE than selection estimators.

In Chapter 9, Liangjun Su and Yonghui Zhang review the literature on variable
selection in nonparametric and semiparametric regression models via shrinkage. The
survey includes simultaneous variable selection and estimation through the meth-
ods of least absolute shrinkage and selection operator (Lasso), smoothly clipped
absolute deviation (SCAD), or their variants, with attention restricted to nonpara-
metric and semiparametric regression models. In particular, the author considers
variable selection in additive models, partially linear models, functional/varying coef-
ficient models, single index models, general nonparametric regression models, and
semiparametric/nonparametric quantile regression models.

In Chapter 10, Jeffrey S. Racine and Christopher F. Parmeter propose a data-driven
approach for testing whether or not two competing approximate models are equivalent
in terms of their expected true error (i.e., their expected performance on unseen data
drawn from the same DGP). The test they consider is applicable in cross-sectional and
time-series settings, furthermore, in time-series settings their method overcomes two
of the drawbacks associated with dominant approaches, namely, their reliance on only
one split of the data and the need to have a sufficiently large ‘hold-out’ sample for
these tests to possess adequate power. They assess the finite-sample performance of the
test via Monte Carlo simulation and consider a number of empirical applications that
highlight the utility of the approach.

Default probability (the probability that a borrower will fail to serve its obligation)
is central to the study of risk management. Bonds and other tradable debt instru-
ments are the main source of default for most individual and institutional investors.
In contrast, loans are the largest and most obvious source of default for banks. Default
prediction is becoming more and more important for banks, especially in risk man-
agement, in order to measure their clients degree of risk. In Chapter 11, Wolfgang
Härdle, Dedy Dwi Prastyo and Christian Hafner consider the use of Support Vector
Machines (SVM) for modeling default probability. SVM is a state-of-the-art nonlin-
ear classification technique that is well-suited to the study of default risk. This chapter
emphasizes SVM-based default prediction applied to the CreditReform database. The
SVM parameters are optimized by using an evolutionary algorithm (the so-called
“Genetic Algorithm”) and show how the “imbalanced problem” may be overcome by
the use of “down-sampling” and “oversampling.”
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Time Series

In Chapter 12, Peter C. B. Phillips and Zhipeng Liao consider an overview of recent
developments in series estimation of stochastic processes and some of their applica-
tions in Econometrics. They emphasize the idea that a stochastic process may, under
certain conditions, be represented in terms of a set of orthonormal basis functions, giv-
ing a series representation that involves deterministic functions. Several applications
of this series approximation method are discussed. The first shows how a continuous
function can be approximated by a linear combination of Brownian motions (BMs),
which is useful in the study of spurious regression. The second application utilizes
the series representation of BM to investigate the effect of the presence of determinis-
tic trends in a regression on traditional unit-root tests. The third uses basis functions
in the series approximation as instrumental variables to perform efficient estimation
of the parameters in cointegrated systems. The fourth application proposes alterna-
tive estimators of long-run variances in some econometric models with dependent
data, thereby providing autocorrelation robust inference methods in these models. The
authors review work related to these applications and ongoing research involving series
approximation methods.

In Chapter 13, Jiti Gao considers some identification, estimation, and specification
problems in a class of semilinear time series models. Existing studies for the stationary
time series case are reviewed and discussed, and Gao also establishes some new results
for the integrated time series case. The author also proposes a new estimation method
and establishes a new theory for a class of semilinear nonstationary autoregressive
models.

Nonparametric and semiparametric estimation and hypothesis testing methods
have been intensively studied for cross-sectional independent data and weakly depen-
dent time series data. However, many important macroeconomics and financial data
are found to exhibit stochastic and/or deterministic trends, and the trends can be
nonlinear in nature. While a linear model may provide a decent approximation to a
nonlinear model for weakly dependent data, the linearization can result in severely
biased approximation to a nonlinear model with nonstationary data. In Chapter 14,
Yiguo Sun and Qi Li review some recent theoretical developments in nonparametric
and semiparametric techniques applied to nonstationary or near nonstationary vari-
ables. First, this chapter reviews some of the existing works on extending the I(0),
I(1), and cointegrating relation concepts defined in a linear model to a nonlinear
framework, and it points out some difficulties in providing satisfactory answers to
extend the concepts of I(0), I(1), and cointegration to nonlinear models with persistent
time series data. Second, the chapter reviews kernel estimation and hypothesis test-
ing for nonparametric and semiparametric autoregressive and cointegrating models to
explore unknown nonlinear relations among I(1) or near I(1) process(es). The asymp-
totic mixed normal results of kernel estimation generally replace asymptotic normality
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results usually obtained for weakly dependent data. The authors also discuss kernel
estimation of semiparametric varying coefficient regression models with correlated
but not cointegrated data. Finally, the authors discuss the concept of co-summability
introduced by Berengner-Rico and Gonzalo (2012), which provides an extension of
cointegration concepts to nonlinear time series data.

Cross Section

Sets of regression equations (SREs) play a central role in Econometrics. In Chapter 15,
Aman Ullah and Yun Wang review some of the recent developments for the estima-
tion of SRE within semi- and nonparametric frameworks. Estimation procedures for
various nonparametric and semiparametric SRE models are presented including those
for partially linear semiparametric models, models with nonparametric autocorrelated
errors, additive nonparametric models, varying coefficient models, and models with
endogeneity.

In Chapter 16, Daniel J. Henderson and Esfandiar Maasoumi suggest some new
directions in the analysis of nonparametric models with exogenous treatment assign-
ment. The nonparametric approach opens the door to the examination of potentially
different distributed outcomes. When combined with cross-validation, it also iden-
tifies potentially irrelevant variables and linear versus nonlinear effects. Examination
of the distribution of effects requires distribution metrics, such as stochastic domi-
nance tests for ranking based on a wide range of criterion functions, including dollar
valuations. They can identify subgroups with different treatment outcomes, and they
offer an empirical demonstration based on the GAIN data. In the case of one covari-
ate (English as the primary language), there is support for a statistical inference of
uniform first-order dominant treatment effects. The authors also find several others
that indicate second- and higher-order dominance rankings to a statistical degree of
confidence.

Jeffrey S. Racine

Liangjun Su

Aman Ullah
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chapter 1

........................................................................................................

THE HILBERT SPACE THEORETICAL
FOUNDATION OF

SEMI-NONPARAMETRIC
MODELING

........................................................................................................

herman j. bierens

1.1. Introduction
.............................................................................................................................................................................

Semi-nonparametric (SNP) models are models where only a part of the model is
parameterized, and the nonspecified part is an unknown function that is represented
by an infinite series expansion. Therefore, SNP models are, in essence, models with
infinitely many parameters. The parametric part of the model is often specified as a
linear index, that is, a linear combination of conditioning and/or endogenous vari-
ables, with the coefficients involved the parameters of interests, which we will call the
structural parameters. Although the unknown function involved is of interest as well,
the parameters in its series expansion are only of interest insofar as they determine the
shape of this function.

The theoretical foundation of series expansions of functions is Hilbert space the-
ory, in particular the properties of Hilbert spaces of square integrable real functions.
Loosely speaking, Hilbert spaces are vector spaces with properties similar to those of
Euclidean spaces. As is well known, any vector in the Euclidean space Rk can be repre-
sented by a linear combination of k orthonormal vectors. Similarly, in Hilbert spaces
of functions, there exist sequences of orthonormal functions such that any function in
this space can be represented by a linear combination of these orthonormal functions.
Such orthonormal sequences are called complete.

The main purpose of this chapter is to show how these orthonormal functions can
be constructed and how to construct general series representations of density and
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distribution functions. Moreover, in order to explain why this can be done, I will review
the necessary Hilbert space theory involved as well.

The standard approach to estimate SNP models is sieve estimation, proposed by
Grenander (1981). Loosely speaking, sieve estimation is like standard parameter esti-
mation, except that the dimension of the parameter space involved increases to infinity
with the sample size. See Chen (2007) for a review of sieve estimation. However, the
main focus of this chapter is on SNP modeling rather than on estimation.

Gallant (1981) was the first econometrician to propose Fourier series expansions as
a way to model unknown functions. See also Eastwood and Gallant (1991) and the
references therein. However, the use of Fourier series expansions to model unknown
functions has been proposed earlier in the statistics literature. See, for example,
Kronmal and Tarter (1968).

Gallant and Nychka (1987) consider SNP modeling and sieve estimation of Heck-
man’s (1979) sample selection model, where the bivariate error distribution of the
latent variable equations is modeled semi-nonparametrically using a bivariate Hermite
polynomial expansion of the error density.

Another example of an SNP model is the mixed proportional hazard (MPH) model
proposed by Lancaster (1979), which is a proportional hazard model with unobserved
heterogeneity. Elbers and Ridder (1982) and Heckman and Singer (1984) have shown
that under mild conditions the MPH model is nonparametrically identified. The latter
authors propose to model the distribution function of the unobserved heterogeneity
variable by a discrete distribution. Bierens (2008) and Bierens and Carvalho (2007) use
orthonormal Legendre polynomials to model semi-nonparametrically the unobserved
heterogeneity distribution of interval-censored mixed proportional hazard models and
bivariate mixed proportional hazard models, respectively.

However, an issue with the single-spell MPH model is that for particular specifica-
tions of the baseline hazard, its efficiency bound is singular, which implies that any
consistent estimator of the Euclidean parameters in the MPH model involved con-
verges at a slower rate than the square root of the sample size. See Newey (1990) for a
general review of efficiency bounds, and see Hahn (1994) and Ridder and Woutersen
(2003) for the efficiency bound of the MPH model. On the other hand, Hahn (1994)
also shows that in general the multiple-spell MPH model does not suffer from this
problem, which is confirmed by the estimation results of Bierens and Carvalho (2007).

This chapter is organized as follows. In Section 1.2 I will discuss three examples of
SNP models,1 with focus on semiparametric identification. The SNP index regression
model is chosen as an example because it is one of the few SNP models where the
unknown function involved is not a density or distribution function. The two other
examples are the bivariate MPH model in Bierens and Carvalho (2007) and the first-
price auction model in Bierens and Song (2012, 2013), which have been chosen because
these papers demonstrate how to do SNP modeling and estimation in practice, and in
both models the unknown function involved is a distribution function. Section 1.3
reviews Hilbert space theory. In Section 1.4 it will be shown how to generate various
sequences of orthonormal polynomials, along with what kind of Hilbert spaces they
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span. Moreover, it will also be shown how these results can be applied to the SNP
index regression model. In Section 1.5 various nonpolynomial complete orthonormal
sequences of functions will be derived. In Section 1.6 it will be shown how arbitrary
density and distribution functions can be represented by series expansions in terms
of complete orthonormal sequences of functions, along with how these results can be
applied to the bivariate MPH model in Bierens and Carvalho (2007) and to the first-
price auction model in Bierens and Song (2012, 2013). In Section 1.7 I will briefly
discuss the sieve estimation approach, and in Section 1.8 I will make a few concluding
remarks.

Throughout this chapter I will use the following notations. The well-known indi-
cator function will be denoted by 1(·), the set of positive integers will be denoted by
N, and the set of non-negative integers, N∪ {0}, by N0. The abbreviation “a.s.” stands
for “almost surely”—that is, the property involved holds with probability 1—and “a.e.”
stands for “almost everywhere,” which means that the property involved holds except
perhaps on a set with Lebesgue measure zero.

1.2. Examples of SNP Models
.............................................................................................................................................................................

1.2.1. The SNP Index Regression Model

Let Y be a dependent variable satisfying E[Y 2] < ∞, and let X ∈ Rk be a vector of
explanatory variables. As is well known, the conditional expectation E[Y |X] can be
written as E[Y |X] = g0(X), where g0(x) is a Borel measurable real function on Rk . 2

Newey (1997) proposed to estimate g0(x) by sieve estimation via a multivariate series
expansion. However, because there are no parameters involved, the resulting estimate
of g0(x) can only be displayed and interpreted graphically, which in practice is only
possible for k ≤ 2. Moreover, to approximate a bivariate function g0(x) by a series
expansion of order n requires n2 parameters.3 Therefore, a more practical approach is
the following.

Suppose that there exists a β0 ∈ Rk such that E[Y |X] = E[Y |β ′
0X] a.s. Then there

exists a Borel measurable real function f (x) on R such that E[Y |X] = f (β ′
0X) a.s.

Because for any nonzero constant c, E[Y |β ′
0X] = E[Y |cβ ′

0X] a.s., identification of f
requires to normalize β0 in some way, for example by setting one component of β0 to
1. Thus, in the case k ≥ 2, let X = (X1, X ′

2)′ with X2 ∈ Rk−1, and β0 = (1,θ ′
0)′ with

θ0 ∈Rk−1, so that
E[Y |X] = f (X1 + θ ′

0X2) a.s. (1.1)

To derive further conditions for the identification of f and θ0, suppose that for some
θ∗ 
= θ0 there exists a function f∗ such that f (X1 + θ ′

0X2) = f∗(X1 + θ ′∗X2) a.s. Moreover,
suppose that the conditional distribution of X1 given X2 is absolutely continuous with
support R. Then conditional on X2, f (x1 + θ ′

0X2) = f∗(x1 + θ ′
0X2 + (θ∗ − θ0)′X2) a.s.
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for all x1 ∈R. Consequently, for arbitrary z ∈R we may choose x1 = z − θ ′
0X2, so that

f (z) = f∗(z + (θ∗ − θ0)′X2) a.s. for all z ∈R. (1.2)

If f (z) is constant, then E[Y |X] = E[Y ] a.s., so let us exclude this case. Then (1.2)
is only possible if (θ∗ − θ0)′X2 is a.s. constant, which in turn implies that (θ∗ −
θ0)′(X2 −E[X2]) = 0 a.s. and thus (θ∗−θ0)′E[(X2 −E[X2])(X2 −E[X2])′](θ∗ −θ0) = 0.
Therefore, if Var[X2] is nonsingular, then θ∗ = θ0.

Summarizing, it has been shown that the following results hold.

Theorem 1.1. The function f (z) and the parameter vector θ0 in the index regression
model (1.1) are identified if

(a) Pr[E(Y |X) = E(Y )] < 1;
(b) The conditional distribution of X1 given X2 is absolutely continuous with support R;
(c) The variance matrix of X2 is finite and nonsingular.

Moreover, in the case X ∈ R the regression function f (z) is identified for all z ∈R if
the distribution of X is absolutely continuous with support R.

The problem how to model f (z) semi-nonparametrically and how to estimate f and
θ0 will be addressed in Section 1.4.4.

1.2.2. The MPH Competing Risks Model

Consider two durations, T1 and T2. Suppose that conditional on a vector X of covari-
ates and a common unobserved (heterogeneity) variable V , which is assumed to be
independent of X , the durations T1 and T2 are independent, that is, Pr[T1 ≤ t1, T2 ≤
t2|X , V ] = Pr[T1 ≤ t1|X , V ]. Pr[T2 ≤ t2|X , V ]. This is a common assumption in bivari-
ate survival analysis. See van den Berg (2000). If the conditional distributions of the
durations T1 and T2 are of the mixed proportional hazard type, then their survival
functions conditional on X and V take the form Si(t |X , V ) = Pr[Ti > t |X , V ] =
exp(−V exp(β ′

i X)�i(t |αi)), i = 1, 2, where �i(t |αi) = ∫ t
0 λi(τ |αi)dτ , i = 1, 2, are the

integrated baseline hazards depending on parameter vectors αi .
This model is also known as the competing risks model. It is used in Bierens and

Carvalho (2007) to model two types of recidivism durations of ex-convicts, namely (a)
the time T1 between release from prison and the first arrest for a misdemeanor and (b)
the time T2 between release from prison and the first arrest for a felony, with Weibull
baseline hazards, that is,

λ(t |αi)= αi,1αi,2tαi,2−1, �(t |αi)= αi,1tαi,2 , αi,1 > 0, αi,2 > 0,

with αi = (αi,1,α1,2)′, i = 1, 2, (1.3)

where αi,1 is a scale factor.
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In this recidivism case we only observe T = min(T1, T2) together with a discrete
variable D that is 1 if T2 > T1 and 2 if T2 ≤ T1. Thus, D = 1 corresponds to rearrest
for a misdemeanor and D = 2 corresponds to rearrests for a felony. Then condi-
tional on X and V , Pr[T > t , D = i|X , V ] = ∫∞

t V exp(−V (exp(β ′
1X)�(τ |α1) +

exp(β ′
2X)�(τ |α2))) · exp(β ′

i X)λ(τ |αi) dτ , i = 1, 2, which is not hard to verify.
Integrating V out now yields

Pr[T > t , D = i|X]

=
∫ ∞

t

∫ ∞

0
v exp

(−v
(
exp

(
β ′

1X
)
�(τ |α1)+ exp

(
β ′

2X
)
�(τ |α2)

))
dG(v)

×exp
(
β ′

i X
)
λ(τ |αi)dτ , i = 1, 2, (1.4)

where G(v) is the (unknown) distribution function of V .
It has been shown in Bierens and Carvalho (2006), by specializing the more general

identification results of Heckman and Honore (1989) and Abbring and van den Berg
(2003), that under two mild conditions the parameters α1,α2,β1,β2 and the distribu-
tion function G are identified. One of these conditions is that the variance matrix of X
is finite and nonsingular. The other condition is that E[V ] = 1, 4 so that (1.4) can be
written as

Pr[T > t , D = d|X]

=
∫ ∞

t
H
(
exp

(−(
exp

(
β ′

1X
)
�(τ |α1)+ exp

(
β ′

2X
)
�(τ |α2)

)))
× exp

(
β ′

dX
)
λ(τ |αd)dτ , d = 1, 2, (1.5)

where

H (u)=
∫ ∞

0
vuv dG(v) (1.6)

is a distribution function on the unit interval [0, 1]. Thus,

Theorem 1.2. If the variance matrix of X is finite and nonsingular, then the parameters
α1,α2,β1,β2 and the distribution function H(u) in the MPH competing risks Weibull
model (1.5) are identified.

Proof. (Bierens and Carvalho, 2006, 2007). �

It follows now straightforwardly from (1.5) that, given a random sample
{Tj , Dj , Xj}N

j=1 from (T , D, X), the log-likelihood function involved takes the form

ln(LN (α1,α2,β1,β2, H)) =∑N
j=1 	(Tj , Dj, Xj |α1,α2,β1,β2, H), where

	(T , D, X|α1,α2,β1,β2, H)

= ln
(
H
(
exp

(−(
exp

(
β ′

1X
)
�(T |α1)+ exp

(
β ′

2X
)
�(T |α2)

))))
+(2 − D)

(
β ′

1X + ln(λ(T |α1))
)+ (D − 1)

(
β ′

2X + ln(λ(T |α2))
)

. (1.7)
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At this point the distribution function H(u) representing the distribution of the
unobserved heterogeneity is treated as a parameter. The problem of how to model
H(u) semi-nonparametrically will be addressed in Section 1.6.

Note that the duration T = min(T1, T2) in Bierens and Carvalho (2007) is only
observed over a period [0,T], where T varies only slightly per ex-inmate, so that T is
right-censored. Therefore, the actual log-likelihood in Bierens and Carvalho (2007) is
more complicated than displayed in (1.7).

1.2.3. First-Price Auctions

A first price-sealed bids auction (henceforth called first-price auction) is an auction with
I ≥ 2 potential bidders, where the potential bidder’s values for the item to be auctioned
off are independent and private, and the bidders are symmetric and risk neutral. The
reservation price p0, if any, is announced in advance and the number I of potential
bidders is known to each potential bidder.

As is well known, the equilibrium bid function of a first-price auction takes the form

β (v|F, I)= v − 1

F(v)I−1

∫ v

p0

F(x)I−1 dx for v > p0 > v, (1.8)

if the reservation price p0 is binding, and

β (v|F, I)= v − 1

F(v)I−1

∫ v

0
F(x)I−1 dx for v > v, (1.9)

if the reservation price p0 is nonbinding, where F(v) is the value distribution, I ≥ 2
is the number of potential bidders, and v ≥ 0 is the lower bound of the support of
F(v). See, for example, Riley and Samuelson (1981) or Krishna (2002). Thus, if the
reservation price p0 is binding, then, with Vj the value for bidder j for the item to
be auctioned off, this potential bidder issues a bid Bj = β(Vj|F, I) according to bid
function (1.8) if Vj > p0 and does not issue a bid if Vj ≤ p0, whereas if the reservation
price p0 is not binding, each potential bidder j issues a bid Bj = β(Vj|F, I) according to
bid function (1.9). In the first-price auction model the individual values Vj , j = 1, . . . , I ,
are assumed to be independent random drawing from the value distribution F. The
latter is known to each potential bidder j, and so is the number of potential bidders, I .

Guerre et al. (2000) have shown that if the value distribution F(v) is absolutely
continuous with density f (v) and bounded support [v, v], v <∞, then f (v) is nonpara-
metrically identified from the distribution of the bids. In particular, if the reservation
price is nonbinding, then the inverse bid function is v = b+(I −1)−1�(b)/λ(b), where
v is a private value, b is the corresponding bid, and �(b) is the distribution function
of the bids with density λ(b). Guerre et al. (2000) propose to estimate the latter two
functions via nonparametric kernel methods, as �̂(b) and λ̂(b), respectively. Using
the pseudo-private values Ṽ = B + (I − 1)−1�̂(B)/λ̂(B), where each B is an observed
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bid, the density f (v) of the private value distribution can now be estimated by kernel
density estimation.

Bierens and Song (2012) have shown that the first-price auction model is also
nonparametrically identified if instead of the bounded support condition, the value
distribution F in (1.8) and (1.9) is absolutely continuous on (0,∞) with connected
support5 and finite expectation. As an alternative to the two-step nonparametric
approach of Guerre et al. (2000), Bierens and Song (2012) propose a simulated method
of moments sieve estimation approach to estimate the true value distribution F0(v), as
follows. For each SNP candidate value distribution F, generate simulated bids accord-
ing to the bid functions (1.8) or (1.9) and then minimize the integrated squared
difference of the empirical characteristic functions of the actual bids and the simulated
bids to the SNP candidate value distributions involved.

This approach has been extended in Bierens and Song (2013) to first-price auctions
with auction-specific observed heterogeneity. In particular, given a vector X of auction-
specific covariates, Bierens and Song (2013) assume that ln(V ) = θ ′X +ε, where X and
ε are independent. Denoting the distribution function of exp(ε) by F, the conditional
distribution of V given X then takes the form F(v exp(−θ ′X)).

1.3. Hilbert Spaces
.............................................................................................................................................................................

1.3.1. Inner Products

As is well known, in a Euclidean space Rk the inner product of a pair of vectors x =
(x1, . . . , xk)′ and y = (y1, . . . , yk)′ is defined as x′y = ∑k

m=1 xmym, which is a mapping
Rk × Rk→ R satisfying x′y = y ′x, (cx)′y = c(x′y) for arbitrary c ∈ R, (x + y)′z =
x′z + y ′z, and x′x > 0 if and only if x 
= 0. Moreover, the norm of a vector x ∈ Rk

is defined as ||x|| = √
x′x, with associated metric ||x − y||. Of course, in R the inner

product is the ordinary product x · y.
Mimicking these properties of inner product, we can define more general inner

products with associated norms and metrics as follows.

Definition 1.1. An inner product on a real vector space V is a real function 〈x, y〉: V ×
V →R such that for all x, y, z in V and all c in R, we obtain the following:

1. 〈x, y〉 = 〈y, x〉.
2. 〈cx, y〉 = c〈x, y〉.
3. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
4. 〈x, x〉 > 0 if and only if x 
= 0.

Given an inner product, the associated norm and metric are defined as ||x|| =√〈x, x〉 and ||x − y||, respectively.
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As is well known from linear algebra, for vectors x, y ∈ Rk, |x′y| ≤ ||x||.||y||, which
is known as the Cauchy–Schwarz inequality. This inequality carries straightforwardly
over to general inner products:

Theorem 1.3. (Cauchy–Schwarz inequality) |〈x, y〉| ≤ ||x||.||y||.

1.3.2. Convergence of Cauchy Sequences

Another well-known property of a Euclidean space is that every Cauchy sequence has a
limit in the Euclidean space involved.6 Recall that a sequence of elements xn of a metric
space with metric ||x −y|| is called a Cauchy sequence if limmin(k,m)→∞||xk −xm|| = 0.

Definition 1.2. A Hilbert space H is a vector space endowed with an inner product and
associated norm and metric such that every Cauchy sequence has a limit in H.

Thus, a Euclidean space is a Hilbert space, but Hilbert spaces are much more general
than Euclidean spaces.

To demonstrate the role of the Cauchy convergence property, consider the vec-
tor space C[0, 1] of continuous real functions on [0, 1]. Endow this space with the
inner product 〈f , g〉 = ∫ 1

0 f (u)g(u) du and associated norm ||f || =√〈f , f 〉 and metric
||f − g ||. Now consider the following sequence of functions in C[0, 1]:

fn (u)=
⎧⎨⎩

0 for 0 ≤ u < 0.5,
2n(u − 0.5) for 0.5 ≤ u < 0.5 + 2−n,
1 for 0.5 + 2−n ≤ u ≤ 1,

for n ∈N. It is an easy calculus exercise to verify that fn is a Cauchy sequence in C[0, 1].
Moreover, it follows from the bounded convergence theorem that limn→∞||fn − f || =
0, where f (u) = 1(u > 0.5). However, this limit f (u) is discontinuous in u = 0.5, and
thus f /∈ C[0, 1]. Therefore, the space C[0, 1] is not a Hilbert space.

1.3.3. Hilbert Spaces Spanned by a Sequence

Let H be a Hilbert space and let {xk}∞k=1 be a sequence of elements of H. Denote by

Mm = span({xj}m
j=1)

the subspace spanned by x1, . . . , xm; that is, Mm consists of all linear combinations
of x1, . . . , xm. Because every Cauchy sequence in Mm takes the form zn = ∑m

i=1 ci,nxi,
where the ci,n’s are Cauchy sequences in R with limits ci = limn→∞ ci,n, it follows triv-
ially that limn→∞ ||zn − z|| = 0, where z = ∑m

i=1 cixi ∈ Mm. Thus, Mm is a Hilbert
space.
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Definition 1.3. The space M∞ = ∪∞
m=1Mm

7is called the space spanned by {xj}∞j=1,
which is also denoted by span({xj}∞j=1).

Let xn be a Cauchy sequence in M∞. Then xn has a limit x ∈ H, that is,
limn→∞ ||xn − x|| = 0. Suppose that x /∈ M∞. Because M∞ is closed, there exists
an ε > 0 such that the set N (x,ε) = {x ∈H : ||x − x||< ε} is completely outside M∞,
that is, N (x,ε) ∩ M∞ = ∅. But limn→∞ ||xn − x|| = 0 implies that there exists an
n(ε) such that xn ∈ N (x,ε) for all n > n(ε), hence xn /∈ M∞ for all n > n(ε), which
contradicts xn ∈M∞ for all n. Thus,

Theorem 1.4. M∞ is a Hilbert space.

In general, M∞ is smaller than H, but as we will see there exist Hilbert spaces H
containing a sequence {xj}∞j=1 for which M∞ =H. Such a sequence is called complete:

Definition 1.4. A sequence {xk}∞k=1 in a Hilbert space H is called complete if H=
span({xj}∞j=1).

Of particular importance for SNP modeling are Hilbert spaces spanned by a com-
plete orthonormal sequence, because in that case the following approximation result
holds.

Theorem 1.5. Let {xj}∞j=1 a complete orthonormal sequence in a Hilbert space H, that is,

〈xi , xj〉 = 1(i = j) and H= span({xj}∞j=1). For an arbitrary y ∈H, let ŷn =∑n
j=1〈y, xj〉xj.

Then limn→∞||y − ŷn|| = 0 and
∑∞

j=1〈y, xj〉2 = ||y||2.

This result is a corollary of the fundamental projection theorem:

Theorem 1.6. Let S be a sub-Hilbert space of a Hilbert space H. Then for any y ∈ H
there exists a ŷ ∈ S (called the projection of y on S) such that ||y − ŷ|| = infz∈S ||y − z||.
Moreover, the projection residual u = y − ŷ satisfies 〈u, z〉 = 0 for all z ∈ S . 8

Now observe that ŷn in Theorem 1.5 is the projection of y on Mn = span({xj}n
j=1),

with residual un = y − ŷn satisfying 〈un, yn〉 = 0 for all yn ∈ Mn, and that due to
y ∈ span({xj}∞j=1) = ∪∞

m=1Mm there exists a sequence yn ∈Mn such that limn→∞ ||y −
yn|| = 0. Then ||y − ŷn||2 = 〈un, y − ŷn〉 = 〈un, y〉 = 〈un, y − yn〉 ≤ ||un||.||y − yn|| ≤
||y||.||y − yn|| → 0, where the first inequality follows from the Cauchy–Schwarz
inequality while the second inequality follows from the fact that ||un||2 ≤ ||y||2.
Moreover, the result

∑∞
j=1〈y, xj〉2 = ||y||2 in Theorem 1.5 follows from the fact that

||y||2 = 〈y, y〉 = limn→∞〈̂yn, y〉 = limn→∞
∑n

j=1〈y, xj〉2.

1.3.4. Examples of Non-Euclidean Hilbert Spaces

Consider the space R of random variables defined on a common probability space
{�,F , P} with finite second moments, endowed with the inner product 〈X , Y 〉 =
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E[X .Y ] and associated norm ||X|| = √〈X , X〉 =
√

E[X2] and metric ||X − Y ||. Then
we have the following theorem.

Theorem 1.7. The space R is a Hilbert space.9

This result is the basis for the famous Wold (1938) decomposition theorem, which in
turn is the basis for time series analysis.

In the rest of this chapter the following function spaces play a key role.

Definition 1.5. Given a probability density w(x) on R, the space L2(w) is the space of
Borel measurable real functions f on R satisfying

∫∞
−∞ f (x)2w(x) dx <∞, endowed with

the inner product 〈f , g〉 = ∫∞
−∞ f (x)g(x)w(x) dx and associated norm ||f || =√〈f , f 〉 and

metric ||f − g ||. Moreover, L2(a, b), −∞ ≤ a < b ≤ ∞, is the space of Borel measurable

real functions on (a, b) satisfying
∫ b

a f (x)2 dx, with inner product 〈f , g〉 = ∫ b
a f (x)g(x) dx

and associated norm and metric.

Then for f , g ∈ L2(w), we have 〈f , g〉 = E[f (X)g(X)], where X is a random draw-
ing from the distribution with density w(x); hence from Theorem 1.7 we obtain the
following theorem.

Theorem 1.8. The space L2(w) is a Hilbert space.

Also L2(a, b) is a Hilbert space, as will be shown in Section 1.5.
In general the result limn→∞ ||y − ŷn|| = 0 in Theorem 1.5 does not imply that

limn→∞ ŷn = y, as the latter limit may not be defined, and even if so, limn→∞ ŷn may
not be equal to y. However, in the case H = L2(w) the result limn→∞ ||y − ŷn|| = 0
implies limn→∞ ŷn = y, in the following sense.

Theorem 1.9. Let {ρm(x)}∞m=0 be a complete orthonormal sequence in L2(w),10 and let X
be a random drawing from the density w. Then for every function f ∈ L2(w), Pr[f (X) =
limn→∞

∑n
m=0 γmρm(X)] = 1, where γm = ∫∞

−∞ ρm(x)f (x)w(x) dx with
∑∞

m=0 γ
2
m =∫∞

−∞ f (x)2w(x) dx.

Proof. Denote fn(x) =∑n
m=0 γmρm(x), and recall from Theorem 1.5 that

∑∞
m=0γ

2
m =

||f ||2 <∞. It follows now that

E[(f (X) − fn(X))2] =
∫ ∞

−∞
(f (x) − fn(x))2w(x) dx =

∞∑
m=n+1

γ 2
m → 0

as n → ∞; hence by Chebyshev’s inequality, p limn→∞ fn(X) = f (X). As is well
known,11 the latter is equivalent to the statement that for every subsequence of n
there exists a further subsequence mk, for example, such that Pr[ limk→∞ fmk (X) =
f (X)] = 1, and the same applies to any further subsequence mkn of mk :

Pr
[

lim
n→∞ fmkn

(X) = f (X)
]

= 1. (1.10)
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Given n, there exists a natural number kn such that mkn−1 < n ≤ mkn , and for such a
kn we obtain

E
[(

fmkn
(X) − fn(X)

)2
]

= E

⎡⎢⎣
⎛⎝ mkn∑

j=n+1

γmρm(X)

⎞⎠2
⎤⎥⎦=

mkn∑
j=n+1

γ 2
m ≤

mkn∑
j=mkn−1+1

γ 2
m,

hence
∞∑

n=0

E[(fmkn
(X) − fn(X))2] ≤

∞∑
n=0

mkn∑
j=mkn−1+1

γ 2
m ≤

∞∑
n=0

γ 2
n <∞.

By Chebyshev’s inequality and the Borel–Cantelli lemma,12 the latter implies

Pr
[

lim
n→∞(fmkn

(X) − fn(X))
]

= 1. (1.11)

Combining (1.10) and (1.11), the theorem follows. �

1.4. Orthonormal Polynomials and the

Hilbert Spaces They Span
.............................................................................................................................................................................

1.4.1. Orthonormal Polynomials

Let w(x) be a density function on R satisfying∫ ∞

−∞
|x|k w(x) dx <∞ for all k ∈N, (1.12)

and let pk(x|w) be a sequence of polynomials in x ∈ R of order k ∈ N0 such that∫∞
−∞ pk(x|w)pm(x|w)w(x) dx = 0 if k 
= m. In words, the polynomials pk(x|w) are

orthogonal with respect to the density function w(x). These orthogonal polynomials
can be generated recursively by the three-term recurrence relation (hereafter referred
to as TTRR)

pk+1(x|w) + (bk − x)pk(x|w) + ckpk−1(x|w) = 0, k ≥ 1, (1.13)

starting from p0(x|w) = 1 and p1(x|w) = x − ∫ 1
0 z.w(z) dz, for example, where

bk =
∫∞
−∞ x · pk(x|w)2w(x) dx∫ ∞

−∞ pk(x|w)2w(x) dx
, ck =

∫∞
−∞ pk(x|w)2w(x) dx∫∞

−∞ pk−1(x|w)2w(x) dx
. (1.14)

See, for example, Hamming (1973).
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Defining

pk(x|w) = pk(x|w)√∫ ∞
−∞ pk(y|w)2w(y) dy

(1.15)

yields a sequence of orthonormal polynomials with respect to w(x):∫ ∞

−∞
pk(x|w)pm(x|w)w(x) dx = 1(k = m). (1.16)

It follows straightforwardly from (1.13) and (1.15) that these orthonormal polyno-
mials can be generated recursively by the TTRR

ak+1.pk+1(x|w) + (bk − x)pk(x|w) + ak .pk−1(x|w) = 0, k ∈N, (1.17)

starting from p0(x|w) = 1 and

p1(x|w) = x − ∫ ∞
−∞ z · w(z) dz√∫ ∞

−∞
(
y − ∫∞

−∞ z · w(z) dz
)2

w(y) dy
,

where bk is the same as in (1.14) and

ak =
√∫∞

−∞ pk(x|w)2w(x) dx√∫∞
−∞ pk−1(x|w)2w(x) dx

.

The sequence is pk(x|w) uniquely determined by w(x), except for signs. In other
words, |pk(x|w)| is unique. To show this, suppose that there exists another sequence
p∗

k (x|w) of orthonormal polynomials w.r.t. w(x). Since p∗
k(x|w) is a polynomial of

order k, we can write p∗
k(x|w) =∑k

m=0βm,kpm(x|w). Similarly, we can write pk(x|w) =∑k
m=0αm,.kp∗

m(x|w). Then for j < k, we have

∫ ∞

−∞
p∗

k (x|w)pj(x|w)w(x) dx =
j∑

m=0

αm,j

∫ ∞

−∞
p∗

k(x|w)p∗
m(x|w)w(x) dx = 0

and ∫ ∞

−∞
p∗

k(x|w)pj(x|w)w(x) dx =
k∑

m=0

βm,k

∫ ∞

−∞
pm(x|w)pj(x|w)w(x) dx

= βj,k

∫ ∞

−∞
pj(x|w)2w(x) dx = βj,k ;

hence βj,.k = 0 for j < k and thus p∗
k (x|w) = βk,kpk(x|w). Moreover, by normality,

1 =
∫ ∞

−∞
p∗

k (x|w)2w(x) dx = β2
k,k

∫ ∞

−∞
pk(x|w)2w(x) dx = β2

k,k ,
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so that p∗
k (x|w) = ±pk(x|w). Consequently, |pk(x|w)| is unique. Thus, we have the

following theorem.

Theorem 1.10. Any density function w(x) on R satisfying the moment conditions (1.12)
generates a unique sequence of orthonormal polynomials, up to signs. Consequently, the
sequences ak and bk in the TTRR (1.17) are unique.

1.4.2. Examples of Orthonormal Polynomials

1.4.2.1. Hermite Polynomials

If w(x) is the density of the standard normal distribution,

wN [0,1](x) = exp
(−x2/2

)
/
√

2π ,

the orthonormal polynomials involved satisfy the TTRR

√
k + 1pk+1(x|wN [0,1]) − x.pk(x|wN [0,1]) +

√
kpk−1(x|wN [0,1]) = 0, x ∈R,

for k ∈ N, starting from p0(x|wN [0,1]) = 1, p1(x|wN [0,1]) = x. These polynomials are
known as Hermite13 polynomials.

The Hermite polynomials are plotted in Figure 1.1, for orders k = 2, 5, 8.

1.4.2.2. Laguerre Polynomials

The standard exponential density function

wExp(x) = 1(x ≥ 0)exp(−x) (1.18)

5.6569

–2.5697

Hermite polynomial (2) on [–3,3]

Hermite polynomial (8) on [–3,3]

Hermite polynomial (5) on [–3,3]

figure 1.1 Hermite polynomials.
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1.

–1.1087

Laguerre polynomial (2) on [0,3]

Laguerre polynomial (8) on [0,3]

Laguerre polynomial (5) on [0,3]

figure 1.2 Laguerre polynomials.

gives rise to the orthonormal Laguerre14 polynomials, with TTRR

(k + 1)pk+1(x|wExp) + (2k + 1 − x)pk(x|wExp) + k.pk−1(x|wExp) = 0, x ∈ [0,∞).

for k ∈N, starting from p0(x|wExp) = 1, p1(x|wExp) = x − 1.
These polynomials are plotted in Figure 1.2, for orders k = 2, 5, 8.

1.4.2.3. Legendre Polynomials

The uniform density on [−1, 1],

wU[−1,1](x) = 1
2 1(|x| ≤ 1) ,

generates the orthonormal Legendre15 polynomials on [−1, 1], with TTRR

k + 1√
2k + 3

√
2k + 1

pk+1(x|wU[−1,1]) − x · pk(x|wU[−1,1])

+ k√
2k + 1

√
2k − 1

pk−1(x|wU[−1,1]) = 0, |x| ≤ 1,

for k ∈N, starting from p0(x|wU [−1,1]) = 1, p1(x|wU[−1,1]) = √
3x.

Moreover, substituting x = 2u − 1, it is easy to verify that the uniform density

wU[0,1](u) = 1(0 ≤ u ≤ 1)

on [0, 1] generates the orthonormal polynomials

pk(u|wU[0,1]) = pk(2u − 1|wU[−1,1]),



semi-nonparametric modeling 17

Legendre polynomial (2) on [0,1] Legendre polynomial (5) on [0,1]

Legendre polynomial (8) on [0,1]

4.1231

–3.3166

figure 1.3 Shifted Legendre polynomials.

which are known as the shifted Legendre polynomials, also called the Legendre
polynomials on the unit interval. The TTRR involved is

(k + 1)/2√
2k + 3

√
2k + 1

pk+1(u|wU[0,1]) + (0.5 − u) · pk(u|wU[0,1])

+ k/2√
2k + 1

√
2k − 1

pk−1(u|wU[0,1]) = 0, 0 ≤ u ≤ 1,

for k ∈N, starting from p0(u|wU[0,1]) = 1, p1(u|wU[0,1]) = √
3(2u − 1).

The latter Legendre polynomials are plotted in Figure 1.3, for orders k = 2, 5, 8.

1.4.2.4. Chebyshev Polynomials

Chebyshev polynomials are generated by the density function

wC[−1,1](x) = 1

π
√

1 − x2
1(|x| < 1) , (1.19)

with corresponding distribution function

WC[−1,1](x) = 1 −π−1 arccos (x), x ∈ [ − 1, 1]. (1.20)

The orthogonal (but not orthonormal) Chebyshev polynomials pk(x|wC[−1,1])
satisfy the TTRR

pk+1(x|wC[−1,1]) − 2xpk(x|wC[−1,1]) + pk−1(x|wC[−1,1]) = 0, |x| < 1, (1.21)
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for k ∈ N, starting from p0(x|wC[−1,1]) = 1, p1(x|wC[−1,1]) = x, with orthogonality
properties

∫ 1

−1

pk(x|wC[−1,1])pm(x|wC[−1,1])

π
√

1 − x2
dx =

⎧⎨⎩
0 if k 
= m,
1/2 if k = m ∈N,
1 if k = m = 0.

An important practical difference with the other polynomials discussed so far is that
Chebyshev polynomials have the closed form:

pk(x|wC[−1,1]) = cos (k · arccos (x)) . (1.22)

To see this, observe from (1.20) and the well-known sine–cosine formulas that∫ 1

−1

cos(k · arccos (x))cos (m · arccos (x))

π
√

1 − x2
dx

= − 1

π

∫ 1

−1
cos(k · arccos (x))cos(m · arccos (x))d arccos (x)

= 1

π

∫ π

0
cos(k · θ)cos (m · θ)dθ =

⎧⎨⎩
0 if k 
= m,
1/2 if k = m ∈N,
1 if k = m = 0.

Moreover, it follows from the easy equality cos ((k + 1)θ) − 2 cos (θ)cos(k · θ) +
cos ((k − 1)θ) = 0 that the functions (1.22) satisfy the TTRR (1.21) and are therefore
genuine polynomials, and so are the orthonormal Chebyshev polynomials

pk(x|wC[−1,1]) =
{

1 for k = 0,√
2cos (k · arccos (x)) for k ∈N.

Substituting x = 2u − 1 for u ∈ [0, 1] in (1.20) yields

WC[0,1](u) = 1 −π−1 arccos (2u − 1) (1.23)

with density function

wC[0,1](u) = 1

π
√

u (1 − u)
(1.24)

and shifted orthonormal Chebyshev polynomials

pk(u|wC[0,1]) =
{

1 for k = 0,√
2 cos(k · arccos (2u − 1)) for k ∈N.

(1.25)

The polynomials (1.25) are plotted in Figure 1.4, for orders k = 2, 5, 8.
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1.4142

–1.4142

Chebyshev polynomial (2) on [0,1]

Chebyshev polynomial (8) on [0,1]

Chebyshev polynomial (5) on [0,1]

figure 1.4 Shifted Chebyshev polynomials.

1.4.3. Completeness

The reason for considering orthonormal polynomials is the following.

Theorem 1.11. Let w(x) be a density function on R satisfying the moment conditions
(1.12). Then the orthonormal polynomials pk(x|w) generated by w form a complete
orthonormal sequence in the Hilbert space L2(w). In particular, for any function f ∈ L2(w)
and with X a random drawing from w,

f (X) =
∞∑

k=0

γkpk(X|w) a.s., (1.26)

where γk = ∫ ∞
−∞ pm(x|w)f (x)w(x) dx with

∑∞
k=0γ

2
k = ∫ ∞

−∞ f (x)2w(x) dx.

Proof. Let fn(x) = ∑n
m=0 γmpm(x|w). Then ||f − fn||2 = ||f ||2 −∑n

m=0 γ
2
m, which is

not hard to verify, hence
∑∞

m=0γ
2
m ≤ ||f ||2 < ∞ and thus limn→∞

∑∞
m=n+1 γ

2
m =

0. The latter implies that fn is a Cauchy sequence in L2(w), with limit f ∈ span
({pm( · |w)}∞m=0) ⊂ L2(w). Thus, limn→∞ ||f − fn|| = 0.

To prove the completeness of the sequence pm( · |w), we need to show that ||f −
f || = 0, because then f ∈ span({pm( · |w)}∞m=0), which by the arbitrariness of f ∈ L2(w)
implies that L2(w) = span({pm( · |w)}∞m=0). This will be done by showing that for a
random drawing X from w(x), we obtain

Pr[f (X) = f (X)] = 1, (1.27)
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because then ||f − f ||2 = E[(f (X) − f (X))2] = 0. In turn, (1.27) is true if for all t ∈R,
we obtain

E[(f (X) − f (X))exp(i · t · X)] = 0, (1.28)

because of the uniqueness of the Fourier transform.16

To prove (1.28), note first that the limit function f can be written as f (x) =∑n
m=0 γmpm(x|w) + εn(x), where limn→∞

∫∞
−∞ εn(x)2w(x) dx = 0. Therefore,∣∣∣∣∫ ∞

−∞
(f (x)− f (x))pm(x|w)w(x) dx

∣∣∣∣= ∣∣∣∣∫ ∞

−∞
εn(x)pm(x|w)w(x) dx

∣∣∣∣
≤
√∫ ∞

−∞
εn(x)2w(x) dx

√∫ ∞

−∞
pm(x|w)2w(x) dx =

√∫ ∞

−∞
εn(x)2w(x) dx

→ 0

for n → ∞, which implies that for any g ∈ span({pm( · |w)}∞m=0), we have
∫ ∞
−∞ (f (x) −

f (x))g(x)w(x) dx = 0. Consequently, E[(f (X) − f (X))exp(i · t · X)] = ∫ ∞
−∞ (f (x) −

f (x))exp (i · t · x)w(x) dx = 0 for all t ∈ R, because it follows from the well-known
series expansions of cos(t ·x) = Re[exp(i · t ·x)] and sin (t ·x) = Im [exp(i · t ·x)] that
these functions are elements of span({pm( · |w)}∞m=0). Thus, {pm( · |w)}∞m=0 is complete
in L2(w). The result (1.26) now follows from Theorem 1.9. �

1.4.4. Application to the SNP Index Regression Model

Suppose that the response function f (x) in the index regression model (1.1) satisfies

sup
x

|f (x)| · exp(−t0 · |x|) = M(t0) <∞ for some t0 > 0. (1.29)

so that −M(t0)exp(t0 · |x|) ≤ f (x) ≤ M(t0)exp(t0 · |x|). Then for the standard normal
density wN [0,1](x), we have

∫∞
−∞ f (x)2wN [0,1](x) dx < 2M(t0)exp(t2

0/2) < ∞; hence

f ∈ L2(wN [0,1]), so that f (x) has the Hermite series expansion

f (x) =
∞∑

m=0

δ0,mpm(x|wN [0,1]) = δ0,0 + δ0,1x +
∞∑

k=2

δ0,kpk(x|wN [0,1]) a.e. on R,

with δ0,m = ∫∞
−∞ f (x)pm(x|wN [0,1])wN [0,1](x) dx for m = 0, 1, 2, . . . . Thus, model (1.1)

now reads
E[Y |X] = lim

n→∞ fn(X1 + θ ′
0X2|δ0

n) a.s, (1.30)

where

fn(x|δn) = δ0 + δ1x +
n∑

k=2

δkpk(x|wN [0,1]) (1.31)

with δn = (δ0,δ1, . . . ,δn, 0, 0, 0, . . .) and δ0
n = (δ0,0,δ0,1, . . . ,δ0,n, 0, 0, 0, . . .).
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For fixed n ∈N the parameters involved can be approximated by weighted nonlinear
regression of Y on fn(X1 + θ ′X2|δn), given a random sample {(Yj , Xj)}N

j=1from (Y , X)

and given predefined compact parameter spaces �n and � for δ0
n and θ0, respectively.

Then the weighted NLLS sieve estimator of (θ0,δ0
n) is

(
θ̂n, δ̂n

)= arg min
(θ ,δn)∈�×�n

1

N

N∑
j=1

(
Yj − fn(X1,j + θ ′X2,j|δn)

)2
K(||Xj ||), (1.32)

where K(x) is a positive weight function on (0,∞) satisfying supx>0 xnK(x) < ∞ for
all n ≥ 0. The reason for this weight function is to guarantee that

E

[
sup

(θ ,δn)∈�×�n

(
Y − fn(X1 + θ ′X2|δn)

)2
K(||X||)

]
<∞

without requiring that E[||X||2n] <∞. Then by Jennrich’s (1969) uniform law of large
numbers and for fixed n, we have

sup
(θ ,δn)∈�×�n

∣∣∣∣∣∣ 1

N

N∑
j=1

(
Yj − fn(X1,j + θ ′X2,j|δn)

)2
K(||Xj||) − gn (θ ,δn)

∣∣∣∣∣∣
= op(1),

where gn(θ ,δn) = E[(Y − fn(X1 + θ ′X2|δn))2K(||X||)], so that

p lim
N→∞

(
θ̂n, δ̂n

)=
(
θn,δn

)
= arg min

(θ ,δn)∈�×�n

gn (θ ,δn) .

Under some alternative conditions the same result can be obtained by using the
Wald (1949) consistency result in van der Vaart (1998, Theorem 5.14), which does
not require that the expectation of the objective function is finite for all values of the
parameters, so that in that case there is no need for the weight function K(x).

Note that, in general, θn 
= θ0. Nevertheless, it can be shown that under some
additional regularity conditions,17 and with n = nN an arbitrary subsequence of N ,
p limN→∞ θ̂nN = θ0 and p limN→∞

∫ ∞
−∞ (fnN (x |̂δnN ) − f (x))2wN [0,1](x) dx = 0.

1.5. Non-Polynomial Complete

Orthonormal Sequences
.............................................................................................................................................................................

Recall that the support of a density w(x) on R is defined as the set {x ∈ R : w(x) > 0}.
For example, the support of the standard exponential density (1.18) is the interval
[0,∞). In this chapter I will only consider densities w(x) with connected support—
that is, the support is an interval—and for notational convenience this support will be
denoted by an open interval (a, b), where a = infw(x)>0 x ≥ −∞ and b = supw(x)>0 x ≤
∞, even if for finite a and/or b, w(a) > 0 or w(b) > 0.
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1.5.1. Nonpolynomial Sequences Derived from Polynomials

For every density w(x) with support (a, b),
∫ b

a f (x)2 dx <∞ implies that f (x)/
√

w(x) ∈
L2(w). Therefore, the following corollary of Theorem 1.11 holds trivially.

Theorem 1.12. Every function f ∈ L2(a, b) can be written as

f (x) =
√

w(x)

( ∞∑
k=0

γkpk(x|w)

)
a.e. on (a, b),

where w is a density with support (a, b) satisfying the moment conditions (1.12) and

γk = ∫ b
a f (x)pk(x|w)

√
w(x) dx. Consequently, L2(a, b) is a Hilbert space with complete

orthonormal sequence ψk(x|w) = pk(x|w)
√

w(x), k ∈N0.

If (a, b) is bounded, then there is another way to construct a complete orthonormal
sequence in L2(a, b), as follows. Let W (x) be the distribution function of a density
w with bounded support (a, b). Then G(x) = a+(b−a)W (x) is a one-to-one mapping
of (a, b) onto (a, b), with inverse G−1(y) = W−1((y − a)/(b − a)), where W −1 is the
inverse of W (x). For every f ∈ L2(a, b), we have

(b − a)

∫ b

a
f (G (x))2 w(x) dx =

∫ b

a
f (G (x))2 dG (x) =

∫ b

a
f (x)2 dx <∞.

Hence f (G(x)) ∈ L2(w) and thus by Theorem 1.11 we have f (G(x)) =∑∞
k=0 γkpk(x|w)

a.e. on (a, b), where γk = ∫ b
a f (G(x))pk(x|w)w(x) dx. Consequently,

f (x)= f
(
G
(
G−1 (x)

))=
∞∑

k=0

γkpk

(
G−1 (x) |w) a.e. on (a, b) .

Note that dG−1(x)/dx = dG−1(x)/dG(G−1(x)) = 1/G′(G−1(x)), so that∫ b

a
pk

(
G−1 (x) |w)pm

(
G−1 (x) |w)dx

=
∫ b

a
pk

(
G−1 (x) |w)pm

(
G−1 (x) |w)G′ (G−1 (x)

)
dG−1 (x)

=
∫ b

a
pk (x|w)pm (x|w)G′ (x)dx

= (b − a)

∫ b

a
pk (x|w)pm (x|w)w (x)dx = (b − a)1(k = m) .

Thus, we have the following theorem.
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Theorem 1.13. Let w be a density with bounded support (a, b) and let W be the c.d.f. of
w, with inverse W −1. Then the functions

ψk (x|w)= pk

(
W −1 ((x − a)/(b − a)) |w)/√(b − a), k ∈N0

form a complete orthonormal sequence in L2(a, b). Hence, every function f ∈ L2(a, b)
has the series representation f (x) = ∑∞

k=0γkψk(x|w) a.e. on (a, b), with γk =∫ b
a ψk(x|w)f (x) dx.

1.5.2. Trigonometric Sequences

Let us specialize the result in Theorem 1.13 to the case of the Chebyshev polynomials
on [0, 1], with a = 0, b = 1 and W , w and pk(u|w) given by (1.23), (1.24), and (1.25),
respectively. Observe that in this case W−1

C[0,1](u) = (1 − cos (πu))/2. It follows now
straightforwardly from (1.25) and the easy equality arccos(−x) = π − arccos (x) that
for k ∈N, pk(W −1

C[0,1](u)|wC[0,1]) =√
2cos (kπ)cos (kπu) =√

2(−1)k cos (kπu), which
by Theorem 1.13 implies the following.

Theorem 1.14. The cosine sequence

ψk(u) =
{

1 for k = 0,√
2 cos (kπu) for k ∈N,

is a complete orthonormal sequence in L2(0, 1). Hence, every function f ∈ L2(0, 1) has
the series representation f (u) = γ0 + ∑∞

k=1 γk

√
2 cos(kπu) a.e. on (0, 1), with γ0 =∫ 1

0 f (u) du, γk = √
2
∫ 1

0 cos (kπu)f (u) du for k ∈N.

This result is related to classical Fourier analysis. Consider the following sequence of
functions on [−1, 1]:

ϕ0 (x) = 1,

ϕ2k−1 (x) =
√

2sin (kπx) , ϕ2k (x) =
√

2cos (kπx) , k ∈N. (1.33)

These functions are know as the Fourier series on [−1, 1]. It is easy to verify that these
functions are orthonormal with respect to the uniform density wU [−1,1](x) = 1

2 1(|x| ≤
1) on [ − 1, 1], that is, 1

2

∫ 1
−1 ϕm(x)ϕk(x) dx = 1(m = k). The following theorem is a

classical Fourier analysis result.

Theorem 1.15. The Fourier sequence {ϕn}∞n=0 is complete in L2(wU[−1,1]). 18

Now Theorem 1.14 is a corollary of Theorem 1.15. To see this, let f ∈ L2(0, 1) be
arbitrary. Then g(x) = f (|x|) ∈ L2(wU[−1,1]); hence

g(x) = α+
∞∑

k=1

βk

√
2 cos (kπx)+

∞∑
m=1

γm

√
2 sin(kπx)
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a.e. on [−1, 1], where

α = 1

2

∫ 1

−1
g(x) dx =

∫ 1

0
f (u) du

βk = 1

2

∫ 1

−1
g(x)

√
2 cos(kπx) dx =

∫ 1

0
f (u)

√
2cos(kπu) du

γm = 1

2

∫ 1

−1
g(x)

√
2 sin(kπx) dx = 0

so that f (u) = α+∑∞
k=1βk

√
2 cos(kπu) a.e. on [0, 1].

Similarly, given an arbitrary f ∈ L2(0, 1), let g(x) = (1(x ≥ 0)−1(x < 0))f (|x|). Then
g(x) = ∑∞

m=1 γm
√

2sin (kπx) a.e. on [−1, 1]; hence f (u) = ∑∞
m=1γm

√
2 sin(kπu)

a.e. on (0, 1), where γm = ∫ 1
0 f (u)

√
2 sin(mπu) du. Therefore, we have the following

corollary.

Corollary 1.1. The sine sequence
√

2sin (mπu), m ∈N, is complete in L2(0, 1).

Although this result implies that for every f ∈ L2(0, 1), limn→∞ fn(u) = f (u) a.e.
on (0, 1), where fn(u) = ∑n

m=1 γm
√

2 sin(kπu) with γm = √
2
∫ 1

0 f (u) sin(mπu) du,
the approximation fn(u) may be very poor in the tails of f (u) if f (0) 
= 0 and f (1) 
=
0, because, in general, limu↓0 limn→∞ fn(u) 
= limn→∞ limu↓0 fn(u), and similarly for
u ↑ 1. Therefore, the result of Corollary 1.1 is of limited practical significance.

1.6. Density and Distribution Functions
.............................................................................................................................................................................

1.6.1. General Univariate SNP Density Functions

Let w(x) be a density function with support (a, b). Then for any density f (x) on (a, b),
we obtain

g(x) =
√

f (x)/
√

w(x) ∈ L2(w), (1.34)

with
∫ b

a g(x)2w(x) dx = ∫ b
a f (x) dx = 1. Therefore, given a complete orthonormal

sequence {ρm}∞m=0 in L2(w) with ρ0(x) ≡ 1 and denoting γm = ∫ b
a ρm(x)g(x)w(x) dx,

any density f (x) on (a, b) can be written as

f (x) = w(x)

( ∞∑
m=0

γmρm(x)

)2

a.e. on (a, b), with
∞∑

m=0

γ 2
m =

∫ b

a
f (x) dx = 1.

(1.35)
The reason for the square in (1.35) is to guarantee that f (x) is non-negative.

A problem with the series representation (1.35) is that in general the parameters
involved are not unique. To see this, note that if we replace the function g(x) in (1.34)
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by gB(x) = (1(x ∈ B)−1(x ∈ (a, b)\B))
√

f (x)/
√

w(x), where B is an arbitrary Borel set,

then gB(x) ∈ L2(w) and
∫ b

a gB(x)2w(x) dx = ∫ b
a f (x) dx = 1, so that (1.35) also holds

for the sequence

γm =
∫ b

a
ρm(x)gB(x)w(x) dx

=
∫

(a,b)∩B
ρm(x)

√
f (x)

√
w(x) dx −

∫
(a,b)\B

ρm(x)
√

f (x)
√

w(x) dx.

In particular, using the fact that ρ0(x) ≡ 1, we obtain

γ0 =
∫

(a,b)∩B

√
f (x)

√
w(x) dx −

∫
(a,b)\B

√
f (x)

√
w(x) dx,

so that the sequence γm in (1.35) is unique if γ0 is maximal. In any case we may without
loss of generality assume that γ0 ∈ (0, 1), so that without loss of generality the γm’s can
be reparameterized as

γ0 = 1√
1 +∑∞

k=1 δ
2
k

, γm = δm√
1 +∑∞

k=1 δ
2
k

,

where
∑∞

k=1 δ
2
k < ∞. This reparameterization does not solve the lack of uniqueness

problem, of course, but is convenient in enforcing the restriction
∑∞

m=0 γ
2
m = 1.

On the other hand, under certain conditions on f (x) the δm’s are unique, as will be
shown in Section 1.6.4.

Summarizing, the following result has been shown.

Theorem 1.16. Let w(x) be a univariate density function with support (a, b), and let
{ρm}∞m=0 be a complete orthonormal sequence in L2(w), with ρ0(x) ≡ 1. Then for any
density f (x) on (a, b) there exist possibly uncountably many sequences {δm}∞m=1 satisfying∑∞

m=1 δ
2
m <∞ such that

f (x) = w(x)
(
1 +∑∞

m=1 δmρm(x)
)2

1 +∑∞
m=1 δ

2
m

a.e. on (a, b). (1.36)

Moreover, for the sequence {δm}∞m=1 for which
∑∞

m=1 δ
2
m is minimal,

√
f (x) =

√
w(x)

(
1 +∑∞

m=1 δmρm(x)
)√

1 +∑∞
m=1 δ

2
m

a.e. on (a, b);

hence

δm =
∫ b

a ρm(x)
√

f (x)
√

w(x) dx∫ b
a

√
f (x)

√
w(x) dx

, m ∈N. (1.37)
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In practice, the result of Theorem 1.16 cannot be used directly in SNP modeling,
because it is impossible to estimate infinitely many parameters. Therefore, the density
(1.36) is usually approximated by

fn(x) = w(x)
(
1 +∑n

m=1 δmρm(x)
)2

1 +∑n
m=1 δ

2
m

(1.38)

for some natural number n, possibly converging to infinity with the sample size. Fol-
lowing Gallant and Nychka (1987), I will refer to truncated densities of the type (1.38)
as SNP densities.

Obviously,

Corollary 1.2. Under the conditions of Theorem 1.16, limn→∞ fn(x) = f (x) a.e. on (a, b).
Moreover, it is not hard to verify that

∫ b

a
|f (x) − fn(x)| dx ≤ 4

√√√√ ∞∑
m=n+1

δ2
m + 2

∞∑
m=n+1

δ2
m = o(1), (1.39)

where the δm’s are given by (1.37), so that with F(x) the c.d.f. of f (x) and Fn(x) the c.d.f.
of fn(x), we obtain

lim
n→∞ sup

x
|F(x) − Fn(x)| = 0.

Remarks

1. The rate of convergence to zero of the tail sum
∑∞

m=n+1 δ
2
m depends on the

smoothness, or the lack thereof, of the density f (x). Therefore, the question of
how to choose the truncation order n given an a priori chosen approximation
error cannot be answered in general.

2. In the case that the ρm(x)’s are polynomials, the SNP density fn(x) has to be com-
puted recursively via the corresponding TTRR (1.17), except in the case of Cheby-
shev polynomials, but that is not much of a computational burden. However,
the computation of the corresponding SNP distribution function Fn(x) is more
complicated. See, for example, Stewart (2004) for SNP distribution functions on
R based on Hermite polynomials, and see Bierens (2008) for SNP distribution
functions on [0, 1] based on Legendre polynomials. Both cases require to recover
the coefficients 	m,k of the polynomials pk(x|w) = ∑k

m=0 	m,kxm, which can be
done using the TTRR involved. Then with Pn(x|w) = (1, p1(x|w), . . . , pn(x|w))′,
Qn(x) = (1, x, . . . , xn)′, δ = (1,δ1, . . . ,δn), and Ln the lower-triangular matrix con-
sisting of the coefficients 	m,k , we can write fn(x) = (δ′δ)−1w(x)(δ′Pn(x|w))2 =
(δ′δ)−1δ′LnQn(x)Qn(x)′w(x)L′

nδ; hence

Fn(x) = 1

δ′δ
δ′Ln

(∫ x

−∞
Qn(z)Qn(z)′w(z) dz

)
L′

nδ = δ′LnMn(x)L′
nδ

δ′δ
,
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where Mn(x) is the (n+1)×(n+1) matrix with typical elements
∫ x
−∞ zi+jw(z) dz

for i, j = 0, 1, . . . , n. This is the approach proposed by Bierens (2008). The
approach in Stewart (2004) is in essence the same and is therefore equally
cumbersome.

1.6.2. Bivariate SNP Density Functions

Now let w1(x) and w2(y) be a pair of density functions on R with supports (a1, b1)
and (a2, b2), respectively, and let {ρ1,m}∞m=0 and {ρ2,m}∞m=0 be complete orthonor-
mal sequences in L2(w1) and L2(w2), respectively. Moreover, let g(x, y) be a Borel
measurable real function on (a1, b1) × (a2, b2) satisfying∫ b1

a1

∫ b2

a2

g(x, y)2w1(x)w2(y) dx dy <∞. (1.40)

The latter implies that g2(y) = ∫ b1
a1

g(x, y)2w1(x) dx < ∞ a.e. on (a2, b2), so that

for each y ∈ (a2, b2) for which g2(y) < ∞ we have g(x, y) ∈ L2(w1). Then g(x, y) =∑∞
m=0 γm(y)ρ1,m(x) a.e. on (a1, b1), where γm(y) = ∫ b1

a1
g(x, y)ρ1,m(x)w1(x)dx

with
∑∞

m=0 γm(y)2 = ∫ b1
a1

g(x, y)2 · w1(x) dx = g2(y). Because by (1.40) we have∫ b2
a2

g2(y)w2(y) dy < ∞, it follows now that for each y ∈ (a2, b2) for which g2(y) < ∞
and all integers m ≥ 0 we have γm(y) ∈ L2(w2), so that γm(y) = ∑∞

k=0 γm,kρ2,k(y)

a.e. on (a2, b2), where γm,k = ∫ b1
a1

∫ b2
a2

g(x, y)ρ1,m(x)ρ2,k(y)w1(x)w2(y)dxdy with∑∞
m=0

∑∞
k=0γ

2
m,k <∞. Hence,

g(x, y) =
∞∑

m=0

∞∑
k=0

γm,kρ1,m(x)ρ2,k(y) a.e. on (a1, b1) × (a2, b2). (1.41)

Therefore, it follows similar to Theorem 1.16 that the next theorem holds.

Theorem 1.17. Given a pair of density functions w1(x) and w2(y) with supports (a1, b1)
and (a2, b2), respectively, and given complete orthonormal sequences {ρ1,m}∞m=0 and
{ρ2,m}∞m=0 in L2(w1) and L2(w2), respectively, with ρ1,0(x) = ρ2,0(y) ≡ 1, for every
bivariate density f (x, y) on (a1, b1)× (a2, b2) there exist possibly uncountably many dou-
ble arrays δm,k satisfying

∑∞
m=0

∑∞
k=0 δ

2
m,k < ∞, with δ0,0 = 1 by normalization, such

that a.e. on (a1, b1) × (a2, b2), we obtain

f (x, y) = w1(x)w2(y)
(∑∞

m=0

∑∞
k=0 δm,kρ1,m(x)ρ2,k(y)

)2∑∞
k=0

∑∞
m=0 δ

2
k,m

.

For example, let w1(x) and w2(y) be standard normal densities and ρ1,m(x) and
ρ2,k(y) Hermite polynomials, that is, ρ1,k(x) = ρ2,k(x) = pk(x|wN [0,1]). Then for any
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density function f (x, y) on R2 there exists a double array δm,k and associated sequence
of SNP densities

fn(x, y) = exp( − (x2 + y2)/2)

2π
∑n

k=0

∑n
m=0 δ

2
k,m

(
n∑

m=0

n∑
k=0

δm,kpm(x|wN [0,1])pk(y|wN [0,1])

)2

such that limn→∞ fn(x, y) = f (x, y) a.e. on R2.
This result is used by Gallant and Nychka (1987) to approximate the bivariate error

density of the latent variable equations in Heckman’s (1979) sample selection model.

1.6.3. SNP Densities and Distribution Functions on [0, 1]

Since the seminal paper by Gallant and Nychka (1987), SNP modeling of density
and distribution functions on R via the Hermite expansion has become the standard
approach in econometrics, despite the computational burden of computing the SNP
distribution function involved.

However, there is an easy trick to avoid this computational burden, by mapping one-
to-one any absolutely continuous distribution function F(x) on (a, b) with density f (x)
to an absolutely continuous distribution function H(u) with density h(u) on the unit
interval, as follows. Let G(x) be an a priori chosen absolutely continuous distribution
function with density g(x) and support (a, b). Then we can write

F(x) = H(G(x)) and f (x) = h(G(x)) · g(x), (1.42)

where
H(u) = F(G−1(u)) and h(u) = f (G−1(u))/g(G−1(u)) (1.43)

with G−1(u) the inverse of G(x).
For example, let (a, b) = R and choose for G(x) the logistic distribution function

G(x) = 1/(1 + exp(−x)). Then g(x) = G(x)(1 − G(x)) and G−1(u) = ln(u/(1 − u)),
hence h(u) = f ( ln (u/(1−u)))/(u(1−u)). Similarly, if (a, b) = (0,∞) and G(x) = 1−
exp(−x), then any density f (x) on (0,∞) corresponds uniquely to h(u) = f ( ln(1/(1−
u)))/(1 − u).

The reason for this transformation is that there exist closed-form expressions for
SNP densities on the unit interval and their distribution functions. In particular,
Theorem 1.18 follows from (1.23)–(1.25) and Corollary 1.2.

Theorem 1.18. For every density h(u) on [0, 1] with corresponding c.d.f. H(u) there exist
possibly uncountably many sequences {δm}∞m=1 satisfying

∑∞
m=1 δ

2
m <∞ such that h(u) =

limn→∞ hn(u) a.e. on [0, 1], where

hn(u) = 1

π
√

u (1 − u)

(
1 +∑n

m=1 ( − 1)mδm
√

2cos (m · arccos(2u − 1))
)2

1 +∑n
m=1 δ

2
m

, (1.44)
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and limn→∞ sup0≤u≤1 |Hn(1 −π−1 arccos (2u − 1)) − H(u)| = 0, where

Hn(u) = u + 1

1 +∑n
m=1 δ

2
m

[
2
√

2
n∑

k=1

δk
sin(kπu)

kπ
+

n∑
m=1

δ2
m

sin(2mπu)

2mπ

+2
n∑

k=2

k−1∑
m=1

δkδm
sin((k + m)πu)

(k + m)π

+2
n∑

k=2

k−1∑
m=1

δkδm
sin((k − m)πu)

(k − m)π

]
. (1.45)

Moreover, with w(x) being the uniform density on [0, 1] and ρm(x) being the cosine
sequence, it follows from Corollary 1.2 that the next theorem holds.

Theorem 1.19. For every density h(u) on [0, 1] with corresponding c.d.f. H(u) there exist
possibly uncountably many sequences {δm}∞m=1 satisfying

∑∞
m=1 δ

2
m < ∞ such that a.e.

on [0, 1], h(u) = limn→∞ hn(u), where

hn(u) =
(

1 +∑n
m=1 δm

√
2 cos (mπu)

)2

1 +∑n
m=1 δ

2
m

, (1.46)

and limn→∞ sup0≤u≤1 |Hn(u) − H(u)| = 0, where Hn(u) is defined by (1.45).

The latter follows straightforwardly from (1.46) and the well-known equality
cos(a)cos (b) = (cos(a + b) + cos (a − b))/2, and the same applies to the result for
H(u) in Theorem 1.18.

1.6.4. Uniqueness of the Series Representation

The density h(u) in Theorem 1.19 can be written as h(u) = η(u)2/
∫ 1

0 η(v)2 dv, where

η(u) = 1 +
∞∑

m=1

δm

√
2 cos (mπu) a.e. on (0, 1). (1.47)

Moreover, recall that in general we have

δm =
∫ 1

0 (1(u ∈ B) − 1(u ∈ [0, 1]\B))
√

2 cos (mπu)
√

h(u) du∫ 1
0 (1(u ∈ B) − 1(u ∈ [0, 1]\B))

√
h(u) du

,

1√
1 +∑∞

m=1 δ
2
m

=
∫ 1

0
(1(u ∈ B) − 1(u ∈ [0, 1]\B))

√
h(u) du.
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for some Borel set B satisfying
∫ 1

0 (1(u ∈ B) − 1(u ∈ [0, 1]\B))
√

h(u) du > 0; hence

η(u) = (1(u ∈ B) − 1(u ∈ [0, 1]\B))
√

h(u)

√√√√1 +
∞∑

m=1

δ2
m (1.48)

Similarly, given this Borel set B and the corresponding δm’s, the SNP density (1.46)
can be written as hn(u) = ηn(u)2/

∫ 1
0 ηn(v)2dv, where

ηn(u) = 1 +
n∑

m=1

δm

√
2 cos (mπu)

= (1(u ∈ B) − 1(u ∈ [0, 1]\B))
√

hn(u)

√√√√1 +
n∑

m=1

δ2
m. (1.49)

Now suppose that h(u) is continuous and positive on (0, 1). Moreover, let S ⊂ [0, 1]
be the set with Lebesgue measure zero on which h(u) = limn→∞ hn(u) fails to hold.
Then for any u0 ∈ (0, 1)\S we have limn→∞ hn(u0) = h(u0) > 0; hence for sufficient
large n we have hn(u0) > 0. Because obviously hn(u) and ηn(u) are continuous on
(0, 1), for such an n there exists a small εn(u0) > 0 such that hn(u) > 0 for all u ∈
(u0 − εn(u0), u0 + εn(u0)) ∩ (0, 1), and therefore

1(u ∈ B) − 1(u ∈ [0, 1]\B) = ηn(u)
√

hn(u)
√

1 +∑n
m=1 δ

2
m

(1.50)

is continuous on (u0 − εn(u0), u0 + εn(u0)) ∩ (0, 1). Substituting (1.50) in (1.48), it
follows now that η(u) is continuous on (u0 −εn(u0), u0 +εn(u0))∩ (0, 1); hence by the
arbitrariness of u0 ∈ (0, 1)/S, η(u) is continuous on (0, 1).

Next, suppose that η(u) takes positive and negative values on (0, 1). Then by the
continuity of η(u) on (0, 1) there exists a u0 ∈ (0, 1) for which η(u0) = 0 and thus
h(u0) = 0, which, however, is excluded by the condition that h(u) > 0 on (0, 1). There-
fore, either η(u) > 0 for all u ∈ (0, 1) or η(u) < 0 for all u ∈ (0, 1). However, the latter
is excluded because by (1.47) we have

∫ 1
0 η(u) du = 1. Thus, η(u) > 0 on (0, 1), so that

by (1.48), 1(u ∈ B) − 1(u ∈ [0, 1]\B) = 1 on (0, 1).
Consequently, we have the following theorem.

Theorem 1.20. For every continuous density h(u) on (0, 1) with support (0, 1) the
sequence {δm}∞m=1 in Theorem 1.19 is unique, with

δm =
∫ 1

0

√
2cos (mπu)

√
h(u) du∫ 1

0

√
h(u) du

.

As is easy to verify, the same argument applies to the more general densities
considered in Theorem 1.16:
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Theorem 1.21. Let the conditions of Theorem 1.16 be satisfied. In addition, let the den-
sity w(x) and the orthonormal functions ρm(x) be continuous on (a, b).19 Then every
continuous and positive density f (x) on (a, b) has a unique series representation (1.36),
with

δm =
∫ b

a ρm(x)
√

w(x)
√

f (x) dx∫ 1
0

√
w(x)

√
f (x) dx

.

Moreover, note that Theorem 1.18 is a special case of Theorem 1.16. Therefore, the
following corollary holds.

Corollary 1.3. For every continuous and positive density h(u) on (0, 1) the δm’s in
Theorem 1.18 are unique and given by

δm = (−1)m

∫ 1
0

√
2 cos (m · arccos (2u − 1))(u (1 − u))−1/4 √

h(u) du∫ 1
0 (u (1 − u))−1/4 √

h(u) du
.

1.6.5. Application to the MPH Competing Risks Model

Note that the distribution (1.6) in the MPH competing risks Weibull model (1.5) has
density

h (u) =
∫ ∞

0
v2uv−1 dG(v),

which is obviously positive and continuous on (0, 1). However, if G(1)> 0, then h(0) =
∞; and if E[V 2] = ∫∞

0 v2 dG(v) = ∞, then h(1) = ∞. To allow for these possibilities,
the series representation in Theorem 1.18 on the basis of Chebyshev polynomials seems
an appropriate way of modeling H(u) semi-nonparametrically, because then hn(0) =
hn(1) = ∞ if 1 + √

2
∑∞

m=1 ( − 1)mδm 
= 0 and 1 + √
2
∑∞

m=1 δm 
= 0. However, the
approach in Theorem 1.19 is asymptotically applicable as well, because the condition∑∞

m=1 δ
2
m <∞ does not preclude the possibilities that

∑∞
m=1 δm =∞ and/or

∑∞
m=1 (−

1)mδm = ∞, which imply that limn→∞ hn(0) = limn→∞ hn(1) = ∞.
As said before, the actual log-likelihood in Bierens and Carvalho (2007) is more

complicated than displayed in (1.7), due to right-censoring. In their case the log-
likelihood involves the distribution function H(u) = ∫ ∞

0 uv dG(v) next to its density
h(u) = ∫ ∞

0 vuv−1 dG(v), where h(1) = ∫∞
0 v dG(v) = 1 due to the condition E[V ] = 1.

Note also that G(1) > 0 implies h(0) = ∞. Bierens and Carvalho (2007) use a series
representation of h(u) in terms of Legendre polynomials with SNP density hn(u) sat-
isfying the restriction hn(1) = 1. However, as argued in Section 1.6.1, the computation
of the corresponding SNP distribution function Hn(u) is complicated.

Due to the restriction hn(1) = 1, the approach in Theorem 1.18 is not applicable as
an alternative to the Legendre polynomial representation of h(u) = ∫ ∞

0 vuv−1 dG(v),
whereas the approach in Theorem 1.19 does not allow for hn(0) = ∞. On the other
hand, Bierens and Carvalho (2007) could have used Hn(u) = Hn(

√
u), for example,
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where Hn is defined by (1.45), with density

hn(u) =
(

1 +∑n
m=1 δm

√
2cos

(
mπ

√
u
))2

2
(
1 +∑n

m=1 δ
2
m

)√
u

and δ1 chosen such that

1 =
(

1 +√
2
∑n

m=1 ( − 1)mδm

)2

2
(
1 +∑n

m=1 δ
2
m

) (1.51)

to enforce the restriction hn(1) = 1.

1.6.6. Application to the First-Price Auction Model

In the first-price auction model, the value distribution F(v) is defined on (0,∞), so
at first sight a series expansion of the value density f (v) in terms of Laguerre polyno-
mials seems appropriate. However, any distribution function F(v) on (0,∞) can be
written as F(v) = H(G(v)), where G(v) is an a priori chosen absolutely continuous
distribution function with support (0,∞), so that H(u) = F(G−1(u)) with density
h(u) = f ((G−1(u))/g(G−1(u)), where G−1 and g are the inverse and density of G,
respectively. For example, choose G(v) = 1 − exp(−v), so that g(v) = exp(−v) and
G−1(u) = ln (1/(1 − u)).

The equilibrium bid function (1.8) can now be written as

β (v|H) = v −
∫ v

p0
H(G(x))I−1 dx

H(G(v))I−1
, v ≥ p0. (1.52)

Bierens and Song (2012) use the SNP approximation of H(u) on the basis of Legen-
dre polynomials, but using the results in Theorem 1.19 would have been much more
convenient. In any case the integral in (1.52) has to be computed numerically.

Similarly, the conditional value distribution F(v exp(−θ ′X)) in Bierens and Song
(2013) can be written as H(G(v exp (−θ ′X))), where now H is modeled semi-
nonparametrically according the results in Theorem 1.19. In this case the number
of potential bidders I = I(X) and the reservation price p0 = p0(X) also depend on
the auction-specific covariates X ; but as shown in Bierens and Song (2013), I(X)
can be estimated nonparametrically and therefore may be treated as being observable,
whereas p0(X) is directly observable. Then in the binding reservation price case the
auction-specific equilibrium bid function becomes

β (v|H ,θ , X)= v −
∫ v

p0(X) H(G(x · exp(−θ ′X)))I(X)−1 dx

H(G(v exp (−θ ′X)))I(X)−1
, v ≥ p0(X). (1.53)
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1.7. A Brief Review of Sieve Estimation
.............................................................................................................................................................................

Recall from (1.30)–(1.32) that in the SNP index regression case the objective function
takes the form

Q̂N (θ ,δ∞) = 1

N

N∑
j=1

(
Yj −

∞∑
m=0

δmpm(X1,j + θ ′X2,j|wN [0,1])

)2

K(||Xj ||),

where δ∞ = (δ1,δ2,δ3, . . .) ∈R∞ satisfies
∑∞

m=0 δ
2
m <∞, with true parameters θ0 and

δ0∞ = (δ0,1,δ0,2,δ0,3, . . .) satisfying

(θ0,δ0
∞) = argmin

θ ,δ∞
Q(θ ,δ∞) (1.54)

subject to
∑∞

m=0 δ
2
m <∞, where Q(θ ,δ∞) = E[Q̂N (θ ,δ∞)].

Similarly, in the MPH competing risk model with H(u) modeled semi-nonpara-
metrically as, for example, H(

√
u|δ∞) = limn→∞ Hn(

√
u) with Hn defined by (1.45),

and subject to the restriction (1.51), the objective function is

Q̂N (θ ,δ∞) = − 1

N
ln(LN (α1,α2,β1,β2, H(

√
u|δ∞))),

θ = (
α′

1,α′
2,β ′

1,β ′
2

)′
.

with true parameters given by (1.54) with Q(θ ,δ∞) = E[Q̂N (θ ,δ∞)].
In the first-price auction model with auction-specific covariates the function

Q(θ ,δ∞) is the probability limit of the objective function Q̂N (θ ,δ∞) involved rather
than the expectation. See Bierens and Song (2013).

Now let � be a compact parameter space for θ0, and for each n ≥ 1, let �n be a
compact space of nuisance parameters δn = (δ1,δ2,δ3, . . . ,δn, 0, 0, 0, . . .), endowed with
metric d(., .), such that δ0

n = (δ0,1,δ0,2,δ0,3, . . . ,δ0,n, 0, 0, 0, . . .) ∈ �n. Note that δ0∞ ∈
∪∞

n=1�n, where the bar denotes the closure.
The sieve estimator of (θ0,δ0

∞) is defined as(
θ̂n, δ̂n

)= arg min
(θ ,δn)∈�×�n

Q̂N (θ ,δn).

Under some regularity conditions it can be shown that for an arbitrary subsequence
nN of the sample size N we obtain

p lim
N→∞

||̂θnN − θ0|| = 0 and p lim
N→∞

d
(̂
δnN ,δ0

∞
)= 0.

Moreover, under further regularity conditions the subsequence nN can be chosen such
that √

N(θ̂nN − θ0)
d→ N[0,�].
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See Shen (1997), Chen (2007), and Bierens (2013). As shown in Bierens (2013), the
asymptotic variance matrix � can be estimated consistently by treating nN as con-
stant and then estimating the asymptotic variance matrix involved in the standard
parametric way.

Note that Bierens and Carvalho (2007) assume that δ0
∞ ∈ ∪∞

n=1�n, so that for some
n we have δ0

∞ = δ0
n ∈ �n. This is quite common in empirical applications because

then the model is fully parametric, albeit with unknown dimension of the parameter
space. See, for example, Gabler et al. (1993). The minimal order n in this case can be
estimated consistently via an information criterion, such as the Hannan–Quinn (1979)
and Schwarz (1978) information criteria. Asymptotically, the estimated order n̂N may
then be treated as the true order, so that the consistency and asymptotic normality of
the parameter estimates can be established in the standard parametric way.

In the case δ0
∞ ∈ ∪∞

n=1�n\ ∪∞
n=1 �n the estimated sieve order n̂N via these infor-

mation criteria will converge to ∞. Nevertheless, using n̂N in this case may preserve
consistency of the sieve estimators, as in Bierens and Song (2012, Theorem 4), but
whether asymptotic normality is also preserved is an open question.

1.8. Concluding Remarks
.............................................................................................................................................................................

Admittedly, this discussion of the sieve estimation approach is very brief and incom-
plete. However, the main focus of this chapter is on SNP modeling. A full review of
the sieve estimation approach is beyond the scope and size limitation of this chapter.
Besides, a recent complete review has already been done by Chen (2007).

This chapter is part of the much wider area of approximation theory. The reader may
wish to consult some textbooks on the latter—for example, Cheney (1982), Lorentz
(1986), Powell (1981), and Rivlin (1981).

Notes

1. Of course, there are many more examples of SNP models.
2. See, for example, Bierens (2004, Theorem 3.10, p. 77).
3. See (1.41) below.
4. Note that due to the presence of scale parameters in the Weibull baseline hazards (1.3),

the condition E[V ] = 1 is merely a normalization of the condition that E[V ] <∞.
5. That is, {v : f (v) > 0} is an interval.
6. See, for example, Bierens (2004, Theorem 7.A.1, p. 200).
7. Here the bar denotes the closure.
8. See, for example, Bierens (2004, Theorem 7.A.5, p. 202) for a proof of the projection

theorem.
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9. See, for example, Bierens (2004, Theorem 7.A.2., p. 200). The latter result is confined
to the Hilbert space of zero-mean random variables with finite second moments, but its
proof can easily be adapted to R.

10. The existence of such a complete orthonormal sequence will be shown in the next section.
11. See, for example, Bierens (2004, Theorem 6.B.3, p. 168).
12. See, for example, Bierens (2004, Theorem 2.B.2, p. 168).
13. Charles Hermite (1822–1901).
14. Edmund Nicolas Laguerre (1834–1886).
15. Adrien-Marie Legendre (1752–1833).
16. See, for example, Bierens (1994, Theorem 3.1.1, p. 50).
17. See Section 1.7.
18. See, for example, Young (1988, Chapter 5).
19. The latter is the case if we choose ρm(x) = p(x|w).
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AN OVERVIEW OF THE SPECIAL
REGRESSOR METHOD

........................................................................................................

arthur lewbel
†

2.1. Introduction
.............................................................................................................................................................................

The goal of this chapter is to provide some background for understanding how and
why special regressor methods work, as well as provide their application to iden-
tification and estimation of latent variable moments and parameters. Other related
surveys include that of Dong and Lewbel (2012), who describe the simplest estimators
for applying special regressor methods to binary choice problems (particularly those
involving endogenous regressors), and that of Lewbel, Dong, and Yang (2012), who
provide a comparison of special regressor methods to other types of estimators, specif-
ically, to control functions, maximum likelihood, and linear probability models for
binary choice model estimation.

A special regressor is an observed covariate with properties that facilitate identifica-
tion and estimation of a latent variable model. For example, suppose that an observed
binary variable D satisfies D = I(V +W ∗ ≥ 0), where V is the observed special regres-
sor and W ∗ is an unobserved latent variable. Such a W ∗ will exist as long as the
probability that D = 1 is increasing in V . The goal is estimation of the distribution
of W∗, or estimation of features of its distribution like a conditional or unconditional
mean or median of W ∗. Many standard models have this form; for example, a probit
model has W ∗ = X ′β + ε with ε normal, and estimating β would correspond to esti-
mating the conditional mean of W ∗ given X . A simple probit doesn’t require a special
regressor, but the special regressor would be useful here if ε is heteroskedastic with
an unknown distribution, or if some or the regressors in X are endogenous. Special
regressor methods work by exploiting the fact that if V is independent of W ∗ (either
unconditionally or after conditioning on covariates), then variation in V changes the
probability that D = 1 in a way that traces out the distribution of W ∗ (either the
unconditional distribution or the distribution conditional on covariates).
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The term special regressor was first used in Lewbel (1998), but the commonest
class of applications for the special regressor is to binary choice models as described
in Lewbel (2000). The special regressor method has been employed in a wide variety of
limited dependent variable models, including binary, ordered, and multinomial choice
as well as censored regression, selection, and treatment models (Lewbel, 1998, 2000,
2007a; Magnac and Maurin, 2007, 2008), truncated regression models (Khan and
Lewbel, 2007), binary and other nonlinear panel models with fixed effects (Honore
and Lewbel, 2002; Ai and Gan, 2010; Gayle, 2012), contingent valuation models (Lew-
bel, Linton, and McFadden, 2011), dynamic choice models (Heckman and Navarro,
2007; Abbring and Heckman, 2007), market equilibrium models of multinomial dis-
crete choice (Berry and Haile, 2009a, 2009b), models of games, including entry games
and matching games (Lewbel and Tang, 2011; Khan and Nekipelov, 2011; Fox and
Yang, 2012), and a variety of models with (partly) nonseparable errors (Lewbel, 2007b;
Matzkin, 2007; Briesch, Chintagunta, and Matzkin, 2010).

Additional empirical applications of special regressor methods include Anton, Fer-
nandez Sainz, and Rodriguez-Poo (2002), Maurin (2002), Cogneau and Maurin
(2002), Goux and Maurin (2005), Stewart (2005), Avelino (2006), Pistolesi (2006),
Lewbel and Schennach (2007), and Tiwari, Mohnen, Palm, and van der Loeff (2007).
Earlier results that can be reinterpreted as special cases of special regressor-based iden-
tification methods include Matzkin (1992, 1994) and Lewbel (1997). Vytlacil and Yildiz
(2007) describe their estimator as a control function, but their identification of the
endogenous regressor coefficient essentially treats the remainder of the latent index
as a special regressor. Recent identification and limiting distribution theory involving
special regressor models include Jacho-Chávez (2009), Khan and Tamer (2010), and
Khan and Nekipelov (2010a, 2010b).

The remainder of this chapter lays out the basic ideas behind special regressor meth-
ods. The focus here is on identification and associated construction of estimators, not
on limiting distribution theory. Most of the estimators provided here are multistep
estimators, where each step takes the form of a standard parametric or nonparametric
density or regression estimator.

The next section provides the basic idea of how a special regressor can identify
the distribution of a latent variable, specifically the latent index W ∗ in a threshold
crossing binary choice model D = I(V + W ∗ ≥ 0). This is followed by sections that
look at estimation of unconditional moments of the latent index such as E(W∗),
as well as discuss estimation of conditional moments like E(W ∗ | X), condition-
ing on covariates X . This will then lead to estimation of coefficients β in discrete
choice models D = I(V + X ′β + ε ≥ 0) when the latent error ε is heteroskedastic
and has unknown distribution. Later sections will consider semiparametric instru-
mental variables estimators for these models when the regressors X are mismea-
sured or endogenous. The final sections consider some extensions, including allow-
ing the special regressor V to be discrete, and also consider other latent variable
models.
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2.2. Identifying a Latent Marginal

Distribution
.............................................................................................................................................................................

To illustrate the main ideas behind special regressor identification and estimation,
begin with an example from Lewbel, Linton, and McFadden (2011). Suppose we want
to uncover the distribution of people’s willingness to pay (wtp) W ∗ to preserve a
wetland habitat. Denote this distribution function as FW ∗(w). For simplicity in this
exposition, assume that the distribution of W ∗ is continuously distributed.

A survey is performed in which, for each person in the sample, researchers draw a
price P from some distribution function chosen by the researcher and ask the sampled
individual if they would be willing to pay P dollars or more to preserve the wetland. Let
D denote an individual’s response (D = 1 for yes or D = 0 for no), so D = I(W ∗ ≥ P),
where W ∗ is the individual’s unobserved (latent) willingness to pay and I is the indica-
tor function that equals one if its argument is true and zero otherwise. The experiment
is designed so that prices are randomly assigned to individuals, meaning that the dis-
tribution that P is drawn from is independent of W ∗. Let E(D | P = p) denote the
conditional expectation of D, conditioning on the event that the random variable P
equals the value p. By construction of the experiment, P is drawn independently of each
subject’s willingness to pay, so P is distributed independently of W ∗. It follows from
this independence that E(D | P = p) = Pr(W ∗ ≥ p) = 1 − Pr(W ∗ < p) = 1 − FW ∗ (p).
For example, suppose that among a random sample of people, 70% said they would be
not be willing to pay more than $50 to preserve the wetland. In this example, p = 50
and so 0.7 would be an unbiased estimate of 1 − E(D | P = 50) = FW ∗(50).

In the data set examined by An (2000) and reconsidered by Lewbel, Linton, and
McFadden (2011), P takes on one of 14 different values, so without additional assump-
tions, these data could identify the distribution function FW ∗(w∗) only at w∗ = p for
these 14 values of p. To identify the entire distribution function FW∗ , it would be
desirable to design the experiment so that P can take on any value that the willingness-
to-pay W ∗ could equal, meaning that each p should be drawn from a continuous
distribution with support equal to an interval that is at least as large as the range of
possible values of W ∗.1

In this application, P is a special regressor that allows us to identify the distribution
function FW ∗(w∗) at points w∗ = p in the distribution of P. If the experiment were
designed so that the distribution of P was continuous, then the entire distribution
of W∗ would be identified as the number of subjects goes to infinity and could be
consistently estimated by a nonparametric regression of 1 − D on P, since E(1 − D |
P = p) = FW ∗(p).

To be consistent with later notation on latent variable models (e.g., the notation of
a probit model), let V = −P, so D = I(V + W ∗ ≥ 0). Suppose P and hence V are
continuously distributed, and let FV (v) denote the distribution function of the special
regressor V . Let H(v) = E(D | V = v) and let Ĥ(v) be a uniformly consistent estimator



special regressor method 41

of H(v), such as a Nadaraya–Watson local constant or local linear kernel regression of
D on V . Then, replacing p above with −v, we have H(v) = 1−FW ∗(−v), and therefore
1 − Ĥ(−w∗) is a consistent estimator of FW ∗(w∗). If the support of V contains the
support of −W ∗, then the entire distribution function FW ∗(w∗) would be identified
and consistently estimated by 1 − Ĥ(−v) for values of v in the support of V .

In this example the special regressor V allows us to recover the distribution of the
latent variable W∗ in a limited dependent variable model. Suppose we wanted to esti-
mate E(W ∗), the average willingness to pay in the population. Let wL and wU denote
lower and upper bounds on the range of values that w∗ can take on, and let fw∗ denote
the probability density function of w∗. Then

E(W ∗) =
∫ wU

wL

w∗fw∗(w∗)dw∗ =
∫ wU

wL

w∗ ∂Fw∗(w∗)

∂w∗ dw∗

=
∫ wU

wL

w∗ ∂[1 − H(−w∗)]

∂w∗ dw∗. (2.1)

This equation shows that E(W ∗) is identified and could be consistently estimated by
replacing H with Ĥ in the above integral. The next section will provide a much simpler
estimator for E(W ∗).

The key features of the special regressor V that allow us to recover the distri-
bution of the latent W ∗ are independence (later this will be relaxed to conditional
independence), additivity, continuity, and large support. In this example, V is statis-
tically independent of the latent W ∗, V appears added to the latent W ∗ in the model
D = I(V + W ∗ ≥ 0), V is continuously distributed, and the range of values that V
takes on is at least as great as the range that −W ∗ takes on. Having one regressor in a
model that satisfies conditional independence, additivity, continuity, and large support
is the typical set of requirements for special regressor methods, though these features
can sometimes be relaxed in various directions.

Note in particular that large support is not required, but without it the distribution
of W ∗ will only be identified at the values that −V can take on. This may suffice for
some applications. For example, if support for the wetland will be decided by a refer-
endum, then by the median voter model the maximum amount of money that can be
raised to protect the wetland will be obtained by having people vote on whether they
are willing to pay the median of the distribution of W ∗. So in this application we only
need the range of −V to include the median of W ∗, which would be estimated as −v
for the value v that makes Ĥ(v) = 1/2. However, if we instead wish to estimate the
mean of W ∗, then large support will generally be required.2

These requirements for special regressors can be restrictive, but many discrete choice
estimators make use of similar restrictions like these, though sometimes implicitly. For
example, Manski’s (1985) maximum score and Horowitz’s (1992) smooth maximum
score estimator papers assume the presence of a regressor with these properties. Except
for large support, standard logit and probit models assume that all regressors satisfy
these properties.
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The above results can be generalized in a variety of directions. For example, suppose
we had the more general model Y = g(V + W ∗) for some possibly unknown function
g . Here V may now be thought of as just a regressor, not necessarily set by experimental
design. As long as g is nonconstant and weakly monotonic, then the mean and all other
features of the distribution of W ∗ can still be identified (up to an implicit location
normalization) by first letting D = I(Y ≥ y0) for any constant y0 in the support of Y
that makes D be nonconstant and then applying the same methods as above.

Even more generally, if Y depends on two or more latent variables, then their distri-
bution can be generally identified if we have a separate special regressor for each latent
variable.

To summarize, the key result derived in this section is that, in a latent index model
of the form D = I(V + W ∗ ≥ 0), variation in the special regressor V can be used to
identify and estimate the distribution function of the unobserved latent variable W∗,
based on FW∗(w∗) = 1 − E(D | V = −w∗) for any constant w∗ in the support of −V .
This result more generally shows identification of Y = g(V + W ∗), where g is weakly
monotonic.

2.3. Unconditional Moments
.............................................................................................................................................................................

Identification and hence estimation of the mean willingness to pay E(W ∗) based on
Eq. (2.1) is somewhat elaborate, since this equation involves integrating a function of
the derivative of the conditional expectation function H . In this section we derive a
simpler expression for E(W ∗). Let fv(v) denote the probability density function of V ,
which in the experimental design context is determined by, and hence known to, the
researcher. Let c be any constant in the interior of the supports of −W ∗. Define the
variable T1 by

T1 = D − I(V ≥ c)

fv(V )
− c. (2.2)

Then it will be shown below that

E(T1) = E(W ∗). (2.3)

Using Eq. (2.3), the mean of W∗ can be consistently estimated just by constructing
the variable T1i = [Di − I (Vi ≥ 0)]/fv (Vi) for each individual i in a sample and then
letting the estimate of E(W ∗) be the sample average

∑n
i=1 T1i/n. Here we have made

the simplest choice for the constant c of letting c = 0.
The derivation of E(T1) = E(W ∗) has two main components. One component is to

show that

E(W ∗) = −c +
∫ wU

wL

[H(−w∗) − I(−w∗ ≥ c)]dw∗. (2.4)
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The crux of the argument behind Eq. (2.4) is that, by definition of an expectation
E(W ∗) = ∫

w∗dFw∗(w∗) and using integration by parts, this integral is equivalent
to −∫

Fw∗(w∗)dw∗ plus boundary terms. Since Fw∗(w∗) = 1 − H(−w∗) we get∫
H(−w∗)dw∗ plus boundary terms. The role of c and of I(−w∗ ≥ c) in Eq. (2.4)

is to handle these boundary terms.
The second component to proving Eq. (2.3) is to show that E(T1) equals the

right-hand side of Eq. (2.4). This is shown by rewriting the integral in Eq. (2.4) as∫−wL
−wU

[H(v) − I(v ≥ c)]dv and plugging in H(v) = E(D | V = v). The argument inside
this integral can then be rewritten as E(T1 + c | V = v)fv(v). Notice that the c inside
the expectation will be canceled out with −c before the integral in Eq. (2.4), so the
right-hand side of Eq. (2.4) is equivalent to an expectation over V , giving E(T1).

The remainder of this section writes out these steps of the proof of Eq. (2.3) in detail.
To ease exposition, technical conditions required for applying integration by parts, and
for allowing the limits of integration wL and wU to be infinite, will be ignored here.

We begin by deriving Eq. (2.4), applying the following integration by parts
argument.

− c +
∫ wU

wL

[H(−w∗) − I(−w∗ ≥ c)]dw∗

= −c −
∫ wU

wL

[1 − H(−w∗) − I(w∗ >−c)]dw∗

= −c −
∫ wU

wL

[Fw∗(w∗) − I(w∗ >−c)]
∂w∗

∂w∗ dw∗

= −c − (w∗[Fw∗ (w∗) − I(w∗ >−c)]|wU
wL

) +
∫ wU

wL

w∗ ∂[Fw∗(w∗) − I(w∗ >−c)]

∂w∗ dw∗.

To evaluate this expression, first consider the boundary related terms, noting that
Fw∗(wL) = 0 and Fw∗(wU ) = 1.

− c − (w∗[Fw∗(w∗) − I(w∗ >−c)]|wU
wL

) = −c − (w∗Fw∗(w∗)|−c
wL

)

− (w∗[Fw∗(w∗) − 1]|wU−c )

= −c − (−cFw∗ (−c) − wLFw∗(wL)) − (wU [Fw∗(wU ) − 1] − (−c)[Fw∗ (−c) − 1])

= −c − (−cFw∗ (−c)) + (−c)[Fw∗ (−c) − 1] = c − c = 0.

Observe that the role of the term I(w∗ >−c) is to simplify these boundary terms, since
Fw∗(w∗) − I(w∗ >−c) equals zero for w∗ = wL and for w∗ = wU .

To finish deriving Eq. (2.2), now consider the remaining integral part.∫ wU

wL

w∗ ∂[Fw∗(w∗) − I(w∗ >−c)]

∂w∗ dw∗

=
∫ −c

wL

w∗ ∂Fw∗(w∗)

∂w∗ dw∗ +
∫ wU

−c
w∗ ∂[Fw∗ (w∗) − 1]

∂w∗ dw∗
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=
∫ wU

wL

w∗ ∂Fw∗ (w∗)

∂w∗ dw∗ =
∫ wU

wL

w∗dFw∗(w∗) = E(W ∗),

where the last equality just used the definition of an expectation. We have now shown
that Eq. (2.4) holds.

Recall that H is defined by H(v) = E(D | V = v). It would be simpler to base an
estimator on Eq. (2.4) rather than Eq. (2.1), because now one would only need to
replace H with a nonparametric regression estimator Ĥ in an integral without taking a
derivative of Ĥ . However, a further simplification is possible, by showing that Eq. (2.3)
holds, as follows. Start from Eq. (2.4), making the change of variables v = −w∗ in the
integral.

E(W ∗) = −c +
∫ wU

wL

[H(−w∗) − I(−w∗ ≥ c)]dw∗

= −c +
∫ −wL

−wU

[H(v) − I(v ≥ c)]dv.

Let �v be the support of V . Then

E(W∗) = −c +
∫ −wL

−wU

[H(v) − I(v ≥ c)]dv = −c +
∫ −wL

−wU

[
H(v) − I(v ≥ c)

fv(v)

]
fv(v)dv

= −c +
∫ −wL

−wU

[
H(v) − I(v ≥ c)

fv(v)

]
fv(v)dv

= −c +
∫ −wL

−wU

[
E(D | V = v) − I(v ≥ c)

fv(v)

]
fv(v)dv

= −c +
∫ −wL

−wU

[
E(

D − I(V ≥ c)

fv(V )
| V = v)

]
fv(v)dv

= −c +
∫

v∈�v

[
E(

D − I(V ≥ c)

fv(V )
| V = v)

]
fv(v)dv.

The last equality above used the assumption that V can take on any value that −W ∗
can take on, so the support of −W ∗, which is the interval from −wU to −wL, lies inside
�v , and also that D − I(V ≥ c) = I(V + W ∗ ≥ 0) − I(V ≥ c), which equals zero for
any value of V that lies outside the interval −wU to −wL.

Now substitute in the definition of T1 to get

E(W ∗) = −c +
∫

v∈�v

E(T1 + c | V = v)fv(v)dv = −c + E[E(T1 + c | V )]

= E[E(T1 | V )] = E(T1),

where we have used the definition of expectation over V and applied the law of iterated
expectations. This completes the derivation of Eq. (2.3).
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2.4. An Alternative Derivation
.............................................................................................................................................................................

Let c = 0 for simplicity. The previous section proved E(T1) = E(W ∗) by applying an
integration by parts argument to get that E(W ∗) = ∫

[H(−w∗) − I(−w∗ ≥ 0)]dw∗, or
equivalently E(W ∗) = ∫

[H(v)− I(v ≥ 0)]dv. Multiplying and dividing the expression
in this integral by fv(v) and using H(v) = E(D | V = v) then shows that this integral is
the same as E(T1).

The advantage of the derivation in the previous section is that it directly shows how
T1 is obtained from the definition of the mean of a random variable W ∗, and hence
how it directly follows from identification of H .

A more direct, but perhaps less insightful, derivation of the result follows from the
proof in Lewbel (2000). Starting from E(T1) with c = 0, follow the steps of the previous
section in reverse order to get

E(T1) =
∫ −wL

−wU

[
E

(
D − I(V ≥ 0)

fv(V )
| V = v

)]
fv(v)dv

=
∫ −wL

−wU

E[D − I(V ≥ 0) | V = v]dv

=
∫ −wL

−wU

E[I(V + W ∗ ≥ 0) − I(V ≥ 0) | V = v]dv

=
∫ −wL

−wU

E[I(V + W ∗ ≥ 0) − I(V ≥ 0) | V = v]dv

= E[

∫ −wL

−wU

[I(v + W ∗ ≥ 0) − I(v ≥ 0)]dv],

where this last step used the independence of V and W ∗ to pass the integral into the
expectation. Equivalently, the expectation is just over W ∗, so we are just changing the
order of integration over v and over W ∗. When W ∗ is positive, this expression becomes

E(T1) = E

(∫ −wL

−wU

I(0 ≤ v ≤ W ∗)dv

)

= E

(∫ W ∗

0
1 dv

)
= E(W ∗)

and an analogous result holds when W ∗ is negative.
An advantage of this derivation is that it does not entail direct consideration of the

boundary terms associated with the integration by parts. The technical assumptions
required for dealing with integration by parts and possibly infinite boundaries wL or
wU are replaced with the assumption that we can change the order of integration (e.g.,
Fubini’s theorem).
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2.5. Estimating Unconditional Moments
.............................................................................................................................................................................

Given that E(T1) = E(W ∗), we can construct the variable T1i = [Di − I(Vi ≥ 0)]/fv(Vi)
for each individual i in a sample, and let the estimate of E(W ∗) be the sample average
T1 = ∑n

i=1 T1i/n. Here we have made the simplest choice for the constant c, letting
c = 0. In applications where the density of V is not already known to the researcher
by experimental design, T can still be used to estimate E(W ∗) by replacing fv(Vi) in
T1i with a uniformly consistent density estimator f̂v(Vi). For example, an ordinary
Rosenblatt–Parzen kernel density estimator could be used, or the simpler sorted data
estimator described by Lewbel and Schennach (2007).

Although T1 is a sample average, it is possible that this estimator will not converge
at rate root n. This is because the density fv(Vi) may have thin tails, and we are divid-
ing by this density, which means that the distribution of T1 can have tails that are
too thick to satisfy the Lindeberg condition for the central limit theorem. It can be
shown that obtaining parametric rates requires finite support for W ∗ and V , or that
V has infinite variance, or that W∗ satisfies a tail symmetry condition as defined by
Magnac and Maurin (2007). See Khan and Tamer (2010), Khan and Nekipelov (2010a,
2010b), and Dong and Lewbel (2012) for more discussion of this point, and see Lew-
bel and Schennach (2007), Jacho-Chávez (2009), and Chu and Jacho-Chávez (2012)
for more general limiting distribution theory regarding averages with a density in the
denominator.

Based on Lewbel, Linton, and McFadden (2011), Eq. (2.3) readily extends to esti-
mating other moments of W ∗, using the fact that D = I(V +W ∗ ≥ 0) = I[−h(−V )+
h(W ∗) ≥ 0] for any strictly monotonically increasing function h. Therefore, if we let
Ṽ = −h(−V ) and h′(v) = ∂h(v)/∂v, we have

E[h(W ∗)] = E

[
c + D − I(Ṽ ≥ c)

f̃v(Ṽ )

]
= E

(
c + [D − I([h(−V ) ≤ −c])]h′(−V )

fv(V )

)
.

It follows that, given a function h, to estimate E[h(W ∗)] we can construct

Thi = c + [Di − I([h(−Vi) ≤ −c])]h′(−Vi)

fv(Vi)

for each observation i and then take the sample average Th =∑n
i=1 Thi/n as an estima-

tor for E[h(W ∗)]. For example, letting h(W ∗) = (W ∗)λ for integers λ provides direct
estimators for second and higher moments of W ∗, if W ∗ is everywhere non-negative
or non-positive as in the willingness-to-pay example.
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2.6. Identification with Covariates
.............................................................................................................................................................................

Now consider how the previous section’s results can be generalized by the inclusion of
additional covariates. Continue with the willingness-to-pay application for now, so we
still have D = I(V + W ∗ ≥ 0). Let X be a vector of observed covariates consisting of
attributes of the sampled individuals, such as their age and income, which might affect
or otherwise correlate with their willingness to pay. The distribution that V is drawn
from could depend on X (e.g., quoting higher prices to richer individuals), but by
construction it will be the case that W ∗ ⊥ V | X . The symbols ⊥ and | denote statistical
independence and conditioning respectively, so W ∗ ⊥ V | X says that the conditional
distribution of W ∗ given X is independent of the conditional distribution of V given X .

Let H(v, x) = E(D | V = v, X = x) so now H could be estimated as a nonparametric
regression of D on both X and V . It follows from W ∗ ⊥ V | X that

H(v, x) = 1 − Pr[W ∗ ≥ −v | X = x] = 1 − FW ∗|X (−v | x), (2.5)

where FW ∗|X denotes the conditional distribution of W ∗ given X . Therefore

FW∗|X (w | x) = 1 − E(D | V = −w, X = x), (2.6)

so one minus a nonparametric regression of D on both X and V , evaluated at V = −w,
provides a consistent estimator of the conditional distribution of W ∗ given X , that is,
the distribution of willingness to pay conditional on observed attributes of individuals
like their age or income.

An analogous calculation to that of the previous sections can be applied to calculate
the conditional mean willingness to pay E(W ∗ | X). All that is required is to replace
every expectation, density, and distribution function in the previous sections with
conditional expectations, densities, or distributions, conditioning on X . In place of
Eq. (2.2), define T2 by

T2 = D − I (V ≥ 0)

fv|x (V | X)
, (2.7)

where fv|x denotes the conditional probability density function of V given X (for sim-
plicity, we will hereafter let c = 0). As before with the pdf fv in T1, when constructing
T2 the pdf fv|x is either known by experimental design or can be estimated using a
Rosenblatt–Parzen kernel density estimator. Repeating the derivations of the previous
sections, but now conditioning on X = x, shows that E(W ∗ | X) = E(T2 | X). There-
fore the conditional mean willingness to pay E(W ∗ | X) can be consistently estimated
by a nonparametric regression (e.g., a kernel or local linear regression) of T2 on X ,
where each observation of T2 is defined by T2i = [Di − I(Vi ≥ 0)]/fv|x(Vi | Xi) for each
individual i in the sample.

The fact that the entire conditional distribution of W ∗ given X is identified means
that any model for W ∗ that would have been identified if W ∗ were observable will now



48 methodology

be identified via the special regressor even though W∗ is latent. The next sections give
some examples.

2.7. Latent Linear Index Models
.............................................................................................................................................................................

Consider the standard consumer demand threshold crossing model D = I(V + X ′β +
ε ≥ 0), where D indicates whether a consumer buys a product or not, and V +X ′β+ ε

is the individual’s utility from purchasing the good. This corresponds to the special case
of the model in the previous section in which the model W ∗ = X ′β+ε is imposed. The
vector X can (and typically would) include a constant term. If V is the negative of the
price, then normalizing the coefficient of V to equal one puts the utility in a money
metric form, that is, V + X ′β + ε is then the consumer’s surplus, defined as their
reservation price W ∗ minus their cost of purchasing, which is −V . The willingness-to-
pay model is an example where the product is a public good like preserving a wetland
while price is determined by experimental design. In the more general demand context,
we may not want to take price to be the special regressor since, for example, real-
world prices may be endogenous, or not vary sufficiently to give V the necessary large
support. But whatever variable that we take to be V can have its coefficient normalized
to equal one (by changing the sign of V if necessary).

We will not require ε to be independent of X . So, for example, the random coef-
ficients model D = I(V + X ′e ≥ 0) would be permitted, defining β = E(e) and
ε = X ′(e − β). More generally, the variance and higher moments of ε can depend on
X in arbitrary ways, allowing for any unknown form of heteroskedasticity with respect
to X .

This type of model would typically be estimated by parameterizing ε and doing max-
imum likelihood; for example, this would be a probit model if ε were normal and
independent of X . However, the special regressor V allows this model to be identified
and estimated even if the distribution of ε is unknown, and even if the second and
higher moments of that distribution depends on X in unknown ways (such as having
heteroskedasticity of unknown form).

If all we know about the latent error ε in the threshold crossing model D = I(V +
X ′β + ε ≥ 0) is that E(Xε) = 0, then it can be shown that β would not be identified.
However, here we also have the special regressor conditional independence assumption
that W ∗ ⊥ V | X , which with W ∗ = X ′β + ε implies that ε ⊥ V | X . This condition
along with E(Xε) = 0 suffices to identify the entire model, as follows.

First note that in the usual linear regression way, having W∗ = X ′β+ε and E(Xε) =
0 means that β = E(XX ′)−1E(XW ∗), assuming that E(XX ′) is nonsingular. We do not
observe W ∗; however,

E(XW ∗) = E(XE(W ∗ | X)) = E

(
X

∫
w∗fw∗|X (w∗ | x)dw∗

)
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= E

(
X

∫
w∗ dFw∗|X (w∗ | x)

dw∗ dw∗
)

,

where the integral is over the support of W ∗. So, to identify β, recall that H(v, x) =
E(D | V = v, X = x) is identified (and could be estimated by an ordinary nonparametric
regression). Then W ∗ ⊥ V | X implies that 1 − H(v, x) = FW ∗|X (−v | x) as before.
Plugging this into the above integral shows that

β = E(XX ′)−1E(XW ∗) = E(XX ′)−1E

(
X

∫
v

d[1 − H(−v, x)]

dv
dv

)
and therefore that β is identified, because all of the terms on the right are identified.

Following the logic of the previous sections, a much simpler estimator for β can
be constructed using T2. In particular, by the derivation of Eqs. (2.6) and (2.7)
we have

β = E(XX ′)−1E(XW ∗) = E(XX ′)−1E(XT2),

so β is given by a linear ordinary least squares regression of T2 on X , where T2 is
defined by Eq. (2.7). This is one of the estimators proposed in Lewbel (2000).

To implement this estimator, we first construct T2i = [Di − I(Vi ≥ 0)]/fv|x(Vi |
Xi) for each observation i in the data and then construct the usual ordinary least
squares regression estimator β̂ = (

∑n
i=1 XiX ′

i )−1(
∑n

i=1 XiT2i). As before, if the den-
sity fv|x(Vi | Xi) is unknown, it can be estimated using, for example, a kernel density
estimator.

2.8. Latent Random Coefficients
.............................................................................................................................................................................

A number of authors have considered binary choice models with random coefficients,
including Berry, Levinsohn, and Pakes (1995), Ichimura and Thompson (1998), Gau-
tier and Kitamura (2009), and Hoderlein (2009). Suppose the latent W ∗ equals X ′e,
where e is a vector of random coefficients. Then we have the random coefficients binary
choice model D = I(V + X ′e ≥ 0), where the scale normalization is imposed by set-
ting the coefficient of V equal to one. It then follows immediately from Eq. (2.6) that
FX ′e|X (w | x) = 1 − E(D | V = −w, X = x). The conditional distribution FX ′e|X is the
same information that one could identify from a linear random coefficients model (i.e.,
a model where one observed W and X with W = X ′e), so the known nonparamet-
ric identification of linear random coefficients models (see, e.g., Hoderlein, Klemelae,
and Mammen (2010) and references therein) can be immediately applied to show
nonparametric identification of binary choice random coefficients, by means of the
special regressor.
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2.9. Latent Partly Linear Regression
.............................................................................................................................................................................

Suppose that W ∗ = g(X) + ε, where E(ε | X) = 0 for some unknown function g of the
vector X . This corresponds to the partly linear latent variable regression model we have
D = I(V + g(X) + ε ≥ 0). In this model we have g(X) = E(T2 | X), which could there-
fore be estimated by an ordinary nonparametric regression of the constructed variable
T2 on X . In this model, the required conditional independence assumption that W ∗ ⊥
V | X will hold if ε ⊥ V | X , in addition to E(ε | X) = 0. More simply, though stronger
than necessary, it could just be assumed that ε ⊥ (V , X) to make all the required inde-
pendence assumptions regarding V , X , and ε hold. The only other requirement would
then be that the support of g(X) + ε equals, or is contained in, the support of −V (or
that the tail symmetry condition of Magnac and Maurin (2007) holds).

These results immediately extend to the general partly latent variable model I(V +
X ′

1B + g2(X2) + ε ≥ 0), where X1 and X2 are subvectors comprising X . In this model
we would have E(T2 | X) = X ′

1B + g2(X2), so the vector B and the function g2 could be
estimated by applying Robinson (1988), using T2 as the dependent variable.

2.10. Latent Nonparametric

Instrumental Variables
.............................................................................................................................................................................

In the previous section we had the model D = I(V + g(X) + ε ≥ 0), where the unob-
served W ∗ satisfied W ∗ = g(X) + ε with E(ε | X) = 0. Suppose now we have the same
model, except instead of E(ε | X) = 0 we assume E(ε | Z) = 0, where Z is a vector of
observed instruments. Some elements of X , corresponding to exogenous covariates,
may also be in Z . Other elements of X are endogenous, in that they could be correlated
with ε.

If W ∗ were observed, then g(X) would need to be identified and estimated from the
conditional moments

E[W ∗ − g(X) | Z] = 0. (2.8)

If W ∗ were observed, this would be the instrumental variables nonparametric regres-
sion model of, for example, Newey and Powell (2003), Hall and Horowitz (2005),
Darolles, Fan, Florens, and Renault (2011), and Chen and Reiss (2011). Assume, as
those authors do, that g(X) is identified from the conditional moments in Eq. (2.8),
and consider how we might construct sample moment analogues to this equation in
the case where W ∗ is not observed.

Replace the definition of T2 in Eq. (2.7) with T3 defined by

T3 = D − I(V ≥ 0)

fv|Z (V | Z)
, (2.9)
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where fv|Z denotes the conditional probability density function of V given Z . Let �v|z
be the support of V | Z . Then, by replacing X with Z everywhere in Section 2.6, we
have that E(W ∗ | Z) = E(T3 | Z), assuming that W ∗ ⊥ V | Z , and assuming that
V | Z has sufficiently large support. It follows immediately that E[T3 − g(X) | Z] = 0,
so after constructing T3, estimators like those of Newey and Powell (2003) or the
other authors listed above could be directly applied to estimate g(X) by instrumental
variables nonparametric regression.

In a later section we will discuss implications of the conditional independence
assumption W ∗ ⊥ V | Z and describe how this restriction can be relaxed.

2.11. Latent Linear Index Models with

Endogenous or Mismeasured

Regressors
.............................................................................................................................................................................

Return to the linear latent variable model D = I(V +X ′β+ε≥ 0). The earlier estimator
for β in this model assumed that V | X is continuous with large support, that ε⊥ V | X ,
that E(Xε) = 0, and that E(XX ′) is nonsingular. Apart from restrictions on V , the only
assumptions regarding X and ε were the same as the assumptions required for linear
ordinary least squares regression, that is, E(XX ′) nonsingular and E(Xε) = 0.

We now extend this model to allow for endogeneous or mismeasured regressors,
by replacing the linear ordinary least squares estimator with a linear two-stage least
squares estimator. Let Z be a vector of observed instruments. The vector Z is assumed
to include any elements of X that are exogenous (including a constant term), but
does not include V . Any elements of X that are endogenous or mismeasured are not
included in Z .

Suppose that we still have the model D = I(V +X ′β + ε ≥ 0), but where some or all
of the elements of X are endogenous or mismeasured and so may be correlated with ε.
First make the exact same assumptions that would be required for linear model two-
stage least squares with instruments Z . These are E(Zε) = 0, the rank of E(ZX ′) equals
the dimension of X , and E(ZZ ′) is nonsingular. Now add special regressor assumptions
regarding V , by assuming that V | Z is continuous with large support and ε ⊥ V | Z .
Note that the special regressor assumptions involve V , Z , and ε, but not X . The only
assumptions regarding the endogenous regressors in X that are required are the same
as the minimal assumptions needed for linear model two-stage least squares regression.

Letting W ∗ = X ′β+ε, it follows immediately from the results in the previous section
that if we define T3 by Eq. (2.9), then E(T3 | Z) = E(X ′β + ε | Z) and therefore
E(ZT3) = E(ZX ′)β, so

β = [E(XZ ′)E(ZZ ′)−1E(ZX ′)]−1E(XZ ′)E(ZZ ′)−1E

(
Z

D − I(V ≥ 0)

fv|Z (V | Z)

)
,
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which is identical to a linear two-stage least squares regression of T3 on X , using
instruments Z . More generally, we could estimate β by applying standard GMM esti-
mation to the moment conditions E[Z(T3 − X ′β)] = 0. This GMM could be more
efficient than two-stage least squares if errors are heteroskedastic.

A particularly useful feature of this construction is that, apart from restrictions
involving V , all that is required regarding the endogenous regressors and instruments
is identical to what is required for linear two-stage least squares. In particular, the type
of restrictions required for control function or maximum likelihood based estimation
are not needed. This is particularly useful for cases where some of the endogenous
regressors are themselves discrete or limited. See Lewbel, Dong, and Yang (2012) for
details.

Finally, it should be noted that only one special regressor is required, regardless of
how many other regressors are endogenous. If more than one regressor satisfies the
assumptions required to be special, then, based on experiments in Lewbel (2000), the
one with the largest spread (e.g., largest variance or interquartile range) should be
chosen to minimize finite sample bias.

2.12. Relaxing the Conditional

Independence Assumption
.............................................................................................................................................................................

For instrumental variables estimation, in the previous two sections it was assumed that

W ∗ | V , Z = W ∗ | Z (2.10)

to obtain either E(W ∗ | Z) = E(T3 | Z) or, for the linear index model, E(ZW ∗) =
E(ZT3). Then, given W ∗ = g(X) + ε, assuming either E(ε | Z) = 0 or just E(Zε) = 0,
the model could be estimated by nonparametric instrumental variables or, in the linear
index case where g(X) = X ′β, by ordinary linear two-stage least squares, treating T3

as the dependent variable. All that was required for these estimators to work is that
Eq. (2.10) hold, that V have sufficiently large support, and that Z have the standard
properties of instruments for either nonparametric instrumental variables or for linear
two-stage least squares.

Since W ∗ = g(X) + ε, a sufficient but stronger than necessary condition for
Eq. (2.10) to hold is that

X ,ε | V , Z = X ,ε | Z , (2.11)

meaning that V is exogenous in a standard sense of being conditionally independent
of the latent model error ε, but in addition X | V , Z = X | Z , meaning that V would
drop out of a model of endogenous regressors as a function of V and Z . This is a
strong restriction on the special regressor V relative to the endogenous regressors, but
fortunately it is stronger than necessary.
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One way to relax Eq. (2.10) is to replace T3 in Eq. (2.9) with T4 defined by

T4 = D − I(V ≥ 0)

fv|S(V | S)
, (2.12)

where S is a vector containing the union of all the elements of Z and of X . We then
have that

E(W ∗ | S) = E(T4 | S) (2.13)

holds, assuming W ∗ ⊥ V | S and that V | S has sufficiently large support. It follows
from applying the law of iterated expectations to Eq. (2.13) that E(W ∗ | Z) = E(T4 | Z),
which is what we require to estimate g(X) using E[T4 − g(X) | Z] = 0. Similarly, by
applying the law of iterated expectations to Eq. (2.13), T4 can be used in place of T1,
T2, or T3 in all of the estimators described so far.

Requiring W ∗ ⊥ V | S is equivalent to W ∗ ⊥ V | X , Z . With W ∗ = g(X) + ε, this is
in turn equivalent to

ε ⊥ V | X , Z . (2.14)

Equation (2.14) relaxes Eq. (2.11), and in particular does not impose the condition that
X | V , Z = X | Z . Equation (2.14) will hold if we can write a model V = M(U , X , Z),
where M is invertible in U and U is an error term that is independent of X , Z ,ε. For
example, define P = E(V | X , Z), define U = V − P, and suppose that the endogenous
elements of X are functions of Z , P, and an error vector e that is independent of Z ,
P, and U . It is not necessary to actually specify or estimate this or any model for any
elements of X . With this construction, X can depend on V by depending on P, and X
can be endogenous by e correlating with ε, with Eq. (2.14) holding. This construction
also does not impose any control function type restrictions on W ∗, X , and Z—and so,
for example, still allows X to be discrete or limited.

2.13. Constructing Tji.............................................................................................................................................................................

Implementing the estimators discussed in the previous sections requires constructing
an estimate of Tji for each observation i and for j = 1, 2, 3, or 4. For each observation i,
the variable Tji is given by Tji = −c + [Di − I(Vi ≥ c)]/fv|S(Vi | Ri), where R is either
empty as in Eq. (2.2) where j = 1, or R = X in Eq. (2.7) where j = 2, or R = Z in Eq.
(2.9) where j = 3, or R = S in Eq. (2.12) where j = 4. The constant c can be any value
inside the support of V . A natural choice for the constant c is the mean or median of
V . More simply, we will just assume that V is centered (e.g., demeaned prior to the
analysis), and just let c = 0.

Lewbel and Tang (2011) prove that the term I(Vi ≥ 0) in the definition of Tji can be
replaced with M(Vi), where M is any mean zero probability distribution function that
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lies inside the support of V . Choosing M to be a simple differentiable function like

M(V ) = I(−σ ≤ V ≤ σ )
V + σ

2σ
,

where σ is the standard deviation of V (corresponding to a uniform distribution on c−
σ to c + σ ) can simplify the calculation of limiting distributions and possibly improve
the finite sample performance of the estimators. The free substitution of M(V ) for
I(V ≥ 0) can be made for all special regressor estimators.

If V is determined by the researcher as in the willingness to pay examples, then
the density function fv|R is known by experimental design. Otherwise, fv|R will need
to be estimated. If fv|R is parameterized as fv|R(V | R,θ) for some parameter vec-
tor θ , then efficient estimation could be accomplished by GMM, combining the
moments based on the score function for maximum likelihood estimation of θ , that is,
E[∂ fv|R(V | R, θ)/∂θ] = 0 with the moments used for estimation of β, such as
E[Z(T − X ′β)] = 0 from the previous section.

The function fv|R could also be estimated nonparametrically by, for example, a
Nadayara–Watson kernel density estimator, but this may be very imprecise if the
dimension of R is high. Dong and Lewbel (2012) propose some alternative semipara-
metric estimators for this density. For example, suppose V = S′γ + U , where S is as
defined in Eq. (2.12), as the union of all the elements of X and Z . If U ⊥ S, then
fv|S(V | S) = fu(U ). We may then define T by

T = D − I(V ≥ 0)

fu(U )
(2.15)

and correspondingly construct data Ti = [Di − I(Vi ≥ 0)]/fu(Ui). By the law of iterated
expectations, this Ti can be used in place Tji for all the special regressor estimators.
Moreover, this is a special case of the model discussed at the end of previous section,
so the required conditional independence assumptions involving the special regressor
V will be satisfied if U is independent of X , Z , and W ∗.

The advantage of this construction is that each Ui can be estimated as the residuals
from an ordinary least squares linear regression of V on S, and the density function fu
of the scalar random variable U can be estimated by a one-dimensional kernel density
estimator applied to the data U1, . . . , Un. Even more simply, the ordered data estimator
of Lewbel and Schennach (2007) can be applied to U1, . . . , Un, which does not require
any choice of kernel or bandwidth. See Dong and Lewbel (2012) for more details and
for alternative simple estimators.

One final note regarding construction of T is that fv|R must have a large support,
and so fv|R(Vi | Ri) may be very close to zero for very low and very high values of Vi.
Similarly, fu(Ui) may be very close to zero for large values of |Ui|. The corresponding
values of Ti may then be extremely large in magnitude. The special regressor estima-
tors that involve estimating either moments of T or regression models using T as the
dependent variable can be very sensitive to outlier observations of T . It may therefore
be prudent, based on a mean squared error criterion, to Winsorize T , or to trim out
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data observations i where either Ti or the residuals in the regressions of Ti on Xi take
on extreme values.

2.14. What if the Special Regressor

is Discrete?
.............................................................................................................................................................................

Suppose we have a model that fits the requirements for special regressor estimation,
except that the special regressor V is discretely distributed and thereby violates the
required support restrictions. In this case, it is still sometimes possible to apply the
estimators discussed earlier.

One possibility is to assume that the number of values that V can take on grows
with the sample size. For example, in the earlier willingness-to-pay application, this
would mean assuming that the larger the size of the experiment (measured in terms
of the number of experimental subjects), the larger would be the number of different
proposed willingness-to-pay values that experimentors would select from to offer to a
subject. Analogous to the type of infill asymptotics that is sometimes used in the time
series literature, suppose that in the limit as n → ∞, the number of values that V can
take on grows to make the support of V become dense on a large interval (larger than
the support of W∗). Then Lewbel, Linton, and McFadden (2011) show that, asymp-
totically, the distribution of W∗ can be identified, and they supply associated limiting
distribution theory for estimation based on that design.

One implication of the results in Lewbel, Linton, and McFadden (2011) is that if
V is discretely distributed, but the number and range of values V can take on grows
sufficiently quickly with n, then one can ignore the fact that V is discrete and do special
regressor estimation as if V was continuous. For the resulting estimator to perform
well in practice, the number of different values that V takes on in the observed data,
and the range of those values, will need to be relatively large.3 Li and Racine (2007)
give other examples of treating discrete data as if it was continuous in, for example,
nonparametric kernel regressions.

Another situation in which a discrete special regressor can be used is when the true V
is continuous with a uniform distribution, and what one observes is a discretized ver-
sion of V . For example, consider an application like that of Maurin (2002), in which
the outcome D is whether a student will be held back in school, and the special regres-
sor V is how old the student is at the date of enrollment in school. Suppose we do not
observe the student’s birthdates and times, but instead only know if a student is either
five or six years old when school starts. So here the observed, discretized version of the
special regressor age is just the binary variable indicating whether the student is five or
six. By defining c appropriately, I(Vi ≥ c) will be one for students who are six when
school starts, and zero for students who are five. Assuming that birthdates and times
are close to uniform within a year,4 fV |R(Vi | Ri) is a constant (equal to one if V is
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measured in years) and so is known despite not observing Vi. Since both fV |R(Vi | Ri)
and I(Vi ≥ c) are known for each student i, the variable Tji can be constructed for
each student i, and so the special regressor estimators can be applied. Special regressor
estimation only requires observing Tji, not Vi, for each observation i.

If situations like those described above do not apply, then special regressor methods
can still be used when V is discrete, but as described in Section 2.2, the distribution
of the latent variable W ∗ will only be identified at the values that −V can take on.
This in turn only permits bounds on coefficients and moments to be identified and
estimated. See Magnac and Maurin (2008) for details on partial identification with a
discrete special regressor.

2.15. Extensions
.............................................................................................................................................................................

This chapter has focused on binary choice model estimation, but the main idea of
the special regressor method can be applied to a variety of models. For example,
ordered choice models are also identified, including models with random thresholds
and endogenous regressors. Suppose for j = 1, . . . , J that Y equals the integer j when
αj−1 + εj−1 < V + g(X) ≤ αj + εj for some constants αj and errors εj having unknown
distributions. Then let Dj = I(Y ≤ j) = I(V + g(X) − αj − εj) and apply the special
regressor estimator to each Dj to identify the conditional distribution of g(X)−αj −εj

given X for each j (or given instruments Z if endogenous regressors are present). See
Lewbel (2000) for details.

The special regressor method is convenient for panel data latent variable models
with latent fixed effects, because if Dit = I(Vit + W∗

it ≥ 0), then we can construct
Tjit such that E(Tjit | X) = E(W∗

it | X); and so, for example, E(Tjit − Tjit−1 | X) =
E(W∗

it − W ∗
it−1 | X), meaning that we can difference out fixed effects in the latent W ∗

it .
This construction permits, but does not require, the special regressor Vit to vary over
time. See, for example, Honore and Lewbel (2002), Ai and Gan (2010), and Gayle
(2012). Using the special regressor in this way, it is sometimes possible to estimate panel
binary choice models with fixed effects that converge at rate root n, even when the error
distribution is not only not logit, but not known at all. Here the special regressor con-
ditional independence assumption overcomes Chamberlain’s (1993) result that logit
errors are required for root n convergence of panel binary choice models with fixed
effects.

As briefly noted earlier, if Y = g(V + W ∗) for some possibly unknown, weakly
monotonic function g , then the conditional distribution of W ∗ given a vector
of covariates X can be identified (up to a location normalization) by first letting
D = I(Y ≥ y0) for any constant y0 in the support of Y that makes D be nonconstant,
which reduces the problem to an equivalent binary choice problem. Identification is
only up to a location normalization because for any constant a, one could replace W ∗
with W ∗ + a and redefine g accordingly.
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The particular location value for W ∗ that is obtained by applying previous estima-
tors to D = I(Y ≥ y0) will depend on g and on the choice of y0. To increase the efficiency
of terms other than location, one could combine estimates based on multiple choices
of y0. This can be also be combined with the above panel data generalization to permit
estimation of many nonlinear or nonparametric panel data models with latent fixed
effects.

Suppose Y = g(V1 +W ∗
1 , V2 +W ∗

2 ), where V1 and V2 are two special regressors and
W ∗

1 and W ∗
2 are two latent variables. Then generally the joint distribution of W ∗

1 and
W ∗

2 given X can be identified. Lewbel (2000) provides an example showing identifica-
tion of general multinomial choice models. Similarly, Lewbel and Tang (2011), Khan
and Nekipelov (2011), and Fox and Yang (2012) use multiple special regressors for
identification of games, including entry games and matching games, with semipara-
metrically specified payoffs, while Berry and Haile (2009a, 2009b) use multiple special
regressors to identify multinomial discrete choice market equilibrium models that are
semiparametric generalizations of Berry, Levinsohn, and Pakes (1995).

2.16. Conclusions
.............................................................................................................................................................................

The goal here has been to provide an understanding of how special regressor meth-
ods work and can be applied to estimate features of latent variable models. The focus
was on identification and associated construction of estimators, not on limiting dis-
tribution theory. The estimators are multistep estimators, where each step takes the
form of a standard parametric or nonparametric density or regression estimator. Yet
despite being comprised of standard estimators, a number of technical issues can arise.
In particular, the rates of convergence of these estimators can vary depending upon
the thickness of the tails of the distribution of the special regressor. In general, con-
verging at standard parametric root n rates requires either parametric specification of
the density of V , or finite support of the model errors, or very thick tails for V (thick
enough for the variance to be infinite), or conditions like the tail symmetry of Magnac
and Maurin (2007). When special regressor estimators do converge at rate root n, the
standard methods used to derive asymptotic distributions of multistep estimators can
be applied, and in such cases the basic special regressor estimator has been shown to be
semiparametrically efficient. Papers discussing limiting distribution theory for special
regressor-based estimators include Lewbel (2000, 2007a), Magnac and Maurin (2007,
2008), Jacho-Chávez (2009), Khan and Tamer (2010), Khan and Nekipelov (2010a,
2010b), and Dong and Lewbel (2012).

Lewbel, Dong, and Yang (2012) provide a comparison of special regressor models
versus maximum likelihood estimation, control function estimators, and linear proba-
bility models. They conclude that the greatest weakness of special regressor methods is
the extent to which they rely on strong properties of just one regressor, some of which
are difficult to verify, and the resulting sensitivity of estimates to this one regressor.
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But the strength of special regressor methods is that they impose very mild condi-
tions on the relationships between the remaining regressors and on the model errors.
This is what makes special regressor methods particularly useful for proving identifi-
cation of models that have some relatively intractable components, such as their use
by Berry and Haile (2009a, 2009b) to deal with endogenous prices in semiparametric
generalizations of Berry, Levinsohn, and Pakes (1995)-type market models, or their
use by Lewbel and Tang (2011) to identify semiparametric payoff functions in discrete
games.

The restrictions required for consistency of special regressor estimators are gener-
ally quite different from what is required for other estimators. This suggests that for
empirical work, they may be particularly useful as robustness checks. If both special
regressor estimators and more standard methods provide similar answers, one may
have a greater degree of confidence that the findings are not due to violations of stan-
dard modeling assumptions. The simplicity of many special regressor estimators makes
this an easy suggestion to follow.

Notes

† I would like to thank Thomas (Tao) Yang for helpful research assistance.
1. Past empirical practice has not been to design experiments sufficient to nonparametrically

identify the willingness to pay distribution by drawing from a continuous distribution.
Instead, the custom in the literature on valuing public goods is to make functional form
assumptions that suffice to identify the desired features of the willingness to pay dis-
tribution from the few points on the FW ∗ distribution that are revealed by standard
experiments. Lewbel, Linton, and McFadden (2011) observe that identification could be
obtained by increasing the number of mass points in the distribution of P in the experi-
mental design as the sample size grows, to become asymptotically dense on the line. They
supply associated limiting distribution theory for estimation based on that design. See
Section 2.14, regarding when the special regressor is discrete.

2. While estimation of the mean formally requires knowing Fw∗(w∗) on the entire support of
w∗, if the tails of Fw∗ are thin, then the bias of failing to estimate those tails will be small.
Magnac and Maurin (2007) provide conditions, called tail symmetry, that make this bias
not just small but actually zero, permitting consistent estimation of means without large
support.

3. In Lewbel, Linton, and McFadden’s (2011) empirical application, the sample size was
n = 518 and the number of willingness to pay bid values that V took on was 14, rang-
ing in value from 25 to 375. This range between the lowest and highest value of V in
the data likely covered a large portion of the actual range of willingness to pay in the
population.

4. There exists evidence of statistically significant seasonal departures from uniformity in the
distribution of births within a year, but the magnitude of these departures from uniformity
is quite small. See, for example, Beresford (1980). A related use of uniformity to account
for discretization in observed age is Dong (2012).
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ASYMPTOTIC NORMAL INFERENCE
IN LINEAR INVERSE PROBLEMS

........................................................................................................

marine carrasco, jean-pierre florens, and

eric renault
1

3.1. Introduction
.............................................................................................................................................................................

At least since Hansen’s (1982) seminal paper on Generalized Method of Moments
(GMM), econometricians have been used to make inference on an object of inter-
est defined by a family of orthogonality conditions. While Hansen’s GMM is focused
on inference on a finite-dimensional vector θ of structural unknown parameters, our
object of interest in this chapter will typically be a function ϕ element of some Hilbert
space E .

While Hansen (1982) acknowledged upfront that “identification requires at least
as many orthogonality conditions as there are coordinates in the parameter vector to
be estimated,” we will be faced with two dimensions of infinity. First, the object of
interest, the function ϕ, is of infinite dimension. Second, similarly to above, iden-
tification will require a set of orthogonality conditions at least as rich as the infinite
dimension of ϕ.

Then, a convenient general framework is to describe the set of orthogonality con-
ditions through a linear operator T from the Hilbert space E to some other Hilbert
space F and a target vector r given in F . More precisely, the testable implications of
our structural model will always be summarized by a linear inverse problem:

Tϕ = r, (3.1)

which will be used for inference about the unknown object ϕ based on a consistent
estimator r̂ of r. Similarly to the Method of Moments, the asymptotic normality of
estimators ϕ̂ of ϕ will be derived from asymptotic normality of the sample counterpart
r̂ of the population vector r.

1 We thank the editors and one referee for helpful comments. Carrasco thanks SSHRC for partial
financial support.
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However, it is worth realizing that the functional feature of r introduces an addi-
tional degree of freedom that is not common for GMM with a finite number of
unknown parameters, except in the recent literature on many weak instruments
asymptotics. More precisely, the accuracy of estimators of r, namely the rate of conver-
gence of r̂ for asymptotic normality, heavily depends on the “choice of instruments”—
namely, on the choice of the inverse problem (3.1) to solve. It must actually be kept in
mind that this choice is to some extent arbitrary since (3.1) can be transformed by any
operator K to be rewritten:

KTϕ = Kr. (3.2)

An important difference with (semi)parametric settings is that even the transforma-
tion by a one-to-one operator K may dramatically change the rate of convergence of
the estimators of the right-hand side (r.h.s.) of the equation. Some operators (as inte-
gration or convolution) are noise-reducing whereas some others (as differentiation or
deconvolution) actually magnify the estimation error.

A maintained assumption will be that some well-suited linear transformation Kr
allows us to get a root-n asymptotically normal estimator Kr̂ of Kr. Then, the key issue
to address is the degree of ill-posedness of the inverse problem (3.2)—that is, precisely
to what extent the estimation error in Kr̂ is magnified by the (generalized) inverse
operator of (KT).

Because of the ill-posedness of the inverse problem, we need a regularization
of the estimation to recover consistency. Here, we consider a class of regulariza-
tion techniques which includes Tikhonov, iterated Tikhonov, spectral cutoff, and
Landweber–Fridman regularizations. For the statistical properties of these methods,
see Engl, Hanke, and Neubauer (2000). For a review of the econometric aspects, we
refer the reader to Florens (2003) and Carrasco, Florens, and Renault (2007).

The focus of this chapter is the asymptotic normality of the estimator ϕ̂ of ϕ in
the Hilbert space E . With normality in the Hilbert space E being defined through all
linear functionals < ϕ̂,δ > (see, e.g., Chen and White (1998)), it is actually the rate of
convergence of such functionals that really matters. In the same way as going from (3.1)
to (3.2) may modify the rate of convergence of sample counterparts of the r.h.s, rates of
convergence of linear functionals < ϕ̂,δ > will depend on the direction δ we consider.
There may exist in particular some Hilbert subspace of directions warranting root-n
asymptotic normality of our estimator ϕ̂. However, it is worth stressing that focusing
only on such directions amounts to overlooking the information content of other test
functions and, as such, yields to suboptimal inference. It is then worth characterizing
the rate of convergence to normality of estimators ϕ̂ of ϕ in any possible direction δ of
interest. Since this rate actually depends on the direction, we do not get a functional
asymptotic normality result as in other settings put forward in Chen and White (1998).

The chapter is organized as follows. Section 3.2 presents the model and examples.
Section 3.3 describes the estimation method. Section 3.4 investigates the normality for
fixed regularization parameterα. This result is used in the tests described in Section 3.5.
Section 3.6 establishes asymptotic normality when α goes to zero. Section 3.7 discusses
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the practical selection of α, and Section 3.8 describes the implementation. Section 3.9
concludes.

In the sequel, D and R denote the domain and range of an operator. Moreover,
t ∧ s = min(t , s) and t ∨ s = max (t , s).

3.2. Model and Examples
.............................................................................................................................................................................

A wide range of econometric problems are concerned with estimating a function ϕ

from a structural model

r = Tϕ (3.3)

where T is a linear operator from a Hilbert (L2 or Sobolev) space E into a Hilbert space
F . The function r is estimated by r̂, and the operator T is either known or estimated.
We present four leading examples.

3.2.1. Density

We observe data x1, x2,. . . , xn of unknown density f we wish to estimate. The density f
is related to the distribution function F through

F (t)=
∫ t

−∞
f (s)ds = (

Tf
)
(t) .

In this setting, r = F and the operator T is a known integral operator. F can be
estimated by F̂(t) = 1

n

∑n
i=1 I(xi ≤ t), where F̂(t) converges at a parametric rate to F.

3.2.2. Deconvolution

Assume we observe n i.i.d. realizations y1, y2, . . . , yn of a random variable Y with
unknown density h. Y is equal to a unobservable variable X plus an error ε, where
X and ε are mutually independent with density functions f and g respectively so that
h = f ∗g . The aim is to estimate f assuming g is known. The problem consists in solving
for f the equation

h(y) =
∫

g(y − x)f (x)dx.

In this setting, the operator T is known and defined by (Tf )(y) = ∫
g(y − x)f (x)dx

whereas r = h can be estimated but at a slower rate than the parametric rate.
Here, the choice of the spaces of reference is crucial. If T is considered as an operator

from L2(R) into L2(R) provided with Lebesgue measure, then T has a continuous spec-
trum. Carrasco and Florens (2011) chose spaces of reference for which T is compact
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and hence has a discrete spectrum. Let πX and πY be two non-negative weighting
functions. Let L2

πY
denote the space of square integrable real-valued functions with

respect to πY :

L2
πY

=
{
ψ
(
y
)

such that

∫
ψ
(
y
)2
πY

(
y
)

dy <∞
}

.

L2
πX

is defined similarly. We formally define T as the operator from L2
πX

into L2
πY

which
associates to any function φ(x) of L2

πX
a function of L2

πY
as

(Tφ)
(
y
)=

∫
g(y − x)φ(x)dx. (3.4)

Provided that πX and πY are such that∫ ∫ (
g(y − x)

)2 πY
(
y
)

πX (x)
dxdy <∞,

T is a Hilbert–Schmidt operator and hence has a discrete spectrum. We define the
adjoint, T∗, of T , as the solution of 〈Tϕ,ψ〉 = 〈ϕ, T∗ψ〉 for all ϕ ∈ L2

πX
and ψ ∈ L2

πY
.

It associates to any function ψ(y) of L2
πY

a function of L2
πX

:

(
T∗ψ

)
(x) =

∫
g
(
y − x

)
πY

(
y
)

πX (x)
ψ(y)dy.

For convenience, we denote its kernel as

πY |X (y|x) = g(y − x)πY (y)

πX (x)
.

3.2.3. Functional Linear Regression with Possibly
Endogenous Regressors

We observe i.i.d. data (Yi , Zi , Wi) where each explanatory variable Zi is a random func-
tion element of a Hilbert space E and Wi is a random function in a Hilbert space F .
Let 〈., .〉 denote the inner product in E . The response Yi is generated by the model

Yi = 〈Zi ,ϕ〉+ ui, (3.5)

where ϕ ∈ E and ui is i.i.d. with zero mean and finite variance. Yi ∈ R and ui ∈ R.
The regressors are endogenous, but we observe a function Wi that plays the role of
instruments so that ϕ is identified from

E(uiWi) = 0
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or equivalently

E(YiWi) = E(〈Zi ,ϕ〉Wi).

As Xi and Wi are functions, one can think of them as real random variables observed
in continuous time. In this setting, r = E(YiWi) is unknown and needs to be esti-
mated, the operator T , defined by Tϕ = E(〈Zi ,ϕ〉Wi), also needs to be estimated. Both
estimators converge at a parametric rate to the true values.

This model is considered in Florens and Van Bellegem (2012). In the case where
the regressors are exogenous and W = Z , this model has been studied by Ramsay and
Silverman (1997), Ferraty and Vieu (2000), Cardot and Sarda (2006), and Hall and
Horowitz (2007).

3.2.4. Nonparametric Instrumental Regression

We observe an i.i.d. sample (Yi , Zi , Wi) ∈R×Rp ×Rq where the relationship between
the response Yi and the vector of explanatory variable Zi is represented by the equation

Yi = ϕ(Zi) + ui. (3.6)

We wish to estimate the unknown function ϕ using as instruments the vector Wi . We
assume that

E(ui|Wi) = 0

or equivalently

E(Yi|Wi) = E(ϕ(Zi)|Wi). (3.7)

In this setting, r(w) = E(Yi |Wi = w) is estimated at a slow nonparametric rate (even for
a given w) and the operator T defined by (Tϕ)(w) = E(ϕ(Z)|W = w) is also estimated
at a slow rate. The identification and estimation of ϕ has been studied in many recent
papers—for example, Newey and Powell (2003), Darolles, Fan, Florens, and Renault
(2011), Hall and Horowitz (2005), Blundell, Chen, and Kristensen (2007), Chen and
Reiss (2011), and references below. While some authors considered orthogonal series,
Darolles et al. (2011) consider a kernel estimator of the conditional expectation. There,
the spaces of reference are E = L2

Z , the space of functions that are square integrable
with respect to the true density of Z , similarly F = L2

W . For these spaces, the adjoint
T∗ of T is a conditional expectation operator: (T∗ψ)(z) = E(ψ(W )|Z = z), which
can also be estimated by kernel. While Darolles et al. (2011) use a Tikhonov reg-
ularization where the penalty is on the L2 norm of ϕ, Florens, Johannes, and Van
Bellegem (2011) and Gagliardini and Scaillet (2012) consider a Tikhonov regular-
ization where the penalty is on a Sobolev norm of ϕ, that is, the L2 norm of its
derivatives.
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3.3. Assumptions and Estimation Method
.............................................................................................................................................................................

3.3.1. Ill-Posedness

First we impose some identification conditions on Eq. (3.3).

Assumption 3.1. The solution ϕ of (3.3) exists and is unique.

The uniqueness condition is equivalent to the condition that T is one-to-one; that
is, the null space of T is reduced to zero. As discussed in Newey and Powel (2003), this
identification condition in the case of nonparametric IV is, E(ϕ(Z)|W = w) = 0 for
all w implies ϕ = 0, which is equivalent to the completeness in w of the conditional
distribution of Z given W = w. Interestingly, this condition is not testable, see Canay,
Santos, and Shaikh (2013).

Assumption 3.2. T is a linear bounded operator from a Hilbert space E to a Hilbert
space F . Moreover, T is a Hilbert–Schmidt operator.

T is an Hilbert–Schmidt operator if for some (and then any) orthonormal basis
{ek}, we have

∑‖Tek‖2 < ∞. It means in particular that its singular values are square
summable. It implies that T is compact. Because T is compact, its inverse is unbounded
so that the solution ϕ does not depend continuously on the data. Indeed, if r is replaced
by a noisy observation r + ε, then T−1(r + ε) may be very far from the true ϕ = T−1r.
Therefore, the solution needs to be stabilized by regularization.

First, we need to define certain spaces of reference to characterize the properties of
T and ϕ.

3.3.2. Hilbert Scales

To obtain the rates of convergence, we need assumptions on ϕ and T in terms of Hilbert
scales. For a review on Hilbert scales, see Krein and Petunin (1966) and Engl, Hanke,
and Neubauer (2000). We define L as an unbounded self-adjoint strictly positive oper-
ator defined on a dense subset of the Hilbert space E . Let M be the set of all elements

φ for which the powers of L are defined; that is, M := ∞∩
k=0

D(Lk), where D denotes the

domain. For all s ∈R, we introduce the inner product and norm:

〈φ,ψ〉s = 〈
Lsφ, Lsψ

〉
,

‖φ‖s = ∥∥Lsφ
∥∥ ,

where φ, ψ ∈M. The Hilbert space Es is defined as the completion of M with respect
to the norm ‖.‖s . (Es)s∈R is called the Hilbert scale induced by L. If s ≥ 0, then Es =
D(Ls). Moreover, for s ≤ s′, we have Es′ ⊂ Es.
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A typical example is the case where L is a differential operator. Let E be the set of
complex-valued functions φ such that

∫ 1
0 |φ(s)|2ds <∞. Define the operator I on E by

(Iφ)(t)=
∫ t

0
φ(s)ds.

Let I∗ be the adjoint of I , I∗ is such that

(
I∗g

)
(t)=

∫ 1

t
g(s)ds.

Let L be such that L−2 = I∗I . Then, for b > 0, φ ∈D(Lb) is equivalent to saying that φ
is b differentiable and satisfies some boundary conditions (e.g., φ ∈ D(L2) means that
φ is twice differentiable and φ(0) = φ′(0) = 0). Note that we could not define Lφ = φ′
because the derivative is not self-adjoint. The construction above gives heuristically
Lφ = √−φ′′. Indeed, since L−2 = I∗I , we have L2(I∗I)φ = φ. This is satisfied for
L2φ = −φ′′.

The degree of ill-posedness of T is measured by the number a in the following
assumption.

Assumption 3.3. T satisfies

m‖φ‖−a ≤ ‖Tφ‖ ≤ m‖φ‖−a

for any φ ∈ E and some a > 0, 0 < m < m <∞.

Assumption 3.4. ϕ ∈ Eb, for some b > 0.

In our example of a differential operator, Assumption 3.4 is equivalent to ϕ is b
differentiable.

Let B = TL−s, s ≥ 0. According to Corollary 8.22 of Engl et al. (2000), for |ν| < 1,
we have

c (ν)‖φ‖−ν(a+s) ≤
∥∥∥(B∗B

)ν/2
φ

∥∥∥≤ c̄ (ν)‖φ‖−ν(a+s) (3.8)

for any φ ∈ D((B∗B)ν/2), with c(ν) = min(mν , mν) and c̄(ν) = max(mν , mν).
Moreover,

R((B∗B)ν/2) = Eν(a+s), (3.9)

where (B∗B)ν/2 has to be replaced by its extension to E if ν < 0.
It is useful to make the link between Assumptions 3.3 and 3.4 and the source condi-

tion given in Carrasco, Florens, and Renault (2007, Definition 3.4). This condition is
written in terms of the singular system of T denoted (λj,φj ,ψj):

∞∑
j=1

〈
ϕ,φj

〉2
λ

2β
j

<∞. (3.10)



72 inverse problems

This means that ϕ ∈ R((T∗T)β/2) or equivalently ϕ ∈ D((T∗T)−β/2). If we let L =
(T∗T)−1/2, we see that Assumption 3.3 holds with a = 1. Then Assumption 3.4 is
equivalent to (3.10) with β = b. Another interpretation is the following. Using (3.9),
we see that R((T∗T)β/2) = Eβa. Hence, Assumptions 3.3 and 3.4 with b = βa imply
the source condition (3.10). While the condition (3.10) relates the properties of ϕ and
T directly, Assumptions 3.3 and 3.4 characterize the properties of ϕ and T with respect
to an auxiliary operator L.

3.3.3. Regularization and Estimation

Because the inverse of T is not continuous, some regularization is needed. The most
common one is Tikhonov regularization, which consists in penalizing the norm of ϕ:

min
ϕ

∥∥Tϕ− r̂
∥∥2 +α ‖ϕ‖2 .

We will consider a more general case where we penalize the Es norm of ϕ:

min
ϕ∈Es

∥∥Tϕ− r̂
∥∥2 +α ‖ϕ‖2

s . (3.11)

The reason to do this is twofold. Assuming that L is a differential operator and ϕ is
known to be s times differentiable, we may want to dampen the oscillations of ϕ̂ by
penalizing its derivatives. Second, if we are interested in estimating Lcϕ for some 0 <

c < s, then we immediately obtain an estimator L̂cϕ = Lc ϕ̂ and its rate of convergence.
The solution to (3.11) is given by

ϕ̂ = (
αL2s + T∗T

)−1
T∗ r̂

= L−s(αI + L−sT∗TL−s)−1L−sT∗ r̂

= L−s(αI + B∗B)−1B∗r̂, (3.12)

where B = TL−s.
We also consider other regularization schemes. Let us define the regularized solution

to (3.3) as

ϕ̂ = L−sgα(B∗B)B∗ r̂, (3.13)

where gα :[0,‖B‖2] → R, α > 0, is a family of piecewise continuous functions and

lim
α→0

gα (λ)= 1

λ
, λ 
= 0,∣∣gα (λ)∣∣≤ ĉα−1, (3.14)

λμ
∣∣1 −λgα (λ)

∣∣≤ cμα
μ, 0 ≤μ ≤ μ0, (3.15)
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with ĉ and cμ > 0 independent of α and μ0 ≥ 1. The main examples of functions gα
are the following.

1. The Tikhonov regularization is given by gα(λ) = 1/(λ+α).
2. The iterated Tikhonov regularization of order m is given by gα(λ) = (1− (α/(λ+

α))m)/λ. The solution is obtained after m iterative minimizations:

ϕ̂j = argmin
φ∈Es

∥∥Tφ− r̂
∥∥2 +α

∥∥φ− ϕ̂j−1
∥∥2

s , j = 1, . . . , m, ϕ̂0 = 0.

3. The spectral cutoff considers gα(λ) = 1/λ for λ ≥ α.
4. The Landweber–Fridman regularization takes gα(λ) = (1 − (1 −λ)1/α)/λ.

When B is unknown, we replace B by a consistent estimator B̂ and B∗ by (B̂)∗. The
convergence of ϕ̂ is studied in Engl et al. (2000), Carrasco et al. (2007), Chen and Reiss
(2011), and Johannes, Van Bellegem, and Vanhems (2011).

3.3.4. Rate of Convergence of MSE

Here we study the mean square error (MSE) of ϕ̂ when B is known. When B is esti-
mated, the error due to its estimation usually goes to zero faster than the other terms
and does not affect the convergence rate of the bias (see Carrasco et al. (2007)).

To simplify the exposition, we first let s = c = 0 and consider Tikhonov regulariza-
tion. The general case is discussed at the end. The difference ϕ̂−ϕ can be decomposed
as the following sum:

ϕ̂ −ϕ = ϕ̂ −ϕα +ϕα −ϕ,

where

ϕα = (
αI + T∗T

)−1
T∗Tϕ.

The term ϕ̂ − ϕα corresponds to an estimation error whereas the term ϕα − ϕ

corresponds to a regularization bias. We first examine the latter (see Groetsch (1993)).

ϕα −ϕ =
∑

j

λ2
j

λ2
j +α

〈
ϕ,ϕj

〉
ϕj −

∑
j

〈
ϕ,ϕj

〉
ϕj

= −α
∑

j

1

λ2
j +α

〈
ϕ,ϕj

〉
ϕj .
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Given

‖ϕα −ϕ‖2 = α2
∑

j

1(
λ2

j +α
)2

〈
ϕ,ϕj

〉2
≤
∑

j

〈
ϕ,ϕj

〉2
<∞, (3.16)

we may, in passing to the limit as α goes to zero in (3.16), interchange the limit and the
summation yielding

lim
α→0

‖ϕα −ϕ‖2 = 0.

From this result, we understand that we cannot obtain a rate of convergence for
‖ϕα −ϕ‖2 unless we impose more restrictions on ϕ. Assume that ϕ satisfies the source
condition (3.10) for some β > 0, then

‖ϕα −ϕ‖2 ≤ sup
λ

α2λ2β(
λ2 +α

)2

∑
j

〈
ϕ,ϕj

〉2
λ

2β
j

= O
(
αβ∧2)

by Kress (1999) and Carrasco and al. (2007).
We now turn to the estimation error. There are two ways to characterize the rate of

convergence of ‖ϕ̂ −ϕα‖2, depending on whether we have an assumption on ‖r − r̂‖2

or ‖T∗(r − r̂)‖2. First we consider the rate of ‖ϕ̂ −ϕα‖2 in terms of ‖r − r̂‖2. We have

ϕ̂ −ϕα = (
αI + T∗T

)−1
T∗ (Tϕ − r̂

)
= T∗ (αI + TT∗)−1 (

Tϕ − r̂
)

,∥∥ϕ̂ −ϕα
∥∥2 =

〈
T∗ (αI + TT∗)−1 (

Tϕ − r̂
)

, T∗ (αI + TT∗)−1 (
Tϕ − r̂

)〉
=
〈(
αI + TT∗)−1 (

Tϕ − r̂
)

, TT∗ (αI + TT∗)−1 (
Tϕ − r̂

)〉
.

Moreover, ∥∥∥(αI + TT∗)−1
∥∥∥≤ 1

α
,∥∥∥TT∗ (αI + TT∗)−1

∥∥∥≤ 1.

Hence, ∥∥ϕ̂ −ϕα
∥∥2 ≤ 1

α

∥∥r − r̂
∥∥2

.

In summary, the MSE of ϕ̂ is bounded in the following way:

E
(∥∥ϕ̂ −ϕ

∥∥2
)

≤ 1

α
E(‖r − r̂‖2) + Cαβ∧2 (3.17)

for some constant C.
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Second, we consider the rate of ‖ϕ̂ −ϕα‖2 in terms of ‖T∗(r̂ − r)‖2.

∥∥ϕ̂ −ϕα
∥∥2 ≤

∥∥∥(αI + T∗T
)−1

∥∥∥2 ∥∥T∗ (Tϕ − r̂
)∥∥2

≤ 1

α2

∥∥T∗ (r − r̂
)∥∥2

.

The MSE of ϕ̂ is bounded in the following way:

E
(∥∥ϕ̂−ϕ

∥∥2
)

≤ 1

α2
E(‖T∗(r − r̂)‖2) + Cαβ∧2. (3.18)

In both expressions (3.17) and (3.18), there is a tradeoff between the regularization
bias that declines as α goes to zero and the variance that increases as α goes to zero.
The optimal α is selected so that the rate of the regularization bias equals that of the
variance.

These results generalize to the other three regularization techniques described
earlier. In the case of Spectral cutoff, Landweber–Fridman, and iterated Tikhonov reg-
ularizations, the rate of ‖ϕα − ϕ‖2 is O(αβ ). In the case of Tikhonov with β < 2, it
is also O(αβ). So the rates given below apply to the four methods. The optimal α is
chosen so that αβ+1 = E(‖r − r̂‖2) or αβ+2 = E(‖T∗(r − r̂)‖2), hence

E
(∥∥ϕ̂ −ϕ

∥∥2
)

= O
(

min
(

E(‖r − r̂‖2)β/(β+1), E(‖T∗(r − r̂)‖2)β/(β+2)
))

. (3.19)

We can see that, for the optimal α,
√

n‖ϕα −ϕ‖ diverges so that there is an asymptotic
bias remaining when studying the asymptotic distribution of

√
n(ϕ̂ −ϕ).

We can analyze the rate of (3.19) in different scenarios.

• If r − r̂ converges at a parametric rate
√

n, then T∗(r − r̂) also converges at a
parametric rate and the first term of the r.h.s of (3.19) converges to 0 faster than
the second term. Thus the rate of the MSE is given by n−β/(β+1).

• If r − r̂ converges at a nonparametric rate so that ‖r − r̂‖2 = Op(n−2ν) with ν < 1/2
and ‖T∗(Tϕ − r̂)‖2 = Op(n−1) and, moreover, 2ν < (β + 1)/(β + 2), then the
second term in the r.h.s of (3.19) converges to 0 faster than the first term. Thus the
rate of the MSE is given by n−β/(β+2). This is encountered in nonparametric IV;
see, for example, Darolles et al. (2011). There, r = E(Y |W ) and ν = d/(2d + q),
where q is the dimension of W and d is the number of derivatives of E(Y |W ). If
β = 2, d = 2, and q ≥ 2, then the condition 2ν < (β + 1)/(β + 2) holds. See also
Chen and Reiss (2011) and Johannes et al. (2011).

So far, we derived the rate of convergence of the MSE using a source condition (3.10).
Now we establish the results using assumptions on the degree of ill-posedness of T .
Suppose, moreover, that we are interested in estimating the derivative of ϕ, Lcϕ.
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Proposition 3.1. Assume that T satisfies Assumption 3.3, ϕ satisfies Assumption 3.4 with
b ≤ a + 2s, and ϕ̂ is defined as in (3.13). Then, for the optimal α, we have

E
(∥∥Lc ϕ̂ − Lcϕ

∥∥2
)

= O

(
min

(
E
(∥∥r − r̂

∥∥2
)(b−c)/(a+b)

,

E
(∥∥B∗ (r − r̂

)∥∥2
)(b−c)/(b+2a+s)

))
.

Setting c = s = 0, we see that this result is the same as the rates (3.19) obtained with
the source condition (3.10) and β = b/a.

Proof of Proposition 3.1. We follow the steps of the proof of Engl, Hanke, and
Neubauer (2000, Theorem 8.23). Note that by (3.14) and (3.15) we obtain

λt
∣∣gα (λ)∣∣≤ Cαt−1, (3.20)

where C denotes a generic constant. We have∥∥Lc(ϕ̂ −ϕα
)∥∥=

∥∥∥L(c−s)gα
(
B∗B

)
B∗(r̂ − r

)∥∥∥
= ∥∥gα

(
B∗B

)
B∗ (r̂ − r

)∥∥
c−s

≤ C
∥∥∥(B∗B

) s−c
2(a+s) gα

(
B∗B

)
B∗(r̂ − r

)∥∥∥ , (3.21)

where the inequality follows from inequality (3.8) with ν = (s − c)/(a + s) and φ =
gα(B∗B)B∗(r̂ − r). Note that∥∥∥(B∗B

) s−c
2(a+s) gα

(
B∗B

)
B∗(r̂ − r

)∥∥∥2

=
〈(

B∗B
) s−c

2(a+s) gα
(
B∗B

)
B∗(r̂ − r

)
,
(
B∗B

) s−c
2(a+s) gα

(
B∗B

)
B∗(r̂ − r

)〉
≤ ∥∥BB∗gα

(
BB∗)(r̂ − r

)∥∥∥∥∥(BB∗) s−c
(a+s) gα

(
BB∗)(r̂ − r

)∥∥∥
≤ Cα−(a+c)/(a+s)

∥∥r̂ − r
∥∥2

,

where the last inequality follows from (3.20). Hence,∥∥ϕ̂ −ϕα
∥∥≤ C

∥∥Tϕ − r̂
∥∥α−(a+c)/(2(a+s)).

Another majoration follows from (3.21) and (3.20):∥∥Lc (ϕ̂ −ϕα
)∥∥≤ C

∥∥∥(B∗B
) s−c

2(a+s) gα
(
B∗B

)∥∥∥∥∥B∗(r̂ − r
)∥∥

≤ Cα−(c+2a+s)/(2(a+s))
∥∥B∗(r̂ − r

)∥∥ .
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We turn our attention to the bias term. Note that Lsϕ ∈ Eb−s . By Eq. (3.9), there is a
function ρ ∈ E such that

Lsϕ = (
B∗B

)(b−s)/(2(a+s))
ρ.

We have∥∥Lc (ϕα −ϕ)
∥∥=

∥∥∥L(c−s) (gα(B∗B
)
B∗B − I

)
Lsϕ

∥∥∥
=
∥∥∥(gα(B∗B

)
B∗B − I

)(
B∗B

)(b−s)/(2(a+s))
ρ

∥∥∥
c−s

≤
∥∥∥(B∗B

)(s−c)/(2(a+s)) (
gα
(
B∗B

)
B∗B − I

)(
B∗B

)(b−s)/(2(a+s))
ρ

∥∥∥
=
∥∥∥(B∗B

)(b−c)/(2(a+s)) (
gα
(
B∗B

)
B∗B − I

)
ρ

∥∥∥
≤ C′α(b−c)/(2(a+s)) ‖ρ‖ ,

for some constant C′, where the first inequality follows from (3.8) with ν = (s−c)/(a+
s) and φ = (gα(B∗B)B∗B − I)(B∗B)(b−s)/(2(a+s))ρ and the second inequality follows
from (3.15) with μ= (b − c)/(2(a + s)). Then using the optimal α, we obtain the rates
given in Proposition 3.1. �

3.4. Asymptotic Normality for Fixed α
.............................................................................................................................................................................

Let ϕ be the true value. As seen in Section 3.3, the estimator ϕ̂ defined in (3.13)
has a bias which does not vanish. For testing, it is useful to fix α and use ϕ̂ minus a
regularized version of ϕ:

ϕα = L−sgα
(
B∗B

)
B∗Tϕ = L−sgα

(
B∗B

)
B∗r. (3.22)

Then, we have

ϕ̂ −ϕα = L−sgα
(
B∗B

)
B∗(r̂ − r

)
.

Depending on the examples, we will assume either Assumption 3.5a or Assumption
3.5b below.

Assumption 3.5a.
√

n(r̂ − r) ⇒N (0,�) in F .

Under Assumption 3.5a, we have for a fixed α

√
n
(
ϕ̂ −ϕα

)⇒N (0,�) (3.23)

with � = L−sgα(B∗B)B∗�Bgα(B∗B)L−s .
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Assumption 3.5b.
√

nB∗(r̂ − r) ⇒N (0,�) in F .

Under Assumption 3.5b, we have for a fixed α

√
n
(
ϕ̂ −ϕα

)⇒N (0,�) (3.24)

with � = L−sgα(B∗B)�gα(B∗B)L−s .
The results (3.23) and (3.24) are the basis to construct the test statistics of the next

section. If T is unknown, we have an extra term corresponding to T̂ − T which is
negligible provided T̂ converges sufficiently fast. We can check that either Assumption
3.5a or 3.5b is satisfied and the asymptotic variance � (and hence �) is estimable in all
the examples considered here.

Example 3.1. Density. We have

r̂ − r = F̂ − F = 1

n

n∑
i=1

[I(xi ≤ t)− F(t)] ,

√
n

n

n∑
i=1

[I(xi ≤ t)− F(t)] ⇒N (0, F(t ∧ s)− F(t)F(s)) .

This example satisfies Assumption 3.5a. Here the asymptotic variance of r̂ − r can be
estimated using the empirical cumulative distribution function.

Example 3.2. Deconvolution. Following Carrasco and Florens (2011), we have

T̂∗r − T∗r = 1

n

n∑
i=1

(
πY |X

(
yi|x

)− E
(
πY |X (Y |x))).

Here a slight modification of Assumption 3.5b is satisfied. Since πY |X is known, the
variance of T̂∗r − T∗r can be estimated using the empirical variance.

Example 3.3. Functional Linear Regression. We have

r̂ = 1

n

n∑
i=1

YiWi ,

E(̂r) = r.

Thus Assumption 3.5a holds and

V
(
r̂ − r

)= 1

n
V (YiWi)

can be estimated using the sample variance of YiWi .
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Example 3.4. Nonparametric Instrumental Regression. Following Darolles, Florens,
and Renault (2002, Assumption A7), we assume that

√
n
(
T̂ ∗̂r − T̂∗T̂ϕ

)= 1√
n

n∑
i=1

(Yi −ϕ (Zi))
fZ ,W (Z , Wi)

fZ (Z) fW (Wi)
+ hρn�, (3.25)

where the term hρn� is negligible provided that the bandwidth hn is sufficiently small,
which is consistent with Assumption 3.5b. We denote the leading term in (3.25) by

1√
n

∑n
i=1 ηi . We have

1√
n

n∑
i=1

ηi ⇒ N
(
0,σ 2T∗T

)
,

where σ 2 = V (Y − ϕ(Z)|W ). An estimate of σ 2 can be obtained using a first step
estimator of ϕ.

3.5. Test Statistics
.............................................................................................................................................................................

3.5.1. Case Where ϕ0 is Fully Specified

We want to test H0 : ϕ =ϕ0 where ϕ0 is fully specified. A test can be based on the differ-
ence between ϕ̂ and ϕ0α defined in (3.22). We can construct a Kolmogorov–Smirnov
test

sup
z

√
n
∣∣ϕ̂ (z)−ϕ0α(z)

∣∣
or a Cramer–Von Mises test ∥∥√n

(
ϕ̂ −ϕ0α

)∥∥2
.

Using (3.24), we have

∥∥√n
(
ϕ̂ −ϕ0α

)∥∥2 ⇒
∞∑

j=1

λ̃jχ
2
j (1) ,

where χ2
j are independent chi-square random variables and λ̃j are the eigenvalues of

�. As � is estimable, λ̃j can be estimated by the eigenvalues of the estimate of �; see,
for instance, Blundell and Horowitz (2007).

Another testing strategy consists in using a test function δ and basing the test on a
rescaled version of

√
n〈ϕ̂ −ϕ0α,δ〉 to obtain a standard distribution.

ξn =
√

n
〈
ϕ̂ −ϕ0α,δ

〉〈
�̂δ,δ

〉1/2

d→N (0, 1). (3.26)
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A more powerful test can be obtained by considering a vector⎛⎜⎝
√

n
〈
ϕ̂ −ϕ0α ,δ1

〉
...√

n
〈
ϕ̂ −ϕ0α ,δq

〉
⎞⎟⎠

for a given family δl, l = 1, 2, . . . , q, of linearly independent test functions of E . This
vector converges to a q-dimensional normal distribution. The covariance between the
various components of the vector can be easily deduced from (3.26) since it holds
for any linear combinations of test functions δl and δh, l 
= h, chosen in the same
space. Then, the appropriately rescaled statistic asymptotically follows a chi-square
distribution with q degrees of freedom.

3.5.2. Case Where ϕ0 is Parametrically Specified

We want to test H0: ∃θ ∈ �, ϕ(.) = h(.,θ), where h is a known function. Assume that

we have an estimator of θ , θ̂ , such that
√

n(θ̂ − θ0)
d→ N (0, V ). Then, a test statistic

can be based on
√

n(ϕ̂ − hα(θ̂)), where hα is a regularized version of h(θ̂), namely

hα
(
θ̂
)

= L−sgα
(
B∗B

)
B∗Th

(
θ̂
)

.

This testing strategy permits us to eliminate the bias and is very similar in spirit to
the twin-smoothing first proposed by Härdle and Mammen (1993) to test a para-
metric regression model against a nonparametric alternative (see also Fan (1994) and
Altissimo and Mele (2009)).

Because θ is estimated, the asymptotic variance of
√

n(ϕ̂ − hα(θ̂)) will differ from
that of

√
n(ϕ̂ − ϕ0α). We illustrate this point on two examples. In both examples, h is

specified as h(θ) = ∑D
d=1 θded, where ed , d = 1, . . . , D, are known functions and θd ,

d = 1, . . . , D, are unknown scalars.

Functional Linear Regression

Consider the model (3.5) with exogenous regressors and homoskedastic error,
E(uiZi) = 0 and V(ui|Zi) = σ 2. Replacing ϕ by h(θ) in (3.5), we obtain

Yi =
D∑

d=1

θd〈Zi , ed〉+ ui.

Denote xi,d = 〈Zi , ed〉, X the n × D matrix of xi,d , e the D × 1 vector of ed , and Y the
n × 1 vector of Yi . Then, θ can be estimated by the OLS estimator, θ̂ = (X ′X)−1X ′Y .
The estimator of h(θ) is given by

h
(
θ̂
)

= e′(X ′X
)−1

X ′Y .
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Consider standard Tikhonov regularization

ϕ̂ − hα
(
θ̂
)

= (
αI + T̂∗T̂

)−1
T̂∗r̂

− (
αI + T̂∗T̂

)−1
T̂∗T̂h

(
θ̂
)

.

Replacing r̂ by 1
n

∑n
i=1 ZiYi = 1

n

∑n
i=1 Zi〈Zi ,ϕ〉+ 1

n

∑n
i=1 Ziui = T̂ϕ+ 1

n

∑n
i=1 Ziui and

h(θ̂) = e′θ + e′(X ′X)−1X ′u = ϕ + e′(X ′X)−1X ′u (under H0), we have

ϕ̂− hα
(
θ̂
)

= (
αI + T̂∗T̂

)−1
T̂∗

(
1

n

n∑
i=1

Ziui

)

− (
αI + T̂∗T̂

)−1
T̂∗T̂e′

(
X ′X

n

)−1 1

n
X ′u.

Let us denote An = (αI + T̂∗T̂)−1T̂∗ and Bn = −(αI + T̂∗T̂)−1T̂∗T̂e′( X ′X
n )−1. We

obtain

ϕ̂ − hα
(
θ̂
)

= [An Bn]
1

n

n∑
i=1

(
Zi

Xi

)
ui.

Provided that E‖
(

Z
X

)
u‖2 < ∞, we know from van der Vaart and Wellner (1996)

that a central limit theorem holds, so that

√
n

n

n∑
i=1

(
Zi

Xi

)
ui ⇒N (0,�).

If, moreover, ‖An − A‖ P→ 0 and ‖Bn − B‖ P→ 0, we have

√
n
(
ϕ̂ − hα

(
θ̂
))

⇒N
(

0, [A B]�

[
A∗
B∗

])
.

Nonparametric Instrumental Regression

Consider the model (3.6). The null hypothesis of interest is again H0: ∃θ ∈ �, ϕ(.) =
h(.,θ) =∑D

d=1 θded for some known functions ed . The finite-dimensional parameter θ
can be estimated by two-stage least squares. Denote W the n ×q matrix (W ′

1, . . . , W ′
n)′,

Y the n × 1 matrix (Y1, . . . , Yn)′, and E the n × d matrix with (i, j) elements ed(Zi).
Denote PW the projection matrix on W , PW = W (W ′W )−1W ′. Then the two-stage
least squares estimator of θ is

θ̂ = (
E′PW E

)−1
E′PW Y ≡ M

W ′Y
n

.
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Using the notation e for the D × 1 vector of functions (e1, . . . , ed , . . . , eD)′, h(., θ̂) takes
the simple form

h
(
θ̂
)

= e′θ̂ .

Similarly to the previous example, we have

√
n
(
ϕ̂ − hα

(
θ̂
))

= (
αI + T̂∗T̂

)−1

[
1

n

n∑
i=1

fZ ,W (Z , Wi)

fZ (Z) fW (Wi)
ui

−T̂∗T̂e′M

(
1

n

n∑
i=1

Wiui

)]
+ op (1).

Under some mild conditions (see van der Vaart and Wellner, 1996),

1√
n

n∑
i=1

[
fZ ,W (Z ,Wi)

fZ (Z)fW (Wi)

Wi

]
ui

converges to a Gaussian process, which permits us to establish the asymptotic variance
of

√
n(ϕ̂ − hα(θ̂)).

This test procedure can be related to that of Horowitz (2006). The test proposed
by Horowitz (2006) is based on ‖T̂∗(r̂ − T̂h(θ̂))‖2, while our test is based on ‖(αI +
T̂∗T̂)−1T̂∗(r̂ − T̂h(θ̂))‖2 with a fixed α.

3.6. Asymptotic Normality for Vanishing α
.............................................................................................................................................................................

In this section, we are looking at conditions under which ϕ̂ − ϕ is asymptotically
normal when α goes to zero. There are various ways to state the results.

Carrasco and Florens (2011) and Horowitz (2007) prove a pointwise convergence:

ϕ̂ (z)−ϕ (z)√
V̂ (z)

d→N (0, 1) ,

where typically the rate of convergence depends on z. Another possibility is to focus on
the convergence of inner products:

√
n
〈
ϕ̂ −ϕ − bn,δ

〉
〈�δ,δ〉1/2

d→N (0, 1) ,

where bn is the bias corresponding to ϕα − ϕ and 〈�δ,δ〉 may be finite or infinite
depending on the regularity of ϕ and δ.

We are going to focus on the second case.
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3.6.1. Asymptotic Normality with Known Operator

Here we consider the case of the Tikhonov regularization where T (hence B) is known.
The case where B is estimated is studied in the next subsection.

We want to prove the asymptotic normality of
√

n〈Lc ϕ̂ − Lcϕα ,δ〉, where c < s and
ϕ̂ is defined in (3.12):

ϕα = L−s(αI + B∗B
)−1

B∗r,

ϕ̂ −ϕα = L−s(αI + B∗B
)−1

L−sT∗(r̂ − Tϕ
)

.

The following assumption will be used to strengthen Assumption 3.5a.

Assumption 3.6. ηi, i = 1, 2, . . . , n, are i.i.d. with mean 0 and variance � and satisfy a
functional CLT: ∑n

i=1 ηi√
n

⇒N (0,�) in F .

Define M such that M = Lc−s(αI + B∗B)−1L−s .

Proposition 3.2. Suppose that ϕ̂ is as in (3.12). Assume that T∗(r̂ − Tϕ) = ∑n
i=1ηi/n,

where ηi satisfies Assumption 3.6. If δ ∈ E satisfies

E
[|〈Mηi ,δ〉|2+ε

]∥∥�1/2M∗δ
∥∥2+ε

= O(1) (3.27)

for some ε > 0, then √
n
〈
Lc ϕ̂ − Lcϕα ,δ

〉∥∥�1/2M∗δ
∥∥ d→N (0, 1) . (3.28)

Proof of Proposition 3.2. We have

√
n
〈
Lc ϕ̂ − Lcϕα ,δ

〉= √
n

n

n∑
i=1

〈Mηi ,δ〉.

It follows from Assumption 3.6 that 〈Mηi ,δ〉 are i.i.d. with Var(〈Mηi ,δ〉) =
1
n〈M�M∗δ,δ〉 = 1

n‖�1/2M∗δ‖2. A sufficient condition for the asymptotic normality
is the Lyapunov condition (Billingsley, 1995, (27.16)):

lim
n

n∑
i=1

E

[(√
n

n |〈Mηi ,δ〉|
)2+ε

]
∥∥�1/2M∗δ

∥∥2+ε
= 0



84 inverse problems

for some ε > 0. By the stationarity, this relation simplifies to

lim
n

E
[|〈Mηi ,δ〉|2+ε

]
nε/2

∥∥�1/2M∗δ
∥∥2+ε

= 0. (3.29)

A sufficient condition for (3.29) is given by (3.27). The result follows. �

The rate of convergence of 〈Lc ϕ̂ − Lcϕα ,δ〉 will be slower than
√

n if ‖�1/2M∗δ‖
diverges (which is the usual case). Moreover, the rate of convergence depends on the
regularity of δ. The case of a

√
n rate of convergence is discussed in Section 3.6.3. We

see that condition (3.27) imposes in general restrictions on both η and δ.
First, we are going to investigate cases where condition (3.27) is satisfied for all δ.

Assume that there exists μi such that

L−sηi = B∗Bμi . (3.30)

This is equivalent to, say, that L−sηi ∈ R(B∗B) = D(L2(a+s)) or equivalently ηi ∈
D(L2a+s). Under assumption (3.30), we have

|〈Mηi ,δ〉| =
∣∣∣〈Lc−s (αI + B∗B

)−1
B∗Bμi ,δ

〉∣∣∣
≤
∥∥∥Lc−s (αI + B∗B

)−1
B∗Bμi

∥∥∥‖δ‖
≤ C ‖μi‖‖δ‖

for some constant C. If, moreover, E(‖μi‖2+ε) < ∞, Lyapunov condition (3.27) is
satisfied for all δ such that ‖δ‖ <∞.

Now, we consider a more general case.

Assumption 3.7. L−sηi ∈R((B∗B)ν/2) =D(Lν(a+s)) for some 0 ≤ ν ≤ 2.

Assumption 3.8. Lc−sδ ∈R((B∗B)ν̃/2) =D(Lν̃(a+s)) for some ν̃ ≥ 0.

By a slight abuse of notation, we introduce the following μi and ρ:

L−sηi = (
B∗B

)ν/2
μi,

Lc−sδ = (
B∗B

)ν̃/2
ρ.

We have

|〈Mηi ,δ〉| =
∣∣∣〈(αI + B∗B

)−1
L−sηi , Lc−sδ

〉∣∣∣
=
∣∣∣〈(αI + B∗B

)−1 (
B∗B

)ν/2
μi,

(
B∗B

)ν̃/2
ρ
〉∣∣∣

=
∣∣∣〈(αI + B∗B

)−1 (
B∗B

)(ν+ν̃)/2
μi ,ρ

〉∣∣∣ .
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If ν + ν̃ ≥ 2, this term is bounded by ‖μi‖‖ρ‖. If, moreover, E(‖μi‖2+ε) < ∞,
the condition (3.27) is satisfied and the asymptotic normality (3.28) holds for this
specific δ.

3.6.2. Case Where the Operator Is Estimated

Let

ϕ̂ = L−s
(
αI + B̂∗B̂

)−1
B̂∗r̂,

ϕ̃α = L−s
(
αI + B̂∗B̂

)−1
B̂∗T̂ϕ.

We want to study the asymptotic normality of〈
Lc (ϕ̂ − ϕ̃α

)
,δ
〉
.

Assumption 3.9. Lc−sδ = (B∗B)d/2ρ for some ρ with ‖ρ‖<∞.

Proposition 3.3. Suppose that ϕ̂ is as in (3.31). Assume that T̂∗(r̂−T̂ϕ) =∑n
i=1 ηi/n for

some ηi satisfying Assumption 3.6 and for some δ satisfying Assumption 3.9 and (3.27). If

√
n

α
(3−d)∨1

2

∥∥∥B̂ − B
∥∥∥∥∥�1/2M∗δ
∥∥ → 0 (3.31)

and
√

n

α
(3−d)∨2

2

∥∥∥B̂∗ − B∗
∥∥∥∥∥�1/2M∗δ
∥∥ → 0, (3.32)

then √
n
〈
Lc
(
ϕ̂ − ϕ̃α

)
,δ
〉∥∥�1/2M∗δ

∥∥ d→N (0, 1).

The notation a ∨ b means max (a, b). In the IV example, ‖B̂ − B‖ depends on a
bandwidth hn. By choosing hn in an appropriate way, Conditions (3.31) and (3.32) will
be satisfied.

Proof of Proposition 3.3. We have

Lc (ϕ̂ − ϕ̃α
)= Lc−s (αI + B∗B

)−1
L−sT̂∗(r̂ − T̂ϕ

)
(3.33)

+ Lc−s
{(

αI + B̂∗B̂
)−1 − (

αI + B∗B
)−1

}
L−sT̂∗(r̂ − T̂ϕ

)
. (3.34)
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Using the fact that T̂∗(r̂ − T̂ϕ) = ∑n
i=1ηi/n for some ηi satisfying Assumption 3.6,

we can establish the asymptotic normality of
√

n〈Lc−s(αI + B∗B)−1L−sT̂∗(r̂ − T̂ϕ),δ〉
using the same proof as in Proposition 3.2.

Now we show that the term (3.38) is negligible. By Assumption 3.9, we have∣∣∣∣〈Lc−s
{(

αI + B̂∗B̂
)−1 − (

αI + B∗B
)−1

}
L−sT̂∗(r̂ − T̂ϕ

)
,δ

〉∣∣∣∣
=
∣∣∣∣〈L−s

∑n
i=1 ηi√

n
,

{(
αI + B̂∗B̂

)−1 − (
αI + B∗B

)−1
}

Lc−sδ

〉∣∣∣∣
≤
∥∥∥∥∑n

i=1 L−sηi√
n

∥∥∥∥∥∥∥∥{(αI + B̂∗B̂
)−1 − (

αI + B∗B
)−1

}(
B∗B

)d/2
ρ

∥∥∥∥
The first term on the r.h.s is O(1). We focus on the second term:∥∥∥∥{(αI + B̂∗B̂

)−1 − (
αI + B∗B

)−1
}(

B∗B
)d/2

ρ

∥∥∥∥
=
∥∥∥∥(αI + B̂∗B̂

)−1(
B∗B − B̂∗B̂

)(
αI + B∗B

)−1 (
B∗B

)d/2
ρ

∥∥∥∥
=
∥∥∥∥(αI + B̂∗B̂

)−1(
B̂∗
(

B − B̂
)

+
(

B∗ − B̂∗
)

B
)(

αI + B∗B
)−1 (

B∗B
)d/2

ρ

∥∥∥∥
≤
∥∥∥∥(αI + B̂∗B̂

)−1
B̂∗
(

B − B̂
)(

αI + B∗B
)−1 (

B∗B
)d/2

ρ

∥∥∥∥ (term 1)

+
∥∥∥∥(αI + B̂∗B̂

)−1(
B∗ − B̂∗

)
B
(
αI + B∗B

)−1 (
B∗B

)d/2
ρ

∥∥∥∥ (term 2)

Term 1: We have ‖(αI + B̂∗B̂)−1B̂∗‖2 ≤ 1/α and∥∥∥(αI + B∗B
)−1 (

B∗B
)d/2

∥∥∥2 ≤ C
1

α(2−d)

for d ≤ 2 (see Carrasco et al. (2007)). If d > 2, this term is bounded. Thus

(term 1)2 ≤ 1

α

∥∥∥B̂ − B
∥∥∥2 1

α(2−d)∨0

=
∥∥∥B̂ − B

∥∥∥2 1

α(3−d)∨1
.

Term 2:

(term 2)2 ≤ 1

α2

∥∥∥B̂∗ − B∗
∥∥∥2 ∥∥∥B

(
αI + B∗B

)−1 (
B∗B

)d/2
∥∥∥

= 1

α2

∥∥∥B̂∗ − B∗
∥∥∥2 1

α(1−d)∨0
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=
∥∥∥B̂∗ − B∗

∥∥∥2 1

α(3−d)∨2
.

Under the assumptions of Proposition 3.3,
√

n(3.34)/‖�1/2M∗δ‖ is negligible. �

3.6.3. Root n Rate of Convergence

The rate of convergence of 〈Lc ϕ̂ − Lcϕα ,δ〉 is
√

n if ‖�1/2M∗δ‖ is bounded. A
√

n rate
of convergence may sound strange in a nonparametric setting. However, it should be
noted that taking the inner product has a smoothing property. Moreover, a

√
n rate

will in general be obtained only for functions δ that are sufficiently smooth.
We can illustrate this point in the context of IV estimation where we set s = c = 0 to

facilitate the exposition. In this case, � = T∗T . Assuming that δ satisfies Assumption
3.8, we have ∥∥�1/2M∗δ

∥∥ =
∥∥∥(T∗T

)1/2 (
T∗T +αI

)−1 (
T∗T

)ν̃/2
ρ

∥∥∥ ,

which is finite if ν̃ > 1. Here it is always possible to choose ρ and then δ so that the
inner product 〈ϕ̂ −ϕα ,δ〉 converges at a

√
n rate.

The root n rate of convergence of inner products has been discussed in various
papers (e.g., Carrasco et al. (2007, p. 57) and Ai and Chen (2007, 2012) where an
efficiency bound is derived). Severini and Tripathi (2012) derive the efficiency bound
for estimating inner products of ϕ which remains valid when ϕ is not identified.

3.7. Selection of the Regularization

Parameter
.............................................................................................................................................................................

Engl et al. (2000) propose to select α using the criterion

min
α

1√
α

∥∥r̂ − T ϕ̂α
∥∥

and show that the resulting α has the optimal rate of convergence when T is known.
Darolles et al. (2011) suggest a slightly different rule. Let ϕ̂α(2) be the iterated

Tikhonov estimator of order 2. Then α is chosen to minimize

1

α

∥∥∥T̂∗r̂ − T̂∗T̂ ϕ̂α(2)

∥∥∥ .

They show that this selection rule delivers an α with optimal speed of convergence for
the model (3.6). See Fève and Florens (2010, 2011) for the practical implementation of
this method.
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Other adaptive selection rules have been proposed for the IV model (3.6) but using
different estimators than Darolles et al. Loubes and Marteau (2009) consider a spectral
cutoff estimator and give a selection criterion of α such that the mean square error of
the resulting estimator of ϕ achieves the optimal bound up to a ln(n)2 factor. They
assume that the eigenfunctions are known but the eigenvalues are estimated. Johannes
and Schwarz (2011) consider an estimator combining spectral cutoff and thresholding.
They show that their data-driven estimator can attain the lower risk bound up to a
constant, provided that the eigenfunctions are known trigonometric functions.

Recently, Horowitz (2011) proposed a selection rule that does not require the knowl-
edge of the eigenfunctions and/or eigenvalues. The estimator considered in Horowitz
(2011) is a modification of Horowitz’s (2012) estimator. Let us briefly explain how to
construct such an estimator. Multiply the left-hand and right-hand sides of Eq. (3.7)
by fW (w) to obtain

E (Yi|Wi = w)fW (w)= E(ϕ (Zi) |Wi = w)fW (w).

Now define r(w) = E(Yi|Wi = w)fW (w) and (Tϕ)(z) = ∫
ϕ(z)fZ ,W (z, w)dz. Assume

that the support of Z and W is [0, 1]. Let {ψj : j = 1, 2, . . .} be a given complete
orthonormal basis for L2[0, 1]. Contrary to Darolles et al., the ψj are not related to
the eigenfunctions of T∗T . Then, T and r are approximated by a series expansion on
this basis:

r̂(w) =
Jn∑

k=1

r̂kψk(w),

f̂Z ,W (z, w) =
Jn∑

j=1

Jn∑
k=1

ĉjkψj(z)ψk(w),

where Jn is a nonstochastic truncation point and r̂k and ĉjk are estimated Fourier
coefficients:

r̂k = 1

n

n∑
i=1

Yiψk (wi),

ĉjk = 1

n

n∑
i=1

ψj (zi)ψk (wi).

For any function ν: [0, 1] → R, define Djν(z) = djν(z)/dzj . Let

HJs =
⎧⎨⎩ν =

J∑
j=1

νjψj :
∑

0≤j≤s

∫ 1

0

[
Djν (z)

]2
dz ≤ C0

⎫⎬⎭
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for some finite C0 > 0. Then Horowitz’s (2011) sieve estimator is defined as

ϕ̃ = arg min
ν∈HJns

∥∥∥T̂ν − r̂
∥∥∥.

For j = 1, 2, . . . , Jn, define b̃j = 〈ϕ̃,ψj〉. Let J ≤ Jn be a positive integer, the modified
estimator of ϕ considered in Horowitz (2012) is

ϕ̂J =
J∑

j=1

b̃jψj .

The optimal J , denoted Jopt , is defined as the value that minimizes the asymptotic mean
square error (AIMSE) of ϕ̂J . The AIMSE is EA‖ϕ̂J −ϕ‖2, where EA(.) denotes the expec-
tation of the leading term of the asymptotic expansion of (.). The selection rule is the
following:

Ĵ = arg min
1≤J≤Jn

T̂n (J)

with

T̂n (J) = 2

3

ln(n)

n2

n∑
i=1

⎧⎨⎩(Yi − ϕ̃(Wi))
2

J∑
j=1

((
T̂−1

)∗
ψj(Wi)

)2

⎫⎬⎭− ∥∥ϕ̂J
∥∥2

.

For this Ĵ ,

EA
∥∥ϕ̂̂J −ϕ

∥∥2 ≤
(

2 + 4

3
ln(n)

)
EA

∥∥ϕ̂Jopt −ϕ
∥∥2

.

Thus, strictly speaking, Ĵ is not optimal, but the rate of convergence in probability of
‖ϕ̂̂J −ϕ‖2 is within a factor of ln(n) of the asymptotically optimal rate.

3.8. Implementation
.............................................................................................................................................................................

We discuss the implementation in the four examples studied in Section 3.2.

3.8.1. Case Where T Is Known

When T is known, the implementation is relatively simple.

Example 3.1. Density (Continued). The Tikhonov estimator of the density is given by
the solution of

min
f

∫ ∞

−∞

(∫ t

−∞
f (u)du − F̂(t)

)2

dt +α

∫ ∞

−∞
f (s) (u)2 du
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where f possesses s derivatives. This problem has a closed-form solution (Vapnik, 1998,
pages 309–311):

f̂ (x)= 1

n

n∑
i=1

Gα(x − xi)

which is a kernel estimator with kernel

Gα(x) =
∫ ∞

−∞
eixω

1 +αω2(s+1)
dω.

This formula simplifies when s = 0 (the desired density belongs to L2):

Gα(x) = 1

2
√
α

exp

{
− |x|√

α

}
.

Example 3.2 Deconvolution (Continued). We describe the estimator of Carrasco and
Florens (2011). Given that T and T∗ are known, their spectral decompositions are
also known (or can be approximated arbitrarily well by simulations). The solution f of
(αI + T∗T)f = T∗h is given by

f (x) =
∞∑

j=0

1

α+λ2
j

〈
T∗h,φj

〉
φj(x) .

The only unknown is (T∗h)(x) = ∫
h(y)πY |X (y|x)dy = E[πY |X (Y |x)]. It can be

estimated by (
T̂∗h

)
(x) = 1

n

n∑
i=1

πY |X
(
yi|x

)
so that the Tikhonov estimator of f is given by

f̂ (x) =
∞∑

j=0

1

α+λ2
j

〈
1

n

n∑
i=1

πY |X
(
yi|.

)
,φj (.)

〉
φj (x) .

3.8.2. Case Where T Is Estimated

Given that the number of observations is n, the estimated operators T̂ and T̂∗ are
necessarily finite-dimensional operators of dimensions that cannot exceed n. Assume
that the operators T̂ and T̂∗ take the following forms:

T̂ϕ =
n∑

i=1

ai(ϕ)fi ,
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T̂∗ψ =
n∑

i=1

bi(ψ)ei ,

where fi and ei are elements of F and E , respectively, and ai and bi are linear functions.
Assume that r takes the form

r̂ =
n∑

i=1

cifi .

Then, T̂∗T̂ϕ +αϕ = T̂∗r̂ can be rewritten as

n∑
i=1

bi

⎛⎝ n∑
j=1

aj(ϕ)fj

⎞⎠ei +αϕ =
n∑

i=1

bi

⎛⎝ n∑
j=1

cjfj

⎞⎠ei (3.35)

n∑
i,j=1

bi
(
fj
)
aj (ϕ)ei +αϕ =

n∑
i,j=1

bi
(
fj
)
cjei . (3.36)

Now, applying al on the r.h.s. and l.h.s of (3.36) and using the linearity of the function
al yields

n∑
i,j=1

bi
(
fj
)
aj(ϕ)al(ei)+αal(ϕ)=

n∑
i,j=1

bi
(
fj
)
cjal(ei). (3.37)

We obtain n equations with n unknowns aj(ϕ), j = 1, 2, . . . , n. We can solve this system
and then replace aj(ϕ) by its expression in (3.35) to obtain ϕ. We illustrate this method
in two examples.

Example 3.3. Functional Linear Regression (Continued). To simplify, let E = F =
L2[0, 1]. We have

T̂ϕ = 1

n

n∑
i=1

〈Zi ,ϕ〉Wi ,

T̂∗ψ = 1

n

n∑
i=1

〈Wi ,ψ〉Zi ,

r̂ = 1

n

n∑
i=1

YiWi .

Then fi = Wi/n, ei = Zi/n, ai(ϕ) = 〈Zi ,ϕ〉, bi(ψ) = 〈Wi ,ψ〉, ci = Yi . Equation (3.37)
gives

α 〈ϕ, Zl〉 + 1

n2

n∑
i,j=1

〈Zi, Zl〉
〈
Wi , Wj

〉 〈
ϕ, Zj

〉= 1

n2

n∑
i,j=1

〈Zi , Zl〉
〈
Wi, Wj

〉
Yj , l = 1, . . . , n.
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To compute the inner products 〈Zi , Zl〉, Florens and Van Bellegem (2012) propose to
discretize the integrals as follows:

〈Zi , Zl〉 = 1

T

T∑
t=1

Zi

(
t

T

)
Zl

(
t

T

)
and the same for 〈Wi , Wj〉. Let Z and W denote the T × n matrices with (t , i) elements
Zi(t/T) and Wi(t/T), respectively. Let ξ and Y be the n × 1 vectors of 〈ϕ, Zi〉 and Yi.
Then, closed-form expressions for ξ and ϕ are given by

ξ =
(
αI + 1

n2

Z ′Z
T

W ′W
T

)−1( 1

n2

Z ′Z
T

W ′W
T

Y

)
,

ϕ̂ = 1

αn2
Z

W ′W
T

(Y − ξ).

Example 3.4. Nonparametric Instrumental Regression (Continued). In Darolles et al.
(2002), the conditional expectation operator is estimated by a kernel estimator with
kernel k and bandwith hn.

T̂ϕ =
∑n

i=1 k
(

w−wi
hn

)
ϕ(zi)∑n

i=1 k
(

w−wi
hn

) ,

T̂∗ψ =
∑n

i=1k
(

z−zi
hn

)
ψ (wi)∑n

i=1 k
(

z−zi
hn

) ,

r̂ =
∑n

i=1 k
(

w−wi
hn

)
yi∑n

i=1 k
(

w−wi
hn

) .

Thus fi = k(
w−wi

hn
)∑n

i=1 k(
w−wi

hn
)
, ei = k(

z−zi
hn

)∑n
i=1 k(

z−zi
hn

)
, ai(ϕ) = ϕ(zi), bi(ψ) =ψ(wi), ci = yi.

Note that in Darolles et al. (2011), Z and W are assumed to have bounded supports
[0,1]p and [0,1]q and a generalized kernel is used to avoid having a larger bias at the
boundaries of the support.

Now we illustrate the role of L−s. Consider F the space of square integrable func-
tions defined on [0, 1] that satisfy the conditions φ(0) = 0 and φ′(1) = 0. The inner
product on this space is defined by 〈φ,ψ〉 = ∫ 1

0 φ(x)ψ(x)dx. Let Lφ = −φ′′, which
satisfies all the properties of Hilbert scale (L is self-adjoint, etc). The estimator is
given by

ϕ̂ = L−1(αI + L−1T∗TL−1)−1
L−1K∗r̂.

This approach is particularly useful if one is interested in the second derivative of ϕ
since we have

ϕ̂′′ = (
αI + L−1T∗TL−1)−1

L−1K∗ r̂.
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Note that even if ϕ does not satisfy the boundary conditions ϕ(0) = 0 and ϕ′(1) = 0,
ϕ̂ satisfies these properties. It has no impact on the second derivatives. Moreover, we
know that

L−1ϕ =
∫ 1

0
(s ∧ t)ϕ(s)ds.

Hence L−1 can be approximated by a numerical integral:

L−1ϕ = 1

N

N∑
i=1

(si ∧ t)ϕ(si).

Florens and Racine (2012) propose an estimation procedure of the first partial deriva-
tive of ϕ by Landweber–Fridman. Their paper derives the rate of convergence of the
estimator, investigates the small-sample performance via Monte Carlo, and applies the
method to the estimation of the Engel curve as in Blundell et al. (2007).

3.9. Concluding Remarks
.............................................................................................................................................................................

In this chapter, we mainly focused on the asymptotic normality of
√

n〈ϕ̂ − ϕα ,δ〉 and
omitted to study the regularization bias. However, the bias has the form

bn = ϕα −ϕ = −α
∑

j

1

λ2
j +α

〈
ϕ,ϕj

〉
ϕj ,

which is estimable. Given a consistent α, denoted α̃, we can construct a first-step
estimator of ϕ denoted ϕ̂α̃ . Then an estimator of the bias is given by

b̂n = −α
∑

j

1

λ̂2
j +α

〈
ϕ̂α̃, ϕ̂j

〉
ϕ̂j ,

where ϕ̂j and λ̂j are consistent estimators of ϕj and λj as described in Carrasco et al.

(2007). Given this estimator, we can construct a bias-corrected estimator of ϕ̂, ϕ̂ − b̂n.
Although this estimator will have a smaller bias than the original one, it may have a
larger variance.
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chapter 4
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IDENTIFICATION AND
WELL-POSEDNESS IN

NONPARAMETRIC MODELS WITH
INDEPENDENCE CONDITIONS

........................................................................................................

victoria zinde-walsh
†

4.1. Introduction
.............................................................................................................................................................................

Many statistical and econometric models involve independence (or conditional inde-
pendence) conditions that can be expressed via convolution. Examples are indepen-
dent errors, classical measurement error and Berkson error, regressions involving
data measured with these types of errors, common factor models, and models that
conditionally on some variables can be represented in similar forms, such as a non-
parametric panel data model with errors conditionally on observables independent of
the idiosyncratic component.

Although the convolution operator is well known, this chapter explicitly provides
convolution equations for a wide list of models for the first time. In many cases the
analysis in the literature takes Fourier transforms as the starting point—for exam-
ple, characteristic functions for distributions of random vectors, as in the famous
Kotlyarski lemma (Kotlyarski, 1967). The emphasis here on convolution equations
for the models provides the opportunity to explicitly state nonparametric classes of
functions defined by the model for which such equations hold, in particular, for den-
sities, conditional densities, and regression functions. The statistical model may give
rise to different systems of convolution equations and may be overidentified in terms
of convolution equations; some choices may be better suited to different situations;
for example, here in Section 4.2 two sets of convolution equations (4 and 4a in Table
4.1) are provided for the same classical measurement error model with two measure-
ments; it turns out that one of those allows us to relax some independence conditions,
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while the other makes it possible to relax a support assumption in identification. Many
of the convolution equations derived here are based on density-weighted conditional
averages of the observables.

The main distinguishing feature is that here all the functions defined by the model
are considered within the space of generalized functions S∗, the space of so-called tem-
pered distributions (they will be referred to as generalized functions). This is the dual
space, the space of linear continuous functionals, on the space S of well-behaved func-
tions: The functions in S are infinitely differentiable, and all the derivatives go to zero
at infinity faster than any power. An important advantage of assuming that the func-
tions are in the space of generalized functions is that in that space any distribution
function has a density (generalized function) that continuously depends on the dis-
tribution function, so that distributions with mass points and fractal measures have
well-defined generalized densities.

Any regular function majorized by a polynomial belongs to S∗; this includes poly-
nomially growing regression functions and binary choice regression as well as many
conditional density functions. Another advantage is that Fourier transform is an iso-
morphism of this space, and thus the usual approaches in the literature that employ
characteristic functions are also included. Details about the space S∗ are in Schwartz
(1966) and are summarized in Zinde-Walsh (2013).

The model classes examined here lead to convolution equations that are similar to
each other in form; the main focus of this chapter is on existence, identification, partial
identification, and well-posedness conditions. Existence and uniqueness of solutions
to some systems of convolution equations in the space S∗ were established in Zinde-
Walsh (2013). Those results are used here to state identification in each of the models.
Identification requires examining support of the functions and generalized functions
that enter into the models; if support excludes an open set, then identification at
least for some unknown functions in the model fails; however, some isolated points
or lower-dimensional manifolds where, for example, the characteristic function takes
zero values (an example is the uniform distribution) does not preclude identification
in some of the models. This point was made, for example, in Carrasco and Florens
(2010) and in Evdokimov and White (2012) and is expressed here in the context of
operating in S∗. Support restriction for the solution may imply that only partial iden-
tification will be provided. However, even in partially identified models, some features
of interest (see, e.g., Matzkin (2007)) could be identified; thus some questions could be
addressed, even in the absence of full identification. A common example of incomplete
identification which nevertheless provides important information is Gaussian decon-
volution of a blurred image of a car obtained from a traffic camera; the filtered image
is still not very good, but the license plate number is visible for forensics.

Well-posedness conditions are emphasized here. The well-known definition by
Hadamard (1923) defines well-posedness via three conditions: existence of a solu-
tion, uniqueness of the solution, and continuity in some suitable topology. The first
two are essentially identification. Since here we shall be defining the functions in sub-
classes of S∗, we shall consider continuity in the topology of this generalized functions
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space. This topology is weaker than the topologies in functions spaces, such as the
uniform or Lp topologies; thus differentiating the distribution function to obtain a
density is a well-posed problem in S∗, by contrast, even in the class of absolutely con-
tinuous distributions with uniform metric where identification for density in the space
L1 holds; well-posedness, however, does not obtain (see discussion in Zinde-Walsh
(2011)). But even though in the weaker topology of S∗ well-posedness obtains more
widely, for the problems considered here some additional restrictions may be required
for well-posedness.

Well-posedness is important for plug-in estimation since if the estimators are in
a class where the problem is well-posed, they are consistent; and conversely, if well-
posedness does not hold, consistency will fail for some cases. Lack of well-posedness
can be remedied by regularization, but the price is often more extensive requirements
on the model and slower convergence. For example, in deconvolution (see, e.g., Fan
(1991) and most other papers cited here) spectral cutoff regularization is utilized; it
crucially depends on knowing the rate of the decay at infinity of the density.

Often nonparametric identification is used to justify parametric or semi-parametric
estimation; the claim here is that well-posedness should be an important part of this
justification. The reason for that is that in estimating a possibly misspecified paramet-
ric model, the misspecified functions of the observables belong in a nonparametric
neighborhood of the true functions; if the model is nonparametrically identified, the
unique solution to the true model exists, but without well-posedness the solution to
the parametric model and to the true one may be far apart.

For deconvolution, An and Hu (2012) demonstrate well-posedness in spaces of
integrable density functions when the measurement error has a mass point; this may
happen in surveys when probability of truthful reporting is non-zero. The conditions
for well-posedness here are provided in S∗; this then additionally does not exclude
mass points in the distribution of the mismeasured variable itself; there is some empir-
ical evidence of mass points in earnings and income. The results here show that in
S∗, well-posedness holds more generally—as long as the error distribution is not
supersmooth.

The solutions for the systems of convolution equations can be used in plug-in
estimation. Properties of nonparametric plug-in estimators are based on results on
stochastic convergence in S∗ for the solutions that are stochastic functions expressed
via the estimators of the known functions of the observables.

Section 4.2 enumerates the classes of models considered here. They are divided into
three groups: (1) measurement error models with classical and Berkson errors and pos-
sibly an additional measurement, along with common factor models that transform
into those models; (2) nonparametric regression models with classical measurement
and Berkson errors in variables; (3) measurement error and regression models with
conditional independence. The corresponding convolution equations and systems of
equations are provided and discussed. Section 4.3 is devoted to describing the solu-
tions to the convolution equations of the models. The main mathematical aspect of
the different models is that they require solving equations of a similar form. Section
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4.4 provides a table of identified solutions and discusses partial identification and
well-posedness. Section 4.5 examines plug-in estimation. A brief conclusion follows.

4.2. Convolution Equations in Classes of

Models with Independence or

Conditional Independence
.............................................................................................................................................................................

This section derives systems of convolution equations for some important classes of
models. The first class of model is measurement error models with some indepen-
dence (classical or Berkson error) and possibly a second measurement; the second
class is regression models with classical or Berkson-type error; the third is models with
conditional independence. For the first two classes the distributional assumptions for
each model and the corresponding convolution equations are summarized in tables;
we indicate which of the functions are known and which are unknown; a brief dis-
cussion of each model and derivation of the convolution equations follows. The last
part of this section discusses convolution equations for two specific models with con-
ditional independence; one is a panel data model studied by Evdokimov (2011), the
other a regression model where independence of measurement error of some regressors
obtains conditionally on a covariate.

The general assumption made here is that all the functions in the convolution
equations belong to the space of generalized functions S∗.

Assumption 4.1. All the functions defined by the statistical model are in the space of
generalized functions S∗.

This space of generalized function includes functions from most of the function
classes that are usually considered, but allows for some useful generalizations. The next
subsection provides the necessary definitions and some of the implications of working
in the space S∗.

4.2.1. The Space of Generalized Functions S∗

The space S∗ is the dual space, that is, the space of continuous linear functionals on
the space S of functions. The theory of generalized functions is in Schwartz (1966);
relevant details are summarized in Zinde-Walsh (2013). In this subsection the main
definitions and properties are reproduced.

Recall the definition of S.
For any vector of non-negative integers m = (m1, . . . , md) and vector t ∈ Rd denote

by tm the product tm1
1 . . . tmd

d and by ∂m the differentiation operator ∂m1

∂x
m1
1

. . . ∂md

∂x
md
d

; C∞
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is the space of infinitely differentiable (real or complex-valued) functions on Rd . The
space S ⊂ C∞ of test functions is defined as

S =
{
ψ ∈ C∞(Rd) : |t l∂kψ(t)| = o(1) as t → ∞

}
,

for any k = (k1, . . . , kd), l = (l1, . . . , ld), where k = (0, . . . , 0) corresponds to the function
itself, t → ∞ coordinatewise; thus the functions in S go to zero at infinity faster than
any power as do their derivatives; they are rapidly decreasing functions. A sequence in
S converges if in every bounded region each

∣∣t l∂kψ(t)
∣∣ converges uniformly.

Then in the dual space S∗ any b ∈ S∗ represents a linear functional on S; the value
of this functional for ψ ∈ S is denoted by (b,ψ) . When b is an ordinary (pointwise
defined) real-valued function, such as a density of an absolutely continuous distribu-
tion or a regression function, the value of the functional on real-valued ψ defines it
and is given by

(b,ψ) =
∫

b(x)ψ(x)dx.

If b is a characteristic function that may be complex-valued, then the value of the
functional b applied to ψ ∈ S, where S is the space of complex-valued functions, is

(b,ψ) =
∫

b(x)ψ(x) dx,

where the overbar denotes complex conjugate. The integrals are taken over the whole
space Rd .

The generalized functions in the space S∗ are continuously differentiable and the dif-
ferentiation operator is continuous; Fourier transforms and their inverses are defined
for all b ∈ S∗, the operator is a (continuous) isomorphism of the space S∗. However,
convolutions and products are not defined for all pairs of elements of S∗, unlike, say,
the space L1; on the other hand, in L1, differentiation is not defined and not every
distribution has a density that is an element of L1.

Assumption 4.1 places no restrictions on the distributions, since in S∗ any distri-
bution function is differentiable and the differentiation operator is continuous. The
advantage of not restricting distributions to be absolutely continuous is that mass
points need not be excluded; distributions representing fractal measures such as the
Cantor distribution are also allowed. This means that mixtures of discrete and con-
tinuous distributions are included—such as those examined by An and Hu (2012) for
measurement error in survey responses where some are error—contaminated, some
truthful leading to a mixture with a mass point distribution. Moreover, in S∗ the case
of mass points in the distribution of the mismeasured variable is also easily handled; in
the literature such mass points are documented for income or work hours distributions
in the presence of rigidities such as unemployment compensation rules (e.g., Green
and Riddell, 1997). Fractal distributions may arise in some situations—for example,
Karlin’s (1959) example of the equilibrium price distribution in an oligopolistic game.
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For regression functions the assumption g ∈ S∗ implies that growth at infinity is
allowed but is somewhat restricted. In particular, for any ordinary pointwise defined
function b ∈ S∗ the condition∫

. . .

∫
�d

i=1

(
(1 + t2

i

)−1
)mi |b(t)|dt1 . . .dtd <∞, (4.1)

needs to be satisfied for some non-negative valued m1, . . . , md. If a locally integrable
function g is such that its growth at infinity is majorized by a polynomial, then
b ≡ g satisfies this condition. While restrictive, this still widens the applicability of
many currently available approaches. For example, in Berkson regression the common
assumption is that the regression function be absolutely integrable (Meister, 2009); this
excludes binary choice, linear and polynomial regression functions that belong to S∗
and satisfy Assumption 4.1. Also, it is advantageous to allow for functions that may not
belong to any ordinary function classes, such as sums of δ-functions (“sum of peaks”)
or (mixture) cases with sparse parts of support, such as isolated points; such functions
are in S∗. Distributions with mass points can arise when the response to a survey ques-
tion may be only partially contaminated; regression “sum of peaks” functions arise, for
example, in spectroscopy and astrophysics, where isolated point supports are common.

4.2.2. Measurement Error and Related Models

Current reviews for measurement error models are in Carrol et al. (2006), Chen et al.
(2011), and Meister (2009).

Here and everywhere below, the variables x, z, x∗, u, ux are assumed to be in Rd ; y, v
are in R1; all the integrals are over the corresponding space; density of ν for any ν

is denoted by fv ; independence is denoted by ⊥; expectation of x conditional on z is
denoted by E(x|z).

4.2.2.1. List of Models and Corresponding Equations

Table 4.1 lists various models and corresponding convolution equations. Many of
the equations are derived from density-weighted conditional expectations of the
observables.

Recall that for two functions, f and g , convolution f ∗ g is defined by

(f ∗ g) (x)=
∫

f (w)g(x − w)dw;

this expression is not always defined. A similar expression (with some abuse of nota-
tion since generalized functions are not defined pointwise) may hold for generalized
functions in S∗; similarly, it is not always defined. With Assumption 4.1 for the models
considered here, we show that convolution equations given in Table 4.1 hold in S∗.



Table 4.1 Measurement Error Models: 1. Classical Measurement Error; 2. Berkson Measurement Error; 3. Classical Measurement
Error with Additional Observation (with Zero Conditional Mean Error); 4, 4a. Classical Error with Additional Observation (Full
Independence)

Model Distributional Assumptions Convolution Equations Known Functions Unknown Functions

1 z = x∗ + u,
x∗⊥u

fx∗ ∗ fu = fz fz , fu fx∗

2 z = x∗ + u,
z⊥u

fz ∗ f−u = fx∗ fz , fu fx∗

3
z = x∗ + u,
x = x∗ + ux ,

x∗⊥u,
E (ux |x∗ ,u) = 0,

E ‖z‖ < ∞;E ‖u‖ <∞

fx∗ ∗ fu = fz ,
hk ∗ fu =wk ,

with hk (x) ≡ xk fx∗ (x),
k = 1,2, . . . ,d

fz ,wk ,
k = 1,2, . . . ,d

fx∗ ; fu

4
z = x∗ + u,

x = x∗ + ux ;x∗⊥u,
x∗⊥ux ;E (ux ) = 0,

u⊥ux ,
E ‖z‖ < ∞;E ‖u‖ <∞

fx∗ ∗ fu = fz ,
hk ∗ fu =wk ,
fx∗ ∗ fux = fx ,

with hk (x) ≡ xk fx∗ (x),
k = 1,2, . . . ,d

fz , fx ;w;wk
k = 1,2, . . . ,d

fx∗ ; fu , fux

4a
Same model as 4,

alternative
equations

fx∗ ∗ fu = fz ,
fux ∗ f−u = w ,
hk ∗ f−u = wk ,

with hk (x) ≡ xk fux (x),
k = 1,2, . . . ,d

Same as for 4 Same as for 4

Notation: k = 1,2, . . . ,d; in 3 and 4, wk = E (xk fz (z)|z); in 4a, w = fz−x ;wk = E (xkw(z − x)| (z − x) ).
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Theorem 4.1. Under Assumption 4.1 for each of the models 1–4 the corresponding
convolution equations of Table 4.1 hold in the generalized functions space S∗.

The proof is in the derivations of the following subsection.
Assumption 4.1 requires considering all the functions defined by the model as ele-

ments of the space S∗; but if the functions (e.g., densities, the conditional moments)
exist as regular functions, the convolutions are just the usual convolutions of functions,
on the other hand, the assumption allows us to consider convolutions for cases where
distributions are not absolutely continuous.

4.2.2.2. Measurement Error Models and Derivation of the
Corresponding Equations

Model 1. The Classical Measurement Error Model. The case of the classical measure-
ment error is well known in the literature. Independence between error and the
variable of interest is applicable to problems in many fields as long as it may be assumed
that the source of the error is unrelated to the signal. For example, in Cunha et al.
(2010) it is assumed that some constructed measurement of ability of a child derived
from test scores fits into this framework. As is well known in regression, a measurement
error in the regressor can result in a biased estimator (attenuation bias).

Typically the convolution equation

fx∗ ∗ fu = fz

is written for density functions when the distribution function is absolutely contin-
uous. The usual approach to possible nonexistence of density avoids considering the
convolution and focuses on the characteristic functions. Since density always exists as a
generalized function and convolution for such generalized functions is always defined,
it is possible to write convolution equations in S∗ for any distributions in model 1.
The error distribution (and thus generalized density fu) is assumed known; thus the
solution can be obtained by “deconvolution” (Carrol et al. (2006), Meister (2009), the
review of Chen et al. (2011), and papers by Fan (1991) and by Carrasco and Florens
(2010), among others).

Model 2. The Berkson Error Model. For Berkson error the convolution equation is also
well known. Berkson error of measurement arises when the measurement is somehow
controlled and the error is caused by independent factors; for example, amount of
fertilizer applied is given but the absorption into soil is partially determined by factors
independent of that, or students’ grade distribution in a course is given in advance,
or distribution of categories for evaluation of grant proposals is determined by the
granting agency. The properties of Berkson error are very different from that of classical
error of measurement; for example, it does not lead to attenuation bias in regression;
also in the convolution equation the unknown function is directly expressed via the
known ones when the distribution of Berkson error is known. For discussion see Carrol
et al. (2006), Meister (2009), and Wang (2004).
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Models 3 and 4. The Classical Measurement Error with Another Observation. In 3 and
4 in the classical measurement error model the error distribution is not known, but
another observation for the mismeasured variable is available; this case has been
treated in the literature and is reviewed in Carrol et al. (2006) and Chen et al. (2011). In
econometrics, such models were examined by Li and Vuong (1998), Li (2002), Schen-
nach (2004), and subsequently others (see, for example, the review by Chen et al.
(2011)). In case 3 the additional observation contains an error that is not necessarily
independent, but just has conditional mean zero.

Note that here the multivariate case is treated where arbitrary dependence for the
components of vectors is allowed. For example, it may be of interest to consider the
vector of not necessarily independent latent abilities or skills as measured by different
sections of an IQ test, or the GRE scores.

Extra measurements provide additional equations. Consider for any k = 1, . . . , d the
function of observables wk defined by density-weighted expectation E(xkfz(z)|z) as a
generalized function; it is then determined by the values of the functional (wk,ψ) for
every ψ ∈ S. Note that by assumption E(xkfz(z)|z) = E(x∗

k fz (z)|z); then for any ψ ∈ S
the value of the functional is given by

(E(x∗
k fz (z)|z),ψ) =

∫
[

∫
x∗

k fx∗,z(x∗, z)dx∗]ψ(z)dz

=
∫ ∫

x∗
k fx∗ ,z(x∗, z)ψ(z)dx∗dz

=
∫ ∫

x∗
kψ(x∗ + u)fx∗ ,u(x∗, u)dx∗du

=
∫ ∫

x∗
k fx∗ (x∗)fu(u)ψ(x∗ + u)dx∗du = (hk ∗ fu,ψ).

The third expression is a double integral that always exists if E ‖x∗‖ < ∞; this is
a consequence of boundedness of the expectations of z and u. The fourth is a result
of change of variables (x∗, z) into (x∗, u) , the fifth uses independence of x∗ and u,
and the sixth expression follows from the corresponding expression for the convolu-
tion of generalized functions (Schwartz, 1966, p. 246). The conditions of model 3 are
not sufficient to identify the distribution of ux ; this is treated as a nuisance part in
model 3.

Model 4 with all the errors and mismeasured variables independent of each other
was investigated by Kotlyarski (1967), who worked with the joint characteristic func-
tion. In model 4 consider in addition to the equations written for model 3 another that
uses the independence between x∗ and ux and involves fux .

In representation 4a the convolution equations involving the density fux are obtained
by applying the derivations that were used here for model 3,

z = x∗ + u,

x = x∗ + ux ,
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to model 4 with x −z playing the role of z, ux playing the role of x∗, −u playing the role
of u, and x∗ playing the role of ux . The additional convolution equations arising from
the extra independence conditions provide extra equations and involve the unknown
density fux . This representation leads to a generalization of Kotlyarski’s identification
result similar to that obtained by Evdokimov (2011), who used the joint characteris-
tic function. The equations in model 4a make it possible to identify fu, fux ahead of
fx∗ ; for identification this will require less restrictive conditions on the support of the
characteristic function for x∗.

4.2.2.3. Some Extensions

A. Common Factor Models
Consider a model z̃ = AU , with A a matrix of known constants, z̃ an m × 1 vector
of observables, and U a vector of unobservable variables. Usually, A is a block matrix
and AU can be represented via a combination of mutually independent vectors. Then
without loss of generality consider the model

z̃ = Ãx∗ + ũ, (4.2)

where Ã is an m × d known matrix of constants, z̃ is an m × 1 vector of observables,
unobserved x∗ is d × 1, and unobserved ũ is m × 1. If the model (4.2) can be trans-
formed to model 3 considered above, then x∗ will be identified whenever identification
holds for model 3. Once some components are identified, identification of other factors
could be considered sequentially.

Lemma 4.1. If in (4.2) the vectors x∗ and ũ are independent and all the components of the
vector ũ are mean independent of each other and are mean zero and the matrix A can be

partitioned after possibly some permutation of rows as

(
A1

A2

)
with rank A1 = rank A2 = d,

then the model (4.2) implies model 3.

Proof. Define z = T1z̃, where conformably to the partition of A we have the partitioned

T1 =
(

T̃1

0

)
, with T̃1A1x∗ = x∗ (such a T̃1 always exists by the rank condition); then

z = x∗ +u, where u = T1ũ is independent of x∗. Next define T2 =
(

0
T̃2

)
similarly with

T̃2A2x∗ = x∗.
Then x = T2z̃ is such that x = x∗ + ux , where ux = T2ũ and does not include any

components from u. This implies Eux |(x∗, u) = 0. Model 3 holds. �

Here dependence in components of x∗ is arbitrary. A general structure with sub-
vectors of U independent of each other but with components that may be only mean
independent (as ũ here) or arbitrarily dependent (as in x∗) is examined by Ben-Moshe
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(2012). Models of linear systems with full independence were examined by, for exam-
ple, Li and Vuong (1998). These models lead to systems of first-order differential
equations for the characteristic functions.

It may be that there are no independent components x∗ and ũ for which the condi-
tions of Lemma 4.1 are satisfied. Bonhomme and Robin (2010) proposed to consider
products of the observables to increase the number of equations in the system and
analyzed conditions for identification; Ben-Moshe (2012) provided the necessary and
sufficient conditions under which this strategy leads to identification when there may
be some dependence.

B. Error Correlations with More Observables

The extension to nonzero E(ux |z) in model 3 is trivial if this expectation is a known
function. A more interesting case results if the errors ux and u are related—for example,

ux = ρu + η;η⊥z.

With an unknown parameter (or function of observables) ρ, if more observa-
tions are available, then more convolution equations can be written to identify all the
unknown functions. Suppose that additionally an observation y is available with

y = x∗ + uy ,

uy = ρux + η1;η1⊥,η, z.

Without loss of generality, consider the univariate case and define wx =
E(xf (z)|z); wy = E(yf (z)|z). Then the system of convolution equations expands to

fx∗ ∗ fu = w,

(1 −ρ)hx∗ ∗ fu +ρzf (z) = wx , (4.3)

(1 −ρ2)hx∗ ∗ fu +ρ2zf (z) = wy .

The three equations have three unknown functions, fx∗ , fu, and ρ. Assuming that
support of ρ does not include the point 1, ρ can be expressed as a solution to a linear
algebraic equation derived from the two equations in (4.3) that include ρ:

ρ = (wx − zf (z))−1(wy − wx).

4.2.3. Regression Models with Classical and Berkson Errors
and the Convolution Equations

4.2.3.1. The List of Models

Table 4.2 provides several regression models and the corresponding convolution
equations involving density-weighted conditional expectations.



Table 4.2 Regression Models: 5. Regression with Classical Measurement Error and an Additional Observation; 6. Regression with
Berkson Error (x,y ,z Are Observable); 7. Regression with Zero Mean Measurement Error and Berkson Instruments

Model Distributional Assumptions Convolution Equations Known Functions Unknown Functions

5 y = g(x∗)+ v ,
z = x∗ + u,
x = x∗ + ux ,

x∗⊥u;E (u) = 0,
E (ux |x∗ ,u) = 0,
E (v|x∗ ,u,ux ) = 0

fx∗ ∗ fu = fz ,
(gfx∗) ∗ fu = w ,
hk ∗ fu = wk ,

with hk (x) ≡ xkg(x)fx∗ (x),
k = 1,2, . . . ,d

fz ; w;wk fx∗ ; fu; g

6 y = g(x)+ v ,
z = x + u;E (v|z) = 0,

z⊥u;E (u) = 0

fx = f−u ∗ fz ,
g ∗ f−u =w

fz ; fx ,w fu; g

7 y = g(x∗)+ v ,
x = x∗ + ux ,

z = x∗ + u;z⊥u,
E (v|z,u,ux ) = 0,
E (ux |z,v ) = 0

g ∗ fu = w ,
hk ∗ fu = wk ,

with hk (x) ≡ xkg(x),
k = 1,2, . . . ,d

w ,wk fu; g

Notation: k = 1,2, . . . ,d; in model 5, w = E (yfz (z)|z),wk = E (xk fz (z)|z); in model 6, w = E (y|z); in model 7, w = E (y|z),wk = E (xky|z).
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Theorem 4.2. Under Assumption 4.1 for each of the models 5–7 the corresponding
convolution equations hold.

The proof is in the derivations of the next subsection.

4.2.3.2. Discussion of the Regression Models and Derivation of the
Convolution Equations

Model 5. The Nonparametric Regression Model with Classical Measurement Error and
an Additional Observation. This type of model was examined by Li (2002) and Li
and Hsiao (2004); the convolution equations derived here provide a convenient rep-
resentation. Often models of this type were considered in semiparametric settings.
Butucea and Taupin (2008) (extending the earlier approach by Taupin, 2001) consider
a regression function known up to a finite-dimensional parameter with the mismea-
sured variable observed with independent error where the error distribution is known.
Under the latter condition, model 5 here would reduce to the two first equations

fx∗ ∗ fu = fz ,
(
gfx∗

) ∗ fu = w,

where fu is known and two unknown functions are g (here nonparametric) and fx∗ .
Model 5 incorporates model 3 for the regressor, and thus the convolution equations

from that model apply. An additional convolution equation is derived here; it is
obtained from considering the value of the density-weighted conditional expectation
in the dual space of generalized functions, S∗, applied to arbitrary ψ ∈ S,

(w,ψ) = (E(f (z)y|z),ψ) = (E(f (z)g(x∗)|z),ψ);

this equals ∫ ∫
g(x∗)fx∗ ,z(x∗, z)ψ(z)dx∗dz

=
∫ ∫

g(x∗)fx∗ ,u(x∗, u)ψ(x∗ + u)dx∗du

=
∫

g(x∗)fx∗ (x∗)fu(u)dx∗ψ(x∗ + u)dx∗du = ((gfx∗ ) ∗ fu,ψ).

Conditional moments for the regression function need not be integrable or bounded
functions of z; we require them to be in the space of generalized functions S∗.

Model 6. Regression with Berkson Error. This model may represent the situation when
the regressor (observed) x is correlated with the error v, but z is a vector possibly
representing an instrument uncorrelated with the regression error.

Then as is known in addition to the Berkson error convolution equation, the
equation,

w = E(y|z) = E(g(x)|z) =
∫

g(x)
fx,z (x, z)

fz (z)
dx =

∫
g(z − u)fu(u)dx = g ∗ fu
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holds. This is stated in Meister (2009); however, the approach there is to consider g
to be absolutely integrable so that convolution can be defined in the L1 space. Here by
working in the space of generalized functions S∗ a much wider nonparametric class of
functions that includes regression functions with polynomial growth is allowed.

Model 7. Nonparametric regression with error in the regressor, where Berkson type instru-
ments are assumed available. This model was proposed by Newey (2001), examined in
the univarite case by Schennach (2007) and Zinde-Walsh (2009), and studied in the
multivariate case in Zinde-Walsh (2013), where the convolution equations given here
in Table 4.2 were derived.

4.2.4. Convolution Equations in Models with Conditional
Independence Conditions

Models 1–7 can be extended to include some additional variables where condition-
ally on those variables, the functions in the model (e.g., conditional distributions) are
defined and all the model assumptions hold conditionally.

Evdokimov (2011) derived the conditional version of model 4 from a very general
nonparametric panel data model. Model 8 below describes the panel data setup and
how it transforms to conditional model 4 and 4a and possibly model 3 with relaxed
independence condition (if the focus is on identifying the regression function).

Model 8. Panel Data Model with Conditional Independence. Consider a two-period
panel data model with an unknown regression function m and an idiosyncratic
(unobserved) α:

Yi1 = m(Xi1,αi) + Ui1,

Yi2 = m(Xi2,αi) + Ui2.

To be able to work with various conditional characteristic functions, corresponding
assumptions ensuring existence of the conditional distributions need to be made, and
in what follows we assume that all the conditional density functions and moments exist
as generalized functions in S∗.

In Evdokimov (2011), independence (conditional on the corresponding period X ′s)
of the regression error from α, as well as from the X ′s and error of the other period, is
assumed:

ft = fUit |Xit ,αi ,Xi(−t),Ui(−t)(ut |x, . . .) = fUit |Xit (ut |x), t = 1, 2,
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with f·|· denoting corresponding conditional densities. Conditionally on Xi2 = Xi1 = x
the model takes the form 4,

z = x∗ + u,

x = x∗ + ux ,

with z representing Y1, x representing Y2, and x∗ standing in for m(x,α), u for U1, and
ux for U2. The convolution equations derived here for 4 or 4a now apply to conditional
densities.

The convolution equations in 4a are similar to Evdokimov; they allow for equations
for fu, fux that do not rely on fx∗ . The advantage of those lies in the possibility of identi-
fying the conditional error distributions without placing the usual nonzero restrictions
on the characteristic function of x∗ (that represents the function m for the panel
model).

The panel model can be considered with relaxed independence assumptions. Here
in the two-period model we look at forms of dependence that assume zero conditional
mean of the second period error, rather than full independence of the first period error:

fUi1|Xi1,αi ,Xi2,Ui2(ut |x, . . .) = fUi1|Xi1(ut |x),

E(Ui2|Xi1,αi, Xi2, Ui1) = 0,

fUi2|αi ,Xi2=Xi1=x(ut |x, . . .) = fUi2|Xi2(ut |x).

Then the model maps into model 3, with the functions in the convolution equations
representing conditional densities, and allows us to identify distribution of x∗ (func-
tion m in the model). But the conditional distribution of the second-period error in
this setup is not identified.

Evdokimov introduced parametric AR(1) or MA(1) dependence in the errors U ,
and to accommodate this he extended the model to three periods. Here this would lead
in the AR case to the Eq. (4.3).

Model 9. Errors in Variables Regression with Classical Measurement Error Conditionally
on Covariates. Consider the regression model

y = g(x∗, t) + v,

with a measurement of unobserved x∗ given by z̃ = x∗ + ũ, with x∗⊥ũ conditionally
on t . Assume that E(ũ|t) = 0 and that E(v|x∗, t) = 0. Then redefining all the densities
and conditional expectations to be conditional on t , we get the same system of convo-
lution equations as in Table 4.2 for model 5 with the unknown functions now being
conditional densities and the regression function, g .

Conditioning requires assumptions that provide for existence of conditional distri-
bution functions in S∗.
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4.3. Solutions for the Models
.............................................................................................................................................................................

4.3.1. Existence of Solutions

To state results for nonparametric models, it is important first to clearly indicate the
classes of functions where the solution is sought. Assumption 4.1 requires that all the
(generalized) functions considered are elements in the space of generalized functions
S∗. This implies that in the equations the operation of convolution applied to the two
functions from S∗ provides an element in the space S∗. This subsection gives high-level
assumptions on the nonparametric classes of the unknown functions where the solu-
tions can be sought: Any functions from these classes that enter into the convolution
provide a result in S∗.

No assumptions are needed for existence of convolution and full generality of
identification conditions in models 1,2 where the model assumptions imply that the
functions represent generalized densities. For the other models including regression
models, convolution is not always defined in S∗. Zinde-Walsh (2013) defines the
concept of convolution pairs of classes of functions in S∗ where convolution can be
applied.

To solve the convolution equations, a Fourier transform is usually employed; thus,
for example, one transforms generalized density functions into characteristic func-
tions. Fourier transform is an isomorphism of the space S∗. The Fourier transform
of a generalized function a ∈ S∗, Ft(a), is defined as follows. For any ψ ∈ S, as usual
Ft(ψ)(s) = ∫

ψ(x)eisx dx; then the functional Ft(a) is defined by

(Ft(a),ψ) ≡ (a, Ft(ψ)).

The advantage of applying Fourier transform is that integral convolution equations
transform into algebraic equations when the “exchange formula” applies:

a∗b = c ⇐⇒ Ft(a) · Ft(b) = Ft(c). (4.4)

In the space of generalized functions S∗, the Fourier transform and inverse Fourier
transform always exist. As shown in Zinde-Walsh (2013), there is a dichotomy between
convolution pairs of subspaces in S∗ and the corresponding product pairs of subspaces
of their Fourier transforms.

The classical pairs of spaces (Schwartz, 1966) are the convolution pair
(
S∗, O∗

C

)
and

the corresponding product pair (S∗, OM ) , where O∗
C is the subspace of S∗ that con-

tains rapidly decreasing (faster than any polynomial) generalized functions and OM is
the space of infinitely differentiable functions with every derivative growing no faster
than a polynomial at infinity. These pairs are important in that no restriction is placed
on one of the generalized functions that could be any element of space S∗; the other
belongs to a space that needs to be correspondingly restricted. A disadvantage of the
classical pairs is that the restriction is fairly severe; for example, the requirement that
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a characteristic function be in OM implies existence of all moments for the random
variable. Relaxing this restriction would require placing constraints on the other space
in the pair; Zinde-Walsh (2013) introduces some pairs that incorporate such tradeoffs.

In some models the product of a function with a component of the vector of argu-
ments is involved, such as d(x) = xka(x); then for Fourier transforms Ft(d) (s) =
−i ∂

∂sk
Ft(a)(s); the multiplication by a variable is transformed into (−i) times the cor-

responding partial derivative. Since the differentiation operators are continuous in S∗,
this transformation does not present a problem.

Assumption 4.2. The functions a ∈ A, b ∈ B, are such that (A, B) form a convolution pair
in S∗.

Equivalently, Ft(a), Ft(b) are in the corresponding product pair of spaces.
Assumption 4.2 is applied to model 1 for a = fx∗ , b = fu; to model 2 with a = fz , b = fu;

to model 3 with a = fx∗ , b = fu and with a = hk, b = fu, for all k = 1, . . . , d; to model 4a
for a = fx∗ , or fux , or hk for all k and b = fu; to model 5 with a = fx∗ , or gfx∗ , or hkfx∗

and b = fu; to model 6 with a = fz , or g and b = fu; to model 7 with a = g or hk and
b = fu.

Assumption 4.2 is a high-level assumption that is a sufficient condition for a solution
to the models 1–4 and 6–7 to exist. Some additional conditions are needed for model
5 and are provided below.

Assumption 4.2 is automatically satisfied for generalized density functions, so is not
needed for models 1 and 2. Denote by D̄ ⊂ S∗ the subset of generalized derivatives
of distribution functions (corresponding to Borel probability measures in Rd), then
in models 1 and 2 A = B = D̄; and for the characteristic functions there are corre-
spondingly no restrictions; denote the set of all characteristic functions, Ft

(
D̄
) ⊂ S∗,

by C̄.
Below a (non-exhaustive) list of nonparametric classes of generalized functions that

provide sufficient conditions for existence of solutions to the models here is given.
The classes are such that they provide minimal or often no restrictions on one of the
functions and restrict the class of the other in order that the assumptions be satisfied.

In models 3 and 4 the functions hk are transformed into derivatives of continuous
characteristic functions. An assumption that either the characteristic function of x∗ or
the characteristic function of u be continuously differentiable is sufficient, without any
restrictions on the other to ensure that Assumption 4.2 holds. Define the subset of all
continuously differentiable characteristic functions by C̄(1).

In model 5, equations involve a product of the regression function g with fx∗ . Prod-
ucts of generalized functions in S∗ do not always exist, and so additional restrictions
are needed in that model. If g is an arbitrary element of S∗, then for the product to
exist, fx∗ should be in OM . On the other hand, if fx∗ is an arbitrary generalized density,
it is sufficient that g and hk belong to the space of d times continuously differentiable
functions with derivatives that are majorized by polynomial functions for gfx∗ , hkfx∗ to
be elements of S∗. Indeed, the value of the functional hkfx∗ for an arbitrary ψ ∈ S is
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defined by

(hkfx∗ ,ψ) = (−1)d
∫

Fx∗(x)∂(1,...,1)(hk(x)ψ(x))dx;

here F is the distribution (ordinary bounded) function and this integral exists because
ψ and all its derivatives go to zero at infinity faster than any polynomial function.
Denote by S̄B,1 the space of continuously differentiable functions g ∈ S∗ such that
the functions hk(x) = xkg(x) are also continuously differentiable with all derivatives
majorized by polynomial functions. Since the products are in S∗, then the Fourier
transforms of the products are defined in S∗. Further restrictions requiring the Fourier
transforms of the products gfx∗ and hkfx∗ to be continuously differentiable functions in
S∗ would remove any restrictions on fu for the convolution to exist. Denote the space
of all continuously differentiable functions in S∗ by S̄(1).

If g is an ordinary function that represents a regular element in S∗, the infinite
differentiability condition on fx∗ can be relaxed to simply requiring continuous first
derivatives.

In models 6 and 7, if the generalized density function for the error, fu, decreases
faster than any polynomial (all moments need to exist for that), so that fu ∈ O∗

C , then g
could be any generalized function in S∗; this will of course hold if fu has bounded sup-
port. Generally, the more moments the error is assumed to have, the fewer the number
of restrictions on the regression function g that are needed to satisfy the convolution
equations of the model and the exchange formula. Models 6 and 7 satisfy the assump-
tions for any error u when support of generalized function g is compact (as for the
“sum of peaks”); then g ∈ E∗ ⊂ S∗, where E∗ is the space of generalized functions with
compact support. More generally the functions g and all the hk could belong to the
space O∗

C of generalized functions that decrease at infinity faster than any polynomial,
and still no restrictions need to be placed on u.

Denote for any generalized density function f the corresponding characteristic
function, Ft(f·), by φ·. Denote the Fourier transform of the (generalized) regression
function g , Ft(g), by γ .

Table 4.3 summarizes some fairly general sufficient conditions on the models that
place restrictions on the functions themselves or on the characteristic functions of
distributions in the models that will ensure that Assumption 4.2 is satisfied and a solu-
tion exists. The nature of these assumptions is to provide restrictions on some of the
functions that allow the others to be completely unrestricted for the corresponding
model.

Table 4.4 states the equations and systems of equations for Fourier transforms that
follow from the convolution equations.

Assumption 4.2 (that is fulfilled, for example, by generalized functions classes of
Table 4.3) ensures existence of solutions to the convolution equations for models 1–7;
this does not exclude multiple solutions, and the next section provides a discussion of
solutions for equations in Table 4.4.
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Table 4.3 Some Nonparametric Classes of Generalized Functions for Which the
Convolution Equations of the Models are Defined in S ∗

Model Sufficient assumptions

1 No restrictions: φx∗ ∈ C̄ ;φu ∈ C̄

2 No restrictions: φx∗ ∈ C̄ ;φu ∈ C̄

Assumptions A Assumptions B

3 Any φx∗ ∈ C̄ ;φu ∈ C̄ (1) Any φu ∈ C̄ ;φx∗ ∈ C̄ (1)

4 Any φux ,φx∗ ∈ C̄ ;φu ∈ C̄ (1) Any φu ,φx∗ ∈ C̄ ;φux ∈ C̄ (1)

4a Any φux ,φx∗ ∈ C̄ ;φu ∈ C̄ (1) Any φu ,φux ∈ C̄ ;φx∗ ∈ C̄ (1)

5 Any g ∈ S∗; fx∗ ∈ OM ; fu ∈ O∗
C Any fx∗ ∈ D̄; g,hk ∈ S̄B,1; fu ∈ O∗

C

6 Any g ∈ S∗; fu ∈ O∗
C g ∈ O∗

C ; any fu: φu ∈ C̄

7 Any g ∈ S∗; fu ∈ O∗
C g ∈ O∗

C ; any fu: φu ∈ C̄

4.3.2. Classes of Solutions; Support and Multiplicity of
Solutions

Typically, support assumptions are required to restrict multiplicity of solutions; here
we examine the dependence of solutions on the support of the functions. The results
here also give conditions under which some zeros—for example, in the characteris-
tic functions—are allowed. Thus in common with, for example, Carrasco and Florens
(2010) and Evdokimov and White (2012), distributions such as the uniform or tri-
angular for which the characteristic function has isolated zeros are not excluded. The
difference here is the extension of the consideration of the solutions to S∗ and to models
such as the regression model where this approach to relaxing support assumptions was
not previously considered.

Recall that for a continuous function ψ(x) on Rd , support is closure of the set
W = supp(ψ), such that

ψ(x) =
{

a 
= 0 for x ∈ W ,
0 for x ∈ Rd\W .

The set W is an open set.
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Table 4.4 The Form of the Equations for the Fourier Transforms

Model Equations for Fourier Transforms Unknown Functions

1 φx∗φu = φz φx∗

2 φx∗ = φzφ−u φx∗

3
φx∗φu = φz ,

(φx∗)′k φu = εk ,k = 1, . . . ,d φx∗ ,φu

4
φx∗φu = φz ,

(φx∗)′k φu = εk ,k = 1, . . . ,d,
φx∗φux = φx

φx∗ ,φu ,φux

4a
φuxφu = φz−x ,(

φux
)′
k φu = εk ,k = 1, . . . ,d,
φx∗φux = φx

–"–

5
φx∗φu = φz ,

Ft(gfx∗ )φu = ε,
(Ft (gfx∗))′k φu = εk ,k = 1, . . . ,d.

φx∗ ,φu ,g

6
φx = φ−uφz ,
Ft(g)φ−u = ε

φu ,g

7
Ft(g)φu = ε,

(Ft (g))′k φu = εk ,k = 1, . . . ,d φu ,g

Notation: (·)′k denotes the kth partial derivative of the function. The functions ε are Fourier transforms
of the corresponding w , and εk = −iFt(wk ) is defined for the models in Tables 4.1 and 4.2.

Generalized functions are functionals on the space S, and support of a generalized
function b ∈ S∗ is defined as follows (Schwartz, 1966, p. 28). Denote by (b,ψ) the value
of the functional b for ψ ∈ S. Define a null set for b ∈ S∗ as the union of supports of
all functions in S for which the value of the functional is zero: �= {∪supp(ψ) , ψ ∈ S,
such that (b,ψ) = 0}. Then supp(b) = Rd\�. Note that a generalized function has
support in a closed set, for example, support of the δ-function is just one point 0.

Note that for model 2, Table 4.4 gives the solution for φx∗ directly and the inverse
Fourier transform can provide the (generalized) density function, fx∗ .

In Zinde-Walsh (2013), identification conditions in S∗ were given for models 1 and
7 under assumptions that include the ones in Table 4.3 but could also be more flexible.

The equations in Table 4.3 for models 1, 3, 4, 4a, 5, 6, and 7 are of two types,
similar to those solved in Zinde-Walsh (2013). One is a convolution with one unknown
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function; the other is a system of equations with two unknown functions, each leading
to the corresponding equations for their Fourier transforms.

4.3.2.1. Solutions to the Equation αβ = γ

Consider the equation

αβ = γ , (4.5)

with one unknown function α; β is a given continuous function. By Assumption
4.2 the nonparametric class for α is such that the equation holds in S∗ on Rd ; it
is also possible to consider a nonparametric class for α with restricted support, W̄ .
Of course without any restrictions W̄ = Rd . Recall the differentiation operator, ∂m,
for m = (m1, . . . , md) and denote by supp(β,∂) the set ∪∞

�mi=0supp(∂mβ); where
supp(∂mβ) is an open set where a continuous non-zero derivative ∂mβ exists. Any
point where β is zero belongs to this set if some finite-order partial continuous deriva-
tive of β is not zero at that point (and in some open neighborhood); for β itself
supp(β) ≡ supp(β, 0).

Define the functions

α1 = β−1γ I
(
supp(β,∂)

)
; α2(x) =

{
1 for x ∈ supp(β,∂),
α̃ for x ∈ W̄\(supp(β,∂))

(4.6)

with any α̃ in S∗ such that α1α2 ∈ Ft(A).
Consider the case when α,β, and thus γ are continuous. For any point x0 if β(x0) 
=

0, there is a neighborhood N(x0) where β 
= 0, and division by β is possible. If β(x0) has
a zero, it could only be of finite order, and in some neighborhood, N(x0) ∈ supp(∂mβ),
a representation

β = η(x)�d
i=1 (xi − x0i)

mi (4.7)

holds for some continuous function η in S∗, such that η > 0 on supp(η). Then
η−1γ in N(x0) is a nonzero continuous function; division of such a function by
�d

i=1 (xi − x0i)
mi in S∗ is defined (Schwartz, 1966, pp. 125–126), thus division by β

is defined in this neighborhood N(x0). For the set supp(β,∂) consider a covering of
every point by such neighborhoods, the possibility of division in each neighborhood
leads to the possibility of division globally on the whole supp(β,∂). Then a1 as defined
in (4.6) exists in S∗.

In the case where γ is an arbitrary generalized function, if β is infinitely differen-
tiable, then by Schwartz (1966, pp. 126–127) division by β is defined on supp(β,∂)
and the solution is given by (4.6) and is unique up to a function supported in isolated
zeros of β.
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For the cases where γ is not continuous and β is not infinitely differentiable, the
solution is provided by

α1 = β−1γ I(supp(β, 0)); α2(x) =
{

1 for x ∈ supp(β, 0),
α̃ for x ∈ W̄\(supp(β, 0))

with any α̃ such that α1α2 ∈ Ft (A) .
Theorem 2 in Zinde-Walsh (2013) implies that the solution to (4.5) is a =

Ft−1(α1α2); the sufficient condition for the solution to be unique is supp(β, 0) ⊃ W̄ ;
if additionally either γ is a continuous function or β is an infinitely continuously
differentiable function, it is sufficient for uniqueness that supp(β,∂) ⊃ W̄ .

This provides solutions for models 1 and 6, where only equations of this type appear.

4.3.2.2. Solutions to the System of Equations

For models 3, 4, 5, and 7 a system of equations of the form

αβ = γ ,

αβ ′
k = γk, k = 1, . . . , d. (4.8)

(with β continuously differentiable) arises. Theorem 3 in Zinde-Walsh (2013) pro-
vides the solution and uniqueness conditions for this system of equations. It is first
established that a set of continuous functions κk , k = 1, . . . , d, that solves the equation

κkγ − γk = 0 (4.9)

in the space S∗ exists and is unique on W = supp(γ ) as long as supp(β) ⊃ W . Then
β ′

kβ
−1 = κk and substitution into (4.9) leads to a system of first-order differential

equations in β.

Case 4.1. Continuous functions; W is an open set.

For models 3 and 4 the system (4.8) involves continuous characteristic functions;
thus W is an open set. In some cases W can be an open set under conditions of models
5 and 7—for example, if the regression function is integrable in model 7.

For this case represent the open set W as a union of (maximal) connected compo-
nents ∪vWv .

Then by the same arguments as in the proof of Theorem 3 in Zinde-Walsh (2012)
the solution can be given uniquely on W as long as at some point ζ0v ∈ (Wv ∩ W ) the
value β(ζ0ν) is known for each of the connected components. Consider then β1(ζ ) =
�ν[β (ζ0ν)exp

∫ ζ

ζ0

∑d
k=1κk(ξ )dξ ]I(Wν), where integration is along any arc within the

component that connects ζ to ζ0ν . Then α1 = β−1
1 γ , and α2,β2 are defined as above

by being 1 on ∪vWv and arbitrary outside of this set.
When β(0) = 1, as is the case for the characteristic function, the function is uniquely

determined on the connected component that includes 0.
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Evdokimov and White (2012) provide a construction that permits, in the univariate
case, to extend the solution β (ζ0ν) [exp

∫ ζ

ζ0

∑d
k=1κk(ξ )dξ ]I(Wν) from a connected

component of support where β (ζ0ν) is known (e.g., at 0 for a characteristic function)
to a contiguous connected component when on the border between the two where
β = 0, at least some finite order derivative of β is not zero. In the multivariate case this
approach can be extended to the same construction along a one-dimensional arc from
one connected component to the other. Thus identification is possible on a connected
component of supp(β,∂).

Case 4.2. W is a closed set.

Generally for models 5 and 7, W is the support of a generalized function and is a
closed set. It may intersect with several connected components of support of β. Denote
by Wv here the intersection of a connected component of support of β and W . Then
similarly β1(ζ ) =∑

ν [β(ζ0ν)exp
∫ ζ

ζ0

∑d
k=1κk(ξ )dξ ]I(Wν), where integration is along

any arc within the component that connects ζ to ζ0ν . Then α1 = β−1
1 ε, and α2,β2 are

defined as above by being 1 on ∪vWv and arbitrary outside of this set. The issue of
the value of β at some point within each connected component arises. In the case of
β being a characteristic function, if there is only one connected component, W , and
0 ∈ W the solution is unique, since then β(0) = 1.

Note that for model 5 the solution to equations of the type (4.8) would only provide
Ft(gfx∗) and φu; then from the first equation for this model in Table 4.4, φx∗ can be
obtained; it is unique if suppφx∗ = suppφz . To solve for g , find g = Ft−1(Ft(gfx∗ )) ·(
fx∗
)−1

.

4.4. Identification, Partial Identification

and Well-Posedness
.............................................................................................................................................................................

4.4.1. Identified Solutions for the Models 1–7

As follows from the discussion of the solutions, uniqueness in models 1, 2, 3, 4,
4a, 5, and 6 holds (in a few cases up to a value of a function at a point) if all the
Fourier transforms are supported over the whole Rd ; in many cases it is sufficient that
supp(β,∂) = Rd .

The classes of functions could be defined with Fourier transforms supported on
some known subset W̄ of Rd , rather than on the whole space; if all the functions
considered have W̄ as their support, and the support consists of one connected
component that includes 0 as an interior point, then identification for the solutions
holds. For Table 4.5, assume that W̄ is a single connected component with 0 as an inte-
rior point; again W̄ could coincide with supp(β,∂). For model 5 under Assumption B,
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Table 4.5 The Solutions for Identified Models on W̄

Model Solution to Equations

1 fx∗ = Ft−1(φ−1
u φz ).

2 fx∗ = Ft−1(φ−uφz ).

3 Under Assumption A

fx∗ = Ft−1(exp
∫ ζ
ζ0

d∑
k=1

κk (ξ )dξ ),

where κk solves κkφz − [(φz)′k − εk ]= 0;
fu = Ft−1(φ−1

x∗ ε).
Under Assumption B

fu = Ft−1(exp
∫ ζ
ζ0

d∑
k=1

κk (ξ )dξ );

κk solves κkφz − εk = 0;
fx∗ = Ft−1(φ−1

u ε).

4 fx∗ , fu obtained similarly to those in model 3;
φux = φ−1

x∗ φx .

4a fux , fu obtained similarly to φx∗ ,φu in model 3;
φx∗ = φ−1

ux φx .

5 Three steps:
1. (a) Get Ft(gfx∗ ),φu similarly to φx∗ ,φu in model 3
(under Assumption A use Ft(gfx∗ )(0));

2. Obtain φx∗ = φ−1
u φz ;

3. Get g = [
Ft−1 (φx∗ )

]−1 Ft−1(Ft(gfx∗ )).

6 φ−u = φ−1
z φx and g = Ft−1(φ−1

x φzε).

7 φx∗ ,Ft(g) obtained similarly to φx∗ ,φu in model 3
(under Assumption A use Ft(g)(0)).

assume additionally that the value at zero, Ft(gfx∗)(0), is known; similarly for model 7
under Assumption B, additionally assume that Ft(g)(0) is known.

4.4.2. Implications of Partial Identification

Consider the case of model 1. Essentially lack of identification, say in the case when
the error distribution has characteristic function supported on a convex domain Wu

around zero, results in the solution for φx∗ = φ1φ2; here φ1 is nonzero and unique
on Wu and thus captures the lower-frequency components of x∗ and where φ2 is a
characteristic function of a distribution with arbitrary high-frequency components.
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Transforming back to densities provides a corresponding model with independent
components

z = x∗
1 + x∗

2 + u,

where x∗
1 uniquely extracts the lower-frequency part of observed z. The more impor-

tant the contribution of x∗
1 to x∗, the less important is lack of identification.

If the feature of interest as discussed, for example, by Matzkin (2007) involves only
low-frequency components of x∗, it may still be fully identified even when the dis-
tribution for x∗ itself is not. An example of that is a deconvolution applied to an
image of a car captured by a traffic camera, although even after deconvolution the
image may still appear blurry the license plate number may be clearly visible. In non-
parametric regression the polynomial growth of the regression or the expectation of
the response function may be identifiable even if the regression function is not fully
identified.

Features that are identified include any functional, �, linear or nonlinear on a class
of functions of interest, such that in the frequency domain � is supported on Wu.

4.4.3. Well-Posedness in S∗

Conditions for well-posedness in S∗ for solutions of the equations entering in models
1–7 were established in Zinde-Walsh (2013). Well-posedness is needed to ensure that if
a sequence of functions converges (in the topology of S∗) to the known functions of the
equations characterizing the models 1–7 in Tables 4.1 and 4.2, then the corresponding
sequence of solutions will converge to the solution for the limit functions. A feature of
well-posedness in S∗ is that the solutions are considered in a class of functions that is a
bounded set in S∗.

The properties that differentiation is a continuous operation, and that the Fourier
transform is an isomorphism of the topological space S∗, make conditions for con-
vergence in this space much weaker than those in functions spaces, say, L1, L2.
Thus for density that is given by the generalized derivative of the distribution func-
tion, well-posedness holds in spaces of generalized functions by the continuity of the
differentiation operator.

For the problems here, however, well-posedness does not always obtain. The main
sufficient condition is that the inverse of the characteristic function of the measure-
ment error satisfy the condition (4.1) with b =φ−1

u on the corresponding support. This
holds if either the support is bounded or the distribution is not supersmooth. If φu has
some zeros but satisfies the identification conditions so that it has local representation
(4.7) where (4.1) is satisfied for b = η−1, well-posedness will hold.

The example in Zinde-Walsh (2013) demonstrates that well-posedness of deconvo-
lution will not hold even in the weak topology of S∗ for supersmooth (e.g., Gaussian)
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distributions on unbounded support. On the other hand, well-posedness of deconvo-
lution in S∗ obtains for ordinary smooth distributions; and thus under less restrictive
conditions than in function spaces, such as L1 or L2 usually considered.

In models 3–7 with several unknown functions, more conditions are required to
ensure that all the operations by which the solutions are obtained are continuous
in the topology of S∗. It may not be sufficient to assume (4.1) for the inverses of
unknown functions where the solution requires division; for continuity of the solution
the condition may need to apply uniformly.

Define a class of regular functions on Rd , �(m, V ) (with m a vector of integers, V a
positive constant) where b ∈ �(m, V ) if

∫
�((1 + t2

i )−1)mi |b(t)|dt < V <∞. (4.10)

Then similarly to Zinde-Walsh (2013), well-posedness can be established for model
7 as long as in addition to Assumption A or B, for some �(m, V ) both φu and
φ−1

u belong to the class �(m, V ). This condition is fulfilled by non-supersmooth
φu; this could be an ordinary smooth distribution or a mixture with some mass
point.

A convenient way of imposing well-posedness is to restrict the support of func-
tions considered to a bounded W̄ . If the features of interest are associated with
low-frequency components only, then if the functions are restricted to a bounded
space, the low-frequency part can be identified and is well-posed.

4.5. Implications for Estimation
.............................................................................................................................................................................

4.5.1. Plug-in Nonparametric Estimation

Solutions in Table 4.5 for the equations that express the unknown functions via known
functions of observables give scope for plug-in estimation. We see for example, that
the equations in models 4 and 4a are different expressions that will provide different
plug-in estimators for the same functions.

The functions of the observables here are characteristic functions and Fourier
transforms of density-weighted conditional expectations—and in some cases their
derivatives—that can be estimated by nonparametric methods. There are some direct
estimators—for example, for characteristic functions. In the space S∗ the Fourier trans-
form and inverse Fourier transform are continuous operations; thus using standard
estimators of density-weighted expectations and applying the Fourier transform would
provide consistency in S∗; the details are provided in Zinde-Walsh (2013). Then the
solutions can be expressed via those estimators by the operations from Table 4.5; and,
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as long as the problem is well-posed, the estimators will be consistent and the conver-
gence will obtain at the appropriate rate. As in An and Hu (2012), the convergence rate
may be even faster for well-posed problems in S∗ than the usual nonparametric rate in
(ordinary) function spaces. For example, as demonstrated in Zinde-Walsh (2008), ker-
nel estimators of density that may diverge if the distribution function is not absolutely
continuous are always (under the usual assumptions on kernel/bandwidth) consistent
in the weak topology of the space of generalized functions, where the density problem
is well-posed. Here, well-posedness holds for deconvolution as long as the error density
is not supersmooth.

4.5.2. Regularization in Plug-In Estimation

When well-posedness cannot be ensured, plug-in estimation will not provide consis-
tent results and some regularization is required; usually spectral cutoff is employed for
the problems considered here. In the context of these non-parametric models, regular-
ization requires extra information: the knowledge of the rate of decay of the Fourier
transform of some of the functions.

For model 1 this is not a problem since φu is assumed known; the regularization
uses the information about the decay of this characteristic function to construct a
sequence of compactly supported solutions with support increasing at a correspond-
ing rate. In S∗ no regularization is required for plug-in estimation unless the error
distribution is supersmooth. Exponential growth in φ−1

u provides a logarithmic rate
of convergence in function classes for the estimator (Fan, 1991). Below we examine
spectral cutoff regularization for the deconvolution in S∗ when the error density is
supersmooth.

With supersmooth error in S∗, define a class of generalized functions �(�, m, V ) for
some non-negative-valued function �; we have a generalized function b ∈�(�, m, V )
if there exists a function b̄(ζ ) ∈ �(m, V ) such that also b̄(ζ )−1 ∈ �(m, V ) and b =
b̄(ζ )exp (−�(ζ )). Note that a linear combination of functions in �(�, m, V ) belongs
to the same class. Define convergence: A sequence of bn ∈�(�, m, V ) converges to zero
if the corresponding sequence b̄n converges to zero in S∗.

Convergence in probability for a sequence of random functions, εn, in S∗ is defined
as follows: (εn − ε) →p 0 in S∗ if for any set ψ1, . . . ,ψv ∈ S the random vector of the
values of the functionals converges: ((εn − ε,ψ1), . . . , (εn − ε,ψv)) →p 0.

Lemma 4.2. If in model 1 φu = b ∈ �(�, m, V ), where � is a polynomial function
of order no more than k, and εn is a sequence of estimators of ε that are consistent in
S∗: rn(εn − ε) →p 0 in S∗ at some rate rn → ∞, then for any sequence of constants

B̄n: 0 < B̄n < (ln rn)
1/k and the corresponding set Bn = {

ζ : ‖ζ‖ < B̄n
}

the sequence of
regularized estimators φ−1

u (εn − ε)I(Bn) converges to zero in probability in S∗.
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Proof. For n the value of the random functional

(φ−1
u (εn − ε)I(Bn),ψ) =

∫
b̄−1(ζ )rn(εn − ε)r−1

n I(Bn)exp(�(ζ ))ψ(ζ )dζ .

Multiplication by b̄−1 ∈ �(m, V ), which corresponds to φu = b, does not affect con-
vergence; thus b̄−1(ζ )rn(εn − ε) converges to zero in probability in S∗. To show
that (φ−1

u (εn − ε)I(Bn),ψ) converges to zero, it is sufficient to show that the func-
tion r−1

n I(Bn)exp(�(ζ ))ψ(ζ ) is bounded. It is then sufficient to find Bn such that
r−1
n I(Bn)exp(�(ζ )) is bounded (by possibly a polynomial), thus it is sufficient that

sup
Bn

∣∣exp(�(ζ ))r−1
n

∣∣ be bounded. This will hold if exp(B̄k
n) < rn, B̄k

n < ln rn. �

Of course an even slower growth for spectral cutoff would result from � that grows
faster than a polynomial. The consequence of the slow growth of the support is usu-
ally a correspondingly slow rate of convergence for φ−1

u εnI(Bn). Additional conditions
(as in function spaces) are needed for the regularized estimators to converge to the
true γ .

It may be advantageous to focus on lower-frequency components and ignore the
contribution from high frequencies when the features of interest depend on the
contribution at low frequency.

4.6. Concluding Remarks
.............................................................................................................................................................................

Working in spaces of generalized functions extends the results on nonparametric
identification and well-posedness for a wide class of models. Here identification in
deconvolution is extended to generalized densities in the class of all distributions
from the usually considered classes of integrable density functions. In regression with
Berkson error, nonparametric identification in S∗ holds for functions of polynomial
growth, extending the usual results obtained in L1; a similar extension applies to
regression with measurement error and Berkson-type measurement; this allows us to
consider binary choice and polynomial regression models. Also, identification in mod-
els with a sum-of-peaks regression function that cannot be represented in function
spaces is included. Well-posedness results in S∗ also extend the results in the litera-
ture provided in function spaces; well-posedness of deconvolution holds as long as the
characteristic function of the error distribution does not go to zero at infinity too fast
(as, e.g., supersmooth), and a similar condition provides well-posedness in the other
models considered here.

Further investigation of the properties of estimators in spaces of generalized func-
tions requires (a) deriving the generalized limit process for the function being esti-
mated and (b) investigating when it can be described as a generalized Gaussian process.
A generalized Gaussian limit process holds for kernel estimator of the generalized den-
sity function (Zinde-Walsh, 2008). Determining the properties of inference based on
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the limit process for generalized random functions requires both further theoretical
development and simulations evidence.

Notes

† McGill University and CIREQ. The support of the Social Sciences and Humanities
Research Council of Canada (SSHRC) and the Fonds québecois de la recherche sur la société
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NONPARAMETRIC ADDITIVE
MODELS

........................................................................................................

joel l. horowitz

5.1. Introduction
.............................................................................................................................................................................

Much applied research in statistics, economics, and other fields is concerned with esti-
mation of a conditional mean or quantile function. Specifically, let (Y , X) be a random
pair, where Y is a scalar random variable and X is a d-dimensional random vector that
is continuously distributed. Suppose we have data consisting of the random sample
{Yi , Xi : i = 1, . . . , n}. Then the problem is to use the data to estimate the conditional
mean function g(x) ≡ E(Y |X = x) or the conditional α-quantile function Qα(x). The
latter is defined by P[Y ≤ Qα(x)|X = x] = α for some α satisfying 0 < α < 1. For
example, the conditional median function is obtained if α = 0.50.

One way to proceed is to assume that g or Qα is known up to a finite-dimensional
parameter θ , thereby obtaining a parametric model of the conditional mean or quantile
function. For example, if g is assumed to be linear, then g(x) = θ0 + θ ′

1x, where θ0 is a
scalar constant and θ1 is a vector that is conformable with x. Similarly, if Qα is assumed
to be linear, then Qα(x) = θ0 + θ ′

1x. Given a finite-dimensional parametric model, the
parameter θ can be estimated consistently by least squares in the case of conditional
mean function and by least absolute deviations in the case of the conditional median
function Q0.5. Similar methods are available for other quantiles. However, a paramet-
ric model is usually arbitrary. For example, economic theory rarely, if ever, provides
one, and a misspecified parametric model can be seriously misleading. Therefore, it is
useful to seek estimation methods that do not require assuming a parametric model for
g or Qα .

Many investigators attempt to minimize the risk of specification error by carry-
ing out a specification search. In a specification search, several different parametric
models are estimated, and conclusions are based on the one that appears to fit the
data best. However, there is no guarantee that a specification search will include the
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correct model or a good approximation to it, and there is no guarantee that the correct
model will be selected if it happens to be included in the search. Therefore, the use of
specification searches should be minimized.

The possibility of specification error can be essentially eliminated through the use
of nonparametric estimation methods. Nonparametric methods assume that g or Qα

satisfies certain smoothness conditions, but no assumptions are made about the shape
or functional form of g or Qα . See, for example, Fan and Gijbels (1996), Härdle
(1990), Pagan and Ullah (1999), Li and Racine (2007), and Horowitz (2009), among
many other references. However, the precision of a nonparametric estimator decreases
rapidly as the dimension of X increases. This is called the curse of dimensionality. As
a consequence of it, impracticably large samples are usually needed to obtain useful
estimation precision if X is multidimensional.

The curse of dimensionality can be avoided through the use of dimension-reduction
techniques. These reduce the effective dimension of the estimation problem by mak-
ing assumptions about the form of g or Qα that are stronger than those made by
fully nonparametric estimation but weaker than those made in parametric modeling.
Single-index and partially linear models (Härdle, Liang, and Gao, 2000, Horowitz,
2009) and nonparametric additive models, the subject of this chapter, are examples
of ways of doing this. These models achieve greater estimation precision than do fully
nonparametric models, and they reduce (but do not eliminate) the risk of specification
error relative to parametric models.

In a nonparametric additive model, g or Qα is assumed to have the form

g(x)
or
Qα(x)

⎫⎬⎭= μ+ f1(x1) + f2(x2) + ·· ·+ fd(xd), (5.1)

where μ is a constant, xj (j = 1, . . . , d) is the jth component of the d-dimensional
vector x, and f1, . . . , fd are functions that are assumed to be smooth but are otherwise
unknown and are estimated nonparametrically. Model (5.1) can be extended to

g(x)
or
Qα(x)

⎫⎬⎭= F[μ+ f1(x1) + f2(x2) + ·· ·+ fd(xd)], (5.2)

where F is a strictly increasing function that may be known or unknown.
It turns out that under mild smoothness conditions, the additive components

f1, . . . , fd can be estimated with the same precision that would be possible if X were
a scalar. Indeed, each additive component can be estimated as well as it could be if all
the other additive components were known. This chapter reviews methods for achiev-
ing these results. Section 5.2 describes methods for estimating model (5.1). Methods
for estimating model (5.2) with a known or unknown link function F are described in
Section 5.3. Section 5.4 discusses tests of additivity. Section 5.5 presents an empirical
example that illustrates the use of model (5.1), and Section 5.6 presents conclusions.
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Estimation of derivatives of the functions f1, . . . , fd is important in some applications.
Estimation of derivatives is not discussed in this chapter but is discussed by Severance-
Lossin and Sperlich (1999) and Yang, Sperlich, and Härdle (2003). The discussion in
this chapter is informal. Regularity conditions and proofs of results are available in the
references that are cited in the chapter. The details of the methods described here are
lengthy, so most methods are presented in outline form. Details are available in the
cited references.

5.2. Methods for Estimating Model (5.1)
.............................................................................................................................................................................

We begin with the conditional mean version of model (5.1), which can be written as

E(Y |X = x) = μ+ f1(x1) + f2(x2) + ·· ·+ fd(xd). (5.3)

The conditional quantile version of (5.1) is discussed in Section 5.2.1.
Equation (5.3) remains unchanged if a constant, say γj, is added to fj (j = 1, . . . , d)

and μ is replaced by μ −∑d
j=1γj . Therefore, a location normalization is needed to

identify μ and the additive components. Let Xj denote the jth component of the ran-
dom vector X . Depending on the method that is used to estimate the fj ’s, location
normalization consists of assuming that Efj(Xj) = 0 or that∫

fj(v) dv = 0 (5.4)

for each j = 1, . . . , d.
Stone (1985) was the first to give conditions under which the additive components

can be estimated with a one-dimensional nonparametric rate of convergence and to
propose an estimator that achieves this rate. Stone (1985) assumed that the support
of X is [0, 1]d , that the probability density function of X is bounded away from 0 on
[0, 1]d, and that Var(Y |X = x) is bounded on [0, 1]d . He proposed using least squares
to obtain spline estimators of the fj ’s under the location normalization Efj(Xj) = 0. Let

f̂j denote the resulting estimator of fj . For any function h on [0, 1], define

‖h‖2 =
∫ 1

0
h(v)2dv.

Stone (1985) showed that if each fj is p times differentiable on [0, 1], then

E(‖f̂j − fj‖2|X1, . . . , Xd) = Op[n−2p/(2p+1)]. This is the fastest possible rate of conver-

gence. However, Stone’s result does not establish pointwise convergence of f̂j to fj or

the asymptotic distribution of np/(2p+1)[f̂j(x) − fj(x)].
Since the work of Stone (1985), there have been many attempts to develop estima-

tors of the fj ’s that are pointwise consistent with the optimal rate of convergence and
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are asymptotically normally distributed. Oracle efficiency is another desirable property
of such estimators. Oracle efficiency means that the asymptotic distribution of the esti-
mator of any additive component fj is the same as it would be if the other components
were known.

Buja, Hastie, and Tibshirani (1989) and Hastie and Tibshirani (1990) proposed an
estimation method called backfitting. This method is based on the observation that

fk(xk) = E[Y −μ−
∑
j 
=k

fj(xj)|X = (x1, . . . , xd)].

If μ and the fj ’s for j 
= k were known, then fk could be estimated by applying
nonparametric regression to Y − μ−∑

j 
=k fj(Xj). Backfitting replaces the unknown
quantities by preliminary estimates. Then each additive component is estimated
by nonparametric regression, and the preliminary estimates are updated as each
additive component is estimated. In principle, this process continues until conver-
gence is achieved. Backfitting is implemented in many statistical software packages,
but theoretical investigation of the statistical properties of backfitting estimators
is difficult. This is because these estimators are outcomes of an iterative process,
not the solutions to optimization problems or systems of equations. Opsomer and
Ruppert (1997) and Opsomer (2000) investigated the properties of a version of
backfitting and found, among other things, that strong restrictions on the dis-
tribution of X are necessary to achieve results and that the estimators are not
oracle efficient. Other methods described below are oracle efficient and have addi-
tional desirable properties. Compared to these estimators, backfitting is not a desir-
able approach, despite its intuitive appeal and availability in statistical software
packages.

The first estimator of the fj ’s that was proved to be pointwise consistent and
asymptotically normally distributed was developed by Linton and Nielsen (1995) and
extended by Linton and Härdle (1996). Tjøstheim and Auestad (1994) and Newey
(1994) present similar ideas. The method is called marginal integration and is based
on the observation that under the location normalization Efj(Xj) = 0, we have
μ = E(Y ) and

fj(xj) =
∫

E(Y |X = x)p−j(x(−j))dx(−j) −μ, (5.5)

where x(−j) is the vector consisting of all components of x except xj and p−j is the
probability density function of X(−j). The constant μ is estimated consistently by the
sample analogue

μ̂ = n−1
n∑

i=1

Yi .
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To estimate, say, f1(x1), let ĝ(x1, x(−1)) be the following kernel estimator of E(Y |X1 =
x1, X(−1) = x(−1)):

ĝ(x1, x(−1)) = P̂(x1, x(−1))−1
n∑

i=1

YiK1

(
x1 − X1

i

h1

)
K2

(
x(−1) − X(−1)

i

h2

)
, (5.6)

where

P̂(x1, x(−1)) =
n∑

i=1

K1

(
x1 − X1

i

h1

)
K2

(
x(−1) − X(−1)

i

h2

)
, (5.7)

K1 is a kernel function of a scalar argument, K2 is a kernel function of a (d −
1)-dimensional argument, X (−1)

i is the ith observation of X(−1), and h1 and h2

are bandwidths. The integral on the right-hand side of (5.5) is the average of
E(Y |X1 = x1, X(−1) = x(−1)) over X(−1) and can be estimated by the sample average of
ĝ(x1, X(−1)). The resulting marginal integration estimator of f1 is

f̂1(x1) = n−1
n∑

i=1

ĝ(x1, X(−1)
i ) − μ̂.

Linton and Härdle (1996) give conditions under which n2/5[f̂1(x1) − f1(x1)] →d

N[β1,MI (x1), V1,MI(x1)] for suitable functions β1,MI and V1,MI . Similar results hold
for the marginal integration estimators of the other additive components. The most
important condition is that each additive component is at least d times continuously
differentiable. This condition implies that the marginal integration estimator has a
form of the curse of dimensionality, because maintaining an n−2/5 rate of convergence
in probability requires the smoothness of the additive components to increase as d
increases. In addition, the marginal integration estimator is not oracle efficient and
can be hard to compute.

There have been several refinements of the marginal integration estimator that
attempt to overcome these difficulties. See, for example, Linton (1997), Kim, Lin-
ton, and Hengartner (1999), and Hengartner and Sperlich (2005). Some of these
refinements overcome the curse of dimensionality, and others achieve oracle efficiency.
However, none of the refinements is both free of the curse of dimensionality and oracle
efficient.

The marginal integration estimator has a curse of dimensionality because, as can
be seen from (5.6) and (5.7), it requires full-dimensional nonparametric estimation
of E(Y |X = x) and the probability density function of X . The curse of dimensionality
can be avoided by imposing additivity at the outset of estimation, thereby avoiding the
need for full-dimensional nonparametric estimation. This cannot be done with kernel-
based estimators, such as those used in marginal integration, but it can be done easily
with series estimators. However, it is hard to establish the asymptotic distributional
properties of series estimators. Horowitz and Mammen (2004) proposed a two-step
estimation procedure that overcomes this problem. The first step of the procedure is
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series estimation of the fj ’s. This is followed by a backfitting step that turns the series
estimates into kernel estimates that are both oracle efficient and free of the curse of
dimensionality.

Horowitz and Mammen (2004) use the location normalization (5.4) and assume
that the support of X is [−1, 1]d. Let {ψk : k = 1, 2, . . .} be an orthonormal basis
for smooth functions on [−1, 1] that satisfies (5.4). The first step of the Horowitz–
Mammen (2004) procedure consists of using least squares to estimate μ and the
generalized Fourier coefficients {θjk} in the series approximation

E(Y |X = x) ≈ μ+
d∑

j=1

κ∑
k=1

θjkψk(xj), (5.8)

where κ is the length of the series approximations to the additive components. In this
approximation, fj is approximated by

fj(xj) ≈
κ∑

k=1

θjkψk(xj).

Thus, the estimators of μ and the θjk’s are given by

{μ̃, θ̃jk : j = 1, . . . , d; k = 1, . . . ,κ} = argmin
μ,θjk

n∑
i=1

⎡⎣Yi −μ−
d∑

j=1

κ∑
k=1

θjkψk(X
j
i )

⎤⎦2

,

where X
j
i is the jth component of the vector Xi . Let f̃j denote the resulting estimator of

μ and fj (j = 1, . . . , d). That is,

f̃j(xj) =
κ∑

k=1

θ̃jkψk(xj).

Now let K and h, respectively, denote a kernel function and a bandwidth. The second-
step estimator of, say, f1 is

f̂1(x1) =
[

n∑
i=1

K

(
x1 − X1

i

h

)]−1 n∑
i=1

[Yi − f̃−1(X(−1)
i )]K

(
x1 − X1

i

h

)
, (5.9)

where X(−1)
i is the vector consisting of the ith observations of all components of X

except the first and f̃−1 = f̃2 + ·· · + f̃d . In other words, f̂1 is the kernel nonparametric
regression of Y − f̃−1(X(−1)) on X1. Horowitz and Mammen (2004) give conditions
under which n2/5[f̂1(x1)− f1(x1)] →d N[β1,HM (x1), V1,HM (x1)] for suitable functions
β1,HM and V1,HM . Horowitz and Mammen (2004) also show that the second-step esti-
mator is free of the curse of dimensionality and is oracle efficient. Freedom from
the curse of dimensionality means that the fj ’s need to have only two continuous
derivatives, regardless of d. Oracle efficiency means that the asymptotic distribution of
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n2/5[f̂1(x1)−f1(x1)] is the same as it would be if the estimator f̃−1 in (5.9) were replaced
with the true (but unknown) sum of additive components, f−1. Similar results apply
to the second-step estimators of the other additive components. Thus, asymptotically,
each additive component fj can be estimated as well as it could be if the other compo-
nents were known. Intuitively, the method works because the bias due to truncating
the series approximations to the fj ’s in the first estimation step can be made negligibly
small by making κ increase at a sufficiently rapid rate as n increases. This increases the
variance of the f̃j ’s, but the variance is reduced in the second estimation step because

this step includes averaging over the f̃j ’s. Averaging reduces the variance enough to
enable the second-step estimates to have an n−2/5 rate of convergence in probability.

There is also a local linear version of the second step estimator. For estimating f1,
this consists of choosing b0 and b1 to minimize

Sn(b0, b1) = (nh)−1
n∑

i=1

[Yi − μ̃− b0 − b1(X1
i − x1) − f̃−1(X(−1)

i ]2K

(
X1

i − x1

h

)
.

Let (b̂0, b̂1) denote the resulting value of (b0, b1). The local linear second-step estimator
of f1(x1) is f̂1(x1) = b̂0. The local linear estimator is pointwise consistent, asymptot-
ically normal, oracle efficient, and free of the curse of dimensionality. However, the
mean and variance of the asymptotic distribution of the local linear estimator are dif-
ferent from those of the Nadaraya–Watson (or local constant) estimator (5.9). Fan
and Gijbels (1996) discuss the relative merits of local linear and Nadaraya–Watson
estimators.

Mammen, Linton, and Nielsen (1999) developed an asymptotically normal, oracle-
efficient estimation procedure for model (5.1) that consists of solving a certain set
of integral equations. Wang and Yang (2007) generalized the two-step method of
Horowitz and Mammen (2004) to autoregressive time-series models. Their model is

Yt = μ+ f1(X1
t ) + ·· ·+ fd(Xd

t ) + σ (X1
t , . . . , Xd

t )εt ; t = 1, 2, . . . ,

where X
j
t is the jth component of the d-vector Xt , E(εt |Xt ) = 0, and E(ε2

t |Xt ) = 1.

The explanatory variables {Xj
t : j = 1, . . . , d} may include lagged values of the dependent

variable Yt . The random vector (Xt ,εt ) is required to satisfy a strong mixing condition,
and the additive components have two derivatives. Wang and Yang (2007) propose
an estimator that is like that of Horowitz and Mammen (2004), except the first step
uses a spline basis that is not necessarily orthogonal. Wang and Yang (2007) show that
their estimator of each additive component is pointwise asymptotically normal with
an n−2/5 rate of convergence in probability. Thus, the estimator is free of the curse of
dimensionality. It is also oracle efficient. Nielsen and Sperlich (2005) and Wang and
Yang (2007) discuss computation of some of the foregoing estimators.

Song and Yang (2010) describe a different two-step procedure for obtaining ora-
cle efficient estimators with time-series data. Like Wang and Yang (2007), Song
and Yang (2010) consider a nonparametric, additive, autoregressive model in which
the covariates and random noise component satisfy a strong mixing condition.
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The first estimation step consists of using least squares to make a constant-spline
approximation to the additive components. The second step is like that of Horowitz
and Mammen (2004) and Wang and Yang (2007), except a linear spline estima-
tor replaces the kernel estimator of those papers. Most importantly, Song and
Yang (2010) obtain asymptotic uniform confidence bands for the additive com-
ponents. They also report that their two-stage spline estimator can be computed
much more rapidly than procedures that use kernel-based estimation in the sec-
ond step. Horowitz and Mammen (2004) and Wang and Yang (2007) obtained
pointwise asymptotic normality for their estimators but did not obtain uniform con-
fidence bands for the additive components. However, the estimators of Horowitz
and Mammen (2004) and Wang and Yang (2007) are, essentially, kernel estima-
tors. Therefore, these estimators are multivariate normally distributed over a grid
of points that are sufficiently far apart. It is likely that uniform confidence bands
based on the kernel-type estimators can be obtained by taking advantage of this mul-
tivariate normality and letting the spacing of the grid points decrease slowly as n
increases.

5.2.1. Estimating a Conditional Quantile Function

This section describes estimation of the conditional quantile version of (5.1). The
discussion concentrates on estimation of the conditional median function, but the
methods and results also apply to other quantiles. Model (5.1) for the conditional
median function can be estimated using series methods or backfitting, but the rates
of convergence and other asymptotic distributional properties of these estimators are
unknown. De Gooijer and Zerom (2003) proposed a marginal integration estima-
tor. Like the marginal integration estimator for a conditional mean function, the
marginal integration estimator for a conditional median or other conditional quan-
tile function is asymptotically normally distributed but suffers from the curse of
dimensionality.

Horowitz and Lee (2005) proposed a two-step estimation procedure that is similar
to that of Horowitz and Mammen (2004) for conditional mean functions. The two-
step method is oracle efficient and has no curse of dimensionality. The first step of the
method of Horowitz and Lee (2005) consists of using least absolute deviations (LAD)
to estimate μ and the θjk ’s in the series approximation (5.8). That is,

{μ̃, θ̃jk : j = 1, . . . , d; k = 1, . . . ,κ} = arg minμ,θjk

n∑
i=1

∣∣∣∣∣∣Yi −μ−
d∑

j=1

κ∑
k=1

θjkψk(X
j
i )

∣∣∣∣∣∣,
As before, f̃j denote the first-step estimator of fj . The second step of the method of
Horowitz and Lee (2005) is of a form local-linear LAD estimation that is analogous to
the second step of the method of Horowitz and Mammen (2004). For estimating f1,
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this step consists of choosing b0 and b1 to minimize

Sn(b0, b1) = (nh)−1
n∑

i=1

|Yi − μ̃− b0 − b1(X1
i − x1) − f̃−1(X(−1)

i |K
(

X1
i − x1

h

)
,

where h is a bandwidth, K is a kernel function, and f̃−1 = f̃2 + ·· · + fd . Let (b̂0, b̂1)
denote resulting value of (b0, b1). The estimator of f1(x1) is f̂1(x1) = b̂0. Thus,
the second-step estimator of any additive component is a local-linear conditional
median estimator. Horowitz and Lee (2005) give conditions under which n2/5[f̂1(x1)−
f1(x1)] →d N[β1,HL(x1), V1,HL(x1)] for suitable functions β1,HL and V1,HL. Horowitz
and Lee (2005) also show that f̂1 is free of the curse of dimensionality and is oracle
efficient. Similar results apply to the estimators of the other fj ’s.

5.3. Methods for Estimating Model (5.2)
.............................................................................................................................................................................

This section describes methods for estimating model (5.2) when the link function F is
not the identity function. Among other applications, this permits extension of methods
for nonparametric additive modeling to settings in which Y is binary. For example, an
additive binary probit model is obtained by setting

P(Y = 1|X = x) =�[μ+ f1(x1) + ·· ·+ fd(Xd)], (5.10)

where � is the standard normal distribution function. In this case, the link function
is F = �. A binary logit model is obtained by replacing � in (5.10) with the logistic
distribution function.

Section 5.3.1 treats the case in which F is known. Section 5.3.2 treats bandwidth
selection for one of the methods discussed in Section 5.3.1. Section 5.3.3 discusses
estimation when F is unknown.

5.3.1. Estimation with a Known Link Function

In this section, it is assumed that the link function F is known. A necessary condi-
tion for point identification of μ and the fj ’s is that F is strictly monotonic. Given this
requirement, it can be assumed without loss of generality that F is strictly increasing.
Consequently, F−1[Qα(x)] is the α conditional quantile of F−1(Y ) and has a non-
parametric additive form. Therefore, quantile estimation of the additive components
of model (5.2) can be carried out by applying the methods of Section 5.2.1 to F−1(Y ).
Accordingly, the remainder of this section is concerned with estimating the conditional
mean version of model (5.2).
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Linton and Härdle (1996) describe a marginal integration estimator of the additive
components in model (5.2). As in the case of model (5.1), the marginal integration esti-
mator has a curse of dimensionality and is not oracle efficient. The two-step method
of Horowitz and Mammen (2004) is also applicable to model (5.2). When F has a
Lipschitz continuous second derivative and the additive components are twice contin-
uously differentiable, it yields asymptotically normal, oracle efficient estimators of the
additive components. The estimators have an n−2/5 rate of convergence in probability
and no curse of dimensionality.

The first step of the method of Horowitz and Mammen (2004) is nonlinear least
squares estimation of truncated series approximations to the additive components.
That is, the generalized Fourier coefficients of the approximations are estimated by
solving

{μ̃, θ̃jk : j = 1, . . . , d; k = 1, . . . ,κ}

= argminμ,θjk

n∑
i=1

⎧⎨⎩Yi − F

⎡⎣μ+
d∑

j=1

κ∑
k=1

θjkψk(xj)

⎤⎦⎫⎬⎭
2

.

Now set

f̃j(xj) =
κ∑

k=1

θ̃jkψk(xj).

A second-step estimator of f1(x1), say, can be obtained by setting

˜̃f1(x1) = arg minb

n∑
i=1

⎧⎨⎩Yi − F

⎡⎣μ̃+ b +
d∑

j=2

f̃j(X
j
i )

⎤⎦⎫⎬⎭
2

K

(
x1 − X1

i

h

)
,

where, as before, K is a kernel function and h is a bandwidth. However, this requires
solving a difficult nonlinear optimization problem. An asymptotically equivalent esti-

mator can be obtained by taking one Newton step from b0 = f̃1(x1) toward ˜̃f1(x1). To
do this, define

S′
n1(x1, f ) = −2

n∑
i=1

{
Yi − F[μ+ f1(x1) + f2(X2

i ) + ·· ·+ fd(Xd
i )]

}
× F ′[μ+ f1(x1) + f2(X2

i ) + ·· ·+ fd(Xd
i )]K

(
x1−X1

i
h

)
and

S′′
n1(x1, f ) = 2

n∑
i=1

F ′[μ+ f1(x1) + f2(X2
i ) + ·· ·+ fd(Xd

i )]2K

(
x1−X1

i
h

)
−2

n∑
i=1

{Yi − F[μ+ f1(x1) + f2(X2
i ) + ·· ·+ fd(Xd

i )]}

× F ′′[μ+ f1(x1) + f2(X2
i ) + ·· ·+ fd(Xd

i )]K

(
x1−X1

i
h

)
.
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The second-step estimator is

f̂1(x1) = f̃1(x1) − S′
n1(x1 f̃ )/S′′

n1(x1, f̃ ).

Horowitz and Mammen (2004) also describe a local-linear version of this estimator.
Liu, Yang, and Härdle (2011) describe a two-step estimation method for model (5.2)

that is analogous to the method of Wang and Yang (2007) but uses a local pseudo-
log-likelihood objective function based on the exponential family at each estimation
stage instead of a local least squares objective function. As in Wang and Yang (2007),
the method of Liu, Yang, and Härdle (2011) applies to an autoregressive model in
which the covariates and random noise satisfy a strong mixing condition. Yu, Park,
and Mammen (2008) proposed an estimation method for model (5.2) that is based
on numerically solving a system of nonlinear integral equations. The method is more
complicated than that of Horowitz and Mammen (2004), but the results of Monte
Carlo experiments suggest that the estimator of Yu, Park, and Mammen (2008) has
better finite-sample properties than that of Horowitz and Mammen (2004), especially
when the covariates are highly correlated.

5.3.2. Bandwidth Selection for the Two-Step Estimator of
Horowitz and Mammen (2004)

This section describes a penalized least squares (PLS) method for choosing the band-
width h in the second step of the procedure of Horowitz and Mammen (2004). The
method is described here for the local-linear version of the method, but similar results
apply to the local constant version. The method described in this section can be used
with model (5.1) by setting F equal to the identity function.

The PLS method simultaneously estimates the bandwidths for second-step estima-
tion of all the additive components fj (j = 1, . . . , d). Let hj = Cjn−1/5 be the bandwidth

for f̂j . The PLS method selects the Cj ’s that minimize an estimate of the average squared
error (ASE):

ASE(h̄) = n−1
n∑

i=1

{F[μ̃+ f̂ (Xi)] − F[μ+ f (Xi)]}2,

where f̂ = f̂1 + ·· · + f̂d and h̄ = (C1n−1/5, . . . , Cdn−1/5). Specifically, the PLS method
selects the Cj ’s to

minimizeC1,...,Cd : PLS(h̄) = n−1
n∑

i=1
[Yi − F[μ̃+ f̂ (Xi)]2 + 2K(0)n−1

×
n∑

i=1
{F ′[μ̃+ f̂ (Xi)]2V̂ (Xi)}

d∑
j=1

[n4/5CjD̂j(X
j
i )]−1,

(5.11)
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where the Cj ’s are restricted to a compact, positive interval that excludes 0,

Dj(xj) = (nhj)
−1

n∑
i=1

K

(
X

j
i − xj

hj

)
F ′[μ̃+ f̂ (Xi)]2

and

V̂ (x) =
[

n∑
i=1

K

(
X1

i −x1

h1

)
. . . K

(
Xd

i −xd

hd

)]−1

×
n∑

i=1
K

(
X1

i −x1

h1

)
. . . K

(
Xd

i −xd

hd

)
{Yi − F[μ̃+ f̂ (Xi)]2.

The bandwidths for V̂ may be different from those used for f̂ , because V̂ is a
full-dimensional nonparametric estimator. Horowitz and Mammen (2004) present
arguments showing that the solution to (5.11) estimates the bandwidths that mini-
mize ASE.

5.3.3. Estimation with an Unknown Link Function

This section is concerned with estimating model (5.2) when the link function F is
unknown. When F is unknown, model (5.2) contains semiparametric single-index
models as a special case. This is important, because semiparametric single-index mod-
els and nonparametric additive models with known link functions are non-nested. In
a semiparametric single-index model, E(Y |X = x) = G(θ ′x) for some unknown func-
tion G and parameter vector θ . This model coincides with the nonparametric additive
model with link function F only if the additive components are linear and F = G. An
applied researcher must choose between the two models and may obtain highly mis-
leading results if an incorrect choice is made. A nonparametric additive model with an
unknown link function makes this choice unnecessary, because the model nests semi-
parametric single index models and nonparametric additive models with known link
functions. A nonparametric additive model with an unknown link function also nests
the multiplicative specification

E(Y |X = x) = F[f1(x1)f2(x2) . . . fd(xd)].

A further attraction of model (5.2) with an unknown link function is that it provides an
informal, graphical method for checking the additive and single-index specifications.
One can plot the estimates of F and the fj ’s. Approximate linearity of the estimate
of F favors the additive specification (5.1), whereas approximate linearity of the fj ’s
favors the single-index specification. Linearity of F and the fj ’s favors the linear model
E(Y |X) = θ ′X .
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Identification of the fj ’s in model (5.2) requires more normalizations and restrictions
when F is unknown than when F is known. First, observe that μ is not identified when
f is unknown, because F[μ+ f1(x1) + ·· ·+ fd(xd)] = F∗[f1(x1) + ·· ·+ fd(xd)], where
the function F∗ is defined by F∗(v) = F(μ + v) for any real v. Therefore, we can set
μ = 0 without loss of generality. Similarly, a location normalization is needed because
model (5.2) remains unchanged if each fj is replaced by fj + γj , where γj is a constant,
and F(v) is replaced by F∗(ν) = F(ν−γ1 −·· ·−γd). In addition, a scale normalization
is needed because model (5.2) is unchanged if each fj is replaced by cfj for any constant
c 
= 0 and F(v) is replaced by F∗(ν) = F(ν/c). Under the additional assumption that F
is monotonic, model (5.2) with F unknown is identified if at least two additive com-
ponents are not constant. To see why this assumption is necessary, suppose that only f1
is not constant. Then conditional mean function is of the form F[f1(x1) + constant].
It is clear that this function does not identify F and f1. The methods presented in this
discussion use a slightly stronger assumption for identification. We assume that the
derivatives of two additive components are bounded away from 0. The indices j and
k of these components do not need to be known. It can be assumed without loss of
generality that j = d and k = d − 1.

Under the foregoing identifying assumptions, oracle-efficient, pointwise asymptot-
ically normal estimators of the fj ’s can be obtained by replacing F in the procedure
of Horowitz and Mammen (2004) for model (5.2) with a kernel estimator. As in the
case of model (5.2) with F known, estimation takes place in two steps. In the first step,
a modified version of Ichimura’s (1993) estimator for a semiparametric single-index
model is used to obtain a series approximation to each fj and a kernel estimator of F.
The first-step procedure imposes the additive structure of model (5.2), thereby avoid-
ing the curse of dimensionality. The first-step estimates are inputs to the second step.
The second-step estimator of, say, f1 is obtained by taking one Newton step from the
first-step estimate toward a local nonlinear least squares estimate. In large samples,
the second-step estimator has a structure similar to that of a kernel nonparametric
regression estimator, so deriving its pointwise rate of convergence and asymptotic dis-
tribution is relatively easy. The details of the two-step procedure are lengthy. They
are presented in Horowitz and Mammen (2011). The oracle-efficiency property of the
two-step estimator implies that asymptotically, there is no penalty for not knowing F
in a nonparametric additive model. Each fj can be estimated as well as it would be if F
and the other fj ’s were known.

Horowitz and Mammen (2007) present a penalized least squares (PLS) estimation
procedure that applies to model (5.2) with an unknown F and also applies to a larger
class of models that includes quantile regressions and neural networks. The procedure
uses the location and scale normalizations μ = 0, (5.4), and

d∑
j=1

∫
f 2
j (v) dv = 1. (5.12)
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The PLS estimator of Horowitz and Mammen (2007) chooses the estimators of F and
the additive components to solve

minimizeF̆,f̆1,...,f̆d
:

1

n

n∑
i=1

{Yi − F̆[f̆1(X1
i ) + ·· ·+f̆d(Xd

i )]}+λ2
nJ(F̆ , f̆1, . . . , f̆d)

subject to: (5.4) and (5.12), (5.13)

where {λn} is a sequence of constants and J is a penalty term that penalizes roughness
of the estimated functions. If F and the fj ’s are k times differentiable, the penalty term is

J(F̆ , f̆1, . . . , f̆d) = Jν1
1 (F̆ , f̆1, . . . , f̆d) + Jν2

2 (F̆ , f̆1, . . . , f̆d),

where ν1 and ν2 are constants satisfying ν2 ≥ ν1 > 0,

J1(F̆ , f̆1, . . . , f̆d) = Tk(F̆)

⎧⎨⎩
d∑

j=1

[T2
1 (f̆j) + T2

k (f̆j)]

⎫⎬⎭
(2k−1)/4

,

J2(F̆ , f̆1, . . . , f̆d) = T1(F̆)

⎧⎨⎩
d∑

j=1

[T2
1 (f̆j) + T2

k (f̆j)]

⎫⎬⎭
1/4

,

and

T2
	 (f ) =

∫
f (	)(v)2dv

for 0 ≤ 	 ≤ k and any function f whose 	th derivative is square integrable. The PLS
estimator can be computed by approximating F̆ and the f̆j ’s by B-splines and mini-
mizing (5.13) over the coefficients of the spline approximation. Denote the estimator
by F̂, f̂1, . . . , f̂d . Assume without loss of generality that the X is supported on [0, 1]d .
Horowitz and Mammen (2007) give conditions under which the following result holds:∫ 1

0
[f̂j(v) − fj(v)]2dv = Op(n−2k/(2k+1))

for each j = 1, . . . , d and

∫ ⎧⎨⎩F̂

⎡⎣ d∑
j=1

fj(xj)

⎤⎦− F

⎡⎣ d∑
j=1

fj(xj)

⎤⎦⎫⎬⎭
2

dx1 . . . dxd = Op(n−2k/(2k+1)).

In other words, the integrated squared errors of the PLS estimates of the link function
and additive components converge in probability to 0 at the fastest possible rate under
the assumptions. There is no curse of dimensionality. The available results do not pro-
vide an asymptotic distribution for the PLS estimator. Therefore, it is not yet possible
to carry out statistical inference with this estimator.
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5.4. Tests of Additivity
.............................................................................................................................................................................

Models (5.1) and (5.2) are misspecified and can give misleading results if the condi-
tional mean or quantile of Y is not additive. Therefore, it is useful to be able to test
additivity. Several tests of additivity have been proposed for models of conditional
mean functions. These tests undoubtedly can be modified for use with conditional
quantile functions, but this modification has not yet been carried out. Accordingly, the
remainder of this section is concerned with testing additivity in the conditional mean
versions of models (5.1) and (5.2). Bearing in mind that model (5.1) can be obtained
from model (5.2) by letting F be the identity function, the null hypothesis to be tested is

H0 : E(Y |X = x) = F[μ+ f1(x1) + ·· ·+ fd(xd)].

The alternative hypothesis is

H1 : E(Y |X = x) = F[μ+ f (x)],

where there are no functions f1, . . . , fd such that

P[f (X) = f1(X1) + ·· ·+ fd(Xd)] = 1.

Gozalo and Linton (2001) have proposed a general class of tests. Their tests are appli-
cable regardless of whether F is the identity function. Wang and Carriere (2011) and
Dette and von Lieres und Wilkau (2001) proposed similar tests for the case of an
identity link function. These tests are based on comparing fully a fully nonparamet-
ric estimator of f with an estimator that imposes additivity. Eubank, Hart, Simpson,
and Stefanski (1995) also proposed tests for the case in which F is the identity function.
These tests look for interactions among the components of X and are based on Tukey’s
(1949) test for additivity in analysis of variance. Sperlich, Tjøstheim, and Yang (2002)
also proposed a test for the presence of interactions among components of X . Other
tests have been proposed by Abramovich, De Fesis, and Sapatinas (2009) and Derbort,
Dette, and Munk (2002).

The remainder of this section outlines a test that Gozalo and Linton (2001) found
through Monte Carlo simulation to have satisfactory finite sample performance. The
test statistic has the form

τ̂n =
n∑

i=1

{F−1[f̂ (Xi)] − [μ̂+ f̂1(X1
i ) + ·· ·+ fd(Xd

i )]}2π(Xi),

where f̂ (x) is a full-dimensional nonparametric estimator of E(Y |X = x), μ̂ and the
f̂j ’s are estimators of μ and fj under H0, and π is a weight function. Gozalo and Lin-

ton (2001) use a Nadaraya–Watson kernel estimator for f̂ and a marginal integration
estimator for μ̂ and the f̂j ’s. Dette and von Lieres und Wilkau (2001) also use these
marginal integration estimators in their version of the test. However, other estimators
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can be used. Doing so might increase the power of the test or enable some of the
regularity conditions of Gozalo and Linton (2001) to be relaxed. In addition, it is
clear that τ̂n can be applied to conditional quantile models, though the details of the
statistic’s asymptotic distribution would be different from those with conditional mean
models. If F is unknown, then F−1[f (x)] is not identified, but a test of additivity can
be based on the following modified version of τ̂n:

τ̂n =
n∑

i=1

{f̂ (Xi) − F̂[μ̂+ f̂1(X1
i ) + ·· ·+ fd(Xd

i )]}2π(Xi),

where f̂ is a full-dimensional nonparametric estimator of the conditional mean func-
tion, F̂ is a nonparametric estimator of F, and the f̂j ’s are estimators of the additive
components.

Gozalo and Linton (2001) give conditions under which a centered, scaled version of
τ̂n is asymptotically normally distributed as N(0, 1). Dette and von Lieres und Wilkau
(2001) provide similar results for the case in which F is the identity function. Gozalo
and Linton (2001) and Dette and von Lieres und Wilkau (2001) also provide formulae
for estimating the centering and scaling parameters. Simulation results reported by
Gozalo and Linton (2001) indicate that using the wild bootstrap to find critical values
produces smaller errors in rejection probabilities under H0 than using critical values
based on the asymptotic normal distribution. Dette and von Lieres und Wilkau (2001)
also used the wild bootstrap to estimate critical values.

5.5. An Empirical Application
.............................................................................................................................................................................

This section illustrates the application of the estimator of Horowitz and Mammen
(2004) by using it to estimate a model of the rate of growth of gross domestic product
(GDP) among countries. The model is

G = fT (T) + fS(S) + U,

where G is the average annual percentage rate of growth of a country’s GDP from
1960 to 1965, T is the average share of trade in the country’s economy from 1960 to
1965 measured as exports plus imports divided by GDP, and S is the average number
of years of schooling of adult residents of the country in 1960. U is an unobserved
random variable satisfying E(U |T , S) = 0. The functions fT and fS are unknown and
are estimated by the method of Horowitz and Mammen (2004). The data are taken
from the data set Growth in Stock and Watson (2011). They comprise values of G, T ,
and S for 60 countries.

Estimation was carried out using a cubic B-spline basis in the first step. The sec-
ond step consisted of Nadaraya–Watson (local constant) kernel estimation with the
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figure 5.1 Additive component fT in the growth model.
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figure 5.2 Additive component fS in the growth model.

biweight kernel. Bandwidths of 0.5 and 0.8 were used for estimating fT and fS,
respectively.

The estimation results are shown in Figures 5.1 and 5.2. The estimates of fT and
fS are nonlinear and differently shaped. The dip in fS near S = 7 is almost certainly
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an artifact of random sampling errors. The estimated additive components are not
well-approximated by simple parametric functions such as quadratic or cubic func-
tions. A lengthy specification search might be needed to find a parametric model that
produces shapes like those in Figures 5.1 and 5.2. If such a search were successful, the
resulting parametric models might provide useful compact representations of fT and
fS but could not be used for valid inference.

5.6. Conclusions
.............................................................................................................................................................................

Nonparametric additive modeling with a link function that may or may not be known
is an attractive way to achieve dimension reduction in nonparametric models. It greatly
eases the restrictions of parametric modeling without suffering from the lack of preci-
sion that the curse of dimensionality imposes on fully nonparametric modeling. This
chapter has reviewed a variety of methods for estimating nonparametric additive mod-
els. An empirical example has illustrated the usefulness of the nonparametric additive
approach. Several issues about the approach remain unresolved. One of these is to
find ways to carry out inference about additive components based on the estimation
method of Horowitz and Mammen (2007) that is described in Section 5.3.3. This is
the most general and flexible method that has been developed to date. Another issue
is the extension of the tests of additivity described in Section 5.5 to estimators other
than partial integration and models of conditional quantiles. Finally, finding data-
based methods for choosing tuning parameters for the various estimation and testing
procedures remains an open issue.
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ORACALLY EFFICIENT TWO-STEP
ESTIMATION FOR ADDITIVE

REGRESSION
........................................................................................................

shujie ma and lijian yang

6.1. Introduction and Overview of

Additive Regression
.............................................................................................................................................................................

Linear regression is one of the most widely used technique for studying the rela-
tionship between a scalar variable Y and a vector of independent variables X =
(X1, . . . , Xd)T. Given a data set (Yi, XT

i )T of n subjects or experimental units, where
Xi = (Xi1, . . . , Xid)T, a linear model has the form

Yi = β0 +β1Xi1 + ·· ·+βdXid + εi , i = 1, . . . , n, (6.1)

where εi is an unobserved random variable that adds noise to this relationship. Lin-
ear regression has gained its popularity because of its simplicity and easy-to-interpret
nature, but it has suffered from inflexibility in modeling possible complicated relation-
ships between Y and X. To avoid the strong linearity assumption and capture possible
nonlinear relationships, nonparametric models were proposed and have gained much
attention in the last three decades. In nonparametric models, the response Y depends
on the explanatory variables X through a nonlinear function m( · ) such that

Yi = m (Xi)+ εi, i = 1, . . . , n. (6.2)

The functional form of m( · ) is not predetermined, which is estimated from the data,
so that we can let the data speak for themselves. Under smoothness condition, the
unknown function can be estimated nonparametrically by such methods as kernel and
spline smoothing.
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Nonparametric modeling imposes no specific model structure and enables one to
explore the data more flexibly, but it does not perform well when the dimension of
the predictor vector in the model is high. The variances of the resulting estimates tend
to be unacceptably large due to the sparseness of data, which is the so-called “curse
of dimensionality.” To overcome these difficulties, Stone (1985a) proposed additive
models. In model (6.2), the unknown function m( · ) is replaced by sum of univariate
functions, so an additive model is given as

Yi = m (Xi1, . . . , Xid)+ σ (Xi1, . . . , Xid)εi , m (x1, . . . , xd)= c +
d∑

α=1

mα(xα) , (6.3)

where m and σ are the mean and standard deviation of the response Yi conditional on
the predictor vector Xi , and each εi is white noise conditional on Xi. By definition of
conditional mean and variance, we have

m (Xi) = E (Yi |Xi ) ,σ 2 (Xi) = var(Yi |Xi ) , i = 1, . . . , n

and so the error term εi = {Yi − m(Xi)}σ−1(Xi) accommodates the most general
form of heteroskedasticity, because we do not assume independence of εi and Xi

but only E(εi|Xi) ≡ 0, E(ε2
i |Xi) ≡ 1. For identifiability, it is commonly assumed that

Emα(Xiα) ≡ 0, α = 1, . . . , d. Some other restrictions can also solve the identifiability
problem such as by letting mα(0) = 0, for α = 1, . . . , d. Because the unknown func-
tions mα( ·), 1 ≤ α ≤ d, are one-dimensional, the problem associated with the so-called
“curse of dimensionality” is solved.

In model (6.3), each predictor Xα , 1 ≤ α ≤ d, is required to be a continuous variable.
In order to incorporate discrete variables, different forms of semiparametric models
have been proposed, including partially linear additive models (PLAM) given as

Yi = m(Xi, Ti)+ σ(Xi, Ti)εi , m(x, t) = c00 +
∑d1

l=1
c0l tl +

∑d2

α=1
mα(xα) (6.4)

in which the sequence {Yi, XT
i , TT

i }n
i=1 = {Yi , Xi1, . . . , Xid2 , Ti1, . . .Tid1}n

i=1. For identifia-
bility, we let both the additive and linear components be centered, that is, Emα(Xiα) ≡
0, α = 1, . . . , d2, ETil = 0, l = 1, . . . , d1. Model (6.4) is more parsimonious and easier to
interpret than purely additive models (6.3) by allowing a subset of predictors (Til)

d1
l=0

to be discrete, and it is more flexible than linear models (6.1) by allowing nonlinear
relationships. To allow the coefficients of the linear predictors to change with some
other variable, Xue and Yang (2006a,b) and Yang et al. (2006) proposed an additive
coefficient model (ACM) that allows a response variable Y to depend linearly on some
regressors, with coefficients as smooth additive functions of other predictors, called
tuning variables. Specifically,

Yi =
∑d1

l=1
ml (Xi)Til , ml (Xi) = m0l +

∑d2

α=1
mαl(Xiα) , 1 ≤ l ≤ d1, (6.5)
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in which the predictor vector (XT
i , TT

i )T consists of the tuning variables Xi =
(Xi1, . . . , Xid2 )T and linear predictors Ti = (Ti1, . . . , Tid1)T .

Model (6.5)’s versatility for econometric applications is illustrated by the follow-
ing example: Consider the forecasting of the U.S. GDP annual growth rate, which
is modeled as the total factor productivity (TFP) growth rate plus a linear function
of the capital growth rate and the labor growth rate, according to the classic Cobb–
Douglas model (Cobb and Douglas, 1928). As pointed out in Li and Racine (2007,
p. 302), it is unrealistic to ignore the non-neutral effect of R&D spending on the TFP
growth rate and on the complementary slopes of capital and labor growth rates. Thus,
a smooth coefficient model should fit the production function better than the para-
metric Cobb–Douglas model. Indeed, Figure 6.1 (see Liu and Yang, 2010) shows that a
smooth coefficient model has much smaller rolling forecast errors than the parametric
Cobb–Douglas model, based on data from 1959 to 2002. In addition, Figure 6.2 (see
Liu and Yang, 2010) shows that the TFP growth rate is a function of R&D spending,
not a constant.

The additive model (6.3), the PLAM (6.4) and the ACM (6.5) achieve dimension
reduction through representing the multivariate function of the predictors by sum of
additive univariate functions. People have been making great efforts to develop statis-
tical tools to estimate these additive functions. In review of literature, there are four
types of kernel-based estimators: the classic backfitting estimators of Hastie and Tib-
shirani (1990) and Opsomer and Ruppert (1997); marginal integration estimators of
Fan et al. (1997), Linton and Nielsen (1995), Linton and Härdle (1996), Kim et al.
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figure 6.1 Errors of GDP forecasts for a smooth coefficient model (solid line); Cobb–Douglas
model (dashed line).
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(1999), Sperlich et al. (2002), and Yang et al. (2003) and a kernel-based method of
estimating rate to optimality of Hengartiner and Sperlich (2005); the smoothing back-
fitting estimators of Mammen et al. (1999); and the two-stage estimators, such as
one-step backfitting of the integration estimators of Linton (1997), one-step back-
fitting of the projection estimators of Horowitz et al. (2006) and one Newton step
from the nonlinear LSE estimators of Horowitz and Mammen (2004). For the spline
estimators, see Huang (1998), Stone (1985a,b), and Xue and Yang (2006b).

Satisfactory estimators of the additive functions should be (i) computationally expe-
dient, (ii) theoretically reliable, and (iii) intuitively appealing. The kernel procedures
mentioned above satisfy criterion (iii) and partly (ii) but not (i), since they are com-
putationally intensive when sample size n is large, as illustrated in the Monte Carlo
results of Xue and Yang (2006b) and Wang and Yang (2007). Kim et al. (1999) intro-
duces a computationally efficient marginal integration estimator for the component
functions in additive models, which provides a reduction in computation of order n.
Spline approaches are fast to compute, thus satisfying (i), but they do not satisfy crite-
rion (ii) because they lack limiting distribution. By combining the best features of both
kernel and spline methods, Wang and Yang (2007), Ma and Yang (2011), and Liu and
Yang (2010) proposed a “spline-backfitted kernel smoothing” (SBK) method for the
additive autoregressive model (6.3), the PLAM (6.4), and the ACM (6.5), respectively.

The SBK estimator is essentially as fast and accurate as a univariate kernel smooth-
ing, satisfying all three criteria (i)–(iii), and is oracle efficient such that it has the same
limiting distribution as the univariate function estimator by assuming that other para-
metric and nonparametric components are known. The SBK method is proposed for
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time series data, which has a geometrically α-mixing distribution. The SBK estimation
method has several advantages compared to most of the existing methods. First, as
pointed out in Sperlich et al. (2002), the estimator of Linton (1997) mixed up different
projections, making it uninterpretable if the real data generating process deviates from
additivity, while the projections in both steps of the SBK estimator are with respect
to the same measure. Second, the SBK method is computationally expedient, since
the pilot spline estimator is thousands of times faster than the pilot kernel estima-
tor in Linton (1997), as demonstrated in Table 2 of Wang and Yang (2007). Third,
the SBK estimator is shown to be as efficient as the “oracle smoother” uniformly over
any compact range, whereas Linton (1997) proved such “oracle efficiency” only at a
single point. Moreover, the regularity conditions needed by the SBK estimation proce-
dure are natural and appealing and close to being minimal. In contrast, higher order
smoothness is needed with growing dimensionality of the regressors in Linton and
Nielsen (1995). Stronger and more obscure conditions are assumed for the two-stage
estimation proposed by Horowitz and Mammen (2004).

Wang and Yang (2011) applied the SBK method to survey data. As an extension,
Song and Yang (2010) proposed a spline backfitted spline (SBS) approach in the frame-
work of additive autoregressive models. The SBS achieves the oracle efficiency as the
SBK method, and is more computationally efficient. Asymptotically simultaneous con-
fidence bands can be constructed for each functional curve by the proposed SBK and
SBS methods. In the following sections, we will discuss the SBK method with appli-
cations to the additive model (6.3), the PLAM (6.4) and the ACM (6.5), and the SBS
method for the additive model (6.3).

6.2. SBK in Additive Models
.............................................................................................................................................................................

In model (6.3), if the last d−1 component functions were known by “oracle,” one could
create {Yi1, Xi1}n

i=1 with Yi1 = Yi − c −∑d
α=2 mα(Xiα) = m1(Xi1) + σ (Xi1, . . . , Xid)εi,

from which one could compute an “oracle smoother” to estimate the only unknown
function m1(x1), thus effectively bypassing the “curse of dimensionality.” The idea
of Linton (1997) was to obtain an approximation to the unobservable variables Yi1

by substituting mα(Xiα), i = 1, . . . , n, α = 2, . . . , d, with marginal integration kernel
estimates and arguing that the error incurred by this “cheating” is of smaller magni-
tude than the rate O(n−2/5) for estimating function m1(x1) from the unobservable
data. Wang and Yang (2007) modify the procedure of Linton (1997) by substituting
mα(Xiα), i = 1, . . . , n, α = 2, . . . , d, with spline estimators; specifically, Wang and Yang
(2007) propose a two-stage estimation procedure: First they pre-estimate {mα(xα)}d

α=2
by its pilot estimator through an undersmoothed centered standard spline proce-
dure, and next they construct the pseudo-response Ŷi1 and approximate m1(x1) by
its Nadaraya–Watson estimator.
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The SBK estimator achieves its seemingly surprising success by borrowing the
strengths of both spline and kernel: Spline does a quick initial estimation of all addi-
tive components and removes them all except the one of interests; kernel smoothing
is then applied to the cleaned univariate data to estimate with asymptotic distribution.
The proposed estimators achieve uniform oracle efficiency. The two-step estimating
procedure accomplishes the well-known “reducing bias by undersmoothing” in the
first step using spline and “averaging out the variance” in the second step with kernel,
both steps taking advantage of the joint asymptotics of kernel and spline functions.

6.2.1. The SBK Estimator

In this section, we describe the spline-backfitted kernel estimation procedure. Let
{Yi , XT

i }n
i=1 = {Yi , Xi1, . . . , Xid}n

i=1 be observations from a geometrically α-mixing pro-
cess following model (6.3). We assume that the predictor Xα is distributed on a
compact interval [aα , bα],α = 1, . . . , d. Without loss of generality, we take all intervals
[aα , bα] = [0, 1],α = 1, . . . , d. Denote by ‖ϕα‖2 the theoretical L2 norm of a function
ϕα on [0, 1] , ‖ϕα‖2

2 = ∫ 1
0 ϕ2

α(xα)f (xα)dxα . We preselect an integer N = Nn ∼ n2/5 log n;
see Assumption (A6) in Wang and Yang (2007). Next, we define for any α = 1, . . . , d,
the first-order B spline function (De Boor, 2001, p. 89), or say the constant B spline
function as the indicator function IJ (xα) of the (N + 1) equally spaced subintervals of
the finite interval [0, 1] with length H = Hn = (N + 1)−1, that is,

IJ ,α (xα)=
{

1, JH ≤ xα < (J + 1)H ,
0, otherwise,

J = 0, 1, . . . , N .

Define the following centered spline basis:

bJ ,α (xα)= IJ+1,α (xα)−
∥∥IJ+1,α

∥∥
2∥∥IJ ,α

∥∥
2

IJ ,α (xα) , ∀α = 1, . . . , d, J = 1, . . . , N , (6.6)

with the standardized version given for any α = 1, . . . , d,

BJ ,α(xα)= bJ ,α (xα)∥∥bJ ,α
∥∥

2

, ∀J = 1, . . . , N .

Define next the (1+dN)-dimensional space G = G[0, 1] of additive spline functions
as the linear space spanned by {1, BJ ,α(xα),α = 1, . . . , d, J = 1, . . . , N}, while Gn ⊂ Rn is
spanned by {1, {BJ ,α(Xiα)}n

i=1,α = 1, . . . , d, J = 1, . . . , N}. As n → ∞, the dimension of
Gn becomes 1+dN with probability approaching one. The spline estimator of additive
function m(x) is the unique element m̂(x) = m̂n(x) from the space G so that the vector
{m̂(X1), . . . , m̂(Xn)}T best approximates the response vector Y. To be precise, we define

m̂ (x)= λ̂′
0 +

d∑
α=1

N∑
J=1

λ̂′
J ,αIJ ,α (xα), (6.7)
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where the coefficients (λ̂′
0, λ̂′

1,1, . . . , λ̂′
N ,d) are solutions of the least squares problem

{
λ̂′

0, λ̂′
1,1, . . . , λ̂′

N ,d

}T = argmin
RdN+1

n∑
i=1

⎧⎨⎩Yi −λ0 −
d∑

α=1

N∑
J=1

λJ ,αIJ ,α(Xiα)

⎫⎬⎭
2

.

Simple linear algebra shows that

m̂(x) = λ̂0 +
d∑

α=1

N∑
J=1

λ̂J ,αBJ ,α(xα) , (6.8)

where (λ̂0, λ̂1,1, . . . , λ̂N ,d) are solutions of the following least squares problem

{
λ̂0, λ̂1,1, . . . , λ̂N ,d

}T = argmin
RdN+1

n∑
i=1

⎧⎨⎩Yi −λ0 −
d∑

α=1

N∑
J=1

λJ ,αBJ ,α(Xiα)

⎫⎬⎭
2

, (6.9)

while (6.7) is used for data analytic implementation, the mathematically equivalent
expression (6.8) is convenient for asymptotic analysis.

The pilot estimators of the component functions and the constant are

m̂α(xα)=
N∑

J=1

λ̂J ,αBJ ,α(xα)− n−1
n∑

i=1

N∑
J=1

λ̂J ,αBJ ,α(Xiα) ,

m̂c = λ̂0 + n−1
d∑

α=1

n∑
i=1

N∑
J=1

λ̂J ,αBJ ,α(Xiα). (6.10)

These pilot estimators are then used to define new pseudo-responses Ŷi1, which are
estimates of the unobservable “oracle” responses Yi1. Specifically,

Ŷi1 = Yi − ĉ −
d∑

α=2

m̂α(Xiα) , Yi1 = Yi − c −
d∑

α=2

mα(Xiα), (6.11)

where ĉ = Y n = n−1∑n
i=1 Yi, which is a

√
n-consistent estimator of c by the Central

Limit Theorem. Next, we define the spline-backfitted kernel (SBK) estimator of m1(x1)
as m̂SBK,1(x1) based on {Ŷi1, Xi1}n

i=1, which attempts to mimic the would-be Nadaraya–
Watson estimator m̃K,1(x1) of m1(x1) based on {Yi1, Xi1}n

i=1 if the unobservable
“oracle” responses {Yi1}n

i=1 were available:

m̂SBK,1(x1)=
∑n

i=1 Kh(Xi1 − x1) Ŷi1∑n
i=1 Kh(Xi1 − x1)

,

m̃K,1(x1)=
∑n

i=1 Kh(Xi1 − x1)Yi1∑n
i=1 Kh(Xi1 − x1)

, (6.12)
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where Ŷi1 and Yi1 are defined in (6.11). Similarly, the spline-backfitted local linear
(SBLL) estimator m̂SBLL,1(x1) based on {Ŷi1, Xi1}n

i=1 mimics the would-be local linear
estimator m̃LL,1(x1) based on {Yi1, Xi1}n

i=1:

{
m̂SBLL,1(x1), m̃LL,1(x1)

}= (1, 0)
(

ZT WZ
)−1

ZT W
(

Ŷ1, Y1

)
, (6.13)

in which the oracle and pseudo-response vectors are Y1 = (Y11,...,Yn1)T , Ŷ1 =
(Ŷ11,...,Ŷn1)T , and the weight and design matrices are

W = diag{Kh (Xi1 − x1)}n
i=1 , ZT =

(
1 · · · 1

X11 − x1 · · · Xn1 − x1

)
.

The asymptotic properties of the smoothers m̃K,1(x1) and m̃LL,1(x1) are well-
developed. Under Assumptions (A1)–(A5) in Wang and Yang (2009), according to
Theorem 4.2.1 of Härdle (1990), one has the following for any x1 ∈ [h, 1 − h]:

√
nh

{
m̃K,1(x1)− m1(x1)− bK(x1)h2} D→ N

{
0, v2 (x1)

}
,

√
nh

{
m̃LL,1(x1)− m1(x1)− bLL(x1)h2} D→ N

{
0, v2 (x1)

}
,

where

bK(x1) = ∫
u2K(u)du

{
m′′

1(x1) f1 (x1)/2 + m′
1(x1) f ′

1(x1)
}

f −1
1 (x1) ,

bLL(x1) = ∫
u2K(u)du

{
m′′

1(x1)/2
}

v2(x1) = ∫
K2(u)duE

[
σ 2(X1, . . . , Xd) |X1 = x1

]
f −1
1 (x1) .

(6.14)

The equation for m̃K,1(x1) requires additional Assumption (A7) in Wang and Yang
(2009). The next two theorems state that the asymptotic magnitude of difference
between m̂SBK,1(x1) and m̃K,1(x1) is of order op(n−2/5), both pointwise and uniformly,
which is dominated by the asymptotic size of m̃K,1(x1)−m1(x1). Hence m̂SBK,1(x1) will
have the same asymptotic distribution as m̃K,1(x1). The same is true for m̂SBLL,1(x1)
and m̃LL,1(x1).

Theorem 6.1. Under Assumptions (A1)–(A6) in Wang and Yang (2009), the estimators
m̂SBK,1(x1) and m̂SBLL,1(x1) given in (6.12) and (6.13) satisfy∣∣m̂SBK,1(x1)− m̃K,1(x1)

∣∣+ ∣∣m̂SBLL,1(x1)− m̃LL,1(x1)
∣∣= op

(
n−2/5).

Hence with bK(x1), bLL(x1) and v2(x1) as defined in (6.19), for any x1 ∈ [h, 1 − h], we
obtain √

nh
{

m̂SBLL,1 (x1)− m1(x1)− bLL(x1)h2} D→ N
{

0, v2 (x1)
}

,

and with the additional Assumption (A7) in Wang and Yang (2009), we have

√
nh

{
m̂SBK,1(x1)− m1(x1)− bK(x1)h

2} D→ N
{

0, v2(x1)
}

.
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Theorem 6.2. Under Assumptions (A1)–(A6) and (A2′) in Wang and Yang (2009), the
estimators m̂SBK,1(x1) and m̂SBLL,1(x1) given in (6.12) and (6.13) satisfy

sup
x1∈[0,1]

{∣∣m̂SBK,1(x1)− m̃K,1(x1)
∣∣+ ∣∣m̂SBLL,1(x1)− m̃LL,1(x1)

∣∣}= op
(
n−2/5).

Hence for any z,

lim
n→∞P

[{
log

(
h−2)}1/2

(
sup

x1∈[h,1−h]

√
nh

v (x1)

∣∣m̂SBLL,1(x1)− m1(x1)
∣∣− dn

)
< z

]
= exp

{−2 exp(−z)
}

,

in which dn = {log (h−2)}1/2 + {log (h−2)}−1/2 log{c(K ′)(2π)−1c−1(K)}. With the
additional Assumption (A7) in Wang and Yang (2009), it is also true that

lim
n→∞P

[{
log

(
h−2)}1/2

(
sup

x1∈[h,1−h]

√
nh

v(x1)

∣∣m̂SBK,1(x1)− m1(x1)
∣∣− dn

)
< z

]
= exp

{−2 exp(−z)
}

.

For any α ∈ (0, 1), an asymptotic 100(1 −α)% confidence band for m1(x1) over interval
[h, 1 − h] is

m̂SBLL,1(x1)± v(x1)(nh)−1/2
[

dn − log−1/2(h−2) log

{
− log (1 −α)

2

}]
.

Remark 6.1. Similar estimators m̂SBK,α(xα) and m̂SBLL,α(xα) can be constructed for
mα(xα), 2 ≤ α ≤ d with same oracle properties.

6.2.2. Application to Boston Housing Data

Wang and Yang (2009) applied the proposed method to the well-known Boston hous-
ing data, which contains 506 different houses from a variety of locations in Boston
Standard Metropolitan Statistical Area in 1970. The median value and 13 sociode-
mographic statistics values of the Boston houses were first studied by Harrison and
Rubinfeld (1978) to estimate the housing price index model. Breiman and Friedman
(1985) did further analysis to deal with the multicollinearity for overfitting by using a
stepwise method. The response and explanatory variables of interest are:

MEDV: Median value of owner-occupied homes in $1000’s

RM: Average number of rooms per dwelling

TAX: Full-value property-tax rate per $10, 000

PTRATIO: Pupil–teacher ratio by town school district

LSTAT: Proportion of population that is of “lower status” in %.
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In order to ease off the trouble caused by big gaps in the domain of variables TAX
and LSTAT, logarithmic transformation is done for both variables before fitting the
model. Wang and Yang (2009) fitted an additive model as follows:

MEDV =μ+m1(RM) + m2
(
log (TAX)

) + m3(PTRATIO) + m4
(
log(LSTAT)

) + ε.

In Figure 6.3 (see Wang and Yang, 2009), the univariate function estimates and corre-
sponding confidence bands are displayed together with the “pseudo-data points” with

Confidence Level = 0.99(a) (b)
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30

20

10

Yh
at

1

0

–10

4 5 6 7 8

Confidence Level = 0.99

30

20

10

Yh
at

2

0

–10

5.5 6 6.5

log(TAX)RM

Confidence Level = 0.95

30

20

10

Yh
at

3

0

–10

14 16 18 20 22

PTRATIO

Confidence Level = 0.99

30

20

10

Yh
at

4

0

–10

0.5 1 1.5 2 2.5 3 3.5

log(LSTAT)

figure 6.3 Linearity test for the Boston housing data. Plots of null hypothesis curves of
H0: m(xα) = aα + bα · xα , α = 1,2,3,4 (solid line), linear confidence bands (upper and lower
thin lines), the linear spline estimator (dotted line), and the data (circle).



additive regression 159

pseudo-response as the backfitted response after subtracting the sum function of the
remaining three covariates. All the function estimates are represented by the dotted
lines, “data points” by circles, and confidence bands by upper and lower thin lines. The
kernel used in SBLL estimator is quartic kernel, K(u) = 15

16 (1 − u2)2 for −1 < u < 1.
The proposed confidence bands are used to test the linearity of the components. In

Figure 6.3 the straight solid lines are the least squares regression lines. The first figure
shows that the null hypothesis H0: m1(RM) = a1 +b1RM will be rejected since the con-
fidence bands with 0.99 confidence couldn’t totally cover the straight regression line;
that is, the p-value is less than 0.01. Similarly, the linearity of the component functions
for log(TAX) and log(LSTAT) are not accepted at the significance level 0.01. While the
least squares straight line of variable PTRATIO in the upper right figure totally falls
between the upper and lower 95% confidence bands, the linearity null hypothesis H0:
m3(PTRATIO) = a3 + b3PTRATIO is accepted at the significance level 0.05.

6.3. SBK in Partially Linear Additive

Models (PLAM)
.............................................................................................................................................................................

Wang and Yang (2009) fitted an additive model using RM, log(TAX), PTRSATIO and
log(LSTAT) as predictors to test the linearity of the components and found that only
PTRATIO is accepted at the significance level 0.05 for the linearity hypothesis test.
Based on the conclusion drawn from Wang and Yang (2009), a PLAM can be fitted as

MEDV = c00 + c01 × PTRATIO + m1 (RM)

+ m2
(
log (TAX)

) + m3
(
log (LSTAT)

)+ ε. (6.15)

PLAMs contain both linear and nonlinear additive components, and they are more
flexible compared to linear models and more efficient compared to general non-
parametric regression models. A general form of PLAMs is given in (6.4). In the
PLAM (6.4), if the regression coefficients {c0l}d1

l=0 and the component functions

{mβ(xβ)}d2
β=1,β 
=α were known by “oracle”, one could create {Yiα , Xiα}n

i=1 with Yiα =
Yi − c00 −∑d1

l=1 c0lTil −
∑d2

β=1,β 
=α mβ(Xiβ) = mα(Xiα) +σ (Xi , Ti)εi , from which one
could compute an “oracle smoother” to estimate the only unknown function mα(xα),
bypassing the “curse of dimensionality.” A major theoretical innovation is to resolve
the dependence between T and X, making use of Assumption (A5) in Ma and Yang
(2011), which is not needed in Wang and Yang (2007). Another significant innova-
tion is the

√
n-consistency and asymptotic distribution of estimators for parameters

{c0l}d1
l=0, which is trivial for the additive model of Wang and Yang (2007).

We denote by Ir the r × r identity matrix, 0r×s the zero matrix of dimension r × s,
and diag(a, b) the 2 × 2 diagonal matrix with diagonal entries a, b. Let {Yi , XT

i , TT
i }n

i=1
be a sequence of strictly stationary observations from a geometricallyα-mixing process
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following model (6.4), where Yi and (Xi , Ti) = {(Xi1, . . . , Xid2 )T , (Ti1, . . .Tid1)T } are the
ith response and predictor vector. Define next the space G of partially linear additive
spline functions as the linear space spanned by {1, tl, bJ ,α(xα), 1 ≤ l ≤ d1,1 ≤ α ≤ d2, 1 ≤
J ≤ N +1}. Let {1, {Tl , bJ ,α(Xiα)}n

i=1, 1 ≤ l ≤ d1,1 ≤α≤ d2, 1 ≤ J ≤ N +1} span the space
Gn ⊂ Rn , where bJ ,α is defined in (6.6). As n →∞, with probability approaching 1, the
dimension of Gn becomes {1 + d1 + d2(N + 1)}. The spline estimator of m(x, t) is the
unique element m̂(x, t) = m̂n(x, t) from G so that {m̂(Xi, Ti)}T

1≤i≤n best approximates
the response vector Y. To be precise, we define

m̂(x, t)= ĉ00 +
∑d1

l=1
ĉ0l tl +

∑d2

α=1

∑N+1

J=1
ĉJ ,αbJ ,α(xα),

where the coefficients (ĉ00, ĉ0l , ĉJ ,α)1≤l≤d1,1≤J≤N+1,1≤α≤d2 minimize

∑n

i=1

{
Yi − c0 −

∑d1

l=1
clTil −

∑d2

α=1

∑N+1

J=1
cJ ,αbJ ,α(Xiα)

}2

.

Pilot estimators of cT = {c0l}d1
l=0 and mα(xα) are ĉT = {ĉ0l}d1

l=0 and m̂α(xα) =∑N+1
J=1 ĉJ ,αbJ ,α(xα) − n−1∑n

i=1

∑N+1
J=1 ĉJ ,αbJ ,α(Xiα), which are used to define pseudo-

responses Ŷiα , estimates of the unobservable “oracle” responses Yiα :

Ŷiα = Yi − ĉ00 −
∑d1

l=1
ĉ0lTil −

∑d2

β=1,β 
=α
m̂β

(
Xiβ

)
,

Yiα = Yi − c00 −
∑d1

l=1
c0lTil −

∑d2

β=1,β 
=α
mβ

(
Xiβ

)
.

(6.16)

Based on {Ŷiα , Xiα}n
i=1, the SBK estimator m̂SBK,α(xα) of mα(xα) mimics the would-

be Nadaraya–Watson estimator m̃K,α(xα) of mα(xα) based on {Yiα , Xiα}n
i=1, if the

unobservable responses {Yiα}n
i=1 were available:

m̂SBK,α(xα)=
{

n−1
∑n

i=1
Kh(Xiα − xα) Ŷiα

}
/f̂α(xα),

m̃K,α(xα)=
{

n−1
∑n

i=1
Kh(Xiα − xα)Yiα

}
/f̂α(xα),

(6.17)

with Ŷiα , Yiα in (6.16), f̂α(xα) = n−1∑n
i=1 Kh(Xiα − xα) an estimator of fα(xα).

Define the Hilbert space

H=
{

p (x) =
∑d2

α=1
pα(xα) , Epα(Xα) = 0, E2pα(Xα) <∞

}
of theoretically centered L2 additive functions on [0, 1]d2 , while denote by Hn its
subspace spanned by {BJ ,α(xα), 1 ≤ α ≤ d2, 1 ≤ J ≤ N + 1}. Denote

ProjH Tl = pl (X)= argmin p∈HE
{

Tl − p (X)
}2

, T̃l = Tl − ProjH Tl ,

ProjHn
Tl = argmin p∈HnE

{
Tl − p (X)

}2
, T̃l,n = Tl − ProjHn

Tl ,
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for 1 ≤ l ≤ d1, where ProjHTl and ProjHn
Tl are orthogonal projections of Tl unto

subspaces H and Hn, respectively. Denote next in vector form

T̃n =
{

T̃l,n

}
1≤l≤d1

, T̃ =
{

T̃l

}
1≤l≤d1

. (6.18)

Without loss of generality, let α = 1. Under Assumptions (A1)–(A5) and (A7) in Ma
and Yang (2011), it is straightforward to verify (as in Bosq (1998)) that as n → ∞, we
obtain

supx1∈[h,1−h]

∣∣m̃K,1(x1)− m1(x1)
∣∣= op

(
n−2/5 log n

)
,

√
nh

{
m̃K,1(x1)− m1(x1)− b1(x1)h2} D→ N

{
0, v2

1(x1)
}

,
(6.19)

where,

b1(x1)=
∫

u2K(u)du
{

m′′
1(x1) f1(x1)/2 + m′

1(x1) f ′
1 (x1)

}
f −1
1 (x1),

v2
1(x1)=

∫
K2(u)duE

[
σ 2(X, T) |X1 = x1

]
f −1
1 (x1).

It is shown in Li (2000) and Schimek (2000) that the spline estimator m̂1(x1) in the first
step uniformly converges to m1(x1) with certain convergence rate, but lacks asymp-
totic distribution. Theorem 6.3 below states that the difference between m̂SBK,1(x1)
and m̃K,1(x1) is op(n−2/5) uniformly, dominated by the asymptotic uniform size of
m̃K,1(x1) − m1(x1). So m̂SBK,1(x1) has identical asymptotic distribution as m̃K,1(x1).

Theorem 6.3. Under Assumptions (A1)–(A7) in Ma and Yang (2011), as n → ∞, the
SBK estimator m̂SBK,1(x1) given in (6.17) satisfies

supx1∈[0,1]

∣∣m̂SBK,1(x1)− m̃K,1(x1)
∣∣= op

(
n−2/5).

Hence with b1(x1) and v2
1 (x1) as defined in (6.19), for any x1 ∈ [h, 1 − h],√

nh{m̂SBK,1(x1) − m1(x1) − b1(x1)h2} D→ N{0, v2
1(x1)}.

Instead of using a Nadaraya–Watson estimator, one can use a local polynomial esti-
mator; see Fan and Gijbels (1996). Under Assumptions (A1)–(A7), for any α ∈ (0, 1),
an asymptotic 100(1 −α)% confidence intervals for m1(x1) is

m̂SBK,1(x1)− b̂1(x1)h
2 ± zα/2v̂1(x1) (nh)−1/2 ,

where b̂1(x1) and v̂2
1(x1) are estimators of b1(x1) and v2

1(x1), respectively.
The following corollary provides the asymptotic distribution of m̂SBK(x).

Corollary 6.1. Under Assumptions (A1)–(A7) in Ma and Yang (2011) and mα ∈
C(2)[0, 1], 2 ≤ α ≤ d2. Let m̂SBK(x) =∑d2

α=1 m̂SBK,α(xα), b(x) =∑d2
α=1 bα(xα), v2(x) =∑d2

α=1 v2
α(xα), for any x ∈ [0, 1]d2 , with SBK estimators m̂SBK,α(xα), 1 ≤ α ≤ d2, defined
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in (6.17), and bα(xα), v2
α(xα) similarly defined as in (6.19), as n → ∞,

√
nh

{
m̂SBK(x)−

∑d2

α=1
mα(xα)− b (x)h2

}
D→ N

{
0, v2(x)

}
.

The next theorem describes the asymptotic behavior of estimator ĉ for c.

Theorem 6.4. Under Assumptions (A1)–(A6) in Ma and Yang (2011), as n → ∞,
‖ĉ − c‖ = Op(n−1/2). With the additional Assumption A8 in Ma and Yang (2011),

√
n
(
ĉ − c

)→d N

(
0,σ 2

0

{
1 0T

d1

0d1 �−1

})
,

for � = cov (T̃) with random vector T̃ defined in (6.18).

6.3.1. Application to Boston Housing Data

The Boston housing data were studied by Ma and Yang (2011) by fitting model (6.15).
Figure 6.4 (see Ma and Yang (2011)) shows the univariate nonlinear function esti-
mates (dashed lines) and corresponding simultaneous confidence bands (thin lines)
together with the “pseudo-data points” (dots) with pseudo-response as the backfitted
response after subtracting the sum function of the remaining covariates. The confi-
dence bands are used to test the linearity of the nonparametric components. In Figure
6.4 the straight solid lines are the least squares regression lines through the pseudo-data
points. The first figure confidence band with 0.999999 confidence level does not totally
cover the straight regression line; that is, the p-value is less than 0.000001. Similarly,
the linearity of the component functions for log (TAX) and log (LSTAT) are rejected
at the significance levels 0.017 and 0.007, respectively. The estimators ĉ00 and ĉ01 of
c00 and c01 are 33.393 and −0.58845 and both are significant with p-values close to 0.
The correlation between the estimated and observed values of MEDV is 0.89944, much
higher than 0.80112 obtained by Wang and Yang (2009). This improvement is due to
fitting the variable PTRATIO directly as linear with the higher accuracy of parametric
model instead of treating it unnecessarily as a nonparametric variable. In other words,
the PLAM fits the housing data much better than the additive model of Wang and Yang
(2009).

6.4. SBK in Additive Coefficient

Models (ACM)
.............................................................................................................................................................................

To estimate the additive function components in model (6.5), we introduce the sim-
ilar idea as in the previous two sections for additive models (6.3) and PLAMs (6.4).
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figure 6.4 Plots of the least squares regression estimator (solid line), confidence bands (upper
and lower thin lines), the spline estimator (dashed line), and the data (dot).

If all the nonparametric functions of the last d2 − 1 variables, {mαl(xα)}d1,d2
l=1,α=2 and

all the constants {m0l}d1
l=1 were known by “oracle,” one could define a new variable

Y,1 = ∑d1
l=1 m1l(X1)Tl + σ (X, T)ε = Y − ∑d1

l=1{m0l + ∑d2
α=2 mαl(Xα)}Tl and esti-

mate all functions {m1l(x1)}d1
l=1 by linear regression of Y,1 on T1, . . . , Td1 with kernel

weights computed from variable X1. Instead of using the Nadaraya–Watson estimating
method in the second step, Liu and Yang (2010) proposed to pre-estimate the functions
{mαl(xα)}d1,d2

l=1,α=2 and constants {m0l}d1
l=1 by linear spline and then use these estimates

as substitutes to obtain an approximation Ŷ,1 to the variable Y,1, and construct “oracle”
estimators based on Ŷ,1.



164 additive models

Following Stone (1985a, p. 693), the space of α-centered square integrable functions
on [0, 1] is

H0
α = {

g : E
{

g (Xα)
}= 0, E

{
g2(Xα)

}
<+∞}

, 1 ≤ α ≤ d2.

Next define the model space M, a collection of functions on χ × Rd1 , as

M=
⎧⎨⎩g(x, t)=

d1∑
l=1

gl(x) tl ; gl (x)= g0l +
d2∑
α=1

gαl(xα); gαl ∈H0
α

⎫⎬⎭ ,

in which {g0l}d1
l=1 are finite constants. The constraints that E{gαl(Xα)} = 0, 1 ≤ α ≤ d2,

ensure unique additive representation of ml as expressed in (6.5) but are not necessary
for the definition of space M.

For any vector x = (x1, x2, . . . , xd2 ), denote the deleted vector as x_1 = (x2, . . . , xd2 );
for the random vector Xi = (Xi1, Xi2, . . . , Xid2 ), denote the deleted vector as Xi,_1 =
(Xi2, . . . , Xid2 ), 1 ≤ i ≤ n. For any 1 ≤ l ≤ d1, write m_1,l(x_1) = m0l +

∑d2
α=2 mαl(xα).

Denote the vector of pseudo-responses Y1 = (Y1,1, . . . , Yn,1)T in which

Yi,1 = Yi −
d1∑

l=1

{
m0l + m_1,l

(
Xi,_1

)}
Til =

d1∑
l=1

m1l(Xi1)Til + σ(Xi , Ti)εi .

These would be the “responses” if the unknown functions {m_1,l(x_1)}1≤l≤d1 had been
given. In that case, one could “estimate” all the coefficient functions in x1, the vector
function m1,·(x1) = {m11(x1), . . . , m1d1 (x1)}T by solving a kernel weighted least squares
problem

m̃K,1,· (x1) = {
m̃K,11(x1) , . . . , m̃K,1d1(x1)

}T = argmin
λ=(λl)1≤l≤d1

L
(
λ, m_1,·, x1

)
in which

L
(
λ, m_1,·, x1

)=
n∑

i=1

⎛⎝Yi,1 −
d1∑

l=1

λlTil

⎞⎠2

Kh(Xi1 − x1).

Alternatively, one could rewrite the above kernel oracle smoother in matrix form

m̃K,1,·(x1)=
(

CT
KW1CK

)−1
CT

KW1Y1 =
(

1

n
CT

KW1CK

)−1 1

n
CT

KW1Y1 (6.20)

in which

Ti = (
Ti1, . . . , Tid1

)T
, CK = {T1, . . . , Tn}T ,

W1 = diag{Kh (X11 − x1) , . . . , Kh(Xn1 − x1)}.
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Likewise, one can define the local linear oracle smoother of m1,·(x1) as

m̃LL,1,·(x1)= (
Id1×d1 , 0d1×d1

)(1

n
CT

LL,1W1CLL,1

)−1 1

n
CT

LL,1W1Y1, (6.21)

in which

CLL,1 =
{

T1 , . . . , Tn

T1 (X11 − x1), . . . , Tn(Xn1 − x1)

}T

.

Denote μ2(K) = ∫
u2K(u)du,‖K‖2

2 = ∫
K(u)2du, Q1(x1) = {q1(x1)}d1

l,l′=1 =
E(TTT |X1 = x1), and define the following bias and variance coefficients:

bLL,l,l′ ,1(x1)= 1

2
μ2(K)m′′

1l(x1) f1(x1)qll′ ,1(x1),

bK,l,l′ ,1(x1)= 1

2
μ2(K)

[
2m′

1l(x1)
∂

∂x1

{
f1(x1)qll′,1(x1)

}
+ m′′

1l (x1) f1(x1)qll′ ,1(x1)
]

, (6.22)

�1 (x1)= ‖K‖2
2 f1(x1)E

{
TTTσ 2(X, T) |X1 = x1

}
,{

vl,l′ ,1(x1)
}d1

l,l′=1 = Q1(x1)
−1�1(x1)Q1(x1)

−1.

Theorem 6.5. Under Assumptions (A1)–(A5) and (A7) in Liu and Yang (2010), for any
x1 ∈ [h, 1 − h], as n → ∞, the oracle local linear smoother m̃LL,1,·(x1) given in (6.21)
satisfies

√
nh

[
m̃LL,1,·(x1)− m1,·(x1)−

{∑d1

l=1
bLL,l,l′ ,1(x1)

}d1

l′=1
h2

]

→ N
(

0,
{

vl,l′ ,1(x1)
}d1

l,l′=1

)
.

With Assumption (A6) in addition, the oracle kernel smoother m̃K,1,·(x1) in (6.20) satisfies

√
nh

[
m̃K,1,·(x1)− m1,·(x1)−

{∑d1

l=1
bK,l,l′,1(x1)

}d1

l′=1
h2

]

→ N
(

0,
{

vl,l′,1(x1)
}d1

l,l′=1

)
.

Theorem 6.6. Under Assumptions (A1)–(A5) and (A7) in Liu and Yang (2010), as
n → ∞, the oracle local linear smoother m̃LL,1,·(x1) given in (6.21) satisfies

sup
x1∈[h,1−h]

∣∣m̃LL,1,·(x1)− m1,·(x1)
∣∣= Op

(
log n/

√
nh
)

.
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With Assumption (A6) in addition, the oracle kernel smoother m̃K,1,·(x1) in (6.20) satisfies

sup
x1∈[h,1−h]

∣∣m̃K,1,·(x1)− m1,·(x1)
∣∣= Op

(
logn/

√
nh
)

.

Remark 6.2. The above theorems hold for m̃LL,α,·(xα) and m̃K,α,·(xα) similarly con-
structed as m̃LL,1,·(x1)and m̃K,1,·(x1), for any α = 2, . . . , d2.

The same oracle idea applies to the constants as well. Define the would-be “estima-
tors” of constants (m0l)

T
1≤l≤d1

as the least squares solution

m̃0 = (m̃0l)
T
1≤l≤d1

= arg min
n∑

i=1

⎧⎨⎩Yic −
d1∑

l=1

m0lTil

⎫⎬⎭
2

,

in which the oracle responses are

Yic = Yi −
d1∑

l=1

d2∑
α=1

mαl(Xiα)Til =
d1∑

l=1

m0lTil + σ(Xi, Ti)εi . (6.23)

The following result provides optimal convergence rate of m̃0 to m0, which are needed
for removing the effects of m0 for estimating the functions {m1l(x1)}d1

l=1.

Proposition 6.1. Under Assumptions (A1)–(A5) and (A8) in Liu and Yang (2010), as
n → ∞, sup1≤l≤d1

|m̃0l − m0l| = Op(n−1/2).

Although the oracle smoothers m̃LL,α,·(xα), m̃K,α,·(xα) possess the theoretical prop-
erties in Theorems 6.5 and 6.6, they are not useful statistics because they are
computed based on the knowledge of unavailable functions {mαl(xα)}d1,d2

l=1,α=2 and con-

stants {m0l}d1
l=1. They do, however, motivate the spline-backfitted estimators that we

introduce next.
In the following, we describe how the unknown functions {mαl(xα)}d1,d2

l=1,α=2 and con-

stants {m0l}d1
l=1 can be pre-estimated by linear spline and how the estimates are used

to construct the “oracle estimators.” Define the space of α-empirically centered linear
spline functions on [0, 1] as

G0
n,α =

⎧⎨⎩gα : gα (xα)≡
N+1∑
J=0

λJ bJ (xα) , En
{

gα (Xα)
}= 0

⎫⎬⎭, 1 ≤ α ≤ d2,

and the space of additive spline coefficient functions on χ × Rd1 as

G0
n =

⎧⎨⎩g(x, t)=
d1∑

l=1

gl(x) tl; gl (x) = g0l +
d2∑
α=1

gαl(xα); g0l ∈ R, gαl ∈ G0
n,α

⎫⎬⎭ ,

which is equipped with the empirical inner product 〈·, ·〉2,n.



additive regression 167

The multivariate function m(x, t) is estimated by an additive spline coefficient
function

m̂(x, t)=
d1∑

l=1

m̂l(x)tl = argmin
g∈G0

n

n∑
i=1

{
Yi − g(Xi , Ti)

}2
. (6.24)

Since m̂(x, t) ∈ G0
n, one can write m̂l(x) = m̂0l + ∑d2

α=1 m̂αl(xα); for m̂0l ∈ R and
m̂αl(xα) ∈ G0

n,α . Simple algebra shows that the following oracle estimators of the

constants m0l are exactly equal to m̂0l , in which the oracle pseudo-responses Ŷic =
Yi −

∑d1
l=1

∑d2
α=1 m̂αl(Xiα)Til which mimic the oracle responses Yic in (6.23)

m̂0 = (
m̂0l

)T
1≤l≤d1

= arg min(
λ01,...,λ0d1

)
n∑

i=1

⎧⎨⎩Ŷic −
d1∑

l=1

λ0lTil

⎫⎬⎭
2

. (6.25)

Proposition 6.2. Under Assumptions (A1)–(A5) and (A8) in Liu and Yang (2010), as
n → ∞, sup1≤l≤d1

|m̂0l − m̃0l | = Op(n−1/2), hence sup1≤l≤d1
|m̂0l − m0l | = Op(n−1/2)

following Proposition 6.1.

Define next the oracle pseudo-responses

Ŷi1 = Yi −
∑d1

l=1

(
m̂0l +

∑d2

α=2
m̂αl(Xiα)

)
Til

and Ŷ1 = (Ŷ11, . . . , Ŷn1)T , with m̂0l and m̂αl defined in (6.25) and (6.24), respectively.
The spline-backfitted kernel (SBK) and spline-backfitted local linear (SBLL) estimators
are

m̂SBK,1,·(x1)=
(

CT
KW1CK

)−1
CT W1Ŷ1 =

(
1

n
CT

KW1CK

)−1 1

n
CT W1Ŷ1, (6.26)

m̂SBLL,1,·(x1)= (
Id1×d1 , 0d1×d1

)(1

n
CT

LL,1W1CLL,1

)−1 1

n
CT

LL,1W1Ŷ1. (6.27)

The following theorem states that the asymptotic uniform magnitude of difference
between m̂SBK,1,·(x1) and m̃K,1,·(x1) is of order op(n−2/5), which is dominated by the
asymptotic size of m̃K,1,·(x1) − m1,·(x1). As a result, m̂SBK,1,·(x1) will have the same
asymptotic distribution as m̃K,1,·(x1). The same is true for m̂SBLL,1,·(x1) and m̃LL,1,·(x1).

Theorem 6.7. Under Assumptions (A1)–(A5), (A7), and (A8) in Liu and Yang (2010),
as n → ∞, the SBK estimator m̂SBK,1,·(x1) in (6.26) and the SBLL estimator m̂SBLL,1,·(x1)
in (6.27) satisfy

sup
x1∈[0,1]

{∣∣m̂SBK,1,·(x1)− m̃K,1,·(x1)
∣∣+ ∣∣m̂SBLL,1,·(x1)− m̃LL,1,·(x1)

∣∣}= op
(
n−2/5).

The following corollary provides the asymptotic distributions of m̂SBLL,1,·(x1) and
m̃K,1,·(x1). The proof of this corollary is straightforward from Theorems 6.5 and 6.7.



168 additive models

Corollary 6.2. Under Assumptions (A1)–(A5), (A7), and (A8) in Liu and Yang (2010),
for any x1 ∈ [h, 1 − h], as n → ∞, the SBLL estimator m̂SBLL,1,·(x1) in (6.27) satisfies

√
nh

⎡⎢⎣m̂SBLL,1,·(x1)− m1,·(x1)−
⎧⎨⎩

d1∑
l=1

bLL,l,l′ ,1(x1) (x1)

⎫⎬⎭
d1

l′=1

h2

⎤⎥⎦
→ N

(
0,
{

vl,l′ ,1(x1)
}d1

l,l′=1

)
and with the additional Assumption (A6), the SBK estimator m̂SBK,1,·(x1) in (6.26)
satisfies

√
nh

⎡⎢⎣m̃K,1,·(x1)− m1,·(x1)−
⎧⎨⎩

d1∑
l=1

bK,l,l′,1(x1)

⎫⎬⎭
d1

l′=1

h2

⎤⎥⎦
→ N

(
0,
{

vl,l′,1 (x1)
}d1

l,l′=1

)
,

where bLL,l,l′ ,1(x1), bK,l,l′ ,1(x1) and vl,l′ ,1(x1) are defined as (6.22).

Remark 6.3. For any α = 2, . . . , d, the above theorem and corollary hold for m̂SBK,α,·(xα)
and m̂SBLL,α,·(xα) similarly constructed, that is,

m̂SBK,α,·(xα) =
(

1

n
CT

KWαCK

)−1 1

n
CT

KWαŶα ,

where Ŷiα = Yi −
∑d1

l=1{m̂0l +
∑

1≤α′≤d2,α′ 
=α m̂αl(Xiα)}.

6.4.1. Application to Cobb–Douglas Model

Liu and Yang (2010) applied the SBLL procedure to a varying coefficient extension
of the Cobb–Douglas model for the US GDP that allows non-neutral effects of the
R&D on capital and labor as well as in total factor productivity (TFP). Denoted by
Qt the US GDP at year t , and Kt the US capital at year t , Lt the US labor at year t ,
and Xt the growth rate of ratio of R&D expenditure to GDP at year t , all data have
been downloaded from the Bureau of Economic Analysis (BEA) website for years t =
1959, . . . , 2002 (n = 44). The standard Cobb–Douglas production function (Cobb and

Douglas (1928)) is Qt = At Kβ1
t L1−β1

t , where At is the total factor productivity (TFP)
of year t , β1 is a parameter determined by technology. Define the following stationary
time series variables
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Yt = logQt − logQt−1, T1t = log Kt − log Kt−1, T2t = logLt − logLt−1,

then the Cobb–Douglas equation implies the following simple regression model

Yt = (
log At − logAt−1

)+β1T1t + (1 −β1)T2t .

According to Solow (1957), the total factor productivity At has an almost constant rate
of change, thus one might replace log At − logAt−1 with an unknown constant and
arrive at the following model:

Yt − T2t = β0 +β1(T1t − T2t). (6.28)

Because technology growth is one of the biggest subsections of TFP, it is reason-
able to examine the dependence of both β0 and β1 on technology rather than treating
them as fixed constants. We use exogenous variables Xt (growth rate of ratio of R&D
expenditure to GDP at year t) to represent technology level and model Yt − T2t =
m1(Xt ) + m2(Xt )(T1t − T2t ), where ml(Xt ) = m0l + ∑d2

α=1 mαl(Xt−α+1), l = 1, 2,
Xt = (Xt , . . . , Xt−d2+1). Using the BIC of Xue and Yang (2006b) for additive coefficient
model with d2 = 5, the following reduced model is considered optimal:

Yt − T2t = c1 + m41(Xt−3)+{c2 + m52(Xt−4)} (T1t − T2t ). (6.29)

The rolling forecast errors of GDP by SBLL fitting of model (6.29) and linear fitting of
(6.28) are show in Figure 6.1. The averaged squared prediction error (ASPE) for model
(6.29) is

1

9

2002∑
t=1994

[
Yt − T2t − ĉ1 − m̂SBLL,41(Xt−3)−

{
ĉ2 + m̂SBLL,52(Xt−4)

}
(T1t − T2t)

]2

= 0.001818,

which is about 60% of the corresponding ASPE (0.003097) for model (6.28). The
in-sample averaged squared estimation error (ASE) for model (6.29) is 5.2399 × 10−5,
which is about 68% of the in sample ASE (7.6959 × 10−5) for model (6.28).

In model (6.29), ĉ1 + m̂SBLL,41(Xt−3) estimates the TFP growth rate, which is shown
as a function of Xt−3 in Figure 6.2. It is obvious that the effect of Xt−3 is positive when
Xt−3 ≤ 0.02, but negative when Xt−3 > 0.02. On average, the higher R&D investment
spending causes faster GDP growing. However, overspending on R&D often leads to
high losses (Tokic, 2003).

Liu and Yang (2010) also computed the average contribution of R&D to GDP growth
for 1964–2001, which is about 40%. The GDP and estimated TFP growth rates is shown
in Figure 6.5 (see Liu and Yang, 2010), it is obvious that TFP growth is highly correlated
to the GDP growth.
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GDP and estimated TFP growth rates
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figure 6.5 Estimation of function ĉ1 + m̂SBLL,41(Xt−3): GDP growth rate—dotted line; ĉ1 +
m̂SBLL,41(Xt−3)—solid line.

6.5. SBS in Additive Models
.............................................................................................................................................................................

In this section, we describe the spline-backfitted spline estimation procedure for model
(6.3). Let 0 = t0 < t1 < · · · < tN+1 = 1 be a sequence of equally spaced knots,
dividing [0, 1] into (N + 1) subintervals of length h = hn = 1/(N + 1) with a prese-
lected integer N ∼ n1/5 given in Assumption (A5) of Song and Yang (2010), and let
0 = t∗

0 < t∗
1 < · · · < t∗

N∗+1 = 1 be another sequence of equally spaced knots, divid-
ing [0, 1] into N∗ subintervals of length H = Hn = N∗−1, where N∗ ∼ n2/5 log n is
another preselected integer; see Assumption (A5) in Song and Yang (2010). Denote
by Gα the linear space spanned by {1, bJ (xα)}N+1

J=1 , whose elements are called linear
splines, piecewise linear functions of xα which are continuous on [0, 1] and linear
on each subinterval [tJ , tJ+1], 0 ≤ J ≤ N . Denote by Gn,α ⊂ Rn the corresponding
subspace of Rn spanned by {1, {bJ (Xiα)}n

i=1}N+1
J=1 . Similarly, define the {1 + dN∗}-

dimensional space G∗ = G∗([0, 1]d) of additive constant spline functions as the linear
space spanned by {1, IJ∗(xα)}d,N∗

α=1,J∗=1, while denote by G∗
n ⊂ Rn the corresponding sub-

space spanned by {1, {IJ∗(Xiα)}n
i=1}d,N∗

α=1,J∗=1. As n → ∞, with probability approaching
one, the dimension of Gn,α becomes N +2, and the dimension of G∗

n becomes 1+dN∗.
The additive function m(x) has a multivariate additive regression spline

(MARS) estimator m̂(x) = m̂n(x), the unique element of G∗ so that the vector



additive regression 171

{m̂(X1), . . . , m̂(Xn)}T ∈ G∗
n best approximates the response vector Y. Precisely

m̂(x)= argmin
g∈G∗

n∑
i=1

{
Yi − g (Xi)

}2 = λ̂′
0 +

d∑
α=1

N∗∑
J∗=1

λ̂′
J∗,αIJ∗ (xα),

where (λ̂′
0, λ̂′

1,1, . . . , λ̂′
N∗,d) is the solution of the least squares problem

{
λ̂′

0, λ̂′
1,1, . . . , λ̂′

N∗,d

}T = argmin
Rd(N∗)+1

n∑
i=1

⎧⎨⎩Yi −λ0 −
d∑

α=1

N∗∑
J∗=1

λJ∗,αIJ∗ (Xiα)

⎫⎬⎭
2

.

Estimators of each component function and the constant are derived as

m̂α(xα)=
N∗∑

J∗=1

λ̂′
J∗,α

{
IJ∗ (xα)− n−1

n∑
i=1

IJ∗ (Xiα)

}
,

m̂c = λ̂′
0 + n−1

n∑
i=1

d∑
α=1

N∗∑
J∗=1

λ̂′
J∗,αIJ∗(Xiα) = ĉ = Y .

These pilot estimators are used to define pseudo-responses Ŷiα , ∀1 ≤ α ≤ d, which
approximate the “oracle” responses Yiα . Specifically, we define

Ŷiα = Yi − ĉ −
d∑

β=1,β 
=α

m̂β

(
Xiβ

)
,

where ĉ = Y n = n−1∑n
i=1 Yi, which is a

√
n-consistent estimator of c by the Central

Limit Theorem for strongly mixing sequences. Correspondingly, we denote vectors

Ŷα =
{

Ŷ1α, . . . , Ŷnα

}T
, Yα = {Y1α, . . . , Ynα}T . (6.30)

We define the spline-backfitted spline (SBS) estimator of mα(xα) as m̂α,SBS(xα) based
on {Ŷiα , Xiα}n

i=1, which attempts to mimic the would-be spline estimator m̃α,S(xα) of
mα(xα) based on {Yiα , Xiα}n

i=1 if the unobservable “oracle” responses {Yiα}n
i=1 were

available. Then,

m̂α,SBS(xα) = argmin
gα∈Gα

n∑
i=1

{
Ŷiα − gα (Xiα)

}2
,

m̃α,S(xα) = argmin
gα∈Gα

n∑
i=1

{
Yiα − gα (Xiα)

}2
. (6.31)
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Theorem 6.8. Under Assumptions (A1)–(A5) in Song and Yang (2010), as n → ∞, the
SBS estimator m̂α,SBS(xα) and the oracle smoother m̃α,S(xα) given in (6.31) satisfy

sup
xα∈[0,1]

∣∣m̂α,SBS(xα)− m̃α,S(xα)
∣∣= op

(
n−2/5).

Theorem 6.8 provides that the maximal deviation of m̂α,SBS(xα) from m̃α,S(xα) over
[0, 1] is of the order Op(n−2/5( logn)−1) = op(n−2/5( log n)1/2), which is needed for
the maximal deviation of m̂α,SBS(xα) from mα(xα) over [0, 1] and the maximal devi-
ation of m̃α,S(xα) from mα(xα) to have the same asymptotic distribution, of order
n−2/5( logn)1/2. The estimator m̂α,SBS(xα) is therefore asymptotically oracally efficient;
that is, it is asymptotically equivalent to the oracle smoother m̃α,S(xα) and, in partic-
ular, the next theorem follows. The simultaneous confidence band given in (6.32) has
width of order n−2/5( logn)1/2 at any point xα ∈ [0, 1], consistent with published works
on nonparametric simultaneous confidence bands such as Bosq (1998) and Claeskens
and Van Keilegom (2003).

Theorem 6.9. Under Assumptions (A1)–(A5) in Song and Yang (2010), for any p ∈ (0, 1),
as n → ∞, an asymptotic 100(1 − p)% simultaneous confidence band for mα(xα) is

m̂α,SBS (xα)± 2σ̂α (xα)
{

3�T (xα)!j(xα)� (xα) log(N + 1)/2f̂α (xα)nh
}1/2

×
[

1 − {
2 log(N + 1)

}−1
[

log
(
p/4

)+ 1

2

{
log log (N + 1)+ log4π

}]]
, (6.32)

where σ̂α(xα) and f̂α(xα) are some consistent estimators of σα(xα) and fα(xα), j(xα) =
min{[xα/h], N},δ(xα) = {xα − tj(xα )}/h, and

� (xα)=
(

cj(xα)−1 {1 − δ (xα)}
cj(xα)δ(xα)

)
, cj =

{ √
2, j = −1, N ,

1, 0 ≤ j ≤ N − 1,

�j =
(

lj+1,j+1 lj+1,j+2

lj+2,j+1 lj+2,j+2

)
, 0 ≤ j ≤ N ,

where terms {lik}|i−k|≤1 are the entries of the inverse of the (N + 2) × (N + 2) matrix
MN+2:

MN+2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√

2/4 0√
2/4 1 1/4

1/4 1
. . .

. . .
. . . 1/4
1/4 1

√
2/4

0
√

2/4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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6.6. Future Research
.............................................................................................................................................................................

Fan and Jiang (2005) provides generalized likelihood ratio (GLR) tests for additive
models using the backfitting estimator. Similar GLR test based on the two-step esti-
mator is feasible for future research. The SBS method can also be applied to the
PLAMs (6.4) and the ACMs (6.5). The two-step estimating procedure can be extended
to generalized additive, partially linear additive, and additive coefficient models.
Ma et al. (2013) proposed a one-step penalized spline estimation and variable selection
procedure in PLAMs with clustered/longitudinal data. The procedure is fast to com-
pute, but lacks asymptotic distributions for the additive function components. Thus
no confidence measures can be established. As another future work, our target is to
(a) apply the two-step estimation to the analysis of clustered/longitudinal data and (b)
establish the oracle efficiency of the estimators. The confidence bands of each additive
function can be constructed based on the same idea in Section 6.5.
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ADDITIVE MODELS: EXTENSIONS
AND RELATED MODELS

........................................................................................................

enno mammen,
†

byeong u. park,
‡

and melanie schienle
§

7.1. Introduction
.............................................................................................................................................................................

In this chapter we continue the discussions on additive models of chapters 5 and 6.
We come back to the smooth backfitting approach that was already mentioned there.
The basic idea of the smooth backfitting is to replace the least squares criterion by a
smoothed version. We now explain its definition in an additive model

E(Y |X) =μ+ f1(X1) + ·· ·+ fd(Xd). (7.1)

We assume that (X1
i , . . . , Xd

i , Yi), 1 ≤ i ≤ n, are n observed i.i.d. copies of
(X1, . . . , Xd , Y ), or more generally, n stationary copies. Below, in Section 7.4., we will
also weaken the stationarity assumption.

In an additive model (7.1) the smooth backfitting estimators μ̂, f̂1, . . . , f̂d are defined
as the minimizers of the smoothed least squares criterion

∫ n∑
i=1

[
Yi −μ− f1(x1) − ·· ·− fd(xd)

]2
K

(
X1

i − x1

h1

)

×·· ·× K

(
Xd

i − xd

hd

)
dx1 · · · dxd (7.2)

under the constraint∫
f1(x1)̂pX1 (x1)dx1 = ·· · =

∫
fd(xd )̂pXd (xd)dxd = 0. (7.3)
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Here K is a kernel function; that is, a positive probability density function and
h1, . . . , hd are bandwidths. Furthermore, p̂Xj is the kernel density estimator of the
density pXj of Xj defined by

p̂Xj (xj) = 1

nhj

n∑
i=1

K

(
X

j
i − xj

hj

)
.

Below, we will outline that the smooth backfitting estimator can be calculated by an
iterative backfitting algorithm. While the estimator got its name from the correspond-
ing algorithm, it could, however, better be described as smooth least squares estimator
highlighting its statistical motivation.

If there is only one additive component—that is, if we have d = 1—we get a kernel
estimator f̃1(x1) = μ̂+ f̂1(x1) as the minimizer of

f1 �
∫ n∑

i=1

[
Yi − f1(x1)

]2
K

(
X1

i − x1

h1

)
dx1. (7.4)

The minimizer of this criterion is given as

f̃1(x1) =
[

n∑
i=1

K

(
X1

i − x1

h1

)]−1 n∑
i=1

YiK

(
X1

i − x1

h1

)
.

Thus, f̃1(x1) is just the classical Nadaraya–Watson estimator. We get the smooth back-
fitting estimator as a natural generalization of Nadaraya–Watson smoothing to additive
models.

In this chapter we present a broad discussion of estimators based on minimizing a
smoothed least squares criterion. We do this for two reasons. First, we argue that, even
for additive models, this method is a powerful alternative to the two-step procedures
that were extensively discussed in Chapters 5 and 6. Furthermore, smooth least squares
estimators also work in models that are closely related to the additive model but are
not of the form that is directly suitable for two-step estimation. We illustrate this with
an example. Suppose that one observes (Xi , Yi) with Yi = f (Xi) + εi , where εi is a
random walk: that is, ηi = εi+1 − εi are zero mean i.i.d. variables that are independent
of X1, . . . , Xn. In this model the Nadaraya–Watson estimator (7.4) is not consistent.
Consistent estimators can be based on considering Zi = Yi+1 − Yi. For these variables
we get the regression model

Zi = f (Xi+1) − f (Xi) + ηi.

The smooth least squares estimator in this model is based on the minimization of

f �
∫ n∑

i=1

[Zi − f (x1) + f (x2)]2K

(
Xi+1 − x1

h1

)
K

(
Xi − x2

h2

)
dx1dx2.
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Clearly, an alternative approach would be to calculate estimators f̂1 and f̂2 in the model
Zi = f1(Xi+1) − f2(Xi) + ηi and to use [̂f1(x) − f̂2(x)]/2 as an estimator of f . We will
come back to related models below.

The additive model is important for two reasons:

1. It is the simplest nonparametric regression model with several nonparametric
components. The theoretical analysis is quite simple because the nonparametric
components enter linearly into the model. Furthermore, the mathematical anal-
ysis can be built on localization arguments from classical smoothing theory. The
simple structure allows for completely understanding of how the presence of addi-
tional terms influences estimation of each one of the nonparametric curves. This
question is related to semiparametric efficiency in models with a parametric com-
ponent and nonparametric nuisance components. We will come back to a short
discussion of nonparametric efficiency below.

2. The additive model is also important for practical reasons. It efficiently avoids
the curse of dimensionality of a full-dimensional nonparametric estimator. Nev-
ertheless, it is a powerful and flexible model for high-dimensional data. Higher-
dimensional structures can be well approximated by additive functions. As lower-
dimensional curves they are also easier to visualize and hence to interpret than a
higher-dimensional function.

Early references that highlight the advantages of additive modeling are Stone
(1985, 1986), Buja, Hastie, and Tibshirani (1989), and Hastie and Tibshirani (1990).
In this chapter we concentrate on the discussion of smooth backfitting estima-
tors for such additive structures. For a discussion of two-step estimators we refer
to Chapters 5 and 6. For sieve estimators in additive models, see Chen (2006)
and the references therein. For the discussion of penalized splines we refer to
Eilers and Marx (2002).

In this chapter we only discuss estimation of nonparametric components. Esti-
mation of parametric components such as θ = θ(f1) = ∫

f1(u)w(u) du for some
given function w requires another type of analysis. In the latter estimation prob-
lem, natural questions are, for example, whether the plug-in estimator θ̂ = θ (̂f1) =∫

f̂1(u)w(u) du for a nonparametric estimator f̂1 of f1 converges to θ at a para-
metric

√
n rate, and whether this estimator achieves the semiparametric efficiency

bound. Similar questions arise in related semiparametric models. An example is
the partially linear additive model: Yi = θ"Zi + μ + f1(X1

i ) + ·· · + fd(Xd
i ) + εi.

Here, Z is an additional covariate vector. A semiparametric estimation problem
arises when μ, f1, . . . , fd are nuisance components and θ is the only parameter of
interest. Then naturally the same questions as above arise when estimating θ . As
said, such semiparametric considerations will not be in the focus of this chapter.
For a detailed discussion of the specific example, we refer to Schick (1996) and
Yu, Mammen, and Park (2011).
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In this chapter, we concentrate on the description of estimation procedures. Smooth
backfitting has also been used in testing problems by Haag (2006, 2008) and Lunder-
vold, Tjøstheim, and Yao (2007). For related tests based on kernel smoothing, see also
the overview article Fan and Jiang (2007). In Lundervold, Tjøstheim, and Yao (2007)
additive models are used to approximate the distribution of spatial Markov random
fields. The conditional expectation of the outcome of the random field at a point, given
the outcomes in the neighborhood of the point, are modeled as sum of functions of the
neighbored outcomes. They propose tests for testing this additive structure. They also
discuss the behavior of smooth backfitting if the additive model is not correct. Their
findings are also interesting for other applications where the additive model is not valid
but can be used as a powerful approximation.

Another approach that will not be pursued here is parametrically guided non-
parametrics. The idea is to fit a parametric model in a first step and then apply
nonparametric smoothing in a second step, see Fan, Wu, and Feng (2009) for a
description of the general idea. The original idea was suggested by Hjort and Glad
(1995) in density estimation. See also Park, Kim, and Jones (2002) for a similar
idea.

The next section discusses the smooth backfitting estimator in additive models. In
Section 7.3 we discuss some models that are related to additive models. The examples
include nonparametric regression with dependent error variables where the errors can
be transformed to white noise by a linear transformation, nonparametric regression
with repeatedly measured data, nonparametric panels with fixed effects, simultaneous
nonparametric equation models, and non- and semiparametric autoregression and
GARCH models. Other extensions that we will shortly mention are varying coeffi-
cient models and additive models with missing observations. In Section 7.4 we discuss
the case of nonstationary covariates. Throughout the chapter we will see that many
of the discussed models can be put in a form of noisy Fredholm integral equation
of the second kind. We come back to this representation in the final section of this
chapter. We show that this representation can be used as an alternative starting point
for the calculation and also for an asymptotic understanding of smooth least squares
estimators.

7.2. Smooth Least Squares Estimator

in Additive Models
.............................................................................................................................................................................

7.2.1. The Backfitting Algorithm

In the additive model (7.1) the smooth backfitting estimator can be calculated by an
iterative algorithm. To see this, fix a value of x1 and define μ̂1 = μ̂+ f̂1(x1). One can
easily see that μ̂1 minimizes
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μ1 �
∫ n∑

i=1

K

(
X1

i − x1

h1

)[
Yi −μ1 − f2(x2) − ·· ·− fd(xd)

]2

×K

(
X2

i − x2

h2

)
×·· ·× K

(
Xd

i − xd

hd

)
dx2 · · · dxd . (7.5)

This holds because we have no constraint on the function x1 � μ̂+ f̂1(x1). Thus we
can minimize the criterion pointwise in this function and we do not integrate over the
argument x1 in (7.5). Thus, we get

μ̂1 =
⎡⎣∫ n∑

i=1

d∏
j=1

K

(
X

j
i − xj

hj

)
dx2 · · ·dxd

⎤⎦−1

×
∫ n∑

i=1

[
Yi − f2(x2) − ·· ·− fd(xd)

] d∏
j=1

K

(
X

j
i − xj

hj

)
dx2 · · ·dxd .

The expression on the right-hand side of this equation can be simplified by noting that∫ 1
hj

K

(
X

j
i −xj

hj

)
dxj = 1 for i = 1, . . . , n; j = 1, . . . , d. We get

μ̂1 = μ̂+ f̂1(x1) = f̂ ∗
1 (x1) −

d∑
k=2

∫
p̂X1,Xk (x1, xk)

p̂X1 (x1)
f̂k(xk) dxk . (7.6)

Here, for 1 ≤ j ≤ d we define

f̂ ∗
j (xj) =

[
n∑

i=1

K

(
X

j
i − xj

hj

)]−1 n∑
i=1

K

(
X

j
i − xj

hj

)
Yi

= p̂Xj (xj)−1 1

nhj

n∑
i=1

K

(
X

j
i − xj

hj

)
Yi.

This is the marginal Nadaraya–Watson estimator, based on smoothing the response

Yi versus one covariate X
j
i . Furthermore, p̂Xj ,Xk is the two-dimensional kernel density

estimator of the joint density pXj ,Xk of two covariates Xj and Xk , defined for 1 ≤ j 
=
k ≤ d by

p̂Xj ,Xk (xj , xk) = 1

nhjhk

n∑
i=1

K

(
X

j
i − xj

hj

)
K

(
Xk

i − xk

hk

)
.

Similarly to Eq. (7.6), we get for all j = 1, . . . , d that

f̂j(xj) = f̂ ∗
j (xj) − μ̂−

∑
k 
=j

∫
p̂Xj ,Xk (xj , xk)

p̂Xj (xj)
f̂k(xk) dxk . (7.7)
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One can show that

μ̂ = 1

n

n∑
i=1

Yi. (7.8)

A proof of this equation is postponed to the end of this subsection.
We are now in the position to define the smooth backfitting algorithm. Our main

ingredients are Eq. (7.7) and the formula for μ̂. After an initialization step, the
backfitting algorithm proceeds in cycles of d steps:

• Initialization step: Put μ̂ = 1
n

∑n
i=1 Yi and f̂ [0]

j (xj) ≡ 0 for j = 1, . . . , d.
• l th iteration cycle:

• j th step of the lth iteration cycle: In the jth step of the lth iteration cycle, one
updates the estimator f̂j of the jth additive component fj

f̂ [l]
j (xj) = f̂ ∗

j (xj)−μ̂−
j−1∑
k=1

∫
p̂Xj ,Xk (xj , xk)

p̂Xj (xj)
f̂ [l]
k (xk) dxk

−
d∑

k=j+1

∫
p̂Xj ,Xk (xj , xk)

p̂Xj (xj)
f̂ [l−1]
k (xk) dxk . (7.9)

We now discuss some computational aspects of the smooth backfitting algorithm.
One can show that there exist constants C > 0 and 0 < γ < 1 that do not depend on n
such that with probability tending to one∫

[̂f [l]
j (xj) − f̂j(xj)]2pXj (xj) dxj ≤ Cγ 2l . (7.10)

For a detailed statement, see Theorem 7.1 in Mammen, Linton, and Nielsen (1999)
where a proof of (7.10) can be also found. The essential argument of the proof is that

the approximation error
∑d

j=1 [̂f [l]
j (xj)− f̂j(xj)] behaves like a function that is cyclically

and iteratively projected onto d linear subspaces of a function space. Each cycle of
projections reduces the norm of this function by a factor γ , for some fixed γ < 1, with
probability tending to one.

The bound (7.10) allows for two important conclusions.

1. For a fixed accuracy, the number of iterations of the algorithm can be chosen as
constant in n; in particular, it does not need to increase with n.

2. Furthermore, for an accuracy of order n−α it suffices that the number of iterations
increases with a logarithmic order. This implies, in particular, that the complexity
of the algorithm does not explode but increases only slowly in n. We will see in the
next subsection that for an optimal choice of bandwidth the rate of f̂j(xj) − fj(xj)
is of order Op(n−2/5). In that case, a choice of α with α > 2/5 guarantees that the
numerical error is of smaller order than the statistical error.
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When numerically implementing smooth backfitting, estimators f̂ [l]
j (xj) are only

calculated on a finite grid of points and integrals in (7.10) are replaced by discrete
approximations. Suppose that the number of grid points is of order nβ for some β > 0.
Then in the initialization step we have to calculate n2β two-dimensional kernel density
estimators. This results in O(n1+2β) calculations. Let us briefly discuss this for the case
where all functions fj(xj) have bounded support and all bandwidths are chosen so that
f̂j(xj) − fj(xj) is of order Op(n−2/5). It can be shown that one has to choose β > 4/19
to obtain a numerical error of smaller order than the statistical error. Then the com-
putational complexity of the algorithm is of order O(n log (n) + n1+2β) = O(n1+2β) =
O(n(27/19)+2δ) with δ = β − 4

19 . This amount of calculations can still be carried out
even for large values of n in reasonable time.

Proof of (7.8). To get Eq. (7.8) we multiply both sides of Eq. (7.7) with p̂Xj (xj) and
integrate both sides of the resulting equation over xj . Because of the norming (7.3),
this yields

0 =
∫

f̂j(xj )̂pXj (xj) dxj

=
∫

f̂ ∗
j (xj )̂pXj (xj) dxj − μ̂

∫
p̂Xj (xj) dxj −

∑
k 
=j

∫
p̂Xj ,Xk (xj , xk )̂fk(xk) dxk dxj

=
∫

1

nhj

n∑
i=1

K

(
X

j
i − xj

hj

)
Yi dxj − μ̂−

∑
k 
=j

∫
p̂Xk (xk )̂fk(xk) dxk

= 1

n

n∑
i=1

Yi − μ̂,

where we use the facts that
∫ 1

hj
K

(
X

j
i −xj

hj

)
dxj = 1 and that

∫
p̂Xj ,Xk (xj , xk) dxj =

p̂Xk (xk). This completes the proof. �

7.2.2. Asymptotics of the Smooth Backfitting Estimator

Under appropriate conditions, the following result holds for the asymptotic distribu-
tion of each component function f̂j(xj), j = 1, . . . , d:√

nhj

(̂
fj(xj) − fj(xj) −βj(xj)

)
d−→ N

(
0,

∫
K 2(u) du

σ 2
j (xj)

pXj (xj)

)
. (7.11)

Here the asymptotic bias terms βj(xj) are defined as minimizers of

(β1, . . . ,βd) �
∫

[β(x) −β1(x1) − ·· ·−βd(xd)]2pX (x)dx
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under the constraint that∫
βj(xj)pXj (xj)dxj= 1

2
h2

j

∫
[2f ′

j (xj)p′
Xj (xj) + f ′′

j (xj)pXj (xj)]dxj

×
∫

u2K(u)du, (7.12)

where pX is the joint density of X = (X1, . . . , Xd) and

β(x) = 1

2

d∑
j=1

h2
j

[
2f ′

j (xj)
∂ log pX

∂xj
(x) + f ′′

j (xj)

] ∫
u2K(u)du.

In Mammen, Linton, and Nielsen (1999) and Mammen and Park (2005) this asymp-
totic statement has been proved for the case that fj is estimated on a compact interval
Ij. The conditions include a boundary modification of the kernel. Specifically, the

convolution kernel h−1
j K(h−1

j (X
j
i − xj)) is replaced by Khj (X

j
i , xj) = h−1

j K(h−1
j (X

j
i −

xj))/
∫

Ij
h−1

j K(h−1
j (X

j
i − uj))duj . Then it holds that

∫
Ij

Khj (X
j
i , xj) dxj = 1. In particu-

lar, this implies
∫

Ij
p̂Xj ,Xk (xj , xk) dxj = p̂Xk (xk) and

∫
Ij

p̂Xj (xj) dxj = 1 if one replaces

h−1
j K(h−1

j (X
j
i − xj)) by Khj (X

j
i , xj) in the definitions of the kernel density estimators.

In fact, we have already made use of these properties of kernel density estimators in the
previous subsection.

Before illustrating how the asymptotic result (7.11) is obtained, we discuss its inter-
pretations. In particular, it is illustrative to compare f̂j with the Nadaraya–Watson

estimator f̃j in the classical nonparametric regression model Yi = fj(X
j
i ) + εi . Under

standard smoothness assumptions, it holds that

√
nhj

(̃
fj(xj) − fj(xj) −β∗

j (xj)
)

d−→ N

(
0,

∫
K2(u) du

σ 2
j (xj)

pXj (xj)

)
(7.13)

with the asymptotic bias β∗
j (xj) = 1

2 h2
j [2f ′

j (xj)(∂ log pXj (xj))/(∂xj) + f ′′
j (xj)]

∫
u2

K(u) du. We see that f̃j(xj) has the same asymptotic variance as f̂j(xj) but that the
two estimators differ in their asymptotic bias. Thus, as long as one only considers the
asymptotic variance, one does not have to pay any price for not knowing the other
additive components fk (k 
= j). One gets the same asymptotic variance in the additive

model as in the simplified model Yi = fj(X
j
i )+εi where all other additive components fk

(k 
= j) are set equal to 0. As said, the bias terms differ. The asymptotic bias of f̂j(xj) may
be larger or smaller than that of f̃j(xj). This depends on the local characteristics of the
function fj at the point xj and also on the global shape of the other functions fk (k 
= j).
It is a disadvantage of the Nadaraya–Watson smooth backfitting estimator. There may
be structures in f̂j(xj) that are caused by other functions. We will argue below that this
is not the case for the local linear smooth backfitting estimator. For the local linear
smooth backfitting estimator, one gets the same asymptotic bias and variance as for
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the local linear estimator in the classical model Yi = fj(X
j
i ) + εi . In particular, both

estimators have the same asymptotic normal distribution. In Chapter 6 this was called
oracle efficiency. This notion of efficiency is appropriate for nonparametric models.
Typically in nonparametric models there exists no asymptotically optimal estimator,
in contrast to parametric models and to the case of estimating the parametric parts of
semiparametric models.

We now come to a heuristic explanation of the asymptotic result (7.11). For a
detailed proof we refer to Mammen, Linton, and Nielsen (1999) and Mammen and
Park (2005). The main argument is based on a decomposition of the estimator into a
mean part and a variance part. For this purpose, one applies smooth backfitting to the
“data” (X1, . . . , Xd , f1(X1) + ·· · + fd(Xd)) and to (X1, . . . , Xd ,ε). We will argue below
that f̂j(xj) is the sum of these two estimators.

Justification of (7.11). We start with a heuristic derivation of the asymptotic bias and
variance of the smooth backfitting estimator f̂j(xj). For this purpose note first that the
smooth backfitting estimators μ̂, f̂1, . . . , f̂d are the minimizers of

(μ, f1, . . . , fd) �
∫

[̂f (x) −μ− f1(x1) − ·· ·− fd(xd)]2̂pX (x)dx (7.14)

under the constraint (7.3), where p̂X is the kernel density estimator of pX and f̂ is the
Nadaraya–Watson estimator of the regression function f (x) = E(Y |X = x):

p̂X (x) = 1

nh1 · · ·hd

n∑
i=1

K

(
X1

i − x1

h1

)
×·· ·× K

(
Xd

i − xd

hd

)
,

f̂ (x) = p̂X (x)−1 1

nh1 · · ·hd

n∑
i=1

K

(
X1

i − x1

h1

)
×·· ·× K

(
Xd

i − xd

hd

)
Yi .

One may show that this minimization problem leads to (7.7) and (7.8). We omit the
details. For a geometric argument see also Mammen, Marron, Turlach, and Wand
(2001).

For heuristics on the asymptotics of f̂j , 1 ≤ j ≤ d, we now decompose f̂ into its bias
and variance component f̂ (x) = f̂ A(x) + f̂ B(x), where

f̂ A(x) = p̂X (x)−1 1

nh1 · · ·hd

n∑
i=1

K

(
X1

i − x1

h1

)
×·· ·× K

(
Xd

i − xd

hd

)
εi ,

f̂ B(x) = p̂X (x)−1 1

nh1 · · ·hd

n∑
i=1

K

(
X1

i − x1

h1

)
×·· ·× K

(
Xd

i − xd

hd

)
×[μ+ f1(x1) + ·· ·+ fd(xd)].
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Denote by (μ̂A, f̂ A
1 , . . . , f̂ A

d ) the minimizer of

(μ, f1, . . . , fd) �
∫

[̂f A(x) −μ− f1(x1) − ·· ·− fd(xd)]2̂pX (x)dx

under the constraint (7.3), and by (μ̂B, f̂ B
1 , . . . , f̂ B

d ) the minimizer of

(μ, f1, . . . , fd) �
∫

[̂f B(x) −μ− f1(x1) − ·· ·− fd(xd)]2̂pX (x)dx

under the constraint (7.3). Then, we obtain μ̂ = μ̂A + μ̂B, f̂1 = f̂ A
1 + f̂ B

1 , . . . , f̂d = f̂ A
d +

f̂ B
d . By standard smoothing theory, f̂ B(x) ≈ μ + f1(x1) + ·· · + fd(xd) + β(x). This

immediately implies that f̂ B
j (xj) ≈ cj + fj(xj) + βj(xj) with a random constant cj . Our

constraint (7.12) implies that cj can be chosen equal to zero. This follows by some more
lengthy arguments that we omit.

For an understanding of the asymptotic result (7.11), it remains to show that

√
nhj

(̂
f A
j (xj) − fj(xj)

)
d−→ N

(
0,

∫
K 2(u) du

σ 2
j (xj)

pXj (xj)

)
. (7.15)

To see this claim, we proceed similarly as in the derivation of (7.7). Using essentially
the same arguments as there, one can show that

f̂ A
j (xj) = f̂ A,∗

j (xj) − μ̂A −
∑
k 
=j

∫
p̂Xj ,Xk (xj , xk)

p̂Xj (xj)
f̂ A
k (xk) dxk , (7.16)

where

f̂ A,∗
j (xj) =

[
n∑

i=1

K

(
X

j
i − xj

hj

)]−1 n∑
i=1

K

(
X

j
i − xj

hj

)
εi

is the stochastic part of the marginal Nadaraya–Watson estimator f̂ ∗
j (xj). We now argue

that ∫
p̂Xj ,Xk (xj , xk)

p̂Xj (xj)
f̂ A
k (xk) dxk ≈

∫
pXj ,Xk (xj , xk)

pXj (xj)
f̂ A
k (xk) dxk ≈ 0.

The basic argument for the second approximation is that a global average of a
local average behaves like a global average; or, more explicitly, consider, for exam-

ple, the local average r̂j(xj) = (nhj)−1∑n
i=1 K

(
X

j
i −xj

hj

)
εi . This local average is of

order Op(n−1/2h−1/2
j ). For a smooth weight function w we now consider the global

average ρ̂j = ∫
Ij

w(xj )̂rj(xj) dxj of the local average r̂j(xj). This average is of order
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Op(n−1/2) = op(n−1/2h−1/2
j ) because of

ρ̂j =
∫

Ij

w(xj )̂rj(xj) dxj

=
∫

Ij

w(xj)(nhj)
−1

n∑
i=1

K

(
X

j
i − xj

hj

)
εi dxj

= n−1
n∑

i=1

whj (X
j
i )εi

with whj (X
j
i ) = ∫

Ij
w(xj)h−1

j K

(
X

j
i −xj

hj

)
dxj .

7.2.3. Smooth Backfitting Local Linear Estimator

In the additive model (7.1) the smooth backfitting local linear estimators
μ̂, f̂1, f̂ †

1 , . . . , f̂d , f̂ †
d are defined as the minimizers of the smoothed least squares criterion

∫ n∑
i=1

[
Yi −μ− f1(x1) − f †

1 (x1)(X1
i − x1) − ·· ·− fd(xd) − f †

d (xd)(Xd
i − xd)

]2

×K

(
X1

i − x1

h1

)
×·· ·× K

(
Xd

i − xd

hd

)
dx1 · · ·dxd (7.17)

under the constraint (7.3). This is a natural generalization of the local linear estimator.
For the case d = 1 the minimization gives the classical local linear estimator as the min-
imization of (7.4) leads to the classical Nadaraya–Watson estimator. The estimators,
f̂ †
j , 1 ≤ j ≤ d, are estimators of the derivatives of the additive components fj .

The smooth backfitting local linear estimator is given as the solution of a random
integral equation. Similarly to Eq. (7.7), the tuples (̂fj , f̂ †

j ) fulfill now a two-dimensional
integral equation. This integral equation can be used for the iterative calculation of the
estimators. For details we refer to Mammen, Linton, and Nielsen (1999). We only
mention the following asymptotic result from Mammen, Linton, and Nielsen (1999)
for the smooth backfitting local linear estimator. Under appropriate conditions it holds
that for 1 ≤ j ≤ d

√
nhj

(̂
fj(xj) − fj(xj) −βj(xj)

)
d−→ N

(
0,

∫
K 2(u) du

σ 2
j (xj)

pXj (xj)

)
, (7.18)
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where now the asymptotic bias terms βj(xj) are defined as

βj(xj) = 1

2
h2

j

[
f ′′
j (xj) −

∫
f ′′
j (uj)pXj (uj)duj

]∫
u2K(u)du.

Up to an additive norming term, the asymptotic bias of f̂j(xj) coincides with the asymp-
totic bias of local linear estimator f̃j in the classical nonparametric regression model

Yi = fj(X
j
i ) + εi . Moreover, we get the same asymptotic distribution for both estima-

tors (up to an additive norming term). Asymptotically, one does not lose any efficiency
by not knowing the additive components fk : k 
= j compared to the oracle model where
these components are known. This is an asymptotic optimality result for the local lin-
ear smooth backfitting. It achieves the same asymptotic bias and variance as in the
oracle model. As discussed above, the Nadaraya–Watson smooth backfitting estimator
achieves only the asymptotic variance of the oracle model. For an alternative imple-
mentation of local linear smooth backfitting, see Lee, Mammen, and Park (2012b).

7.2.4. Smooth Backfitting as Solution of a Noisy
Integral Equation

We write the smooth backfitting estimators as solutions of an integral equation.
We discuss this briefly for Nadaraya–Watson smoothing. Put f̂(x1, . . . , xd) =
(̂f1(x1), . . . , f̂d(xd))" and f̂∗(x1, . . . , xd) = (̂f ∗

1 (x1), . . . , f̂ ∗
d (xd))". With this notation and

taking, μ̂= 0, we can rewrite (7.7) as

f̂(x) = f̂∗(x) −
∫

Ĥ(x, z)̂f(z)dz, (7.19)

where for each value of x, z ∈R the integral kernel Ĥ(x, z) is a matrix with element (j, k)
equal to p̂Xj ,Xk (xj , xk)/̂pXj (xj). This representation motivates an alternative algorithm.
One can use a discrete approximation of the integral equation and approximate the
integral equation (7.19) by a finite linear equation. This can be solved by standard
methods of linear algebra. Equation (7.19) can also be used as an alternative starting
point for an asymptotic analysis of the estimator f̂. We will come back to this in Section
7.5 after having discussed further those models in Section 7.3 whose estimation can be
formulated as solving an integral equation.

7.2.5. Relations to Classical Backfitting and
Two-Stage Estimation

Smooth backfitting (7.9) is related to classical backfitting and to two-stage estimation.
In the classical backfitting, the jth step of the lth iteration cycle (7.9) of the smooth
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backfitting is replaced by

f̂ [l]
j (X

j
i ) = p̂Xj (xj)−1 1

nhj

n∑
i=1

K

(
X

j
i − xj

hj

)⎡⎣Yi − μ̂−
j−1∑
k=1

f̂ [l]
k (Xk

i ) −
d∑

k=j+1

f̂ [l−1]
k (Xk

i )

⎤⎦
(7.20)

for 1 ≤ j ≤ d and 1 ≤ i ≤ n. This iteration equation can be interpreted as a limiting case
of (7.9) where one lets the second bandwidth hk in the definition of the kernel density
estimator p̂Xj ,Xk (xj , xk) converge to zero.

If the backfitting algorithm runs through O( log n) cycles, the algorithm needs
O(n log n) calculation steps. This is slightly faster than the smooth backfitting. In
contrast to the smooth backfitting, the backfitting estimator is only defined as the
limit of the iterative algorithm (7.20). Note that the smooth backfitting is explic-
itly defined as minimizer of the smoothed least squares criterion (7.2). The fact
that backfitting estimators are only implicitly defined as limit of an iterative algo-
rithm complicates the asymptotic mathematical analysis. Note also that the algorithm
runs in Rn—that is, in spaces with increasing dimension. An asymptotic treat-
ment of the classical backfitting can be found in Opsomer (2000) and Opsomer
and Ruppert (1997). Nielsen and Sperlich (2005) illustrated by simulation that
smooth backfitting, in comparison with the classical backfitting, is more robust
against degenerated designs and a large number of additive components. The rea-
son behind this is that the iteration equation (7.9) is a smoothed version of (7.20).
The smoothing stabilizes the “degenerated integral equation” (7.20). In Opsomer
(2000) and Opsomer and Ruppert (1997), stronger assumptions are made on the
joint density of the covariates than are needed for the study of the smooth backfit-
ting. This may be caused by the same reasons, but there has been made no direct
theoretical argument that supports the empirical finding that the classical backfit-
ting is more sensitive to degenerate designs than smooth backfitting. For another
modification of the classical backfitting that takes care of correlated covariates, see
Jiang, Fan, and Fan (2010).

Two-stage estimation differs from smooth backfitting in several respects. First of
all, only two steps are used instead of an iterative algorithm that runs until a con-
vergence criterion is fulfilled. Furthermore, different bandwidths are used in different
steps: Undersmoothing is done in the first step, but an optimal bandwidth is chosen in
the second step. The algorithm of two-step estimation is as simple as that of backfitting.
On the other hand, choice of the bandwidth in the first-step is rather complex. Asymp-
totically, optimal choices will not affect the first-order properties of the outcomes of
the second step. But for finite samples the influence of the first-step bandwidth is not
clear. The calculation of theoretically optimal values would require a second-order
optimal theory that is not available and, as with other higher-order theory, may not
be accurate for small to moderate sample sizes. In particular, in models with many
nonparametric components, backfitting may be preferable because it does not require
an undersmoothing step.
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Another kernel smoothing method that can be applied to additive models is
marginal integration. It was discussed in Chapter 5 that marginal integration only
achieves optimal rates for low-dimensional additive models but that it does not work
in higher-dimensional models. This drawback is not shared by backfitting, smooth
backfitting, and two-stage estimation. There is also another aspect in which smooth
backfitting and marginal integration differ. If the additive model is not correct, smooth
backfitting as a weighted least squares estimator estimates the best additive fit to the
non-additive model. On the other side, marginal integration estimates a weighted
average effect for each covariate. This follows because marginal integration is based
on a weighted average of the full-dimensional regression function. Thus, the methods
estimate quite different quantities if the model is not additive.

7.2.6. Bandwidth Choice and Model Selection

Bandwidth selection for additive models has been discussed in Mammen and Park
(2005). There, consistency has been shown for bandwidth selectors based on plug-in
and penalized least squares criteria. Nielsen and Sperlich (2005) discusses practical
implementations of cross-validation methods. Because an additive model contains
several nonparametric functions, there exist two types of optimal bandwidths: band-
widths that are optimal for the estimation of the sum of the additive components
and bandwidths that optimize estimation of a single additive component. While the
former criterion in particular may be appropriate in prediction, the latter is more
motivated in data analytic-oriented inference. Whereas all three-bandwidth selectors
(cross-validation, penalized least squares, and plug-in) can be designed for the for-
mer criterion, only plug-in based approaches can be used. For a further discussion we
refer to the two papers cited above. For the models that will be discussed in the next
section, bandwidth selection has been only partially studied. The asymptotic results
for the estimators that will be discussed can be used to design plug-in methods. For
cross-validation it is questionable if for all models algorithms can be found that run in
reasonable time.

In very-high-dimensional additive models, backfitting methods will suffer from
the complexity of the models, in statistical performance and in computational costs.
For this reason, component selection is an important step to control the size of the
model. Recently, some proposals have been made that are influenced by the study of
high-dimensional models with sparsity constraints. We refer to Lin and Zhang (2006),
Meier, van de Geer, and Bühlmann (2009), and Huang, Horowitz, and Wei (2010).

7.2.7. Generalized Additive Models

We now discuss nonlinear extensions of the additive models. In a generalized additive
model a link function g is introduced and it is assumed that the following equation
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holds for the regression function E(Y |X1, . . . , Xd):

E(Y |X1, . . . , Xd) = g−1{μ+ f1(X1) + ·· ·+ fd(Xd)}.

It has been considered that the link function is known or that it is unknown and has to
be estimated. An important example where generalized additive models make sense is
the case of binary responses Y . If Y is {0, 1}-valued, the function g−1 maps the additive
function onto the interval [0, 1]. In the generalized additive model, the additive func-
tions f1, . . . , fd can be estimated by smoothed least squares. An alternative approach
for heterogeneous errors is a smoothed quasi-likelihood criterion. Quasi-likelihood is
motivated for regression models where the conditional variance of the errors is equal
to V (μ) with μ equal to the conditional expectation of Y . Here, V is a specified vari-
ance function. Quasi-likelihood coincides with classical likelihood if the conditional
error distribution is an exponential family. It also leads to consistent estimators if
the conditional variances have another form. The quasi-likelihood criterion Q(μ, y)
is defined as

∂

∂μ
Q(μ, y) = y −μ

V (μ)
.

An early reference to quasi-likelihood approaches in additive models is Hastie and
Tibshirani (1990). For the discussion of local linear smoothing in generalized par-
tially linear models see also Fan, Heckman, and Wand (1995). For a discussion of the
asymptotics of classical backfitting in the generalized additive model, see Kauermann
and Opsomer (2003). The Smoothed Quasi-Likelihood criterion is defined as follows:
Minimize for f = (μ, f1, . . . , fd)"

SQ(f) =
∫ n∑

i=1

Q(g−1(f +(x)), Yi)K

(
X1

i − x1

h1

)
×·· ·× K

(
Xd

i − xd

hd

)
dx1 · · ·dxd .

where f +(x) = μ + f1(x1) + ·· · + fd(xd). Minimization of the smoothed quasi-
likelihood criterion over f results in the smoothed maximum quasi-liklihood estimator.
Algorithms for the calculation of this estimator were discussed in Yu, Park, and Mam-
men (2008). In that paper an asymptotic theory for this estimator was also developed.
In other applications the quasi-likelihood criterion may be replaced by other M-
functionals. We do not discuss this here. An example is quantile regression. For a
discussion of backfitting and smooth backfitting in additive quantile models, see Lee,
Mammen, and Park (2010).

7.3. Some Models That are Related

to Additive Models
.............................................................................................................................................................................

In linear regression, the standard least squares method produces consistent estimators
when the errors are uncorrelated. When the errors are correlated, the method may not
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give consistent or efficient estimators of the regression parameters. In the latter case
it is often appropriate to take a linear transformation of the response variable in such
a way that it corrects for the correlations between the errors. Linear transformations
may be also used to remove some unobserved effects in a regression model that are
correlated with the regressors or errors. Taking a linear transformation in parametric
linear models does not alter the linear structure of the model, so that conventional
methods still work with the transformed data. In nonparametric regression models,
however, it often yields an additive model where classical smoothing methods cannot
be applied, as we illustrate on several cases in this section. Some of the models of this
section were also discussed in the overview papers Linton and Mammen (2003) and
Mammen and Yu (2009). A general discussion of smooth least squares in a general
class of nonparametric models can also be found in Mammen and Nielsen (2003).

7.3.1. Nonparametric Regression with Time Series Errors

Suppose we observe (Xt , Yt ) for 1 ≤ t ≤ T such that Yt = f (Xt ) + ut , where the errors
ut have an AR(1) time series structure so that εt = ut −ρut−1 is a sequence of uncor-
related errors. The transformed model Zt (ρ) ≡ Yt − ρYt−1 = f (Xt ) − ρf (Xt−1) + εt

has uncorrelated errors, but has an additive structure in the mean function. For sim-
plicity, assume that the errors ut are independent of the covariates Xt . Then, the target
function f minimizes

QT (m) = 1

T

T∑
t=1

E[Zt (ρ) − m(Xt) +ρm(Xt−1)]2

over m, so that it satisfies∫ [
E(Zt (ρ)|Xt = x, Xt−1 = y) − f (x) +ρf (y)

][
g(x) −ρg(y)

]
f0,1(x, y)dx dy = 0

(7.21)

for all square integrable functions g . Here f0,1 denotes the joint density of (Xt , Xt−1)
and f0 is the density of Xt . Equation (7.21) holds for all square integrable functions g if
and only if

f (x) = f ∗
ρ (x) −

∫
Hρ(x, y)f (y)dy (7.22)

where

f ∗
ρ (x) = 1

1 +ρ2
[E(Zt (ρ)|Xt = x) −ρE(Zt (ρ)|Xt−1 = x)],

Hρ(x, y) = − ρ

1 +ρ2

[
f0,1(x, y)

f0(x)
+ f0,1(y, x)

f0(x)

]
.
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An empirical version of the integral equation (7.22) may be obtained by estimating
f0, f0,1, E(Zt (ρ)|Xt = ·) and E(Zt (ρ)|Xt−1 = ·). Let f̂ (·,ρ) denote the solution of the
latter integral equation. In case ρ is known, f̂ (·,ρ) can be used as an estimator of f .
Otherwise, the parameter ρ can be estimated by ρ̂ that minimizes

1

T

T∑
t=1

[
Zt (ρ) − f̂ (Xt ,ρ) +ρ f̂ (Xt−1,ρ)

]2
,

and then f by f̂ = f̂ (·, ρ̂). We note that the estimator f̂ (·,ρ) is consistent even if the
autoregressive coefficient ρ is 1. In contrast, smoothing of the original untransformed
data (Yt , Xt ) leads to an inconsistent estimator. We mentioned this example already in
the introduction.

The above discussion may be extended to a general setting where the errors ut admit
a time series structure such that εt =∑∞

j=0 ajut−j is a sequence of uncorrelated errors.

In this general case, if we take the transformation Zt (a0, a1, . . .) = ∑∞
j=0 ajYt−j, then

the transformed model Zt (a0, a1, . . .) = ∑∞
j=0 ajf (Xt−j) + εt has an additive structure

with uncorrelated errors. For a discussion of this general case, see Linton and Mammen
(2008). There weaker assumptions are made on the errors ut . In particular, it is not
assumed that the errors ut are independent of the covariates Xt .

7.3.2. Nonparametric Regression with Repeated Measurements

Suppose that one has J repeated measurements on each of n subjects. Let (Xij , Yij)
be the jth observation on the ith subject. Write Xi = (Xi1, . . . , XiJ )" and Yi =
(Yi1, . . . , YiJ )". Assume that (Xi , Yi), i = 1 . . . , n, are i.i.d. copies of (X, Y). Consider
the simple nonparametric regression model

Yij = f (Xij) + εij, (7.23)

where the errors εij have zero conditional mean, but are allowed to be correlated within
each subject. Let εi = (εi1, . . . ,εiJ )" and 	 = cov(εi). The kernel regression estima-
tor based on the ordinary least squares criterion is consistent even in this case where
	 is not the identity matrix. However, we may find a better estimator that is based
on a weighted least squares criterion. This is in line with parametric linear regression
with repeated measurements, where a weighted least squares estimator outperforms
the ordinary least squares estimator. A weighted least squares estimation is equiva-
lent to taking a linear transformation of the response and then applying the ordinary
least squares criterion to the transformed model. In contrast to the parametric case,
introducing weights in the nonparametric model (7.23) leads to a more complicated
estimation problem, as is demonstrated below.

Let f(x1, . . . , xJ ) = (f (x1), . . . , f (xJ ))". The regression function f at (7.23) minimizes

E[{Y − m(X1, . . . , XJ )}"	−1{Y − m(X1, . . . , XJ )}] (7.24)
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over all square integrable functions m, where m(x1, . . . , xJ ) = (m(x1), . . . , m(xJ ))".
Note that the transformed response vector 	−1/2Y admits an additive model and
the variance of the transformed error vector 	−1/2ε equals the identity matrix. The
minimizer f satisfies

J∑
j=1

J∑
k=1

σ jkE{[Yj − f (Xj)]g(Xk)} = 0

for all square integrable functions g , where σ jk denotes the (j, k)th entry of the matrix
	−1. This gives the following integral equation for f ;

f (x) = f ∗(x) −
∫

H(x, z)f (z)dz, (7.25)

where

f ∗(x) =
⎡⎣ J∑

j=1

σ jjpj(x)

⎤⎦−1
J∑

j=1

J∑
k=1

σ jkE(Yk |Xj = x)pj(x),

H(x, z) =
⎡⎣ J∑

j=1

σ jjpj(x)

⎤⎦−1
J∑

j=1

J∑
k 
=j

σ jkpjk(x, z).

Here, pj and pjk denote the densities of Xj and (Xj , Xk), respectively. The quantities f ∗,
pj , and pjk can be estimated by the standard kernel smoothing techniques. Plugging
these into (7.25) gives an integral equation for estimating f .

One may apply other weighting schemes replacing 	−1 at (7.24) by a weight matrix
W. It can be shown the choice W = 	−1 leads to an estimator with the minimal
variance, see Carroll, Maity, Mammen, and Yu (2009) for details. The foregoing
weighted least squares regression may be extended to the additive regression model
Yij = ∑D

d=1 fd(Xd
ij ) + εij with covariates Xij = (X1

ij , . . . , XD
ij )". Details are also given in

Carroll, Maity, Mammen, and Yu (2009).

7.3.3. Panels with Individual Effects

Suppose we have panel data (Xij , Yij) for i = 1, . . . , n and j = 1, . . . , J . We assume that

Yij = f (Xij) +αi + εij, (7.26)

where αi are the unobserved random or nonrandom individual effects that are invari-
ant over time j, and εij are errors such that E(εij |Xi1, . . . , XiJ ) = 0. The individual effect
αi can be uncorrelated or correlated with the regressors Xi1, . . . , XiJ and the error vari-
ables εij. If E(αi|Xi1, . . . , XiJ ) = 0, then the model reduces to the model considered in
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Subsection 7.3.2. An interesting case is when the individual effect is correlated with
the regressors so that E(αi|Xi1, . . . , XiJ ) 
= 0. In this case, the ordinary nonparametric
kernel regression fails to obtain a consistent estimator. Recall that the latter is also the
case with parametric linear regression.

Here again, we may use a simple linear transformation to remove the unobserved
individual effect from the regression model. Let Zi =∑J

j=1 ajYij for some constants aj

such that
∑J

j=1 aj = 0. Examples include

(i) a1 = ·· · = ak−2 = 0, ak−1 = −1, ak = 1, ak+1 = ·· · = aJ = 0 for some 1 ≤ k ≤ J ;
(ii) a1 = ·· · = ak−1 = −J−1, ak = 1− J−1, ak+1 = ·· · = aJ = −J−1 for some 1 ≤ k ≤ J .

For the transformed response variables Zi , we obtain

Zi =
J∑

j=1

ajf (Xij) + ui, (7.27)

where ui =
∑J

j=1 ajεij has zero conditional mean given Xi1, . . . , XiJ . Let Z and Xj denote
the generics of Zi and Xij , respectively. Since f minimizes the squared error risk E[Z −∑J

j=1 ajm(Xj)]2 over m, it satisfies

E

⎧⎨⎩
⎡⎣Z −

J∑
j=1

ajf (Xj)

⎤⎦ J∑
j=1

ajg(Xj)

⎫⎬⎭= 0 (7.28)

for all square integrable functions g . Equation (7.28) is equivalent to

∫ ⎡⎣ J∑
j=1

ajE(Z|Xj = x)pj(x) −
J∑

j=1

J∑
k 
=j

ajakE[f (Xk)|Xj = x]pj(x) − f (x)
J∑

j=1

a2
j pj(x)

⎤⎦
× g(x)dx = 0,

where pj and pjk denote the density of Xj and (Xj , Xk), respectively. This gives the
following integral equation

f (x) = f ∗(x) −
∫

H(x, z)f (z)dz, (7.29)

where

f ∗(x) =
⎡⎣ J∑

j=1

a2
j pj(x)

⎤⎦−1
J∑

j=1

ajE(Z|Xj = x)pj(x),

H(x, z) =
⎡⎣ J∑

j=1

a2
j pj(x)

⎤⎦−1
J∑

j=1

J∑
k 
=j

ajakpjk(x, z).
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As in the additive regression model, we need a norming condition for identification
of f in the transformed model (7.27). The reason is that in the transformed model we
have

∑J
j=1 ajf (Xij) =∑J

j=1 aj[c + f (Xij)] for any constant c since
∑J

j=1 aj = 0. We may

also see this from the integral equation (7.29) since
∫
H(x, z)dz = −1. For a norming

condition, we may define αi such that E(Yij) = Ef (Xij). This motivates the normalizing
constraint

J−1
J∑

j=1

∫
f̂ (x)̂pj(x)dx = n−1J−1

n∑
i=1

J∑
j=1

Yij

for an estimator f̂ of f . For a kernel estimator based on differencing, see also
Henderson, Carroll, and Li (2008).

The differencing technique we have discussed above may also be applied to a more
general setting that allows for discrete response variables. For example, consider a
binary response model where each of the n subjects has matched observations (Xij, Yij)
such that the responses Yij, conditionally on the regressors Xi1, . . . , XiJ and the indi-
vidual effect αi , are independent across j and have Bernoulli distributions with success
probabilities p(Xij ,αi), respectively. Assume that

log

[
p(Xij ,αi)

1 − p(Xij,αi)

]
= f (Xij) +αi

and consider the case where J = 2 for simplicity. Let Zi = I(Yi1 = 1) and Ni = Yi1 +Yi2,
where I denotes the indicator function. Then, it can be shown that

log

[
E(Zi|Xi1, Xi2, Ni = 1)

1 − E(Zi|Xi1, Xi2, Ni = 1)

]
= f (Xi1) − f (Xi2). (7.30)

This follows from the equation

E(Zi|Xi1, Xi2, Ni = 1) = E
[
p(Xi1,αi)(1 − p(Xi2,αi))|Xi1, Xi2

]
E
[
p(Xi1,αi)(1 − p(Xi2,αi)) + p(Xi2,αi)(1 − p(Xi1,αi))|Xi1, Xi2

]
and the fact that

p(Xi1,αi)[1 − p(Xi2,αi)]

p(Xi1,αi)[1 − p(Xi2,αi)] + p(Xi2,αi)[1 − p(Xi1,αi)]
= exp[f (Xi1) − f (Xi2)]

1 + exp[f (Xi1) − f (Xi2)]

does not involve αi . This generalizes an observation that has been made for para-
metric conditional maximum likelihood estimation in panel logit models; see Rasch
(1960), Rasch (1961), Andersen (1970), and Chamberlain (1994). For extensions of
the conditional logit approach see Magnac (2004).

Let Z , Xj , Yj denote the generics for Zi , Xij, Yij, respectively. The function f in the
transformed model (7.30) maximizes the expected log-likelihood, so that it satisfies

E I(N = 1)
[
Z − η(X1, X2; f )

]
[g(X1) − g(X2)] = 0
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for all square integrable function g , where

η(x, y; m) = exp[m(x) − m(y)]

1 + exp[m(x) − m(y)]
.

It can be shown that f satisfies F(f ) = 0, where F is a nonlinear operator defined by

F(m)(x) = E[I(N = 1)(Z − η(X1, X2; m))|X1 = x]

× p1(x) − E[I(N = 1)(Z − η(X1, X2; m))|X2 = x]p2(x)

and pj denotes the density of Xj , j = 1, 2. Here, we also need a norming condition for
identifiability of f . The integral equation F(m) = 0 is nonlinear, but it can be linearized
in the same way as the nonlinear equation in Section 7.2. The linear approximation
basically puts the problem back to the framework for the model (7.26). To detail this,
define η1(x, y; m) = [1 + exp(m(x) − m(y))]−2 and let f [0] be a function close to f .
Note that F(m) # F(f [0]) + F1(f [0])(m − f [0]), where F1(f [0]) is a linear operator and
F1(f [0])(g) denotes the Fréchet differential of F at f [0] with increment g . Put δ = f −
f [0] and

H0(x, y) = E
[
I(N = 1)|X1 = x, X2 = y

]
η1(x, y; f [0])p12(x, y)

+ E
[
I(N = 1)|X1 = y, X2 = x

]
η1(y, x; f [0])p12(y, x),

where p12 denotes the density of (X1, X2). Then, the approximating linear integral
equation F(f [0]) + F1(f [0])(δ) = 0 is equivalent to

δ(x) = δ∗(x) −
∫

H(x, y)δ(y)dy, (7.31)

where

δ∗(x) =
[∫

H0(x, y)dy

]−1

F(f [0])(x),

H(x, y) = −
[∫

H0(x, z)dz

]−1

H0(x, y).

We may estimate F and H0 by kernel methods. Plugging the estimators F̂ and Ĥ0

into (7.31) gives an integral equation for the update f̂ [1] of the starting estimator f̂ [0].
The statistical properties of the resulting backfitting algorithm and the limit of the
algorithm f̂ which satisfies F̂ (̂f ) = 0 have been studied by Hoderlein, Mammen, and
Yu (2011).
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7.3.4. Additive Models for Panels of Time Series and
Factor Models

Similar to (7.26), one can consider models with an unobserved time effect ηt instead
of an individual effect. We now denote time by t . Suppose that we have panel data
(X1

it , . . . , Xd
it , Yit ) for individuals 1 ≤ i ≤ n and time points 1 ≤ T . We assume that

Yit =
d∑

j=1

mj(X
j
it ) + ηt + εit . (7.32)

This model naturally generalizes linear panel data models. It has been studied in Mam-
men, Støve, and Tjøstheim (2009) for two asymptotic frameworks: n → ∞, T fixed

and n, T → ∞. Their asymptotic analysis includes the case where {Xj
it }, j = 1, . . . , p,

are time lagged values of Yit . No assumptions are made on the unobserved tempo-
rary effects ηt . They may be deterministic or random, and they may be correlated with
covariates or error terms. The basic idea of Mammen, Støve, and Tjøstheim (2009) is to
use difference schemes that cancel out the time effects ηt , simliar to the approaches in
the last subsection that cancel out individual effects. Here, the values ηt are nuissance
parameters.

In Linton and Nielsen (2009) also the model (7.32) is considered, but the statis-
tical aim there is inference on the structure of ηt . It is assumed that ηt is a random
process following a parametric specification. A two-step procedure is proposed where
the process ηt is fitted in the first step. In their mathematics they compare parametric
inference based on the fitted values of ηt with an infeasible statistical inference that is
based on the unobserved ηt . The main result is that these two approaches are asymp-
totically equivalent. This can be interpreted as an oracle property and it can be used to
construct efficient estimators of the parameters.

Another modification of model (7.32) is the factor model

Ytl = m0(X0
tl) +

d∑
j=1

Z
j
t mj(X

j
tl) + εtl (7.33)

for l = 1, . . . , L. Here, the dynamics of the L-dimensional process Yt is approximated
by the unobserved d-dimensional time series Zt . The basic idea is that elements Ytl

of Yt with similar characteristics (X
j
tl : 1 ≤ j ≤ d) show similar dynamics and that the

dynamics of Yt can be accurately modeled by choices of d that are much smaller than L.
This model has been applied in Connor, Hagmann, and Linton (2012) to the analysis

of stock returns Ytl with characteristics (X
j
tl : 1 ≤ j ≤ d). Again, a two-step procedure

is proposed where in the first-step the unobserved process Zt is fitted. Also, an oracle
property applies: Inference based on estimates Ẑt of Zt is asymptotically equivalent to
infeasible inference based on the unobserved Zt .
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In Fengler, Härdle, and Mammen (2007) and Park, Mammen, Härdle, and Borak
(2009) the following model has been considered:

Ytl = m0(Xtl) +
d∑

j=1

Z
j
t mj(Xtl) + εtl.

This model differs from (7.33) because now the nonparametric components mj are
functions of a single characteristic Xtl . As a result, the multivariate time series Zt is
only identified up to linear transformations. Again, an oracle property for paramet-
ric inference based on fitted values was shown in Park, Mammen, Härdle, and Borak
(2009). The model has been used in functional principal component analysis. One
application in Fengler, Härdle, and Mammen (2007) and Park, Mammen, Härdle, and
Borak (2009) is for implied volatility surfaces that develop over time. The surfaces
are approximated by a finite-dimensional process and the random movement of the
surfaces is then analyzed by a VAR representation of the finite-dimensional process.

7.3.5. Semiparametric GARCH Models

Another example that leads to an additive model is a semiparametric GARCH model.
In this model we observe a process Yt such that E(Yt |Ft−1) = 0, where Ft−1 denotes
the sigma field generated by the entire past history of the Y process, and σ 2

t ≡
E(Y 2

t |Ft−1) assumes a semiparametric model

σ 2
t = θσ 2

t−1 + f (Yt−1). (7.34)

This model is a natural generalization of the GARCH(1,1) model of Bollerslev (1986),
where a parametric assumption is made on f such that f (x) = α + βx. The gener-
alization was introduced by Engle and Ng (1993) to allow for more flexibility in the
“news impact curve”—that is, the function f , which measures the effect of news onto
volatilities in financial markets.

The parameters θ and the function f in the semiparametric model (7.34) are
unknown. Since E(Y 2

t |Ft−1) = ∑∞
j=1 θ

j−1f (Yt−j), the parameter θ and the function

f (·,θ) together minimize E[Y 2
0 − ∑∞

j=1 θ
j−1f (X−j)]2. For each θ , let fθ denote the

minimizer of the criterion. Then, it satisfies

∞∑
j=1

∞∑
k=1

θ j+k−2fθ (Y−k)g(Y−j) =
∞∑

j=1

E[Y 2
0 θ

j−1g(Y−j)]

for all square integrable functions g . This gives the following integral equation.

fθ (x) = f ∗
θ (x) −

∫
Hθ (x, y)fθ (y)dy, (7.35)
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where

f ∗
θ (x) = (1 − θ2)

∞∑
j=1

θ j−1E(Y 2
0 |Y−j = x),

Hθ (x, y) =
∞∑

j=1

θ j
[

p0,−j(x, y) + p0,j(x, y)

p0(x)

]
,

p0 and p0,j are the densities of Y0 and (Y0, Yj), respectively. For an asymptotic and
empirical analysis of the estimators based on the integral equation (7.35), we refer to
Linton and Mammen (2005). For a recent extension of the model, see also Chen and
Ghysels (2011).

7.3.6. Varying Coefficient Models

Suppose we are given a group of covariates X1, . . . , Xd and a response Y . The most gen-
eral form of varying coefficient model was introduced and studied by Lee, Mammen,
and Park (2012a). It is given by

E(Y |X1, . . . , Xd) = g−1

⎛⎝∑
k∈I1

Xkfk1(X1) + ·· ·+
∑
k∈Ip

Xkfkp(Xp)

⎞⎠, (7.36)

where g is a link function and p ≤ d. The index sets Ij may intersect with each other,
but each Ij does not include j. It is also allowed that the two groups of covariates, {Xj : 1

≤ j ≤ p} and {Xk : k ∈ ∪p
j=1Ij}, may have common variables. The coefficient functions

are identifiable if we set the following constraints: for non-negative weight functions
wj, (i)

∫
fkj(xj)wj(xj)dxj = 0 for all k ∈∪p

j=1Ij and 1 ≤ j ≤ p; (ii)
∫

xjfkj(xj)wj(xj)dxj = 0

for all j, k ∈ {1, . . . , p} ∩ ( ∪p
j=1 Ij). In this model, the effect of the covariate Xk for k ∈

∪p
j=1Ij is set in a nonparametric way as

∑
j:Ij$k fkj(Xj). The model is flexible enough

to include various types of varying coefficient models as special cases. For example, it
is specialized to the generalized additive model discussed in Section 7.2.7 if one takes
I1 = ·· · = Ip = {p + 1} and sets Xp+1 ≡ 1. The model also reduces to the varying
coefficient model studied by Lee, Mammen, and Park (2012b) and Yang, Park, Xue,
and Härdle (2006) if the two groups, {Xj : 1 ≤ j ≤ p} and {Xk : k ∈ ∪p

j=1Ij}, are disjoint
and the sets Ij contain only one element (1 ≤ j ≤ p). In this case, one can rewrite model
(7.36) as

Yi = g−1

⎛⎝ p∑
j=1

Z
j
i fj(X

j
i )

⎞⎠+ εi .

With an identity link g and with the additional constraint fj ≡ f , this model has
been used in Linton, Mammen, Nielsen, and Tanggaard (2001) for nonparametric
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estimation of yield curves by smoothed least squares. There, Yi was the trading price

of a coupon bond, Z
j
i denotes the payment returned to the owner of bond i at date

X
j
i , and f is the discount function. In case p = 1 and I1 = {2, . . . , d}, the approach with

disjoint sets of covariates results in the model studied, for example, by Fan and Zhang
(1999).

For simplicity, suppose that the link g is the identity function. In this case, the coeffi-

cient functions fkj minimize E
[

Y −∑
k∈I1

Xkfk1(X1) − ·· ·−∑
k∈Ip

Xkfkp(Xp)
]2

. This

gives the following system of integral equations for fkj : for 1 ≤ j ≤ p, we have

fj(xj) =E(XjX
"
j |Xj = xj)−1E(XjY |Xj = xj) − E(XjX

"
j |Xj = xj)−1

×
p∑

l=1, 
=j

∫
E
[

XjX
"
l |Xj = xj , Xl = xl

]
fl(xl)

pjl(xj , xl)

pj(xj)
dxl ,

where Xj = (Xk: k ∈ Ij) and fj = (fkj : k ∈ Ij). Note that Xj does not contain Xj as its
entry. To get an empirical version of the above integral equations, one may replace the
conditional expectations, the joint density pjl of (Xj , Xl), and the marginal density pj of
Xj by kernel estimators. Lee, Mammen, and Park (2012a) presented complete theory
for the estimation of the general model (7.36). Their theory includes sieve and penal-
ized quasi-likelihood estimation as well as the smooth backfitting method described
above.

7.3.7. Missing Observations

Additive models can also be consistently estimated if the tuples (Yi , X1
i , . . . , Xd

i ) are only
partially observed. We will discuss this for a simple scheme of missing observations.

Let Njk denote the set of indices i where X
j
i and Xk

i are observed; Nj the set of indices i

where X
j
i is observed; N0j the set of indices i where X

j
i and Yi are observed; and N0 the

set of indices i where Yi is observed.

• Denote by Njk the set of indices i where X
j
i and Xk

i are observed.

• Denote by Nj the set of indices i where X
j
i is observed.

• Denote by N0j the set of indices i where X
j
i and Yi are observed.

• Denote by N0 the set of indices i where Yi is observed.

These sets may be random or nonrandom. We denote the number of elements of these

sets by Njk, Nj , N0j or N0, respectively. We assume that the observations {(X
j
i , Xk

i ) : i ∈
Njk}, {Xj

i : i ∈Nj}, {(X
j
i , Yi) : i ∈N0j}, and {Yi : i ∈N0} are i.i.d. This assumption holds

under simple random missingness schemes and also in the case of pooling samples
where different subsets of covariates were observed.
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Then, under the assumption that Njk → ∞, Nj → ∞, N0j → ∞ and N0 → ∞, the
estimators of pXj ,Xk , pXj , f ∗

j , and μ that are based on the subsamples Njk, Nj , N0j , and
N0, respectively, are consistent. More precisely, for 1 ≤ j 
= k ≤ d, put

p̃Xj ,Xk (xj , xk) = 1

Njkhjhk

∑
i∈Njk

K

(
X

j
i − xj

hj

)
K

(
Xk

i − xk

hk

)
,

p̃Xj (xj) = 1

Njhj

∑
i∈Nj

K

(
X

j
i − xj

hj

)
,

f̃ ∗
j (xj) = p̃Xj (xj)−1 1

N0jhj

∑
i∈N0j

K

(
X

j
i − xj

hj

)
Yi ,

μ̃ = 1

N0

n∑
i∈N0

Yi.

Under appropriate conditions on the bandwidths hj, these estimators converge to
pXj ,Xk (xj , xk), pXj (xj), f ∗

j (xj), and μ, respectively, in probability. Similarly as in

Eq. (7.6), we consider the solutions f̃1, . . . , f̃d of the equations

f̃j(xj) = f̃ ∗
j (xj) − μ̃−

∑
k 
=j

∫
p̃Xj ,Xk (xj , xk)

p̃Xj (xj)
f̃k(xk) dxk .

Using the stochastic convergence of p̃Xj ,Xk (xj , xk), p̃Xj (xj), f̃ ∗
j (xj), and μ̃, one can show

that f̃j(xj) converges in probability to fj(xj) for 1 ≤ j ≤ d. These consistency proofs
can be generalized to more complex missingness schemes. Furthermore, under appro-
priate conditions, one can study normal distribution limits of these estimators. We
remark that these identification, consistency, and asymptotic normality results are not
available for the full-dimensional model specification: Y = f (X1, . . . , Xd) + ε.

7.3.8. Additive Diffusion Models

Some multivariate diffusion models are based on additive parametric specifications
of the mean. Nonparametric generalizations of such models were considered in Haag
(2006). There also nonparametric specifications of the volatility term were considered.

7.3.9. Simultaneous Nonparametric Equation Models

Additive models also naturally occur in economic models, where some covariates are
correlated with the disturbance. Despite these so-called endogenous regressors, such
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models can be identified via a control function approach. In particular, Newey, Powell,
and Vella (1999) proposed the following model with additive error terms:

Y = f (X1, Z1) + e ,

where X1 and Z1 are observed covariates and Y is a one-dimensional response. While
Z1 is independent of the error variable e, no assumptions are made on the dependence
between X1 and e at this stage. For identification, however, assume that the following
control equation holds for the endogenous variable X1:

X1 = h(Z1, Z2) + V ,

where Z2 is an observed covariate not contained in the original equation and (Z1, Z2)
is independent of the joint vector of errors (e, V ).

Under the stated independence conditions, it follows that

E(Y |X1, Z1, Z2) = f (X1, Z1) +λ(V ) = E[Y |X1, Z1, V ] (7.37)

with λ(V ) = E(e|V ). Thus, we get an additive model where the regressor in the
second additive component is not observed but can be estimated as residual of the
control equation. This additive model can be also obtained under slightly weaker con-
ditions than the above independence conditions, namely under the assumption that
E(e|Z1, Z2, V ) = E(e|V ) and E(V |Z1, Z2) = 0. The corresponding system of integral
equations to be solved for (7.37) is

f (x1, z2) = f ∗(x1, z2) −
∫

pX1,Z2,V (x1, z2, v)

pX1,Z2(x1, z2)
λ(v)dv

λ(v) = λ∗(v) −
∫

pX1,Z2,V (x1, z2, v)

pV (v)
f (x1, z2)d(x1, z2),

where f ∗(z1, z2) = E[Y |(X1, Z1) = (x1, z2)] and λ∗(v) = E(Y |V = v). Note that some
ingredients of the smooth backfitting iteration algorithm thus require nonparamet-
ric pre-estimates of marginal objects with the nonparametrically generated regressor
V̂ = X1 − ĥ(Z1, Z2). The paper by Mammen, Rothe, and Schienle (2012) studies
how asymptotic theory in nonparametric models has to be adjusted to take care of
nonparametrically generated regressors.

7.4. Nonstationary Observations
.............................................................................................................................................................................

Additive models are a powerful tool in case of stochastically nonstationary covariates.
For this data generality, consistent estimation of a fully nonparametric model requires
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that the whole compound vector fulfills a specific recurrence condition; that is, it has
to be guaranteed that the full-dimensional process X returns infinitely often to local
neighborhoods (see, for example, Karlsen and Tjøstheim (2001), Wang and Phillips
(2009), and Karlsen, Myklebust, and Tjøstheim (2007)). For an additive model, how-
ever, recurrence conditions are only needed for two-dimensional subvectors of X . An
illustrative example is a multivariate random walk. A fully nonparametric model can-
not be consistently estimated for dimensions greater than two, since beyond dimension
two random walks become transient and do not fulfill the above recurrence property.
For an additive model, however, there is no dimension restriction, because any pair
of bivariate random walks is recurrent. Here we briefly outline the main ideas. The
detailed theory of additive models for nonstationary covariates is developed in Schienle
(2008).

The setting is as follows: Suppose we want to estimate a standard additive model
(7.1) where covariates and response are potentially nonstationary Markov chains but
satisfy a pairwise recurrence condition, and the residual is stationary mixing. Instead of
a stationary data generating process density function, a nonstationary pairwise recur-
rent Markov chain can be characterized by the densities of pairwise bivariate invariant
measures πjk with j, k ∈ {1, . . . , d}. For the specific kind of recurrence imposed, it is
guaranteed that such a bivariate invariant measure exists for each pair and is unique
up to a multiplicative constant; but it is generally only finite on so-called small sets
and only σ -finite on the full support. Note, for example, that for random walks any
compact set is small.

Furthermore, under the type of pairwise recurrence imposed, bivariate component
Markov chains (Xj , Xk) = (Xjk) can be decomposed into i.i.d. parts of random length
depending on the recurrence times of the chain. In particular, the stochastic number
of recurrence times T jk(n) characterizes the amount of i.i.d. block observations and
thus corresponds to the effective sample size available for inference with the particular
pair of components. Thus for different components and pairs of components avail-
able, effective sample sizes are path-dependent and generally vary depending on the
recurrence frequency being smaller for more nonstationary processes and closer to the
stationary deterministic full sample size n for more stationary processes. Correspond-
ingly, consistent kernel-type estimators are weighted averages of Tjk(n) i.i.d. block
elements

π̂jk(xjk) = 1

T jk(n)

∑
i∈Ijk

K

(
X

jk
i − xjk

hjk

)
,

f̂j(xj) =
⎡⎣∑

i∈Ij

K

(
X

j
i − xj

hj

)⎤⎦−1∑
i∈Ij

K

(
X

j
i − xj

hj

)
Yi ,

(7.38)
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π̂
(k)
j (xj) = 1

Tjk(n)

∑
i∈Ijk

K

(
X

j
i − xj

hj

)
,

f̂ (k)
j (xj) =

⎡⎣∑
i∈Ijk

K

(
X

j
i − xj

hj

)⎤⎦−1∑
i∈Ijk

K

(
X

j
i − xj

hj

)
Yi.

(7.39)

The estimators in (7.38) provide pointwise consistent estimates of the correspond-
ing bivariate invariant measure density πjk and a general nonparametric link function
fj , respectively (see Karlsen, Myklebust, and Tjøstheim (2007)). Their rates of conver-
gence are driven by respective recurrence frequencies and occupation times L̂jk(xjk) =∑

i∈Ijk
Kxjk ,hjk

(X
jk
i ) and L̂j , respectively, which are generally of different order on aver-

age over all sample paths. Asymptotically in both cases, they are on average of size

(nβ jk
h)−1/2 and (nβ j

h)−1/2, respectively, where the global β jk-parameter ∈ [0, 1] char-
acterizes the underlying type of nonstationarity of the corresponding recurrent chain
as the tail index on the distribution of recurrence times. For a bivariate random walk
we have β jk = 0, for a stationary process we have β jk = 1 recovering standard rates,
and generally β jk ≤ β j . The kernel estimators in (7.39) artificially “downgrade” their
univariate speed of convergence to the respective bivariate one. Note that the index sets
Ijk ensure that only T jk(n) i.i.d. sub-blocks are considered of the T j(n) original ones.

For balancing terms in the empirical version of the smooth backfitting integral

equations, such potentially slower-than-standard estimators π̂
(k)
j , π̂

(k)
jl , and f̂ (k)

j of

bivariate nonstationary type βjk are necessary. Also in the backfitting operator for
component j, the impact of other directions on any pair of components containing
Xj might now differ depending on respective occupation times of component pairs.
Both aspects are reflected by a respectively generalized procedure ensuring consistent
estimates. The generalized smooth backfitting estimates (̂fj)d

j=1 are defined as

f̂j(xj) = 1

d − 1

⎡⎣∑
k 
=j

(̂
f (k)∗
j (xj) − f̂ (k)∗

0,j

)
−
∑
k 
=j

1

λ̂jk

∑
l 
=j

∫
Gl

f̂l(xl)
π̂

(k)
jl (xjl)

π̂
(k)
j (xj)

dxl

⎤⎦, (7.40)

where f̂ (k)∗
j (xj) are the marginal local constant estimates with bivariate speed of

convergence as defined above and constants

f̂ (k)∗
0,j =

∫
Gj

f̂ (k)∗
j (xj)π̂ (k)

j (xj)dxj∫
Gj
π̂

(k)
j (xj)dxj

= 1

Tjk(n)

∑
i∈Ijk

Yi , (7.41)

which follow from appropriate analogues of the standard norming constraints∑
k 
=j

∫
Gj

fj(xj)π (k)
j (xj)dxj = 0. (7.42)
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Note that asymptotically in the projection part of (7.40), only those elements π̂jl

prevail, where β jl = β jk while all others vanish. The projection property of stan-
dard backfitting only prevails in a generalized sense, since in general an invariant
measure for the full-dimensional compound process does not exist for pairwise
recurrent X . For each j and k, λ̂jk counts the number of such elements in the
sample. In a nonstationary setting, also the regions of integration Gj must be
chosen with some care to ensure that integrals exist. Related to small sets—for
example, in a random walk case—compact areas are appropriate. If all pairs of
components of X have the same type of nonstationarity, the backfitting equations
reduce to

f̂j(xj) = 1

d − 1

∑
k 
=j

(̂
f (k)∗
j (xj) − f̂ (k)∗

0,j

)
−
∑
k 
=j

∫
Gk

f̂k(xk)
π̂jk(xjk)

π̂
(k)
j (xj)

dxk ,

since λjk = d − 1 and π̂
(k)
jl = π̂jl in this case. In particular, for the special case of iden-

tical one- and two-dimensional scales, generalized smooth backfitting reduces to the
standard case. This usually occurs for sufficiently stationary data.

Asymptotic results for the generalized backfitting are univariate in form; that is, the
standard curse of dimensionality can be circumvented. However, they are driven by
the worst-case bivariate type of nonstationarity in the data. In particular, the difference
between the true component function fj and the backfitting estimate f̂j is asymptotically

normal when inflated with the stochastic occupation time factor
√

mink 
=j L̂(k)
j (xj)h.

Because L̂(k)
j is asymptotically of the same order as T jk(n), the rate of convergence is,

on average, of size
√

nβ j++εh, where β j+ is the highest degree of nonstationarity, and
thus the smallest number among the β jk , and ε > 0 is very small. That means, if all
components are random walks—that is, β jk = 0—estimation of each component is
possible, but with logarithmic rate. This should be compared to the fact that a fully
nonparametric model cannot be estimated in this case where the compound vector is
transient. If one component Xj0 follows a random walk and all others are stationary,

all components are estimated at rate
√

nβ j0 h =
√

n1/2h.

7.5. Noisy Fredholm Integral Equations

of Second Kind
.............................................................................................................................................................................

As outlined in Subsection 7.2.4, we can define the smooth backfitting estimators in
the additive models as solutions of an integral equation f̂(x) = f̂∗(x)−∫

Ĥ(x, z)̂f(z)dz,
where f̂(x1, . . . , xd) = (̂f1(x1), . . . , f̂d(xd))", f̂∗(x1, . . . , xd) = (̂f ∗

1 (x1), . . . , f̂ ∗
d (xd))", and

the integral kernel Ĥ(x, z) equals a matrix with elements p̂Xj ,Xk (xj , xk)/̂pXj (xj). We also



206 additive models

rewrite this noisy integral equation as

f̂ = f̂∗ − Ĥ̂f.

In Section 7.3 we have also seen that smooth least squares for various models leads to
estimators that are given as solutions of such noisy integral equations. There are several
approaches to the numerical solution of the integral equation. As already mentioned
in Subsection 7.2.4, one can use a discrete approximation of the integral equation for
the numerical solution. This results in a finite system of linear equations that can be
solved by standard methods. One approach would be based on a iterative scheme that
uses a discrete approximation of the iteration steps:

f̂NEW = f̂∗ − Ĥ̂fOLD .

If f̂ is a d-dimensional vector of functions with d ≥ 2, one can also use an iteration
scheme that runs cyclically through componentwise updates

f̂ NEW
j = f̂ ∗

j − Ĥĵf
OLD, 1 ≤ j ≤ d,

with an obvious definition of Ĥj. This was the algorithm we discussed in Subsection
7.2.1. Compare also the Gauss–Seidel method and the Jacobi method in numerical
linear algebra.

We now use the definition of the estimators by a noisy integral equation for an
asymptotic understanding of the distributional properties of the estimators. We con-
sider the case of one-dimensional f̂ and f̂∗ and we rewrite the equation as f̂ = f̂ ∗ − Ĥf̂ .
We now suppose that f̂ ∗ is a smoothing estimator with

f̂ ∗ ≈ f̂ ∗
A + f ∗ + f ∗

B ,

where f̂ ∗
A is the stochastic part of f̂ ∗ that is of order (nh)−1/2. The function f ∗ is the

stochastic limit of f̂ ∗ and f ∗
B is a bias term that we suppose to be of the standard order

h2. Here, h is a bandwidth that is chosen of order n−1/5 so that the stochastic term
and the bias term are of order n−2/5. A similar discussion applies to Ĥf . This variable
has stochastic limit Hf , where H is the stochastic limit of Ĥ. We now get

Ĥf ≈ (Ĥf )A +Hf + (Hf )B,

where (Ĥf )A is the stochastic part of Ĥf . Again this term is of order (nh)−1/2.
Although Ĥ is a higher-dimensional smoother, all variables up to one are integrated
out in Ĥf . Furthermore, (Hf )B is a bias term that is of order h2. By subtracting
f = f ∗ −Hf from f̂ = f̂ ∗ − Ĥ̂f , we get

f̂ − f = f̂ ∗ − f ∗ − Ĥf̂ +Hf

= f̂ ∗ − f ∗ −H(̂f − f ) − (Ĥ−H)f − (Ĥ−H)(̂f − f )

≈ f̂ ∗ − f ∗ −H(̂f − f ) − (Ĥ−H)f .
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Now, simple algebra gives

f̂ − f ≈ (I +H)−1(̂f ∗ − f ∗ − (Ĥ−H)f )

≈ (I +H)−1(̂f ∗
A + f ∗

B − (Ĥf )A − (Hf )B).

We now argue that (I +H)−1̂f ∗
A ≈ f̂ ∗

A and (I +H)−1(Ĥf )A ≈ (Ĥf )A. These claims
follow immediately from (I +H)−1 = I − (I +H)−1H, Hf̂ ∗

A ≈ 0 and H(Ĥf )A ≈ 0.
Here, the first equality can be easily seen by multiplying both sides of the equation with
(I +H). For the two approximations, one notes that the integral, over an interval, of
the stochastic part of a kernel smoother is typically of order n−1/2. For example, one
has

∫
w(x)n−1∑n

i=1 Kh(x −Xi)εi dx = n−1∑n
i=1 wh(Xi)εi with wh(u) = ∫

w(x)Kh(x −
u) dx, which is of order n−1/2. Using the above approximations, we get that

f̂ − f ≈ (I +H)−1(̂f ∗
A + f ∗

B − (Ĥf )A − (Hf )B)

= f̂ ∗
A − (Ĥf )A − (I +H)−1H(̂f ∗

A − (Ĥf )A) + (I +H)−1(f ∗
B − (Hf )B)

≈ f̂ ∗
A − (Ĥf )A + (I +H)−1(f ∗

B − (Hf )B).

The expressions on the right-hand side of this expansion can be easily interpreted.
The first term f̂ ∗

A − (Ĥf )A is of order (nh)−1/2 and asymptotically normal with mean
zero. This can be shown as in classical kernel smoothing theory. The second term (I +
H)−1(f ∗

B − (Hf )B) is purely deterministic, and it is of order h2 because already f ∗
B −

(Hf )B is of this order. For a more detailed discussion of the above arguments, we refer
to Mammen, Støve, and Tjøstheim (2009) and Mammen and Yu (2009).

We conclude this section by noting that the above noisy integral equations are quite
different from integral equations of the form

0 = f̂∗ − Ĥ̂f.

This is called an ill-posed inverse problem because, typically, the eigenvalues of the
operator Ĥ accumulate at 0. For this reason the inverse of the operator Ĥ is not con-
tinuous. The integral equation studied in this chapter leads to the inversion of the
operator (I + Ĥ). The eigenvalues of this operator accumulate around 1 and allow for
a continuous inverse of (I + Ĥ). Thus our setup is quite different from ill-posed prob-
lems. For a discussion of ill-posed problems, we refer to Carrasco, Florens, and Renault
(2006), Chen and Reiss (2011), Darolles, Florens, and Renault (2011), Donoho (1995),
Engl and Neubauer (1996), Johnstone and Silverman (1990), and Newey and Powell
(2003).

Notes
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8.1. Introduction
.............................................................................................................................................................................

One of the most popular nonparametric techniques in applied econometric analysis is
sieve regression. A sieve is sequence of finite-dimensional models of increasing com-
plexity. The most common examples of sieve regression are polynomials and splines.
For a fixed order of complexity, the model can be estimated by classical (parametric)
methods. An important difference with parametric regression is that the order of the
sieve (the number of regressors) must be selected. This fundamentally changes both
the distributional theory and applied practice.

In this chapter we consider selection and combination of nonparametric sieve
regression estimators. We review the concepts of series and sieve approximations,
introduce least squares estimates of sieve approximations, and measure the accuracy
of the estimators by integrated mean-squared error (IMSE). We show that a critical
issue in applications is the order of the sieve, because the IMSE greatly varies across the
choice.

We develop the relationship between IMSE and mean-squared forecast error
(MSFE), and we introduce the cross-validation criterion as an estimator of MSFE and
IMSE. A major theoretical contribution is that we show that selection based on cross-
validation is asymptotically equivalent (with respect to IMSE) to estimation based on
the infeasible best sieve approximation. This is an important extension of the theory
of cross-validation, which currently has only established optimality with respect to
conditional squared error.
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We also introduce averaging estimators, which are weighted averages of sieve regres-
sion estimators. Averaging estimators have lower IMSE than selection estimators.
The critical applied issue is the selection of the averaging weights. Following Hansen
and Racine (2012) we introduce a cross-validation criterion for the weight vector,
and recommend selection of the weights by minimizing this criterion. The resulting
estimator—jackknife model averaging (JMA)—is a feasible averaging sieve estimator.
We show that the JMA estimator is asymptotically optimal in the sense that it is asymp-
totically equivalent (with respect to IMSE) to the infeasible optimal weighted average
sieve estimator. Computation of the JMA weights is a simple application of quadratic
programming. We also introduce a simple algorithm that closely approximates the
JMA solution without the need for quadratic programming.

Sieve approximation has a long history in numerical analysis, statistics, and econo-
metrics. See Chui (1992) and de Boor (2001) for numerical properties of splines,
Grenander (1981) for the development of the theory of sieves, Li and Racine (2006) for
a useful introduction for econometricians, and Chen (2006) for a review of advanced
econometric theory.

Nonparametric sieve regression has been studied by Andrews (1991a) and Newey
(1995, 1997), including asymptotic bounds for the IMSE of the series estimators.

Selection by cross-validation was introduced by Stone (1974), Allen (1974), Wahba
and Wold (1975), and Craven and Wahba (1979). The optimality of cross-validation
selection was investigated by Li (1987) for homoskedastic regression and Andrews
(1991b) for heteroskedastic regression. These authors established that the selected esti-
mated is asymptotically equivalent to the infeasible best estimator, where “best” is
defined in terms of conditional squared error.

Averaging estimators for regression models was introduced by Hansen (2007). A
cross-validation (jacknife) method for selecting the averaging weights was introduced
by Hansen and Racine (2012).

The organization of this chapter is as follows. Section 8.2 introduces nonparametric
sieve regression, and Section 8.3 discusses sieve approximations. Section 8.4 introduces
the sieve regression model and least squares estimation. Section 8.5 derives the IMSE of
the sieve estimators. Section 8.6 is a numerical illustration of how the sieve order is of
critical practical importance. Section 8.7 develops the connection between IMSE and
MSFE. Section 8.8 introduces cross-validation for sieve selection. Section 8.9 presents
the theory of optimal cross-validation selection. Section 8.10 is a brief discussion of
how to preselect the number of models, and Section 8.11 discusses alternative selection
criteria. Section 8.12 is a continuation of the numerical example. Section 8.13 intro-
duces averaging regression estimators, and Section 8.14 introduces the JMA averaging
weights and estimator. Section 8.15 introduces methods for numerical computation
of the JMA weights. Section 8.16 presents an optimality result for JMA weight selec-
tion. Section 8.17 is a further continuation of the numerical example. Section 8.18
concludes. Regularity conditions for the theorems are listed in Section 8.19, and the
proofs of the theoretical results are presented in Section 8.20. Computer programs that
create the numerical work is available on my webpage www.ssc.wisc.edu/~bhansen.

http://www.ssc.wisc.edu/~bhansen


nonparametric sieve regression 217

8.2. NonParametric Sieve Regression
.............................................................................................................................................................................

Suppose that we observe a random sample (yi , xi), i = 1, . . . , n, with yi real-valued and
xi ∈ X possibly vector-valued with X compact and density f (x). We are interested in
estimating the regression of yi on xi, that is, the conditional mean g(x) = E

(
y | x

)
,

which is identified almost surely if E
∣∣y∣∣<∞. We can write the regression equation as

yi = g(xi) + ei, (8.1)

E(ei | xi) = 0. (8.2)

The regression problem is nonparametric when g(x) cannot be summarized by a finite
set of parameters.

Note that Eqs. (8.1) and (8.2) do not impose any restrictions on the regression func-
tion g(x) or on the regression error ei (such as conditional homoskedasticity). This is
because in a nonparametric context the goal is to be minimalistic regarding parametric
assumptions. To develop distributional approximations for estimators, it will be nec-
essary to impose some smoothness and moment restrictions. But these restrictions are
technical regularity conditions, not fundamental features of the nonparametric model.

A sieve expansion for g(x) is a sequence of finite-dimensional models gm(x), m =
1, 2, . . . , with increasing complexity. Particularly convenient are linear sieves, which
take the form

gm(x) =
Km∑
j=1

zjm(x)βjm

= Zm(x)′βm,

where zjm(x) are (nonlinear) functions of x. The number of terms Km indexes the com-
plexity of the approximation, and it plays an important role in the theory. Given a sieve
expansion Zm(x), we define the Km × 1 regressor vector zmi = Zm(xi).

An important special case of a sieve is a series expansion, where the terms zjm(x)
are not a function of the sieve order m. For example, a polynomial series expansion is
obtained by setting zj(x) = xj−1. When the sieve is a series expansion, then the models
are nested in the sense that m2 > m1 implies that gm2 (x) contains gm1 (x) as a special
case.

While polynomial series expansions are quite well known, better approximations
can be typically achieved by a spline. A spline is a piecewise continuous polynomial,
constrained to be smooth up to the order of the polynomial. There is more than one
way to write out the basis of a regression spline. One convenient choice takes the form

gm(x) =
p∑

j=0

xjβjm +
m∑

j=1

βp+j(x − tj)
p1
(
x ≥ tj

)
. (8.3)
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Here, p is the order of the polynomial. There are m constants t1, . . . , tm called knots
which are the join points between the piecewise polynomials. Splines thus have
Km = p + 1 + m coefficients, and a spline has similar flexibility to a (p + m)th-order
polynomial. Splines require a rule to determine the location of the knots tj . A common
choice is to set the knots to evenly partition the support of xi. An alternative is to set
the knots to evenly partition the percentiles of the distribution of xi (that is, if m = 3,
then set t1, t2, and t3 equal the 25th, 50th, and 75th percentile, respectively).

Typically, the order p of the spline is preselected based on desired smoothness (linear,
quadratic, and cubic are typical choices), and the number of knots m are then selected
to determine the complexity of the approximation.

If the knots are set evenly, then the sequence of spline sieves with m = 1, 2, 3, . . . ,
are non-nested in the sense that m2 > m1 does not imply that gm2(x) contains gm1 (x).
However, a sequence of splines can be nested if the knots are set sequentially, or if they
are set to partition evenly but the number of knots doubled with each sequential sieve,
that is, if we consider the sequence m = 1, 2, 4, 8, . . . .

In a given sample with n observations, we consider a set of sieves gm(x) for m =
1, .., Mn, where Mn can depend on sample size. For example, the set of sieve expansions
could be the set of pth-order polynomials for p = 1, . . . , M . Or alternatively, the sieve
could be the set of pth-order splines with m knots, for m = 0, 1, . . . , M − 1.

8.3. Sieve Approximation
.............................................................................................................................................................................

We have been using the notation βm to denote the coefficients of the mth sieve approx-
imation, but how are they defined? There is not a unique definition, but a convenient
choice is the best linear predictor

βm = argmin
β

E
(
yi − z′

miβ
)2

= (
E
(
zmiz

′
mi

))−1
E
(
zmiyi

)
. (8.4)

Given βm, define the approximation error

rm(x) = g(x) − Zm(x)′βm,

set rmi = rm(xi), and define the expected squared approximation error

φ2
m = Er2

mi =
∫

rm(x)2f (x)dx.

φ2
m measures the quality of gm(x) as an approximation to g(x) in the sense that a

smaller φ2
m means a better approximation. Note that φ2

m is the variance of the projec-
tion error from the population regression of the true regression function g(xi) on the
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sieve regressors zmi:

φ2
m =

∫
g(x)2f (x)dx −

∫
g(x)Zm(x)′f (x)dx

(∫
Zm(x)Zm(x)′f (x)dx

)−1

∫
Zm(x)g(x)f (x)dx.

It therefore follows that for nested series approximations, φ2
m is monotonically decreas-

ing as Km increases. That is, larger models mean smaller approximation error.
Furthermore, we can describe the rate at which φ2

m decreases to zero. As discussed
on page 150 of Newey (1997), if dim (x) = q and g(x) has s continuous derivatives,
then for splines and power series there exists an approximation β ′zm(x) such that∣∣g(x) −β′zm(x)

∣∣= O
(

K
−s/q
m

)
, uniformly in x. Thus

φ2
m = inf

β
E
(
g(xi) −β ′zm(xi)

)2 ≤ inf
β

sup
x

∣∣g(x) −β ′zm(x)
∣∣2 ≤ O

(
K

−2s/q
m

)
.

This shows that the magnitude of the approximation error depends on the dimen-
sionality and smoothness of g(x). Smoother functions g(x) can be approximated by
a smaller number of series terms Km, so the rate of convergence is increasing in the
degree of smoothness.

8.4. Sieve Regression Model

and Estimation
.............................................................................................................................................................................

As we have described, for each sieve approximation there are a set of regressors zmi and
best linear projection coefficient βm. The sieve regression model is then

yi = z′
miβm + emi, (8.5)

where emi is a projection error and satisfies

E(zmiemi) = 0.

It is important to recognize that emi is defined by this construction, and it is therefore
inappropriate to assume properties for emi. Rather they should be derived.

Recall that the approximation error is rmi = rm(xi) = g(xi) − z′
miβm. Since the true

regression (8.1) is yi = g(xi) + ei, it follows that the projection error is emi = ei + rmi,
the sum of the true regression error ei and the sieve approximation error rmi.
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The least squares (LS) estimator of Eq. (8.5) is

β̂m =
(

n∑
i=1

zmiz
′
mi

)−1 n∑
i=1

zmiyi,

ĝm(x) = Zm(x)′β̂m.

Least squares is an appropriate estimator because βm is defined as the best linear
predictor. The least squares estimator is a natural moment estimator of the projection
coefficient βm.

8.5. Integrated Mean Squared Error
.............................................................................................................................................................................

As a practical matter, the most critical choice in a series regression is the number of
series terms. The choice matters greatly and can have a huge impact on the empirical
results.

Statements such as “the number of series terms should increase with the sample
size” do not provide any useful guidance for practical selection. Applied nonparamet-
ric analysis needs practical, data-based rules. Fortunately, there are sound theoretical
methods for data-dependent choices.

The foundation for a data-dependent choice is a (theoretical) criterion that measures
the performance of an estimator. The second step is to constuct an estimator of this
criterion. Armed with such an estimate, we can select the number of series terms or
weights to minimize the empirical criterion.

Thus to start, we need a criterion to measure the performance of a nonparametric
regression estimator. There are multiple possible criteria, but one particularly conve-
nient choice is integrated mean-squared error (IMSE). For a sieve estimator ĝm(x) the
IMSE equals

IMSEn(m) =
∫

E
(̂
gm(x) − g(x)

)2
f (x)dx.

Using the fact that ĝm(x) − g(x) = zm(x)′
(
β̂m −βm

)− rm(x), we can calculate that∫ (̂
gm(x) − g(x)

)2
f (x)dx

=
∫

rm(x)2f (x)dx − 2
(
β̂m −βm

)′∫
xm(x)rm(x)f (x)dx

+(
β̂m −βm

)′∫
zm(x)zm(x)′f (x)dx

(
β̂m −βm

)
.

Note the the first term equals the expected squared approximation error φ2
m.

The second term is zero because
∫

xm(z)rm(z)f (z)dz = E(zmirmi) = 0. Defining
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Qm = E
(
zmiz′

mi

)
, we can write

IMSEn(m) = φ2
m + tr

[
QmE

((
β̂m −βm

)(
β̂m −βm

)′)]
.

Asymptotically, E
( (
β̂m −βm

)(
β̂m −βm

)′ )# 1

n
Q−1

m �mQ−1
m where �m =E

(
zmiz′

miσ
2
i

)
and σ 2

i = E
(
e2

i | xi
)
. Making these substitutions, we expect that IMSEn(m) should be

close to

IMSE∗
n(m) = φ2

m + 1

n
tr
(
Q−1

m �m
)
. (8.6)

The second term in (8.6) is the integrated asymptotic variance. Under conditional
homoskedasticity E

(
e2

i | xi
) = σ 2, we have the simplification �m = E

(
zmiz′

mi

)
σ 2 =

Qmσ
2. Thus in this case

1

n
tr
(
Q−1

m �m
) = σ 2Km/n, a simple function of the num-

ber of coefficients and sample size. That is, homoskedasticity implies the following
simplification of (8.6):

IMSE∗
n(m) = φ2

m + σ 2 Km

n
.

However, in the general case of conditional heteroskedasticity, (8.6) is the appropriate
expression.

Hansen (2012) showed that IMSEn(m) and IMSE∗
n (m) are uniformly close under

quite general regularity conditions, listed in Section 8.19.

Theorem 8.1. Under Assumption 8.1, uniformly across m ≤ Mn,

IMSEn(m) = IMSE∗
n(m)(1 + o(1)).

This shows that IMSE∗
n(m) is a good approximation to IMSEn(m).

8.6. The Order of the Approximation

Matters
.............................................................................................................................................................................

The way that nonparametric methods are often presented, some users may have
received the false impression that the user is free to select the order of the approxi-
mation m. So long as m increases with n, the method works, right? Unfortunately it
is not so simple in practice. Instead, the actual choice of m in a given application can
have large and substantive influence on the results.
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To illustrate this point, we take a simple numerical example. We consider the
following data-generating process.

yi = g(xi) + ei,

g(x) = a sin
(

2πx + π

4

)
,

xi ∼ U [0, 1],

ei ∼ N(0,σ 2
i ),

σ 2
i = √

5x2
i ,

This is a simple normal regression with conditional heteroskedasticity. The parameter
a is selected to control the population R2 = a2/(2 + a2), and we vary R2 = 0.25, 0.5,
0.75, and 0.9. We vary the sample size n from 50 to 1000.

We consider estimation of g(x) using quadratic splines, ranging the number of knots
m from 1 to 5. For each R2, n, and m, the integrated mean-squared error (IMSE) is cal-
culated and displayed in Figure 8.1 as a function of sample size using a logarithmic
scale. The four displays are for the four values of R2, and each line corresponds to a
different number of knots. Thus each line corresponds to a distinct sieve approxima-
tion m. To render the plots easy to read, the IMSE has been normalized by the IMSE of
the infeasible optimal averaging estimator. Thus the reported IMSEs are multiples of
the infeasible best.

One striking feature of Figure 8.1 is the strong variation with m. That is, for a given
R2 and n, the IMSE varies considerably across estimators. For example, take n = 200
and R2 = 0.25. The relative IMSE ranges from about 1.4 (2 knots) to 2.1 (5 knots). Thus
the choice really matters. Another striking feature is that the IMSE rankings strongly
depend on unknowns. For example, again if n = 200 but we consider R2 = 0.9, then
the sieve with two knots performs quite poorly with IMSE = 2.9, while the sieve with 5
knots has a relative IMSE of about 1.5.

A third striking feature is that the IMSE curves are U-shaped functions of the sample
size n. When they reach bottom, they tend to be the sieve with the lowest IMSE. Thus
if we fix R2 and vary n from small to large, we see how the best sieve is increasing. For
example, take R2 = 0.25. For n = 50, the lowest IMSE is obtained by the spline with one
knot. The one-knot spline has the lowest IMSE until n = 150, at which point the two-
knot spline has the lowest IMSE. The three-knot spline has lower IMSE for n ≥ 800.
Or, consider the case R2 = 0.75. In this case, the two-knot spline has the lowest IMSE
for n < 100, while the three-knot spline is best for 100 ≤ n ≤ 400, with the four-knot
spline for n ≤ 600.

The overall message is that the order of the series approximation matters, and it
depends on features that we know (such as the sample size n) but also features that we
do not know. Data-dependent methods for selection of m are essential, otherwise the
selection between the estimators is arbitrary.
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8.7. Mean-Squared Forecast Error
.............................................................................................................................................................................

A concept related to IMSE is the mean-squared forecast error (MSFE). This is the
expected squared error from the prediction of an out-of-sample observation. Specifi-
cally, let (yn+1, xn+1) be an out-of-sample observation drawn from the same distribu-
tion as the in-sample observations. The forecast of yn+1 given xn+1 is ĝm(xn+1). The
MSFE is the expected squared forecast error

MSFEn(m) = E
(
yn+1 − ĝm(xn+1)

)2
,

which depends on the sample size n as well as the estimator ĝm.
Making the substitution yn+1 = g(xn+1) + en+1 and using the fact that en+1 is

independent of g(xn+1) − ĝm(xn+1), we can calculate that the MSFE equals

MSFEn(m) = E
(
e2

n+1

)+E
(
g(xn+1) − ĝm(xn+1)

)2
.

The second term on the right is an expectation over the random vector xn+1 and the
estimator ĝm(x), which are independent since the estimator is a function only of the
in-sample observations. We can write the expectation over xn+1 as an integral with
respect to its marginal density f (x), thus

MSFEn(m) = E
(
e2

n+1

)+
∫

E
(̂
gm(x) − g(x)

)2
f (x)dx

= E
(
e2

n+1

)+ IMSEn(m).

Thus MSFEn(m) equals IMSEn(m) plus E
(
e2

n+1

)
. Note that E

(
e2

n+1

)
does not depend

on the estimator ĝm(x). Thus ranking estimators by MSFE and IMSE are equivalent.

8.8. Cross-Validation
.............................................................................................................................................................................

Ideally, we want to select the estimator m that minimizes IMSEn(m) or equivalently
MSFEn(m). However, the true MSFE is unknown. In this section we show how to
estimate the MSFE.

Observe that
MSFEn(m) = E

(
ẽ2

m,n+1

)
,

where ẽm,n+1 = yn+1 − ĝm(xn+1). This is a prediction error. Estimation is based on
the sample (yi , xi): i = 1, . . . , n, and the error calculated is based on the out-of-sample
observation n + 1. Thus MSFEn(m) is the expectation of a squared leave-one-out
prediction error from a sample of length n + 1.

For each observation i, we can create a similar leave-one-out prediction error. For
each i we can create a pseudo-prediction error by estimating the coefficients using the
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observations excluding i. That is, define the leave-one-out estimator

β̂m,−i =
⎛⎝∑

j 
=i

zmjz
′
mj

⎞⎠−1∑
j 
=i

zmjyj (8.7)

and prediction error
ẽmi = yi − z′

miβ̂m,−i . (8.8)

The only difference between ẽm,n+1 and ẽmi is that the former is based on the extended
sample of length n + 1 while the latter are based on a sample of length n. Other-
wise, they have the same construction. It follows that for each i, Eẽ2

mi = MSFEn−1(m).
Similarly, the sample average, known as the cross-validation criterion

CVn(m) = 1

n

n∑
i=1

ẽ2
mi

also has mean MSFEn−1(m). This is a natural moment estimator of MSFEn−1(m).
We have established the following result.

Theorem 8.2. ECVn(m) = MSFEn−1(m).

As MSFEn−1(m) should be very close to MSFEn(m), we can view CVn(m) as a nearly
unbiased estimator of MSFEn(m).

Computationally, the following algebraic relationship is convenient.

Proposition 8.1. ẽmi = êmi(1 − hmi)−1, where êmi = yi − z′
miβ̂m are the least squares

residuals and hmi = z′
mi

(∑n
i=1 zmiz′

mi

)−1
zmi are known as the leverage values.

While Proposition 8.1 is well known, we include a complete proof in Section 8.20
for completeness.

Proposition 8.1 directly implies the simple algebraic expression

CVn(m) = 1

n

n∑
i=1

ê2
mi

(1 − hmi)
2 . (8.9)

This shows that for least squares estimation, cross-validation is a quite simple calcula-
tion and does not require the explicit leave-one-out operations suggested by (8.7).

The estimator m̂ that is selected by cross-validation is the one with the smallest value
of CV (m). We can write this as

m̂ = argmin
1≤m≤Mn

CVn(m).

Computationally, we estimate each series regression m = 1, . . . , Mn, compute the resid-
uals êmi for each, determine the CV criterion CVn(m) using (8.9), and then find m̂ as
the value that yields the smallest value of CVn(m).
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figure 8.2 Typical Cross-Validation Function, n = 200

It is useful to plot CVn(m) against m to visually check if there are multiple local
minima or flat regions. In these cases some statisticians have argued that it is reason-
able to select the most parsimonious local minima or the most parsimonious estimator
among near-equivalent values of the CV function. The reasons are diverse, but essen-
tially the cross-validation function can be quite a noisy estimate of the IMSE, especially
for high-dimensional models. The general recommendation is to augment automatic
model-selection with visual checks and judgment.

To illustrate, Figure 8.2 plots the cross-validation function for one of the samples
from Section 8.6. The cross-validation function is sharply decreasing until 2 knots,
then flattens out, with the minimum m = 2 knots. In this particular example, the
sample was drawn from the DGP of Section 8.6 with n = 200 and R2 = 0.5. From
Figure 8.1 we can see that the lowest IMSE is obtained by m = 2, so indeed the CV
function is a constructive guide for selection.

8.9. Asymptotic Optimality of

Cross-Validation Selection
.............................................................................................................................................................................

Li (1987), Andrews (1991b) and Hansen and Racine (2012) have established conditions
under which the CV-selected estimator is asymptotically optimal, in the sense that the
selected model is asymptotically equivalent to the infeasible optimum. The criterion
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they used to assess optimality is the conditional squared error fit

Rn(m) = 1

n

n∑
i=1

E
((̂

gm(xi) − g(xi)
)2 | X

)
, (8.10)

where X = {x1, . . . , xn}. This is similar to IMSE, but only assesses fit on the support
points of the data. In contrast, the literature on sieve approximations focuses on
IMSE. We now extend the asymptotic optimality theory and show that the CV-selected
estimator is asymptotically optimal with respect to IMSE.

Theorem 8.3. Under Assumptions 8.1, 8.2, and 8.3, as n → ∞,∣∣∣∣∣∣ IMSEn(m̂)

inf
1≤m≤Mn

IMSEn(m)

∣∣∣∣∣∣ p−→ 1.

The assumptions and proof are presented in Sections 8.19 and 8.20, respectively.
Theorem 8.3 shows that in large samples, the IMSE of the CV-selected estimator

ĝm̂(x) is equivalent to the IMSE of the infeasible best estimator in the class ĝm(x) for
1 ≤ m ≤ Mn. This is an oracle property for cross-validation selection.

A critical assumption for Theorem 8.3 is that φ2
m > 0 for all m < ∞ (Assumption

8.2 in Section 8.20). Equivalently, the approximation error is nonzero for all finite-
dimensional models; that is, all models are approximations. If, instead, one of the
finite-dimensional models is the true conditional mean (so that φ2

m = 0 for some model
m), then cross-validation asymptotically over-selects the model order with positive
probability and is thus asymptotically suboptimal. In this context consistent model
selection methods (such as BIC) are optimal. This classification was carefully articu-
lated in the review paper by Shao (1997). Some researchers refer to cross-validation as
a conservative selection procedure (it is optimal for the broad class of nonparametric
models) and to BIC as a consistent selection procedure (it selects the correct model
when it is truly finite-dimensional).

8.10. PreSelection of the Number

of Models
.............................................................................................................................................................................

To implement cross-validation selection, a user first has to select the set of models
m = 1, . . . , Mn over which to search. For example, if using a power series approxi-
mation, a user has to first determine the highest power, or if using a spline, a user
has to determine the order of the spline and the maximum number of knots. This
choice affects the results, but unfortunately there is no theory about how to select these
choices. What we know is that the assumptions restrict both the number of estimated
parameters in each model Km and the number of models Mn relative to sample size.
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Specifically, Assumption 8.1.5 specifies that for a power series K4
m/n = O(1) and for a

spline sieve K3
m/n = O(1), uniformly for m ≤ Mn. These conditions may be stronger

than necessary, but they restrict the number of estimated parameters to be increasing
at a rate much slower than sample size. Furthermore, Assumption 8.3.2 allows non-
nested models, but controls the number of models. While these conditions do not give
us precise rules for selecting the initial set of models, they do suggest that we should
be reasonably parsimonious and not too aggressive in including highly parameterized
models.

Unfortunately, these comments still do not give precise guidance on how to deter-
mine the number of models Mn. It may be a useful subject for future research to
construct and justify data-dependent rules for determining Mn.

8.11. Alternative Selection Criteria
.............................................................................................................................................................................

We have discussed the merits of cross-validation to select the sieve approximation, but
many other selection methods have been proposed. In this section we briefly describe
the motivation and properties of some of these alternative criteria.

The Mallows criterion (Mallows, 1973)

Mallows(m) = 1

n

n∑
i=1

ê2
mi + 2σ̃ 2Km

with σ̃ 2 a preliminary estimate of E
(
e2

i

)
is an alternative estimator of the IMSE under

the additional assumption of conditional homoskedasticity E
(
e2

i | xi
) = σ 2. Li (1987)

provided conditions under which Mallows selection is asymptotically optimal, but
Andrews (1991b) shows that its optimality fails under heteroskedasticity.

The Akaike information criterion (Akaike, 1973)

AIC(m) = n log

(
1

n

n∑
i=1

ê2
mi

)
+ 2Km

is an estimate of the Kullback-Leibler divergence between the estimated Gaussian
model and the true model density. AIC selection has asymptotic properties that
are similar to those of Mallows selection, in that it is asymptotically optimal under
conditional homoskedasticity but not under heteroskedasticity.

The corrected AIC (Hurvich and Tsai, 1989)

AICc(m) = AIC(m) + 2Km(Km + 1)

n − Km − 1

is a finite-sample unbiased estimate of the Kullback–Leibler divergence under the aux-
iliary assumption that the errors ei are independent and Gaussian. Its asymptotic
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properties are the same as AIC, but has improved finite-sample performance, especially
when the model dimension Km is high relative to sample size.

The Bayesian information criterion (Schwarz, 1978)

BIC(m) = n log

(
1

n

n∑
i=1

ê2
mi

)
+ log (n)Km

is an approximation to the log posterior probability that model m is the true model,
under the auxiliary assumption that the errors are independent and Gaussian, the true
model is finite-dimension, the models have equal prior probability, and priors for
each model m are diffuse. BIC selection has the property of consistent model selection:
When the true model is a finite-dimensional series, BIC will select that model with
probability approaching one as the sample size increases. However, when there is no
finite-dimensional true model, then BIC tends to select overly parsimonious models
(based on IMSE).

The above methods are all information criteria, similar in form to cross-validation.
A different approach to selection is the class of penalized least squares estimators. Let
zi denote the Kn ×1 vector of all potential regressors in all models, let β = (β1, . . . ,βKn)
denote its projection coefficient, and define the penalized least squares criteria

Pn(β,λ) = 1

2n

n∑
i=1

(
yi − z′

iβ
)2 +

Kn∑
j=1

pλ
(
βj
)

and the PLS estimator
β̂λ = argmin

β

Pn(β,λ),

where pλ(u) is a non-negative symmetric penalty function and λ is a tuning parameter.
The choice of pλ(u) determines the estimator. In the recent literature a popular

choice is pλ(|u|) = λ|u| which yields the LASSO (least absolute shrinkage and selec-
tion operator) estimator, proposed by Tibshirani (1996). Different variants of LASSO
have been proposed, including SCAD (smoothly clipped absolute deviation) (Fan and
Li, 2001) and the adaptive LASSO (Zou, 2006).

PLS estimators are generally appropriate when the dimension of zi is high (some
estimators such as the LASSO are defined even when Kn exceeds n). The LASSO family
are selection methods as the estimators β̂λ typically set most individual coefficients
to zero. The nonzero coefficient estimates are the selected variables, and the zero
coefficient estimates are the excluded variables. SCAD and the adaptive LASSO have
optimality (oracle) properties when the true regression function is sparse, meaning that
the true regression function is a finite-dimensional series. When the true regression
function is not sparse, the properties of LASSO selection are unclear.

Among these methods, selection by cross-validation is uniquely the only method
that is asymptotically optimal for general nonparametric regression functions and
unknown conditional heteroskedasticity. Most of the other selection methods explicitly
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or implicity rely on conditional homoskedasticity, and some of the methods rely
on sparsity (finite-dimensionality), neither of which are generally appropriate for
nonparametric estimation.

8.12. Numerical Simulation
.............................................................................................................................................................................

We return to the simulation experiment introduced in Section 8.6. Recall that we
reported the integrated mean-squared error of a set of least squares estimates of a
quadratic spline with given knots. Now we compare the IMSE of estimators that
select the number of knots. We consider CV selection and compare its performance
with selection based on the Akaike information criterion (Akaike, 1973) and the
Hurvich–Tsai (Hurvich and Tsai, 1989) corrected AIC.

For all methods, we estimate nonparametric quadratic splines with knots m =
0, 1, . . . , Mn with Mn = 4n0.15. The selection criteria were calculated for each set of
knots, and the model was selected with the lowest value of the criteria.

We report the IMSE of the three methods in Figure 8.3 (along with the IMSE of
the JMA method, to be discussed below). Again, the IMSE is normalized by the IMSE
of the infeasible best averaging estimator, so all results are relative to this infeasible
optimum.

One striking feature of this figure is that the three methods (CV, AIC, and AICc)
have similar performance for n ≥ 100, though CV has slightly lower IMSE, especially
for small n.

Another striking feature is that for n ≥ 100, the IMSE of the selection methods is
relatively unaffected by sample size n and the value of R2. This is especially important
when contrasted with Figure 1, where we found that the IMSE of individual sieve esti-
mators depend greatly upon n and R2. This is good news, it shows that the selection
methods are adapting to the unknown features of the sampling distribution.

8.13. Averaging Regression
.............................................................................................................................................................................

Let w = (w1, w2, . . . , wM) be a set of non-negative weights that sum to one,∑M
m=1 wm = 1. An averaging LS estimator is

ĝw(x) =
M∑

m=1

wmĝm(x). (8.11)

The averaging estimator includes the mth least squares estimator as a special case by
setting w to equal the unit vector with a weight of 1 in the mth place.
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For example, consider a set of spline estimators with m = 0, 1, 2, and 3 knots. The
averaging estimator takes an average of these four estimators. In general, averaging
is a smoother function of the data than selection, and smoothing generally reduces
variance. The reduction in variance can result in estimators with lower IMSE.

We define the IMSE of the averaging estimator as

IMSEn(w) =
∫

E
(̂
gw(x) − g(x)

)2
f (x) dx,

which is a function of the weight vector.
It is recommended to constrain the weights wm to be non-negative, that is, wm ≥ 0.

In this case the weight vector w lies on H, the unit simplex in RMn . This restriction may
not be necessary, but some bounds on the weights are required. Hansen and Racine
(2012) suggested that in the case of nested models, non-negativity is a necessary con-
dition for admissibility, but they made a technical error. The actual condition is that
0 ≤ ∑M

j=m wj ≤ 1, which is somewhat broader. (I thank Guido Kuersteiner and Ryo
Okui for pointing out this error to me.) It is unclear if this broader condition is com-
patible with the optimality theory, or what restrictions are permissible in the case of
non-nested models.

Hansen (2012) provides an approximation to the IMSE of an averaging estimator.

Theorem 8.4. Under Assumptions 8.1, 8.2, and 8.4, uniformly across w ∈H,

IMSEn(w) = IMSE∗
n(w)(1 + o(1)),

where

IMSE∗
n (w) =

Mn∑
m=1

w2
m

(
φ2

m + 1

n
tr
(
Q−1

m �m
))

+2
Mn∑
	=1

	−1∑
m=1

w	wm

(
φ2
	 + 1

n
tr
(
Q−1

m �m
))

=
Mn∑

m=1

w∗
mnφ2

m +
Mn∑

m=1

w∗∗
m tr

(
Q−1

m �m
)

(8.12)

and

w∗
m = w2

m + 2wm

m−1∑
	=1

w	, (8.13)

w∗∗
m = w2

m + 2wm

Mn∑
	=m+1

w	. (8.14)
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8.14. JMA for Averaging Regression
.............................................................................................................................................................................

The method of cross-validation for averaging regressions is much the same as for selec-
tion. First, note that the discussion about the equivalence of mean-square forecast error
(MSFE) and IMSE from Section 8.7 is not specific to the estimation method. Thus it
equally applies to averaging estimators—namely the averaging forecast of yn+1 given
xn+1 is ĝw(xn+1), with MSFE

MSFEn(w) = E
(
yn+1 − ĝw(xn+1)

)2

= E
(
e2

n+1

)+ IMSEn(w),

where the second equality follows by the same discussion as in Section 8.7.
Furthermore, the discussion in Section 8.8 about estimation of MSFE by cross-

validation is also largely independent of the estimation method, and thus applies to
averaging regression. There are some differences, however, in the algebraic implemen-
tation. The leave-one-out averaging prediction errors are

ẽwi =
M∑

m=1

wmẽmi

where, as before, ẽmi is defined in (8.8) and Proposition 8.1. The cross-validation
function for averaging regression is then

CVn(w) = 1

n

n∑
i=1

ẽ2
wi

=
M∑

m=1

M∑
	=1

wmw	

(
1

n

n∑
i=1

ẽmiẽ	i

)
= w′Sw

where S is an M × M matrix with m	th entry

Sm	 = 1

n

n∑
i=1

ẽmiẽ	i

= 1

n

n∑
i=1

êmiê	i

(1 − hmi)(1 − h	i)
.

with êmi the least squares residuals for the mth estimator, and the second equality uses
Proposition 8.1.

CVn(w) is also the jackknife estimator of the expected squared error, and thus
Hansen and Racine (2012) call CVn(w) the jackknife model averaging (JMA) criterion.
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8.15. Computation
.............................................................................................................................................................................

The cross-validation or jackknife choice of weight vector w is the one that minimizes
the cross-validation criterion CVn(w) = w′Sw. Since the weights wm are restricted to
be non-negative and sum to one, the vector w lies on the M-dimension unit simplex
H, so we can write this problem as

ŵ = argmin
w∈H

w′Sw.

The weights ŵ are called the JMA weights, and when plugged into the estimator (8.11)
they yield the JMA nonparametric estimator

ĝw(x) =
M∑

m=1

ŵmĝm(x). (8.15)

Since the criterion is quadratic in w and the weight space H is defined by a set of
linear equality and inequality restrictions, this minimization problem is known as a
quadratic programming problem. In matrix programming languages, solution algo-
rithms are available. For example, ŵ can be easily solved using the qprog command in
GAUSS, the quadprog command in MATLAB, or the quadprog command in R.

In other packages, quadratic programming may not be available. However, it is often
possible to call the calculation through an external call to a compatible language (for
example, calling R from within STATA). This, however, may be rather cumbersome.

However, it turns out that ŵ can be found using a relatively simple set of linear
regressions. First, let g̃i = (g̃1i, . . . , g̃Mi)′ be the M ×1 vector of leave-one-out predicted
values for the ith observation. Then note that ẽwi = yi − g̃ ′

i w, so the CV criterion can
be written as

CVn(w) = 1

n

n∑
i=1

ê2
wi

= 1

n

n∑
i=1

(
yi − g̃ ′

i w
)2

.

This is the sum-of-squared error function from a regression of yi on the vector g̃i,
with coefficients w. Thus the problem of solving for ŵ is algebraically equivalent
to a constrained least squares regression of yi on g̃i . We can write the least squares
regression as

yi = g̃ ′
i w + ẽwi

or in vector notation

y = G̃w + ẽw,
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where G̃ is an n × M matrix whose m’th columnn are the leave-one-out predicted
values from the mth series approximation.

The simple unconstrained least squares estimator of w

w̃ = (
G̃′G̃

)−1
G̃′y (8.16)

will satisfy neither the summing up nor non-negativity constraints. To impose the con-
straint that the coefficients sum to one, letting 1 denote an M × 1 vector of ones, then
the least squares estimator subject to the constraint 1′w = 1 is

w̄ = w̃ − (
G̃′G̃

)−1
1
(

1′(G̃′G̃
)−1

1
)−1(

1′w̃ − 1
)
. (8.17)

Alternatively, subtract g̃Mi from yi and g̃1i, . . . , g̃M−1,i and run the regression

yi − g̃Mi = w̄1
(
g̃1i − g̃Mi

)+ w̄2
(
g̃2i − g̃Mi

)+ ·· ·+ w̄M−1
(
g̃M−1,i − g̃Mi

)+ ẽwi (8.18)

and then set w̄M = 1 − ∑M−1
m=1 w̄m. Equations (8.17) and (8.18) are algebraically

equivalent methods to compute w̄.
While the weights w̄ will sum to one, they will typically violate the non-negativity

constraints and thus are not a good estimator. However, a simple iterative algorithm
will convert w̄ to the desired ŵ. Here are the steps.

1. If w̄m ≥ 0 for all m, then ŵ = w̄ and stop.
2. If minm w̄m < 0, find the index m̄ with the most negative weight w̄m̄ (e.g.,

m̄ = argmin w̄m).
3. Remove the estimator m̄ from the set of M estimators. We are left with a set of

M − 1 estimators, with G̃ an n × (M − 1) matrix.
4. Recompute w̃ and w̄ in (8.16) and (8.17) using this new G̃.
5. Go back to step 1 and iterate until all weights are non-negative.

This is a simple algorithm and has at most M iteration steps, where M is the num-
ber of initial estimators and is thus quite efficient. It is simple enough that it can be
computed using simple least squares methods and thus can be used in many packages.

8.16. Asymptotic Optimality of

JMA Averaging
.............................................................................................................................................................................

Hansen and Racine (2012) have established conditions under which the JMA weights
are asymptotically optimal, in the sense that the selected averaging estimator is asymp-
totically equivalent to the infeasible optimal weights. They established optimality with
respect to the conditional squared error fit (8.10). We now show that this can be
extended to optimality with respect to IMSE.



236 model selection and averaging

As in Hansen (2007) and Hansen and Racine (2012), we only establish optimality
with respect to a discrete set of weights. For some integer N ≥ 1, let the weights wj take

values from the set {0,
1

N
,

2

N
, . . . , 1}, and let Hn denote the subset of the unit simplex

H restricted to these points. If N is large, then this is not restrictive. This restriction is
for technical reasons and does not affect how the method is implemented in practical
applications.

Theorem 8.5. Under Assumptions 8.1–8.4, as n → ∞, we have

∣∣∣∣∣∣ IMSEn(ŵ)

inf
w∈Hn

IMSEn(w)

∣∣∣∣∣∣ p−→ 1.

The assumptions and proof are presented in Sections 8.19 and 8.20, respectively.
Theorem 8.5 shows that in large samples, the IMSE of the JMA estimator ĝŵ(x) is

equivalent to the IMSE of the infeasible best estimator in the class ĝw(x) for w ∈ Hn.
This is an oracle property for weight selection by cross-validation.

8.17. Numerical Simulation
.............................................................................................................................................................................

We return to the simulation experiment introduced in Sections 8.6 and 8.12. Now we
add the JMA estimator (8.15). The IMSE of the estimator is plotted in Figure 8.3 along
with the other estimators. The IMSE of the JMA estimator is uniformly better than the
other estimators, with the difference quite striking.

The plots display the IMSE relative to the IMSE of the infeasible optimal averag-
ing estimator. The optimality theory (Theorem 8.5) suggests that the relative IMSE of
the JMA estimator should approach one as the sample size n diverges. Examining the
figures, we can see that the IMSE of the estimator is converging extremely slowly to this
asymptotic limit. This suggests that while the JMA is “asymptotically” optimal, there is
considerable room for improvement in finite samples.

We illustrate implementation with the simulated sample (n = 200) from Section
8.12. We report the cross-validation function and JMA weights in Table 8.1. As we saw
in Figure 8.2, the CV function is minimized at m = 2. However, the value of the CV
function is quite flat for m ≥ 2, and in particular its value at m = 5 is nearly identical
to m = 2. This means that cross-validation ranks m = 2 and m = 5 quite similarly. The
JMA weights account for this. Note that JMA divides the weight between m = 1, m = 2,
and m = 5, rather than putting all the weight on a single estimator. The estimators are
plotted (along with the true conditional mean g(x)) in Figure 8.4. Both estimators are
close to the true g(x).



nonparametric sieve regression 237

Table 8.1 Cross-Validation Function and JMA
Weights

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

CVn(m) 0.955 0.735 0.717 0.722 0.720 0.718
ŵm 0.02 0.17 0.35 0.00 0.00 0.46

g(x)
CV Estimate
JMA Estimate

0.0
–1.6

–1.2

–0.8

–0.4

0.0

g(
x)

0.4

0.8

1.2

1.6

0.1 0.2 0.3 0.4 0.5
x

0.6 0.7 0.8 0.9 1.0

figure 8.4 CV and JMA Feasible Series Estimators

8.18. Summary
.............................................................................................................................................................................

Sieves are routinely used in applied econometrics to approximate unknown functions.
Power series and splines are particularly popular and convenient choices. In all appli-
cations, the critical issue is selecting the order of the sieve. The choice greatly affects
the results and the accuracy of the estimates. Rules of thumb are insufficient because
the ideal choice depends on the unknown function to be estimated.

In regression estimation, a simple, straightforward and computationally easy
method for selecting the sieve approximation is cross-validation. The method is also
asymptotically optimal, in the sense that the CV-selected estimator is asymptotically
equivalent to the infeasible best-fitting estimator, when we evaluate estimators based
on IMSE (integrated mean-squared error).
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Further improvements can be obtained by averaging. Averaging estimators reduce
estimation variance and thereby IMSE. Selection of the averaging weights is analogous
to the problem of selection of the order of a sieve approximation, and a feasible method
is again cross-validation. Numerical computation of the averaging weights is simple
using quadratic programming. Good approximations can be obtained by a simple
iterative algorithm. The JMA weights selected by cross-validation are asymptotically
optimal in the sense that the fitted averaging estimator is asymptotically equivalent
(with respect to IMSE) to the infeasible best weighted average.

8.19. Regularity Conditions
.............................................................................................................................................................................

In this section we list the regularity conditions for the theoretical results.

Assumption 8.1.

1. The support X of xi is a Cartesian product of compact connected intervals on which
the density f (x) is bounded away from zero.

2. g(x) is continuously differentiable on x ∈X .
3. For some α > 0, η > 0, and ψ < ∞, for all 	′Qm	 = 1 and 0 ≤ u ≤ η,

supmP
(∣∣	′zmi

∣∣≤ u
)≤ ψuα .

4. 0 <σ 2 ≤ σ 2
i ≤ σ 2 <∞.

5. maxm≤Mn K4
m/n = O(1) for a power series, or maxm≤Mn K3

m/n = O(1) for a spline
sieve.

Assumption 8.2. φ2
m > 0 for all m <∞.

The role of Assumption 8.1.1 is to ensure that the expected design matrix Qm is uni-
formly invertible. Assumption 8.1.2 is used to ensure that rm(x) is uniformly bounded.
Assumption 8.1.3 is unusual, but is used to ensure that moments of the inverse sample

design matrix
(
n−1∑n

i=1 zmiz′
mi

)−1
exist. Assumption 8.1.4 bounds the extent of con-

ditional heteroskedasticity, and Assumption 8.1.5 restricts the complexity of the fitted
models.

Assumption 8.2 is quite important. It states that the approximation error is non-
zero for all finite-dimensional models; thus all models are approximations. This is
standard in the nonparametrics optimality literature. One implication is that ξn =
infm nIMSE∗

n(m) −→ ∞ as n → ∞.
Let qjn = #{m : Km = j} be the number of models which have exactly j coefficients,

and set qn = maxj≤Mn qjn. This is the largest number of models of any given dimension.
For nested models, then qn = 1, but when the models are non-nested then qn can
exceed one.
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Assumption 8.3. For some N ≥ 1

1. supi E
(

e4(N+1)
i | xi

)
<∞.

2. qn = o(ξ 1/N
n ) where ξn = infm nIMSE∗

n(m).
3. maxm≤Mn maxi≤n hmi −→ 0 almost surely.

Assumption 8.3.1 is a strengthing of Assumption 8.1.4. Assumption 8.3.2 allows for
non-nested models, but bounds the number of models. Assumption 8.3.3 states that
the design matrix cannot be too unbalanced. Under our conditions it is easy to show
that maxm≤Mn maxi≤n hmi = op(1). The technical strengthening here is to almost sure
convergence.

Assumption 8.4.

1. zm(x) is either a spline or power series and is nested.
2. g(x) has s continuous derivatives on x ∈X with s ≥ q/2 for a spline and s ≥ q for a

power series.

8.20. Technical Proofs
.............................................................................................................................................................................

Proof of Proposition 8.1. The key is the Sherman–Morrison formula (Sherman and
Morrison, 1950), which states that for nonsingular A and vector b we have(

A − bb ′)−1 = A−1 + (
1 − b ′A−1b

)−1
A −1bb ′A−1.

This can be verified by premultiplying the expression by A − bb ′ and simplifying.
Let Z m and y denote the matrices of stacked regressors and dependent variable

so that the LS estimator is β̂m = (
Z ′

mZ m
)−1

Z ′
my. An application of the Sherman–

Morrison formula yields⎛⎝∑
j 
=i

zmjz
′
mj

⎞⎠−1

= (
Z ′

mZ m − zmiz
′
mi

)−1

= (
Z ′

mZ m
)−1 + (1 − hmi)

−1(Z ′
mZ m

)−1
zmiz

′
mi

(
Z ′

mZ m
)−1

.

Thus

ẽmi = yi − z′
mi

(
Z ′

mZ m − zmiz
′
mi

)−1(
Z ′

my − zmiyi
)

= yi − z′
mi

(
Z ′

mZ m
)−1

Z ′
my + z′

mi

(
Z ′

mZ m
)−1

zmiyi

−(1 − hmi)
−1z′

mi

(
Z ′

mZ m
)−1

zmiz
′
mi

(
Z ′

mZ m
)−1Z ′

my
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+(1 − hmi)
−1z′

mi

(
Z ′

mZ m
)−1

zmiz
′
mi

(
Z ′

mZ m
)−1

zmiyi

= êmi + hmiyi − (1 − hmi)
−1hmiz

′
miβ̂m + (1 − hmi)

−1h2
miyi

= êmi + (1 − hmi)
−1hmiêmi

= (1 − hmi)
−1êmi,

where the third equality makes the substitutions β̂m = (
Z ′

mZ m
)−1

Z ′
my and hmi

= z′
mi

(
Z ′

mZ m
)−1

zmi, with the remainder collecting terms. �

Define

ζm = sup
x∈X

(
zm(x)′Q−1

m zm(x)
)1/2

, (8.19)

the largest normalized Euclidean length of the regressor vector. Under Assumption
8.1, if zmi is a power series, then ζ 2

m = O(k2
m) (see Andrews (1991a)), and when zmi is

a regression spline, then ζ 2
m = O(km) (see Newey (1995)). For further discussion see

Newey (1997) and Li and Racine (2006).
Without loss of generality, assume Qm = IKm throughout this section.

Proof of Theorem 3. Assumptions (A.1), (A.2), (A.7), (A.9), and (A.10) of Hansen and
Racine (2012) are satisfied under our Assumptions 8.1–8.3. Thus by their Theorem 2
with N = 1, CV selection is optimal with respect to the criterion Rn(m), that is,∣∣∣∣∣∣ Rn(m̂)

inf
1≤m≤Mn

Rn(m)

∣∣∣∣∣∣ p−→ 1.

Furthermore, Theorem 8.1 shows that IMSE∗
n (m) and IMSEn(m) are asymptoti-

cally equivalent. Thus for Theorem 8.3 it is thus sufficient to show that Rn(m) and
IMSE∗

n(m) are asymptotically equivalent. To reduce the notation, we will write In(m) =
IMSE∗

n(m) = φ2
m + n−1 tr(�m). Thus what we need to show is

sup
1≤m≤Mn

∣∣∣∣Rn(m) − In(m)

In(m)

∣∣∣∣ p−→ 0. (8.20)

It is helpful to note the following inequalities:

nφ2
m ≤ nIn(m), (8.21)

tr(�m)≤ nIn(m), (8.22)

1 ≤ nIn(m), (8.23)

ζ 2
m

n
≤ ζ 2

mKm

n
≤ ζ 2

mK2
m

n
≤# <∞. (8.24)
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Equations (8.21) and (8.22) follow from the formula nIn(m) = nφ2
m +tr(�m). Equation

(8.23) holds for n sufficiently large since ξn = infm nIn(m) → ∞. The first two inequal-
ities in (8.24) hold since either Km ≥ 1 or ζ 2

m = 0; the third inequality holds for n
sufficiently large under Assumption 8.1.5.

Set

Q̂m = 1

n

n∑
i=1

zmiz
′
mi,

γ̂m = 1

n

n∑
i=1

zmirmi,

�̂m = 1

n

n∑
i=1

zmiz
′
miσ

2
i .

As shown in Andrews (1991a) and Hansen and Racine (2012),

nRn(m) =
n∑

i=1

r2
mi − nγ̂ ′

mQ̂−1
m γ̂m + tr

(
Q̂−1

m �̂m
)
.

Then

n(Rn(m) − In(m)) =
n∑

i=1

(
r2

mi −φ2
m

)− nγ̂ ′
mQ̂−1

m γ̂m + tr
((

Q̂−1
m − IKm

)
�m

)
+ tr

(
�̂m −�m

)+ tr
((

Q̂−1
m − IKm

)(
�̂m −�m

))
.

and for any J ≥ 2

(
E|n(Rn(m) − In(m))|J

)1/J ≤
⎛⎝E

∣∣∣∣∣
n∑

i=1

(
r2

mi −φ2
m

)∣∣∣∣∣
J
⎞⎠1/J

(8.25)

+
(
E
∣∣nγ̂ ′

mQ̂−1
m γ̂m

∣∣J)1/J
(8.26)

+
(
E
∣∣tr((Q̂−1

m − IKm

)
�m

)∣∣J)1/J
(8.27)

+
(
E
∣∣tr(�̂m −�m

)∣∣J)1/J
(8.28)

+
(
E
∣∣tr((Q̂−1

m − IKm

)(
�̂m −�m

))∣∣J)1/J
. (8.29)

We use some bounds developed in Hansen (2013) for the moment matrices that
appear on the right-hand side of (8.25)–(8.29). A key bound is the matrix Rosenthal
inequality (Theorem 1 of Hansen (2013)), which states that for any J ≥ 2 there is a
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constant AJ <∞ such that for any i.i.d. random matrix Xi we have⎛⎝E

∥∥∥∥∥
n∑

i=1

(Xi −EXi)

∥∥∥∥∥
J

2

⎞⎠1/J

≤
[

AJ

((
nE‖Xi‖2

2

)J/2 +
(

nE‖Xi‖J
2

))]1/J

≤ A1/J
J

(
nE‖Xi‖2

2

)1/2 + A1/J
J

(
nE‖Xi‖J

2

)1/J
. (8.30)

where the second inequality is the cr inequality. Using this bound, Hansen (2013,
Lemmas 2 and 3) established that for n sufficiently large we have

E
∥∥Q̂−1

m

∥∥J ≤ 2 (8.31)(
E
∥∥Q̂−1

m − IKm

∥∥J
)1/J ≤ A1/J

2J

(
ζ 2

mKm

n

)1/2

. (8.32)

We use (8.30)–(8.32) to bound the terms (8.25)–(8.29).
We start with (8.25). Define r = supm supx∈X |rm(x)|, which is bounded under

Assumption 8.1.2. WLOG assume that r ≥ 1. Note that |rmi| ≤ r. Applying (8.30) to
(8.25), and then ErN

mi ≤ rN−2Er2
mi ≤ rN−2φ2

m,

⎛⎝E

∣∣∣∣∣
n∑

i=1

(
r2

mi −φ2
m

)∣∣∣∣∣
J
⎞⎠1/J

≤ A1/J
J

(
nEr4

mi

)1/2 + A1/J
J

(
nEr2J

mi

)1/J

≤ A1/J
J r

(
nφ2

m

)1/2 + A1/J
J r2−2/J (nφ2

m

)1/J
. (8.33)

We next take (8.26). Note that (8.19) implies ‖zmi‖ ≤ ζm. Then E‖zmirmi‖2 ≤
r2E‖zmi‖2 = r2 tr(Qm) = r2Km and E‖zmirmi‖2 ≤ ζ 2

mφ
2
m. Together,

E‖zmirmi‖2 ≤ r

(
ζ 2

mKm

n

)1/2(
nφ2

m

)1/2 ≤ r#1/2(nφ2
m

)1/2
(8.34)

where the second inequality uses (8.24). Similarly,

E‖zmirmi‖4J

n2J−1
≤ r4J−2ζ

4J
m Er2

mi

n2J−1
= r4J−2

(
ζ 2

m

n

)2J

nφ2
m ≤ r4J−2#2J nφ2

m. (8.35)

Applying (8.30) to (8.26), and then (8.34) and (8.35), we find

(
E
∥∥n1/2γ̂m

∥∥4J

2

)1/2J ≤ A1/2J
4J E‖zmirmi‖2 + A1/2J

4J

(
E‖zmirmi‖4J

n2J−1

)1/2J

≤ A1/2J
4J r#1/2(nφ2

m

)1/2 + A1/2J
4J r2−1/J#

(
nφ2

m

)1/2J
. (8.36)
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Using the trace and Cauchy–Schwarz inequalities, (8.31), and (8.36), we obtain(
E
∣∣nγ̂ ′

mQ̂−1
m γ̂m

∣∣J)1/J ≤
(
E
(∥∥Q̂−1

m

∥∥J∥∥n1/2γ̂m
∥∥2J

2

))1/J

≤
(
E
(∥∥Q̂−1

m

∥∥2J
)
E
(∥∥n1/2γ̂m

∥∥4J

2

))1/2J

≤ (
2A4J

)1/2J
r#1/2(nφ2

m

)1/2

+(
2A4J

)1/2J
r2−1/J#

(
nφ2

m

)1/2J
. (8.37)

Now we take (8.27). Using the trace inequality, (8.32), we obtain tr(�m)

=E
∣∣z′

mizmiσ
2
i

∣∣≤ σ 2E
∣∣z′

mizmi
∣∣= σ 2Km; and using (8.24), we get(

E
∣∣tr((Q̂−1

m − IKm

)
�m

)∣∣J)1/J ≤
(
E
∥∥Q̂−1

m − IKm

∥∥J
)1/J

tr(�m)

≤ A1/J
J

(
ζ 2

mKm

n

)1/2

σK 1/2
m tr(�m)

1/2

≤ σA1/J
J #1/2 tr(�m)

1/2. (8.38)

Next, take (8.28). Applying (8.30) to (8.28) and using
∣∣z ′

mizmiσ
2
i

∣∣≤ ζ 2
mσ

2 and (8.24),
we obtain (

E
∣∣tr(�̂m −�m

)∣∣J)1/J

≤ A1/J
J

(
E
∣∣z′

mizmiσ
2
i

∣∣2
n

)1/2

+ A1/J
J

(
E
∣∣z′

mizmiσ
2
i

∣∣J
nJ−1

)1/J

≤ σA
1/J
J

(
ζ 2

m

n

)1/2

tr(�m)
1/2 +σ 2(1−1/J)A

1/J
J

(
ζ 2

m
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tr(�m)
1/J (8.39)

≤ σA1/J
J #1/2 tr(�m)

1/2 +σ 2(1−1/J)A1/J
J #1−1/J tr(�m)

1/J . (8.40)

Finally, take (8.29). Using the trace inequality, Cauchy–Schwarz, (8.32), and (8.39),
we get (

E
∣∣tr((Q̂−1

m − IKm

)(
�̂m −�m

))∣∣J)1/J

≤
(
E
(∥∥Q̂−1

m − IKm

∥∥J∥∥�̂m −�m
∥∥J
))1/J

Km

≤
(
E
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)1/2J(

E
∥∥�̂m −�m

∥∥2J
)1/2J
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4J

(
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mKm
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(
σA1/2J
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(
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tr(�m)
1/2
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+σ 2(1−1/2J)A1/2J
2J

(
ζ 2

m

n

)1−1/2J

tr(�m)
1/2J

)
Km

≤ σA1/2J
4J A1/J

J # tr(�m)
1/2 +σ 2(1−1/2J)A1/2J

4J A1/2J
2J #3/2−1/2J tr(�m)

1/2J . (8.41)

Combining (8.33) and (8.37) and then applying (8.21) and (8.23), we find that⎛⎝E

∣∣∣∣∣
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i=1

(
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mi −φ2
m

)∣∣∣∣∣
J
⎞⎠1/J

+
(
E
∣∣nγ̂ ′

mQ̂−1
m γ̂m

∣∣J)1/J

≤ C1
(
nφ2

m

)1/2
C2
(
nφ2

m

)1/J + C3
(
nφ2

m

)1/2J
(8.42)

≤ C1(nIn(m))1/2 + C2(nIn(m))1/J + C3(nIn(m))1/2J

≤ (C1 + C2 + C3)(nIn(m))1/2, (8.43)

where C1 = A1/J
J r + (

2A4J
)1/2J

r#1/2, C2 = A1/J
J r2−2/J , and C3 = (

2A4J
)1/2J

r2−1/J#.
Similarly, combining (8.38), (8.40), and (8.41) and then applying (8.22) and (8.23),

we obtain (
E
∣∣tr((Q̂−1

m − IKm

)
�m

)∣∣J)1/J +
(
E
∣∣tr(�̂m −�m
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)(
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≤ C4 tr(�m)
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≤ C4(nIn(m))1/2 + C5(nIn(m))1/J + C6(nIn(m))1/2J

≤ (C4 + C5 + C6)(nIn(m))1/2. (8.45)

where C4 = σA1/J
J

(
2#1/2 + A1/2J

4J #
)

, C5 = σ 2(1−1/J)A1/J
J #1−1/J , and C6 =

σ 2(1−1/2J)A1/2J
4J A1/2J

2J #3/2−1/2J .
Setting J = 4, (8.25)–(8.29), (8.43), and (8.45) imply that

(
E|n(Rn(m) − In(m))|4)1/4 ≤ C(nIn(m))1/2. (8.46)

where C = C1 + C2 + C3 + C4 + C5 + C6.
Applying Boole’s inequality, Markov’s inequality, and (8.46), we obtain

P

(
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1≤m≤Mn
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In(m)

∣∣∣∣> η

)
= P
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Mn⋃
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∣∣∣∣> η

})

≤
Mn∑

m=1

P

({∣∣∣∣n(Rn(m) − In(m))

nIn(m)

∣∣∣∣> η

})
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≤ η−4
Mn∑

m=1

E|n(Rn(m) − In(m))|4
(nIn(m))4

≤ C4η−4
Mn∑

m=1

1

(nIn(m))2
.

Recall the definitions of qn and ξn. Pick a sequence mn → ∞ such that mnξ
−2
n → 0

yet q2
n = o(mn), which is possible since ξn → ∞ and q2

n = o(ξ 2
n ) under Assumption

8.3.2. Then since nIn(m) ≥ ξn and nIn(m) ≥ tr(�m) ≥ σ 2Km ≥ σ 2m/qn, the sum on
the right-hand side is bounded by

mnξ
−2
n +

∞∑
m=mn+1

q2
n

σ 4m2
≤ mnξ

−2
n + q2

n

σ 4mn
−→ 0

as n → ∞. This establishes (8.20) as desired, completing the proof. �

Proof of Theorem 8.5. As in the proof of Theorem 8.2, it is sufficient to show that

sup
w∈Hn

∣∣∣∣Rn(w) − In(w)

In(w)

∣∣∣∣ p−→ 0. (8.47)

where we have written In(w) = IMSE∗
n(w). WLOG assumes Qm = IKm . For w∗

m and

w∗∗
m defined in (8.13) and (8.14), observe that

∑Mn
m=1 w∗

m = ∑Mn
m=1 w∗∗

m = 1. Since
w∗

m are non-negative and sum to one, they define a probability distribution. Thus by
Liapunov’s inequality, for any s ≥ 1 and any constants am ≥ 0 we get

Mn∑
m=1

w∗
ma1/s

m ≤
(

Mn∑
m=1

w∗
mam

)1/s

(8.48)

and similarly

Mn∑
m=1

w∗∗
m a1/s
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Mn∑
m=1

w∗∗
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. (8.49)

As shown in Andrews (1991a) and Hansen and Racine (2012), we have

nRn(w) =
Mn∑
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w∗
mnφ2
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Mn∑
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w∗
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mQ̂−1
m γ̂m +

Mn∑
m=1

w∗∗
m tr

(
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m �̂m
)
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Then applying Minkowski’s inequality, (8.42), (8.44), and then (8.48) and (8.49), we
obtain(
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where the final two inequalities use

Mn∑
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mnφ2

m ≤ nIn(w),

Mn∑
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w∗∗
m tr(�m) ≤ nIn(w),
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where the first two follow from the formula (8.12) for nIn(w), and the third holds for
n sufficiently large since infw nIn(w) → ∞.
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Setting J = 2(N + 1), we have shown that

E|n(Rn(w) − In(w))|2(N+1) ≤ C1+N (nIn(w))N+1.

Then
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As shown in Hansen and Racine (2012, Eqs. (23), (25), and (28)), the right-hand side
is o(1). �

By Markov’s inequality, we have established (8.47), as desired.

Notes
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chapter 9
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VARIABLE SELECTION IN
NONPARAMETRIC AND

SEMIPARAMETRIC REGRESSION
MODELS

........................................................................................................

liangjun su and yonghui zhang

9.1. Introduction
.............................................................................................................................................................................

Over the last 15 years or so, high-dimensional models have become increasingly
popular and gained considerable attention in diverse fields of scientific research. Exam-
ples in economics include wage regression with more than 100 regressors (e.g., Belloni
and Chernozhukov, 2011b), portfolio allocation among hundreds or thousands of
stocks (e.g., Jagannathan and Ma, 2003; Fan, Zhang, and Yu, 2011), VAR models
with hundreds of data series (e.g., Bernanke, Boivin, and Eliasz, 2005), and large-
dimensional panel data models of home price (e.g., Fan, Lv, and Qi, 2011), among
others. A common feature of high-dimensional models is that the number of regres-
sors is very large, which may grow as the sample size increases. This poses a series of
challenges for statistical modeling and inference. Penalized least squares or likelihood
has become a standard unified framework for variable selection and feature extraction
in such scenarios. For a comprehensive overview of high-dimensional modeling, see
Fan and Li (2006) and Fan and Lv (2010).

In high-dimensional modeling, one of the most important problems is the choice of
an optimal model from a set of candidate models. In many cases, this reduces to the
choice of which subset of variables should be included into the model. Subset selection
has attracted a lot of interest, leading to a variety of procedures. The majority of these
procedures do variable selection by minimizing a penalized objective function with the
following form:

Loss function + Penalization.
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The most popular choices of loss functions are least squares, negative log-likelihood,
and their variants (e.g., profiled least squares or profiled negative log-likelihood).
There are many choices of penalization. The traditional subset selection criterion such
as Akaike information criterion (AIC) and Bayesian information criterion (BIC) uses
the l0-norm for the parameters entering the model so that the penalization term is pro-
portional to the number of nonzero parameters. The bridge estimator (see, e.g., Frank
and Friedman, 1993; Fu, 1998; Knight and Fu, 2000) uses the lq-norm (q > 0). It boils
down the commonly used ridge estimator (Horel and Kennard, 1970) when q = 2 and
the Lasso estimator (Tibshirani, 1996) when q = 1. When 0 < q ≤ 1, some components
of the estimator can be exactly zero with some correctly chosen tuning parameters.
Thus, the bridge estimator with 0< q ≤ 1 provides a way to combine variable selection
and parameter estimation simultaneously. Among the class of bridge estimators, Lasso
becomes most popular due to its computational and theoretical advantages compared
with other bridge estimators and traditional variable selection methods. Allowing an
adaptive amount of shrinkage for each regression coefficient results in an estimator
called the adaptive Lasso, which was first proposed by Zou (2006) and can be as effi-
cient as the oracle one in the sense that the method works asymptotically equivalent
to the case as if the correct model were exactly known. Other variants of Lasso include
the group Lasso, adaptive group Lasso, graphic Lasso, elastic net, and so on. Of course,
the penalization term can take other forms; examples include the SCAD penalty of Fan
and Li (2001) and the MC penalty of Zhang (2010).

Given the huge literature on variable selection that has developed over the last 15
years, it is impossible to review all of the works. Fan and Lv (2010) offer a selec-
tive overview of variable selection in high-dimensional feature space. By contrast,
in this chapter we focus on variable selection in semiparametric and nonparamet-
ric regression models with fixed or large dimensions because semiparametric and
nonparametric regressions have gained considerable importance over the last three
decades due to their flexibility in modeling and robustness to model misspecification.
In particular, we consider variable selection in the following models:

• Additive models
• Partially linear models
• Functional/varying coefficient models
• Single index models
• General nonparametric regression models
• Semiparametric/nonparametric quantile regression models

The first four areas are limited to semiparametric and nonparametric regression
models that impose certain structure to alleviate the “curse of dimensionality” in
the nonparametric literature. The fifth part focuses on variable or component selec-
tion in general nonparametric models. In the last part we review variable selection in
semiparametric and nonparametric quantile regression models. Below we first briefly
introduce variable selection via Lasso or SCAD type of penalties in general parametric
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regression models and then review its development in the above fields in turn. In the
last section we highlight some issues that require further study.

9.2. Variable Selection via Lasso or

SCAD Type of Penalties in

Parametric Models
.............................................................................................................................................................................

In this section we introduce the background of variable selection via Lasso or SCAD
type of penalties.

9.2.1. The Lasso Estimator

The Lasso (least absolute shrinkage and selection operator) proposed by Tibshirani
(1996) is a popular model building technique that can simultaneously produce accu-
rate and parsimonious models. For i = 1, . . . , n, let Yi denote a response variable and
let Xi = (

Xi1, . . . , Xip
)′

denote a p × 1 vector of covariates/predictors. For simplicity,
one could assume that (Xi , Yi) are independent and identically distributed (i.i.d.), or
assume that {Xi , Yi}n

i=1 are standardized so that Y = n−1∑n
i=1 Yi = 0, n−1∑n

i=1 Xij = 0,
and n−1∑

i X2
ij = 1 for j = 1, . . . , p. But these are not necessary. The Lasso estimates of

the slope coefficients in a linear regression model solve the l1-penalized least regression
problem:

min
β

n∑
i=1

⎛⎝Yi −
p∑

j=1

βjXij

⎞⎠2

subject to

p∑
j=1

∣∣βj
∣∣≤ s, (9.1)

or, equivalently,

min
β

n∑
i=1

⎛⎝Yi −
p∑

j=1

βjXij

⎞⎠2

+λ

p∑
j=1

∣∣βj

∣∣, (9.2)

where β = (β1, . . . ,βp)′, and s and λ are tuning parameters. The restricted optimization

in (9.1) suggests that the Lasso uses a constraint in the form of l1-norm:
∑p

j=1

∣∣βj
∣∣≤ s.

It is similar to the ridge regression with the constraint of l2-norm:
∑p

j=1β
2
j ≤ s. By

using the l1-penalty, the Lasso achieves variable selection and shrinkage simultane-
ously. However, ridge regression only does shrinkage. More generally, a penalized least
squares (PLS) can have a generic lq-penalty of the form (

∑p
j=1

∣∣βj
∣∣q)1/q, 0 ≤ q ≤ 2.

When q ≤ 1, the PLS automatically performs variable selection by removing predictors
with very small estimated coefficients. In particular, when q = 0, the l0-penalty term
becomes

∑p
j=1 1

(
βj 
= 0

)
with 1(·) being the usual indicator function, which counts
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the number of nonzero elements in the vector β = (β1, . . . ,βp)′. The Lasso uses the
smallest value of q, that is, q = 1, which leads to a convex problem.

The tuning parameter λ is the shrinkage parameter that controls the amount of reg-
ularization. If λ = 0, there is no penalty put on the coefficients and hence we obtain
the ordinary least squares solution; if λ → ∞, the penalty is infinitely large and thus
forces all of the coefficients to be zero. These are necessary but insufficient for the Lasso
to produce sparse solutions. Large enough λ will set some coefficients exactly equal to
zero and is thus able to perform variable selection. In contrast, a ridge penalty never
sets coefficients exactly equal to 0.

Efron, Hastie, Johnstone, and Tibshirani (2004) propose the least angel regression
selection (LARS) and show that the entire solution path of the Lasso can be computed
by the LARS algorithm. Their procedure includes two steps. First, a solution path that
is indexed by a tuning parameter is constructed. Then the final model is chosen on the
solution path by cross-validation or using some criterion such as Cp. The solution path
is piecewise linear and can be computed very efficiently. These nice properties make the
Lasso very popular in variable selection.

9.2.2. Some Generalizations and Variants of the Lasso

In this subsection, we review some variants of the Lasso: Bridge, the adaptive Lasso,
the group Lasso, and the elastic-net. For other work generalizing the Lasso, we give a
partial list for reference.

Bridge. Knight and Fu (2000) study the asymptotics for the Bridge estimator β̂Bridge

which is obtained via the following minimization problem:

min
β

n∑
i=1

⎛⎝Yi −
p∑

j=1

βjXij

⎞⎠2

+λn

p∑
j=1

∣∣βj
∣∣γ , (9.3)

where λn is a tuning parameter and γ > 0. For γ ≤ 1, the Bridge estimator has the
potentially attractive feature of being exactly 0 if λn is sufficiently large, thus combining
parametric estimation and variable selection in a single step.

Adaptive Lasso. Fan and Li (2001) and Fan and Peng (2004) argue that a good variable
selection procedure should have the following oracle properties: (i) Selection consis-
tency. This can identify the right subset models in the sense that it selects the correct
subset of predictors with probability tending to one. (ii) Asymptotic optimality. This
achieves the optimal asymptotic distribution as the oracle estimator in the sense that it
estimates the nonzero parameters as efficiently as would be possible if we knew which
variables were uninformative ahead of time. It has been shown that the Lasso of Tibshi-
rani (1996) lacks such oracle properties whereas the Bridge estimator with 0 < γ < 1



regression models 253

can possess them with a well-chosen tuning parameter. Fan and Li (2001) point out
that asymptotically the Lasso has non-ignorable bias for estimating the nonzero coeffi-
cients. For more discussions on the consistency of Lasso, see Zhao and Yu (2006). Zou
(2006) first shows that the Lasso could be inconsistent for model selection unless the
predictor matrix satisfies a rather strong condition, and then propose a new version of
the Lasso, called the adaptive Lasso. Adaptive Lasso assigns different weights to penalize
different coefficients in the l1-penalty. That is, the adaptive Lasso estimate β̂ALasso of β

solves the following minimization problem:

min
β

n∑
i=1

⎛⎝Yi −
p∑

j=1

βjXij

⎞⎠2

+λn

p∑
j=1

ŵj
∣∣βj

∣∣, (9.4)

where the weights ŵj ’s are data-dependent and typically chosen as ŵj = |β̂j |−γ for some

γ > 0, and β̂j is a preliminary consistent estimator of βj that typically has
√

n-rate
of convergence. Intuitively, in adaptive Lasso the zero parameter is penalized more
severely than a nonzero parameter as the weight of the zero parameter goes to infin-
ity, while that of a nonzero parameter goes to a positive constant. Zou shows that the
adaptive Lasso enjoys the oracle properties so that it performs as well as if the under-
lying true model were given in advance. Similar to the Lasso, the adaptive Lasso is also
near-minimax optimal in the sense of Donoho and Johnstone (1994).

Group Lasso. Observing that the Lasso is designed for selecting individual regressor,
Yuan and Lin (2006) consider extensions of the Lasso and the LARS to the case with
“grouped variables.” The group Lasso estimate is defined as the solution to

min
β

1

2

∥∥∥∥∥∥Y −
J∑

j=1

Xjβ j

∥∥∥∥∥∥
2

2

+λn

J∑
j=1

∥∥∥β j

∥∥∥
Kj

, (9.5)

where Y = (Y1, . . . , Yn)′, Xj is an n × pj regressor matrix, β = (β ′
1, . . . ,β′

J )′, β j is
a pj × 1 vector, Kj is a pj × pj positive definite matrix, ‖·‖2 is a Euclidean norm,∥∥∥β j

∥∥∥
Kj

= (β ′
jKjβ j)

1/2, and λ ≥ 0 is a tuning parameter. Two typical choices of Kj are

Ipj and pjIpj , where Ipj is a pj × pj identity matrix and the coefficient pj in the second
choice is used to adjust for the group size. Obviously, the penalty function in the group
Lasso is intermediate between the l1-penalty that is used in the Lasso and the l2-penalty
that is used in ridge regression. It can be viewed as an l1-penalty used for coefficients
from different groups and an l2-penalty used for coefficients in the same group. Yuan
and Lin propose a group version of the LARS algorithm to solve the minimization
problem. See Huang, Breheny, and Ma (2012) for an overview on group selection in
high-dimensional models.
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Elastic-net. As shown in Zou and Hastie (2005), the Lasso solution paths are unsta-
ble when the predictors are highly correlated. Zou and Hastie (2005) propose the
elastic-net as an improved version of the Lasso for analyzing high-dimensional data.
The elastic-net estimator is defined as follows:

β̂Enet =
(

1 + λ2

n

)
argmin

β

{‖Y − Xβ‖2
2 +λ2‖β‖2

2 +λ1‖β‖1

}
, (9.6)

where Y = (Y1, . . . , Yn)′, X is an n × p regressor matrix, β = (β1, . . . ,βp)′, ‖β‖q =
{∑p

j=1

∣∣βj
∣∣q}1/q, and λ1 and λ2 are tuning parameters. When the predictors are stan-

dardized, 1+λ2/n should be replaced by 1+λ2. The l1-part of the elastic-net performs
automatic variable selection, while the l2-part stabilizes the solution paths to improve
the prediction. Donoho, Johnstone, Kerkyacharian, and Picard (1995) show that in the
case of orthogonal design the elastic-net automatically reduces to the Lasso. Zou and
Hastie also propose the adaptive elastic-net estimates:

β̂AdaEnet =
(

1 + λ2

n

)
argmin

β

⎧⎨⎩‖Y − Xβ‖2
2 +λ2‖β‖2

2 +λ1

p∑
j=1

ŵj
∣∣βj

∣∣⎫⎬⎭, (9.7)

where ŵj = |β̂Enet,j|−γ and β̂Enet,j denotes the jth element of β̂Enet for j = 1, . . . , p.
Under some weak regularity conditions, they establish the oracle property of the
adaptive elastic-net.

There has been a large amount of work in recent years, applying and generalizing the
Lasso and l1-like penalties to a variety of problems. This includes the adaptive group
Lasso (e.g., Wang and Leng, 2008; Wei and Huang, 2010), fused Lasso (e.g., Tibshirani
et al., 2005; Rinaldao, 2009), the graphical Lasso (e.g., Yuan and Lin, 2007; Friedman
et al., 2008), the Dantzig selector (e.g., Candès and Tao, 2007), and near isotonic regu-
larization (e.g., Tibshirani et al., 2010), among others. See Table 1 in Tibshirani (2011)
for a partial list of generalizations of the Lasso.

9.2.3. Other Penalty Functions

Many non-Lasso-type penalization approaches have also been proposed, including the
SCAD and MC penalties. In the linear regression framework, the estimates are given by

β̂n(λn)= argmin
β

‖Y − Xβ‖2 + n

p∑
j=1

pλn

(∣∣βj
∣∣),

where pλn(·) is a penalty function and λn is a penalty parameter. Different penalty func-
tions yield different variable selection procedures, which have different asymptomatic
properties. Note that the Bridge penalty function takes the form pλ(v) = λ|v|γ , where
γ > 0 is a constant. The ordinary Lasso penalty function corresponds to pλ(v) = λ|v|.
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SCAD. The SCAD (smoothly clipped absolute deviation) penalty function proposed by
Fan and Li (2001) takes the form

pλ(v)=

⎧⎪⎨⎪⎩
λv if 0 ≤ v ≤ λ,

− (v2−2aλv+λ2)
2(a−1) if λ < v < aλ,

(a+1)λ2

2 if aλ ≤ v,

and its derivative satisfies

p′
λ(v)= λ

[
1(v ≤ λ)+ (aλ− v)+

(a − 1)λ
1(v > λ)

]
,

where (b)+ = max(b, 0) and a > 2 is a constant (a = 3.7 is recommended and used
frequently). Fan and Li (2001) and Fan and Peng (2004) investigate the properties of
penalized least squares and likelihood estimator with the SCAD penalty. In particu-
lar, they show that the SCAD penalty can yield estimators with the oracle properties.
Hunter and Li (2004) suggest using MM algorithms to improve the performance of
SCAD-penalized estimators.

MC. The MC (minimax concave) penalty function proposed by Zhang (2010) is
given by

pλ(v)= λ

∫ v

0

(
1 − x

γ λ

)
+

dx

where γ > 0 is a tuning parameter. Zhang proposes and studies the MC+ methodol-
ogy that has two components: a MC penalty and a penalized linear unbiased selection
(PLUS) algorithm. It provides a fast algorithm for nearly unbiased concave penal-
ized selection in the linear regression model and achieves selection consistency and
minimax convergence rates.

For other penalization methods, see Fan, Huang, and Peng (2005) and Zou and
Zhang (2009).

9.3. Variable Selection in Additive Models
.............................................................................................................................................................................

In this section, we consider the problem of variable selection in the following
nonparametric additive model

Yi = μ+
p∑

j=1

fj
(
Xij

)+ εi, (9.8)

where Yi is a response variable and Xi = (
Xi1, . . . , Xip

)′
is a p × 1 vector of covariates,

μ is the intercept term, the fj ’s are unknown smooth functions with zero means, and
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εi is the unobserved random error term with mean zero and finite variance σ 2. It is
typically assumed that (Yi , Xi), i = 1, . . . , n, are i.i.d. and some additive components
fj(·) are zero. The main problem is to distinguish the nonzero components from the
zero components and estimate the nonzero components consistently. The number of
additive components p can be either fixed or divergent as the sample size n increases.
In the latter case, we frequently write p = pn. In some scenarios, pn is allowed to be
much larger than n.

Many penalized methods have been proposed to select the significant nonzero com-
ponents for model (9.8). Huang, Horowitz, and Wei (2010) apply the adaptive group
Lasso to select nonzero component after using the group Lasso to obtain an initial
estimator and to achieve an initial reduction of the dimension. They assume that
the number of nonzero fj ’s is fixed and give conditions under which the group Lasso
selects a model whose number of components is comparable with the true model. They
show that the adaptive group Lasso can select the nonzero components correctly with
probability approaching one as n increases and achieves the optimal rates of conver-
gence in the “large p, small n” setting. Meier, van de Geer, and Bühlmann (2009)
consider an additive model that allows for both the numbers of zero and nonzero
fj ’s passing to infinity and being larger than n. They propose a sparsity–smoothness
penalty for model selection and estimation. Under some conditions, they show that
the nonzero components can be selected with probability approaching 1. However,
the model selection consistency is not established. Ravikumar et al. (2007) propose
a penalized approach for variable selection in nonparametric additive models. They
impose penalty on the l2-norm of the nonparametric components. Under some strong
conditions on the design matrix and with special basis functions, they establish the
model selection consistency. In all the above three approaches, the penalties are in the
form of group/adaptive Lasso, or variants of the group Lasso. In addition, Xue (2009)
proposes a penalized polynomial spline method for simultaneous variable selection
and model estimation in additive models by using the SCAD penalty. We will review
these methods in turn.

Several other papers have also considered variable selection in nonparametric addi-
tive models. Bach (2008) applies a method similar to the group Lasso to select
variables in additive models with a fixed number of covariates and establishes the
model selection consistency under a set of complicated conditions. Avalos, Grand-
valet, and Ambroise (2007) propose a method for function estimation and variable
selection for additive models fitted by cubic splines, but they don’t give any the-
oretic analysis for their method. Lin and Zhang (2006) propose the component
selection and smoothing operator (COSSO) method for model selection and estima-
tion in multivariate nonparametric regression models, in the framework of smoothing
spline ANOVA. The COSSO is a method of regularization with the penalty func-
tional being the sum of component norms, instead of the squared norm employed
in the traditional smoothing spline method. They show that in the special case of
a tensor product design, the COSSO correctly selects the nonzero additive compo-
nent with high probability. More recently, Fan, Feng, and Song (2011) propose several



regression models 257

closely related variable screening procedures in sparse ultrahigh-dimensional additive
models.

9.3.1. Huang, Horowitz, and Wei’s (2010) Adaptive
Group Lasso

Huang, Horowitz, and Wei (2010) propose a two-step approach to select and estimate
the nonzero components simultaneously in (9.8) when p is fixed. It uses the group
Lasso in the first stage and the adaptive group Lasso in the second stage.

Suppose that Xij takes values in [a, b] where a < b are finite numbers. Suppose
E
[
fj
(
Xij

)]= 0 for j = 1, . . . , p to ensure unique identification of fj ’s. Under some suitable
smoothness assumptions, fj ’s can be well approximated by functions in Sn, a space of
polynomial splines defined on [a, b] with some restrictions. There exists a normalized
B-spline basis {φk , 1 ≤ k ≤ mn} for Sn such that for any fnj ∈ Sn, we have

fnj(x) =
mn∑

k=1

βjkφk(x), 1 ≤ j ≤ p. (9.9)

Let βnj =
(
βj1, . . . ,βjmn

)′
and βn = (β ′

n1, . . . ,β ′
np)′. Let wn = (

wn1, . . . , wnp
)′

be a weight
vector and 0 ≤ wnj ≤ ∞ for j = 1, . . . , p. Huang, Horowitz, and Wei (2010) consider
the following penalized least squares (PLS) criterion

Ln
(
μ,βn

)=
n∑

i=1

⎡⎣Yi −μ−
p∑

j=1

mn∑
k=1

βjkφk
(
Xij

)⎤⎦2

+λn

p∑
j=1

wnj

∥∥∥βnj

∥∥∥
2

(9.10)

subject to
n∑

i=1

mn∑
k=1

βjkφk
(
Xij

)= 0, j = 1, . . . , p, (9.11)

where λn is a tuning parameter.
Note that (9.10) and (9.11) define a constrained minimization problem. To con-

vert it to an unconstrained optimization problem, one can center the response
and the basis functions. Let φ̄jk = n−1∑n

i=1φk
(
Xij

)
, ψjk(x) = φk(x) − φ̄jk,

Zij = (
ψj1

(
Xij

)
, . . . ,ψjmn

(
Xij

))′
, Zj = (

Z1j , . . . , Znj
)′

, Z = (Z1, . . . , Zp), and Y =(
Y1 − Ȳ , . . . , Yn − Ȳ

)′
, where Ȳ = n−1∑n

i=1 Yi . Note that Zj is an n × mn “design”
matrix for the jth covariate. It is easy to verify that minimizing (9.10) subject to (9.11)
is equivalent to minimizing

Ln
(
βn;λn

)= ∥∥Y − Zβn

∥∥2
2 +λn

p∑
j=1

wnj

∥∥∥βnj

∥∥∥
2
. (9.12)
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In the first step, Huang, Horowitz, and Wei (2010) compute the group Lasso estima-

tor by minimizing Ln1
(
βn;λn1

) = ∥∥Y − Zβn

∥∥2
2 + λn1

∑p
j=1

∥∥∥βnj

∥∥∥
2
, which is a special

case of (9.12) by setting wnj = 1 for j = 1, . . . , p and λn = λn1. Denote the resulting

group Lasso estimator as β̃n ≡ β̃n(λn1). In the second step they minimize the adaptive
group Lasso objective function Ln

(
βn;λn2

)
by choosing

wnj =
{

||β̃nj||−1
2 if ||β̃nj ||2 > 0,

∞ if ||β̃nj ||2 = 0.

Denote the adaptive group Lasso estimator of βn as β̂n ≡ β̂n(λn2) = (β̂
′
n1, . . . , β̂

′
np)′.

The adaptive group Lasso estimators of μ and fj are then given by

μ̂n = Ȳ and f̂nj(x)=
mn∑

k=1

β̂njψk(x), 1 ≤ j ≤ p.

Assume fj(x) 
= 0 for j ∈ A1 = {
1, . . . , p∗}= 0 for j ∈ A0 = {

p∗ + 1, . . . , p
}

. Let β̂n =0

βn denote sgn0(||β̂nj||) = sgn0(||βnj||), 1 ≤ j ≤ p, where sgn0(|x|)= 1 if |x|> 0 and = 0
if |x| = 0. Under some regularity conditions, Huang, Horowitz, and Wei (2010) show

that P(β̂n =0 βn) → 1 as n → ∞, and
∑p∗

j=1 ||β̂nj − βnj||22 = OP(m2
n/n + 1/m2d−1

n +
4m2

nλ
2
n2/n2), where d denotes the smoothness parameter of fj ’s (e.g., d = 2 if each fj has

continuous second-order derivative). In terms of the estimators of the nonparametric
components, they show that

P
(∥∥∥f̂nj

∥∥∥
2
> 0, j ∈ A1 and

∥∥∥f̂nj

∥∥∥
2
= 0, j ∈ A0

)
→ 1 as n → ∞

and
p∗∑

j=1

∥∥∥f̂nj − fj
∥∥∥2

2
= OP

(
mn

n
+ 1

m2d
n

+ 4mnλ
2
n2

n2

)
.

The above result states that the adaptive group Lasso can consistently distinguish
nonzero components from zero components, and gives an upper bound on the rate
of convergence of the estimators.

9.3.2. Meier, Geer, and Bühlmann’s (2009)
Sparsity–Smoothness Penalty

Meier, Geer, and Bühlmann (2009) consider the problem of estimating a high-
dimensional additive model in (9.8), where p = pn & n. For identification purpose,
they assume that all fj ’s are centered, that is,

∑n
i=1 fj

(
Xij

) = 0 for j = 1, . . . , p. For any
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vector a = (a1, . . . , an)′ ∈Rn, define ‖a‖2
n ≡ n−1∑n

i=1 a2
i . Let fj =

(
fj
(
Xj1

)
, . . . , fj

(
Xjn

))′
.

Meier, Geer, and Bühlmann define the sparsity–smoothness penalty as

J
(
fj
)= λ1n

√∥∥fj
∥∥2

n +λ2nI2
(
fj
)
,

where I2
(
fj
) = ∫

[f ′′
j (x)]2 dx measures the smoothness of fj with f ′′

j (x) denoting the
second-order derivative of fj(x), and λ1n and λ2n are two tuning parameters controlling
the amount of penalization. The estimator is given by the following PLS problem:

(
f̂1, . . . , f̂p

)
= argmin

f1,...,fp∈F

∥∥∥∥∥∥Y −
p∑

j=1

fj

∥∥∥∥∥∥
2

n

+
p∑

j=1

J
(
fj
)
, (9.13)

where F is a suitable class of functions and Y = (Y1, . . . , Yn)′. They choose B-splines
to approximate each function fj : fj(x) = ∑mn

k=1βjkφjk(x), where φjk(x) : R→ R are

the B-spline basis functions and β j = (
βj1, . . . ,βjmn

)′ ∈ Rmn is the parameter vector
corresponding to fj . Let Bj denote the n × mn design matrix of B-spline basis of the jth
predictor. Denote the n × pmn design matrix as B = [

B1, B2, . . . , Bp
]
. By assuming that

all fj ’s are second-order continuously differentiable, one can reformulate (9.13) as

β̂ = argmin
β

‖Y − Bβ‖2
n +λ1n

p∑
j=1

√
1

n
β′

jBjB′
jβ j +λ2nβ

′
j�jβ j , (9.14)

where β = (β ′
1, . . . ,β′

p)′, and �j is an mn × mn matrix with (k, l)th element given by

�j,kl =
∫
φ′′

jk(x)φ
′′
jl (x)dx for k, l ∈ {1, . . . , mn}. Let Mj = 1

n BjB′
j+ λ2n�j . Then (9.14) can

be written as a general group Lasso problem:

β̂ = argmin
β

‖Y − Bβ‖2
n +λ1n

p∑
j=1

√
β′

jMjβ j . (9.15)

By Cholesky decomposition, Mj = R′
jRj for some mn ×mn matrix Rj . Define β̃ j = Rjβ j

and B̃j = BjR
−1
j . (9.15) reduces to

̂̃
β = argmin

β̃

∥∥∥Y − B̃β̃
∥∥∥2

n
+λ1n

p∑
j=1

∥∥∥β̃ j

∥∥∥, (9.16)

where β̃ = (β̃
′
1, . . . , β̃

′
p)′, and ||β̃ j|| denotes the Euclidean norm in Rmn . For fixed λ2n,

(9.16) is an ordinary group Lasso problem. For large enoughλ1n some of the coefficient
group β j ∈Rmn will be estimated as exactly zero.

Meier, Geer, and Bühlmann (2009) argue empirically that the inclusion of a smooth-
ness part (I2

(
fj
)
) into the penalty functions yields much better results than having the

sparsity term (
∥∥fj
∥∥

n) only. Under some conditions, the procedure can select a set of
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fj ’s containing all the additive nonzero components. However, the model selection
consistency of their procedure is not established. The selected set may include zero
components and then be larger than the set of nonzero fj ’s.

9.3.3. Ravikumar, Liu, Lafferty, and Wasserman’s (2007)
Sparse Additive Models

Ravikumar, Liu, Lafferty, and Wasserman (2007) propose a new class of methods for
high-dimensional nonparametric regression and classification called SParse Additive
Models (SPAM). The models combine ideas from sparse linear modeling and addi-
tive nonparametric regression. The models they consider take the form (9.8), but they
restrict Xi = (

Xi1, . . . , Xip
)′ ∈ [0, 1]p and p = pn can diverge with n. They consider a

modification of standard additive model optimization problem as follows

min
β∈Rp,gj∈Hj

E

⎡⎣Yi −
p∑

j=1

βjgj
(
Xij

)⎤⎦2

subject to
p∑

j=1

∣∣βj
∣∣≤ L and E

[
gj
(
Xij

)2
]

= 1, j = 1, . . . , p,

where Hj denotes the Hilbert subspace L2
(
μj
)

of measurable function fj
(
Xij

)
with

E
[
fj
(
Xij

)] = 0 and μj being the marginal distribution of Xij, β = (β1, . . . ,βp)′, and

βj is the rescaling parameter such that fj = βjgj and E[gj
(
Xij

)2
] = 1. The constraint

that β lies in the l1-ball
{
β : ‖β‖1 ≤ L

}
induces sparsity for the estimate β̂ of β as for

the Lasso estimate. Absorbing βj in fj , we can re-express the minimization problem in
the equivalent Lagrangian form:

L
(
f ,λ

)= 1

2
E

⎡⎣Yi −
p∑

j=1

fj
(
Xij

)⎤⎦2

+λn

p∑
j=1

√
E
[

f 2
j

(
Xij

)]
, (9.17)

where λn is a tuning parameter. The minimizers for (9.17) satisfy

fj
(
Xij

)=

⎡⎢⎢⎣1 − λn√
E
[

Pj
(
Xij

)2
]
⎤⎥⎥⎦

+

Pj
(
Xij

)
almost surely (a.s.),

where [·]+ denotes the positive part of ·, and Pj
(
Xij

)= E
(
Rij|Xij

)
denotes the projection

of the residuals Rij = Yi−
∑

k 
=j fk(Xik) onto Hj.
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To get a sample version of the above solution, Ravikumar et al. insert the sample
estimates into the population algorithm as in standard backfitting. The projection Pj =
(Pj

(
X1j

)
, . . . , Pj

(
Xnj

)
)′ can be estimated by smoothing the residuals:

P̂j = SjRj

where Sj is a linear smoother (e.g., an n × n matrix for the local linear or sieve

smoother) and Rj = (
R1j , . . . , Rnj

)′
. Let ŝj =

√
n−1

∑n
i=1 P̂2

ij be an estimator of sj =√
E[Pj

(
Xij

)2
], where P̂ij denotes the ith element of P̂j . They propose the SPAM back-

fitting algorithm to solve fj ’s as follows: Given regularization parameter λ, initialize

f̂j
(
Xij

) = 0 for j = 1, . . . , p, and then iterate the following steps until convergence, for
each j = 1, . . . , p :

1. Compute the residual, Rij = Yi −
∑p

k 
=j f̂k(Xik).

2. Estimate Pj by P̂j = SjRj.
3. Estimate sj by ŝj.

4. Obtain the soft thresholding estimate f̂j
(
Xij

)= [1 −λ/ŝi]+P̂ij .

5. Center f̂j to obtain f̂j
(
Xij

)− n−1∑n
i=1 f̂j

(
Xij

)
and use this as an updated estimate

of fj
(
Xij

)
.

The outputs are f̂j , based on which one can also obtain
∑p

i=1 f̂j
(
Xij

)
.

If fj(x) can be written in terms of orthonormal basis functions
{
ψjk : k = 1, 2, . . .

}
:

fj(x) = ∑∞
k=1βjkψjk(x) with βjk = ∫

fj(x)ψjk(x)dx, we can approximate it by f̃j(x) =∑mn
k=1βjkψjk(x) where mn → ∞ as n → ∞. In this case, the smoother Sj can be taken

to be the least squares projection onto the truncated set of basis
{
ψj1, . . . ,ψjmn

}
. The

orthogonal series smoother isSj =#j(#
′
j#j)−1# ′

j , where #j denotes the n×mn design

matrix with (i, k)th element given by ψjk
(
Xij

)
. Then the backfitting algorithm reduces

to choosing β = (β ′
1, . . . ,β ′

p)′ to minimize

1

2n

∥∥∥∥∥∥Y −
p∑

j=1

#jβ j

∥∥∥∥∥∥
2

2

+λn

p∑
j=1

√
1

n
β ′

j

(
# ′

j#j

)
β j , (9.18)

where β j = (βj1, . . . ,βjmn)′. Note that (9.18) is a sample version of (9.17), and it can be
regarded as a functional version of the group Lasso by using the similar transformation
form as used to obtain (9.16). Combined with the soft thresholding step, the update of
fj in the above algorithm can be thought as to minimize

1

2n

∥∥∥Rj −#jβ j

∥∥∥2

2
+λn

√
1

n
β ′

j

(
# ′

j#j

)
β j .

Under some strong conditions, they show that with truncated orthogonal basis the
SPAM backfitting algorithm can recover the correct sparsity pattern asymptotically if
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the number of relevant variables p∗ is bounded [p∗ denotes the cardinality of the set{
1 ≤ j ≤ p : fj 
= 0

}
]. That is, their estimator can achieve the selection consistency.

9.3.4. Xue’s (2009) SCAD Procedure

Xue (2009) considers a penalized polynomial spline method for simultaneous model
estimation and variable selection in the additive model (9.8) where p is fixed. Let
Mn = {mn(x)=∑p

l=1 gl(xl) : gl ∈ ϕ
0,n
l } be the approximation space, where ϕ0,n

l = {gl :
n−1∑n

i=1 gl(Xil) = 0, gl ∈ ϕl} and ϕl is the space of empirically centered polynomial
splines of degree q ≥ 1 on the lth intervals constructed by interior knots on [0,1]. The
penalized least squares estimator is given by

m̂ = argmin
mn=∑p

l=1 fl∈Mn

[
1

2
‖Y − mn‖2

n +
p∑

l=1

pλn

(∥∥fl
∥∥

n

)]
,

where Y = (Y1, . . . , Yn)
′, mn = (mn(X1), . . . , mn(Xn))′, and pλn (·) is a given penalty

function depending on a tuning parameter λn. Different penalty functions lead to dif-
ferent variable selection procedures. Noting the desirable properties of the SCAD, they
use the spline SCAD penalty.

The proposed polynomial splines have polynomial spline basis representation. Let
Jl = Nl + q and Bl = {Bl1, . . . , BlJl } be a basis for ϕ0,n

l . For any fixed x = (x1, . . . , xp)′, let
Bl(xl) = [Bl1(xl), . . . , BlJl(xl)]′. One can express m̂ as

m̂(x) =
p∑

l=1

f̂l(xl) and f̂l(xl) = β̂
′
lBl(xl) for l = 1, . . . , p,

where β̂ = (β̂
′
1, . . . , β̂

′
p)′ minimizes the PLS criterion:

β̂ = argmin
β=(β′

1,...,β ′
d )′

⎡⎣1

2

∥∥∥∥∥Y −
p∑

l=1

β ′
lBl

∥∥∥∥∥
2

n

+
p∑

l=1

pλn

(∥∥β l

∥∥
Kl

)⎤⎦,

where
∥∥β l

∥∥
Kl

=
√

β ′
lKlβ l with Kl = n−1∑n

i=1 Bl(Xil)Bl(Xil)
′.

Under some mild conditions, Xue (2009) shows that the SCAD penalized procedure
estimates the nonzero function components with the same optimal mean square con-
vergence rate as the standard polynomial spline estimators, and she correctly sets the
zero function components to zero with probability approaching one as the sample size
n goes to infinity.
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9.4. Variable Selection in Partially

Linear Models
.............................................................................................................................................................................

In this section, we consider the problem of variable selection in the following partially
linear model (PLM)

Yi = β ′Xi + g(Zi)+ εi , i = 1, 2, . . . , n, (9.19)

where Xi =
(
Xi1, . . . , Xip

)′
is a p×1 vector of regressors that enter the model linearly, Zi

is a q × 1 vector of regressors that enter the model with an unknown functional form
g , and εi is an error term such that

E(εi|Xi , Zi)= 0 a.s. (9.20)

To allow p to increase as n increases, we sometimes write p as pn below.
Xie and Huang (2009) consider the problem of simultaneous variable selection and

estimation (9.19) with a divergent number of covariates in the linear part. Ni, Zhang,
and Zhang (2009) propose a double-penalized least squares (DPLS) approach to simul-
taneously achieve the estimation of the nonparametric component g and the selection
of important variables in Xi in (9.19). Kato and Shiohama (2009) consider variable
selection in (9.19) in the time series framework. In the large p framework, Chen, Yu,
Zou, and Liang (2012) propose to use the adaptive elastic-net for variable selection for
parametric components by using the profile least squares approach to convert the par-
tially linear model to a classical linear regression model. Liang and Li (2009) consider
variable selection in the PLM (9.19), where Zi is a scalar random variable but Xi is
measured with error and is not observable. In addition, Liu, Wang, and Liang (2011)
consider the additive PLM where g(Zi) = ∑q

k=1 gk(Zik) in (9.19). Besides, it is worth
mentioning that Bunea (2004) considers covariate selection in Xi when the dimension
of Xi is fixed and Zi is a scalar variable in (9.19) based on a BIC type of information cri-
terion and a sieve approximation for g(·). He shows that one can consistently estimate
the subset of nonzero coefficients of the linear part and establish its oracle property.
But we will not review this paper in detail because the procedure is not a simultaneous
variable selection and estimation procedure.

9.4.1. Xie and Huang’s (2009) SCAD-Penalized Regression in
High-Dimension PLM

Xie and Huang (2009) consider the problem of simultaneous variable selection and
estimation in (9.19) when p = pn is divergent with n and q is fixed. To make it explicit
that the coefficients depend on n, one can write β = β(n). They allow the number p∗

n of
nonzero components in β(n) diverge with n too.
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Since g is unknown, Xie and Huang use the polynomial splines to approxi-
mate it. Let {Bnw(z) : 1 ≤ w ≤ mn} be a sequence of basis functions. Let B(z) =(
Bn1(z), . . . , Bnmn(z)

)′
, B(n) be the n × mn matrix whose ith row is B(Zi)

′. Under
some smoothness conditions, g(z) can be well approximated by α(n)′B(z) for some
α(n) ∈ Rmn . Then the problem of estimating g becomes that of estimating α(n). Let
Y = (Y1, . . . , Yn)

′ and X(n) = (X1, . . . , Xn)′. Then one can consider the following PLS
objective function for estimating β(n) and α(n) with the SCAD penalty

Qn

(
β(n),α(n)

)
=
∥∥∥Y − X(n)β(n) − B(n)α(n)

∥∥∥2

2
+ n

pn∑
j=1

pλn

(∣∣∣β(n)
j

∣∣∣),

where β
(n)
j denotes the jth element of β(n), and pλn(·) is the SCAD penalty func-

tion with λn as a tuning parameter. Let (β̂(n), α̂(n)) denote the solution to the above
minimization problem, and ĝn(z) = α̂(n)′B(z).

For any β(n), α(n) minimizing Qn satisfies

B(n)′B(n)α(n) = B(n)′(Y − B(n)β(n)).

Let PB(n) = B(n)(B(n)′B(n))−1B(n)′ be the projection matrix. It is easy to verify that the
profile least squares objective function of the parametric part becomes

Q̃n

(
β(n)

)
=
∥∥∥(I − PB(n))

(
Y − X(n)β(n)

)∥∥∥2 + n

pn∑
j=1

pλn

(∣∣∣β(n)
j

∣∣∣),

and β̂(n) = argminβ(n) Q̃
(
β(n)

)
.

Under some regularity conditions that allow divergent p∗
n, Xie and Huang show that

variable selection is consistent, the SCAD penalized estimators of the nonzero coeffi-
cients possess the oracle properties, and the estimator of the nonparametric estimate
can achieve the optimal convergence rate.

9.4.2. Ni, Zhang, and Zhang’s (2009) Double-Penalized Least
Squares Regression in PLM

Ni, Zhang, and Zhang (2009) consider a unified procedure for variable selection in the
PLM in (9.19) when Zi is restricted to be a scalar variable on [0, 1]. To simultaneously
achieve the estimation of the nonparametric component g and the selection of impor-
tant variables in Xi , they propose a double-penalized least squares (DPLS) approach by
minimizing

Q
(
β, g

)= 1

2

n∑
i=1

[
Yi −β ′Xi − g(Zi)

]2 + nλ1n

2

∫ 1

0

[
g ′′(z)

]2
dz +n

p∑
j=1

pλ2n

(∣∣βj
∣∣). (9.21)
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The first penalty term in (9.21) penalizes the roughness of the nonparametric
fit g(z), and the second penalty term imposes the usual SCAD penalty on the
finite-dimensional parameter β. Let X = (X1, . . . , Xn)

′, Y = (Y1, . . . , Yn)
′, and g =(

g(Z1), . . . , g(Zn)
)′

. It can be shown that given λ1n and λ2n, minimizing (9.21) leads
to a smoothing spline estimate for g and one can rewrite the DPLS (9.21) as

Qdp
(
β, g

)= 1

2

(
Y − Xβ − g

)′(
Y − Xβ − g

)+ nλ1n

2
g′Kg + n

p∑
j=1

pλ2n

(∣∣βj
∣∣), (9.22)

where K is the non-negative definite smoothing matrix defined by Green and Silverman
(1994). Given β, one can obtain the minimizer of g as ĝ(β)= (In + nλ1nK)−1(Y − Xβ),
where In is an n × n identity matrix. With this, one can obtain readily the profile PLS
objective function of β as follows:

Q(β)= 1

2
(Y − Xβ)′

[
In − (In + nλ1nK)−1](Y − Xβ)+ n

p∑
j=1

pλ2n

(∣∣βj
∣∣).

Let β̂ denote the minimizing solution to the above problem. Ni, Zhang, and Zhang
(2009) show that β̂ has the oracle properties in the case of fixed p under some regularity
conditions. In the case where p = pn is divergent with pn ' n, they also establish the
selection consistency by allowing the number p∗

n of nonzero components in β to be
divergent at a slow rate.

9.4.3. Kato and Shiohama’s (2009) Partially Linear Models

Kato and Shiohama (2009) consider the PLM in (9.19) in the time series framework by
restricting Zi = ti = i/n and allowing εi to be a linear process. They assume that g(ti)

is an unknown time trend function that can be exactly expressed as

g(ti) =
m∑

k=1

αkφk(ti) = α′φi ,

where φi = (φ1(ti), . . . ,φm(ti))
′ is an m-dimensional vector constructed from basis

functions {φk(ti): k = 1, . . . , m}, and α = (α1, . . . ,αm)
′ is an unknown parameter vector

to be estimated. They propose variable selection via the PLS method:

‖Y − Xβ −φα‖2
2 + nλ0nα

′Kα + n

⎛⎝ p∑
j=1

pλ1n

(∣∣βj
∣∣)+

m∑
k=1

pλ2n(|αk|)
⎞⎠,

where φ = (φ1, . . . ,φn)′, λ0n in the second term is used to control the tradeoff between
the goodness-of-fit and the roughness of the estimated function, K is an appropriate
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positive semidefinite symmetric matrix, pλin(·) are penalty functions, and λin, i = 1, 2,
are regularization parameters, which control the model complexity. They consider
several different penalty functions: the hard thresholding penalty, l2-penalty in ridge
regression, the Lasso penalty, and the SCAD penalty. Under some conditions, they
establish the convergence rates for the PLS estimator, and show its oracle property.

9.4.4. Chen, Yu, Zou, and Liang’s (2012) Adaptive
Elastic-Net Estimator

Chen, Yu, Zou, and Liang (2012) propose to use the adaptive elastic-net (Zou and
Zhang, 2009) for variable selection for parametric components when the dimension
p is large, using profile least squares approach to convert the PLM to a classical linear
regression model.

Noting that E(Yi|Zi)= β ′E(Xi|Zi)+ g(Zi) under (9.19)–(9.20), we have

Yi − E(Yi|Zi) = β ′[Xi − E(Xi|Zi)] + εi , (9.23)

which is a standard linear model if E(Yi|Zi) and E(Xi|Zi) were known. Let Ê(Yi|Zi)

and Ê(Xi|Zi) be the local linear estimators for E(Yi|Zi) and E(Xi|Zi), respectively. Let
X̂i = Xi − Ê(Xi|Zi), Ŷi = Yi − Ê(Yi|Zi), X̂ = (X̂1, . . . , X̂n)′, and Ŷ = (Ŷ1, . . . , Ŷn)′. Chen,
Yu, Zou, and Liang’s adaptive Elastic-Net procedure is composed of the following two
steps:

1. Construct the Elastic-Net estimator of β given by

β̂Enet =
(

1 + λ2

n

)
argmin

β

{∥∥∥Ŷ − X̂β

∥∥∥2

2
+λ2n‖β‖2

2 +λ1n‖β‖1

}
.

2. Let ŵj = |β̂Enet,j|−γ for j = 1, . . . , p and some γ > 0, where β̂Enet,j denotes the jth

element of β̂Enet. The adaptive elastic-net estimator of β is given by

β̂AdaEnet =
(

1 + λ2

n

)
argmin

β

⎧⎨⎩∥∥∥Ŷ − X̂β

∥∥∥2

2
+λ2n‖β‖2

2 +λ∗
1n

p∑
j=1

ŵj
∣∣βj

∣∣⎫⎬⎭.

Here, the l1 regularization parameters λ1n and λ∗
1n control the sparsity of the Elastic-

Net and adaptive Elastic-Net estimators, respectively. The same λ2n for the l2-penalty
is used in both steps. Under some regular conditions that allows diverging p, they show
that profiled adaptive Elastic-Net procedure has the oracle property. In particular, P({j :
β̂AdaEnet,j 
= 0} =A) → 1 as n → ∞, where A= {

j : βj 
= 0, j = 1, . . . , p
}

.
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9.4.5. Liang and Li’s (2009) Variable Selection with
Measurement Errors

Liang and Li (2009) also consider the model in (9.19)–(9.20) where Zi is a scalar ran-
dom variable, and Xi is measured with error and is not observable. Let Wi denote the
observed surrogate of Xi , that is,

Wi = Xi + Ui, (9.24)

where Ui is the measurement error with mean zero and unknown covariance �uu.
Assume Ui is independent of (Xi , Zi , Yi). Since E(Ui|Zi) = 0, we have g(Zi) =
E(Yi|Zi)− E(Wi|Zi)

′β. The PLS function based on partial residuals is defined as

Lp(�uu,β) = 1

2

n∑
i=1

{[
Yi − m̂y(Zi)

]− [
Wi − m̂w(Zi)

]′
β
}

− n

2
β′�uuβ + n

p∑
j=1

qλj

(∣∣βj
∣∣), (9.25)

where m̂y(Zi) and m̂w(Zi) are estimators of E(Yi|Zi) and E(Wi|Zi), respectively, and
qλj (·) is a penalty function with a tuning parameter λj . The second term is included to
correct the bias in the squared loss function due to the presence of measurement error.

The PLS function (9.25) provides a general framework of variable selection in PLMs
with measurement errors. In principle, one can use all kinds of penalty functions. But
Liang and Li focus on the case of SCAD penalty. Under some conditions, they show that
with probability approaching one, there exists a

√
n-consistent PLS estimator β̂ when

�uu is estimated from partially replicated observations, and the estimator β̂ possesses
the oracle properties. In addition, they also consider the penalized quantile regression
for PLMs with measurement error. See Section 9.8.1.

9.4.6. Liu, Wang, and Liang’s (2011) Additive PLMs

Liu, Wang, and Liang (2011) consider the additive PLM of the form

Yi = β ′Xi +
q∑

k=1

gk(Zik)+ εi

where Xi = (
Xi1, . . . , Xip

)′
and Zi = (

Zi1, . . . , Ziq
)′

enter the linear and nonparametric
components, respectively, g1, . . . , gq are unknown smooth functions, and E(εi|Xi , Zi)=
0 a.s. They are interested in the variable selection in the parametric component. For
identification, assume that E

[
gk(Zik)

]= 0 a.s. for k = 1, . . . , q. In addition, they assume
that both p and q are fixed.
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Since gk’s are unknown, Liu, Wang, and Liang propose to use spline approximation.
Let Sn be the space of polynomial functions on [0, 1] of degree $ ≥ 1. Let Gn be the
collection of functions g with additive form g(z) = g1(z1)+ ·· · + gK (zK ). For the kth
covariate zk , let bjk(zk) be the B-spline basis functions of degree $. For any g ∈ Gn, one
can write

g(z) = γ ′b(z),

where b(z) = {
bjk(zk), j = −$, . . . , mn, k = 1, . . . , q

}′ ∈ Rmnq, and γ is the correspond-
ing vector of coefficients and its elements are arranged in the same order as b(z). The
PLS objective function is given by

LP(β,γ )= 1

2

n∑
i=1

[
Yi − γ ′b(Zi)−β′Xi

]2 + n

p∑
j=1

qλj

(∣∣βj
∣∣),

where qλj (·) is a penalty function with a tuning parameter λj . Let β̂ be the PLS esti-
mator. Liu, Wang, and Liang consider the SCAD penalty function and show that the
SCAD variable selection procedure can effectively identify the significant components
with the associated parametric estimators satisfying the oracle properties. But they do
not study the asymptotic properties of the estimators of nonparametric components.

9.5. Variable Selection in

Functional/Varying Coefficients

Models
.............................................................................................................................................................................

Nonparametric varying or functional coefficient models (VCMs or FCMs) are useful
for studying the time-dependent or the variable-dependent effects of variables. Many
methods have been proposed for estimation of these models. See, for example, Fan and
Zhang (1998) for the local polynomial smoothing method and see Huang, Wu, and
Zhou (2002) and Qu and Li (2006) for the basis expansion and spline method. Several
procedures have been developed for variable selection and estimation simultaneously
for these models. Wang and Xia (2009) propose adaptive group Lasso for variable
selections in VCMs with fixed p based on kernel estimation; Lian (2010) extends their
approach by using double adaptive lasso and allowing p to be divergent with n. Zhao
and Xue (2011) consider SCAD variable selection for VCMs with measurement error.
Li and Liang (2008) consider variable selection in generalized varying-coefficient par-
tially linear models by using the SCAD penalty. In addition Wang, Chen, and Li (2007),
Wang, Li, and Huang (2008) and Wei, Huang, and Li (2011) consider sieve-estimation-
based variable selection in VCMs with longitudinal data where the penalty takes either
the SCAD or group Lasso form.
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9.5.1. Wang and Xia’s (2009) Kernel Estimation with Adaptive
Group Lasso Penalty

Wang and Xia (2009) consider the following varying coefficient model (VCM):

Yi = X ′
iβ(Zi)+ εi , (9.26)

where Xi = (
Xi1, . . . , Xip

)′
is a p × 1 vector of covariates, Zi is a scalar variable that

takes values on [0,1], and εi is the error term satisfying E(εi|Xi , Zi)= 0 a.s. The coeffi-
cient vector β(z) = (β1(z), . . . ,βp(z))′ ∈ Rp is an unknown but smooth function in z,
whose true value is given by β0(z) = (β01(z), . . . ,β0d(z))

′. Without loss of generality,
assume that there exists an integer p∗ ≤ p such that 0 < E[β2

0j(Zi)] <∞ for any j ≤ p∗

but E[β2
0j(Zi)] = 0 for j > p∗. The main objection is to select the variables in Xi with

nonzero coefficients when p is fixed.
Let B = (β(Z1), . . . ,β(Zn))′ and B0 = (β0(Z1), . . . ,β0(Zn))′. Note that the last(

p − p∗) columns for B0 should be 0. The selection of variables becomes identifying
sparse columns in the matrix B0. Following the group Lasso of Yuan and Lin (2006),
Wang and Xia propose the following PLS estimate

B̂λ = (β̂λ(Z1), . . . , β̂λ(Zn))
′ = argminB∈Rn×p Qλ(B),

where

Qλ(B) =
n∑

i=1

n∑
t=1

[Yi − Xiβ(Zt )]
2Kh(Zt − Zi)+

p∑
j=1

λj
∥∥bj

∥∥, (9.27)

λ= (
λ1, . . . ,λp

)′
is a vector of tuning parameters, Kh(z) = h−1K(z/h), K(·) is a kernel

function, h is a bandwidth parameter, bj denotes the jth column of B for j = 1, . . . , p,

and ‖·‖ denotes the usual Euclidean norm. Let b̂λ,k denote the kth column of B̂λ for

k = 1, . . . , p so that we can also write B̂λ = (b̂λ,1, . . . , b̂λ,p). They propose an iterated algo-
rithm based on the idea of the local quadratic approximation of Fan and Li (2001). Let
B̃ be an initial estimate of B0 and B̂(m)

λ = (b̂(m)
λ,1 , . . . , b̂(m)

λ,p ) = (β̂(m)
λ (Z1), . . . , β̂

(m)
λ (Zn))′ be

the Lasso estimate in the mth iteration. The objective function in (9.27) can be locally
approximated by

n∑
i=1

n∑
t=1

[Yi − Xiβ(Zt )]
2Kh(Zt − Zi)+

d∑
j=1

λj

∥∥bj
∥∥2∥∥∥b̂(m)

λ,j

∥∥∥ .

Let B̂(m+1)
λ denote the minimizer. Its ith row is given by

β̂
(m+1)
λ (Zt )=

[
n∑

i=1

XiX
′
i Kh(Zt − Zi)+ D(m)

]−1 n∑
i=1

XiYiKh(Zt − Zi),
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where D(m) is a p × p diagonal matrix with its jth diagonal component given by

λj/||b̂(m)
λ,j ||, j = 1, . . . , p. The estimate for β(z) is

β̂λ(z) =
[

n∑
i=1

XiX
′
i Kh(z − Zi)+ D(m)

]−1 n∑
i=1

XiYiKh(z − Zi).

Let β̂a,λ(z) = (β̂λ,1(z), . . . , β̂λ,p∗(z))′ and β̂b,λ(z) = (β̂λ,p∗+1(z), . . . , β̂λ,p(z))′. Under

some regular conditions, Wang and Xia show that (i) P( supz∈[0,1] ||β̂λ,b(z)|| = 0) → 1;

and (ii) supz∈[0,1] ||β̂a,λ(z)− β̂ora(z)|| = oP
(
n−2/5

)
, where

β̂ora(z) =
[

n∑
i=1

Xi(a)X
′
i(a)Kh(Zt − Zi)

]−1 n∑
i=1

Xi(a)YiKh(z − Zi)

stands for the oracle estimator, and Xi(a) = (
Xi1, . . . , Xip0

)′
. The second part implies

that β̂a,λ(z) has the oracle property.
They also propose to choose the tuning parameters λ by

λj = λ0

n−1/2||β̃j||
,

where β̃j is the jth column of the unpenalized estimate B̃. λ0 can be selected according
to the following BIC-type criterion:

BICλ = log (RRSλ) + dfλ × log(nh)

nh

where 0 ≤ dfλ ≤ p is the number of nonzero coefficients identified by B̂λ and RRSλ is
defined as

RRSλ = 1

n2

n∑
i=1

n∑
t=1

[
Yi − X ′

i β̂λ(Zt )

]2
Kh(Zi − Zt).

Under some conditions, they show that the tuning parameter λ̂ selected by the BIC-
type criterion can identify the true model consistently.

9.5.2. Lian’s (2010) Double Adaptive Group Lasso in
High-Dimensional VCMs

Lian (2010) studies the problem of simultaneous variable selection and constant coef-
ficient identification in high-dimensional VCMs based on B-spline basis expansion. He
considers the VCM in (9.26) but allows for p = pn & n. In addition, he explicitly allows
some nonzero coefficients in β(Zt ) to be constant a.s.
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Using spline expansions, β(z) can be approximated by
∑mn

k=1 bjkBk(z), where
{Bk(z)}mn

k=1 is a normalized B-spline basis. Lian proposes the following PLS estimate:

b̂ = argminb
1

2

n∑
i=1

⎡⎣Yi −
p∑

j=1

mn∑
k=1

XijbjkBk(Zi)

⎤⎦2

+ nλ1

p∑
j=1

w1j

∥∥bj

∥∥+ nλ2

p∑
j=1

w2j

∥∥bj

∥∥
c ,

where λ1, λ2 are regularization parameters, w1 = (
w11, . . . , w1p

)′
and w2 =(

w21, . . . , w2p
)′

are two given vectors of weights, bj =
(
bj1, . . . , bjmn

)′
,
∥∥bj

∥∥=
√∑mn

k=1 b2
jk,

and
∥∥bj

∥∥
c =

√∑mn
k=1

[
bjk − b̄j

]2
with b̄j = m−1

n
∑mn

k=1 bjk . The first penalty is used for
identifying the zero coefficients, while the second is used for identifying the nonzero
constant coefficients.

The minimization problem can be solved by the locally quadratic approximation as
Fan and Li (2001) and Wang and Xia (2009). He also proposes a BIC-type criterion to
select λ1 and λ2. Under some suitable conditions, he shows that consistency in terms
of both variable selection and constant coefficients identification can be achieved, and
the oracle property of the constant coefficients can be established.

9.5.3. Zhao and Xue’s (2011) SCAD Variable Selection for
VCMs with Measurement Errors

Zhao and Xue (2011) consider variable selection for the VCM in (9.26) when the
covariate Xi is measured with errors and Zi is error-free. That is, Xi is not observed
but measured with additive error:

ξi = Xi + Vi ,

where Vi is the measurement error that is assumed to be independent of (Xi , Zi ,εi) and
have zero mean and variance–covariance matrix �VV .

Like Lian (2010), Zhao and Xue propose to approximate β(z) by a lin-
ear combination of B-spline basis functions. Let B(z) = (B1(z), . . . , Bmn(z))

′,
Wi = (Xi1B(Zi)

′, . . . , XipB(Zi)
′) = [Ip ⊗ B(Zi)]Xi , and b = (b′

1, . . . , b′
p)′. Let W̃i =

(ξi1B(Zi)
′, . . . ,ξipB(Zi)

′) = [Ip ⊗ B(Zi)]ξi, where ξij denotes the jth element in ξi.
Observing that

E
[

W̃iW̃
′
i |Xi , Zi

]
= WiW

′
i +�(Zi),

where �(Zi) = [Ip ⊗ B(Zi)]�VV [Ip ⊗ B(Zi)]′, they propose a bias-corrected PLS
objective function

Q(b) =
n∑

i=1

[
Yi − b′W̃i

]2 −
n∑

i=1

p∑
j=1

b′�(Zi)b + n

p∑
j=1

qλ
(∥∥bj

∥∥
H

)
,
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where qλ(·) is the SCAD penalty function with λ as a tuning parameter and
∥∥bj

∥∥
H =(

b′Hb
)1/2

with H = ∫ 1
0 B(z)B(z)′dz. They establish the consistency of the vari-

able selection procedure and derive the optimal convergence rate of the regularized
estimators.

9.5.4. Li and Liang’s (2008) Variable Selection
in Generalized Varying-Coefficient Partially
Linear Model

Li and Liang (2008) consider the generalized varying-coefficient partially linear model
(GVCPLM)

g{μ(u, x, z)} = x′α(u)+ z′β,

where μ(u, x, z) = E(Yi|Ui = u, Xi = x, Zi = z), Xi is p-dimensional, Zi is q-
dimensional, and Ui is a scalar random variable. They assume that p and q are fixed
and focus on the selection of significant variables in the parametric component based
on i.i.d. observations (Yi , Ui , Xi, Zi), i = 1, . . . , n. The conditional quasi-likelihood of Yi

is Q(μ(Ui, Xi , Zi)), where

Q
(
μ, y

)=
∫ y

μ

s − y

V (s)
ds

and V (s) is a specific variance function. Then the penalized likelihood function is
defined by

L(α,β)=
n∑

i=1

Q
[
g−1(X ′

iα(Ui)+ Z ′
iβ
)
, Yi

]− n

q∑
j=1

pλj

(∣∣βj
∣∣), (9.28)

where βj denotes the jth element of β, pλj (·) is a specific penalty function with a

tuning parameter λj , and g−1 denotes the inverse function of g . They propose to
use the SCAD penalty. Since α(u) is unknown, they first use the local likelihood
technique to estimate α(u) and then substitute the resulting estimate into the above
penalized likelihood function and finally maximize (9.28) with respect to β. Under
some conditions, they establish the rate of convergence for the resulting PLS esti-
mator β̂ of β. With proper choices of penalty functions and tuning parameters,
they show the asymptotic normality of β̂ and demonstrate that the proposed pro-
cedure performs as well as an oracle procedure. To select variables in Xi that are
associated with the nonparametric component, they propose a generalized likelihood
ratio (GLR) test statistic to test the null hypothesis of some selected components
being zero.
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9.5.5. Sieve-estimation-Based Variable Selection in VCMs
with Longitudinal Data

Several papers address the issue of variable selection in VCMs with longitudinal data.
They base the variable selection on sieve estimation with either SCAD or Lasso penalty
with balanced or unbalanced data.

Let Yi(tj) be the expression level of the ith individual at time tj , where i = 1, . . . , n
and j = 1, . . . , T . Wang, Chen, and Li (2007) consider the following VCM:

Yi(t)= μ(t)+
p∑

k=1

βk(t)Xik + εi(t), (9.29)

where μ(t) indicates the overall mean effect, εi(t) is the error term, and other objects
are defined as above. They approximate βk(t) by using the natural cubic B-spline basis:
βk(t) ≈ ∑mn

l=1βklBl(t), where Bl(t) is the natural cubic B-spline basis function, for
l = 1, . . . , mn, and the number of interior knots is given by mn − 4. They propose a
general group SCAD (gSCAD) procedure for selecting the groups of variables in a linear
regression setting. Specifically, to select nonzero βk(t), they minimize the following
PLS loss function:

L(β,μ) =
n∑

i=1

T∑
j=1

{
yit −μ

(
tj
)−

p∑
k=1

mn∑
l=1

βkl
[
Bl
(
tj
)
Xik

]}2

+ nT

p∑
k=1

pλ
(∥∥βk

∥∥),
where yit = Yi

(
tj
)
, μ= (μ(t1), . . . ,μ(tT ))′, pλ(·) is the SCAD penalty with λ as a tuning

parameter, and βk = (βk1, . . . ,βkmn)′. An iterative algorithm based on local quadratic
approximation of the non-convex penalty pλ

(∥∥βk

∥∥) as in Fan and Li (2001) is pro-
posed. Under some overly restrictive conditions such as the knot, locations are held
fixed as the sample size increases, they generalize the arguments in Fan and Li (2001) to
the group selection settings and establish the oracle property of gSCAD group selection
procedure.

Wang, Li, and Huang (2008) consider a model similar to (9.29) but allow for
unbalanced data:

Yi
(
tij
)=

p∑
k=1

βk
(
tij
)
Xik

(
tij
)+ εi

(
tij
)
, (9.30)

where i = 1, . . . , n, j = 1, . . . , ni, Xik(t) is the covariate with time-varying effects, and
the number of covariates p is fixed. They propose a PLS estimator using the SCAD
penalty and basis expansion. The coefficients βk(t) can be approximated by a basis
expansion βk(t)≈

∑mnk
l=1 βklBkl(t) where various basis systems including Fourier bases,

polynomial bases, and B-spline bases can be used in the basis expansion to obtain Bkl(t)
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for l = 1, . . . , mnk. Their objective function is given by

n∑
i=1

wi

Ti∑
j=1

{
Yi
(
tij
)−

p∑
k=1

mnk∑
l=1

βkl
[
Bkl

(
tj
)
Xik

(
tij
)]}2

+
p∑

k=1

pλ
(∥∥βk

∥∥
Rk

)
,

where the wi’s are weights taking value 1 if we treat all observations equally or 1/Ti if

we treat each individual subject equally,
∥∥βk

∥∥2
Rk

= β
′
kRkβk, Rk is an mnk × mnk kernel

matrix whose (i, j)th element is given by

rk,ij =
∫ 1

0
Bki(t)Bkj(t)dt .

Under suitable conditions, they establish the theoretical properties of their procedure,
including consistency in variable selection and the oracle property in estimation.

More recently, Wei, Huang, and Li (2011) also consider the model in (9.30) but
allow the number of variables p(=pn) to be larger than n. They apply the group Lasso
and basis expansion to simultaneously select the important variables and estimate the
coefficient functions. The objective function of the group Lasso is given by

1

2

n∑
i=1

Ti∑
j=1

{
Yi
(
tij
)−

p∑
k=1

mnk∑
l=1

βkl
[
Bkl

(
tj
)
Xik

(
tij
)]}2

+
p∑

k=1

λ
∥∥βk

∥∥
Rk

,

where
∥∥βk

∥∥
Rk

is defined as above. Under some conditions, they establish the esti-
mation consistency of group Lasso and the selection consistency of adaptive group
Lasso.

9.6. Variable Selection in

Single Index Models
.............................................................................................................................................................................

As a natural extension of linear regression model, the single index model (SIM) pro-
vides a specification that is more flexible than parametric models while retaining the
desired properties of parametric models. It also avoids the curse of dimensional-
ity through the index structure. Many methods have been proposed to estimate the
coefficients in SIMs. Most of them can be classified into three categories. The first cate-
gory includes the average derivative estimation method (Härdle and Stoker, 1989), the
structure adaptive method (Hristache et al., 2001) and the outer product of gradients
method (Xia et al., 2002), which only focus on the estimation of unknown coefficients.
The second category consists of methods that estimate the unknown link function and
coefficients simultaneously, including Ichimura’s (1993) semiparametric least square
estimation and the minimum average conditional variance estimation (MAVE) by Xia
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et al. (2002). The third one is related to the inverse regression and is developed for
sufficient dimension reduction (SDR) (see, e.g., Li (1991)).

Variable selection is a crucial problem in SIMs. Many classical variable selection
procedures for linear regressions have been extended to SIMs. See, for example, Naik
and Tsai (2001) and Kong and Xia (2007) for AIC and cross-validation. Based on the
comparison of all the subsets of predictor variables, these methods are computationally
intensive. Recently, Peng and Huang (2011) use the penalized least squares method
to estimate the model and select the significant variables simultaneously. Zeng, He,
and Zhu (2011) consider a Lasso-type approach called sim-Lasso for estimation and
variable selection. Liang, Liu, Li, and Tsai (2010) consider variable selection in partial
linear single-indexed models using the SCAD penalty. Yang (2012) considers variable
selection for functional index coefficient models. Some variable selection procedures
are also proposed for generalized SIMs (see Zhu and Zhu (2009), Zhu, Qian, and Lin
(2011), and Wang, Xu, and Zhu (2012)).

9.6.1. Peng and Huang’s (2011) Penalized Least
Squares for SIM

Peng and Huang (2011) consider the SIM

Yi = g
(
X ′

iβ
)+ εi , i = 1, 2, . . . , n, (9.31)

where g(·) is a smooth unknown function, Xi is a p × 1 vector of covariates, β =
(β1, . . . ,βp)′ is a p × 1 vector of parameters, and εi is a white noise with unknown
variance σ 2. For identification, let ‖β‖ = 1 and sign(β1) = 1 where sign(a) = 1 if
a > 0, = −1 otherwise. They follow the idea of Carroll et al. (1997) and use an iterative
algorithm to estimate β and the link function g simultaneously.

The unknown function g(·) can be approximated locally by a linear function

g(v) ≈ g(u)+ g ′(u)(v − u)

when v lies in the neighborhood of u, and g ′(u)= dg(u)/du. Given β, one can estimate
g(u) and g ′(u) by choosing (a, b) to minimize

n∑
i=1

[
Yi − a − b

(
X ′

iβ − u
)]2

kh
(
X ′

iβ − u
)
, (9.32)

where kh(·) = k(·/h)/h and k(·) is a symmetric kernel function. Let ĝ(·,β) denote the
estimate of g(u) given β. Given ĝ(·,β), one can estimate β by minimizing the following
PLS function

n∑
i=1

[
Yi − ĝ

(
X ′

iβ,β
)]2 + n

p∑
j=1

pλ
(∣∣βj

∣∣), (9.33)
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where pλ(·) is the SCAD penalty function with a tuning parameter λ. To solve the above
nonlinear optimization problem, Peng and Huang propose to use the local approxi-
mation idea and update the estimate of β given the current estimates β(0) and ĝ by
minimizing the following penalized least squares function:

n∑
i=1

[
Yi − ĝ

(
X ′

i β̂
(0), β̂(0)

)
− ĝ ′

(
X ′

i β̂
(0), β̂(0)

)
X ′

i

(
β − β̂(0)

)]2 + n

p∑
j=1

pλ
(∣∣βj

∣∣). (9.34)

The estimation procedure for β and g(·) is summarized as follows:

1. Obtain an initial estimate of β, say β̂(0), by the least squares regression of Yi on

Xi . Let β̂ = β̂(0)/‖β̂(0)‖·sign(β̂(0)
1 ), where β̂(0)

1 is the first element of β̂(0).

2. Given β̂, find ĝ(u, β̂) = â and ĝ ′(u, β̂) = b̂ by minimizing (9.32).
3. Update the estimate of β by minimizing (9.34) with β̂(0) being replaced by β̂ .
4. Continue steps 2–3 until convergence.
5. Given the final estimate β̂ from step 4, refine the estimate ĝ(u, β̂) of g(·) by

minimizing (9.32).

Peng and Huang argue that the above iterative algorithm can be regarded as an EM
algorithm and different bandwidth sequence should be used in steps 2–3 and 5. In steps
2–3, one should assure the accuracy of the estimate of β and thus an undersmoothing
bandwidth should be used to obtain the estimate of g ; in step 5, one can obtain the
final estimate of g by using the optimal bandwidth as if β were known. They discuss
the choice of these two bandwidths and the tuning parameter λ as well. Under some
conditions, they derive the convergence rate for β̂ and show its oracle property.

9.6.2. Zeng, He, and Zhu’s (2011) Lasso-Type
Approach for SIMs

Zeng, He, and Zhu (2011) consider a Lasso-type approach called sim-Lasso for estima-
tion and variable selection for the SIM in (9.32). The sim-Lasso method penalizes the
derivative of the link function and thus can be considered as an extension of the usual
Lasso. They propose the following PLS minimization problem:

min
a,b,β,‖β‖=1

n∑
j=1

n∑
i=1

[
Yi − aj − bjβ

′(Xi − Xj
)]2

wij +λ

n∑
j=1

∣∣bj
∣∣ p∑

k=1

|βk|, (9.35)

where a = (a1, . . . , an)′, b = (b1, . . . , bn)′, wij = Kh
(
Xi − Xj

)
/
∑n

l=1 Kh
(
Xl − Xj

)
, Kh(·)=

K(·/h)/hp, K(·) is a kernel function and h is the bandwidth, and λ is the tuning param-
eter. Denote the objective function in (9.35) as LMλ(a, b,β) and denote its minimizer
as â(λ)= (

â1(λ), . . . , ân(λ)
)′

, b̂(λ) = (b̂1(λ), . . . , b̂n(λ))′, and β̂(λ).
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Note that the first part of LMλ(a, b,β) is the objective function for the MAVE
estimation of β. Its inner summation is

n∑
i=1

[
Yi − aj − bjβ

′(Xi − Xj
)]2

wij, (9.36)

which is the least squares loss function for the local smoothing of g at β ′Xj . A natural
way to penalize (9.36) is to penalize the vector of linear coefficient bjβ via the lasso type
of penalty, yielding

n∑
i=1

[
Yi − aj − bjβ

′(Xi − Xj
)]2

wij +λ
∣∣bj
∣∣ p∑

k=1

|βk|. (9.37)

Summing (9.37) over i leads to the objective function in (9.35). The penalty term
λ
∑n

j=1

∣∣bj
∣∣∑p

k=1|βk | has twofold impact on the estimation of β. First, as the usual

Lasso, it makes β̂(λ) sparse and thus performs variable selection. Second, it also
enforces shrinkage in b̂(λ) and may shrink some b̂i(λ)’s to zero. The second point is
important because when g is relatively flat, its derivative is close to zero and does not
contain much information about β.

Given β and b, the target function LMλ(a, b,β) can be minimized by aj = Ỹi −
bjβ

′
(

X̃i − Xj

)
, where Ỹi =∑n

i=1 wijYj and X̃i =∑n
i=1 wijXj . Then LMλ(a, b,β) can be

simplified to

Lλ(b,β) = min
a

LMλ(a, b,β)

=
n∑

j=1

n∑
i=1

[
Yi − Ỹi − bjβ

′
(

Xi − X̃j

)]2
wij +λ

n∑
j=1

∣∣bj
∣∣ p∑

k=1

|βk|.

When β is fixed, the target function Lλ is decoupled into n separate target functions,
that is, Lλ =∑n

i=1 Lλ,i, where

Lλ,i =
n∑

i=1

[
Yi − Ỹi − bjβ

′
(

Xi − X̃j

)]2
wij +λ∗

β

∣∣bj
∣∣

and λ∗
β = λ

∑p
k=1|βk |. The solution is

b̂j = sgn(β ′Rj)

(∣∣β ′Rj
∣∣−λ

∑p
k=1|βk|/2

β ′Sjβ

)+
, (9.38)

where

Rj =
n∑

i=1

(
Yi − Ỹj

)(
Xi − X̃j

)
wij and Sj =

n∑
i=1

(
Xi − X̃j

)(
Xi − X̃j

)′
wij.
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For fixed b, minimizing Lλ(b,β) becomes

β̂ = argmin
β

n∑
j=1

n∑
i=1

[
Yi − Ỹi − bjβ

′
(

Xi − X̃j

)]2
wij +λ∗

b

p∑
k=1

|βk|, (9.39)

where λ∗
b = λ

∑n
j=1

∣∣bj
∣∣. It can be solved by the LARS–Lasso algorithm. The algorithm

is summarized as follows:

1. Get an initial estimate β̂ of β.
2. Given β̂, calculate b̂j as (9.38).

3. Given b̂ = (b̂1, . . . , b̂n)′, use the LARS–Lasso algorithm to solve (9.39).
4. Renormalize b̂ to ||β̂||b̂ and β̂ to β̂/||β̂|| and use them as b̂ and β̂ below.
5. Repeat steps 2–4 until (β̂, b̂) converges.

Zeng, He, and Zhu (2011) propose to use 10-fold cross-validation procedure to
choose the penalty parameter λ and use the rule of thumb for bandwidth. They
focus on the computational aspect of sim-Lasso but have not established its theoret-
ical properties. They conjecture that by choosing the penalty parameter λ properly,
the sim-Lasso possesses the usual consistency and convergence rate, but admit that the
proof is nontrivial due to the interaction between the bandwidth h and the penalty
parameter λ.

9.6.3. Liang, Liu, Li, and Tsai’s (2010) Partially Linear
Single-Index Models

Liang, Liu, Li, and Tsai (2010) consider the following partially linear single-index
model (PLSIM):

Yi = η
(
Z ′

i α
)+ X ′

iβ + εi , i = 1, . . . , n, (9.40)

where Zi and Xi are q-dimensional and p-dimensional covariate vectors, respectively,
α = (

α1, . . . ,αq
)′

, β = (
β1, . . . ,βp

)′
, η(·) is an unknown differentiable function, εi is

random error with zero mean and finite variance σ 2, and (Xi , Zi) and εi are indepen-
dent. They assume that ‖α‖ = 1 and α1 is positive for identification. They propose a
profile least squares procedure to estimate the model and the SCAD penalty to select
the significant variables.

Let Y ∗
i = Yi − X ′

iβ and �i = Z ′
i α. For given ξ = (

α′,β ′)′, η(·) can be estimated by
the local linear regression to minimize

n∑
i=1

[
Yi − a − b(�i − u)− X ′

iβ
]2

kh(�i − u),
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with respect to a and b, where kh is defined as before. Let (â, b̂) denote the minimizer.
Then the profile estimator of η(·) is given by

η̂(u;ξ)= â = K20(u,ξ)K01(u,ξ)− K10(u,ξ)K11(u,ξ)

K00(u,ξ)K20(u,ξ)− K2
10(u,ξ)

,

where Klj(u,ξ)=∑n
i=1 kh(�i − u)(�i − u)l

(
X ′

i β − Yi
)j

for l = 0, 1, 2 and j = 0, 1. They
consider a PLS function

Lp(ξ) = 1

2

n∑
i=1

[
Yi − η̂

(
Z ′

i α;ξ
)− X ′

iβ
]2 + n

q∑
j=1

pλ1j

(∣∣αj
∣∣)+ n

p∑
k=1

pλ2k (|βk |),

where pλ(·) is a penalty function with a regularization parameter λ. Different penalty
functions for different elements of α and β are allowed. If one wants to select variables
in Xi only, one can set pλ2k (·) = 0 for k = 1, . . . , p. Similarly, if one wants to select
variables in Zi only, one can set pλ1j (·) = 0 for j = 1, . . . , q.

Because it is computationally expensive to minimize a criterion function with
respect to

(
p + q

)
-dimensional regularization parameters, Liang, Liu, Li, and Tsai fol-

low the approach of Fan and Li (2004) and set λ1j =λSE(α̂u
j ) and λ2k =λSE(β̂u

k ), where

λ is the tuning parameter, and SE(α̂u
j ) and SE(β̂u

k ) are the standard errors of the unpe-
nalized profile least squares estimators of αj and βk , respectively, for j = 1, . . . , q and
k = 1, . . . , p. Then they propose to use the SCAD penalty and select λ by minimizing
the BIC-like criterion function given by

BIC(λ)= log{MSE(λ)}+ logn

n
dfλ,

where MSE(λ) = n−1∑n
i=1

[
Yi − η̂(Z ′

i α̂λ; ξ̂λ) − X ′
i β̂λ

]2
, ξ̂λ = (α̂′

λ, β̂
′
λ)′ is the SCAD

estimator of ξ by using the tuning parameter λ, and dfλ is the number of nonzero
coefficients in ξ̂λ. They show that the BIC tuning parameter selector enables us to
select the true model consistently and their estimate enjoys the oracle properties under
some mild conditions.

In addition, it is worth mentioning that Liang and Wang (2005) consider the PLSIM
in (9.40) when Xi is measured with additive error: Wi = Xi + Ui, where Ui is indepen-
dent of (Yi , Xi , Zi). They propose two kernel estimation methods for this model but do
not discuss the variable selection issue.

9.6.4. Yang’s (2012) Variable Selection for Functional Index
Coefficient Models

Yang (2012) considers the following functional index coefficient model (FICM) of Fan,
Yao, and Cai (2003):

Yi = g
(
β ′Zi

)′
Xi + εi , (9.41)
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where i = 1, . . . , n, Xi =
(
Xi1, . . . , Xip

)′
is a p ×1 vector of covariates, Zi is a q ×1 vector

of covariate, εi is an error term with mean zero and variance σ 2, β = (β1, . . . ,βq)′
is a q × 1 vector of unknown parameters, and g(·) = (g1(·), . . . , gp(·))′ is a vector of
p-dimensional unknown functional coefficients. Assume that ‖β‖ = 1 and the first
element β1 of β is positive for identification. The sparsity of the model may come from
two aspects: Some of the functional index coefficients, gj(·), j = 1, . . . , p, are identically
zero, and some elements of β are zero. Yang proposes a two-step approach to select the
significant covariates with functional coefficients, and then variable selection is applied
to choose local significant variables with parametric coefficients. The procedure goes
as follows:

1. Given a
√

n-consistent initial estimator β̂(0) of β (e.g., that of Fan, Yao, and Cai
(2003)), we minimize the penalized local least squares to obtain the estimator ĝ
of g : ĝ = argmin

g
Qh(g , β̂(0)), where

Qh
(
g ,β

)=
n∑

j=1

n∑
i=1

[
Yi − g

(
β ′Zi

)′
Xi

]2
kh
(
β ′Zi −β ′Zj

)+ n

p∑
l=1

pλl

(∥∥gl,β

∥∥),
kh(z) = k(z/h)/h, k is a kernel function, h is a bandwidth parameter, gl,β =
(gl
(
β ′Z1

)
, . . . , gl

(
β ′Zn

)
)′, and pλl (·) is the SCAD penalty function with tuning

parameter λl .
2. Given the estimator ĝ of g , we minimize the penalized global least squares

objective function Q
(
β, ĝ

)
to obtain an updated estimator β̂ of β, where

Q
(
β, ĝ

)= 1

2

n∑
i=1

[
Yi − ĝ

(
β ′Zi

)′
Xi

]2 + n

q∑
k=1

pλn (|βk|).

and pλn(·) is the SCAD penalty function with tuning parameter λn.

Note that if one uses the Lasso penalty (pλk (a)= λk|a|), the objective function in the
first step becomes the penalized least squares criterion function used by Wang and Xia
(2009). Yang (2012) proposes to choose the tuning parameters to minimize a BIC-type
criterion function. Assuming that both p and q are fixed, he studies the consistency,
sparsity, and the oracle property of the resulting functional index coefficient estimators
ĝ(β̂′z) and β̂ . He applies his methodology to both financial and engineering data sets.

9.6.5. Generalized Single Index Models

Zhu and Zhu (2009) consider estimating the direction of β and selecting impor-
tant variables simultaneously in the following generalized single-index model (GSIM)



regression models 281

proposed by Li and Duan (1989) and Li (1991):

Yi = G
(
X ′

iβ,εi
)
, (9.42)

where G(·) is an unknown link function, Xi is a p × 1 vector of covariates, and εi is
an error term that is independent of Xi. They allow p = pn to diverge as the sample
size n → ∞. The model in (9.42) is very general and covers the usual SIM and the
heteroskedastic SIM (e.g., Y = g1

(
X ′β

)+ g2
(
X ′β

)
ε) as two special cases. Assume that

E(Xi)= 0 and let � = Cov(Xi).
Let F

(
y
)

denote the cumulative distribution function (CDF) of the continuous
response variable Yi . Define

β∗ = argmin
b

E
[
l
(
b′X , F(Y )

)]
,

where l
(
b′X , F(Y

)
) = −F(Y )b′X +ψ

(
b′X

)
is a loss function and ψ(·) is a convex func-

tion. They show that under the sufficient recovery condition (which intuitively requires

E
(
X|β ′X

)
to be linear in β ′X : : E

(
X|β ′X

) = �β
(
β ′�β

)−1
β ′X), β∗ identifies β in

model (9.42) up to a multiplicative scalar. The main requirement for such an identi-
fication is that E

[
l
(
b′X , F(Y )

)]
has a proper minimizer. This condition relates to the

unknown link function G(·) and is typically regarded as mild and thus widely assumed
in the literature on SDR. To exclude the irrelevant regressors in the regression, Zhu and
Zhu (2009) propose to estimate β as follows:

β̂ = argmin
b

1

2

n∑
i=1

l
(
b′Xi , Fn(Yi)

)+ n

p∑
j=1

pλn

(∣∣bj
∣∣)

where Fn
(
y
)= n−1∑n

i=1 1
(
yi ≤ y

)
is the empirical distribution function (EDF) of Yi,

bj is the jth coordinate of b, and pλn(·) is a penalty function with tuning parameter λn.
The loss function l

(
b′X , F(Y )

)
covers the least squares measure as a special case, that

is, l
(
b′Xi , F(Yi)

)= [
b′Xi − F(Yi)

]2
/2 by letting ψ

(
b′Xi

)= [
b′XiX ′

i b + F2(Yi)
]
/2. Then

the least square estimation is

β∗
LS = argmin

b
E
[
l
(
b′Xi , F(Yi)

)]= argmin
b

E
[
F(Yi)− X ′

i b
]2 =�−1Cov(Xi , F(Yi)).

The sample version of the least squares estimate is given by

β̂LS = argmin
b

1

2

n∑
i=1

[
b′Xi − Fn(Yi)

]2
/2 + n

p∑
j=1

pλn

(∣∣bj
∣∣).

Zhu and Zhu (2009) suggest using the SCAD penalty. Under some regular conditions,
they show that β̂LS enjoys the oracle properties.

Zhu, Qian, and Lin (2011) follow the idea of Zhu and Zhu (2009) and propose a
kernel-based method that automatically and simultaneously selects important predic-
tors and estimates the direction of β in (9.42). As in Zhu and Zhu (2009), they also
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assume that E(Xi) = 0 and use � to denote Cov(Xi). The definition of the model in
(9.42) is equivalent to saying that conditional on β ′Xi , Yi and Xi are independent. This
implies the existence of a function f̃ such that

f
(
y|x)= f̃

(
y|β ′x

)
, (9.43)

where f
(
y|x) is the conditional probability density function (PDF) of Yi given Xi and

f̃ can be regarded as the conditional PDF of Yi given β ′Xi. Equation (9.43), together
with the chain rule, implies that

∂ f
(
y|x)
∂x

= β
∂ f̃
(
y|β ′x

)
∂(β ′x)

. (9.44)

That is, the first derivative of f
(
y|x) with respect to x is proportional to β. This moti-

vates Zhu, Qian, and Lin (2011) to identify the direction of β through the derivative of
the conditional PDF f

(
y|x).

Let kh(u)= k(u/h)/h, where k(·) is a univariate kernel function and h is a bandwidth
parameter. Note that f

(
y|x) ≈ E

[
kh
(
Y − y

)|X = x
] = E

[
kh
(
Y − y

)|β ′X = β ′x
] ≈

f̃
(
y|β ′x

)
as h → 0. When X is Gaussian with mean zero and covariance matrix �,

a direct application of Stein’s lemma yields

H
(
y
)=�−1E

[
kh
(
Y − y

)
X
]≈ E

[
∂ f
(
y|X)
∂X

]
as h → 0.

When the normality assumption does not hold, Zhu, Qian, and Lin (2011) relax it to
the widely assumed linearity condition as in the sufficient recovery condition and show
that H

(
y
)

and thus E[H(Y )] are proportional to β for any fixed bandwidth h. Let

f c(Y )= E
[

kh

(
Ỹ − Y

)
|Y
]
− E

[
kh

(
Ỹ − Y

)]
, (9.45)

where Ỹ is an independent copy of Y . They find that E[H(Y )] is in spirit the solution
to the following least squares minimization problem:

β0 = E[H(Yi)] = argmin
b

E
[
f c(Yi)− X ′

i b
]2

. (9.46)

Note that the sample analogue of f c(Y ) is given by

f̂ c(Y )= 1

n

n∑
i=1

kh(Yi − Y )− 1

n2

n∑
i=1

n∑
j=1

kh
(
Yi − Yj

)
.

Then one can obtain the unpenalized estimate of β0 by

β̂0 = argmin
b

n∑
i=1

[
f̂ c(Yi)− X ′

i b
]2

.
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The adaptive Lasso estimate of β0 is given by

β̂0,ALasso = argmin
b

n∑
i=1

[
f̂ c(Yi)− X ′

i b
]2 +λn

p∑
j=1

ŵj
∣∣bj
∣∣,

where ŵj =
∣∣∣β̂0,j

∣∣∣−γ

and β̂0,j is the jth element of β̂0 for j = 1, . . . , p. Assuming that p is

fixed, Zhu, Qian, and Lin (2011) establish the oracle properties of β̂0,ALasso under some
regularity conditions.

Wang, Xu, and Zhu (2012) consider the variable selection and shrinkage estima-
tion for several parametric and semiparametric models with the single-index structure
by allowing p = pn to be divergent with n. Let δ =Cov

(
Xi, g(Yi)

)
for any function g .

Define βg = �−1δ. Under the assumption, E
(
X|β ′X

)
is linear in β ′X , Theorem 2.1 in

Li (1991) immediately implies that βg is proportional to β; that is, βg = κgβ for some
constant κg . The least squares index estimate of βg is given by

β̂g = argmin
b

n∑
i=1

[
g(Yi)− X ′

i b
]2

.

They propose a response-distribution transformation by replacing g by the CDF F
(
y
)

of Y minus 1/2. Since F is unknown in practice, they suggest using its EDF Fn and
define the distribution-transformation least squares estimator as

β̂Fn = argmin
b

n∑
i=1

[
Fn(Yi)− 1

2
− X ′

i b

]2

.

The penalized version is given by

β̂Fn = argmin
b

n∑
i=1

[
Fn(Yi)− 1

2
− X ′

i b

]2

+
p∑

j=1

pλn

(∣∣βj
∣∣),

where pλn(·) can be the SCAD penalty or the MC penalty of Zhang (2010). They estab-
lish the selection consistency by allowing p = pn to grow at any polynomial rate under
some moment conditions for Xi . If Xi’s are normally distributed, it also allows pn to
grow exponentially fast.

9.7. Variable/Component Selection in

General Nonparametric Models
.............................................................................................................................................................................

In the previous four sections we reviewed variable selection in semiparametric and
nonparametric regression models that impose certain structures to alleviate the noto-
rious “curse of dimensionality” problem in the literature. In this section we review
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variable selection in general nonparametric models that do not assume these struc-
tures. Even so, we remark that it is frequently assumed that certain decomposition
of the general nonparametric regression functions exists, in which case the latter also
exhibits a specific additive structure.

The literature on variable or component selection in general nonparametric models
can be classified into two categories. The first category is carried out in the framework
of Smoothing Spline ANalysis Of VAriance (SS-ANOVA) or global function approxi-
mation (see, e.g., Lin and Zhang (2006), Bunea (2008), Storlie, Bondell, Reich, and
Zhang (2011), and Comminges and Dalayan (2011)). Lin and Zhang (2006) propose a
new method called COmponent Selection and Smoothing Operator (COSSO) for model
selection and model fitting in multivariate nonparametric regression models, in the
framework of smoothing spline ANOVA (SS-ANOVA). As Huang, Breheny, and Ma
(2012) remark, the COSSO can be viewed as a group Lasso procedure in a reproducing
kernel Hilbert space. Storlie, Bondell, Reich, and Zhang (2011) propose the adaptive
COSSO (ACOSSO) to improve the performance of COSSO. Bunea (2008) investi-
gates the consistency of selection via the Lasso method in regression models, where
the regression function is approximated by a given dictionary of M functions. Com-
minges and Dalayan (2011) consider consistent variable selection in high-dimensional
nonparametric regression based on an orthogonal Fourier expansion of the regression
function. The second category focuses on local selection of significant variables. Bertin
and Lecué (2008) implement a two-step procedure to reduce the dimensionality of a
local estimate. Lafferty and Wasserman (2008) introduce the Rodeo procedure, which
attempts to assign adaptive bandwidths based on the derivative of kernel estimate with
respect to the bandwidth for each dimension. Miller and Hall (2010) propose a method
called LABAVS in local polynomial regression to select the variables and estimate the
model.

9.7.1. Lin and Zhang’s (2006) COSSO

Lin and Zhang (2006) consider the nonparametric regression

Yi = f (Xi)+ εi , i = 1, . . . , n, (9.47)

where f is the regression function to be estimated, Xi = (Xi1, . . . , Xip)′ ∈X =[0, 1]p are
p-dimensional vectors of covariates, and εi is independent noise with mean zero and
finite variance σ 2. In the framework of SS-ANOVA, f exhibits the decomposition

f (x)= b +
p∑

j=1

fj
(
xj
)+ ∑

1≤j<k≤p

fjk
(
xj , xk

)+ ·· · , (9.48)

where x = (x1, . . . , xp)′, b is a constant, fj ’s are the main effects, fjk are the two-way
interactions, and so on. The sequence is usually truncated somewhere to enhance
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interpretability. One can assure the identifiability of the terms in (9.48) by some side
conditions through averaging operators.

Let F be the reproducing kernel Hilbert space (RKHS) corresponding to the decom-
position in (9.48). For the definition of RKHS, see Wahba (1990). Frequently, F is a
space of functions with a certain degree of smoothness—for example, the second-order
Sobolev space, S2 = {g : g , g ′ are absolutely continuous and g ′′ ∈ L2[0, 1]}. Let Hj be
a function space of functions of xj over [0, 1] such that Hj = {1} ⊕ H̄j . Then F is the
tensor product space of Hj ,

F = ⊗p
j=1Hj = {1}⊕

p∑
j=1

H̄j ⊕
∑
j<k

(
H̄j ⊗ H̄k

)
⊕ ·· · . (9.49)

Each functional component in the SS-ANOVA decomposition (9.48) lies in a subspace
in the orthogonal decomposition (9.49) of ⊗p

j=1Hj . But in practice the higher-order
interactions are usually truncated for convenience to avoid the curse of dimensional-
ity. In the simplest case where f (x) = b +∑p

j=1 fj
(
xj
)

with fj ∈ H̄j , the selection of
functional components is equivalent to variable selection. In the general SS-ANOVA
models, model selection amounts to the selection of main effects and interaction terms
in the SS-ANOVA decomposition. A general expression for the truncated space can be
written as

F = {1}⊗
{
⊗q

j=1F j
}

, (9.50)

where F1, . . . ,Fq are q orthogonal subspaces of F . q = p gives the special case of addi-
tive models. When only main effects and two-way interaction effects are retained, the
truncated space has q = p(p+1)/2, which includes p main effect spaces and p

(
p − 1

)
/2

two-way interaction spaces.
Denote the norm in the RKHS F by ‖·‖. A traditional smoothing spline-type

method finds f ∈F to minimize

1

n

n∑
i=1

[
Yi − f (Xi)

]2 +λ

q∑
j=1

θ−1
j

∥∥∥Pjf
∥∥∥2

, (9.51)

where Pjf is the orthogonal projection of f ontoF j and θj ≥ 0. If θj = 0, the minimizer

is taken to satisfy
∥∥Pjf

∥∥2 = 0. The COSSO procedure finds f ∈ F to minimize

1

n

n∑
i=1

[
Yi − f (Xi)

]2 + τ 2
n J
(
f
)

with J
(
f
)=

q∑
j=1

∥∥∥Pjf
∥∥∥, (9.52)

where τn is a smoothing parameter. The penalty term J
(
f
)

is a sum of RKHS norms,
instead of the squared RKHS norm penalty employed in the smoothing spline. J

(
f
)

is a convex functional, which ensures the existence of the COSSO estimate. Let f̂ =
b̂ +∑q

j=1 f̂j be a minimizer of (9.52).
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Lin and Zhang (2006) form F using S2 with squared norm

∥∥g
∥∥2 =

(∫ 1

0
g(u)du

)2

+
(∫ 1

0
g ′(u)du

)2

+
(∫ 1

0
g ′′(u)du

)2

(9.53)

for each of the Hj in (9.49). They show that an equivalent expression of (9.52) is

1

n

n∑
i=1

[
Yi − f (Xi)

]2 +λ0

q∑
j=1

θ−1
j

∥∥∥Pjf
∥∥∥2 +λ

q∑
j=1

θj subject to θj ≥ 0, (9.54)

for j = 1, . . . , p, where λ0 is a constant and λ is a smoothing parameter. The constant
λ0 can be fixed at any positive value. For fixed θ , the COSSO (9.54) is equivalent to the
smoothing spline (9.51). From the smoothing spline literature, it is well known that
the solution f has the form

f (x) =
n∑

i=1

ciRθ (Xi , x)+ b,

where c = (c1, . . . , cn)
′ and Rθ =∑q

j=1 θjRj with Rj being the reproducing kernel of Fj

(the n×n matrix
{

Rj(Xi , Xk)
}n

i,k=1). Then f (x)= Rθ c +b1n, where 1n is an n×1 vector
of ones. The problem (9.52) can be written as

1

n

⎛⎝Y −
q∑

j=1

θjRjc − b1n

⎞⎠′⎛⎝Y −
q∑

j=1

θjRjc − b1n

⎞⎠+λ0

q∑
j=1

θj c
′Rjc +λ

q∑
j=1

θj , (9.55)

where Y = (Y1, . . . , Yn)′, and θj ≥ 0 for j = 1, . . . , q. For fixed θ , (9.55) can be written as

min
c,b

(
y − Rθ c − b1n

)′(
y − Rθ c − b1n

)+ nλ0c′Rθ c.

Then c and b can be solved as in Wahba (1990). On the other hand, if c and b are fixed,
let gj = Rjc and G be the matrix with the jth column being gj. θ that minimizes (9.55)
is the solution to

min
θ

(z − Gθ)′(z − Gθ)+ nλ

q∑
j=1

θj subject to θj ≥ 0 for j = 1, .., q

or

min
θ

(z − Gθ)′(z − Gθ), subject to θj ≥ 0, j = 1, . . . , q, and

q∑
j=1

θj ≤ M ,

where z = y − (1/2)nλ0c − b1n and M is a positive constant. The tuning parame-
ter can be chosen by 5-fold or 10-fold cross-validation. Lin and Zhang (2006) study
the theoretical properties such as the existence and rate of convergence of the COSSO
estimator.
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In the framework of SS-ANOVA, Zhang and Lin (2006) study the component
selection and smoothing for nonparametric regression in the more general setting of
exponential family regression, and Leng and Zhang (2006) study the same issue for a
nonparametric extension of the Cox proportional hazard model. The former allows
the treatment of non-normal responses, binary and polychotomous responses, and
event counts data. The latter demonstrates great flexibility and easy interpretability in
modeling relative risk functions for censored data.

9.7.2. Storlie, Bondell, Reich, and Zhang’s (2011) ACOSSO

The oracle properties used before are mainly defined for the finite-dimensional param-
eter in parametric or semiparametric models. In the context of nonparametric regres-
sion, Storlie, Bondell, Reich, and Zhang (2011) extend this notion by saying that a
nonparametric regression estimator has the nonparametric weak (np)-oracle property
if it (a) selects the correct subset of predictors with probability tending to one and
(b) estimates the regression function at the optimal nonparametric rate. Note that the
strong version of the oracle property requires that the estimator should have the asymp-
totic distribution as the oracle one. The SS-ANOVA-based COSSO procedure has not
been demonstrated to possess the weak np-oracle property. Instead, it has a tendency
to oversmooth the nonzero functional components in order to set the unimportant
functional components to zero. Storlie, Bondell, Reich, and Zhang (2011) propose the
adaptive COSSO (ACOSSO) which possesses the weak np-oracle properties.

Like Lin and Zhang (2006), Storlie, Bondell, Reich, and Zhang (2011) consider
the nonparametric regression model in (9.47), where Xi = (Xi1, . . . , Xip)′ ∈X =[0, 1]p

and εi’s are independent of Xi and are uniformly sub-Gaussian with zero mean. They
obtain their estimate of the function f ∈F that minimizes

1

n

n∑
i=1

[
yi − f (xi)

]2 +λ

p∑
j=1

wj

∥∥∥Pjf
∥∥∥, (9.56)

where 0 < wj ≤ ∞ are weights that can depend on an initial estimate of f , for example,

the COSSO estimate f̃ . They suggest the choice

wj =
∥∥∥Pjf̃

∥∥∥−γ

L2

for j = 1, . . . , p,

where
∥∥∥Pjf̃

∥∥∥
L2

= {∫X [Pj f̃ (x)]2dx}1/2 and γ > 0. The tuning parameter is also cho-

sen via 5-fold or 10-fold cross-validation. Under some regular conditions, they show
that their estimator possesses the weak np-oracle property when f ∈ F is additive in
the predictors so that F ={1} ⊕F1 ⊕ ·· · ⊕Fp, where each Fj is a space of functions
corresponding to xj.
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9.7.3. Bunea’s (2008) Consistent Selection via the Lasso

Bunea (2008) considers the approximation of the regression function f in (9.47) with
elements of a given dictionary of M functions. Let

�=

⎧⎪⎨⎪⎩λ ∈RM :

∥∥∥∥∥∥f −
M∑

j=1

λj fj

∥∥∥∥∥∥
2

≤ Cf r2
n,M

⎫⎪⎬⎪⎭,

where Cf > 0 is a constant depending only on f and rn,M is a positive sequence
that converges to zero. For any λ = (λ1, . . . ,λM )′ ∈ RM , let J(λ) denote the index
set corresponding to the nonzero components of λ and M(λ) its cardinality. Let
p∗ = min{M(λ) : λ ∈�}. Define

λ∗ = argmin
λ∈RM

⎧⎪⎨⎪⎩
∥∥∥∥∥∥f −

M∑
j=1

λj fj

∥∥∥∥∥∥
2

: M(λ)= p∗

⎫⎪⎬⎪⎭.

Let I∗ = J(λ∗) denote the index set corresponding to the nonzero elements of λ∗. Note
that the cardinality of I∗ is given by p∗ and thus f ∗ = ∑

j∈I∗ λ∗
j fj provides the sparest

approximation to f that can be realized with λ ∈ � and
∥∥f ∗ − f

∥∥2 ≤ Cf r2
n,M . This

motivates Bunea to treat I∗ as the target index set.
Bunea considers estimating the set I∗ via the l1−penalized least squares. First, he

computes

λ̂ = argmin
λ∈RM

⎧⎨⎩1

n

n∑
i=1

[
Yi −λjfj(Xi)

]2 + 2
M∑

j=1

wnj
∣∣λj

∣∣⎫⎬⎭,

where wnj = rn,M
∥∥fj
∥∥

n and
∥∥fj
∥∥2

n = n−1∑n
i=1

[
fj(Xi)

]2
. Let Î denote the index set cor-

responding to the nonzero components of λ̂. He shows that P
(

Î = I∗
)

→ 1 as n → ∞
under some conditions in conjunction with the requirement that p∗rn,M → 0.

9.7.4. Comminges and Dalayan’s (2011) Consistent
Variable Selection in High-Dimensional
Nonparametric Regression

Comminges and Dalayan (2011) consider the general nonparametric regression model
(9.47) where Xi’s are assumed to take values in [0, 1]p, E(εi|Xi) = 0, E

(
ε2

i |Xi
) = σ 2,

and p = pn may diverge to the infinity with n. They assume that f is differentiable
with a squared integrable gradient and that the density function g(x) of Xi exists and
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is bounded away from 0 from below. Define the Fourier basis

ϕk(x)=

⎧⎪⎨⎪⎩
1 if k = 0,√

2 cos
(
2πk′x

)
if k ∈ (

Zp
)
+,√

2 sin
(
2πk′x

)
if − k ∈ (

Zp
)
+,

where
(
Zp

)
+ denotes the set of all k = (

k1, . . . , kp
)′ ∈Zp\{0} such that the first nonzero

element of k is positive. Let

�L =
{

f :
∑
k∈Zp

kj < f ,ϕk >
2≤ L ∀j ∈ {

1, . . . , p
}}

,

where <·, ·> stands for the scalar product in L2
(
[0, 1]p;R

)
, that is, <a, b>∫

[0,1]p a(x)b(x)dx for any a, b ∈ L2
(
[0, 1]p;R

)
. Comminges and Dalayan (2011) assume

that the regression function f belongs to �L and for some J ⊂ {
1, . . . , p

}
of cardinality

p∗ ≤ p, f (x)= f̄
(
xJ
)

for some f̄ : R|J | →R, and it holds that

Qj
[
f
]≡

∑
k:kj 
=0

θk
[
f
]2 ≥ κ , ∀j ∈ J ,

where θk
[
f
] = <f ,ϕk>. Clearly, J refers to the sparsity pattern of f and Qj

[
f
] = 0

if j /∈ J .
The Fourier coefficients θk

[
f
]

can be estimated by their empirical counterparts

θ̂k = 1

n

n∑
i=1

ϕk(Xi)

g(Xi)
Yi, k ∈ Zp.

Let Sm,l ={k ∈Zp : ‖k‖2 ≤ m, ‖k‖0 ≤ l} and N
(
p∗,γ

)= Card{k ∈Zp∗
: ‖k‖2

2 ≤ γ p∗, k1 
=
0}, where l ∈N and γ > 0. Note that if j /∈ J , then θk

[
f
]= 0 for every k such that kj 
= 0;

and if j ∈ J , then there exists k ∈ Zp with kj 
= 0 such that
∣∣θk

[
f
]∣∣> 0. Comminges and

Dalayan define their estimator of J by

Ĵn(m,λ)=
{

j ∈ {
1, . . . , p

}
: max

k∈Sm,p∗ :kj 
=0

∣∣∣θ̂k

∣∣∣> λ

}
.

They show that P
(

Ĵn(m,λ) 
= J
)

≤ 3
(
6mp

)−p∗
under some regularity conditions

related to N
(
p∗,γ

)
and

(
p, p∗, n

)
. It is possible for p∗ to either be fixed or tend to

the infinity as n → ∞. Unfortunately, Comminges and Dalayan (2011) deliberately
avoid any discussion on the computational aspects of the variable selection and focus
exclusively on the consistency of variable selection without paying any attention to the
consistency of regression function estimation. Two problems have to be addressed in
order to implement their procedure, namely, the estimate of the typically unknown
density function g and the determination of p∗.
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9.7.5. Bertin and Lecué (2008)

Bertin and Lecué (2008) consider the nonparametric regression model (9.47) where
εi ’s are i.i.d. Gaussian random variables with variance σ 2 and independent of Xi ’s, and
f is the unknown regression function. Suppose the nonparametric regression function
f satisfies a sparseness condition:

f (x)= f̄ (xR), (9.57)

where xR = (
xj : j ∈ R

)
, R ⊂ {

1, . . . , p
}

is a subset of p covariates, of size p∗ = |R| < p.
Obviously, xR denotes the set of relevant variables. They are interested in the pointwise
estimation of f at a fixed point x = (

x1, . . . , xp
)′

and the construction of some estimate

f̂n having the smallest pointwise integrated quadratic risk E[f̂n(x)− f (x)]2.
Assume f to be β-Holderian around x with β > 0, denoted by f ∈ �(β, x). A func-

tion f :Rp →R is β-Holderian at point x with β > 0 if (i) f is l-times differentiable in x
(l =*β,) and (ii) there exists L> 0 such that for any t = (t1, . . . , tn)∈ B∞(x, 1) (the unit

l∞-ball of center x and radius 1),
∣∣f (t)− Pl

(
f
)
(t , x)

∣∣ ≤ L‖t − x‖β1 , where Pl
(
f
)
(·, x) is

the Taylor polynomial of order l associated with f at point x. Assume that there exists
a subset of J = {

i1, . . . , ip∗
}⊂ {

1, . . . , p
}

such that

f
(
x1, . . . , xp

)= f̄ (xi1 , . . . , xip∗ ).

That is, the “real” dimension of the model is not p but p∗. Bertin and Lecué’s goal is
twofold: (i) Determine the set of indices J = {

i1, . . . , ip∗
}

, and (ii) construct an estima-

tor of f (x) that converges at rate n−2β/(2β+p∗), which is the fastest convergence rate
when f ∈ �(β, x) and the above sparsity condition is satisfied.

To determine the set of indices, based on the principle of local linear regression, they
consider the following set of vectors:

�̄1(λ)= argmin
θ∈Rp+1

{
1

nhp

n∑
i=1

[
Yi − U

(
Xi − x

h

)′
θ

]2

K

(
Xi − x

h

)
+ 2λ‖θ‖1

}
,

where U (v) = (
1, v1, . . . , vp

)′
for any v = (

v1, . . . , vp
)′

, θ = (
θ0,θ1, . . . ,θp

)
, ‖θ‖1 =∑p

j=0

∣∣θj

∣∣, h is a bandwidth, and K(·) is a symmetric kernel function. The l1 penalty

makes the solution vector �̄(λ) sparse and then selects the variables locally. Another
selection procedure, which is close to the previous one but requires less assumption on
the regression function, is given by

�̄2(λ)= argmin
θ∈Rp+1

×
{

1

nhp

n∑
i=1

[
Yi + fmax + Ch − U

(
Xi − x

h

)′
θ

]2

K

(
Xi − x

h

)
+ 2λ‖θ‖1

}
,
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where C > 0 is a constant, fmax > 0, and
∣∣f (x)∣∣≤ fmax. Here, the response variable Yi is

translated by fmax + Ch.
Let Ĵ1 and Ĵ2 be the subset of indices selected by the above procedures for a given λ.

Based on these sets of indices, Bertin and Lecué (2008) consider a local polynomial
regression of degree l = *β, by regressing Yi on the selected variables. Under different
conditions on function f , they show that Ĵ1 = J or Ĵ2 = J with a probability approaching
1, and for Ĵ2 the local polynomial estimate in the second step can achieve the fastest
convergence rate under some conditions. The selection is proved to be consistent when
p∗ = O(1), but p is allowed to be as large as logn, up to a multiplicative constant.

9.7.6. Lafferty and Wasserman’s (2008) Rodeo Procedure

Lafferty and Wasserman (2008) presented a greedy method for simultaneously pre-
forming local bandwidth selection and variable selection in the nonparametric regres-
sion model (9.47), where εi’s are i.i.d. Gaussian random variables with zero mean and
variance σ 2. Suppose the nonparametric regression function f satisfies a sparseness
condition in (9.57) with p∗ = |R| ' p. Without loss of generality, we assume that
xR = (

x1, . . . , xp∗
)′

so that the last p −p∗ elements in x are irrelevant. Based on the idea
that bandwidth and variable selection can be simultaneously performed by comput-
ing the infinitesimal change in a nonparametric estimator as a function of smoothing
parameters, Lafferty and Wasserman (2008) propose the general framework for the
regularization of derivative expectation operator (Rodeo).

The key idea is as follows. Fix a point x and let f̂ (x) be an estimator of f (x) based
on a vector of smoothing parameters h = (h1, . . . , hp)′. Let F(h) = E[f̂h(x)]. Assume

that x = Xi is one of the observed data points and f̂0(x) = Yi . In this case, f (x) =
F(0) = E(Yi). If P = (h(t) : 0 ≤ t ≤ 1) is a smooth path through the set of smoothing
parameters with h(0)= 0 and h(1) = 1 (or any other fixed large bandwidth), then

f (x) = F(0)= F(1)+ F(0)− F(1)

= F(1)−
∫ 1

0

dF(h(s))

ds
ds

= F(1)−
∫ 1

0
D(h(s))′ḣ(s)ds,

where D(h(s)) = ∇F(h) =
(

∂F
∂h1

, . . . , ∂F
∂hp

)′
and ḣ(s) = dh(s)

ds . Noting that an unbiased

estimator of F(1) is f̂1(x), an unbiased estimator of D(h) is

Z(h)=
(
∂ f̂h(x)

∂h1
, . . . ,

∂ f̂h(x)

∂hp

)′
.
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The naive estimator

f̂ (x) = f̂1(x)−
∫ 1

0
Z(h(s))′ḣ(s)ds

is equal to f̂0(x)= Yi , which is a poor estimator because of the large variance of Z(h) for
small h. Nevertheless, the sparsity assumption on f suggests that D(h) is also sparse for
some paths. Then using an estimator D̂(h) which uses the sparsity assumption yields
the following estimate of f (x):

f̃ (x) = f̂1(x)−
∫ 1

0
D̂(h(s))′ḣ(s)ds.

The implementation of such an estimator requires us to find a path for which the
derivative D(h) is also sparse, and then take advantage of this sparseness when
estimating D(h) along that path.

A key observation is that if xj is irrelevant in x, then changing the bandwidth hj

should cause only a small change in f̂h(x). Conversely, if xj is relevant in x, then

changing hj should cause a large change in f̂h(x). Thus Zj(h)= ∂ f̂h(x)/∂hj should dis-
criminate between relevant and irrelevant covariates. Let hj ∈ H = {

h0,βh0,β2h0, . . .
}

for some β ∈ (0, 1). A greedy version of estimator of Dj(h), the jth element of D(h),

would set D̂j(h) = 0 when hj < ĥj , where ĥj is the first h such that
∣∣Zj(h)

∣∣ < λj(h)
for some threshold λj where h = a for a scalar a means h = (a, . . . , a)′, a p × 1 vector.
That is,

D̂j(h)= Zj(h)1
(∣∣Zj(h)

∣∣> λj(h)
)
.

This greedy version, coupled with the hard threshold estimator, yields f̃ (x) = f̂ĥ(x),

where ĥ = (ĥ1, . . . , ĥp)′. This is a bandwidth selection procedure based on testing.
For local linear regression, Lafferty and Wasserman (2008) give explicit expressions

for Z(h). The local linear estimator of f (x) by using kernel K and bandwidth h =
(h1, . . . , hp)′ is given by

f̂h(x) =
n∑

i=1

G(Xi , x, h)Yi,

where G(u, x, h) = e′
1

(
X ′

xWxXx
)−1

(
1

u − x

)
Kh(u − x) is the effective kernel, e1 =

(1, 0, . . . , 0)′, Kh(u) = (
h1 . . .hp

)−1
K
(
u1/h1, . . . , up/hp

)
, Xx is an n × (

p + 1
)

matrix
whose ith row is given by (1, (Xi − x)′), and Wx is a diagonal matrix with (i, i)-element
Kh(Xi − x). In this case,

Zj(h)= ∂ f̂h(x)

∂hj
=

n∑
i=1

∂G(Xi, x, h)

∂hj
Yi .
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Lafferty and Wasserman derive the explicit expression for ∂G(Xi , x, h)/∂hj and Zj(h).
Let

sj = Var
(
Zj(h)|X1, . . . , Xn

)= σ 2
n∑

i=1

(
∂G(Xi , x, h)

∂hj

)2

.

They illustrate how to perform the Rodeo via the hard thresholding as follows:

1. Select a constant β ∈ (0, 1) and the initial bandwidth h0 = c/ log log n.
2. Initialize the bandwidths, and activate all covariates: (a) hj = h0 for j = 1, . . . , p

and (b) A= {
1, 2, . . . , p

}
.

3. While A is nonempty, for each j ∈A: (a) Compute Zj and sj; (b) compute thresh-
old value λj = sj

√
2 logn; and (c) if

∣∣Zj
∣∣> λj, reassign select βhj to hj ; otherwise

remove j from A.
4. Output the bandwidth h∗ = (

h1, . . . , hp
)

and estimator f̃ (x) = f̂h∗(x).

Under some conditions, the Rodeo outputs bandwidths h∗ that satisfies P(h∗
j = h0

for all j > p∗) → 1 where recall Xij ’s are irrelevant variables for all j > p∗. In particular,
the Rodeo selection is consistent when p = O

(
logn/ log logn

)
and its estimator achieves

the near-optimal minimax rate of convergence while p∗ does not increase with n. Laf-
ferty and Wasserman explain how to (a) estimate σ 2 used in the definition of sj , and
(b) obtain other estimators of D(h) based on the soft thresholding.

9.7.7. Miller and Hall’s (2010) LABAVS in Local
Polynomial Regression

Miller and Hall (2010) propose a flexible and adaptive approach to local variable
selection using local polynomial regression. The key technique is careful adjustment
of the local regression bandwidths to allow for variable redundancy. They refer to
their method as LABAVS, standing for “locally adaptive bandwidth and variable selec-
tion.” The model is as given in (9.47). They consider the local polynomial estimation

of f at a fixed point x. Let H = diag
(

h2
1, . . . , h2

p

)
. Let K(x) = �

p
j=1k

(
xj
)

be the p-

dimensional rectangular kernel formed from a univariate kernel k with support on

[−1, 1] such as the tricubic kernel: k(v) = (35/32)
(
1 − v2

)3
1(|v| ≤ 1). Let KH (x) =

|H|−1/2K
(
H−1/2x

)
. We write H(x) when H varies as a function of x. Asymmetric

bandwidths are defined as having a lower and an upper diagonal bandwidth matrix,
HL and HU , respectively, for a given estimation point x. The kernel weight of an obser-
vation Xi at an estimation point x with asymmetrical local bandwidth matrices HL(x)
and HU (x) is given by

KHL(x),HU (x)(Xi − x)= �
j:Xij<xj

hL
j (x)

−1k

(
Xij − xj

hL
j (x)

)
× �

j:Xij≥xj
hU

j (x)−1k

(
Xij − xj

hU
j (x)

)
,
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which amounts to having possibly different window sizes above and below x in each
direction.

Miller and Hall’s LABAVS algorithm works as follows:

1. Find an initial bandwidth matrix H = diag
(
h2, . . . , h2

)
.

2. For each point x of a representative grid in the data support, perform local vari-
able selection to determine disjoint index sets Â+(x) and Â−(x) for variables
that are considered relevant and redundant, respectively. Note that Â+(x) ∪
Â−(x)= {

1, . . . , p
}

.
3. For any given x, derive new local bandwidth matrices HL(x) and HU(x) by

extending the bandwidth in each dimension indexed in Â−(x). The resulting
space given nonzero weight by the kernel KHL(x),HU(x)(u − x) is the rectangle of

maximal area with all grid points x0 inside the rectangle satisfying Â+(x0) ⊂
Â+(x), where Â+(x) is calculated explicitly as in step 2, or is taken as the set
corresponding the closet grid point to x.

4. Shrink the bandwidth slightly for those variables in Â+(x) according to the
amount that bandwidths have increased in the other variables.

5. Compute the local polynomial estimate at x, excluding variables in Â−(x) and
using adjusted asymmetrical bandwidths HL(x) and HU(x). For example, in the
local linear regression case, one chooses a and b to minimize

n∑
i=1

[
Yi − a − b′(Xi − x)

]2
KHL(x),HU (x)(Xi − x).

Steps 2 and 4 of the above algorithm are referred to as the variable selection step
and variable shrinkage step, respectively. Miller and Hall suggest three possible ways to
select variables at x in step 2, namely, hard thresholding, backwards stepwise approach,
and local Lasso. Let

X̄j,x =
∑n

i=1 XijKH(x)(Xi − x)∑n
i=1 KH(x)(Xi − x)

and Ȳx =
∑n

i=1 YiKH(x)(Xi − x)∑n
i=1 KH(x)(Xi − x)

,

which are the local standardization of the data at point x. Let Ỹi = (
Yi − Ȳx

)[
KH(x)(Xi − x)

]1/2
and X̃ij = (Xij−X̄j,x)[KH(x)(Xi−x)]1/2[∑n

i=1(Xij−X̄j,x)
2
KH(x)(Xi−x)

]1/2 . In the local linear regres-

sion case, the hard thresholding method chooses parameters to minimize the weighted
least squares

n∑
i=1

⎡⎣Ỹi −β0 −
p∑

j=1

βj X̃ij

⎤⎦2

and classifies as redundant the variables for which
∣∣∣β̂j

∣∣∣< λ for some tuning parameter

λ, where (β̂0, . . . , β̂p) is the solution to the above minimization problem. The variable
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shrinkage step and step 3 are fairly complicated and computationally demanding. We
refer the readers directly to Miller and Hall (2010), who also compare their approach
with other local variable selection approaches in Bertin and Lecué (2008) and Lafferty
and Wasserman (2008). They establish the strong oracle property for their estimator.

9.8. Variable Selection in

Semiparametric/Nonparametric

Quantile Regression
.............................................................................................................................................................................

As a generalization of least absolute deviation regression (LADR), quantile regression
(QR) has attracted huge interest in the literature and has been widely used in eco-
nomics and finance; see Koenker (2005) for an overview. To select the significant
variables is an important problem for QR. Many procedures have been proposed.
Koenker (2004) applies the Lasso penalty to the mixed-effects linear QR model for
longitudinal data to shrink the estimator of random effects. Wang, Li, and Jiang (2007)
consider linear LADR with the adaptive Lasso penalty. Zou and Yuan (2008) propose a
model selection procedure based on composite linear QRs. Wu and Liu (2009) consider
the SCAD and adaptive Lasso in linear QR models. Belloni and Chernozhukov (2011a)
consider l1-penalized or post-l1-penalized QR in high-dimensional linear sparse mod-
els. Liang and Li (2009) propose penalized QR (PQR) for PLMs with measurement
error by using orthogonal regression to correct the bias in the loss function due to mea-
surement error. Koenker (2011) considers the additive models for QR which include
both parametric and nonparametric components. Kai, Li, and Zou (2011) consider
efficient estimation and variable selection for semiparametric varying-coefficient PLM
using composite QR. Lin, Zhang, Bondell, and Zou (2012) consider variable selection
for nonparametric QR via SS-ANOVA. In this section, we focus on reviewing variable
selection in semiparametric/nonparametric QR models.

9.8.1. Liang and Li’s (2009) Penalized Quantile Regression for
PLMs with Measurement Error

Liang and Li (2009) consider the PLM in (9.19) when Xi is measured with additive
error:

Wi = Xi + Ui, (9.58)

where Ui is the measurement error with mean zero and unknown covariance �uu and
Ui is independent of (Xi , Zi , Yi). They propose a penalized quantile regression (PQR)
based on the orthogonal regression. That is, the objective function is defined as the
sum of squares of the orthogonal distances from the data points to the straight line



296 model selection and averaging

of regression function, instead of residuals from the classical regression. He and Liang
(2000) apply the idea of orthogonal regression for QR for both linear and partially
linear models with measurement error, but do not consider the variable selection prob-
lem. Liang and Li further use the orthogonal regression method to develop a PQR
procedure to select significant variables in the PLMs.

To define orthogonal regression for QR with measurement error, it is assumed
that the random vector (εi , U ′

i )′ follows an elliptical distribution with mean zero and
covariance matrix σ 2� where σ 2 is unknown, and � is a block diagonal matrix with
(1, 1)-element being 1 and the last p ×p diagonal block matrix being Cuu. Liang and Li
assume that Cuu is known but discuss that it can be estimated with partially replicated
observations in practice.

Let ρτ (v) = v(τ − 1(v < 0)). Note that the solution to minimizing ρτ (εi − v) over
v ∈R is the τ th quantile of εi . Liang and Li define the PQR objective function to be of
the form

Lτ (β) =
n∑

i=1

ρτ

(
Ŷi − Ŵ ′

iβ√
1 +β ′Cuuβ

)
+ n

p∑
j=1

pλj

(|βj |
)
, (9.59)

where Ŷi = Yi − m̂y(Zi) and Ŵi = Wi − m̂w(Zi) using the notation defined in Section
9.4.5, and pλj (·) is a penalty function with tuning parameter λj . He and Liang (2000)
propose the QR estimate of β by minimizing the first term in (9.59) and also provide
insights for this. Compared with the PLS in Section 9.4.5, the PQR uses the factor√

1 +β′Cuuβ to correct the bias in the loss function due to the presence of measure-
ment error in Xi . Liang and Li establish the oracle property for the PQR estimator by
assuming that p is fixed.

9.8.2. Koenker’s (2011) Additive Models for
Quantile Regression

Koenker (2011) considers models for conditional quantiles indexed by τ ∈ (0, 1) of the
general form

QYi |Xi ,Zi(τ |Xi , Zi) = X ′
i θ0 +

q∑
j=1

gj
(
Zij
)
, (9.60)

where Xi is a p × 1 vector of regressors that enter the conditional quantile function
linearly, and the nonparametric component gi’s are continuous functions, either uni-
variate or bivariate. Let g = (

g1, . . . , gq
)′

be a vector of functions. Koenker proposes to
estimate these unknown functions and θ0 by solving

min
(θ ,g)

n∑
i=1

ρτ

⎛⎝Yi − X ′
iθ −

q∑
j=1

gj
(
Zij
)⎞⎠+λ0‖θ‖1 +

q∑
j=1

λjV
(∇gj

)
, (9.61)
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where ρτ (u) is defined as above, ‖θ‖1 =∑p
k=1|θk|, and V

(∇gj
)

denotes the total vari-
ation of the derivative or gradient of the function gj . For g with absolutely continuous
derivative g ′, the total variation of g ′ : R→R is given by V

(
g ′(z)

)= ∫ ∣∣g ′′(z)
∣∣dz, while

for g : R2→ R, V
(∇g

)= ∫ ∥∥∇2g(z)
∥∥dz, where ‖·‖ is the usual Hilbert–Schmidt norm

for matrices and ∇2g(z) denotes the Hessian of g(z). The Lasso penalty ‖θ‖1 leads to
a sparse solution for parametric components and then selects the nonzero parametric
components.

To select the tuning parameter λ, Koenker proposes an SIC-like criterion

SIC(λ)= n log σ̂ (λ)+ 1

2
p(λ) log n,

where σ̂ (λ) = n−1∑n
i=1ρτ

(
Yi − ĝ(Xi , Zi)

)
, and p(λ) is the effective dimension of the

fitted model

g(Xi , Zi) = X ′
i θ̂ +

q∑
j=1

ĝj
(
Zij
)
,

where Zi is a collection of Zij ’s. For a linear estimator, p(λ) is defined as the trace of a
pseudo-projection matrix, which maps observed response into fitted values. In general
form,

p(λ)= div
(
ĝ
)=

n∑
i=1

∂ ĝ(Xi , Zi)

∂Yi
.

He proposes some methods to obtain the pointwise and uniform confidence bands
for the estimate of nonparametric components but does not study the theoretical
properties of the above variable selection procedure.

9.8.3. Kai, Li, and Zou’s (2011) Composite Quantile Regression

Kai, Li, and Zou (2011) consider the following varying coefficient partial linear models

Yi = α0(Ui)+ X ′
iα(Ui)+ Z ′

i β + εi , (9.62)

where (Yi, Ui , Xi , Zi), i = 1, . . . , n, are i.i.d., α0(·) is a baseline function of scalar random
variable Ui , α(·)= {α1(·), . . . ,αd1(·)}′ consists of d1 unknown varying coefficient func-
tions, β = (

β1, . . . ,βd2

)′
is a d2-dimensional coefficient vector, and εi is random error

with zero mean and CDF F(·). They assume that εi is independent of Ui, Xi, and Zi .
Note that the τ th conditional quantile function of Yi given (Ui, Xi, Zi) = (u, x, z) is

Qτ (u, x, z)= α0(u)+ x′α(u)+ z′β + cτ ,

where cτ = F−1(τ ). All quantile regression estimates (α̂τ (u) and β̂τ ) estimate the
same target quantities (α(u) and β) with the optimal rate of convergence. Therefore,
they consider combining the information across multiple quantile estimates to obtain
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improved estimates of α(u) and β, which leads to the composite quantile regression
(CQR) proposed by Zou and Yuan (2008). Let τk = k/(q + 1), k = 1, . . . , q for a given
q. The CQR estimates of α0(·), α(·), and β are obtained by minimizing the following
CQR loss function:

q∑
k=1

n∑
i=1

ρτ
(
Yi −α0(Ui)− X ′

i α(Ui)− Z ′
iβ
)
.

Note that αj(·) are unknown for j = 0, 1, . . . , d1, but they can be approximated locally
by linear functions: αj(U )≈ αj(u)+α′

j(u)(U −u) = aj +bj(U − u) when U lies in the

neighborhood of u. Then let {ã0, b̃0, ã, b̃, β̃} be the minimizer of the local CQR function
defined by

q∑
k=1

n∑
i=1

ρτ
{

Yi − a0k − b0(Ui − u)− X ′
i [a + b(Ui − u)] − Z ′

iβ
}

Kh(Ui − u),

where Kh(u) = K(u/h)/h with K and h being the kernel and bandwidth, respectively,
a0 = (

a01, . . . , a0q
)′

, a = (
a1, . . . , ad1

)′
, b = (

b1, . . . , bd1

)′
, and ã0 = (

ã01, . . . , ã0q
)′

, and
we have suppressed the dependence of these estimates on u. Initial estimates of α0(u)
and α(u) are then given by

α̃0(u)= 1

q

q∑
k=1

ã0k and α̃(u) = ã.

Given these initial estimates, the estimate of β can be refined by

β̂ = argmin
β

q∑
k=1

n∑
i=1

ρτ
[
Yi − ã0k(Ui)− X ′

i ã(Ui)− Z ′
iβ
]
,

which is called the semi-CQR estimator of β . Given β̂ , the estimates of the nonpara-
metric parts can be improved by the following minimization problem:

min
a0,b0,a,b

q∑
k=1

n∑
i=1

ρτ

[
Yi − Z ′

i β̂ − a0k − b0(Ui − u)− X ′
i [a + b(Ui − u)]

]
Kh(Ui − u).

In view of the fact that variable selection is a crucial step in high-dimensional mod-
eling, Kai, Li, and Zou focus on the selection of nonzero components in the vector β

of parametric coefficients. Let pλn(·) be a penalty function with tuning parameter λn.
The penalized loss function is

q∑
k=1

n∑
i=1

ρτ
(
Yi − ã0k(Ui)− X ′

i α̃(Ui)− Z ′
i β
)+ nq

d2∑
j=1

pλn

(∣∣βj
∣∣).
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Note that the objective function is nonconvex, and both loss function and penalty parts
are nondifferentiable. They propose to follow the one-step sparse estimate scheme in
Zou and Li (2008) to derive a one-step sparse semi-CQR estimator. First, they obtain

the unpenalized semi-CQR estimator β̂
(0) = (β̂(0)

1 , . . . , β̂(0)
d2

)′. Then they define

Gn,λn(β)=
q∑

k=1

n∑
i=1

ρτ
(
Yi − α̃0k(Ui)− X ′

i α̃(Ui)− Z ′
iβ
)+ nq

d2∑
j=1

p′
λn

(∣∣∣β̂(0)
j

∣∣∣)∣∣βj
∣∣.

They refer to β̂
OSE

(λn)= argminβ Gn,λn(β) as a one-step sparse semi-CQR estimator.

Under some conditions, they show that β̂
OSE

enjoys the oracle property and that the
property holds for a class of concave penalties. To choose the tuning parameter λ, a
BIC-like criterion is proposed as follows

BIC(λ)= log

[ q∑
k=1

n∑
i=1

ρτ

(
Yi − α̂0k(Ui)− X ′

i α̂(Ui)− Z ′
i β̂

OSE
(λ)

)]
+ log n

n
dfλ,

where dfλ is the number of nonzero coefficients in the parametric part of the fitted
models. They propose to use λ̂BIC = argminλ BIC(λ) as the tuning parameter.

9.8.4. Lin, Zhang, Bondell, and Zou’s (2012) Sparse
Nonparametric Quantile Regression

Lin, Zhang, Bondell, and Zou (2012) adopt the COSSO-type penalty to develop a new
penalized framework for joint quantile estimation and variable selection. In the frame-
work of SS-ANOVA, a function f (x)= f (x(1), . . . , x(p)) has the ANOVA decomposition
in (9.48). The entire tensor-product space for estimating f (x) is given in (9.49). But in
practice the higher-order interactions are usually truncated for convenience to avoid
the curse of dimensionality. Equation (9.50) gives a general expression for truncated
space. Using the notation defined in Section 9.7.1, the regularization problem of joint
variable selection and estimation is defined by

min
f

1

n

n∑
i=1

ρτ
(
Yi − f (Xi)

)+λ

p∑
j=1

wj

∥∥∥Pjf
∥∥∥
F

,

where Pjf is the projection of f on F j , the penalty function penalizes the sum of com-
ponent norms, and wj ∈ (0,∞) is weight. In principle, smaller weights are assigned
to important function components while larger weights are assigned to less important
components. This is in the same spirit of the adaptive Lasso and adaptive COSSO. They
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also propose to construct the weight wj ’s from the data adaptively:

w−1
j =

∥∥∥Pjf̃
∥∥∥

n,L2

=
{

n−1
n∑

i=1

[
Pjf̃ (Xi)

]2
}1/2

for j = 1, . . . , p,

where f̃ is a reasonable initial estimator of f , say the kernel quantile regression (KQR)
estimator of Li, Liu, and Zhu (2007) which is obtained by penalizing the roughness of
the function estimator using its squared functional norm in a RKHS. That is, the KQR
solves the regularization problem

min
f ∈HK

1

n

n∑
i=1

ρτ
(
Yi − f (Xi)

)+ λ

2

∥∥f
∥∥2
HK

where HK is an RKHS and ‖·‖HK
is the corresponding function norm.

An equivalent expression of the above optimization problem is

min
f ,θ

1

n

n∑
i=1

ρτ
(
Yi − f (Xi)

)+λ0

p∑
j=1

w2
j θ

−1
j

∥∥∥Pjf
∥∥∥2

F
s.t.

p∑
j=1

θj ≤ M , θj ≥ 0,

where both λ0 and M are smoothing parameters. Lin, Zhang, Bondell, and Zou (2012)
show that the solution has the following structure:

f̂ (x) = b̂ +
n∑

i=1

ĉi

p∑
j=1

θ̂j

w2
j

Rj(Xi , x)

where ĉ = (
ĉ1, . . . , ĉn

)′ ∈Rn, b̂ ∈R, and Rj(Xi , x) is the reproducing kernel of subspace

F j . Let Rθ be the n × n matrix with (k, l)th element Rθ
kl = ∑p

j=1 w2
j θ

−1
j Rj(Xk , Xl). Let

c = (c1, . . . , cn)
′ and θ = (θ1, . . . ,θp)′. The objective function becomes

min
b,c,θ

1

n

n∑
i=1

ρτ

(
Yi − b −

n∑
k=1

ckRθ
kl

)
+λ0c′Rθc s.t.

p∑
j=1

θj ≤ M , θj ≥ 0.

An iterative optimization algorithm is proposed to solve the above problem.

1. Fix θ , solve (b, c) by

min
b,c

1

n

n∑
i=1

ρτ

(
Yi − b −

n∑
k=1

ckRθ
kl

)
+λ0c′Rθc.

2. Fix (b, c), solve θ by

min
θ

1

n

n∑
i=1

ρτ

⎛⎝Y ∗
i −

p∑
j=1

θjGij

⎞⎠+λ0c′Gθ s.t.

p∑
j=1

θj ≤ M , θj ≥ 0,
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where Y ∗
i = Yi − b, and Gij is the

(
i, j
)
th element of n × p matrix G =(

w−2
1 R1c, . . . , w−2

p Rpc
)

.

The optimization problems in steps 1–2 can be cast into quadratic programming
and linear programming problems, respectively. So both can be solved using standard
optimization softwares. A SIC-like criterion is proposed to select the tuning parameter.
However, the theoretical properties of the new variable selection procedure are not
discussed.

9.9. Concluding Remarks
.............................................................................................................................................................................

In this chapter we survey some of the recent developments on variable selections in
nonparametric and semiparametric regression models. We focus on the use of Lasso,
SCAD, or COSSO-type penalty for variable or component selections because of the
oracle property of the SCAD and the adaptive versions of Lasso and COSSO. The oracle
property has been demonstrated for some of the variable selection procedures but not
for others (e.g., variable selection in nonparametric/semiparametric QR). It is interest-
ing to develop variable selection procedures with the oracle property for some of the
models reviewed in this chapter. In addition, the i.i.d. assumption has been imposed in
almost all papers in the literature. It is important to relax this assumption to allow for
either heterogeneity or serial/spatial dependence in the data. More generally, one can
study variable selection for more complicated semiparametric/nonparametric models
via shrinkage.

Despite the huge literature on Lasso- or SCAD-type techniques in statistics, we have
seen very few developments of them in econometrics until 2009. Almost all of the
works on variable selection in statistics are based on the assumption that the regressors
are uncorrelated with or independent of the error terms; that is they are exogenous.
However, in economic applications there are many examples in which some covari-
ates are endogenous due to measurement error, omitted variables, sample selection,
or simultaneity. The endogeneity causes an inconsistent estimate by the PLS method,
along with misleading statistical inference, and one has to resort to instrumental vari-
ables (IVs) to handle this problem. Caner (2009) seems to be the first published paper
to address this issue through shrinkage GMM estimation. Since then we have observed
a large literature on the use of Lasso- or SCAD-type techniques in econometrics to
cope with endogeneity in parametric models. They fall into three categories. The first
category focuses on selection of covariates or parameters in the structural equation
(see Caner (2009), Caner and Zhang (2009), and Fan and Liao (2011, 2012)). Caner
(2009) considers covariate selection in GMM with Bridge penalty when the number
of parameters is fixed; Caner and Zhang (2009) study covariate selection in GMM
via adaptive elastic-net estimation by allowing the number of parameters to diverge to
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infinity; Fan and Liao (2011) consider variable selection with endogenous covariates in
ultra-high-dimensional regressions via penalized GMM and penalized empirical likeli-
hood (EL); Fan and Liao (2012) propose a penalized focused GMM (FGMM) criterion
function to select covariates. The second category focuses on the selection relevant IVs
(or deletion of irrelevant/weak IVs) (see Belloni, Chernozhukov, and Hansen (2010),
Caner and Fan (2011), and García (2011)). Belloni, Chernozhukov, and Hansen
(2010) introduce a heteroskedasticity-consistent Lasso-type estimator to pick optimal
instruments among many of them. Caner and Fan (2011) use the adaptive Lasso to dis-
tinguish relevant and irrelevant/weak instruments in heteroskedastic linear regression
models with fixed numbers of covariates and IVs. García (2011) proposes a two stage
least squares (2SLS) estimator in the presence of many weak and irrelevant instruments
and heteroskedasticity. The third category focuses on the selection both covariates and
valid IVs (see Liao (2011) and Gautier and Tsybakov (2011)). Liao (2011) considers the
selection of valid moment restrictions via adaptive Lasso, Bridge, and SCAD, and the
selection of group variables and group valid moment restrictions via adaptive group
Lasso when the number of parameters is fixed. Gautier and Tsybakov (2011) extend
the Dantzig selector of Candès and Tao (2007) to the linear GMM framework and pro-
pose a new procedure called self-tuning instrumental variable (STIV) estimator for the
selection of covariates and valid IVs when the number of covariates/parameters can be
larger than the sample size. Nevertheless, none of these works address the issue of flex-
ible functional form. It is interesting to consider variable selection for semiparametric
or nonparametric models with endogeneity. Sieve estimation or local GMM estimation
via shrinkage seems to be a very promising field to delve into.
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10.1. Introduction
.............................................................................................................................................................................

Having estimated a parametric model in the course of applied data analysis, one ought
naturally test for model adequacy (i.e., for correct specification). When the parametric
model is rejected by the data, practitioners often turn to more flexible methods—for
example, nonparametric models. But there is no guarantee that the nonparametric
model that one has adopted will perform any better than the parametric model that has
been deemed inadequate, even though the nonparametric model may indeed exhibit
an apparent marked improvement in (within-sample) fit according to a variety of
metrics.1

This is widely appreciated in the time-series literature where out-of-sample predic-
tive performance is an overriding concern.2 By way of example, Medeiros, Teräsvirta,
and Rech (2006) consider using autoregressive neural network models (AR-NN) to
model financial time series. However, having rejected linearity, fitted an AR-NN model,
and conducted a rigorous postmortem analysis of each model’s ability to predict stock
returns, Medeiros et al. (2006, p. 69) conclude that the “NN modelling strategy [. . . ] is
not any better than a linear model with a constant composition of variables. A nonlin-
ear model cannot therefore be expected to do better than a linear one.” See also Racine
(2001) for an alternative example.

Indeed, there is no guarantee that a parametric model that passes a test for
model adequacy will perform better than a nonparametric model because it is
known that overspecified parametric models suffer efficiency losses and may perform
worse than alternative specifications. However, focusing instead on out-of-sample
predictive ability may provide the applied researcher with a potential avenue for
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discriminating among such models. Though a literature that advocates in-sample
predictive evaluation in time-series settings has recently emerged (see Inoue and Kilian,
2004), this swims against the tide of a large body of literature that convincingly argues
for the use of sample-splitting mechanisms whereby one splits the full sample into
two subsamples and then uses one subsample for estimation and the other to guide
predictive evaluation (see Corradi and Swanson (2007) and the references therein).

Out-of-sample predictive performance appears to be the metric of choice for time
series researchers (see Diebold and Mariano (1995), West (1996), West and McCracken
(1998), and McCracken (2000), among others). However, to the best of our knowledge,
the insights underlying this literature have as yet to permeate cross-section applica-
tions. Furthermore, there remains scope for improvement in the time-series setting,
as will be demonstrated. In this chapter we show how, through judicious use of an
appropriate resampling mechanism, the proposed approach provides an appealing
alternative to popular time-series tests for predictive accuracy by overcoming what we
regard as limitations associated with such tests, namely, the reliance on a single split
of the data and constraints placed on the minimum size of the hold-out sample driven
by power considerations. As well, the approach is equally at home in cross-sectional
settings.

In this chapter we take the view that fitted statistical models are approximations,3 a
perspective that differs from that of consistent model selection which posits a finite-
dimensional “true model.” That is, in this chapter we are not interested in tests that
hypothesize one model being the “true model.” Rather, our goal is instead to test
whether one approximate model’s expected performance is better than another on data
drawn from the same DGP according to a prespecified loss function such as square
or absolute error loss. The loss function is provided by the user; hence the method
suggested herein is quite general.4

Our approach is firmly embedded in the statistics literature dealing with appar-
ent versus true error estimation; for a detailed overview of “apparent,” “true,” and
“excess” error, we direct the reader to Efron (1982, Chapter 7). In effect, within-
sample measures of fit gauge “apparent error,” which will be more optimistic than
“true error,” sometimes strikingly so, since a model is selected to fit the data best.
For a given loss function, 	(u), one might compute the expected loss, n−1∑n

i=1 	(ûi),
which provides an estimate of the apparent error arising from the modeling process.
But all such within-sample measures are fallible, which is why they cannot be recom-
mended as guides for model selection; for example, R2 does not take into account
model complexity, and adjusted R2 measures are not defined for many semi- and non-
parametric methods, whereas information-based measures such as AIC can be biased
if the sequence of competing (parametric) models is non-nested (see Ye (1998) and
Shen and Ye (2002)).

The approach we advocate involves constructing the distribution function of a
model’s true error and testing whether the expected true error is statistically smaller
for one model than another. This will be accomplished by leveraging repeated splits
of the data rather than just one as is commonly done and by computing the estimated
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loss for the hold-out data for each split. At the end of the day we will conclude that one
model has statistically smaller estimated expected true error than another and therefore
is expected to be closer to the true DGP and hence is preferred, though both models
are, at best, approximations.

The basic idea is, of course, not new and involves splitting the data into two inde-
pendent samples of size n1 and n2, fitting models on the first n1 observations, then
evaluating the models on the remaining n2 = n − n1 observations using, by way of
example, average square prediction error (ASPE) (we know the outcomes for the
evaluation data, hence this delivers an estimate of true error).5 However, one might
mistakenly favor one model when the estimate of true error is lower, but this in fact
simply reflects a particular division of the data into two independent subsets that may
not be representative of the DGP, that is, this can be overly influenced by which data
points end up in each of the two samples. To overcome this limitation, one might con-
sider repeating this process a large number of times, say S = 10,000 times, each time
refitting the models on the “training” data (the n1 observations) and evaluating the
independent “evaluation” data (the n2 = n − n1 hold-out observations). This repeated
sample-splitting experiment will thereby produce two vectors of length S which repre-
sent draws from the distribution of actual ASPEs for each model.6 These two vectors
of draws can then be used to discriminate between the two models.7 For what follows
we consider a simple (paired) test of differences in means for the two distributions, but
also consider simple graphical tools that will help reveal stochastic dominance relation-
ships, if present. Given that the test is a test of whether the data at hand reveal that the
predictive performance of one econometric model is statistically different from that of
another, we dub the test the “RP” test to denote “revealed performance.”

A natural question to raise at this point is whether there are gains to be had by using
sample splits with n2 > 1 versus simply using n2 = 1. Consider the cross-sectional set-
ting, thus when n2 = 1 there exist n unique splits of the data, and here our approach
could boil down to computing the delete-one cross-validation (DOCV) function and
using this to compare models. The problem that could arise here is that DOCV is a
common method for nonparametric and semiparametric model selection (i.e., band-
width selection), and it turns out that models which are fit using DOCV cannot be
subsequently evaluated using the same criterion. This is similar in spirit to the recent
work of Leeb and Pötscher (2006), who show that one cannot use the same data set for
both model selection and post-model selection estimation and inference. Simulations
not reported here for brevity show that indeed one cannot use the same criterion to
both fit a model and then conduct inference across models. Given the popularity of
DOCV for model fitting, it is only natural to think of using n2 > 1 when sample split-
ting for the purpose of model evaluation. This also delivers a simple framework for
inference as noted above. Finally, DOCV would clearly be inappropriate in time-series
settings.

The statistics literature on cross-validated estimation of excess error is a well-studied
field (“expected excess error” is the expected amount by which the true error exceeds
the apparent error). However, this literature deals with model specification within a
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class of models (i.e., which predictor variables should be used, whether or not to
conduct logarithmic transformations on the dependent variable, and so forth) and
proceeds by minimizing excess error. Our purpose here is substantively different and
is perhaps most closely related to the literature on non-nested model testing (see
Davidson and MacKinnon 2002). Unlike this literature, however, we are asking an
inherently different question that is not the subject of interest in the non-nested lit-
erature, namely, whether the expected true error associated with one model differs
significantly from that for another model, whether nested or not.

Our test is quite flexible with regard to the types of models that can be compared.
The flexibility of the test stems from the fact that it does not require both models to be
of the same type (e.g., both parametric). In fact, while our focus here is on regression
models, the insight here can be extended to predictions from count data or limited
dependent variable models, probability models, quantile frameworks, and so forth—
that is, any model for which we have a response and set of explanatory variables.8

Moreover, our method overcomes two of the drawbacks associated with dominant time
series model comparison approaches, namely, their reliance on a single split of the data
and the need to have a sufficiently large hold-out sample in order for the test to have
adequate power.

The rest of this chapter proceeds as follows. Section 10.2. outlines the basic approach
and framework for our proposed test. Section 10.3. conducts several simulation exer-
cises to assess the finite-sample performance of the proposed approach when the
DGP is known. Section 10.4. presents several empirical examples, while Section 10.5.
presents some concluding remarks.

10.2. Methodology
.............................................................................................................................................................................

The method we describe here is closest in spirit to the original application of cross-
validation in which the data set is randomly divided into two halves, the first of which
is used for model fitting and the second for cross-validation where the regression model
fitted to the first half of the data is used to predict the second half. The more common
modern variant in which one leaves out one data point at a time, fits the model to
the remaining points, and then takes the average of the prediction errors (each point
being left out once), yielding a cross-validated measure of true error, has been widely
studied, and we direct the interested reader to Stone (1974), Geisser (1975), and Wahba
and Wold (1975) for detailed descriptions of this method. It is noteworthy that White
(2000, p. 1108) argues that cross-validation represents a “more sophisticated use of
“hold-out” data” and indicates that this “is a fruitful area for further research.” Our
approach indeed supports this claim as we demonstrate that the use of cross-validation
to asses a model’s expected true error can lead to substantial power improvements over
existing, single-split techniques commonly used in the applied times-series literature.
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Though we shall begin with cross-sectional i.i.d. data and pure sample splitting (i.e.,
resampling without replacement), we shall see how the same intuition carries over to
a variety of dependent data structures as well. For (strictly) stationary dependent pro-
cesses, we adopt resampling methods rather than pure sample splitting, and it will be
seen that, with some care, each resample can respect dependence in the original series
and can itself be split (e.g., Politis and Romano, 1992) thereby allowing us to apply our
method in time-series settings.

In our regression problem the data consist of pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn),
where Xi is a 1 × p vector of predictor variables and Yi is a real-valued response vari-
able. We presume that Zi = (Xi , Yi) represent random draws from a (strictly) stationary
ergodic process with unknown distribution function F defined on H =Rp+1,

Z1, Z2, . . . , Zn1 ∼ F. (10.1)

We observe Z1 = z1, Z2 = z2, . . . , Zn1 = zn1 , and for what follows we let Zn1 =
(Z1, Z2, . . . , Zn1 ) and zn1 = (z1, z2, . . . , zn1). Having observed Zn1 = zn1 , we fit a regres-
sion model that will be used to predict some “future” values of the response variable,
which we denote

ĝzn1 (xn2 ), (10.2)

where the superscript n2 indicates a new set of observations, zn2 = (zn1+1, zn1+2, . . . , zn),
which are distinct from zn1 = (z1, z2, . . . , zn1) where n2 = n − n1. By way of
example, simple linear regression would provide ĝzn1 (xn2) = xn2 β̂n1 where β̂n1 =
(xn1 T xn1 )−1xn1 T yn1 , T denotes transpose, and yn1 = (y1, y2, . . . , yn1).

We are interested in estimating a quantity known as “expected true error” (Efron
1982, p. 51).9 Following Efron (1982), we first define the “true error” to be

En2,F
[
	
(
Y n2 − ĝZn1 (Xn2 )

)]
, (10.3)

where 	( · ) denotes a loss function specified by the researcher satisfying regularity con-
ditions given in Assumption 10.2 below. The notation En2,F indicates expectation over
the new point(s)

Zn1+1, Zn1+2, . . . , Zn ∼ F, (10.4)

independent of Z1, Z2, . . . , Zn1 , the variables which determine ĝZn1 ( · ) in (10.3) (we
refer to Zn1 as the “training set,” terminology borrowed from the literature on statistical
discriminant analysis). Next, we define “expected true error,”

E
(
En2,F [	( · )]

)
, (10.5)

the expectation over all potential regression surfaces ĝZn1 ( · ), for the selected loss func-
tion 	( · ). When comparing two approximate models, the model possessing lower
“expected true error” will be expected to lie closest to the true DGP given the loss
function 	( · ) and would therefore be preferred in applied settings.10
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A realization of “true error” (10.3) based upon the observed zn2 = (zn1+1,
zn1+2, . . . , zn), is given by

1

n2

n2∑
i=n1+1

	
(
yi − ĝzn1 (xi)

)
, (10.6)

an average prediction error which, for square error loss, we denote ASPE (“average
square prediction error”).

Were we given S such splits of the data, we could then construct the empirical dis-
tribution function (EDF) of (10.6). Given two competing models and each model’s
respective EDF of realized true error, we can then use the respective EDFs to deter-
mine whether one model has statistically significantly lower expected true error than
another. Note that here we have transformed the problem into a (paired) two-sample
problem where we wish to test for equivalence of expected true error defined in (10.5)
based upon two vectors of realizations of true error defined in (10.6).11 Thus, the
procedure we consider is strictly data-driven and nonparametric in nature.

10.2.1. The Empirical Distribution of True Error

Suppose we arbitrarily denote one approximate model “Model A” and the other
“Model B.” For the sake of concreteness, let us presume that one was interested in
comparing, say, a nonparametric kernel regression model (“Model A”) to a parametric
regression model (“Model B”). In a time-series context, it might appear that there is
only one possible split of the data, {zi}t

i=1 and {zi}n
i=t+1, and this one split underlies

many tests for predictive accuracy (or forecast equality) such as Diebold and Mariano’s
(1995) test. But, there is nothing to preclude conducting repeated resampling with
time-series data; we just need to use an appropriate resampling methodology.

We first consider the case where the data represent independent draws from the
underlying DGP. When the data represent independent draws, we could proceed as
follows:

(i) Resample without replacement pairwise from z = {xi , yi}n
i=1 and call these

resamples z∗ = {x∗
i , y∗

i }n
i=1.

(ii) Let the first n1 of the resampled observations form a training sample, zn1∗ =
{x∗

i , y∗
i }n1

i=1, and let the remaining n2 = n − n1 observations form an evaluation
sample, zn2∗ = {x∗

i , y∗
i }n

i=n1+1.

(iii) Holding the degree of smoothing12 (i.e., the bandwidth vector scaling factors)
of Model A and the functional form of Model B fixed (i.e., at that for the full
sample), fit each model on the training observations (zn1∗ ) and then obtain pre-
dicted values from the evaluation observations (zn2∗ ) that were not used to fit
the model.

(iv) Compute the ASPE of each model which we denote ASPEA = n−1
2

∑n
i=n1+1 (y∗

i −
ĝA

zn1 (x∗
i ))2 and ASPEB = n−1

2

∑n
i=n1+1 (y∗

i − ĝB
zn1 (x∗

i ))2.
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(v) Repeat this a large number of times, say S = 10,000, yielding S draws,
{ASPEA

s , ASPEB
s }S

s=1. We refer to the respective EDFs as F̂A
S and F̂B

S where each
places mass 1/S at ASPEA

s and ASPEB
s .

Step (i), which involves resampling without replacement from z = {xi , yi}n
i=1, is

valid for heteroskedastic processes; however, it does presume independence among the
draws. That is, by resampling (xi , yi) pairs we avoid resorting to, for instance, the “wild
bootstrap,” which is a residual-based bootstrap that admits heteroskedastic errors.
However, in a time-series context, independent pairwise resampling is clearly inap-
propriate. For one thing, univariate time-series models are quite popular but require a
different treatment because we need to respect dependence in the series itself.

In the context of time-series prediction (“forecasting”), resampling methods are
widely used. For instance, Corradi and Swanson (2002) propose a consistent test for
nonlinear predictive accuracy for nested models where interest lies in testing whether
the null model can outperform the nesting alternative model based upon “real-time
forecasts” (i.e., one-step recursive forecasts for period t + 1, t + 2, and so on) and
one split of the data. Corradi and Swanson (2004) examine finite-sample properties
of their 2002 test where critical values are based on application of the block boot-
strap. Corradi and Swanson (2004, Tables 1 and 2) employ manually set fixed block
lengths and they note that the value of the test statistic(s) under consideration and the
resulting power properties vary dramatically as the block length is changed. There is no
reason to require the user to set block lengths manually, however, just as there is no rea-
son to require users to manually specify bandwidths for kernel estimation; automatic
methods possessing requisite statistical properties exist and are available for use.

In what follows, we shall exploit recent advances in time-series resampling method-
ology, and use geometric (“stationary”) block bootstrapping to generate a bootstrap
replication of the series of size n which then can itself be split into two samples of
size n1 and n2, thereby preserving the dependence structure present in the full sample.
That is, in a (univariate) time-series setting, we deploy a time-series bootstrap based
on automatic block length selection where we resample from, say, z = {yi}n

i=1. By way
of illustration, we elect to use the method of Politis and Romano (1992) for which
Politis and White (2004) recently proposed a fully automatic method for choosing the
block length that has excellent finite-sample properties.13 This bootstrap preserves the
underlying dependence structure by resampling the data in blocks of random length,
where the lengths are derived from a geometric distribution, hence the name. See both
Davison and Hinkley (1997, pp. 401–408) and Lahiri (2003, Sections 2.7.2 and 3.3)
for more on the theoretical underpinnings underlying the geometric bootstrap.14 In a
time-series setting where the data represent draws from a (strictly) stationary ergodic
process, we proceed as follows:

(i) Apply the stationary bootstrap to resample from z = {yi}n
i=1 and call these z∗ =

{y∗
i }n

i=1.
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(ii) Let the first n1 of the resampled observations form a training sample, zn1∗ =
{y∗

i }n1
i=1; and let the remaining n2 = n − n1 observations form an evaluation

sample, zn2∗ = {y∗
i }n

i=n1+1.
(iii) Holding the degree of smoothing of the nonparametric Model A and the func-

tional form of the parametric Model B fixed (i.e., at that for the full sample),
fit each model on the training observations (zn1∗ ) and then generate predictions
for the n2 evaluation observations.

(iv) Compute the ASPE of each model, which we denote ASPEA = n−1
2

∑n
i=n1+1 (y∗

i −
ĝA

zn1 (y∗
i−1, . . . ))2 and ASPEB = n−1

2

∑n
i=n1+1 (y∗

i − ĝ B
zn1 (y∗

i−1, . . . ))2.
(v) Repeat this a large number of times, say S = 10,000, yielding S draws,

{ASPEA
s , ASPEB

s }S
s=1. We refer to the respective EDFs as F̂A

S and F̂B
S , where each

places mass 1/S at ASPEA
s and ASPEB

s .

We can now proceed to use F̂A
S and F̂B

S to discriminate between models. At this stage
we point out that the choice S = 1 is typically used to discriminate among time-series
models; that is, one split only of the data is the norm. By way of example, the popular
time-series test for predictive accuracy of Diebold and Mariano (1995) is based on only
one split, hence attention has shifted to determining how large n2 need be (e.g., see
Ashley (2003)). One might, however, be worried about basing inference on only one
split, mistakenly favoring one model over another when this simply reflects a particular
division of the data into two independent subsets that may not be representative of the
underlying DGP; that is, this can be overly influenced by which data points end up in
each of the two samples.

However, by instead basing inference on S & 1 (i.e., averaging over a large number of
such splits), we can control for mistakes arising from divisions of the data that are not
representative of the DGP. In fact, it will be seen that the power of our test increases
with S, which is obvious in hindsight. Furthermore, by averaging over a large num-
ber of splits, we can base inference on much smaller evaluation sample sizes (i.e., n2)
thereby taking maximal advantage of the estimation data which would be particularly
advantageous in time-series settings. Ashley (2003) clearly illustrates this dilemma in
the S = 1 time-series context by highlighting that one may need n2 to be quite large in
order for such tests to have power; the dilemma is that for a time-series of fixed length
n, increasing n2 = n−n1 means that the models are less efficiently estimated since they
are based on fewer observations. Our approach will be seen to effectively overcome this
limitation.

10.2.2. Validity of the Bootstrap

We now consider conditions that justify our use of the bootstrap for obtaining valid
approximations to the unknown loss distributions for two competing approximate
models, which we denote FA and FB, respectively. For what follows we lever-
age Lemma A.3 and Theorem 2.3 in White (2000) to establish consistency of our
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bootstrap approach. The conditions required (for competing parametric models)
involve assumptions on the data, parameter estimates, behavior of the bootstrap,
properties of the loss function, and some additional regularity conditions. Before pro-
ceeding we note that the proof we provide is for the time-series method we describe
above. However, for i.i.d. data the automatic block length selection mechanism and
geometric bootstrap that we use for our time-series approach (Patton et al., 2009) will
in fact deliver an appropriate bootstrap for independent data since it will select a block
length of one in probability in these settings and will cover the mechanism we consider
for independent data. That is, the proof will cover both cases considered above as will
the implementation. For concreteness, we focus our theoretical arguments on the case
where the competing models are both of parametric form (but potentially nonlinear).
Extensions to semiparametric and nonparametric estimators are easily handled with
(minor) modifications to the requisite assumptions listed below. Becuase the condi-
tions we impose involve theoretical arguments described in three separate papers, we
shall outline each set of assumptions in turn and cite sources accordingly.

We begin with an assumption given in Politis and Romano (1994) that is required to
demonstrate consistency of the stationary bootstrap under a range of settings. For what
follows we have fs = f (us), where the index of s follows from the context. β∗ represents
an unknown parameter vector.

Assumption 10.1.

(i) Let q∗ denote the probability of the geometric distribution used for the stationary
bootstrap (q∗ is equivalent to one over the block length). Assume that q∗ → 0 and
that nq∗ → ∞ as n → ∞.

(ii) Let Z1, Z2, . . ., be a strictly stationary process with E|Z1|6+η <∞ for some η > 0.
(iii) Let {Zn} be α-mixing with αZ (k) = O(k−r) for some r > 3(6 + η)/η.

Assumption 10.1(i) establishes the rate at which the block length in the stationary
bootstrap can grow. Assumptions 10.1(ii) and 10.1(iii) are required to ensure that the
data behave in a manner consistent with the theoretical arguments of both Politis and
Romano (1994) and White (2000). Of course, in cross-section settings these conditions
are automatically satisfied. Note that Assumption 10.1 is the same as that used by Politis
and Romano (1994) for much of their theoretical work in this area (see Theorems 2–4,
Politis and Romano 1994).

Additionally, we require assumptions 1–4 in West (1996). We restate these and label
them jointly as Assumption 10.2.

Assumption 10.2.

(i) Let the loss function be second-order continuously differentiable at β∗ ≡ plim β̂,
where β̂ is defined below. Additionally, the matrix of second-order derivatives is
dominated by mn, where E[mn] < D for D <∞.
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(ii) Let the parameter estimates be linear combinations of orthogonality conditions
used to identify the response. More formally we have that (for the parametric
regression model yj = X ′

jβ + εj , j = 1, . . . , n) β̂ − β∗ = B(n)H(n), where B(n)

is (k ×q) and H(n) is (q ×1) with (a) B(n) a.s.−→ B, a matrix with rank k (in our

regression example B = (EX ′X)−1), (b) H(n) = n−1∑n
j=1 hj(β∗) for a (q × 1)

orthogonality condition hj(β∗) (H(n) = n−1∑n
j=1 Xjεj in the regression context)

and (c) E[hj(β∗)] = 0.
(iii) Let

fj = f (,β∗), fj,β = ∂ fj
∂β

(,β∗), F = E[fj,β].

(a) For some d > 1, supj E||[vec(fj,β)′, f ′
j , h′

j]
′||4d < ∞, where || · || signifies

the Euclidean norm. (b) [vec(fj,β − F)′, (fj − E[fj])′, h′
j]

′ is strong mixing with

mixing coefficient of size −3d/(d − 1). (c) [vec(fj,β)′, f ′
j , h′

j]
′ is covariance sta-

tionary. (d) Sff is positive definite, where Sff = ∑∞
k=−∞�ff (k) and �ff (k) =

E[(fj − E[fj])(fj−k − E[fj])′].
(iv) Let n1, n2 → ∞ as n → ∞ and let limn→∞ (n2/n1) = c, for 0 ≤ c ≤ ∞.

Assumption 10.2(i) ensures that the loss function is well-behaved in a neighborhood
of a specified parameter value. Essentially, the loss function evaluated at the prediction
errors needs to be bounded and satisfy certain moment conditions in order to use
White’s (2000) bootstrap theory. As noted by West (1996), Assumption 10.2(ii) does
not assume that either ε or Xε is serially uncorrelated. Assumption 10.2(iii) is used
to pin down the behavior of the mean of the losses for a particular model by suitable
application of a law of large numbers applicable to mixing processes (see Section 3.4,
White 2001). Assumption 10.2(iv) is needed to invoke asymptotic arguments related
to either the estimation sample size (n1) or the evaluation sample size (n2).

In order to invoke either Lemma A.3 or Theorem 2.3 of White (2000), we need two
additional conditions. In White (2000) these are Assumption A.5 and Assumption C.
We state them here for convenience.

Assumption 10.3.

(i) Let the spectral density of [(fi −Efi)′, h′
iB

′]′, where fi = f (yi − ŷi), at frequency zero,
multiplied by a scale factor, be positive definite.

(ii) Let the parameter estimates (β̂) obey a law of iterated logarithm.

Assumption 10.3(ii) is required to bound a pseudo-studentized term involving β̂ in
White’s (2000) Theorem 2.3.

These conditions are sufficient to establish that the bootstrap distribution of any
(parametric) candidate model’s evaluation sample loss is consistent for the distribution
of expected true error, which we now state formally.
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Theorem 10.1. Under Assumptions 10.1, 10.2 and 10.3, the stationary bootstrap esti-
mates of the distributional laws FA and FB, denoted F̂A

S and F̂B
S , converge in probability

to FA and FB.

Proof. Given that Assumptions 10.1, 10.2, and 10.3 are identical to those in White
(2000), we can invoke his Theorem 2.3 (which follows immediately from Lemma A.3)
directly to achieve the result. We mention that his Theorem 2.3 follows under the con-
dition that the objective function used for estimation and loss function are equivalent.
This is not a deterrent, because Corradi and Swanson (2007, Proposition 1, p. 77) gen-
eralize the results of White (2000) for the case where the loss function differs from the
objective function used to obtain the parameter estimates. In our work, and certainly
for most applications, they are identical. �

Theorem 10.1 allows us to therefore implement a variety of two-sample tests to
assess revealed performance (pairwise) across a set of candidate models. Of course,
we need to address the possibility that the realizations defined in (10.6) are corre-
lated for Model A and Model B (i.e., that there may exist pairwise correlation of the
realizations underlying F̂A

S and F̂B
S ); thus one’s testing procedure must accommodate

potential pairwise correlation. But such tests are widely available to practitioners, two
popular examples being the paired t-test and the paired Mann–Whitney–Wilcoxon
tests; see also Mehta and Gurland (1969) for an alternative to the paired t-test.

When considering two-sample tests it would be convenient to be able to guide the
users’ choice of n2 and their choice of tests. It is known that a sufficient sample size for
the sampling distribution of the paired Mann–Whitney–Wilcoxon test to be approx-
imated by the normal curve is n2 ≥ 10 regardless of the distributions FA and FB,
while the matched-pairs t-test is strictly speaking valid only when FA and FB are nor-
mally distributed, though it is known that the t-test is quite robust to departures from
normality. For the simulations we consider there is no qualitative difference between
rejection frequencies based upon the paired Mann–Whitney–Wilcoxon and the t-test,
so for what follows we consider the popular paired t-test for equality in means to assess
whether one distribution dominates the other (i.e., test equality (less than or equal) of
means against the alternative hypothesis that the true difference in means is greater
than zero). Full results for both tests beyond those reported here are available upon
request.

Formally, we state the null and alternative as

H0 : E
(
En2,FA [	( · )]

)− E
(
En2,FB [	( · )]

)≤ 0

and
HA : E

(
En2,FA [	( · )]

)− E
(
En2,FB [	( · )]

)
> 0,

which arises directly from our notation in (10.5).
This is, of course, not the only test available to practitioners. One might prefer, say,

the Mann–Whitney–Wilcoxon test (i.e., test equality (less than or equal) of locations
against the alternative hypothesis that the true location shift is greater than zero) (see
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Bauer (1972)). Or perhaps one might undertake a more sophisticated test for, say,
first-order stochastic dominance (e.g., Davidson and Duclos (2000)). We argue that
this is not needed in the present context, and a simple test for equality of locations
in conjunction with summary plots of the vectors of ASPEs is more than sufficient
for our purposes. Indeed, one of the appealing aspects of the proposed approach lies
in its simplicity, though nothing would preclude the practitioner from considering
additional tests in this setting because they will all be based on F̂A

S and F̂B
S which have

been pre-computed and are consistent given Theorem 10.1.
We now proceed to some Monte Carlo simulations designed to assess the finite-

sample performance of the proposed method.

10.3. Monte Carlo Simulations
.............................................................................................................................................................................

10.3.1. Finite-Sample Performance: Cross-Sectional Data

We begin with a series of simulations that assess the finite-sample performance of the
proposed data in the presence of cross-sectional data, and we consider a DGP of the
form

yi = 1 + xi1 + xi2 + δ
(
x2

i1 + x2
i2

)+ εi , (10.7)

where X ∼ U [−2, 2] and ε ∼ N(0, 1). By setting δ = 0 we simulate data from a linear
model, and by setting δ 
= 0 we simulate data from a quadratic model with varying
strength of the quadratic component.

For what follows, we estimate a range of parametric models starting with one that
is linear in X1 and X2 and then ones that include higher-order polynomials in X1 and
X2 along with local constant (LC) and local linear (LL) nonparametric models. We
consider testing whether the LL nonparametric specification is preferred to an LC non-
parametric specification and each of the parametric specifications that are linear in X1

and X2 (P = 1), linear and quadratic in X1 and X2 (P = 2), and so forth, through mod-
els that have quintic specifications. Clearly our test is designed to compare two models
only, hence we intend this exercise to be illustrative in nature. Models with P > 2 are
therefore overspecified parametric models for this DGP. The null is that the LL model
has true error (as measured by ASPE) that is lower than or equal to a particular model,
with the alternative that it has ASPE that exceeds that for the particular model. The
nonparametric models use DOCV bandwidth selection while the parametric models
are fit by the method of least squares. Before proceeding we point out that, when the
underlying DGP is in fact linear, cross-validation will choose smoothing parameters
that tend to infinity with probability one asymptotically hence the LL model will col-
lapse to a globally linear one (i.e., linear least squares) (see Li and Racine (2004) for
further discussion). We mention this point since some readers may naturally expect
that if a DGP is linear and one estimates a linear parametric specification, then it must
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always dominate a nonparametric specification. However, given that a nonparametric
LL specification can collapse to the linear parametric specification when the true DGP
is in fact linear, this need not be the case as the following simulations reveal.

For what follows we set n = 200, set S = 1000 or 10,000 (to investigate the impact of
increasing the number of sample splits), consider a range of values for n2, and report
empirical rejection frequencies at the 5% level in Table 10.1. Large rejection frequen-
cies indicate that the model in the respective column heading has improved predictive
accuracy over the LL model.

Table 10.1 reveals a number of interesting features. For example, overspecified
parametric models (that would be expected to pass tests for correct parametric specifi-
cation) can indeed be dominated by the nonparametric LL specification for the reasons
outlined above (e.g., P = 4 and P = 5, δ = 0.0), which may be surprising to some.
Furthermore, the power of the proposed approach to discriminate against incorrectly
underspecified parametric models approaches one as δ increases (the column with
heading P = 1), suggesting that the test can correctly reveal that a nonparametric model
is preferred to an incorrectly underspecified parametric model. Also, the results of the
test appear to stabilize after n2 = 25, indicating that the size of the hold-out sample is
not a crucial parameter to be set by the user; see Ashley (2003) for more on the appro-
priate size of the hold-out sample for forecasting in time-series domains. It is easy for
the user to investigate the stability of their results with respect to choice of n2, and we
encourage such sensitivity checks in applied settings.

Comparing the corresponding entries in Table 10.1 (S = 1000) to Table 10.2
(S = 10,000), we observe that power increases with S as expected. This suggests that
when one fails to reject the null it may be advisable to increase S to confirm that this is
not simply a consequence of too few splits of the data being considered. Our experience
with this approach is that S = 10,000 is sufficient to overcome such concerns.

10.3.2. Finite-Sample Performance: Time-Series Data

The time-series literature dealing with predictive accuracy and forecasting is quite vast,
and we make no claims at surveying this literature here.15 Early work on forecast model
comparison by Ashley, Granger, and Schmalensee (1980) and Granger and Newbold
(1986) generated broad interest in this topic. However, only recently have formal tests
that directly relate to forecast accuracy and predictive ability surfaced. Most notably
the available tests include Diebold and Mariano (1995) (the “DM” test) and the size-
corrected counterpart of Harvey, Leybourne, and Newbold (1997) (the “MDM” test)
along with those proposed by Swanson and White (1997), Ashley (1998), Harvey,
Leybourne, and Newbold (1998), West and McCracken (1998), Harvey and New-
bold (2000), Corradi and Swanson (2002), van Dijk and Franses (2003), Hyndman
and Koehler (2006), and Clark and West (2007), among others. Given the popularity
of Diebold and Mariano’s (1995) test, we perform a simple Monte Carlo simulation
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Table 10.1 Each entry represents rejection frequencies for a one-sided test at the
5% level of the hypothesis that the LL model has predictive accuracy better than or
equal to that for each model in the respective column heading, rejecting when the
model in the respective column heading has improved predictive accuracy (large
rejection frequencies indicate that the model in the respective column heading
has improved predictive accuracy over the LL model).

δ LC P = 1 P = 2 P = 3 P = 4 P = 5

n = 200, n2 = 5, S = 1000

0.0 0.005 0.187 0.019 0.008 0.012 0.006
0.2 0.012 0.001 0.723 0.497 0.270 0.131
0.4 0.026 0.000 0.890 0.837 0.750 0.615

n = 200, n2 = 10, S = 1000

0.0 0.004 0.225 0.017 0.011 0.007 0.006
0.2 0.018 0.000 0.716 0.524 0.308 0.157
0.4 0.046 0.000 0.914 0.869 0.813 0.657

n = 200, n2 = 25, S = 1000

0.0 0.005 0.298 0.034 0.013 0.007 0.007
0.2 0.016 0.001 0.787 0.614 0.377 0.155
0.4 0.042 0.000 0.949 0.915 0.855 0.701

n = 200, n2 = 50, S = 1000

0.0 0.005 0.399 0.046 0.014 0.004 0.007
0.2 0.019 0.001 0.850 0.633 0.337 0.157
0.4 0.066 0.000 0.976 0.953 0.883 0.763

n = 200, n2 = 100, S = 1000

0.0 0.012 0.537 0.064 0.039 0.022 0.011
0.2 0.025 0.033 0.909 0.619 0.267 0.086
0.4 0.066 0.002 1.000 0.988 0.936 0.715

n = 200, n2 = 150, S = 1000

0.0 0.036 0.675 0.135 0.071 0.032 0.017
0.2 0.069 0.243 0.873 0.374 0.115 0.046
0.4 0.149 0.045 0.999 0.996 0.744 0.188

similar to that presented in Section 10.3.1. but with stationary time-series models as
opposed to cross-section ones.

We generate data from an AR(2) model given by

yt = ρ1yt−1 +ρ2yt−2 + εt , (10.8)
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Table 10.2 Each entry represents rejection frequencies for a one-sided test at the
5% level of the hypothesis that the LL model has predictive accuracy better than or
equal to that for each model in the respective column heading, rejecting when the
model in the respective column heading has improved predictive accuracy (large
rejection frequencies indicate that the model in the respective column heading
has improved predictive accuracy over the LL model).

δ LC P = 1 P = 2 P = 3 P = 4 P = 5

n= 200, n2 = 5, S = 10,000

0.0 0.013 0.296 0.049 0.021 0.008 0.010
0.2 0.031 0.000 0.763 0.593 0.354 0.224
0.4 0.051 0.000 0.936 0.903 0.826 0.718

n= 200, n2 = 10, S = 10,000

0.0 0.005 0.328 0.039 0.029 0.022 0.012
0.2 0.025 0.000 0.764 0.614 0.381 0.214
0.4 0.046 0.000 0.936 0.902 0.845 0.765

n= 200, n2 = 25, S = 10,000

0.0 0.003 0.356 0.026 0.023 0.005 0.000
0.2 0.016 0.000 0.836 0.640 0.399 0.198
0.4 0.060 0.000 0.959 0.930 0.889 0.769

n= 200, n2 = 50, S = 10,000

0.0 0.023 0.424 0.083 0.025 0.010 0.013
0.2 0.017 0.005 0.880 0.694 0.376 0.187
0.4 0.066 0.000 0.990 0.975 0.900 0.748

n = 200, n2 = 100, S = 10,000

0.0 0.017 0.575 0.103 0.045 0.028 0.015
0.2 0.050 0.045 0.919 0.642 0.311 0.113
0.4 0.094 0.002 1.000 0.993 0.960 0.720

n = 200, n2 = 150, S = 10,000

0.0 0.022 0.721 0.105 0.044 0.024 0.011
0.2 0.082 0.266 0.881 0.419 0.122 0.027
0.4 0.198 0.062 1.000 1.000 0.775 0.225

where ρ1 = 0.9 for all simulations, and ρ2 varies from 0 (an AR(1) model) to −0.8
in increments of 0.4 and εt is N(0, 1). For all simulations we conduct M = 1000
Monte Carlo replications using S = 10,000 sample splits for our revealed perfor-
mance approach. We use sample sizes of n = 200 and n = 400 holding out the last
n2 = 5, 10, 25, or 50 observations of each resample for generating forecasts and restrict



data-driven model evaluation 323

Table 10.3 Each entry represents rejection frequencies for a one-sided test at the
5% level of the hypothesis that the AR(1) model has predictive accuracy better
than or equal to that for each model in the respective column heading, rejecting
when the model in the respective column heading has improved predictive accu-
racy (large rejection frequencies indicate that the model in the respective column
heading has improved predictive accuracy over the AR(1) model).

DM Test MDM Test RP Test

ρ2 AR(2) MA(1) MA(2) AR(2) MA(1) MA(2) AR(2) MA(1) MA(2)

n = 200, n2 = 5, S = 10,000

0.0 0.130 0.015 0.038 0.041 0.005 0.006 0.262 0.000 0.000
−0.4 0.290 0.083 0.295 0.094 0.022 0.102 0.981 0.647 0.983
−0.8 0.606 0.663 0.582 0.363 0.321 0.243 1.000 1.000 1.000

n = 200, n2 = 10, S = 10,000

0.0 0.080 0.009 0.014 0.042 0.006 0.008 0.149 0.000 0.000
−0.4 0.220 0.096 0.237 0.147 0.046 0.163 0.959 0.603 0.956
−0.8 0.633 0.707 0.620 0.558 0.586 0.531 0.993 0.993 0.993

n = 200, n2 = 25, S = 10,000

0.0 0.055 0.001 0.006 0.050 0.001 0.004 0.089 0.000 0.000
−0.4 0.306 0.078 0.299 0.276 0.062 0.263 0.944 0.555 0.937
−0.8 0.839 0.813 0.761 0.825 0.792 0.745 0.995 0.995 0.995

n = 200, n2 = 50, S = 10,000

0.0 0.042 0.000 0.001 0.038 0.000 0.000 0.051 0.000 0.000
−0.4 0.464 0.071 0.441 0.441 0.056 0.418 0.944 0.491 0.930
−0.8 0.979 0.915 0.913 0.979 0.909 0.909 0.996 0.996 0.996

attention to 1-step ahead forecasts.16 When ρ2 = 0 we can determine the extent to
which our test predicts worse than or equivalent accuracy of the forecasts, while when
ρ2 
= 0 we can assess how often our method determines that an AR(2) model predicts
better than an AR(1) when indeed it should. We also compare the AR(1) to MA(1) and
MA(2) specifications by way of comparison. We compare our results with the DM and
MDM test, noting that the DM test has a tendency to over-reject when using k-step
ahead forecasting, hence our inclusion of the size-corrected MDM results. We report
empirical rejection frequencies at the 5% level in Tables 10.3 and 10.4.

We direct the interested reader to Harvey et al. (1998),17 who report on the formal
size and power properties of the DM and MDM tests for a variety of scenarios with a
range of k-step ahead forecasts. All three approaches increase in power as n2 increases,
as expected; however, the RP test rejection frequencies approach one more quickly
as |ρ2| increases, suggesting that smaller hold-out samples are required in order to



324 model selection and averaging

Table 10.4 Each entry represents rejection frequencies for a one-sided test at the
5% level of the hypothesis that the AR(1) model has predictive accuracy better
than or equal to that for each model in the respective column heading, rejecting
when the model in the respective column heading has improved predictive accu-
racy (large rejection frequencies indicate that the model in the respective column
heading has improved predictive accuracy over the AR(1) model).

DM Test MDM Test RP Test

ρ2 AR(2) MA(1) MA(2) AR(2) MA(1) MA(2) AR(2) MA(1) MA(2)

n= 400, n2 = 5, S = 10,000

0.0 0.108 0.018 0.028 0.018 0.003 0.008 0.269 0.000 0.000
−0.4 0.269 0.096 0.273 0.120 0.017 0.100 0.979 0.572 0.979
−0.8 0.570 0.545 0.545 0.335 0.250 0.190 1.000 1.000 1.000

n= 400, n2 = 10, S = 10,000

0.0 0.051 0.015 0.019 0.034 0.012 0.010 0.167 0.000 0.000
−0.4 0.201 0.076 0.231 0.140 0.048 0.159 0.974 0.571 0.974
−0.8 0.619 0.675 0.582 0.552 0.557 0.469 0.995 0.995 0.995

n= 400, n2 = 25, S = 10,000

0.0 0.054 0.000 0.002 0.045 0.000 0.002 0.130 0.000 0.000
−0.4 0.283 0.066 0.303 0.250 0.055 0.268 0.960 0.519 0.958
−0.8 0.820 0.791 0.762 0.791 0.767 0.743 0.990 0.990 0.990

n= 400, n2 = 50, S = 10,000

0.0 0.062 0.000 0.002 0.055 0.000 0.002 0.092 0.000 0.000
−0.4 0.444 0.067 0.450 0.423 0.059 0.428 0.957 0.556 0.948
−0.8 0.956 0.912 0.912 0.952 0.912 0.903 0.996 0.996 0.996

discriminate between models in terms of their predictive accuracy. This feature of our
approach overcomes one known drawback of the MDM and related tests, namely, the
need to have a sufficiently large hold-out sample in order for the test to have power.
Lastly, comparing the RP and MDM test, one will see immediately that as |ρ2| increases,
our rejection frequencies approach one at a faster rate for the RP than for the MDM
test, indicating that this approach is successful at detecting gains in predictive accuracy
outside of an i.i.d. setting.

We note that the ability to choose one’s loss function when using our approach may
be appealing to practitioners. For instance, if interest lies in penalizing more heav-
ily over or underprediction, the use of asymmetric loss functions may be of interest
(LINEX, for example; Chang and Hung 2007). See Efron (1983, 1986) for more on
issues related to prediction rules and apparent error in relation to cross-validation and
bootstrapping.
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10.4. Empirical Illustrations
.............................................................................................................................................................................

10.4.1. Application to Wooldridge’s Wage1 Data

For what follows, we consider an application that involves multiple regression anal-
ysis with both qualitative and real-valued regressors. This example is taken from
Wooldridge (2003, p. 226).

We consider modeling an hourly wage equation for which the dependent variable is
log(wage) (lwage) while the explanatory variables include three continuous variables,
namely educ (years of education), exper (the number of years of potential experience),
and tenure (the number of years with their current employer) along with two qualita-
tive variables, female (“Female”/“Male”) and married (“Married”/“Notmarried”). For
this example there are n = 526 observations. We use Hurvich, Simonoff, and Tsai’s
(1998) AICc approach for bandwidth selection.

We first test a parametric model that is linear in all variables for correct parametric
specification using Ramsey’s (1969) RESET test for functional form via the reset func-
tion in the R package lmtest (Zeileis and Hothorn (2002)).18 We obtain a P-value of
0.0005104 and reject the null of correct specification. We then estimate a nonparamet-
ric LL model and test the null that the nonparametric model and a parametric model
that is linear in all variables have equal ASPE versus the alternative that the parametric
model has greater ASPE. This yields a P-value of 6.969649e; 50 hence we reject the null
and conclude that the nonparametric model has statistically significantly improved
performance on independent data and therefore represents a statistical improvement
over the rejected parametric specification. If we consider a model that is popular in
the literature (quadratic in experience), we again reject the null that the model is cor-
rectly specified based on the RESET test (P-value of 0.0009729) and again reject the
null that the parametric and nonparametric specifications are equivalent in terms of
their ASPE and conclude that the nonparametric specification is preferred (the P-
value is 9.416807e − 05). These results indicate that the proposed methodology can
be successfully used in applied settings.

Figures 10.1 and 10.2 present box plots and EDFs of ASPEs for each model along
with median and mean values for each.19 It can be seen from Figure 10.2 that a stochas-
tic dominance relationship exists, again indicating that the nonparametric model is to
be preferred on the basis of its performance on independent data.

10.4.1.1. Implications of Nonoptimal Smoothing

It is surprisingly common to encounter practitioners applying kernel methods using
nonoptimal rules of thumb for bandwidth choice, and in this section we briefly
examine the issue of nonoptimal smoothing for the method proposed herein. We con-
sider the two parametric models considered above, namely, one that is linear in all
variables and one reflecting the popular specification that is quadratic in experience.
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figure 10.1 Box plots of the ASPE for the S = 10,000 splits of the data for the wage1 data set.
Median values for each model appear below the figure.
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figure 10.2 EDFs of ASPE for the S = 10,000 splits of the data for the wage1 data set. Mean
values for each model appear below the figure.
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Table 10.5 Estimated Apparent and True Errors for the
Nonparametric and Parametric Models for Wooldridge’s
Wage1 Data.

Apparent Error True Error

Nonparametric Model

Smoothing
Undersmoothed 0.1193826 0.1685334
AICc 0.1371530 0.1605222
Oversmoothed 0.1928813 0.1679134

Parametric Model

Experience
Linear 0.1681791 0.1723598
Quadratic 0.1590070 0.1634519

We report three nonparametric models, one that is optimally smoothed according
to Hurvich et al.’s (1998) AICc criterion, one that is undersmoothed (25% of the
bandwidth values given by the AICc criterion), and one that is oversmoothed using
the maximum possible bandwidths for all variables (0.5 for the discrete variables
and ∞ for the continuous ones). We report the in-sample apparent error given by
ASE = n−1∑n

i=1 (yi − ĝzn (xi))2, and the mean estimated true error taken over all sam-
ple splits, S−1∑S

j=1 APSEj where ASPEj = n−1
2

∑n
i=n1+1 (y∗

i − ĝzn1 (x∗
i ))2, j = 1, 2, . . . , S.

Results are reported in Table 10.5.
It can be seen from Table 10.5 that the undersmoothed and optimally smoothed

apparent errors are indeed overly optimistic as are those for the linear and quadratic
parametric models, as expected. Interestingly, the oversmoothed nonparametric model
is overly pessimistic. The tests provided in Section 10.4.1. above are tests that the value
in column 3 of Table 10.5 for the AICc model (0.1605222) is statistically significantly
lower than that for the values in column 3 for both the linear (0.1723598) and quadratic
(0.1634519) models. Thus, the nonparametric model is 7.4% more efficient than the
linear model and 1.8% more efficient that the quadratic model as measured in terms
of performance on independent data while the quadratic model is 5.5% more efficient
than the linear model.

10.4.2. Application to CPS Data

We consider a classic data set taken from Pagan and Ullah (1999, p. 155), who
consider Canadian cross-section wage data consisting of a random sample obtained
from the 1971 Canadian Census Public Use (CPS) Tapes for male individuals having
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Table 10.6 Ramsey’s (1969) RESET Test for Correct Specification
of the Parametric Models for the Canadian CPS Data.

P RESET df1 df2 P-Value

1 26.2554 2 201 7.406e-11
2 13.1217 2 200 4.42e-06
3 11.34 2 199 2.168e-05
4 2.1999 2 198 0.1135
5 0.8488 2 197 0.4295
6 1.0656 2 196 0.3465
7 1.4937 2 195 0.2271

common education (Grade 13). There are n = 205 observations in total, along with
two variables; the logarithm of the individuals wage (logwage) and their age (age). The
traditional wage equation is typically modeled as a quadratic in age.

For what follows we consider parametric models of the form

log(wage)i = β0 +
P∑

j=1

βjage
j
i + εi .

When P = 1 we have a simple linear model, P = 2 quadratic and so forth. These types
of models are ubiquitous in applied data analysis.

For each model we apply the RESET test. Table 10.6 summarizes the model
specification tests for P = 1 through P = 7.

Models with P > 3 pass this specification test. However, this does not imply that the
model will outperform other models on independent data drawn from this DGP. The
model may be overspecified, and test results could potentially reflect lack of power.

We now consider applying the proposed method to this data set, considering para-
metric models of order P = 1 through 7 along with the LC and LL nonparametric
specifications. We present results in the form of box plots and EDFs in Figures 10.3
and 10.4. The box plots and EDFs for P = 4, 5 or 6 reveal that these models exhibit
visual stochastic dominance relationships with the parametric models for P = 1, 2, 3,
and 7. This is suggestive that the models P = 1, 2, 3 may be underspecified while the
model P = 7 is perhaps overspecified.

The (paired) t-statistics and P-values for the test that the mean ASPE is equal for
each model versus the LL model are given in Table 10.7.

Table 10.7 reveals that the LL specification is preferred to the LC specification on true
error grounds. Furthermore, the popular linear and quadratic specifications are domi-
nated by the LL specification as is the less common cubic specification. The quartic and
quintic parametric specifications dominate the LL specification as would be expected
given the findings of Murphy and Welch (1990). Interestingly, the LL specification



data-driven model evaluation 329

LL LC P = 1 P = 2 P = 3 P = 4 P = 5 P = 6 P = 7

n1 = 180, n2 = 25
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figure 10.3 Box plots of the ASPE for the S = 10,000 splits of the Canadian CPS data. Median
values for each model appear below the figure.
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figure 10.4 EDFs of ASPE for the S = 10,000 splits of the Canadian CPS data.
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Table 10.7 RP Test Results for the Canadian CPS Dataa

Model t P-Value

LC 7.847834 2.222817e-15
P = 1 45.70491 0
P = 2 10.85293 1.152248e-27
P = 3 9.682618 1.999341e-22
P = 4 −4.796251 0.9999992
P = 5 −3.810738 0.9999305
P = 6 −0.202236 0.580133
P = 7 9.840635 4.257431e-23

a Small P-values indicate that the nonparametric LL model performs
better than the model listed in column 1 according to the true error
criterion.

dominates the overspecified parametric model (P = 7), again underscoring the utility
of the proposed approach.

10.4.3. Application to Housing Data

Hedonic analysis of housing data was studied in Anglin and Gençay (1996).20 They
argued that standard parametric models, which passed the RESET test, were out-
performed based on overall fit against a partially linear model; two different tests of
linearity versus a partially linear model rejected the null hypothesis of correct linear
specification. Moreover, to further emphasize the superior performance of the par-
tially linear model, they conducted two separate sampling exercises. First, they looked
at price predictions for a “reference” house and plotted the change in price of the home
as the number of bedrooms changed. Their results suggested that the price predic-
tions from the semiparametric model were statistically different at the 99% level from
the parametric predictions and the parametric model had wider confidence bounds
than the partially linear model. Second, Anglin and Gençay (1996) performed a simi-
lar hold-out sample exercise as discussed here, however, they do not repeat this exercise
a large number of times. From their paper it appears that they did this for one sampling
of the data using first 10 hold-out homes and then using 20 hold-out homes where the
holdout homes were randomly selected.

Recently, Parmeter, Henderson, and Kumbhakar (2007) challenged the partially
linear specification of Anglin and Gençay (1996) and advocated for a fully nonpara-
metric approach. Their findings suggested that the partially linear model fails to
pass a test of correct specification against a nonparametric alternative, that Anglin
and Gençay’s (1996) measure of within-sample fit of the partially linear model was
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overstated, and the inclusion of categorical variables as continuous variables into the
unknown function may produce a loss of efficiency; see also Gau, Liu, and Racine
(forthcoming). This collection of results provides a useful conduit for examining the
revealed performance of the parametric specification of Anglin and Gençay (1996,
Table III), the partially linear specification of Anglin and Gençay (1996),21 and the
fully nonparametric specification of Parmeter et al. (2007).22

Formally, we model a hedonic price equation where our dependent variable is the
logarithm of the sale price of the house while the explanatory variables include six
nominal categorical variables, namely if the house is located in a preferential area in
Windsor, if the house has air conditioning, if the house has gas heated water, if the
house has a fully finished basement, if the house has a recreational room, and if the
house has a driveway; four ordinal categorical variables, namely the number of garage
places, the number of bedrooms, the number of full bathrooms, and the number of
stories of the house; and a single continuous variable, namely the logarithm of the lot
size of the house (ln(lot)). There are a total of n = 546 observations for this data. All
bandwidths are selected using the AICc criterion.23

Our three models are:

ln(sell) = γcat zcat + γordzord +β ln(lot) + ε1, (10.9)

ln(sell) = γcat zcat + gAG(zord , ln(lot)) + ε2, (10.10)

ln(sell) = gPHK (zcat , zord , ln(lot)) + ε3, (10.11)

where zcat and zord are the vectors of categorical and ordered variables, respectively,
described above.24 We denote the unknown functions in Eqs. (10.10) and (10.11) by
AG and PHK to refer to the models in Anglin and Gençay (1996) and Parmeter et al.
(2007). As noted by Anglin and Gençay (1996), the parametric model is not rejected
by a RESET test, suggesting correct specification.25

Our test of revealed performance begins with the estimation of all three models
and then tests three distinct null hypotheses. First, we test if the nonparametric and
linear models have equal ASPE, second we test if the nonparametric and partially
linear models have equal ASPE and thirdly, we test if the linear and partially linear
models have equal ASPE. For all three tests our alternative hypothesis is that the less
general model has a greater ASPE. These tests yield P-values of 1, 2.2e − 16 and 1,
suggesting that the linear model has superior predictive performance over both the
appropriately estimated semiparametric model of Anglin and Gençay (1996) and the
fully nonparametric model of Parmeter et al. (2007), while the fully nonparametric
model has performance that is at least as good as the semiparametric model. This is in
direct contrast to Anglin and Gençay’s (1996) finding that the semiparametric model
provides lower MPSEs for their hold-out samples and is likely a consequence of the fact
that they did not repeat their sampling process a large number of times. Additionally,
Gençay and Yang (1996) and Bin (2004), also in a hedonic setting, compare semi-
parametric out-of-sample fits against parametric counterparts using only one sample.
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figure 10.5 Box plots of the ASPE for the S = 10,000 splits of the housing data. Median values
for each model appear below the figure.
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figure 10.6 EDFs of ASPE for the S = 10,000 splits of the housing data. Mean values for each
model appear below the figure.

These setups are entirely incorrect for assessing if one model produces substantially
better out-of-sample predictions than another.

Figures 10.5 and 10.6 present box plots and EDFs of ASPEs for each of the three
models along with median and mean values for each. It can be seen from Figure 10.6
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that a stochastic dominance relationship exists between the linear model (lm()) and
both the nonparametric and partially linear models (npreg() and npplreg()), again
indicating that the linear model is to be preferred on the basis of its performance on
independent data. Figure 10.5 is not suggestive of a stochastic dominance relationship
between the linear model and the nonparametric model, whereas the plots of the EDFs
in Figure 10.6 readily reveal that the parametric model dominates both the nonpara-
metric and partly linear model, suggesting the use of both plots when assessing the
performance of two competing models.

10.4.4. Application to Economic Growth Data

Recent studies by Maasoumi, Racine, and Stengos (2007) and Henderson, Papageor-
giou, and Parmeter (2012) have focused on fully nonparametric estimation of “Barro
regressions” (see Durlauf, Johnson, and Temple 2005) and argue that standard lin-
ear models of economic growth cannot adequately capture the nonlinearities that are
most likely present in the underlying growth process. While both papers have soundly
rejected basic linear specifications as well as several sophisticated parametric models, it
is not evident that the nonparametric model explains the growth data any better than
a parametric model.

For this example we use the data set “oecdpanel” available in the np package
(Hayfield and Racine 2008) in R (R Core Team, 2012). This panel covers seven 5-year
intervals beginning in 1960 for 86 countries.26 Our dependent variable is the growth
rate of real GDP per capita over each of the 5-year intervals, while our explanatory
variables include an indicator if the country belongs to the OECD, an ordered vari-
able indicating the year, and the traditional, continuous “Solow” variables: the initial
real per capita GDP, the average annual population growth over the 5-year interval,
the average investment-GDP ratio over the 5-year period, and the average secondary
school enrolment rate for the 5-year period. This is the same data used in Liu and
Stengos (1999) and Maasoumi et al. (2007).

We compare the baseline, linear specification, and a model that includes higher-
order terms in initial GDP and human capital to a LL nonparametric model with
bandwidths selected via AICc . The baseline linear model is rejected for correct spec-
ification using a RESET test (P-value = 0.03983), but the higher-order model cannot
be rejected using a RESET test (P-value = 0.1551). However, this test result could be
due to power problems related to overspecification with the inclusion of the additional
quadratic, cubic, and quartic terms. Using the consistent model specification test of
Hsiao, Li, and Racine (2007), the higher-order parametric model is rejected for correct
specification with a P-value of 4.07087e-06. The question remains, however, Does the
nonparametric model predict growth any better than this higher-order model?

Our test results, box plots, and EDFs all suggest that the nonparametric model
significantly outperforms both the baseline “Barro” regression model and the
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figure 10.7 Box plots of the ASPE for the S = 10,000 splits of the oecd panel data. Median
values for each model appear below the figure.
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figure 10.8 EDFs of ASPE for the S = 10,000 splits of the oecd panel data. Mean values for
each model appear below the figure.

higher-order parametric model presented in Maasoumi et al. (2007). Our P-values
for tests of equality between either the baseline linear model or the higher-order lin-
ear model and the LL nonparametric model are 3.475388e − 06 and 1.542881e − 07,
respectively. This is suggestive that neither parametric model is revealing superior
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performance to the nonparametric model, which corroborates the findings of Maa-
soumi et al. (2007) and Henderson et al. (2012).

Figures 10.7 and 10.8 present box plots and EDFs of ASPEs for each of the three
models along with median and mean values for each. It can be seen from Figure 10.8
that a stochastic dominance relationship exists between the nonparametric model
(npreg()) and both of the linear models (lm() and ho-lm()), again indicating that the
nonparametric model is to be preferred on the basis of its performance on indepen-
dent draws from the data. What is interesting is that in terms of revealed performance
given through the EDFs, the higher-order linear model does not exhibit any stochas-
tic dominance over the standard “Barro” regression, suggesting that the hypothesized
nonlinearities present are more complex than simple power terms of the individ-
ual covariates. Interestingly, Henderson et al. (2012) have uncovered marginal effects
of the covariates consistent more so with interactions between covariates than with
higher-order terms of individual covariates.

10.4.5. Application to the Federal Funds Interest Rate

In this section we consider modeling the monthly U.S. federal funds interest rate. The
data come from the Board of Governors of the Federal Reserve. These data are a time
series of monthly observations on the interest rate from July 1954 to September 2012
(a total of n = 699 observations). Figure 10.9 displays the raw interest rate series as
well as autocovariance and partial autocorrelation functions for 20 lags. Figure 10.10
presents the time series of the first differenced series as well as autocovariance and
partial autocorrelation plots. A test for stationarity reveals that the series is indeed
nonstationary. First differencing produces a stationary series.

We note that the large spike of our differenced data for the first autocorrelation
(lower right panel) suggests that an MA(1) process may be present. However, the pres-
ence of positive and significant autocorrelations past lag 1 and the regular pattern in the
distant autocorrelations suggests that a more complex DGP may be present. Also, the
partial autocorrelations (lower left panel), which have a positive and significant spike
for lag 1 and a negative and significant spike for lag 2, would rule out the use of an
AR(1) model but could be consistent with an AR(2) model.27 Fitting the best ARIMA
process to the first differenced data suggests that an MA(1) process with a seasonal
component is appropriate.28 For this exercise we use a hold-out sample of 24 observa-
tions, which corresponds to two years. The automatic block length selection of Politis
and White (2004) suggests we use a random block length of 44 when resampling.

Our box plot and EDF comparison plots appear in Figures 10.11 and 10.12. Note that
even though the MA(1) process was found to best fit the data within the ARIMA family,
both the AR(1) and the ARMA(1,1) models appear to deliver superior predictions. This
is clear from both the box plots and the EDFs of ASPE. Both our RP test and the DM
test suggest that there is no difference in forecast prediction errors across the AR(1)



336 model selection and averaging

U.S. Federal Funds Rate (1954:7−2012:9)

Ra
te

 (%
)

1960 1970 1980 1990 2000 2010

0

5

10

15

0 5 10 20 30

−0.2

0.2

0.6

1.0

Lag

AC
F

0 5 10 20 30

−0.2

0.2

0.6

1.0

Lag

PA
CF

figure 10.9 Time plot, autocovariance plot, and partial autocorrelation plot for the federal
funds interest rate.

and the ARMA(1,1) specifications, while both dominate the MA(1) model. Thus, even
though a close look at the partial autocorrelation plot reveals that an AR(1) model
may be inappropriate, if the focus is on out-of-sample forecasting, then the AR(1)
model does a better job than the MA(1) and one not significantly different from the
ARMA(1,1).

10.5. Conclusion
.............................................................................................................................................................................

In this chapter we propose a general methodology for assessing the predictive per-
formance of competing approximate models based on resampling techniques. The
approach involves taking repeated hold-out samples (appropriately constructed) from
the data at hand to create an estimate of the expected true error of a model and then
using this as the basis for a test. A model possessing lower expected true error than
another is closer to the underlying DGP according to the specified loss function and is
therefore to be preferred. Our approach allows practitioners to compare a broad range
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U.S. Federal Funds Rate First Differenced (1954:8−2012:9)
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figure 10.10 Time plot, autocovariance plot, and partial autocorrelation plot for the first
differenced federal funds interest rate time series.
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figure 10.11 Box plots of the ASPE for the S = 1000 splits of the first differenced federal funds
rate time-series data. Median values for each model appear below the figure.
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figure 10.12 EDFs of ASPE for the S = 1000 splits of the first differenced federal funds rate
time-series data. Mean values for each model appear below the figure.

of modeling alternatives and is not limited to the regression-based examples provided
herein. The approach can be used to determine whether or not a more flexible model
offers any gains in terms of expected performance than a less complex model and pro-
vides an alternative avenue for direct comparison of parametric and nonparametric
regression surfaces (e.g, Härdle and Marron (1990), Härdle and Mammen (1993)).

We present both simulated and empirical evidence underscoring the utility of the
proposed method in dependent data settings. Our simulation results indicate that,
relative to popular time-series tests, our RP test is capable of delivering substantial
gains when assessing predictive accuracy. The empirical examples highlight the ease
with which the method can be deployed across a range of application domains (cross-
section, panel, and time series). We also present telling empirical evidence as to how
overspecified parametric and nonparametric models may not always provide the most
accurate approximations to the underlying DGP. Thus, our method can be used as an
auxiliary tool for assessing the accuracy of a selected model, thereby enhancing any
insights one might otherwise glean from empirical exercises.

Fruitful extensions of this approach could include its use in nonregression settings
such as the modeling of counts, survival times, or even probabilities. We leave rigor-
ous analysis on optimal selection of the hold-out sample size and its impact on the
resulting test statistic for future research. One could also trivially extend our testing
idea to include formal tests of stochastic dominance as opposed to the visual argu-
ments advocated in the chapter, though we leave this an an exercise for the interested
reader.
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would like to dedicate this chapter in memorian to Halbert L. White, Jr., whose insight
insight and feedback had a profound effect on our understanding of the problem.

1. Alternatively, as White (2000, p. 1097) discusses, resorting to extensive specification
searches runs the risk that the observed good performance of a model is not the result of
superior fit but rather luck, and he labels such practices “data snooping.”

2. Corradi and Swanson (2002, p. 356) underscore the importance of this issue when they
discuss “. . . whether simple linear models (e.g., ARIMA models) provide forecasts which
are (at least) as accurate as more sophisticated nonlinear models. If this were shown
to be the case, there would be no point in using nonlinear models for out-of-sample
prediction, even if the linear models could be shown to be incorrectly specified, say based
on the application of in-sample nonlinearity tests. . . ” (our italics).

3. See Hansen (2005, pp. 62–63) for an eloquent discussion of this issue.
4. This allows us to address how much more accurate one method is compared to another

on average with respect to the chosen loss function. Indeed, this is in direct agreement
with Goodwin (2007, p. 334): “[. . . ] when comparing the accuracy of forecasting meth-
ods [. . . ] The interesting questions are, how much more accurate is method A than
method B, and is this difference of practical significance?” Our approach will allow a
researcher to tackle both of these questions in a simple and easily implementable frame-
work, though we take a broader view by considering “out-of-sample prediction” in
cross-section settings and “forecasting” in time series ones.

5. Readers familiar with Diebold and Mariano’s (1995) test for predictive accuracy will
immediately recognize this strategy.

6. Clearly, for (strictly) stationary dependent processes, we cannot use sample splitting
directly, however, we can use resampling methods that are appropriate for such pro-
cesses. When each resample is the outcome of an appropriate bootstrap methodology, it
will mimic dependence present in the original series and can itself be split; see Politis and
Romano (1992) by way of example.

7. For instance, we might perform a test of the hypothesis that the mean ASPE (“expected
true error”) for the S = 10,000 splits is equal (less than or equal to) for two models against
a one-sided alternative (greater than) in order to maximize power. Or, one could test for
stochastic dominance of one distribution over the other.

8. Additionally, while we do not discuss it further, our test is not restricted to the case
where the dependent variable is identical across models. One could use the insight of
Wooldridge (1994) to transform the predictions from one model to that of another where
the dependent variable was transformed (monotonically).

9. Efron (1982, p. 51) considers estimation of “expected excess error,” while we instead
consider estimation of “expected true error.”

http://www.sshrc.ca
http://www.sharcnet.ca
www.nserc.ca
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10. Of course, we recognize that a model based on the true DGP may not deliver the best
out-of-sample prediction due to parameter estimation error, so we highlight the fact that
this is in the repeated sampling sense, hence the wording “expected to lie closest.”

11. The pairing will be seen to arise from potential correlation between model predictions
among competing models.

12. A “scaling factor” refers to the unknown constant c in the formula for the optimal
bandwidth—for example, hopt = cn−1/(4+p), where p is the number of continuous predic-
tors for a kernel regression model using a second-order kernel function. Cross-validation
can be thought of as a method for estimating the unknown constant c, where c is inde-
pendent of the sample size n. This constant can then be rescaled for samples of differing
size drawn from the same DGP, thereby ensuring that the same degree of smoothing is
applied to the full sample and the subsample (see Racine (1993)). The rationale for so
doing is as follows. Think of estimating a univariate density function where the data rep-
resent independent draws from the N(0,1) distribution. The optimal bandwidth in this
case is known to be hopt = 1.059n−1/5. If n = 200, then hopt = 0.3670; while if n = 100,
then hopt = 0.4215. Cross-validation delivers an estimate of hopt for a sample of size n

(i.e., ĥ = ĉn−1/5), while it can be shown that (ĥ − hopt )/hopt → 1 asymptotically (see
Stone (1984)). If you don’t rescale the cross-validated bandwidth for subsamples of size

n1 < n (i.e., adjust ĥ when n falls to n1), then you are in fact doing a different amount
of smoothing on subsamples of size n1 < n (i.e., h = 0.3670 will undersmooth when
n1 < 200, so the estimate based on h = 0.3670 and n1 < 200 will be overly variable). But,

by using ĉ corresponding to the cross-validated bandwidth for the full sample, ĥ, we can
ensure that the same degree of smoothing is applied to the subsamples of size n1 < n
and the full sample of size n. This keeps the baseline nonparametric model fixed at that
for the full sample, in the same way that we hold the functional form of the parametric
model fixed at that for the full sample.

13. See Patton, Politis, and White (2009) for a correction to several of the results in Politis
and White (2004).

14. Our choice of the stationary block bootstrap is for expositional purposes. In practice we
recommend that the user employ a bootstrap appropriate for the type of dependence
apparent in the data. For example, additional types of bootstraps are the Markov condi-
tional bootstrap (Horowitz, 2004), the circular bootstrap (Politis and Romano, 1992),
and the sieve bootstrap (Bühlmann, 1997); see Lahiri (2003) for an up-to-date and
detailed coverage of available block resampling schemes. One can easily implement a
variety of block bootstrap procedures by using the tsboot() command available in the
boot package (Canty and Ripley, 2012) in R (R Core Team, 2012).

15. See the review by De Gooijer and Hyndman (2006) for a thorough, up-to-date survey
and bibliography on the subject.

16. For each Monte Carlo simulation, the initial data generated are passed through the auto-
matic block length selection mechanism of Politis and White (2004) to determine the
optimal block length. This block length is then used for generating each of the S artifi-
cial series in order to generate each of the S splits of the data. We do not investigate the
behavior of our test with regard to alternate block length selection schemes, and we leave
this for future investigation.

17. See also Harvey and Newbold (2000), Meade (2002), and van Dijk and Franses (2003).
18. We use default settings hence powers of 2 and 3 of the fitted model are employed.
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19. A box-and-whisker plot (sometimes called simply a “box plot”) is a histogram-like
method of displaying data, invented by J. Tukey. To create a box-and-whisker plot, draw
a box with ends at the quartiles Q1 and Q3. Draw the statistical median M as a horizontal
line in the box. Now extend the “whiskers” to the farthest points that are not outliers
(i.e., that are within 3/2 times the interquartile range of Q1 and Q3). Then, for every
point more than 3/2 times the interquartile range from the end of a box, draw a dot.

20. The data from their paper is available on the JAE data archives webpage or can be found in
the Ecdat package (Croissant 2011) in R (R Core Team 2012) under the name “housing.”

21. We do not estimate the partially linear model as it appears in Anglin and Gençay (1996)
since Parmeter et al. (2007) were unable to exactly replicate their results and Anglin and
Gençay’s (1996) handling of ordered discrete variables as continuous is erroneous given
the current practice of using generalized kernel estimation.

22. See Haupt, Schnurbus, and Tschernig (2010) for further discussion of this setting.
23. See Gau et al. (forthcoming) for more on bandwidth selection in partially linear models.
24. We note that although the number of garage places is an ordered variable, Anglin and

Gençay (1996) did not include it in the unknown function in their partially linear setup.
To be consistent with their modeling approach, we follow suit and have the number of
garage places enter in the linear portion of (10.10).

25. Anglin and Gençay (1996, p. 638) do note, however, that their benchmark model is
rejected using the specification test of Wooldridge (1992). Also, we use the model esti-
mated in Table III of Anglin and Gençay (1996) since this model has a higher R̄2; and
as they note (Anglin and Gençay 1996, p. 638) the performance of this model is not
substantially different from their benchmark model.

26. See Liu and Stengos (1999, Table 1) for a list of countries in the data set.
27. The positive and significant partial autocorrelations at lag 8, 13, and 26 are difficult to

interpret.
28. This was done using the entire data set with the auto.arima() function in the forecast

package (Hyndman, Razbash, and Schmidt, 2012) in R (R Core Team, 2012).
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11.1. Default Prediction Methods
.............................................................................................................................................................................

Default probability is defined as the probability that a borrower will fail to serve its
obligation. Bonds and other tradable debt instruments are the main source of default
for most individual and institutional investors. In contrast, loans are the largest and
most obvious source of default for banks (Sobehart and Stein 2000).

Default prediction is becoming more and more important for banks, especially in
risk management, in order to measure their client’s degree of risk. The Basel Commit-
tee on Banking Supervision established the borrower’s rating as a crucial criterion for
minimum capital requirements of banks to minimize their cost of capital and mitigate
their own bankruptcy risk (Härdle et al., 2009). Various methods to generate rating
have been developed over the last 15 years (Krahnen and Weber, 2001).

There are basically two approaches dealing with default risk analysis: statistical
model and market-based model. The statistical model was determined through an
empirical analysis of historical data—for example, accounting data. The market-based
model, also known as a structural model, uses time series of the company data to
predict the probability of default. One of the common market-based approach is
derived from an adapted Black–Scholes model (Black and Scholes (1973) and Vassa-
lou and Xing (2004)). However, the most challenging requirement in market-based
approach is the knowledge of market values of debt and equity. This precondition
is a severe obstacle to using the Merton model (Merton 1974) adequately because
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it is only satisfied in a minority of cases (Härdle et al., 2009). The idea of Mer-
ton’s model is that equity and debt could be considered as options on the value of
the firm’s assets. Unfortunately, long time series of market prices are not available
for most companies. Moreover, for companies that are not listed, their market price
is unknown. In that case, it is necessary to choose a model that relies on cross-
sectional data, financial statements, or accounting data. Sobehart and Stein (2000)
developed a hybrid model where the output is based on the relationship between
default and financial statement information, market information, ratings (when they
exist), and a variant of Merton’s contingent claims model expressed as distance to
default.

The early studies about default prediction identified the difference between financial
ratios of default (insolvent) and nondefault (solvent) firms (Merwin (1942)). Then,
discriminant analysis (DA), also known as Z-score, was introduced in default predic-
tion; see Beaver (1966) and Altman (1968) for the univariate and multivariate case,
respectively. The model separates defaulting from nondefaulting firms based on the
discriminatory power of linear combinations of financial ratios. Afterward, the logit
and probit approach replaced the usage of DA during the 1980s (see Martin (1977),
Ohlson (1980), Lo (1986) and Platt et al. (1994)). The assumption in DA and logit (or
probit) models often fails to meet the reality of observed data. In order to incorporate
the conventional linear model and a nonparametric approach, Hwang et al. (2007)
developed semiparametric logit model.

If there is evidence for the nonlinear separation mechanism, then the linear separat-
ing hyperplane approach is not appropriate. In that case, the Artificial Neural Network
(ANN) is a nonparametric nonlinear classification approach that is appropriate to solve
the problem. ANN was introduced to predict default in the 1990s (see Tam and Kiang
(1992), Wilson and Sharda (1994), and Altman et al. (1994) for details). However,
ANN is often criticized to be vulnerable to the multiple minima problem. ANN uses
the principle of minimizing empirical risk, the same as in the Ordinary Least Square
(OLS) and Maximum Likelihood Estimation (MLE) for linear models, which usually
leads to poor classification performance for out-of-sample data (Haykin (1999), Gunn
(1998), and Burges (1998)).

In contrast to the case of neural networks, where many local minima usually exist,
Support Vector Machines (SVM) training always finds a global solution (Burges 1998).
SVM is one of the most promising among nonlinear statistical techniques developed
recently and is a state-of-the-art classification method. The idea of SVM was started in
the late 1970s by Vapnik (1979), but it was receiving increasing attention after the work
in statistical learning theory (Boser et al. (1992), Vapnik (1995) and Vapnik (1998)).
The SVM formulation embodies the Structural Risk Minimization (SRM) principle
(Shawe-Taylor et al., 1996). At the first stages, SVM has been successfully applied to
classify (multivariate) observation (see Blanz et al. (1996), Cortes and Vapnik (1995),
Schölkopf et al. (1995, 1996), Burges and Schölkopf (1997), and Osuna et al. (1997a)).
Later, SVM has been used in regression prediction and time series forecasting (Müller
et al., 1997).
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The SVM has been applied to default prediction and typically outperformed the
competing models (Härdle and Simar (2012), Härdle et al. (2009, 2011), Zhang and
Härdle (2010), and Chen et al. (2011)). One of the important issues in SVM is the
parameter optimization, which is also known as model selection. This chapter empha-
sizes the model selection of SVM for default prediction applied to a CreditReform
database. The SVM parameters are optimized by using an evolutionary algorithm, the
so-called Genetic Algorithm (GA), introduced by Holland (1975). Some recent papers
that deal with GA are Michalewicz (1996), Gen and Cheng (2000), Mitchell (1999),
Haupt and Haupt (2004), Sivanandam and Deepa (2008), and Baragona et al. (2011).

In the case of a small percentage of samples belonging to a certain class (label) com-
pared to the other classes, the classification method may tend to classify every sample
belong to the majority. This is the case in default and nondefault data sets, therefore
such models would be useless in practice. He and Garcia (2009) provide a compre-
hensive and critical review of the development research in learning from imbalanced
data.

Two of the methods to overcome the imbalanced problem are the down-sampling
and oversampling strategies (Härdle et al., 2009). Down-sampling works with boot-
strap to select a set of majority class examples such that both the majority and minority
classes are balanced. Due to the random sampling of bootstrap, the majority sample
might cause the model to have the highest variance. An oversampling scheme could be
applied to avoid this unstable model building (Maalouf and Trafalis, 2011). The over-
sampling method selects a set of samples from the minority class and replicates the
procedure such that both majority and minority classes are balanced.

At first glance, the down-sampling and oversampling appear to be functionally
equivalent because they both alter the size of the original data set and can actually yield
balanced classes. In the case of down-sampling, removing examples from the major-
ity class may cause the classifier to miss important concepts pertaining to the majority
class. With regard to oversampling, multiple instances of certain examples become
“tied,” which leads to overfitting (He and Garcia 2009). Although sampling meth-
ods and cost-sensitive learning methods dominate the current research in imbalanced
learning, kernel-based learning, (e.g., SVM) have also been pursued. The represen-
tative SVMs can provide relatively robust classification results when applied to an
imbalanced data set (Japkowicz and Stephen, 2002).

11.2. Quality of Default Prediction
.............................................................................................................................................................................

One of the most important issues in classification is the discriminative power of classi-
fication methods. In credit scoring, the classification methods are used for evaluating
the credit worthiness of a client. Assessing the discriminative power of rating systems
is a very important topic for a bank because any misclassification can create damages
to its resources.
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Table 11.1 Contingency Table for Performance Evaluation
of Two-Class Classification

Sample (Y )

Default (1) NonDefault (−1)

Predicted (̂Y )
(1) True positive (TP ) False positive (FP )

(−1) False negative (FN) True negative (TN)

Total P N

A representation of two-class classification performances can be formulated by a
contingency table (confusion matrix) as illustrated in Table 11.1. The most frequent
assessment metrics are accuracy (Acc) and misclassification rate (MR), defined as
follow

Acc = P(Ŷ = Y ) = TP + TN

P + N
. (11.1)

MR = P(Ŷ 
= Y ) = 1 − Acc. (11.2)

Acc and MR can be deceiving in certain situations and are highly sensitive to changes
in data—for example, unbalanced two-class sample problems. Acc uses both columns
of information in Table 11.1. Therefore, as class performance varies, measures of the
performance will change even though the underlying fundamental performance of the
classifier does not. In the presence of unbalanced data, it becomes difficult to do a
relative analysis when the Acc measure is sensitive to the data distribution (He and
Garcia, 2009).

Other evaluation metrics are frequently used to provide comprehensive assessments,
especially for unbalanced data, namely, specificity, sensitivity, and precision, which are
defined as

Spec = P(Ŷ = −1|Y = −1) = TN

N
, (11.3)

Sens = P(Ŷ = 1|Y = 1) = TP

P
, (11.4)

Prec = P(Ŷ = 1|Y = 1)

P(Ŷ = 1|Y = 1) + P(Ŷ = 1|Y = −1)
= TP

TP + FP
. (11.5)

Precision measures an exactness, but it can not assert how many default samples are
predicted incorrectly.
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11.2.1. AR and ROC

Many rating methodologies and credit risk modeling approaches have been devel-
opped. The most popular validation techniques currently used in practice are Cumu-
lative accuracy profile (CAP) and receiver operating characteristic (ROC) curve.
Accuracy ratio (AR) is the summary statistic of the CAP curve (Sobehart et al., 2001).
ROC has similar concept to CAP and has summary statistics, the area below the ROC
curve (called AUC) (Sobehart and Keenan, 2001). Engelmann et al., (2003) analyzes
the CAP and ROC from a statistical point of view.

Consider a method assigning to each observed unit a score S as a function of the
explanatory variables. Scores from total samples, S, have cdf F and pdf f ; scores from
default samples, S|Y = 1, have cdf F1; and scores from nondefault samples, S|Y = −1,
have cdf F−1.

The CAP curve is particularly useful because it simulataneously measures Type I and
Type II errors. In statistical terms, the CAP curve represents the cumulative probabil-
ity of default events for different percentiles of the risk score scale. The actual CAP
curve is basically defined as the graph of all points {F, F1} where the points are con-
nected by linear interpolation. A perfect CAP curve would assign the lowest scores to
the defaulters, increase linearly, and then stay at one. For a random CAP curve without
any discriminative power, the fraction x of all events with the lowest rating scores will
contain x% of all defaulters, Fi = F1,i.

Therefore, AR is defined as the ratio of the area between actual and random CAP
curves to the area between the perfect and random CAP curves (Figure 11.1). The
classification method is the better the higher is AR, or the closer it is to one. Formally,
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figure 11.1 CAP curve (left) and ROC curve (right).
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Table 11.2 Classification Decision Given Cutoff Value τ

Sample (Y )

Default (1) No default (-1)

Predicted rating score

≤ τ Correct prediction Wrong prediction
(default) (hit) (false alarm)

> τ wrong prediction correct prediction
(no default) (mass) (correct rejection)

if y = {0, 1}, the AR value is defined as

AR =
∫ 1

0 yactual F dF − 1
2∫ 1

0 yperfect F dF − 1
2

. (11.6)

If the number of defaulters and nondefaulters is equal, the AR becomes

AR = 4

∫ 1

0
yactual F dF − 2. (11.7)

In classification—for example, credit rating—assume that future defaulters and
nondefaulters will be predicted by using rating scores. A decision maker would like to
introduce a cut-off value τ , and an observed unit with rating score less than τ will be
classified into potential defaulters. A classified nondefaulter in an observed unit would
have rating score greater than τ . Table 11.2 summarizes the possible decisions.

If the rating score is less than the cutoff τ conditionally on a future default, the
decision was correct and it is called a hit. Otherwise, the decision wrongly classified
nondefaulters as defaulters (Type I error), called false alarm. The hit rate, HR(τ ), and
false alarm rate, FAR(τ ), are defined as ((Engelmann et al., 2003) and (Sobehart and
Keenan, 2001))

HR(τ ) = P(S|Y = 1 ≤ τ ), (11.8)

FAR(τ ) = P(S|Y = −1 ≤ τ ). (11.9)

Given a nondefaulter that has rating score greater than τ , the cassification is correct.
Otherwise, a defaulter is wrongly classified as a nondefaulter (Type II error).

The ROC curve is constructed by plotting FAR(τ ) versus HR(τ ) for all given values
τ . In other words, the ROC curve consists of all points {F−1, F1} connected by linear
interpolation (Figure 11.1). The area under the ROC curve (AUC) can be interpreted
as the average power of the test on default or nondefault corresponding to all possi-
ble cutoff values τ . A larger AUC characterized a better classification result. A perfect
model has an AUC value of 1, and a random model without discriminative power has
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an AUC value of 0.5. The AUC is between 0.5 and 1.0 for any reasonable rating model
in practice. The ralationship between AUC and AR is defined as (Engelmann et al.,
(2003)

AR = 2AUC − 1. (11.10)

Sing et al., (2005) developed package ROCR in R to calculate performance measures
under the ROC curve for classification analysis.

Similarly, the ROC curve is formed by plotting FPrate over TPrate , where

FPrate = FP

N
, TPrate = TP

P

and any point in the ROC curve corresponds to the performance of a single classifier
on a given distribution. The ROC curve is useful because it provides a visual represen-
tation of the relative tradeoffs between the benefits (reflected by TP) and cost (reflected
by FP) of classification (He and Garcia, 2009).

11.3. SVM Formulation
.............................................................................................................................................................................

This section reviews the support vector machine (SVM) methodology in classifica-
tion. We first discuss classical linear classification, both for linearly separable and
nonseparable scenarios, and then focus on nonlinear classification (see Figure 11.2).

11.3.1. SVM in the Linearly Separable Case

Each observation consists of a pair of p predictors x"
i = (x1

i , . . . , x
p
i ) ∈ Rp, i = 1, . . . , n,

and the associated yi ∈ Y = {−1, 1}. We have a sequence

Dn = {
(x1, y1), . . . , (xn, yn)

} ∈X ×{−1, 1}, (11.11)

of i.i.d. pairs drawn from a probability distribution F(x, y) over X ×Y . The domain X
is some non-empty set from which xi are drawn, and yi are targets or labels.

We have a machine learning, a classifier, whose task is to learn the information in a
training set, Dn, to predict y for any new observation. The label yi from training set is
then called a trainer or supervisor. A nonlinear classifier function f may be described
by a function class F that is fixed a priori; for example, it can be the class of linear
classifiers (hyperplanes).

First we will describe the SVM in the linearly separable case. A key concept to define a
linear classifier is the dot product. The family F of classification functions, represented
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figure 11.2 A set of classification function in the case of linearly separable data (left) and
linearly nonseparable case (right).
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figure 11.3 The separating hyperplane x"w + b = 0 and the margin in the linearly separable
case (left) and in the linearly nonseparable case (right).

in Figure 11.2, in the data space is given by

F =
{

x"w + b, w ∈Rp, b ∈R
}

, (11.12)

where w is known as the weight vector and b is a deviation from the origin. .
The following decision boundary (separating hyperplane),

f (x) = x"w + b = 0, (11.13)

divides the space into two regions as in Figure 11.3. The set of points x such that f (x) =
x"w = 0 are all points that are perpendicular to w and go through the origin. The
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constant b translates the hyperplane away from the origin. The form of f (x) is a line in
two dimensions, a plane in three dimensions, and, more generally, a hyperplane in the
higher dimension.

The sign of f (x) determines in which regions the points lie. The decision boundary
defined by a hyperplane is said to be linear because it is linear in the inputs xi . A so-
called linear classifier is a classifier with a linear decision boundary. Furthermore, a
classifier is said to be a nonlinear classifier when the decision boundary depends on the
data in a nonlinear way.

In order to determine the support vectors, we choose f ∈F (or equivalently (w, b))
such that the so-called margin, the corridor between the separating hyperplanes, is
maximal. The signs (− ) and (+ ) in the margin, d = d− +d+, denote the two regions.

The classifier is a hyperplane plus the margin zone, where, in the separable case, no
observations can lie. It separates the points from both classes with the highest “safest”
distance (margin) between them. Margin maximization corresponds to the reduction
of complexity as given by the Vapnik–Chervonenkis (VC) dimension (Vapnik 1998) of
the SVM classifier.

The length of vector w is denoted by norm ‖w‖ =
√

w"w. A unit vector w, where
‖w‖= 1, in the direction of w is given by w

‖w‖ . Furthermore, the margin of a hyperplane
f (x) with respect to a data set Dn is as follows:

dD(f ) = 1

2
w"(x+ − x−), (11.14)

where the unit vector w is in the direction of w. It is assumed that x+ and x− are
equidistant from the following separating hyperplane:

f (x+) = w"x+ + b = a,

f (x−) = w"x− + b = −a, (11.15)

with constant a > 0. Suppose to fix a = 1, hence dD(f ) = 1. In order to make the
geometric margin meaningful, divide dD(f )‖w‖ by norm of vector w to obtain

dD(f )

‖w‖ = 1

‖w‖ . (11.16)

Let x"w + b = 0 be a separating hyperplane and let yi ∈ {−1,+1} code a binary
response for the ith observation. Then (d+) and (d−) will be the shortest distance
between the separating hyperplane and the closest objects from the classes ( + 1) and
( − 1). Since the separation can be done without errors, all observations i = 1, 2, . . . , n
must satisfy

x"
i w + b ≥ +1 for yi = +1,

x"
i w + b ≤ −1 for yi = −1.
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We can combine both constraints into one as follows:

yi(x"
i w + b) − 1 ≥ 0, i = 1, . . . , n. (11.17)

Therefore the objective function of the linearly separable case would be a maximizing
margin in (11.16) or, equivalently,

min
w

1

2
‖w‖2, (11.18)

under the constraint (11.17). The Lagrangian for the primal problem in this case is

min
w,b

LP(w, b) = 1

2
‖w‖2 −

n∑
i=1

αi{yi(x"
i w + b) − 1}. (11.19)

The Karush–Kuhn–Tucker (KKT) (Gale et al., 1951) first-order optimality condi-
tions are

∂LP
∂wk

= 0 : wk −∑n
i=1αiyixik = 0, k = 1, . . . , d,

∂LP
∂b = 0 :

∑n
i=1αiyi = 0,

yi(x"
i w + b) − 1≥0, i = 1, . . . , n,

αi≥0,
αi{yi(x"

i w + b) − 1}=0.

From these first-order conditions, we can derive w =∑n
i=1αiyixi and therefore the

summands in (11.19) would be

1

2
‖w‖2 = 1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
"
i xj ,

n∑
i=1

αi{yi(x"
i w + b) − 1} =

n∑
i=1

αiyix
"
i

n∑
j=1

αjyjxj −
n∑

i=1

αi,

=
n∑

i=1

n∑
j=1

αiαjyiyjx
"
i xj −

n∑
i=1

αi .

By substituting the results into (11.19), we obtain the Lagrangian for the dual problem
as follows:

max
α

LD(α)=
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
"
i xj . (11.20)
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Solving the primal and dual problems

min
w,b

LP(w, b),

max
α

LD(α)

gives the same solution since the optimization problem is convex.
Those points i for which the equation yi(x"

i w + b) = 1 holds are called support
vectors. In Figure 11.3 there are two support vectors that are marked in bold: one solid
rectangle and one solid circle. Apparently, the separating hyperplane is defined only by
the support vectors that hold the hyperplanes parallel to the separating one.

After solving the dual problem, one can classify an object by using the following
classification rule:

ĝ(x) = sign
(

x"ŵ + b̂
)

, (11.21)

where ŵ =∑n
i=1 α̂iyixi .

11.3.2. SVM in the Linearly Nonseparable Case

In the linearly nonseparable case the situation is illustrated in Figure 11.3; the slack
variables ξi represent the violation of strict separation that allow a point to be in the
margin error, 0 ≤ ξi ≤ 1, or to be misclassified, ξ > 1. In this case the following
inequalities can be induced (see Figure 11.3):

w + b ≥ 1 − ξi for yi = 1,

w + b ≤ −(1 − ξi) for yi = −1,

ξi ≥ 0,

which could be combined into the two following constraints:

yi(x"
i w + b) ≥ 1 − ξi, (11.22a)

ξi ≥ 0. (11.22b)

The penalty for misclassification is related to the distance of a misclassified point xi

from the hyperplane bounding its class. If ξi > 0, then an error in separating the two
sets occurs. The objective function corresponding to penalized margin maximization
is then formulated as

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi , (11.23)
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with constraints as in equation (11.22). This formulation, a convex optimization prob-
lem, is called softmargin (x"

i w+b =±1), introduced by Cortes and Vapnik (1995). The
parameter C characterizes the weight given to the misclassification. The minimization
of the objective function with constraints (11.22a) and (11.22b) provides the highest
possible margin in the case when misclassification are inevitable due to the linearity of
the separating hyperplane.

Non-negative slack variables ξi allow points to be on the wrong side of their soft
margin as well as on the separating hyperplane. Parameter C is a cost parameter that
controls the amount of overlap. If the data are linearly separable, then for sufficiently
large C the solution (11.18) and (11.23) coincide. If the data are linearly nonsepara-
ble as C increases the solution approaches the minimum overlap solution with largest
margin, which is attained for some finite value of C (Hastie et al., 2004).

The Lagrange function for the primal problem is

LP(w, b,ξ)= 1

2
‖w‖2 + C

n∑
i=1

ξi

−
n∑

i=1

αi{yi

(
x"

i w + b
)

− 1 + ξi}−
n∑

i=1

μiξi , (11.24)

where αi ≥ 0 and μi ≥ 0 are Lagrange multipliers. The primal problem is formulated
by minimizing the Lagrange function as follows:

min
w,b,ξ

LP(w, b,ξ). (11.25)

The first-order conditions are given by

∂LP

∂wk
= 0 : wk −

n∑
i=1

αiyixik = 0, (11.26a)

∂LP

∂b
= 0 :

n∑
i=1

αiyi = 0, (11.26b)

∂LP

∂ξi
= 0 : C −αi −μi = 0. (11.26c)

with the following constraints:

αi ≥ 0, (11.27a)

μi ≥ 0, (11.27b)

αi{yi(x"
i w + b) − 1 + ξi} = 0, (11.27c)

μiξi = 0. (11.27d)
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Note that
∑n

i=1αiyib = 0, similar to the linearly separable case, therefore the primal
problem translates into the following dual problem:

LD(α) = 1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
"
i xj −

n∑
i=1

αiyix
"
i

n∑
j=1

αjyjxj

+C
n∑

i=1

ξi +
n∑

i=1

αi −
n∑

i=1

αiξi −
n∑

i=1

μiξi

=
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
"
i xj +

n∑
i=1

ξi(C −αi −μi).

The last term is equal to zero. The dual problem is formulated as follows:

max
α

LD(α) =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
"
i xj , (11.28)

subject to

0 ≤ αi ≤ C,
n∑

i=1

αiyi = 0. (11.29)

The sample xi for which α > 0 (support vectors) are those points that are on the
margin, or within the margin when a soft margin is used. The support vector is often
sparse and the level of sparsity (fraction of data serving as support vector) is an upper
bound for the misclassification rate (Schölkopf and Smola 2002).

11.3.3. SVM in Nonlinear Classification

We have not made any assumptions on the domain X other than being a set. We need
additional structure in order to study machine learning to be able to generalize to
unobserved data points. Given some new point x ∈ X , we want to predict the cor-
responding y ∈ Y = {−1, 1}. By this we mean that we choose y such that

(
x, y

)
is in

some sense similar to the training examples. To this end, we need similarity measures
in X and in {−1, 1} (see Chen et al. (2005)).

In order to be able to use a dot product as a similarity measure, we need to transform
them into some dot product space, so-called feature space H ∈ H, which need not be
identical to Rn,

ψ : X →H. (11.30)

The nonlinear classifiers, as in Figure 11.4, maps the data with a nonlinear structure
via a function ψ : Rp /→ H into a high-dimensional space H where the classification
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Data Space Feature Space

figure 11.4 Mapping into a three-dimensional feature space from a two-dimensional data
space R2 /→ R3. The transformation ψ(x1,x2) = (x2

1 ,
√

2x1x2,x2
2 )" corresponds to the kernel

function K(xi ,xj) = (x"
i xj)2.

rule is (almost) linear. Note that all the training vectors xi appear in LD (eq. 11.28) only
as dot products of the form x"

i xj . In the nonlinear SVM, the dot product transforms
to ψ(xi)

"ψ
(
xj
)
.

The learning then takes place in the feature space, provided that the learning algo-
rithm can be expressed so that the data points only appear inside dot products with
other points. This is often referred to as the kernel trick (Schölkopf and Smola 2002).
The kernel trick is to compute this scalar product via a kernel function. More pre-
cisely, the projection ψ : Rp /→ H ensures that the inner product ψ(xi)

"ψ
(
xj
)

can be
represented by kernel function

k(xi , xj) =ψ(xi)
"ψ(xj). (11.31)

If a kernel function k exists such that (11.31) holds, then it can be used without
knowing the transformation ψ explicitly.

Given a kernel k and any data set x1, . . . , xn ∈X , the n × n matrix

K = (k(xi , xj))ij (11.32)

is called the kernel or Gram matrix of k with respect to x1, . . . , xn. A necessary and
sufficient condition for a symmetric matrix K , with Kij = K(xi, xj) = K(xj , xi) = Kji, to
be a kernel is, by Mercer’s theorem (Mercer 1909), that K is positive definite:

n∑
i=1

n∑
j=1

λiλjK(xi , xj) ≥ 0. (11.33)
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The following is a simple example of a kernel trick which shows that the kernel can
be computed without computing explicitly the mapping function ψ . To obtain the
classifier f (x) = w"ψ(x) + b, consider the case of a two-dimensional input space with
the following mapping function,

ψ(x1, x2) = (x2
1 ,

√
2x1x2, x2

2)",

such that

w"ψ(x) = w1x2
1 +

√
2w2x1x2 + w3x2

2 .

The dimensionality of the feature space F is of quadratic order of the dimensionality
of the original space. Kernel methods avoid the step of explicitly mapping the data into
a high-dimensional feature space by the following steps:

f (x) = w"x + b

=
n∑

i=1

αix
"
i x + b

=
n∑

i=1

αiψ(xi)
"ψ(x) + b in feature space F

=
n∑

i=1

αik(xi , x) + b,

where the kernel is associated with the following mapping:

ψ(xi)
"ψ(x) = (x2

i1,
√

2xi1xi2, x2
i2)(x2

1 ,
√

2x1x2, x2
2)"

= x2
i1x2

1 + 2xi1xi2x1x2 + x2
i2x2

2

= (x"
i x)2

= k(xi , x).

Furthermore, to obtain nonlinear classifying functions in the data space, a more
general form is obtained by applying the kernel trick to (11.28) as follows:

max
α

LD(α) =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi , xj), (11.34)

subject to

0 ≤ αi ≤ C, i = 1, . . . , n, (11.35a)

n∑
i=1

αiyi = 0. (11.35b)
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One of the most popular kernels used in SVM is the radial basis function (RBF) kernel
given by

K(xi , xj) = exp

(
−
∥∥xi − xj

∥∥2

2σ 2

)
. (11.36)

Furthermore, Chen et al. (2005) summarized the benefits of transforming the data into
the feature space H.

The resulting optimization problems (11.34), which is a typical quadratic problem
(QP), are dependent upon the number of training examples. The problem can easily
be solved in a standard QP solver, that is, package quadprog in R (quadprog 2004) or
an optimizer of the interior point family (Vanderbei 1999; Schölkopf and Smola 2002)
implemented to ipop in package kernlab in R (Karatzoglou et al., 2004).

Osuna et al., (1997b) proposed exact methods by presenting a decomposition algo-
rithm that is guaranteed to solve QP problem and that does not make assumptions on
the expected number of support vectors. Platt (1998) proposed a new algorithm called
Sequential Minimal Optimization (SMO), which decomposes the QP in SVM without
using any numerical QP optimization steps. Some work on decomposition methods
for QP in SVM was done by, for example, Joachims (1998), Keerthi et al., (2001), and
Hsu and Lin (2002). Subsequent developments were achieved by Fan et al., (2005) as
well as by Glasmachers and Igel (2006).

Due to the fast development and wide applicability, the existence of many SVM
software routines is not surprising. The SVM software, which is written in C or
C++, includes SVMTorch (Collobert et al., 2002), SVMlight (Joachims 1998),
Royal Holloway Support Vector Machines (Gammerman et al., 2001),
and libsvm (Chang and Lin 2001), which provides interfaces to MATLAB, mySVM
(Rüping 2004) and M-SVM (Guermeur 2004). The SVM is also available in MATLAB
(Gunn (1998) and Canu et al. (2005)). Several packages in R dealing with SVM are
e1071 (Dimitriadou et al., 1995), kernlab (Karatzoglou et al., 2004), svmpath
(Hastie et al., 2004) and klaR (Roever et al., 2005).

SVM has recently been developed by many researchers in various fields of appli-
cation, that is, Least Squares SVM (Suykens and Vandewalle 1999), Smooth SVM or
SSVM (Lee and Mangasarian 2001), 1-norm SVM (Zhu et al., 2004), Reduced SVM
(Lee and Huang 2007), ν-SVM (Schölkopf et al., 2000; and Chen et al., 2005). Hastie
et al., (2004) viewed SVM as a regularized optimisation problem.

11.4. Evolutionary Model Selection
.............................................................................................................................................................................

During the learning process (training), an SVM finds the large margin hyperplane by
estimating sets of parameters αi and b. The SVM performance is also determined by
another set of paramaters, the so-called hypermarameters. These are the soft margin
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constant C and the parameters of the kernel, σ , as in (11.36). The value of C determines
the size of the margin errors. The kernel parameters control the flexibility of the
classifier. If this parameter is too large, then overfitting will occur.

Hastie et al., (2004) argue that the choice of the cost parameter (C) can be critical.
They derive an algorithm, so-called SvmPath, that can fit the entire path of SVM
solutions for every value of the cost parameter, with essentially the same computa-
tional cost as fitting one SVM model. The SvmPath has been implemented in the R
computing environment via the library svmpath. Chen et al., (2011) use grid search
methods to optimize SVM hyperparamaters to obtain the optimal classifier for a credit
data set. This chapter employs a Genetic Algorithm (GA) as an evolutionary algorithm
to optimize the SVM parameters.

Lessmann et al., (2006) used GA for model selection applied on four well-known
benchmark data sets from Statlog project (Australian credit and German credit data
set) and UCI machine learning library (heart disease and Wisconsin breast cancer data
sets). The SVM model selection used grid search and GA methods that were applied to
two different fitness criteria: (i) cross-validation (CV) balanced classification accuracy
(BCA) and (ii) CV BCA with simple bound for leave-one-out error. In general, GA
gave better performance to guide the SVM model selection. Another paper discussing
SVM model selection based on GA is Zhou and Xu (2009).

The idea of GA is based on the principle of survival of the fittest, which follows the
evolution of a population of individuals through successive generations. Living beings
are constructed by cells that carry the genetic information. Each cell contains a fixed
number of chromosomes composed by several genes (information). A gene is con-
ceptualized as a binary code. All information carried by genes of all chromosomes
(so-called genotype) determines all characteristics of an individual (so-called pheno-
type). Each individual is evaluated to give measures of its fitness by means of genetic
operation to form a new individual. There are two types of genetic operation: muta-
tion and crossover (also known as recombination). Mutation creates a new individual by
making changes in a single chromosome. Crossover creates new individuals by com-
bining parts of chromosomes from two individuals. When sexual reproduction takes
place, children (new chromosome) or offspring receive, for each pair, one chromosome
from each of their parents (old chromosomes). The children are then evaluated. A new
population is formed by selecting fitter individuals from the parent population and the
children population. After several generations (iteration), the algorithm converges to
the best individual, which hopefully represents a (global) optimal solution (Baragona
et al., 2011; Gen and Cheng, 2000). See Figure 11.5 and 11.6 for illustration.

A binary string chromosome is composed of several genes. Each gene has a binary
value (allele) and its position (locus) in a chromosome as shown in Figure 11.7. The
binary string is decoded to the real number in a certain interval by the following
equation:

θ = θlower + (θupper − θlower)

∑l−1
i=0 ai2i

2l
, (11.37)
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figure 11.5 Generating binary encoding chromosomes to obtain the global optimum solution
through GA.
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figure 11.6 GA convergency: solutions at first generation (left) and g th generation (right).

locus gene
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11

1 0 1 0 0 1 1 0 1 0 1 1

10 9 8 7 6 5 4 3 2 1 0

figure 11.7 Chromosome.

where θ is the solution (i.e., parameter C or σ ), ai is binary value (allele), and l is
the chromosome length. In the encoding issue, according to what kind of symbol is
used as the alleles of a gene, the encoding methods can be classified as follows: binary
encoding, real-number encoding, integer or literal permutation encoding, and general
data structure encoding.
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(a)

(b)

1 2 l–1

1 2 j l–1 l

figure 11.8 One-point crossover (top) and bit-flip mutation (bottom).

The current solution is evaluated to measure the fitness performance based on
discriminatory power (AR or AUC), f ∗(C,σ ). The next generation results from the
reproduction process articulated in three stages: selection, crossover, and mutation
(Figure 11.8). The selection step is choosing which chromosomes of the current pop-
ulation are going to reproduce. The most fitted chromosome should reproduce more
frequently than the less fitted one.

If f ∗
i is the fitness of ith chromosome, then its probability of being selected (relative

fitness) is

pi = f ∗
i∑popsize

i=1 f ∗
i

, (11.38)

where popsize is the number of chromosomes in the population or population size.
The roulette wheel method selects a chromosome with probability proportional to its
fitness (see Figure 11.9). To select the new chromosome, generate a random num-
ber u ∼ U(0, 1), then select ith chromosome if

∑t
i=1 pi < u <

∑t+1
i=1 pi , where t =

1, . . . , (popsize − 1). Repeat popsize times to get new population. The other popular
selection operators are stochastic universal sampling, tournament selection, steady-state
reproduction, sharing, ranking, and scaling.

The selection stage produces candidates for reproduction (iteration). Ordered pairs
of chromosomes mate and produce a pair of offspring that may share genes of both
parents. This process is called crossover (with fixed probability). One-point crossover
can be extended to two-point or more crossover. Afterwards, the offspring is subject to
the mutation operator (with small probability). Mutation introduces innovations into
the population that cause the trapped local solutions to move out. The relationship of
GA with evolution in nature is given in Table 11.3. The application of GA in SVM for
model selection is represented by Figure 11.10.
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figure 11.9 Probability of ith chromosome to be selected in the next iteration (generation).

Table 11.3 Nature to GA-SVM Mapping

Nature GA-SVM

Population Set of parameters
Individual (phenotype) Parameters
Fitness Discriminatory power
Chromosome (genotype) Encoding of parameter
Gene Binary encoding
Reproduction Crossover
Generation Iteration

A too-high crossover rate may lead to premature convergence of the GA as well as
a too-high mutation rate may lead to the loss of good solutions unless there is eli-
tist selection. In elitism, the best solution in each iteration is maintained in another
memory. When the new population will replace the old one, check whether best
solution exists in the new population. If not, replace any chromosomes in the new
population with the best solution we saved in another memory.

It is natural to expect that the adaptation of GA is not only for finding solutions,
but also for tuning GA to the particular problem. The adaptation of GA is to obtain an
effective implemetation of GA to real-world problems. In general, there are two types
of adaptations: adaptation to problems and adaptation to evolutionary processes (see
Gen and Cheng (2000) for details).
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figure 11.10 Iteration (generation) procedure in GA-SVM.

Table 11.4 Credit Reform Data Based on Industry Sector

Type Solvent (%) Insolvent (%) Total (%)

Manufacturing 26.06 1.22 27.29
Construction 13.22 1.89 15.11
Wholesale and retail 23.60 0.96 24.56
Real estate 16.46 0.45 16.90

Total 79.34 4.52 83.86

Others 15.90 0.24 16.14

11.5. Application
.............................................................................................................................................................................

The SVM with evolutionary model selection is applied to the CreditReform database
consisting of 20,000 solvent and 1000 insolvent German companies in the period from
1996 to 2002. Approximately 50% of the data are from the years 2001 and 2002.
Table 11.4 describes the composition of the CreditReform database in terms of indus-
try sectors. In our study, we only used the observations from the following industry
sectors: manufacturing, wholesale and retail, construction, and real estate.
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Table 11.5 Filtered Credit Reform Data

Year Solvent (Number (%)) Insolvent (Number (%)) Total

1997 872 ( 9.08) 86 (0.90) 958 ( 9.98)
1998 928 ( 9.66) 92 (0.96) 1020 (10.62)
1999 1005 (10.47) 112 (1.17) 1117 (11.63)
2000 1379 (14.36) 102 (1.06) 1481 (15.42)
2001 1989 (20.71) 111 (1.16) 2100 (21.87)
2002 2791 (29.07) 135 (1.41) 2926 (30.47)

Total 8964 (93.36) 638 (6.64) 9602 (100)

We excluded the observations of solvent companies in 1996 because of missing insol-
vencies in this year. The observations with zero values in those variables that were used
as denominator to compute the financial ratios were also deleted. We also excluded
the companies whose total assets were not in the range EUR 105−107. We replace the
extreme financial ratio values by the following rule: If xij > q0.95(xj), then xij = q0.95(xj);
and if xij < q0.05(xj), then xij = q0.05(xj), where q is quantile. Table 11.5 describes the
filtered data used in this study.

Our data set is the same as used in Chen et al., (2011) and Härdle et al., (2009),
who used grid search in model selection. A little difference in our filtered data set
happened after the preprocessing step. We predict the default based on 28 financial
ratio variables as predictors used in Chen et al., (2011). Härdle et al., (2009) used only
25 financial ratio variables as predictors. Grid search needs a large memory, in case of
SVM model selection, to find the optimal solution in very large interval of parameters.
Moreover, if open source software such as R is used free, memory may be limited. In
order to overcome the problem, the grid search method can be applied in sequential
interval of parameters. In this way, GA is a good solution to decide the initial interval
of parameter.

In our work, the GA was employed as an evolutionary model selection of SVM. The
population size is 20 chromosomes. We used a fixed number of iterations (generations)
as a termination criterion. The number of generations is fixed at 100 with crossover rate
0.5, mutation rate 0.1, and elitism rate 0.2 of the population size. The obtained optimal
parameters of GA-SVM are given by σ = 1/178.75 and C = 63.44.

We use classical methods such as discriminant analysis (DA), logit and probit models
as benchmark (Table 11.6). Discriminant analysis shows a poor performance in both
training and testing data set. The financial ratios variables are collinear such that the
assumptions in DA are violated. Logit and probit models show that a perfect classifi-
cation in training data set with several variables are not significant. The best models
of logit and probit, by excluding the nonsignificant variables, still show not significant
different from what would occur if we use the whole variables.
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Table 11.6 Training Error and Testing Error (%) from Discriminant Analysis, Logit,
and Probit

Training Error (%) Testing Error (%)

Training DA Logit Probit Testing DA Logit Probit

1997 10.01 0 0 1998 9.13 9.00 8.88
1998 9.25 0 0 1999 11.08 10.82 10.82
1999 10.43 0 0 2000 9.20 9.31 9.31
2000 8.62 0 0 2001 6.86 7.78 7.78
2001 6.64 0 0 2002 7.95 7.16 7.16

Table 11.7 Training Error (%), Discriminatory Power, Cross Validation (Fivefold)
and Testing Error

Training Acc,Spec,Sens, Cross Testing
Training Error (%) Prec,AR,AUC Validation Testing Error (%)

1997 0 1 9.29 1998 9.02
1998 0 1 9.22 1999 10.38
1999 0 1 10.03 2000 6.89
2000 0 1 8.57 2001 5.29
2001 0 1 4.55 2002 4.75

The GA-SVM yields also a perfect classification in the training dataset as in
Table 11.7 which shows an overfitting. Overfitting means that the classification bound-
ary is too curved, therefore has less ability to classify the unobserved data (i.e. testing
data) correctly. The misclassification is zero for all training data such that the other dis-
criminatory power measures, Acc, Spec, Sens, Prec, AR and AUC, attain one. A fivefold
cross-validation was used to measure the performance of GA-SVM in default predic-
tion by omitting the overfitting effect. Overall, GA-SVM outperforms the benchmark
models in both training and testing data sets.

11.6. Acknowledgments
.............................................................................................................................................................................

This research is supported by the Deutsche Forschungsgemeinschaft through the SFB
649 “Economic Risk”, Humboldt-Universität zu Berlin. Dedy Dwi Prastyo is also sup-
ported by Directorate General for Higher Education, Indonesian Ministry of Education
and Culture through Department of Statistics, Institut Teknologi Sepuluh Nopember



support vector machines 369

(ITS), Indonesia. Christian Hafner acknowledges financial support of the Deutsche
Akademische Auslandsdienst.

References

Altman, E. 1968. “Financial Ratios, Discriminant Analysis and the Prediction of Corporate
Bankruptcy.” The Journal of Finance, 23(4), pp. 589–609.

Altman, E., G. Marco, and F. Varetto. 1994. “Corporate Distress Diagnosis: Comparison
Using Linear Discriminant Analysis and Neural Network (the Italian Experience).” Journal
of Banking and Finance, 18, pp. 505–529.

Baragona, R., F. Battaglia, and I. Poli. 2011. Evolutionary Statistical Procedures. Heidelberg:
Springer.

Beaver, W. 1966. “Financial Ratios as Predictors of Failures.” Journal of Accounting Research.
Empirical Research in Accounting: Selected Studies, Supplement to Vol. 4, pp. 71–111.

Black, F. and M. Scholes. 1973. “The Pricing of Option and Corporate Liabilities.” The Journal
of Political Economy 81(3), pp. 637–654.

Blanz, V., B. Schölkopf, H. Bülthoff, C. Burges, V. Vapnik, and T. Vetter. 1996. “Comparison
of View-Based Object Recognition Algorithms Using Realistic 3d Models.” Proceedings of
International Conference on Artificial Neural Networks—ICANN 96.

Boser, B. E., I. M. Guyon, and V. Vapnik. 1992. A Training Algorithm for Optimal Margin
Classifiers.” In Proceedings of the 5th Annual ACM Workshop on Computational Learning
Theory, COLT ’92, ed. D. Haussler. Pittsburgh: ACM Press, pp. 144–152.

Burges, C. J. C. 1998. “A Tutorial on Support Vector Machines for Pattern Recognition.” Data
Mining and Knowledge Discovery, 2, pp. 121–167.

Burges, C. and B. Schölkopf. 1996. “Improving the accuracy and speed of support vector
learning machines.” In Advances in Neural Information Processing System 9, eds. M. Mozer,
M. Jordan, and T. Petsche. Cambridge, MA: MIT Press, pp. 375–381.

Canu, S., Y. Grandvalet, and A. Rakotomamonjy. 2005. “SVM and Kernel Methods MAT-
LAB Toolbox.” Perception Systemes et Information. INSA de Rouen, Rouen, France. URL
http://asi.insa-rouen.fr/enseignants/ arakoto/toolbox/index.html.

Chang, C. C. and C. J. Lin. 2001. “LIBSVM—A Library for Support Vector Machines.” URL
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

Chen, P.-H., C.-J. Lin, and B. Schölkopf. 2005. “A Tutorial on ν-Support Vector Machines.”
Applied Stochastic Models in Business and Industry, 21, pp. 111–136.

Chen, S., W. Härdle, and R. Moro. 2011. “Modeling Default Risk with Support Vector
Machines.” Quantitative Finance, 11, pp. 135–154.

Collobert, R., S. Bengio, and J. Mariethoz. 2002. “TORCH: A Modular Machine Learning
Software Library.” URL http://www.torch.ch/ and http://publications.idiap.ch/downloads/
reports/2002/rr02-46.pdf

Cortes, C. and V. Vapnik. 1995. “Support Vector Networks.” Machine Learning, 20,
pp. 273–297.

Dimitriadou, E., K. Hornik, F. Leisch, D. Meyer, and A. Weingessel. 1995. “e1071: misc
Functions of the Department of Statistics (e1071), TU Wien.” Version 1.5-11., URL
http://CRAN.R-project.org/.

Engelmann, B., E. Hayden, and D. Tasche. 2003. “Measuring the Discriminative Power of
Rating System.” Banking and Financial Supervision. Discussion Paper, 2(1), pp. 1–23.

http://asi.insa-rouen.fr/enseignants/arakoto/toolbox/index.html
http://www.csie.ntu.edu.tw/%E2%88%BCcjlin/libsvm/
http://www.torch.ch/
http://publications.idiap.ch/downloads/reports/2002/rr02-46.pdf
http://CRAN.R-project.org/
http://publications.idiap.ch/downloads/reports/2002/rr02-46.pdf


370 model selection and averaging

Fan, D.R.E., P.-H. Chen, and C.-J. Lin. 2005. “Working Set Selection Using Sec-
ond Order Information for Training SVM.” Journal of Machine Learning Research, 6,
pp. 1889–1918.

Gale, D., H. W. Kuhn, and A. W. Tucker. 1951. “Linear Programming and the Theory of
Games.” Proceedings: Activity Analysis of Production and Allocation, ed. T. C. Koopmans.
New York: John Wiley & Sons, pp. 317–329.

Gammerman, A., N. Bozanic, B. Schölkopf, V. Vovk, V. Vapnik, L. Bottou, A. Smola, C.
Watkins, Y. LeCun, C. Saunders, M. Stitson, and J. Weston. 2001. “Royal Holloway Support
Vector Machines.” URL http://svm.dcs.rhbnc.ac.uk/dist/index.shtml.

Gen, M. and R. Cheng. 2000. Genetic Algorithms and Engineering Design. New York: John
Willey & Sons.

Glasmachers, T., and C. Igel. 2006. “Maximum-Gain Working Set Selection for Support
Vector Machines.” Journal of Machine Learning Research, 7, pp. 1437–1466.

Guermeur, Y. 2004. “M-SVM.” Lorraine Laboratory of IT Research and Its Applications. URL
http://www.loria.fr/la-recherche-en/equipes/abc-en.

Gunn, S. R., 1998. “Support Vector Machines for Classification and Regression.” Technical
Report. Department of Electronics and Computer Science, University of Southampton.

Härdle, W., L. Hoffmann, and R. Moro. 2011. “Learning Machines Supporting Bankruptcy
Prediction.” In eds. P. Cizek, W. Härdle, R. Weron. Statistical Tools for Finance and Insurance,
second edition, Heidelberg: Springer Verlag, pp. 225–250.

Härdle, W., Y.-J. Lee, D. Schäfer, and Y.-R. Yeh. 2009. “Variable Selection and Oversampling in
the Use of Smooth Support Vector Machine for Predicting the Default Risk of Companies.”
Journal of Forecasting, 28, pp. 512–534.

Härdle, W. and L. Simar. 2012. Applied Multivariate Statistical Analysis, third edition.
Heidelberg: Springer Verlag.

Haupt, R. L. and S. E. Haupt. 2004. Practical Genetic Algorithms, second edition. Hoboken, NJ:
John Wiley & Sons.

Haykin, S. 1999. Neural Network: A Comprehensive Foundation. Engelwood Cliffs, NJ:
Prentice-Hall.

Hastie, T., S. Rosset, R. Tibshirani, and J. Zhu. 2004. “The Entire Regularization
Path for the Support Vector Machine.” Journal of Machine Learning Research, 5,
pp. 1391–1415.

He, H. and E. A. Garcia. 2009. “Learning from Imbalanced Data.” IEEE Transactions on
Knowledge and Data Engineering, 21(9), pp. 1263–1284.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Hsu, C.-W. and C.-J. Lin. 2002. “A Simple Decomposition Method for Support Vector
Machines.” Machine Learning, 46, pp. 291–314.

Hwang, R. C., K. F. Cheng, and J. C. Jee. 2007. “A Semiparametric Method for Predicting
Bankruptcy.” Journal of Forecasting, 26, pp. 317–342.

Japkowicz, N., and S. Stephen. 2002. “The Class Imbalanced Problem: A systematic Study.”
Intelligent Data Analysis, 6(5), pp. 429–449.

Joachims, T. 1998. “Making Large-Scale SVM Learning Practical.” In Advances in Ker-
nel Methods—Support Vector Learning, eds. B. Schölkopf, J.C. Burges, and A.J. Smola.
Cambridge: MIT Press, pp. 169–184.

Karatzoglou, A., A. Smola, K. Hornik, and A. Zeileis. 2004. “Kernlab—an S4 Package for
Kernel Methods in R.” Journal of Statistical Software, 11(9), pp. 1–20.

http://svm.dcs.rhbnc.ac.uk/dist/index.shtml
http://www.loria.fr/la-recherche-en/equipes/abc-en


support vector machines 371

Keerthi, S. S., S. K. Shevade, C. Bhattacharya, and K. R. K. Murthy. 2000. “Improve-
ments to Platt’s SMO Algorithm for SVM Classifier Design.” Neural Computation, 13,
pp. 637–649.

Krahnen, J. P. and M. Weber. 2001. “Generally Accepted Rating Principles: A Primer.” Journal
of Banking and Finance, 25, pp. 3–23.

Lee, Y.-J. and S.-Y. Huang. 2007. “Reduced Support Vector Machines: A Statistical Theory.”
IEEE Transactions on Neural Networks, 18(1), pp. 1–13.

Lee, Y.-J. and O. L. Mangasarian. 2001. “SSVM: A Smooth Support Vector Machine for
Classification.” Computational Optimization and Application, 20(1), pp. 5–22.

Lessmann, S., R. Stahlbock, and S. F. Crone. 2006. “Genetic Algorithms for Support Vector
Machine Model Selection.” In Proceedings of International Conference on Neural Networks.
Canada, Vancouver: IEEE, pp. 3063–3069.

Lo, A. W. 1986. “Logit Versus Discriminant Analysis: A Specification Test and Application to
Corporate Bankruptcies.” Journal Econometrics, 31(2), pp. 151–178.

Maalouf, M., and T. B. Trafalis. 2011. “Robust Weighted Kernel Logistic Regression in
Imbalanced and Rare Events Data.” Computational Statistics and Data Analysis, 55, pp.
168–183.

Martin, D. 1977. “Early Warning of Bank Failure: A Logit Regression Approach.” Journal of
Banking and Finance, 1, pp. 249–276.

Mercer, J. 1909. Functions of Positive and Negative Type, and Their Connection with the
Theory of Integral Equations.” Philosophical Transactions of the Royal Society of London, 25,
pp. 3–23.

Merton, R. 1974. “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.”
The Journal of Finance, 29, pp. 449–470.

Merwin, C. 1942. “Financing Small Corporations in Five Manufacturing Industries.” Cam-
bridge, MA: National Bureau of Economic Research, pp. 1926–36.

Michalewicz, Z. 1996. Genetics Algorithm + Data Structures = Evolution Programs, third
edition. New York: Springer.

Mitchell, M. 1999. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.
Müller, K.-R., A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik. 1997. “Pre-

dicting Time Series with Support Vector Machines.” Proceedings International Conference
on Artificial Neural Networks ICANN’97. Springer Lecture Notes in Computer Science,
Berlin: Springer, pp. 999–1004.

Ohlson, J. 1980. “Financial Ratios and the Probabilistic Prediction of Bankruptcy.” Journal of
Accounting Research, 18(1), pp. 109–131.

Osuna, E., R. Freund, and F. Girosi. 1997a. “Training Support Vector Machines: An Appli-
cation to Face Detection.” Proceedings IEEE Conference on Computer Vision and Pattern
Recognition, pp. 130–136.

Osuna, E., R. Freund, and F. Girosi. 1997b. “An Improved Training Algorithm for Sup-
port Vector Machines.” In Proceedings of the 1997 IEEE Workshop, eds. J. Principe,
L. Gile, N. Morgan, and E. Wilson, Neural Networks for Signal Processing VII, New York,
pp. 276–285.

Platt, H., M. Platt, and J. Pedersen. 1994. “Bankruptcy Discrimination with Real Variables.”
Journal of Business Finance and Accounting, 21(4), pp. 491–510.

Platt, J. C. 1998. “Fast Training of Support Vector Machines Using Sequential Minimal
Optimization.” In eds. B. Schölkopf, J. C. Burges, and A. J. Smola. Advances in Kernel
Methods—Support Vector Learning, Cambridge, Ma: MIT Press.



372 model selection and averaging

Roever, C., N. Raabe, K. Luebke, U. Ligges, G. Szepannek, and M. Zentgraf. 2005.
“klaR—Classification and Visualization.” R package, Version 0.4-1. URL http://CRAN.R-
project.org/.

Rüping, S. 2004. “mySVM—A Support Vector Machine.” University of Dortmund, Computer
Science. URL http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html.

Schölkopf, B., C. Burges, and V. Vapnik. 1995. “Extracting Support Data for a Given Task.” In
Proceedings, First International Conference on Konwledge Discovery and Data Mining, eds.
U. M. Fayyad and R. Uthurusamy, Menlo Park, CA: AAAI Press.

Schölkopf, B., C. Burges, and V. Vapnik. 1996. “Incorporating Invariances in Support Vector
Learning Machines.” In Proceedings International Conference on Artificial Neural Net-
works, ICANN’96. Springer Lecture Note in Computer Science, Vol. 1112, Berlin: Springer,
pp. 47–52.

Schölkopf, B., A. J. Smola, R. C. Williamson, and P. L. Bartlett. 2000. “New Support Vector
Algorithm.” Neural Computation, 12, pp. 1207–1245.

Schölkopf, B. and A. Smola. 2002. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. Cambridge, MA: MIT Press.

Shawe-Taylor, J., P. L. Bartlett, R. C. Williamson, and M. Anthony. 1996. “A Framework for
Structural Risk Minimization.” In Proceedings 9th Annual Conference on Computational
Learning Theory pp. 68–76.

Sing, T., O. Sander, N. Beerenwinkel, and T. Lengauer. 2005. “ROCR: Visualizing Classifier
Performance in R. Bioinformatics, 21(20), pp. 3940–3941.

Sivanandam, S. N. and S. N. Deepa. 2008. Introduction to Genetic Algorithms. Heidelberg:
Springer-Verlag.

Sobehart, J., S. Keenan, and R. Stein. 2001. Benchmarking Quantitative Default Risk Models:
A Validation Methodology. Moody Investors Service.

Sobehart, J., and S. Keenan. 2001. “Measuring Default Accurately.” Risk, 14, pp. 31–33.
Sobehart, J., and R. Stein. 2000. Moody’s Public Firm Risk Model: A Hybrid Approach to

Modeling Short Term Default Risk. Moody Investors Service, Rating Methodology.
Suykens, J. A. K. and J. Vandewalle. 1999. “Least Squares Support Vector Machine Classifiers.”

Neural Processing Letters, 9, pp. 293–300.
Tam, K., and M. Kiang. 1992. “Managerial Applications of Neural Networks: The Case of

Bank Failure Predictions.” Management Science, 38, pp. 926–947.
Turlach, B. A., and A. Weingessel. 2004. “quadprog: Functions to Solve Quadratic Program-

ming Problems.” http://CRAN.R-project.org/package=quadprog
Vanderbei, R. 1999. “LOQO: An Interior Point Code for Quadratic Programming.” Optimiza-

tion Methods and Software, 11(1–4), pp. 451–484.
Vapnik, V. 1979. Estimation of Dependencies Based on Empirical Data. Russian Version.

Moscow: Nauka.
Vapnik, V. 1995. The Nature of Statistical Learning Theory. New York: Springer Verlag.
Vapnik, V. 1998. Statistical Learning Theory. New York: John Wiley & Sons.
Vassalou, M. and Y. Xing. 2004. “Default Risk in Equity Returns.” The Journal of Finance

19(2), pp. 831–868.
Wilson, R. L. and R. Sharda. 1994. “Bankruptcy Prediction Using Neural Network.” Decision

Support System, 11, pp. 545–557.
Zhang, J. L. and W. Härdle. 2010. “The Bayesian Additive Classification Tree

Applied to Credit Risk Modelling.” Computational Statistics and Data Analysis, 54,
pp. 1197–1205.

http://CRAN.R-project.org/
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
http://CRAN.R-project.org/package=quadprog
http://CRAN.R-project.org/


support vector machines 373

Zhou, X., and J. Xu. 2009 . “A SVM Model Selection Method Based on Hybrid Genetic
Algorithm and Emprirical Error Minimization Criterion.” In Advances in Intelligent and
Soft Computing. The Sixth International Symposium on Neural Networks. Berlin: Springer,
pp. 245–253.

Zhu, J., S. Rosset, T. Hastie, and R. Tibshirani. 2004. “1-Norm Support Vector Machines.
In eds. S. Thrun, L. K. Saul, and B. Schölkopf. Advances in Neural Information Processing
System 16. Cambridge, MA: MIT Press, pp. 49–56.





p a r t v

........................................................................................................

TIME SERIES
........................................................................................................





chapter 12

........................................................................................................

SERIES ESTIMATION OF
STOCHASTIC PROCESSES: RECENT

DEVELOPMENTS AND
ECONOMETRIC APPLICATIONS†

........................................................................................................

peter c. b. phillips and zhipeng liao

12.1. Introduction
.............................................................................................................................................................................

The explicit representation of stochastic processes has a long history in the proba-
bility literature with many applications in asymptotic statistics. For example, in early
work Kac and Siegert (1947) showed that a Gaussian process can be decomposed as an
infinite linear combination of deterministic functions. In fact, a much more powerful
representation theory holds for any stochastic process that is continuous in quadratic
mean, a result that was separately established in Karhunen (1946) and Loève (1955).
In the modern literature, the explicit decomposition of a stochastic process in this way
is known as the Karhunen–Loève (KL) representation or transformation. The deter-
ministic functions used in this KL representation are orthonormal basis functions in
a Hilbert space constructed on the same interval for which the stochastic process is
defined.

The KL transformation was originally proposed to assist in determining the exact
forms of certain asymptotic distributions associated with Cramér–von Mises-type
statistics. These asymptotic distributions typically take the form of a quadratic func-
tional of a Brownian motion (BM) or Brownian Bridge process, such as the integral
over some interval of the square of the process. For example, the KL transformation
reveals that the integral of the square of a Gaussian process is distributed as a weighted
infinite sum of independent chi-square variates with one degree of freedom. Other
examples are given in the work of Anderson and Darling (1952), Watson (1962), and



378 time series

Stephens (1976); and Shorack and Wellner (1988) provide an overview of results of
this kind.

The theory underlying the KL representation relies on Mercer’s theorem, which rep-
resents the covariance function of any quadratic mean continuous stochastic process
{Xt}t∈T in terms of basis functions in a Hilbert space L2(T ) defined under some mea-
sure on T . The covariance function can be viewed as an inner product of the Hilbert
space L2(X) generated by the stochastic process.1 On the other hand, by Mercer’s the-
orem, the covariance function has a representation that defines an inner product with
respect to another Hilbert space L2

R(T ). This new Hilbert space L2
R(T ) has the attrac-

tive feature that any function in the space can be reproduced by its inner product with
the covariance function. As a result, L2

R(T ) is often called a reproducing kernel Hilbert
space (RKHS) with the covariance function being the reproducing kernel. It was noted
in Parzen (1959) that the two Hilbert spaces L2(X) and L2

R(T ) are isometrically iso-
morphic, which implies that analysis of the stochastic process {Xt }t∈T in L2(X) can be
equivalently executed in L2

R(T ). Sometimes a complicated problem in L2(X) space can
be treated more easily in the RKHS space L2

R(T ). More details about the analysis of
time series in RKHS space can be found in Parzen (1959, 1961a, 1961b, 1963). Berlinet
and Thomas-Agnan (2003) provide a modern introduction to RKHS techniques and
their applications in statistics and probability.

While statisticians and probabilists have focused on the roles of the KL represen-
tation in determining asymptotic distributions of functionals of stochastic processes
or rephrasing time series analysis issues equivalently in different spaces, econometric
research has taken these representations in a new direction. In particular, econometri-
cians have discovered that empirical versions of the KL representation are a powerful
tool for estimation and inference in many econometric models. This chapter reviews
some of these recent developments of the KL representation theory and its empirical
application in econometrics.

First, the KL representation provides a bridging mechanism that links underlying
stochastic trends with various empirical representations in terms of deterministic trend
functions. This mechanism reveals the channel by which the presence of determin-
istic trends in a regression can affect tests involving stochastic trends, such as unit
root and cointegration tests. For example, Phillips (2001) showed how the asymp-
totic distributions of coefficient-based unit root test statistics are changed in a material
way as deterministic function regressors continue to be added to the empirical regres-
sion model. This work used KL theory to show that as the number of deterministic
functions tends to infinity, the coefficient-based unit root tests have asymptotic nor-
mal distributions after appropriate centering and scaling rather than conventional unit
root distributions. These new asymptotics are useful in revising traditional unit root
limit theory and ensuring that tests have size that is robust to the inclusion of many
deterministic trend functions or trajectory fitting by deterministic trends or trend
breaks.

Secondly, the KL theory not only directly represents stochastic trends in terms of
deterministic trends, it also provides a basis for linking independent stochastic trends.
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This extension of the theory was studied in Phillips (1998), where it was established
that a continuous deterministic function can be approximated using linear combi-
nations of independent BMs with a corresponding result for the approximation of a
continuous stochastic process. This latter result is particularly useful in analyzing and
interpreting so-called spurious regressions involving the regression of an integrated
process on other (possibly independent) integrated processes.

The KL theory and its empirical extensions in Phillips (1998) explain how regression
of an integrated process on a set of basis functions can successfully reproduce the whole
process when the number of basis functions expands to infinity with the sample size.
An empirically important implication of this result that is explored in Phillips (2013) is
that trend basis functions can themselves serve as instrumental variables because they
satisfy both orthogonality and relevance conditions in nonstationary regression. For
instance, in a cointegrated system, this type of trend IV estimator of the cointegrating
matrix does not suffer from high-order bias problems because the basis functions are
independent of the errors in the cointegrated system by virtue of their construction,
thereby delivering natural orthogonality. Moreover, the IV estimator is asymptotically
efficient because when the number of basis functions diverges to infinity, the integrated
regressors in the cointegrating system are reproduced by the basis functions, thereby
assuring complete relevance in the limit. In short, the long-run behavior of the endoge-
nous variables in a cointegrated system is fully captured through a linear projection on
basis functions in the limit while maintaining orthogonality of the instruments.

As the above discussion outlines, KL theory helps to answer questions about the
asymptotic behavior of linear projections of integrated processes on deterministic
bases. A related question relates to the properties of similar projections of the trajec-
tory of a stationary process on deterministic bases. In exploring this question, Phillips
(2005b) proposed a new estimator of the long-run variance (LRV) of a stationary time
series. This type of estimator is by nature a series estimate of the LRV and has since
been extensively studied in Chen, Liao, and Sun (2012), Chen, Hahn, and Liao (2012),
Sun (2011, 2013), and Sun and Kim (2012, 2013).

The remainder of this chapter is organized as follows. Section 12.2 presents the KL
representation theory for continuous stochastic processes together with some recent
developments of this theory. Section 12.3 explores the implications of the KL theory for
empirical practice, focusing on understanding and interpreting spurious regressions in
econometrics. Section 12.4 investigates the implication of these representations for unit
root tests when there are deterministic trends in the model. Section 12.5 considers the
optimal estimation of cointegrated systems using basis functions as instruments. The
optimal estimation method discussed in Section 12.5 assumes that the cointegration
space of the cointegration system is known from the beginning. In Section 12.6, we
present a new method that optimally estimates the cointegration system without even
knowing the cointegration rank. Series estimation of LRVs and some of the recent
applications of this theory are discussed in Section 12.7. Section 12.8 concludes and
briefly describes some ongoing and future research in the field. Technical derivations
are included in the Appendix.
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12.2. Orthogonal Representation of

Stochastic Processes
.............................................................................................................................................................................

We start with a motivating discussion in Euclidean space concerned with the orthonor-
mal representation of finite-dimensional random vectors. Such representations pro-
vide useful intuition concerning the infinite-dimensional case and are indicative of the
construction of orthonormal representations of stochastic processes in Hilbert space.

Suppose X is a T-dimensional random vector with mean zero and positive definite
covariance matrix�. Let {(λk ,ϕk)}T

k=1 be the pairs of eigenvalues and orthonormalized
right eigenvectors of �. Define

Z ′
T = X ′�T = [z1, . . . , zT ],

where �T = [ϕ1, . . . ,ϕT ], then ZT is a T-dimensional random vector with mean zero
and covariance matrix �T = diag(λ1, . . . ,λT ). We have the representation

X =�T ZT =
T∑

k=1

zkϕk =
T∑

k=1

λ
1
2
k ξkϕk , (12.1)

where the ξk = λ
− 1

2
k zk have zero mean and covariances E[ξkξk′] = δkk′ where δkk′ is

the Kronecker delta. When X is a zero mean Gaussian random vector, [ξ1, . . . ,ξT ]′
is simply a T-dimensional standard Gaussian random vector. Expression (12.1) indi-
cates that any T-dimensional (T ∈Z+ ≡ {1, 2, . . . , }) random vector can be represented
by a weighted linear combination of T orthonormal real vectors, where the weights
are random and uncorrelated across different vectors. Moreover, (12.1) shows that
the spectrum of the covariance matrix of the random vector X plays a key role in the
decomposition of X into a linear combination of deterministic functions with random
coefficients.

The orthonormal representation of a random vector given in (12.1) can be general-
ized to a stochastic process X(t) with t ∈ [a, b] for ∞< a< b <∞, and in this form it is
known as the Kac–Siegert decomposition or KL representation. We can use heuristics
based on those used to derive (12.1) to develop the corresponding KL representation
of a general stochastic process. Without loss of generality, we assume that the random
variables {X(t) : t ∈ [a, b]} live on the same probability space (�,G, P). The first and
second moments of X(t) for any t ∈ [a, b] are given by

E[X(t)] =
∫
�

X(t)dP and E
[
X2(t)

]=
∫
�

X2(t)dP.

The following assumption is used to derive the KL representation of X(t).

Assumption 12.1. The stochastic process X(t) satisfies E[X(t)] = 0 and E
[
X2(t)

]
< ∞

for all t ∈ [a, b].

The zero mean assumption is innocuous because the process X(t) can always be
recentered about its mean. The second moment assumption is important because it
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allows us to embed X(t) in a Hilbert space and use the Hilbert space setting to establish
the representation. Accordingly, let L2(X) denote the Hilbert space naturally generated
by X(t) so that it is equipped with the following inner product and semi-norm:

〈X1, X2〉 ≡
∫
�

X1X2 dP and ‖X1‖2 =
∫
�

X2
1 dP,

for any X1, X2 ∈ L2(X). Let L2[a, b] be the Hilbert space of square integrable functions
on [a, b] with the following inner product and semi-norm

〈g1, g2〉e ≡
∫ b

a
g1(s)g2(s)ds and

∥∥g1
∥∥2

e =
∫ b

a
g2

1 (s)ds, (12.2)

for any g1, g2 ∈ L2[a, b].
Under Assumption 12.1, the covariance/kernel function γ (·, ·) of the stochastic

process X(t) can be defined as

γ (s, t) ≡ E[X(s)X(t)] (12.3)

for any s, t ∈ [a, b]. Let {(λk ,ϕk)}k∈K be the collection of all different pairs (λ,ϕ) which
satisfy the following integral equation:

λϕ(t) =
∫ b

a
γ (s, t)ϕ(s)ds with ‖ϕ‖e = 1, (12.4)

where λ and ϕ are called the eigenvalue and normalized eigenfunction of the kernel
γ (·, ·), respectively.

Using heuristics based on the procedure involved in deriving (12.1), one might
expect to use the eigenvalues and eigenfunctions of the kernel function γ (·, ·) to
represent the stochastic process X(t) as a sum of the form

X(t)
?=

K̄∑
k=1

[∫ b

a
X(t)ϕk(t)dt

]
ϕk(t) =

K̄∑
k=1

zkϕk(t) =
K̄∑

k=1

λ
1
2
k ξkϕk(t), (12.5)

where zk ≡ ∫ b
a X(t)ϕk(t)dt and ξk ≡λ

− 1
2

k zk for k = 1, . . . , K̄ and some (possibly infinite)
K̄ . To ensure that the expression in (12.5) is indeed an orthonormal representation of
X(t), we first confirm that the components ξk satisfy

E[ξk] = 0 and E[ξkξk′] = δkk′ for any k, k′ = 1, . . . , K̄ , (12.6)

where δkk′ is Kronecker’s delta, and that the process X(t) can be written as

X(t) =
K̄∑

k=1

λ
1
2
k ξkϕk(t) a.s. t ∈ [a, b] in quadratic mean. (12.7)

The following condition is sufficient to show (12.6) and (12.7).
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Assumption 12.2. The stochastic process X(t) is continuous in quadratic mean (q.m.) on
[a, b]; that is, for any to ∈ [a, b] we have

‖X(t) − X(to)‖2 = E
{

[X(t) − X(to)]2}→ 0 (12.8)

as |t − to| → 0, where we require t ∈ [a, b] such that X(t) is well defined in (12.8).

In this assumption, continuity in q.m. is well-defined at the boundary points a and
b because we only need to consider the limits from the right to a and limits from the
left to b. The following lemma is useful in deriving the KL representation of X(t).

Lemma 12.1. Suppose that Assumptions 12.1 and 12.2 are satisfied. Then the kernel func-
tion γ (·, ·) of the stochastic process X(t) is symmetric, continuous, and bounded and it
satisfies ∫ b

a

∫ b

a
g(t)γ (t , s)g(s) dsdt ≥ 0

for any g ∈ L2[a, b].

Under Assumptions 12.1 and 12.2, Lemma 12.1 implies that sufficient conditions
for Mercer’s theorem hold (see, e.g., Shorack and Wellner (1986, p. 208)). Thus, we
can invoke Mercer’s theorem to deduce that the normalized eigenfunctions of the ker-
nel function γ (·, ·) are continuous on [a, b] and form an orthonormal basis for the
Hilbert space L2[a, b]. Mercer’s theorem ensures that the kernel function γ (·, ·) has the
following series representation in terms of this orthonormal basis

γ (s, t) =
∞∑

k=1

λkϕk(s)ϕk(t) (12.9)

uniformly in s and t . The following theorem justifies the orthonormal representation
of X(t) in (12.5) with K̄ = ∞ and (12.6) and (12.7) both holding.

Theorem 12.1. Suppose the stochastic process X(t) satisfies Assumptions 12.1 and 12.2.
Then X(t) has the following orthogonal expansion

X(t) =
∞∑

k=1

λ
1
2
k ξkϕk(t) with ξk = λ

− 1
2

k

∫ b

a
X(t)ϕk(t)dt, (12.10)

where E[ξkξk′] = ∫ b
a ϕk(t)ϕk′(t)dt = δkk′ and δkk′ denotes the Kronecker delta, if and only

if λk and ϕk (k ∈ Z+) are the eigenvalues and normalized eigenfunctions of γ (·, ·). The
series in (12.10) converges in q.m. uniformly on [a, b].

Just as a continuous function in L2[a, b] can be represented by series involving
Fourier basis functions, Theorem 12.1 indicates that a continuous (in q.m.) stochas-
tic process can also be represented by orthonormal basis functions that lie in L2[a, b].
However, unlike the series representation of a continuous function, the coefficients of
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the basis functions in the KL representation are random variables and uncorrelated
with each other. The representation of X(t) in (12.10) converges in q.m. but may not
necessarily converge pointwise.2 For this reason, the equivalence in (12.10) is some-

times represented by the symbol “∼” or “
d=”, signifying that the series is convergent in

the L2 sense and that distributional equivalence applies. Importantly, the series (12.10)
involves two sets of orthonormal components: the orthogonal random sequence {ξk}
and the orthogonal basis functions {ϕk}.

When the continuous time stochastic process X(t) is covariance stationary, it is well
known that X(t) has the following spectral (SP) representation:

X(t) =
∫ +∞

−∞
exp(iλt) dZ(λ), (12.11)

where i is the imaginary unit and Z(λ) denotes the related complex spectral process
that has orthogonal increments whose variances involve the corresponding increments
in the spectral distribution function. In expression (12.11), X(t) is represented as an
uncountably infinite sum of the products of deterministic functions exp(iλt) and ran-
dom coefficients dZ(λ) at different frequencies, which differs from the KL expression
(12.10) in several ways. Most importantly, (12.10) represents in quadratic mean the
trajectory of the process over a fixed interval [a, b], whereas (12.11) is a representation
of the entire stochastic process X(t) in terms of the mean square limit of approximating
Riemann Stieltjes sums (e.g., Hannan (1970, p. 41)).

When the stochastic process X(t) is a BM, its KL representation has more struc-
ture. For example, the representation in (12.10) holds almost surely and uniformly in
[0, 1] and the random coefficients {ξk} are i.i.d. normal. These special structures are
summarized in the following corollary.

Corollary 12.1. Let Bσ (t) be a BM with variance σ 2, then (i) Bσ (t) has the following
orthogonal expansion

Bσ (t) =
∞∑

k=1

λ
1
2
k ξkϕk(t), (12.12)

where

ξk = λ
− 1

2
k

∫ b

a
Bσ (t)ϕk(t)dt (12.13)

and the above representation converges almost surely uniformly on [a, b]; (ii) the random
sequence {ξk}k is i.i.d. N(0,σ 2); (iii) the random sequence {ηk}k defined by

ηk =
∫ b

a
ϕk(t) dBσ (t) (12.14)

is also i.i.d. N(0,σ 2).

It is easy to verify that Bσ (t) satisfies Assumptions 12.1 and 12.2. Thus by Theorem
12.1, Bσ (t) has a KL representation which converges in q.m. uniformly on [a, b]. The
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q.m. convergence of the series in (12.9) is strengthened to almost sure convergence in
(12.12) by applying the martingale convergence theorem to the martingale formed by
finite sums of (12.12). The normality of ξk or ηk (k ∈ Z+) holds directly in view of the
representations (12.13) and (12.14) (the normal stability theorem, Loève, 1977) and
the independence of the sequence {ξk} or {ηk} follows by their orthogonality. It is clear
that the expression in (12.10) links the stochastic trend X(t) with a set of determin-
istic functions {ϕk(·)}∞k=1 which might be regarded as trend functions on the interval
[a, b]. Since the random wandering behavior of the stochastic trend X(t) over [a, b] is
fully captured by the deterministic functions in its KL representation, throughout this
chapter we shall call {ϕk(·) : k ∈Z+} the trend basis functions.

Example 12.1. Let B(·) be a standard BM on [0, 1]. Then Corollary 12.1 ensures that B(·)
has a KL representation. By definition, the kernel function of B(·) is γ (s, t) = min (s, t)
and its eigenvalues and normalized eigenfunctions are characterized by the following
integral equation

λϕ(t) =
∫ t

0
sϕ(s)ds + t

∫ 1

t
ϕ(s)ds with

∫ 1

0
ϕ2(s)ds = 1.

Direct calculation reveals that the eigenvalues and normalized eigenfunctions of γ (·, ·) are

λk = 1

(k − 1/2)2π2
and ϕk(t) =

√
2 sin[(k − 1/2)π t] (12.15)

respectively for k ∈ Z+. Applying Corollary 12.1, we have the following explicit orthonor-
mal representation:

B(t) =
√

2
∞∑

k=1

sin[(k − 1/2)π t]

(k − 1/2)π
ξk, (12.16)

which holds almost surely and uniformly in t ∈ [0, 1], where

ξk =
√

2(k − 1/2)π

∫ 1

0
B(t) sin[(k − 1/2)π t]dt for k ∈ Z+. (12.17)

Invoking Corollary 12.1, we know that {ξk}∞k=1 are i.i.d. standard normal random
variables.

Example 12.2. Let W (·) be a Brownian bridge process corresponding to the standard
BM B(·) on [0, 1], that is, W (t) = B(t) − tB(1) for any t ∈ [0, 1]. It is easy to
show that W (·) is continuous in q.m. on [0, 1]. Moreover, W (·) has kernel function
γ (s, t) = min(s, t) − st , which is continuous on [0, 1]. The eigenvalues and normalized
eigenfunctions are characterized by the following integral equation

λϕ(t) =
∫ t

0
sϕ(s)ds + t

∫ 1

t
ϕ(s)ds − t

2
with

∫ 1

0
ϕ2(s)ds = 1.
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Direct calculation shows that the eigenvalues and normalized eigenfunctions of γ (·, ·) are

λk = 1

k2π2
and ϕk(t) =

√
2sin (kπ t),

respectively, for k ∈ Z+. Applying Theorem 12.1, we have the following orthonormal
representation

W (t) =
√

2
∞∑

k=1

sin(kπ t)

kπ
ξk (12.18)

where

ξk =
√

2kπ

∫ 1

0
B(t) sin (kπ t) dt for k ∈ Z+. (12.19)

Using similar arguments as those in Corollary 12.1, the representation in (12.18) is con-
vergent almost surely and uniformly in t ∈ [0, 1]. Moreover, {ξk}∞k=1 are i.i.d. standard
normal random variables.

The KL representation of a BM can be used to decompose other stochastic pro-
cesses that are functionals of BMs. The simplest example is the Brownian bridge process
studied in the above example. From the representation in (12.16),

W (t) = B(t) − tB(1) =
√

2
∞∑

k=1

sin[(k − 1/2)π t] + ( − 1)kt

(k − 1/2)π
ξ1,k

where ξ1,k (k ∈ Z+) is defined in (12.17). Of course, one can also use the KL repre-
sentation of the Brownian bridge process to decompose the process B(t) into a series
form, namely,

B(t) = tB(1) + W (t) = tξ2,0 +
√

2
∞∑

k=1

sin (kπ t)

kπ
ξ2,k (12.20)

where ξ2,0 = B(1) and the ξ2,k (k ∈ Z+) are defined in (12.19).
The second example is the quadratic functional of a BM given by the integral [B]1 =∫ 1

0 B2(t)dt . Using the KL representation (12.16), the following series expression for the
functional is readily obtained:

[B]1 =
∫ 1

0
B2(t)dt =

∞∑
k=1

1

(k − 1/2)2π2
ξ 2

k ,

which implies that the random variable [B]1 has a distribution equivalent to the
weighted sum of independent chi-square random variables, each with unit degree of
freedom.
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The third example is the series representation of an Ornstein-Uhlenbeck (O-U)
process. We provide two illustrations of how to construct such as series.

Example 12.3. Let Jc(t) be a stochastic process on t ∈ [0, 1] satisfying the following
stochastic differential equation

dJc(t) = cJc(t)dt + σdB(t) (12.21)

where c and σ > 0 are constants and B(·) denotes a standard BM. Set σ = 1 for conve-
nience in what follows. It is clear that when c = 0, the process Jc(t) reduces to standard
BM B(t). Under the initial condition Jc(0) = B(0) = 0, the above differential equation
has the following solution

Jc(t) = B(t) + c

∫ t

0
exp[(t − s)c]B(s)ds. (12.22)

Using the series representation (12.20) and the solution (12.22), one obtains for t ∈ [0, 1]

Jc(t) = ect − 1

c
ξ2,0 +

∞∑
k=1

[√
2ect

∫ t

0
e−cs cos (kπ s)ds

]
ξk

= ect − 1

c
ξ2,0 +

√
2

∞∑
k=1

cect + kπ sin (kπ t) − c cos (kπ t)

c2 + k2π2
ξk , (12.23)

where ξk (k ∈Z+) are i.i.d. standard normal random variables. The series representation
(12.23) involves the orthogonal sequence {ξk} associated with the Brownian bridge W (t).
An alternative representation that uses the series (12.16) is given in Phillips (1998) and in
(12.72) below.

Example 12.4. Suppose X(t) is an O-U process with covariance kernel γ (s, t) = e−|s−t |.
In this case the process X(t) satisfies the stochastic differential equation (12.21) with c =
−1 and σ = √

2. Then the KL representation of X(t) over t ∈ [0, 1] is

X(t)=
√

2
∞∑

k=0

sin
{
ωk
(
t − 1

2

)+ (
k + 1)π2

)}
(1 +λk)

1/2
ξk , (12.24)

where ξk (k ∈ Z+) are i.i.d. standard normal random variables, λk = 2
(
1 +ω2

k

)−1
, and

ω0,ω1, . . . are the positive roots of the equation

tan(ω)= −2
ω

1 −ω2

(Pugachev, 1959; see also Bosq, 2000, p. 27).
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12.3. New Tools for Understanding

Spurious Regression
.............................................................................................................................................................................

Spurious regression refers to the phenomenon that arises when fitted least squares
regression coefficients appear statistically significant even when there is no true rela-
tionship between the dependent variable and the regressors. In simulation studies,
Granger and Newbold (1974) showed that the phenomenon occurs when independent
random walks are regressed on one another. Similar phenomena occur in regressions
of stochastic trends on deterministic polynomial regressors, as shown in Durlauf and
Phillips (1988). Phenomena of this kind were originally investigated by Yule (1926)
and the first analytic treatment and explanation was provided in Phillips (1986).

As seen in the previous section, the orthonormal representation (12.10) links the
random function X(·) to deterministic basis functions ϕj(·) (j ∈ Z+) on the Hilbert
space L2[a, b]. This linkage provides a powerful tool for studying relations between
stochastic trends and deterministic trends, as demonstrated in Phillips (1998). The
orthonormal representation (12.10) also provides useful insights in studying relations
among stochastic trends.

Consider the normalized time series Bn
( t

n

) = n− 1
2
∑t

s=1 us, whose components ut

satisfy the following assumption.

Assumption 12.3. For all t ≥ 0, ut has Wold representation

ut = C(L)εt =
∞∑

j=0

cjεt−j ,
∞∑

j=0

j
∣∣cj

∣∣<∞ and C(1) 
= 0 (12.25)

with εt = i.i.d. (0,σ 2
ε ) with E

(|εt |p
)
<∞ for some p > 2.

Under the above assumption, one can invoke Lemma 3.1 of Phillips (2007), which
shows that in a possibly expanded probability space we have the (in probability)
approximation

sup
0≤t≤n

∣∣∣∣Bn

(
t

n

)
− Bσu

(
t

n

)∣∣∣∣= op(n− 1
2 + 1

p ), (12.26)

where Bσu (·) denotes a BM with variance σ 2
u = 2π fu(0) and fu(·) is the spectral den-

sity of ut . Using the KL representation3 in (12.12) and the uniform approximation in
(12.26), we can deduce that

sup
0≤t≤n

∣∣∣∣∣Bn

(
t

n

)
−

∞∑
k=1

λ
1
2
k ϕk

(
t

n

)
ξk

∣∣∣∣∣= op(1), (12.27)

where {(λk,ϕk(·))}∞k=1 is the set of all pairs of eigenvalues and orthonormalized eigen-
functions of the kernel function γ (s, t) = σ 2

u min (s, t), and where ξk (k ∈ Z+) are
independent Gaussian random variables.
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The result in (12.26) implies that the scaled partial sum Bn
( t

n

) = n− 1
2
∑t

s=1 us can
be uniformly represented in terms of the basis functions ϕk(·) (k ∈ Z+) in L2[a, b] for
all t ≤ n. Such a uniform approximation motivates us to study empirical LS regression
estimation in which the scaled partial sum Bn

( t
n

)
is fitted using K orthonormal basis

functions ϕk(·) (k = 1, . . . , K), that is,

Bn

(
t

n

)
=

K∑
k=1

âk,nϕk

(
t

n

)
+ ût ,K , (12.28)

where

ÂK = (̂a1,n, . . . , âK ,n)′ =
[

n∑
t=1

�K

(
t

n

)
�′

K

(
t

n

)]−1[ n∑
t=1

�K

(
t

n

)
Bn

(
t

n

)]

and �K (·) = [ϕ1(·), . . . ,ϕK (·)]. There are several interesting questions we would like
to ask about the regression in (12.28). First, what are the asymptotic properties of the
estimator ÂK ? More specifically, if we rewrite the uniform approximation (12.27) in
the form

Bn

(
t

n

)
=�K

(
t

n

)
�K ξK +

∞∑
k=K+1

λ
1
2
k ϕk

(
t

n

)
ξk ,

where �K ≡ diag(λ1, . . . ,λK ) and ξK = (ξ1, . . . ,ξK ), will the estimate ÂK replicate the
random vector �K ξK in the limit? In practical work an econometrician might specify
a regression that represents an integrated time series such as yt = ∑t

s=1 us in terms of
deterministic trends. Upon scaling, such a regression takes the form

Bn

(
t

n

)
=�K

(
t

n

)
Ao,K + vnk, (12.29)

which may be fitted by least squares to achieve trend elimination. To test the signifi-
cance of the regressors �K (·) in such a trend regression, a natural approach would be
to use a t-statistic for a linear combination of the coefficients c′

K Ao,K , such as

tc ′
K ÂK

= c′
K ÂK√(

n−1
∑n

i=1 û2
t ,K

)
c′

K

[
n∑

t=1
�K

( t
n

)
�′

K

( t
n

)]−1

cK

for any cK ∈ RK with c′
K cK = 1. Corresponding robust versions of tc ′

K ÂK
using conven-

tional HAC or HAR estimates of the variance of c′
K ÂK might also be used, options that

we will discuss later. For now, what are the asymptotic properties of the statistic tc ′
K ÂK

and how adequate is the test? Further, we might be interested in measuring goodness
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of fit using the estimated coefficient of determination

R̂2
K =

Â′
K

[
n∑

t=1
�K

( t
n

)
�′

K

( t
n

)]
ÂK

n−1
∑n

t=1 B2
n

( t
n

) .

What are the asymptotic properties of R̂2
K and how useful is this statistic as a measure of

goodness of fit in the regression? The following theorem from Phillips (1998) answers
these questions.

Theorem 12.2. As n → ∞, we have

(a) c′
K ÂK →d c′

K

∫ 1
0 �K (r)B(r)dr

d= N
(
0, c′

K�K cK
)
,

(b) n− 1
2 tc ′

K ÂK
→d c′

K

[∫ 1
0 �K (r)B(r)dr

][∫ 1
0 B2

ϕK
(r)dr

]− 1
2
,

(c) R̂2
K →d 1 −

[∫ 1
0 B2

ϕK
(r)dr

][∫ 1
0 B2(r)dr

]−1
,

where BϕK (·) = B(·) −
[∫ 1

0 B(r)�K (r)dr
]
�′

K (·) is the projection residual of B(·) on

�K (·).

Theorem 12.2 explains the spurious regression phenomenon that arises when an
integrated process is regressed on a set of trend basis functions. Part (a) implies that

the OLS estimate âk,n has a limit that is equivalent to λ
1
2
k ξk for k = 1, . . . , K . Note that

the weak convergence in part (a) leads to pointwise functional limits. In particular, it
leads directly to the following pointwise functional convergence:

�K (t )̂AK →d

K∑
k=1

λ
1
2
k ϕk(t)ξk , for any t ∈ [0, 1]. (12.30)

A corresponding uniform weak approximation, that is,

sup
t∈[0,1]

∣∣∣∣∣�K (t )̂AK −
K∑

k=1

λ
1
2
k ϕk(t)ξk

∣∣∣∣∣= op(1), (12.31)

can be proved using bracketing entropy arguments and the rate of pointwise conver-
gence in (12.30). We leave the theoretical justification of such a uniform approximation
to future research. Part (b) confirms that trend basis functions are always significant
when used in regressions to explain an integrated process because the related t-statistics
always diverge as the sample size n → ∞.4 From the KL representation (12.10), we
observe that for large K the Hilbert space projection residual BϕK (·) is close to zero
with high probability. From part (c), we see that in such a case, R̂2

K is also close to 1
with large probability.

The results in Theorem 12.2 are derived under the assumption that the number of
trend basis functions is fixed. A natural question to ask is, What are the asymptotic
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properties of c′
K ÂK , tc′

K ÂK
, and R̂2

K if the number of the trend basis functions K diverges
to infinity with the sample size n. Note that if K → ∞, then[∫ 1

0
B(r)�K (r)dr

]
�′

K (t) =
K∑

k=1

λ
1
2
k ξkϕk(t)→a.s.

∞∑
k=1

λ
1
2
k ξkϕk(t)= B(t), (12.32)

where the almost sure convergence follows by the martingale convergence theorem.
The convergence in (12.32) immediately implies

BϕK (t) = B(t) −
[∫ 1

0
B(r)�K (r)dr

]
�′

K (t) →a.s. 0 (12.33)

as K → ∞. Now, using (12.33) and sequential asymptotic arguments, we deduce that

�K (t )̂AK →d

∞∑
k=1

λ
1
2
k ξkϕk(t)= B(t), (12.34)

∣∣∣n− 1
2 tc ′

K ÂK

∣∣∣→p ∞ and R̂2
K →p 1, (12.35)

as n → ∞ followed by K → ∞. The result (12.34) indicates that the fitted value
�K (·)̂AK based on the OLS estimate ÂK fully replicates the BM B(·) as K goes to
infinity. Moreover, (12.34) implies that all fitted coefficients are significant even when
infinitely many trend basis functions are used in (12.27). Note that when more trend
basis functions are added to the regression, the fitted coefficients become more signif-
icant, instead of being less significant, because the residual variance in the regression
(12.28) converges to zero in probability when both K and n diverge to infinity. The
second result in (12.35) implies that the model is perfectly fitted when K → ∞, which
is anticipated in view of (12.34).

The following theorem is due to Phillips (1998) and presents asymptotic properties
of c′

K ÂK , tc ′
K ÂK

and R̂2
K under joint asymptotics when n and K pass to infinity jointly.

Theorem 12.3. Suppose that K → ∞, then c′
K�K cK converges to a positive constant

σ 2
c = c′�c, where c = (c1, c2, . . .), �≡ diag(λ1,λ2, . . .), and c′c = 1. Moreover, if K →∞

and K/n → 0 as n → ∞, then we have (a) c′
K ÂK →d N

(
0,σ 2

c

)
, (b) n− 1

2 tc ′
K âK

diverges,

and (c) R̂2
K →p 1.

From Theorem 12.3 it follows that the asymptotic properties of c ′
K ÂK , tc ′

K ÂK
, and R̂2

K
under joint limits are very similar to their sequential asymptotic properties. Thus, the
above discussion about the results in (12.34) and (12.35) also applies to Theorem 12.3.

As this analysis shows, the KL representation is a powerful tool in interpreting
regressions of stochastic trends on deterministic trends. The KL representation can also
link different BMs, because different BMs can themselves each be represented in terms
of the same set of orthonormal basis functions. This intuition explains spurious regres-
sions that arise when an integrated process is regressed on other (possibly independent)
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integrated processes. The following theorem, again from Phillips (1998), indicates that
any BM can be represented in terms of infinitely many independent standard BMs. This
theory assists our understanding of empirical regressions among integrated processes
that may be of full rank (or non-cointegrating). Such regressions are considered pro-
totypical spurious regressions following the simulation study of Granger and Newbold
(1974).

Theorem 12.4. Let Bσ (·) be a BM on [0, 1] with variance σ 2 and let ε > 0 be arbitrarily
small. Then we can find a sequence of independent BMs {B∗

i (·)}N
i=1 that are independent

of Bσ (·) and a sequence of random variables {di}N
i=1 defined on an augmented probability

space (�,F , P), such that as N → ∞,

(a) supt∈[0,1]

∣∣∣Bσ (t) −∑N
i=1 diB∗

i (t)
∣∣∣< ε a.s. P;

(b)
∫ 1

0

[
Bσ (t) −∑N

i=1 diB∗
i (t)

]2
dt < ε a.s. P;

(c) Bσ (t)
d=∑∞

i=1 diB∗
i (t) in L2[a, b] a.s. P.

Part (c) of Theorem 12.4 shows that an arbitrary BM Bσ (·) has an L2 represen-
tation in terms of independent standard BMs with random coefficients. It also gives
us a model for the classic spurious regression of independent random walks. In this
model, the role of the regressors and the coefficients becomes reversed. The coeffi-
cients di are random and they are co-dependent with the dependent variable Bσ (t).
The variables B∗

i (t) are functions that take the form of BM sample paths, and these
paths are independent of the dependent variable, just like the fixed coefficients in a
conventional linear regression model. Thus, instead of a spurious relationship, we have
a model that serves as a representation of one BM in terms of a collection of other BMs.
The coefficients in this model provide the connective tissue that relates these random
functions.

12.4. New Unit Root Asymptotics with

Deterministic Trends
.............................................................................................................................................................................

Since the mid-1980s it has been well understood that the presence of deterministic
functions in a regression affects tests involving stochastic trends even asymptoti-
cally. This dependence has an important bearing on the practical implementation
of unit root and cointegration tests. For example, the following model involves
both an autoregressive component and some auxiliary regressors that include a trend
component

Yt = ρoYt−1 + b′
oXt + ut . (12.36)
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Here Yt and ut are scalars and Xt is a p-vector of deterministic trends. Suppose that ut

is i.i.d. (0,σ 2) and Xt , Yt satisfy

Dn

*nt,∑
s=1

Xs →d X(t) and n− 1
2 Y*nt, →d Bσ (t) (12.37)

for any t ∈ [0, 1] as n → ∞, where Dn is a suitable p × p diagonal scaling matrix,
X(·) is a p-dimensional vector of piecewise continuous functions, and Bσ (·) is a BM
with variance σ 2. By standard methods the OLS estimate ρ̂n of ρo in (12.36) has the
following limiting distribution:

n(ρ̂n −ρo) →d

[∫ 1

0
BX (t) dBσ (t)

][∫ 1

0
B2

X (t) dt

]−1

,

where

BX (·) ≡ Bσ (·) − X ′(·)
[∫ 1

0
X(t)X ′(t)dt

]−1[∫ 1

0
X(t)Bσ (t)dt

]
is the Hilbert space projection residual of Bσ (·) on X(·).

Figure 12.1 (from Phillips (2001)) depicts the asymptotic density of n(ρ̂n −ρo) with
different numbers of deterministic (polynomial) trend functions. It is clear that the
shape and location of the asymptotic density of n(ρ̂n − ρo) are both highly sensitive
to the trend degree p. This sensitivity implies that critical values of the tests change
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substantially with the specification of the deterministic trend functions, necessitating
the use of different statistical tables according to the precise specification of the fitted
model. As a result, if the approach to modeling the time series were such that one con-
templated increasing p as the sample size n increased, and to continue to do so as n goes
to infinity, then a limit theory in which p → ∞ as n → ∞ may be more appropriate.
In fact, even the moderate degree p ∼ 5 produces very different results from p = 0, 1,
and the large p asymptotic theory in this case produces a better approximation to the
finite sample distribution. Entirely similar considerations apply when the regressor Xt

includes trend breaks.
As we have seen in the previous section, the KL representation (12.10) of a stochastic

process links the random function Bσ (t) (t ∈ [a, b]) with the trend basis functions
ϕk(t) (k ∈ Z+) of the Hilbert space L2[a, b], thereby enabling us to study the effects
of deterministic functions on tests involving the stochastic trends. The present section
reviews some of the findings in Phillips (2001), which shows how the asymptotic theory
of estimation in unit root models changes when deterministic trends coexist with the
stochastic trend.

Specifically, consider the following typical autoregression with a trend component:

1√
n

Yt = ρ̂n√
n

Yt−1 +
K∑

k=1

âk,nϕk

(
t

n

)
+ ût ,K , (12.38)

where ϕk(·) (k ∈ Z+) are trend basis functions, and ρ̂n and âk,n are the OLS estimates

by regressing n− 1
2 Yt on the lagged variables n− 1

2 Yt−1 and ϕk
( t

n

)
(k = 1, . . . , K). The

scaling in (12.38) is entirely innocuous and used only to assist in the asymptotics. As
is apparent from regression (12.28) and Theorem 12.2, when there is no lagged depen-

dent variable n− 1
2 Yt−1 in (12.38), the fitted value from the trend basis

∑K
k=1 âk,nϕk(t)

reproduces the KL component
∑K

k=1λ
1
2
k ξkϕk(t) of the BM limit process of n− 1

2 Yt as
the sample size n → ∞.

In particular, as the scaled partial sum n− 1
2 Yt satisfies the functional central limit

theorem (FCLT) in (12.37), we can invoke (12.26) to deduce that

sup
0≤t≤n

∣∣∣∣∣ 1√
n

Yt −
∞∑

k=1

λ
1
2
k ϕk

(
t

n

)
ξk

∣∣∣∣∣= op(1). (12.39)

From the partitioned regression in (12.38) and the series representation in (12.39), we

see that ρ̂n is the fitted coefficient in the regression of n− 1
2 Yt on the projection residual

of n− 1
2 Yt−1 on the trend basis functions ϕk(·) (k = 1, . . . , K). The stochastic trend vari-

able Yt−1 and the trend basis functions are highly correlated with large K , and there is
a collinearity problem in the regression (12.38) as K →∞ because the lagged regressor
is perfectly fitted by the trend basis. The asymptotic properties of ρ̂n are correspond-
ingly affected by the presence of the deterministic trends and their influence is severe
when K → ∞. As a result, unit root tests and limit theory based on ρ̂n are affected by
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the presence of deterministic trends, the effects being sufficiently important as to alter
the convergence rate. This point is confirmed in the next theorem. First, we have the
following lemma (Phillips, 2001) which shows the effect of a finite number K of deter-
ministic trends on the limit theory of semiparametric Z tests (Phillips, 1987; Phillips
and Perron, 1988; and Ouliaris, Park and Phillips, 1988). These tests are either coeffi-
cient based (denoted here by Zρ,n) or t-ratio tests (denoted by Zt ,n). Readers may refer
to the above references for their construction.

Lemma 12.2. Suppose that ut satisfies Assumption 12.3 and Yt =∑t
s=1 us. Then the unit

root test statistic Zρ,n and the t-ratio test statistic Zt ,n satisfy

Zρ,n →d

∫ 1
0 BϕK (r)dBσ (r)∫ 1

0 B2
ϕK

(r)dr
and Zt ,n →d

∫ 1
0 BϕK (r)dBσ (r)[∫ 1

0 B2
ϕK

(r)dr
] 1

2

,

where BϕK (·) = Bσ (·) −
[∫ 1

0 Bσ (r)�K (r)dr
]
�′

K (·).

From the KL representation, we see that∫ 1

0
B2
ϕK

(r)dr =
∫ 1

0

[∑∞
k=K+1

λ
1
2
k ϕk(r)ξk

]2

dr

=
∑∞

k=K+1
λkξ

2
k →a.s. 0 as K → ∞,

which implies that when K is large, the asymptotic distributions of Zρ,n and Zt ,n are
materially affected by a denominator that tends to zero and integrand in the numerator
that tends to zero. This structure explains why the asymptotic distributions of Zρ,n and
Zt ,n are drawn toward minus infinity with larger K . One may conjecture that when
K → ∞, Zρ,n and Zt ,n will diverge to infinity as

∫ 1
0 B2

ϕK
(r)dr →p 0 as K → ∞. This

conjecture is confirmed in the following theorem from Phillips (2001).

Theorem 12.5. Suppose that ut satisfies Assumption 12.3. If K → ∞ and K4/n → 0 as
n → ∞, then

K− 1
2

(
Zρ,n + π2K

2

)
→d N

(
0,π4/6

)
and

Zt ,n + π
√

K

2
→d N

(
0,π2/24

)
.

When the lagged dependent variable and deterministic trend functions are included
in the LS regression to model a stochastic trend, they are seen to jointly compete for
the explanation of the stochastic trend in a time series. In such a competition, Theorem
12.5 implies that the deterministic functions will be successful in modeling the trend
even in the presence of an autoregressive component. The net effect of including K
deterministic functions in the regression is that the rate of convergence to unity of the
autoregressive coefficient ρ̂n is slowed down. In particular, the theorem implies that
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ρ̂n = 1 − π 2

2
K
n + op

(K
n

)→p 1 as (n, K → ∞). Thus, ρ̂n is still consistent for ρ = 1, but
has a slower rate of approach to unity than when K is fixed. The explanation for the
nonstationarity in the data is then shared between the deterministic trend regressors
and the lagged dependent variable.

12.5. Efficient Estimation of

Cointegrated Systems
.............................................................................................................................................................................

The trend basis functions in the KL representation (12.10) are deterministic and
accordingly independent of any random variables. Moreover, as shown in Theorem
12.3, a stochastic trend can be fully reproduced by its projection on the trend basis
functions. These two properties indicate that trend basis functions provide a natu-
ral set of valid instrumental variables (IVs) to model stochastic processes that appear
as endogenous regressors. This feature of the KL basis functions was pointed out in
Phillips (2013), who proposed using trend basis functions as IVs to efficiently estimate
cointegrated systems. We outline the essential features of this work in what follows.

Consider the cointegrated system

Yt = AoXt + uy,t , (12.40)

�Xt = ux,t , (12.41)

where the time series Yt is my ×1 and Xt is mx ×1 with initial conditions X0 = Op(1) at
t = 0. The composite error ut = (u′

y,t , u′
x,t )′ is a weakly dependent time series generated

as a linear process

ut = C(L)εt =
∞∑

j=0

cjεt−j,
∞∑

j=0

ja
∥∥cj

∥∥<∞, a > 3, (12.42)

where εt = i.i.d.(0,�) with � > 0 and E
[||εt ||p

]
<∞ for some p > 2 and matrix norm

‖·‖. The long-run moving average coefficient matrix C(1) is assumed to be nonsingu-
lar, so that Xt is a full-rank integrated process. Under (12.42), the scaled partial sum

1√
n

∑t
s=0 ut satisfies the following FCLT:

1√
n

*nt,∑
s=0

ut →d Bu(t) ≡
(

By (t)
Bx(t)

)
, (12.43)

for any t ∈ [0, 1]. The long-run variance matrix � = C(1)�C′(1) is partitioned
conformably with ut as

� =
[

�yy �yx

�xy �xx

]
.
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The conditional long-run covariance matrix of uy on ux is �yy·x =�yy −�yx�
−1
xx �xy .

In a similar way we define the one-sided long-run covariance matrix

�=
∞∑

j=0

E
(

u0u′
−j

)
=
[

�yy �yx

�xy �xx

]
.

The rest of this section discusses and compares several different estimates of Ao.
The comparison of different estimates helps in understanding the role that trend basis
functions play in efficient estimation. For ease of notation and without loss of general-
ity we henceforth assume that Xt and Yt are scalar random variables. We first consider

the OLS estimate of Ao, which is defined as Ân = (∑n
t=1 Yt X ′

t

)(∑n
t=1 Xt X ′

t

)−1
. Under

(12.42) it is easily seen that

n(̂An − Ao) = n−1∑n
t=1 uy,tXt

n−2
∑n

t=1 X2
t

→d

∫ 1
0 Bx(t)dBy(t) +�yx∫ 1

0 B2
x(t)dt

where Bx and By are defined in (12.43). In view of the contemporaneous and serial
correlation between ux,t and uy,t , it is well known that OLS estimation suffers from
two sources of high-order bias: endogeneity bias from the corresponding correla-
tion of Bx and By and serial correlation bias that manifests in the one-sided long-run
covariance �yx .

We next consider the IV estimation of the augmented regression equation with K
trend IVs (basis functions) ϕk(·) (k = 1, . . . , K):

Yt = AoXt + Bo�Xt + uy·x,t , (12.44)

where Bo = �yx�
−1
xx and uy·x,t = uy,t − Boux,t . For this model, it is easy to show that

the LS estimate of Ao continues to suffer from second-order bias effects and the LS
estimate of Bo is not generally consistent. On the other hand, the IV estimate of Ao

in the augmented equation has optimal properties. It can be written in projection
form as

ÂIV = (
Y ′R�X ,K X

)(
X ′R�X ,K X

)−1
,

where Y ′ = [Y1, . . . , Yn] with similar definitions for the observation matrices X ′ and
�X , the projector PK = �K

(
�′

K�K
)−1

�′
K , �K = [�′

K ( 1
n ), . . . ,�′

K (1)]′, �K (·) =
[ϕ1(·), . . . ,ϕK (·)] and the composite projector R�X ,K = PK − PK�X

(
�X ′PK�X

)−1

�X ′PK . Similarly, the IV estimate of Bo can be written as

B̂IV = (
Y ′RX ,K�X

)(
�X ′RX ,K�X

)−1
,

where RX ,K = PK − PK X
(
X ′PK X

)−1
X ′PK .5

The following lemma gives the asymptotic distributions of the IV estimates ÂIVK ,n

and B̂IVK ,n when the number of the trend basis functions K is fixed.
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Lemma 12.3. Under the assumption (12.42), we have

n(̂AIV − Ao) →d

∑K
k=1η

2
x,k

∑K
k=1 ξx,kηy·x,k −∑K

k=1ηx,kηy·x,k
∑K

k=1 ξx,kηx,k∑K
k=1η

2
x,k

∑K
k=1 ξ

2
x,k −

[∑K
k=1 ξx,kηx,k

]2 (12.45)

and

B̂IV →d Bo +
∑K

k=1 ξ
2
x,k

∑K
k=1ηx,kηy·x,k −∑K

k=1 ξx,kηy·x,k
∑K

k=1 ξx,kηx,k∑K
k=1 ξ

2
x,k

∑K
k=1η

2
x,k −

[∑K
k=1 ξx,kηx,k

]2
, (12.46)

where ηy·x,k = ∫ 1
0 ϕk(r)dBy·x(r), and ξx,k , ηx,k , ηy,k are defined by

ξx,k =
∫ 1

0
ϕk(t)Bx(t) dt , ηx,k =

∫ 1

0
ϕk(t)dBx(t), and ηy,k =

∫ 1

0
ϕk(t)dBy (t),

(12.47)
for all k.

From Lemma 12.3, we see that the IV estimate ÂIV of Ao in the augmented equation
(12.40) is consistent, but it suffers second-order bias when the number of the trend
basis functions K is fixed. Moreover, the IV estimate B̂IV of Bo, is not consistent when
K is fixed. By Corollary 12.1, we get

ξ2
x,k =

[∫ 1

0
ϕk(r) dBx(r)

]2
d=�xxχ

2
k (1) for all k ∈ Z+,

where �xx is the long-run variance of ux,t and χ2
k (1) denotes a chi-square random

variable with degree of freedom 1. Moreover, χ2
k (1) is independent of χ2

k′(1) for any
k 
= k′ and k, k′ ∈ Z+. Using the law of large numbers, we have

1

K

K∑
k=1

[∫ 1

0
ϕk(r) dBx(r)

]2

→a.s. �xx . (12.48)

Under sequential asymptotics, we see that

n(̂AIV − Ao) =
∑K

k=1 ξx,kηy·x,k + Op(K−1)∑K
k=1 ξ

2
x,k + Op(K−1)

(12.49)

and

B̂IV = Bo + Op(K−1). (12.50)

Results in (12.49) and (12.50) indicate that when the number of trend IVs diverges to
infinity, the IV estimate ÂIV of Ao may be as efficient as the maximum likelihood (ML)
estimate under Gaussianity (Phillips (1991a)) and the IV estimate B̂IV of Bo may be
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consistent. These conjectures are justified in Phillips (2012) and shown to hold under
joint asymptotics.

Let �̂K ,n = K−1
(
Y ′ − ÂIV X ′ − B̂IV�X ′)PK

(
Y ′ − ÂIV X ′ − B̂IV�X ′)′ and define

By·x(t) = By(t) − BoBx(t). The following theorem is from Phillips (2013).

Theorem 12.6. Under the assumption (12.42) and the rate condition

1

K
+ K

n(1−2/p)∧(5/6−1/3p)
+ K 5

n4
→ 0 (12.51)

as n → ∞, we have

(a) n(̂AIV − Ao) →d

[∫ 1
0 Bx(t) dB′

y·x(t)
]′[∫ 1

0 Bx(t)B′
x (t) dr

]−1
,

(b) B̂IV →p Bo

(c) �̂K ,n →p �yy −�yx�
−1
xx �xy .

Theorem 12.6 implies that the IV estimate ÂIV is consistent and as efficient as the
ML estimate under Gaussian errors (see Phillips, 1991a, for the latter). Moreover, the
IV estimates of the long-run coefficients are also consistent. It is easy to see that

E[ϕk(t)Xt ] = ϕk(t)E[Xt ] = 0

for any k ∈ Z+, which implies that trend IVs do not satisfy the relevance condition in
the IV estimation literature. As a result, the fact that efficient estimation using trend
IVs is possible may appear somewhat magical, especially in view of existing results on
IV estimation in stationary systems where relevance of the instruments is critical to
asymptotic efficiency and can even jeopardize consistency when the instruments are
weak (Phillips, 1989; Staiger and Stock, 1997). Furthermore, the results in Theorem
12.5 make it clear that what is often regarded as potentially dangerous spurious corre-
lation among trending variables can itself be used in a systematic way to produce rather
startling positive results.

12.6. Automated Efficient Estimation of

Cointegrated Systems
.............................................................................................................................................................................

As illustrated in the previous section, the trend IV approach is very effective in efficient
estimation of the cointegration systems. In reality, when the cointegration systems have
the triangle representation (12.40) and (12.41), this method is very straightforward
and easy to be implemented. However, when the cointegration rank of the cointe-
grated system is unknown, it is not clear how the trend IV approach can be applied
to achieve optimal estimation. Determination of the cointegration rank is important
for estimation and inference of cointegrated systems, because underselected cointe-
gration rank produces inconsistent estimation, while overselected cointegration rank
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leads to second order bias and inefficient estimation (cf., Liao and Phillips (2010)).
More recently, Liao and Phillips (2012) proposed an automated efficient estimation
method for the cointegrated systems. The new method not only consistently selects the
cointegration rank and the lagged differences in general vector error correction mod-
els (VECMs) in one step, but also performs efficient estimation of the cointegration
matrix and nonzero transient dynamics simultaneously.

Liao and Phillips (2012) first studied the following simple VECM system:

�Yt =�oYt−1 + ut = αoβ
′
oYt−1 + ut , (12.52)

where �o = αoβ
′
o has rank, 0 ≤ ro ≤ m, αo and βo are m × ro matrices with full rank,

and {ut } is an m-dimensional i.i.d. process with zero mean and nonsingular covariance
matrix �u. The following assumption is imposed on �o.

Assumption 12.4 (RR). (i) The determinantal equation |I − (I +�o)λ| = 0 has roots
on or outside the unit circle; (ii) the matrix �o has rank ro, with 0 ≤ ro ≤ m; (iii) if
ro > 0, then the matrix R = Iro +β ′

oαo has eigenvalues within the unit circle.

The unknown parameter matrix �o is estimated in the following penalized GLS
estimation

�̂g ,n = arg min
�∈Rm×m

{
n∑

t=1

‖�Yt −�Yt−1‖2
�̂−1

u,n
+

m∑
k=1

nλr,k,n

||φk(�̂1st )||ω
∥∥�n,k(�)

∥∥}, (12.53)

where ‖A‖2
B = A′BA for any m×1 vector A and m×m matrix B, �̂u,n is some first-step

consistent estimator of �u, ω > 0 is some constant, λr,k,n (k = 1, . . . , m) are tuning
parameters that directly control the penalization, ||φk(�)|| denotes the kth largest
modulus of the eigenvalues {φk(�)}m

k=1 of the matrix �,6 �n,k(�) is the kth row vec-
tor of Qn�, and Qn denotes the normalized left eigenvector matrix of �̂1st . The matrix
�̂1st is a first-step (OLS) estimate of �o. The penalty functions in (12.53) are con-
structed based on the so-called adaptive Lasso penalty (Zou, 2006) and they play the
role of selecting the cointegrating rank in the penalized estimation. More importantly,
if the cointegration rank is simultaneously determined in the estimation of �o, the
selected rank structure will be automatically imposed on the penalized GLS estimate
�̂g ,n. As a result, �̂g ,n would be automatically efficient if the true cointegration rank
could be consistently selected in the penalized GLS estimation (12.53).

The asymptotic properties of the penalized GLS estimate are given in the following
theorem from Liao and Phillips (2012).

Theorem 12.7 Oracle Properties. Suppose Assumption 12.4 holds. If �̂u,n →p �u and

the tuning parameter satisfies n
1
2 λr,k,n = o(1) and nωλr,k,n → ∞ for k = 1, . . . , m, then

as n → ∞, we have

Pr
(
rank(�̂g ,n) = ro

)→ 1, (12.54)
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where rank(�̂g ,n) denotes the rank of �̂g ,n. Moreover �̂g ,n has the same limit distribu-
tion as the reduced rank regression (RRR) estimator, which assumes that the true rank ro

is known.

Theorem 12.6 shows that if the tuning parameters λr,k,n (k = 1, . . . , m) converge
to zero at certain rate, then the consistent cointegration selection and the efficient
estimation can be simultaneously achieved in the penalized GLS estimation (12.53).
Specifically, the tuning parameter λr,k,n (k = 1, . . . , m) should converge to zero faster
than

√
n so that when �o 
= 0, the convergence rate of �̂g ,n is not slower than

root-n. On the other hand, λr,k,n should converge to zero slower than n−ω so that
the cointegration rank ro is selected with probability approaching one.

The i.i.d. assumption on ut ensures that �o is consistently estimated, which is usu-
ally required for consistent model selection in the Lasso model selection literature. But
Cheng and Phillips (2009, 2012) showed that the cointegration rank ro can be consis-
tently selected by information criteria even when ut is weakly dependent, in particular
when ut satisfies conditions such as LP below. We therefore anticipate that similar
properties hold for Lasso estimation.

Assumption 12.5 (LP). Let D(L) = ∑∞
j=0 DjLj, where D0 = Im and D(1) has full rank.

Let ut have the Wold representation

ut = D(L)εt =
∞∑

j=0

Djεt−j , with
∞∑

j=0

j
1
2 ||Dj|| <∞, (12.55)

where εt is i.i.d. (0,�εε) with �εε positive definite and finite fourth moments.

It is clear that under Assumption 12.5, �o cannot be consistently estimated in
general. As a result, the probability limit of the GLS estimate of �o may have rank
smaller or larger than ro. However, Liao and Phillips (2012) show that the cointegra-
tion rank ro can be consistently selected by penalized estimation as in (12.53) even
when ut is weakly dependent and �o is not consistently estimated, thereby extending
the consistent rank selection result of Cheng and Phillips (2009) to Lasso estimation.

Theorem 12.8. Under Assumption LP, if n
1+ω

2 λr,k,n = o(1) and n
1
2λr,k,n = o(1) for k =

1, . . . , m, then we have

Pr
(
rank(�̂g ,n) = ro

)→ 1 as n → ∞. (12.56)

Theorem 12.8 states that the true cointegration rank ro can be consistently selected,
even though the matrix �o is not consistently estimated. Moreover, even when the
probability limit �1 of the penalized GLS estimator has rank less than ro, Theorem
12.8 ensures that the correct rank ro is selected in the penalized estimation. This result
is new in the Lasso model selection literature as Lasso techniques are usually advocated
because of their ability to shrink small estimates (in magnitude) to zero in penalized
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estimation. However, Theorem 12.8 shows that penalized estimation here does not
shrink the estimates of the extra ro − r1 zero eigenvalues of �1 to zero.

Liao and Phillips (2012) also study the general VECM model

�Yt =�oYt−1 +
p∑

j=1

Bo,j�Yt−j + ut (12.57)

with simultaneous cointegration rank selection and lag-order selection. To achieve
consistent lag-order selection, the model in (12.57) has to be consistently estimable.
Thus, we assume that given p in (12.57), the error term ut is an m-dimensional i.i.d.
process with zero mean and nonsingular covariance matrix �u. Define

C(φ) =�o +
p∑

j=0

Bo,j(1 −φ)φj , where Bo,0 = −Im.

The following assumption extends Assumption 12.4 to accommodate the general
structure in (12.57).

Assumption 12.6 (RR). (i) The determinantal equation |C(φ)| = 0 has roots on or
outside the unit circle; (ii) the matrix �o has rank ro, with 0 ≤ ro ≤ m; (iii) the
(m − ro) × (m − ro) matrix

α′
o,⊥

⎛⎝Im −
p∑

j=1

Bo,j

⎞⎠βo,⊥ (12.58)

is nonsingular, where αo,⊥ and βo,⊥ are the orthonormal complements of αo and βo

respectively.

Let Bo = [Bo,1, . . . , Bo,p]. The unknown parameters (�o, Bo) are estimated by
penalized GLS estimation

(�̂g ,n, B̂g ,n) = arg min
�,B1,...,Bp∈Rm×m

⎧⎪⎨⎪⎩
n∑

t=1

∥∥∥∥∥∥�Yt −�Yt−1 −
p∑

j=1

Bj�Yt−j

∥∥∥∥∥∥
2

�̂−1
u,n

+
p∑

j=1

nλb,j,n

||̂Bj,1st ||ω
∥∥Bj

∥∥+
m∑

k=1

nλr,k,n

||φk(�̂1st )||ω
∥∥�n,k(�)

∥∥⎫⎬⎭, (12.59)

where λb,j,n and λr,k,n (j = 1, . . . , p and k = 1, . . . , m) are tuning parameters, and B̂j,1st

and �̂1st are some first-step (OLS) estimates of Bo,j and �o (j = 1, . . . , p) respectively.
Denote the index set of the zero components in Bo as Sc

B such that
∥∥Bo,j

∥∥ = 0 for
all j ∈ Sc

B and
∥∥Bo,j

∥∥ 
= 0 otherwise. The asymptotic properties of the penalized GLS
estimates (�̂g ,n, B̂g ,n) are presented in the following theorem from Liao and Phillips
(2012).
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Theorem 12.9. Suppose that Assumption 12.6 is satisfied and �̂u,n →p �u. If n
1
2 (λr,k,n +

λb,j,n) = O(1), nωλr,k,n → ∞ and n
1+ω

2 λb,j,n → ∞ (k = 1, . . . , m and j = 1, . . . , p), then

Pr
(
r(�̂g ,n) = ro

)→ 1 and Pr
(̂
Bg ,j,n = 0

)→ 1 (12.60)

for j ∈ Sc
B as n → ∞; moreover, �̂g ,n and the penalized GLS estimate of the nonzero

components in Bo have the same joint limiting distribution as that of the general RRR
estimate, which assumes that the true rank ro and true zero components in Bo are known.

From Theorem 12.7 and Theorem 12.9, we see that the tuning parameter plays an
important role in ensuring that the penalized estimate is efficient and the true model is
consistently selected in penalized GLS estimation. In empirical applications, the condi-
tions stated in these two theorems do not provide a clear suggestion of how to select the
tuning parameters. In the Lasso literature the tuning parameters are usually selected by
cross-validation or information criteria methods. However, such methods of selecting
the tuning parameter are computationally intensive and they do not take the finite sam-
ple properties of the penalized estimates into account. Liao and Phillips (2012) provide
a simple data-driven tuning parameter selection procedure based on balancing first-
order conditions that takes both model selection and finite sample properties of the
penalized estimates into account. The new method is applied to model GNP, consump-
tion and investment using U.S. data, where there is obvious co-movement in the series.
The results reveal the effect of this co-movement through the presence of two cointe-
grating vectors, whereas traditional information criteria fail to find co-movement and
set the cointegrating rank to zero for these data.

12.7. Series Estimation of the

Long-Run Variance
.............................................................................................................................................................................

Previous sections have shown how the long-run behavior of integrated processes can
be fully reproduced in the limit by simple linear projections on trend basis functions.
Motivated by this result, we are concerned to ask the following questions. First, let {ut }
be a stationary process and let {ϕk(·)}k be a set of trend basis functions. What are the
asymptotic properties of the projection of {ut }n

t=1 on ϕk(·) with a fixed number K of
basis functions? Further, what are the asymptotic properties of this projection when
the number of basis functions goes to infinity?

As first observed in Phillips (2005b), such projections produce consistent estimates
of the long-run variance (LRV) of the process {ut}, when K goes to infinity with the
sample size. This large K asymptotic theory justifies the Gaussian approximation of
t-ratio statistics and chi-square approximations of Wald statistics in finite samples.
More recently, Sun (2011, 2013) showed that when K is fixed, t-ratio statistics have an
asymptotic Student-t distribution and Wald statistics have asymptotic F distributions.
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The fixed-K asymptotic theory is argued in Sun (2013) to provide more accurate size
properties for both t-ratio and Wald statistics in finite samples.

Formally, suppose that the process {ut} satisfies the following assumption.

Assumption 12.7. For all t ≥ 0, ut has Wold representation

ut = C(L)εt =
∞∑

j=0

cjεt−j ,
∞∑

j=0

ja
∣∣cj
∣∣<∞, C(1) 
= 0 and a > 3 (12.61)

with εt = i.i.d. (0,σ 2
ε ) with E

(|εt |p
)
<∞ for some p > 2.

Under Assumption 12.7, the scaled partial sum n− 1
2
∑t

i=1 ui satisfies the following
FCLT

Bn(·) ≡
∑[n·]

i=1 ui√
n

→d Bω(·) as n → ∞, (12.62)

where Bω(·) is a BM with variance ω2 = σ 2
ε C2(1). Note that ω2 is the LRV of the

process {ut }.
The projection of {ut }n

t=1 on ϕk( t
n ) for some k ∈ Z+ can be written as[

n∑
t=1

ϕ2
k (

t

n
)

]−1 n∑
t=1

ϕk(
t

n
)ut ,

where
n∑

t=1

ϕk(
t

n
)ut →d

∫ 1

0
ϕk(r) dBω(r) as n → ∞ (12.63)

by standard functional limit arguments and Wiener integration, and

1

n

n∑
t=1

ϕ2
k (

t

n
) →

∫ 1

0
ϕ2

k (r) dr = 1 as n → ∞ (12.64)

by the integrability and normalization of ϕk(·). From the results in (12.63) and (12.64),
we deduce that

√
n

∑n
t=1ϕk( t

n )ut∑n
t=1ϕ

2
k ( t

n )
→d

∫ 1

0
ϕk(r) dBω(r) as n → ∞.

By Corollary 12.1,
∫ 1

0 ϕk(r) dBω(r)
d= N(0,ω2) and for any k 
= k′, the two random

variables
∫ 1

0 ϕk(r) dBω(r) and
∫ 1

0 ϕk′(r) dBω(r) are independent with each other. These
results motivate us to define the following orthonormal series estimate of the LRV:

ω2
K ,n = 1

K

K∑
k=1

[
n− 1

2

n∑
t=1

ϕk(
t

n
)ut

]2

, (12.65)
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which leads to the following t-ratio test statistic

tK ,n = Bn(1)/
√
ω2

K ,n. (12.66)

Lemma 12.4. Suppose that Assumption 12.7 is satisfied and the number K of trend basis
functions are fixed. Then the series LRV estimate defined in (12.65) satisfies

ω2
K ,n →d

ω2

K
χ2(K), (12.67)

where χ2(K) is a chi-square random variable with degrees of freedom K. Moreover, the
t-ratio test statistic defined in (12.66) satisfies

tK ,n →d tK , (12.68)

where tK is a Student-t random variable with degree of freedom K.

While Lemma 12.4 applies to univariate processes, it is readily extended to the case
where {ut } is a multiple time series. In that case, the series LRV estimate is defined as

ω2
K ,n = 1

K

K∑
k=1

∑n
t=1ϕk( t

n )ut
∑n

t=1ϕk( t
n )u′

t

n

and the Wald-type test is defined as

WK ,n = Bn(1)′
(
ω2

K ,n

)−1
Bn(1).

Then using similar arguments to those in the proof of Lemma 12.4, we obtain

K − du + 1

Kdu
WK ,n →d �du ,K−du+1,

where �du,K−du+1 is a F random variable with degrees of freedom (du, K −du +1) and
du denotes the dimensionality of the vector ut .

The weak convergence in (12.67) implies that when the number of the trend basis
functions is fixed, the series LRV estimate ω2

K ,n is not a consistent estimate of ω2.
However, the weak convergence in (12.68) indicates that the t-ratio test statistic is
asymptotically pivotal. Using sequential asymptotic arguments, we see from (12.67)
that when K goes to infinity, χ2(K)/K converges to 1 in probability, which implies
that ω2

K ,n may be a consistent estimate of ω2 with large K . Similarly, from (12.67), we
see that tK ,n has an asymptotic Gaussian distribution under sequential asymptotics.
These sequential asymptotic results provide intuition about the consistency of ω2

K ,n
when K goes to infinity, as well as intuition concerning the improved size properties of
the fixed K asymptotics in finite samples.

The following theorem from Phillips (2005b), which was proved using trend basis
functions of the form (12.15) but which holds more generally, shows that ω2

K ,n is

indeed a consistent estimate of ω2 under the joint asymptotics framework.
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Theorem 12.10. Let γu(·) denote the autocovariance function of the process {ut }. Suppose
that Assumption 12.7 holds and the number of trend basis functions K satisfies

n

K2
+ K

n
→ 0. (12.69)

Then

(a) limn→∞ n2

K 2 E
(
ω2

K ,n −ω2
)

= −π 2

6

∑∞
h=−∞ h2γu(h);

(b) if K = o(n4/5), then
√

K
(
ω2

K ,n −ω2
)

→d N(0, 2ω4);

(c) if K 5/n4 → 1, then n4

K 4 E
(
ω2

K ,n −ω2
)2 = π4

36

[∑∞
h=−∞ h2γu(h)

]2 + 2ω4.

Theorem 12.10.(a) implies that ω2
K ,n has bias of order K2/n2 as shown in

E
[
ω2

K ,n

]= ω2 − K2

n2

⎡⎣π2

6

∞∑
h=−∞

h2γu(h) + o(1)

⎤⎦.

From (b), the variance of ω2
K ,n is of O(K−1). Thus, given the sample size n, increases

in the number of the trend basis functions K increases bias and reduces variance. The
situation is analogous to bandwidth choice in kernel estimation.

The process {ut } studied above is assumed to be known. For example, ut could be
a function of data Zt and some known parameter θo, i.e. ut = f (Zt ,θo). However, in
applications, usually we have to estimate the LRV of the process

{
f (Zt ,θo)

}
t , where

θo is unknown but for which a consistent estimate θ̂n may be available. As an illus-
tration, in the rest of this section we use Z-estimation with weakly dependent data
to show how the series LRV estimate can be used to conduct autocorrelation robust
inference.

The Z-estimate θ̂n can be defined as

n− 1
2

n∑
t=1

m(Zt , θ̂n) = op(εn),

where m(·, ·) : Rdz × Rdθ → Rdθ is a measurable function and εn is a o(1) sequence.
Let M(θ) = E[m(Z ,θ)]. The following assumptions are convenient for the following
development and exposition.

Assumption 12.8. (i) M(θ) is continuous differentiable in the local neighborhood of θo

and ∂M(θo)
∂θ ′ has full rank; (ii) the Z-estimate θ̂n is root-n normal, that is,

√
n(θ̂n − θo) →d N

(
0, M−(θo)V (θo)M ′

−(θo)
)
,
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where M−(θo) =
[
∂M(θo)
∂θ ′

]−1
and V (θo) = limn→∞ Var

[
n− 1

2
∑n

t=1 m(Zt ,θo)
]

; (iii) let

Nn denote some shrinking neighborhood of θo, then

sup
θ∈Nn

n− 1
2

n∑
t=1

φk(
t

n
){m(Zt ,θ) − m(Zt ,θ0) − E[m(Zt ,θ) − m(Zt ,θ0)]} = op(1);

(iv) the following FCLT holds:

n− 1
2

n∑
t=1

φk(
t

n
)m(Zt ,θ0) →d

∫ 1

0
φk(r)dBm(r) for k = 1, . . . , K ,

where Bm(·) denotes a vector BM with variance–covariance matrix V (θo); (v) we have

M+,n(θ̂n) ≡ n−1
n∑

t=1

∂m(Zt , θ̂n)

∂θ ′ →p M−1
− (θo).

The conditions in Assumption 12.8 are mild and easy to verify. The series LRV
estimate is defined as

VK ,n(θ̂n) = 1

K

K∑
k=1

�k,n�
′
k,n, (12.70)

where �k,n ≡ ∑n
t=1φk( t

n )m(Zt , θ̂n) (k = 1, . . . , K). Under Assumption 12.8, we have
the following lemma, which generalizes Lemma 12.4 to vector stochastic processes with
unknown parameters.

Lemma 12.5. Suppose that the number of the trend basis functions K is fixed and the
basis functions satisfy

∫ 1
0 φk(r)dr = 0 (k = 1, . . . , K). Then under Assumptions 12.7 and

12.8, we have

�n ≡ (θ̂n − θo)′M+,n(θ̂n)V −1
K ,n(θ̂n)M+,n(θ̂n)(θ̂n − θo)/dθ

→d
K

K − dθ + 1
�dθ ,K−dθ+1,

where �dθ ,K−dθ+1 is a F random variable with degree of freedom (dθ , K −dθ +1) and dθ
denotes the dimensionality of θo.

Lemma 12.5 shows that when the number of the trend basis functions K is fixed,
the series LRV estimate VK ,n(θ̂n) is inconsistent, but the Wald-type test statistic �n

is asymptotically pivotal. Autocorrelation robust inference about θo can be conducted
using the statistic �∗

n ≡ (K −dθ +1)�n/K and the asymptotic�dθ ,K−dθ+1 distribution.

As noted in Sun (2013), the restriction
∫ 1

0 φk(r) dr = 0 (k = 1, . . . , K) helps to remove
the estimation effect in θ̂n from the asymptotic distribution of VK ,n(θ̂n). As a result,
the statistic �∗

n enjoys an exact asymptotic F-distribution. Using arguments similar to
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those in Phillips (2005b), it can be shown that under some suitable rate condition on
K the series LRV estimate VK ,n(θ̂n) is consistent, that is,

VK ,n(θ̂n) = 1

K

K∑
k=1

�k,n�
′
k,n →p V (θo),

as n, K → ∞ jointly. In that case, the test statistic �n has an asymptotic chi-square
distribution with dθ degrees of freedom.

Orthonormal series LRV estimates are becoming increasingly popular for autocor-
relation robust inference in econometric models. Sun (2011) proposed a new testing
procedure for hypotheses on deterministic trends in a multivariate trend stationary
model, where the LRV is estimated by the series method. For empirical applications,
the paper provides an optimal procedure for selecting K in the sense that the type
II error is minimized while controlling for the type I error. Sun (2013) uses a series
LRV estimate for autocorrelation robust inference in parametric M-estimation. This
paper also shows that critical values from the fixed-K limit distribution of the Wald-
type test statistic are second-order correct under conventional increased-smoothing
asymptotics. Sun and Kim (2012, 2013) use the series LRV estimate for inference
and specification testing in a generalized method of moments (GMM) setting. The
series LRV estimate has also been used in inference for semi/nonparametric econo-
metric models with dependent data. In particular, recent work of Chen, Hahn, and
Liao (2012) uses the series method to estimate the LRV of a two-step GMM estimate
when there are some infinite-dimensional parameters estimated by first-step sieve M-
estimation. In related work, Chen, Liao, and Sun (2012) use series methods to estimate
the LRVs of sieve estimates of finite-dimensional and infinite-dimensional parameters
in semi-/nonparametric models with weakly dependent data.

12.8. Concluding Remarks
.............................................................................................................................................................................

As explained in previous sections, the KL representation of stochastic processes can
be very useful in modeling, estimation, and inference in econometrics. This chapter
has outlined the theory behind the KL representation and some of its properties.
The applications of the KL representation that we have reviewed belong to three
categories:

(i) The link between stochastic trends and their deterministic trend representa-
tions. This link is a powerful tool for understanding the relationships between
the two forms of trend and the implications of these relationships for practi-
cal work. As we have discussed, the KL representation provides new insights
that help explain spurious regressions as a natural phenomena when an inte-
grated or near-integrated process is regressed on a set of deterministic trend
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variables. And the representation helps to demonstrate the effect of adding
deterministic trends or trend breaks to regressions in which unit root tests are
conducted;

(ii) The KL representation reveals that traditional warnings of spurious regressions
as uniformly harmful is unjustified. For example, as recovered in its KL rep-
resentation, an integrated process can be perfectly modelled by trend basis
functions. This relation, which in traditional theory is viewed as a spurious
regression, turns out to be extremely useful in the efficient estimation of the
cointegrated systems as discussed in Section 12.5.

(iii) Trend basis functions may be used to fit stationary processes, leading to a novel
LRV estimation method that is simple and effective because of the natural focus
on long-run behavior in the trend basis. The resulting series LRV estimate is
automatically positive definite and is extremely easy to compute. Moreover, t-
ratio and Wald-type test statistics constructed using the series LRV estimate
are found to have standard limit distributions under both fixed-K and large-K
asymptotics. These features make the use of series LRV estimation attractive for
practical work in econometrics, as discussed in Section 12.7.

There are many potential research directions that seem worthy of future research.
We mention some of these possibilities in what follows.

First, KL representations of nondegenerate or full-rank stochastic processes7are
discussed in this chapter. It would be interesting to study KL forms of vector
processes that are of deficient rank, such as multiple time series that are cointe-
grated. Phillips (2005a) gives some discussion of this idea and introduces the concept
of coordinate cointegration in this context, which subsumes the usual cointegra-
tion concept. In this context, trend basis functions may be useful in testing for
co-movement and efficient estimation of co-moving systems when system rank is
unknown.

Second, trend basis representations of different stochastic processes differ. Such dif-
ferences may be used to test if observed data are compatible with a certain class of
stochastic processes. For example, one may be interested in testing a BM null against
an O-U process alternative. From Section 12.2, we know that BM has the following KL
representation:

B(t) =
√

2
∞∑

k=1

sin[(k − 1/2)π t]

(k − 1/2)π
ξω,k , (12.71)

where ξω,j are i.i.d. N(0,ω2) and ω2 is the variance of B(·). Using the above represen-
tation and the expression in (12.22), we obtain the following alternate representation
of an O-U process (cf. Phillips (1998)):

Jc (t) =
√

2
∞∑

k=1

ξω,k

(k − 1/2)π

{
sin[(k − 1/2)π t] + c

∫ t

0
e(t−s)c sin[(k − 1/2)π s]ds

}
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=
√

2
∞∑

k=1

ξω,k

(k − 1/2)2π2 + c2

{
cect − c cos[(k − 1/2)π t]

+(k − 1/2)π sin[(k − 1/2)π t]}. (12.72)

If the data {Xt } are projected on the trend IVs
{

sin
[(

k − 1
2

)
π t
n

]
, cos

[(
k − 1

2

)
π t
n

]
:

k ≤ K}, then under the null, the projection will reproduce the representation in (12.71)
when K → ∞. However, under the alternative, as is apparent from (12.72), the projec-
tion has an asymptotic form that is very different from (12.71) and includes the cosine
and exponential functions. It is of interest to see if significance tests on the coefficients
in this regression can usefully discriminate integrated and locally integrated processes
that have BM and O-U process limits after standardization.

Third, although trend basis functions are effective in modeling integrated processes
and can be used to efficiently estimate cointegration systems, in finite samples it is not
clear how many trend basis functions should be used. From the KL representation of
BM in (12.71), it is apparent that the trend IVs {√2 sin[(k − 1/2)π t]}k have a natural

ordering according to the variances of their random coefficients { ξω,k
(k−1/2)π }∞k=1. This

ordering is useful in itself for selecting trend IVs, but it would also be useful to calculate
the asymptotic mean square error (AMSE) of the trend IV estimate. Then an optimal
IV selection criterion could be based on minimizing the empirical AMSE. However,
calculation of the AMSE is complicated by the mixed normal limit theory of trend IV
estimates and the presence of functional limits in the first-order asymptotics, so explicit
formulae are not presently available.

In other recent work, Liao and Phillips (2011) propose to select trend IVs using
Lasso penalized estimation. In particular, in the notation of Section 12.6 of the present
chapter, trend IVs can be selected by means of the following penalized LS regression:

min
�∈RK×2mx

‖Zn −�K�‖2 + nλn

K∑
k=1

‖�k‖, (12.73)

where Z ′
n = [n− 1

2 X1, . . . , n− 1
2 Xn], �k denotes the kth row (k = 1, . . . , K) of the K ×

mx coefficient matrix � and λn is a tuning parameter. The coefficient vector �k is
related to the kth trend IV ϕk(·); and if �k is estimated as zero, then the kth trend IV
ϕk(·) would not be used as an instrument for the “endogenous” variable Z . The tuning
parameter λn determines the magnitude of the shrinkage effect on the estimator of
�k. The larger the tuning parameter λn, the larger the shrinkage effect will be, leading
to more zero coefficient estimates in �k. In consequence, the problem of trend IV
selection becomes a problem of selecting the tuning parameter λn. Liao and Phillips
(2011) provide data-driven tuning parameters in the penalty function, making Lasso
IV selection fully adaptive for empirical implementation.

Fourth, as noted in Phillips (2005a), the KL representation, when restricted to a
subinterval of [0, 1] such as [0, r] (r ∈ (0, 1)), is useful in studying the evolution of a
trend process over time. For example, the KL representation of BM on [0, r] has the
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following form

B(s) =
∞∑

k=1

ϕk

( s

r

)
ηk(r) for any s ∈ [0, r], (12.74)

where ηk(r) = r−1
∫ r

0 B(s)ϕk
( s

r

)
ds. It follows that B(r) =∑∞

k=1ϕk(1)ηk(r), where B(r)
and ηk(r) are both measurable with respect to the natural filtration Fr of the BM B(·).
The process ηk(r) describes the evolution over time of the coefficient of the coordinate
basis ϕk(·). The evolution of these trend coordinates can be estimated by recursively
regressing the sample data on the functions ϕk(·), and the resulting estimates deliver
direct information on how individual trend coordinates have evolved over time.

The restricted KL representation in (12.74) may also be used for forecasting. In par-
ticular, setting s = r in (12.74), the optimal predictor of B(r) given Fp and coordinates
up to K is

E
[

B(r)|Fp, K
]=

K∑
k=1

ϕk(1)E
[
ηk(r)|Fp

]
. (12.75)

By the definition of ηk(·) and using explicit formulae for ϕk , the conditional expecta-
tion in (12.75) can be written as

E
[
ηk(r)|Fp

]= 1

r

∫ p

0
B(s)ϕk

( s

r

)
ds + B(p)

√
2cos

[
(k − 1/2)πp

r

]
(k − 1/2)π

. (12.76)

Summing over k = 1, . . . , K , we get

E
[

B(r)|Fp, K
]=

K∑
k=1

ϕk(1)

[
1

r

∫ p

0
B(s)ϕk

( s

r

)
ds +

√
2 cos

[(
k − 1

2

)πp
r

]
B(p)(

k − 1
2

)
π

]
.

(12.77)
Let N = [np] and N + h = [nr] so that (12.76) and (12.77) effectively provide h-step
ahead optimal predictors of these components. E

[
ηk(r)|Fp

]
may be estimated from

sample data by

η̂k(r|p) =
N∑

t=1

Xt/
√

n

N + h
ϕk(

t

N + h
) +

√
2 cos

[
(k − 1/2) πN

N+h

]
XN/

√
n

(k − 1/2)π
,

which leads to the following h-step ahead predictor of the trend in the data:

X̂N+h,N =
K∑

k=1

ϕk(1)

⎡⎣ N∑
t=1

Xt

N + h
ϕk(

t

N + h
) +

√
2cos

[
(k − 1/2) πN

N+h

]
XN

(k − 1/2)π

⎤⎦.

As pointed out in Phillips (2005a), this forecasting approach can be pursued further
to construct formulae for trend components and trend predictors corresponding to
a variety of long-run models for the data. Such formulae enable trend analysis and
prediction in a way that captures the main features of the trend for K small and which
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can be related back to specific long-term predictive models for large K . The approach
therefore helps to provide a foundation for studying trends in a general way, covering
most of the trend models that are presently used for economic data.

Finally, in general semiparametric and nonparametric models, the series-based LRV
estimation method described earlier also requires a selection procedure to determine
the number of the trend basis functions. The test-optimal procedures proposed in Sun
(2011, 2013) may be generalized to semiparametric and nonparametric models. More-
over, current applications of series LRV estimation methods involve semiparametric
or nonparametric models of stationary data. It is of interest to extend this work on
series LRV estimation and associated inference procedures to econometric models with
nonstationary data.

12.9. Appendix
.............................................................................................................................................................................

Proof of Lemma 12.1. The proof of this lemma is included for completeness. The
symmetry of γ (·, ·) follows by its definition. To show continuity, note that for any
to, so, t1, s1 ∈ [a, b], by the triangle and Hölder inequalities we have

|γ (t1, s1) − γ (to, so)| = |E[X(s1)X(t1)] − E[X(so)X(to)]|
≤ ‖X(t1)‖‖X(s1) − X(so)‖ +‖X(so)‖‖X(t1) − X(to)‖,

which together with the q.m. continuity of X(·) implies that

|γ (t1, s1) − γ (to, so)| → 0 (12.78)

for any to, so, t1, s1 ∈ [a, b] such that t1 → to and s1 → so. The convergence in (12.78)
implies that γ (·, ·) is a continuous function on [a, b] × [a, b] with |γ (a, a)| < ∞ and
|γ (b, b)| <∞. As a result, we get the following condition:

max
t∈[a,b]

|γ (t , t)|<∞. (12.79)

Furthermore, we see that for any g ∈ L2[a, b] we obtain∫ b

a

∫ b

a
g(t)γ (t , s)g(s) dsdt =

∫ b

a

∫ b

a
E
[
g(t)X(t)g(s)X(s)

]
dsdt

= E

[∫ b

a
g(t)X(t)

∫ b

a
g(s)X(s)dsdt

]

= E

⎡⎣(∫ b

a
g(t)X(t)dt

)2
⎤⎦≥ 0, (12.80)

where the second equality is by (12.79) and Fubini’s Theorem. �
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Proof of Theorem 12.1. The proof of this theorem is included for completeness. Let

Zk ≡ ∫ b
a X(t)ϕk(t)dt . Then it is clear that

E[Zk] = E

[∫ b

a
X(t)ϕk(t)dt

]
=
∫ b

a
E[X(t)]ϕk(t)dt = 0 (12.81)

and

E[ZkZk′] = E

[∫ b

a

∫ b

a
X(s)X(t)ϕk(t)ϕk′(s)dsdt

]

=
∫ b

a

∫ b

a
γ (s, t)ϕk(t)ϕk′(s)dsdt

= λk

∫ b

a
ϕk(t)ϕk′(t)dt = λkδkk′ , (12.82)

and moreover

E[ZkX(t)] = E

[
X(t)

∫ b

a
X(t)ϕk(t)dt

]
=
∫ b

a
γ (t , s)ϕk(s)dt = λkϕk(t), (12.83)

for any k, k′ ∈Z+. Note that the uniform bound of γ (·, ·) and Fubini’s theorem ensure
that we can exchange the integration and expectation in (12.81)–(12.83). Let M be
some positive integer, then by definition, (12.83), and uniform convergence in (12.9),
we deduce that∥∥∥∥X(t) −

∑M

k=1
Zkϕk(t)

∥∥∥∥2

= γ (t , t) − 2
∑M

k=1
ϕk(t)E[ZkX(t)] +

∑M

k=1
λkϕ

2
k (t)

= γ (t , t) −
∑M

k=1
λkϕ

2
k (t)

=
∑θ

k=M+1
λkϕ

2
k (t) → 0, as M → ∞ (12.84)

uniformly over t ∈ [a, b], which proves sufficiency. Next suppose that X(t) has the
following representation

X(t) =
∞∑

k=1

α
1
2
k ξ

∗
k gk(t) with E

[
ξ∗

k ξ
∗
k′
]=

∫ b

a
gk(t)gk′(t)dt = δkk′ .

Then by definition we have

γ (s, t) = E

⎡⎣ ∞∑
j=1

α
1
2
k ξ

∗
k gk(s)

∞∑
j=1

α
1
2
k ξ

∗
k gk(t)

⎤⎦
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=
∞∑

j=1

∞∑
k=1

α
1
2
j α

1
2
k gj(s)gk(t)δjk

=
∞∑

k=1

αkgk(s)gk(t).

Hence for any k ∈ Z+ we obtain∫ b

a
γ (t , s)gk(s) dt =

∫ b

a

[∑∞
j=1

αjgj(t)gj(s)gk(s)

]
ds =

∞∑
j=1

αjgj(t)δjk = αkgk(t),

which implies that
{(
αk, gk

)}∞
k=1 are the eigenvalues and orthonormal eigenfunctions

of the kernel function γ (·, ·). This proves necessity. �

Proof of Lemma 12.3. First, note that

n(̂AK ,n − Ao) =
1
n U ′

y·xR�X ,K X
1

n2 X ′R�X ,K X
.

We next establish the asymptotic distributions of related quantities in the above
expression.

X ′PK X

n2
= X ′�K

(
�′

K�K
)−1

�′
K X

n2

=
∑n

t=1 Xt�K ( t
n )

n
3
2

(∑n
t=1�

′
K ( t

n )�K ( t
n )

n

)−1∑n
t=1 Xt�

′
K ( t

n )

n
3
2

→d

[∫ 1

0
Bx(r)�K (r)dr

][∫ 1

0
Bx(r)�′

K (r)dr

]
d=

K∑
k=1

[∫ 1

0
Bx(r)ϕk(r)dr

]2
d=

K∑
k=1

ξ 2
x,k . (12.85)

�X ′PK�X = �X ′�K
(
�′

K�K
)−1

�′
K�X

=
∑n

t=1�Xt�K ( t
n )

n
1
2

(∑n
t=1�

′
K ( t

n )�K ( t
n )

n

)−1∑n
t=1�Xt�

′
K ( t

n )

n
1
2

→d

[∫ 1

0
�K (r)dBx(r)

][∫ 1

0
�′

K (r)dBx(r)

]
d=

K∑
k=1

[∫ 1

0
ϕk(r)dBx(r)

]2
d=

K∑
k=1

η2
x,k . (12.86)
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X ′PK�X

n
= X ′�K

(
�′

K�K
)−1

�′
K�X

n

=
∑n

t=1 Xt�K ( t
n )

n
3
2

(∑n
t=1�

′
K ( t

n )�K ( t
n )

n

)−1∑n
t=1�Xt�

′
K ( t

n )

n
1
2

→d

[∫ 1

0
Bx(r)�K (r)dr

][∫ 1

0
�′

K (r)dBx(r)

]
d=

K∑
k=1

∫ 1

0
Bx(r)ϕk(r)dr

∫ 1

0
ϕk(r)dBx(r)

d=
K∑

k=1

ξx,kηx,k . (12.87)

The results in (12.85), (12.86) and (12.87) imply that

X ′R�X ,K X

n2
= X ′PK X

n2
− X ′PK�X

n

(
�X ′PK�X

)−1�X ′PK X

n

→d

K∑
k=1

λkξ
2
x,k −

[∑K
k=1 ξx,kηx,k

]2

∑K
k=1η

2
x,k

. (12.88)

Next, note that

U ′
y·xPK X

n
= U ′

y·x�K
(
�′

K�K
)−1

�′
K X

n

=
∑n

t=1 uy·x,t�K ( t
n )

n
1
2

(∑n
t=1�

′
K ( t

n )�K ( t
n )

n

)−1∑n
t=1 Xt�

′
K ( t

n )

n
3
2

→d

[∫ 1

0
�K (r)dBy·x(r)

]′[∫ 1

0
�′

K (r)Bx(r)dr

]
d=

K∑
k=1

ξx,kηy·x,k (12.89)

and

U ′
y·xPK�X = U ′

y·x�K
(
�′

K�K
)−1

�′
K�X

=
∑n

t=1 uy·x,t�K ( t
n )

n
1
2

(∑n
t=1�

′
K ( t

n )�K ( t
n )

n

)−1∑n
t=1�Xt�

′
K ( t

n )

n
1
2

→d

[∫ 1

0
�K (r)dBy·x(r)

][∫ 1

0
�′

K (r)dBx(r)

]
d=

K∑
k=1

ηx,kηy·x,k . (12.90)
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The results in (12.86), (12.87), (12.88), (12.89), and (12.90) imply that

U ′
y·xR�X ,K X

n
= U ′

y·xPK X

n
− U ′

y·xPK�X
(
�X ′PK�X

)−1�X ′PK X

n

→d

K∑
k=1

ξx,kηy·x,k −
∑K

k=1ηx,kηy·x,k
∑K

k=1 ξx,kηx,k∑K
k=1η

2
x,k

. (12.91)

The result in (12.45) follows directly by (12.88) and (12.91).
For the second result, note that

B̂K ,n = Bo + U ′
y·xRX ,K�X

�X ′RX ,K�X
.

The asymptotic distributions of the quantities in the above expression are obtained as
follows. Under (12.85), (12.86) and (12.87), we have

�X ′RX ,K�X =�X ′PK�X − �X ′PK X

n

(
X ′PK X

n2

)−1 X ′PK�X

n

→d

K∑
k=1

η2
x,k −

[∑K
k=1 ξx,kηx,k

]2

∑K
k=1 ξ

2
x,k

. (12.92)

Similarly, under (12.85), (12.89) and (12.90), we have

U ′
y·xRX ,K�X = U ′

y·xPK�X − U ′
y·xPK X

n

(
X ′PK X

n2

)−1 X ′PK�X

n

→d

K∑
k=1

ηx,kηy·x,k −
∑K

k=1 ξx,kηy·x,k
∑K

k=1 ξx,kηx,k∑K
k=1 ξ

2
x,k

. (12.93)

The result in (12.45) follows directly by (12.92) and (12.93). �

Proof of Lemma 12.4. By (12.63) and the continuous mapping theorem (CMT), we
obtain

ω2
K ,n →d

ω2∑K
k=1

[
1
ω

∫ 1
0 φk(r)dBω(r)

]2

K
d= ω2

K
χ2(K), (12.94)

where the equivalence in distribution follows from the fact that 1
ω

∫ 1
0 φk(r)dBω(r) is a

standard normal random variable for any k and is independent of 1
ω

∫ 1
0 φk′(r)dBω(r)

for any k 
= k′. From (12.62), (12.94), and the CMT, we deduce that

tK ,n = Bn(1)√
ω2

K ,n

→d
Bω(1)/ω√
χ2(K)/K

d= tK , (12.95)
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where the equivalence in distribution follows by definition of the Student t and the fact
that Bω(1) is independent of

∫ 1
0 φk′(r)dBω(r) for any k. �

Proof of Lemma 12.5. First note that we can rewrite

n− 1
2

n∑
t=1

φk(
t

n
)m(Zt , θ̂n)

= n− 1
2

n∑
t=1

φk(
t

n
)m(Zt ,θ0) + n− 1

2

n∑
t=1

φk(
t

n
)E
[
m(Zt , θ̂n) − m(Zt ,θ0)

]
+n− 1

2

n∑
t=1

φk(
t

n
)
{

m(Zt , θ̂n) − m(Zt ,θ0) − E
[
m(Zt , θ̂n) − m(Zt ,θ0)

]}
.

(12.96)

By Assumption 12.8.(i), (ii) and
∫ 1

0 φk(r)dr = 0, we have

n− 1
2

n∑
t=1

φk(
t

n
)E
[
m(Zt , θ̂n) − m(Zt ,θ0)

]= 1

n

n∑
t=1

φk(
t

n
)Op(1) = op(1). (12.97)

Hence, using the results in (12.96), (12.97) and Assumption 12.8.(iii)–(iv), we deduce
that

n− 1
2

n∑
t=1

φk(
t

n
)m(Zt , θ̂n) = n− 1

2

n∑
t=1

φk(
t

n
)m(Zt ,θ0) + op(1)

→ d

∫
φk(r)dBm(r) ≡ ξk . (12.98)

Under Assumption 12.8.(i), (ii), and (v), we get

√
nV− 1

2 (θo)M+,n(θ̂n)(θ̂n − θo) →d N(0, Idθ )
d= ξ0. (12.99)

Using the results in (12.98), (12.99) and the CMT, we deduce that

dθ�n =
[

V − 1
2 (θo)M+,n(θ̂n)

√
n(θ̂n − θo)

]′

×
{

1

K

K∑
k=1

[
1

n
V− 1

2 (θo)�k,n�
′
k,nV− 1

2 (θo)

]}−1

×
[

V − 1
2 (θo)M+,n(θ̂n)

√
n(θ̂n − θo)

]
→d ξ ′

0

(
1

K

K∑
k=1

ξkξ
′
k

)−1

ξ0,
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which has Hotelling’s T2-distribution. Using the relation between the T 2-distribution
and �-distribution, we get

K − dθ + 1

K
�n →d �dθ ,K−dθ+1,

which finishes the argument. �

Notes

† Our thanks to the referee and editors for helpful comments on the original version of this
paper.

1. The Hilbert space generated by the stochastic process {Xt }t∈T is the completion of the
space defined as the linear span of any finite elements Xt1 , . . . ,Xtn , where tk ∈ T , k =
1, . . . ,n and n = 1,2, . . ..

2. Similarly, the series representation of a continuous function may not converge pointwise
unless the function has right and left derivatives at that point.

3. The specific orthonormal representation of BM given in (12.16) can of course be used
here. But we use the representation in (12.12) to make the results of this section applicable
to general basis functions.

4. The divergent behavior of the t-statistics might be thought to be a consequence of the use
of OLS standard errors based on n−1∑n

i=1 û2
t ,K which do not take account of serial depen-

dence in the residuals. However, Phillips (1998) confirmed that divergence at a reduced
rate continues to apply when HAC standard errors are used (employing an estimate of the
long-run variance (LRV)). On the other hand, if HAR estimates rather than HAC esti-
mates are used (for example, a series LRV estimate with fixed number of basis functions,
see Section 12.7 for details), the t-statistics no longer diverge in general. Theorem 12.2
simply illustrates the spurious regression phenomenon when standard testing procedures
based on OLS are employed.

5. The trend IV estimate is related to the spectral regression estimates proposed in Phillips
(1991b), although those estimates are formulated in the frequency domain. Spectral
regression first transfers the cointegration system (12.40) and (12.41) to frequency
domain ordinates and then estimates Ao by GLS regression. The spectral transfor-
mation projects the whole model on the deterministic function exp(iλt) at different
frequencies λ ∈ R, which helps to orthogonalize the projections at different frequen-
cies. However, optimal weights constructed using the empirical spectral density are
used in this procedure. Phillips (1991b) also gives a narrow band spectral estimation
procedure that uses frequency ordinates in the neighborhood of the origin. Trend IV
estimation only projects the (endogenous) regressors on the deterministic functions
(trend IVs) and does not need optimal weighting to achieve efficiency. It is more
closely related to the narrow band procedure but does not involve frequency domain
techniques.

6. For any m × m matrix �, we order the eigenvalues of � in decreasing order by their
moduli, that is, |φ1(�)| ≥ |φ2(�)| ≥ · · · ≥ |φm(�)|. For complex conjugate eigenvalues,
we order the eigenvalue a positive imaginary part before the other.
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7. A full-rank or nondegenerate process refers to a random sequence that upon scaling satis-
fies a functional law with a nondegenerate limit process, such as a Brownian motion with
positive definite variance matrix.
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IDENTIFICATION, ESTIMATION,
AND SPECIFICATION IN A CLASS

OF SEMILINEAR TIME
SERIES MODELS

........................................................................................................

jiti gao

13.1. Introduction
.............................................................................................................................................................................

Consider a class of semilinear (semiparametric) time series models of the form

yt = xτt β + g(xt ) + et , t = 1, 2, . . . , n, (13.1)

where {xt } is a vector of time series regressors, β is a vector of unknown parameters,
g(·) is an unknown function defined on Rd , {et } is a sequence of martingale differences,
and n is the number of observations. This chapter mainly focuses on the case of 1 ≤
d ≤ 2. As discussed in Section 13.2.2 below, for the case of d ≥ 3, one may replace g(xt )
by a semiparametric single-index form g(xτt β).

Various semiparametric regression models have been proposed and discussed exten-
sively in recent years. Primary interest focuses on general nonparametric and semi-
parametric time series models under stationarity assumption. Recent studies include
Tong (1990), Fan and Gijbels (1996), Härdle, Liang, and Gao (2000), Fan and Yao
(2003), Gao (2007), Li and Racine (2007), and Teräsvirta, Tjøstheim, and Granger
(2010), as well as the references therein. Meanwhile, model estimation and selection
as well as model specification problems have been discussed for one specific class of
semiparametric regression models of the form

yt = xτt β +ψ(vt ) + et , (13.2)
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where ψ(·) is an unknown function and {vt} is a vector of time series regressors such
that � = E

[
(xt − E[xt |vt ])(xt − E[xt |vt])

τ
]

is positive definite. As discussed in the lit-
erature (see, for example, Robinson (1988), Chapter 6 of Härdle, Liang, and Gao
(2000), Gao (2007), and Li and Racine (2007)), a number of estimation and spec-
ification problems have already been studied for the case where both xt and vt are
stationary and the covariance matrix � is positive definite. In recent years, attempts
have also been made to address some estimation and specification testing problems for
model (13.2) for the case where xt and vt may be stochastically nonstationary (see, for
example, Juhl and Xiao (2005), Chen, Gao, and Li (2012), Gao and Phillips (2011)).

The focus of our discussion in this chapter is on model (13.1). Model (13.1) has
different types of motivations and applications from the conventional semiparamet-
ric time series model of the form (13.2). In model (13.1), the linear component in
many cases plays the leading role while the nonparametric component behaves like
a type of unknown departure from the classic linear model. Since such departure is
usually unknown, it is not unreasonable to treat g(·) as a nonparametrically unknown
function. In recent literature, Glad (1998), Martins–Filho, Mishra and Ullah (2008),
Fan, Wu, and Feng (2009), Mishra, Su, and Ullah (2010), Long, Su, and Ullah
(2011), and others have discussed the issue of reducing estimation biases through
using a potentially misspecified parametric form in the first step rather than simply
nonparametrically estimating the conditional mean function m(x) = E[yt |xt = x].
By comparison, we are interested in such cases where the conditional mean func-
tion m(x) may be approximated by a parametric function of the form f (x,β). In this
case, the remaining nonparametric component g(x) = m(x) − f (x,β) may be treated
as an unknown departure function in our discussion for both estimation and specifi-
cation testing. In the case of model specification testing, we treat model (13.1) as an
alternative when there is not enough evidence to suggest accepting a parametric true
model of the form yt = xτt β + et . In addition, model (13.1) will also be motivated
as a model to address some endogenous problems involved in a class of linear mod-
els of the form yt = xτt β + εt , where {εt } is a sequence of errors with E[εt ] = 0 but
E[εt |xt ] 
= 0. In the process of estimating both β and g(·) consistently, existing meth-
ods, as discussed in the literature by Robinson (1988), Härdle, Liang, and Gao (2000),
Gao (2007), and Li and Racine (2007) for example, are not valid and directly appli-
cable because � = E

[
(xt − E[xt |xt ])(xt − E[xt |xt ])τ

] = 0. The main contribution of
this chapter is summarized as follows. We discuss some recent developments for the
stationary time series case of model (13.1) in Section 13.2 below. Sections 13.3 and
13.4 establish some new theory for model (13.1) for the integrated time series case and
a nonstationary autoregressive time series case, respectively. Section 13.5 discusses the
general case where yt = f (xt ,β) + g(xt) + et .

The organization of this chapter is summarized as follows. Section 13.2 discusses
model (13.1) for the case where {xt } is a vector of stationary time series regressors.
Section 13.2 also proposes an alternative model to model (13.1) for the case where
d ≥ 3. The case where {xt } is a vector of nonstationary time series regressors is discussed
in Section 13.3. Section 13.4 considers an autoregressive case of d = 1 and xt = yt−1
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and then establishes some new theory. Section 13.5 discusses some extensions and then
gives some examples to show why the proposed models are relevant and how to imple-
ment the proposed theory and estimation method in practice. This chapter concludes
with some remarks in Section 13.6.

13.2. Stationary Models
.............................................................................................................................................................................

Note that the symbol “=⇒D” denotes weak convergence, the symbol “→D” denotes
convergence in distribution, and “→P” denotes convergence in probability.

In this section, we give some review about the development of model (13.1) for the
case where {xt } is a vector of stationary time series regressors. Some identification and
estimation issues are then reviewed and discussed. Section 13.2.1 discusses the case of
1 ≤ d ≤ 2, while Section 13.2.2 suggests using both additive and single–index models
to deal with the case of d ≥ 3.

13.2.1. Case of 1 ≤ d ≤ 2

While the literature may mainly focus on model (13.2), model (13.1) itself has its own
motivations and applications. As a matter of fact, there is also a long history about the
study of model (13.1). Owen (1991) considers model (13.1) for the case where {xt }
is a vector of independent regressors and then treats g(·) as a misspecification error
before an empirical likelihood estimation method is proposed. Gao (1992) systemati-
cally discusses model (13.1) for the case where {xt } is a vector of independent regressors
and then considers both model estimation and specification issues. Before we start our
discussion, we introduce an identifiability condition of the form in Assumption 13.1.

Assumption 13.1.

(i) Let g(·) be an integrable function such that
∫ ||x||i∣∣g(x)

∣∣idF(x) <∞ for i = 1, 2
and

∫
xg(x)dF(x) = 0, where F(x) is the cumulative distribution function of

{xt } and || · || denotes the conventional Euclidean norm.
(ii) For any vector γ , minγ E

[
g(x1) − xτ1γ

]2
> 0.

Note that Assumption 13.1 implies the identifiability conditions. In addition,
Assumption 13.1(ii) is imposed to exclude any cases where g(x) is a linear function
of x. Under Assumption 13.1, parameter β is identifiable and chosen such that

E
[
yt − xτt β

]2
is minimized over β , (13.3)

which implies β = (
E
[
x1xτ1

])−1
E
[
x1y1

]
, provided that the inverse matrix does exist.

Note that the definition of β = (
E
[
x1xτ1

])−1
E
[
x1y1

]
implies

∫
xg(x)dF(x) = 0, and vice
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versa. As a consequence, β may be estimated by the ordinary least squares estimator of
the form

β̂ =
(

n∑
t=1

xtx
τ
t

)−1( n∑
t=1

xt yt

)
. (13.4)

Gao (1992) then establishes an asymptotic theory for β̂ and a nonparametric
estimator of g(·) of the form

ĝ(x) =
n∑

t=1

wnt (x)
(
yt − xτt β̂

)
, (13.5)

where wnt (x) is a probability weight function and is commonly chosen as wnt(x) =
K
(

xt −x
h

)
∑n

s=1 K
( xs−x

h

) , in which K(·) and h are the probability kernel function and the band-

width parameter, respectively.
As a result of such an estimation procedure, one may be able to determine whether

g(·) is small enough to be negligible. A further testing procedure may be used to test
whether the null hypothesis H0 : g(·) = 0 may not be rejected. Gao (1995) proposes a
simple test and then shows that under H0,

L̂1n =
√

n

σ̂1

(
1

n

n∑
t=1

(
yt − xτt β̂

)2 − σ̂ 2
0

)
→D N(0, 1), (13.6)

where σ̂ 2
1 = 1

n

∑n
t=1

(
yt − xτt β̂

)4 − σ̂ 4
0 and σ̂ 2

0 = 1
n

∑n
t=1

(
yt − xτt β̂

)2
are consistent

estimators of σ 2
1 = E[e4

1] − σ 4
0 and σ 2

0 = E[e2
1], respectively.

In recent years, model (13.1) has been commonly used as a semiparametric alterna-
tive to a simple parametric linear model when there is not enough evidence to suggest
accepting the simple linear model. In such cases, interest is mainly on establishing
an asymptotic distribution of the test statistic under the null hypothesis. Alternative
models are mainly used in small sample simulation studies when evaluating the power
performance of the proposed test. There are some exceptions that further interest is
in estimating the g(·) function involved before establishing a closed–form expression
of the power function and then studying its large-sample and small-sample properties
(see, for example, Gao (2007) and Gao and Gijbels (2008)). Even in such cases, estima-
tion of g(·) becomes a secondary issue. Therefore, there has been no primary need to
rigorously deal with such an estimation issue under suitable identifiability conditions
similar to Assumption 13.1.

To state some general results for β̂ and ĝ(·), we introduce the following conditions.

Assumption 13.2.

(i) Let (xt , et ) be a vector of stationary and α-mixing time series with mixing coef-

ficient α(k) satisfying
∑∞

k=1α
δ

2+δ (k) <∞ for some δ > 0, where δ > 0 is chosen
such that E

[|x1ε1|2+δ
]
<∞, in which εt = et + g(xt ).
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(ii) Let E[e1|x1] = 0 and E[e2
1 |x1] = σ 2

e <∞ almost surely. Let also �11 = E
[
x1xτ1

]
be a positive definite matrix.

(iii) Let p(x) be the marginal density of x1. The first derivative of p(x) is continuous
in x.

(iv) The probability kernel function K(·) is a continuous and symmetric function
with compact support.

(v) The bandwidth h satisfies limn→∞ h = 0, limn→∞ nhd = ∞, and
lim supn→∞ nhd+4 <∞.

Assumption 13.2 is a set of conditions similar to what has been used in the litera-
ture (such as Gao (2007), Li and Racine (2007), and Gao and Gijbels (2008)). As a
consequence, its suitability may be verified similarly.

We now state the following proposition.

Proposition 13.1.

(i) Let Assumptions 13.1 and 13.2 hold. Then as n → ∞ we obtain

√
n
(
β̂ −β

)→D N
(

0,�1ε�
−2
11

)
, (13.7)

where �1ε = E
[
x1xτ1 ε

2
1

]+ 2
∑∞

t=2 E
[
ε1εt x1xτt

]
.

(ii) If, in addition, the first two derivatives of g(x) are continuous, then we have as
n → ∞ √

nhd
(̂
g(x) − g(x) − cn

)→D N
(

0,σ 2
g (x)

)
(13.8)

at such x that p(x) > 0, where cn = h2(1+o(1))
2

(
g ′′(x) + 2g ′(x)p′(x)

p(x)

)∫
uτuK(u) du

and σ 2
g (x) =

∫
K 2(u) du

p(x) , in which p(x) is the marginal density of x1.

The proof of Proposition 13.1 is relatively straightforward using existing results for
central limit theorems for partial sums of stationary and α-mixing time series (see, for
example, Fan and Yao (2003)). Obviously, one may use a local-linear kernel weight
function to replace wnt (x) in order to correct the bias term involved in cn. Since such
details are not essential to the primary interest of the discussion of this kind of problem,
we omit such details here.

Furthermore, in a recent paper by Chen, Gao, and Li (2011), the authors consider
an extended case of model (13.3) of the form

yt = f (xτt β) + g(xt ) + et with xt = λt + ut , (13.9)

where f (·) is parametrically known, {λt } is an unknown deterministic function of t ,
and {ut} is a sequence of independent errors. In addition, g(·) is allowed to be a
sequence of functions of the form gn(·) in order to directly link model (13.9) with
a sequence of local alternative functions under an alternative hypothesis as has been
widely discussed in the literature (see, for example, Gao (2007) and Gao, and Gijbels
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(2008)). By the way, the finite-sample results presented in Chen, Gao, and Li (2011)
further confirm that the pair (β̂ , ĝ(·)) has better performance than a semiparametric
weighted least squares (SWLS) estimation method proposed for model (13.2), since
the so-called “SWLS” estimation method, as pointed out before, is not theoretically
sound for model (13.1). Obviously, there are certain limitations with the paper by
Chen, Gao, and Li (2011), and further discussion may be needed to fully take issues
related to endogeneity and stationarity into account.

As also briefly mentioned in the introduction, model (13.1) may be motivated as
a model to address a kind of “weak” endogenous problem. Consider a simple linear
model of the form

yt = xτt β + εt with E[εt |xt ] 
= 0, (13.10)

where {εt } is a sequence of stationary errors.
Let g(x) = E[εt |xt = x]. Since {εt } is unobservable, it may not be unreasonable

to assume that the functional form of g(·) is unknown. Meanwhile, empirical evi-
dence broadly supports either full linearity or semilinearity. It is therefore that one may
assume that g(·) satisfies Assumption 13.1. Let et = εt − E[εt |xt ]. In this case, model
(13.10) can be rewritten as model (13.1) with E[et |xt ] = 0. In this case, g(xt ) may be
used as an ‘instrumental variable’ to address a ‘weak’ endogeneity problem involved in
model (13.10). As a consequence, β can be consistently estimated by β̂ under Assump-
tion 13.1 and the so–called “instrumental variable” g(xt ) may be asymptotically ‘found’
by ĝ(xt ).

13.2.2. Case of d ≥ 3

As discussed in the literature (see, for example, Chapter 7 of Fan and Gijbels (1996)
and Chapter 2 of Gao (2007)), one may need to encounter the so–called “the
curse of dimensionality” when estimating high-dimensional (with the dimensionality
d ≥ 3) functions. We therefore propose using a semiparametric single-index model of
the form

yt = xτt β + g
(
xτt β

)+ et (13.11)

as an alternative to model (13.1). To be able to identify and estimate model (13.11),
Assumption 13.1 will need to be modified as follows.

Assumption 13.3.

(i) Let g(·) be an integrable function such that
∫ ||x||i∣∣g(xτ β0)

∣∣idF(x) < ∞ for
i = 1, 2 and

∫
xg(xτ β0)dF(x) = 0, where β0 is the true value of β and F(x) is the

cumulative distribution function of {xt }.
(ii) For any vector γ , minγ E

[
g
(
xτ1β0

)− xτ1γ
]2

> 0.
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Under Assumption 13.2, β is identifiable and estimable by β̂. The conclusions of
Proposition 13.1 still remain valid except the fact that ĝ(·) is now modified as

ĝ(u) =
∑n

t=1 K
(

xτt β̂−u
h

)
yt∑n

s=1 K
(

xτs β̂−u
h

) . (13.12)

We think that model (13.11) is a feasible alternative to model (13.1), although there
are some other alternatives. One of them is a semiparametric single-index model of the
form

yt = xτt β + g
(
xτt γ

)+ et , (13.13)

where γ is another vector of unknown parameters. As discussed in Xia, Tong, and
Li (1999), model (13.13) is a better alternative to model (13.2) than to model (13.1).
Another of them is a semiparametric additive model of the form

yt = xτt β +
d∑

j=1

gj
(
xtj
)+ et , (13.14)

where each gj(·) is an unknown and univariate function. In this case, Assumption 13.1
may be replaced by Assumption 13.4.

Assumption 13.4.

(i) Let each gj(·) satisfy max1≤j≤d
∫ ||x||i∣∣gj

(
xj
)∣∣idF(x) < ∞ for i = 1, 2 and∑d

j=1

∫
xgj

(
xj
)
dF(x) = 0, where each xj is the jth component of x =

(x1, . . . , xj, . . . , xd)τ and F(x) is the cumulative distribution function of {xt }.
(ii) For any vector γ , minγ E

[∑d
j=1 gj

(
xtj
)− xτt γ

]2
> 0, where each xtj is the jth

component of xt = (
xt1, . . . , xtj , . . . , xtd

)τ
.

Under Assumption 13.4, β is still identifiable and estimable by β̂. The estimation of
{gj(·)}, however, involves an additive estimation method, such as the marginal integra-
tion method discussed in Chapter 2 of Gao (2007). Under Assumptions 13.2 and 13.4
as well as some additional conditions, asymptotic properties may be established for the
resulting estimators of gj(·) in a way similar to Section 2.3 of Gao (2007).

We have so far discussed some issues for the case where {xt } is stationary. In order
to establish an asymptotic theory in each individual case, various conditions may be
imposed on the probabilistic structure {et }. Both our own experience and the litera-
ture show that it is relatively straightforward to establish an asymptotic theory for β̂
and ĝ(·) under either the case where {et } satisfies some martingale assumptions or the
case where {et } is a linear process. In Section 13.3 below, we provide some necessary
conditions before we establish a new asymptotic theory for the case where {xt } is a
sequence of nonstationary regressors.
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13.3. Nonstationary Models
.............................................................................................................................................................................

This section focuses on the case where {xt } is stochastically nonstationary. Since the
paper by Chen, Gao, and Li (2011) already discusses the case where nonstationarity is
driven by a deterministic trending component, this section focuses on the case where
the nonstationarity of {xt } is driven by a stochastic trending component. Due to the
limitation of existing theory, we only discuss the case of d = 1 in the nonstationary
case.

Before our discussion, we introduce some necessary conditions.

Assumption 13.5.

(i) Let g(·) be a real function on R1 = (−∞,∞) such that
∫ |x|i∣∣g(x)

∣∣idx < ∞ for
i = 1, 2 and

∫
xg(x) dx 
= 0.

(ii) In addition, let g(·) satisfy
∫ ∣∣∫ eixyyg(y)dy

∣∣dx <∞ when
∫

xg(x)dx = 0.

Note in the rest of this chapter that we refer to g(·) as a ‘small’ function if g(·) satisfies
either Assumption 13.5(i), or, Assumption 13.4(ii), or Assumption 4.2(ii) below. In
comparison with Assumption 13.1, there is no need to impose a condition similar to
Assumption 13.1(ii), since Assumption 13.5 itself already excludes the case where g(x)
is a simple linear function of x.

In addition to Assumption 13.5, we will need the following conditions.

Assumption 13.6.

(i) Let xt = xt−1 + ut with x0 = 0 and ut =∑∞
i=0ψiηt−i, where {ηt } is a sequence

of independent and identically distributed random errors with E[η1] = 0, 0 <

E[η2
1] = σ 2

η <∞ and E
[|η1|4+δ

]
< ∞ for some δ > 0, in which {ψi : i ≥ 0} is a

sequence of real numbers such that
∑∞

i=0 i2|ψi|<∞ and
∑∞

i=0ψi 
= 0. Let ϕ(·)
be the characteristic function of η1 satisfying |r|ϕ(r) → 0 as r → ∞.

(ii) Suppose that {(et ,Ft ) : t ≥ 1} is a sequence of martingale differences satisfying
E[e2

t |Ft−1] = σ 2
e > 0, a.s., and E

[
e4

t |Ft−1
]
< ∞ a.s. for all t ≥ 1. Let {xt } be

adapted to Ft−1 for t = 1, 2, . . . , n.
(iii) Let En(r) = 1√

n

∑[nr]
t=1 et and Un(r) = 1√

n

∑[nr]
t=1 ut . There is a vector Brownian

motion (E, U ) such that (En(r), Un(r)) =⇒D (E(r), U (r)) on D[0, 1]2 as n →
∞, where =⇒D stands for the weak convergence.

(iv) The probability kernel function K(·) is a bounded and symmetric function. In
addition, there is a real function �(x, y) such that, when h is small enough,∣∣g(x + hy) − g(x)

∣∣ ≤ h �(x, y) for all y and
∫

K(y)�(x, y) dy < ∞ for each
given x.

(v) The bandwidth h satisfies h → 0, nh2 → ∞ and nh6 → 0 as n → ∞.
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Similar sets of conditions have been used in Gao and Phillips (2011), Li et al. (2011),
and Chen, Gao, and Li (2012). The verification and suitability of Assumption 13.6 may
be given in a similar way to Remark A.1 of Appendix A of Li et al. (2011).

Since {xt } is nonstationary, we replace Eq. (13.3) by a sample version of the form

1

n

n∑
t=1

[
yt − xtβ

]2
is minimized over β , (13.15)

which implies β̂ = (∑n
t=1 x2

t

)−1(∑n
t=1 xt yt

)
as has been given in Eq. (13.4). A simple

expression implies

n
(
β̂ −β

)=
(

1

n2

n∑
t=1

x2
t

)−1(
1

n

n∑
t=1

xt et

)
+
(

1

n2

n∑
t=1

x2
t

)−1(
1

n

n∑
t=1

xt g(xt )

)
. (13.16)

Straightforward derivations imply as n → ∞

1

n2

n∑
t=1

x2
t = 1

n

n∑
t=1

x2
tn =⇒D

∫ 1

0
U 2(r)dr, (13.17)

1

n

n∑
t=1

xt et = 1√
n

n∑
t=1

xtnet =⇒D

∫ 1

0
U (r)dE(r), (13.18)

where xtn = xt√
n

.

In view of Eq. (13.16)–(13.18), in order to establish an asymptotic distribution for
β̂, it is expected to show that as n → ∞ we have

1

n

n∑
t=1

xt g(xt ) →P 0. (13.19)

To be able to show (13.19), we need to consider the case of
∫

xg(x)dx = 0 and the
case of

∫
xg(x)dx 
= 0 separately. In the case of

∫
xg(x)dx 
= 0, existing results (such as

Theorem 2.1 of Wang and Phillips (2009)) imply as n → ∞

1√
n

n∑
t=1

xt g(xt ) = dn

n

n∑
t=1

(dnxtn)g(dn xtn) →D LU (1, 0) ·
∫ ∞

−∞
zg(z)dz, (13.20)

where dn = √
n and LU (1, 0) is the local-time process associated with U (r). This then

implies as n → ∞

1

n

n∑
t=1

xt g(xt ) = 1√
n

· 1√
n

n∑
t=1

xtg(xt ) →P 0. (13.21)
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In the case of
∫

xg(x)dx = 0, existing results (such as Theorem 2.1 of Wang and
Phillips (2011)) also imply as n → ∞√

1√
n

n∑
t=1

xt g(xt ) =
√

dn

n

n∑
t=1

(dnxtn)g(dn xtn) →D

√
LU (1, 0) · N(0, 1)

·
√∫ ∞

−∞
z2g2(z)dz , (13.22)

where N(0, 1) is a standard normal random variable independent of LU (1, 0). This
shows that Eq. (13.19) is also valid for the case of

∫
xg(x)dx = 0.

We therefore summarize the above discussion into the following proposition.

Proposition 13.2.

(i) Let Assumptions 13.5 and 13.6(i)–(iii) hold. Then as n → ∞ we have

n
(
β̂ −β

)→D

(∫ 1

0
U 2(r)dr

)−1 ∫ 1

0
U (r)dE(r). (13.23)

(ii) If, in addition, Assumption 13.6(iv),(v) holds, then as n → ∞√√√√ n∑
t=1

K

(
xt − x

h

)(̂
g(x) − g(x)

)→D N
(

0,σ 2
g

)
, (13.24)

where σ 2
g = σ 2

e

∫
K2(u) du.

The proof of (13.23) follows from equations (13.16)–(13.22). To show (13.24), one
may be seen that

ĝ(x) − g(x) =
n∑

t=1

wnt(x)et +
n∑

t=1

wnt (x)
(
g(xt ) − g(x)

)+
n∑

t=1

wnt(x)xt
(
β − β̂

)
.

(13.25)
The first two terms may be dealt with in the same way as in existing studies (such as

the proof of Theorem 3.1 of Wang and Phillips (2009)). To deal with the third term,
one may have the following derivations:

n∑
t=1

wnt (x)xt = h ·
∑n

t=1 K
( xt −x

h

)( xt −x
h

)∑n
t=1 K

( xt −x
h

) + x = OP(1) (13.26)

by the fact that
∫

uK(u)du = 0 and an application of Theorem 2.1 of Wang and Phillips
(2011). Equations (13.25) and (13.26), along with (13.23), complete the proof of
(13.24).
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Meanwhile, as in the stationary case, model (13.1) can also be considered as an alter-
native model to a simple linear model of the form yt = xτt β + et in the nonstationary
case. A nonparametric test of the form

L̂2n =
∑n

t=1

∑n
s=1, 
=t ês K

( xt −xs
h

)
êt√

2
∑n

t=1

∑n
s=1, 
=t ê2

s K2
( xt −xs

h

)
ê2

t

(13.27)

has been proposed to test H0 : P
(
g(xt ) = 0

) = 1 and studied in recent years (see, for
example, Gao et al. (2009a); Li et al. (2011), and Wang and Phillips (2012)), where
êt = yt −xτt β̂, in which β̂ is the ordinary least squares estimator based on model (13.1)
under H0. Obviously, Assumption 13.1 is no longer needed for this kind of testing
problem.

This section has so far considered the case where {xt } is an integrated time series. In
Section 13.4, we consider an autoregressive version of model (13.1) and then discuss
stationary and nonstationary cases separately.

13.4. Nonlinear Autoregressive Models
.............................................................................................................................................................................

Consider an autoregressive version of model (13.1) of the form

yt = xτt β + g(xt ) + et , (13.28)

where xt = (
yt−1, . . . , yt−d

)τ
, and the others are the same as before.

As has been discussed in the literature (see, for example, Tong 1990; Masry and
Tjøstheim 1995; Chapter 6 of Härdle, Liang and Gao 2000), {yt } can be stochasti-
cally stationary and α-mixing when β satisfies Assumption 13.7(i) and g(·) satisfies
Assumption 13.7(ii).

Assumption 13.7.

(i) Let β = (β1, · · · ,βd)
τ satisfy yd −β1yd−1 −·· ·−βd−1y −βd 
= 0 for any |y| ≥ 1.

(ii) Let g(x) be bounded on any bounded Borel measurable set and satisfy g(x) =
o(||x||) as ||x|| → ∞.

(iii) Let {et} be a sequence of independent and identically distributed continuous
random errors with E[e1] = 0 and 0 < E[e2

1] = σ 2
e < ∞. Let {et } and {ys} be

independent for all s < t . In addition, the probability density, p(x), of e1 satisfies
infx∈Cp p(x) > 0 for all compact sets Cp.

Under Assumption 13.7, {yt} is stationary and α-mixing. Assumption 13.7(iii) is
needed, since {yt} can still be null recurrent when E[ log (1 + |et |)] = ∞ (see, for
example, Zeevi and Glynn (2004)). This, along with Assumption 13.1, implies that
the estimation of β and g(·) may be done in the same way as in Section 13.2.1 for the
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case of 1 ≤ d ≤ 2 and in Section 2.2 for the case of d ≥ 3. Therefore, discussion of
model (13.28) is relatively straightforward.

In the rest of this section, we then focus on the case where {yt} is nonstationary and
discuss about how to estimate β and g(·) consistently. To present the main ideas of
our discussion, we focus on the case of d = 1 to imply a semiparametric autoregressive
model of the form

yt = βyt−1 + g(yt−1) + et . (13.29)

While model (13.29) might look too simple, as discussed below, the study of the
nonstationarity of {yt } may not be so easy at all. This is mainly because the nonsta-
tionarity may be driven by either the case of β = 1 or the case where the functional
form of g(·) may be too ‘explosive,’ or a mixture of both. Our interest of this section
is to focus on the case where g(·) is a ‘small’ departure function and the true value of
β is β = 1. In a recent paper by Gao, Tjøstheim, and Yin (2012), the authors discuss
a threshold version of model (13.29), in which g(·) is being treated as a conventional
unknown function (not necessarily a “small” function) defined on a compact subset.

In a fashion similar to (13.15), we estimate β by minimizing

1

n

n∑
t=1

[
yt − yt−1β

]2
over β , (13.30)

which implies β̂ = (∑n
t=1 y2

t−1

)−1(∑n
t=1 yt−1yt

)
. The unknown departure function

g(·) can then be estimated by

ĝ(y) =
n∑

t=1

wnt (y)
(
yt − β̂yt−1

)
with wnt(y) = K

(
yt−1−y

h

)
∑n

s=1 K
(

ys−1−y
h

) . (13.31)

When β = 1, we have

β̂ − 1 =
(

n∑
t=1

y2
t−1

)−1( n∑
t=1

yt−1et

)
+
(

n∑
t=1

y2
t−1

)−1( n∑
t=1

yt−1g(yt−1)

)
. (13.32)

To establish an asymptotic distribution for β̂, we will need to understand the proba-
bilistic structure of {yt }. Obviously, {yt } is not integrated unless g(·) ≡ 0. Thus, existing
theory for the integrated time series case is not applicable here. We therefore impose
some specific conditions on g(·) and {et} to ensure that certain probabilistic structure
can be deduced for {yt }.
Assumption 13.8.

(i) Let Assumption 13.7(iii) hold.
(ii) Let g(y) be twice differentiable and let the second derivative of g(y) be continu-

ous in y ∈ R1 = (−∞,∞). In addition,
∫ ∣∣g(y)

∣∣iπs(dy) < ∞ for i = 1, 2, where
πs(·) is the invariant measure of {yt }.

(iii) Furthermore,
∫ ∣∣yg(y)

∣∣iπs(dy) <∞ for i = 1, 2.
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Assumption 13.8(i) is needed to show that {yt} can be a λ–null recurrent Markov
chain with λ= 1

2 . Assumption 13.8(ii) is required to ensure that the functional form of
g(·) is not too “explosive” in a fashion similar to Assumption 13.8(ii). If the functional
form of g(·) is too “explosive” in this case, the nonstationarity of {yt } may be too strong
to be controllable. Assumption 13.8(iii) imposes additional integrability conditions on
yg(y) in a way similar to Assumption 13.5(i) for the integrated case. Note that we need
not require

∫
yg(y)πs(dy) = 0 and then discuss this case specifically as in Section 13.3.

In order to establish an asymptotic theory for (β̂ , ĝ(·)), we need to introduce the
following proposition.

Proposition 13.3. Let Assumption 13.8(i), (ii) hold. Then {yt} is a λ–null recurrent
Markov chain with λ= 1

2 .

The proof of Proposition 13.3 follows similarly from that of Lemma 3.1 of Gao, Tjøs-
theim, and Yin (2013). More details about null recurrent Markov chains are available
in Karlsen and Tjøstheim (2001) and Appendix A of Gao, Tjøstheim, and Yin (2013).
Proposition 13.3 shows that {yt } is a nonstationary Markov chain, although it cannot
be an integrated time series when g(·) 
= 0. As a consequence, one may establish the
following asymptotic theory in Proposition 13.4.

Proposition 13.4.

(i) Let Assumption 13.8 hold. Then as n → ∞ we obtain

n
(
β̂ − 1

)→D

(
Q2(1) − σ 2

e

)
2
∫ 1

0 Q2(r)dr
, (13.33)

where Q(r) = σeB(r) + M 1
2
(r)μg , in which B(r) is the conventional Brownian

motion, M 1
2
(t) is the Mittag–Leffler process as defined in Karlsen and Tjøstheim

(2001, p. 388), and μg = ∫
g(y)πs(dy).

(ii) If, in addition, Assumption 13.6(iv),(v) holds, then as n → ∞ we have√√√√ n∑
t=1

K

(
yt−1 − y

h

) (̂
g(y) − g(y)

)→D N(0,σ 2
g ), (13.34)

where σ 2
g = σ 2

e

∫
K2(u)du.

The proof of Proposition 13.4 is given in Appendix A below. Note that Proposition
13.4 shows that the super rate-n of convergence is still achievable for β̂ even when {yt }
is not an integrated time series. In addition, Q(r) = σeB(r) when μg = 0. In other
words, β̂ retains the same asymptotic behavior as if {yt} were integrated when the
‘small’ departure function g(·) satisfies

∫
g(y)πs(dy) = 0. Meanwhile, the asymptotic

theory of ĝ(·) remains the same as in the integrated case (see, for example, Proposition
13.2(ii)).
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Remark 13.1.

(i) While Assumptions 13.7 and 13.8 are assumed respectively for the stationary
and nonstationary cases, there are some common features in both assumptions.
To present the main ideas in this discussion, we focus on the case of d = 1 in
Assumption 13.7(i). When |β| < 1, Assumption 13.7(ii) basically requires that
the rate of g(y) decaying to infinity is slower than that of |y| → ∞ in order to
ensure that {yt} is stochastically stationary. In the case of β = 1, in addition
to the ‘smallness’ condition in Assumption 13.8(iii), Assumption 13.8(ii) also
imposes certain conditions on the rate of divergence of g(·) to deduce that {yt }
is a nonstationary Markov chain, although, in the case of g(·) 
= 0, {yt } is not an
integrated time series. This is mainly because it may be impossible to study such
nonlinear autoregressive models when g(·) behaves too “explosive.”

(ii) {yt} could be generated recursively by a nonlinear autoregressive time series of
the form yt = yt−1 + g(yt−1) + et if β = 1 and g(·) were known. In the paper
by Granger, Inoue, and Morin (1997), the authors propose some parametric
specifications for g(·) and treat g(·) as a stochastic trending component. The
authors then suggest estimating g(·) nonparametrically before checking whether
g(·) is negligible. Gao et al. (2009b) further consider this model and propose a
nonparametric unit–root test for testing H0 : g(·) = 0. As pointed out above,
what we have been concerned about in this section is to deal with the case where
g(·) is not negligible, but is a “small” departure function satisfying Assumption
13.8(ii),(iii). Proposition 13.4 implies that model (13.29) may generate a class of
null-recurrent time series models when β = 1 and

∫
g(y)πs(dy) = 0. This may

motivate us to further develop some general theory for such a class of time series
models.

13.5. Extensions and Examples of

Implementation
.............................................................................................................................................................................

Since many practical problems (see, for example, Examples 13.1 and 13.2 below) may
require the inclusion of a general polynomial function as the main mean function of yt ,
model (13.1) may need to be extended to accommodate a general class of parametric
functions. In this case, model (13.1) can be written as

yt = f (xt ,β) + g(xt ) + et , (13.35)

where f (x,β) is a parametrically known function indexed by a vector of unknown
parameters β. In the stationary case, Eq. (13.3) now becomes

E
[
yt − f (xt ,β)

]2
is minimized over β. (13.36)
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In the integrated time series case, Eq. (13.2) can be replaced by minimising

1

n

n∑
t=1

[
yt − f (xt ,β)

]2
over β, (13.37)

which is similar to the discussion used in Park and Phillips (2001). Obviously, vari-
ous other identifiability conditions imposed in Sections 13.2 and 13.3 can be modified
straightforwardly. Thus, further discussion is omitted here.

In the autoregressive time series case, model (13.35) becomes

yt = f (yt−1,β) + g(yt−1) + et , (13.38)

and Eq. (13.30) is now replaced by minimizing

1

n

n∑
t=1

[
yt − f (yt−1,β)

]2
over β. (13.39)

In the threshold case where g(y) = ψ(y)I
[
y ∈ Cτ

]
and f (y,β) = βyI

[
y ∈ Dτ

]
, in

which ψ(·) is an unknown function, Cτ is a compact set indexed by parameter τ ,
and Dτ is the complement of Cτ , Gao, Tjøstheim, and Yin (2013) show that {yt } is a
sequence of 1

2 -null recurrent Markov chains under Assumption 13.26(i),(ii). In gen-
eral, further discussion about model (13.38) is needed and therefore left for future
research.

Examples 13.1–13.3 show why the proposed models and estimation methods are
relevant and how the proposed estimation methods may be implemented in practice.

Example 13.1. This data set consists of quarterly consumer price index (CPI) numbers
of 11 classes of commodities for 8 Australian capital cities spanning from 1994 to 2008
(available from the Australian Bureau of Statistics at www.abs.gov.au). Figure 13.1 gives
the scatter plots of the log food CPI and the log all–group CPI.

Figure 13.1 shows that either a simple linear trending function or a second–order
polynomial form may be sufficient to capture the main trending behavior for each of
the CPI data sets. Similarly, many other data sets available in climatology, economics,
and finance also show that linearity remains the leading component of the trending
component of the data under study. Figure 13.2 clearly shows that it is not unreason-
able to assume a simple linear trending function for a disposable income data set (a
quarter data set from the first quarter of 1960 to the last quarter of 2009 available from
the Bureau of Economic Analysis at http://www.bea.gov).

The following example is the same as Example 5.2 of Li et al. (2011). We use this
example to show that in some empirical models, a second–order polynomial model is
more accurate than a simple linear model.

Example 13.2. In this example, we consider the 2–year (x1t ) and 30–year (x2t ) Aus-
tralian government bonds, which represent short-term and long-term series in the

http://www.abs.gov.au
http://www.bea.gov
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figure 13.1 Scatter plots of the log food CPI and the log all–group CPI.
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figure 13.2 Plot of the disposable income data.

term structure of interest rates. Our aim is to analyze the relationship between the
long-term data {x2t } and short-term data {x1t}. We first apply the transformed ver-
sions defined by yt = log(x2t ) and xt = log (x1t ). The time frame of the study is during
January 1971 to December 2000, with 360 observations for each of {yt} and {xt }.
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Consider the null hypothesis defined by

H0 : yt = α0 +β0xt + γ0x2
t + et , (13.40)

where {et} is an unobserved error process.
In case there is any departure from the second-order polynomial model, we propose

using a nonparametric kernel estimate of the form

ĝ(x) =
n∑

t=1

wnt (x)
(
yt − α̂0 − β̂0xt − γ̂0x2

t

)
, (13.41)

where α̂0 = −0.2338, β̂0 = 1.4446, and γ̂0 = −0.1374, and {wnt (x)} is as defined in
(13.13), in which K(x) = 3

4 (1 − x2)I{|x| ≤ 1} and an optimal bandwidth ĥoptimal is
chosen by a cross-validation method.
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figure 13.3 (a) Scatter chart of (yt ,xt ) and a nonparametric kernel regression plot ŷ = m̂(x);
(b) p-values of the test for different bandwidths; and (c) plot of ĝ(x), whose values are between
−5 × 10−3 and 5 × 10−3.
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Figure 13.3 shows that the relationship between yt and xt may be approximately
modeled by a second-order polynomial function of the form y = −0.2338+1.4446 x −
0.1374 x2.

The following example is the same as Example 4.5 of Gao, Tjøstheim, and Yin
(2013). We use it here to show that a parametric version of model (13.29) is a valid
alternative to a conventional integrated time series model in this case.

Example 13.3. We look at the logarithm of the British pound/American dollar real
exchange rate, yt , defined as log(et )+ log (pUK

t )− log (pUSA
t ), where {et } is the monthly

average of the nominal exchange rate, and {pi
t } denotes the consumption price index

of country i. These CPI data come from website: http://www.rateinflation.com/ and
the exchange rate data are available at http://www.federalreserve.gov/, spanning from
January 1988 to February 2011, with sample size n = 278.

Our estimation method suggests that {yt} approximately follows a threshold model
of the form

yt = yt−1 − 1.1249 yt−1I[|yt−1| ≤ 0.0134] + et . (13.42)

Note that model (13.41) indicates that while {yt} does not necessarily fol-
low an integrated time series model of the form yt = yt−1 + et , {yt } behaves
like a “nearly integrated” time series, because the nonlinear component g(y) =
−1.1249 y I[|y| ≤ 0.0134] is a ‘small’ departure function with an upper bound
of 0.0150.

http://www.rateinflation.com/
http://www.federalreserve.gov/
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13.6. Conclusions and Discussion
.............................................................................................................................................................................

This chapter has discussed a class of “nearly linear” models in Sections 13.1–13.4.
Section 13.2 has summarized the history of model (13.1) and then explained why
model (13.1) is important and has theory different from what has been commonly
studied for model (13.2). Sections 13.3 and 13.4 have further explored such mod-
els to the nonstationary cases with the cointegrating case being discussed in Section
13.3 and the autoregressive case being discussed in Section 13.4. As shown in Sections
13.3 and 13.4, respectively, while the conventional “local-time” approach is applicable
to establish the asymptotic theory in Proposition 13.2, one may need to develop the
so-called “Markov chain” approach for the establishment of the asymptotic theory in
Proposition 13.4.

As discussed in Remark 13.1, model (13.29) introduces a class of null-recurrent
autoregressive time series models. Such a class of nonstationary models, along with a
class of nonstationary threshold models proposed in Gao, Tjøstheim, and Yin (2013),
may provide existing literature with two new classes of nonlinear nonstationary models
as alternatives to the class of integrated time series models already commonly and pop-
ularly studied in the literature. It is hoped that such models proposed in (13.29) and
Gao, Tjøstheim, and Yin (2013) along with the technologies developed could motivate
us to develop some general classes of nonlinear and nonstationary autoregressive time
series models.
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Appendix
.............................................................................................................................................................................

In order to help the reader of this chapter, we introduce some necessary notation and
useful lemmas for the proof of Proposition 13.4.

Let {yt } be a null-recurrent Markov chain. It is well known that for a Markov chain
on a countable state space that has a point of recurrence, a sequence split by the regen-
eration times becomes independent and identically distributed (i.i.d.) by the Markov



440 time series

property (see, for example, Chung (1967)). For a general Markov process that does not
have an obvious point of recurrence, as in Nummelin (1984), the Harris recurrence
allows one to construct a split chain that decomposes the partial sum of the Markov
process {yt } into blocks of i.i.d. parts and the negligible remaining parts.

Let zt take only the values 0 and 1, and let {(yt , zt ), t ≥ 0} be the split chain. Define

τk =
{

inf{t ≥ 0 : zt = 1}, k = 0,
inf{t > τk−1 : zt = 1}, k ≥ 1,

(13.A1)

and denote the total number of regenerations in the time interval [0, n] by T(n), that is,

T(n) =
{

max{k : τk ≤ n}, if τ0 ≤ n,
0, otherwise.

(13.A2)

Note that T(n) plays a central role in the proof of Proposition 13.4 below. While
T(n) is not observable, it may be replaced by TC (n)

πs(IC ) (see, for example, Lemma 3.6

of Karlsen and Tjøstheim 2001), where TC(n) = ∑n
t=1 I

[
yt ∈ C

]
, C is a compact set,

and IC is the conventional indicator function. In addition, Lemma 3.2 of Karlsen and
Tjøstheim (2001) and Theorem 2.1 of Wang and Phillips (2009) imply that T(n) is
asymptotically equivalent to

√
nLB(1, 0), where LB(1, 0) = limδ→0

1
2δ

∫ 1
0 I[|B(s)|<δ] ds

is the local-time process of the Brownian motion B(r).
We are now ready to establish some useful lemmas before the proof of Proposition

13.4. The proofs of Lemmas 13.A.1 and 13.A.2 below follow similarly from those of
Lemmas 2.2 and 2.3 of Gao, Tjøstheim, and Yin (2012), respectively.

Lemma 13.1. Let Assumption 13.2(i),(ii) hold. Then as n → ∞ we obtain

1√
n

[nr]∑
t=1

et + 1√
n

[nr]∑
t=1

g(yt−1)=⇒D σe B(r) + M 1
2
(r)μg ≡ Q(r), (13.A3)

where M 1
2
(r), μg , and Q(r) are the same as defined in Proposition 13.4.

Lemma 13.2. Let Assumption 13.8 hold. Then as n → ∞ we obtain

1

T(n)

n∑
t=1

yt−1g(yt−1) →P

∫ ∞

−∞
yg(y)πs(dy), (13.A4)

1

n2

n∑
t=1

y2
t−1→D

∫ 1

0
Q2(r) dr, (13.A5)

1

n

n∑
t=1

yt−1et→D
1

2

(
Q2(1) − σ 2

e

)
. (13.A6)
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Proof of Proposition 13.4. The proof of the first part of Proposition 13.4 follows
from Lemma A.2 and

n
(
β̂ − 1

)=
(

1

n2

n∑
t=1

y2
t−1

)−1(
1

n

n∑
t=1

yt−1et

)

+
(

1

n2

n∑
t=1

y2
t−1

)−1(
T(n)

n

1

T(n)

n∑
t=1

yt−1g(yt−1)

)
. (13.A7)

The proof of the second part of Proposition 13.4 follows similarly from that of
Proposition 13.2(ii).
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........................................................................................................

NONPARAMETRIC AND
SEMIPARAMETRIC ESTIMATION
AND HYPOTHESIS TESTING WITH
NONSTATIONARY TIME SERIES

........................................................................................................

yiguo sun and qi li

14.1. Introduction
.............................................................................................................................................................................

Nonparametric and semiparametric estimation and hypothesis testing methods have
been intensively studied for cross-sectional independent data and weakly dependent
time series data (see, for example, Pagan and Ullah (1999), Gao (2007), and Li and
Racine (2007)). However, many important macroeconomics and financial data are
found to exhibit a stochastic trend and/or a deterministic trend, and the trend can
be nonlinear in nature. For example, a univariate nonlinear growth model studied
by Granger, Inoue, and Morin (1997) can be extended to a non-/semiparametric
autoregressive model with nonstationary time series.

This chapter focuses on econometric modeling and conceptual issues only for non-
stationary time series with stochastic trend. While a linear model may provide a decent
approximation to a nonlinear model for weakly dependent data, the linearization can
result in severely biased approximation to a nonlinear relation for the nonstationary
data (e.g., Marmer (2008)). Park and Phillips (1999) derived limit results for nonlin-
early transformed integrated time series whose sample average converges at different
rates depending on the forms of nonlinear transformation functions. Therefore, it is
utterly important to understand how to properly explore potential nonlinear relation
when integrated time series are to be analyzed.

The rest of this chapter is organized as follows. Because I(0) and I(1) are concepts
defined in the linear model framework, a nonlinear transformation of an I(1) variable
could lose its I(1) meaning even though the transformed data continues to exhibit
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strong persistency. Therefore, Section 14.2 discusses extensions of the traditional
textbook definition of I(0) process to general nonlinear time series data. Section 14.3
deals with parametric nonlinear models with nonstationary data. Section 14.4 covers
nonparametric estimation and test results for models considered in Section 14.3 and
Phillips’ (2009) kernel analysis of a spurious nonparametric regression of nonstation-
ary time series. Semiparametric extensions of cointegrating models of nonstationary
time series are discussed in Section 14.5. Section 14.5 also includes the bandwidth
selection via cross-validatory method and consistent estimation for semiparametric
varying coefficient models with correlated but not cointegrated data. Section 14.6
presents some newly developed model specification tests for parametric functional
forms with nonstationary data. In Section 14.7, we discuss the co-summability concept
proposed by Berenguer-Rico and Gonzalo (2013), which is useful in explaining non-
linear co-movement of non-stationary time series data. We apply the co-summability
concept to analyze the co-movement and co-summability of semiparametric func-
tional coefficient models discussed in Section 14.5. We conclude the chapter in Section
14.8. For ease of reference, an Appendix section includes some useful technical tools
developed for nonstationary time series analysis.

Throughout this chapter, we use [a] to denote the integer part of a > 0, W (·) to
denote a standard Brownian motion, B(·) to denote a general Brownian motion, “⇒”
to denote the weak convergence on the Skorohod space D[0, 1]m for some integer m ≥
1, and “

d→” and “
p→” to denote the convergence in distribution and in probability,

respectively. In addition, “�” is the lag operator such that �Xt = Xt − Xt−1 for any
t , and I(A) is an indicator function taking a value of one if event A holds and zero
otherwise. M > 0 is a generic constant that can take different values at different places.
Finally, Xn = Oe(an) denotes an exact probability order of an. It means that Xn =
Op(an), but Xn 
= op(an). In addition, a superscript T in AT denotes the transpose
of A.

14.2. Nonlinear Nonstationary Data
.............................................................................................................................................................................

Many macroeconomic and finance variables exhibit some kind of growth trend—for
example, CPI, real GDP, money supply, oil prices, stock price indexes, and so on. In the
linear model framework, if level data show strong persistency and their first difference
becomes an I(0) process, the level data series is called an I(1) process. ARIMA mod-
els are developed for univariate time series analysis, and linear cointegrating model
is developed to explore stable relations among integrated time series; (see Brockwell
and Davis (1991) and Hamilton (1994) for details). However, macroeconomic and
finance theories usually suggest nonlinear relationships among aggregate level data
(e.g., Chapter 2 of Teräsvirta et al. (2010)). For example, the weak form stock market
efficiency hypothesis states that stock prices are nonpredictable given existing publicly
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available information. Statistically, the weak-form market efficiency hypothesis means
that E

[
g(Pt )|Ft−1

]= g(Pt−1) holds true, where Pt is the stock price at time t and Ft−1

contains all the publicly available information at the end of time t −1. In practice, both
g(x)= x and g(x)= lnx are popularly used. Can both ln(Pt ) and Pt be an I(1) process
defined in the linear framework?

The answer to the above question is as follows: A nonlinear transformation of an
I(1) process in general will not be an I(1) process any more. In some cases, its order of
integration may not be well-defined, and such an example will be provided below. In
other cases, the process may become an I(0) process; see Nicolau (2002) for a bounded
random walk process becoming a stationary process under certain conditions. In addi-
tion, even though a nonlinear transformed integrated time series keeps the persistency
feature embedded in the original data, the first difference of the nonlinear transformed
data may exhibit shorter memory than the level data but may not be an I(0) process as
defined in the linear framework; an example is given in the next paragraph. This makes
the traditional I(1) concept improper in labeling nonlinearly transformed integrated
time series data, and Granger and Hallman (1991) and Granger (1995) are among early
ones to address this issue. We will discuss the concept of co-summability (Berengner-
Rico and Gonzalo, 2012) in Section 14.7, which can be used to describe co-movement
of nonlinear nonstationary time series data.

Below, we first use a simple example to address why new concepts are needed
for nonlinearly transformed integrated time series data. Let us consider a pure ran-
dom walk process without drift. Specifically, we assume Xt = Xt−1 + ut with X0 ≡ 0
and ut ∼ i.i.d.

(
0,σ 2

u

)
and ut is independent of all the past Xs ’ (s < t). Define

Yt = X2
t , then �Yt = Yt − Yt−1 = 2Xt−1ut + u2

t . As E(Yt ) = σ 2
u t , {Yt } is not a covari-

ance stationary process. For any t > s ≥ 0, simple calculations give Corr(Yt , Ys) =√(
sκ + 2s2σ 4

u

)
/
(
tκ + 2t2σ 4

u

)
and Var(Yt) = 2t2σ 4

u + tκ , where κ = E
(
u4

t

)− 3σ 4
u . It

implies that Corr
(
Yt , Yt−h

) ≈ (t − h)/t → 1 for a given finite h > 0 and a sufficiently

large t . In addition, {Xt }, as an I(1) process, has Corr
(
Xt , Xt−h

) ≈ √
(t − h)/t → 1

for a finite h > 0 and a sufficiently large t . Therefore, the autocorrelation func-
tions are close to one for both {Xt } and {Yt }, although the correlation coefficients
converge to one at faster speed for {Yt } than {Xt }. In other words, {Yt} exhibits
stronger persistency than {Xt }. Now, if we take a first difference of {Yt}, simple cal-
culations give E(�Yt ) = σ 2

u , Cov(�Yt ,�Ys) = 0 for any t 
= s, and Var(�Yt) =
2σ 4

u (2t − 1)+ κ . Therefore, first differencing does completely remove the serial cor-
relations in {�Yt }. Unlike {�Xt }, {�Yt} is not a covariance stationary process because
its variance is explosive as time increases. In fact, it can be shown that the variance
of �dYt is of order t for a finite integer d ≥ 1. Hence, {Yt } is not an I(d) pro-
cess for any finite value of d. This example shows that a nonlinear transformation
of an I(1) variable may have different degree of persistency than the original I(1)
series, and some new concepts are needed to extend the definition of I(1) (or I(d))
processes in describing the co-movement of nonlinearly transformed nonstationary
data.
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The time series data analysis distinguishes itself from cross-sectional data analy-
sis due to its temporal relation, which leads to extensive modeling to capture the
temporal impact of a shock occurring to a variable today on future values of the vari-
able. Roughly speaking, a shock occurring to an I(0) variable will gradually render its
impact, while a shock occurring to an I(1) variable will have forever impact on the
variable. Davidson (2009) listed five widely used I(0) concepts, which are defined from
population point of view and emphasize on covariance stationarity, short memory,
and finite variance features of an I(0) process. Among the five concepts, the most pop-
ularly used is Engle and Granger’s (1987, p. 252) concept of an I(0) process, which
should have a stationary, invertible ARMA representation. However, the ARMA model
is a linear regression model, which is too restrictive to apply to nonlinear time series
analysis. In practice, a pragmatic way of defining an I(0) process is based on the asymp-
totic behavior of its sample average (e.g., Stock (1994), Davidson (2009), and Müller
(2008)), which is stated as follows.

Definition. A time series {Xt }∞t=1 is I(0) if its partial sum process obeys the functional
central limit theorem (or FCLT); that is,

ST (r)= ω−1
T

[Tr]∑
t=1

(Xt − EXt) ⇒ W (r) for all r ∈ [0, 1], (14.1)

where W ( · ) is a standard Brownian motion and ω2
T = Var

(∑T
t=1 Xt

)
.

It is easy to see that a trend stationary process satisfies (14.1) as well as a stationary
ARMA process. It is well known that, without recognizing trending features, one may
end up with a spurious regression when exploring even linear relations among trend
stationary time series. Therefore, the I(0) concept given above is too broad to differen-
tiate a trend stationary process from a stationary ARMA process. Adding a requirement
on finite E(Xt ) and finite Var(Xt ) to (14.1) may provide a more appropriate definition
of an I(0) process, which excludes processes with unbounded means/variances.

To understand when {Xt }∞t=1 is an I(0) process based on the above definition, one
needs to know what (sufficient) conditions delivers the FCLT. Among plenty works
of FCLTs under variant conditions, we just mention a few here. For example, the
FCLT is derived by Hall (1979) for martingale difference processes, by Herndorf (1984)
and Kuelbs and Philipp (1980) for strong mixing processes, by de Jong and Davidson
(2000), McLeish (1975), and Wooldridge and White (1988) for near-epoch depen-
dent (or NED) functions of mixing processes (the NED concept was first introduced
to econometricians by Gallant and White (1988)), and by Phillips and Solo (1992) for
linear processes with i.i.d. innovations. Because a stationary ARMA(p, q) process and
a stationary linear process are a stationary α-mixing process under some conditions
(e.g., Athreya and Pantula (1986) and Withers (1981)) and are a NED on an α-mixing
process (Davidson, 2002), and an α-mixing (or a strong mixing) process is of course a
near-epoch dependence function of an α-mixing process, one can enlarge the class of
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I(0) processes to the class of near-epoch dependent functions of an α-mixing process
(see Escribano and Mira (2002)).

Now, let us go back to the example given above, where Yt is the square of a random
walk process. We can see that even under the enlarged I(0) class, a {�Yt } sequence

is not an I(0) process, as ω−1
T

∑[Tr]
t=1 �yt ⇒ √

2
(∫ r

0 W (r)dW (r)+ r/2
)
, which is not a

Brownian motion process. If {�Yt} is not an I(0) process, neither is {Yt} an I(1) pro-
cess. Consequently, enlarging the I(0) class will not solve the problem that {Yt } is not
an I(1) process. Through this example, we observe that the nonlinear transformation
of an I(1) process creates an urgent need to classify time series data properties.

As explained above, although the I(0) concept building upon NED on an underlying
strong mixing process is invariant to nonlinear transformation according to White and
Domowitz (1984, Lemma 2.1), this nonlinear invariance property is not passed on to
the concept of I(1), because first differencing is a linear operator. The example given
above shows that

{
Yt : Yt = X2

t

}
reserves the converging-to-one autocorrelations as the

random walk process, {Xt }, does. So, the first thought is to use the length of memory
to classify data. However, correlation coefficient is not an adequate concept even for
stationary series, because nonlinear transformation of an I(0) variable could gener-
ate completely different autocorrelation functions than those from the original data.
Granger and Hallman (1991) and Granger (1995) provided early efforts in extending
the linear concepts of I(1) and I(0) to a general nonlinear framework and introduced
the concepts of short memory in distribution (SMD) versus extended memory in dis-
tribution (EMD) from forecasting point of view, where an I(0) process is SMD, but a
SMD process may not be I(0); an I(1) process is EMD, but an EMD process may not
be I(1). Granger and Hallman (1991) and Granger (1995) also provided the concepts
of short memory in mean (SMM) versus extended memory in mean (EMM).

An alternative concept of nonlinear nonstationarity (or nonlinear persistency) has
been introduced by Karlsen, and Tjøstheim (2001) via the class of null recurrent
Markov chains. A null recurrent Markov chains is nonstationary, and Myklebust et al.
(2011, Theorem 2, p. 10) showed that the irreducible (β-) null recurrence is invariance
with respect to measurable one-to-one functional transformations, where the param-
eter β can be interpreted as the expected number of times that a Markov process {Xt }
visits a small set, say C. Or mathematically, Eλ

[∑T
t=1 I(Xt ∈ C)

]
= TβL(T)(1 + o(1))

for β ∈ (0, 1), where L(x) is a positive, slowing varying function defined over [a,∞)
for a > 0 such that

lim
x→∞ L(kx)/L(x) = 1 (14.2)

for all k > 0. Detailed concept of the β-null recurrence can be found in Karlsen and
Tjøstheim (2001, p. 380). Kallianpur and Robbins (1954) showed that a random walk
process is β-null recurrent with β = 1/2, while Myklebust et al. (2011) extended this
result to more general ARIMA(p, 1, 0) processes (with a finite p). Therefore, the con-
cept of the β-null recurrence consolidates linear I(1) and nonlinear nonstationarity
within the Markov chain framework, but it fails to consolidate nonlinearity with I(2)
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and general cointegrating relations as Myklebust et al. (2011) showed that linear I(2)
processes and some linear cointegrating models are not null recurrent.

Instead of conceptually extending the I(1) concept into nonlinear time series mod-
els, Park and Phillips (1999), on the other hand, derived asymptotic sampling results
for sample averages of nonlinear transformed I(1) time series with zero mean via the
concept of local time of a Brownian motion process. By Corollary 1.9 in Revuz and Yor
(2005, p. 227), a Brownian motion process, B, as a continuous martingale process, has
a well-defined local time process

LB(t , s)= lim
ε→0

1

2ε

∫ t

0
I{|B(r)− s|< ε}dr (14.3)

for every s ∈ R and t ∈ [0, 1]. Roughly speaking, LB(t , s) measures the time that the
Brownian process B spends in the vicinity of s over the interval [0, t]. Under some
conditions, Park and Phillips (1999) showed that both the convergence rate and the

limiting distribution of
∑[Tr]

t=1 g(Xt ) depend on the functional form of g . Consider that

X[Tr] ⇒ B(r), a Brownian motion, by some FCLT. Then, T−3/2∑T
t=1 Xt

d→ ∫ 1
0 B(s)ds,

T−2∑T
t=1 X2

t
d→ ∫ 1

0 B2(s)ds = ∫∞
−∞ s2LB(1, s)ds by the occupation times formula, and

T−1/2∑T
t=1 g(Xt )

d→ (∫∞
−∞ g(s)ds

)
LB (1, 0) if g is integrable and satisfies some Lips-

chitz condition. Hence, a nonlinear transformation of an I(1) variable does not share
the same sampling properties as the original I(1) variable.

Finally, Zeevi and Glynn (2004) showed that an AR(1) process generated from
Xt =ρXt−1+ut (t = 1, 2, . . . , T) can be null recurrent or explosive if {ut } is a zero-mean
i.i.d. innovation sequence with E

[
log(1 + |ut |)

]= ∞ even if |ρ|< 1. It follows logically
that a stable ARMA(p, q) structural with infinite variance arising from an ARCH-type
error term may actually be nonstationary. However, we will not go further to include
the literature on (G)ARCH models with infinite variance because the current literature
focuses mainly on the extension of nonlinear modeling to conditional mean regression
models of nonstationarity time series, which are nonlinear transformation of I(1) vari-
ables with finite increment variance. We close this section by emphasizing that there
does not exist satisfactory extension of I(d) (d = 0, 1, . . .) processes to nonlinear time
series data. The concept of co-summability proposed by Berengner-Rico and Gonzalo
(2012) (see Section 14.7) provides a useful step toward generalizing I(d) concepts to
describe nonlinear time series data.

14.3. Nonlinear Econometrics Models

with Nonstationary Data
.............................................................................................................................................................................

In this section we discuss cointegration models with nonlinear nonstationary data. By
nonlinear cointegrating models, we mean that error terms exhibit less persistency than



450 time series

dependent variable or the sample averages of the first few moments of the error terms
are dominated by those of the (nonlinear) regressors. In a general sense, a nonlinear
cointegrating model has to be balanced such that its dependent variable in the left-
hand side of the model has the same persistency or the degree of nonstationarity as the
(nonlinearly) transformed regressors at the right-hand side of the model, and the error
term is I(0) using the general definition given in Section 14.2.

14.3.1. Univariate Nonlinear Modeling

We start with nonlinear modeling of univariate time series. For stationary time series,
nonlinearity has been successfully built into linear stationary ARMA models, includ-
ing self-exciting threshold autoregressive (SETAR) models (e.g., Tong and Lim (1980),
Tong (1990), and Chan (1993)), smooth transition autoregressive (STAR) models (van
Dijk, Teräsvirta, and Franses (2002) and references therein), bilinear models (e.g.,
Granger and Anderson, (1978) and Subba Rao (1981)), and functional coefficient
autoregressive (FAR) models (Nicholls and Quinn, 1982; Chen and Tsay, 1993). Fur-
ther reference can also be found in Fan and Yao (2003) and Teräsvirta, Tjøstheim,
and Granger (2010). This section contains several popularly used nonlinear dynamic
models of nonstationary data including I(1) and nonlinear transformation of an I(1)
process. We recognize that the literature has been growing across time, partially due to
space restriction, the current chapter is limited in its selection of existing models into
this review. We also include some results on whether time series generated from some
nonlinear autoregressive models can be characterized as I(0) processes or not.

We first consider a nonlinear dynamic model given by

Yt = g(Yt−1)+ ut , t = 1, 2, . . . , T , (14.4)

where {ut } is a stationary process with a zero mean and at least a finite second moment.
If there exists a non-negative test function V (·) satisfying a Foster–Lyapunov drift
criterion,

E
[
V (Yt)|Yt−1 = y

]= E
[
V
(
g
(
y,θ

)+ ut
)]

< V
(
y
)

(14.5)

for large values of
∣∣y∣∣, an initial distribution of Y0 can be found such that {Yt }

is (strictly) stationary; for details, see Meyn and Tweedie (1993). Tjøstheim (1990,
Theorem 4.1) showed that {Yt} is null recurrent under the conditions that g is bounded
over compact sets and

∣∣g(x)∣∣− |x| → 0 as |x| → ∞, which implies an I(1) feature for
extremely large realization of Y ’s. It follows that

Yt = m(Yt−1,θ)I(|Yt−1| < c)+αYt−1I(|Yt−1| ≥ c)+ ut , with α = 1, (14.6)

generates a null recurrent process for a constant c > 0 if sup|y|≤c

∣∣m(
y,θ

)∣∣ ≤ M < ∞,
where Yt enters into a regime of I(1) process if |Yt−1| ≥ c and switches to a bounded
process when |Yt−1| < c. If we replace Yt−1 by Yt−m for some finite m ≥ 1, model
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(14.4) nests some SETAR and STAR models with delay as special cases. Cline and Pu
(1999) studied stability and instability of nonlinear AR(1) time series with delay, which
includes both SETAR(1) and FAR(1) processes as special cases.

If {Yt } is generated from a SETAR(1) model, then we have

Yt = (γ +α1Yt−1)I(Yt−1 >λ)+ (δ+α2Yt−1)I(Yt−1 ≤ λ)+ ut , t = 1, 2, . . . , T ,
(14.7)

where ut ∼ i.i.d.
(
0,σ 2

)
, and γ ,α1,δ,α2, and λ are unknown parameters to be esti-

mated. The above model is stationary and geometrically ergodic if and only if α1 < 1,
α2 < 1, and α1α2 < 1, is transient if (α1,α2) lies outside this region, and is an
I(1) process with break in intercept term if α1 = α2 = 1. For stationary {Yt}, the
strong consistency result of the least squares estimator (LSE) of model (14.7) has
been shown by Chan (1993) and Chan and Tsay (1998) for the continuous case (i.e.,
γ + α1λ = δ+ α2λ). When γ = δ = λ = 0 is imposed, Pham, Chan, and Tong (1991)
derived the strong consistency result of the LSE for more general cases where {Yt } can
be stationary or nonstationary. Liu, Ling, and Shao (2011) showed that the LSE of α1 is
T-consistent if α1 = 1, α2 < 1, and λ≤ 0 and that of α2 is T-consistent if α1 < 1, α2 = 1,
and λ≥ 0, and they also derived the limiting distribution results. Setting γ = δ = 0 and
assuming the true parameter value of α2 equal to 1, Gao, Tjøstheim, and Yin (2011)
showed that {Yt } is a β-null recurrent Markov chains with β = 1/2 and derived the
limiting distribution of the LSE estimator of (α1,α2) when λ is known, where the LSE
of α2 is T-consistent but that of α1 is T 1/4-consistent. Moreover, under certain con-
ditions, Gao, Tjøstheim, and Yin (2011) showed that model (14.6) with m(Yt−1,θ)
replaced by an unknown smooth function m(Yt−1) is also a β-null recurrent Markov
chains with β = 1/2 and derived the limiting results of the kernel estimator of m

(
y
)

and of the LSE estimator of α.
Caner and Hansen (2001) considered a two-regime TAR(p) model with an autore-

gressive unit root

�Yt = θT
1 Xt−1I(Zt−1 < λ)+ θT

2 Xt−1I(Zt−1 ≥ λ)+ ut , t = 1, 2, . . . , T ,

where Xt−1 = (Yt−1 1 �Yt−1 . . . �Yt−p )T , Zt = Yt − Yt−m for some finite
m ≥ 1, and ut ∼ i.i.d.

(
0,σ 2

)
. Caner and Hansen (2001) derived the limiting distri-

bution of (a) a sup-Wald test statistic to test for the existence of a threshold when {Yt}
is an I(1) process and (b) a unit root test to test for a unit root null aganist a stationary
alternative and against a one-regime unit root alternative when there is no threshold
and when there is a threshold.

The growth models considered by Granger et al. (1997) have g(Yt−1) = Yt−1 +
m(Yt−1), which gives

Yt = Yt−1 + m(Yt−1)+ ut , t = 1, 2, . . . , T . (14.8)
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In particular, Granger et al. (1997) considered a model of Yt = Yt−1 + αY γ
t−1 +

ut

√
δY β

t−1 with ut ∼ i.i.d. N(0, 1) and γ < 1, where {Yt} exhibits positive growth by
Theorem 2 in Granger et al. (1997) if β = 1 + γ and δ < 2α or if β < 1 + γ .

Granger and Swanson (1997) studied the stability and instability conditions of a
stochastic unit-root process generated by Yt = at Yt−1 + ut , t = 1, 2, . . . , T, where
ut is I(0) and at = exp(αt ) is a random function of an exogenous stationary AR(1)
process, αt .

14.3.2. Nonlinear Error Correction Models and Nonlinear
Cointegrating Models

In this subsection, we review some nonlinear error correction (NEC) models and non-
linear cointegrating models studied in the nonlinear modeling literature. Teräsvirta,
Tjøstheim, and Granger (2010, Chapter 11) and Dufrénot and Mignon (2002) are good
references to start with.

NEC models introduce nonlinearity into a linear cointegrating model by allowing
the speed of adjustment parameters to be a function of a stationary linear combination
of the I(1) variables appearing in the model. Specifically, Escribano and Mira (2002)
defined a NEC model by

�Yt =#1�Yt−1 + g(Yt−1)+ ut , t = 1, 2, . . . , T , (14.9)

where Yt and ut are both d ×1 vectors, and {ut} is a stationary strong mixing sequence
with a zero mean and finite variance. Under some conditions including g(Yt−1) ≡
m
(
βT Yt−1

)
for some β ∈ � ⊂ Rd , Escribano and Mira (2002) showed that {�Yt }

and {ut } are simultaneously near-epoch dependence of the strong mixing sequences{(
uT

t ,βT ut
)}

. Therefore, {Yt} is an I(1) process if we extend the linear I(0) concept to
a NED on strong mixing sequences as discussed in Section 14.2.

Saikkonen (2005) derived the stability condition of {�Yt } (d ×1) for a more general
NEC model,

�Yt = αβT Yt−1 +
p∑

j=1

�j�Yt−j +
k∑

i=1

I(φ(Zt−1,ηt) ∈ Rs)

× [
gs(Zt−1)+ Hs(Zt−1)

1/2ut
]
, t = 1, 2, . . . , T , (14.10)

where α(d×r), β(d×r), and�j(d×d) are parameter matrices with α and β having full

column rank r ≤ d−1, Zt =
[ (

βT Yt
)T

�Y T
t · · · �Y T

t−p+2

]T
, gs : Rd(p−1)+r →

Rd and Hs : Rd(p−1)+r → Rd×d are nonlinear functions, and φ : Rd(p−1)+r+l → Rd is
a (Borel) measurable function with the sets Rs ⊆ Rd from a partition of Rd . Also, Yt−j

is independent of the innovations (ηt , ut). Evidently, model (14.10) nests Escribano
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and Mira’s (2002) NEC model, Balke and Fomby’s (1997) three-regime threshold
cointegrating models, and a nonlinear smooth NEC model of Kapetanios, Shin, and
Snell (2006). Connecting to Tjøstheim (1990, Theorem 4.1) mentioned in Section 14.1,
one necessary condition required for {Yt} to be an I(1) process is that

∥∥gs(x)
∥∥= O(‖x‖)

for large ‖x‖, where ‖·‖ is the Euclidean norm. See Saikkonen (2005) for details.
Kapetanios, Shin, and Snell (2006) constructed an F-type test statistic to test a spu-
rious null against a globally stationary smooth transition autoregressive cointegrating
alternative model, where their test is based on a special case of model (14.10) with the
last term of model (14.10) replaced by g

(
βT Yt−1

)+ ut .
By imposing proper conditions on the functional form of g , the NEC models cited

above introduce nonlinearity to linear cointegrating models by allowing short-term
nonlinear dynamics of the speed of adjustment parameters without changing the I(1)
properties of the nonstationary processes involved. Consequently, these models do not
impose a challenge to the concept of linear cointegrating relations. The real challenge
comes from specifying and building suitable nonlinear models to describe nonlinear
long-run stable relationships among nonstationary time series—for example, non-
linear cost and production functions in macroeconomics. In the past two decades,
research interests in this area have been gradually building up; see, for example, Chang,
Park, and Phillips (2001), Granger and Hallman (1991), Granger (1995), Park and
Phillips (1999, 2001), and Saikkonen and Choi (2004), among many others. Essentially,
if both {Yt} and {Xt} are nonstationary time series exhibiting strong persistence, and
there exists a nonlinear transformation function g : R×Rd → R such that ut = g(Yt , Xt )

is stationary or captures dominated or subdued stochastic component of Yt and Xt , for
easy reference, we call such models nonlinear cointegrating models.

Because no consensus has been reached in extending the linear I(0) and I(1) and
cointegrating concepts to the nonlinear framework, the specification, estimation, and
hypothesis testing of nonlinear cointegrating models developed in the literature has
shown variations. In this chapter, we focus on three approaches corresponding to
our explanation given in Section 14.2. The first approach follows from Granger and
Hallman’s (1991) and Granger’s (1995) classification of short and long (or extended)
memory in mean or distribution, which is originated from forecasting point of view.
Specifically, a time series with a short or long (or extended) memory in mean or dis-
tribution is classified by whether remote shocks have a persistent influence on the level
forecasts of the time series. The second approach is based on the null recurrence of
Markov chains studied by Karlsen and Tjøstheim (2001). Based on the traditional
definitions of I(0) and I(1), the third approach is carried on via sampling theories
developed for nonlinear transformations of the traditional I(1) series as popularized by
Park and Phillips (1999, 2001). No matter which approach is applied, they all share the
same essence in building a nonlinear cointegrating model; that is, more than one vari-
able share one or more common stochastic trends; and in the long run, these variables
reach jointly to one or more nonlinear equilibrium relationships. For example, both
{Xt } and {Yt} exhibit persistent stochastic trend, and a nonlinear equilibrium relation-
ship could be the one that m(Xt , Yt) = 0 holds for some nonlinear function m, while
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the short-term dynamics could be described by ut = m(Xt , Yt) for all t , a zero-mean
mean reverting process with a finite variance and short memory, for example.

Granger and Hallman (1991) proposed to generate a sequence of extended memory
in mean (EMM) time series as a monotonic nondecreasing function of the traditionally
defined I(1) process plus a zero mean short memory in mean (SMM) process, and they
considered the following nonlinear cointegrating model:

h(Yt)= g(Xt )+ ut , t = 1, 2, . . . , T , (14.11)

where ut is a zero mean SMM with a finite variance. Because an I(1) process is EMM,
and an I(0) process is SMM, Breitung’s (2001) rank-based cointegrating test works for
a special case of model (14.11) when h(Yt) and g(Xt) both are I(1) processes, and
h : R → R and g : R → R are both monotonically nondecreasing functions, where Bre-
itung (2001) used the I(0) concept defined by (14.1) given in Section 14.2. Although
exploratorily attractive, Granger and Hallman’s (1991) and Granger’s (1995) defini-
tions of short and extended memory processes are not accompanied with LLN, CLT,
or FCLT results that can be directly used for estimation and hypothesis test purpose.
Aparicio and Escribano (1998) attempted to quantify the concepts of SMM and LMM
(or EMM) for bivariate cases via the information-theoretic approach; however, such
an idea is still in the trial stage and needs more elaboration. Therefore, the rest of
this chapter focuses on the other two approaches, which have experienced promising
estimation and hypothesis test applications in practice.

Park and Phillips (1999) considered a regression model with nonlinear transformed
I(1) covariate,

Yt = θg(Xt )+ ut , t = 1, 2, . . . , T , (14.12)

where {ut} is a stationary martingale difference sequence and is independent of the
I(1) process {Xt}, g : R → R is a known nonlinear function such as g(x) = ln(x), and
θ is the parameter to be estimated. Here, Xt = Xt−1 + wt , where wt is a stationary
linear process with a zero mean and finite pth (p > 2) moment and its partial sum
processes obey the FCLT derived in Phillips and Solo (1992). The stochastic property
of Yt should balance that of g(Xt ), which depends on the functional form of g . Park
and Phillips (1999) considered three functional classes. Because these three classes are
to be cited repeatedly in the following sections, we state their definitions below for easy
reference.

(a) A function g is in Class T (I) if and only if it is integrable.
(b) A function g is in Class T (H) if and only if g(λx) = v(λ)H(x)+ R(x,λ), where

H is locally integrable and R(x,λ) is asymptotically dominated by v(λ) H(x)
when λ→ ∞ and/or |x| → ∞.

(c) A function g is in Class T (E) if and only if g(x) = E(x)+ R(x), where, roughly
speaking, R is dominated by the monotonic function E for large |x|. If E is
increasing (decreasing), then it is positive and differentiable on R+ (R−). Let
E(x) = exp(G(x)) on R+ (R−), then as λ → ∞, G′(λx) = v(λ)D(x)+ o(v(λ))
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holds uniformly in a neighborhood of x, where D is a positive (negative) and
continuous and λv(λ)→ ∞.

For example, g(x)= sgn(x) and g(x)= xk both belong to Class T (H). For g ∈ T (E),
E denotes the asymptotically dominating exponential component of g . For example,
g(x) = exp

(
xk
)

for k > 0. Because the stochastic order of
∑T

t=1 g(Xt ) depends on to
which class g belongs, the choice of g has to at least match the convergence order of∑T

t=1 g(Xt ) with that of
∑T

t=1 Yt . Under certain conditions, Park and Phillips (1999)
showed that

T−1/2
T∑

t=1

g(Xt )
d→
(∫ ∞

−∞
g(x)dx

)
LB(1,0) for g ∈ T (I) and p > 4 (14.13)

1

Tv(T)

T∑
t=1

g(Xt )
d→
∫ ∞

−∞
H(s)LB(1, s)ds for g ∈ T (H) (14.14)

v
(√

T
)

√
Tg

(
max1≤t≤T Xt

) T∑
t=1

g(Xt )
d→ LB(1, smax)/D(smax) for g ∈ T (E) and v(λ) = λm (14.15)

v
(√

T
)

√
Tg

(
min1≤t≤T Xt

) T∑
t=1

g(Xt )
d→ LB(1, smax)/D(smax) for g ∈ T (E) and v(λ) = λm (14.16)

where T−1/2∑[Tr]
t=1 Xt ⇒ B(r) in Skorokhod space D[0, 1], smax = sup0≤r≤1 B(r) and

smin = inf0≤r≤1 B(r), and m <
(
p − 8

)
/6p and E|�Xt |p < M < ∞. Therefore, for

g ∈ T (I), neither
{

g(Xt )
}

nor {Yt } is I(1); for g ∈ T (H), {Yt } will contain stochas-
tic trend. When g ∈ T (E), the convergence results are path-dependent. Christopeit
(2009), de Jong and Wang (2005), and Berkes and Horváth (2006) are some other
relevant references.

Assuming that {ut } in model (14.12) is a martingale difference sequence and is inde-
pendent of {Xt}, Park and Phillips (1999) showed that the OLS estimator of model
(14.12), θ̂ , is a consistent estimator of θ for the three classes of functionals, and its
asymptotic distribution in general is not normal distribution any more. This can be
seen from the OLS formula,

θ̂ =
[

T∑
t=1

g2(Xt )

]−1 T∑
t=1

Yt g(Xt )= θ +
[

T∑
t=1

g2(Xt )

]−1 T∑
t=1

g(Xt)ut . (14.17)

For example, if both g and g2 are in class T (I), then T−1/2∑T
t=1 g2(Xt )

d→(∫∞
−∞ g2(x)dx

)
LB(1, 0)≡ ω1, and

T− 1
4

T∑
t=1

g(Xt)ut
d→ W

((∫ ∞

−∞
g2(x)dx

)
LB(1, 0)

)
≡ W (ω2), (14.18)
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a standard Brownian motion with random time. A joint convergence in the dis-

tribution step is needed to show ω1 and ω2 are the same so that T
1
4
(
θ̂ − θ

) d→
W (1)

((∫ ∞
−∞ g2(x)dx

)
LB(1, 0)

)−1/2
, where W (1) is a standard normal random vari-

able independent of the Brownian process B. For detailed proofs, see Park and Phillips
(1999, pp. 296–297). The usual asymptotic normal distribution of the OLS estima-
tor does not hold because the denominator does not converge in probability to a
constant, and such a mixed normal asymptotic distribution result highlights the lim-
iting estimation result when a model contains nonlinearly transformed integrated
covariates.

For other two cases, Park and Phillips (1999) showed that θ̂ = θ + Op
(
[Tv(T)]−1

)
if g ∈ T (H) and that θ̂ = θ + Op

⎛⎝[ v
(√

T
)

√
Tg2(max1≤t≤T Xt)

]−1
⎞⎠ or θ̂ = θ +

Op

⎛⎝[ v
(√

T
)

√
Tg2(min1≤t≤T Xt)

]−1
⎞⎠ if g ∈ T (E). Because the choice of the functional form

g is crucial in the sample theories quoted above, it will be interesting to see results on
how the OLS estimator performs when model (14.12) is misspecified in the functional
form of g . Kasparis’ (2011) study on functional form misspecification with respect to
model (14.20) is also applicable to model (14.12), although his study assumes that one
correctly specifies, out of the three classes, T (I), T (H), and T (E), to which class g
belongs.

However, in practice, it is possible that researchers may assume an incorrect func-
tional form for the g function. In the literature of environmental Kuznet curve (EKC)
study, one links pollution with economic growth. The theoretical hypothesis is that
environment deteriorates at fast speed in the early stage of economic industrialization,
but the deteriorating process will be reverted as an economy grows. This inverted-U
shaped relationship is termed as the environmental Kuznet curve. In empirical stud-
ies, CO2 and SO2 emissions are usually chosen as the dependent variable, and real
DGP and real GDP squared, real GDP cubed, and other variables are chosen as the
regressors, where CO2 emission and real GDP are in general believed to be I(1) vari-
ables (see, e.g., Narayan (2010) and references therein). Our discussion in Section 14.2
showed that real DGP squared and real GDP cubed series are not I(1) if real GDP is an
I(1) process. Applying the partitioned OLS to a simple linear regression model such as
CO2,t = α0 + α1GDPt + α2GDP2

t + α3GDP3
t + ut , one runs an unbalanced model as

g(x) = x2 and g(x) = x3 belong to class T (H) with v(T) = T and T3/2, respectively.
If CO2 emission is I(1), one naturally expects α2 = α3 = 0, which theoretically makes
the inverted-U EKC impossible. One may observe the EKC in reality, but the ongoing
econometric models used to capture this phenomenal are not properly designed from
theoretical econometrics point of view.

Because many empirical studies are policy-oriented, forecasts based on a mis-
specified model can be harmful in guiding policymaking. In such circumstances,
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a nonparametric estimation technique designed to recover the unknown functional
form from the data becomes more valuable in avoiding imposing the wrong func-
tional form in the framework of nonlinear modeling of nonstationary time series than
of stationary time series. We will discuss the nonparametric estimation technique in
Section 14.4.

Sticking to the parametric setup, Kasparis (2008) attempted to test functional
form misspecification. Assuming that the true data-generating mechanism for {Yt} is
given by

Yt =
p∑

j=1

θjmj
(
Xjt

)+ ut , t = 1, 2, . . . , T , (14.19)

where mj(·) has a known functional form (j = 1, . . . , p), Kasparis (2008, Lemma 1) gave
the limit result of the fully modified OLS estimator of θ ’s derived by de Jong (2002).
Kasparis (2008) derived two consistent model misspecification tests when both the true
functional forms mj’s and users fully specified functional forms gj ’s all belong to class
T (H), where {Xt } is a vector of p(≥1)-dimensional I(1) processes whose increments
are a stationary linear process, and {ut } is an I(0) process. Model (14.19) extends model
(14.12) in two aspects: It allows contemporaneous endogeneity in X ’s and is a para-
metric additive model of more than one covariate. With given mj’s, model (14.19) is
an apparent linear regression model, but we call it a parametric “additive” model, aim-
ing to emphasize that each I(1) covariate is nonlinearly transformed separately. For the
proposed test statistics, Monte Carlo simulation results indicate that strong size dis-
tortion occurs if the serial correlation in error terms is too strong. Also, when the null
hypothesis is rejected, it does not reveal the source of the rejection—no relation at all
or wrong functional form specification.

Choi and Saikkonen (2004) tested for a linear cointegrating relation against a STR
cointegrating model. The alternative model is given by Yt = μ + vg(γ (Xst − c)) +
αT Xt +βT Xt g(γ (Xst − c))+ut , t = 1, 2, . . . , T , for some s ∈ {1, . . . , d}, where g(0)= 0,{

Xt : Xt = [X1t , . . . , Xdt ]
T
}

is a d-dimensional I(1) process, {ut} is an I(0) process with
a zero mean and finite variance, μ, v,γ 
= 0, c,α, and β are the parameters to be
estimated. The test relies on one important assumption imposed on the three-time
differentiable smooth function g ; that is, g(γ (Xst − c)) ≈ bγ (Xst − c) when Xst takes
value close to c. Under H0, v = 0 and β = 0, which gives a linear cointegration model,
and the alternative hypothesis assumes a smooth transition cointegrating model.

Park and Phillips (2001) considered a nonlinear cointegrating model given by

Yt = g(Xt ,θ)+ ut , t = 1, 2, . . . , T , (14.20)

where g : R × Rd → R is a known function of an exogenous I(1) series, {Xt }, {ut} is
a stationary martingale difference process, and θ is a d-dimensional parameter vector
to be estimated. Again, the nonlinear least squared estimator θ̂ converges to the true
parameter vector, θ , at different rates, depending on the functional form of g . For
integrable and asymptotically homogeneous function g(·,θ) over all θ ∈�⊂ Rd , where
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� is a compact subset of Rd , the NLS estimator has the same convergence rate as the
OLS estimator for model (14.12). Under the same conditions, Kasparis (2011) found
that the NLS estimator of model (14.20) can converge to a random variable θ∗ even
when g(·,θ) 
= m(·) for any θ ∈� on a set of positive Lebesgue measure, when the true
data generating mechanism is given by Yt = m(Xt )+ ut for all t , and m(·) and g(·,θ)
are both class T (I) (or T (H)) regular functions as defined in Park and Phillips (2001).

Choi and Saikkonen (2010) developed a KPSS type test statistic to test for a non-
linear cointegrating null model (14.20) aganist a spurious alternative hypothesis via
subsamples of NLS residuals. Kasparis (2010), on the other hand, studied Bierens type
of test statistic to test the validity of a parametric additive nonlinear regression model,
Yt = c +∑d

i=1 gi(Xit ,θi)+ ut , against a general nonlinear model Yt = c + m(Xt )+ ut ,

where m(x)=∑d
i=1 mi(xi) with mi(·) all being class T(I) functions and {Xt} is a vector

of d(≥1)-dimensional I(1) processes. Again, we call the nonlinear regression model a
parametric additive nonlinear model to emphasize that each I(1) covariate has its own
nonlinear parametric transformation function as in model (14.19).

Extending Granger and Swanson’s (1997) stochastic unit root models to coin-
tegrating models, Park and Hahn (1999) considered a time-varying cointegrating
model

Yt = αT
t Xt + ut , t = 1, 2, . . . , T , (14.21)

where αt = α(t/n) with α(·) being an unknown smooth function defined on [0, 1],
{Xt} is a vector of d-dimensional I(1) processes, and its increments and {ut } are
both stationary linear processes. Approximating αt by linear combinations of the
Fourier flexible form (or FFF) functions and then applying the least squares estima-
tion method, Park and Hahn (1999) showed that αt can be estimated consistently. Two
tests are considered. The first is to test constant coefficients against time-varying coeffi-
cients in the presence of cointegrating or stable long-run relationship, and the second is
to test a time-varying cointegrating model (14.21) against a spurious regression model.

14.4. Nonparametric Econometric Models

with Nonstationary Data
.............................................................................................................................................................................

In Section 14.3 we discussed some popular nonlinear parametric models, where we
see that the choice of nonlinear transformation functional form is crucial in balancing
the left-hand-side variable with the right-hand-side covariates. In practice, one may
not know the true nonlinear functional form. Any misspecification of the unknown
functional form g(·) may lead to spurious regression. It would be attractive to let
data speak out about the form of g . Nonparametric techniques are designed to let
the data reveal the underlying structure. Therefore, this section is devoted to studying
the consistency of nonparametric estimators without imposing explicitly the nonlin-
ear functional transformation form. Parallel to the models discussed in Section 14.3,
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this section first considers nonparametric autoregressive models of nonstationary data
in Section 14.1, followed by the estimation of nonparametric cointegrating models in
Section 14.2.

14.4.1. Nonparametric Autoregressive Models

Firstly, we consider model (14.4), when the functional form g is unknown. The local
constant kernel estimator of g(·) at an interior point y ∈ R is defined by

ĝ
(
y
)=

∑T
t=1 YtK

(
Yt−y

h

)
∑T

t=1 K
(

Yt −y
h

) , (14.22)

where K(·) is a second-order kernel function, and h is the smoothing parameter. It
is well known that ĝ

(
y
) − g

(
y
) = Op

(
h2
) + Op

(
(nh)−1/2) for a twice continuously

differentiable function g when {Yt } is weakly stationary and ut is I(0) and uncorrelated
with Yt−1. When the true model is Yt = Yt−1 + ut with ut ∼ i.i.d.

(
0,σ 2

)
, Wang and

Phillips (2009b) showed that, under certain conditions,√√√√ T∑
t=1

K

(
Yt − y

h

)[̂
g
(
y
)− g

(
y
)] d→ N

(
0,σ 2

∫ ∞

−∞
K2(v)dv

)
, (14.23)

where g
(
y
)≡ y for this case. As

∑T
t=1 K

(
Yt −y

h

)
= Op

(√
Th

)
for integrated time series,

ĝ
(
y
)− g

(
y
) = Op

(
T1/4(Th)−1/2). Comparing this with the kernel estimator of g(y)

when Yt is I(0), we notice three different features: (i) The “asymptotic variance” is
deflated by a factor of

√
T , when g is an unknown function of an integrated time

series, from the usual asymptotic variance of order Op
(
(Th)−1), when g is an unknown

function of weakly dependent time series; (ii)
(√

Th
)−1∑T

t=1 K
(

Yt −y
h

)
d→ LB(1, 0) ,

a random variable, for an integrated Yt series rather than (Th)−1∑T
t=1 K

(
Yt −y

h

)
d→

f
(
y
)
, a constant, the marginal density of Yt at y for a stationary Yt series; (iii) the

difference between the kernel estimator and the true value follows a mixed normal dis-
tribution for integrated series instead of a normal distribution for weakly dependent
data. Although the convergence rates are or stationary and integrated time series, com-
bining nonparametric theory for stationary time series and (14.23) indicates that the
kernel estimator is a consistent estimator of the unknown function g whether Yt is I(0)
or I(1).

In the framework of recurrent Markov chains, Karlsen and Tjøstheim (2001)
derived the pointwise strong consistency of the kernel estimator of E

[
g(Yt)|Yt−1 = y

]
and Var

[
g(Yt )|Yt−1 = y

]
and the limiting distribution result of the kernel estima-

tor of E
[
g(Yt)|Yt−1 = y

]
, where {Yt} can be either a β-null recurrent or a positive
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recurrent Markov chain (or a stationary process), although the convergence rate is
slower in the null recurrent case than in the stationary case. Karlsen and Tjøstheim
(2001) did not pay particular attention to the kernel estimation of the conditional
variance curve in their paper other than simply stating that they use the formula

Var
[
g(Yt)|Yt−1 = y

] = E
[
g2(Yt)|Yt−1 = y

] − {
E
[
g(Yt )|Yt−1 = y

]}2
to estimate the

conditional variance. However, as pointed out in the literature that the kernel estimator
based on this variance formula can produce negative values, one may find it attractive
to apply Fan and Yao’s (1998) efficient kernel estimator of conditional variance func-
tions via a formula of Var

[
g(Yt)|Yt−1 = y

]= E
(
u2

t |Yt−1 = y
)
, where ut is replaced by

the nonparametric residuals.

14.4.2. Nonparametric Cointegrating Models

Estimating models (14.12) and (14.20) introduced in Section 14.3.2 can suffer serious
functional form misspecification problem. This section discusses how to estimate the
relation between nonstationary time series {(Xt , Yt)} via kernel-based nonparametric
method.

Wang and Phillips (2009a,b) and Karlsen, Myklebust, and Tjøstheim (2007, 2010)
considered the following nonparametric cointegrating model:

Yt = g(Xt ) + ut , t = 1, 2, . . . , T , (14.24)

where g(·) is an unknown function to be estimated. The kernel estimator of g(x) is
given by

ĝ(x) =
[

T∑
t=1

Yt Kh(Xt − x)

]/[
T∑

t=1

Kh(Xt − x)

]
. (14.25)

The consistency of the kernel estimator depends on whether there are sufficient
observations falling into a small neighborhood of each (interior) point x. Wang and
Phillips (2009a,b) and Karlsen, Myklebust, and Tjøstheim (2007, 2010) apply differ-
ent methods in dealing with localness. Specifically, Karlsen and Tjostheim (2001) and
Karlsen et al. (2007, 2010), in the framework of recurrent Markov chains, studied
the localness feature of a class of nonstationary time series called β-null recurrent
Markov chains according to its average number of visits to a small neighborhood
of each point, while Wang and Phillips (2009a,b) relied on a local time density (see
Section 14.2).

For easy reference, we briefly summarize the key assumptions imposed on {(Xt , ut)}
in these papers. In Wang and Phillips (2009a,b), {Xt } is an I(1) or a near I(1) pro-
cess and {ut } is an I(0) process, where Wang and Phillips (2009a) required {ut} to be a
martingale difference sequence, while Wang and Phillips (2009b) allowed serially cor-
related {ut} and some correlation between Xt and us for |t − s| ≤ m for some finite
m > 0. In Karlsen, Myklebust, and Tjøstheim (2007, 2010), {Xt } is a β-null recurrent
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time series and {ut } is a stationary Markov chain satisfying some mixing conditions in
their 2007 paper and a strictly stationary linear process in their 2010 paper, where {Xt }
can be a random walk, unit root process, and other nonlinear processes according to
Myklebust, Karlsen, and Tjøstheim (2011), and {ut } and {Xt } are not required to be
independent in their 2007 paper.

Wang and Phillips (2009a,b) and Karlsen, Myklebust, and Tjøstheim (2007, 2010)
studied the limiting result of kernel estimator (14.25) when model (14.24) represents a
meaningful long-run relation between nonstationary times series {Xt } and {Yt}. How-
ever, as usual, the model can be misspecified. For example, the model can be spurious
if there is no true relation between the nonstationary time {Xt} and {Yt }. Kaparis and
Phillips (2012), on the other hand, considered another interesting misspecification—
temporal or dynamic misspecification. The following two paragraphs summarize the
findings of Phillips (2009) and Kasparis and Phillips (2012) for the performance of the
kernel estimator in the presence of spurious regression and dynamic misspecification,
respectively.

Phillips (2009) investigated the asymptotic performance of the kernel estimator
in a spurious nonparametric regression model of nonstationary time series. Specif-
ically, he studied model (14.24) when it is spurious, where {(Xt , Yt)} obeys a FCLT
result. If {Xt } and {Yt } are independent I(1) processes, Phillips (2009, Theorem 2)

implies that the kernel estimator ĝ(x) = Op

(√
T
)

for x satisfying limn→∞ x/
√

T = c

(c = 0 if x is a fixed finite constant). Phillips (1986) derived asymptotic results for the
t-statistic for significance of Xt in linear spurious regression of Yt = α + βXt + ut ,
and he found that the t-statistic is explosive, R2 has a nondegenerate limiting distribu-
tion as n → ∞, and DW converges to zero, which provided a theoretical foundation
for Granger and Newbold’s (1974) numerical observations on under-rejection of the
significance test based on the t-statistic for linear spurious regression models of two
independent integrated time series. Parallel to the linear spurious regression case, for
a given c, Phillips (2009) constructed a local version of the t-statistic, R2, and the
DW statistic via the kernel method, and also he found that the local t-statistic is
explosive, the local R2 is nondegenerately distributed, and the local DW statistic con-
verges to zero in large samples for the nonparametric spurious regression case. Phillips’
(2009) study therefore brings the need for a “cointegrating” test to our current research
agenda for econometrics modeling of nonlinearly transformed integrated time
series.

In terms of dynamic misspecification, it highlights additional difference between
linear cointegrating modeling aganist nonlinear cointegrating modeling. For the linear
cointegrating case, if Yt and Xt are linearly cointegrated, so are Yt and Xt−m for a finite
m > 0. Kasparis and Phillips (2012) described this property as the invariance of time
translation of a linear cointegrating relation. However, such an invariance property
may not hold for a nonlinear cointegrating relation. For example, if a true model is
given by

Yt = θX2
t + ut , t = 1, 2, . . . , T , (14.26)
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where Xt = Xt−1 + vt , it follows that

Yt = θE
(
v2

t

)+ θX2
t−1 + ξt , (14.27)

where ξt = 2θXt−1vt +θ
(
v2

t − Ev2
t

)+ut . To simplify our discussion, we assume X0 ≡ 0,
vt =�Xt ∼ i.i.d.

(
0,σ 2

v

)
, ut ∼ i.i.d.

(
0,σ 2

u

)
, and {ut } and {vt } are independent of each

other. Then, it is easy to calculate E(ξt )= 0, Var(ξt)= σ 2
u + θ2Var

(
v2

t

)+4(t − 1)θ2σ 4
v ,

and E(ξtξs) = 0 for t 
= s. One can show that the OLS estimator of θ for the tempo-
rally or dynamically misspecified model still converges to the true value θ at the rate
of T−1; however, the temporal misspecification in the covariate X does cause the com-
pounded error ξt to be nonstationary, so that model (14.27) does not have an I(0) error
any more.

Kasparis and Phillips (2012) considered the following two models

Yt = g(Xt−r) + ut , t = 1, 2, . . . , T , (14.28)

Yt = g(Xt−s) + ξt , (14.29)

where both r and s are some positive integers but r 
= s, g : R → R is a locally integrable
function, {ut } is a stationary martingale difference sequence, and Xt =∑t

i=1 vi is I(1),
although it can be relaxed to the data such that a properly scaled Xt obeys a FCLT result.
Most importantly, model (14.28) is the true model, while model (14.29) is not the true
model but wrongly estimated by a researcher. The misspecification problem is said to
be mild if |r − s| is finite and server if |r − s| → ∞ as T → ∞.

Closely following the assumptions imposed in Wang and Phillips (2009a) and for
the case that |r − s| is finite, Kasparis and Phillips (2012) showed that ĝ(x) defined
by (14.25) converges in probability to E

[
g
(
x +∑

rs vi
)]

if
√

Th → ∞ and h → 0 as
T → ∞, where vt = Xt − Xt−1 is I(0) and

∑
rs vi = Xr − Xs if r > s and Xs − Xr if

r < s. This result is the same as that derived for stationary time series. Under certain
conditions, they further showed that√√√√ T∑

t=s+1

K

(
Xt−s − x

h

)[̂
g(x)− g

(
x +

∑
rs

vi

)]
d→ N

(
0,σ 2(x)

∫ ∞

−∞
K2(v)dv

)
,

(14.30)
where σ 2(x)= σ 2

u + Var
[
g
(
x +∑

rs vi
)]

.
Consider two examples here. First, if g(x) = x2, we have E

[
g
(
x +∑

rs vi
)]= g(x)+

var
(∑

rs vi
) 
= g(x), where the asymptotic bias term of the kernel estimator depends on

the accumulated variance of {Xt } between time r and s. Second, if g(x)= θx, the kernel
estimator is consistent but its asymptotic variance will be larger for r 
= s than for r = s
as σ 2(x)= σ 2

u + Var
(∑

rs vi
)
.

When |r − s| → ∞ as T → ∞, Kasparis and Phillips (2012) obtained the conver-
gence result setting s = sT = [cT] for some c ∈ (0, 1) in model (14.29). Interested
readers are directed to their paper, but in general sense, ĝ(x) is inconsistent and
converges to 0 if g is integrable and explodes if g is an unbounded local integrable class

T (H) function. However, ĝ(x)
p→ E

[
g(Xt )

]
holds true for weakly dependent data.
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When model (14.12) suffers dynamic misspecification in its covariate, the OLS esti-
mator of the misspecified model can be consistent for some functional classes; see
model (14.26) and linear case, for example. Based on this observation, Kasparis and
Phillips (2012) considered a t-statistic based on the kernel estimation of model (14.29)
to test a linear null of g(x) = θ0 + θ1x aganist a nonlinear alternative. For a given

point x, the nonparametric t-statistic t̂
(
x, θ̂

) d→ N(0, 1) under H0 whether there is a
temporal or dynamic misspecification or not. They then constructed two test statistics

F̂sum = ∑
x∈Xk

[̂
t
(
x, θ̂

)]2
and F̂max = maxx∈Xk

[̂
t
(
x, θ̂

)]2
, where Xk = {x̄1, . . . , x̄k} ⊂ R

for some k ∈ N is a set of preselected and isolated points. Under H0, F̂sum
d→ χ2(k)

and F̂max
d→ Z , where the cumulative distribution function of the random variable Z is

FZ (z) = [
Pr
(
χ2(1)≤ z

)]k
. Under H1, both statistics are of stochastic order Op

(√
Th

)
whether g belongs to class T (I) or T (H). Therefore, both test statistics are consistent.
The choice of Xk and k evidently will affect the size and power of both tests, but it is
not discussed in the paper. Under H0, the Monte Carlo simulations (Table 2 in their
paper) suggest to use smaller bandwidth for larger |r − s|, and the rejection rates actu-
ally increase as sample size increases given α and for large |r − s|, where h = T−α. More
careful study is needed to understand how to select the bandwidth given an unknown
|r − s|, and an alternative bootstrap method may be worth considering.

14.5. Semiparametric Models with

Nonstationary Data
.............................................................................................................................................................................

Parallel to the models discussed in Sections 14.3 and 14.4, this section first consid-
ers semiparametric autoregressive models of nonstationary data in Section 14.5.1,
followed by the estimation of semiparametric varying coefficient cointegrating models
in Section 14.5.2. Section 14.5.3 presents an estimation method for semiparametric
varying coefficient models with correlated but not cointegrated data. Section 14.4
contains some recent developments in parametric and semiparametric discrete choice
models. Section 14.5.4 discusses a semiparametric time trend model. Due to space lim-
itation, the current chapter does not include recent works on partially linear regression
models and we refer interested readers to Chen, Gao, and Li (2012), Gao and Phillips
(2011), and Juhl and Xiao (2005).

14.5.1. Semiparametric Autoregressive Models

Consider a functional-coefficient conditional mean regression model of the following
form:

E
(
Xt |Xt−1, . . . , Xt−p, Zt

)= a1(Zt )Xt−1 + ·· ·+ ap(Zt )Xt−p, (14.31)
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where aj(Zt ) can be nonlinear functions of Zt . This model nests Chen and Tsay’s (1993)
functional coefficient autoregression (FAR) models given by

Xt = a1
(
X∗

t−1

)
Xt−1 + ·· ·+ ap

(
X∗

t−1

)
Xt−p + ut , t = p + 1, . . . , T , (14.32)

where X∗
t−1 = (

Xt−i1 , . . . , Xt−ik

)T
and {ut} is a sequence of i.i.d. random variables

independent of {Xs : s < t}. The FAR models include self-exciting threshold autore-
gressive (SETAR) models and smooth transition AR (STAR) models as special cases.
Cai, Fan, and Yao (2000) developed asymptotic results for local linear estimator of
model (14.31) for stationary time series, where the nonparametric estimator of the
unknown functional coefficient curves is asymptotically normally distributed with the
usual nonparametric convergence rate of Op

(
h2 + (Th)−1/2).

Let Ft be the smallest sigma field that containing all the past history of the data up
to time t . If Zt is Ft−1 measurable, stationary, and geometrically absolutely regular,
and Xt is generated from a linear ARIMA(p, 1, 0) model, Juhl (2005) showed that the
local linear estimator of a1(z) converges to the true value of one at a speed faster than
the stationary case by an order of Op

(
T−1/2

)
such that the “asymptotic variance” of the

local linear estimator of a1(z) is of order Op
(
T−1(Th)−1). He also obtained a mixed

normal limit distribution of the estimator under the assumption that the model error
terms are assumed to be an i.i.d. sequence and independent of past X ’s. Combining
the results of Cai et al. (2000) and Juhl (2005), we see the local linear estimator of the
unknown functional coefficient curves consistent whether {Xt } is an I(0) or an I(1)
process.

14.5.2. Semiparametric Varying Coefficient
Cointegrating Models

Cai, Li, and Park (2009) and Xiao (2009b) studied a semiparametric functional
coefficient models for nonstationary time series data,

Yt = XT
t g(Zt )+ ut , 1 ≤ t ≤ n, (14.33)

where Yt , Zt , and ut are scalar, Xt = (Xt1, . . . , Xtd)
T is a d × 1 vector, β(·) is a d × 1

column vector of unknown functions. When all the variables are stationary or indepen-
dent, this model has been studied by Cai et al. (2000) and Li et al. (2002), among others.
For stationary ut and Zt = t/n, Robinson (1989), Cai (2007), and Chen and Hong
(2012) derived estimation theory (for stationary Xt ) of local constant and local linear
estimators, respectively; Park and Hahn (1999) approximated the unknown coefficient
curves by trigonometric series for integrated Xt .

Assuming stationary ut and weakly exogenous covariates Xt and Zt , Cai, Li, and
Park (2009) derived limit results for local linear estimator of g(·) for two cases: (i)

{(ut , Zt , X1t )} are stationary α-mixing processes, where Xt = (
XT

1t , XT
2t

)T
, {X1t } is I(0),
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and {X2t} is I(1); (ii) {Zt } is an I(1) process, {(ut , Xt ,�Zt )} are all stationary α-mixing
processes, and {ut } is a martingale difference process with respect to the smallest σ -
field of {Xt , Zt , Xt−1, Zt−1, . . .}. Case (i) is also studied independently by Xiao (2009b)
via local polynomial regression approach. Complementing to the existing literature,
Sun, Cai, and Li (2013) considered the case that both {Xt } and {Zt } are I(1) processes.

In all cases mentioned above, the local linear estimator consistently estimates g(·),
although the convergence rate varies with respect to the stochastic properties of Xt

and Zt . It is wellknown for stationary and independent data cases that the kernel
and local linear estimator are expressed as ĝ(z) = g(z) + Op

(
h2 + (Th)−1/2) for any

interior point z, where h is the bandwidth parameter and T is the sample size. The
“asymptotic variance” of ĝ(z) is of order Oe

(
T 1/2(Th)−1) when {Xt } is I(0) and {Zt }

is I(1), of order Oe
(
T−1(Th)−1) when {Xt } is I(1) and {Zt } is I(0) by Cai et al. (2009),

and of order Oe
(
T−1/2(Th)−1) when both {Xt} and {Zt } are I(1) by Sun, Cai, and Li

(2013). Therefore, the unknown function with an integrated argument, Zt , inflates the
“asymptotic variance” by an order of T1/2 (for a given stochastic process Xt ), while an
integrated Xt deflates the asymptotic variance by an order of T−1 (for a given stochastic
process Zt ).

Sun and Li (2011) derived limit result for data-driven bandwidth selected via cross-
validation method for model (14.33). When Xt contains both I(0) and I(1) variables
and Zt is I(0), Sun and Li (2011) found that the CV-selected bandwidth converges in
distribution to a random variable at different rates for the local constant kernel estima-
tor and the local linear kernel estimator. Specifically, for the local constant estimator,
the CV-selected bandwidth is ĥlc = Oe

(
T−1/2

)
, and for the local linear estimator, the

CV-selected bandwidth is ĥll = Oe
(
T−2/5

)
, where Oe(1) means an exact order proba-

bility of Op(1) and it is not op(1). The local constant estimator gives a larger average
squared error than the local linear estimator. This result implies a sharp contrast to the
existing results derived for stationary and independent data cases. The reason behind
the different performance of the local constant and linear estimators lies in the lead-
ing squared bias term of the local constant estimator, which is Oe(h/T) and is larger
than the squared bias term of order Oe

(
h4
)

for the local linear estimator. Their results
favor the usage of the local linear estimator over the local constant estimator if one
is interested in obtaining better estimation result. When Xt contains both I(0) and
I(1) components, the cross-validation selected bandwidth is of order Oe

(
T−2/5

)
, not

Oe
(
T−1/5

)
, as the I(1) components of Xt dominate the I(0) components in asymptotic

performance. Hence, it is not surprising to see that, in their Table 4, the CV-selected
bandwidth produces smaller mean squared errors for the estimator of the coefficient
curve in front of the I(1) component of Xt than that of the I(0) component of Xt .
The estimation accuracy of the coefficient in front of the I(0) component of Xt can be
improved further, though. Let Yt = XT

1t g1(Zt )+ XT
2t g2(Zt )+ ut , where X1t is I(0) and

X2t is I(1). One first estimates the model by the local linear estimation approach, using
the CV-selected bandwidth. Name the estimator ĝ1(·) and ĝ2(·). Then, one estimates
Ỹt = XT

1t g1(Zt )+vt , where Ỹt = Yt −XT
2t ĝ2(Zt ), by the local linear regression approach

with a new CV-selected bandwidth from this model and name this estimator g̃1(·). Sun
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and Li (2011) showed that g̃1(·) performs better than ĝ1(·) in their Monte Carlo designs
when both X1t and Zt are strictly exogenous.

14.5.3. Semiparametric Varying Coefficient Models with
Correlated but not Cointegrated Data

Sun, Hsiao, and Li (2011, SHL hereafter) constructed a consistent estimator of g(·)
when Zt is I(0), but both {Xt } and {ut } are I(1) processes in model (14.33). That is,
SHL considered a case that Yt and Xt are not cointegrated in model (14.33) even with a
varying coefficient function g(Zt ), where the I(1) error term ut may be due to omitted
variables and/or measurement errors. For example, the true model is a partially linear
cointegrating model,

Yt = XT
t g(Zt ) + Wtδ+ εt = XT

t g(Zt ) + ut , (14.34)

where both {Xt } and {Wt } are I(1), {Zt } and {εt} are I(0), and
[
1,−θ(Zt )T ,δ

]T
is the

varying cointegrating vector. However, if Wt is not observable, then the composite
error in model (14.34), ut = Wtδ + εt , is an I(1) process if δ 
= 0, and Yt and Xt do
not form a stable relation with Wt missing from the model. Under some conditions,

it is easy to show that θ̂0 − E
[
g(Zt )

] d→ θ̄1 and ǧ(z) − g(z)
d→ θ̄2, where θ̂0 is the OLS

estimator of the linear model Yt = XT
t θ0 + errort , ǧ(z) is the kernel estimator of model

Yt = XT
t g(Zt )+ errort , and θ̄1 and θ̄2 have the same nondegenerate distribution. Moti-

vated by these results, they constructed two estimators for α(z) = g(z) − c0, where
c0 = E

[
g(Zt )

]
; that is, α̃(z) = ǧ(z) − θ̂0 and α̂(z) = ǧ(z) − n−1∑T

t=1 ǧ(Zt )Mnt , where
Mnt = Mn(Zt ) is the trimming function that trims away observations near the bound-
ary of the support of Zt . SHL showed the consistency of the two proposed estimators
and derived the limiting results.

To obtain an estimator for c0, one needs to rewrite model (14.33) as

Yt = XT
t c0 + XT

t α(Zt )+ ut , (14.35)

and subtracting XT
t α̃(Zt ) in (14.35) gives

Ỹt
def= Yt − XT

t α̃(Zt ) = XT
t c0 + vt , (14.36)

where vt = XT
t [α(Zt )− α̃(Zt )] + ut . Because α̃(Zt ) is a consistent estimator of α(Zt ),

Ỹt mimics the stochastic properties of Yt − XT
t α(Zt ), and the stochastic property of vt

is dominated by that of ut . Taking a first difference of (14.36) gives �Ỹt = ζT
t c0 +�vt ,

from which one can calculate the OLS estimator c̃0. It gives g̃(z) = α̃(z)+ c̃0 to estimate
g(z). Similarly, replacing α̃(·) in (14.36) by α̂(·) and following the same procedure, one
obtains the OLS estimator ĉ0 and another estimator for g(z) by ĝ(z) = α̂(z)+ ĉ0. Under
some mixing conditions of {(�Xt ,�ut , Zt)} and h → 0, nh → ∞ and nh5 = O(1) as
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n → ∞ and other regularity conditions, Sun, Hsiao, and Li (2011) derived the limiting
result for α̃(z) in their Theorem 3.1, but deriving the limiting result for α̂(z) requires
the independence between {(�Xt ,�ut)} and {Zt } as indicated in their Theorem 3.2.
Overall, SHL showed that both α̃(z) and α̂(z) converge to α(z) with a convergence rate
of Op

(
h2
)+ Op

(
(Th)−1/2), and the same convergence rates hold for c̃0, ĉ0, g̃(z), and

ĝ(z) as shown in their Theorem 3.3. Monte Carlo simulations show that ĝ(z) performs
better than the simple kernel estimator (14.25) when both {Xt } and {ut } are near I(1)
process in model (14.33), where both estimators have the same convergence rate. An
empirical study of national market spillover effects across US/UK and US/Canadian
markets can be found in Sun, Hsiao, and Li (2012).

14.5.4. Semiparametric Binary Choice Models

We start with a standard binary choice model, where the observed data, {(Xt , Yt)}T
t=1,

is generated by

Yt = I
{

Y ∗
t > 0

}
, (14.37)

Y ∗
t = XT

t β0 + ut , t = 1, 2, . . . , T , (14.38)

with Y ∗
t being a latent variable and {ut} being an i.i.d. sequence with a zero mean

and unit variance. When all the data are weakly dependent or independent, it is well
known that the maximum likelihood (ML) estimator of β0 is

√
T-consistent and has an

asymptotic normality distribution (see, e.g., Dhrymes (1986) and Wooldridge (1994)).
However, when {Xt } is an I(1) process and

E(Yt |Ft−1) = Pr(Yt = 1|Ft−1)= F
(

XT
t β0

)
, (14.39)

where Ft−1 is some natural filtration with respect to which ut is measurable and
F(·) is the known marginal cumulative distribution of {ut }, Park and Phillips (2000)
showed that the MLE of β0 (with β0 
= 0) is T1/4-consistent and has a mixed nor-
mal distribution, while Guerre and Moon (2002) showed that the MLE of β0, when
β0 = 0, is T-consistent. Note that different components of {Xt } are assumed not to be
cointegrated among themselves.

Park and Phillips (2000) and Guerre and Moon (2002) both assume that the distri-
bution of {ut } is known and correctly specified, which may not hold true in practice.
For independent data case, nonparametric methods have been introduced to esti-
mate β0 with unknown error distributions, including the local maximum likelihood
estimator of Fan, Farmen, and Gijbels (1998), maximum score estimator of Manski
(1985, 1988) and Horowitz (1992), the semiparametric least-squares (SLS) estimator
of Ichimura (1993) and Härdle, Hall, and Ichimura (1993), and the semiparametric
efficient estimator of Klein and Spady (1993), where Klein and Spady (1993) consid-
ered a case that Pr(Yt = 1|Ft−1)= F(v(Xt ,β0)) has an unknown F but known v(·, ·) up
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to an unknown β0. The connection between the binary choice model and single-index
model is well known, and one can construct a semiparametric single-index model from
(14.39),

Yt = F
(

XT
t β0

)
+ εt , t = 1, 2, . . . , T , (14.40)

where {(εt ,Ft )} is a martingale difference sequence with conditional variance
E
(
ε2

t |Ft−1
) = σ 2

(
XT

t β0
)

and σ 2(z) = F(z)[1 − F(z)]. The SLS estimator of Ichimura
(1993) and Härdle et al. (1993) is proposed to estimate the unknown parameter β0 by
the nonparametric least squares method from model (14.40) for independent data. Out
of different interest, Chang and Park (2003) derived the consistency and limit results
of the nonlinear least squares (NLS) estimator of a simple neutral network model with
integrated time series, which is defined as Yt = μ+ αG

(
XT

t β0
)+ εt , t = 1, 2, . . . , T ,

with a known, bounded, three-time differentiable function G : R → R satisfying
limx→−∞ G(x) = 0 and limx→∞ G(x) = 1; this model is a parametric single-index
model more general than model (14.40).

When {Xt} is an I(1) process and E(�Xt ) = 0 in (14.38), Moon (2004) and Guerre
and Moon (2006) studied Manski’s maximum score estimator of β0 
= 0 when the error
distribution, F, is unknown. Moon (2004) obtained the identification condition and
consistency result of the estimator, and Guerre and Moon (2006) showed that both
Manski’s maximum score estimator and Horowitz’s (1992) smoothed maximum score
estimator are

√
T-consistent under some conditions. Parallel to the literature on sta-

tionary and independent data, it will be interesting to see how the local MLE of Fan
et al. (1998) and the SLS estimator of Ichimura (1993) and Härdle et al. (1993) perform
when the covariates are I(1).

Further, Hu and Phillips (2004) and Phillips, Jin, and Hu (2007, PJH hereafter)
extended the study of nonstationary binary choice models to nonstationary discrete
choice models with each threshold value equal to

√
T times a constant, while assuming

a correctly specified error distribution. In the presence of non-zero threshold values,
PJH showed that both the threshold parameters and β0 are T3/4-consistent. As the
error distribution is generally unknown in practice, more research work is needed
to study the performance of quasi-maximum likelihood estimation with misspecified
error distribution function and semiparametric discrete choice models with unknown
error distribution function.

14.5.5. A Time Trend Variable Coefficient Model

Liang and Li (2012) considered the estimation of the following semiparametric time
trend varying coefficient model

Yt = XT
t β1(Zt ) + tβ2(Zt ) + ut ,
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where Xt and β(Zt ) are d × 1 vectors, Yt , Zt , ut are scalars, and t is the time trend
variable. Xt , Zt , and ut are all stationary I(0) variables. The nonstationarity comes
from the time trend variable. The functional forms of β1(·) and β2(·) are not speci-
fied. Liang and Li (2012) showed a surprising result that the local constant estimation
method leads to inconsistent estimation result for β2(z). They then suggested to use
a local polynomial method to approximate the β2(·) function, while keeping the local
constant approximation to the β1(·) function. They derived the rate of convergence
and asymptotic normal distribution result for their proposed estimators of β(z), and
they proposed some test statistics for testing whether β(z) is a constant vector or has
some parametric functional forms.

14.6. Model Specification Tests with

Nonstationary Data
.............................................................................................................................................................................

With nonstationary time series, functional form misspecification is tested under two
general setups. The first one conducts tests when a model represents a meaningful rela-
tion under both null and alternative hypotheses. The second one conducts tests when
the model is meaningful under one hypothesis and is spurious under another hypoth-
esis. In many cases, one finds that a wrongly specified functional form can lead to a
spurious regression. However, the rejection of a cointegrating null hypothesis can be
resulted from functional misspecification or spurious regression if no prior knowledge
is known. In this sense, testing for spurious regression or functional form misspecifi-
cation is nonseparable in many occasions. Some consolidation method can be useful
(e.g., Harvey, Leybourne, and Xiao (2008)).

The RESET test of Ramsey (1969), White’s information criterion test, Wald and LM
tests are the most popularly used classical model misspecification tests; see Godfrey
(1988) for an excellent survey. However, Lee et al. (2005 and references therein) showed
that the traditional RESET test, White’s information criterion test and other tests for
nonlinearity derived for weakly dependent and independent data are not proper tests
for I(1) data, as the limit results are completely different. Consequently, Hong and
Phillips (2010) constructed a modified RESET test to correct for finite sample bias
arising from endogeneity of integrated covariates and showed that the modified RESET
test has a standard normal limiting distribution under the null hypothesis of a linear
cointegrating model, but the test statistic is of order Op(T/M) under the alternative
linear spurious regression or nonlinear cointegrating regression model (14.24) when
g belongs to the functional class T (H), where M is the bandwidth used to calculate
the kernel estimation of the long-run (co)variance(s). However, when g belongs to
T (I) , the RESET test fails to detect a linear cointegrating model from a nonlinear
cointegrating model.
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Gao, King, Lu, and Tjøstheim (2009a) constructed a unit root test via nonparametric
method from model (14.4); that is, they considered a class of nonlinear autoregressive
models, Yt = g(Yt−1)+ ut , t = 1, 2, . . . , T , where {ut } is an i.i.d. sequence with a zero
mean and a finite fourth moment. The null and alternative hypotheses are given by

H0 : Pr
{

g(Yt−1) = Yt−1
}= 1, (14.41)

H1 : Pr
{

g(Yt−1) = Yt−1 +�T (Yt−1)
}= 1, (14.42)

where
{
�T

(
y
)}

is a sequence of unknown functions. Under H0, {Yt} is a random
walk process; under H1, {Yt} can be a nonlinear stationary process if

∣∣g(y)∣∣ ≤ c
∣∣y∣∣ for

extremely large
∣∣y∣∣ and c < 1. Estimating the unknown curve g

(
y
) = E

(
Yt |Yt−1 = y

)
by the kernel estimator ĝ

(
y
)

given by (14.22) and calculating the nonparametric esti-
mated residuals, ût = Yt − ĝ(Yt−1), Gao et al. (2009a) constructed a standardized
residual-based test statistic

L̂T (h)= MT (h)/
√
σ̂ 2

T (h), (14.43)

where MT (h) = ∑T
t=1

∑T
s=1,s 
=t ût ûsKh,s−1,t−1, σ̂ 2

T (h) = 2
∑T

t=1

∑T
s=1,s 
=t û2

t û2
s

K2
h,s−1,t−1, and Kh,s−1,t−1 = h−1K

(
Ys−1−Yt−1

h

)
. They showed that L̂T (h)

d→ N(0, 1)

under H0 under some conditions including that ut has a symmetric probability density
function, where we have the bandwidth h → 0, Th → ∞, Th4 → 0 as T → ∞. Such
standardized residual-based tests have been widely used in testing model specification
for weakly dependent and independent data (see, e.g., Zheng (1996), Li and Wang
(1998), Fan and Li (1999)). Gao et al.’s (2009a) test is a test alternative to Dickey and
Fuller’s (1979) unit root test as both test a unit root null against a stationary alternative,
but is confined to a random walk null instead of a general unit root process. In addi-
tion, we are not sure whether the residual-based test statistic can be extended to test
for null recurrent time series against positive recurrent time series in the framework of
Markov chains, and more research needs to be done in the future.

Applying the standardized residual-based test technique, Gao, King, Lu, Tjøstheim
(2009b) tested a parametric null aganist a nonparametric alternative hypothesis; that is,

H0 : Pr
{

g(Xt )= g(Xt ,θ0)
}= 1 for some θ0 ∈� ⊂ Rd ,

H0 : Pr
{

g(Xt ) 
= g(Xt ,θ)
}
> 0 for all θ ∈ � ⊂ Rd

when model (14.20) and model (14.24) both represent meaningful relation between
{Xt} and {Yt}, where �Xt ∼ i.i.d.

(
0,σ 2

u

)
with a symmetric marginal density function

is independent of the martingale difference errors in the model. The test statistic con-
verges to a standard normal distribution under H0. As explained in Park and Phillips
(2001), the convergence rate of the NLS estimator under H0 depends on the functional
form, Gao et al. (2009b, Assumption 2.2 (ii)) imposes a restriction on the conver-
gence rate of the NLS estimator and the functional form g . Wang and Phillips (2012)
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considered the same test statistic but for the case that Xt is a predetermined variable
relative to Yt .

The current research results seem to suggest that the standardized residual-based
test for functional misspecification is consistent as long as the model under the null is
nested within the model under alternative and the alternative model is not spurious no
matter the data are I(0) or I(1). There is no result pushed to null recurrent time series.
In addition, as the estimation results are still limited comparing with what the litera-
ture has developed for weakly and independent data, many commonly used statistics
for various hypotheses testing problems have unknown asymptotic properties when
applied with nonstationary data—for example, variable selection with non-nested
hypotheses, linear against partially linear regression, and so on.

In the semiparametric varying coefficient framework, Xiao (2009b) provided a
maximum chi-squared test to test a linear cointegrating model against a functional-
coefficient cointegrating model. Sun, Cai, and Li (2012) considered the problem of
testing g(z) = g0 for all z ∈ R, where g0 is a constant vector of parameters in a
semiparametric varying coefficient model Yt = XT

t g(Zt ) + ut , where Xt can con-
tain both stationary I(0) and nonstationary I(1) components, and Zt is a stationary
variable.

14.7. Co-summability: Cointegration of

Nonlinear Processes
.............................................................................................................................................................................

After reviewing several non-/semiparametric regression models of nonstationary and
persistent time series data, we now discuss an extension of cointegrating relation from
linear to nonlinear setup. In this section we discuss the co-summability concept intro-
duced by Berenguer-Rico and Gonzalo (BG) (2013), who attempted to consolidate the
linear and nonlinear cointegrating concepts via the sampling approach. We re-state
BG’s (2013) definitions 2 and 4 below for readers’ convenience.

Definition. A stochastic process {Yt} with positive variance is said to be summable of
order δ, represented as S(δ), if

ST = T
−
(

1
2 +δ

)
L(T)

T∑
t=1

(Yt − mt)= Op(1) as n → ∞, (14.44)

where δ is the minimum real number that makes ST bounded in probability, mt is a
deterministic sequence, and L(T) is a slowly varying function as defined by Eq. (14.2)
in Section 2.

The above definition is defined according to the limit result of the sample average of
(Yt − mt), where mt is not explicitly defined in BG (2013). One reasonable possibility
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is to select mt that corresponds to a smallest possible δ. We provide some examples to
illustrate that the concept needs to be further elaborated via population properties of
{Yt}, or population moment conditions. Apparently, if {Yt} is an I(1) process with a
zero mean and finite Var(�Yt ), Yt is S(1) with mt = 0. However, suppose that {Yt } is a
random walk process with a nonzero drift generated from a model, Yt =μ+Yt−1 +ut

with Y0 ≡ 0, μ 
= 0, and ut ∼ i.i.d.
(
0,σ 2

u

)
independent of all the past Xs’ (s < t).

For this process, taking mt ≡ 0 yields Yt ∼ S(1.5), while taking mt ≡ μt gives Yt ∼
S(1). Without explaining what mt is, especially in a nonlinear setup, the uniqueness
of δ is of question. Let Zt = Y 2

t and Xt = ∑t
i=1 ui . Then, Zt = (μt + Xt)

2 = μ2t2 +
2μtXt + X2

t . With mt = 0, Zt is S(2.5); with mt = μ2t2, Zt is S(2); with mt = E(Zt ) =
μ2t2 + σ 2

u t , Zt is S(2). Again, the choice of the deterministic term, mt , affects the
value of δ. For general nonlinear transformation of an I(1) process, the discussion
given in Granger, Inoue, and Morin (1997) can be useful in determining the dominant
deterministic trend, mt , before determining the value of δ. To highlight the potential
usage of BG’s (2013) definition, from this point on, we assume that all the I(1) variables
to be discussed have a zero mean and finite increment variance.

In a linear setup, Engle and Granger (1987) defined a general cointegration relation
as follows. Let Yt be a k × 1 (k ≥ 2) vector of I(d) processes. The components of Yt

are cointegrated of order (d, b) with d ≥ b or C(d, b), if there exists at least one k × 1
nonzero constant vector, α, such that αT Yt is I(d − b). Parallel to Engle and Granger’s
cointegrating concept, BG (2013) extends the cointegrating relation to the nonlinear
setup based on definition (14.44):

Definition. Two summable stochastic processes, Yt ∼ S
(
δy
)

and Xt ∼ S(δx), will be said
to be co-summable if there exists g

(
Xt ,θg

)∼ S
(
δg
)

such that ut = Yt − g
(
x,θg

)
is S(δu),

with δu = δy − δ and δ > 0. In short,
(
Yt , g

(
x,θg

))∼ CS
(
δy ,δ

)
.

Of course, one can replace the parametric function g
(·,θg

)
with a general nonlin-

ear function. Because in practice, δy , δx , and δ are unknown, BG (2013) proposed

a consistent estimator with a slow convergence rate of
[
log(T)

]−1
. Now, we will

apply BG’s co-summability concepts to model (14.33) in Section 14.5.2 and model
(14.34) in Section 14.5.3. For easy reference, we use δg to refer to the limit order of

T
−
(

1
2 +δg

)
L(T)

∑T
t=1 XT

t g(Zt ).
Consider model (14.33) first. As the error term is I(0), we have δu = 0. Cai

et al. (2009) considered two cases: (i) {Zt } is I(0) and Xt = (
XT

1t , XT
2t

)T
with

{X1t } being I(0) and {X2t} being I(1); (ii) {Zt} is I(1) and {Xt } is I(0). Partition

g(Zt ) = [
gT

1 (Zt ), gT
2 (Zt )

]T
conformably with respect to Xt = (

XT
1t , XT

2t

)T
. For case (i),∑T

t=1 XT
t g(Zt ) is dominated by

∑T
t=1 XT

2t g2(Zt ), and we obtain δg = 0.5 if E
[
g2(Zt )

]=
0 and δg = 1 if E

[
g2(Zt )

] 
= 0, applying Hansen (1992, Theorems 3.1 and 3.3). There-
fore, Yt is S(0.5) or S(1), depending on whether E

[
g2(Zt )

] = 0 or not. Therefore,
model (14.33) in case (i) defines a co-summable relation

(
Yt , XT

t g(Zt )
)∼ CS(0.5, 0.5)

if E
[
g2(Zt )

]= 0 or
(
Yt , XT

t g(Zt )
)∼ CS(1, 1) if E

[
g2(Zt )

] 
= 0.
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For case (ii), the limit result of
∑T

t=1 XT
t g(Zt ) is determined by the functional form

g(·) and whether or not E(Xt ) = 0. Equations (14.13)–(14.16) given in Section 14.3.2
give the limit results of

∑T
t=1 g(Zt ) when g(·) belongs to class T (I), T (H), and T (E),

respectively. Because
∑T

t=1 XT
t g(Zt )=

∑T
t=1 E(Xt )

T g(Zt )+
∑T

t=1[Xt − E(Xt )]
T g(Zt ),

under some regularity conditions, we can show that the second term is dominated
by the first term if g(·) is in class T (H) and T (E) and E(Xt ) 
= 0. Also, by Eq.
(14.13), when g(·) is in class T (I) (say, g(z) = sin(z)) and {Xt } has a zero mean and
independent of {Zt }, δg = δy = 0. So, one will not discuss co-summability at all.

Sun et al. (2013) considered model (14.33) when both {Xt } and {Zt } are I(1) pro-
cesses with a zero mean, but {ut} is an I(0) process. Again, we have δu = 0. We discuss
the case that

∫
g(x)dx 
= 0 below. To determine δy = δg , we will apply Phillips’ (2009)

limit result (Eq. (14.A.6) in the Appendix) to
∑T

t=1 XT
t g(Zt ) and obtain

1√
T

T∑
t=1

XT
t√
T

g(Zt ) = 1√
T

T∑
t=1

XT
t√
T

g

(√
T

Zt√
T

)
d→
(∫

g(x)dx

)∫ 1

0
Bx
(
p
)
dLBz

(
p, 0

)
(14.45)

where
(
T−1/2X[Tr], T−1/2Z[Tr]

) =⇒ (Bx(r), Bz(r)), a bivariate Brownian process with
a zero mean and finite positive definite variance–covariance matrix, for all r ∈ [0, 1],
LBz (t , s) is the local time process of Bz , and g(x) and g2(x) are Lebesgue integrable
functions on R with

∫
g(x)dx 
= 0. Hence, with g(·) belonging to class T (I), then∑T

t=1 XT
t g(Zt ) = Oe(T) and δy = δg = 0.5. If g(·) belongs to class T (H) with

g(λz) = v(λ)H(z) + R(z,λ), where H is locally integrable and R(z,λ) is asymptot-
ically dominated by v(λ)H(z) when λ → ∞ and/or |z| → ∞, the dominant term

of T−1∑T
t=1

(
T−1/2Xt

)T
g(Zt ) will be v

(√
T
)

T−1∑T
t=1

(
T−1/2Xt

)T
H
(
T−1/2Zt

) =
Oe

(
v
(√

T
))

, so δy = δg > 0.5 is determined by v
(√

T
)

. If β(z)= z2, then v
(√

T
)

= T

and δy = δg = 2, and {Yt } in this case has the same order as a squared random walk
process (without drift) that we analyzed in Section 14.2. Model (14.34) is studied by
Sun, Hsiao, and Li (2011), where δu = 1 as {ut} is an I(1) process with a zero mean. In
this model, {Xt } is an I(1) process, but {Zt } is an I(0) process. As discussed for model
(14.33) under case (i), we have δg = 0.5 if E

[
g(Zt )

] = 0 and δg = 1 if E
[
g(Zt )

] 
= 0.
Therefore, if E

[
g(Zt )

] 
= 0, we have δy = δg = δu = 1, and model (14.34) represents no
co-summability. However, when E

[
g(Zt )

]= 0, we have δg = 0.5, so that
(
Yt , XT

t g(Zt )
)

is not co-summable, either.

14.8. Conclusion
.............................................................................................................................................................................

When a model contains a nonlinear transformation of an integrated time series, the
kernel-based nonparametric estimator is still consistent as long as the model is not
spurious, but the convergence rate of the “asymptotic variance” of the kernel estimator
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is reduced by a factor of
√

T when the unknown curve is a function of an integrated
series, compared to the case of weakly dependent and independent data. In addition,
applying the local linear regression approach can be more beneficial than applying the
local constant (or kernel) estimator. Moreover, the optimal bandwidth chosen via the
cross-validatory method is random even asymptotically. This is in sharp contrast to the
weakly dependent and independent data case where it is known that the CV-selected
optimal smoothing parameters, after multiplying by some normalization constant,
converge to nonstochastic constants.

Finally, unless the error terms in models (14.24) and (14.32), for example, are home-
scedastic, the conditional mean regression model does not provide the full picture of
how the dependent variable responds to the changes of the regressors. Also, in the
presence of outliers or fat-tailed data distribution, estimating the conditional mean
regression model can result small sample biases. In such circumstances, conditional
quantile regression models are found to be nice alternatives. Since Koenker and Bas-
sett (1978, 1982) derived estimation and hypothesis tests for linear quantile regression
models, quantile regression models have become widely used in various disciplines.
Koenker and Xiao (2004) extended quantile estimation techniques to unit root quantile
autoregressive (QAR) models and provided unit root test statistics and Xiao (2009a)
estimated linear quantile cointegrating model. Cai (2002) provided limit result for ker-
nel estimation of nonparametric quantile regression models of stationary time series,
and Cai and Xu (2009) considered nonparametric quantile estimations of dynamic
functional-coefficient models for stationary time series. So far, for null recurrent time
series, Lin, Li, and Chen’s (2009) local linear M-estimator of nonparametric coin-
tegrating model (14.24) can be applied to quantile regression, but we are not aware
any literature on estimating non-/semiparametric quantile cointegrating models with
nonlinearly transformed integrated covariates.
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Appendix: Some Results on Kernel

Estimators with I(1) Data
.............................................................................................................................................................................

When integrated time series data are considered, the development of both consistent
estimators and test statistics, in general, heavily relies on the development of proper
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functional central limit theorems (FCLTs), limiting results of sample averages and
covariances of nonlinearly transformed (scaled) integrated time series. This section
summarizes some of the recently developed technical results for nonlinearly trans-
formed integrated time series. Billingsley (1999), Davidson (1994), Jacod and Shiryaev
(2003), and Revuz and Yor (2005) are among excellent references in explaining contin-
uous martingales, Brownian motions, functional central limit theorems, convergence
of stochastic integrals, and so on.

Suppose that one observes nonstationary time series {(Yt , Xt )}T
t=1. Assume that there

exist continuous stochastic processes
(
Gy(r), Gx(r)

)
for which the weak convergence

result (
d−1

T Y[Tr], d−1
T X[Tr]

)
=⇒ (

Gy(r), Gx(r)
)

(14.A.1)

holds with respect to the Skorohod topology on D[0, 1]2 for all r ∈ [0, 1], where dT is
a certain sequence of positive numbers with dT → ∞ as T → ∞. For an I(1) process
with a zero mean, dT = √

T . In addition, the process Gx(·) has a continuous local time
process (see Revuz and Yor (2005, Chapter 7) for details)

LG(t , s)= lim
ε→0

1

2ε

∫ t

0
I{|Gx(r)− s|< ε}dr (14.A.2)

for s ∈ R and t ∈ [0, 1], where LG(t , s) is a local time that the process Gx(r) stays around
a point s over the time interval [0, t].

Under different regularity conditions, Jeganathan (2004) and Wang and Phillips
(2009a) have shown that, for any cT → ∞, cT/T → 0, as T → ∞, and r ∈ [0, 1],
we obtain

cT

T

[Tr]∑
t=1

g

(
cT

(
Xt

dT
+ x

))
d→
(∫ ∞

−∞
g(x)dx

)
LGx (t ,−x). (14.A.3)

Jeganathan (2004) allowed {Xt} to be a fractional ARIMA process with possibly heavy-
tailed innovations, and Wang and Phillips (2009a) assumed {Xt } to be an I(1) or a near
I(1) process. Park and Phillips (1999), Pötscher (2004), and de Jong (2004) studied the
case with dT = √

T , cT = 1, and x = 0. For integrated time series {Xt }, Kasparis and
Phillips (2012, Proposition A, p. 19) showed that under certain conditions for r 
= s
with finite |r − s| we have

cT

T

[Tr]∑
k=1

g(Xt−r)K

(
cT

(
Xt−s − x√

T

))
d→ E

[
g

(
x +

∑
rs

vi

)]∫ ∞

−∞
K(s)dsLGx (r, 0).

(14.A.4)
Moreover, complementing to (14.A.3), Wang and Phillips (2011, Theorem 2.1)

derived the limit result when
∫ ∞
−∞ g(x)dx = 0; and under certain conditions, they
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showed that√
cT

T

[Tr]∑
t=1

g

(
cT

Xt

dT

)
=⇒

(∫
g2(x)dx

)2

N
√

LGx (r, 0), (14.A.5)

where N is a standard normal random variate independent of the local time process
LGx (r, 0) for r ∈ [0, 1].

Phillips (2009, Theorem 1) derived a limiting result for the sample covariance, for a
positive sequence cT → ∞, cT/T → 0, and r ∈ [0, 1]:

cT

T

[Tr]∑
t=1

Yt

dT
g

(
cT

Xt

dT

)
=⇒

(∫
g(x)dx

)∫ r

0
Gy

(
p
)
dLGx

(
p, 0

)
, (14.A.6)

where cT is a certain sequence of positive numbers, and g(x) and g2(x) are Lebesgue
integrable functions on R with

∫
g(x)dx 
= 0. And, if Eq. (14.A.1) can be strengthened

to strong convergence result, we have

sup
r∈[0,1]

∣∣∣∣∣∣ cT

T

[Tr]∑
t=1

Yt

dT
g

(
cT

Xt

dT

)
−
∫

g(x)dx

∫ r

0
Gy
(
p
)
dLGx

(
p, 0

)∣∣∣∣∣∣ p→ 0. (14.A.7)
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chapter 15
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NONPARAMETRIC AND
SEMIPARAMETRIC ESTIMATION OF
A SET OF REGRESSION EQUATIONS

........................................................................................................

aman ullah and yun wang

15.1. Introduction
.............................................................................................................................................................................

It is well known that the weighted least squares (WLS), also known as the generalized
least squares (GLS) estimator in a parametric regression model with a known non-
scalar covariance matrix of errors, is the best linear unbiased estimator. This also holds
asymptotically for an operational WLS estimator in which the nonscalar covariance
matrix is replaced by a consistent estimator (see Greene (2007, p. 157) and Hayashi
(2000, p. 138)). Further, in small samples it is known to be unbiased for the symmetric
errors (see Kakwani (1967)), and its efficiency properties are analyzed in Taylor (1977).
In the case of a single-equation nonparametric regression model with a nonscalar
covariance, various local linear weighted least squares (LLWLS) estimators have been
developed for the pointwise local linear regression and its derivative estimators (see
Welsh and Yee (2006), Ullah and Roy (1998), Henderson and Ullah (2005, 2012), and
Lin and Carroll (2000), among others). However, it has been shown in Henderson and
Ullah (2012), Welsh and Yee (2006), and Lin and Carroll (2000), among others, that
such LLWLS estimators may not be efficient even when the covariance matrix is known.
In fact, often they are even beaten by the local linear least squares (LLLS) estimator
ignoring the existence of a nonscalar covariance matrix. In view of this, Ruckstuhl,
Welsh, and Carroll (2000) proposed a two-step estimator to a nonparametric model in
which the dependent variable suitably filtered and the nonscalar covariance matrix is
transformed to be a scalar covariance matrix (also see Su and Ullah (2007)). Martins-
Filho and Yao (2009) proposed a two-step estimator with another filtered dependent
variable but with a nonscalar covariance matrix consisting of heteroscedasticity (also
see You, Xie, and Zhou (2007) for a similar estimator). Su, Ullah, and Wang (2013)
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then suggested a new two-step estimator in which the filtered dependent variable is dif-
ferent from that of Martins-Filho and Yao (2009), but with a scalar covariance matrix.
They showed that their two-step estimator is asymptotically more efficient than both
the LLLS and the two-step estimator proposed by Martins-Filho and Yao (2009). In a
simulation study they also show that their two-step estimator is also more efficient in
small samples compared to both the LLLS and the Martins-Filho and Yao’s two-step
estimator.

In this chapter we consider a set of regression equations (SRE) models. As we know,
the SRE models have been extensively studied in parametric framework and widely
used in empirical economic analysis, such as the wage determinations for different
industries, a system of consumer demand equations, capital asset pricing models, and
so on. However, it hasn’t been well developed within the nonparametric estimation
framework, although see, for example, Smith and Kohn (2000) and Koop, Poirier, and
Tobias (2005), where nonparametric Bayesian methods are used to estimate multiple
equations, Wang, Guo, and Brown (2000), where a penalized spline estimation method
is considered, and Welsh and Yee (2006), where LLWLS estimators are used.

The objective of this chapter is to systematically develop a set of estimation results
for SRE regression analysis within nonparametric and semiparametric framework.
Specifically, we explore conventional LLLS and LLWLS in nonparametric SRE, and we
develop efficient two-step estimation for various nonparametric and semiparametric
SRE models following Su, Ullah, and Wang (2013) estimation results in the context of
the single-equation model. The models considered include the partially linear semi-
parametric model, the additive nonparametric model, the varying coefficient model,
and the model with endogeneity.

The structure of this chapter is as follows. In section 15.2, we introduce SRE non-
parametric estimators including an LLLS estimator, a general two-step estimator, and
various LLWLS estimators. In section 15.3 we propose the estimation procedures
for a variety of nonparametric and semiparametric SRE models. Section 15.4 briefly
discusses NP SRE models with conditional error covariance. Section 15.5 concludes.

15.2. Nonparametric Set of Regression

Equations
.............................................................................................................................................................................

We start with the following basic nonparametric set of regression equations (SRE)

yij = mi(Xij) + uij , i = 1, . . . , M , j = 1, . . . , N . (15.1)

The economic variable yij is the jth observation on the ith cross-sectional unit, Xij is
the jth observation on the ith unit on a qi ×1 vector of exogenous regressors which may
differ for different regression equations, mi( · ) is an unknown function form, which
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can differ across the cross-sectional units, and E(uij |Xij) = 0. For simplicity, the equal
number of observations N is assumed across M cross-section units.

The examples of such models are the cross-country economic growth model, the
regional consumption model across clusters, the wage determination model for dif-
ferent industries, and a system of consumer demand equations, among others. In a
special case, where mi(Xij) = Xijβi , (15.1) is the standard Zellner’s (1962) parametric
seemingly unrelated regressions (SUR) system, in which E(uijui′j|Xij , Xi′ j) = σii′ if i 
= i′
and it is σii if i = i′. The system (15.1) is a VAR system in which X variables are lagged
of y variables. When mi(Xij) = Xijβi with qi = q for all i and σii′ = 0, we get the set of
regression equations model (see Pesaran, Smith, and Im (1996)). Further, in the case
where mi(Xij) = Xijβ with qi = q, σii = σ 2, and σii′ =ρσ 2, we get a set of cluster regres-
sion equations. Also, if uij is treated as αi + εij disturbances, we get the set of equations
with error components.

15.2.1. Estimation with Unconditional Error
Variance–Covariance �

15.2.1.1. Local Linear Least Squares (LLLS) Estimator

First, by first-order Taylor expansion, we obtain

yij = mi(Xij) + uij

# mi(xi) + (Xij − xi)m(1)
i (xi) + uij

= Xij(xi)δi(xi) + uij ,

where δi(xi) =
(

mi(xi) m(1)′
i (xi)

)′
, which is a (qi + 1) × 1 vector, and

Xij(xi) = (
1 (Xij − xi)′

)
.

Let yi = (yi1, . . . , yiN )′, Xi(xi) = (
Xi1(xi), . . . , XiN (xi)

)′
, which has a dimension of

N ×(qi +1), and ui =
(
ui1, . . . , uiN

)′
. In a vector representation, for each regression

i, we can write
yi # Xi(xi)δi(xi) + ui ,

which can be further written compactly as

y = m(X) + u

# X(x)δ(x) + u, (15.2)

where y = (y
′
1, . . . , y

′
M )′ is an MN ×1 vector, m(X) = (m1(X1), . . . , mM(XM ))′, mi(Xi) =

(mi(Xi1), . . . , mi(XiN ))′, u = (u
′
1, . . . , u

′
M )′, X(x) = diag

(
X1(x1), . . . , XM (xM )

)
,

which has MN × (�M
i=1qi + M) dimension, and δ(x) = (

δ1(x1), . . . , δM (xM )
)
, a
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(
∑M

i=1 qi +M)×1 vector. Further, we have E(u|X)= 0MN×1 and �≡Var(u|X) =�(θ)
is an MN × MN unconditional covariance matrix, where θ is a vector of unknown
parameters—for example, in the case of SUR �(θ) = � ⊗ IN , where � is an M × M
matrix with typical diagonal element σii and off-diagonal element σii′ for i, i′ =
1, . . . , M .

Then the LLLS estimator of δ(x) is obtained by minimizing u′K(x)u,

δ̂(x) = (X ′(x)K(x)X(x))−1X ′(x)K(x)y,

where K(x) ≡ diag
(
Kh1 (X1 − x1), . . . , KhM (XM − xM )

)
is a MN × MN diagonal

matrix, Khi (Xi − xi) ≡ diag
(
Khi (Xi1 − xi), . . . , Khi (XiN − xi)

)
, and Khi (Xij − xi) =

1
hi

k(
Xij−xi

hi
). From the standard results on the asymptotic normality of the LLLS estima-

tor (Li and Racine (2007)) in a single equation it is straightforward to show that δ̂(x)
is asymptotically normally distributed (Wang (2012) for the case of the SUR model).

15.2.1.2. Local Linear Weighted Least Squares (LLWLS) Estimator

Another class of local linear estimator in nonparametric literature is called an LLWLS
estimator. By minimizing the following weighted sum of squared residuals

(y − X(x)δ(x))′�r(x)(y − X(x)δ(x)),

the LLWLS can be obtained as

δ̂r(x) = (X ′(x)�r (x)X(x))−1X ′(x)�r (x)y,

where �r(x) is a weight matrix based on kernel smoothing function and covariance
matrix of errors. For r = 1, 2, 3, 4, �1(x) = K1/2(x)�−1K1/2(x), �2(x) = �−1K(x),
�3(x) = K(x)�−1, and �4(x) = �−1/2K(x)�−1/2, respectively. �1(x) and �2(x) are
given in Lin and Carroll (2000) for nonparametric panel data models with random
effect, and �4(x) is discussed in Ullah and Roy (1998) for random effect models.

Welsh and Yee (2006) give all these four types of LLWLS estimators, but only study
the bias and variance of LLWLS estimator δ̂1(x) (not asymptotic distribution) with
weight �1(x) for a SUR with M = 2 for both unconditional and conditional variance–
covariance (Section 15.4) of errors. For a single equation panel model, Henderson
and Ullah (2012) compare the efficiency among LLWLS estimators and find that these
LLWLS estimators do not always perform well, and sometimes they are even beaten by
the LLLS estimator, which ignores weights. A possible reason for this is that LLWLS
estimators described above are estimating regression and its derivative at a point Xij =
x to the data which is already transformed by K 1/2(x)�−1/2 or �−1/2K1/2(x). Thus
not too many local transformed data points are around x. In view of this, a two-step
estimator, given in the next subsection, may be more appropriate.

However, we note that when � is a diagonal matrix, we have W1(x) = W2(x) =
W3(x) = W4(x). Thus, in this case the estimators δ̂r(x) for r = 1, . . . , 4, are equivalent
and they are equal to an LLLS estimator. In addition, if the equations have identical



regression equations 489

explanatory variables (i.e., Xi = Xj), then LLLS and LLWLS are identical. Both of these
results correspond to the similar results found in the parametric SUR model.

15.2.1.3. Two-Step Estimator

In Section 15.2.1.1 we have observed that the LLWLS estimators do not tend to per-
form well always compared to LLLS. In view of this, Wang (2012) for a SUR case
and Su, Ullah, and Wang (2013) and Martins-Filho and Yao (2009) for a single-
equation case proposed the following two-step estimator to improve the estimation.
The transformation required for the second step is made as follows:

y = m(X) + u,

�−1/2y + (H−1 −�−1/2)m(X) = H−1m(X) +�−1/2u,
→
y = H−1m(X) + v, (15.3)

= H−1X(x)δ(x) + v,

where
→
y ≡�−1/2y + (H−1 −�−1/2)m(X), v ≡�−1/2u, and we have used (15.2). It is

obvious that the transformed errors are now independent and identically distributed.
Assume that � = PP′ for some MN × MN matrix P. Let pij and vij denote the

(i, j)th element of P and P−1, respectively. Let H ≡ diag(v−1
11 , . . . , v−1

MNMN ) and R∗(x) =
H−1X(x), then by minimizing v′K(x)v the two-step estimator would be

δ̂2-step(x) = (R∗′(x)K(x)R∗(x))−1R∗′(x)K(x)
→
y . (15.4)

The intuition behind this two-step estimator is that we are estimating, at a given
x, mi(xi)/vii instead of a combination of m functions. This may provide a better esti-
mator of m(x) from the data of xij close to x. Also, it is interesting to note that if the
errors are uncorrelated across equations, and K(x) → K(0), the nonparametric two-
step estimator δ̂2-step will become the parametric GLS estimator. Wang (2012) shows

that δ̂2-step(x) is asymptotic normal.
Some of the special cases of the above two-step estimators are as follows. Martins-

Filho and Yao (2009) considered the case where the two-step estimator is proposed
based on premultiplying (15.3) on both sides by H . In this case the covariance matrix of
Hv is H2 and their estimator becomes inefficient compared to the above estimator (see
Wang (2012)). Further, comparing the asymptotic covariance of δ̂2-step(x) with the one

of δ̂(x), it is easy to see that δ̂2-step(x) is asymptotically more efficient than δ̂(x). Also,
Ruckstuhl, Welsh, and Carroll (2000) and Su and Ullah (2007) considered a class of
two-step estimator for nonparametric panel data models with random effects in which
H = τ I in (15.3) and (15.4). Note that H = τ I implies that all the diagonal elements in
�−1/2 contain identical information; that is, vii = τ−1 for i = 1, . . . , MN . However, in
(15.4), H can incorporate both heteroskedastic and correlation information in errors.

The two-step estimator described above is infeasible, since
→
y is unobservable, and

� and H are unknown. In practice, � = �(θ) is replaced by its estimator �̂ = �(θ̂),
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where θ̂ is a consistent estimator of θ . For example, in the case of SUR equations, the
operational two-step estimator can be written as follows. First, obtain a preliminary
consistent estimator of mi by first-order local polynomial smoothing yij on Xij for each
equation i. Denote ûij = yij − m̂i(Xij). Second, we can obtain a consistent estimator of

�̂, Ĥ by estimating

σ̂ii′ = 1

N − 1

N∑
j=1

(
ûij − ûij

)(
ûi′j − ûi′ j

)
,

σ̂ii = 1

N − 1

N∑
j=1

(
ûij − ûij

)2
.

Further we can obtain the feasible
→
y = �̂−1/2y + (Ĥ−1 − �̂−1/2)m̂(X). Third, by

first-order local polynomial smoothing feasible
→
y on X , obtain the two-step estimator

δ̂2-step(x) = (R∗′(x)K(x)R∗(x))−1R∗′(x)K(x)
→
y .

15.3. Alternative Specifications of NP/SP

Set of Regressions
.............................................................................................................................................................................

Up to now all estimators are discussed for the basic NP SRE models. In reality, we
may have various specifications for the system—for example, a partially linear semi-
parametric model, a model with NP autocorrelated errors, an additive nonparametric
model, a varying coefficient model, and a model with endogeneity. These models are
well discussed in either cross-sectional or panel data framework. However, within the
SRE system framework, they haven’t been studied. So we discuss them below.

15.3.1. Partially Linear Semiparametric SRE Models

We consider the partially linear semiparametric set of regression equations

yij = mi(Xij) + Zijγi + uij, i = 1, . . . , M , j = 1, . . . , N , (15.5)

where Zij is a vector of exogenous variables such that E(uij |Xij, Zij) = 0, and the
assumptions on errors remain the same as in (15.1). A method using profile least
squares can be used to estimate such a model. For this we write

y∗
ij ≡ yij − Zijγi = mi(Xij) + uij, (15.6)

or in a vector form
y∗ = y − Zγ = m(X) + u, (15.7)
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where Z = diag(Z1, Z2, . . . , ZM ) and γ = (γ ′
1, . . . ,γ ′

M ).
For the two-step estimation this can be rewritten from (15.3) as

−→y ∗ = H−1X(x)δ(x) + v, (15.8)

where −→y ∗ is the same as −→y in (15.3) except that y is replaced by y∗. Then the two-
step estimator of δ(x) is the same as the δ̂2-step(x) in (15.4) with −→y replaced by −→y ∗.
However, it is not operational.

It follows that m̂2-step(x) = [1 0]δ̂2-step(x) = s(x)−→y ∗ where

s(x) = [10](R∗′(x)K(x)R∗(x))−1R∗′(x)K(x).

Thus m̂2-step(x) = S−→y ∗, where S = (s(x11)′, . . . , s(xMN )′)′. Substituting this in (15.7),
we can write

y = m̂2-step(x) + Zγ + u

= S[�−1/2(y − Zγ ) + (H−1 −�−1/2)m(x)] + Zγ + u

or

[I − S�−1/2]y − S(H−1 −�−1/2)m(x) = [I − S�−1/2]Zγ + u

ȳ = Z̄γ + u.

The GLS estimator of γ is

γ̂ = (
Z̄ ′�−1Z̄

)−1
Z̄ ′�−1ȳ.

Then the operational estimator δ̂2-step(x) can be written by substituting γ by γ̂ . The

asymptotic properties of both γ̂ and δ̂2-step(x) can be developed by following Su and
Ullah (2007).

Alternatively, we can estimate (15.5) using the idea of partial residual procedure by
Clark(1977), Denby (1984), and Robinson (1988). For this we note from (15.7) that

E(y|x) = E(Z|x)γ + m(x)

and
y − E(y|x) = (Z − E(Z|x))γ + u.

Now, considering the local linear estimators of E(y|x) and E(Z|x), we can write

ỹi = yi − Ê(yi|xi) = (I − Si)yi, i = 1, . . . , M ,

Z̃i = Zi − Ê(Zi|xi) = (I − Si)Zi ,

where Si = [1 0]
(
Z ′(xi

)
K(xi)Z(xi))−1Z ′(xi)K(xi) and ỹi and Z̃i are residuals in the ith

local linear regressions of yi on xi and Zi on xi , respectively. So we get the set of linear
regressions

ỹi = Z̃iγi + ui.
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Further, the GLS estimator of γ is

γ̂ =
(

Z̃ ′�−1Z̃
)−1

Z̃ ′�−1ỹ.

With this a two-step estimator of m(x), given in (15.4), follows from the model

y − Z γ̂ = m(x) + u

by a nonparametric regression of y − Z γ̂ on x.

15.3.2. NP Regressions with NP Autocorrelated Errors

Let us consider the NP system with nonparametric autocorrelated errors as follows:

yij = mi(Xij) + gi(Ui,j−1, . . . , Ui,j−d) + εij, i = 1, . . . , M , j = d + 1, . . . , N , (15.9)

where d is assumed to be known, and Ui,j = gi(Ui,j−1, . . . , Ui,j−d) + εij in (15.9) is
the AR(d) process of unknown form in the ith equation. To obtain efficient two-step
estimation, we propose the following procedure for estimating the model (15.9).

In the first step, we follow Su and Ullah (2006) to estimate each regression i as below:
First, a preliminary consistent estimator of mi can be obtained, which gives Ûij = yij −
m̂i(Xij). Second, we obtain a consistent estimator of gi , ĝi(Ûi,j−1, . . . , Ûi,j−d) via first-

order local polynomial smoothing Ûij on Û i,j−1 ≡ (Ûi,j−1, . . . , Ûi,j−d). Third, replacing

gi(Ui,j−1, . . . , Ui,j−d) by ĝi(Ûi,j−1, . . . , Ûi,j−d), we obtain the objective function

Q̂i ≡ Nh
−qi
0

N∑
j=1

K((xi − Xij)/h0) × Îij.

[
yij − ĝi(Ûi,j−1, . . . , Ûi,j−d) − mi(xi) − (Xij − xi)m(1)

i (xi)
]2

,

where Îij = 1
{

f̂i,U (Û i,j−1) ≥ bi

}
for some constant bi = bi(N) > 0 and f̂i,U is the non-

parametric kernel estimator for the density fi,U of U i,j−1. h0 is the bandwidth based on{
Xij

}
in the first-step estimation. Bandwidth hU and kernel KU based on the residual

series
{

Ûi,j

}
are used to estimate the density fi,U . By minimizing Q̂i , we obtain m̂i(xi)

as the desirable estimator of mi(xi) for the current step. As Su and Ullah (2006) indi-
cated, Îij is used to trim out small values of f̂i,U to obtain a desirable m̂i(xi), and we can
set bi ∝ (lnN)−1/2.

In the second step, let y∗
ij = yij − ĝi(Ûi,j−1, . . . , Ûi,j−d). Define y∗∗

E =�−1/2y∗+(H−1 −
�−1/2)m(X). Then the efficient estimator δ̂E = (

m̂(x) m̂(1)(x)′
)′

can be obtained by
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minimizing

Q̂i,E ≡ Nh
−qi
1

N∑
j=1

K((xi − Xij)/h1)

× Îij

[
y∗∗

ij,E − v(i−1)N+j

(
mi(xi) + (Xij − xi)m(1)

i (xi)
)]2

,

where v(i−1)N+j is the
(
(i − 1)N + j

)
th element in P−1, and h1 is the second-step

bandwidth.
After obtaining both ĝi(Ûi,j−1, · · ·Ûi,j−d) and m̂i(xi) in the first step, we can have

the estimated residuals ε̂ij = yij − ĝi(Ûi,j−1, · · ·Ûi,j−d) − m̂i(xi). Further, we can esti-

mate �−1/2 and H−1 by using ε̂ij to obtain the feasible ŷ∗∗
E = �̂−1/2y∗ + (Ĥ−1 −

�̂−1/2)m̂(X). Finally, we obtain our two-step estimator δ̂E for the model (15.9). The
asymptotic normality of this two-step estimator remains to be investigated in a future
work.

15.3.3. Additive NP Models

The additive model is useful to conquer the notorious “curse of dimension” issue
in nonparametric literature. In this section, we consider the following additive NP
models:

yij = mi(Xij,1, . . . , Xij,d) + εij

= ci +
d∑

α=1

mi,α(Xij,α) + εij, i = 1, . . . , M , j = 1, . . . , N ,

where Xij,α is the αth regressor. To stack the regression models into one, we have

y = c +
d∑

α=1

mα(Xα) + ε, (15.10)

where y = (
y11, . . . , yMN

)
, mα(Xα) = (

m1,α(X1,α), . . . , mM ,α(XM ,α)
)′

, and ε =
(ε11, . . . , εMN ). To estimate the above additive NP regression model, we propose the
following procedure.

1. We use single-equation additive model estimator techniques (e.g., Yang, Härdle,
and Nelson (1999), Linton and Härdle (1996)), to estimate mi,α(Xi,α).

2. Obtain m̂i(xi) = ĉi +
∑d

α=1 m̂i,α(xi,α), where ĉi = 1
N

∑N
j=1 yij .
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3. By applying the transformation proposed in two-step estimation, we can transfer
(15.10) into

�−1/2y + (H−1 −�−1/2)

(
c +

d∑
α=1

mα(Xα)

)
= H−1

(
c +

d∑
α=1

mα(Xα)

)
+ v

→
y = H−1c + H−1

d∑
α=1

mα(Xα) + v

= c∗ +
d∑

α=1

m∗
α(Xα) + v.

Then employing the procedure proposed above, we can estimate the transformed
model to obtain m̂α,2-step(Xα). Specifically, the feasible transformed response variable
can be obtained from the estimated residuals ε̂ij = yij − m̂i(xi) to estimate �, H , and
P. This gives

→
y = �̂−1/2y + (Ĥ−1 − �̂−1/2)

(
ĉ +

d∑
α=1

m̂α(Xα)

)
.

The two-step estimator of mi,α(xi,α) can now be obtained as in step 1 above, consider-

ing the additive model in
→
y with respect to xi,α. The asymptotic properties remain to

be developed.

15.3.4. Varying Coefficient NP Models

Varying coefficient NP models are practically useful in applied works (see Cai and Li
(2008) and Su and Ullah (2011)). In this section, we consider the following varying
coefficient NP model for the set of regressions,

yij = βi
(
Zij
)
Xij + εij, i = 1, . . . , M , j = 1, . . . , N . (15.11)

When E(εij |xij , zij) = 0, by local linearizing the coefficient, we have

yij =
[
βi(zi)+

(
Zij − zi

)
β
(1)
i (zi)

]
Xij + uij

= Zij(zi , Xij)δi(zi) + uij,

where β(1)
i (zi)≡ ∂βi(zi)/∂zi , Zij(zi , Xij) ≡ (

1
(
Zij − zi

))
Xij ,

Zi(zi , Xi) = (
Zi1(zi , Xi1), . . . , ZiN (zi , XiN )

)′
,
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which has dimension N × (qi + 1). Stack the above models j = 1, . . . , M in a matrix
form as

y = β(Z)X + u

= Z(z)δ(z) + u,

where Z(z) = diag
(
Z1(z1, X1) , . . . , ZM (zM , XM )

)
, δ(z) = (

δ1(z1) , . . . , δM (zM )
)
.

The local linear least squares estimator for the varying coefficient NP models in
(15.11) is

δ̂(z) = (Z′(z)K(z)Z(z))−1Z
′
(z)K(z)y.

Then we apply the two-step estimator as follows:

�−1/2y + (H−1 −�−1/2)β(Z)X = H−1β(Z)X + v
→
y VF = H−1β(Z)X + v.

The corresponding two-step estimator can be written as

δ̂2-step(z) = (Z∗′(z)K(z)Z∗(z))−1Z∗′(z)K(z)
→
y VF , (15.12)

where Z∗(z) = H−1Z(z). To obtain the operational estimator in the first step, we
can estimate each equation by local linear least squares to get residuals. Then use
the residuals to get a consistent estimator of covariance, further, obtain the feasible
→
y VF = �̂−1/2y + (Ĥ−1 − �̂−1/2)Z(z)δ̂(z). In the second step, we regress the feasible
→
y VF on H−1β(Z)X to get the two-step estimator.

15.3.5. Varying Coefficient IV Models

Let us consider the varying coefficient model with endogenous variables as

yij = βi
(
Zij
)
Xij + εij , i = 1, . . . , M , j = 1, . . . , N

E(εij |Wij, Zij) = 0 almost surely (a.s.),

where Xij is an endogenous regressor, Zij denotes a qi × 1 vector of continuous exoge-
nous regressors, and Wij is a pi ×1 vector of instrument variables and the orthogonality
condition E(εij|Wij , Zij) = 0 provides the intuition that the unknown functional coeffi-
cients can be estimated by nonparametric generalized method of moments (NPGMM).
Let Vij = (W ′

ij , Zij)′, we can write the orthogonality condition as

E[Qzi (Vij)εij |Vij] = E[Qzi (Vij){yij − Zij(zi , Xij)δi(zi)}|Zij] = 0,

where Qzi (Vij) may also contain �−1 for improving efficiency.
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Define

g(z) = 1

N
Q(z)′Kh(z)[y − Z(z)δ(z)].

The dimension of g(z) is
M∑

i=1

ki × 1, Q(z) ≡ diag
(
Qz1 (V1), . . . , QzM (VM )

)
, which has

dimension MN ×
(

M∑
i=1

ki

)
. To obtain δ(z), we can minimize the following local linear

GMM criterion function:[
Q(z)′K(z)

(
y−Z(z)δ(z)

)]′
#(z)−1[Q(z)′K(z)

(
y−Z(z)δ(z)

)]
,

where

#(z) = 1

N 2
Q(z)′Kh(z)�Kh(z)Q(z),

which is a symmetric
M∑

i=1
ki ×

M∑
i=1

ki weight matrix that is positive definite. Then the local

linear GMM estimator of δ(z) is given by δ̂GMM (z) as

δ̂GMM (z) =
{

Z(z)′K(z)Q(z)
[
Q(z)′Kh(z)�Kh(z)Q(z)

]−1
Q(z)′K(z)Z(z)

}−1

Z(z)′K(z)Q(z)
[
Q(z)′Kh(z)�Kh(z)Q(z)

]−1
Q(z)′K(z)y. (15.13)

To obtain the optimal choice of weight matrix, we can first get the preliminary esti-
mator δ̃GMM (z) of δGMM (z) by setting #(z) as an identity matrix. Then we define the
local residual ε̃ij(zi) = yij − Zij(zi , Xij)δ̃GMM ,i(zi). Using this, we can estimate g(z) to

obtain the optimal choice of weight matrix #̃(z) = ∑N
i=1 ĝ(zi)ĝ(zi)/N . Alternatively,

we can directly estimate the local variance–covariance matrix � by �̂ = �̂ ⊗ IN . σii′ ,
the

(
i, i′

)
th element of �, can be estimated by

σ̂ii′ =
N∑

j=1

(
ε̃ij(zi) − ε̃i(zi)

)(
ε̃i′ j(zi′) − ε̃i′(zi′)

)
/(N − 1),

where ε̃i(zi) = 1
N

∑N
j=1 ε̃ij(zi), i, i′ = 1, . . . , M . Then the feasible local linear GMM

estimator is obtained by substituting � with �̂ in (15.13).
The choice of instrument vector Q(z), which implies choosing Qzi (vij) =

[Qi(vi)′(Qi(vi)⊗(z̄i − z) /hi)], is important in applications. For example, one can con-
sider the union of wi and zi (say Qi(vi) = vi) such that some identification is satisfied.
In a cross-section model, Su, Murtazashrilli, and Ullah (2013) consider an optimal
choice of Q(vi) by minimizing the asymptotic covariance matrix for the local linear
GMM estimator. Another point to note is that the local constant GMM estimator, a
special case of the local linear GMM, has been studied in Lewbel (2007), Tran and
Tsionas (2009), and Cai and Li (2008) for the cross-section or panel model.
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There are several special cases of the varying coefficient model considered above.
For example, βi(zi)xi = βi1(zi)xi1 +βi2(zi)xi2, where xi1 and xi2 are subsets of xi. Thus,
we may test βi1(zi) = θ1 with respect to xi1 in each equation. This could be developed
following Su, Murtazashvili, and Ullah (2013).

Now we consider an alternative estimation procedures that is free from the instru-
ments wij for xij . This is based on an idea that yij = βi(zij)xij + mi(xij) + uij , where
we have written εij = mi(xij) + uij because E(εij |xij) 
= 0. Thus the parameter of inter-
est βi(zij) is not always identified since mi(xij) could be a linear function of xij . The
GMM estimation based on the instruments wij is one way to identify and estimate
β(zij). Assuming mi(xij) 
= xij (linear), Gao (2012) provides a way to estimate both
βi(zij) = β and m(xij) in a single equation model. However, it should be noted that
an economic parameter of interest is derivative of yij with respect to xij , which is
βi(zij) + ∂mi(xij)/∂xij and not merely βi(zij). This derivative is identifiable even if
βi(zij) is not identifiable. The estimation of βi(zij) + ∂mi(xij)/∂xij can be obtained
by a two-step procedure, which involves first estimating yij = βi(zij)xij +uij by the esti-
mator given in (15.12) and then doing a local linear NP regression of ε̂ij on xij to get an
estimate of m̂i(xij). This is the Martins-Filho, Mishra, and Ullah (2008)-type estimator,
and its properties need to be developed. The m̂i(xij) here works as an instrument. If the
dimension of zij is large, then we can consider additive model or consider the model as
yij = βi(zijγj)xij + mi(xij) + εij (see Gao (2012)).

15.4. Estimation with Conditional Error

Variance–Covariance �(x)
.............................................................................................................................................................................

All the aforementioned estimations are based on the unconditional error variance
covariance of errors. This section discusses the asymptotic properties for local lin-
ear least squares estimator and the two-step estimator for the NP set of regressions
with conditional error variance–covariance of errors. Now we assume that E(uij|Xij) =
0, and Var(εij|Xij) = σii

(
Xij

)
for each equation. Also, we assume that the distur-

bances are uncorrelated across observations but correlated across equations; that is,
E(εijεi′j|Xij , Xi′j) = σii′

(
Xij , Xi′j

)
for i, i′ = 1, . . . , M and i 
= i′, and j = 1, . . . , N . In a

matrix form, the conditional variance–covariance is �(x) ≡�(x) ⊗ I for a given eval-
uated point x. It is straightforward to show that both δ̂(x) and δ̂2-step(x) are asymptotic
normally distributed (for more details, see Wang (2012)).

To obtain feasible two-step estimation in this scenario, the estimated conditional
variance–covariance is required. One can estimate the conditional covariance by a
standard approach as follows:

σ̂ii(x) =
1
N

N∑
j=1

Kh(xi − Xij)ε2
ij

1
N

N∑
j=1

Kh(xi − Xij)

for i = 1, . . . , M ,
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σ̂ii′(x) = Ĉov(εij ,εi′j) =
1
N

N∑
j=1

Kh(x − Xj)εijεi′ j

1
N

N∑
j=1

Kh(x − Xj)

for i, i′ = 1, . . . , M and i 
= i′,

where Xj ∈ Rd is a disjoint union of
{

Xij
}

, h = diag(h1, . . . , hq), Kh(x − Xj) = |h|−1·
K
(
h−1(x − Xj)

)
, and Kh(xi − Xij) = |h|−1K

(
h−1(xi − Xij)

)
. For i = i′ we get σ̂ 2

ii (x).
Using this estimate of �(x), we can write the two-step estimators for all the models
in the above subsections. The results here apply for the time-series data also, but the
asymptotic theory can follow from the results in Long, Su, and Ullah (2011), where
tests for the multivariate GARCH or univariate ARCH are also given (also see Mishra,
Su, and Ullah (2010)).

15.5. Concluding Remarks
.............................................................................................................................................................................

In this chapter, we survey some recent developments on NP and SP estimation for SRE
models. The procedures of estimation for various nonparametric and semiparamet-
ric SRE models are proposed, including the partially linear semiparametric model, the
model with nonparametric autocorrelated errors, the additive nonparametric model,
the varying coefficient model, and the model with endogeneity. These results could
also be extended for the NP SRE model with panel data; for example, see Wang (2012).
The asymptotic properties of the estimators for many estimators in such models need
to be developed in future studies. Also, the results on various testing problems—
for example, testing for cross-equation correlations—need to be developed in future
works.
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chapter 16

........................................................................................................

SEARCHING FOR REHABILITATION
IN NONPARAMETRIC REGRESSION

MODELS WITH EXOGENOUS
TREATMENT ASSIGNMENT†

........................................................................................................

daniel j. henderson and esfandiar maasoumi

16.1. Introduction
.............................................................................................................................................................................

As Gary Becker (1981) has argued, “education” is not just an investment good, but
also a consumption stream. An educated person will likely drive a larger stream of con-
sumption from reading a book, or a page of NewsWeek, than an uninformed person.
This greater benefit is likely related, nonlinearly, to many attributes of the individual
and the characteristics of the “goods.”

In a parametric model for treatment effects, fixed coefficients for the treatment vari-
able, as well as other variables and attributes, imposes severe, and possibly inadvertent,
restrictions that may exclude the possibility of observing some aspects of the pro-
gram or treatment. These may include different distributions of any treatment effect,
different distributions of behavioral or response changes due to treatment, and others.

Consider the stylized linear in parameters model:

y = βX + Z ′γ + u, (16.1)

where X is an exogenous treatment and Z is a vector of other variables and attributes. A
constant coefficient β has several implications, two of which are of immediate concern
in this chapter. The first is that constant coefficients force a large degree of homogene-
ity on the individuals irrespective of treatment level (if X is not a binary variable).
Everyone in each group (treated and nontreated) has the same response. The second is
that changes in X (and/or Z) have no impact on “β” or “γ .” We call this a no rehabil-
itation assumption since it will not allow any behavior modification, either as a direct
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response to changes in X or as modifications in γ arising from treatment, or different
amounts of treatment. To impose these restrictions, a priori, will exclude the possibil-
ity of learning from the observed data whether there are changes in both the outcome
variable, y, and perhaps sustainable changes in behavior. In other words, a model of
this kind is biased toward observing temporal/local responses, at most, to treatment
programs and policies. There is no redemption!

Some aspects of these restrictions may be dealt with by considering variable param-
eter models when data allow it (e.g., panels are available). Indeed, parameters may
be allowed to depend on the observed variables in a parametric way, effectively per-
mitting a priori specific forms of nonlinearity in treatment responses, and changes in
other coefficients. Alternatively, we could estimate nonparametric regressions, letting
the data settle (a) the degree of nonlinearity (b) and the form of dependence of the
responses as well as attribute effects (analogous forms of β and γ ).

We attempt to address some of these problems in the present study in which we con-
sider the impact of a well-known (exogenously assigned treatment) program, Greater
Avenues for Independence (GAIN), on labor market outcomes. Our aim is to examine
changes in the gradients which will vary continuously with the values of the vari-
ables in the model. The traditional approach in this literature focuses on the average
treatment effect in the conditional distribution of y. More recent work removes this
“veil of ignorance” by looking at the distribution of the treatment effects on various
individuals/households, and so on.

The heterogeneous estimates allowed by the nonparametric approach pose new
challenges. In effect, we now have a distribution of responses that need to be exam-
ined. We could of course report several aspects of this latter distribution, such as
the mean value and quantiles of (the analogous version of β), say, for a range
of observed variables and characteristics. Alternatively, dominance criteria may be
used, as we intend in this work. Suppose that a job or drug treatment program is
intended to be life-enhancing, so that one values higher responses (“β”). This will
be compatible with the class of increasing utility/valuation functions, including “dol-
lar valuations.” This is all that is needed for first-order stochastic dominance (FSD)
rankings. Failing to find it is as informative as when it is found to a statistical degree
of confidence, using tests such as in Linton, Maasoumi, and Whang (2005). When
FSD is found, we do not necessarily need a cardinal valuation function to inform the
decision maker that the program is effective, or failed, whatever the criterion func-
tion. Only a decision needing to quantify the impact of the treatment by a scalar
value will need to select a function for that purpose. Dollar values are useful and
sensible, so long as we acknowledge that they reflect only one particular valuation
function that gives one particular “complete” ranking. On the other hand, failing
to find FSD makes it clear that decisions based on any cardinal valuation function,
including dollars and averages, will inevitably assign different weights to different
members of the population and are completely subjective. Different people will legit-
imately differ on both the usefulness of the treatment and the magnitude of the
effects.
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When FSD does not hold, it may be the case that second-order stochastic dominance
(SSD) or higher orders hold to a statistical degree of confidence. Higher-order domi-
nance rankings are interesting when concave valuation functions are justified, reflecting
aversion to too much “dispersion,” or “inequality” in treatment outcomes, or aversion
to the risk of leaving behind some seriously at risk groups, or overly benefitting the less
needy.

In our work, we examine such rankings for the distribution of the “responses” which
are derivatives of the nonparametric version of model (16.1). Our approach does not
compete with quantile techniques, as such. Indeed, SD rankings are equivalent to
joint testing of ranking “all,” or a desired subset of, quantiles. The difference is that
a comparison based on individual quantiles may leave one in a quandary when the
outcome direction is different for different quantiles. This will be equivalent to not
finding FSD on the outcomes. But with SD rankings, comparing quantiles is not the
end of the road, as it were. We can look for higher-order rankings with meaningful
welfare theoretic interpretations that are essential to policy debate and decision mak-
ing. While the treatment literature has begun to move beyond the “average treatment
effect” in the distribution of the outcome variable, to our knowledge, our work is the
first exploration of the distributed effects on responses.

In our empirical analysis, we find that future earnings are only (significantly)
impacted by a handful of variables. Specifically, we find that enrollment in GAIN
as well as higher test scores lead to higher earnings. More importantly, we find that
enrollment in GAIN leads to heterogeneous impacts across the sample, with females
having larger returns to GAIN than males, those whose primary language is English
over those whose primary language is not English, older individuals over younger,
those with no previous earnings over those with previous earnings, and those with
higher test scores over those with lower test scores on average. However, even though
we see higher returns at the quartiles, we find relatively few cases of stochastic domi-
nance. In fact, we only find one case of FSD (English as the primary language versus
English not being the primary language). However, we do find SSD for those age 21
and older over those under 21, those with children over those without children, and
those with above median reading skills over those with below median reading skills.
From a policy standpoint, this would suggest providing additional training in English
reading skills, generally, and prior to enrollment in programs such as GAIN.

The remainder of the chapter proceeds as follows: Section 16.2 describes the stochas-
tic dominance procedure. Section 16.3 briefly outlines the GAIN program, while
Section 16.4 gives the empirical results of our study. Section 6.5 concludes the chapter.

16.2. Stochastic Dominance Procedure
.............................................................................................................................................................................

In this section we outline our stochastic dominance procedure for gradient estimates.
This methodology will also work for nonlinear parametric models, but we discuss a
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procedure for obtaining the gradient estimates nonparametrically. In our empirical
application, we employ local-linear kernel regression for mixed data (Li and Racine,
2004; Racine and Li, 2004) using AICc selected bandwidth vectors (Hurvich, Simonoff,
and Tsai, 1998), but other regression methods and bandwidth selectors are clearly fea-
sible. We should note here that while we have a relatively large sample of data (6460
observations), we do have a large number of covariates (14) and hence we should keep
the curse of dimensionality in mind.

Nonparametric estimation generates unique gradient estimates for each observation
(individual) for each variable. This feature of nonparametric estimation enables us to
compare (rank) several distributed effects of the exogenous treatment for subgroups
and make inferences about who benefits most from the treatment. Here we propose
using stochastic dominance tests for empirical examination of such comparisons.1 The
comparison of the effectiveness of a policy on different subpopulations based on a par-
ticular index (such as a conditional mean) is highly subjective; different indices may
yield substantially different conclusions. Quantile regressions offer a limited solution
that can be conclusive only when first-order dominance holds. In contrast, find-
ing different orders of stochastic dominance provides uniform ranking regarding the
impact of the policy among different groups and offers robust inferences. It is known
to be simpler and more powerful than the corresponding tests of joint ranking of
simple/marginal quantiles (see Maasoumi (2001)).

To proceed, consider a nonparametric version of the treatment regression

y = m(X , Z) + u,

where m(·) is an unknown smooth function of (the exogenous treatment) X and
(covariates) Z . We are particularly interested in the change in the conditional expec-
tation of y with respect to a change in the exogenous treatment variable X . We will
denote this change as β(X) (= ∇X m(X , Z)), but wish to emphasize that (as with all
nonlinear regression functions with interactions) this gradient will likely depend on
the values taken by the control variables Z . While it is possible to fix these control
variables at their means (or other values), we prefer to allow them to remain at their
individual observed values both because employing fixed values for Z would result in
counterfactual estimates not representing any particular individual (see Henderson,
Parmeter, and Kumbhakar (2012) for a discussion on the problems of such methods)
and because in our case X is binary and thus fixing the Z would lead to scalar estimates
and not allow for a distributional analysis.

If distinct and known groups are selected within the sample, we can examine the
differences in returns between any two groups, say w and v. Here w and v might refer
to males and females, respectively. Denote βw(X) as the effect of the treatment specific
to an individual in group w. βv(X) is defined similarly. Again, note that the remaining
covariates are not constrained to be equal across or within groups.

In practice, the actual treatment effect is unknown, but the nonparametric regres-
sion gives us an estimate of this effect. {β̂w,i(X)}Nw

i=1 is a vector of Nw estimates (one
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for each individual in group w) of βw(X) and {β̂v,i(X)}Nv
i=1 is an analogous vector

of estimates of βv(X). F[βw(X)] and G[βv(X)] represent the cumulative distribution
functions of βw(X) and βv(X), respectively.

Consider the null hypotheses of interest as follows.

Equality of distributions:

F[β(X)] = G[β(X)] ∀β(X). (16.2a)

First-order stochastic dominance: F dominates G if

F[β(X)] ≤ G[β(X)] ∀β(X), (16.2b)

Second-order stochastic dominance: F dominates G if∫ β(X)

−∞
F(t) dt ≤

∫ β(X)

−∞
G(t) dt ∀β(X), (16.2c)

Third-order stochastic dominance: F dominates G if∫ β(X)

−∞

∫ s

−∞
F(t) dt ds ≤

∫ β(X)

−∞

∫ s

−∞
G(t) dt ds ∀β(X), (16.2d)

and so on. To test the null hypotheses, we define the empirical cumulative distribution
function for βw(X) as

F̂[βw(X)] = 1

Nw

Nw∑
i=1

1
[
β̂w,i(X) ≤ βw(X)

]
, (16.3)

where 1[·] denotes the indicator function and Ĝ[βv(X)] is defined similarly. Next, we
define the Kolmogorov–Smirnov statistics

TEQ = max

( {̂
F[β(X)] − Ĝ[β(X)]

}
,{

Ĝ[β(X)] − F̂[β(X)]
} )

, (16.4a)

TFSD = min

(
max

{̂
F[β(X)] − Ĝ[β(X)]

}
,

max
{

Ĝ[β(X)] − F̂[β(X)]
} )

, (16.4b)

TSSD = min

⎛⎝ max
{∫ β(X)

−∞
[̂
F(t) − Ĝ(t)

]
dt
}

,

max
{∫ β(X)

−∞
[
Ĝ(t) − F̂(t)

]
dt
} ⎞⎠, (16.4c)

TTSD = min

⎛⎝ max
{∫ β(X)

−∞
∫ s
−∞

[̂
F(t) − Ĝ(t)

]
dt ds

}
,

max
{∫ β(X)

−∞
∫ s
−∞

[
Ĝ(t) − F̂(t)

]
dt ds

} ⎞⎠, (16.4d)

for testing the equality, first-order stochastic dominance (FSD), second-order domi-
nance (SSD), and third-order dominance (TSD), respectively.
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Consistent estimation of β(X) does not require us to split the sample for groups w
and v, but our bootstrap procedure does. Specifically, we suggest to split the sample
into two distinct groups and run separate nonparametric regressions on each (includ-
ing estimating bandwidths for each group separately). These estimates of β(X)will also
be consistent (this is analogous to running separate regressions for a Chow test) and
will allow us to compare the distributions of the two groups without the information
from one affecting the other. In essence, this is equivalent to setting the bandwidth on
the variable we are comparing (say gender) to zero (which will occur asymptotically, in
any case).

Based on these estimates, we can construct our test statistics in (16.4a)–(16.4d).
The asymptotic distributions of these nonparametric statistics are generally unknown
because they depend on the underlying distributions of the data. We propose re-
sampling approximations for the empirical distributions of these test statistics to
overcome this problem. Our bootstrap strategy is as follows:

(i) Using nonparametric regression methods, obtain the estimates of β(X)

(β̂(X) = ∇X m̂(X , Z)) for each group.
(ii) Let T be a generic notation for TEQ, TFSD, TSSD, and TTSD. Compute the test

statistics T from the original gradient estimates {β̂w,1(X), β̂w,2(X), . . . , β̂w,Nw (X)}
and {β̂v,1(X), β̂v,2(X), . . . , β̂v,Nv (X)}.

(iii) For each observation in group w, construct the centered bootstrapped residual

u∗, where u∗ = 1−√
5

2

(̂
u − û

)
with probability 1+√

5
2
√

5
and u∗ = 1+√

5
2

(̂
u − û

)
with probability 1− 1+√

5
2
√

5
. Then construct the bootstrapped left-hand-variable

as y∗ = m̂(X , Z)+ u∗ for each observation in group w. Call
{

y∗
i , Xi, Zi

}Nw

i=1 the
bootstrap sample. Repeat this process for group v.

(iv) Re-estimate β(X) for each group using the same nonparametric procedure and
bandwidths in (i), but replace the data with the bootstrap data obtained in (iii).
Call these estimates β̂∗(X).

(v) Compute (centered2) bootstrapped test statistics Tb from the bootstrapped
estimates, where (for FSD, the others follow similarly)

Tb = min

⎡⎢⎢⎣ max

( {̂
F∗[β(X)] − Ĝ∗[β(X)]

}
−{̂

F[β(X)] − Ĝ[β(X)]
} )

,

max

( {
Ĝ∗[β(X)] − F̂∗[β(X)]

}
−{

Ĝ[β(X)] − F̂[β(X)]
} )

⎤⎥⎥⎦,

where F̂∗[β(X)] is the analogous estimate of (16.3) for the bootstrap estimates.
(vi) Repeat steps (iii)–(v) B times.

(vii) Calculate the “p-values” of the tests based on the percentage of times the cen-
tered bootstrapped test statistic is negative. Reject the null hypotheses if the
p-value is smaller than some desired level α, where α ∈ (0, 1/2).
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The careful reader will notice that the main departure from typical SD tests is that the
data in question (β(X)) is unknown and thus must be estimated. Therefore, instead of
bootstrapping from β̂(X), it is important to bootstrap from the data and re-estimate
β(X) in each replication.3 This allows us to to approximate the distribution of the
derivatives. By resampling, we take into account the fact that we are dealing with the
estimates of the gradients and not the actual gradients.

The most important steps above are the third through fifth. In (iii), we empha-
size that we do not impose the least favorable case. Instead we separate the groups
and resample from each separately. This can be achieved several ways (which we have
done), but our preferred procedure is to use a wild bootstrap (to avoid issues with
respect to potential heteroskedasticity). Then proceeding to step (iv), we re-estimate
each model (using the same bandwidths as in step (i)). Note that we evaluate the
bootstrapped gradient estimates at the original X and Z values. In the fifth step, we
calculate the bootstrapped-based test statistic by evaluating over the same grid we did
in step (ii).4

We wish to note here that in our empirical example, the gradient in question comes
from a binary regressor. Hence, we only achieve a gradient estimate for those obser-
vations for which the dummy variable is equal to unity. Therefore, we construct our
empirical CDF’s with fewer observations than if we had a continuous regressor, but the
basic methodology remains the same.

16.3. Greater Avenues for Independence
.............................................................................................................................................................................

The Greater Avenues for Independence (GAIN) program was started in California in
1986 in order to help long-term welfare recipients “find employment, stay employed,
and move on to higher-paying jobs, which will lead to self-sufficiency and inde-
pendence.” It is a mandatory (excluding female heads of households with children
under age six) program for adults receiving Aid to Families with Dependent Children
(AFDC).

The program initially administers screening tests to determine basic math and
reading skills. Those deemed to be below a given level are targeted to receive basic
education. Those above a given level are moved into either a job search assistance pro-
gram or a vocational training program. This decision largely falls on the county with
some counties preferring one over another.

Starting in 1988, a randomly assigned subset of GAIN registrants in six California
counties (Alameda, Butte, Los Angeles, Riverside, San Diego, and Tulare) were assigned
to a treatment group and the remaining were selected into a control group. Those in the
treatment group were allowed to participate in the GAIN program and the remaining
were not, but were still allowed to receive standard AFDC benefits. Those in the control
group were allowed, but not required, after two years, to join the GAIN program.
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Table 16.1 Descriptive Statistics

Variables By Type All Treatment Group Control Group

Dependent Variable
Earnings 10079.5147 10696.7075 7790.6829

Unordered Categorical Variables
Experimental (GAINS) 0.7876 1.0000 0.0000
Female 0.6819 0.7040 0.5999
Employment or training (prior year) 0.2376 0.2390 0.2325
White 0.5500 0.5513 0.5452
Not White 0.4500 0.4487 0.4548
Hispanic 0.2464 0.2435 0.2573
Black 0.1551 0.1584 0.1429
Asian 0.0334 0.0311 0.0423
Primary language English 0.9610 0.9636 0.9512
Primary language Spanish 0.0197 0.0181 0.0255

Ordered Categorical Variables
Age 32.2918 32.3143 32.2085
Highest school grade completed 11.1642 11.1733 11.1305
Number of children 2.0193 2.0161 2.0313

Continuous Variables
Earnings previous 12 quarters 2335.7927 2293.0782 2494.1975
CASAS reading score 232.6416 232.6085 232.7646
CASAS math score 219.5249 219.5871 219.2945

Number of Observations 6460 5088 1372

Notes: Average values are listed. The first column of numbers is for the entire Riverside sample, the
second is for the treatement group, and the final is for the control group.

From the econometrician’s standpoint, this data set is ideal because the participants
were randomly assigned to either the treatment or the control group. Table 16.1 shows
that for Riverside County, nearly all means are the same between the two groups, per-
haps with the exception of females in the control group. The results are similar for the
other counties.

We choose Riverside County for several reasons. It has been highlighted by many
as the best performing county. In fact, it has often been referred to as the “Riverside
Miracle” (e.g., see Nelson (1997)). This result has led many to study this case (e.g.,
see Dehejia (2003)) and thus our findings can be compared to past studies. Finally,
the sample is relatively large, and given the large number of covariates, our estimation
procedure benefits greatly from the relatively large sample size.

Although these data have previously been studied using rigorous econometric tech-
niques (e.g., Dehejia (2003); Hotz, Imbens, and Klerman (2006)), to our knowledge,
no one has used nonparametric methods. The need for these methods with this
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particular data set has been hinted at before. Dehejia (2003, p. 9) mentions that “an
estimator or a functional form that is more flexible in terms of pretreatment covariates
should yield a more reliable prediction of the treatment impact.”

In addition to having a more flexible approach, we are also able to get a treatment
effect for each GAIN recipient in the program. This allows us to look at heterogeneity
both across and within groups. Further, it allows us to use the stochastic dominance
methods discussed earlier to look for relationships amongst the returns for prespecified
groups in order to better inform policy decisions.

16.4. Empirical Results
.............................................................................................................................................................................

We begin by looking at the cross-validated bandwidths from the regression of earn-
ings on pretreatment attributes (Table 16.2). These bandwidths can lead to knowledge
about whether or not variables are relevant and whether or not they enter the model
linearly. We then turn our attention to the gradient estimates (Table 16.3). Although
our primary concern is with respect to the GAIN participation variable, we will also

Table 16.2 Bandwidths

Variables By Type Bandwidth Upper Bound Interpretation

Unordered Categorical Variables
Experimental (GAINS) 0.2630 0.5000 Relevant
Sex 0.2382 0.5000 Relevant
Employment or training (prior year) 0.3451 0.5000 Relevant
Ethnic group 0.7721 0.8750 Relevant
Primary language English 0.4993 0.5000 Most likely irrelevant
Primary language Spanish 0.4993 0.5000 Most likely irrelevant
Family status 0.7590 0.8000 most likely irrelevant

Ordered Categorical Variables
Age 0.9986 1.0000 Most likely irrelevant
Highest school grade completed 0.9986 1.0000 Most likely irrelevant
Number of children 0.9986 1.0000 Most likely irrelevant
Random assignment month 0.9986 1.0000 Most likely irrelevant

Continuous Variables
Earnings previous 12 quarters 1.35E−01 ∞ Nonlinear
CASAS reading score 3.94E+06 ∞ Most likely linear
CASAS math score 5.22E+07 ∞ Most likely linear

Notes: Bandwidths selected via AICc. Aitchison and Aitken (1976) kernel used for unordered data,
Wang and van Ryzin (1981) kernel used for ordered data and second-order Gaussian kernel used for
continuous data.
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Table 16.3 Significant Nonparametric Gradient Estimates at the Quartiles

Variable Q1 Q2 Q3

Unordered Categorical Variables
Treatment (GAIN) 184.1634 644.8306

Continuous Variables
CASAS reading score 89.6598 123.8145
CASAS math score 37.6296 60.5834

Notes: Significant gradient estimates for the first, second, and third quartiles are listed above (standard
errors obtained via bootstrapping are available upon request). For those variables with no significant
quartiles, the estimates are excluded. For discrete regressors, the lowest value taken by the gradient is
exactly zero by definition.

analyze other gradients. We then turn our focus to our primary interest. We split the
sample amongst the prespecified groups and look at their returns distributions to the
GAIN program (Table 16.4). Finally, we perform stochastic dominance tests to deter-
mine whether or not we have first- or higher-order dominance relationships (Tables
16.5 and 16.6).

16.4.1. Bandwidth Estimates

Table 16.2 presents the bandwidths for the nonparametric model. The bandwidths
reveal three salient points. First, the bandwidths on the CASAS reading and math
score variables each exceed 3.94E+06. Since continuous regressors behave linearly as
the bandwidths approach infinity, this suggests that a linear approximation for these
two variables may be reasonable. The bandwidth on the “previous earnings” in the
past 12 quarters is relatively small, indicating nonlinear effects. Employing a model
that is linear in this variable would most likely lead to inconsistent estimates. Sec-
ond, the bandwidths on the treatment, gender, prior employment or training, and
ethnic group are much smaller than their respective upper bounds, implying that these
variables are relevant in the model. Finally, the bandwidths on the primary language
variables, as well as family status, age, highest school grade completed, number of chil-
dren, and random assignment month are each close to their respective upper bounds;
thus, these variables are (likely) statistically irrelevant in explaining treatment effect on
earnings.

In sum, examination of the bandwidths suggest that some variables are relevant and
some variables are irrelevant. Further, it suggests that some variables enter the model
nonlinearly and some variables enter the model linearly. However, this does not mean
we should automatically switch to a semiparametric estimation procedure. Linearity
is not synonymous with homogeneous effects of the covariates. Consequently, while
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Table 16.4 Significant returns to GAIN by group at the quartiles

Variable Q1 Q2 Q3

Unordered Categorical Variables
Gender

Female 691.3410 1125.3420 1652.9889
Male 103.3956 331.2337

Previous training
Employment or training (prior year) 338.7188 1122.1333 1974.1487
No Employment or training (prior year) 379.5400 897.4375 1457.1979

Ethnic group
White 173.4314 971.4750 1754.1438
Not white 202.2289 897.1133 1368.9425
Hispanic 127.9419 362.3600 504.5695
Black 385.7882 996.9691 1412.9833
Asian

Language
Primary language English 554.1186 1035.6361 1513.4771
Primary language is not English
Primary language Spanish

Ordered Categorical Variables
Age

Under 21 386.0289
21 and over 545.5721 1090.4551 1696.0552

Highest school grade completed
Less than high school 48.5136 80.2157
High school diploma and over 32.7699 46.8052

Number of children
Zero
One or more 344.6863 723.9139 1074.3786

Continuous Variables
Previous earnings

Positive earnings previous 12 quarters 281.0717 604.8498 790.5349
No earning in previous 12 quarters 716.2675 1133.7201 1580.6813

Test scores
CASAS reading score above median 864.1227 1400.7653 1848.2009
CASAS reading score below median 225.2025 486.8775 719.7718
CASAS math score above median 481.5905 1066.8121 1674.2816
CASAS math score below median 247.4605 740.0365

Notes: Returns to GAIN for the first, second, and third quartiles for particular subgroups are listed
above. Only those that are significant are listed (standard errors obtained via bootstrapping are avail-
able upon request). Each estimate is obtained by splitting the sample and running a separate regression
(including cross-validation routine) on the prespecified group.



Table 16.5 Stochastic Dominance Test Statistics

Comparison EQ FSD SSD TSD

Unordered Categorical Variables
Female vs. Male 0.6862 0.0336 3.3447 383.2913
Previous employment or training vs. no previous employment or training 0.1520 0.0423 11.0134 3381.1571
White vs. Not white 0.1397 0.0187 0.8180 24.1794
White vs. Black 0.1422 0.0728 3.9184 −0.0219
White vs. Hispanic 0.5074 0.0829 24.1267 7098.3774
White vs. Asian 0.6407 −0.0042 −0.0340 −0.0340
Black vs. Hispanic 0.5790 0.0824 31.0026 11533.7441
Black vs. Asian 0.6989 0.0091 −0.0120 −0.0120
Hispanic vs. Asian 0.6296 0.0275 −0.0435 −0.0435
Primary language English vs. Primary language not English 0.8821 −0.0102 −0.3854 −0.3854
Primary language Spanish vs. primary language not Spanish 0.7590 0.1264 1.4339 15.6832

Ordered Categorical Variables
21 and Over vs. Under 21 0.5492 0.0029 −0.0230 −0.0230
High school diploma vs. No high school diploma 0.2761 0.0609 0.5873 6.0183
Children vs. No Children 0.7084 0.0091 −0.1010 −0.1010

Continuous Variables
No earnings in previous 12 quarters vs. Earnings in previous 12 quarters 0.4951 0.0077 0.2199 14.0987
CHASS reading score above median vs. CHASS reading score below median 0.5799 −0.0014 −0.0041 −0.0041
CHASS math score above median vs. CHASS math score below median 0.4135 0.0017 0.0182 0.5662

Notes: The number in each cell is the test statistic for the comparison of the returns to enrollment in GAIN between two prespecified groups for a particular test. The first
column is a test for equality. The second through fourth columns are tests for stochastic dominance (first, second, and third order, respectively). For the stochastic dominance
tests, those test statistics which are negative are possible cases where dominance may exist. For the negative test statistics, the p-values in Table 16.6 will determine whether or
not dominance exists.



Table 16.6 Stochastic Dominance Test p-Values

Comparison EQ FSD SSD TSD

Unordered Categorical Variables
Female vs. Male 0.0000
Previous employment or training vs. No previous employment or training 0.0000
White vs. Not white 0.0000
White vs. Black 0.0000 0.4810
White vs. Hispanic 0.0000
White vs. Asian 0.0000 0.0253 0.0506 0.0506
Black vs. Hispanic 0.0000
Black vs. Asian 0.0000 0.2025 0.2405
Hispanic vs. Asian 0.0000 0.0886 0.0886
Primary language English vs. Primary language not English 0.0000 0.8734 0.8861 0.8861
Primary language Spanish vs. Primary language not Spanish 0.0000

Ordered Categorical Variables
21 and Over vs. Under 21 0.0000 0.8228 0.8608
High school diploma vs. No high school diploma 0.0000
Children vs. No children 0.0000 0.7722 0.8101

Continuous Variables
No earnings in previous 12 Quarters vs. Earnings in previous 12 quarters 0.0000
CHASS reading score above median vs. CHASS reading score below median 0.0000 0.1013 0.3924 0.5443
CHASS math Score above median vs. CHASS math score below median 0.0000

Notes: The number in each cell is the p-value for the comparison of the returns to enrollment in GAIN between two prespecified groups for a particular test. For the stochastic
dominance tests (columns 2–4), the p-value is included only if the corresponding test statistic in Table 16.5 is negative. Cases where we fail to reject the null of dominance are
listed in bold. 399 bootstrap replications are performed for each SD test.
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the assumption of linearity receives the most attention, heterogeneity may be just as
problematic. We now turn to the actual results, as well as more formal statistical tests.

16.4.2. Parameter Estimates

16.4.2.1. All Covariates

Table 16.3 presents the results for the gradient estimates. We present the nonparametric
estimates corresponding to the 25th, 50th, and 75th percentiles of the estimated gradient
distributions (labeled Q1, Q2, and Q3). Estimates that are statistically significant at the
5% level are listed. To conserve space, we exclude any regressor for which each of the
quartiles are insignificant. The full set of estimates with corresponding standard errors
is available from the authors upon request.

In terms of the unordered categorical variables, several findings stand out. First,
nonparametric estimates of the treatment (enrollment in GAIN) are positive and sig-
nificant at the median and upper quartile. Perhaps more important for this study is
that the third quartile is over three times the value of the second quartile. This shows
prevalence of heterogeneity in the effect of the treatment across the sample. Finally,
while some of the bandwidths suggest relevance, we did not find significance of any of
the other unordered categorical regressors at the quartile values.

Likewise, for the ordered categorical variables, none of the quartile gradient esti-
mates are significant. Again, these results are expected because, as was observed before,
their bandwidths approached their upper bounds of unity. The implication is that they
are not important in prediction of earnings. However, this does not mean that they do
not play a role in terms of the impact of the treatment, as we will check later.

Finally, for the continuous variables, it is seen that CASAS reading and math scores
have effects on earnings. The partial effect at the median for reading scores is 89.6598
(s.e. = 22.4854) and the partial effect at the median for the math score is 37.6296
(s.e. = 12.4125). This result suggests that improving basic reading and math scores
would lead to higher earnings (with improvements in reading skills typically being
more beneficial than mathematics). While the bandwidths suggest that each of these
variables enter linearly, they do not shed light on possible heterogeneity. The results at
the quartiles show heterogeneity in the partial effects and re-emphasize the importance
of a nonlinear estimation procedure.

16.4.2.2. Treatment Variable

The results across different covariates are interesting, but a main purpose of this study
and the GAIN experiment is to determine the effect of the treatment. In most studies, a
single coefficient is obtained for the (average) treatment, and its magnitude determines
whether or not the treatment was successful. Here we obtain a separate estimate for
each person receiving the treatment. Thus, we can examine the effect of the treatment
among prespecified groups.
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Table 16.4 gives the nonparametric estimates corresponding to the 25th, 50th, and
75th percentiles of the distribution for the treatment (GAIN) for specific subgroups.
Specifically, we broke the sample across each prespecified group and ran separate non-
parametric regressions on each subgroup (including calculating bandwidths for each).
The quartile estimates for those in the GAIN program are given in the table.

The results for the groupings by unordered categorical variables are quite striking.
First, the effect of the treatment on women is larger than the effect of the treatment on
men at the median and at the first and the third quartiles (note that the first quartile
estimate for men is negative and insignificant). Although the results at the quartiles
are strong, we cannot determine whether or not the effect of the treatment for women
dominates the effect of the treatment for men. We will examine this further in the next
subsection. Second, there is some evidence that individuals who received the treat-
ment and had previous training or work experience in the prior year experienced larger
returns to GAIN than treated individuals who did not have employment or training in
the prior year. However, these results only hold at the median and at the upper quartile.
This would suggest that no dominance relation exists. Third, Asians are the only ethnic
group who did not experience significant returns at these quartiles. Finally, although
the bandwidth for English or Spanish as a first language was near its upper bound,
treated individuals who spoke English as their native language had positive and signif-
icant treatment effects for enrollment in GAIN and those whose primary language was
not English did not experience significant returns to GAIN at any of the quartiles. This
result may suggest that immigrants are not benefitting from the program. This result
is consistent with other inferences below related to spoken or written English.

For the ordered categorical variables, we see that treated individuals aged 21 and
over had larger effects than did treated individuals under 21. The level of schooling
seemed to make little difference on who benefitted the most from the program. Finally,
treated individuals who have one or more children have larger treatment effects at each
quartile than individuals who did not have any children (perhaps a sign of necessity).
Again, these results at these selective quartiles are strong, but it is premature to con-
clude that any of these groups “dominate” one another in terms of the partial effect of
the treatment variable.

Finally, for groupings corresponding to the continuous variables, treated individ-
uals with no earnings in the previous 12 quarters had larger effects of the treatment
than did treated individuals who had positive earnings in the previous 12 quarters
at each quartile. The test scores results are as expected. Treated individuals obtain-
ing scores above the median (either in math or reading) have larger treatment effects
as compared to their counterparts who scored below the median. This shows that
higher ability individuals are able to benefit more from the treatment. We return to
the Gary Becker argument that we paraphrased in the Introduction: education is both
an investment and a consumption good. The greater benefit of education is likely
related, nonlinearly, to many attributes of the individual and the characteristics of
the “goods.”



516 cross section

16.4.3. Dominance Tests

The results of the previous subsection showed that certain groups appeared to have
higher returns from the treatment than did other groups, at certain quantiles. Here
we use formal tests to compare the effect of the treatment between two prespecified
groups across all quantiles. Tables 16.5 and 16.6 break down the results for tests of
equality, first order, second order and third order dominance. Table 5 gives the test
statistics. A negative sign of a test statistic is a sign of possibly significant dominance
relation. The entries in Table 16.6 are the “p-values” for the corresponding tests.

16.4.3.1. Test Statistics

In Table 16.5, the entries are the sample value of the test statistics. The left-hand side
of the table gives the prespecified groups being compared. In each case we are compar-
ing the treated individuals in each group. The first column of numbers gives the test
statistic for the equality of the distributions of the gradient of the conditional mean
with respect to the treatment (GAIN). The second through fourth columns give the
test statistic for first-, second-, and third-order dominance, respectively. In order for
a dominance relation to exist, the test statistic must be negative. For example, for
the first-order dominance case, if the test statistic is negative, then first-order dom-
inance is observed. If the test statistic is positive, then there is no observed ranking
in the first-order sense. Similar interpretations are given to higher-order dominance
relations.

When examining the test statistics for first-order dominance, there is only the possi-
bility of FSD for three of the 17 comparisons. The comparisons with negative FSD test
statistics are: white versus Asian, primary language English versus primary language
not being English, and CHASS reading score above the median versus score below the
median. The lack of negative test statistics for the comparison between those with and
without previous earnings may be surprising given the results at the quartiles, but these
suggest crossing of the distributions closer to the tails.

As expected, more cases of second order dominance are observed. The third column
of numbers in Table 16.5 gives the test statistics for the null of second-order dominance
(noting that first-order dominance implies second-order dominance, and so on). Here
we also find negative test statistics for each ethnic group versus Asians, those 21 and
over versus those under 21, and those with children over those not having children.
For third-order dominance, we also find a negative test statistic for white versus black.
These higher-order dominance rankings imply that policy makers with an aversion,
or increasing aversion to earnings poverty, would find the program to be beneficial,
whatever cardinal weighting function/utility is adopted.

16.4.3.2. Probability Values

Each value in Table 16.6 is the p-value associated with a particular test. The first col-
umn rejects the null of equality of the distributions of the treatment effects when the
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p-value is below α. In columns 2–4, the respective order of dominance is rejected (when
its associated test statistic is negative) if the p-value is less than 0.400 (see Maasoumi,
Millimet, and Sarkar (2009)). Substantial coverage probability for negative values of
the statistic supports an inference of dominance to a degree of statistical confidence.

In Table 16.6, we reject each null that the pairs of treatment effect estimates are
equal. These results are not surprising given what we have seen thus far. For the domi-
nance tests (in Table 16.5) with negative sample statistics, there are cases where there is
significant evidence of dominance. The strongest ranking is the finding of first-order
dominance. We find that those whose primary language is English have uniformly
higher returns to GAIN than those whose first language is not English. First-order
dominance implies higher-order dominance, and we see that the p-values for second-
and third-order dominance are larger in magnitude than that of the first order test.
In two other cases where we found negative test statistics for first-order dominance
(white versus Asian and above median reading score versus below median), both have
p-values much less than 0.40.

We find three strong cases for second-order dominance. In addition to white ver-
sus Asian, we also see that those who received the treatment and were 21 years and
older gained more than those under 21; similar results occurred for those with children
versus those without children. It may be that older individuals and those who have
dependents took better advantage of the program. Finally, we have one test statistic
with a p-value near the border of 0.40. Reading score above the median versus reading
score below the median (p-value = 0.3924) is likely related to the result of language
ability. This, along with the previous results, suggest that the program may want to
focus more on basic language and reading skills.

Finally, for third-order dominance, in addition to those listed above, we find a fur-
ther ranking of white versus black treatment outcomes. Those with increasing aversion
to inequality of earnings at the lower end of the earnings distribution would infer a
greater benefit to whites versus blacks treated in GAIN.

16.5. Conclusions
.............................................................................................................................................................................

In this chapter we outlined a method to compare gradient estimates from a nonpara-
metric regression via stochastic dominance techniques. Our goal here was to look at
the impact of an exogenous treatment across different prespecified groups.

To showcase the methodology, we applied our procedure to the California GAIN
program. Here we found that relatively few inputs commonly used in determining
labor outcomes are significant. Specifically, we only found significant quartile esti-
mates for improving earnings for enrollment in GAIN and for test scores. Although
many results were insignificant, we did find that certain groups had higher returns to
GAIN. For example, we found that females, those whose primary language was English,
those individuals over the age of 21, and those with higher test scores had higher
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returns to the treatment. However, we only found one case of first-order dominance:
English as the primary language versus English not being the primary language. We
also found some evidence of second- and higher-order dominance—for example, for
above median versus below median reading scores. From a policy standpoint, this
suggests that improving basic reading skills can increase the impact of GAIN.

An interesting extension to our work would be to calculate “collateral effects,” which
we define as changes to the gradients of the other regressors (Z) arising from the treat-
ment, or different amounts of the treatment (if the treatment were continuous). These
can be calculated as the cross-partial derivatives with respect to X and any element in
Z . In other words, we would like to allow for the treatment to have effects on other
attributes of the individual.

Notes

† The authors would like to thank an anonymous reviewer and Liangjun Su for excel-
lent comments. Manpower Demonstration Research Corporation and its funders are not
responsible for the use or interpretation of the data.

1. For an empirical application of stochastic dominance tests on estimated outcome values
obtained via nonparametric regression, see Maasoumi, Racine, and Stengos (2007).

2. The centering of the bootstrap test statistic is performed by subtracting the initial sam-
ple estimates of the empirical CDF differences. We do not impose the null hypothesis
(specifically, we do not impose the least-favorable case) in step (iii). In this way we obtain
consistent estimates of the sampling distributions and coverage probabilities, with i.i.d
samples. Standard results for centered bootstrap validity apply here. We have also con-
ducted extensive experiments when the null of the least favorable case is imposed, in
addition to centering on the initial test statistics themselves. Our empirical findings are
generally the same.

3. Eren and Henderson (2008) and Henderson (2010) simply resample the gradient esti-
mates. If the distribution functions are sufficiently well separated, this should lead to the
same conclusions, but we recommend re-estimating the gradients in practice.

4. We performed simulations to determine the size and power of our bootstrap-based test
and found that it did well in relatively small samples. These results are available from the
author upon request.

References

Aitchison, John, and Colin G. G. Aitken. 1976. Multivariate binary discrimination by kernel
method. Biometrika, 63, pp. 413–420.

Becker, Gary S. 1981. A Treatise on the Family (enlarged edition). Cambridge: Harvard
University Press.

Dehejia, Rajeev H. 2003. “Was There a Riverside Miracle? A Hierarchical Framework for
Evaluating Programs with Grouped Data.” Journal of Business and Economic Statistics, 21,
pp. 1–11.



nonparametric regression models 519

Eren, Ozkan, and Daniel J. Henderson. 2008. “The Impact of Homework on Student
Achievement.” Econometrics Journal, 11, pp. 326–348.

Henderson, Daniel J. 2010. “A Test for Multimodality of Regression Derivatives with
Application to Nonparametric Growth Regressions.” Journal of Applied Econometrics, 25,
pp. 458–480.

Henderson, Daniel J., Christopher F. Parmeter, and Subal C. Kumbhakar. 2012. “A Sim-
ple Method to Visualize Results in Nonlinear Regression Models.” Economics Letters, 117,
pp. 578–581.

Hotz, V. Joseph, Guido W. Imbens, and Jacob A. Klerman. 2006. “Evaluating the Differ-
ential Effects of Alternative Welfare-to-Work Training Components: A Reanalysis of the
California GAIN Program.” Journal of Labor Economics, 24, pp. 521–566.

Hurvich, Clifford M., Jeffrey S. Simonoff, and Chih-Ling Tsai. 1998. “Smoothing Parameter
Selection in Nonparametric Regression Using an Improved Akaike Information Criterion.”
Journal of the Royal Statistical Society, Series B, 60, pp. 271–293.

Li, Qi, and Jeffrey S. Racine. 2004. “Cross-Validated Local Linear Nonparametric Regression.”
Statistica Sinica, 14, pp. 485–512.

Linton, Oliver, Esfandiar Maasoumi, and Yoon-Jae Whang. 2005. “Consistent Testing for
Stochastic Dominance under General Sampling Schemes.” Review of Economic Studies, 72,
pp. 735–765, Also the Corrigendum to the same, 2007.

Maasoumi, Esfandiar. 2001. “Parametric and Nonparametric Tests of Limited Domain and
Ordered Hypotheses in Economics.” Chapter 25 in A Companion to Econometric Theory,
ed. Badi Baltagi. Malden: Basil Blackwell Publishers.

Maasoumi, Esfandiar, Jeffrey S. Racine, and Thanasis Stengos. 2007. “Growth and Conver-
gence: A Profile of Distribution Dynamics and Mobility.” Journal of Econometrics, 136,
pp. 483–508.

Maasoumi, Esfandiar, Daniel L. Millimet, and Dipa Sarkar. 2009. “A Distributional Analysis
of Marriage Effects.” Oxford Bulletin of Economics and Statistics, 71, pp. 1–33.

Nelson, Doug. 1997. “Some ‘Best Practices’ and ‘Most Promising Models’ for Welfare
Reform.” memorandum, Baltimore: Annie E. Casey Foundation.

Racine, Jeffrey S., and Qi Li. 2004. “Nonparametric Estimation of Regression Functions with
Both Categorical and Continuous Data.” Journal of Econometrics, 119, pp. 99–130.

Wang, Min-Chiang, and John van Ryzin. 1981. A class of smooth estimators for discrete
estimation. Biometrika, 68, pp. 301–9.





Author Index.......................................

Abbring, J.H., 39
Abramovich, F., 143
Ai, C., 39, 56, 87
Aitchison, J., 509t
Aitken, C.G.G., 509t
Akaike, H., 228, 230
Allen, D.M., 216
Altman, E., 347
Ambroise, C., 256
Amini, S., 339n
An, M.Y., 40, 99, 101, 123
Andersen, E., 195
Anderson, A.P., 450
Anderson, T.W., 377
Andrews, D.W.K., 216, 226, 228, 241, 245
Anglin, A., 241n, 330–331
Anton, A.A., 39
Ashley, R., 315, 320, 339n
Athreya, K.B., 447
Auestad, A., 132
Avalos, M., 256
Avelino, R.R.G., 39

Bach, F.R., 256
Balke, N.S., 453
Baragona, R., 348, 362
Bassett, G.W., 474
Bauer, D.F., 319
Beaver, W., 347
Becker, G.S., 501, 515
Belloni, A., 249, 295, 302
Ben-Moshe, D., 106–107
Bennett, C., 339n
Berenguer-Rico, V., 445–446, 449, 471
Beresford, G.C., 58n
Berkes, I., 455
Berlinet, A., 378
Bernanke, B.S., 249
Berry, S.T., 39, 49, 57–58
Bertin, K., 284, 290–291, 295
Bierens, H.J., 4–9, 26–27, 31–32, 34–35n
Billingsley, P., 83, 475
Bin, O., 331
Black, F., 346
Blanz, V., 347
Blundell, R., 69, 79, 92
Bondell, H.D., 284, 287, 295, 299–300
Bonhomme, S., 107

Borak, S., 198
Boser, B.E., 347
Bosq, D., 161, 172, 386
Bovin, J., 249
Breheny, P., 253, 284
Breiman, X., 157
Breitung, J., 454
Briesch, R., 39
Brockwell, P.J., 445
Brown, B., 486
Bühlmann, P., 189, 256, 258–259, 340n
Buja, A., 132, 178
Bunea, F., 263, 284, 288
Burges, C.J.C., 347
Butucea, C., 109

Cai, B., 279–280, 439, 464–465, 471–472, 474
Cai, Z., 494, 496
Canay, I., 70
Candès, E.J., 254, 302
Caner, M., 301–302, 451
Canty, A., 340n
Canu, S., 361
Cardot, H., 69
Carrasco, M., 65, 67, 71, 73–74, 78–79, 87, 90, 92,

98, 104, 115, 207
Carriere, K.C., 143
Carroll, R.J., 102, 104–105, 193, 195, 275, 485,

488–489
Carvalho, J.R., 4–8, 31, 34
Chamberlain, G., 56, 195
Chan, K.S., 450–451
Chang, C.C., 361
Chang, Y., 453, 468
Chang, Y.-C., 324
Chen, B., 263, 266, 268, 273, 464
Chen, J., 422, 425–426, 428–429, 439, 463, 474
Chen, P.-H., 358, 361
Chen, R., 450, 464, 474
Chen, S., 348, 362, 367
Chen, X., 4, 34, 50, 65, 69, 73–74, 87, 102,

104–105, 178, 199, 207, 216, 348, 379, 407
Cheney, E.W., 34
Cheng, R., 348, 362, 365
Cheng, X., 400
Chernozhukov, V., 249, 295, 302
Chintagunta, P., 39
Choi, I., 453, 457–458



522 author index

Christopeit, N., 455
Chu, B., 46
Chui, C.K., 216
Chung, K., 440
Claeskens, G., 172
Clark, R.M., 491
Clark, T.E., 320
Cline, D.B.H., 451
Cobb, C.W., 151, 168
Cogneau, D., 39
Collobert, R., 361
Comminges, L., 284, 288–289
Connor, G., 197
Corradi, V., 309, 314, 318, 320, 339n
Cortes, C., 347, 357
Craven, P., 216
Croissant, Y., 241n
Cunha, F., 104

Dalayan, A.S., 284, 288–289
Darling, D.A., 377
Darolles, S., 50, 69, 74, 79, 87–88, 92, 207
Davidson, J., 447, 475
Davidson, R., 311, 319
Davis, R.A., 445
Davison, A.C., 314
de Boor, C., 216
Deepa, S.N., 348
De Fesis, I., 143
De Gooijer, J.G., 136, 340n
Dehejia, R.H., 508–509
de Jong, R.M., 447, 455, 457, 475
Denby, L., 491
Derbort, S., 143
Dette, H., 143–144
Dhrymes, P., 467
Diebold, F.X., 309, 313, 315, 320, 339n
Dimitriadou, E., 361
Domowitz, I., 448
Dong, Y., 38, 46, 52, 54, 57, 58n
Donoho, D.L., 207, 253–254
Douglas, P.H., 151, 168
Duan, N.H., 281
Duclos, J.-Y., 319
Dufrénot, G., 452
Durlauf, S.N., 333, 387

Eastwood, B.J., 4
Efron, B., 252, 309, 312, 324, 339n
Eilers, P.H.C., 178
Elbers, C., 4
Eliasz, P., 249
Engl, Heinz W., 65, 70–71, 73, 76, 207
Engle, R.F., 447, 472
Englemann, B., 350–352
Eren, O., 518n
Escribano, A., 448, 452
Eubank, R.L., 143
Evdokimov, K., 98, 100, 106, 110–111, 115, 119

Fan, D.R.E., 361
Fan, J., 188, 190, 200, 229, 249–250, 252–253,

255–256, 268–269, 271, 273, 279–280,
301–302, 421–422, 425–426, 450, 464,
467–468

Fan, Y., 50, 69, 99, 104, 123, 130, 135, 151, 161,
173, 179, 188, 460, 470

Farmen, M., 467
Feng, Y., 179, 256, 422
Fengler, M., 198
Fernandez Sainz, A., 39
Ferraty, F., 69
Fève, F., 87
Florens, J.P., 50, 65, 67, 69, 71, 78–79, 87, 90, 92,

98, 104, 115, 207
Fomby, T.B., 453
Fox, J., 39, 57
Frank, I.E., 250
Franses, P.H., 320, 340n, 450
Friedman, J.H., 250, 254
Friedman, Y., 157
Fu, W., 250, 252

Gabler, S., 34
Gagliardini, P., 69
Gale, D., 355
Gallant, A.R., 4, 26, 28, 447
Gammerman, A., 361
Gan, L., 39, 56
Gao, J., 130, 421–429, 431–435, 438–440, 444, 451,

463, 470, 497
García, E.A., 348–349, 352
García, P.E., 302
Gau, Q., 241n, 331
Gautier, E., 49, 302
Gayle, W.-R., 39
Geisser, S., 311
Gen, M., 348, 362, 365
Gençay, R., 241n, 330–331
Ghysels, E., 199
Gijbels, I., 130, 135, 161, 421, 424–426, 467
Glad, I.K., 179, 422
Glasmachers, T., 361
Glynn, P., 431, 449
Godfrey, L.G., 469
Gonçalves, S., 339n
Gonzalo, J., 445–446, 449, 471
Goux, D., 39
Gozalo, P.L., 143–144
Grandvalet, Y., 256
Granger, C.W.J., 320, 387, 391, 421, 434, 444,

446–448, 450–454, 458, 461, 472
Green, D.A., 101
Greene, W.H., 485
Grenander, U., 4, 216
Groetsch, C., 73
Guermeur, Y., 361
Guerre, E., 8–9, 467–468
Gunn, S.R., 347, 361



author index 523

Guo, W., 486
Gurland, J., 318

Haag, B., 179, 201
Hadamard, J., 98
Hafner, C.M., 369
Hagmann, M., 197
Hahn, J., 4, 379, 407
Hahn, S.B., 458, 464
Haile, P.A., 39, 57–58
Hall, P., 50, 69, 284, 293–295, 447, 467
Hallman, J., 446, 448, 453–454
Hamilton, J.D., 445
Hamming, R.W., 13
Hanke, M., 65, 70, 76
Hannan, E.J., 34, 383
Hansen, B.E., 216, 226, 232–233, 235–237,

240–242, 245, 247, 247n, 339n, 451, 472
Hansen, C., 302
Hansen, L.P., 65
Härdle, W.K., 79, 130–133, 138–139, 151, 156,

198–199, 274, 338, 346–348, 367, 421–422,
431, 467–468, 493

Harrison, X., 157
Hart, J.D., 143
Harvey, D.I., 320, 323, 340n, 469
Hastie, T.J., 132, 151, 178, 190, 252, 254, 357,

361–362
Haupt, H., 241n
Haupt, R.L., 348
Haupt, S.E., 348
Hayashi, F., 485
Hayfield, T., 333
Haykin, S., 347
He, H., 348–349, 352
He, T., 275–276, 278
Heckman, J.J., 4, 7, 28, 39, 190
Henderson, D.J., 195, 330, 333, 335, 485, 488, 504,

518n
Hengartner, N.W., 133, 152
Hermite, C., 35n
Herndorf, N., 447
Hinkley, D.V., 314
Hjort, N.L., 179
Hoderlein, S., 49, 196
Holland, J.H., 348
Hong, S.H., 464, 469
Honore, B.E., 7, 39, 56
Horel, A.E., 250
Horowitz, J.L., 40, 50, 69, 79, 88–89, 130,

133–142, 144, 146, 152–153, 189, 256–258,
340n, 467–468

Horváth, L., 455
Hothorn, T., 325
Hotz, V.J., 508
Hristache, M., 274
Hsiao, C., 109, 333, 466–467
Hsu, C.-W., 361
Hu, L., 468

Hu, Y., 99, 101, 123
Huang, J., 253–254, 256–258, 263–264, 274, 284
Huang, J.H., 273
Huang, J.Z., 152, 189, 268, 273
Huang, S.-Y., 361
Huang, T., 255, 275–276
Hung, W.-L., 324
Hunter, D.R., 255
Hurvich, C.M., 228, 230, 325, 504
Hwang, R.C., 347
Hyndman, R.J., 241n, 320, 339–340n

Ichimura, H., 49, 141, 274, 467–468
Igel, C., 361
Im, K.S., 487
Imbens, G.W., 508
Inoue, A., 309, 434, 444, 472

Jacho-Chávez, D.T., 39, 46, 57
Jacod, J., 475
Jagannathan, R., 249
Japkowicz, N., 348
Jennrich, R.I., 21
Jiang, G., 295
Jiang, J., 173, 179, 188
Jin, S., 468
Joachims, T., 361
Johannes, J., 69, 73–74, 88
Johnson, P., 333
Johnstone, I.M., 207, 252–254
Jones, M., 179
Juhl, T., 422, 463–464

Kac, M., 377
Kai, B., 295, 297–298
Kakwani, N., 485
Kallianpur, G., 448
Kapetanios, G., 453
Karatzoglou, A., 361
Karhunen, K., 377
Karlin, S., 101
Karlsen, H.A., 203–204, 433, 440, 448, 453,

459–461
Kasparis, I., 456–458, 461–463, 475
Kato, R., 263, 265
Kauermann, G., 190
Keenan, S., 350–351
Keerthi, S.S., 361
Kennard, R.W., 250
Kerkyacharian, G., 254
Khan, S., 39, 46, 57
Kiang, M., 347
Kilian, L., 309
Kim, M.S., 379
Kim, W., 133, 151–152
Kim, W.C., 179
King, M., 439, 470
Kitamura, Y., 49
Klein, R.W., 467



524 author index

Klerman, J.A., 508
Knight, K., 250, 252
Koehler, A.B., 320
Koenker, R., 295–297, 474
Kohn, R.J., 486
Kong, E., 275
Koop, G., 486
Kotlyarski, I., 97, 105–106
Krahnen, J.P., 346
Krein, S.G., 70
Kress, R., 74
Krishna, V., 8
Kristensen, D., 69
Kronmal, R., 4
Kuelbs, J., 447
Kuersteiner, G., 232, 247n
Kumbhakar, S.C., 330, 504
Kuminoff, N., 339n

Lafferty, J., 260, 284, 291–293, 295
Laguerre, E.N., 35n
Lahiri, S.N., 314, 340n
Lancaster, T., 4
Lecué, G., 284, 290–291, 295
Lee, S., 136–137
Lee, Y.-J., 361
Lee, Y.K., 187, 199–200
Leeb, H., 310
Legendre, A.M., 35n
Leng, C., 254, 287
Lessmann, S., 362
Levinsohn, J., 49, 57–58
Lewbel, A., 38–40, 45–46, 52–58, 58n, 496
Leybourne, S.J., 320, 469
Li, Degui, 421–422, 425–426, 428–429, 431, 439
Li, H., 268, 273–274, 296
Li, K.-C., 216, 226, 228, 275, 281, 295
Li, Q., 55, 130, 151, 161, 195, 216, 240, 249, 319,

333, 444, 463–471, 474, 488, 494, 496, 504
Li, R., 229, 249–250, 252–253, 255, 263, 267–269,

271–273, 278–279, 295–300
Li, T., 105, 107, 109
Li, W., 427
Lian, H., 268, 270–271
Liang, H., 130, 263, 266–268, 272, 275, 278–279,

295–296, 421–422, 431, 439
Liang, Z., 468–469
Liao, Z., 301–302, 379, 399–402, 407, 409
Lim, K.S., 450
Lin, C., 295, 299–300
Lin, C.-J., 361, 474
Lin, J., 275, 281–283
Lin, X., 485, 488
Lin, Y., 189, 253–254, 256, 269, 284, 286–287
Ling, S., 451
Linton, O.B., 39, 144, 151–153, 181, 183–184, 186,

191–192, 197, 199, 493, 502
Liu, C.-A., 247n
Liu, H., 260

Liu, L., 241n, 331, 333
Liu, Q., 451
Liu, R., 139, 151–152, 165–169
Liu, X., 263, 267–268, 275, 278–279
Liu, Y., 295, 300
Lo, A.W., 347
Loève, M.M., 377, 384
Long, X., 422, 498
Lorentz, G.G., 34
Loubes, J.M., 88
Lu, Z., 470
Lundervold, L., 179
Lv, J., 249–250

Ma, S., 152, 159, 161–162, 249, 253, 284
Maalouf, M., 348
Maasoumi, E., 333–335, 339n, 502, 504, 517, 518n
MacKinnon, J.G., 311
Magnac, T., 39, 46, 56–57, 58n, 195
Maity, A., 193
Mallows, C.L., 228
Mammen, E., 79, 133–136, 138–142, 144, 146,

152–153, 178, 181, 183–184, 186–187,
189–193, 196–200, 202, 207, 207n, 338

Mangasarian, O.L., 361
Manski, C.F., 40, 467–468
Mariano, R.S., 309, 313, 315, 320, 339n
Marmer, V., 444
Marron, J.S., 184, 338
Marteau, C., 88
Martin, D., 347
Martins-Filho, C., 422, 485–486, 489, 497
Marx, B.D., 178
Masry, E., 431
Matzkin, R.L., 39, 98, 121
Maurin, E., 39, 46, 55–57, 58n
McCracken, M.W., 309, 320
McFadden, D., 39–40, 46, 55, 58n
McLeish, D.L., 447
Meade, N., 340n
Medeiros, M.C., 308
Mehta, J.S., 318
Meier, L., 189, 256, 258–259
Meister, A., 102, 104, 110
Mercer, J., 359, 378, 382
Merton, R., 346–347
Merwin, C., 347
Meyn, S., 450
Michalewicz, Z., 348
Mignon, V., 452
Miller, H., 284, 293–295
Millimet, D.., 517
Mira, S., 448, 452–453
Mishra, S., 422, 497–498
Mitchell, M., 348
Mohnen, P., 39
Moon, H.R., 467–468
Morin, N., 434, 444, 472
Morrison, W.., 239



author index 525

Müller, K.-R., 347
Müller, U.K., 447
Munk, A., 143
Murphy, K.M., 328
Murtazashvili, I., 496–497
Myklebust, T., 203–204, 448–449, 460–461

Naik, P.A., 275
Narayan, P., 456
Navarro, S., 39
Nekipelov, D., 39, 46, 57
Nelson, D., 508
Neubauer, A., 65, 70, 76, 207
Newbold, P., 320, 340n, 387, 391, 461
Newey, W.K., 4, 50–51, 69–70, 110, 132, 202, 207,

216, 219, 240
Ni, X., 263–265
Nicholls, D.F., 450
Nicolau, J., 446
Nielsen, J.P., 132, 135, 151, 153, 181, 183–184,

186, 188–189, 191, 197, 199, 493
Nummelin, E., 440
Nychka, D.W., 4, 26, 28

Ohlson, J., 347
Okui, R., 232, 247n
Opsomer, J.D., 132, 151, 188, 190
Osuna, E., 347
Ouliaris, S., 394
Owen, A., 423

Pagan, A., 130, 327, 444
Pakes, A., 49, 57–58
Palm, F.C., 39
Pantula, S.G., 447
Papageorgiou, C., 333
Park, B.U., 139, 178, 187, 189–190, 198–200, 208n,

444, 449, 453–458, 464, 467–468, 470, 475
Park, J., 435
Park, J.Y., 394
Parmeter, C.F., 241n, 330–331, 333, 504
Parzen, E., 378
Patton, A., 316, 339–340n
Peng, H., 252, 255, 275–276
Perron, P., 394
Pesaran, M.H., 487
Petunin, Y.I., 70
Pham, D.T., 451
Philipp, W., 447
Phillips, P.C.B., 203, 378–379, 386–387, 389–395,

397–402, 404, 407–410, 417n, 422,
429–431, 435, 439–440, 444–445, 447, 449,
453–463, 467–470, 473, 475–476

Picard, D., 254
Pistolesi, N., 39
Platt, H., 347
Platt, J.C., 361
Poirier, D., 486
Politis, D.N., 312, 314, 316, 335, 339–340n

Pötscher, B.M., 310, 475
Powell, M.J.D., 34, 50–51, 69–70, 202, 207
Prastyo, D.D., 368
Pu, H.H., 451
Pugachev, V.S., 386

Qian, L., 275, 281–283
Qu, A., 268
Quinn, B.G., 34, 450

Racine, J.S., 55, 92, 130, 151, 216, 226, 233,
235–237, 240–241, 245, 247, 247n, 308,
319, 331, 333, 339–340n, 421–422, 425,
444, 474, 488, 504, 518n

Ramsay, J.O., 69
Ramsey, J.B., 325, 328t , 469
Rasch, G., 195
Ravikumar, P., 256, 260–261
Razbash, S., 241n
Rech, G., 308
Reich, B.J., 284, 287
Reiss, M., 50, 69, 73–74, 207
Renault, E., 50, 65, 69, 71, 79, 207
Revuz, D., 449, 475
Riddell, W.C., 101
Ridder, G., 4
Riley, J.G., 8
Rinaldo, A., 254
Ripley, B., 340n
Rivlin, T.J., 34
Robbins, H., 448
Robin, J.-M., 107
Robinson, P.M., 50, 422, 491
Rodriguez-Poo, J., 39
Roever, C., 361
Romano, J.P., 312, 314, 316, 339–340n
Rothe, C., 202
Roy, N., 485, 488
Rubinfeld, Y., 157
Ruckstuhl, A.F., 485, 489
Rüping, S., 361
Ruppert, D., 132, 151, 188

Saikkonen, P., 452–453, 457–458
Samuelson, W.F., 8
Santos, A., 70
Sapatinas, T., 143
Sarda, P., 69
Sarkar, D., 517
Scaillet, O., 69
Schennach, S., 39, 46, 54, 105, 110
Schick, A., 178
Schienle, M., 202–203, 208n
Schimek, M., 161
Schmalensee, R., 320
Schmidt, D., 241n
Schnurbus, J., 241n
Scholes, M., 346
Schölkopf, B., 347, 358–359, 361



526 author index

Schwartz, L., 98, 100, 105, 112, 116–117
Schwarz, G., 34, 88, 229
Severance-Lossin, E., 131
Severini, T., 87
Shaikh, A., 70
Shao, J., 227
Shao, Q., 451
Sharda, R., 347
Shawe-Taylor, J., 347
Shen, X., 34, 309
Sherman, J., 239
Shin, Y., 453
Shiohama, T., 263, 265
Shiryaev, A.N., 475
Shorack, G.R., 378, 382
Siegert, A.J.F., 377
Silverman, B.W., 69, 207
Simar, L., 348
Simonoff, J.S., 325, 504
Simpson, D.G., 143
Sing, T., 352
Singer, B., 4
Sivanandam, S.N., 348
Smith, M.S., 486
Smith, R.P., 487
Smola, A.J., 358–359, 361
Snell, A., 453
Sobehart, J., 346–347, 350–351
Solo, V., 447, 454
Solow, R.M., 169
Song, H., 4–5, 9, 32, 135–136, 153, 170, 172, 256
Spady, R.H., 467
Sperlich, S., 131, 133, 135, 143, 152–153, 188–189
Staiger, D., 398
Stefanski, L.A., 143
Stein, R., 346–347
Stengos, T., 241n, 333, 518n
Stephen, S., 348
Stephens, M.A., 378
Stewart, M.B., 26–27, 39
Stock, J.H., 144, 398, 447
Stoker, T.M., 274
Stone, C.J., 131, 150, 152, 178, 216, 311
Storlie, C.B., 284, 287
Støve, B., 197, 207
Su, L., 422, 439, 474, 485–486, 489, 491–492, 494,

497–498, 518n
Subba Rao, T., 450
Sun, Y., 379, 402, 406–407, 411, 465–467, 471, 474
Suykens, J.A.K., 361
Swanson, N.R., 309, 314, 318, 320, 339n, 452, 458

Tam, K., 347
Tamer, E., 39, 46, 57
Tang, X., 39, 53, 57–58
Tanggard, C., 199
Tao, T., 254, 302
Tarter, M., 4
Taupin, M.-L., 109

Taylor, W., 485
Temple, J., 333
Teräsvirta, T., 308, 421, 445, 450, 452
Thomas-Agnan, C., 378
Thompson, T.S., 49
Tibshirani, R.J., 132, 151, 178, 190, 229, 250, 252,

254
Tiwari, A.K., 39
Tjøstheim, D., 132, 143, 179, 197, 203–204, 207,

421, 431–433, 435, 438–440, 448, 450–453,
459–461, 470

Tobias, J., 486
Tokic, D., 169
Tong, H., 421, 427, 431, 450–451
Trafalis, T.B., 348
Tran, K.C., 496
Tripathi, G., 87
Tsai, C.-L., 228, 230, 275, 278, 325, 504
Tsay, R.S., 450–451, 464
Tschernig, R., 241n
Tsionas, E.G., 496
Tsybakov, A., 302
Tukey, J., 143
Turlach, B.A., 184
Tweedie, R., 450

Ullah, A., 130, 327, 422, 444, 474, 485–486,
488–489, 491–492, 494, 496–498

Van Bellegem, S., 69, 73, 92
van de Geer, S., 189, 256, 258–259
Vanderbei, R., 361
van der Loeff, S.S., 39
van der Vaart, A.W., 21, 79, 82
Vandewalle, J., 361
van Dijk, D., 320, 340n, 450
Vanherns, A., 73
Van Keilegom, I., 172
Vapnik, V., 347, 354, 357
Vassalou, M., 346
Vella, F., 202
Vieu, P., 69
von Lieres und Wilkau, C., 143–144
Vuong, Q., 105, 107
Vytlacil, E., 39

Wahba, G., 216, 285–286, 311
Wald, A., 21, 469
Wand, M.P., 184, 190
Wang, H., 254, 268–271, 273, 280
Wang, L., 104, 135–136, 139, 143, 152–153,

156–159, 162, 263, 267–268, 273, 295
Wang, N., 279, 283
Wang, Q., 203, 429–431, 440, 455, 459–462, 470,

475
Wang, T., 275
Wang, Y., 485–486, 488–489, 497–498
Wasserman, L., 260, 284, 291–293, 295
Watson, G.S., 377



author index 527

Watson, M.W., 144
Weber, M., 346
Wei, F., 189, 254, 256–258
Wei, X., 268, 274
Welch, F., 328
Wellner, J.A., 79, 82, 378, 382
Welsh, A.H., 485–486, 488–489
West, K.D., 309, 316–317, 320
Whang, M.-C., 502
White, H.L., Jr., 65, 98, 115, 119, 311, 314–318,

320, 335, 339–340n, 447–448, 469
Wilson, R.L., 347
Withers, C.S., 447
Wold, H., 12, 216, 311
Wooldridge, J.M., 241n, 325, 447, 467
Woutersen, T., 4
Wu, C.O., 268
Wu, Y., 179, 295, 422

Xia, Y., 268–271, 274–275, 280, 427
Xiao, Z., 422, 463–465, 469, 471, 474
Xie, H., 263–264
Xie, S., 485
Xing, Y., 346
Xu, J., 362
Xu, P.-R., 275, 283
Xu, X., 474
Xue, L., 150, 152, 169, 199, 256, 262, 268, 271

Yang, B., 275, 279–280
Yang, L., 131, 135–136, 139, 143, 150–153,

156–159, 161–162, 165–170, 172, 199, 493
Yang, T., 38–39, 52, 57, 58n
Yang, X., 331
Yao, F., 485–486, 489
Yao, Q., 179, 279–280, 421, 425, 450, 460, 464
Ye, J., 309
Yee, T.W., 485–486, 488

Yildiz, N., 39
Yin, J., 432–433, 435, 438–440, 451
Yor, M., 449, 475
You, J., 485
Young, N., 35n
Yu, B., 253
Yu, K., 139, 178, 190–191, 193, 196, 207, 249
Yu, Y., 263, 266
Yuan, M., 253–254, 269, 295, 298
Yule, U., 387

Zeevi, A., 431, 449
Zeileis, A., 325
Zeng, P., 275–276, 278
Zerom, D., 136
Zhang, C.-H., 250, 255, 283
Zhang, D., 263–265
Zhang, H., 189
Zhang, H.H., 249, 255–256, 263–265, 268, 284,

286–287, 295, 299–301
Zhang, J.L., 284
Zhang, J.T., 268
Zhang, W., 200
Zhao, P., 253, 268, 271
Zheng, J.X., 470
Zheng, Z., 339n
Zhou, L., 268
Zhou, X., 362
Zhou, Y., 485
Zhu, J., 300, 361
Zhu, L., 268
Zhu, L.-P., 275, 280–283, 300
Zhu, L.-X., 275, 280–281, 283
Zhu, Y., 275–276, 278
Zinde-Walsh, V., 98–100, 110, 112–113, 116, 118,

121–124
Zou, Hui, 229, 250, 253–255, 263, 266, 295,

297–300, 399





Subject Index.......................................

Accuracy ratio (AR), 350–352
Adaptive component selection and smoothing

operator (ACOSSO), 287
Additive coefficient models (ACMs)

SBK method in, 162–170
Cobb-Douglas model, application to,

168–170
Additive models, 129–207

overview, 149–153, 176–179
ACMs, SBK method in, 162–170

Cobb-Douglas model, application to,
168–170

additive diffusion models, 201
future research, 173
GDP growth forecasting and, 151–152
noisy Fredholm integral equations of second

kind, 205–207
nonparametric additive models, 129–146

(See also Nonparametric additive models)
nonstationary observations, 202–205
PLAMs, SBK method in, 159–162

housing data, application to, 162
related models, 190–202

additive diffusion models, 201
missing observations, 200–201
nonparametric regression with repeated

measurements, 192–193
nonparametric regression with time series

errors, 191–192
panels of time series and factor models,

197–198
panels with individual effects, 193–196
semiparametric GARCH models, 198–199
simultaneous nonparametric equation

models, 201–202
varying coefficient models, 199–200

SBK method in, 153–159
housing data, application to, 157–159
SBK estimator, 154–157

SBS method in, 170–172
smooth least squares estimator in additive

models, 179–190 (See also Smooth least
squares estimator in additive models)

variable selection in, 255–262
Huang-Horowitz-Wei adaptive group

LASSO, 257–258
Meier-Geer-Bühlmann sparsity-smoothness

penalty, 258–260

Ravikumar-Liu-Lafferty-Wasserman sparse
adaptive models, 260–262

Xue SCAD procedure, 262
Additive regression, 149–153
Aid to Families with Dependent Children (AFDC)

GAIN program (See Greater Avenues for
Independence (GAIN program))

AR (Accuracy ratio), 350–352
ARMA models, 447, 449–450
Artificial neural network (ANN) method, 347
ASPE. See Average square prediction error (ASPE)
Asymptotic normal inference, 65–93

assumptions, 70–77
deconvolution, 67–68, 90
density, 67, 89–90
estimation methods, 70–77
examples, 67–69
for fixed α, 77–79
functional linear regression, 91–92

with possible endogenous regressors,
68–69

Hilbert scales, 70–72
ill-posedness, 70
implementation, 89–93

T estimated, 90–93
T known, 89–90

mean square error, rate of convergence of,
73–77

model, 67–69
nonparametric instrumental regression, 69,

92–93
overview, 65–67, 93
regularization, 72–73

selection of parameter, 87–89
test statistics, 79–82

ϕ0 fully specified, 79–80
ϕ0 parametrically specified, 80–82

for vanishing α, 82–87
estimated operator, 85–87
with known operator, 83–85
rate of convergence, 87

Autoregressive models
nonlinear autoregressive models, 431–434

selected proofs, 441
nonparametric models with nonstationary

data, 459–460
semiparametric models with nonstationary

data, 463–464



530 subject index

Average square prediction error (ASPE)
Canadian Census Public Use data and, 328f
federal funds interest rate and, 337f
GDP growth and, 334f
housing data and, 332f
wages and, 326f

Averaging regression, 230–232
asymptotic optimality of, 235–236
computation, 234–235
feasible series estimators, 237f
jackknife model averaging (JMA) criteria, 233
numerical simulation, 236
selected proofs, 245–247
weights, 237t

Backfitting. See Smooth least squares estimator in
additive models

Basel Committee on Banking Supervision, 346
Berkson error model, 103t , 104, 108t
Bertin-Lecué model, 290–291
Binary choice models, 467–468
Black-Scholes model, 346
Box-and-whisker plots, 341n
Brownian motion

nonstationary time series and, 449, 456
time series and, 377, 379, 383–387, 390–392,

417n
Bunea consistent selection via LASSO, 288

Canadian Census Public Use data
data-driven model evaluation, application of,

327–329
average square prediction error (ASPE), 328f
empirical distribution function (EDF), 328f
RESET test results, 327t
revealed performance (RP) test results, 329t

CAP (Cumulative accuracy profile) curve,
350–352, 351f

Cauchy sequences, 10
Chebyshev polynomials, 17–19, 19f
Chen-Yu-Zou-Liang adaptive elastic-net

estimator, 266
Chromosomes

SVM method and, 361–365, 363–366f , 365t
Classical backfitting

relation to smooth least squares estimator in
additive models, 187–189

Cobb-Douglas model
GDP growth forecasting and, 151f , 168–170,

170f
SBK method, application of, 168–170

Cointegrated systems
automated efficient estimation of, 398–402
cointegration of nonlinear processes, 471–473
efficient estimation of, 395–398, 417n
selected proofs, 413–415

Cointegrating models
nonlinear models with nonstationary data,

452–458

nonparametric models with nonstationary
data, 460–463

semiparametric models with nonstationary
data

varying coefficient cointegrating models,
464–466

varying coefficient models with correlated
but not cointegrated data, 466–467

Comminges-Dalayan consistent selection in
high-dimensional nonparametric
regression, 288–289

Component selection and smoothing operator
(COSSO), 284–287

Conditional independence
convolution equations in models with, 110–111

Consumer Price Index (CPI)
semilinear time series and, 435, 436f

Convolution equations, 97–125
estimation and, 122–124

plug-in nonparametric estimation, 122–123
regularization in plug-in estimation, 123–124

independence or conditional independence, in
models with, 100–111

Berkson error model, 103t , 104, 108t
classical error measurement, 103t , 104–106,

108t
conditional independence conditions, in

models with,
110–111

measurement error and related models,
102–107

regression models and, 107–110
space of generalized functions S∗, 100–102

overview, 97–100, 124–125
partial identification, 120–121
solutions for models, 112–119

classes of, 115–119
existence of, 112–115
identified solutions, 119–120
support and multiplicity of, 115–119

well-posedness in S∗, 121–122
COSSO (Component selection and smoothing

operator), 284–287
Co-summability, 471–473
Cramer-von Mises statistics, 79, 377
CreditReform database

SVM method, application of, 366–368
data, 366–367t
testing error, 368t
training error, 368t

Cross-validation, 224–226
asymptotic optimality of, 226–227
feasible series estimators, 237f
numerical simulation and, 236
selected proofs, 239–245
typical function, 226f , 237t

Cumulative accuracy profile (CAP) curve,
350–352, 351f



subject index 531

Data-driven model evaluation, 308–338
overview, 308–311, 336–338
box-and-whisker plots, 341n
Canadian Census Public Use data, application

to, 327–329
average square prediction error (ASPE), 328f
empirical distribution function (EDF), 328f
RESET test results, 327t
revealed performance (RP) test results, 329t

empirical illustrations, 325–336
federal funds interest rate, application to,

335–336
average square prediction error (ASPE), 337f
empirical distribution function (EDF), 338f
time plot, autovariance plot and partial

autocorrelation plot, 336–337f
GDP growth, application to, 333–335

average square prediction error (ASPE), 334f
empirical distribution function (EDF), 334f

housing data, application to, 330–333
average square prediction error (ASPE), 332f
empirical distribution function (EDF), 332f

methodology, 311–319
bootstrap, validity of, 315–319
empirical distribution of true error, 313–315

Monte Carlo simulations, 319–324
cross-sectional data, 319–320
optimal block length, 340n
time series data, 320–324, 321–324t

scaling factors, 340n
stationary block bootstrap, 340n
wages, application to, 325–327

average square prediction error (ASPE), 326f
empirical distribution function (EDF), 326f
nonoptimal smoothing, implications of,

325–327
Deconvolution, 67–68, 90
Default prediction methods

overview, 346–348
accuracy ratio (AR), 350–352
artificial neural network (ANN) method, 347
cumulative accuracy profile (CAP) curve,

350–352, 351f
maximum likelihood estimation (MLE)

method, 347
ordinary least square (OLS) method, 347
performance evaluation, 349t
quality of, 348–352
receiver operating characteristic (ROC) curve,

350–352, 351f
structural risk minimization (SRM) method,

347
SVM method, 352–369 (See also Support vector

machine (SVM) method)
Density and distribution functions, 24–32

asymptotic normal inference, density, 67, 89–90
bivariate SNP density functions, 27–28
first-price auction model, application to, 32
general univariate SNP density functions, 24–27

MPH competing risks model, application to,
31–32

SNP functions on [0,1], 28–29
uniqueness of series representation, 29–31

Economic growth. See Gross domestic product
(GDP) growth

EMM (Extended memory in mean), 448, 454
Empirical distribution function (EDF)

Canadian Census Public Use data and, 328f
federal funds interest rate and, 338f
GDP growth and, 334f
housing data and, 332f
wages and, 326f

Error
average square prediction error (ASPE)

Canadian Census Public Use data and, 328f
federal funds interest rate and, 337f
GDP growth and, 334f
housing data and, 332f
wages and, 326f

Berkson error model, 103t , 104, 108t
integrated mean square error (IMSE), 220–222

selection and averaging estimators, 231f
spline regression estimators, 223f

mean-squared forecast error (MFSE), 224
measurement error

convolution equations in models with
independence, 102–107

Liang-Li penalized quantile regression for
PLMs with measurement error, 295–296

Liang-Li variable selection with
measurement errors, 267

Zhao-Xue SCAD variable selection for
varying coefficient models with
measurement errors, 271–272

Estimation
asymptotic normal inference, 70–77
convolution equations and, 122–124

plug-in nonparametric estimation,
122–123

regularization in plug-in estimation,
123–124

least squares estimation (See Least squares
estimation)

nonparametric additive models, 131–142
bandwidth selection for Horowitz-Mammen

two-step estimator, 139–140
conditional quantile functions, 136–137
known link functions, 137–139
unknown link functions, 140–142

regression equations, 485–498 (See also
Regression equations)

SBK method (See Spline-backfitted kernel
smoothing (SBK) method)

SBS method in additive models, 170–172
sieve estimation, 33–34
sieve regression and, 215–247, 219–220

(See also Sieve regression)



532 subject index

Estimation (Cont.)
smooth least squares estimator in additive

models, 179–190 (See also Smooth least
squares estimator in additive models)

stochastic processes, 501–517 (See also
Stochastic processes)

SVM method, 352–369 (See also Support vector
machine (SVM) method)

time series, 377–476 (See also Time series)
of unconditional moments, 46

Evolutionary model selection
SVM method and, 361–365, 363–366f , 365t

Exchange rates
semilinear time series and, 438, 438f

Extended memory in mean (EMM), 448, 454

Federal funds interest rate
data-driven model evaluation, application of,

335–336
average square prediction error (ASPE), 337f
empirical distribution function (EDF), 338f
time plot, autovariance plot and partial

autocorrelation plot, 336–337f
First-price auctions, 8–9

density and distribution functions, application
of, 32

Fourier analysis
convolution equations and, 112, 114, 117, 119
non-polynomial complete orthonormal

sequences and, 23
orthonormal polynomials and, 20

Fubini’s Theorem, 45, 411–412

GAIN program. See Greater Avenues for
Independence (GAIN program)

GDP growth. See Gross domestic product (GDP)
growth

Generalized method of moments (GMM), 65–66,
495–497

Genetic algorithm (GA), 361–365, 363–366f , 365t
German CreditReform database

SVM method, application of, 366–368
data, 366–367t
testing error, 368t
training error, 368t

Government bonds
semilinear time series and, 435–438, 437f

Greater Avenues for Independence (GAIN
program)

overview, 507–509
statistics, 508t
stochastic dominance procedure for gradient

estimates, 507–517
overview, 507–509
all covariates, 514
bandwidth estimates, 509t , 510–514
dominance tests, 516–517
empirical results, 509–517
parameter estimates, 514–515

probability values, 516–517
significant nonparametric gradient estimates,

510t
significant returns by group, 511t
test statistics, 512–513t , 516
treatment variable, 514–515

Gross domestic product (GDP) growth
additive regression models, 151–152
Cobb-Douglas model and, 151f , 168–170, 170f
data-driven model evaluation, application of,

333–335
average square prediction error (ASPE), 334f
empirical distribution function (EDF), 334f

nonparametric additive models, empirical
applications, 144–146

Hermite polynomials, 15, 15f
Hilbert scales, 70–72
Hilbert spaces, 9–13

convergence of Cauchy sequences, 10
inner products, 9–10
non-Euclidean Hilbert spaces, 11–13
orthogonal representations of stochastic

processes in, 377–378, 380–382, 417n
orthonormal polynomials and, 13–15
spanned by sequence, 10–11
spurious regression and, 387, 389
unit root asymptotics with deterministic trends

and, 392–393
Horowitz-Mammen two-step estimator, 139–140
Housing data

data-driven model evaluation, application of,
330–333

average square prediction error (ASPE), 332f
empirical distribution function (EDF), 332f

linearity test, 158f
SBK method, application of

in additive models, 157–159
in PLAMs, 162

Huang-Horowitz-Wei adaptive group LASSO,
257–258

Independence
convolution equations in models with, 100–111

Berkson error model, 103t , 104, 108t
classical error measurement, 103t , 104–106,

108t
conditional independence conditions, in

models with, 110–111
measurement error and related models,

102–107
regression models and, 107–110
space of generalized functions S∗, 100–102

Integrated mean square error (IMSE), 220–222
selection and averaging estimators, 231f
spline regression estimators, 223f

Jackknife model averaging (JMA) criteria
overview, 233



subject index 533

asymptotic optimality of, 235–236
computation, 234–235
feasible series estimators, 237f
numerical simulation and, 236
selected proofs, 245–247
weights, 237t

Kai-Li-Zou composite quantile regression,
297–299

Kato-Shiohama PLMs, 265–266
Koenker additive models, 296–297
Kolmogorov-Smirnov statistics, 79, 505
Kotlyarski lemma, 97

LABAVS (Locally adaptive bandwidth and variable
selection) in local polynomial regression,
293–295

Lafferty-Wasserman rodeo procedure, 291–293
Laguerre polynomials, 15–16, 16f
Least absolute shrinkage and selection (LASSO)

penalty function
Bunea consistent selection in nonparametric

models, 288
Huang-Horowitz-Wei adaptive group LASSO,

257–258
Lian double adaptive group LASSO in

high-dimensional varying coefficient
models, 270–271

variable selection via, 251–255
LASSO estimator, 251–252
other penalty functions, 254–255
variants of LASSO, 252–254

Wang-Xia kernel estimation with adaptive
group LASSO penalty in varying
coefficient models, 269–270

Zeng-He-Zhu LASSO-type approach in single
index models, 276–278

Least squares estimation
Ni-Zhang-Zhang double-penalized least

squares regression, 264–265
nonparametric set of regression equations

local linear least squares (LLLS) estimator,
487–488

local linear weighted least squares (LLWLS)
estimator, 488–489

ordinary least square (OLS) method, 347
Peng-Huang penalized least squares method,

275–276
smooth least squares estimator in additive

models, 179–190 (See also Smooth least
squares estimator in additive models)

Legendre polynomials, 16–17, 17f
Lian double adaptive group LASSO in

high-dimensional varying coefficient
models, 270–271

Liang-Li penalized quantile regression for PLMs
with measurement error, 295–296

Liang-Liu-Li-Tsai partially linear single index
models, 278–279

Liang-Li variable selection with measurement
errors, 267

Li-Liang variable selection in generalized varying
coefficient partially linear models, 272

Linear inverse problems
asymptotic normal inference in, 65–93 (See also

Asymptotic normal inference)
convolution equations, 97–125 (See also

Convolution equations)
Lin-Zhang-Bondell-Zou sparse nonparametric

quantile regression, 299–301
Lin-Zhang component selection and smoothing

operator (COSSO), 284–287
Liu-Wang-Liang additive PLMs, 267–268
Local linear least squares (LLLS) estimator,

487–488
Local linear weighted least squares (LLWLS)

estimator, 488–489
Locally adaptive bandwidth and variable selection

(LABAVS) in local polynomial regression,
293–295

Long-run variance
estimation of, 402–407

selected proofs, 415–417

Markov chains, 439–440, 459–461
Maximum likelihood estimation (MLE) method,

347
Mean-squared forecast error (MFSE), 224
Measurement error

convolution equations in models with
independence, 102–107

Liang-Li penalized quantile regression for
PLMs with measurement error, 295–296

Liang-Li variable selection with measurement
errors, 267

Zhao-Xue SCAD variable selection for varying
coefficient models with measurement
errors, 271–272

Meier-Geer-Bühlmann sparsity-smoothness
penalty, 258–260

Mercer’s Theorem
SVM method and, 359
time series and, 378, 382

Merton model, 346–347
Methodology

semi-nonparametric models, 3–34 (See also
Semi-nonparametric models)

special regressor method, 38–58 (See also
Special regressor method)

MFSE (Mean-squared forecast error), 224
Miller-Hall locally adaptive bandwidth and

variable selection (LABAVS) in local
polynomial regression, 293–295

Missing observations, 200–201
Mixed proportional hazard (MPH) competing

risks model, 6–8
density and distribution functions, application

of, 31–32



534 subject index

MLE (Maximum likelihood estimation) method,
347

Monte Carlo simulations
data-driven model evaluation, 319–324

cross-sectional data, 319–320
optimal block length, 340n
time series data, 320–324, 321–324t

nonparametric additive models and, 143
nonstationary time series and, 457, 463, 467

Nadaraya-Watson estimators
nonparametric additive models and, 135,

143–145
SBK method and, 153, 155, 160–161
smooth least squares estimator in additive

models and, 177, 180, 183–187
Ni-Zhang-Zhang double-penalized least squares

regression, 264–265
Noisy integral equations

Fredholm equations of second kind, 205–207
smooth backfitting as solution of, 187

Nonlinear models with nonstationary data,
449–458

cointegrating models, 452–458
error correction models, 452–458
univariate nonlinear modeling, 450–452

Nonlinear nonstationary data, 445–449
Nonparametric additive models, 129–146

empirical applications, 144–146
estimation methods, 131–142

bandwidth selection for Horowitz-Mammen
two-step estimator, 139–140

conditional quantile functions, 136–137
known link functions, 137–139
unknown link functions, 140–142

Monte Carlo simulations and, 143
nonparametric regression with repeated

measurements, 192–193
nonparametric regression with time series

errors, 191–192
overview, 129–131, 146
simultaneous nonparametric equation models,

201–202
tests of additivity, 143–144

Nonparametric models
nonparametric additive models, 129–146

(See also Nonparametric additive models)
with nonstationary data, 458–463

autoregressive models, 459–460
cointegrating models, 460–463

variable selection in, 283–295
Bertin-Lecué model, 290–291
Bunea consistent selection via LASSO,

288
Comminges-Dalayan consistent selection in

high-dimensional nonparametric
regression, 288–289

Lafferty-Wasserman rodeo procedure,
291–293

Lin-Zhang component selection and
smoothing operator (COSSO), 284–287

Miller-Hall locally adaptive bandwidth and
variable selection (LABAVS) in local
polynomial regression, 293–295

Storlie-Bondell-Reich-Zhang adaptive
component selection and smoothing
operator (ACOSSO), 287

Non-polynomial complete orthonormal
sequences, 21–24

derived from polynomials, 22–23
trigonometric sequences, 23–24

Nonstationary time series, 444–476
overview, 444–445, 473–474
cointegration of nonlinear processes,

471–473
co-summability, 471–473
kernel estimators with I(1) data, 474–476
model specification tests with nonstationary

data, 469–471
Monte Carlo simulations and, 457, 463, 467
nonlinear models with nonstationary data,

449–458
cointegrating models, 452–458
error correction models, 452–458
univariate nonlinear modeling, 450–452

nonlinear nonstationary data, 445–449
nonparametric models with nonstationary

data, 458–463
autoregressive models, 459–460
cointegrating models, 460–463

semilinear time series and, 428–431
semiparametric models with nonstationary

data, 463–469
autoregressive models, 463–464
binary choice models, 467–468
time trend varying coefficient models,

468–469
varying coefficient cointegrating models,

464–466
varying coefficient models with correlated

but not cointegrated data, 466–467

Oracally efficient two-step estimation
SBK method (See Spline-backfitted kernel

smoothing (SBK) method)
SBS (Spline-backfitted spline) method,

170–172
Ordinary least square (OLS) method, 347
Orthogonal representations of stochastic

processes, 380–386
selected proofs, 411–413

Orthonormal polynomials, 13–21
Chebyshev polynomials, 17–19, 19f
completeness, 19–20
examples, 15–19
Hermite polynomials, 15, 15f
Hilbert spaces and, 13–15
Laguerre polynomials, 15–16, 16f



subject index 535

Legendre polynomials, 16–17, 17f
SNP index regression model, application to,

20–21

Panels
with individual effects, 193–196
of time series and factor models, 197–198

Partially linear additive models (PLAMs)
SBK method in, 159–162

housing data, application to, 162
Partially linear models (PLMs)

variable selection in, 263–268
Chen-Yu-Zou-Liang adaptive elastic-net

estimator, 266
Kato-Shiohama PLMs, 265–266
Liang-Li penalized quantile regression for

PLMs with measurement error, 295–296
Liang-Li variable selection with

measurement errors, 267
Liu-Wang-Liang additive PLMs, 267–268
Ni-Zhang-Zhang double-penalized least

squares regression, 264–265
Xie-Huang SCAD-penalized regression in

high-dimension PLMs, 263–264
Peng-Huang penalized least squares method,

275–276
PLAMs. See Partially linear additive models

(PLAMs)
PLMs. See Partially linear models (PLMs)

Quantile regression
variable selection in, 295–301

Kai-Li-Zou composite quantile regression,
297–299

Koenker additive models, 296–297
Liang-Li penalized quantile regression for

PLMs with measurement error, 295–296
Lin-Zhang-Bondell-Zou sparse

nonparametric quantile regression,
299–301

Ravikumar-Liu-Lafferty-Wasserman sparse
adaptive models, 260–262

Receiver operating characteristic (ROC) curve,
350–352, 351f

Regression analysis
additive regression, 149–153
averaging regression, 230–232 (See also

Averaging regression)
sieve regression, 215–247 (See also Sieve

regression)
spurious regression, tools for understanding,

387–391, 417n
Regression equations, 485–498

overview, 485–486, 498
alternative specifications of

nonparametric/semiparametric set of
regression equations, 490–497

additive nonparametric models, 493–494

nonparametric regressions with
nonparametric autocorrelated errors,
492–493

partially linear semi-parametric models,
490–492

varying coefficient models with endogenous
variables, 495–497

varying coefficient nonparametric models,
494–495

estimation with conditional error
variance-covariance �(x), 497–498

nonparametric set of regression equations,
486–490

estimation with unconditional error
variance-covariance �, 487–490

local linear least squares (LLLS) estimator,
487–488

local linear weighted least squares (LLWLS)
estimator, 488–489

two-step estimator, 489–490
RESET test results

data-driven model evaluation, 327t
Revealed performance (RP) test results

data-driven model evaluation, 329t
ROC (Receiver operating characteristic) curve,

251f , 350–352
Rosenblatt-Parzen kernel density estimator, 46–47

SBK method. See Spline-backfitted kernel
smoothing (SBK) method

SBS (Spline-backfitted spline) method in additive
models, 170–172

SCAD penalty function. See Smoothly clipped
absolute deviation (SCAD) penalty
function

Selection of models
data-driven model evaluation, 308–338

(See also Data-driven model evaluation)
sieve regression, 215–247 (See also Sieve

regression)
SVM method, 352–369 (See also Support vector

machine (SVM) method)
variable selection, 249–302 (See also Variable

selection)
Semilinear time series, 421–441

overview, 421–423, 439
CPI and, 435, 436f
examples of implementation, 434–438
exchange rates and, 438, 438f
extensions, 434–438
government bonds and, 435–438, 437f
nonlinear autoregressive models, 431–434

selected proofs, 441
nonstationary models, 428–431
selected proofs, 439–441
stationary models, 423–427

d ≥ 3, 426–427
1 ≤ d ≤ 2, 423–426



536 subject index

Semi-nonparametric (SNP) index regression
model, 5–6

orthonormal polynomials, application of,
20–21

Semi-nonparametric models, 3–34
density and distribution functions, 24–32

(See also Density and distribution
functions)

first-price auctions, 8–9
density and distribution functions,

application of, 32
Hilbert spaces, 9–13 (See also Hilbert spaces)
MPH competing risks model, 6–8

density and distribution functions,
application of, 31–32

non-polynomial complete orthonormal
sequences, 21–24

derived from polynomials, 22–23
trigonometric sequences, 23–24

orthonormal polynomials, 13–21 (See also
Orthonormal polynomials)

overview, 3–5, 34
sieve estimation, 33–34
SNP index regression model, 5–6

orthonormal polynomials, application of,
20–21

Semiparametric models
GARCH models, 198–199
with nonstationary data, 463–469

autoregressive models, 463–464
binary choice models, 467–468
time trend varying coefficient models,

468–469
varying coefficient cointegrating models,

464–466
varying coefficient models with correlated

but not cointegrated data, 466–467
Sequential minimal optimization (SMO)

algorithm, 361
Short memory in mean (SMM), 448, 454
Sieve regression, 215–247

overview, 215–218, 237–238
alternative method selection criteria, 228–230
averaging regression, 230–232

asymptotic optimality of, 235–236
computation, 234–235
feasible series estimators, 237f
jackknife model averaging (JMA) criteria,

233
numerical simulation, 236
selected proofs, 245–247
weights, 237t

cross-validation, 224–226
asymptotic optimality of, 226–227
feasible series estimators, 237f
number of models, preselection of, 227–228
selected proofs, 239–245
typical function, 226f , 237t

integrated mean square error (IMSE), 220–222

selection and averaging estimators, 231f
spline regression estimators, 223f

mean-squared forecast error (MFSE), 224
model of, 219–220
numerical simulation, 230

with JMA criteria, 236
order of approximation, importance of,

221–222
regularity conditions, 238–239
selected proofs, 239–247
sieve approximation, 218–219
sieve estimation, 33–34, 219–220

sieve estimation-based variable selection in
varying coefficient models with
longitudinal data, 273–274

Simultaneous nonparametric equation models,
201–202

Single index models
variable selection in, 274–283

generalized single index models, 281–283
Liang-Liu-Li-Tsai partially linear single index

models, 278–279
Peng-Huang penalized least squares method,

275–276
Yang variable selection for functional index

coefficient models, 280–281
Zeng-He-Zhu LASSO-type approach,

276–278
SMM (Short memory in mean), 448, 454
SMO (Sequential minimal optimization)

algorithm, 361
Smooth least squares estimator in additive

models, 179–190
asymptotics of smooth backfitting estimator,

182–186
backfitting algorithm, 179–182
bandwidth choice and, 189
classical backfitting, relation to, 187–189
generalized additive models, 189–190
noisy integral equations, smooth backfitting as

solution of, 187
SBK method, relation to, 187–189
smooth backfitting local linear estimator,

186–187
Smoothly clipped absolute deviation (SCAD)

penalty function
variable selection via, 254–255

Xie-Huang SCAD-penalized regression in
high-dimension PLMs, 263–264

Xue SCAD procedure for additive models,
262

Zhao-Xue SCAD variable selection for
varying coefficient models with
measurement errors, 271–272

Special regressor method, 38–58
alternative derivation, 45
conditional independence assumption,

relaxation of, 52–53
covariates, identification with, 47–48



subject index 537

discrete special regressors, 55–56
extensions, 56–57
latent linear index models, 48–49

with endogenous or mismeasured regressors,
51–52

latent marginal distributions, identification of,
40–42

latent nonparametric instrumental variables,
50–51

latent partly linear regression, 50
latent random coefficients, 49
overview, 38–39, 57–58
Tji, construction of, 53–55
unconditional moments, 42–44

estimation of, 46
Spline-backfitted kernel smoothing (SBK) method

in ACMs, 162–170
Cobb-Douglas model, application to,

168–170
in additive models, 153–159

housing data, application to, 157–159
SBK estimator, 154–157

in PLAMs, 159–162
housing data, application to, 162

smooth least squares estimator in additive
models, relation to, 187–189

Spline-backfitted spline (SBS) method in additive
models, 170–172

Spurious regression
tools for understanding, 387–391, 417n

SRM (Structural risk minimization) method, 347
Stochastic processes

cointegrated systems
automated efficient estimation of, 398–402
efficient estimation of, 395–398, 417n
selected proofs, 413–415

dominance procedure, 501–518
overview, 501–503, 517–518
in GAIN program, 507–517 (See also Greater

Avenues for Independence (GAIN
program))

for gradient estimates, 503–507
Hilbert spaces and, 417n
long-run variance, estimation of, 402–407

selected proofs, 415–417
orthogonal representations of, 380–386, 417n

selected proofs, 411–413
selected proofs, 411–417
spurious regression, tools for understanding,

387–391, 417n
unit root asymptotics with deterministic trends,

391–395
Storlie-Bondell-Reich-Zhang adaptive component

selection and smoothing operator
(ACOSSO), 287

variable selection, 287
Structural risk minimization (SRM) method, 347
Support vector machine (SVM) method, 352–369

overview, 346–348

CreditReform database, application to,
366–368

data, 366–367t
testing error, 368t
training error, 368t

evolutionary model selection, 361–365,
363–366f , 365t

formulation, 352–361
in linearly nonseparable case, 356–358
in linearly separable case, 352–356, 353f
in nonlinear classification, 358–361, 359f
sequential minimal optimization (SMO)

algorithm, 361

TFP (Total factor productivity) growth rate, 152f ,
168–170, 170f

Tikhonov regularization, 66, 69, 72–73, 75, 81, 83
Time series, 377–476

overview, 377–379, 407–411
cointegrated systems

automated efficient estimation of, 398–402
cointegration of nonlinear processes,

471–473
efficient estimation of, 395–398, 417n
selected proofs, 413–415

data-driven model evaluation, Monte Carlo
simulations, 320–324, 321–324t

long-run variance, estimation of, 402–407
selected proofs, 415–417

nonstationary time series, 444–476 (See also
Nonstationary time series)

orthogonal representations of stochastic
processes, 380–386, 417n

selected proofs, 411–413
panels of time series and factor models,

197–198
selected proofs, 411–417
semilinear time series, 421–441
spurious regression, tools for understanding,

387–391, 417n
unit root asymptotics with deterministic trends,

391–395
Total factor productivity (TFP) growth rate, 152f ,

168–170, 170f
Two-step estimator

in nonparametric set of regression equations,
489–490

SBK method (See Spline-backfitted kernel
smoothing (SBK) method)

SBS (Spline-backfitted spline) method,
170–172

Unit root asymptotics with deterministic trends,
391–395

Univariate nonlinear modeling, 450–452

Variable selection, 249–302
overview, 249–251, 301–302
in additive models, 255–262
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Variable selection (Cont.)
Huang-Horowitz-Wei adaptive group

LASSO, 257–258
Meier-Geer-Bühlmann sparsity-smoothness

penalty, 258–260
Ravikumar-Liu-Lafferty-Wasserman sparse

adaptive models, 260–262
Xue SCAD procedure, 262

in nonparametric models, 283–295
Bertin-Lecué model, 290–291
Bunea consistent selection via LASSO, 288
Comminges-Dalayan consistent selection in

high-dimensional nonparametric
regression, 288–289

Lafferty-Wasserman rodeo procedure,
291–293

Lin-Zhang component selection and
smoothing operator (COSSO),
284–287

Miller-Hall locally adaptive bandwidth and
variable selection (LABAVS) in local
polynomial regression, 293–295

Storlie-Bondell-Reich-Zhang adaptive
component selection and smoothing
operator (ACOSSO), 287

in PLMs, 263–268
Chen-Yu-Zou-Liang adaptive elastic-net

estimator, 266
Kato-Shiohama PLMs, 265–266
Liang-Li variable selection with

measurement errors, 267
Liu-Wang-Liang additive PLMs,

267–268
Ni-Zhang-Zhang double-penalized least

squares regression, 264–265
Xie-Huang SCAD-penalized regression in

high-dimension PLMs, 263–264
in quantile regression, 295–301

Kai-Li-Zou composite quantile regression,
297–299

Koenker additive models, 296–297
Liang-Li penalized quantile regression for

PLMs with measurement error, 295–296
Lin-Zhang-Bondell-Zou sparse

nonparametric quantile regression,
299–301

in single index models, 274–283
generalized single index models, 281–283
Liang-Liu-Li-Tsai partially linear single index

models, 278–279
Peng-Huang penalized least squares method,

275–276
Yang variable selection for functional index

coefficient models, 280–281
Zeng-He-Zhu LASSO-type approach,

276–278
in varying coefficient models, 268–274

Lian double adaptive group LASSO in
high-dimensional varying coefficient
models, 270–271

Li-Liang variable selection in generalized
varying coefficient partially linear
models, 272

sieve estimation-based variable selection in
varying coefficient models with
longitudinal data, 273–274

Wang-Xia kernel estimation with adaptive
group LASSO penalty, 269–270

Zhao-Xue SCAD variable selection for
varying coefficient models with
measurement errors, 271–272

via LASSO or SCAD-type penalties in
parametric models, 251–255

LASSO estimator, 251–252
other penalty functions, 254–255
variants of LASSO, 252–254

Varying coefficient models, 199–200
alternative specifications of

nonparametric/semiparametric set of
regression equations

with endogenous variables, 495–497
nonparametric models, 494–495

semiparametric models with nonstationary
data

cointegrating models, 464–466
models with correlated but not cointegrated

data, 466–467
time trend varying coefficient models,

468–469
variable selection in, 268–274

Lian double adaptive group LASSO in
high-dimensional varying coefficient
models, 270–271

Li-Liang variable selection in generalized
varying coefficient partially linear
models, 272

sieve estimation-based variable selection in
varying coefficient models with
longitudinal data, 273–274

Wang-Xia kernel estimation with adaptive
group LASSO penalty, 269–270

Zhao-Xue SCAD variable selection for
varying coefficient models with
measurement errors, 271–272

Wages
data-driven model evaluation, application of,

325–327
average square prediction error (ASPE),

326f
empirical distribution function (EDF),

326f
nonoptimal smoothing, implications of,

325–327
Wang-Xia kernel estimation with adaptive group

LASSO penalty, 269–270
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Welfare
GAIN program (See Greater Avenues for

Independence (GAIN program))
White’s Theorem, 317–318

Xie-Huang SCAD-penalized regression in
high-dimension PLMs, 263–264

Xue SCAD procedure, 262

Yang variable selection for functional index
coefficient models, 280–281

Zeng-He-Zhu LASSO-type approach, 276–278
Zhao-Xue SCAD variable selection for varying

coefficient models with measurement
errors, 271–272
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