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Foreword

I have had the distinct pleasure to enjoy my own study of spatial econo-
metrics in collaboration with Giuseppe Arbia during his work on this 
monograph. There is much to be learned in this rapidly growing field. 
This primer introduces the workhorse of the field, the spatially autore-
gressive and spatially autocorrelated linear regression model. A chapter 
is devoted to important terms of art in the field. We then progress 
through extensions of the linear model to heteroscedasticity and panel 
data treatments. Recent developments of spatial econometrics have 
extended the models to many non-linear cases, including binary and 
multinomial choice, stochastic frontiers, sample selection and models 
for count data and ordered choices. This primer provides a gateway to 
that literature through a presentation of a spatial binary choice model. 
Readers will appreciate the extensive presentation of real numerical 
examples in R, which has emerged as the software of choice for model 
builders in this area.

Spatial econometrics is enjoying widely dispersed growth spurt in 
many of the social sciences. Readers of this primer will find it to be a 
very approachable, informative springboard to their own ongoing study 
and research, as I have.

William Greene
Stern School of Business
New York, August, 2013
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Preface and Acknowledgements

Spatial econometrics is a rapidly expanding topic with applications in 
so many diverse scientific fields that it is almost impossible to fully enu-
merate all the disciplines. Indeed, in recent years we can find applica-
tions in fields such as regional economics, criminology, public finance, 
industrial organization, political sciences, psychology, agricultural eco-
nomics, health economics, demography, epidemiology, managerial eco-
nomics, urban planning, education, land use, social sciences, economic 
development, innovation diffusion, environmental studies, history, 
labor, resources and energy economics, transportation, food security, 
real estate, marketing, and many others.

Given the widespread interest in the subject, this book aims to meet 
the growing demand by introducing basic spatial econometrics meth-
odologies to a wide variety of researchers. It is specifically designed as a 
reference for applied researchers who want to receive a broad overview 
on the topic. In this sense, it is not intended to be a comprehensive 
textbook on the subject; rather the intention is to keep the details to a 
minimum and to provide a practical guide which illustrates the poten-
tial of spatial econometric modeling, discusses problems and solutions, 
and enables the reader to correctly interpret empirical results and to 
start working with the methods.

There are several features that distinguish this book from other exist-
ing texts on the subject. First, this book is self-contained and it does not 
assume any background knowledge apart from a working knowledge 
of elementary inferential statistics. Chapter 1 contains a summary of 
basic standard econometric results that are used throughout this text; 
as such, it can be omitted by the reader who is already knowledgeable 
on the subject. The treatment of the various topics is rigorous, but with 
formal proofs that are low level and reduced to a minimum. The book 
provides the minimum essential basics and intuitions on each topic 
and refers to other textbooks and to the literature for a more in-depth 
discussion. Furthermore, the text is integrated with examples, problem 
sets and practical exercises. To some extent, one may think of this book 
as an extended chapter of an econometrics textbook. It thus explicitly 
aims to bridge the gap between the standard textbooks, which still 
largely ignore the subject, and the more comprehensive and specialized 
textbooks. Although the book is application-oriented, I have taken care 
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to provide sound methodological developments and to use notations 
that are generally accepted for the topics being covered. Therefore, the 
reader will find that this text provides good preparation for the study of 
more advanced spatial econometrics material.

Secondly, this book only partially overlaps with existing textbooks on 
the subject. Even if it does not contain a comprehensive treatment of all 
the topics in spatial econometrics, it nonetheless includes some of the 
recent advances that are not discussed in other existing textbooks. For 
example, various estimation alternatives to the traditional Maximum 
Likelihood paradigm, the treatment of heteroscedastic innovations, 
spatial discrete choice models and non-stationary models. In addition, 
even if the bulk of the book deals with synchronic cross-sectional spatial 
models, section 4.3 contains an introduction to the treatment of spatial 
panel data, a fast-growing field in spatial econometrics.

Thirdly, people working in this field quickly learn that most of the 
procedures illustrated in this book encounter severe computational lim-
itations when applied to very large datasets with sample sizes approach-
ing thousands of observations. Computational issues can, indeed, 
represent a big limitation for many scholars engaged in spatial analysis 
in non-specialized fields that do not have access to large computer 
facilities. They can represent a limitation even with the availability of 
powerful computing machines in all those cases when a real-time deci-
sion has to be taken on the basis of the econometric analysis such as, for 
example, epidemiological and environmental surveillance or computer-
assisted surgery, based on medical imaging. To overcome such limita-
tions, this book also includes a chapter entirely devoted to discussing a 
series of alternative estimation techniques that can help in dramatically 
reducing the computational time and computer memory requirements.

Finally, the text introduces the reader to the procedures contained in 
the free statistical software “R”. While spatial econometric methodolo-
gies are still not integrated in econometric software products (such as, 
for example, Eviews, Gauss, Gretl, Limdep, Microfit, Minitab, RATS, 
SAS, SPSS, TSP and many others), there are presently some packages 
that deal with most of the topics treated in this book (for example, 
STATA, Matlab) together with more specialized software in the subject 
(for example, GeoDa). In this book, however, we have decided to illus-
trate the various methods by making use of the statistical language R 
for three main reasons. Firstly, the package is freely available, so that 
the reader of the book can immediately replicate the techniques using 
available data. Secondly, the R language is intuitive and requires only a 
small initial investment. Thirdly, since spatial econometrics is a rapidly 
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expanding topic, the language R guarantees almost real-time updating 
when new procedures are introduced in the literature.

The material presented can be used as a textbook for an introductory 
course in spatial econometrics which assumes a working knowledge in 
econometrics at the level of, for example, the introductory chapters of 
the 7th edition of the textbook by Greene (see W. Greene, Econometric 
Analysis (2011)) or similar. In particular, chapters 1 to 3 could consti-
tute the material for a two- or three-day course (10–12 lecture hours). 
Chapters 4 (3–4 hours) and 5 could be supplemental material covered 
on additional days. For chapter 4, the instructor would have the option 
of covering the entire chapter which could take an entire day or cover a 
portion of the chapter which would only take three or four hours. The 
examples, the questions and the exercises contained in the final part of 
each chapter may be used in combination with a set of computer labo-
ratory sessions that could accompany the lectures.

The idea of an introductory, easy-to-use, textbook for applied research-
ers was developed during the many occasions throughout the last dec-
ade, in which I had the opportunity to teach introductory courses in 
spatial econometrics at different universities and institutions in Milan, 
Barcelona, Fortaleza, Salvador-Bahia and in the summer school, ‘Spatial 
Econometrics Advanced Institute’, held yearly in Rome since 2008.

The first plan of the book was written while I was visiting the 
Economics Department at the Stern School of Business, at New York 
University during the spring semester of 2011. I am grateful to Bill 
Greene for inviting me on that occasion and in the following two years 
in spring when I worked on this project. The final draft was completed 
during the period I spent as a professeur invité at ERMES, Université 
Pantéon Assas, Paris II for which I am indebted to Alain Pirotte, who 
was so kind in hosting me and providing me with a suitable environ-
ment to finish my work. The rest of the work was done at the Catholic 
University of the Sacred Heart in Rome, where I moved in late 2011. 
Section 4.3 is written by Giovanni Millo of Assicurazioni Generali, 
Trieste, Italy and I am grateful to him for his substantial contribution to 
the preparation of the book and for his patience in working with me. 
I am also grateful to Carrie Dolan of the College of William & Mary, 
Williamsburg, USA for carefully proofreading my draft. I am obviously 
entirely responsible for all the remaining errors. Carrie was also invalu-
able in providing and editing some of the maps used in the text and 
in the examples. Thanks are due also to Miguel Flores of Tecnologico 
de Monterrey, Mexico for providing the data and the maps on Mexico 
on which I based some of the examples in chapter 5, and to Diego 
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Giuliani, Francesca Petrarca and Myriam Tabasso for their rapid, online 
assistance and advice in respect of some of the R procedures. Giovanni, 
Carrie, Miguel, Diego, Francesca and Myriam are all former participants 
of the aforementioned ‘Spatial Econometrics Advanced Institute’ and 
I would also wish to express my gratitude to all the students who took 
part at the school in the last six years (more than 200!) because their 
active presence in class was certainly the greatest stimulus I received in 
writing this book.

This book is dedicated to my family. If I look back to the forewords 
I have written for my previous books, I find expressions of thanks to 
Paola and to my three children for their presence, patience, help and 
encouragement. Twenty-five years have now passed since the publica-
tion of my first book, and seven since my last one. The children have 
grown up and many things have changed, but my family is still here 
with me and to them my thoughts gratefully go on this rainy and 
gloomy late winter day, when I am here sitting in front of my computer 
writing the final words of this book.

Rome, Ash Wednesday, 2014
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1
The Classical Linear Regression 
Model

1.1 The basic linear regression model

Let us consider the following linear model

n y1 = n Xkk b1 + n e1 (1.1)

where 
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non-stochastic exogenous regressors including a constant term, 
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 a  

vector of stochastic disturbances. We will assume throughout the book 
that the n observations refer to territorial units such as regions or 
countries.
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The classical linear regression model assumes normality, identicity 
and independence of the stochastic disturbances conditional upon the 
k regressors. In short

e⏐X ≈ i.i.d.N (0, s2
e  n In) (1.2)

n In being an n-by-n identity matrix. Equation (1.2) can also be written as:

E(e⏐X) = 0 (1.3)

E(eeT⏐X) = s2
e n In (1.4)

Equation (1.3) corresponds to the assumption of exogeneity, Equation (1.4) 
to the assumption of spherical disturbances (Greene, 2011).

Furthermore it is assumed that the k regressors are not perfectly 
dependent on one another (full rank of matrix X). Under this set of 
hypotheses the Ordinary Least Squares fitting criterion (OLS) leads to 
the best linear unbiased estimators (BLUE) of the vector of parameters 
b, say b̂OLS = b̂. In fact the OLS criterion requires:

S( b ) = eT e = min (1.5)

where e = y − Xb̂ are the observed errors and eT indicates the transpose of e.
From Equation (1.5) we have:

( ) ( )ˆ ˆ ˆ= = ( ) ( ) = 2 = 0T T T Td d d
S e e y X y X X X X y

d d d
− − −b b b b

b b b

whence:

b̂OLS = (XT X)−1 XT y (1.6)

As said the OLS estimator is unbiased

E(b̂OLS⏐X) = b (1.7)

with a variance

Var(b̂OLS⏐X) = (XT X)−1s2
e  (1.8)

which achieves the minimum among all possible linear estimators (full 
efficiency) and tends to zero when n tends to infinity (weak consistency).
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From the assumption of normality of the stochastic disturbances, 
normality of the estimators also follows:

b̂OLS⏐X ≈ N[ b; (XT X)−1 s2
e  ] (1.9)

Furthermore, from the assumption of normality of the stochastic dis-
turbances, it also follows that the alternative estimators, based on the 
Maximum Likelihood criterion (ML), coincide with the OLS solution.

In fact, the single stochastic disturbance is distributed as:

21 1
( ) = exp

22i i if
σ

⎡ ⎤
⎢ ⎥−
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e e e
p

f being a density function, and consequently the likelihood of the 
observed sample is:
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 (1.10)

from the assumption of independence of the disturbances. From (1.1) 
we have that

e = y – Xb (1.11)

hence (1.10) can be written as:

( )2 2 2
2

( ) ( )
( , ) = cos exp

2

n Ty X y X
L tσ σ

σ
− ⎡ ⎤− −⎢ ⎥−⎢ ⎥
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e e

e

b bb  (1.12)

and the log-likelihood as:

( )2 2 2
2

( ) ( )
( , ) = ln ( , ) = cos ln

2 2
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b bb b  (1.13)

The scores functions are defined as:
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and solving the system of k + 1 equations, we have:

1

2
,

ˆ = ( )

ˆ =

T T
ML

T

ML

X X X y

e e
n

σ

−

e

b
 (1.15)

Thus, under the hypothesis of normality of residuals, the ML estimator 
of b coincides with the OLS estimator. The ML estimator of s2

e on the 

contrary differs from the unbiased estimator 2 =
Te e

s
n k−e  and it is biased, 

but asymptotically unbiased.
To ensure that the solution obtained is a maximum we consider the 

second derivatives:
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2 2

2 2 2
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 (1.16)

which can be arranged in the Fisher’s Information Matrix:

2
2

+1 +1

4
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b  (1.17)

which is positive definite.
The equivalence between the ML and the OLS estimators ensures 

that the solution found enjoys all the large sample properties of the ML 
estimators, that is to say: asymptotic normality, consistency, asymptotic 
unbiasedness, full efficiency with respect to a larger class of estimators 
other than the linear estimators, and invariance.

The OLS estimators also coincide with the Method of Moments 
 estimators (MM). In fact consider the following moment condition:

( )1
= = 0T TX e E X

n
e  (1.18)
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Solving Equation (1.18) gives:

1
( ) = 0

1 1
= 0

T

T T

X y X
n

X y X X
n n

−

−

b

b

and solving for b, we have:

( ) 1ˆ ˆ ˆ= = =T T
MM OLS MLX X X y

−
b b b  (1.19)

As for hypothesis testing, let us first consider the following system of 
hypotheses related to the single parameter bi:

0

1

: = 0

: 0
i

i

H

H ≠

b
b

 (1.20)

where bi is a generic element of the matrix b such that b̂i ≈ N[bi, Sii s2
e  ], and 

Sii is the i-th element in the main diagonal of matrix XTX. A statistical 
test can be derived taking the difference between the value of b under 
the null and under the alternative hypotheses scaled by its standard 
deviation:

0ˆ
= (0,1)

H
i

ii
test N

Sσ
≈

e

b
 (1.21)

This, however, is not a pivotal quantity unless we know the value of s2
e. 

Since 
2

2
( )2

( )
n k

n k s χ
σ −
−

≈e

e
 (with χ2

(n – k) a chi-squared distribution with n – k 

degrees of freedom) and using the independence between s2
e and b̂, we 

can build up the pivotal quantity:

( )

ˆ
= i

n kii
test t

s S
−≈

e

b
 (1.22)

which can be used to test the null hypothesis. If we consider, instead, 
the multiple null hypothesis

0 2 3

1

: = = = = 0

: 0
k

i

H

H ≠

�b b b
b

 (1.23)
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we can test the significance of the model as a whole through the quantity:

2

2

/( 1)
= ( 1; )

(1 ) / ( )
R k

F F k n k
R n k

−
≈ − −

− −
 (1.24)

which is distributed as an F with k – 1 and n – k degrees of freedom and 
where

2 =
SSR

R
SST

 (1.25)

In Equation (1.25), SSR represents the sum of squares of regression 
defined as SSR = 1 – SSE = 1 – eTe (SSE representing the sum of squares of 
errors), SST = yTy – nȳ represents the total sum of squares and ȳ the sam-
ple mean of y. R2 is the so-called coefficient of determination (0 < R2 ≤ 1), a 
parameter that measures the degree of fit of the observed data to a lin-
ear function. The adjusted version of R2, which takes into account the 
 number of degrees of freedom of the regression, is given by:

2 21
= 1 (1 )

+1
n

R R
n k

−
− −

−
 (1.26)

Alternative measures of the degree of fit are the Akaike Information 
Criterion

2
= ln +

Te e k
AIC

n n

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (1.27)

and the Schwartz (or Bayesian) Information Criterion 

ln
= ln +

Te e k n
BIC

n n

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (1.28)

A further approach to hypothesis testing in regression (that could be 
applied to the system of hypotheses (1.20) and that will be employed 
later in this book) is based on the general testing procedure known as 
the likelihood ratio. The likelihood ratio of a parameter vector, say θ, is 
given by:

0 0( ) ( )
= =

ˆ ˆ( ) ( )ML

L L

L L

θ θ
θ θ

λ  (1.29)
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with the subscript 0 indicating the value of the parameters under the 
null. It represents the ratio between the likelihood function evaluated at 
the parameter’s value under the null and the likelihood function at its 
maximum. A monotonic transformation of the test statistic l does not 
change the inferential conclusions, so that it is more common to refer 
to the likelihood ratio test as the quantity:

0
ˆ= 2 ln( ) = 2 ( ) ( )LR l lθ θ⎡ ⎤− − −⎢ ⎥⎣ ⎦l  (1.30)

Expanding l(q0) as a Taylor series about q̂  we obtain:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

0 0

2

0 0

1ˆ ˆ ˆ= 2 + +
2

1ˆ ˆ ˆ    = 2 + +
2

LR l l rest

s ni rest

θ θ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤
⎢ ⎥− −  −  
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥ − − −
⎢ ⎥⎣ ⎦

�

�

¢ ¢¢
 (1.31)

where q
~

∈(q̂ ,q0), s(.) is the score function and ni(q
~
)
 
the element of 

Fisher’s Information Matrix. By definition s(q̂) = 0, so that:

( ) ( )
2

0 0
ˆ= + (1)pLR n i oθ θ θ−  (1.32)

The approximation:

( ) ( )
2

0 0
ˆ=LR W n iθ θ θ≈ −  (1.33)

is called the Wald test statistics. A further approximation of LR:

( )

2
0

0

( )
=

l
LR LM

ni
θ
θ

 
≈

¢
 (1.34)

is called the “Rao’s score test statistics” in statistics, but is better known in 
econometrics as the “Lagrange multiplier test”. The three test statistics LR, 
W and LM are asymptotically equivalent and asymptotically distributed 
as a c2 with the number of degrees of freedom equal to the number of 
parameters to be estimated. With respect to the other two tests, the 
LM test has the advantage that it can be computed without previ-
ously obtaining the Maximum Likelihood estimation of the unknown 
parameters and that it does not require the specification of any explicit 
alternative hypothesis.
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For a vector of parameters Equation (1.34) becomes:

1
0 0= ( ) ( ) ( )TLM s I sθ θ θ−  (1.35)

which is the general expression of the Lagrange Multiplier test that will 
be used later in this book. In the case of the linear regression, a simple 
way of testing hypotheses on the parameters is to define:

( ) ( )θ σ⎡ ⎤
⎢ ⎥⎣ ⎦

2
1 +1 0 1 0 0( ) = ,k ks s s ,eb  (1.36)

and 

( )2
+1 +1 0 +1 +1 0 0,( ) = ,k k k kI Iθ σ eb  (1.37)

and substituting (1.14) and (1.17) into (1.36) and (1.37) and both 
into (1.35), we obtain the LM test for hypotheses on the regression 
parameters.

Finally, a crucial hypothesis to be tested on the model is the hypoth-
esis of the normality of the residuals on which all the previous testing 
strategies are grounded. A popular parametric procedure was introduced 
by Jarque and Bera (1987) who suggested building up a test of normality 
by testing jointly that the third and the fourth moments of the empiri-
cal distribution of residuals are not significantly different from those 
of the Gaussian distribution. The formal expression of the test is the 
following:

( )2
2 3

= +
6 4

Kn
JB SK

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

with 
( )

( )

3
=1

3
22

=1

1
=

1

n
ii

n
ii

e enSK

e en

−

⎡ ⎤−⎢ ⎥⎣ ⎦

∑

∑
 the skewness and, respectively, 

( )

( )

4
=1

22
=1

1
=

1

n
ii

n
ii

e enK
e en

−

⎡ ⎤−⎢ ⎥⎣ ⎦

∑
∑

 the kurtosis of the residuals. Under the null of 

normality, this quantity can be shown to be distributed as a c2 with 2 
degrees of freedom.
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Example 1.1 Barro and Sala-i-Martin model of regional 
convergence

The Barro and Sala-i-Martin (1995) model of regional convergence expresses the 
growth rate of per capita GDP in one region in a certain moment of time (expressed 
as the logarithm of the ratio) as a linear function of the per capita GDP at the 
beginning of the period. If the slope in this linear model is negative, then those 
regions that are poorer at the beginning of the period experience higher growth 
rates and, conversely, those regions with the higher per capita GDP at the begin-
ning of the period experience lower growth rates. This indicates convergence of the 
regions towards the same level of per capita GDP. We can express the model as: 

0
0

log = + +it
i i

i

y
y

y
a b e    t = 1, 2,... , T

yit = being the per capita GDP in year t and region i. The parameter
ln(1 )

=b
T
+

−
b

 represents the so-called “speed of convergence”. The  following

table shows the per capita GDP in year 2000 and the growth of the real per 
capita GDP in the period 2000–08 as it was observed in the 20 Italian regions.

Region Per 
capita 
GDP

Growth 
of GDP 
(2000–2008)

Region Per 
capita 
GDP

Growth 
of GDP 
(2000–2008)

 1. Piedmont 130 2.7 11. Marche 125 3.1
 2. Aosta Valley 150 2.5 12. Latium 130 2.9
 3. Lombardy 140 2.7 13. Abruzzo 100 4.0
 4.  Trentino- 

Alto Adige.
170 0.5 14. Molise

15. Campania
16. Puglia
17. Basilicata
18. Calabria
19. Sicily
20. Sardinia

90
110
95
80

100
100
110

3.5
2.1
3.0
4.2
3.0
2.0
2.4

 5. Veneto 160 1.5
 6.  Friuli Venezia 

Giulia
160 0.5

 7. Liguria 135 2.0
 8.  Emilia 

Romagna
145 1.6

 9. Tuscany 135 2.2
10. Umbria 130 3.2

Source: http://sitis.istat.it/sitis/html/. 

The estimation of the model using the OLS method leads to the following results

Parameter Standard Error t-test p-value

Intercept 6.161369 0.731837 8.419 1.18e – 07***
Slope – 0.029510 0.005752 – 5.130 7.01e – 05***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 
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R2 = 0.5938   F-statistics = 26.32 (p-value = 7.01e – 05) = Wald-test 
AIC = 42.95174 BIC = 45.93894 JB test = 1.0884 (p-value = 0.5803)

The t-tests show that both the intercept and the slope are significantly dif-
ferent from zero with the slope of the expected negative sign, while the F-test 
leads to the acceptance of the model with a significance of more than 99%. 
Furthermore, the coefficient of determination (R2) indicates that the model 
explains 59.38% percent of the variability of the growth. Finally, the hypoth-
esis of normality cannot be rejected with a probability of 0.5803.

Example 1.2 Zellner–Revankar revised Cobb–Douglas 
Production function

The popular Cobb–Douglas production function expresses the level of produc-
tion as a function of the two inputs of production factors: capital and labor. 
The revised function introduced by Zellner and Revankar (1970) is based 
on the per capita values of both the output and the input variables obtained 
dividing the regional aggregates by the total number of establishments in each 
region. This specification allows economies of scale to be taken into account. 
The following table shows the data used for the empirical validation of the 
model referring to the US transportation equipment industry. They refer to 
“value added”, “capital” and “labor” observed in 1957 in 25 US states. All 
values were originally expressed in millions of 1957 dollars.

State Per 
capita 
Value 
Added

Per 
capita 
Capital

Per 
capita 
Labor

State Per 
capita 
Value 
Added

Per 
capita 
Capital

Per 
capita 
Labor

Alabama 1855,118 55,941 463,985 Massachusetts 1404,244 89,227 229,163
California 2333,445 135,165 330,061 Michigan 7182,313 766,030 863,352
Connecticut 4484,870 257,870 805,675 Missouri 5216,680 262,720 678,648
Florida 192,795 22,421 65,688 New Jersey 2700,862 134,785 336,166
Georgia 4289,169 162,394 641,324 New York 2039,978 158,295 412,351
Illinois 2629,193 214,498 321,422 Ohio 4440,493 435,201 716,022
Indiana 3816,035 434,169 571,269 Pennsylvania 2650,554 147,313 421,253
Iowa 477,280 35,973 106,893 Texas 1712,380 73,818 356,260
Kansas 6506,776 136,316 1134,066 Virginia 2051,694 84,388 368,247
Kentucky 4030,581 168,161 387,097 Washington 3558,369 172,106 491,413
Louisiana 637,635 32,722 138,261 West Virginia 1513,333 102,867 270,867
Maine 363,790 24,284 79,877 Wisconsin 2462,754 154,937 371,958
Maryland 3219,085 136,016 537,535

The generalized Cobb–Douglas function proposed by Zellner and Revankar 
(1970) can be specified in the following way:

0 1 2ln( ) = + ln( ) + ln( ) +i i i iy k lb b b e
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with yi being the per capita value added in region i, ki the per capita capital 
expenditure in region i and li the per capita labor expenditure in region i. The OLS 
estimation of the parameters leads to the results shown here below in the table:

Parameter Standard error t-test p-value

b0 –  0.06707 0.21156 – 0.317 0.754208
b1 3.19780 0.83224 3.842 0.000885***
b2 5.35042 0.52584 10.175 8.8e-10***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

R2 = 0.9243   Adjusted R2 = 0.9174  F-statistics = 134.3 
(p-value = 4.7678e – 13) 

AIC = 43.4129 BIC = 48.28841     JB test = 5.6914 
(p-value = 0.05809)

The p-values of the estimates show that the parameters are all highly sig-
nificant with the only exception being the constant term. The model explains 
92.43% of the total variability of the per capita value added. The F-test leads 
to the acceptance of the model and, finally, the null of normality can be 
accepted at the 5% significance level.

1.2 Non-sphericity of the disturbances

The fundamental hypothesis from which all previous results are derived 
is the one contained in Equation (1.4), referred to as the hypothesis of 
sphericity of the errors. It has a twofold implication:

  (i) constant elements on the main diagonal of the variance- 
covariance matrix (homoscedasticity)

(ii) zero value of the off-diagonal elements of the variance- 
covariance matrix (absence of autocorrelation)

These are both unrealistic when dealing with spatial observations typi-
cally characterized by absence of homogeneity and presence of spatial 
correlation. It is easy to show that when one or both conditions are 
violated, the OLS estimators generally lose their optimality properties.

In this case, in fact, we have:

2( ) = =T
n nE X VC σ Ωeee  (1.38)

with VC indicating the n-by-n variance-covariance matrix amongst the 
errors and Ω the corresponding correlation matrix.



12 A Primer for Spatial Econometrics

In this case the OLS estimator is such that:

( )ˆ =OLSE Xb b  (1.39)

showing unbiasedness as before, but with variance now:

( ) 2 1 1 2 1ˆ = ( ) ( ) ( )T T T T
OLSVar X X X X X X X X Xσ σ− − −Ω ≠e eb  (1.40)

Depending on the values of the elements of the Ω matrix we may have 

that 2 1ˆ( ) ( )T
OLSVar X Xσ −> eb  (as generally happens) showing that OLS

estimators are no longer of minimal variance.
In order to test the homoscedasticity, there are many possible alterna-

tives that are all based on the ability of the researcher to propose plausible 
forms of violations. The Breusch and Pagan (1979) test  proposes the generic 
form expressed through the equation s2

i  = s2 f(αT Xi) with ̀  a vector of con-
stants and Xi the vector of regressors for the i-th observation. In the case 
of homoscedasticity we have ` = 0 and the test can be obtained through 
a simple regression. In practice the LM test statistics can be expressed as:

11
= ( )

2
T T TBP g X X X X g−⎡ ⎤

⎣ ⎦  (1.41)

with g the vector of the transformed disturbances defined as
2

=
( / ) 1

i
i

e
g

n −Te e
. Under the null hypothesis of constant conditional

variance, the test statistic is asymptotically distributed as a χ2 with k – 1 
degrees of freedom. A popular alternative is the White test (White, 
1980) that uses a consistent estimator of the variance-covariance 
matrix reported in Equation (1.40) to build up a test of departure from 
homescedasticity. Operationally, this implies calculating the test statis-
tic, WH = nR2 with R2 the coefficient of determination of a regression 
where the square of the empirical disturbances, e, is explained in terms 
of all the independent variables and of all the cross-products between 
the independent variables. Under the null of homescedasticity WH is 
asymptotically distributed as a c2 with k – 1 degrees of freedom. It should 
be remarked, however, that both the BP and the WH test require the 
independence of the residuals and so none of them can be used without 
simultaneously testing such a hypothesis.

When dealing with time series data, the hypothesis of absence of 
autocorrelation among the disturbances can be tested using the Durbin–
Watson statistics (Greene, 2011), but testing it when using spatial data is 
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a more complicated issue that requires an ad hoc treatment which will 
be introduced in Chapter 2.

As previously mentioned, if the non-sphericity of the errors is 
detected, the OLS solution does not provide minimum variance estima-
tors and the following alternative procedure should be adopted.

Let us consider a decomposition of the correlation matrix such that:

Ω = T
n n n nn nP P  (1.42)

P being a non-singular matrix. From (1.42) we have

Ω�1 = P �T P �1 (1.43)

Let us now consider the following variable transformations:

1 1 1* =    * =    * =y P y X P X P− − −e e  (1.44)

If we premultiply Equation (1.1) by P�1 we have:

1 1 1= +P y P X P− − −b e

or

* = * + *y X b e  (1.45)

Notice that the variance-covariance matrix of the errors is now:

1 2 1( * * ) = ( ) =T T T TE E P P P Pσ− − − −Ωee e ee  (1.46)

from (1.38) and, finally:

2( * * ) =TE Iσee e

from (1.42). The errors in Equation (1.44), therefore, now satisfy the 
assumptions for the applicability of the OLS.

The OLS estimators of the parameters in the previous equation can 
thus be derived as:

1

1

1 1 1

ˆ * = ( * *) * *

          = ( )
ˆ          = ( ) =

T T
OLS

T T T T

T T
GLS

X X X y

X P PX X P Py

X X X y

−

− − −

− − −Ω Ω

b

b

 (1.47)
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whose variance-covariance matrix is now given by:

2 1 1ˆ( ) = ( )T
GLSVar X Xσ − −Ωeb  (1.48)

The estimator b̂ GLS is called the Generalized Least Squares estimator 
(GLS) or Aitken estimator. Such an estimator enjoys all optimality prop-
erties of the OLS.

The GLS estimator can be shown to be a Maximum Likelihood esti-
mator. In fact, let us consider the likelihood function in this situation:

( )
112 2 22

2

( ) ( )
( , ) = cos exp

2

n Ty X y X
L tσ σ

σ

−− ⎡ ⎤− Ω −⎢ ⎥Ω −⎢ ⎥
⎣ ⎦

ε e
e

b bb  (1.49)

|Ω| being the determinant of the correlation matrix. The log-likelihood 
consequently is:

( )

σ σ

σ
σ

−

⎡ ⎤
⎣ ⎦

− Ω −
− − Ω −

2 2

1
2

2

( , ) = ln ( , )

1 ( ) ( )
           = cos ln log

2 2 2

T

l L

n y X y X
t

e e

e
e

b b

b b  (1.50)

Maximizing Equation (1.50) with respect to the parameter b corre-
sponds to maximizing only its last term since all other terms are con-
stant with respect to b. Thus the ML estimators are the solution of the 
equation:

1( ) ( ) = minTy X y X−− Ω −b b

By taking the derivatives and equating to 0 we obtain again:

1 1 1ˆ ˆ= ( ) =T T
ML GLSX X X y− − −Ω Ωb b  (1.51)

as in Equation (1.47).
An unbiased estimator of s2

e can be obtained applying the OLS crite-
rion to equation (1.45) producing:

2 * *
=

Te e
s

n k−e  (1.52)
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with e* = P�1y – P�1Xb*. Hence we have:

( ) ( )1 1 1 1
2

* *
=

T
P y P X P y P X

s
n k

− − − −− −

−e
b b

 (1.53)

which, after some algebra gives:

1 1
2

*
=

T T Ty y X y
s

n k

− −Ω − Ω
−e
b

 (1.54)

Under the previous assumptions, all the testing procedures on the sin-
gle parameters and on the whole model are still valid. Notice, however, 
that all the expressions derived for the estimators and for the testing 
 procedures give rise to computable expressions only if:

a) either the VC matrix of the errors is fully specified in such a way 
that various forms of heteroscedasticity and autocorrelation can 
be taken into account, or

b) all the elements of the VC matrix are known.

To satisfy condition (a) we can consider different specifications of the 
VC matrix that are able to capture heteroscedasticity and autocorrelation 
effects using a parsimonious number of parameters. This aim is achieved 
in the following chapters of this book. Condition (b) is only rarely real-
ized in practical instances so that, in order to use the GLS criterion, we 
have to substitute the unknown parameters in the VC matrix with some 
consistent estimators and the consequences in terms of the properties 
of the estimators have to be considered in each particular circumstance.

Example 1.3 Barro and Sala-i-Martin model of regional 
convergence (continued)

Referring again to the data considered in Example 1.1 calculating the BP 
heteroscedasticity test we obtain 

BP = 0.0045, p-value = 0.9462

which leads to the acceptance of the null hypothesis of homoscedasticity. 
Remember, however, that this test leads to a correct decision only if the residu-
als are also uncorrelated. Regarding the residuals correlation, as  previously 
mentioned, we will need to discuss the topic in greater detail in Chapter 2. 
For the time being, the following figure shows the scatter diagram and the 
regression residuals of the 20 observations distinguishing northern and 
southern Italian regions. The graph does not depict any evident North–South 
 geographical pattern, but it is obvious that further analysis is required.
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1.3 Endogeneity

The OLS estimators possess their optimality properties only if the 
assumption expressed in Equation (1.3) is satisfied, that is when 
E(e|X) = 0. This condition can also be expressed as E(eX) = 0 (given that 
E(X) is a constant) which indicates that the regressors X are uncorrelated 
with the disturbances, e. This happens when either the disurbances are 
predetermined exogenously or they are innovations. Failing the condi-
tion expressed in Equation (1.3) some or all the regressors are said to 
be endogenous and the OLS estimators will, in general, be biased and 
inconsistent. Endogenous variables can be present in various cases in 
econometrics like the case of errors in variables or the case of simultaneity 

Source: The author’s creation using the data sourced from the ISTAT database called “Territorial 
indicators” that can be downloaded at the webpage: http://sitis.istat.it/sitis/html/.
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(Greene, 2011). They also occur in some particular instances when deal-
ing with spatial regressions as we will see later.

In this case an optimal estimator is derived with the procedure termed 
Two-Stage Least Squares introduced by Theil (1953) and Basmann (1957). 
The procedure assumes that it is possible to identify a set of, say h, vari-
ables, called instruments. Let us define the matrix nHh containing the n 
observations of the h instrumental variables. A valid instrument pos-
sesses the requisites of being uncorrelated with the errors (it is exogene-
ous) and correlated with the regressors (it is relevant). At the first stage of 
regression, each column of the X matrix is regressed on the instruments 
H through the equation

1 1 1= +n n h h nX H ηg  (1.55)

with h assumed to be i.i.d. N(0, s2
h). The OLS estimators of the model’s 

parameters are derived as:

1ˆ ˆ= = ( )T T
OLS H H H X−g g  (1.56)

At the second stage the dependent variable y is regressed not directly 
on X, but on X instrumented (as we say) with H. More precisely, y is 
regressed on the estimated value of X on the basis of model (1.55), that 

is to say on 1ˆ ˆ= = ( ) =T T
HX H H H H H X P X−g , with 1= ( )T T

HP H H H H−

the idempotent projection matrix of H.
Such a regression is given by the model:

y = X̂b + e (1.57)

and the OLS estimator of g is given by:

( ) 1

2
ˆ ˆ ˆ ˆ= T T

SLS X X X y
−

b  (1.58)

From the properties of the idempotent matrix, Equation (1.58) can be 
written as:

( ) ( )

( )

( )( ) ( )

1 1
2

1

11 1

ˆ ˆ ˆ ˆ= =

       =

       =

T T T T T T
SLS H H H

T T
H H

T T T T T T

X X X y X P P X X P y

X P X X P y

X H H H H X X H H H H y

− −

−

−− −

b

 (1.59)

Such an estimator is known as the Two-Stage Least Squares estimator 
(2SLS), the Instrumental Variable estimator (IV), or the Generalized 
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Instrumental Variable Estimator (GIVE). Equation (1.59) also empha-
sizes that such an estimator can also be viewed as a GLS estimator with 
a matrix of weights equal to PH. At the time when it was introduced 
(in the 1950s) the estimation proceeded in the two steps described, but 
nowadays (with much higher computing power) the computation is 
achieved in one single step imposing exogeneity on the instruments. At 
a population level this leads to:

HT e = 0 (1.60)

and at the sample level the condition becomes:

H T ( y – Xb̂ ) = 0 (1.61)

and, solving this system of equations, we obtain:

( ) 1ˆ = T T
MM H X H y

−
b  (1.62)

which coincides with (1.59). Since Equation (1.60) can be viewed as a 
set of moments conditions, the estimator derived from its solution can 
also be seen as a Method of Moments estimator.

It can be shown that, under general conditions, the Two-stage Least 
Squares estimator is asymptotically normally distributed with

( )2
ˆ =SLSE b b  (1.63)

and 

2 1 1
2

ˆ( ) = ( ) ( )T T T
SLSVar H X H H H Zσ − −

eb  (1.64)

and these expressions can be used for inference and hypothesis testing.

Example 1.4 Zellner–Revankar Production function 
(continued)

The following table shows the original data on which the Zellner–Revankar 
(1970) production function (discussed in Example 1.2) was estimated.

Using these data, only to provide an example and without the aim of con-
tributing substantially to understanding the phenomenon, we estimate the 
production function model where the variable “Value added” is expressed as 
a function of the variable “labor input” only using the variable “number of 
establishments” as an instrument. The instrument is “relevant” in the sense 
that the variable “number of establishments” has a correlation of 0.839001 
with the regressor “labor”.
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State Value 
Added

Capital 
Input

Labour 
Input

Number of 
Establishments

Alabama 126148 3804 31551 68
California 3201486 185446 452844 1372
Connecticut 690670 39712 124074 154
Florida 56296 6547 19181 292
Georgia 304531 11530 45534 71
Illinois 723028 58987 88391 275
Indiana 992169 112884 148530 260
Iowa 35796 2698 8017 75
Kansas 494515 10360 86189 76
Kentucky 124948 5213 12000 31
Louisiana 73328 3763 15900 115
Maine 29467 1967 6470 81
Maryland 415262 17546 69342 129
Massachusetts 241530 15347 39416 172
Michigan 4079554 435105 490384 568
Missouri 652085 32840 84831 125
NewJersey 667113 33292 83033 247
New York 940430 72974 190094 461
Ohio 1611899 157978 259916 363
Pennsylvania 617579 34324 98152 233
Texas 527413 22736 109728 308
Virginia 174394 7173 31301 85
Washington 636948 30807 87963 179
West Virginia 22700 1543 4063 15
Wisconsin 349711 22001 52818 142

The result of the estimation procedure is shown in the following table

Parameter Standard Error t-test p-value

b0 –55486.25 0.21156 48669.26 –1.140068
b2 7.264460 0.329093 22.07415 0.000***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

R2 = 0.970192 Adjusted R2 = 0.968896  F-statistics = 487.2683 
(p-value = 0.00000) 

AIC =  BIC =   JB test = 26.31817 
(p-value = 0.000002)

BP test = 20.18672 (p-value = 0.0002) Second stage SSR = 8.25e + 12

The estimation shows a good fit of the model to the empirical data. However, 
there is strong evidence of non-normality and heteroscedasticity in the residuals 
(JB and BP tests) which suggest that the model should be re-evaluated.
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1.4 R Codes: running a regression

To begin, download the free R software from the website http://cran.
r-project.org/ by choosing your appropriate operating system (Windows, 
Mac OSX or Linux).

In the R environment, we can input the data using the keyboard, 
defining the variables x, y and z as vectors in the following way:

x=c(x1,x2,…,xn)

y=c(y1,y2,…,yn)

z=c(z1,z2,…,zn)

or, alternatively, we can read the data from an external file using one of 
the following commands according to the format of the source data file:

>read.table("filename.txt", header=T, dec=".")

>read.txt("filename.txt", header=T, dec=".")

>read.csv("filename.csv", header=T, dec=".")

in the case, respectively, of a text (.txt) or a comma separated values 
(.csv) input file.

In the case of simple linear regression, we can plot the data on a scat-
ter diagram with the command:

> plot(x,y)

and we can estimate a simple regression model through the command

>model1 <-lm(y ~x)

“model1” being an arbitrarily assigned name and “lm” being the 
 command corresponding to the acronym of Linear Modeling.

We can also add the fit line to the scatter plot with command:

>abline(model1)

In the case of a multiple linear regression, similarly, we estimate the 
model with the command:

>model2 <-lm(y ~x+z)

The following command:

>summary(model2)
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returns the point estimates of the parameters, their significance, the 
R-squared, the adjusted R-squared and the F-test.

Similarly, the commands:

>AIC(model2)

>BIC(model2)

calculate the model AIC and BIC tests that are not included in the 
 previous output.

Given the model estimation, we can calculate the confidence inter-
vals of the parameters through the command:

>confint(model2)

For any further reference, the residuals are automatically stored with 
the name:

model2$residuals

For more diagnostics on the model, we need to install the packages 
“lmtest” and “tseries”. To do so, type the commands:

> install.packages("lmtest")

> install.packages("tseries")

Once the two packages are installed, at the beginning of each session, 
we need to invoke them through the commands:

> library(lmtest)

> library(tseries)

In the packages “lmtest” and “tseries” we find several useful model 
diagnostics like, for example, the Breush–Pagan test of homoscedasticity 
(which uses all regressors to explain heteroscedasticity):

> bptest(model2)

and the Jarque–Bera normality test:

>jarque.bera.test(model2$residuals)
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Key Terms and Concepts Introduced

• Linear model with independent disturbances
• Ordinary Least Squares estimation method (OLS)
• Best Linear Unbiased Estimator (BLUE)
• Properties of the parameter estimators: unbiasedness, efficiency, con-

sistency, normality
• Maximum Likelihood estimation method (ML)
• Score function
• Fisher’s information matrix
• Method of Moments estimation method (MM)
• Hypothesis testing on the model’s parameters
• F-test on the model
• Coefficient of determination. R2

• Adjusted R2

• Akaike information criterion (AIC)
• Schwartz (or Bayesian) information criterion (BIC)
• Likelihood ratio test
• Wald test
• Rao’s score test (or Lagrange multiplier)
• Jarque–Bera test
• Heteroscedasticity
• Breusch–Pagan test of homoscedasticity 
• Autocorrelation
• Generalized Least Squares (or Aitken) estimation criterion (GLS)
• Exogeneity
• Two-Stage Least Squares estimation method (Generalized Instrumental 

Variable Estimator) (2SLS)
• Relevant instruments
• Exogenous instruments

Questions

1. Under what conditions are the OLS estimators equivalent to the 
ML estimators? Are these conditions likely to be encountered when 
dealing with regressions on spatial data? What are the implications 
of such equivalence? What are the implications of the lack of this 
equivalence?

2. Suppose we have a variable y = regional consumption, and variable 
x = regional income, both expressed in thousands of dollars and 
assume further the regression model y = bx + e. What are the conse-
quences on the OLS estimator of b (say b̂ ) of expressing the income 
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in millions of dollars instead? What happens if the consumption is 
also expressed in millions of dollars?

3. What are the crucial elements to consider if we want to judge the good-
ness of fit of the empirically observed data to our theoretical model?

4. In Instrumental Variable (IV) estimation how can we prove that an 
instrument is relevant?

5. In time series regression modeling we test autocorrelation in 
the residuals using the Durbin-Watson test statistics defined by

 [ ]−−∑ ∑2 2
1=2 =1

=
T T

t t tt t
d e e e  t = 1,…, T. Such a test exploits the natural

 ordering of the time observations which is evident in the expression 
observing that the time index, t ranges between 1 and T. What ele-
ments do we have to take into account when testing residuals auto-
correlation on spatial data?

6. Why do we have to use the GLS estimation procedure instead of 
the OLS procedure when estimating a regression model on data that 
do not satisfy the hypotheses of homoscedasticity or/and residuals 
uncorrelation?

Exercises

Exercise 1.1 The data shown in the table below refer to some regional 
economic data in the United Kingdom. They report the regional Gross 
Value Added (GVA) as a percentage of the country total, labor produc-
tivity (reported to a country total of 100) and the business birth rate.

Country Region GVA
(% of 
UK)

Labor 
Productivity 
(UK = 100)

Business 
Birth 
Rate (%)

Wales   3,6 81,5 9,3
Scotland   8,3 96,9 10,9
Northern Ireland   2,3 82,9 6,5
England North of England 3,2 86,2 11,2
England North West England 9,5 88,6 11,1
England Yorkshire & Humberside 6,9 84,7 10,5
England East Midlands 6,2 89,2 10,3
England West Midlands 7,3 89,1 10,5
England East Anglia 8,7 96,8 10,5
England Greater London 21,6 139,7 14,6
England South East England 14,7 108,3 10,8
England South West England 7,7 89,8 9,6

Source: http://www.statistics.gov.uk/hub/index.html. 
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Using the R codes reported in section 1.4 do the following:

1. Estimate the model that explains the GVA as a function of both labor 
productivity and business birth rate (model 1).

2. Estimate two models that explain respectively the GVA as a function 
of labor productivity and business birth rate (model 2 and model 3).

3. Compare the results obtained for model 1, model 2 and model 3. 
Which is the preferred model in terms of fit to the empirical data? 
What elements did you take into consideration when choosing the 
preferred model?

4. Regress labor productivity on business birth rate (model 4).
5. Calculate the residuals of model 1.
6. Test the hypothesis of normality and of homoscedasticity of model 1 

under the hypothesis that the innovations are not correlated.
7. Observe the geographical distribution of the residuals of model 1 

with reference to the map shown in the figure here below. Do you 
notice any interesting geographical pattern?

Scotland

North East (England)

North West (England)

Wales

Ireland

Northern Ireland

East of England

London

South East (England)
South West (England)

West Midlands (England)

East Midlands (England)

Yorkshire And The Humber

Map of the 12 UK regions. (Courtesy of Carrie Dolan) 
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2
Some Important Spatial Definitions

2.1 The Spatial Weight Matrix W and the definition of 
Spatial Lag

If some autocorrelation is present in the stochastic disturbances, some 
or all the off-diagonal elements of the variance-covariance matrix are 
non-zero. In such a situation, as stated earlier, the optimal properties 
of the OLS are not valid and the GLS criterion can only be applied if 
we are able to specify a plausible form of autocorrelation. In view of 
this, the following chapters will consider various alternatives to model 
non-diagonal variance-covariance matrices when data are observed in 
geographical units such as countries or regions. In this section we will 
introduce some preliminary concepts.

When we observe a phenomenon in say, i = 1,…,n regions, non- 
diagonal variance-covariance matrices arise from the presence of spatial 
autocorrelation among the stochastic terms. Positive spatial autocor-
relation arises when units that are close to one another are more similar 
than units that are far apart. Similarly, VC matrices can also display 
spatial heterogeneity when some areas present more variability than 
others. As an example see Figure 2.1.

In the definition of spatial autocorrelation we mentioned the concept 
of closeness which requires some further specification. Indeed, the major 
difference between standard econometrics and spatial econometrics lies 
in the fact that, in order to treat spatial data, we need to use two differ-
ent sets of information.

The first set of information relates to the observed values of the eco-
nomic variables whereas the second set of information relates to the 
particular location where those variables are observed and to the vari-
ous links of proximity between all spatial observations. The presence of 
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this extra set of information related to space is also the reason why the 
standard econometric and statistical packages (for example, Eviews or 
SPSS) are so reluctant to introduce dedicated modules to spatial econo-
metrics and spatial statistics which require extra capabilities in order to 
deal with spatial maps. If data are observed on a regular square lattice 
grid, like the one shown in Figure 2.1, closeness can be straightforwardly 
defined by choosing between the so-called rook criterion (two units are 
close to one another if they share a side) or the queen criterion (two units 
are close to one another if they share a side or an edge), drawing on the 
chess move analogues illustrated in Figure 2.2.

Figure 2.1 Spatial autocorrelation and spatial heterogeneity among 64 spatial units 
arranged in an 8-by-8 regular square lattice grid. Different greytones refer to 
different values of the variables under study ranging from low values (white) 
to high values (black). (a) Spatial autocorrelation. (b) Spatial heterogeneity. Left 
pane: high variability. Right pane: low variability

(a) (b)

Figure 2.2 Contiguity criteria in a regular square lattice grid. (a) Rook’s move 
and (b) Queen’s move

(a) (b)
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However, in spatial econometrics, almost invariably, we have to deal 
with irregularly spaced administrative units, such as regions or coun-
tries, so that further definitions are required.

At the heart of spatial econometrics methods is the definition of the 
so-called weights matrix (or connectivity matrix). The simplest of all defi-
nitions is the following:

11 1

1

...

...
=

n

ij
n n

n nn

w w

w
W

w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.1)

in which each generic element is defined as

1   if  ( )
=

0    otherwiseij
j N i

w
⎧ ∈⎪⎪⎨⎪⎪⎩

 (2.2)

N(i ) being the set of neighbors of location j. By definition we have that 
wii = 0.

Different concepts of the neighboring set N(i ) are possible, ranging 
from the one based on mere adjacency between the two territorial units 
illustrated in Figure 2.2, to those based on a maximum distance (that is 
j ∈N(i) if dij < dmax, dij being the distance between location i and location j), 
to those based on the nearest neighbor criterion. More general W matrices 
can also be specified by considering the entries wij as (negative) functions 
of geographical, economic or social distances between areas rather than 
simply characterized by dichotomous entries like in Equation (2.2).

Example 2.1 Some examples of W matrices

Some simple examples of W matrices for a system of irregular areas are 
shown here below. We consider a system of eight irregular regions (a) and 
the corresponding W matrix calculated with various criteria: (b) adjacency, 
(c) nearest neighbor, (d) distance < 2. Distances are measured between the 
centroids of the regions. A cell’s side is conventionally set equal to 1. Notice 
that W matrices do not necessarily have to be symmetrical as happens, 
e. g., in case d). Notice, further, that conventionally we always have a 0 in 
the main diagonal in that each area is not considered a neighbor to itself. In 
the nearest neighbor criterion when more than one unit satisfies the condition, 
we select one randomly.
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1 2 3

4

5 6 7

8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 1 1 1 1 0 0 0

1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

2 1 0 1 1 0 0 0 0

2 0 0 0 1 0 0 0 0 2 1 0 1 1 0 0 0 0

3 1 1 0 1 1 1 1 1

3 0 0 0 1 0 0 0 0 3 0 1 0 1 0 0 0 0

4 1 1 1 0 0 0 0 0

4 0 1 0 0 0 0 0 0 4 1 1 1 0 0 0 0 0

5 1 0 1 0 0 1 0 0

5 0 0 0 0 0 1 0 0 5 0 0 0 0 0 1 1 0

6 0 0 1 0 1 0 1 1

6 0 0 0 0 0 0 1 0 6 0 0 0 0 1 0 1 0

7 0 0 1 0 0 1 0 1

7 0 0 0 0 0 1 0 0 7 0 0 0 0 1 1 0 1

8 0 0 1 0 0 1 1 0

8 0 0 0 0 0 0 1 0 8 0 0 0 0 0 0 1 0

(a) (b)

(c) (d )

Quite often the W matrices are standardized to sum unity in each row. 
In this case we have:

=1

* = ij
ij n

ijj

w
w

w∑
; * *ijw W∈  (2.3)

This standardization may be very useful in some instances. For example, 
by using the standardized weights, we can define the matrix product,

( ) = *L y W y  (2.4)

in which each single element is equal to:

∈∑
∑ ∑

∑
( )

=1 =1 =1

*( ) = = =
# ( )

n n jij j j N i
i ij j n

j j ijj

yw y
L y w y

N iw
 (2.5)

with #N(i ) representing the cardinality of the set N(i ). The term in 
Equation (2.5) represents the average of variable y observed in all the 
locations that are neighbors to location i (according to the criterion 
chosen in defining W). It therefore assumes the meaning of the spatially 
lagged value of yi and for this reason is often indicated by the symbol L(y) 
by analogy with the lag operator in time series analysis.
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y W*y

81,5 91,55
96,9 81,50
82,9 105,83
86,2 86,65
88,6 86,42
84,7 87,96
89,2 101,72
89,1 93,52
96,8 98,70

139,7 98,75
108,3 100,92

89,8 108,3

The fact that Northern Ireland does not have any neighbors constitutes a 
problem if we want to compute a spatially lagged variable because, in this 
case, the value of the “spatially lagged” variable for Northern Ireland would 
always be zero. To tackle this problem we can conventionally consider the 
closest region (Scotland) as a neighbor of Northern Ireland even if, strictly 
speaking, the two regions do not share a common boundary. Having made this 
correction to the row-standardized W matrix, it becomes:

0 0.5 0 0.5 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.33 0 0.33 0 0 0.33 0 0

0 0 0 0 0.5 0.5 0 0 0 0 0 0

0 0 0.2 0.2 0 0.2 0.2 0.2 0 0 0 0

0 0 0 0.33 0.33 0 0 0.33 0 0 0 0
=

0 0 0.2 0 0.2 0 0 0.2 0 0.2 0.2 0

0 0 0 0 0.2 0.2 0.2 0 0.2 0 0.2 0

0 0 0 0 0 0 0 0.5 0 0 0.5 0

0 0 0 0 0 0 0.5 0 0 0 0.5 0

0 0 0 0 0 0 0.2 0.2 0.

W

2 0.2 0 0.2

0 0 0 0 0 0 0 0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Now consider again the set of data shown in Exercise 1.1. If we premultiply 
the vector of the variable “labor productivity” (say variable y) by the (row-
standardized) W* matrix we obtain the spatially lagged variable shown in 
the second column of the following table.
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2.2 Testing spatial autocorrelation among OLS residuals 
without an explicit alternative hypothesis

The most widely used test for spatial autocorrelation amongst OLS 
regression residuals is based on a general measure of spatial correlation 
introduced by Moran (1950) and proposed by Cliff and Ord (1972) as a 
test statistics for the null of uncorrelation among regression residuals. 
Notice that this statistics was introduced in the literature simultane-
ously to the analogous measure for time series regression residuals: 
the celebrated Durbin–Watson statistics (Durbin and Watson, 1950) 
even if, as already mentioned, its extension to deal with regression 
residuals was published only later (Cliff and Ord, 1972). Indeed the 
Durbin–Watson statistic can be defined as a special case of the Moran 
statistics by simply defining an appropriate W matrix (see, for exam-
ple, Arbia, 2006). In its essence Moran’s statistic takes the form of a 
correlation between the regression residuals and their spatially lagged 
values, that is:

( , )
( , ) =

( ) ( )
Cov L

Corr L
Var Var L

e ee e
e e  (2.6)

From Equation (2.6), by using the definition of spatial lag given in 
Equation (2.4) and assuming (by analogy with what happens with sta-
tionary time series) that:

( ) = ( )Var Var Le e  (2.7)

we have

( , )
( , ) = =

( )

T

T

Cov L W
Corr L

Var
e e e ee e

e e e
 (2.8)

It can be shown that, due to the nature of the spatial lag definition, 
equality (2.7) does not hold for spatial data where we have instead 
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( ) ( )Var Var L≥e e  (see Arbia, 1989). One of the effects of this inequality 
is that the measure introduced in Equation (2.8) is not limited by 1 in 

absolute value, but possesses narrower limits given by 
( )
( )

Var L
I

Var
≤

e
e . 

However, partly for historical reasons, and more substantially for the 
equivalence that can be demonstrated with a Lagrange Multiplier test 
(see section 3.7), this is the definition that currently prevails in the lit-
erature and the one implemented in the software routines (alternatives 
are discussed in Whittle, 1954, in Cliff and Ord, 1972 and more recently 
in Li et al., 2007). In its original definition, Moran’s I statistic considers 
the biased estimator of the variance in the denominator of Expression 
(2.8) and a normalizing factor for the numerator equal to the sum of 
the weights. As a consequence the empirical counterpart of (2.8) can be 
expressed as:

=
T

T
iji j

ne We
I

e e w⎡ ⎤
⎢ ⎥⎣ ⎦∑ ∑  (2.9)

When the weight matrix is row-standardized then =iji j
w n∑ ∑ and 

the previous expression simplifies as:

=
T

T

e We
I

e e
 (2.10)

Cliff and Ord (1972) derived the sampling distribution of the I statistic 
under two different hypotheses: (i) randomization and (ii) normality of 
residuals. In the first case the sampling distribution is obtained by con-
sidering all possible permutations of the observed data on the boundary 
system and calculating the Moran I statistic in each of them. They also 
proved that the asymptotical distribution is normal with an expected 
value that does not depend on the particular hypothesis chosen and 
that it is always expressed by:

( )0

 ( )
( ) = xn tr M W

E I
S n k−

 (2.11)
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with 0 = i j ijS w∑ ∑ , =x xM I P−  and 1= ( )T T
xP X X X X− . In contrast, its 

variance depends on the hypothesis selected. In particular, if we assume 
normality of the residuals, it can be expressed as:

[ ]
( )( )

2 22
2

0

 ( ) + ( ) + ( )
( ) = ( )

+ 2

T
x x x xtr M WM W tr M W tr M Wn

Var I E I
S n k n k

⎛ ⎞⎟⎜ ⎟ −⎜ ⎟⎜ ⎟⎜ − −⎝ ⎠
 (2.12)

Notice that the Moran I test suffers from the limitation of not being 
based on an explicit alternative hypothesis. However, due to the already 
mentioned equivalence of the test (proved by Burridge, 1980) to an LM 
test, this is not a major drawback. The presentation of alternative test 
statistics for the hypothesis of residual correlation cannot be treated in 
more detail until we present some explicit formulations for an alterna-
tive hypothesis. This aim is accomplished in Chapter 3 and so we will 
revisit this issue again in section 3.7.

Example 2.3 Okun’s law for the 20 Italian regions

Okun’s Law (Okun, 1962) is an inverse relationship between the variation of 
the unemployment rate and the variation of the real GDP. The following table 
shows the data necessary to test Okun’s Law on the 20 Italian regions. The 
variations of the two variables are observed in the period 1990–2010.

  Variation of 
Unemployment 
Rate

Variation 
of Real 
GDP

Variation of 
Unemployment 
Rate

Variation 
of Real 
GDP

 1. Piedmont 4.2 1 11. Marche
12. Latium
13. Abruzzo
14. Molise
15. Campania
16. Puglia
17. Basilicata
18. Calabria
19. Sicily
20. Sardinia

4.2
6.4
6.2
8.1
11.2
11.2
9.6
11.3
13
9.9

1.8
2
0.5
0.9
0.4
1.8
1.4
0.2
0.1
0.7

 2. Aosta Valley 3.2 1.9
 3. Lombardy 3.4 1.7
 4.  Trentino 

Alto Adige
2.75 1.7

 5. Veneto 3.3 1.8
 6.  Friuli Venezia 

Giulia
3.4 1.9

 7. Liguria 4.8 2.3
 8.  Emilia 

Romagna
2.9 2

 9. Tuscany 4.3 1.1
10. Umbria 4.6 2.3

Source: http://sitis.istat.it/sitis/html/.
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The scatter diagram below shows the negative relationship expected from theory.

Source: The author’s creation using the data sourced from the ISTAT database called “Territorial 
indicators” that can be downloaded at the webpage: http://sitis.istat.it/sitis/html/.
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The graph shows that the variation in the unemployment rate is systematically 
higher than expected in the Southern Italian regions (light circles, corresponding 
to positive residuals) and lower in the Northern Italian regions (dark circles, cor-
responding to negative residuals), which could be interpreted as a possible model 
miss-specification and as a clear symptom of residual spatial autocorrelation.

The results of the estimation of the model with the OLS are shown here 
below together with the main test statistics.

Parameter Standard Error t-test p-value

b0 10.971 1.283 8.8551 9.38e–08***
b1 – 3.326 0.835 – 3.984 0.000871***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

R2 = 0.4686 Adjusted R2 = 0.4391  F-statistics = 15.87 
(p-value = 0.0008705) 

AIC = 98.28693 BIC = 101.2741 JB test =1.2331 (p-value = 0.5398)
BP test = 0.0225 (p-value= 0.8808)
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The F-test is highly significant and leads to the acceptance of the model. 
Furthermore both parameters are significantly different from zero at the usual 
confidence level. The JB and the BP tests lead to the acceptance of, respectively, 
the hypothesis of normality and homoscedasticity. The table here below sum-
marizes the calculation of the Moran I test statistics for the hypothesis of 
spatial correlation of the residuals. Notice that the W matrix was specified by 
contiguity (the two islands are considered neighboring to the closest region).

Moran’s I Test 

Observed Value Expected Value Variance z-test p-value

Moran’s I 0.40857021 – 0.06968484 0.02737778 2.8904 0.001924

Moran’s I test reveals the presence of a significant positive spatial autocorrela-
tion among the regression residuals, thus imposing a re-evaluation of all the 
results previously obtained and a redefinition of the model. In this particular 
case, in the presence of positive spatial autocorrelation, both the t-tests and 
the F-test will be inflated, leading us to accept as good models that should be 
rejected. Furthermore both JB and BP tests were not significant, thus leading to 
the acceptance of the hypothesis of homoscedasticity and normality. However, 
since we have detected significant spatial autocorrelation in the residuals both 
tests may lead to misleading conclusions.

Example 2.4 Phillips curve for the 20 Italian regions

The Phillips curve (Phillips, 1958) is an inverse relationship between the rate 
of unemployment and the rate of inflation. It states that lower unemployment 
is associated with a higher rate of inflation. Even if it was originally proposed 
to explain the historical behavior of the two variables, it was also considered 
to explain their spatial variations (Anselin, 1988). The following table shows 
the data necessary to test the Phillips model on the 20 Italian regions.

% variation 
unemployment 
rate

% variation 
price index

% variation 
unemployment 
rate

% variation 
price index

1. Piedmont 4.2 2.1  6.  Friuli Venezia 
Giulia

3.4 1.8

2. Aosta Valley 3.2 1.4  7. Liguria 4.8 1.7
3. Lombardy 3.4 1.7  8.  Emilia 

Romagna
2.9 1.9

4.  Trentino 
Alto Adige

2.75 1.8  9. Tuscany 4.3 1.6

5. Veneto 3.3 1.5 10. Umbria 4.6 1.7

(continued)
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The scatter diagram below shows a positive relationship

However, the graph also shows that the variation in the unemployment rate 
is systematically higher than expected in the Southern Italian regions (light 

Source: The author’s creation using the data sourced from the ISTAT database called “Territorial 
indicators” that can be downloaded at the webpage: http://sitis.istat.it/sitis/html/.
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circles, corresponding to positive residuals) and lower in the Northern Italian 
regions (dark circles, corresponding to negative residuals), which could possibly 
be an indication of residual spatial autocorrelation.

The result of the estimation of the model with the OLS are shown here below:

Parameter Standard Error t-test p-value

b0 –9.827 3.720 –2.642 0.016568*
b2 8.746 1.984 4.409 0.000338***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

R2 = 0.5193 Adjusted R2 = 0.4926  F-statistics = 19.44 
(p-value = 0.000338) 

AIC = 96.28177 BIC = 99.26897  JB test = 0.0128 
(p-value = 0.9936)

BP test = 0.2556 (p-value = 0.6131)

All tests of significance of the parameters lead to rejection of the null hypoth-
esis, thus suggesting acceptance of the model. Similar indications come from 
the analysis of the F-test and of the tests of normality and homoscedasticity. 
By specifying a W matrix by contiguity (as in Example 2.3), the calculation 
of the Moran’s I test of spatial autocorrelation among the residuals produce 
the following results:

Moran’s I test

Observed Value Expected Value Variance z-test p-value

Moran’s I 0.3212607 – 0.06938126 0.02711169 1.5297287 0.063042

In this case, although a positive spatial correlation is detected, this is not 
significant at the 5% level of confidence.

2.3 R Codes
The creation and the management of a W matrix is the trickiest part in 
running a spatial regression in any software. It is also what distinguishes 
software with spatial capabilities from standard econometric software. 
For this reason we will devote a significant part of the present chapter 
to discuss some of the most important steps needed for its creation, its 
import from external resources and its management. All the R proce-
dures that will be illustrated in the present section, and most of those 
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presented in the rest of the book, are contained in the package spdep. 
To install the package, type the command:

>install.packages(”spdep”)

for the first time and then at the beginning of each new session, call it 
back by typing:

>library(spdep)

2.3.1 Creation of a W matrix for regular grid data

Consider, to start, the case of a regular square lattice grid of dimension – 
for example, 3-by-3. The software R generates the list of neighbors auto-
matically with the command:

> Wnb<-cell2nb(3,3,type=" ")

where the type can be specified as either “rook” or “queen” according 
to the typology of neighborhood chosen.

The command indicates that we want to change our data from a cell 
system (cell) to (2) a list of neighbors (nb).

The object Wnb is just a list of neighbors. If we type Wnb we obtain a 
summary of the information contained in it (the number of regions, the 
number of proximity links, the average number of links and the number 
and the percentage of non-zero links). Once this object is created, we 
have to transform it into an actual matrix, say W, through the command:

> W<-nb2listw(Wnb)

The command indicates that we want to change our data from a list of 
neighbors (nb) to (2) a weight matrix (listw). In order to visualize the 
actual neighbors, type:

> W$weights

Once the weight matrix W is created, the spatially lagged variable of a 
variable X (say WX) can be easily obtained through the command

> WX<-lag.listw(W,X)

WX being just a conventional name assigned to this new variable.

2.3.2 Creation of a W matrix for irregular data

Consider now the case of an irregular set of regions and let us consider, 
as an example, the 20 Italian regions, already described in Examples 2.3 
and 2.4, whose boundaries are shown in the following Figure 2.3.
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In order to create a W matrix we need two different objects, namely:

1.  an external file containing the list of neighbors for each region. This 
file has to be saved as a text file and named with the extension .GAL.

2.  an internal variable containing only the region identifier (e.g. 1, 
2, …, 20)

For the 20 Italian regions shown in the previous Figure 2.3, the first of 
the two files will have the following format:

First line

0 20 Italy ita_regions (this is the header: it starts with a mandatory 
0 followed by the number of regions (20), by the name of the regional 
system (Italy) and by a variable containing the polygon identifier 
(ita_regions))

Second line

2 1  (the region identifier and the number of neigbors. This lines states 
that region 2 has only one neighbor)

1  (the polygon identifier of the neighbor. This line states that region 
2 has only region 1 as a neighbor)

Figure 2.3 Boundaries of the 20 Italian regions
Source: http://www.istat.it/it/archivio/44523.
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1, 4 (1 region has 4 neighbors)
2, 3, 7, 8  (the polygon identifiers of the 4 neighbors of region 1)

and so on. For the full file see below.

File: Italy.GAL

0 20 italy ita_regions
1 1
2
2 4
1 3 7 8
3 4
2 4 5 8 
4 2
3 5 
5 4
3 4 6 8
6 1
5
7 3
2 8 9
8 5
2 3 5 7 9
9 5
7 8 10 11 12
10 5
8 9 11 12 13
11 4
9 10 12 13
12 6
9 10 11 13 14 15
13 3
10 12 14
14 4
12 13 15 16
15 4
12 14 16 17
16 3
14 15 17
17 3
15 16 18
18 2
17 19
19 2
18 20
20 1
19

end of file
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Regarding the second of the two files needed for the procedure, the 
polygon identifier is represented by the internal variable ita_regions 
which, in this case, can be created with command:

ita_regions<-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,

15,16,17,18,19,20)

or read from an external file. Once we have created these two objects, 
they can be read in R through the command:

nbitaly<-read.gal("Italy.GAL", region.id=ita_regions)

Notice that the whole path of the .GAL file has to be fully specified so 
that it can be univocally identified by the procedure.

The object nbitaly thus obtained has to be transformed into an 
actual W matrix through the command (see section 2.3.1)

> witaly<-nb2listw(nbitaly)

If we further require a row-standardization of the W matrix, the previ-
ous command needs to be modified as follows:

> witaly<-nb2listw(nbitaly, style=”W”)

2.3.3 Reading a W matrix from external files

When the number of units becomes large, the method illustrated 
in section 2.3.2 of inputting the neighborhood information directly 
becomes rapidly unfeasible. In this case a W matrix can be obtained by 
reading external files generated by Geographical Information Systems 
(GIS) (see, for example, Burrough et al., 2014) and publicly avail-
able for many regional systems (see, for example, http://www.census.
gov/geo/maps-data/data/tiger-line.html, for the US states and other 
US boundary systems or http://epp.eurostat.ec.europa.eu/portal/page/
portal/gisco_Geographical_information_maps/popups/references/
administrative_units_statistical_units_1 for the EU States and for some 
other world boundary systems).

In particular, the regional boundaries and their relationships can 
appear in the form of shapefiles which consist of three mandatory files 
identified by the extensions .shp, .shx and .dbf. The .shp file stores 
feature geometry such as the coordinates of polygon centroids and their 
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boundaries. The .shx file stores an index of the feature geometry and, 
finally, the .dbf file stores the attribute information of the features. 
To acquire the necessary information from external files, we need to 
develop three steps. In the first step we simply read the shapefiles from 
the external source into the R system. In step two we create a list of 
neighbors from the shapefiles. Finally, in step three we derive the W 
matrix from the list of neighbors using the same procedure illustrated 
in sections 2.3.1 and 2.3.2. These steps are outlined below.

Step 1: To import the shapefiles, (e.g. the shapefile, Italy consisting of 
the three files Italy.shp, Italy.shx and Italy.dbf), we use the command:

> italy<-readShapePoly(“Italy”, IDvar=”ID”)

where ID is the name of the variable containing the regional identifier 
code. Once the data are read into the R system, we can list the variables 
contained in the dataset with he command

>names(Italy)

we can see the plot of the borders with the command

>plot(Italy)

we can identify the centroids of each region with the command:

>coords<-coordinates(Italy)

and we can show the regional id’s on the map with the command

>text (coords, label=sapply(slot(italy,"polygons"),

function(i) slot(i,"ID")))

Step 2: To calculate the contiguity-based neighbors’ list, we use the 
command:

>contnb<-poly2nb(Italy,queen=T)

The queen criterion specified (see section 2.1) ensures that two regions 
are considered neighbors if they have a common boundary. The 
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command indicates that we want to change our data from a list of poly-
gons (poly) to (2) a list of neighbors (nb).

However, this command does not tolerate the presence of isolated 
areas (like, for example, the case of the map shown in Figure 2.3) with-
out any neighbor. We can force the command to include these areas by 
adding the option

>contnb<-poly2nb(Italy,queen=T,zero.policy=TRUE)

but in this case a W matrix will be generated with one or more areas 
with all zero in the corresponding line. The problem may be eliminated 
by generating a list of neighbors based on minimum threshold dis-
tance using the command:

> contnb <- dnearneigh(coordinates(Italy), 0, 380000, 

longlat=F)

where 380000 is a conventional threshold distance (to be identified 
empirically in all practical cases) as measured in Great Circle kilometers 
(that is the distance along a path on a sphere).

Step 3: Finally, in the third step we can obtain the W matrix from the 
neighbors’ list generated in the previous steps, by using the following 
command (already illustrated in Sections 2.3.1 and 2.3.2):

> W<-nb2listw(contnb, glist=NULL)

Again, as shown in the previous sections, if we wish to row-standardize 
the weights we will have to add the extra option:

> W<-nb2listw(contnb, glist=NULL, style =”W”)

2.3.4 Computation of Moran’s I for the residuals of an 
OLS regression

To compute the Moran I test on the residuals of a model previously 
estimated (say model1), use the command

> lm.morantest(model1, W)

which uses a W matrix contained in the object W, obtained, for example, 
through the procedures described in sections 2.3.1 to 2.3.3. By default 
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the randomization option and the one-sided test are considered. To 
change the default, introduce the option:

> lm.morantest(model1, W, randomization=FALSE, alternative 

“two-sided”)

which considers the hypothesis of normality and a two-sided alterna-
tive hypothesis of positive or negative spatial autocorrelation.

2.3.5 Some useful R databases

The package spdep contains some datasets that are very useful for 
 additional practice. These datasets will be considered in the rest of this 
book for examples and practical exercises. In particular we will con-
sider four databases called “baltimore”, “boston”, “columbus” and 
“used.cars”.

For example, to access the data “used.cars” type the command:

>data(used.cars)

After downloading these data, your session contains two new objects. 
To visualize them type the command:

>ls()

As a result of this command you will see the two objects: (i) used.cars 
containing the actual data and (ii) usa48_1960 containing the map 
information in the form a list of neighbors. To visualize the content of 
the data file type the command:

>str(used.cars)

which shows that in the database we now have two variables called 
used.cars$tax.charges and used.cars$price1960. Notice that 
the prefix used.cars$ is always necessary when you have more than 
one dataset open in the active session.

The object usa48_nb is a list of neighbors from which we can gener-
ate the W matrix through the command:

W<-nb2listw(usa48.nb)

as seen previously.
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Analogous procedures can be followed to download the other datasets 
(baltimore, boston and columbus) mentioned above.

Key Terms and Concepts Introduced

• Spatial autocorrelation
• Neighborhood
• Neighborhood criteria: rook’s case and queen’s case definition
• Neighborhood criteria: maximum distance criterion
• Neighborhood criteria: nearest neighbor criterion
• Weight (or connectivity) matrix
• Standardized weight matrix
• Spatial lag
• Moran’s I test of spatial autocorrelation among regression residuals
• Moments of Moran’s I test under randomization and under the 

hypothesis of normality

Questions

1. Why can’t the Durbin–Watson test (available in all econometric soft-
ware and used to test the hypothesis of no residual autocorrelation) 
be employed in the case of regressions estimated on spatial data?

2. What is the meaning of spatially lagged variable?
3. What is the meaning of row-standardization of a weight matrix? In 

which case is this operation beneficial?
4. What is the meaning of the randomization hypothesis used in deriv-

ing the sampling distribution of the Moran I test statistics?
5. In Question 5 of Chapter 1 we introduced the Durbin–Watson test 

 statistics [ ]2 2
1=2 =1

=
T T

t t tt t
d e e e−−∑ ∑  t=1,…,T. Rewrite the statistics in 

 matrix notation, making use of an appropriate W matrix which prop-
erly describes the proximity between temporal units.

Exercises

Exercise 2.1 The Nomenclature of Units for Territorial Statistics (NUTS) 
is a geocoded standard for referencing the subdivision of European 
Union countries for statistical purposes. For each of the Member States, 
a hierarchy of three NUTS levels is established by Eurostat, level NUTS1 
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corresponding to the country subdivision. The following figure shows the 
boundaries of the eight Romanian NUTS2 regions. On the basis of this 
map derive the corresponding W matrix and its row-standardized version. 
Calculate the percentage of non-zero entries of the W matrix (“sparsity”).

Regions Infant Mortality Rates (2011)

RO11 – Nord-Vest 8.7
RO12 – Centru 10.1
RO21 – Nord-Est 10.1
RO22 – Sud-Est 11.3
RO31 – Sud - Muntenia 10.3
RO32 – Bucuresti - Ilfov 5.7
RO41 – Sud-Vest Oltenia 9.3
RO42 – Vest 8.9

Source: http://epp.eurostat.ec.europa.eu/portal/page/portal/region_cities/regional_statistics/data/database.

Map of the boundaries of the 8 regions of Romania at the NUTS2 European level. 
Source: http://epp.eurostat.ec.europa.eu/cache/GISCO/yearbook2007/NUTS2.pdf.

RO11

RO21

RO12

RO42

RO41

RO32

RO22

RO31

Exercise 2.2 Given the weight matrix derived in Exercise 2.1 and the 
data shown in the following table, compute the spatially lagged variable 
of infant mortality rates.
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Exercise 2.3 (a) Using the procedure illustrated in section 2.3.1 gener-
ate a (rook’s case based) weight matrix for the following regular square 
lattice grid of dimension 5-by-5 (n = 25).

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

(b) Given the data arranged on the previously generated grid, now 
calculate the spatially lagged variable L(X) of the following variable X.

27 16 –1 23 19
36 21 32 33 26
28 25 3 23 35
14 12 16 14 12

4 15 29 31 –1

Exercise 2.4 Given the 12 UK regions reported in Exercise 1.1, by using 
the procedure illustrated in section 2.3, create the *.GAL file and derive 
the weight matrix. Consider Northern Ireland to be adjacent to Scotland 
and Wales.

Exercise 2.5 Given the data shown in Exercise 1.1 and using the results 
of Exercise 2.4, compute the spatially lagged values of the variable GVA 
(Gross Value Added) for the 12 UK regions.

Exercise 2.6 On the basis of the results obtained in Exercise 2.5, draw 
a scatter diagram with the variable GVA on the horizontal axis and the 
lagged variable L(GVA) on the vertical axis. This graph represents the 
exploratory tool termed “Moran scatterplot” in the literature (Anselin, 
1995). What kind of insight can you derive from it?

Exercise 2.7 Given the results of Exercise 2.4 re-estimate model 1 of 
Exercise 1.1 [GVA = f(labor productivity; business birth rate)] and test 
for the presence of spatial autocorrelation among the residuals. Can we 
accept the hypothesis of residuals spatial uncorrelation?

Exercise 2.8 Using the procedure illustrated in section 2.3.2, generate a 
weight matrix for the 20 Italian regions and replicate Examples 2.3 and 2.4.
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Exercise 2.9 Visit the website http://gis.cancer.gov/tools/seerstat_
bridge/fips_vars/#statefips and download the shapefiles related to the 
51 US states. Then, by using the procedure illustrated in section 2.3.3, 
generate the weight matrix and plot the map of the boundaries of the 
51 states.
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3
Spatial Linear Regression Models

3.1 Generalities

This chapter discusses different specifications of linear spatial econo-
metric models that can be considered once the hypothesis of no spatial 
autocorrelation in the disturbances is violated. A general form to take 
into account the violation of the ideal conditions for the applicability 
of OLS is given by the following set of equations:

l b b l <(1) (2)= + + +       1y Wy X WX u  (3.1)

r e r <= +                                  1u Wu  (3.2)

with X a matrix of non-stochastic regressors, W a weight matrix

exogenously given, ee s≈ 2. . . (0, )n nX i i d N I  and b(1), b(2), l and r
parameters to be estimated. The restrictions on the parameters l and r 
hold if W is row-standardized.

The first equation considers the spatially lagged variable of the 
dependent variable y as one of the regressors and may also contain 
spatially lagged variables of some or all of the exogenous variables (the 
term WX). The second equation considers a spatial model for the sto-
chastic disturbances. In principle, there is no need that the three weight 
matrices in Equations (3.1) and (3.2) are the same, although in practical 
cases it is difficult to justify a different choice.

Equation (3.1) can also be written as:

l b l <= + +       1y Wy Z u  (3.3)
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having defined the matrix of all regressors, current and spatially lagged,

as Z = [X,WX] and the vector of regression parameters as b b b⎡ ⎤⎣ ⎦(1) (2)= , .

This model was termed SARAR(1,1) (acronym for Spatial AutoRegres-
sive with additional AutoRegressive error structure) by Kelejian and 
Prucha (1998) and encompasses several spatial econometric models. In 
 particular we have five remarkable cases:

  (i) b = 0 and either l or r = 0, known as the pure spatial autoregressive 
model

 (ii) l = r = 0, known as the Lagged independent variable model
(iii) l = 0, r ≠ 0 known as Spatial Lag Model (SLM)
(iv) l ≠ 0, r = 0 known as Spatial Error Model (SEM)
   (v) l ≠ 0, r ≠ 0 the complete model (SARAR)

We will review these five cases in the following sections. Before doing 
this, however, let us consider a general condition on the model’s 
parameters.

First of all notice that Equation (3.1) can also be written as:

l b b

l b b−

−

⎡ ⎤− ⎣ ⎦

(1) (2)

1
(1) (2)

( ) = + +       

= ( ) + +

I W y X WX u

y I W X WX u
 (3.4)

and Equation (3.2) as:

1= ( )u I W −− r e  (3.5)

provided that the two inverse matrices exist. Using the Gerschgorin 
(1931) theorem Kelejian and Prucha (1998) proved that, when the W 
matrix is row-standardized, both inverse matrices exist if |r| < 1 and 
|l| < 1, hence the parameters’ restriction reported in Equations (3.1) 
and (3.2).

3.2 Pure spatial autoregression

When b = 0 and either l = 0 or r = 0, and further assuming

ee s≈ 2. . . (0, )n nX i i d N I  and W non-stochastic, then the model reduces
to a simple spatial autoregression that can be estimated via the ML 
 procedure (Whittle, 1954).
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In this case we have

l e l <= +       1y Wy  (3.6)

when ρ = 0 or

= +    1y Wy <r e r  (3.7)

when l = 0 since, in this instance, y = u. In this case we can derive the 
likelihood in the following way. First of all from Equation (3.6) (or (3.7)) 
we have that:

(I – rW)y = e

hence

y = (I – rW)–1 e

so that

E(y) = 0 (3.8)

and

2 1 1 2( ) = ( ) ( ) =T TE yy I W I We es r r s− −− − Ω  (3.9)

Having assumed normality of the innovations, the likelihood function 
can therefore be expressed as:

1
2 2 12

2

1
( , ) = exp

2
TL const y ye e

e
r s s

s
− −⎧ ⎫

Ω − Ω⎨ ⎬
⎩ ⎭

 (3.10)

Substituting the explicit expression for the matrix Ω reported in 
Equation (3.9), we can write:

( )
1

2 2 12 2

11
2

( , ) = ( ) ( )

1
               exp ( ) ( )

2

n
T

T T

L const I W I W

y I W I W y

σ σ

σ

− −− −

−− −

− −

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤− − −⎨ ⎬⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭

e e

e

r r r

r r�

 (3.11)
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and, finally, the log-likelihood can be expressed as

2 2 1

11
2

1
( , ) = ln( ) ln ( ) ( )

2 2
1

             ( ) ( )
2

T

T T

n
l const I W I W

y I W I W y

σ σ

σ

− −

−− −

− − − −

⎡ ⎤− − −⎣ ⎦

e e

e

r r r

r r
 (3.12)

This expression is non-linear in the parameters and requires a numerical 
maximization.

Example 3.1 Spatial autoregression of price index in the 
20 Italian regions

Let us consider again the example of the 20 Italian regions shown on the 
map in Figure 2.3, and consider the spatial distribution of the variation of 
the price index shown in Example 2.4. Here we wish to estimate a purely 
spatial autoregressive model with a constant term, y = b0 + lWy + e (with 
y = variation of the price index) to test if the variation of the price index in 
one region affects the variations in the neighboring regions through a mecha-
nism of inflation contagion. As a neighborhood criterion we considered the 
maximum threshold distance criterion in order to include the two islands 
that would be otherwise isolated employing a simple contiguity criterion. 
The results of the estimation of the spatial autoregressive model using the 
ML criterion (by numerical maximization of the log-likelihood) are shown 
below:

Parameter Standard Error t-test p-value

b0 1.841545 0.037795 48.724 2.2e–16

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

l=–0.56091        LR test = 0.94661 (p-value = 0.33058)
Log-likelihood = –2.065929 AIC = 10.132

The table shows the usual t-test for the intercept term and a likelihood ratio 
test for the spatial parameter l. The results show that only the constant term 
is significantly different from zero and thus there is no significant  geographical 
transmission of the price variations at a regional level.
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3.3 The classical model with spatially lagged 
 non-stochastic regressors

When l = r = 0, if we further assume that 2. . . (0, )n nX i i d N Iee s≈ , that

both X and W are non-stochastic and that the matrix of all regressors

[ ]= ,Z X WX  is full rank, then the model only possibly contains a spatial

lag of some or all the independent variables. In this situation no particular 
estimation problem emerges and the model can be simply estimated using 
the OLS procedure.

3.4 The Spatial Error Model (SEM)

3.4.1 Introduction

When l = 0 and r ≠ 0 the model becomes:

y = Zb + u (3.13)

= +     1u Wu <r e r  (3.14)

with the regressors Z and the weights W non-stochastic. This model is 
referred to in the literature as the Spatial Error Model (SEM) (Anselin,

1988; Arbia, 2006; LeSage and Pace, 2009). If 2. . . (0, )n nX i i d N Iee s≈

then we have that 1= ( )u I Wr e−−  as in Equation (3.5) so that we can write:

2 1 1 2

( ) = 0

( ) = ( ) ( )T T

E u

E uu I W I Wσ σ− −− − = Ωε ερ ρ  (3.15)

a formulation that considers both heteroscedastic and autocorrelated 
error terms. In these circumstances the GLS procedure may be applied 
only if the value of the parameter r is known a priori, a circumstance 
which happens only very rarely in empirical cases. Notice that from 
Equation (3.14) we have

(I – rW)u = e

and model (3.13) (3.14) can thus also be written as:

( ) = ( ) + ( )      

= + +     

I W y I W Z I W u

y Wy Z WZ

r r b r
r b rb e

− − −
−

= + +   y Wy Z WZr b g e−  (3.16)
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with γ  = rb and one may think of estimating model (3.16) directly. 
However, two problems emerge. First of all, Equation (3.16) is overpara-
metrized due to the restriction γ = ρβ. Secondly, the term Wy is correlated 
with the error term, thus producing endogeneity. To convince ourselves 
of this let us consider that, from Equation (3.16):

( ) = +I W y Z WZ− −r b g e

and so

( ) ( ) ( )1 1= +y I W Z WZ I W− −− − −r b g r e  (3.17)

so that the covariance between the lagged variable Wy and the error 
term can be expressed as:

( ) ( ) ( )

( )

( ) ( ) ( )
( )
( )e

e r b g

r e e

r b g e

r ee

s r

−

−

−

−

−

⎡⎡ ⎤ − −⎣ ⎦ ⎣
⎤+ − ⎦

− −

⎡ ⎤+ − =⎣ ⎦

− ≠

1

1

1

1

12

=

                     =    

                  =

                     

                  = 0

T

T

T

T

E Wy E W I W Z WZ

W I W

W I W Z WZ E

W I W E

W I W I

 (3.18)

So the error is endogeneous, in that it is correlated with the spatially 
lagged variable Wy. As a consequence of the endogeneity of the errors, 
the OLS procedure loses its optimal properties.

In principle, an instrumental variable procedure could have been 
adopted to accommodate endogeneity. However, Kelejian and Prucha 
(1998) proved that such a procedure is not consistent due to the fact 
that it is not possible to identify instruments for Wy which are linearly 
independent of the other two regressors, Z and WZ.

As a consequence, unless the parameter r is known, there are two 
viable estimation alternatives:

 (i)  Maximum Likelihood (ML), and
(ii) Feasible GLS (FGLS)

These two procedures will be discussed in the next two subsections.
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3.4.2 Maximum Likelihood estimator

From Equation (3.13) we derive

u = y – Zb (3.19)

and, since u is normally distributed with a variance-covariance matrix 
given by Equation (3.15), we can easily obtain the likelihood function 
given by:

1
2 2 12

2

1
( , , ) =  exp

2
TL const u uσ σ

σ
− −

⎧ ⎫⎪ ⎪⎪ ⎪Ω − Ω⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
e e

e
r b  (3.20)

Substituting the expression (3.19) into this last equation we obtain:

( )
1

2 2 12
2

1
( , , ) = exp ( )

2
TL const y Z y Zσ σ

σ
− −

⎧ ⎫⎪ ⎪⎪ ⎪Ω − − Ω −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
e e

e
r b b b  (3.21)

and, by substituting the explicit expression for the matrix Ω reported in 
Equation (3.15), we can write:

( )

}

1
2 2 12 2

11

( , , ) = ( ) ( )

1
                   exp ( )

2

                   ( ) ( ) ( )

n
T

T

T

L const I W I W

y Z

I W I W y Z

σ σ − −− −

−− −

− −

⎧⎪⎪− −⎨⎪⎪⎩

⎡ ⎤− − −⎣ ⎦

e er b r r

b

r r b

�

�

 (3.22)

Finally, the log-likelihood can be expressed as

2 2 1

11

1
( , , ) = ln( ) ln ( ) ( )

2 2
1

                 ( ) ( ) ( ) ( )
2

T

T T

n
l const I W I W

y Z I W I W y Z

σ σ − −

−− −

− − − −

⎡ ⎤− − − − −⎣ ⎦

e er b r r

b r r b
 (3.23)

This expression corresponds to deriving the likelihood function of the 
regression model

* *= +Ty Z b e
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with 2. . . (0, )n nX i i d N Iee s≈ , for the transformed variables:

*

*

( ) =

( ) =

y y Wy

Z Z WZ

−

−

r r

r r

Lee (2004) formally proves the conditions that ensure that the ML 
 estimators are consistent and asymptotically normal in model (3.13) 
and (3.14).

Equation (3.23) cannot be maximized analytically due to the high 
degree of non-linearity. It can, however, be maximized numerically in 
order to produce estimates of the parameters. We must, however, note 
that the computational procedures employed in the available software 
are all approximated in that they are based on pseudo-likelihood.

A problem in maximizing the log-likelihood is represented by the

term ln I Wr−  in that the determinant has to be evaluated repeatedly

for each value of the parameter ρ in a numerical search. If n is very large 
this operation may be demanding. A way out, suggested in the  literature, 
consists of exploiting the so-called Ord decomposition (Ord, 1975):

=1

ln = ln (1 )
n

i
i

I W
⎡ ⎤
⎢ ⎥− −⎢ ⎥⎢ ⎥⎣ ⎦
∏r r  (3.24)

where fi represents the i-th eigenvector of the weight matrix W. This 
decomposition enormously simplifies the computation but, if n is very 
large, it does not completely eliminate the accuracy problems because 
the spectral decomposition is also approximated in very large matrices, 
as noted by Kelejian and Prucha (1998). We will go back to these com-
putational issues in more detail in Chapter 5. To tackle the problem of 
evaluating a log-determinant in very large samples, Kelejian and Prucha 
(1998) suggested an alternative estimation strategy which will be pre-
sented in the next section.

If r is known, then the ML estimators coincide with the GLS estimators 
presented in section 1.2 obtained by substituting the explicit expression 
(3.15) of the variance-covariance matrix into Equation (1.47).

3.4.3 Feasible GLS

Let us return to model (3.13) (3.14) reported here for simplicity

= +y Z ub  (3.13)
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= +    1u Wu <r e r  (3.14)

A feasible GLS procedure (FGLS) can be obtained along the following 
steps (Kelejian and Prucha, 1998):

Step 1: first of all obtain a consistent estimate of b, say b
~

Step 2: use this estimate to obtain an estimate of u, say û
Step 3: use û to estimate r in Equation (3.14), say r̂
Step 4: use r̂  to transform model (3.13) as

ˆ ˆ( ) = ( ) +     I W y I W Zr r b e− −

Step 5: finally, since the transformed model now contains stochastic 
disturbances which satisfy the requisites, estimate b via OLS on the 
transformed data corresponding to the GLS procedure.

These steps will be now discussed in detail.

Step 1: As an estimator of b consider the OLS estimator of Equation 
(3.13):

( ) 1
= T TZ Z Z yb

−�  (3.25)

Kelejian and Prucha (1998) proved that this estimator is consistent.

Step 2: From Equation (3.13) we derive an estimate of the residuals:

ˆ =u y Zb− �  (3.26)

Step 3: To obtain a consistent estimator of the parameter r, Keleijan 
and Prucha (1998) suggested a GMM procedure introducing the fol-
lowing additional assumptions:

  (i) 4( )E e < ∞.
(ii) both matrix W and 1( )I Wr −−  are “absolutely summable” in the 

  sense that =1

n
iji

w c<∑  and =1

n
ijj

w c<∑ , with c a constant not

  depending on n, and similarly for 1( )I Wr −− .
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(iii) Qz, Q1 and Q2 are non-singular matrices with =  lim T
z nQ Z Z→∞ ; 

 1 = lim T
nQ Z Z→∞ Ω  and 1

2 = lim T
nQ Z Z−

→∞ Ω .

Assuming the previous conditions, let us write model (3.13) (3.14) in 
terms of scalar quantities. We have:

= +i i iy Z ub

and

=1

= +
n

i ij j i
i

u w u∑r e  (3.27)

Let us now define

=1

=
n

i ij j
i

u w u∑ ; 
=1

=
n

i ij j
i

u w u∑  and 
=1

=
n

i ij j
i

w∑e e  (3.28)

Hence, from Equation (3.27), we have:

=1

= =
n

i i i ij j i
i

u u u w u− − ∑r r e  (3.29)

=i i iu ur e−  (3.30)

Three moment conditions are derived in the following way. Squaring 
and averaging Equation (3.29) and (3.30) we have:

( ) ( )2 2 2

=1 =1

1 1
= =

n n

i i i i
i i

u u E
n n

−∑ ∑r e e  (3.31)

( ) ( )
2 2 2

=1 =1

1 1
= =

n n

i i i i
i i

u u E
n n

−∑ ∑r e e  (3.32)

Furthermore, multiplying Equation (3.29) by Equation (3.30) and 
 averaging we derive a third moment condition:

( )( ) ( )
=1

1
=

n

i i i i i i
i

u u u u E
n

− −∑ r r e e  (3.33)
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Notice that:

( )2 2=iE ee s ; ( )2 2=
T

i
W W

E tr
n

σee ; ( ) = 0i iE e e  (3.34)

as demonstrated by Kelejian and Prucha (1998). Furthermore substitut-
ing into Equations (3.31), (3.32) and (3.33) the empirical counterpart 
of u, say û (which was derived in Equation (3.26)) the three moment 
conditions, obtained by equating the theoretical moments to their 
empirical counterparts, become:

( )

( )
( )( )

2
2

=1

2
2

=1

=1

1 ˆˆ =

1 ˆˆ =

1 ˆˆ ˆˆ = 0

n

i i
i
n T

i i
i
n

i i i i
i

u u
n

W W
u u tr

n n

u u u u
n

σ

σ

⎧⎪⎪ −⎪⎪⎪⎪⎪⎪⎪⎪ −⎨⎪⎪⎪⎪⎪⎪⎪ − −⎪⎪⎪⎩

∑

∑

∑

e

e

r

r

r r

 (3.35)

with obvious notation, and, after simple algebraic manipulation:

2 2 2 2

=1 1 1

1 1 2ˆ ˆˆ ˆ+ =
n n n

i i i i
i i i

u u u u
n n n

σ
= =

−∑ ∑ ∑ er r

2 2 2 2

=1 =1 =1

1 1 2ˆ ˆˆ ˆ+ =
i

n n n T

i i i
i i i

W W
u u u u tr

n n n n
σ−∑ ∑ ∑ er r  (3.36)

2
2

=1 =1 =1 =1

1 1 1ˆ ˆˆ ˆ ˆˆ ˆ+ + = 0
n n n n

i i i i i i i
i i i i

u u u u u u u
n n n n

⎛ ⎞⎟⎜ ⎟⎜− ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ ∑ ∑ ∑r r

or:

2 2 2 2

=1 =1 =1

1 2 1ˆ ˆˆ ˆ=
n n n

i i i i
i i i

u u u u
n n n

σ− − −∑ ∑ ∑er r

2 2 2 2

=1 =1 =1

1 2 1ˆ ˆˆ ˆ=
n n nT

i i i i
i i i

W W
u u u tr u

n n n n
σ− − −∑ ∑ ∑er r  (3.37)

2
2

=1 =1 =1 =1

1 1 1ˆ ˆˆ ˆ ˆˆ ˆ+ =
n n n n

i i i i i i i
i i i i

u u u u u u u
n n n n

⎛ ⎞⎟⎜ ⎟⎜− −⎟⎜ ⎟⎟⎜⎝ ⎠
∑ ∑ ∑ ∑r r
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The three equations reported in (3.37) can be written more compactly 
in matrix notation as:

1 2 = 0A A−j  (3.38)

having defined:

( )

2

2
1

2

ˆ ˆ1 2 ˆ 1

ˆ ˆˆ1 2 1= ( )

ˆ ˆˆ ˆ1 1 ˆ 0

i i i

T
i i i

i i i i i

u u un n

A u u u tr W Wn n n

u u u u un n

⎡ ⎤
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥− +⎢ ⎥⎣ ⎦

∑ ∑
∑ ∑

∑ ∑ ∑

 (3.39)

2 2
2

1 1 1ˆ ˆˆ ˆ= ;T
i i i iA u u u u

n n n

⎡ ⎤
⎢ ⎥− − −
⎢ ⎥⎣ ⎦

∑ ∑ ∑  (3.40)

and

2 2= , ,T σ⎡ ⎤
⎣ ⎦ej r r  (3.41)

Thus a consistent estimator of the parameters’ vector can be obtained 
by solving Equation (3.38) with respect to j obtaining:

( )1 2 2
1 2 ˆ ˆ ˆ= = , ,A A−

ej r r s  (3.42)

Step 4: Use the estimator r̂, thus obtained, to estimate the elements of 
the correlation matrix Ω reported in Equation (3.15) as:

( ) ( ) 11ˆ ˆ ˆ= TI W I Wr r
−−Ω − −  (3.43)

Step 5: Finally, estimate the regression parameter b via GLS by substi-
tuting the variance-covariance matrix derived in Equation (3.43) into 
expression (1.47) thus obtaining:

( ) 1
1 1ˆ ˆ ˆ= T T

FGLS Z Z Z yb
−

− −Ω Ω  (3.44)

This operation corresponds to applying the GLS method to the 
 transformed data ˆ ˆ( ) = ( ) +I W y I W Zr r b e− − .
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Example 3.2 The relationship between used car price and 
taxes in 48 US states

As an example of the Spatial Error model, let us consider the dataset related 
to the price of used cars by state in 1960 and of the tax and delivery charges 
for new cars by state in the period 1955–59. This dataset is very popular in 
spatial econometrics and can be easily downloaded in the R environment 
using the procedure illustrated in section 2.3.5.

The map of the 48 states considered is shown in the following figure 
(Alaska and Hawaii were discarded because they are isolated from the 
rest. The District of Columbia was also discarded for its exceptional 
features).
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The following table shows the data.

n. States tax price n. States tax price n. States tax price

 1 Washington 129 1461 17 Nebraska 159 1547 33 Maryland 135 1466
 2 Maine 218 1601 18 Illinois 139 1510 34 Virginia 171 1468
 3 Minnesota 176 1469 19 Georgia 96 1572 35 Missouri 164 1627
 4 Michigan 252 1611 20 S. Carolina 133 1509 36 Indiana 161 1502
 5 New Hampshire 186 1606 21 Mississippi 82 1586 37 Idaho 174 1555
 6 Vermont 154 1491 22 Oklahoma 159 1460 38 Montana 153 1465
 7 Wisconsin 92 1536 23 Arkansas 136 1468 39 W. Virginia 172 1601
 8 New York 150 1517 24 Alabama 196 1631 40 Kansas 133 1463
 9 Wyoming 149 1481 25 Texas 97 1584 41 Kentucky 178 1511
10 Massachusetts 168 1659 26 Louisiana 220 1636 42 N. Carolina 257 1647
11 Connecticut 138 1515 27 Florida 96 1539 43 Tennessee 112 1559
12 Rhode Island 52 1460 28 Utah 89 1520 45 N. Dakota 93 1495
13 Ohio 195 1592 29 Colorado 185 1626 46 Oregon 265 1592
14 Iowa 141 1574 30 Nevada 115 1544 47 S. Dakota 105 1470
15 New Jersey 144 1418 31 Delaware 122 1477 48 New Mexico 58 1473
16 Pennsylvania 165 1509 32 California 153 1609 49 Arizona 188 1655

Let us start calculating, for the purpose of comparison, the OLS estimates
of a simple regression model 0 1= + +y xb b e, where y = price in 1960 and

x = tax and delivery charges in 1955–59. The results are shown here below 
together with the main test statistics.

Parameter Standard Error t-test p-value

b0 1435.7506 27.5796 52.058 2e–16***

b1 0.6872 0.1754 3.918 0.000294***

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

F-test = 15.35 (p-value = 0.000294***) 
AIC = 528.3317 BIC = 533.945    JB test =1.8906 (p-value = 0.3886)
BP test = 0.0013 (p-value = 0.971) 

The F-test is highly significant and leads to the acceptance of the model. 
Furthermore, both parameters are significant at the usual confidence level. 
Both the JB and the BP tests are not significant, thus leading to the acceptance 
of the two hypotheses of normality and homescedasticity. The table below 
summarizes the calculation of the Moran I test statistic for the hypothesis of 
spatial correlation of the residuals. The W matrix used is based on simple 
adjacency and is row-standardized.

Moran’s I Test 

Observed Value Expected Value Variance z-test p-value

Moran’s I 0.574817771 –  0.030300549 0.008976437 6.38687 8.466e–11***
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The test shows that there is evidence of a highly significant positive residual 
spatial correlation. All in all, the model is not satisfactory and, given the evi-
dence of a residual positive and significant spatial correlation, we have clear 
indications of a Spatial Error model as an alternative framework. First of all, 
let us estimate the model using the maximum likelihood technique (see section 
3.4.2). The results are shown here below:

Parameter Standard Error t-test p-value

b0 1528.34521 31.96239 47.8170 2e–16***

b1 0.08831 0.11923 0.7406 0.4589

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

r = 0.81899 LR-test = 40.899 (p-value=1.603e–10)   Wald statistics = 122.32 
(p-value = 2.22e–16)

AIC = 489.43   BIC = 496.9174        JB test = 2.0845 
(p-value = 0.3527)

The tests now show that the regression coefficient related to the variable 
tax is not significant, while the parameter r is highly significant evaluated 
through the likelihood ratio test (see Equation (1.31)) and through the Wald 
test (see Equation (1.33)). So the spatial dependence among the residuals 
explains most of the model’s variability and the model reduces to a pure 
autoregression (case of b = 0 and either r or l also equal to 0. See Section 3.2) 
where the price in one country is explained just by the price in the  neighboring 
countries.

To finish with, let us estimate the same Spatial Error model using now the 
Feasible Generalized Least Squares estimators discussed in section 3.4.3. The 
results are shown in the following table:

Parameter Standard Error t-test p-value

b0 1512.98359 28.69940 52.7183 2e–16***

b1 0.17802 0.15018 1.1854 0.2359

r 0.65398 0.2184 3.1017 0.00096206***

s2 1672.5

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

JB test =2.85351 (p-value = 0.2423)
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The FGLS estimates substantially confirm the conclusions of the ML estima-
tion: the variable tax is not significant and the price of used cars in one coun-
try can be explained by a pure spatial autoregressive model. Notice, however, 
that the estimates of b0 and r are different using the two procedures and, in 
particular, the value of r is larger if estimated through the ML procedure. 
Notice also that the ML procedure produces standard errors that are different 
from those produced by the FGLS alternative.

3.5 The Spatial Lag Model (SLM)

3.5.1 Generalities

When l ≠ 0 and r = 0 the model becomes:

= + +       1y Wy Z ul b l <  (3.45)

with 2. . . (0, )u n nu X i i d N Is≈ . This model is referred to in the literature as 
the Spatial Lag Model (SLM) (Anselin, 1988; Arbia, 2006).

In this case, a problem of endogeneity emerges in that the spatially 
lagged value of y is correlated with the stochastic disturbance. In fact, 
using the same argument reported in Equation (3.18), we have that
( ) = +I W y Z ul b−  and ( ) ( )1 1= +y I W Z I W ul b l− −− −  so that the
correlation between the lagged term WY and the error can be expressed as:

( ) ( ) ( )

( ) ( ) ( )
( )e

l b l

l b l

s l

− −

− −

−

⎡ ⎤⎡ ⎤ = − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤= − + − ⎣ ⎦

= − ≠

1 1

1 1

12

                   

                   0

T T

T T

E Wy u E W I W Z I W u u

W I W Z E u W I W E uu

W I W I

so, in the presence of endogeneity, a GLS procedure cannot be employed.
Two alternative estimators have been suggested in the literature:

  (i) Maximum Likelihood
(ii) Two-Stage Least Squares (2SLS)

3.5.2 Maximum Likelihood Estimator

First of all, notice that re-writing Equation (3.45) as ( ) = +  I W y Z ul b−
we have:

1 1= ( ) + ( )  y I W Z I W ul b l− −− −
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so that:

( ) ( ) ( ) ( )1 1 1= + =E y E I W Z I W u I W Zl b l l b− − −⎡ ⎤− − −⎣ ⎦  (3.46)

and

( ) ( ) ( )12 2= =TTE yy I W I We es l l s− −− − Ω  (3.47)

Hence, the likelihood of y can be expressed as:

}

1
2 2 12

2

1 1

1
( , , ; ) = exp ( )

2

                       ( )

T
L y const y I W Z

y I W Z

σ σ
σ

− −

− −
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e
e
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l b

 (3.48)

and, therefore, the log-likelihood as:

2 2 1
2

1 1

1 1
( , , ; ) = ln ( )

2 2

                     ( )

T
l y const y I W Z

y I W Z

σ σ
σ
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− −

⎡ ⎤− Ω − − −⎣ ⎦

⎡ ⎤Ω − −⎣ ⎦�

e
e

l b l b

l b
 (3.49)

Using the expression reported in Equation (3.47), the determinant of 
the matrix s2

e Ω can be written as:

( ) ( ) ( ) ( )1 12 2 2= =T TnI W I W I W I W− − − −Ω − − − −e e es s l l s l l

and, since ( ) ( )1 TI W I Wl l− −− −  = ( ) ( )1 TI W I Wl l− −− − , it can be

also expressed as:

( ) 22 2= n I W
−Ω −e es s l  (3.50)
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Let us now go back to the log-likelihood and substitute Equations 
(3.47) and (3.50) into Equation (3.49). We obtain:

( )22 2
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( , , ; ) = ln

2
1

                     ( ) ( ) ( )
2

                     ( )

n

T T

l y const I W

y I W Z I W I W

y I W Z

σ σ

σ

−

−− − −

−

− −

⎡ ⎤ ⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤− −⎣ ⎦

e

e

l b l

l b l l

l b�

2 1
2

1

1
= ln + ln ( )

2 2

  ( ) ( ) ( )

T

T

n
const I W y I W Z

I W I W y I W Z

σ
σ

−

−

⎡ ⎤− − − − −⎣ ⎦

⎡ ⎤− − − −⎣ ⎦

e
e

l l b

l l l b�

 (3.51)

and, since 1( ) ( )I W y I W Zl l b−⎡ ⎤− − −⎣ ⎦  = ( )I W y Zl b− − , we eventually 
obtain:

[ ] [ ]

2

2

2( , , ; ) = ln + ln
2

1
                   ( ) ( )

2
T

n
l y const I W

I W y Z I W y Z

e

e

s l b s l

l b l b
s

− −

− − − − −
 (3.52)

an expression that can be maximized numerically to obtain the 
 estimators for the unknown parameters s2, l and b.

3.5.3 Two-Stage Least Squares estimators

As an alternative to the ML estimators, in order to eliminate the endo-
geneity problem, we can also use a Two-Stage Least Squares strategy. To 
implement the method we need, first of all, to identify proper instru-
ments that can eliminate the endogeneity problem arising from the spa-
tially lagged term Wy. In other words, we need to identify instruments 
that are correlated with Wy (relevance) and uncorrelated with the error 
term (exogeneity).

Consider the fact that, from (3.46) we have:

( ) ( ) ( ) ( )1 1 1= + =E y E I W Z I W u I W Zl b l l b− − −⎡ ⎤− − −⎣ ⎦  (3.53)
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now, since |l|<1 we can expand the inverse matrix in (3.53) and write:

( ) 1 2 2 3 3= + + + ...I W I W W Wl l l l−−

Hence

( ) 2 2 3 3

2 2

= + + ...

       = + ...

E y I W W W Z

Z WZ W Z

l l l b

b lb l b

⎡ ⎤+⎣ ⎦
+ +

 (3.54)

so that E(y) can be expressed as a linear function of Z,WZ,W2Z,…. This 
suggests the use of the first three elements of the expansion (3.54), that 
is to say Z,WZ,W2Z, as relevant instruments to eliminate the endogene-
ity of Wy. Let us refer to this set of instruments as the n-by-3k matrix

2
3 = , ,n k n k n n n k n n n kH Z W Z W Z⎡ ⎤⎣ ⎦.

Let us now write equation (3.45) as follows:

= +y M uq  (3.55)

with the set of regressors [ ]+1 1= ,n k n n n n kM W y Z  and [ ]+1 1 1= ,k kq l b  the 

vector of unknown parameters.
In the first stage of the two-stage procedure, the independent vari-

ables M are regressed on the instruments H through the instrumental 
regression:

= +M Hg h  (3.56)

with h an error term. The parameters in Equation (3.56) are then 
 estimated via OLS producing:

1ˆ = ( )T TH H H M−g  (3.57)

by which we derive the estimated value of M, say M̂, which is given by:

1ˆ ˆ= = ( )T TM H H H H H M−g  (3.58)
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In the second stage of the two-stage procedure, we estimate via OLS the 
relationship between y and the instrumented regressors, that is:

ˆ= +       y M uθ  (3.59)

obtaining the two-stage estimators of the parameters θ given by:

( ) 1

2̂
ˆ ˆ ˆ= T T

SLS M M M yθ
−

 (3.60)

Example 3.3 House price determinants in Boston

Let us consider an example of the Spatial Lag model. The data we are using 
were collected by Harrison and Rubinfield (1978) and integrated by Gilley 
and Pace (1996) and are very popular in spatial econometrics. They are con-
tained in the dataset Boston and can be downloaded through R by using the 
procedure illustrated in section 2.3.5. The data refer to the median house price 
observed in 506 Boston area census tracts together with a series of variables 
that can be thought of as being potential determinants of the house value.

The map of the 506 census tracts, represented through their centroids, is 
shown in the graph below, while the list of variables, contained in the data-
base, is shown in the following table. 
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Variable Variable Description

 1 MEDV Median value of owner-occupied housing expressed in 
thousands of USD

 2 CRIM Value of per-capita crimes
 3 RM Average number of rooms per dwelling
 4 INDUS Proportion of non-retail business acres per town
 5 NOX Value of the NOX (nitric oxides) concentration (parts 

per 10 millions) per town
 6 AGE Proportion of owner-occupied units built before 1940
 7 DIS Weighted distance from five Boston employment centers
 8 RAD Index of accessibility to radial highways per town
 9 PTRATIO Pupil to teachers ration per town
10 B A transformed proportion of blacks
11 LSTAT Percentage of lower status population 
12 TAX Full-value property tax per USD 10,000 per town

Let us start calculating a simple regression model estimated via OLS. We wish 
to test if the price of the house can be expressed as a function of the 11 possi-
ble factors listed in the previous table. The results of a simple OLS estimation 
are shown here below, together with the test statistics.

Parameter Estimated Value Standard Error t-test p-value

Intercept 37.308337 5.199690 7.175 2.66e–12***
CRIM – 0.103402 0.033339 – 3.102 0.002035**
RM 4.074379 0.420639 4.074379 9.686 < 2e–16***
INDUS 0.018212 0.062015 0.294 0.769138
NOX – 17.829176 3.889690 – 4.584 5.79e–06 ***
AGE –0.002647 0.013353 –0.198 0.842957
DIS –1.210182 0.186123 –6.502 1.94e–10***
RAD 0.304603 0.066878 4.555 6.62e–06***
PTRATIO – 1.131146 0.126079 – 8.972 < 2e–16***
B 0.009853 0.002735 3.603 0.000346 ***
LSTAT – 0.525072 0.051543 – 10.187 < 2e–16***
TAX – 0.010901 0.003710 – 2.939 0.003452**

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

F-test = 121 (p-value = 2.2e–16 ***)
AIC = 3045.227 BIC = 3100.172        JB test =936.7417 

(p-value =2.2e–16***)
BP test = 59.2137 (p-value= 1.297e–08***)
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The F-test is highly significant and leads to the acceptance of the model. 
Furthermore all variables apart from INDUS and AGE are also significant at the 
usual confidence level. In particular, the variables RM, RAD and B are signifi-
cantly positive, while CRIME, NOX, DIS, LSTAT and TAX present a negative sign. 
Notice that both the JB and the BP tests are significant, thus leading us to reject the 
hypotheses of normality and homoscedasticity. We employed a row- standardized 
distance-based weight matrix, considering neighbors as two sites if the distance 
between their centroids was less than 3.99 units in the previous graph.

The table here below summarizes the calculation of the Moran I test statis-
tic for the hypothesis of spatial correlation of the residuals. 

Moran’s I test 

Observed value Expected value Variance z-test p-value

Moran’s I 0.0780022170 – 0.0071438650 0.0001598831 6.7338 8.262e–12***

The test shows that there is evidence of a positive and highly significant spatial 
correlation in the regression residuals that motivates further analysis. In our case, 
since we are referring to very small areal units (the census tracts), it is certainly 
reasonable to speculate that the house value changes smoothly through space, 
in that expensive neighborhoods will tend to concentrate in certain zones of the 
city, thus displaying positive spatial correlation. For these reasons we can test if 
a Spatial Lag model achieves a better fit to our data while removing the residual 
correlation.

First of all, let us estimate the model using the Maximum Likelihood 
 technique (Section 3.5.2). The results are shown below:

Parameter Estimated Value Standard Error t-test p-value

Intercept 28.378 5.8225 4.8739 1.094e–06***
CRIM – 0.097501 0.032606 –2.9902 0.0027877***
RM 3.8432 0.41351 9.2941 < 2.2e–16***
INDUS – 0.00071563 0.060617 –0.0118 0.9905805
NOX – 13.602 4.0537 –3.3555 0.0007921***
AGE 0.0016953 0.013242 0.1280 0.8981255
DIS – 1.1782 0.18339 –6.4249 1.320e–10***
RAD 0.29274 0.065501 4.4693 7.848e–06***
PTRATIO – 0.97610 0.13042 –7.4845 7.172e–14***
B 0.0098041 0.0026659 3.6776 0.0002354***
LSTAT – 0.52343 0.050249 –10.4167 < 2.2e–16***
TAX – 0.010491 0.0036223 –2.8962 0.0037769***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 
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l = 0.22019   LR-test= 12.492      Wald statistics = 13.16 
(p-value=0.00040864***) (p-value = 0.00028602***)

AIC = 3034.7 BIC =3093.906       JB test = 1144.455 
(p-value = 2.2e–16***)

LM test for residuals = 13.341 (p-value = 0.00025969***)

The t-tests show that, again as in the OLS case, all variables apart from 
INDUS and AGE are significant, with a sign which is in accordance with the 
OLS estimation. The regression coefficient related to the variable TAX is not 
significant, while both the Likelihood Ratio test and the Wald test show that 
the parameter l is highly significant. 

The Spatial Lag specification, however, while emphasizing the impor-
tant feature of a spatial dependence of the house prices, has not completely 
removed the problem of residual spatial autocorrelation. In fact, the LM test 
for residuals shows that there is still some positive and significant residual 
correlation.

Let us, finally, estimate the same Spatial Lag model using the Two-Stage 
Least Squares technique presented in section 3.5.3. The results are displayed 
here below:

Parameter Estimated Value Standard Error t-test p-value

l 0.22047 0.068558 3.02158 0.0013008***
Intercept 28.367 5.8399 4.8574 1.189e–06***
CRIM – 0.097493 0.032978 – 2.9563 0.0031137***
RM 3.8429 0.04.2163 9.1145 < 2.2e–16***
INDUS – 0.00073982 0.061532 – 0.0120 0.9904070
NOX – 13.597 4.0608 – 3.3484 0.0008129***
AGE 0.0017009 0.013257 0.1283 0.8979109
DIS – 1.1782 0.18409 – 6.4001 1.553e–10***
RAD 0.29273 0.066155 4.4248 9.651e–06***
PTRATIO – 0.97590 0.13355 – 7.3073 2.727e–13***
B 0.0098041 0.0027008 3.6300 0.0002834***
LSTAT – 0.52343 0.050909 – 10.2818 < 2.2e–16***
TAX – 0.010490 0.0036662 – 2.8614 0.0042179***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

JB test = 1144.613 (p-value =2.2e–16***)

The Two-Stage Least Squares substantially confirm the conclusions of the 
ML estimation in terms of both the sign and the significance of the variables. 
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In particular, it confirms that the proportion of non-retail business acres per 
town (INDUS) and the presence of old buildings in the area (AGE) have no 
significant effects on the median house price. Finally, the significance of the 
parameter l is confirmed and its estimated value is very similar to the one esti-
mated via Maximum Likelihood. Notice, however, that in contrast to the ML 
method, the 2SLS technique does not require the hypothesis of normality to 
be satisfied so that in this case (given the evidence of non-normality provided 
by the Jarque–Bera test) it provides more reliable estimates. Both estimation 
methods, however, lead to models that are not entirely satisfactory due to the 
presence of persistent positive significant correlation among the residuals. If 
in a spatial model the inclusion of the spatial lag is not enough to remove the 
non-sphericalness among the residuals it might be necessary to include some 
extra spatial components. This provides a scope to the theory which we will 
develop in the next section.

3.6 The general SARAR(1,1) Model

3.6.1 Generalities

To start with, let us consider the case where, in Equations (3.1) and 
(3.2), we set β = 0. We have:

= +    1y Wy u <l l  (3.61)

= +    1u Wu <r e r  (3.62)

we thus have:

( ) ( ) 1=      y =I W y u I W u−− −l l  (3.63)

and

1( ) =        u = ( )  I W u I W −− −r e r e  (3.64)

Combining (3.63) and (3.64) we have:

( ) 1 1y = ( )  I W I W− −− −l r e  (3.65)
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and, as a consequence

( ) ( ) ( )

( ) ( )

1 1

12 1

2

( ) ( )

            ( ) ( )

           

TT T T

T T

E yy E I W I W I W I W

I W I W I W I We

e

l r ee l r

s l r l r

s

− −− −

− −− −

⎡ ⎤= − − − −⎣ ⎦

= − − − −

= Ω

 (3.66)

so that the inverse of Ω is now:
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where the two parameters l and r are present in the form of a sum 
and of a product and so they cannot be identified univocally. This fact 
has been considered in the literature to suggest that a complete model 
of the kind reported in Equations (3.61) and (3.62) is not feasible in 
practice. However, Kelejian and Prucha (1998) proved that this only 
happens when β = 0 and it is not the case conversely when β ≠ 0, which 
is what usually happens in the generality of cases of interests in spatial 
econometrics. In this case we can define a more general spatial model 
which encompasses the Spatial Lag and the Spatial Error models previ-
ously discussed in sections 3.4 and 3.5. This model, as already said, was 
termed a SARAR(1,1) model by Kelejian and Prucha (1998), but is also 
referred to in the literature as the General Spatial Model by Anselin (1988) 
or as an SAC model by LeSage and Kelly (2009).

If we consider the general SARAR model we thus have

= + +       1y Z Wy u <b l l  (3.68)

= +                 1u Wu <r e r  (3.69)

with 2. . . (0, )n nX i i d N Iσ≈ ee .

Model (3.68) and (3.69) presents two major estimation problems. 
First, similar to the case of the SLM examined in the previous section, 
we have a problem of endogeneity associated to the presence of the 
lagged term Wy. Secondly, due to the presence of the autoregression in 
the stochastic disturbance in Equation (3.69), we cannot employ a GLS 
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strategy unless the parameter ρ is known. In this case we can exploit the 
following estimation alternatives:

 (i) Maximum Likelihood
  (ii) A spatial version of the Two-Stage Least Squares (GS2SLS)
(iii) Lee’s Instrumental Variable estimators (LIV)

Maximum likelihood is feasible, but presents the limitation that there is 
currently no formal proof that the estimators possess the usual optimal 
large sample properties. The GS2SLS estimators are not fully efficient. 
The LIV estimator achieves more efficient estimators than GS2SLS, even 
if the gain in efficiency is only limited. The three alternative estimators 
will be now discussed in turn.

3.6.2 Maximum Likelihood Estimator

Let us consider again the full model contained in Equations (3.1) 
and (3.2)

= + +    1y Z Wy u <b l l  (3.70)

= +    1u Wu <r e r  (3.71)

From Equation (3.70) we have

( ) ( ) 1E y = I W Z−− l b  (3.72)

and also

( ) ( ) ( )

( ) ( )

1 1

12 1 2

= ( ) ( )

           = ( ) ( ) =

TT T T

T T

E yy E I W I W I W I W

I W I W I W I Wσ σ

− −− −

− −− −

⎡ ⎤− − − −⎢ ⎥⎣ ⎦

− − − − Ωe e

l r ee l r

l r l r
 (3.73)

hence, maintaining the hypothesis of normality on the disturbances, 
we have:

( ) 1 2;y N I W X σ−⎡ ⎤≈ − Ω⎢ ⎥⎣ ⎦el b  (3.74)
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Now, remembering the simplification of the determinant 2σ Ωe  reported 
in Equation (3.50) the likelihood is easily derived as:

( )

}

σ σ

σ

−

−

− −

− −

⎧⎪⎪ ⎡ ⎤− − −⎨ ⎣ ⎦⎪⎪⎩
⎡ ⎤Ω − −⎣ ⎦

22 2
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2
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2

                         ( )

n
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e

e

r l b l r

r b
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�

�

and the log-likelihood as:

σ σ
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I W I W I W

y I W Z

e

e

l r b l r
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 (3.75)

and, since 1( ) ( )I W y I W Z−⎡ ⎤− − −⎣ ⎦l l b  = ( )I W y Z− −l b , we eventually 
obtain:

( )

( )

σ σ

σ

− − −

⎡ ⎤− − − −⎣ ⎦

⎡ ⎤− − −⎣ ⎦

2 2

2

( , , , ; ) = ln + ln + ln
2

1
                       ( )

2

                       ( )

T

n
l y coust I W I W

I W y Z Wy

I W y Z Wy

e

e

l r b l r

r b l

r b l�

 (3.76)

This, as usual, can only be maximized numerically to derive the esti-
mators of the unknown parameters. The previous expression can be 
written in a different way by considering the following transformations 
known in the literature as the spatial Cochrane–Orcutt transform:

* = ( )y I W y− r

and

* = ( )Z I W Z− r



78 A Primer for Spatial Econometrics

Expressed in this way the log-likelihood becomes:

σ σ

σ

− −

⎡ ⎤− − − −⎢ ⎥⎣ ⎦

⎡ ⎤− −⎢ ⎥⎣ ⎦

2 2

2
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I W y Z Wy
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e

e

l r b l

r b l

b�

 (3.77)

As mentioned already, currently there is no formal proof that the above 
ML estimator possesses the usual optimal large sample properties of an 
ML estimator. For this reason (and also to overcome the computational 
problems arising from the calculation of the log-determinant in large 
samples) the literature has suggested a spatial version of the Two-Stage 
Least Squares which will be discussed in the next section.

3.6.3 The Generalized Spatial Two-Stage Least Squares (GS2SLS)

The Generalized Spatial Two-Stage Least Squares (GS2SLS) was intro-
duced by Kelejian and Prucha (1998) and accounts for both the problem 
of endogeneity of Wy and the problem of spatial correlation among 
the stochastic disturbances. It is an extension of the 2SLS methodology 
already illustrated in section 3.5.3 for Spatial Lag models, but it is com-
bined with the GMM estimator presented in section 3.4.3 to account for 
the spatial correlation structure in the disturbances.

The GS2SLS procedure can be obtained using the following steps:

Step 1:  first of all obtain a consistent estimate of the parameters b 
and  l, say b~ and l~

Step 2:  use these estimates to obtain an estimate of u in Equation 
(3.70), say û

Step 3:  use û to estimate r in Equation (3.71), say r̂
Step 4:  use r̂ to transform model (3.70) as

ˆ ˆ( ) = ( ) +I W y I W Z− −r r b e

Step 5: finally, estimate the parameters of such a transformed model

    using 2SLS with the transformed variables * ˆ= ( ) ;Z I W Z− r  

     * ˆ= ( )WZ W I W Zρ−  and 2 2* ˆ= ( )W Z W I W Zρ−  as instruments.
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These steps will be now discussed in detail.

Step 1: Estimate the parameters of (3.70) consistently accounting for 
the problem of endogeneity via the 2SLS estimator using Z and WZ 
as instruments. The motivation for this choice follows the same argu-
ment already used in section 3.4.3. Let us refer to the estimates thus 
obtained with the symbols b~ and l~.

Step 2: From Equation (3.68) derive

ˆ =u y Z WY− −� �b l  (3.78)

and consequently we define:

ˆ ˆ=u Wu  (3.79)

2 ˆ=      u W u  (3.80)

Step 3: Use the terms in Equations (3.78) to (3.80) to obtain a 
consistent estimator of r via the generalized Method of Moments 
procedure introduced in section 3.5.3 and in particular using the 
moments conditions contained in Equation (3.38). Let us call r̂ such 
a consistent estimator of r.

Step 4: Use the estimate r̂ obtained in Step 3 to transform the original 
model as follows:

( )ˆ ˆ( ) = ( ) +I W y I W Z Wyρ ρ− − −b l e  (3.81)

Step 5: Finally, estimate b and l in Equation (3.81) using a 2SLS  procedure 

with 2= , ,H X WX W X⎡ ⎤
⎣ ⎦  as instruments. In this way we obtain:

2
* * *ˆ ˆ= T T

GS SLS Q Q Q yδ ⎡ ⎤
⎢ ⎥⎣ ⎦

�  (3.82)

where  [ ],δ ≡ b l , [ ]= ,Q Z Wy , * = ( )Q I W Qρ− �  and * 1 *ˆ = ( )T TQ H H H H Q− .

Kelejian and Prucha (1998) showed that, under the model’s assumptions, 
the GS2SLS estimators are consistent with an asymptotic variance equal to:

1
2 * *ˆ ˆTQ Qσ

−⎡ ⎤
⎢ ⎥⎣ ⎦e  (3.83)



80 A Primer for Spatial Econometrics

3.6.4 The fully efficient Lee estimators

Even if the GS2SLS estimators are consistent, it has been proved that 
they are not asymptotically fully efficient. To eliminate this problem, 
an asymptotically efficient alternative estimator was suggested by Lee 
(2003) known in the literature as Best Feasible GS2SLS or BFGS2SLS for 
short.

In the suggested procedure the optimal instrument matrix is defined 
as follows:

−⎡ ⎤− −⎢ ⎥⎣ ⎦
� ��* 1= ( ) , ( )Q I W Z W I W Zl b  (3.84)

with the symbols already used in section 3.6.3. The BFGS2SLS estimator 
is defined as:

1* * * *
2

ˆ = T T
BFGS SLS Q Q Q yδ

−⎡ ⎤⎢ ⎥⎣ ⎦  (3.85)

Such an estimator achieves the theoretical lower bound for the variance 
in large samples. The computation of the instrument in Equation (3.84), 
however, involves an operation that can be numerically challenging in 
very large samples. For this reason, even if Lee (2003) himself derives 
a numerical algorithm, he also suggests an alternative estimator, much 
simpler in terms of computation. Kelejian et al. (2004) show with a 
simulation study that in small samples both the BFGS2SLS and its sim-
plified version do not differ substantially in terms of efficiency from 
the GS2SLS.

Example 3.4 House price determinants in Boston (continued)

In Example 3.3 we estimated a Spatial Lag model seeking to explain the 
spatial variability of house prices among 506 census tracts in Boston. The 
estimation phase was not entirely satisfactory in that, both using the ML and 
the 2SLS techniques, there was still some positive significant spatial correla-
tion among the regression residuals. Let us re-estimate again the same model 
by specifying it as a SARAR(1,1). 

First of all, as usual, let us start by estimating the model with the 
maximum likelihood technique (section 3.6.2). The results are shown in 
this table:
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Parameter Estimated Value Standard Error t-test p-value

l 0.072404 0.093996 0.77029 0.44113
r 0.52612 0.1141 4.611 4.0068e-06***

Intercept 38.2472606 6.0539170 6.3178 2.654e-10***
CRIM –0.1164539 0.0325364 –3.5792 0.0003447***
RM 3.8363958 0.4074820 9.4149 < 2.2e-16***
INDUS –0.0069422 0.0617867 –0.1124 0.9105396
NOX –19.4589672 4.1417000 –4.6983 2.623e-06***
AGE –0.0177129 0.0140407 –1.2615 0.2071146
DIS –1.4637506 0.2609413 –5.6095 2.029e-08***
RAD 0.3216872 0.0726696 4.4267 9.568e-06***
PTRATIO –1.0251807 0.1379809 –7.4299 1.088e-13***
B 0.0098786 0.0026440 3.7362 0.0001868***
LSTAT –0.5162812 0.0496707 –10.3941 < 2.2e-16***
TAX –0.0112292 0.0038528 –2.9145 0.0035622***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

r = 0.52612    LR-test= 26.375       JB test = 1085.642 
       (p-value= 1.8734e–06***) (p-value =2.2e–16***)
AIC = 3022.9 BIC =3086.249

The results are comparable to those of the models estimated in Example 3.3 
in terms of the significance and of the sign of the variables. The parameter r 
related to the residual spatial autocorrelation is positive and significantly dif-
ferent from zero, while the parameter l is also positive, but not significantly 
different from zero. Let us further consider the results related to the same model, 
but estimated using the Generalized Spatial Two-Stage Least Squares technique 
presented in section 3.6.3. These results are shown in the following table:

Parameter Estimated Value Standard Error t-test p-value

l 0.1685872 0.0824706 2.0442 0.0409328**
Intercept 33.8711396 5.9812413 5.6629 1.488e–08***
CRIM – 0.1096767 0.0329242 – 3.3312 0.0008648***
RM 3.8187552 0.4155824 9.1889 < 2.2e–16***
INDUS – 0.0064382 0.0624589 – 0.1031 0.9179000
NOX –17.1885687 4.1399033 – 4.1519 3.297e–05***
AGE – 0.0112438 0.0138795 – 0.8101 0.4178827
DIS – 1.3975787 0.2282525 – 6.1229 9.186e–10***
RAD 0.3156587 0.0713019 4.4271 9.552e–06***
PTRATIO – 1.0002552 0.1384726 – 7.2235 5.067e–13***
B 0.0098127 0.0026849 3.6548 0.0002574***
LSTAT – 0.5195838 0.0505312 – 10.2824 < 2.2e–16***
TAX – 0.0110596 0.0038402 – 2.8800 0.0039772***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 
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r = 0.35868

JB test = 1129.996 (p-value =2.2e–16***)

The estimates based on the Two-Stage Least Squares substantially confirm the 
conclusions of the ML estimation in terms of both the sign and the significance 
of the variables. In particular, it confirms that the proportion of non-retail busi-
ness acres per town (INDUS) and the presence of old buildings in the area (AGE) 
have no significant effects on the median house price. Finally, the significance of 
the parameter r is confirmed. The presence of significant non-normality of the 
residuals indicates that we should use the GSTSLS method which does not require 
such a hypothesis. Using this alternative estimator, the parameter λ, which was 
not significant using ML estimator, is also  significantly different from zero.

3.7 Testing spatial autocorrelation among the residuals 
with an explicit alternative hypothesis

In section 2.3.4 we discussed a testing procedure for the hypothesis 
of no spatial correlation among the OLS regression residuals based on 
Moran’s I statistics (Moran, 1950). A pitfall of this test statistic is that 
no  alternative hypothesis is explicitly considered to contrast the null 
of uncorrelation. In this chapter we have introduced some alternative 
formulations to the classical linear regression model based on various 
ways of taking into account the spatial dependence that is likely to be 
observed when dealing with spatial samples. These models can be con-
sidered as explicit alternative hypotheses to the case of uncorrelation in 
a testing procedure. Therefore the problem can now be approached in a 
more comprehensive way.

When we can explicitly express the alternative hypothesis either 
in the form of a Spatial Lag or of a Spatial Error, and a Maximum 
Likelihood strategy has been followed in the estimation phase, a 
Lagrange Multiplier test strategy can be followed (see section 1.1). 
Furthermore, for all the spatial models treated in this chapter, a modified 
version of Moran’s I statistics can be considered. These two alternatives 
will be now reviewed in sections 3.7.1 and 3.7.2 respectively.

3.7.1 Testing spatial autocorrelation among the residuals using 
SEM or SLM as alternatives

To begin, let us consider the general form of a Lagrange Multiplier test 
(see Equation (1.35)):

1
0 0 0= ( ) ( ) ( )TLM s I sθ θ θ−  (3.86)
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where θ is a vector of parameters, 0
( )

( ) =
L

s
∂ θθ
∂θ

 is the score function and

2

0
( )

( ) =
T

L
I E

∂ θθ
∂θ∂θ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 is the Fisher’s Information matrix associated with the  

likelihood function ( )L θ  under the null of no spatial correlation.

When the alternative hypothesis is specified as a Spatial Error Model 
the log-likelihood function assumes the expression derived in Equation 
(3.23). As a consequence, in this case, Equation (3.86) assumes the 
explicit expression:

( )

22 ˆ ˆ
=

ˆ ˆ+

T

SEM TT

n W
LM

tr W W WW

⎡ ⎤
⎢ ⎥
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e e
e e  (3.87)

which is simply the square of the Moran I test as demonstrated by 
Burridge (1980). So, using Moran’s I or the LM test will lead to the same 
inferential conclusions.

Conversely, in case the alternative hypothesis is specified in the form 
of the Spatial Lag Model, the log-likelihood is specified in Equation 
(3.52) and so Equation (3.86) becomes:

22 ˆ
=

ˆ ˆ

T

LAG T

n Wy
LM

Q

⎡ ⎤
⎢ ⎥
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e
e e

 (3.88)

with ( ) ( )
2

ˆ
ˆ= +

ˆ

T

x
WX

Q WX I M T
σ

−
e

bb , ( )= T T
xM X X X X , T = tr(WTW+WW) 

and with b̂  and 2σ̂e  denoting the maximum likelihood estimators
of the corresponding parameters of Equation (3.45). Sometimes a 
further alternative hypothesis is considered with an error structure 
that follows a Spatial Autoregressive and Moving Average structure. 
However, a detailed review of this alternative is not presented here. 
Both LMSEM and LMLAG are asymptotically distributed, under the 
null, as a c2 with 1 degree of freedom. However the two test statistics 
are not independent on one another so that one can only test the 
alternative hypothesis that the errors follow a SEM model assuming 
that there no spatial lag component and vice versa. For this reason 
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Anselin et al. (1996) proposed a robust version of both tests which can be 
expressed as:

2
1ˆ ˆ ˆ1

=
ˆ ˆ ˆ ˆ(1 )

T T

SEM T T

n W n Wy
RLM TQ

T TQ
−

⎡ ⎤
⎢ ⎥−⎢ ⎥− ⎣ ⎦

e e e
e e e e  (3.89)

for the alternative hypothesis of a Spatial Error Model and respectively:

2
ˆ ˆ ˆ1

=
ˆ ˆ ˆ ˆ

T T

LAG T T

n W n Wy
RLM

Q T

⎡ ⎤
⎢ ⎥−⎢ ⎥− ⎣ ⎦

e e e
e e e e

 (3.90)

using the Spatial Lag model as an alternative.

3.7.2 Testing spatial autocorrelation among the residuals using 
a spatial model as an alternative: the modified Moran I test

In section 2.2 we considered the statistic introduced by Moran (1950) 
and studied by Cliff and Ord (1972) to test the hypothesis of no spatial 
correlation among regression residuals. The statistic is reported here 
again for the convenience of the reader:

ˆ ˆ
=

ˆ ˆ

T

T
iji j

n W
I

w⎡ ⎤
⎢ ⎥⎣ ⎦∑ ∑

e e

e e
 (3.91)

ê  being the model’s residuals. More recently, Kelejian and Prucha (2001) 
have criticized this measure, arguing that the normalizing factor used 
by Cliff and Ord (1972) to derive its expected value and the variance 
under the null of no spatial correlation is not theoretically justified. In 
fact, the denominator of (3.91) represents the estimator of the standard 
deviation of the quadratic form appearing in the numerator and this can 
be proved to be inconsistent. For this reason, they proposed a different 
normalizing factor that removes this inconsistency and achieves the aim 
of normalizing the variance to unity. The alternative Moran test, in gen-
eral, assumes the following expression (see Kelejian and Prucha, 2001):

2

ˆ ˆ
=

TW
I

σ�
e e

 (3.92)

with 2σ�  a normalizing factor that depends on the particular model 
chosen as an alternative hypothesis. In particular, if the alternative 
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hypothesis is constituted by a Spatial Error model, the normalizing fac-
tor assumes the expression:

( ){ }
1

2

2
ˆ ˆ +

=
T Ttr W W W

n
σ

−⎡ ⎤
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e e
 (3.93)

with the term tr(A) indicating the trace of matrix A, which is the sum 
of its main diagonal elements. As a consequence the test statistics can 
be defined as:

( ){ }
1

2

ˆ ˆ
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ˆ ˆ +

T

T T

n W
I

tr W W W
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e e

e e  (3.94)

The two expressions reported in Equations (3.91) and (3.94) coincide 
if the weight matrix has dichotomous entries (0 and 1) in which case

2=ij ijw w and, therefore, ( ){ }
1

2= +T
iji j

w tr W W W
−⎡ ⎤

⎢ ⎥⎣ ⎦∑ ∑ .

In contrast, in the case of a SARAR(1,1) model, the normalizing factor 
can be derived in the following way. Consider again the two equations 
of a SARAR model:

(1) (2)= + + +  = Q + u     1y Wy X WX u δ <l b b l  (3.95)

= +                                                1u Wu <r e r  (3.96)

where we now set [ ]= ,Q Z Wy ; [ ]= ,Z X WX  as usual, = ,T T Tδ ⎡ ⎤
⎣ ⎦b r  and

(1) (2)= ,T T T⎡ ⎤⎢ ⎥⎣ ⎦b b b  and let us assume again the validity of the  assumptions

behind the GMM procedure described in section 3.4.3. Consider further 
the Generalized Spatial Two-Stage Least Square Estimators derived in 
Equation (3.82)

2
* * *ˆ ˆ= T T

GS SLS Q Q Q yδ ⎡ ⎤
⎢ ⎥⎣ ⎦

�  (3.97)

with 1* *ˆ = ( )T TQ H H H H Q−  and H the matrix of instruments

2= , ,H X WX W X⎡ ⎤
⎣ ⎦ , and let us further indicate with ˆ = y Qδ− �e  the
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GS2SLS residuals. In order to test the null hypothesis of no spatial 
correlation among the residuals (that is ρ = 0) against the alternative 
hypothesis that ρ ≠ 0 Kelejian and Prucha (2001) derived the following 
normalizing factor:

( ) ( ) ( ){ }
12 22 2 1 ˆ ˆˆ ˆ ˆ ˆ= + +T T T Tn tr W W W n c cσ − −⎡ ⎤

⎢ ⎥⎣ ⎦� e e e e  (3.98)

which, substituted into Equation (3.92), leads to the following modifi-
cation of the Moran I test statistics:

( )

( ) ( ) ( ){ }
12 22 1

ˆ ˆ
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e e

e e e e
 (3.99)

where, in addition to the previously introduced symbolism, we define

ˆˆ ˆ=c HP− a , 

11 * * *ˆ ˆ ˆ
ˆ =

T T TH H H Q Q Q
P

n n n

−− ⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟⎜⎟⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 and 

*ˆ ˆ( + )ˆ =
T TQ W W

n
ea . In

their contribution, Kelejian and Prucha (2001) prove that the modi-
fied Moran test I  converges in distribution to a standardized normal 
distribution even when the a priori assumption of the normality of 
the errors is not satisfied. Even if in large samples I  is N(0,1), in small 
samples its expected value and variance may be different. Their formal 
 expressions are derived in the quoted paper by Kelejian and Prucha 
(2001).

Example 3.5 Phillips curve (continued)

Let us consider again the Phillips curve estimated for the 20 Italian regions 
already discussed in Example 2.4. The OLS estimation leads to the model

= 9.827 + 8.746unempl pricesΔ − Δ  and the Moran test (0.3212607) on the
regression residuals (using a contiguity-based W matrix) was judged not 
significantly different from zero at 94%. As we know, Moran’s I test does 
not have an explicit alternative hypothesis. Let us now test the hypothesis 
of no spatial correlation in the residuals using the Spatial Lag and the 
Spatial Error as explicit alternatives to the hypothesis of no residual spatial 
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dependence. The results obtained are shown below together with their robust 
versions.

Test Statistic Test Value p-value

LMERR 2.8633 0.0906235

LMLAG 12.7722 0.0003518***

RLMERR 1.7170 0.1900785

RLMLAG 11.6260 9.0006504***

The table clearly reveals that, if compared with the Spatial Error model (as 
expected by the equivalence demonstrated by Burridge, 1980), the LM test con-
firms the finding of Moran’s I test in detecting non-significant residual spatial 
correlation. However, if compared with a Spatial Lag model the hypothesis of 
error spatial independence cannot be accepted. The robust versions of the two 
tests substantially confirms these findings.

3.8 Interpretation of the parameters in spatial econometric 
models

In a standard linear regression model the regression parameters have an 
easy interpretation in that they represent the partial derivative of the 
dependent variable y with respect to the independent variables:

=i i
i

y
X
∂

∂
b  (3.100)

they can therefore be straightforwardly interpreted as the variation induced 
on variable y of a unitary increase in the single independent variable Xi.

However, in the spatial econometric models presented in this chap-
ter the interpretation of the parameters is less immediate and requires 
some clarification. In fact, a variation of variable X observed in location 
i does not only have an effect on the value of variable y in the same 
location, but also on variable y observed in other locations. Consider, 
for instance, Okun’s Law model presented in Example 2.3. The model 
predicts that an increase in the level of GDP produces a decrease in 
the level of unemployment. Consider also, for simplicity, a Spatial Lag 
model. The model can be expressed as follows:

0 1
=1

= + +
n

i i ij j
j

unempl GDP w unemplΔ Δ Δ∑b b l  (3.101)
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In this case, an increase in the GDP in region i produces as an imme-
diate effect, a decrease in the level of unemployment in that region. 
However, given the spatial autoregressive mechanism considered in 
this framework, the variation of the level of unemployment in region i, 
also produces an effect on the level of unemployment in other neigh-
boring regions so that all impacts have to be evaluated simultaneously. 
This topic has been treated in the literature by Kelejian et al. (2006) 
and LeSage and Pace (2009) amongst others. The formal solution to 
the problem consists of evaluating the partial derivative (3.100) in 
each specific model. Consider, for example, the case of the Spatial Lag 
model:

= + +       1y Wy X u <l b l  (3.102)

which can also be written in the reduced form as:

1 1= ( ) + ( )y I W X I W u− −− −l b l  (3.103)

so that:

1( ) = ( )E y I W X−− l b  (3.104)

The impact of each variable X on y can then be described through

the partial derivatives 
( )E y
X

∂
∂

 which can be arranged in the following

matrix:

( )E y
X

∂
∂

 = 

1

1

1
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...
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( ) ( )
...

i

n

n n
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S
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⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
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 (3.105)

whose single entry is defined as:

( )
= i

ij
j

E y
s

X
∂

∂
 (3.106)
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On this basis, LeSage and Pace (2009) suggested the following impact 
measures that can be calculated for each independent variable Xi 
included in the model:

1.  A global measure, termed Average Direct Impact. This measure refers 
to the average total impact of a change in Xi on yi for each observa-
tion, which is simply the average of all diagonal entries in matrix S:

1 1

=1

( )
= ( ) =

n
i

ii

E y
ADI n tr S n

X
− − ∂

∂∑  (3.107)

2.  A measure related to the impact produced on one single observa-
tion by all other observations, termed Average Total Impact To an 
observation. For each observation this is calculated as the sum of 
the i-th row of matrix S:

1 1

=1 =1

( )
= =

n n
i

j ij
ji i

E y
ATIT n s n

X
− − ∂

∂∑ ∑  (3.108)

3.  A measure related to the impact produced by one single observa-
tion on all other observations, termed Average Total Impact From 
an observation. For each observation this is calculated as the sum 
of the j-th column of matrix S:

1 1

=1 =1

( )
= =

n n
i

i ij
jj j

E y
ATIF n s n

X
− − ∂

∂∑ ∑  (3.109)

4.  A global measure of the average impact obtained from the two 
 preceding measures:

1 1 1

=1 =1

= = =
n n

T
i j

j j

ATI n i Si n ATIT n ATIF− − −∑ ∑  (3.110)

which is simply the average of all entries of matrix S.
5.  A measure of the average indirect impact obtained as the differ-

ence between ATI and ADI:

=AII ATI ADI−  (3.111)

which is simply the average of all off-diagonal entries of matrix S.

Measures of relative impact for a general SARAR model can be similarly 
obtained by substituting the appropriate reduced form expressions in 
Equation (3.103).
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Example 3.6 Okun’s law in Italy (continued)

As an illustration of the impact measures described in the last section, let us 
consider again Okun’s Law in the 20 Italian regions described in Example 2.3 
in Chapter 2. In the example we estimated the model with a simple OLS esti-
mator neglecting spatial effects, but we observed a significant residual correla-
tion. Now, on the basis of the same W matrix used to calculate Moran’s I in 
Example 2.3 (that is, a row-standardized W matrix based on mere adjacency 
between regions corrected to include the islands), let us re-estimate the model 
as a Spatial Lag and let us compute the impact measures described in section 
3.8. The results are shown in the following table together with those based on 
OLS for the sake of comparison.

OLS Spatial Lag Model

Intercept 10.971*** 3.12275***
GDP –3.326*** –1.13532***
l – 0.7476***
ADI – –1.542448
AII – –2.95571
ATI – –4.498159

In the OLS framework the interpretation is straightforward: if we observe an 
increase of 1 unit in the GDP in one region we expect a decrease of –3.326 
units in the unemployment of the same region. Within the Spatial Lag frame-
work it would be wrong to interpret the regression slope in the same way. The 
“direct” effect of increasing the GDP of 1 unit is NOT a decrease of 1.13532 
units of unemployment, but rather a decrease of 1.542448 (see ADI in the 
Table). Furthermore, given the presence of “indirect” effects produced by the 
spillover of the increase of GDP from one region to all other regions (which is 
connatural with the Spatial Lag mechanism), an increase of 1 unit of GDP 
in one region produces a “total” impact that, on the average, is a reduction of 
4.498159 units of unemployment (ATI). Thus the impact is greater if we con-
sider a Spatial Lag model in place of the traditional a-spatial model due to the 
mechanism of geographical transmission which is incorporated in the former.

3.9 R Codes: estimating linear spatial models

All the R commands related to the procedures described in this chapter 
are contained in the library spdep. All the commands are very similar 
to the standard commands for regressions described in section 1.4 
and are very straightforward to apply. In all cases we assume that we 
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want to estimate the basic model 0 1 2= + + +y x zb b b e  (with the relevant

addition of a spatial lag or a spatial error, or both) using a weight matrix 
W which is generated by one of the procedures described in section 2. 3. 
We also assume that the observations of the variables y, x and z are 
stored in a file called filename. If the data are stored in the active R ses-
sion, all the options including this specification can be omitted. Once 
a model (say model) is estimated, a summary of the estimation output 
can be obtained, as usual, by typing:

> summary(model)

To start, if we want to estimate the parameters of a purely  autoregressive 
model, the command

> model0<-spautolm(x~1 , data=filename, listw=W)

provides the ML solution to the estimation problem.

If we want estimate a Spatial Error Model via the Maximum Likelihood 
(ML) criterion (section 3.4.2) use the command 

> model1<-errorsarlm(formula= y~x + z, data=filename, 

listw=W)

Conversely, to estimate the Spatial Error model by the Feasible 
Generalized Least Squares (GLS) procedure (section 3.4.3) we use, 
instead, the command:

> model2<-GMerrorsar (formula= y~x + z, data=filename, 

listw=W)

When dealing with a Spatial Lag Model, if we wish to employ the ML 
method (section 3.5.2), use the command:

> model3<-lagsarlm(formula= y~x+z, data=filename, listw=W)

if we add the option

> model3<-lagsarlm(formula= y~x+z, data=filename, listw=W, 

type=”mixed”)
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we consider the case of a Spatial Lag Model with the additional spatial 
lag of all independent variables.

In contrast, if we want to estimate the Spatial Lag model with the 
 Two-Stage Least Squares (2SLS) estimator (section 3.5.3), use the 
command:

> model4<-stsls (formula= y~x+z, data=filename, listw=W)

Finally, to estimate the parameters of a SARAR model by ML (section 
3.6.2) use the command:

> model5<-sacsarlm(formula= y~x+z, data=filename, listw=W)

and to estimate the same model using the Generalized Spatial Two-Stage 
Least Squares (GS2SLS) method (section 3.6.3), type the command:

> model6 <- gstsls(Y~x+z, listw = w)

For the calculation of the autocorrelation test for residuals of a  regression 
specifying the alternative hypothesis, use the command:

>lm.LMtests(Model1, listw=W, test=”all”)

through which we calculate the LM test using the Spatial Error or the 
Spatial Lag model as alternatives (LMSEM and LMLAG in section 3.7), 
their robust versions (RLMSEM and RLMLAG) or the modified Moran I 
test (In).

Notice that if we have estimated a Spatial Lag model and we want to 
test if there is still a residual spatial autocorrelation, an LM test proce-
dure appears by default in the output of the lagsarlm procedure with 
no additional commands.

Finally, for the computation of the impact measures described in 
section 3.8, the spdep library contains a command with reference to 
the Spatial Lag model. If such a model has been estimated (say model3) 
and we have available a matrix W used in the estimation process, we can 
obtain the impact measures by typing the command:

> impact <- impacts(model3, listw = W)
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Key Terms and Concepts Introduced

• Spatial autocorrelation
• Pure spatial autoregression
• Spatial Error model
• Spatial Lag model
• Spatial AutoRegressive with AutoRegressive error model (SARAR)
• Lagged independent variables model
• Maximum Likelihood solution for Spatial Error model estimation
• Ord’s decomposition
• Feasible Generalized Least Squares solution for Spatial Error model 

estimation
• Generalized Method of Moments estimation
• Maximum Likelihood solution for Spatial Lag model estimation
• Two-Stage Least Squares solution for Spatial Lag model estimation
• Maximum Likelihood solution for SARAR model estimation
• Generalized Spatial Two-Stage Least Squares solution for SARAR 

model estimation
• Lee Instrumental Variable estimators
• Cochrane–Orcutt transformation
• Best Feasible Generalized Spatial Two-Stage Least Squares estimators
• Rao’s score test (Lagrange Multiplier) for regression residuals with 

spatially lagged variables
• Robust Lagrange Multiplier test
• Modified Moran I test
• Impact measures

Questions

1. What is a major limitation of using the Moran’s I statistics in testing 
the hypothesis of no spatial autocorrelation among the regression 
residuals? How can this limitation be addressed? What alternative 
tests are available?

2. What are the relative advantages and weaknesses of employing 
a Maximum Likelihood strategy and a Generalized Least Squares 
 strategy in estimating a SARAR model?

3. In what sense is the procedure in section 3.4.3 described as “feasible”?
4. Why is it necessary within the Feasible GLS to consider a Method of 

Moments procedure?
5. How can we define a Cochrane–Orcutt transformation in space? How 

can this transformation help in the process of model estimation?
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6. What is the aim of Ord’s decomposition?
7. Why can we use Moran’s I instead of a Lagrange Multiplier test for 

spatial dependence obtaining the same inferential conclusions?
8. Why do we need to consider the robust versions of the Lagrange 

Multiplier tests of spatial dependence?

Exercises

Exercise 3.1 The following map shows the boundaries of the 27 
 countries that were the members of the European Union in July 2012.

Non-European Union country
European Union country on 1 July 2012

Map of the 27 EU member States in July 2012. (Courtesy of Carrie Dolan).

Using the procedure illustrated in Section 2.3.2, prepare a .GAL file 
and build up the row-standardized W matrix with the criterion of 
adjacency (join the island to the closest country, that is, Ireland to UK, 
UK to France, Malta to Italy and Cyprus to Greece. Also join Finland 
to Estonia and Denmark to Sweden). The table below shows the data 
related to the per capita growth of the Gross Domestic Product in 
the period 2010–11 and the percentage of GDP devoted to education 
in 2009.



 95

C
O

U
N

T
R

Y
C

O
D

E
C

O
U

N
T

R
Y

%
 E

d
u

ca
ti

o
n

 
E

x
p

en
se

s 
20

09
G

ro
w

th
 2

01
0–

20
11

C
O

U
N

T
R

Y
C

O
D

E
C

O
U

N
T

R
Y

%
 E

d
u

ca
ti

o
n

E
x

p
en

se
s 

20
09

G
ro

w
th

20
10

–2
01

1

B
E

B
el

gi
u

m
42

1.
04

69
31

40
8

A
T

A
u

st
ri

a
23

.5
1.

05
78

23
B

G
B

u
lg

ar
ia

27
.9

1.
05

82
52

42
7

PL
Po

la
n

d
32

.8
0.

99
29

58
C

Z
C

ze
ch

 R
ep

u
bl

ic
17

.5
1.

04
12

37
11

3
PT

Po
rt

u
ga

l
21

.1
1.

03
72

34
D

K
D

en
m

ar
k

40
.7

1.
07

24
13

79
3

R
O

R
om

an
ia

16
.8

1.
05

40
54

D
E

G
er

m
an

y
29

.4
1.

07
40

74
07

4
SI

Sl
ov

en
ia

31
.6

1.
11

82
27

EE
Es

to
n

ia
35

.9
1.

17
00

68
02

7
SK

Sl
ov

ak
ia

17
.6

1.
05

84
8

IE
Ir

el
an

d
48

.9
1.

09
FI

Fi
n

la
n

d
45

.9
1.

10
78

07
ES

Sp
ai

n
39

.4
1.

07
02

47
93

4
SE

Sw
ed

en
43

.9
1.

09
92

91
FR

Fr
an

ce
43

.2
1.

04
29

68
75

U
K

U
n

it
ed

 K
in

gd
om

41
.5

1.
08

46
15

IT
It

al
y

19
1.

06
96

72
13

1
EL

G
re

ec
e

26
.5

1.
04

52
49

C
Y

C
yp

ru
s

44
.7

1.
05

95
74

46
8

LU
Lu

xe
m

bo
u

rg
46

.6
1.

09
83

33
LT

Li
th

u
an

ia
40

.6
1.

19
11

76
47

1
LV

La
tv

ia
30

.1
1.

14
96

06
H

U
H

u
n

ga
ry

23
.9

1.
04

57
51

63
4

M
T

M
al

ta
21

1.
02

02
02

N
L

N
et

h
er

la
n

d
s

40
.5

1.
08

38
70

96
8



96 A Primer for Spatial Econometrics

Test the hypothesis that growth is fostered by education. Since we 
can conjecture that the expenses for education present some spatial pat-
tern, in principle we can also include the lagged values of the variable 
education among the regressors. Using a Maximum Likelihood strategy, 
start estimating a SARAR model and then, on the basis of the results 
obtained, choose the best model between the Spatial Lag, the Spatial 
Error and the complete SARAR.

Exercise 3.2 Show that a Spatial Error model = + ;i i iy X ub

<
∑
∑

=1

=1

= + ; 1

n
ij jj

i in
ijj

w u
u

w
r e r ; 2 n. .  (0, ) i i d N σee  can be expressed as a

Spatial Lag model with an additional spatially lagged independent 
variable. Explain why, even if the error term e  is “well-behaved”, the 
OLS criterion does not provide reliable estimators for the unknown 
parameters.

Exercise 3.3 Show that in the Spatial Error model, if the spatial cor-
relation parameter r and the error variance s2

e are both known, the ML 
estimators of β coincide with the GLS estimators. Derive the explicit 
expression of the GLS solution and of their error variances.

Exercise 3.4 Show that a Spatial Lag model

<
∑
∑

=1

=1

= + + ; 1;

n
ij jj

i i in
ijj

w y
y X u

w
l b l  2. . . (0, )i u n nu X i i d N Iσ≈  can be 

expressed as a pure autoregression of the independent variable y with a 
(non-zero mean) error term which incorporates the (non-stochastic) 
independent variable.

Exercise 3.5 Consider the SARAR model:
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∑
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= + ; 1;
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ij jj
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ijj

w y
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l l
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w u
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w
r e r

 

2. . . (0, )n nX i i d N Iσ≈ ee  and consider the case of = −l r. Show that in this

case the model reduces to a particular case of a Spatial Lag model, dis-
cuss the parameter space and comment on the form of the W matrix. 
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Then derive the  variance-covariance matrix of y and the associated 
likelihood function.

Exercise 3.6 Consider again the dataset discussed in Examples 3.3 and 
3.4 related to the determinant of the median house price observed in 
506 Boston area census tracts. To download the dataset type:

>data(boston)

Estimate the model used in Example 3.3 and 3.4, but specifying the 
spatial component in the Spatial Error form. Use both the Maximum 
Likelihood and the Feasible GLS procedure. Compare the results 
obtained with those presented in Examples 3.3 and 3.4.
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4
Further Topics in Spatial 
Econometrics

This chapter discusses some advanced special topics in spatial economet-
rics that have recently been introduced in the literature. The primary 
purpose is to make the reader knowledgeable on a set of techniques that 
represent the evolution of the methods presented in Chapter 3 and that 
constitute an essential part of the skill set currently required by spatial 
econometricians. These methods have the potential to make a tremen-
dous impact in the analysis of real world problems in many scientific 
fields. In particular, section 4.1 discusses the case of non- constant 
innovation variances (heteroscedastic models), section 4.2 refers to the 
case where the dependent variable assumes a discrete (in particular, a 
binary) form, section 4.3 contains some of the modeling strategies in 
the field of diachronic spatial econometric models estimated on panel 
data and, finally, section 4.4 discusses regression models that are non-
stationary in the geographical space. Following the introductory nature 
of the current presentation, we will discuss the various methods with 
less analytical detail compared to the rest of the book, while referring 
the interested reader to the current literature for more detail.

4.1 Heteroscedastic innovations

4.1.1 Generalities

Up to this point in the text, all of the models presented have considered 
the innovations to be 2. . . (0, )n nX i i d N Iσ≈ ee  thus assuming the hypoth-
esis of constant variance (homoscedasticity). However, as already 
discussed in section 1.2, for many reasons this assumption can be con-
sidered rather unrealistic when dealing with spatial data. In fact, in con-
trast to other typologies of data (for example, time series data), spatial 
data are observed within units that, in general, are different in terms of 



100 A Primer for Spatial Econometrics

their size and shape. This characteristic, which is peculiar to all spatial 
data observed on irregular lattices, may result in heteroscedasticity of 
the innovations with larger variances in larger areas. Furthermore, even 
if we can assume homescedasticity at a given level of spatial aggregation 
(for instance, the county level), such a characteristic is generally lost if 
we aggregate the data at a higher level of aggregation (for example, the 
state level) due to the different dimension of the various geographical 
areas (for a proof see, for example, Arbia, 1989).

Part of the most recent literature has concentrated on this aspect by 
introducing heteroscedastic spatial econometric models of the class 
SARAR (Kelejian and Prucha, 2007, 2010). We will discuss some of these 
advances in the present section. In particular, we will distinguish two 
main estimation approaches. The first is an approach where the hetero-
scedasticity of the innovations is taken into account by parametrically 
estimating their variance-covariance matrix (see section 4.1.2). The sec-
ond is a non-parametric approach in which an estimation procedure is 
developed that is robust to possible misspecifications of the innovation 
process and the structure of their variance-covariance matrix is inferred 
non-parametrically from the observed data (section 4.1.3).

4.1.2 The SARAR model with heteroscedastic disturbances

Let us consider again the SARAR(1,1) model introduced in section 3.6 
and shown here below for convenience

= + +       1y Z Wy u <b l l  (4.1)

= +                 1u Wu <r e r  (4.2)

but now, in place of the usual assumption 2. . . (0, )n nX i i d N Iσ≈ ee , let us 
assume instead 2 2( ) =i iE σe . It should be evident that, by using the same 
argument considered in section 3.5, a problem of endogeneity emerges 
in that the term Wy is correlated with the innovations. This motivates 
the use of a two-stage strategy. Furthermore a problem of inefficiency 
emerges as a result of the heteroscedastic innovations so that a weighted 
procedure needs to be considered.

The procedure that we will illustrate was introduced by Kelejian and 
Prucha (2010) and uses an approach which is similar to the Spatial Two-
Stage Least Squares introduced in section 3.6 for the general SARAR(1,1) 
model with homescedastic innovations, with some important differ-
ences. In what follows we will try to provide the intuitions behind the 
procedure, without discussing it in all its mathematical details, while 
referring the interested reader to the referenced paper to gain a deeper 
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understanding in the subject. In particular there are two intuitions. The 
first is that, when using a feasible GLS approach, in the third step of the 
procedure illustrated in Section 3.4.3, a GMM estimation was obtained 
imposing three moments conditions. The first of these conditions was 

on the variance, ( )2
2

=1

1 ˆˆ = ,  see Equation (3.35) .
n

i ii
u u

n
σ

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠∑ er  However, 

in the present context we no longer have a single parameter se
2 due to 

the relaxation of the homescedasticity hypothesis and due to the fact 
that heteroscedasticity is not expressed in a specified form. So, in this 
new case, we will have to consider the error variances si

2 as nuisance 
parameters and, instead of imposing three moments conditions to esti-
mate the whole parameter vector 2 2= , ,T σ⎡ ⎤

⎣ ⎦ej r r  (see Equation (3.41)), 
we will only impose two moments conditions and we will estimate the 
reduced parameter vector 2= ,T ⎡ ⎤

⎣ ⎦j r r . So the estimation in this phase 
will concentrate on the only parameter of interest r. The second intui-
tion is that, dropping the hypothesis of homescedasticity (by analogy 
with the discussion reported in section 1.2) the GMM estimation of the 
model’s parameter r, will still provide consistent estimators, but with a 
variance that will no longer be minimal. As a consequence, in a similar 
way to the correction of the OLS employed in section 1.2, we will also 
need to correct the GMM estimation with a weighted procedure.

The phase of estimation is rather complex and moves sequentially 
through different steps, making use of moment conditions and instru-
ments. A modified GS2SLS procedure can, in this case, be obtained fol-
lowing these sequential steps:

Step 1: first of all, obtain a consistent estimate of the parameters b 
and l, say b~ and l~

Step 2: use the estimates obtained in the first step in order to obtain 
an initial estimate of u in Equation (4.1), say û

Step 3: use û to obtain an initial estimate the autoregressive para-
meter r in Equation (4.2), say r~, imposing moments conditions. This 
estimation is consistent, but inefficient due to the lack of constancy 
of the variances,

Step 4: an efficient estimation of the parameter r is obtained by using 
a weighted GMM procedure; call r̂ such an efficient estimate.

Step 5: use the efficient estimate r̂ to transform model (4.1) as

ˆ ˆ( ) = ( ) +I W y I W Z− −r r b e
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Step 6: estimate the parameters of such a transformed model using 
a 2SLS strategy using the transformed variables * ˆ= ( ) ;Z I W Zρ−  

* ˆ= ( )WZ W I W Z− r  and 2 2* ˆ= ( )W Z W I W Z− r  as instruments. Call 
this a Feasible Generalized Spatial Two Stage Least Squares estimator 
(FGS2SLS).

Step 7: Define the new GS2SLS residuals. 

Step 8: Finally obtain an efficient GMM estimate of r based on the 
residuals of the FGS2SLS procedure discussed in Step 6.

These steps will now be discussed in detail.

Step 1: Estimate the parameters of (4.1), consistently accounting for 
the problem of endogeneity via the 2SLS estimator using Z and WZ as 
instruments. The motivation for this choice is the same used in the pre-
vious sections. Let us call the estimates thus obtained b̃  and l̃.

Step 2: From Equation (4.1) derive

=u y Z WY− −� �� b l

Step 3: Use the terms in Equation (4.2) to obtain an initial estimator of 
r via an unweighted GMM procedure analogous to that considered in 
section 3.6.3, but based on just two moments conditions since no con-
dition can be now derived from the parameter s2. In other words, since 
heteroscedasticity is not expressed in a prespecified form, the GMM pro-
cedures can only focus on the estimation of the unknown parameter r. 
Let us call r̆  the initial estimator of r thus obtained. Kelejian and Prucha 
(2010) suggest that this estimator can be interpreted as an unweighted 
nonlinear least squares estimator (Greene, 2011). This estimator, in our 
hypotheses, is consistent, but inefficient due to the heterogeneity of the 
disturbances’ variances.

Step 4: Starting from the result obtained in Step 3, an efficient GMM 
estimator of r can be defined as a weighted version of the nonlinear least 
square estimator discussed above with weights provided by the elements 
of a matrix (which we will refer to with the symbol Ψ) which represents 
an estimator of the variance-covariance matrix of the limiting distribution 
of the normalized sample moments. Given the crucial role played by the 
matrix Ψ in the estimation procedure, let us first of all define it formally as:

1
2 2 2 2= T

n n n nn H H− ΣΨ  (4.3)



Further Topics in Spatial Econometrics 103

with n the sample size, [ ]2 = ,n H Z WZ  an n-by-2 matrix of instruments 
and = TE uu⎡ ⎤Σ ⎣ ⎦  the variance-covariance matrix of the disturbances of 
generic elements ijσ ∈ Σ . Let us further refer to the generic element of 
the matrix Ψ as ,   , = 1,2.rs r sy  Notice that the matrix of instruments 
H now has dimension n-by-2 because we only impose two moments 
conditions.

In their work Kelejian and Prucha (2010) propose the following para-
metric estimator for the generic element of yrs

( ) ( )1 1= (2 ) + + +    , = 1,2T T T
rs r r s s r sn tr A A A A n a a r s− −⎡ ⎤Σ Σ Σ⎢ ⎥⎣ ⎦

� � �� � �y  (4.4)

Let us clarify the meaning of the many elements contained in the 
previous expression. First of all, let us define i°j as the j-th element of 
the identity matrix and w°j as the j-th element of the weight matrix W. 
Secondly, let us define the transformed residuals as = ( )I W u− �� �e r and 
consequently the estimator of the diagonal elements of the variance-
covariance matrix of the disturbances as ( )2

=1= n
iidiagΣ� �e .

Given such definitions we can now define the remaining elements of 
Equation (4.4) as follows:

1
=1

=
n

T T T
j j j j

j

A W W i w w i−∑ � � � �

2 =A W

1= ( )r ra I W HP−− �� � �r a

with 1= ( )( + ) ( )T T
r r rn Q I W A A I W u− ⎡ ⎤− − Σ −⎢ ⎥⎣ ⎦

� �� � �a r r , [ ]= ,Q Z Wy  and 

( )1 1 1 1 1 1 1= ( ) ( ) ( ) ( )T T T T TP n H H n H Q n Q H n H H n H Q− − − − − − −⎡ ⎤
⎢ ⎥⎣ ⎦

� .

The outcome of the weighted GMM procedure described above is a 
new estimator of the parameter r. Such an estimator has been proved 
by Kelejian and Prucha (2010) to be consistent and efficient. Let us call 
this new estimator r̂.

Step 5: use the estimate r̂ obtained in Step 4 to transform the original 
model in the usual way by premultiplying each side of Equation (4.1) 
by the term ˆ( )I W− r :

( )ˆ ˆ( ) = ( ) +I W y I W Z Wy− − −r r b l e  (4.5)
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Step 6: estimate b and l in Equation (4.1) using a Generalized Spatial 
2SLS procedure with H as instruments, thus obtaining:

2
* * *ˆ ˆˆ = T T

GS SLS Q Q Q yδ ⎡ ⎤
⎢ ⎥⎣ ⎦  (4.6)

where, as before, [ ]= ,Q Z Wy , * ˆ= ( )Q I W Q− r  and 1* *ˆ = ( )T TQ H H H H Q−

Step 7: Define the new GS2SLS residuals as: 

2
ˆˆ = GS SLSu y Qδ−

Step 8: Produce a final, efficient, GMM estimator of r based on the 
residuals of the GS2SLS procedure introduced in Step 7. Such an effi-
cient estimator is obtained as a weighted GMM procedure that uses the 
elements of the matrix Ψ as weights.

4.1.3 Spatial HAC estimators

As seen, one crucial element in the procedure illustrated in the previous 
section is represented by the variance-covariance matrix of the limiting 
distribution of the normalized sample moments (the term Ψ ). In one 
paper, on which we based the discussion of the previous section 4.1.2, 
Kelejian and Prucha (2010) suggested a parametric estimator for the 
elements of such a matrix. In another paper the same authors (Kelejian 
and Prucha, 2007) suggest estimating the matrix Ψ non-parametrically 
by using a heteroscedasticity and autocorrelation consistent (HAC) 
estimator. HAC estimators are rather popular in econometrics and have 
been studied for years especially in the time series literature after the 
seminal contributions of Grenander and Rosenblatt (1957) and Newey 
and West (1987). In the spatial context, the earlier attempts of estimat-
ing non-parametrically a variance-covariance matrix from a spatially 
dependent sample can be dated back to the contribution of Conley 
(1999), with respect to a continuous space, and of Driscoll and Kraay 
(1998) and Pinkse et al. (2002) for discrete spatial units. In the follow-
ing discussion we will briefly summarize this method of estimation that 
can be used in Steps 4 and 8 of the procedure described in section 4.1.2.

Rather than estimating parametrically the elements of the matrix 
Ψ, as shown in Section 4.1.2 Kelejian and Prucha (2007) suggest that, 
under a series of working assumptions, consistent and efficient estima-
tors of the elements of the matrix Ψ can be obtained non- parametrically. 
First of all consider that, as already shown in Equation (4.3), the true 
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variance-covariance matrix is defined as 1= Tn H H− ΣΨ , so that the 
algebraic expression of its generic element ,   , = 1,2rs r sy  is given by:

1

=1 =1

=
n n

rs ir is ij
i j

n h h σ− ∑∑y  (4.7)

with hir, his the i-th element of the vector of (respectively) the r-th and 
the s-th instrument.

By analogy, the spatial HAC estimator of the generic element of the Ψ 
matrix can be expressed as:

1 *

=1 =1

ˆ ˆˆ = ( / )
n n

rs ir is i j ij
i j

n h h u u K d d− ∑∑y  (4.8)

In the previous expression, û is an estimator for the disturbances u, K(°) 
denotes a kernel function, dij represents the distance (however it is meas-
ured) between the i-th and the j-th spatial observation, * = +ij ij ijd d u  denotes 
the distance including a possible measurement error uij, independent of the 
disturbances e and such that 0 ij< < ∞u . Finally the term d represents a 
properly selected standardizing distance such that for n → ∞, d ↑ ∞.

As for the kernel function K(°), which incorporates various ways of 
smoothing the function, various specifications are possible. Some of the 
most common specifications are shown here below:

1. Uniform

( )
0.5      1

=
0     

for
K

otherwise

⎧⎪ ≤⎪⎨⎪⎪⎩

n
n

2. Bartlett (triangular)

( )
1       1

=
0     

for
K

otherwise

⎧⎪ − ≤⎪⎨⎪⎪⎩

n n
n

3. Epanechnikov (quadratic)

( ) ( )23
1      1

= 4
0     

for
K

otherwise

⎧⎪⎪ − ≤⎪⎨⎪⎪⎪⎩

n n
n

4. Quadratic (bi-weight)

( ) ( )2215
1      1

= 16
0     

for
K

otherwise

ν
⎧⎪⎪ − ≤⎪⎪⎨⎪⎪⎪⎪⎩

n
n
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 5. Quadratic (tri-weight)

( ) ( )3235
1      1

= 32
0     

for
K

otherwise

⎧⎪⎪ − ≤⎪⎪⎨⎪⎪⎪⎪⎩

n n
n

 6. Gaussian

( )
( )

2
1

2

1 1
= xp  

22
K e

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
n n

p

 7. Tukey–Hanning

( )
( )1

1+ cos      1
= 2

0     

for
K

otherwise

⎧⎪ ⎡ ⎤⎪ ≤⎪ ⎣ ⎦⎨⎪⎪⎪⎩

pn n
n

 8. Cosine

( )
cos      1

= 4 2

0     

for
K

otherwise

⎧ ⎡ ⎤⎛ ⎞⎪⎪ ⎟⎜⎢ ⎥ ≤⎟⎪ ⎜⎪ ⎟⎜⎢ ⎥⎝ ⎠⎨ ⎣ ⎦⎪⎪⎪⎪⎩

p p n n
n

 9. Partzen

( )

32

3

1 6 + 6      
2=

2(1 )          
2

q
for

K
q

for q

⎧⎪⎪ − ≤⎪⎪⎪⎨⎪⎪ − ≤⎪⎪⎪⎩

n n n
n

n n

10. Quadratic spectral

( )
2 2

25 sin(6 ) cos(6 )
=

12 6 5
K

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
pn pnn

p n pn

In the quoted paper Kelejian and Prucha (2007) proved the consistency 
of the estimators (4.8) and derived their asymptotic distributions.

Example 4.1 An urban study: The determinants of crime 
in Columbus (Ohio)

A very popular data set in spatial econometrics refers to an urban study on 
the determinants of crime in Columbus (Ohio). This data set was collected 
and studied for the first time by Anselin (1988) and then used several times 
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in the literature to test new procedures. Both the data and the maps neces-
sary for a geographical analysis are available in R. To retrieve them type 
data(columbus) and data(coldis) in an R session The following fig-
ures show the map of the 49 planning neighborhoods corresponding to census 
tracts of Columbus (Ohio) together with their centroids.

(a) Map of the 49 neighborhoods of Columbus (Ohio) (b) map of the cen-
troids of the 49 neighborhoods in Columbus (Ohio)
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In addition, the following table shows the data related to a measure of 
crime (the dependent variable “crime”, say y, defined as the total of residential 
burglaries and vehicle thefts per thousand households), and of the two inde-
pendent variables “income” (say variable X) and “house value” (say variable 
Z) observed in the 49 neighborhoods.

NEIGHBORHOODS CRIME HOUSE VALUE INCOME

 1 15.726 80.467 19.531
 2 18.802 44.567 21.232
 3 30.626 26.350 15.956
 4 32.387 33.200 4.477
 5 50.731 23.225 11.252
 6 26.066 28.750 16.029
 7 0.178 75.000 8.438
 8 38.425 37.125 11.337
 9 30.515 52.600 17.586
10 34.000 96.400 13.598
11 62.275 19.700 7.467
12 56.705 19.900 10.048
13 46.716 41.700 9.549
14 57.066 42.900 9.963
15 48.585 18.000 9.873
16 54.838 18.800 7.625
17 36.868 41.750 9.798
18 43.962 60.000 13.185
19 54.521 30.600 11.618
20 0.224 81.267 31.070
21 40.074 19.975 10.655
22 33.705 30.450 11.709
23 20.048 47.733 21.155
24 38.297 53.200 14.236
25 61.299 17.900 8.461
26 40.969 20.300 8.085
27 52.794 34.100 10.822
28 56.919 22.850 7.856
29 60.750 32.500 8.681
30 68.892 22.500 13.906
31 17.677 31.800 16.940
32 19.145 40.300 18.942
33 41.968 23.600 9.918
34 23.974 28.450 14.948

(continued)
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35 39.175 27.000 12.814
36 14.305 36.300 18.739
37 42.445 43.300 17.017
38 53.710 22.700 11.107
39 19.100 39.600 18.477
40 16.241 61.950 29.833
41 18.905 42.100 22.207
42 16.491 44.333 25.873
43 36.663 25.700 13.380
44 25.962 33.500 16.961
45 29.028 27.733 14.135
46 16.530 76.100 18.324
47 27.822 42.500 18.950
48 26.645 26.800 11.813
49 22.541 35.800 18.796

Let us start by estimating, for the sake of comparison, the homescedastic 
SARAR model defined by 0 1 2= + + + +y X Z Wy ub b b l ; = +u Wur e with a 
constant error variance 2( ) =iE iσ ∀e  and with W a row-standardized weight 
matrix based on threshold distance of 3.5. We estimate the model, via the 
Generalized Spatial Two-Stage Least Squares procedure illustrated in Section 
3.6.3. The results are shown here below.

Parameter Standard Error t-test p-value

b0 40.285663 8.912493 4.5201 6.18e–06***

b1 – 0.860819 0.324179 – 2.6554 0.0079218**

b2 – 0.286200 0.085272 – 3.3563 0.0007899***

l 0.492052 0.167476 2.9381 0.0033028**
r 0.27048
s2 85.65

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

All coefficients are significantly different from zero including the spatial effect 
l showing that the number of crimes in one census tract is significantly related 
to that of the neighboring census tracts.

Continued

NEIGHBORHOODS CRIME HOUSE VALUE INCOME
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However, as is evident from the map, the various neighborhoods are very dif-
ferent in terms of their area and so the hypothesis of constant error variance is 
rather implausible. Indeed, we can expect the variance to be different from one 
area to another with a larger variability in larger areas. For this reason we want 
to estimate the same SARAR model as before 0 1 2= + + + +y X Z Wy ub b b l ;

= +u Wur e, but now considering a space-varying error variance 2( ) =i iE σe . 
Let us first consider the parametric estimation obtained via the modified 
Generalized Spatial Two-Stage Least Squares procedure illustrated in section 
4.1.2. The results of the estimation procedure are shown in the following 
table.

Parameter Standard Error t-test p-value

b0 40.22132 6.41924 6.2657 3.710e–10***

b1 – 0.85734 0.43197 – 1.9847 0.04718*

b2 – 0.28657 0.14316 – 2.0017 0.04531

l 0.49257 0.11578 4.2543 2.097e–05 ***
r 0.27881 0.20754 1.3434 0.17914

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Wald test for q and k both zero

Observed Value p-value

Wald test 15.697 7.4348e–05

The estimation results reveal that there is still a significant relationship of the 
variable “crime” with the variable “income”, but, now that we considered a 
heteroscedasticity effect, the relationship with the variable “house value” is 
no longer significant (parameter b2). The contagion effect in crime (l π 0) is 
confirmed to be significant in this new setting while no significant spatial cor-
relation is found in the residuals (r = 0). The Wald test rejects the hypothesis 
that both parameters are equal to 0. Notice that in the heteroscedastic SARAR 
model we do not estimate the single variance parameter s2

 anymore as it was 
clarified in section 4.1.2.

Finally, let us estimate again the model using the non-parametric estima-
tion of the variance-covariance matrix discussed in the spatial heteroscedastic 
autocorrelation consistent (HAC) version of the SARAR model (see section 
4.1.3). In particular, in order to estimate non-parametrically the variance-
covariance matrix reported in Equation (4.8) we considered a Triangular 
kernel function.



Further Topics in Spatial Econometrics 111

Parameter Standard error t-test p-value

b0 41.79910 7.14254 5.8521 4.853e–09***

b1 – 0.94449 0.46596 –2.0270 0.042665*

b2 – 0.27756 0.15375 –1.8053 0.071031..

l 0.47802 0.12523 3.8172 0.000135***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The results are substantially similar to those obtained with the parametric 
estimator although with larger standard errors. Notice that in this new setting 
no estimate of the error correlation parameter appears because now the entire 
error correlation matrix (and not the single parameter r) is non-parametrically 
estimated.

4.2 Spatial models for binary response variables

4.2.1 Introduction

In all the previous sections of the book (chapter 3 and section 4.1), we 
have considered the case of a spatial regression related to continuous 
dependent variables; however, in many instances the dependent vari-
able of a regression model may assume only a discrete number of pos-
sible outcomes. For example, we might be interested in the presence or 
absence of a certain technology in one region as a function of a number 
of independent variables. Similar situations emerge in explaining con-
sumer choice between different shopping centers, in modeling count 
data, in studying spatial interaction, or in modeling electoral behavior 
or patient choices in health economics, in explaining criminal behavior 
and in many other situations. All these cases fall within the category of 
what is known in the literature as discrete choice modeling (see Greene, 
2011). When the dependent variable is discrete rather than continu-
ous, the models we have discussed so far cannot be employed and they 
need to be adjusted to follow their statistical nature. As the nature of 
this book is introductory, we will limit ourselves only to the case of 
binary choices and, within this context, we will only consider some of 
the possible model specifications. Notwithstanding the enormous inter-
est of these models under an applied perspective, they have received 
comparatively less attention in the literature with respect to continu-
ous dependent variable models discussed in Chapter 3 and section 4.1. 
This is partly due to the higher analytical complexity of the models, the 
need for more sophisticated estimation techniques and the increased 
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computational obstacles as we consider medium to large sample sizes. 
The interested reader is referred to the book by LeSage and Pace (2009) 
for a Bayesian point of view on the subject and to papers such as Beron 
and Vijverberg (2004), Fleming (2004) and Smirnov (2010) for reviews. 
The various specifications of spatial discrete choice models follow the 
general strategy used in the literature to deal with a-spatial discrete 
models, but adapted to account for spatial dependence employing the 
two fundamental paradigms of a Spatial Lag or of a Spatial Error dis-
cussed at length in chapter 3 that, by now, should be familiar to the 
reader. In the next section we will start presenting some a-spatial binary 
choice models that will form the basis for the spatial specifications that 
will be discussed later in this chapter.

4.2.2 The a-spatial logit and probit models

Let us start considering the following linear regression model:

= +y X• b e  (4.9)

where y• is a continuous variable to which we associate a binary vari-
able defined as = ( 0)y I y• >  with I(.) the indicator function such that 

1    if   0
( 0) =

0  

a
I a

otherwise

⎧ >⎪⎪> ⎨⎪⎪⎩
. Equation (4.9) substantially represents the basic 

regression model presented in section 1.1, but expressed now in terms 
of a variable, y• which cannot be observed (and, for this reason, is called 
latent variable), while the only observable variable y can assume the 
value 1 (e.g. presence) or 0 (e.g. absence). In Equation (4.9) the unob-
served variable y• may be thought of as a utility: when the utility is 
positive, the economic event materializes (e.g. a purchase in consumer 
choice). In this new setting Equation (4.9) is called a latent regression, 
whereas the term Xb is called the index function (Greene, 2011). From 
the above assumptions and from Equation (4.9) we have:

( ) ( )

( = 1 ) = ( 0 ) = ( )

                = ( ) = =
i

i i i

i i

P y X P y X P X X

P X X F X f d

•

−∞

> >

< ∫
m

b e

e b b m m
 (4.10)

similarly:

( ) ( )

( = 0 ) = ( 0 ) = ( )

                 = ( ) = 1 = 1
i

i i i

i i

P y X P y X P X X

P X X F X f d

•

−∞

< <

> − − ∫
m

b e

e b b m m
 (4.11)
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In the previous expressions F is the disturbances’ cumulative probabil-
ity distribution function, ( )=f f Xb , the associated density function 

such that =
i

F
f

X
∂
∂

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠b  and = Xm b  the systematic component of the 

model. Different models can be defined by specifying different cumula-
tive distribution functions in the previous expressions. In particular, 
two specifications are very popular in the econometrics literature, lead-
ing to two different binary choice models: (i) the standardized logistic 

distribution with zero expected value and variance 
2

3
p  and (ii) the 

standardized normal distribution. Since the value of the dichotomous 
variable y depends only on the sign of y• and not its absolute value, it is 
not affected by the amount of the error variance so that it is not a limi-
tation to standardize it to 1. If we assume the hypothesis of a logistic 
distribution for the disturbances, (with cumulative probability distribu-
tion function, say, Λ) Equations (4.10) and (4.11) define the so-called 
Logit model. Conversely, if we specify the innovations as being Normally 
distributed (with cumulative distribution function, say, Φ) Equations 
(4.10) and (4.11) define the Probit model. Although other models have 
been suggested, the Logit and the Probit models are by far the most 
commonly used frameworks in econometrics (Greene, 2011).

A popular estimation method for models (4.10) and (4.11) is based on 
the Maximum Likelihood strategy which will be now briefly outlined. 
First of all, consider that, since the dependent variable is binary, we can 
build up a likelihood function considering the probability of drawing a 
random sample of size n from a Bernoulli distribution, leading to:

1 1 1 1( ) = ( = ,..., = ) = ( = )... ( = )n n n nL P Y y Y y X P Y y X P Y y Xb  (4.12)

due to independence and, given definitions (4.10) and (4.11):

( ) ( )
=1 =0

( ) = 1
i i

i i
y y

L F X F X⎡ ⎤−⎣ ⎦∏ ∏b b b  (4.13)

where =1iy∏  represents the product for all values of y such that yi = 1 and 

similarly for =0iy∏ . Equation (4.13) can be re-written as:

1

=1 =0

( ) = ( ) [1 ( )] i

i

n
yyi

i i
i y

L X F X F X
−

⏐ −∏ ∏b b b  (4.14)



114 A Primer for Spatial Econometrics

and consequently the log-likelihood as:

[ ] ( ) ( ){ }
=1

( ) = ln ( ) = ln +(1 )ln 1
n

i i i i
i

l L y F X y F X⎡ ⎤− −⎣ ⎦∑b b b b  (4.15)

Apart from some practically irrelevant cases, Equation (4.15) is non-
linear and cannot be maximized analytically so a numerical solution 
has to be identified. To obtain the maximum likelihood solution let us 
consider the score function:

=1

( ) = +(1 ) = 0
1

n
i i i

i i
i ii

y f f
l y x

F F
∂
∂

⎡ ⎤−⎢ ⎥−⎢ ⎥−⎣ ⎦
∑b

b
 (4.16)

In particular, if we assume the errors to be distributed according to the 
logistic distribution, for the score functions we have (Greene, 2011):

( )
=1

( ) = = 0
n

i i i
i

l y X
∂
∂

− Λ∑b
b

 (4.17)

with ( )=i iXΛ Λ b . In this case the second derivate is equal to:

( )
2

2
=1

( ) = 1
n

T
i i i i

i

l X X
∂
∂

Λ − Λ∑b
b

 (4.18)

and the expression can be used in confidence interval estimation and 
hypothesis testing.

In contrast, under the hypothesis of normally distributed innovations, 
we have that the score function is equal to:

=0 =1

( ) = + = 0
1

i i

i i
i i

i iy y

l X X
∂ φ φ
∂

−
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b
 (4.19)

with ( )=i iXφ φ b , the standard normal density function such that 

( )
=

t
t

∂φ
∂
Φ

while, in this case, the second derivate is:
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with 
(2 1) (2 1)

=
(2 1)

T
i i i

i T
i i

y y X

y X

φ ⎡ ⎤− −⎣ ⎦
⎡ ⎤Φ −⎣ ⎦

b
k

b
. It should be noted that, both in 

the case of the Logit and the Probit models, the interpretation of the 
parameters is not as straightforward as in the case of the (a-spatial) 
linear regression model. In this case, in fact, the marginal effect of a 
unitary increase of the independent variables on the binary dependent 
variable is not simply the regression coefficient β, and assumes, instead, 
the value:

( )
( )

=
E y X

f X
X

∂
∂

b b  (4.21)

So, for the Logit model the marginal effect is equal to:

( ) ( )
( )

= 1
E y X

X X
X

∂
∂

⎡ ⎤Λ − Λ⎣ ⎦b b b  (4.22)

while for the Probit model it is:

( )
( )

=
E y X

X
X

∂
φ

∂
b b  (4.23)

In order to judge the significance of the parameter estimates, most of 
the tools discussed in a linear regression framework are still available. In 
particular, in testing the significance of the single parameter estimates 
we can use the t-test (employing the standard errors derived from the 
Information matrix (4.18) or (4.20)) or the z-scores approximation, 
exploiting the property of asymptotic normality of the ML estimators. 
Furthermore, all likelihood-based tests (such as Likelihood ratio test, Wald 
test and Lagrange Multiplier) discussed in section 1.1 are also available. 
Finally, in order to measure the degree of fit of the model to the observed 
data, while the R2 criterion is obviously not available (being based on the 
variance decomposition of the variable y which is now binary), we can 
still use the AIC and BIC criteria (see Equations (1.27) and (1.28)).

Example 4.2 Explaining luxury house prices in Baltimore

In order to illustrate the models for discrete choices described in this section, let 
us examine a set of data (prepared by Anselin and originally made available 
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by Dubin, 1992) on house price and a series of variables related to their value 
observed in 211 locations in Baltimore. The data can be downloaded from R 
using the command data(baltimore) as illustrated in Section 2.3.5. The 
dataset also contains the X, Y coordinates of the houses. The map of their 
location is shown in the figure below.

The dataset contains the following variables: Price of the house (PRICE), 
number of rooms (NROOM), number of bathrooms (NBATH), age of construc-
tion (AGE), square feet (SQFT) and other qualitative variables related to the 
presence or absence of important characteristics (like, e. g., fireplace, patio, air 
conditioning, garage and so on). For our purposes, we transformed the vari-
able price into a binary variable classifying a house as “expensive” if its price 
is greater than $40,000. Our model is built up with the purpose of testing if 
the variables NROOM, NBATH, AGE and SQFT have a significant influence 
in the classification of a house as expensive. In other words, we want to test 
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whether the utility deriving from buying an expensive house can be explained 
by these characteristics. We will consider both the Logit and the Probit speci-
fications of the model. The results of the ML estimations are shown below.

Logit Probit

Intercept –3.78782 ( 0.000201***) –2.162195 (0.000136***)
NROOM 0.52624 ( 0.023392*) 0.252867 (0.048217*)
NBATH 0.56735 (0.106308) 0.365626 ( 0.072704)
AGE –0.05183 (1.97e–05***) –0.021129 (0.000775***)
SQFT 0.10725 (0.002539**) 0.057961 (0.003452**)
AIC 226.63 232.45

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The two models obviously lead to different estimates of the parameters, however 
the inferential conclusions are very similar: the AGE and the dimension of the 
house (SQFT) are the most significant factors in explaining the classification of 
an expensive house, followed by the number of rooms (NROOM) whereas the 
number of bathrooms (NBATH) appears to be less relevant. Although different 
in the absolute values, the sign of the parameters are always the same in the two 
model specifications and are in the expected direction. The AIC values are also 
comparable with only a slight relative advantage in the Probit model.

4.2.3 The Spatial Probit model

4.2.3.1 Generalities

When we observe spatial data, the binary models discussed in the previ-
ous section need to be adapted to account for spatial dependence. In the 
spatial econometrics literature the Probit specification is certainly more 
popular than the Logit version, due also to a severe criticism made by 
Anselin (2002), who noticed that in the spatial Logit version the error 
term is analytically intractable. On the other hand, Smirnov (2010) 
noticed that the spatial Probit presents the limitation that it cannot 
be easily extended to more than two alternatives (multivariate Probit, 
see Greene, 2011). A model that is particularly popular in the spatial 
 econometrics literature is the Spatial Lag Probit model which can be 
expressed through the equation:

= + +y Wy Z u• •l b  (4.24)

with = ( 0)y I y• > , . . . (0, )n nu X i i d N I≈ , W the usual weight matrix 
(however it is defined), y• an n-by-1 vector of the unobservable con-
tinuous variable, l the spatial autoregressive coefficient, y the observed 
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binary variable and Z the matrix of regressors, both current and spa-
tially lagged, ( [ ]= ,Z X WX ). As already noticed in the previous section, 
the error variance 2

uσ  is normalized to 1 to avoid identification prob-
lems with no loss in generalities. In the case described, by analogy with 
the case of the Spatial Lag model for continuous dependent variables 
described in section 3.5, a problem of endogeneity emerges in that the 
spatially lagged value of y• is correlated with the stochastic disturbances 
in Equation (4.24). However, this is not the only estimation problem. 
In fact, when estimated on spatially dependent observations, the stand-
ard ML estimators are also inconsistent due to the heteroscedasticity 
induced by spatial dependence (Case, 1992; Pinkse and Slade, 1998). 
Furthermore, we also observe inefficiency as a consequence of the fact 
that we neglect the information contained in the off-diagonal terms of 
the non-spherical variance-covariance matrix (Fleming, 2004). Model 
(4.24) is expressed in the so called structural form (Fleming, 2004). Under 
the usual assumption that all the diagonal elements of W are zero and 
that l < 1, it can also be expressed in a reduced form as follows:

1 1 1 *= ( ) ( + ) = ( ) + ( ) = +y I W Z u I W Z I W u Z• − − −− − −l b l b l b e  (4.25)

with 1= ( )I W u−−e l  and (0, )MVN≈ Ωe  and 1* = ( )Z I W Z−− l . Since 
ε is expressed as a spatial autoregressive process, we have that, from the 
results presented in section 3.5.2.

( ) ( )
1

( ) = = TTE I W I W
−⎡ ⎤Ω − −⎢ ⎥⎣ ⎦

ee l l  (4.26)

In the a-spatial Probit model we described the probability ( = 1)iP y  

through the integral ( )( = 1) = ( ) =
i

i iP y F Z f d
−∞
∫
m

b m m  and m = (I – lW) y• – Zi  b

and similarly for ( = 0)iP y  (see Equations (4.10) and (4.11)) and these 
expressions define the likelihood of the single observation. In a similar 
fashion, in a spatial Probit model, we can define the likelihood of the 
single observation as:

*

* *

* * *

( = 1) = ( 0 , )

            = ( + 0 , , )

            = ( , , ) ( )

i i i ij i

i i i ij i

i i i ij i i
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P Z Z w y Z

• •
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•

>

>

− ≤ ≅Φ

b e

e b b

 (4.27)

A similar expression can be derived for P(yi = 0). The approximation 
in the previous expression is due to the presence of heteroscedasticity 
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which needs to be properly taken into account. In fact, generalizing the 
result obtained for the a-spatial Probit model (see Equation (4.10)), in 
this case we have:

*
*( = 1 , ) = i

i i ij i
ii

z
P y z w y•

⎛ ⎞⎟⎜ ⎟⎜Φ ⎟⎜ ⎟⎟⎜ Ω⎝ ⎠

b
 (4.28)

where Ωii is the i-th diagonal element of the variance-covariance matrix 
(4.26). So, even if the error terms u are homescedastic, the transformed 
error terms e are heteroscedastic.

In the a-spatial Probit model, exploiting independence, the marginal 
probabilities are combined multiplicatively in the likelihood function 
(4.13). However, in the spatial context this simplification is not possible 
and, in order to build up the likelihood, we have to evaluate simultane-
ously the joint probabilities at each location:

{ }1 2( = 1, = 1,..., = 1);    = 0;1n iP y y y y  (4.29)

In principle this probability should be evaluated through the 
n- dimensional integral:

( )
1 2

1 2( = 1, = 1,..., = 1;) = ...
n

nP y y y dφ
−∞ −∞ −∞
∫ ∫ ∫

mm m

m m  (4.30)

with ( )φ m  now representing the density function of the n-dimensional 
Multivariate Normal distribution expressed by:

( ) ( )2
1

= (2 ) exp
2

n
Tφ

− ⎡ ⎤
⎢ ⎥Ω − Ω
⎢ ⎥⎣ ⎦

m p m m  (4.31)

However, there is no analytical solution for a univariate normal prob-
ability distribution function and the problem becomes even more 
severe in the multivariate case. Since the multiple integral contained 
in Equation (4.30) cannot be evaluated analytically the only solution is 
that of obtaining numerical approximations.

As an additional problem, the presence of spatial dependence also 
introduces problems in the interpretation of the marginal effects which 
in this case for the i-th observation is:

,

* *( , )
=

ij j i i i

i ii ii

E y X w y Z
X

∂
φ

∂ σ

• ⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ Ω⎝ ⎠e

b b
 (4.31)

where, with the now obvious notation, we have set 1* = ( )i iii
I W −⎡ ⎤−⎣ ⎦b l b . 
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As stated, there are two major problems in defining an optimal estima-
tion strategy: a problem of endogeneity and a problem of non-sphericity 
(both in the form of autocorrelation and of heteroscedasticity) of the 
variance-covariance matrix. In the literature, various likelihood-based 
and moments-based alternatives were proposed, starting from the early 
contributions of McMillen (1992), Pinkse and Slade (1998) and Klier and 
McMillen (2008) amongst others (see Fleming, 2004 for a review). In 
particular, here we will discuss the following estimation strategies:

 (i) Maximum likelihood (ML), 
  (ii) Generalized Method of Moments (GMM), and
(iii) A Linearized version of the GMM (LGMM)

A maximum likelihood estimator cannot be found analytically while 
the numerical procedures may computationally be very demanding. 
The GMM approach reduces, but does not eliminate completely the 
computational problems especially when dealing with very large data-
sets. Its linearized version represents a trade-off between accuracy and 
computational efficiency.

4.2.3.2 Maximum Likelihood estimation

In the standard a-spatial Probit model, the maximum likelihood esti-
mators can be derived by maximizing Equation (4.15), a procedure 
that requires numerical optimization due to the high degree of non-
linearity in the parameters. However, if we consider spatial data, by 
wrongly assuming independent errors, the likelihood function maxi-
mization produces estimators that are still consistent, but no longer 
efficient due to the fact that they neglect the information contained 
in the off-diagonal terms of the variance-covariance matrix. From 
Equation (4.15), considering the hypothesis of normal disturbance 
and the Spatial Lag specification expressed in Equation (4.24), the 
spatial Probit log- likelihood function for a sample of dimension n can 
be expressed as:
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The term y• is not observable and so, in order to derive an operational 
likelihood function, we have to exploit the reduced form of the model. 
Using (4.25), the log-likelihood function can be re-written as:

=1 =1

* *
( , , ) = ln + (1 )ln 1

n nT T
i i

i i
ii iii i

Z Z
l Z Wy y y•

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜Φ − Φ −⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜Ω Ω⎝ ⎠ ⎝ ⎠
∑ ∑b bb l  (4.33)

Expression (4.33) has a complicated structure that creates computa-
tional problems in the phase of the numerical maximization. To maxi-
mize such an expression, McMillen (1992) suggested the use of the EM 
algorithm. The EM algorithm (first introduced by Dempster et al., 1977) 
is an iterative procedure that develops in two steps: an E-step (expecta-
tion) and an M-step (maximization). The E-step consists of calculating 
the expectation of the likelihood using a starting value for the unknown 
parameters. The M-step consists of maximizing the expected likelihood 
found in the E-step with respect to the unknown parameters. The two 
steps are iterated until the parameters converge to a stable solution, 
which can be proved to coincide with the ML estimators of the original 
likelihood. McMillen (1992) suggested generalizing the EM algorithm to 
the spatial case, by replacing the binary variable with the expectation 
of the underlying latent variable and to maximize the expectation of 
the log-likelihood as if the artificial variable was the actual latent vari-
able. In particular, in the case of the Spatial Lag Probit model (4.25), the 
expected value can be derived as:
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The expected value y•
i thus obtained can be used in an M-step where the 

following log-likelihood is maximized:

( )1 1
= cos ln

2 2
Tl t − Ω − m m  (4.35)

In this last expression, 1= ( ) ( ) TI W I W− −Ω − −l l , ˆ= ( ) iI W y Z•− −m l b, 
and ŷ• is the vector of the predicted values of the latent variable derived 
in the E-step.

The use of the EM approach presents two major problems. First of all, 
the variance-covariance matrix Ω which is present in Equation (4.35) is 
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unknown and needs to be properly estimated. In this respect, McMillen 
(1992) suggested interpreting the Probit model as a non-linear weighted 
least square model conditional on the spatial parameter (Amemiya, 
1985), but unfortunately this approach leads to biased estimators 
(Fleming, 2004). Secondly, the estimation process can be very slow 
because the approach requires the calculation of the determinant of the 
matrix Ω at each iteration of the M-step until the process converges. 
Not only can this operation be very heavy computationally, but the 
calculation of the determinant is based on approximations that can 
become inaccurate when n is large and W dense that is, it contains a 
large  number of non-zero entries.

4.2.3.3 Generalized Method of Moments estimation

An alternative estimation method for a spatial version of a binary 
choice model was introduced by Pinkse and Slade (1998) who devel-
oped a GMM technique for a Probit model expressed in the form of a 
Spatial Error with heteroscedasticity.

Consider the following model expressed in a latent variable form

= +y Z u• b  (4.36)

= +u Wur e  (4.37)

with 2. .  (0, )Z i i d N Iσ≈ ee . Similar to model (4.24), Equations (4.36) and 
(4.37) can be written in a reduced form as:

1= +( )y Z I W• −−b r e  (4.38)

where = (0, )u MVN Ω  (see section 3.4) and 1 1= ( ) ( )TI W I W− −Ω − −r r  
(see Equation 3.15). Using Equation (4.15) the Spatial Error Probit 
model leads to the following log-likelihood function:

[ ] ( ) ( ){ }
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( , ) = ln ( , ) = ln +(1 )ln 1
n

i i i i
i

l L y F X y F X⎡ ⎤− −⎣ ⎦∑b r b r b b  (4.39)

which, in the case of the normal distribution (Probit model) and, using 
expression (4.28) can be written as:
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∑ ∑b bb r  (4.40)
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Since the traditional notion of disturbances in this new context has 
no meaning, let us now introduce the notion of the generalized errors 
which, in the context of a Probit model, can be defined as:
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Let us further consider a set of k instruments whose observations are 
arranged in a n-by-k matrix H. The instruments are exogenous by defini-
tion, thus suggesting the moments condition:

( ) = 0TE H u�  (4.42)

or, for the single i-th condition
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where hi indicates the i-th row of a matrix of instruments H. Finally, 
using the sample analogue to Equation (4.43), we have the following 
set of conditions:

=1

1
( , ) =

1

T T
i i

in
i i

i T T
i i i

i i

z z
y

m h
n z z

φ
σ σ

σ σ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎟ ⎟⎪ ⎪⎜ ⎜⎟ ⎟−Φ⎜ ⎜⎨ ⎬⎟ ⎟⎜ ⎜⎟ ⎟⎪ ⎜ ⎪ ⎜⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎟ ⎟⎪ ⎪⎜ ⎜⎟ ⎟Φ −Φ⎜ ⎜⎨ ⎬⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎪ ⎜ ⎪⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∑

b b

b r
b b

 (4.44)

In a GMM procedure the number of the moments conditions is larger 
than the number of parameters to be estimated, so that the estimators 
are the solutions to the minimization problem:

1( , ) ( , ) = minTm M m−b r b r  (4.45)

M being a positive definite matrix which defines the weights assigned to 
each sample moments ( , )m b r . Pinkse and Slade (1998) prove the con-
sistency and asymptotic normality of the GMM procedure and derived 
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the variance-covariance matrix of the estimators developed within a 
Newey and West (1987) framework.

The GMM estimator presents us two major advantages with respect to 
the Maximum Likelihood procedure illustrated in section 5.2.3.2. First of 
all, it does not rely on the assumption of normality of the disturbances. 
Secondly, it does not require calculating the determinant and the inverse 
of matrices of dimension n-by-n. However, expression (4.45) cannot be 
calculated in an analytical way and so also the GMM estimator can only be 
identified by numerically solving the minimization problem. This requires 
the evaluation of the variance-covariance matrix  Ω repeatedly for each 
candidate value of the parameter r in a numerical search and this opera-
tion can be computationally challenging due to the complex form of Ω.

4.2.3.4 A linearized version of the GMM

To overcome the computational difficulties connected with both the ML 
and the GMM approaches, more recently Klier and McMillen (2008) pro-
posed a linearized version of Pinkse and Slade’s GMM approach which 
avoids the problem of inverting n-by-n matrices. The paper applies the 
methodology to the estimation of a spatial Logit model, instead of the 
Probit model considered by Pinkse and Slade (1998). The authors start 
from the consideration that a spatial model is always an approximation 
since the true structure of dependence of the disturbances is generally 
unknown. So, they suggest making the approximation explicit and to 
linearize the non-linear model by expanding it around a reasonable 
starting point. This procedure will be now described.

Consider, to start, the Spatial Lag Logit model:

= + +y Wy Z u• •l b  (4.46)

with 2. . . (0, )u n nu X i i d Logistic Iσ≈  or expressed in the reduced form:

1 1 1 *= ( ) ( + ) = ( ) + ( ) = +y I W Z u I W Z I W u Z• − − −− − −l b l b l b e  (4.47)

as in (4.25). In (4.47) we have that the transformed errors are no longer 
homoscedastic so that 2( ) =i iVar σe  or in matrix notation ˆ ˆ( ) = TVar Σ Σe  
with Σ̂ a diagonal matrix such that:

1

2

0 0 0 0

0 0
ˆ =

0 0 n

σ
σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Σ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.48)
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Let us now define the probability of success as:

1
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= ( = 1) =
1+ exp( )
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Z
P P y

Z

b
b  (4.49)

due to the hypothesis that the errors are distributed according to the 
logistic law and with Z** representing the variable Z transformed as in 
Equation (4.25) (that is 1* = ( )Z I W Z−− l ), but also normalized to the 
heteroscedastic variances as 1** * ˆ=Z Z −Σ .

In this new setting, the generalized Logit residuals can be simply 
defined as:

=i i iu y P−�  (4.50)

Klier and McMillen (2008) suggest a GMM procedure which develops 
along the following steps:

Step 1: Assume an initial value for the vector of parameters, say 
( )= ,δ b l  and call these initial values ( )0 0 0= , )δ b l

Step 2: Use these initial values in Equation (4.49) and calculate through 
them the generalized residuals given by Equation (4.50). Call these gen-
eralized residuals 0

0= i iiu y P−�

Step 3: Calculate the gradient terms defined as:

0

0

0

= iP
Gδ δ

∂
∂

Step 4: Regress the values thus obtained of Gd0
 on a set of instruments, 

say H, defined as

1 **= ( )H I W WZ−− l

Let us call 
0

Ĝδ  the estimates of the gradients thus obtained.

Step 5: Construct the new estimates of the parameters using the updat-
ing expression

1 0
1 0 0 0 0

ˆ ˆ ˆ= +( )T TG G G uδ δ − �
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In their contribution Klier and McMillen (2008) derive the explicit 
expressions for the gradients of b and l, given by:

**= (1 )
i i i iG P P Z−b  (4.51)

and

2

**
= (1 )

i

i
i i i ii

i

Z
G P P H

σ

⎡ ⎤
⎢ ⎥− − Ξ⎢ ⎥⎢ ⎥⎣ ⎦

l
bb  (4.52)

with Ξii the i-th diagonal element of matrix 1 1= ( ) ( )I W W I W− −Ξ − −l l
1( )I W −− l .

The GMM procedure described above is still computationally heavy 
due to the fact that each step of the iteration requires the inversion 
of the matrix 1( )I W −− l . For this reason, in the same paper Klier and 
McMillen (2008) take a step further and propose linearizing the model 
around the starting point 0 = 0l . In this starting point, in fact, no 
matrix needs to be inverted because 1( ) =I W I−− l . Having made such 
assumptions, the gradient terms simplify substantially. In fact, expand-
ing the generalized error around the initial estimates ( )0 0 0= ,δ b l  and 
stopping at the first linear term of the expansion, we have:

( )0
0+i iu u G δ δ≅ −� �  (4.53)

Now define the transformed generalized errors:

0
0= +i iu G Gδ δ−�n  (4.54)

and let ( ) 1= TM H H − . The objective function to minimize becomes:

( )T T TH H H Hn n  (4.55)

In such a way, no matrix inversion is required and the procedure 
reduces to an a-spatial Logit estimation followed by a Two-Stage Least 
Squares procedure.

If the true structure of the model is captured by model (4.46) and 
(4.47), Klier and McMillen (2008) show that the linearization pro-
vides accurate estimates as long as the parameter l is small. Indeed, 
when 0.5<l  there is no bias, although when 0.5>l  the estimates 
are upward biased. In general, the estimators obtained through the 
linearized model provide a good approximation to the unknown 
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parameters although a certain loss of efficiency is the price to pay for 
the increased computational performance.

4.2.3.5 Further computational solutions

The need for computationally efficient procedures is still felt to be an 
important issue in binary choice modeling, even with the current power-
ful computer machines (see also chapter 5). In order to reduce the com-
putational burden, LeSage and Pace (2009) suggest the use of Bayesian 
techniques to simulate the probabilities in a Monte Carlo Markov Chain 
(MCMC) context. The authors report that the use of a Gibbs sampler to 
estimate a spatial Probit model with only 2 independent variables is a 
computationally intensive operation. In a simulation experiment LeSage 
and Pace (2009) reported that with a sample size of n = 400 and 1,200 
draws of the MCMC sampler (each repeated m times in the m step of the 
Gibbs procedure), the calculations required 20 minutes for m = 10 and 
5 minutes for m = 2. The time increase is proportional to n. Therefore 
if, for instance, the sample size goes up to n = 10,000 the time required 
increases to 8 hours and 49 minutes. Furthermore, they also report that 
the computing time is less than proportional to m so, even reducing the 
m step to, say, m = 1 (at the expenses of accuracy) the time is still 1 hour 
and 21 minutes, which is not negligible. Thus the approach is limited to 
small samples because it does not eliminate the problem of inverting the 
n-by-n W matrices. Beron and Vijverberg (2004) proposed a further alter-
native based on the GHK simulator to evaluate the n-dimension integral, 
but without succeeding to substantially reducing the computational bur-
den. Wang et al. (2013) suggest the use of a partial bivariate likelihood, 
an approach that will be discussed to a deeper extent in section 5.4.

4.2.3.6 Further spatial discrete choice models

Apart from the simple binary discrete choice models considered in this 
section, in the econometric literature we find various other specifications 
of discrete choice models including bivariate and multivariate Probit and 
Logit, ordered Probit and Logit, truncation, censoring, sample selection, 
and models for count data and duration (see Greene, 2011). Some of 
these topics have been dealt with in the spatial context (for example, 
by Wang and Kockelman, 2009), but the field is still largely unexplored.

Example 4.3 Luxury house prices in Baltimore (continued)

Let us now go back to the dataset considered in Example 4.2 and let us 
test if there are spatial effects in the classification of “expensive” houses in 
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Baltimore. In the table here below we show the results of the estimation of 
a spatial Probit model using the three methodologies presented in the previ-
ous section (Maximum Likelihood, GMM and linearized GMM). In all three 
cases we used a row-standardized W matrix based on minimum threshold 
distance and defining as neighbors points falling within a distance < 22. To 
facilitate the comparison we also show again the results of the estimation 
of the a-spatial Probit model already considered in Example 4.2. Notice the 
spatial models now include the extra parameter l that captures the effects due 
to spatial dependence in the latent variable.

A-spatial 
Probit

Spatial 
Probit (ML)

Spatial 
Probit (GMM)

Spatial 
Probit 
(linearized 
GMM)

Intercept –2.162195 
(0.000136***)

–1.02618685 
(0.0930688)

–0.99759055 
(0.04417*)

–1.73088 
(0.00163***)

NROOM 0.252867 
(0.048217*)

0.21958292 
(0.2186963)

0.18258271 
(0.1712854)

0.22432 
(0.04927*)

NBATH 0.365626 
(0.072704)

–0.06945085
(0.7766100)

0.01589953 
(0.9363988)

0.21695 
(0.27898)

AGE –0.021129 
(0.000775***)

–0.02364809
(0.000***)

–0.02040384 
(0.01461387*)

–0.01437 
(0.03206*)

SQFT 0.057961 
(0.003452**)

0.04463416 
(0.08450417.0)

0.04038605 
(0.02747669*)

0.04102 
(0.04998*)

l 0.81640265 
(0.000***)

0.78396376 
(0.0000014***)

1.04295 
(0.00002***)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

The first observation is that, no matter what estimation method is selected, 
the spatial parameter l is always highly significant. From the comparison 
between the four models, a dominant role of the variable AGE also emerges 
as an explicative factor, whereas the role of variables like NROOM and SQFT 
becomes less relevant with respect to the a-spatial version of the model. This 
effect is due to the fact that much of the phenomenon is already explained by 
the spatial variations of the latent variable.

4.3 Spatial panel data models (Written by Giovanni Millo)

4.3.1 Generalities 

Spatial panels are a special case of panel where data are observed on two 
dimensions: across spatial units and over time. Panel data models have 
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become widespread with the availability of databases containing multi-
ple observations on individual units, for example continuously updated 
countries’ and administrative records, periodical national surveys, and 
repeated measurements of various phenomena in different moments 
in time. Let us begin with the a-spatial panel data model which can be 
expressed through the following equation:

= + +T
it it ity Xa b e  (4.56)

In Equation (4.56) the index i = 1, …n refers to individuals (groups, 
countries, regions and so on), the index t = 1, …, T is the time index, 
Xit is a non-stochastic vector of observations of the independent 
variables in individual i and time t, eit the innovation term such that 

2. . . (0, )n nX i i d N Iσ≈ ee  and a and b are parameters to be estimated. With 
respect to the previous specifications of the analogous cross-sectional 
models (see chapter 1), in this context we prefer to indicate the constant 
a with a different symbol for reasons that will become apparent later. 
Panel datasets can have a large number of cross-sectional units observed 
over a few points in time (short panels, typical of microdata), a limited 
number of relatively long time series (long panels, or pooled time series, 
typical of financial or macroeconomic data), or even a balanced behav-
ior between the two dimensions. The typical spatial panel leans towards 
short time series with large spatial dimensions as it usually consists 
of repeated observations over a sizable cross-section of spatially refer-
enced data, such as countries of the world, regions within one country, 
or geographical areas. In all these cases, the double dimensionality 
of panel data allows for richer modeling possibilities than one single 
cross- section or time series. In particular, panel data models are used to 
control for unobserved heterogeneity related to individual-specific, time-
invariant characteristics which are difficult or even impossible to observe, 
but might lead to biased or inefficient estimates of the parameters of 
interest if omitted. This topic will be introduced in the next section.

4.3.2 Unobs erved heterogeneity and individual effects 

To model indiv idual heterogeneity, one often assumes that the error 
term has two separate components, one of which is specific to the 
individual and does not change over time. This is called the unobserved 
effects model. Formally we can express this model as follows:

( )= + + = + + +T T
it i it i i it i ity x u xa b a b m e  (4.57)
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In the previous expression the overall (or composite) error uit is broken 
down into two terms. The first term ( mi) represents the individual error 
component typical of location i, while the second term (eit) represents the 
idiosyncratic error component and it is usually assumed to be well-behaved 
and independent from both the independent variables and the individ-
ual error component. The appropriate estimation method for the model 
(4.57) depends fundamentally on the properties of the two error compo-
nents. The individual component may be either correlated or indepen-
dent from the independent variables. If it is correlated, the ordinary least 
squares (OLS) estimator for b would be inconsistent, so it is customary to 
treat the μi as a further set of n parameters to be estimated, as if in the 
general model we would have n different intercepts, say ait = ai, constant 
with respect to t. In this sense, the error component mi will be assumed 
to include the intercept term ai. This model is referred to in the literature 
as the fixed effects (or within or least squares dummy variables) model and 
it is usually estimated using OLS on transformed data, a procedure that 
guarantees consistent estimates for b (see Baltagi, 2008). Conversely, if the 
individual-specific component mi is assumed to be uncorrelated with the 
regressors, we have a situation which is usually referred to in the litera-
ture as random effects. In this case, the overall error, uit, is also uncorrelated 
with the independent variables so that the OLS criterion leads to consis-
tent estimators. However, the common error component over individuals 
induces a correlation across the composite error terms, which is respon-
sible for a loss in the efficiency of the OLS estimator, so that we have to 
resort to some form of feasible generalized least squares (GLS) estimators 
based on the estimation of the variance of the two error components. 
Finally, if the individual component is missing altogether, a pooled OLS 
estimation is the most efficient criterion for b. This set of assumptions 
is usually labeled as pooling model, although this term more formally 
refers to the properties of the errors and to the associated appropriate 
estimation method rather than to the model itself. The panel literature 
has recently considered panel regression models with a spatially lagged 
dependent variable or spatially autocorrelated disturbances, both in the 
context of fixed and random effects specifications (Lee and Yu, 2011). 
We will devote the next sections of this chapter to discussing some of the 
most commonly used specifications and related estimation techniques.

Example 4.4 Munnell’s model of public capital productivity

The Munnell (1990) model of public capital productivity expresses the level 
of Gross Domestic Product (GDP) in each state of the US (excluding the 
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“islands” Alaska and Hawaii and the district of Columbia, for a total of 48 
states; see Example 3.2 for the map) observed over the years between 1970 
and 1986, through a production function where the explanatory variables con-
sidered are the endowment of public capital (roads, water facilities and other 
utilities, coded as “pcap”), private capital (coded as “pc”) and employment 
(“emp”). The unemployment rate (“unemp”) is added in order to proxy for the 
effects of the business cycle. The model can be expressed formally as follows:

1 2 3 4log( ) = + log( ) + log( ) + log( ) + +it it it it it itGDP pcap pc emp unempa b b b b e

In this example we consider a subset of the original data including only the 
observations between 1970 and 1974. The dataset used are not shown here 
for succinctness. The original model proposed by Munnell (1990) was esti-
mated using OLS, which amounts to pooling all observations together under 
the assumption of no individual components. The results are shown in the 
table here below:

Parameter Standard Error t-test p-value

Intercept 1.2054162 0.1151322 10.4698 < 2.2e–16***
log(pcap) 0.2140447 0.0355133 6.0272 6.405e–09***
log(pc) 0.3421465 0.0212932 16.0684 < 2.2e–16***
log(emp) 0.5113731 0.0261593 19.5484 < 2.2e–16***
unemp 0.0118651 0.0047056 2.5215 0.01235*

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

where the intercept and all variables considered in the model are significant. 
However, as Baltagi and Pinnoi (1995) observed, OLS are inefficient if we sus-
pect the errors to display a random component, and random effects estimators 
can provide better estimates. A random effects model estimated on the same 
data provides the following results:

Parameter Standard Error t-test p-value

Intercept 1.6794841 0.1961392 8.5627 < 2.2e–16***
log(pcap) 0.0946853 0.0525858 1.8006 0.0717678
log(pc) 0.3411077 0.0424213 8.0409 8.915e–16***
log(emp) 0.6272028 0.0377440 16.6173 < 2.2e–16***
unemp – 0.0100228 0.0026808 – 3.7388 0.0001849***
variance component 17.5966 4.2466 4.1437 3.418e–05***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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As it turns out, the significance of public capital is spurious, and it disappears if 
individual error components are considered (see also Example 3 in Baltagi, 2008).

4.3.3 Spatial Panel Models with random effects

 In a random effects specification, the unobserved individual effects are 
assumed to be uncorrelated with the other explanatory variables in the 
model, and can therefore be safely treated as components of the error 
term (see, for example, Wooldridge, 2002). Within this context we can 
consider two alternative specifications: the Spatial Error model with 
random effects (SEM-RE) and the so-called KKP model from the initials 
of the authors who originally proposed the method (see Kapoor et al., 
2007). We will treat the two specifications here below.

4.3.3.1 Random Effect Spatial Error Model (SEM-RE)

Let us start by assuming that the individual error component is mi ~ 
i.i.d.N(0, sm

2) and that the idiosyncratic error term e obeys a Spatial Error 
formulation such that, in each moment of time (t = 1,…, T ), we can write:

= +it it iW ηe r e  (4.58)

as in section 3.4 and consequently 1= ( )it iI W η−−e r . Let us now intro-
duce the symbol ⊗ (known in matrix algebra as the Kronecker product) 

such that if 11 12

21 22
=

a a
A

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 11 12

21 22
=

c c
C

c c

⎡ ⎤
⎢ ⎥
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, then 11 12

21 22
=

a C a C
A C

a C a C

⎡ ⎤
⎢ ⎥⊗ ⎢ ⎥⎣ ⎦

 

11 11 11 12 11 11 21 12

11 21 11 22 21 21 21 22

12 11 12 12 22 11 22 12

12 21 12 22 22 21 22 22

=

a c a c a c a c

a c a c a c a c

a c a c a c a c

a c a c a c a c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

. Furthermore, in order to simplify the 

notation, from now on let us also define the matrix B = (In − rW), with 
In an n-by-n identity matrix, W the usual spatial weight matrix and ρ 
the spatial error dependence parameter. So, for the whole panel we can 
rewrite the idiosyncratic error in a compact way as: 

( )1= TI B η−⊗e  (4.59)

with h an nT-by-1 vector of the disturbances such that 2. . . (0, )n i d N ηη σ≈ . 
As a consequence, the composite error term ( )= +i i itu m e  can be written 
in a compact way as:

( ) ( )−⊗ ⊗ 1= +T n Tu i I I Bm   (4.60)
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with iT a vector of ones of dimension T and IT a T-by-T identity matrix. 
Now, let us define = T

T T TJ i i  as a T × T matrix of ones. After some 
straightforward algebra, the variance-covariance matrix of the compos-
ite error can  be written as:

( ) ( )σ σ −
Ω ⊗ ⊗

12 2
, = + T

nT nT u T n T n nJ I I B Bm   (4.61)

which allows us to derive the likelihood function for estimation and 
hypothesis testing purposes (see section 5.3.5.1 below).

4.3.3.2 The KKP specification

An alternative specification for the disturbances was considered in 
Kapoor et al. (2007) and is known by the acronym KKP. In the quoted 
paper the authors assume that a spatial correlation structure could be 
applied to both the individual effects and the other error components. 
Although the two data-generating processes look similar, they do imply 
different spatial spillover mechanisms governed by a different structure 
of the implied variance-covariance matrix. In this case, the composite 
disturbance term, ( )= +T nu i I⊗ m e, is assumed to follows a first order 
spatial autoregressive process of the form: 

( )= +Tu I W u η⊗r  (4.62)

with all the symbols already defined. It follows that the variance- 
covariance matrix of the composite error u can now be expressed as:

( ) ( )1
, = T

nT nT u T TI B I B− −Ω ⊗ Ω ⊗e  (4.63)

where 2 2= +T T nJ I Iησ σΩ ⊗e m  is the ty pical variance-covariance matrix 
of a one-way error component model. As Baltagi et al. (2013) observe, 
the economic meaning of the SEM-RE and the one implied by the KKP 
model are very different. In the first model only the time-varying com-
ponents diffuse spatially, while in the second also the spatial spillovers 
display a permanent component.

4.3.4 Spatial panel models wit h fixed effects

As observed in section 4.3.2, if  individual effects are uncorrelated with 
the independent variables, they can be considered as a component 
of the error term and treated in a generalized least squares fashion. 
Conversely, if we relax this hypothesis then this strategy leads to 
inconsistency. In this case we have to resort to the so-called fixed effects 
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methods: the individual effects will have to be estimated or, more fre-
quently, just eliminated by first differencing the data, a procedure often 
called time-demeaning (Wooldridge, 2002). From a statistical sampling 
viewpoint, the random effects hypothesis is considered consistent with 
sampling individuals from a potentially infinite population, which has 
led Elhorst (2009) to dismiss its practical utility in spatial economet-
ric contexts, where sampling typically takes place over a fixed set of 
countries or regions. Nevertheless, the modern approach to the issue 
(tracing back to Mundlak, 1978 and summarized by, among others, 
Wooldridge, 2002), centers on the statistical properties of the individual 
effects, which, despite traditional terminology, are always considered 
as random variates, the crucial distinction becoming whether one can 
assume them to be uncorrelated with the regressors or not. Hence, the 
distinction between fixed and random effects should better be regarded 
as an empirical issue. The Hausman (1978) test is the standard device for 
assessing the hypothesis of no correlation, and hence of using random 
effects methods. In a spatial setting, Lee and Yu (2012) give an extensive 
treatment of this topic.

4.3.5 Estimation

Spatial panel  models, expressed i n terms of either random or fixed 
effects, can be estimated by Maximum Likelihood (ML) or by Generalized 
Method of Moments (GMM) procedures. In general terms, ML is most 
efficient provided all distributional assumptions are met; it is also by 
far the most computationally intensive method, GMM being much 
easier to calculate. With respect to ML, GMM estimators also relax the 
normality assumption (an exception is discussed below) and, therefore, 
provide more robust estimates. All model specifications discussed in 
sections 4.3.3 and 4.3.4 can be estimated by either method. An excep-
tion is made for the specification reported in Equation (4.60), where the 
individual effects are independent across individuals. In fact, the only 
random effects specification for which GMM estimators are available 
is represented by the KKP model. In the following Section 4.3.5.1 we 
take a ML perspective, while we will devote Section 5.3.5.2 to the GMM 
alternative.

4.3.5.1 Maximum Likelihood est imation

The standard procedures developed  for ML estimation of Spatial Lag 
and Spatial Error panels are due to Elhorst (2003). His approach is based 
on a combination of the time-demeaning technique familiar from 
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standard panel data (Wooldridge, 2002), and with Anselin’s Maximum 
Likelihood framework. Data are transformed through an operational 
called time-demeaning which consists of subtracting the temporal mean 
from each observation in order to eliminate the individual spatial 
effects. After time-demeaning the standard Spatial Lag or Spatial Error 
estimators can be applied to the transformed data so that the first-order 
conditions simplify to those of OLS, with an additional spatial filter on 
y in the Spatial Lag case. We will illustrate separately the two cases of 
fixed effects and random effects here below.

Fixed effect model

From a computa tional point of view, according to the framework intro-
duced by Elhorst (2003), fixed effects estimation of spatial panel mod-
els is accomplished as a pooled estimation on time-demeaned data. 
Let us start by considering the panel version of the Spatial Lag model 
described in section 3.5. In this case, following Elhorst (2003), in order 
to estimate the parameters we need to correct the likelihood of the 
pooled model by adding a spatial filtering on y using the filter TI A⊗ , 
with = ( )nA I W− l  and l being, as usual, the spatial lag parameter. 
We also need to consider the explicit expression for the determinant 
term of the spatial filter matrix TI A⊗  which, in this case, is equal 
to |A| to the power of T. The validity of Elhorst’s procedures relies 
on a property that guarantees that ( ) ( )=n nI A y I A yΣ ⊗ ⊗ Σ , for each 
matrix ∑, so that demeaning the spatially lagged data is equivalent to 
spatially lagging the demeaned data (see Mutl and Pfaffermayr, 2011, 
and Kapoor et al., 2007).

An efficient two-step iterative estimation procedure can be obtained 
as follows. First of all, let us consider the vector of the demeaned values 
for X and Y defined as:

=it it iy y y−�  (4.64)

with =1=
T

itt
i

y
y

T
∑  the time mean at location i and similarly for X. This 

operation has the effect of removing the constant term from the regres-
sion. Secondly, consider the residuals derived from the demeaned 
model with a further spatial filter on y, defined as:

= ( )TI A y Xη ⊗ − ��� b  (4.65)
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Thirdly, we can derive the likelihood, concentrated with respect to b 
and 2

ησ :

2= ln( ) + ln| | ln( )
2 2

T
e

nT nT
l const T Aσ η η− − � �  (4.66)

that can be maximized with respect to l. The value of l thus obtained 
is used in a Generalized Least Squares step, imposing the following first 
order conditions:

( ) ( )
1ˆ = T

TX X X I A y
−

⊗� � � �b  (4.67)

and

2 =
T

nTη
η ησ
� �

 (4.68)

In this way, we obtain a new expression for the errors to be used in 
Equation (4.65). The procedure is then iterated until convergence.

Elhorst’s procedure can be easily adapted to the Spatial Error Model 
specification. Again, an efficient two-step procedure can be based on 
concentrating the likelihood with respect to b and 2

ησ  as:

2= ln( ) + ln| | ln( )
2 2

TnT nT
l const T Bησ η η− − � �  (4.69)

where the residuals from the demeaned model are now filtered through:

= ( )TI B y Xη ⊗ − ��� b  (4.70)

with = ( )B I W− r . Expression (4.69) can then be maximized with respect 
to r. Again as before, the value of r obtained from the maximization of 
Equation (4.69) is used in a Generalized Least Squares step, imposing 
the following first-order conditions:

( ) 1ˆ = TX X Xy
−� � ��b  (4.71)
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and

2 =
T

nTη
η ησ
� �

 (4.72)

obtaining new expressions for the errors to be used in Equation (4.70), 
and the procedure can be iterated until convergence.

Although not explicitly stated by the author, Elhorst’s methodology is 
also easily extended to the SARAR specification (for an application see 
Millo and Pasini, 2010).

While still representing the standard in applied practice and in the 
available software, Elhorst’s procedure has been criticized by Anselin 
et al. (2008) because the operation of time-demeaning alters the prop-
erties of the joint distribution of errors, introducing serial dependence. 
See Lee and Yu (2010b) for a discussion of the issue, and Millo and Piras 
(2012) for an evaluation of its practical significance through Monte 
Carlo simulation. To solve the problem, Lee and Yu (2010a) suggest a 
different orthonormal transformation of the data.

Random effects

The standard algorithms for the estimation  of the Spatial  Lag and Spatial 
Error versions of spatial panels with random effects are due to Elhorst 
(2003). His approach is based on the partial time-demeaning technique 
(Wooldridge, 2002) with Anselin’s Maximum Likelihood framework: 
once data are quasi-time-demeaned in order to eliminate the random 
effects structure, then standard Spatial Lag or Spatial Error models esti-
mators can be applied to the transformed data so that the first-order con-
ditions simplify to those of OLS, plus a spatial filter on y in the Spatial 
Lag case (see Millo, 2013). Here we will instead consider untransformed 
data and we will specify the random effects of either type as a feature of 
the error covariance. The general likelihood function for the Random 
Effect Spatial Lag panel model combined with any error covariance 
structure Σ represents the panel data version of Equation (3.49):

( ) ( )

2

1

2

1
= ln( ) + ln| |+ ln| |

2 2

1
    

2

T
T T

nT
l const T A

I A y X I A y X

nT

η

η

σ

σ

−

− Σ

⎡ ⎤ ⎡ ⎤⊗ − Σ ⊗ −⎣ ⎦ ⎣ ⎦−
b b  (4.73)

with Σ the composite error variance-covariance mat rix. An iterative 
procedure, à la Oberhofer and Kmenta (1974), can be employed to 
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obtain the maximum likelihood estimates of the unknown parameters. 
Starting from an initial value for the spatial lag parameter l and the 
error covariance parameters, we obtain estimates for b and 2

ησ  from the 
first-order conditions:

( )1 1 1ˆ = ( )T T
TX X X I A y− − −Σ Σ ⊗b  (4.74)

and

( ) ( )1
2 =

T
T TI A y X I A y X

nTησ
−⎡ ⎤ ⎡ ⎤⊗ − Σ ⊗ −⎣ ⎦ ⎣ ⎦b b

 (4.75)

The likelihood reported in Equation (4.73) can be concentrated and 
maximized with respect to the parameters contained in A and Σ. The 
estimated values are then used to update the expression for Σ −1. These 
steps are repeated until convergence. In other words, for any specific Σ, 
the estimation can be operationalized by a two-step iterative procedure 
that alternates between GLS (for b and 2

ησ ) and concentrated likelihood 
(for the remaining parameters) until convergence. This general scheme 
can be applied to the random effects case. For example, the Spatial Lag 
model with random effects (SLM-RE) can be written as a combination 
of a spatial filtering on the dependent variable y and a random effects 
structure for the disturbances. More formally, we have:

( ) = +TI A y X u⊗ b  (4.76)

and

= ( ) +Tu i μ η⊗  (4.77)

where the variance-covariance matrix, say SLM RE−Σ , is defined as 
( )= +SLM RE T n nTJ I I−Σ ⊗j  and the extra parameter j is defined as:

2

2
=

η

σ
σ

mj  (4.78)

and represents the ratio between the variance of the individual effect 
and the variance of the idiosyncratic error.

As mentioned in section 4.3.3 above, the Random Effect Spatial 
Error model gives rise to two possible specifications, depending on the 
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interaction between the spatial autoregressive effect and the individual 
error components.

In the first specification (SEM-RE), only the idiosyncratic error is spa-
tially correlated and the model can be expressed through the following 
three equations:

= +y X ub  (4.79)

= ( ) +Tu i ⊗ m e  (4.80)

and

= ( ) +Ti η⊗e r m e  (4.81)

with the scaled errors’ covariance expressed by:

( ) ( ) 11= +( ) +T T
SEM RE T n TJ T I B B E B B

−−
−Σ ⊗ ⊗j  (4.82)

with = T
T

J
J

T
 and =T T TE I J− .

In the second specification (KKP) the same spatial model applies to 
both the individual and the idiosyncratic error component, and can be 
expressed through the set of equations:

= +y X ub  (4.83)

= ( ) +Tu i ⊗ m e  (4.84)

and

= ( ) +Tu I W u⊗r e  (4.85)

where the scaled errors’ covariance to be substituted into the likelihood is:

( ) ( ) 1
= + T

KKP T TJ I B B
−

Σ ⊗j  (4.86)

4.3.5.2 GMM estimation

GMM estimators of spatial panel models are based on the strateg y of 
alternating spatial C ochrane–Orcutt transformations to filter out the 
spatial dependence with the standard GLS (for RE) or time-demeaning 
transformations familiar to the panel data literature. The spatial 
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Cochrane–Orcutt transformations are in turn based on consistent esti-
mates of the spatial parameters. As in Kapoor et al. (2007) and Millo 
and Piras (2012), for the sake of simplicity we will only consider here 
a Spatial Error model, while referring the interested reader to Mutl and 
Pfaffermayr (2011) and Piras (2011) for the extension to the full model.

Random effects

Kapoor et al. (2007) extended the generalized moments estimator sug-
gested  in Kelejian and  Prucha (1999) for the spatial parameter of a 
cross-sectional model (see section 3.4.3) to the panel case. They outline 
the estimation procedure for the spatial autoregressive parameter of the 
error process (r) and the two variance components of the disturbance 
process (defined by the two terms 2 2 2

1 = + ησ σ σm  and 2
ησ ). Three alterna-

tive GMM estimators are defined on the basis of the following moments 
conditions:
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where, 0 = T TI J
Q

T
−

 and IN is the (time-)demeaning matrix, so that 

0 =Q y y�  (see previous section). Furthermore , similar to Section 3.4.3, we 
define = u u−e r , = u u−e r , = ( )T nu I W u⊗  and = ( )T nu I W u⊗ .

The estimator implied by Equation (4.87) is based on the fact that in 
a random effects model without a spatial lag of the dependent variable, 
the OLS estimator of b is consistent. The OLS residuals can therefore be 
employed in the GMM procedure. 

The first set of GMM estimators is based only on the first three equa-
tions and assigns equal weights to each of them. The second set of 
GMM estimators uses all of the moments conditions and an optimal 



Further Topics in Spatial Econometrics 141

weighting scheme: the inverse of the variance-covariance matrix of the 
sample moments at the true parameter values under the assumption of 
normality (derived by Kapoor et al., 2007, who also discuss its appro-
priateness in the case of non-normality). Finally, the third set of GMM 
estimators uses all moments conditions, but a simplified weighting 
scheme, and can prove useful in cases of computational difficulties in 
calculating the elements of the asymptotic variance-covariance matrix 
of the sample moments.

Using one of the above estimators, we can obtain estimates of the spa-
tial parameter and of the variance components. The first estimator can be 
used to perform a spatial Cochrane–Orcutt type transformation, while, in 
order to eliminate individual effects, the data are further transformed by 

pre-multiplying them by the term 0
1

1 v
nTI Q

σ
σ

⎛ ⎞− ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜⎝ ⎠
 as in the standard 

panel data literature. The feasible GLS estimator reduces in this case to 
an OLS, calculated on the “doubly” transformed model. Finally, small 
sample inference can be based on the following expression for the 
parameter’s variance-covariance matrix:

* 1 * 1= ( )TX X− −Γ Ωe  (4.88)

where the variables X* are the result of a spatial Cochrane–Orcutt type 
transformati on of the original model (see Chapter 3), and both X* and 

1−Ωe  depend on the estimated values of r, 2σm  and 2
1σ .

Fixed effects

A modification of the above procedure has been recently suggested for 
the case when the random  effects assum ption of uncorrelation between 
the individual effects and the regressors cannot reasonably be main-
tained. Mutl and Pfaffermayr (2011) note that, under the fixed effects 
assumption, OLS estimation of the regression equation is no longer 
consistent. They suggest replacing OLS residuals with spatial two-stage 
least squares within residuals. In the Spatial Error case, a simple within-
estimator will produce consistent estimates of the model parameters. 
In the quoted paper, Mutl and Pfaffermayr (2011) reformulate the first 
three moments conditions of Kapoor et al. (2007) in terms of the within 
residuals and then estimate the spatial parameter r using the GMM 
procedure described in Kapoor et al. (2007) based only on these first 
three moments conditions. The model parameters are then obtained by 
OLS after a further spatial Cochrane–Orcutt-type transformation of the 
within transformed variables.
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4.3.6 Further modeling frameworks in spatial panel data modeling

The literature on spatial panel data models has been growing rapidly in 
recent years. In a recent survey on the spatial econometrics literature in 
the period 2007–11 (Arbia, 2012), this issue is described as the hot topic 
with the largest numbers of papers published both under the theoretical 
and the applied point of view. Consequently, the basic framework pre-
sented here in a very concise way has been substantially enlarged and 
improved. Excellent survey papers in this area are provided by the intro-
duction to the special issue of Journal of Applied Econometrics devoted 
to spatial panels (see Baltagi and Pesaran, 2007), by a review article by 
Lee and Yu (2010b) and by a long position paper by the same authors 
(Lee and Yu, 2011). The reader is referred to these surveys for more 
details on the wide range of topics covered in the recent literature. An 
important generalization of the topics briefly summarized here concerns 
the fact that these models are static (even if based on time series data), 
in the sense that they do not take into account any dynamic effects. In 
this respect, the literature treats both stable dynamic panel data models 
and unstable models to include the treatment of topics such as spatial 
unit roots, spatial cointegration and explosive roots (Lee and Yu, 2011).

Example 4.5 Munnell’s model of public capital productivity 
(continued)

Although the original focus of Munnell’s (1990) paper was on the significance 
of public capital in the social production area, the researcher might be inter-
ested in investigating the spatial properties of the error term in order to detect 
whether it is governed by a Spatial Error model of either the SEM-RE or the 
KKP type. In this example we focus on the first typology, by employing a row-
standardized neighborhood matrix, and estimating it by Maximum Likelihood 
on the same data introduced in Example 4.4. The results of the estimation 
procedure are shown here below:

SEM-RE Model

Parameter Standard Error t-test p-value

Intercept 1.6220798 0.2127472 7.6244 2.451e–14***
log(pcap) 0.0382457 0.0512507 0.7462 0.45552
log(pc) 0.3970841 0.0433498 9.1600 < 2.2e–16***
log(emp) 0.6271537 0.0395013 15.8768 < 2.2e–16***
unemp –0.0066850 0.0026529 –2.5199 0.01174*
j variance 
 component

25.946903 6.470930 4.0098 6.078e–05***

r 0.595470 0.065178 9.1361 < 2.2e–16***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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The estimated variance of the individual effect is much bigger than that of 
the idiosyncratic error, the latter showing substantial spatial correlation: the 
evidence in favor of a spatial process in the errors is thus strong. The estimates 
of the parameters b are not strikingly dissimilar from those obtained with the 
a-spatial random effects model reported in Example 4.4, but, given the above 
evidence, we can trust these latter estimates to be more precise as taking a 
statistically significant component into consideration which was neglected in 
the a-spatial specification of the model.

If one is interested in the effect of one state’s gross social product on neigh-
boring states, then a Random Effect Spatial Lag specification seems more 
appropriate. The results of the estimation are shown in the following table:

SLM-RE Model

Parameter Standard Error t-test p-value

Intercept 1.3671510 0.1970401 6.9384 3.964e–12***
log(pcap) 0.1093629 0.0526096 2.0788 0.0376393*
log(pc) 0.6066125 0.0376993 16.0908 < 2.2e–16***
log(emp) – 0.0097658 0.0026518 – 3.6827 0.0002307***
unemp – 0.0097658 0.0026518 – 3.6827 0.0002307***
j variance 
 component

18.7043 4.6822 3.9948 6.475e–05***

l 0.038789 0.021832 1.7767 0.07562 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

As it turns out, the estimated spatial autoregressive coefficient is low and 
not significant at the 5% confidence level: the evidence in favor of a SLM-RE 
model is thus rather weak.

Example 4.6 A spatial panel, fixed effects analysis of conver-
gence in Italian regions

In this example we consider again the regional convergence model à la Barro 
and Sala-i-Martin (1992) already presented in Example 1.1 revised under a 
panel context for the 20 Italian regions (see Figure 2.3 for the geographical 
map). The panel version of the growth equation can be expressed as:

, +log( ) log( ) = + log( ) +i t k it i it ity y yα− b e

where, as already explained in Example 1.1, yit represents the per-capita GDP 
in year t and region i. Therefore the growth rate over a period of k years for 
each region i is a function of the initial level of income of the region and of 
an individual intercept. Looking at the issue from a panel data perspective 
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enriches the possible interpretations with respect to the purely cross-sectional 
analysis, in that it allows control for time-persistent, individual heterogeneity 
in the characteristics of regions. Furthermore, by treating individual effects 
as parameters to be estimated instead of an error component, a fixed effects 
specification allows the said heterogeneity to be correlated with a model’s 
regressors. We consider the per-capita GDP data observed each 5 years (k = 5) 
for all 20 Italian regions in the period from 1960 to 1995 (data are not shown 
for brevity) and we regress the differences between the logarithm of real GDP 
(say, GDPV) and the log of five-year lagged GDP (say, l5GDPV) on l5GDPV. 
Let us start as usual, by estimating an a-spatial fixed effect model. The results 
are shown in the following table:

Parameter Standard Error t-test p-value

log(l5GDPV) – 0.199311 0.014445 – 13.798 < 2.2e–16***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The model’s estimation yields a negative and significant coefficient for b thus 
confirming convergence. 

In order to estimate the various spatial model specifications, we consider the 
binary neighborhood matrix of Italian regions described in section 2.3.2. We 
first consider the Spatial Lag Fixed Effect model, estimated through maximum 
likelihood. We obtain the following results:

SLM-FE

Parameter Standard Error t-test p-value

l 0.680944 0.053398 12.7523 < 2.2e–16***
log(l5GDPV) – 0.068823 0.014291 – 4.8158 1.466e–06***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The spatial lag parameter l turns out to be very high and statistically signifi-
cant. Thus growth in neighbouring regions has a strong positive effect on local 
growth. The estimate of the convergence coefficient b is still statistically sig-
nificant and has the expected negative sign, but is now much lower in absolute 
value (although notice that it cannot be directly compared to models without 
spatial lag). This highlights a lower “speed of convergence” in the adjustment 
process (see Example 1.1).

Next, we consider a model with a Spatial Error component, assuming that 
shocks to growth from neighboring regions propagate to neighbors, affecting 
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their outcome. The results of the Spatial Error, Fixed Effect model estimation 
are the following: 

SEM-FE

Parameter Standard Error t-test p-value

log(l5GDPV) – 0.271102 0.031033 –8.736 < 2.2e–16***
r 0.780552 0.041063 19.008 < 2.2e–16***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

The estimate of the spatial parameter of the error is very high and significant. 
The convergence coefficient is larger than the one obtained with the non-
spatial model and it is also statistically significant.

4.4 Non-stationary spatial econometric models

4.4.1 Generalities

All the models that we have considered so far describe the relationships 
between variables as a mechanism that is stationary over the various 
geographical units. This approach presents the advantage of synthesis: 
one single parameter, the regression coefficient, summarizes all the 
complex links between the dependent variable y and the correspond-
ing independent variable of the model. However, this simplification is 
sometimes too strong. In many empirical situations, it is unreasonable 
to believe that a relationship between two variables is constant in the 
whole geographical area and it is more sensible to conjecture that it 
varies in the space according to some regular pattern. For instance, if 
we are dealing with a large sample size observed on a large geographical 
space (for example, a large country or a continent), it is more sensible 
to build up a flexible regression mechanism where the relationship 
between variables is allowed to change smoothly from one place to 
another. Consider the case reported in Example 3.2, where we studied 
the relationship between the price of used cars and the taxes on the 
basis of the data observed in 48 US states. In principle one can imagine 
that such a relationship should be different in each state or, in other 
words, that it is spatially non-stationary. In many respects the hetero-
geneity of relationships over space may be regarded more as the rule 
rather than the exception, first of all because there are geographical 
variations in people’s attitudes and preferences, and secondly because 
a model is often the result of a misspecification due to the difficulty in 
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accounting adequately for the observed spatial variations relying only 
on a relatively small number of explicative variables. Many relevant 
variables that are at the basis of spatial differentiation can be left out of 
the model because of the impossibility of measuring them properly or 
they may be represented in an incorrect functional form.

In this chapter we will introduce an alternative modeling framework 
that allows the consideration of non-stationary spatial relationships. We 
will concentrate, in particular, on the technique termed Geographically 
Weighted Regression (GWR). There are two important historical anteced-
ents to this modeling strategy. The first one refers to the concept of scan 
statistics and the second to the notion of Locally Weighted Regressions. 
Scan statistics have a long tradition in the statistical literature (see Glaz 
et al., 2001, for a review) and are very popular in many applied fields 
such as, for example, in public health (where researchers look for com-
mon causal factors to explain unusual clusters of pathologies), molecu-
lar biology (where clusters in DNA suggest possible causes for the origin 
of the replication of viruses), telecommunications, quality control, and 
many others. A particular case, relevant for spatial econometric applica-
tions, is that of two-dimensional scan statistics. In its essence the idea is 
very simple: rather than considering all available observations together, 
we select subsamples that are close geographically and we perform some 
statistical computations within these subsamples. The first examples of 
two dimensional scan statistics can already be found in chapter 3 of 
Sir Ronald Fisher’s book (Fisher, 1959) who showed applications in 
the field of astronomy. Arbia (1990) proposes the use of scan statistics 
(referring to them with the term moving windows) to study spatial non- 
stationarity of the first and second-order moments of a random field. 
Hoh and Ott (2012) provide an interesting example of their use to 
genome screening while Paez et al. (2008) show their use in the study 
of hedonic price estimation. Locally Weighted Regression (LWR) is a non- 
parametric methodology (introduced by Cleveland and Devlin, 1988) 
that can be seen as a scan statistic technique to perform a regression 
around a point of interest using only a limited number of training data 
that are somewhat local to that point. In Locally Weighted Regression, 
points are weighted by proximity to the current point using a kernel 
(see section 4.1.3); a regression is then computed using the weighted 
points (McMillen, 1996). The output of a Locally Weighted Regression 
is thus a set of separate regression estimates for each observation but, 
since the technique makes use of kernel filters, it produces a smooth 
variation so that nearby observations will tend to display similar 
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coefficients. Finally, Geographically Weighted Regression (GWR) is a par-
ticular case of the LWR (Brundson et al., 1996; Fotheringham et al., 
1998, 2002, 2007; McMillen and McDonald, 1997, 2004) which makes 
use of the geographical space as a selection criterion. GWR provides a 
set of local estimates that can be mapped to produce a parameter sur-
face which varies across the study region. These maps play a paramount 
role for exploring spatial heterogeneity and for understanding spatial 
relationships.

4.4.2 Geographically weighted regression

For each location i, (i=1,2,…,n) consider the following regression model 
(see Wheeler and Paez, 2010):

= + ;   = 1i i i iy X i ,....nb e  (4.89)

where yi is the i-th observation of the dependent variable y at  loca-
tion i, Xi represents the i-th row of the matrix of observations
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unknown parameters to be estimated and ei the i-th observation of a 
stochastic disturbance such that 2. . . (0, )i n nX i i d N Iσ≈ ee . The estimation 
strategy consists of estimating n distinct models using the following 
intuitive GLS estimator:
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 is an n-by-n diagonal matrix specifying the 

set of weights for each location. The role of matrix G is similar to that of 
the familiar weight matrix W used extensively in the previous chapters. 
In fact, it selects, among the available observations, those that are rele-
vant to forecast the behavior of y at location i by assigning them a specific 
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weight inversely related to distance. There is, however, an important 
difference between the two matrices in that the number of observations 
to be included in each local regression (that is the number of non-zero 
entries of matrix Gi) has to be large enough to preserve degrees of freedom 
to the regression and to allow reliable estimation of the parameters. The 
estimated coefficients (4.90) can be interpreted, as usual, as the (local) 
marginal effects on the dependent variable of a unitary variation in the 
independent variable. GWR thus semi-parametrically models the essen-
tial idea (which is at the basis of all spatial econometric models) that in 
order to forecast the behavior of one variable in one specific location, the 
best predictors are the nearby observations. Furthermore, limiting the 
estimation procedure to only neighboring observations will most likely 
reduce, if not completely eliminate, most of the negative effects of spatial 
correlation and heteroscedasticity on parameter estimates.

The estimator reported in Equation (4.90), under some conditions, 
coincides with the one obtained by the maximization of a weighted 
pseudo-likelihood derived separately for each observation (see McMillen 
and McDonald, 2004). The weighting scheme incorporated in matrix G 
is an essential feature of the method and depends on two crucial ele-
ments. The first concerns the choice of the kernel considered and the 
second the number of observations, close to location i, that are relevant 
to estimate the (spatially changing) parameter at location i. This sec-
ond element is incorporated in a kernel’s parameter termed bandwidth. 
The choice of the appropriate bandwidth is an essential element of the 
procedure. Small bandwidths are preferable in order to identify local 
patterns, but may produce unreliable estimates being based on a small 
sample size. On the other hand, large bandwidths, while preserving 
the reliability of the estimators, will tend to cancel local heterogene-
ity. When the bandwidth is so large that it includes all observations 
(equally weighted), clearly GWR coincides with the standard OLS regres-
sion. The simplest choice of the weights is to consider the matrix G to 
be just the familiar (unstandardized) W matrix defined in accordance to 
some maximum distance neighboring criterion (see section 2.1) with-
out any specific weighting. More formally:

⎧⎪ <⎪⎪⎨⎪⎪⎪⎩

*1     if 
=

0
ij

ij
d d

g  (4.91)

with dij the distance between observation i and observation j, and d* 
the threshold.
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While in principle any of the kernels presented in section 4.1.3 could 
be used, in practice the most common kernels employed in GWR are 
the following:

1. Gaussian. This kernel has already been considered in section 4.1.3 
and in this new context can be expressed as:

2
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= exp
2

ij
ij

d
g

σ
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 (4.92)

 with s a parameter, called bandwidth, through which we can control 
the range of observations included in each of the subsamples.

2. Bi-square (generalization of bi-weight, see section 4.1.3)
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3. Tri-cube
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The bandwidth parameter s can either be chosen a priori or estimated 
from the data, a process often called calibration. In this respect, the most 
popular calibration strategy is the cross-validation method, an iterative 
search process that identifies, through repeated trials, the bandwidth 
that minimizes the root mean square of the prediction error. (For a dif-
ferent approach, see, for example, Paez et al., 2002. See Wheeler and 
Paez, 2010 for a review). Once the kernel function is chosen and the 
model calibrated, Equation (4.90) is fully specified and it can be used to 
estimate the model parameters. As for hypothesis testing, let us consider, 
as usual, the test statistics obtained by taking the difference between the 
value of bi under the null and under the alternative hypotheses scaled by 
its standard deviation (Equation 1.21), that is:

ˆ
=

ˆ( )

i

i

test
Var

b

b
 (4.95)

where the scaling factor in the denominator is obtained using the GLS 
expression (Equation 1.48) which, in this case, leads to:

2ˆ( ) = T
i i iVar A Aσeb  (4.96)
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having defined ( ) 1
= T T

i i iA X G X X G
−

. The test statistics (4.95) can be 
used to test the validity of the regression hypothesis in each individual 
observation. In this sense we can observe that the effect of one inde-
pendent variable on the dependent variable y is significant only in some 
specific zones of the study area and it is, conversely, irrelevant in others, 
thus suggesting interesting geographical patterns.

Once the model is estimated and the significance of the independent 
variables tested in each of the n estimated models, we can proceed, as 
usual, to test the validity of the hypotheses underlying the model. In par-
ticular, in the present context, it is of interest to test if the model’s residuals 
display some geographical regularity (for example, in the form of spatial 
autocorrelation) that was not adequately captured by the geographically 
weighted procedure. The theory related to the test of spatial autocorrela-
tion among GWR residuals has been developed by Leung et al. (2000). 
The proposed approach starts from the definition of the pseudo-residual 
of the global model, defined as the residuals calculated as the difference 
between the observed value of yi in each location i and the estimated value 
on the basis of the (spatially non-stationary) parameters. These residuals 
are not defined in the conventional way because in each location they are 
computed starting from a different regression model. Once the pseudo-
residuals are calculated they are used to detect possible regularities using 
a revised version of the familiar Moran’s I coefficient. An alternative to 
Leung et al. (2000) procedure was suggested by Paez et al. (2002).

4.4.3 Further developments

The basic GWR methodology presented in this section represents only 
the starting point for further and more complex modeling strategies. The 
literature in this field is vast, rapidly-growing and still in the early stages 
of development in many respects (for a review, see Fotheringham et al., 
2002; McMillen and McDonald, 2004; Pace and LeSage, 2004; Wheeler 
and Paez, 2010). An obvious extension of the basic model presented in 
section 4.4.2 concerns the use of spatial econometric models belonging 
to the SARAR family in place of the simple OLS local regression (see 
Brunsdon et al., 1998; Paez et al., 2002; Pace and LeSage, 2004; and Mur 
et al., 2008). However, this extension encounters severe computational 
challenges when operating with large sample size. In fact, not only 
does the same model have to be estimated n times (encountering the 
computational issues raised several times when presenting the various 
models in chapter 3), but also the iterative search of an optimal band-
width during the cross-validation phase involves the calculation of the 
determinant of an (n–1)-by-(n–1) matrix repeatedly at each step of the 
procedure. A second interesting extension is represented by a Bayesian 
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approach to GWR (introduced by LeSage, 2004) in order to solve some 
of the difficulties emerging in the standard approach in the presence 
of outliers and strong heteroscedastic phenomena. In its essence the 
procedure improves the method by imposing an a priori distribution 
(depending on a set of hyperparameters) to the regression coefficients. 
A further extension concerns the application of the general GWR 
framework illustrated in this section to deal with discrete choice models 
(see section 4.2). For instance, McMillen and McDonald (2004) derive 
a Maximum Likelihood approach to the estimation of Geographically 
Weighted Probit models showing that through this approach much of 
the hetorescedasticity and autocorrelation, endemic to spatial discrete 
choice models (see section 4.2.3), can be eliminated thus reducing the 
negative effects on consistency and efficiency of the estimators.

Example 4.7 The determinant of educational 
achievement in Georgia

As an example of Geographical Weighted Regressions let us consider a data-
set (presented by Fotheringham et al., 2002) referring to the 159 counties of 
Georgia. The dataset can be downloaded from the R library spgwr with the 
command data(Georgia) (see section 4.5.4). The dataset contains the 
following variables: Proportion of residents with a Bachelor’s degree or higher 
(Bach), Proportion of people living in rural neighborhood (Rural), Proportion 
of elderly residents (Eld), Proportion of residents who are foreign born (FB), 
Proportion of residents who are living below the poverty line (Pov) and 
Proportion of residents who are ethnic black (Black). The dataset also contains 
information about the total population of each county and a series of other 
information about the geography of the area, such as latitude and longitude 
of the centroids of each county. We consider a model that aims to explain the 
percentage of Bachelor or higher degrees in one county as a function of the 
other variables described above (Rural, Eld, FB, Pov and Black). The results of 
the standard a-spatial OLS model are shown in the following table:

Parameter Estimated Value Standard Error t-test p-value

Intercept 17.24373 1.75329 9.835 < 2e–16***
Rural – 0.07032 0.01358 – 5.179 6.93e–07***
Eld 0.01145 0.12953 0.088 0.929693
FB 1.85247 0.30683 6.037 1.14e–08***
Pov 0.25524 0.07248 – 3.522 0.000566***
Black 0.04911 0.02648 1.854 0.065602

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 
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Multiple R-squared: 0.5884, Adjusted R-squared: 0.575 
F-statistic: 43.75 on 5 and 153 DF, p-value: < 2.2e–16

A Geographically weighted regression model can then be estimated using a 
Gauss kernel and having identified the optimal bandwidth using the cross-
validation iterative method. Some summary results are shown in the following 
table for each of the estimated parameters:

Parameter Minimum First 
Quartile

Median Third 
Quartile

Maximum Range Global 
(OLS)

Intercept 14.170000 15.350000 17.050000 18.200000 18.860000 4.69 17.2437
Rural – 0.081350 – 0.073480 – 0.064850 – 0.055110 – 0.051080 0.03027 – 0.0703
Eld – 0.191200 – 0.094630 – 0.065330 – 0.032360 0.012500 0.2037 0.0114
FB 0.854300 1.282000 2.031000 2.796000 3.138000 2.2837 1.8525
Pov – 0.304800 – 0.258100 – 0.196100 – 0.115100 – 0.034210 0.27059 – 0.2552
Black – 0.016900 0.006347 0.031610 0.060620 0.087210 0.07031 0.0491

In the last column of the previous table we displayed again the results 
obtained with OLS for the sake of comparison. The results show a high 
variability of the local coefficients around the global value. Notice that in 
some cases the parameters can assume, in different locations, the opposite 
sign (variables “Eld” and “Black”). So in some zones of the study area there 
is a positive relationship between, e.g. the variable “Bach” and “Black” 
while in other zones this relationship is positive. As an example, the map 
shown in the following figure (a) displays the geographical variability of the 
regression coefficients related to the variable “Black” (darker shades refer 
to positive coefficients, lighter shades to negative coefficients). The lack of 
homogeneity of the coefficients is evident, with a clear pattern decreasing 
from South-West to North-East. Thus the variable “Percentage of Black 
people” has a positive impact on the variable “Percentage of Bachelor” in 
the South and in the Western counties, but, in contrast, a negative impact 
in the North-Eastern counties. Notice the smoothness of the map which is 
an intrinsic feature of the method originating from to the use of a kernel 
which is inversely proportional to distance. Figure (b) shows the frequency 
distribution of the estimated GWR coefficients for the variable “Percentage 
of Black people” which also highlights the presence of both positive and 
negative coefficients.
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4.5 R Codes
4.5.1 Estimating heteroscedastic linear spatial models

The package sphet is designed to estimate and test spatial models with 
heteroscedastic innovations. It complements and partially overlaps 
with the econometric features available in the library spdep. Remember 
to type the command install.packages(“sphet”) for the first time 
and then before each session type library(sphet).

Suppose, to start with, that we are considering a heteroscedastic 
SARAR model expressed as 0 1 2= + + + +y X Z Wy ub b b l ; = +u Wur e  
with 2( ) =i iE σe  and that we want to estimate it using the modified 
Generalized Spatial Two-Stage Least Squares procedure illustrated in 
Section 4.1.2. Let us further assume that the observations of the vari-
ables y, X and Z are stored in the active R session and that a weight 
matrix W was generated with one of the procedures described in the 
previous chapters. To estimate the model, type the command:

model1<- gstslshet(formula=y~X+Z, date=filename, listw=W)

The output of the procedure includes, by default, the Wald test that 
both spatial coefficients ρ and λ are zero.

If we wish to estimate the spatial HAC model (Section 4.1.3), in order 
to evaluate the variance-covariance matrix contained in Equation (4.8), 
we need two extra objects with respect to the usual parameters: i) the 
matrix of the pairwise distances between all the spatial units (the term dij) 
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and ii) the typology of the kernel function. Let us call D the matrix of dis-
tances and let us consider, for example, that we choose the Epanechnikov 
Kernel function (other possible alternatives supported by the package are 
the Triangular (Bartlett), the Bisquare (or quadratic, or bi-weight), the 
Parzen, the TH (Tukey–Hanning) and the QS (Quadratic Spectral) kernels 
(See Section 4.1.3). With these specifications the command is:

model2<-stslshac(formula=y~X+Z,listw=w,distance=D,type=

"Epanechnikov")

In this expression, the bandwidth is variable. Conversely, if we wish to 
fix the bandwidth at a value, e.g. B, we have to add the option band-
width = "B". Furthermore, the command uses by default both WX and 
W2X as instruments. If we want to use only WX as a single instrument 
we have to add the option W2X=FALSE.

4.5.2 Estimating spatial probit/logit models

First of all let us introduce the R commands to estimate standard, a-spatial 
Probit and Logit models based on the latent model 0 1 2= + + +y X Z• b b b e. 
The command is the following:

>model0<-glm(y~X+Z, family=binomial(link=”probit”))

and similarly for the Logit model.
The R commands related to the various procedures to estimate 

the spatial version of the Probit and Logit models are contained 
in the library McSpatial. So remember to type the command 
install.packages(“McSpatial”) and then before each session 
type library(McSpatial). In all cases we assume that we want 
to estimate a Probit model where the latent variable is expressed as: 

0 1 2= + + + +y X Z Wy• •b b b l e  and we also assume that the observations 
of the variables y, X and Z are stored in the active R session. As for the 
weight matrix W, it has to be generated with a different procedure with 
respect to those described in the previous chapters. In this case, in fact, 
once the list of neighbors (say contnb) is created through the command 
poly2nb or dnearneigh, (see section 2.3.3), instead of the command 
nb2listw, we have to use the command:

W<-nb2mat(contnb)

which transforms a list of neighbors (nb) to (2) a matrix (mat). Let us 
now consider the various estimators of a spatial Probit model. To start 
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with, if we want to estimate the parameters of a spatial Probit model 
using the ML technique (section 4.2.3.2), type the command:

> model1<-spprobitml(y~X+Z,wmat=W,stdprobit=F)

If we want estimate the same model using a Generalized Method of 
Moments approach (GMM, see section 4.2.3.3), we need to initialize the 
parameter r before starting the iterative search of a solution. So, before 
starting the procedure we have to type, e.g.:

>rho=rho0

rho0 being any value such that |rho0 |<1. The robustness of the results 
with respect to different initial values should be tested in any practical 
circumstances. Having done so, now type:

> model2 <-gmmprobit(y~X+Z,wmat=W,startrho=rho)

Finally, if we want estimate the same model using the Linearized 
Generalized Method of Moments approach (LGMM, see section 
4.2.3.4), type instead:

> model3<-spprobit(y~X+Z,wmat=W)

4.5.3 Estimating spatial panel models

The procedures for estimating spatial panels are contained in the R package 
called splm (Millo and Piras 2012), which, as usual, must be installed for 
all through the command install.packages(“splm”) and can then 
be loaded at the beginning of each session by typing library(splm). 
With this command we also automatically load the plm package 
(Croissant and Millo 2008) for the estimation of non-spatial panel models.

Panel datasets in the R packages plm (Croissant and Millo, 2008) and 
splm have very few formal requirements. The dataset can be stored in a 
regular dataset object, provided it contains the necessary pair of indices 
any panel must have (related to individuals and time) so as to be unam-
biguously identified. Given these, no particular ordering of the data is 
required. The software assumes that the individual index is the first col-
umn of the dataset and the time index the second. If the data are arranged 
in a different way, then one must specify the ‘index’ argument as a pair of 
strings giving the variable names inside the call to the estimating function.

The two main functions in package splm are spml (estimation of 
Spatial Panel models by Maximum Likelihood) and spgm (estimation of 
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Spatial Panel models by Generalized Method of Moments). Munnell’s 
data used in Examples 4.4 and 4.6 are available in the package as a 
built-in dataset, together with the weights matrix for the 48 US states 
already considered in Example 3.2 (excluding Alaska and Hawaii and 
the District of Columbia. See the map in Example 3.2). We can load the 
dataset through the command:

> data(Produc)

First of all, to estimate the OLS model, pooling all data (spatial and 
temporal) together, we can use the plm function included in the plm 
package adding the option model=”pooling”

> model0<-plm(y ~ X+Z, model=”pooling”)

assuming that the data are in the active dataset.
Let us now present the procedures for the Random Effect Model, 

starting from the case of no spatial component. In this case the ML 
estimation can be performed using the command spml (acronym for 
Spatial Panel Maximum Likelihood) with the following specifications:

> model1 <- spml(y~X+Z, listw=W, model="random", spatial.

error=”n”, lag=FALSE)

where W is the usual weight matrix. To add a Spatial Lag to the speci-
fication, one must set the lag argument to TRUE:

> model2 <- spml(y~X+Z, listw=W, model="random", spatial.

error=”n”, lag=TRUE)

The SEM-RE model (according to the Spatial Error specification expres-
sed in (4.79) and (4.80) can be estimated specifying no spatial lag and a 
spatial error of type “b”:

> model3 <- spml(y~X+Z, listw=W, model="random", spatial.

error=”b”, lag=FALSE)

while the KKP specification reported in Equations in (4.83) and 
(4.84) can be estimated by maximum likelihood setting spatial.
error="kkp"as an option:

> model4 <- spml(y~X+Z, listw=W, model="random", spatial.

error="kkp", lag=FALSE)
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or, alternatively, using the generalized method of moments using the 
command:

> model5 <- spgm(y~X+Z, listw=W, model="random", spatial.

error="kkp", lag=FALSE)

Let us now move on to consider the Fixed Effect Model specification.
First of all, the a-spatial fixed effects model, can be simply estimated 

typing:

> model6 <- plm(y~X+Z)

If we wish to add a Spatial Lag to the specification, we can estimate the 
fixed effect model through the command:

> model7 <- spml(y~X+Z, listw=W, spatial.error=”none”, 

lag=TRUE)

And, finally, the Spatial Error counterpart by typing:

> model8 <- spml(y~X+Z, listw=W, spatial.error=”b”, lag=

FALSE)

4.5.4 Estimating Geographically Weighted Regression models

To perform a Geographically Weighted Regression estimation, to start, 
we need to download, the library spgwr, using the familiar command 
install.packages(“spgwr”) and invoking it back at the begin-
ning of each new session by typing the command library(spgwr). 
Before we can perform a GWR estimation, it is necessary to have a 
system of coordinates of the centroids of each polygon. Let us call it 
coords (for the generation of a system of coordinates see, for exam-
ple, section 2.3.3). Let us now consider the following GWR model: 

0 1 2= + + +i i i i iy X Zb b b e . To calibrate the bandwidth, in order to iden-
tify the optimal value using the cross-validation method, type the fol-
lowing command:

bw <- gwr.sel(y ~ X + Z, coords, gweight=gwr.Gauss, adapt=

TRUE)

the Gaussian kernel is the default of the command and can be omitted. 
If we wish to change the default, we can use different kernels such as, 
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e.g., gwr.bisquare, or gwr.tricube. Finally, to fit the GWR model, 
type:

modelgwr <- gwr(y ~ X + Z, coords, adapt=bw, hatmatrix=

TRUE)

and to see the results, type:

modelgwr

The results of the modeling procedure are now all stored in an R object 
called Spatial Data Frame (SDF). So, for instance, the various coef-
ficients of variable X estimated in each location are stored in the object 
modelgwr.$SDF$X. To visualize them on a map, in order to identify 
possible regularities, type the command:

plot(modelgwr.$SDF, col=cols[findInterval(gwr.model

$SDF$X, brks, all.inside=TRUE)])

Finally, to compute Moran’s I test on residuals, using the Leung et al. 
(2006) procedure (and having available a weight matrix, say W) we can 
type the command:

gwr.morantest(modelgwr, W)

Key Terms and Concepts Introduced

• Feasible GS2SLS
• Matrix estimation
• HAC estimators
• Spatial HAC procedures
• Nuisance parameters
• Kernel estimation
• Kernel functions
• Dichotomous variable
• Discrete choice models
• Binary models
• Latent variable
• Latent regression
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• Index function
• Standardized logistic distribution
• A-spatial Probit and Logit model
• Marginal effects in a Logit and in a Probit model
• Reduced form of a model
• Structural form of a model
• Spatial Lag Probit model
• EM algorithm
• ML estimator of Spatial Lag Probit model
• GMM estimator of Spatial Error Probit model
• Generalized Probit and Logit disturbances
• Linearized GMM estimator
• Gradient terms
• Sort and long panels
• Pooled time-series
• Individual and idiosyncratic error term
• Unobserved heterogeneity
• Kronecker product
• Fixed effects
• Random effects
• Spatial Error model with Random Effects
• KKP model
• Spatial Lag model with Random Effects
• Spatial Error model with Fixed Effects
• Spatial Lag model with Fixed Effects
• Time-demeaning
• Within residuals
• Stable dynamics spatial panels
• Unstable dynamics spatial panels
• Non-stationary spatial relationships
• Scan statistics
• Moving windows
• Locally weighted regression
• Geographically weighted regression
• Kernel function
• Bandwidth
• Gaussian, Bi-square and Tri-cube kernels
• Calibration
• Cross-validation
• Bayesian GWR
• Discrete choice GWR
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Questions

 1. Why is the hypothesis of errors homoscedasticity often implausible 
in the case of spatial regressions?

 2. Why, in a spatial HAC estimation, do we need to consider a kernel 
smoothing function?

 3. Why in the case of a SARAR model with heteroscedastic distur-
bances, do we need to consider the error variances as nuisance 
parameters?

 4. What is the difference between a Probit and a Logit model for binary 
choices?

 5. What are the reasons why a standard ML approach cannot be used 
to estimate a Probit model on spatial data?

 6. Why is a linearized version of the Generalized Method of Moments 
estimation introduced in spatial Probit/Logit estimation?

 7. What is the difference between the fixed effects and the random 
effects in panel data modeling? How can we choose between the 
two models?

 8. Describe the specificity of the two error components in a panel data 
framework. How can we interpret the “individual” and the “idi-
osyncratic” error component?

 9. Describe the operation of time-demeaning. What is the effect of 
demeaning the data in a spatial panel data model?

10. What are the differences between the SEM-RE and the KKP specification?
11. What is the advantage of using a Geographically Weighted Regres-

sion model with respect to a traditional regression model? In what 
circumstances is it more appropriate to use? In what sense can it be 
seen as an alternative to Spatial Econometric models to account for 
spatial effects?

Exercises

Exercise 4.1 You are given a simple linear regression model y = b0

+ b1x + e 2. . . (0, )n nX i i d N Iσ≈ ee observed at certain level of aggregation 
(e.g. regions). Suppose further that data are aggregated at a higher level of 
aggregation (e.g. countries). Call ȳ the dependent variable at this level of 
aggregation, similarly for x and e. Suppose further that we have m coun-
tries and 1 2, ,..., mn n n  regions respectively in each country. Let us now 
specify the model at the higher level of aggregation as: 0 1= + +y xb b e . 
Prove that even if the regression model is homescedastic at a lower 
level of aggregation, this property is generally lost at a higher level of 
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aggregation. [Hint: Use the aggregation matrix mGn such that =y Gy  
and similarly for the other variables].

Exercise 4.2 One property of the kernel functions is that they inte-
grate to 1 in their domain. Prove such a property for the Uniform, the 
Epanechnikov and the Quadratic (Bi-weight) kernels.

Exercise 4.3 Consider again the dataset used in Exercise 3.1 related to 
the 27 European Member States. Estimate a heteroscedastic SARAR model 
which explains the growth in one country as a function of the education 
expenses in the same country plus additional spatial lag and spatial error 
terms. Estimate the model using the parametric approach (section 4.1.2).

Exercise 4.4 You are given the following latent regression = +y X u• b  
of variable = ( 0)y I y• >  and the following Spatial Error model specifi-
cation = +u WuR e , with . . . (0, )X n i d N I≈e . Derive the spatial Probit 
log-likelihood function for a sample of dimension n.

Exercise 4.5 Consider again the data related to the 27 EU Member States 
used in Exercises 3.1 and 4.3. Consider also some additional data related 
to the intensity of Hi-tec export (downloadable from the website http://
epp.eurostat.ec.europa.eu/portal/page/portal/region_cities/regional_
statistics/data/main_tables). In particular we classified each Member 
State as “high-intensity” if the percentage of hi-tec exports is greater 
than 18 per cent. The data are shown in the following table.

COUNTRY 
CODE

COUNTRY % of 
Hi-tec 
Exports

Hi-tec 
Intensity

COUNTRY 
CODE

COUNTRY % of 
Hi-tec 
Exports

Hi-tec 
Intensity

BE Belgium 8.8 0 AT Austria 11.7 0
BG Bulgaria 4.6 0 PL Poland 5.7 0
CZ Czech 

Republic
15.2 0 PT Portugal 3.7 0

DK Denmark 12.3 0 RO Romania 8.2 0
DE Germany 14.0 0 SI Slovenia 5.5 0
EE Estonia 6.9 0 SK Slovakia 5.9 0
IE Ireland 22.1 1 FI Finland 13.9 0
ES Spain 4.8 0 SE Sweden 14.6 0
FR France 19.7 1 UK United 

Kingdom
19.0 1

IT Italy 6.8 0 EL Greece 6.6 0
CY Cyprus 20.1 1 LU Luxembourg 41.9 1
LT Lithuania 5.8 0 LV Latvia 5.3 0
HU Hungary 22.2 1 MT Malta 35.2 1
NL Netherlands 18.4 1
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On the basis of the results of Exercise 3.1 and of these new data, esti-
mate a Probit model explaining Hi-tec intensity as a factor of Education in 
both the a-spatial and its spatial version using all three estimators (ML, 
GMM and LGMM) discussed in section 4.2.

Exercise 4.6 In a spatial panel constituted by n = 3 individuals, we have 

T = 2 time observations. Given the following W matrix: 
0 1 1

= 1 0 0

1 0 0

W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and the parameters 2 = 1σm  and λ = 0.3, derive the explicit form of the 
matrix TI A⊗  and of the matrix ( )2

T nJ Iσ ⊗m .

Exercise 4.7 From the splm package, load the dataset Insurance and 
the binary contiguity matrix for the Italian provinces (itaww). See Millo 
(2014) for details. Transform the contiguity matrix into a listw object 
as described in 2.3.2. Estimate a Spatial Error panel data model explain-
ing the variable real per-capita insurance premia (coded as ppcd) as a 
function of the variable real per-capita GDP (rgdp) using the Maximum 
Likelihood strategy, with random effects, both in the SEM-RE and in the 
KKP specifications. Discuss the results with particular attention to the 
spatial parameter estimates.

Exercise 4.8 Consider again the R dataset Boston already presented in 
Example 3.3 and Exercise 3.6 and study the relationship between the 
variable “House median value” (MEDV) and the variable “number of 
rooms” (RM). Estimate an a-spatial model using the OLS criterion, then 
estimate a Spatial Lag Model with the Maximum Likelihood procedure, 
finally estimate a Geographically Weighted Regression model using a 
Gaussian kernel and the bandwidth specified using the cross-validation 
method. Compare the results obtained with the various methods. In 
particular, compare the estimated regression coefficients obtained with 
OLS and SLM with the median value of the GWR coefficients. Compute 
Moran’s I statistics for the residuals of the GWR model.
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5
Alternative Model Specifications 
for Big Datasets

5.1 Introduction

In Chapters 3 and 4 we have presented a series of estimation techniques 
for the general spatial econometric linear model which can basically be 
traced back to the two paradigms of the Maximum Likelihood and the 
Generalized Two-Stage Least Squares. In particular, when discussing 
the Maximum Likelihood approach we pointed out that the likeli-
hood functions cannot be maximized analytically due to a high degree 
of non-linearity in the parameters and so we have to use numerical 
approximations. However, the likelihood function involves the calcu-
lation of the determinant of a matrix whose dimension depends on 
the sample size and that has to be evaluated repeatedly for each trial 
value of the spatial correlation parameter in a numerical search. If n 
is very large, as often happens in many empirical applications with a 
massive quantity of data, this operation may be highly demanding, 
if not prohibitive. The eigenvalues decomposition suggested by Ord 
(1975) and used for many years in the literature (see section 3.4.3) also 
has some limitations. Indeed, Kelejian and Prucha (1998) report that 
the computation of eigenvalues by standard subroutines for general 
non-symmetric matrices, are also approximate and may already be 
highly inaccurate for W matrices that are of the order 400-by-400, 
that is, for relatively small sample sizes. The accuracy improves if the 
weight matrix is symmetric, but unfortunately this is not the case when 
dealing with row-standardized versions. Many other approximations 
were proposed in the literature (see Arbia, 2006 for a review). Such 
approximations are usually accurate if the weight matrix is sparse (that 
is, it contains a high percentage of zero entries), but not if they are 
very large. In this respect, Bell and Bockstael (2000) report accuracy 
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problems in determining the eigenvalues of sparse matrices of the order 
of 2000-by-2000. The problem is exacerbated if the matrices are very 
dense (that is, if they contain a high percentage of non-zero entries) 
like those frequently encountered, for example, in social interaction 
applications.

The computational issues associated with the Likelihood maximiza-
tion was a relevant topic in the 1970s, at times of low-speed and small-
memory computers, but even in the current situation of increasing 
computing power, the burden of calculation can become unbearably 
demanding in terms of both computing time and also of the required 
computer storage because the availability of very large databases 
has also been increasing at an accelerated rate. For example, many 
health data provided by the US National Center for Health Statistics 
are available at a county level involving, therefore, more than 3,000 
observations and thus requiring the inverse of a W matrix of dimen-
sion 3000-by-3000 in any spatial econometric modeling of them. 
However, this is still nothing compared to many other geo-referenced 
economic data such as, for instance, the observations related to US 
establishments provided by the US Census Bureau’s Longitudinal 
Business Database (LBD) which refers to some four million individual, 
geo-located firms. Other examples include satellite images used in 
land cover assessment or high resolution medical images where spatial 
econometric techniques have to accommodate millions of spatially 
dependent observations composed of pixilated imagery. Furthermore, 
the data available in human genome mapping display spatial depend-
ence and involve millions of observations for which a joint likelihood 
approach is completely unfeasible. We have quoted only a few of the 
many possible examples that are emerging in different fields. It is easy 
to predict that the future demand for big spatial data will increase fur-
ther and so will the demand for developing appropriate methods for 
analyzing these new data sources.

The continuing relevance of computational issues in spatial econo-
metric modeling is witnessed by the large number of approximate solu-
tions suggested in the literature in recent years (for example, Smirnov 
and Anselin, 2001; Griffith, 2000, 2004; Pace and LeSage, 2004). These 
contributions have been introduced to speed up the calculation of the 
procedures introduced in Chapters 3 and 4, but some of the most recent 
literature has concentrated, instead, on the specification of alternative 
models which depart from the conventional spatial autoregressive class 
with the specific aim of reducing the computational obstacles. These 
contributions have some common characteristics: they are theoretically 
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very simple, they produce closed form solutions for the ML estimators 
and they improve the numerical performance dramatically.

In this chapter we will review some of these alternative specifications. 
In particular, in section 5.2 we will consider the Matrix Exponential 
Spatial Specification (MESS), section 5.3 is devoted to the unilateral 
approximation of spatial models and, finally, in section 5.4 we will pre-
sent the bivariate coding technique and the associate bivariate marginal 
maximum likelihood estimation.

5.2 The MESS specification

5.2.1 A MESS Spatial Lag specification

To introduce the MESS specification, let us consider again the Spatial 
Lag model defined in scetion 3.5:

= + +       1y Wy Z u <l b l  (5.1)

with 2. . . (0, )n nu X i i d N Iσ≈ e  and W non-stochastic and often (although 
not necessarily) row-standardized in the empirical applications. Let us 
re-write expression (5.1) in the following alternative way:

( ) = +I W y Z u− l b   (5.2)

As said, the computational problems emerging when analyzing very 
large databases derive mainly from the inversion of the variance-
covariance matrix of the model ( ) 1I W −− l  (see Equation 3.47). Now 
let us generalize Equation (5.2) and specify a new generalized Spatial 
Lag model as:

= +Sy Z ub  (5.3)

with S a real positive definite matrix. The specification of the matrix S 
in different ways has an effect on the variance-covariance matrix and, 
as a consequence, produces the specification of different spatial econo-
metric models. Following a procedure suggested by Chiu et al. (1996), 
LeSage and Pace (2007), proposed the following matrix exponential 
specification for the matrix S:

= WS ea   (5.4)
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Before reviewing the computational advantages of this specification let 
us rewrite matrix S exploiting the following power series expansion:

=0

= =
!

i i
W

i

W
S e

i

∞

∑a a   (5.5)

In this expression we find the terms 1 2, ,......W W  which require expla-
nation. In spatial econometrics, by analogy with time series analysis, 
we can define higher-order levels of neighborhood by extending the 
notion of a spatial lag introduced in section 2.1. In particular, we have 
defined the W matrix in such a way that its non-zero entries refer to 
pairs of neighboring spatial units. We can refer to them as to “first-order 
neighbors”. The non-zero elements of the matrix W 2 similarly refer to 
those pairs that are neighbors of the first-order neighbors. In this sense 
they can be considered second-order neighbors. Higher-order W matrices 
are similarly defined. As an alternative, higher-order neighbors can also 
be defined by considering various levels of distance. 

Chiu et al. (1996) list a series of advantages of transformation (5.5). In 
particular the following useful properties hold:

Property 1. For any real positive definite matrix S, there always exists 
a real symmetric matrix αW such that = WS ea

Property 2. For any symmetric real matrix W, S is a positive definite 
matrix
Property 3. The inverse of S is 1 = WS e− −a

Property 4. The determinant of S is ( )= tr WS e a . Since all the diagonal 
elements of a W matrix are zero by definition (Wii = 0 see section 2.1), 
this expression simplifies further as ( ) 0= = = 1tr WS e ea .

The above properties ensure that:

1. It is always possible to utilize this approach.
2. The approach leads to well-defined variance-covariance matrices.
3. The inverse of the S matrix is very simple to calculate.
4. The determinant of the S matrix is always equal to 1.

As a consequence, the log-likelihood of the MESS model will not require 
the calculation of the log-determinant which is the main source of com-
putational problems in the case of the Spatial Lag model.

The parameter a in Equation (5.5) is related to the parameter l in 
the Spatial Lag specification (5.1) and controls for the level of spatial 
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correlation. In fact, from the equation, = ( ) = WS I W e−− al  by taking 
the maximum row sum norm of the two matrices and equating them 
we obtain:

1 = e− al   (5.6)

or inversely:

= ln(1 )−l l   (5.7)

From Equation (5.7), given that 1<l , we derive that the range of a is
0−∞ < ≤a , for positive l and 0 0.693147< ≤a for negative l. In par-

ticular, when l = 0, then also = 0a , and when l Æ 1, then → −∞a  
although we can achieve values of l very close to 1 already for 5= −a  
(l = 0.99).

For estimation and hypothesis testing purposes, let us now con-
sider the log-likelihood of this new specification. First of all notice 
that in Equation (3.47) if we replace the term ( )I W− l  with S, we 
have:

( ) ( ) ( )12 2 2 1= = =TT TE yy I W I W S Sσ σ σ− − − −Ω − −e e el l   (5.8)

So the log-likelihood in Equation (3.49) now can be expressed as:

[ ] [ ]

2 2 1 1 1
2

2 1
2

1 1
( , , ; ) = ln

2 2

1 1
                  = ln

2 2

TT T

TT

l y const S S y S X SS y S Z

const S S Sy Z Sy Z

σ σ
σ

σ
σ

− − − −

− −

⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦ ⎣ ⎦

− − − −

e
e

e
e

r b b b

l l
  (5.9)

Notice that from Equation (3.50), we have 1 1=T TS S S S− − − −  and, 
from Property 4 of the exponential matrix reported above, this simpli-
fies as 1 = 1TS S− − . As a consequence we have:

[ ] [ ]2 2
2

1 1
( , , ; ) = ln

2 2
Tl y c Sy Z Sy Zσ σ

σ
− − − −e

e
l b b b   (5.10)

with S a function of l and hence of a. Since no determinant is pres-
ent in Equation (5.10), when estimating the parameters b and a, 
maximizing the log-likelihood is equivalent to minimizing the term 
[ ] [ ]TSy Z Sy Z− −b b , which corresponds to the sum-of-squared errors of 
the transformed model.
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From a practical point of view, the infinite expansion shown in 
(5.5) has obviously to be truncated to, say, q terms leading to the 
approximation:

=0 =0

= =
! !

qi i i i
W

i i

W W
S e

i i

∞

≈∑ ∑a a a   (5.11)

LeSage and Pace (2007) have shown that the stopping role q depends 
on the amount of (positive or negative) spatial correlation while it 
does not depend on the sample size. They also show, through simu-
lated data, that when the absolute value of the spatial correlation is 
not very high (lower than 0.95, as usually happens in practical cir-
cumstances), a truncation at q = 16 produces a very good approxima-
tion. For higher levels of l more terms in the expansion are needed. 
If the W matrix is sparse, the calculations are rather simple and do 
not require particular computational effort. However, if the weight 
matrix is very dense (as happens, for example, in social networks 

applications) then the transformation 
=0 !

i i

i

W
i

∞∑ a
 will also be dense

and the calculation of matrix S could be  prohibitive in terms of the 
required memory and of the computing time, thus nullifying the com-
putational benefits of the procedure. However, notice that the procedure 
does not require the calculation of S, but only of the matrix product Sy 
(see Equation (5.10)), and this operation is significantly simpler.

LeSage and Pace (2007) show that another advantage of the MESS 
specification is the possibility of deriving closed-form solutions for the 
parameter estimations, something which is not possible for the tradi-
tional autoregressive models examined in Chapter 3 due to the high 
degree of nonlinearity of the likelihood function. To derive such closed-
form solutions, we need to express the transformation (5.5) in matrix 
form. In order to achieve this aim, let us introduce some definitions. 
First of all define a matrix containing all the values of the dependent 
variable y and of its lagged terms of various orders:

2 1= , , ,...., qY y Wy W y W y−⎡ ⎤
⎣ ⎦   (5.12)

where q is the stopping value chosen in the power expansion approxi-
mation (5.11). If y is, say, an n-by-1 vector, then the matrix Y is an 
n-by-q matrix. Secondly, let us define a diagonal (q-by-q) matrix, 
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say G, containing the first q coefficients of the power expansion in 
Equation (5.11):

1 0 ... 00!
10 ... 01!=

... ... ... 0

10 0 0 ( 1)!

G

q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

  (5.13)

Finally, define a vector, say u(a)T, containing the power of the parameter 
a which controls for spatial correlation:

2 1( ) = 1, , ,...,T q−⎡ ⎤
⎣ ⎦u a a a a   (5.14)

Using the definitions contained in Equation (5.12), (5.13) and (5.14) we 
can re-express Equation (5.5) as:

( )Sy YG≈ a   (5.15)

the approximation being due to the truncation in the power expansion. 
Premultiplying both sides of (5.15) by the idempotent projection matrix 

1= ( )T TP I X X X X−− , we can derive the sums of squares of the residuals 
expressed as a function of the transformed elements, that is:

= ( ) ( ) ( )T T T Tu u G Y P PY Gu l u a   (5.16)

or, more simply, as:

( ) ( )T Tu u Q≈ u a u a   (5.17)

having defined = ( )T TQ G Y P PY G, so that in the end:

min( ) min( ( ) ( ))T Tu u Q≈ u a u a   (5.18)

LeSage and Pace (2007) have shown that Equation (5.18) is a polyno-
mial in a that admits a closed-form solution, and they proved that such 
a solution is unique and it represents a minimum. Furthermore, the 
second-order conditions provide an alternative way of evaluating the 
Hessian and, as a consequence, the standard errors on which we can 
base inference and hypothesis testing on the parameters.
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The Matrix Exponential Spatial Specification is an approximate tech-
nique (due to the truncation in Equation (5.11)) which dramatically 
reduces the computational time and the computer storage required for 
estimating spatial econometric models. However, the proponents of 
the methodology show through some empirical analyses (LeSage and 
Pace, 2009) that this approximation is very good. Using a dataset on 
the house prices of 506 census tracts in the Boston area (see Examples 
3.3. and 3.4) the authors estimate a spatial model using both a full 
likelihood Spatial Lag and the MESS specification and then compared 
the results obtained in terms of the estimates of the parameters s2, b  
and l (comparing it with the value of a implied by Equations (5.6) and 
(5.7)). The empirical results provide a clear indication that the inference 
is identical, both in terms of the regression parameters’ point estima-
tion and in terms of the p-values of the hypothesis testing procedures. 
Furthermore, the estimation of l in the full likelihood method applied 
to the Spatial Lag model is coincident with the one derived from the 
estimation of a in the MESS specification. So the computational benefits 
are not at the expenses of estimation precision, at least in the relatively 
small dataset examined.

5.2.2 A MESS Spatial Error Specification and further extensions

In a similar fashion, we can consider a MESS specification correspond-
ing to a Spatial Error autoregressive model. Let us now assume, as in 
Equation (3.13) in Chapter 3.4, the model:

= +       y Z ub   (5.19)

but now, instead of modeling the residuals like in Equation (3.14) as 
= + ,  1u Wu <r e r , let us consider the following more general model:

(0, )N≈ Ωe   (5.20)

with Ω a generic variance-covariance matrix for the regression 
disturbances. 

If in Equation (5.20) we assume = WeΩ a , then we have a MESS speci-

fication of a Spatial Error, that can be expressed as 
=0

= =
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If, conversely, ( ) ( )1= TI W I W− −Ω − −r r , or

( )( )1 = TI W I W−Ω − −r r   (5.22)

we again have the conventional Spatial Error model. Notice that we can 
express Equation (5.22) as:

( )( ) ( )( )1

2

= =

      = +

T T

T T

I W I W I W I W

I W W WW

−Ω − − − −

− −

r r r r

r r r
 (5.23)

or

1 2 2= 2 +I W W−Ω − r r   (5.24)

which can be interpreted as a particular case of Equation (5.21) when

= 2− −a r, 
2

2=
2

−
a r  and the expansion is truncated at q = 2.

Real data analysis based on the 3,107 US counties and the analysis of 
simulated data (laid on the same geographical partition) were used by 
LeSage and Pace (2009) to show that the MESS specification provides a 
very good approximation of the estimated parameters to the full like-
lihood Spatial Error model estimators.

More general spatial weights can be considered extending the flex-
ibility of the MESS specification. This is achieved by including an extra 
parameter in the matrix exponential transformation which controls 
for the speed with which correlation decays in the higher order neigh-
borhoods. In particular LeSage and Pace (2009) suggest the following 
expression for the matrix W to be used in Equation (5.4):

=1 =1

=
m i

i
m ii i

W
W ∑

∑



  (5.25)

In this expression, Wi is a spatial weight matrix containing non-zero 
elements for the i-th closest neighbor, φ is a distance decay parameter 
such that 0 1≤ ≤  and the term in the denominator is a normalizing 
factor. By definition, the new matrix W has zero elements in the main 
diagonal and is such that the sum of each row is equal to 1. Of course 
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the greater flexibility of this specification is the price paid for higher 
computational effort, also due to the presence of two more parameters 
to be estimated (m and f). For this reason the proponents of the meth-
odology suggest a Bayesian approach to the phase of estimation and 
hypothesis testing by specifying appropriate priors for the parameters.

Example 5.1 Health planning in Mexico

Let us now consider, as an example, the case of a Spatial Lag model 
estimated via the MESS approximation. The dataset we are using in this 
example refers to some data on Mexican states in 2010. Without the aim 
of contributing substantially to the problem, but just for the sake of illus-
trating the MESS procedure, let us imagine that, for planning purposes, 
we wish to estimate a relationship which explains the number of doctors 
per 1,000 inhabitants in each state as a function of the number of health 
staff per 1,000 inhabitants, the percentage of population over 65 and the 
per capita health expenditure in 2000 and in 2010. The shapefiles of the 
32 Mexican states can be downloaded at http://www.gadm.org/mexico, 
and the map is shown here below together with the data necessary for the 
analysis.
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Code States Number 
of Doctors 
per 1,000 
Inhabitants

Per-Capita 
Health 
Expenditure 
2010

Per-Capita 
Health 
Expenditure 
2000

Health Staff 
per 1,000 
Inhabitants

% of 
Population 
over 65

0 Distrito 
Federal

3.1 9.437522 0.7521 15.3 7.771425

1 Guerrero 1.4 2.572524 0.427321 5.5 6.917765
2 México 1 2.780234 0.435988 4.7 4.911075
3 Morelos 1.4 2.974519 0.629462 6.1 6.992579
4 Sinaloa 1.7 3.271296 0.700082 7.1 6.616576
5 Baja 

California
1.2 3.420365 0.574503 5.5 4.457112

6 Sonora 1.9 3.424168 0.770872 8.6 5.950505
7 Baja 

California Sur
2.1 5.02135 0.667388 9.3 4.272824

8 Zacatecas 1.7 2.897978 0.640509 6.4 7.450485
9 Durango 1.8 3.45163 0.556376 7.2 6.429409
10 Chihuahua 1.2 3.622121 0.691472 6.2 5.67107
11 Colima 2,2 3,983012 0,672654 9 6,205932
12 Nayarit 2,2 3,329873 0,732461 8.1 7,12659
13 Michoacán 

de Ocampo
1,4 2,164095 0,642803 5.1 7,266681

14 Jalisco 1,5 2,974531 0,702626 6,4 6,269595
15 Chiapas 1 2,139129 0,496826 4.1 4,898949
16 Tabasco 2.2 4.03974 0.493174 9.3 5.190782
17 Oaxaca 1.4 2.532036 0.526933 5.3 7.787479
18 Guanajuato 1.4 2.532267 0.529055 5.4 6.045926
19 Aguascalientes 1.9 3.549239 0.529501 8.3 5.092591
20 Querétaro 1.3 2.726577 0.48921 5.1 5.109038
21 San Luis 

Potosí
1.5 2.654342 0.594948 5.5 7.155858

22 Tlaxcala 1.4 2.75405 0.399939 5.5 5.957505
23 Puebla 1.3 2.180045 0.501114 4.9 6.295532
24 Hidalgo 1.5 2.566565 0.477279 6.3 6.613051
25 Veracruz de 

Ignacio de la 
Llave

1.5 2.88041 0.646695 5.9 7.311852

26 Nuevo León 1.4 3.52745 0.689333 7 5.902514
27 Coahuila de 

Zaragoza
1.7 3.364743 0.691015 7.9 5.691221

28 Tamaulipas 1.7 3.452093 0.669398 7.6 5.976068
29 Yucatán 1.6 3.754511 0.63864 6.9 6.898322
30 Campeche 2.5 4.689265 0.51398 9.3 5.653901
31 Quintana Roo 1.2 3.595703 0.299441 6.2 2.978851

Source: Population data:http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/cpv2010/Default.aspx
Health data: http://www.sinais.salud.gob.mx/estadisticasportema.html.

We considered a (row-standardized) distance-based weight matrix, consid-
ering neighbors two states if the distance between their centroids was less 
than a threshold that guarantees that all states have at least one neighbor. 
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We estimate a Spatial Lag model using both the exact Maximum Likelihood 
and the MESS approximation. The specification of the Spatial Lag model 
used was the following 0 1 1 2 2 3 3 4 4= + + + + + +y X X X X Wyb b b b b l e, with 
y = number of doctors per 1,000 inhabitants, X1 being the number of health 
staff per 1,000 inhabitants, X2 and X3 the per capita health expenditure in 
2000 and, respectively, in 2010 and X4 the percentage of population over 65.

Maximum 
Likelihood

MESS 
Specification

Estimated 
Value

Standard 
Error

p-value Estimated 
Value

Standard 
Error

p-value

b0 0.139859 0.446938 0.75434 0.124292 0.200922 0.54136

b1 0.186960 0.012195 0.000*** 0.187352 0.012738 0.000***

b2 0.058434 0.031370 0.06250 0.058685 0.033965 0.09545

b3 –0.049681 0.034338 0.14794 –0.049863 0.037131 0.19049

b4 0.064011 0.025163 0.01096* 0.064794 0.024870 0.01475*

l –0.14109 0.19208 0.46263 –0.1365203 0.16331 0.43326

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

Comparing the results obtained with the two estimation methods we notice 
that the MESS specification substantially confirms the conclusions of the ML 
estimation in terms of both the sign and the significance of the parameters. 
The health staff per 1,000 inhabitants and the percentage of population over 
65 appear to be the most significant factors in explaining the geographical 
distribution of the doctors in the 32 Mexican states. The point estimates of 
the parameters are all very similar with a small underestimation of the MESS 
procedure only for the spatial dependence parameter l and for the intercept. 
In both cases the parameter l is negative and not significantly different from 
zero. The standard errors are all also remarkably similar. With a very small 
sample size like the one employed in this example, the difference in computing 
times is obviously negligible. However, the example shows that in big datasets 
the MESS specification can substantially reduce the computational burden 
without loss of accuracy of the estimates.

5.3 The unilateral approximation approach

5.3.1 The importance of asymmetries and anisotropies 
in spatial econometrics

The autoregressive models that we have discussed in the previous 
chapters 3 and 4 have a common characteristic. They are based on the 
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general definition of spatially lagged variable given in section 2.1 where 
we defined the spatially lagged value of, say, variable y in location i as:

∑
=1

*( ) =
n

i ij j
j

L y w y   (5.26)

*
ijw  being the standardized weight matrix (see Equation (2.3)). In other 

terms, the spatial lag is defined as the average of the value yj observed in 
all the locations that are neighbors to location i. This expression implies 
that the direction does not matter in that all the neighbors (whatever their 
position with respect to location i) contribute in the same way to the 
lagged variable. This hypothesis, implicitly assumed by all the models 
presented so far, is known in the literature as isotropy (for a formal defi-
nition, see, for example, Cressie, 1993).

The concept of isotropy derives from physics and implies that the 
dependence structure does not present directional biases or preferred 
directions. The hypothesis of isotropy is commonly discussed in many 
branches of spatial statistics. For instance, when dealing with spa-
tial data in meteorology, geology or in other physical phenomena 
(where the direction is of paramount importance; see, for example, 
Schabenberger and Gotway, 2002) or in medical imaging applications 
where, for instance, anisotropy is proved to be a good predictor of breast 
cancer risk (Heine and Mahorta, 2002).

Economists have always been aware of this problem. For instance 
the Nobel laureate, Clive Granger (1974), noted that the assumption 
of absence of directional biases is particularly strong and unrealistic 
in spatial econometrics. He states that “if direction did not matter, the 
degree to which these variables were related would depend only on the 
distance between the points. The relationship between values measured 
at Oxford and London will be the same as between values measured at 
two Lincolnshire villages 55 or so miles apart. The correlation between 
unemployment figures in New York and Philadelphia will be the same 
as between two small mid-Western towns roughly a hundred miles 
apart. This assumption of stationarity on the plane is completely unre-
alistic for economic variables” (Granger, 1974, p. 15).

A particularly common manifestation of anisotropy is the asymmetry 
of spatial relationships. Indeed, in the founding book of the discipline, 
Paelinck and Klaassen (1979) identify asymmetry as one of the five 
fundamental characteristics of spatial econometrics. A good example of 
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asymmetry is represented by the core-periphery model (see, for example, 
Paelinck and Nijkamp, 1975) which assigns stronger dependence from 
the center to the periphery than on the reverse direction. Directional 
biases can be observed in many empirical circumstances, such as in 
the dynamic pattern of house prices (Holly et al., 2010), in the many 
economic variables observed in the United States with reference to 
dependencies along the coasts (North–South) as opposed to that from 
the coasts to the internal states (East–West), or in the EU in the different 
dependencies between the center and the periphery and vice versa, only 
to suggest a few examples.

Even if asymmetry is the most intuitive aspect of anisotropy, it is only 
one of its many manifestations. To clarify the relationship between the 
asymmetry and anisotropy concepts, let us consider a study area divided 
into only three spatial regions (called i, l and m) arranged in a regular, 
square lattice grid as in Figure 5.1, and consider, without loss of general-
ity, the hypothesis that the topology of the system can be captured by 
a simple rook’s neighboring structure.

Let us now define in general terms two different dependence struc-
tures among the regions along the vertical (V) and the horizontal (H) 
directions respectively. According to the rook’s definition of neighbors, 
we have the following system of equations:

= + +

= +

= +

i H m V l i

l V i l

m H i m

y y y

y y

y y

� �
�
�

r r e
r e
r e

  (5.27)

with H
�
r  and V

�
r  representing the spatial dependence parameters along 

the horizontal and, respectively, the vertical line, and the superscript 
arrows indicating the direction of such dependence. Equation (5.27) 
express the fact that location i depends horizontally (left-to-right) 
on location m and vertically (top-to-bottom) on location l; location l 
depends vertically (bottom-to-top) on location i and location m 
depends horizontally (right-to-left) on location i. With reference to 
this simple situation, asymmetry implies that V V

� �
r r�  and H H

� �
r r�   

l

m i

Figure 5.1 Three regions arranged on a regular lattice grid
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whereas anisotropy (still in the presence of symmetry) implies that 
= = = =V V V H H H

� � � �
r r r r r r� . Thus asymmetry implies anisotropy, but 
not vice-versa. Furthermore, isotropy implies symmetry, but symmetry 
does not necessarily imply isotropy.

5.3.2 Testing isotropy in Spatial Lag models

In order to illustrate a testing procedure for the hypothesis of isotropy, 
let us consider n observations of a variable y and a (non row-standard-
ized) weight matrix W (however it is defined).

Let us also define two different non-overlapping weight matrices W1 
and W2 referring to two different directions and such that W1 + W2 = 
W. The two matrices incorporate two different preferred directions of 
spatial dependence. For instance in a regular square lattice grid, we can 
assume a rook’s case definition of neighbors and two matrices describ-
ing the topology shown in Figure 5.2.

Let us now define a two-parameter, anisotropic Spatial Lag model in 
which dependence develops along the two different specified directions:

2
1 1 2 2= + + +      | . . . (0, )y Z W y W y u u Z i i d N Iσ≈b l l   (5.28)

In Equation (5.28) [ ]= ,Z X WX  is a non-stochastic matrix of independent 
variables that may include lagged terms, W1 is a (non row-standardized) 
weight matrix that incorporates dependency in one direction, W the cor-
responding full (non row-standardized) weight matrix derived under the 
assumption of isotropy, and W2 = W – W1 represents the second direction 
of dependency. If 1 2= =l l l , model (5.28) reduces to the familiar one-
parameter isotropic Spatial Lag Model (see Equation (3.54)) defined as:

2= + +      | . . . (0, )y Z Wy u u Z i i d N Iσ≈b l   (5.29)

Figure 5.2 Two different W matrices incorporating two different directions of 
spatial dependence. (a) W1 = north-west to south-east dependence; (b) W2 = 
south-east  to north-west dependence. Cell i depends only on cells l and m fol-
lowing the W1 weighting matrix, and only on cells j and k following the W2 
weighting matrix.

l
m i i j

k

(a) (b)
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Let ( )
1 1 2 2=ANIu y Z W y W y− − −b l l  and ( ) =ISOu y Z Wy− −b l  be the 

disturbances in the two competing models. The log-likelihood func-
tions for the anisotropic and isotropic models are then respectively 
given by:

2
1 2 1 1 2 2

( ) ( )
2

1
( , , , ) = ln

2
1

                             
2

T

ANI

ANI ANI

l const I W W

u u

σ

σ

− − −

−

l l b l l
 (5.30)

and 

2 ( ) ( )
2

1 1
( , , ) = ln

2 2
TISO ISO

ISOl const I W u uσ
σ

− − −l b l   (5.31)

Given these definitions, Arbia et al. (2013) developed a test of isotropy 
by considering the Likelihood Ratio test statistics (see Equation (1.30)):

2 2
1 2

ˆ ˆ ˆ ˆ ˆ= 2 ( ˆ , , , ) ( ˆ , , )ANI ISOA test l lσ σ⎡ ⎤− − −⎢ ⎥⎣ ⎦
l l b l b  (5.32)

where 2
1 2

ˆ ˆ ˆ( ˆ , , , )ANIl σ l l b  is the maximized log-likelihood of the unre-
stricted model and 2 ˆ ˆ( ˆ , , )ISOl σ l b  is the maximized log-likelihood of 
the restricted model. In both expressions, the unknown parameters 
are replaced by the corresponding ML estimators, denoted by the hat. 
Standard asymptotic theory guarantees that, under the null hypothesis 
of isotropy, the test statistics converges in distribution to the 2

1c  ran-
dom variable:

    2
1 dA test− ����c   (5.33)

In Arbia et al. (2013) the authors report the results of a Monte Carlo 
study which shows that neglecting the problem of isotropy can lead 
to serious biases and losses of efficiency in the estimation of the 
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regression parameters in spatial econometric models. In particular, 
they showed that in wrongly identified models (that is, when we 
assume isotropy when this hypothesis is not true), if the absolute 
difference between l1 and l2  is large (and therefore we are very dis-
tant from the hypothesis of isotropy) both the relative bias and the 
standard errors of the estimates are larger. Furthermore, while the ML 
estimators still obviously enjoy the usual asymptotic properties, the 
rate of  convergence is slower.

Example 5.2 Anisotropies in the Barro and Sala-i-Martin 
convergence model

Let us consider again the Barro and Sala-i-Martin model of regional conver-
gence introduced in Example 1.1. In their paper Arbia et al. (2013) focus on 
the detection of possible directional biases in the pattern of spatial dependence 
in regional convergence modeling. In particular, they consider the following 
anisotropic Spatial Lag specification of the traditional model:

2
1 1 2 2= + + +      | . . . (0, )y Z W y W y u u Z i i d N Iσ≈b l l

with 
0

= ln it

i

X
y

X
; 0=i iZ X , itX  the per capita income in region i at time t and

u the error component.
The empirical data considered referred to the per capita income in the 20 

Italian regions already considered in Example 1.1 in a period of time ranging 
from year 2000 to year 2008. To identify a significant directional bias the 
authors defined 20 different W1 matrices by considering in turn each region 
as the one originating the directional bias and the other regions following in 
a time-like fashion satisfying the contiguity constraint. So, for instance, the 
W1 matrix referring to the region Lombardy as originating the directional 
bias is built up according to the scheme shown in the next figure. Thus in 
the graph, Lombardy is coded as “region 1” and does not depend on any 
other region, the 4 regions coded as “region 2” depend only on Lombardy, the 
6 regions coded as “region 3” depend only on the regions coded as “region 
2” and so on.
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The region originating the directional bias plays a role analogous to the 
initial observations in a time series. The W2 matrices are then derived as 
W2 = W–W1 in order to satisfy the requirements of the test. The A-test was 
then calculated in the 20 different specifications. The results of this analysis 
are shown in the following table:

Region Anisotropy p-value

A-test

Lombardy 8.894 0.002
Friuli Venezia-Giulia 8.502 0.003
Trentino Alto Adige 9.483 0.003
Tuscany 6.736 0.009 
Aosta Valley 6.437 0.011
Liguria 5.666 0.017

3

2

2

2

2
3

3

3 3
4

4
5

5
6

6

7

8

9

10

1

Source: Author’s creation using software “R” and shapefiles available on ISTAT that can be down-
loaded at the webpage http://www.istat.it/it/archivio/44523
Note: Anisotropic spatial relationship originating from the region Lombardy. Each region depends 
only on those regions with a lower code number. Region 1 (Lombardy) is the one where the direc-
tional bias originates and does not depend on any other regions.

(continued)
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The analysis reveals that there are significant anisotropies in regional 
growth and highlights significant directional biases originating from six 
regions, namely Lombardy, Friuli, Trentino-Alto Adige, Tuscany, Aosta Valley 
and Liguria. The largest significance of the A-test is obtained for Lombardy 
(the region of Milan), which therefore appears as a leading region in the pro-
cess of growth diffusion. This result is consistent with common knowledge 
and with the empirical evidence since Lombardy is the region with the highest 
concentration of industrial activity in Italy.

5.3.3 Inference for a unilateral Spatial Lag model

If the hypothesis of isotropy is rejected using the A-test, then appropri-
ate anisotropic models of the kind presented in the previous section 
have to be considered. Conversely, if this hypothesis can be accepted 
on the basis of empirical data, then this property can be exploited to 
simplify the calculations and to circumvent some of the computa-
tional difficulties connected with the use of Maximum Likelihood in 
conventional spatial econometric modeling. This aim can be achieved 
by considering the so-called unilateral approximations introduced in 
the literature by Besag (1974). Indeed, if a model is isotropic, then 
direction does not matter and we can approximate its properties by 
specifying a unilateral model which is simpler to treat while providing 
the same inferential information. In order to identify such a model, we 
first have to select one conventional preferred direction and then build 

Umbria 2.793 0.094
Marche 2.772 0.095
Emilia Romagna 1.301 0.254
Sardinia 1.189 0.275
Campania 1.032 0.309 
Calabria 0.719 0.396
Latium 0.497 0.480 
Veneto 0.337 0.561 
Basilicata 0.316 0.573
Puglia 0.315 0.574
Sicily 0.207 0.648 
Abruzzo 0.065 0.798
Molise 0.003 0.954
Piedmont 0.002 0.956

(Numbers in italics refer to the detection of significant anisotropy).

Region Anisotropy p-value

A-test

Continued
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up a time-like structure of dependence for the variables involved. The 
choice can be purely subjective since direction does not matter. In this 
case, similar to what happens in time series analysis, the likelihood of 
the model can be easily factorized as the product of the conditional 
densities of each of the variables, conditional upon a set of variables 
termed the predecessors-neighbors (denoted as PN, see Besag, 1974 and 
Arbia, 2006) defined as the neighbors along one designated preferred 
direction (for instance, one of the two directions described in Figure 
5.2). As previously mentioned, if the model is isotropic, this procedure 
is inferentially equivalent to a full likelihood approach. To introduce 
this method let us consider the following unilateral spatial lag model:

1 1 2 2= + + +y Z W y W y ub l l  (5.34)

where y is a vector of observations of the dependent variable, X a 
matrix of non-stochastic exogenous regressors; b a vector of unknown 
 parameters to be estimated and u a vector of stochastic disturbances 
such that 2| . . . (0, )u Z i i d N Iσ≈ . Furthermore let W1 be the (non row-
standardized) associated unilateral weight matrix such that 1ijw W∈ ; 

= 1ijw  if ( )i PN j∈  and 0 otherwise. In other words, wij =1 if j is a neigh-
bor of i in the preferred direction chosen. In this case, referring, without 
loss of generality, to the scheme of three locations shown in Figure 5.1, 
and to the case of one single regressor, the likelihood of the unilateral 
model can be expressed as:

σ ∏2
,

=1

( , , ) = ( | , )
i l m

n

i l my y y
i

L f y y yl b  (5.35)

where , ( )l m PN i∈  so that each density in the right-hand side is only 
conditional on the predecessors-neighbors.

Using the standard results on multinormal conditional distribu-
tions (see, for example, Anderson, 2003) and assuming no cross-
covariance between the variables Z and y in different locations (that is, 

( ) = ( ) = 0i l i mCov Z y Cov Z y ), the generic expression for the conditional 
density function on the right-hand side of (5.35) will be 2( , )c cN σm  with 
conditional mean and variances given by:

2
=1

2 2 2
2 2

2 2

= ( ) + ( )
(1+ ) (1 )

2
=

(1 ) (1 )

n

c ij j i z
j

z
c

w y zμ

σσ σ

⎡ ⎤
⎢ ⎥+ − −⎢ ⎥ −⎢ ⎥⎣ ⎦

− −
− −

∑l bm m m
l l

l b
l l



 


 (5.36)
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where l¢ denotes the correlation between yl and ym, which is the corre-
lation between the predecessors of yi which are mutually second-order 
neighbors (see section 5.2.1).

Finally, the likelihood associated with the distribution (5.36) can be 
expressed as:

( ) ( )

2
,

=1

22 2
2

=1

( , , , ) = ( | , )

1
                    = exp

2

i l m

n

i l my y y
i

n n

c i c
c i

L f y y y

const y

σ

σ
σ

− ⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥− −⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∏

∑

l l b

m



 (5.37)

and the log-likelihood as:

( ) ( )22 2
2

=1

1
( , , , ) = ln

2 2

n

c i c
c i

n
l const yσ σ

σ

⎡ ⎤
⎢ ⎥− − −⎢ ⎥⎢ ⎥⎣ ⎦
∑l l b m

and, substituting Equations (5.36) into (5.37), we finally have:

2 2 2
2 2

2 2

'2

2 2 2 2 2

=1 =1
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(1 ) i zz μ
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b
l

 (5.38)

This expression does not contain any matrix inversion and so its 
 calculation can be executed straightforwardly, even with a very large 
sample size.

Example 5.3 Health planning in Mexico (continued)

In this example, we wish to illustrate the performances of the unilateral 
approximation with respect to a full likelihood approach. We will also compare 
the results with those obtained with the MESS specification discussed in section 
5.1. For this reason, we will examine again the dataset on health data in the 
32 Mexican states. Since in an isotropic model the direction of proximity does 
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not matter, a particular interpretation of the unilateral approximation method 
is to consider a neighborhood in which each spatial unit has only one neighbor, 
defined according to the nearest neighbor criterion (see Example 2.1 in section 
2.1). The model presented in Example 5.1 is thus estimated again using this 
particular specification of the unilateral model. The results are shown in the 
following table where, to facilitate the comparison, we also display again the 
results of the full likelihood and that of the MESS approximation.

The three methods lead to remarkably similar results in terms of the infer-
ential conclusions associated with the parameters, all agreeing in identifying 
the health staff and the percentage of elderly people (variables x1 and x4) as 
significant variables. The sign of the estimates are always the same and the 
absolute values are very similar using the three methods, with the only excep-
tion being the intercept and the dependence parameter l which is underesti-
mated by the unilateral approximation more than by the MESS specification. 
As already remarked in Example 5.1 the differences in terms of the computing 
time and storage required may become a very relevant factor in choosing one 
of the two approximated techniques in very large samples.

5.4 A composite likelihood approach

5.4.1 Generalities

In this section we will consider an inferential approach based on a par-
ticular form of composite likelihood termed pairwise likelihood (Lindsey, 
1988; Varin et al., 2011), a method that is becoming increasingly popu-
lar in the statistical literature as a viable solution to those cases where 
a joint likelihood approach is computationally unfeasible. A composite 
likelihood (a subclass of the more general pseudo-likelihood, see Pace 
and Salvan, 1997) is defined as a function that, although not being a 
fully specified likelihood, enjoys some of its properties. The literature 
reports some examples of composite likelihood inference in time series 
econometrics (Davis and Yau, 2011) and in spatial econometrics (see 
Arbia, 2012 for spatial cross-sectional models and Wang et al., 2013 for 
the spatial Probit models).

5.4.2 A bivariate Marginal Likelihood approach to Spatial Error 
Model estimation

Let us consider a linear regression model:

= Z +i i iy b e  (5.39)
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i=1…n, as in model (3.13), but now, instead of specifying the error in 
autoregressive form as in (3.14), let us assume the following joint bivari-
ate Gaussian distribution for each pair of disturbances, say i and l:

( )20 ,    ,   ( )i

l
MVN i l l N iσ

⎛ ⎞⎟⎜ ⎟ ≈ Ω ∀ ∈⎜ ⎟⎜ ⎟⎜⎝ ⎠
1

e
e

 =    ( )I l N iΩ ∀ ∉  (5.40)

This definition is very general and similar to the one adopted in Equation 
(5.20) in section 5.2.2; however, here we do not aim to model simulta-
neously the joint random behavior of all n disturbances as in the con-
ventional spatial econometric models and in the MESS approximation, 
but only their 2-by-2 relationships. Notice that N(i), as usual, represents 
the set of neighbors of location i and that the choice of the neigh-
borhood criterion is not essential to the method. In Equation (5.40), 

1
=

1

⎛ ⎞⎟⎜ ⎟Ω ⎜ ⎟⎜ ⎟⎜⎝ ⎠

y
y

represents the correlation matrix and y is a parameter 

controlling for the error spatial correlation such that ∈ − +( 1; 1)y . The 
symbol y is used intentionally in place of the more commonly used 
symbol r in a Spatial Error context to highlight the differences in their 
meaning. The (apparently restrictive) hypothesis that the correlation 
between all units in a neighborhood is the same no matter what the 
direction, derives from the assumption of isotropy (implicitly) made in 
all the spatial econometrics literature (see section 5.3).

Before introducing a composite ML procedure for the estimation of 
the unknown parameters of model (5.39)–(5.40), let us first introduce 
the definition of a bivariate coding. This concept was introduced by 
Arbia (2012, 2014) extending the work of Besag (1974). Just for the pur-
poses of illustration, let us assume that the n observations are available 
on a regular square lattice grid and let us label the interior cells of such 
a grid with a cross “x” as indicated in Figure 5.3.

Figure 5.3 Bivariate coding pattern in a regular square lattice grid

x x x x x x

x x x x x x
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In particular, let us code with a cross, a subset of q of the n available 
spatial observations, (q Q∈ ) and let us also code with a cross, a set of 
q further locations chosen randomly in the neighborhood of location 
i. The disturbances ei and el, with ( )l N i∈ , are assumed to be spatially 
dependent due to their proximity while the pairs { },i le e  and { },j ke e  
(with ( )k N j∈ ) are assumed to be stochastically independent provided 

, ( , )j k N i l∉ , having defined { }( , ) = ( ) ( )N i l N i N l∪  as the joint neighbor-
hood of i and l. The above classification scheme defines a bivariate 
coding pattern.

Similar coding schemes can be easily introduced in irregular spatial 
schemes with an appropriate definition of neighborhood. The aim of 
this procedure is rather clear: by selecting pairs of observations follow-
ing the criterion of including two neighboring spatial units, we are able 
to retain the spatial information contained in the sample. However, by 
selecting pairs of spatial units that are, by definition, independent of 
one another we avoid incurring problems in the estimation, typical of 
the spatial econometric models introduced in Chapter 3. The hypoth-
esis of independent pairs, which may seem too restrictive at a first 
sight, has to be considered with reference to the definition of a neigh-
borhood. Indeed, we can always define a neighborhood in such a way 
that those pairs that do not belong to the neighborhood are far enough 
to be independent. Finally, considering pairs of random disturbances 
is not essential to the method and one could equally consider triplets 
and higher-order groups, the only theoretical justification for this 
choice being the Hammersley–Clifford theorem and the consequent 
restriction to pairwise interaction assumed by the models discussed by 
Besag (1974).

Under these assumptions, we have that the joint density of any of 
the q pairs of disturbances included in the bivariate coding is given by:

( )
2 2

2 22 2

1 1
( ) = exp 2 +

2 12 1i l i l i i l lf
σσ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤− −⎨ ⎬⎣ ⎦⎪ ⎪−− ⎪ ⎪⎪ ⎪⎩ ⎭
e e e e e ye e e

yp y  (5.41)

if ( )l N i∈ , i=1,…,q

A composite likelihood can then be derived as the product of the q 
bivariate density functions reported in Equation (5.41) that are assumed 
to be independent. We can then treat such a composite likelihood as a 
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proper likelihood and base our inference on it. In particular, multiply-
ing the q Equations (5.41), we have:

2( , , )L σb y  = 
=1

( )
i l

q

i l
i

f∏ e e e e

= 
( )

2 2
2 22 2

=1

1 1
exp 2 +

2 12 1

q

i i l l
i σσ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤− −⎨ ⎬⎣ ⎦⎪ ⎪−− ⎪ ⎪⎪ ⎪⎩ ⎭
∏ e ye e e

yp y
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2 2 2

2 2
2 2

=1

(2 ) ( ) (1 )

1
exp 2 +

2 1

q
q q
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i i l l
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σ
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−− − −
⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤− −⎨ ⎬⎣ ⎦⎪ ⎪−⎪ ⎪⎪ ⎪⎩ ⎭

∑

p y

e ye e e
y

�

 (5.42)

and correspondently the log-likelihood is equal to:

( )

2 2 2

2 2
2 2

=1

( , , ) = ln( ) ln(1 )
2

1
                  2 +

2 1

q

i i l l
i

q
l const qσ σ

σ

− − −

⎡ ⎤− −⎣ ⎦− ∑

b y y

e ye e e
y

 (5.43)

Let us now introduce some new symbols. Let 1 2 3 4 5 6, , , ,  and a a a a a a , 
be a set of statistics defined as follows:

2
2 2 2

1
=1 =1 =1

= + =
q q q

i jl
i l j

Z Z Z∑ ∑ ∑a     
2

2 2 2
2

=1 =1 =1

= + =
q q q

i jl
i l j

y y y∑ ∑ ∑a

2

3
=1 =1 =1

= + =
q q q

i i l j jl
i l j

Z y Z y Z y∑ ∑ ∑a  4
=1 =1

= +
q q

i l il
i l

Z y Z y∑ ∑a  (5.44)

5
=1

=
q

i l
i

Z Z∑a           6
=1

=
q

i l
i

y y∑a

Notice that in the above definitions, for notational convenience, with 

the expression =1

q
i li

Z Z∑  we indicate for brevity =1 ( )

n
i li l N i

Z Z
∈∑ ∑  

which is the sum of products between the two observations belonging 
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to the same pair (and similarly for the other expressions in Equations 
(5.44)). We will consistently employ this notational simplification. Arbia 
(2014) has shown that, under the assumptions of the model, Equation 
(5.43) admits a maximum, that this maximum is unique and that it is 
achieved in the points obtained as the solution of the  following system 
of non-linear equations:

( )

( )

σ

σ σ

⎧ −⎪
−

−

−
⎨

− − −
−

−

∑

∑

3 4

1 5

2 2
=12

2

2 2
2 1 3 6 5 4

2

2
6 4 5=1

2 2

ˆˆ =
ˆ2

ˆ2 +
ˆ =

ˆ2 (1 )
ˆ ˆ ˆ ˆˆ ˆ ˆ+ 2 2 2 + 2

          =
ˆ2 1

ˆ ˆ+ˆ = =
ˆ ˆ

BML
BML

BML
q

i BML i l li
BML

BML

BML BML BML BML BML BML BML

BML

q
i l BML BMLi

BML
BML BML

q

q

q q

a y ab
a y a

e y e e e

y

a b a b a y a y b a y b a
y

e e a b a b ay

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Arbia (2012) termed this estimator the Bivariate marginal Maximum 
Likelihood estimator (or BML).

Notice that, if = 0y  (case of pairwise bivariate spatial independence 
of the regression disturbances), in Equation (5.45) we have:

2

=14 3 3
2 25 1 1
=1

ˆ ˆ= = = =
2

q
j jj

BML MLq
jj

x y

x

−
−

∑
∑

ya a ab b
ya a a

 (5.48)

whereas in Equation (5.46) we have:

2
2 2 2 2 2

=1 =1

1 1
ˆ = + = = ˆ

2 2

q q

BML i j MLl
i jq q

σ σ⎡ ⎤
⎣ ⎦∑ ∑e e e  (5.49)

so that the solutions correspond to the familiar ML estimators of, 
respectively, b and s2 in the case of independent errors (see Chapter 1). 
Notice also that the estimator ˆBMLy  derived in Equation (5.47) 

(5.45)

(5.46)

(5.47)
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corres ponds to the intuitive estimator of the spatial correlation among 
the disturbances.

In the quoted paper, Arbia (2014) proves that the BML estimators are 
normally distributed, unbiased in small samples and weakly consistent. 
The exact Fisher Information matrix and the exact standard errors of 
the estimators are also derived to be used in confidence interval esti-
mation and hypothesis testing. Apart from the analytical and compu-
tational advantages, the BML estimators also provide some interesting 
interpretative advantages. In fact, consider again the formal expression 
of the BML estimator of the regression parameter b derived in Equation 

(5.45): 3 4

1 5

ˆ =
2

−
−

a yab
a ya

. The numerator in this expression represents the 

covariance between Z and y (the term a3) augmented with the extra 
term –ya4 which represents the spatial spillover of the variable Z in one 
location onto the variable y in a neighboring location belonging to the 
same pair (the term a4), weighted with the spatial correlation parameter 
y. Similarly, the denominator represents the variance of the independ-
ent variable (the term a1) augmented with the term –2ya5 representing 
the spatial autocovariance of variable Z (the term a5), weighted with 
the spatial correlation of the error term. The interpretation is rather 
straightforward. In the case of positive error spatial correlation (y > 0), 
if the spatial spillover between Z and y and the spatial autovariance of 
Z are of different sign, we can monitor the multiplicative effect of a 
change in variable Z on variable y. In particular, if the spatial spillover 
(a4) is negative and the spatial autocovariance of Z (a5) is positive, the 
multiplicative effect will be emphasized. The formal expression of the 
BML estimator b̂ also shows that, in the presence of a strong positive 
spatial correlation of the independent variable, the effect on y of a 
variation in the independent variable is more pronounced in the pres-
ence of a positive spillover between the two variables. This result has 
an intuitive explanation. In fact, one location benefits not only from 
an increase of Z in the same location, but also for the increase of Z in 
the neighboring locations. Similarly, the formal expression of the BML 
estimator of β (Equation (5.45)) also shows that we can have a higher 
impact of the independent variable on the dependent variable even if 
there is no spatial spillover between the two. In fact, when a4 = 0, the 
effect on y of a variation in the independent variable will be more pro-
nounced if a5 > 0, that is, in the presence of a positive spatial correlation 
in the independent variable.

As already mentioned, given that the exact Fisher Information matrix 
can be formally derived, standard likelihood-based hypothesis testing 
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procedures can be applied to this new specification. However, this frame-
work also allows a further approach to standard error evaluation and to 
hypothesis testing based on the idea of resampling. Resampling methods 
for sets of dependent random variables have a long tradition in statistics dat-
ing back to the earlier contributions of Solow (1985), Künsch (1989), Arbia 
(1990) and Sherman (1996). The bivariate coding technique  presented in 
this section is based on the identification of a subsample of pairs of units. 
However, in any given empirical situation the bivariate coding scheme is 
non-unique. Even in the very simple example shown in Figure 5.3 we can, 
in fact, produce four different codings (and  consequently four different 
estimations of the model’s parameters) as shown in Figure 5.4.

The number of possible configurations could be even larger when 
dealing with irregular spatial data such as those encountered in practi-
cal applications. Dealing with very large sample size, we can therefore 
derive many possible bivariate coding schemes, and correspondently 
many different estimates of the parameters, allowing the derivation of 
a resampling distribution. In this respect, the bivariate coding approach 
suggests a formal way of bootstrapping spatial data in a regression con-
text preserving the condition of independence between the subsamples 
while not destroying the features of spatial dependence of the data.

Example 5.4 Monte Carlo assessment of BML estimation 
method

Arbia (2014) evaluate the performances of the BML method by examining both 
artificially generated data and real datasets. In particular, in Arbia (2014), the 
author shows, by means of some Monte Carlo experiments, that the BML esti-
mates are very accurate while the computing time is negligible: with an Intel 

Figure 5.4 Four different bivariate coding schemes for the data in Figure 5.3

x x x x x x
x x x x x x

x x x x x x
x x x x x x
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x x x x x x

x x x x x x
x x x x x x
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core i7 processor working at 2.7 GHz, the time required for the calculations 
ranges from between 0.9 milliseconds when the sample size is n = 100 to 831 
milliseconds when n = 2500.

5.5 R Codes
When dealing with the MESS specification, the R library Matrix, con-
tains the function expm which allows computation of the exponential 
of a matrix (see Equation (5.5)). First of all, as usual, we need to down-
load the package with the command install.packages(“Matrix”)
and then we need to call it back in each new session with the command 
library(Matrix). The exponential of a matrix A, say, can be executed 
through the command

>expm(A)

with A a real positive definite matrix. Even if the exponential of a 
matrix is defined as the infinite Taylor series, it is approximated using 
Ward’s diagonal Padé approximation (Moler and Van Loan, 2003).

The R package spdep also contains a routine for estimating a Spatial 
Lag Model using the MESS specification. The command is very simple and 
closely mirrors the command for the corresponding Spatial Lag model 
presented in section 3.8. The syntax of the command is the following:

> model1<-lagmess(formula=y ~ X+Y, data=filename, listw=W)

with W a weight matrix. 
For the unilateral approximation, once a likelihood is specified 

explicitly (such as, for example, in Equation (5.38) for a unilateral 
Spatial Lag model), only a routine is necessary to maximize it with 
respect to the parameters. To this end, we can use the specific R library 
maxLik which can be installed by typing the command install.
packages(“maxLik”) the first time and then, at the beginning of each 
session, the command library (maxLik)

Once the library is installed, we have to write a log-likelihood func-
tion (call it, for example, loglik) as a function of a set of parameters 
(say beta, sigma, lambda, rho, etc.). The R command for likelihood 
maximization is:

> mle <- maxLik(logLik = logLikFun, start = c(beta = 0, 

sigma = 1, lambda=0.2, rho=0.1))
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with beta = 0, sigma = 1, lambda = 0.2, rho = 0.1 arbitrary initial val-
ues for the numerical search of the maximum and mle a conventional 
name for the model. The results of the maximization procedure can be 
then displayed by typing:

> summary(mle)

Furthermore, one possible interpretation of the unilateral approxima-
tion is to consider, for each unit, only its first nearest neighbor (see 
Example 2.1) in the definition of the W matrix (see Example 5.3). In 
this case, having in hand a shapefile (say poly) we start deriving the 
coordinates of the centroids (as we have illustrated in section 2.3.3):

coords<-coordinates(poly)

then we identify for each unit the first nearest neighbor through the 
command:

knn<-knearneigh(coords, k=1)

Notice that the command can be generalized to the search of a num-
ber k of neighbors. In the next step, we derive a system of neighbor-
hood on the basis of our definition of neighborhood through the 
command:

nn<-knn2nb(knn)

and, finally, we derive the W matrix, as usual, through the command:

W<-nb2listw(nn)

Applying the usual commands for inference on a spatial model will lead 
to a unilateral approximation which will produce the output in a much 
shorter time.

No specific routine is required for the bivariate coding approach in 
the estimation of a Spatial Error Model. To implement the procedure, 
we only need a program to randomly select pairs of non-adjacent spatial 
units and then use the information contained in this subsample to cal-
culate the closed-form solutions of the estimators reported in Equation 
(5.45) to (5.47).
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Key Terms and Concepts Introduced

• Big data
• Sparse and dense weight matrices
• Computing time and storage limitations
• Matrix exponential transformation
• First-order neighbors
• Higher-order neighbors
• Matrix power expansion
• Matrix exponential spatial specification
• Isotropy and anisotropy
• Directional bias of spatial relationships
• Asymmetric spatial relationships
• Core–periphery models
• Test of isotropy
• Anisotropic spatial lag model
• Unilateral approximation
• Unilateral spatial lag model
• Predecessors-neighbors
• Composite likelihood
• Pairwise likelihood
• Pseudo-likelihood
• Bivariate coding technique
• Bivariate Marginal Maximum Likelihood estimator
• Spatial resampling and spatial bootstrap

Questions

1. What problems emerge when using a Maximum Likelihood approach 
with very large sample size?

2. Why are the problems more dramatic in the case of a dense 
W matrix and, conversely, less dramatic when considering a sparse 
W matrix?

3. What are the advantages of using the MESS specification of a Spatial Lag 
model with respect to a Maximum Likelihood estimation approach?

4. Illustrate the differences between the concept of asymmetry and the 
concept of anisotropy.

5. Given the computational advantages, what is the major pitfall of 
using the Bivariate Marginal Maximum Likelihood approach with 
respect to the full Maximum Likelihood approach?
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Exercises

Exercise 5.1 Consider again the boundaries of the eight Romanian 
NUTS 2 regions reported in Exercise 2.1 and derive the second-oder and 
the third-order W matrices, say W2 and W3. Using these matrices, derive 
the transformation (5.11) = WS ea  and develop the approximation 

=0 !

i iq

i

W
S

i
≈ ∑ a  for l = 0.9502, the spatial correlation parameter and 

q = 3.

Exercise 5.2 Consider the case of an isotropic model and consider a 
neighborhood in which each spatial unit has only one neighbor which 
is not a neighbor of any other unit. Derive the W matrix in this hypoth-
esis for a sample of dimension n. Derive also the matrix (I – lW) and its 
inverse. Recall the formal expression of the variance-covariance matrix 
Ω of a unilateral Spatial Lag model and derive its determinant |Ω|.

Exercise 5.3 Given the data set used in Examples 3.3 and 3.4 and 
in Exercises 3.6 and 4.8, and using a row-standardized W matrix, re-
estimate a Spatial Lag model using the MESS specification. On the same 
datasets define a unilateral row-standardized W matrix based on the 
first nearest neighbor and estimate again a unilateral Spatial Lag model. 
Compare the results obtained with the three methods.

Exercise 5.4 Consider a system of four spatial units arranged on a 
2-by-2 regular square lattice grid and a Spatial Lag model described by 
the following system of equations:

1 1 12 2 1 13 3 1

2 2 21 1 2 24 4 2

3 3 31 1 3 34 4 3

4 4 43 3 4 42 2 4

= + +

= + +

= + +

= + +

y a w y b w y

y a w y b w y

y a w y b w y

y a w y b w y

e
e
e
e

Derive the parameter conditions under which the model is symmetric 
and those under which the model is isotropic without symmetry. Write 
the equations in a compact matrix notation in the case of isotropy and 
symmetry.

Exercise 5.5 The hypothesis of normality is not essential to the 
Bivariate Marginal Maximum Likelihood estimator (BML) illustrated in 
section 5.4.2. Consider, as an alternative, the hypothesis that the errors 
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follow a bivariate exponential distribution Type II (Gumbel, 1960). In 
this case, we have the following model:

= x +i i iy b e

and, for each pair of disturbances, say i and l, such that ( )l N i∈ :

− − − −⎡ ⎤− −⎣ ⎦ �( ) = 1+ (2 1)(2 1) , = 1, , ;  =
4

i l i l
i l i lf e e e i qe e e e

e e
ae e a r

with r the spatial error parameter. Under these hypotheses, derive the 
likelihood function and the conditions for the BML estimators of the 
vector of parameters b.
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6
Conclusions: What’s Next?

As mentioned in the preface, we conceived this text not as a compre-
hensive book, but as a bridge between the unspecialized econometrics 
textbook literature and the more advanced spatial econometrics text-
books. So we imagine our typical reader as someone who has studied 
a general econometrics textbook (such as, for example, Greene, 2011), 
has devoted some time to the study of the present monograph and is 
now eagerly awaiting directions as to where to go next. In this respect, 
we can suggest different (although not necessarily mutually exclusive) 
directions.

Similar to what occurs in time series econometrics with the theory 
of random processes (Hamilton, 1994), at the basis of the spatial 
econometric models treated in this book, we find the notion of ran-
dom fields. If the reader wants to go into more depth regarding the 
inferential statistical foundations and the probabilistic roots of the 
models treated here, they can refer to Arbia (2006) which contains an 
exhaustive account of the random field models which are the basis 
of the SARAR paradigm, plus a number of other random fields which 
may be potentially very useful in spatial econometrics and are still not 
adequately explored in the current literature. One example is repre-
sented by an alternative specification of the Spatial Lag and the Spatial 
Error models based on conditional, rather than marginal, probability 
distribution. This approach was originally introduced by Besag (1974) 
and has been recently considered in the spatial econometrics literature 
by Sain and Cressie (2007) and Ippoliti et al. (2013). For the reader 
who is interested in exploring the deep roots of spatial econometric 
modeling, these can be found in the spatial statistical literature. Good 
introductions to the topic can be found in books like Ripley (1981), 
Cressie (1993), Gaetan and Guyon (2009) and Cressie and Wikle (2011). 
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In this respect, in spatial statistics it is traditional to distinguish between 
methods designed for data observed on points, lines and areas. Point 
data methods are designed to study the observed regularities in the dis-
tribution of individuals on the plane; line data methods are defined to 
explain the spatial interactions between individuals that are observed 
along networks (such as flows of goods, individuals and information in 
the geographical space); finally, areal methods refer to data observed 
as aggregates within portions of space, generally countries or regions. 
In the present book we have chosen to concentrate mainly on the 
treatment of regional data while neglecting the other two typologies 
of spatial data. Readers who, after consulting this book, are interested 
in deepening their knowledge in these areas, can refer to the existing 
literature (still scattered in econometrics) on the so-called point pattern 
analysis (see, for example, papers such as Marcon and Puesch, 2003; 
Duranton and Overman, 2005 and Arbia et al., 2008, 2010, 2012) for 
point data and to books like LeSage and Pace (2009) and Patuelli and 
Arbia (2014) for spatial interaction models.

Even if this textbook covers a substantial part of the spatial economet-
ric models, there are still a number of topics intentionally omitted to 
keep the discussion limited to the essentials and as simple as possible. If 
the readers wish to enlarge their view on the variety of modeling alter-
natives available, they can consult the book by Anselin (1988) which, 
although dated, still represents a source of references in the subject. Here 
the reader will find references, amongst others, to topics such as the 
analysis of spatial heterogeneity, robust estimation methods, seemingly 
unrelated spatial regressions, pre-testing and bootstrapping in a spatial 
context, non-nested tests, spatial expansion methods, edge effects, and 
others. Furthermore, throughout this book we consistently followed 
a frequentist-Fisherian approach to model inference. The Bayesian 
approach is not treated here and the reader can refer again to Anselin 
(1988) and to the extensive account given in LeSage and Pace (2009). 
Finally, an interesting emerging topic in spatial econometrics, omitted 
in the present context, is represented by spatial quantile regression 
models for which the reader is referred to the recent comprehensive 
book by McMillen (2013).

If the interest is mainly practical, the reader will have to develop a 
deeper knowledge and practice in the available software to treat spatial 
data and spatial relationships. As clarified in the preface, even if this 
textbook presents a series of computer tutorials and practical exercises 
on R, it certainly cannot be considered a comprehensive course on 
the use of R in spatial econometrics. A rich source of references in this 
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respect is the textbook by Bivand et al. (2008). Furthermore commer-
cially available software which are very useful in spatial econometric 
modeling are Matlab, STATA and GeoDa. Matlab contains toolboxes for 
spatial econometric analysis developed by Pace and by LeSage (see the 
website http://www.mathworks.com/products/matlab/ and the web-
site www.spatialeconometrics.com). Similarly, the software STATA has 
recently developed a very rich set of spatial econometrics procedures 
(see the website http://www.stata.com/ and papers like Drukker et al., 
2013a, 2013b, 2013c). Finally, the software GeoDA and PySAL, devel-
oped by Luc Anselin and his co-workers, contain one of the more exten-
sive libraries of procedures in spatial analysis and spatial econometrics 
(see https://geodacenter.asu.edu/software).

Finally, if the aim of our readers is to have familiar grasp of the ongo-
ing, cutting-edge research in the subject, under both the theoretical and 
the applied points of view, they can refer to the paper by Arbia (2012) 
(who surveys 230 papers published in the period 2007–11) and to a series 
of special issues of various scientific journals devoted to the subject which 
appeared in recent years, such as those hosted in journals like Journal of 
Econometrics (see Baltagi et al., 2007), Empirical Economics (see Arbia and 
Baltagi, 2008), Papers in Regional Science (see Arbia and Fingleton, 2008), 
Regional Science and Urban Economics (see Arbia and Kelejian, 2010), 
Journal of Regional Science (see Partridge et al., 2012), Economic Modelling 
(see Arbia et al., 2012), Spatial Economic Analysis (see Arbia and Prucha, 
2013) and Geographical Analysis (see Arbia and Thomas, 2014).
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Solutions to the Exercises

In all exercises, Signif. Codes are: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Exercise 1.1

1. Model 1

 Estimate Std. Error t value Pr(>|t|)
(Intercept) –22.31118 3.38594 – 6.589 0.000100***
Labor  0.27750 0.05346  5.191 0.000571***
business  0.42239 0.47243  0.894 0.394567
F-statistic  43.99   2.59e–06***

Multiple R-squared: 0.9072, Adjusted R-squared: 0.8866 

2. Model 2

 Estimate Std. Error t value Pr(>|t|)
(Intercept) – 21.38866 3.19237 – 6.700 5.36e–05***
Labor     0.31460 0.03335  9.432 2.71e–06***
*F-statistic    88.97   2.71e–06***

Multiple R-squared: 0.8431, Adjusted R-squared: 0.8274 

Model 3 

 Estimate Std. Error t value Pr(>|t|)
(Intercept) –16.0547 5.9992 –2.676 0.02325* 
business  2.3264 0.5646  4.121 0.00208**
F-statistic  16.98   0.00208***

Multiple R-squared: 0.6293, Adjusted R-squared: 0.5923 

3. The best model is model 2 which attains the highest significance level of the 
F-statistics with a high value of the adjusted R-square.

4. Model 4

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 22.546 18.718 1.205 0.25613 
business  6.861  1.761 3.895 0.00298**
F-statistic: 15.17   0.00298**

Multiple R-squared: 0.6027, Adjusted R-squared: 0.563 
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5. Residuals of model 1

Wales
Scotland
Northern Ireland
North of England
North West of England
Yorkshire & Humberside
East Midlands
West Midlands
East Anglia
Greater London
South East England
South west England

– 0.6329899
– 0.8822571
– 1.1388039
– 3.1397582

2.5364883
1.2721572

– 0.5921008
0.4511717

– 0.2855529
– 1.0219450

2.3965191
1.0370716 

6. Breusch–Pagan test: BP = 1.5183, df = 2, p-value = 0.4681
   Jarque Bera Test: JB= 0.092, df = 2, p-value = 0.9551

7. Model 1 overerestimates the GVA (negative residuals) in the East regions (East of 
England, East Midlands and London) and in the North (North of England, North West 
England, Scotland and Northern Ireland) and underestimates it in the center. Thus there 
appears to be a distinct geographical pattern of residuals.

Exercise 2.1

We order the 8 regions as follows: (RO11,RO12,RO21,O22,RO31,RO32,RO41,RO42)

Unstandardized W Matrix:

0 1 1 0 0 0 0 1
1 0 1 1 1 0 1 1
1 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0
0 1 0 1 0 1 1 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 1
1 1 0 0 0 0 1 0

Standardized W Matrix:

0 0,333333 0,333333 0 0 0 0 0,333333
0,166667 0 0,166667 0,166667 0,166667 0 0,166667 0,166667
0,333333 0,333333 0 0,333333 0 0 0 0
0 0,333333 0,333333 0 0,333333 0 0 0
0 0,25 0 0,25 0 0,25 0,25 0
0 0 0 0 1 0 0 0
0 0,333333 0 0 0,333333 0 0 0,333333
0,333333 0,333333 0 0 0 0 0,333333 0

Percentage of non-zero entries =26/64= 40.625 %
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Exercise 2.2 Spatially lagged variable: 

Ly = (9.6999903 9.7666862 10.0333233 10.1666565 9.1 10.3 9.7666569
     9.3666573)

Exercise 2.3

L(X) = (26, 15.67, 23.67, 17, 24.5, 25.33, 27.25, 14, 26, 29, 25, 16, 24, 21.25, 
      20.33, 14.67, 17.5, 14.5, 20.5, 16, 14.5, 15, 20.67, 14, 21.5)

Exercise 2.4 Here below we display the .GAL file

0 12 UK UK_reg
1 4
3 5 8 12
2 2
3 4
3 2
1 2
4 3
2 5 6
5 5
1 4 6 7 8 
6 3
4 5 7
7 5
5 6 8 9 11
8 5
1 5 7 11 12
9 2
7 11
10 1
11
11 5
7 8 9 10 12
12 3
1 8 11

Exercise 2.5 L(GVA) = (6.7, 2.75, 5.95, 8.233, 5.44, 6.3, 9.42, 8.34, 10.45, 14.7, 
10.3, 8.53)
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Exercise 2.6 Moran scatterplot:

5

4

6

8

10

LG
V

A

12

14

10
GVA

15 20

There is a positive relationship between the GVA and its spatially lagged value (LGVA) 
showing spatial correlation for this variable.

Exercise 2.7

Observed Moran’s I = –0.17589503 
Expectation = –0.16886659 
Variance = 0.03307571
Standardized Moran I = –0.0386
p-value = 0.5154

Spatial uncorrelation of residuals should be accepted at 49 % confidence level.
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Exercise 3.1 Here below we display the .GAL file

0 27 eu eu_countries
1 4
5 9 14 25
2 2
18 24
3 4
5 15 16 20
4 2
5 22
5 8
1 3 4 9 14 15 16 25 
6 2
21 26
7 1
23
8 2
9 17

Exercise 2.9
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9 6
1 5 8 10 23 25
10 4
9 15 19 27
11 1 
24 
12 2
16 26
13 4
15 18 19 20
14 2
1 5
15 6
3 5 10 13 19 20
16 4
3 5 12 20
17 1 
8
18 2
2 13
19 3
10 13 15
20 4
3 13 15 16
21 2
6 22
22 2
4 21
23 2
7 9 
24 2
2 11
25 3
1 5 9
26 2
6 12
27 1
10

SARAR model

 Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.31168102 0.19459931  1.6017 0.1092
educ  0.00094883 0.00055511  1.7093 0.0874 .
Lambda  0.6819   3.6192 0.00029551***
Rho: –0.47147  –1.6595 0.097007 .
LR test:  4.2047   0.12217
AIC: –91.606
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SEM

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.0294194 0.0286529 35.9273 < 2e–16***
educ 0.0014198 0.0007987 1.7776 0.07546 .
Rho 0.32931  1.7495 0.080209 .
LR test value: 2.6041   0.10659 
Wald statistic: 3.0607   0.080209 .
AIC: –92.005

SLM

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.66359077 0.19079632 3.4780 0.0005052***
educ 0.00132915 0.00071032 1.8712 0.0613180 .
Lambda 0.34291,  1.8959 0.057977 .
LR test value: 3.1194   0.077367 .
Wald statistic: 3.5943   0.057977 .
AIC: –92.521

The best model is SLM. Rho is non-significant in SARAR and SEM and SLM achieves 
the highest AIC.

Exercise 3.2 Writing the model as:

= + ;i i iy X ub = ( ) +  i i iu L ur e ;

the second equation can be written as

( ) =  i i iu L u− r e

(1 ) =  i iL u− r e

and the first equation as

(1 ) = (1 ) + (1 )i i iL y L X L u− − −r r b r

= + +i i i i iy Ly X LX−r b rb e

= + +i i i i iy Ly X LX−r b g e

This is a Spatial Lag model with a spatially lagged independent variable L(X).
A simple OLS strategy cannot be employed because the coefficient g is subject to the 

constraint =g rb.
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Exercise 3.3 Writing the model as:

= +y X ub

=u Wur ;

the second equation can be written as

(1 ) =  W u− r e

and the first equation as

(1 ) = (1 ) + (1 )W y W X W u− − −r b r r

or 

* *= +y Xb e

which can estimated with the OLS by minimizing the expression

( ) ( )* * * *= = min
T

T y X y X− −e e b b

or 

( ) ( )( ) ( ) = minT Ty X I W I W y X− − − −b r r b

with * = ( )y I W y− r  and * = ( )X I W X− r .
 Consider now the likelihood of a SEM model (Equation 3.23)

2 2 1

11

1
( , , ) = ln( ) ln ( ) ( )

2 2
1

                   ( ) ( ) ( ) ( )
2

T

T T

n
l const I W I W

y X I W I W y X

σ σ − −

−− −

− − − −

⎡ ⎤− − − − −⎣ ⎦

e er b r r

b r r b

For known r and se
2 this expression is a maximum for b if 

11( ) ( ) ( ) ( ) = minT Ty X I W I W y X
−− −⎡ ⎤− − − −⎣ ⎦b r r b

or

( ) ( ) ( )( ) = minT Ty X I W I W y X− − − −b r r b

which coincides with the previous expression obtained for OLS.
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From the GLS solution we have from Equation (1.47):

1 1

1 1 1

( * *) * * = ( )
ˆ                               = ( ) =

T T T T T T

T T
GLS

X X X y X P PX X P Py

X X X y

− − − −

− − −Ω Ω b

having set 1 = ( )P I W− − r  and as a consequence. 1 1= TP P− − −Ω  = ( ) ( )TI W I W− −r r .
So the ML estimator of the b coefficient in a SEM model can be expressed as:

1ˆ = ( ) ( )

          ( ) ( )

T T
GLS

T T

X I W I W X

X I W I W y

−⎡ ⎤− −⎣ ⎦
⎡ ⎤− −⎣ ⎦

b r r

r r�

with error variances that can be obtained from the main diagonal of the matrix (see 
Equation 1.48)

2 1 1ˆ( ) = ( )T
GLSVar X Xσ − −Ωeb

12= ( ) ( )T TX I W I W Xσ −⎡ ⎤− −⎣ ⎦e r r

Exercise 3.4 Since the variable X is non-stochastic, we can rewrite the model as 

ϑ∑
∑

=1

=1

= +
n

ij ii
i in

ijj

w y
y

w
l ; with = +i i iX uϑ b . Furthermore, given that

2. . . (0, )i u n nu X i i d N Iσ≈  then:

( ) = ( + ) = ( ) + ( ) =i i i i i iE E X u E X E u Xϑ b b b

and 

2( ) = ( + ) = ( ) =i i i i uVar Var X u Var uϑ σb

So the equation describes a purely autoregressive model with an error 
2. . . ( , )i i uX i i d N X Iϑ σ≈ b .

Exercise 3.5 The model can be re-written as:

= +y Wy u−r

= +u Wur e

or

( + ) =I W y ur

( ) =I W u− r e
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So that

1= ( + )y I W u−r

1= ( )u I W −− r e

and therefore:

1 1= ( + ) ( ) =y I W I W− −−r r e [ ] 1( )( + )I W I W −− r r e

( ) 12 2= =I W
−

− r e ( ) 1* *I W
−

− r e

This is a SLM 

* * *= + +       1y W y Z u <r b r

with weight matrix 2* =W W  and parameter 2* =r r . Since 1<r , then also * 1<r .

From (Equation 3.47) the variance-covariance matrix of y is:

( ) ( ) ( )

( ) ( )

12

12 2 2 2 2

=

           =

TT

T

E yy I W I W

I W I W

σ

σ

− −

− −

− −

− −

e

e

r r

r r

and from Equation (3.48) its likelihood:

1
2 2 2

2 2 1 1 2 2 1
2

( , , ; ) =

1
                      exp ( ) ( )

2
T

L y const

y I W Z y I W Z

σ σ

σ

−

− − −

Ω

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤ ⎡ ⎤− − − Ω − −⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭

e

e

l b

r b r b�

Exercise 3.6

ML estimation

 Estimate Std. Error z value Pr(>|z|)
(Intercept)  40.6458123 5.2937581  7.6781 1.621e–14***
CRIM  –0.1188867 0.0324540  –3.6632 0.0002491***
RM  3.8507202 0.4062432  9.4789 < 2.2e–16***
INDUS  –0.0059026 0.0618481  –0.0954 0.9239678
NOX –20.4193252 4.0011873  –5.1033 3.338e–07***
AGE  –0.0195181 0.0140191  –1.3923 0.1638451
DIS  –1.4560840 0.2717635  –5.3579 8.419e–08***
RAD  0.3219532 0.0732975  4.3924 1.121e–05***
PTRATIO  –1.0407873 0.1366262  –7.6178 2.576e–14***
B  0.0098856 0.0026439  3.7391 0.0001847***
LSTAT  –0.5149470 0.0496189 –10.3780 < 2.2e–16***
TAX  –0.0112409 0.0038685  –2.9058 0.0036637***
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Rho: 0.57191  6.3752 1.8267e–10***
LR test value: 25.792   3.8025e–07***
Wald statistic: 40.644   1.8267e–10***
AIC: 3021.4

FGLS estimation

 Estimate Std. Error z value Pr(>|z|)
(Intercept)  40.5245582  5.2994923  7.6469 2.065e–14***
CRIM –0.1180917 0.0325913 –3.6234 0.0002907***
RM  3.8591297  0.4082023  9.4540 < 2.2e–16***
INDUS  –0.0044561  0.0620706 –0.0718 0.9427686
NOX –20.2981368  4.0071806 –5.0654 4.075e–07***
AGE  –0.0186184  0.0140273 –1.3273 0.1844113
DIS  –1.4431412  0.2636080 –5.4746 4.386e–08***
RAD  0.3217374  0.0731746  4.3968 1.098e–05***
PTRATIO  –1.0462088  0.1365008 –7.6645 1.799e–14***
B  0.0098673  0.0026561  3.7149 0.0002033***
LSTAT  –0.5156174  0.0498751 –10.3382 < 2.2e–16***
TAX  –0.0112381  0.0038747 –2.9004 0.0037267***

Rho:  0.53872   0.60881 0.88488***

Exercise 4.1 The error variance-covariance matrix can be written as:

2( ) = = =T T T TVar GG GGσee ee e e .

Now define the aggregation matrix G as:

�

�

�

1

2  times

 times

1 ... 1

1 ... 1

=

1 ... 1
m

n times

n

n

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and 

1

2

=T

m

n

n

GG

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

So ( )Var e  has non-constant diagonal terms and ē  is heteroscedastic.

Exercise 4.2 

Uniform:

[ ]
1

1
1

1

( ) = 0.5 = 0.5 = 1K d d
∞

−
−∞ −
∫ ∫n n n n
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Epanechnikov (quadratic)

( ) ( ) ( )
1 1

2 2

1 1

3 3
= 1  = 1  

4 4
K d d d

∞

−∞ − −

− −∫ ∫ ∫n n n n n n
13
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3
= = 1

4 3 −
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nn

Quadratic (bi-weight)

( ) ( ) ( )

( )

1 1
2 22 2

1 1
1

2 4

1

15 15
= 1  = 1  

16 16

15
                = 1 2 +  

16

K d d d
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−
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n n n

15
3

1

15 2
= + = 1

16 3 5 −

⎡ ⎤
⎢ ⎥−⎢ ⎥⎣ ⎦

nn n

Exercise 4.3

 Estimate Std. Error t-value Pr(>|t|)
(Intercept)  0.4923310 0.6317384  0.7793 0.4358
educ  0.0014920 0.0012071  1.2361 0.2164
lambda  0.4967469 0.6222546  0.7983 0.4247
rho –0.5638543 0.4352350 –1.2955 0.1951

Wald test that rho and lambda 
are both zero 0.013056   0.90903

Exercise 4.4 Consider the model:

= +y X u• b

= +u Wur e

We have

1= ( )u I W −− l e

and, consequently:

( ) = 0E u

( ) ( )
1

( ) = = TTE uu I W I W
−⎡ ⎤Ω − −⎢ ⎥⎣ ⎦

l l
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The likelihood of the single observation is

( = 1) = ( 0 , )i i ij iiP y P y X w y• •>

= ( + 0 , , ) = ( , , ) ( )i ij i i ij i ii i i iP X u X w y P u X X w y X• •> ≤ ≅Φb b b

with Φ(⋅)MVN (0, Ω)
and the likelihood, from Equation (4.30):

( )
1 2

= ...
n

L d
−∞ −∞ −∞
∫ ∫ ∫

mm m

j m m

with ( ) ( )2
1

= (2 ) exp
2

n
T− ⎡ ⎤

⎢ ⎥Ω − Ω
⎢ ⎥⎣ ⎦

m p m m  where i ∈m m, =i iXm b  and 

( ) ( )
1

= TI W I W
−⎡ ⎤Ω − −⎢ ⎥⎣ ⎦

l l .

Exercise 4.5

Standard Probit

 Estimate Std. Error z value Pr(>|z|) 
(Intercept) –2.88609 1.14867 –2.513 0.0120*
educ  0.06724 0.03067  2.192 0.0284*

AIC: 31.126

Probit ML

 Estimate Std. Error z-value Pr(>|z|)
(Intercept) –3.22362474 1.96301263 –1.6421824 0.1005522
educ  0.07365255 0.04548824  1.6191556 0.1054138
rho –0.16447635 0.65983415 –0.2492692 0.8031525

Probit GMM

 Estimate Std. Error z-value Pr(>|z|)
(Intercept) –3.43547076 1.63015676 –2.1074481 0.03507876*
educ  0.07741729 0.03519487  2.1996756 0.02782992*
WXB –0.26053582 0.58076446 –0.4486084 0.65371417

Probit LGMM

 Estimate Std. Error z-value Pr(>|z|)
(Intercept) –3.37481 1.45691 –2.31641 0.02054*
educ  0.07637 0.03393  2.25085 0.02439*
WXB –0.27239 0.65782 –0.41408 0.67882
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Exercise 4.6

1 0
=

0 1TI
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

; 
1 0 0 0 1 1 1

= ( ) = 0 1 0 1 0 0 = 1 0

0 0 1 1 0 0 0 1
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Exercise 4.7

SEM-RE

Error variance parameters:
 Estimate Std. Error t-value Pr(>|t|) 
phi 39.838568 8.586543  4.6397 3.49e–06***
rho  0.094122 0.066619  1.4128 0.1577 

Coefficients:
(Intercept) –5.855669 0.640199 –9.1466 < 2.2e–16***
log(rgdp)  1.126815 0.065639 17.1669 <2.2e–16***

KKP

Error variance parameters:

 Estimate Std. Error t-value Pr(>|t|) 
phi 28.727941 5.486499  5.2361 1.64e–07***
rho  0.499248 0.059529  8.3866 < 2.2e–16***

Coefficients
(Intercept) –1.57211 0.78284 –2.0082 0.04462* 
log(rgdp)  0.68644 0.08021  8.5580 < 2e–16***

Only the KKP-like term is significant: hence, in the random effects approach, we con-
clude against spatial correlation in the idiosyncratic part of the error, but in favour of 
spatial correlation of individual effects.
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Exercise 4.8

OLS a-spatial model

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) –34.671 2.650 –13.08 <2e–16***
RM  9.102 0.419 21.72 <2e–16***
F-statistic:  471.8   < 2.2e–16***

Multiple R-squared: 0.4835, Adjusted R-squared: 0.4825 

Spatial Lag Model

 Estimate Std. Error z value Pr(>|z|)
(Intercept) –37.75130 2.45486 –15.378 < 2.2e–16***
RM 7.60451 0.41218 18.450 < 2.2e–16***
Lambda: 0.56252, 9.8236  < 2.22e–16***
LR test value: 76.532   < 2.22e–16***
Wald statistic: 96.504   < 2.22e–16***

AIC:  3277.6
LM test for residual
autocorrelation 0.013478   0.90758

GWR

Summary of GWR coefficient estimates:

 Min. 1st Qu. Median 3rd Qu. Max. Global
(Intercept) –120.600 –38.360 –23.130 –5.059 52.540 –34.6706
RM –5.974  3.626  7.443  9.838 21.320  9.1021

Moran’s I
statistic = 12.578, p-value = 0.000597

Exercise 5.1
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Exercise 5.2 Rearranging the units without loss of generality:
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l l l
l

l l ; = 1I W− l .

Furthermore, the variance-covariance matrix of a Spatial Lag model is: 

1= ( ) ( ) TI W I W− −Ω − −l l , and, since =AB A B :

1 1( ) ( ) = ( ) ( ) = 1T TI W I W I W I W− − − −− − − −l l l l

Exercise 5.3

Full likelihood

 Estimate Std. Error z value Pr(>|z|)
(Intercept)  2.8378e+01 5.8225e+00  4.8739 1.094e–06***
CRIM –9.7501e–02 3.2606e–02 –2.9902 0.0027877***
RM  3.8432e+00 4.1351e–01  9.2941 < 2.2e–16***
INDUS –7.1563e–04 6.0617e–02 –0.0118 0.9905805
NOX –1.3602e+01 4.0537e+00 –3.3555 0.0007921***
AGE  1.6953e–03 1.3242e–02  0.1280 0.8981255
DIS –1.1782e+00 1.8339e–01 –6.4249 1.320e–10***
RAD  2.9274e–01 6.5501e–02  4.4693 7.848e–06***
PTRATIO –9.7610e–01 1.3042e–01 –7.4845 7.172e–14***
B  9.8041e–03 2.6659e–03  3.6776 0.0002354***
LSTAT –5.2343e–01 5.0249e–02 –10.4167 < 2.2e–16***
TAX –1.0491e–02 3.6223e–03 –2.8962 0.0037769***

Lambda 0.22019  3.6276 0.00028602***
LR test value: 12.492   0.00040864***
Wald statistic: 13.1   0.00028602***
AIC: 3034.7
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MESS

 Estimate Std. Error t value Pr(>|t|)
(Intercept)  2.8457e+01 5.1346e+00  5.5421 4.870e–08***
CRIM –9.7111e–02 3.2922e–02 –2.9497 0.0033314***
RM  3.8443e+00 4.1538e–01  9.2549 < 2.2e–16***
INDUS –6.7227e–04 6.1239e–02 –0.0110 0.9912456
NOX –1.3590e+01 3.8410e+00 –3.5381 0.0004411***
AGE  1.4406e–03 1.3186e–02  0.1093 0.91304500
DIS –1.1763e+00 1.8379e–01 –6.3998 3.618e–10***
RAD  2.9290e–01 6.6042e–02  4.4351 1.135e–05***
PTRATIO –9.7675e–01 1.2450e–01 –7.8453 2.692e–14***
B  9.8306e–03 2.7004e–03  3.6405 0.0003009***
LSTAT –5.2282e–01 5.0898e–02 –10.2719 < 2.2e–16***
TAX –1.0484e–02 3.6634e–03 –2.8619 0.0043895***

Alpha  0.24305 0.072939 –3.3323 0.00086147***
Implied
Lambda:  0.2157694 
LR test value: 12.741   0.00035776***

Unilateral approximation

 Estimate Std. Error z value Pr(>|z|)
(Intercept)  18.5128197 4.6841857  3.9522 7.744e–05***
CRIM  –0.0819921 0.0288223 –2.8447 0.0044446***
RM   3.9028307 0.3648848 10.6961 < 2.2e–16***
INDUS   0.0118638 0.0534946  0.2218 0.8244892
NOX –11.4646211 3.3830255 –3.3889 0.0007018***
AGE  –0.0050442 0.0115172 –0.4380 0.6614070
DIS  –0.8719433 0.1636842 –5.3270 9.986e–08***
RAD  0.2530190 0.0578713  4.3721 1.231e–05***
PTRATIO  –0.7405545 0.1126720 –6.5727 4.943e–11***
B  0.0078935 0.0023660  3.3362 0.0008494***
LSTAT  –0.3659074 0.0461518 –7.9284 2.220e–15***
TAX  –0.0096598 0.0032010 –3.0177 0.0025467***

Lambda 0.30525 12.336  < 2.22e–16***
LR test value: 111.79   2.22e–16*** 
Wald statistic: 152.17   2.22e–16***
AIC: 2935.4

Exercise 5.4

Symmetry conditions:

1 12 2 21=a w a w ; 1 13 3 31=b w a w ; 2 24 4 42=b w b w ; 3 34 4 43=b w a w
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Isotropy conditions:

=    i = 1,...,4i ia b ∀  and 12 13=w w ; 21 24=w w ; 31 34=w w ; 43 42=w w
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Compact expression:

= +Ty a Wy e

Exercise 5.5
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Index

Average Direct Impact (ADI), 89
adjusted R2, 21
aggregation matrix, 161
Akaike information criterion (AIC), 

6, 22
anisotropic spatial lag model, 181–5, 

196
anisotropy, 179–85, 198
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