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Preface

This book provides readers with a set of both theoretical and applied tools in order

to illustrate the correct implementation of modern micro-econometric techniques

for program evaluation in the social sciences. As such, the reader is offered a

comprehensive toolbox for designing rigorous and effective ex post program

evaluation using the statistical software package Stata. The theoretical statistical

models relating to each individual evaluation technique are discussed and followed

by at least one empirical estimation of the treatment effects using both built-in and

user-written Stata commands.

During the course of the discussion, readers will gradually become familiar with

the most common evaluation techniques discussed in the literature, such as the

Regression-adjustment, Matching, Difference-in-differences, Instrumental-

variables, and Regression-discontinuity-design, and will be offered a series of

practical guidelines for the selection and application of the most suitable approach

to implement under differing policy contexts.

The book is organized in four chapters.

The first chapter provides an introduction to the econometrics of program

evaluation, paving the way for the arguments developed in subsequent chapters,

laying out the statistical setup, standard notation, and basic assumptions used in the

estimation of a program’s treatment effects in the socioeconomic context. The

concept of selection bias, both due to observable and unobservable factors, is

discussed and an overview of the econometric methods available to correct for

such biases is illustrated. The chapter concludes with a brief discussion of the

principle Stata commands for the estimation of the treatment effects, along with the

various econometric methods for binary treatment proposed in the literature.

The second chapter focuses on the estimation of average treatment effects under

the assumption of “selection on observables” (or “overt bias”) and provides a

systematic account of the meaning and scope of such an assumption in program

evaluation analysis. A number of econometric methods (such as: Regression-

adjustment, Matching, Reweighting, and the Doubly-robust estimator) are

discussed, in order to ensure correct inference for casual parameters in this setting.
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The chapter ends with a series of empirical applications of these methods in a

comparative perspective.

The third chapter focuses on econometric methods for estimating average

treatment effects under “selection on unobservables” (or “hidden bias”). This

occurs when non-observable factors significantly drive the nonrandom assignment

to treatment. In such a situation, the methods discussed in Chap. 2 are no longer

appropriate for estimating program effects. In Chap. 3, therefore, we present three

techniques for correct estimation in the presence of selection on unobservables:

Instrumental-variables, Selection-models, and Difference-in-differences, the

implementation of which requires either additional information or further

assumptions.

The fourth chapter addresses two related subjects: the Local average treatment

effect (LATE) and the Regression-discontinuity-design (RDD), both considered as

nearly quasi-experimental methods. It offers a discussion of the theory underlying

the LATE approach, illustrating the setting of a randomized experiment with

imperfect compliance, and goes on to discuss the sample estimation of LATE.

The second part of the chapter focuses on the RDD, used when a specific variable

(the so-called forcing variable) defines a “threshold” separating—either sharply or

fuzzily—treated and untreated units. After presenting the econometric background

for the RDD model, the discussion focuses on both sharp RDD and fuzzy RDD

methodologies. A simulation model both for sharp RDD and fuzzy RDD is also

presented in order to illustrate the role played by each of the underlying assump-

tions of these differing approaches.

The chapters of this book can be considered as fairly self-contained units. The

more interested reader will however find it useful to have a thorough understanding

of the subjects singularly treated in each chapter. Finally, it should be noted that I

assume the reader to be familiar with basic econometric theory and to have some

prior knowledge of the use of Stata for econometric purposes.

Rome, Italy G. Cerulli
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1.1 Introduction

It is common practice for policymakers to perform ex post evaluation of the impact

of economic and social programs via evidence-based statistical analysis. This effort

is mainly devoted to measure the “causal effects” of an intervention on the part of

an external authority (generally, a local or national government) on a set of subjects

(people, companies, etc.) targeted by the program. Evidence-based evaluation is
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progressively becoming an integral part of many policies worldwide.1 The main

motivation resides in the fact that, when a public authority chooses to support

private entities by costly interventions, a responsibility towards taxpayers is

assumed. This commitment, constitutionally recognized in several countries,

draws upon the principle that, since many alternative uses of the same amount of

money are generally possible, any misuse of it is seen as waste, especially under

severe budget constraints.

In this spirit, results from program evaluation may serve two related goals:

“learning” aimed at providing improvements of various kinds for future policy

programs, generally directed to managers and administrators, and “legitimation”

directed to higher political levels and to participants and other stakeholders

involved in the program (Moran et al. 2008).

Ex post impact evaluation is part of the so-called cycle of policymaking, the
reference framework of public policy analysis in political science (Althaus

et al. 2007). Within this framework, ex post policy assessment is performed both

by qualitative and quantitative techniques. This book focuses on the quantitative

(or econometric) side of the coin, although it recognizes that a comprehensive and

accurate impact evaluation should integrate elements of quality assessment as well.

This is in the hope of avoiding “black box” results, as it is not only important to

measure the effects, but also to know the etiological mechanisms driving the

eventual policy success or failure.

A proper quantitative evaluation design should take into account at least three

key qualitative aspects: (1) the political, institutional, and normative context within

which the policy was implemented (the environment); (2) a clear understanding of

the motivations and incentive schemes underlying the behavior of the involved

public and private entities; (3) a clear-cut definition of direct and potentially

indirect effects generated by the intervention. Further preconditions are also impor-

tant for an econometric impact evaluation to be effective, for instance: (1) an

appropriate evaluation design, based on the declared policy goals; (2) detailed

and well-documented data and information; (3) a broad and appropriate coverage

of beneficiaries and non-beneficiaries; and (4) a broad coverage of the spatial

context when policies are geographically based.

In the last two decades, the literature on the econometrics of program evaluation

has evolved, with new econometric techniques becoming a fundamental tool of

analysis in many research areas both in economics and in other social sciences

(Millimet et al. 2008; Imbens and Wooldridge 2009). These include labor econom-

ics, industrial organization, development studies, and sociological and demo-

graphic empirical research. This book presents an exposition of the modern tools

1A wide range of literature witnesses this relevance. See reviews and books such as: Heckman

(2000); Heckman et al. (2000); Blundell and Costa Dias (2002); Shadish et al. (2002); Cobb-Clark

and Crossley (2003); Imbens (2004); Lee (2005); Morgan and Winship (2007); Imbens and

Wooldridge (2009); Angrist and Pischke (2008); Millimet et al. (2008); Imbens and Wooldridge

(2009); Cerulli (2010); Guo and Fraser (2010); Wooldridge (2002, Chap. 18); Wooldridge (2010,

Chap. 21).
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for an econometric evaluation of the effect of socioeconomic programs, with a

primary focus on practical issues and applications in order to provide an accurate

and rigorous empirical research in this field of study.

The econometrics of program evaluation has its roots in epidemiological statis-

tics and in the so-called literature on “treatment effect” estimation (Neyman 1923;

Angrist 1991; Rothman et al. 2008; Husted et al. 2000). In the simplest terms, the

treatment effect is defined as the effect of a specific treatment variable on an

outcome (or target) variable, once any potential confounders affecting the link

between the cause and the effect are ruled out. The treatment variable may be,

according to the disciplinary context, a new drug, a new type of physiotherapy

method, as well as, in the economic context, a training program for unemployed

workers, a subsidy to firms’ capital investment, and so on.

In this literature the terms “treatment” and “causal factor” are exchangeable,

thus meaning that the researcher is not looking for a mere association among

phenomena, but rather a precise causal link. In doing so, the econometric approach

makes use of observational data, whose character is inherently ex post (i.e., “after-

the-fact”). This places econometrics within the sphere of nonexperimental statisti-

cal designs, where the analyst has no capacity to manipulate the design of the

experiment. In contrast, experimental and quasi-experimental designs are charac-

terized by a scientist’s capacity of controlling the experiment. In the classical

experimental setting, the scientist deliberately produces a random assignment of
the units involved in the experiment. In contrast, in quasi-experimental designs,

although assignment is nonrandom, the scientist can manage the form of this

nonrandomness at least to some acceptable extent. The simplest case of a quasi-

experimental setting is the so-called non-equivalent groups design (NEGD) where

the control (or comparison) group is chosen beforehand to be as similar as possible

to the treatment group (Trochim and Donnelly 2007).

In experimental and quasi-experimental designs, the treatment effect is generally

estimated by the “counterfactual” approach, so that scientists in that field often refer

to measuring “counterfactual causality” (Pearl 2000, 2009). The concept of coun-

terfactual causality, as we will discuss, draws upon the assumption that causality

takes the form of a comparison between the outcome of a unit when this unit is

treated in a certain way, and the outcome of the same unit when it is not treated. If

one observes a unit only in its treated status, the untreated status is defined as the

counterfactual status that is—by definition—not observable.

To better clarify the concept of counterfactual causality, Fig. 1.1 shows a

representation of the effect of a policy taking place between t0 and t1 for a

representative unit. The solid line represents the unit observed performance, the

dashed line the unit counterfactual performance (i.e., what the unit would have

done, had it not been supported by the policy). This specific example refers to a

policy aimed at increasing company patenting activity. In t0 (i.e., before the policy),

the company filed ten patents, whereas in t1 (i.e., after the policy) it ends up with

filing six patents, fewer than before. At first glance, by only focusing on the

indication provided by the observed performance, one might be tempted to con-

clude that the policy failed in achieving its objective. Nevertheless, once taking into

account the counterfactual situation, one can clearly recognize that—without the
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policy—the company would have been patenting even fewer patents. It might

appear surprising, but from a counterfactual point of view the policy was success-

ful, as the final effect is positive (indeed, α¼ 6� 3¼ 3> 0). In this case, we can

state that the policy “has reduced the damage.”

If a public agency had only considered the observed levels, its conclusion about

the usefulness of the policy would have been severely biased. This is the typical trap

an agency can come across when considering just one side of the coin, the observed

side. Only considering the observed performance is sometimes referred to as policy
monitoring, whereas policy evaluation in the proper sense always needs to encom-

pass the counterfactual comparison in order to draw reliable conclusions about the

actual causal effect.

The concept of counterfactual causality is not new to economists and econome-

tricians. For many years, however, the discipline mainly focused on macroeco-

nomic analysis, where the main interest was in conceptualizing and measuring

causality within structural econometric models (SEM). SEM involved systems of

simultaneous equations, where the key issue was that of achieving parameters’
identification by invoking some form of economic structure, generally driven by a

given theoretical framework (Hoover 2001).

This was in the spirit of the foundation of modern econometrics, as witnessed by

the famous Cowles Commission-NBER debate on “measuring without theory” of

the 1940s (Koopmans 1947, 1949; Vining 1949a, b). Yet, in the next decades,

quantitative macroeconomists went on to debate about identification and causality,

as shown by the 1980s’ Lucas-Sims debate on problems of identification under the

Rational Expectations Hypothesis (Lucas 1976, 1980; Lucas and Sargent 1981;

Sims 1980, 1996), or by the dispute among structuralists and empiricists in vector

auto-regressive (VAR) models (Cooley and LeRoy 1985).

Number of
patents

10

6

3

Policy

t0 t1
Time

Effect:
a=3 > 0

Counterfactual 
performance

Unit observed 
performance

Fig. 1.1 An instructional graphical representation of “counterfactual causality”
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As microeconometrics has increased its relevance in many economic and social

fields, the task of measuring causality in a counterfactual way has become increas-

ingly appealing to economists and social scientists, especially for those involved in

policy evaluation at the micro-level. Therefore, in recent years, a huge number of

theoretical and applied studies for assessing the effect of policy interventions in the

labor market first and then in many other policy environments, have appeared.

In the SEM tradition, as distinct from epidemiology, scholars generally refer to

“probabilistic causality”:

In probabilistic causality one tries to find a (or the) cause for Y by checking whether the

possible cause changes the probability distribution for Y where no counter-factuals are

envisioned (Lee 2005, p. 196).

The difference between counterfactual and probabilistic causality is subtle and

not resolved:

Causal parameters based on counterfactuals provide statistically meaningful and opera-

tional definitions of causality that in some respects differ from the traditional Cowles

foundation definition. First, in ideal settings this framework leads to considerable simplicity

of econometric methods. Second, this framework typically focuses on the fewer causal

parameters that are thought to be most relevant to policy issues that are examined. This

contrasts with the traditional econometric approach that focuses simultaneously on all

structural parameters. Third, the approach provides additional insights into the properties

of causal parameters estimated by the standard structural methods (Cameron and Trivedi

2005, pp. 32–33).

Although taking a different perspective, the counterfactual approach to causality

is not in contrast with the traditional SEM framework, of which it can be considered

as a generalization.

To better shed light on this point, take the case of the traditional regression

model. It is usually specified assuming that causality assumes a linear form, where

the analyst is interested in assessing the effect of a (usually) continuous variable (x)
on a dependent variable (Y ), by adding within the regression some control
(or conditioning) factors. As we are embedded in a nonexperimental framework

(a social experiment, as said above), at the heart of this causal framework there is

the exogeneity issue: the “true” causal effect of x on Y can be identified, as long as

independent changes of x only produce a direct effect on Y, by ruling out any

potential indirect effect of x on Y, via the relation of x with unobservable factors.

This is the condition under which x can be assumed to be exogenous; otherwise it is
said to be “endogenously determined” and traditional estimation via ordinary least

squares (OLS) produces biased estimates of the causal parameter.

It is easy to show that in this case, OLS estimates the so-called “pseudo-true

value” which is not the actual causal effect the analyst seeks (Cameron and Trivedi

2005, pp. 18–38). An example can better clarify this argument. Take the simple

regression model Y¼ βx + u, where β is the causal effect of x on Y and u is an

unobservable component, and differentiate by x, thus yielding:

dy=dx ¼ β þ du=dx ð1:1Þ

The model is identified as long as du/dx¼ 0, as in this case dy/dx¼ β; otherwise,
autonomous changes in x are not exogenously determined, as x has also an indirect
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effect on Y through its effect on u. As du/dx is unobservable, the analyst is unable to
separate the direct effect (β) and the indirect effect (du/dx). The model is no longer

identified as a single equation and needs further information or assumptions to

recover β correctly (such as, for instance, the availability of an instrumental

variable). In this example, the “pseudo-true value” is equal to the sum of the

“direct” and “indirect” effect (equal in turn to the “total” effect, in the SEM

language).

The counterfactual approach to causality, in its simplest form, can be

reformulated in terms of the same regression model where the variable x assumes

in this case a binary form (x0 for the treated and x1 for the untreated status) instead

of a continuous form. By assuming to observe both Y1 and Y0 (i.e., the outcomes in

the two states for the same individual), we can write that Y1¼ β x1 + u1 and Y0¼ β
x0 + u0. By subtracting previous relations, we get Y1� Y0¼ β (x1� x0) + u1� u0, a
formula that, apart from the problem of a missing observation (Holland 1986), is

equivalent to Δy¼ β Δx+Δu. By dividing by Δx, we finally obtain:

Δy=Δx ¼ β þ Δu=Δx ð1:2Þ

which is the discrete version of (1.1). As in (1.1), the causal parameter of interest in

(1.2) is β, and if Δu/Δx 6¼ 0, a bias appears even in this case.

Yet, in many regards, the econometrics of program evaluation has opened up a

series of very interesting issues that conventional econometrics was unable to

address or that remained—in that tradition—substantially “hidden.” These issues

include a more rigorous definition of “causal parameters” and of their relations; the

importance of sample generation and selection; the role of unobservable heteroge-

neity, as well as the relative advantage of adopting parametric and nonparametric

methods have been highly developed in this field of econometrics (Angrist and

Pischke 2008).

Of course, as recognized by James J. Heckman (2001) in his Nobel Prize lecture,

the issue of parameters’ identification still remains at the center of the scene in both

traditions, so that econometric counterfactual methods should be considered just as

a different angle to look at previous efforts of conceptualizing and measuring

causality within structural econometrics. What is crucial is that the counterfactual

approach has opened up a new perspective on traditional estimation.

As an example, deriving the parameter of a binary regression as developed above

and showing that it is actually equal to the “average treatment effect” is much more

informative than just defining it as a regression coefficient, although this second

meaning is still correct.2 Overall, the literature on the econometrics of program

evaluation, by contributing to the development of a new perspective to

2 Probably more explicit in this direction might be the recent developments in the field of

“continuous treatment” where the treatment variable x assumes a continuous form. In this case,

although the setting is very close to the traditional econometric regression, the counterfactual

approach provides new insights on the meaning of causal parameters, as in the definition and

estimation of the Average Partial Effect (Wooldridge 2001) or of the Average Potential Outcome

(Hirano and Imbens 2004).
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nonexperimental settings and the causality issue, is also able to shed new light on

traditional econometric practice, thus widening both our technical knowledge in

this field and our capacity to apply more appropriate statistical tools to a variety of

old and new (micro)economic policy issues.

1.2 Statistical Setup, Notation, and Assumptions

As sketched above, from a statistical point of view, we are interested in estimating

the so-called “treatment effect” of a policy program in a nonexperimental setup,

where a binary treatment variable D—taking value 1 for treated and 0 for untreated

units—is assumed to affect an outcome (or target) variable Y that can take a variety

of forms: binary, count, continuous, etc. Throughout this book we will assume D to

be binary, although recent literature has provided a generalization of the counter-

factual methods both to the case of D taking more than two values (multiple
treatment) (Angrist and Imbens 1995; Fr€olich 2004; Cattaneo 2010) and to the

case of D taking continuous values (continuous treatment and dose–response
models) (Imbens 2000; Imai and Van Dyk 2004; Hirano and Imbens 2004; Cerulli

2014b).

To begin with, we define the unit i treatment effect (TE) as:

TEi ¼ Y1i � Y0i ð1:3Þ

TEi is equal to the difference between the value of the target variable when the

individual is treated (Y1) and the value assumed by this variable when the same
individual is untreated (Y0). As TEi refers to the same individual at the same time, it
goes without saying that the analyst can observe just one of the two quantities in

(1.3), but not both. For instance, it might be the case that we can observe the

investment behavior of a subsidized company, but we cannot know what the

investment of this company would have been had it not been subsidized, and vice

versa. The analyst faces a fundamental missing observation problem (Holland

1986) that must be tackled econometrically in order to reliably recover the causal

effect (Rubin 1974, 1977).

What is observable to the analyst is the observable status of unit i, obtained by:

Yi ¼ Y0i þ Di Y1i � Y0ið Þ ð1:4Þ

Equation (1.4) is the so-called potential outcome model (POM), and it is the

fundamental relation linking unobservable with observable outcomes.

Both Y1i and Y0i are assumed to be independent and identically distributed (i.i.d.)

random variables, generally explained by a structural component dependent on

observable factors and a nonstructural component comprised of an error term.

Recovering the entire distributions of Y1i and Y0i (and, consequently, the distribu-
tion of the TEi) may be however too demanding without further assumptions. The
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literature has thus focused on estimating specific moments of these distributions

and in particular the mean, thus defining the so-called population average treatment

effect (hereinafter ATE) of a policy intervention as:

ATE ¼ E Yi1 � Yi0ð Þ ð1:5Þ

where E(∙) is the mean operator. This parameter is equal to the difference between

the average of the target variable when the individual is treated (Y1) and the average
of the target variable when the same individual is untreated (Y0). In what follows,

for the sake of simplicity, we will not use the subscript referring to unit i when not

strictly necessary.

Figure 1.2 provides a simple graphical representation of the density distribution

of Yi1 and Yi0 by showing a generic treatment effect (TEi) and the ATE. It is rather

intuitive that for distributions poorly concentrated around the mean, the ATE might

be a weak representation of the global effect of the policy. For this reason, some

scholars have recently proposed to consider an alternative set of (global) causal

parameters, the “quantile treatment effects,”3 allowing the identification of the

effect of a policy program in the Q-th quantile of the distribution of Y1 and Y0.
Figure 1.3 sets out a graphical representation of the quantile treatment effect.
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Generic Treatment Effect for i

Fig. 1.2 Density distributions of Y1i and Y0i, treatment effect, and average treatment effect

3 For an in–depth study of this subject, see: Imbens andWooldridge (2009, pp. 17–18); Fr€olich and
Melly (2013); Abadie et al. (2002); Chernozhukov and Hansen (2005). See also Fr€olich and Melly

(2010) for a Stata implementation.

8 1 An Introduction to the Econometrics of Program Evaluation



Although the quantile approach may be complementary to the analysis based on

the mean, this book will focus on traditional average treatment effects, as widely

developed in the literature. A possible reason why the literature has mainly focused

on the mean rather than quantiles of TEi may depend on the fact that while for the

mean it holds that:

E Yi1 � Yi0ð Þ ¼ E Yi1ð Þ � E Yi0ð Þ

the same does not occur for quantiles. For instance, consider the 50th percentile

(i.e., the median) of TEi. In such a case we have that:

Med Yi1 � Yi0ð Þ 6¼ Med Yi1ð Þ �Med Yi0ð Þ

These two median measures convey different and sometimes contrasting conclu-

sions about policy effectiveness. Consider, for instance, a policy aimed at increas-

ing the level of education. In such a case, it might be that:

Med Yi1 � Yi0ð Þ > 0

meaning that at least 50 % of the population has a positive TEi, and at the same

time:

Med Yi1ð Þ �Med Yi0ð Þ < 0

meaning that the median person’s level of education has decreased.4 This possibility
has made the quantile treatment effect less appealing than that based on the mean.
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Fig. 1.3 Density distributions of Y1i and Y0i and Q-th quantile treatment effect

4 See Lee (2005, pp. 12–13) for a simple numerical example of such a situation.
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By relying on the mean, however, the mainstream literature has emphasized two

additional parameters as relevant to estimate. These are known as the average

treatment effect on the treated (ATET) and the average treatment effect on the

untreated (ATENT), defined respectively as:

ATET ¼ E Y1 � Y0jD ¼ 1ð Þ ð1:6Þ
ATENT ¼ E Y1 � Y0jD ¼ 0ð Þ ð1:7Þ

It is fairly easy to see that the ATET is the average treatment effect calculated

within the subsample of treated units (those with D¼ 1), while the ATENT is the

average treatment effect calculated within the subsample of untreated units (those

withD¼ 0). These two parameters can provide additional information on the causal

relation between D and Y. It is also useful to show the relation linking ATE, ATET,

and ATENT:

ATE ¼ ATET � p D ¼ 1ð Þ þ ATENT � p D ¼ 0ð Þ ð1:8Þ

that is, the ATE is a weighted average of the ATET and the ATENT, with p(D¼ 1)

representing the probability of being treated and p(D¼ 1) that of being untreated.

Equation (1.8) simply follows from the law of iterated expectations (LIE).

Nevertheless, another important ingredient is necessary to proceed with the

econometrics of program evaluation. For each unit, beyond the values of Y and

D, researchers (normally) have access also to a number of observable covariates
which can be collected in a row vector x. Usually, these variables represent various

individual characteristics such as age, gender, income, education and so on. The

knowledge of these variables, as we will see, is of primary usefulness in the

estimation of the treatment effects, as they may represent relevant confounding
factors that must be taken into account.

It is then worth stressing that, given the knowledge of x, we can also define the

previous parameters as conditional on x, as:

ATE xð Þ ¼ E Y1 � Y0jxð Þ ð1:9Þ
ATET xð Þ ¼ E Y1 � Y0jD ¼ 1, xð Þ ð1:10Þ
ATENT xð Þ ¼ E Y1 � Y0jD ¼ 0, xð Þ ð1:11Þ

These quantities are, by definition, no longer single values as before, but functions
of x. They can also be considered as “individual-specific average treatment effects”

as each unit typically has specific values of x. Furthermore, the LIE implies that:

ATE ¼ Ex ATE xð Þf g ð1:12Þ
ATET ¼ Ex ATET xð Þf g ð1:13Þ
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ATENT ¼ Ex ATENT xð Þf g ð1:14Þ

making it clear that one can retrieve the global effects of a program by simply

averaging ATE(x), ATET(x), and ATENT(x) over the support of x.

What is the meaning and usefulness of relying on the ATE, ATET, and ATENT

measures in program evaluation? A simple example can shed light on this question.

Suppose that in evaluating a program through some econometric procedure, we find

a value of ATET equal to 100 and a value of ATENT equal to 200. Was this

program successful? At first glance, the answer seems to be positive: the group of

treated individuals received, on average, a treatment effect of 100. Thus, the policy

was successful in promoting good outcome for the individuals selected for treat-

ment. Nevertheless, the knowledge of the value of ATENT might question this

conclusion. As the value of ATENT is higher than that of ATET, if the average

untreated unit had been treated, then its outcome would have been raised by 200.

This is higher than the increase in outcome obtained by the treated units when

compared with their untreated status. If the agency had been treating those who

were not selected for treatment, the performance would had been better than in the

opposite case. In other words, one may conclude that the agency failed in selecting

the right group to support, as they were not able to maximize the outcome. It would

have been better to select those who actually were not selected.

Although we generally hold that the agency is trying to maximize the outcome

measure, in many cases this might not be the prime objective of an agency. If

welfare considerations are part of the policy’s purposes, the agency might have

been purposely aimed at supporting lower performing units. For instance, in a

microcredit program, a public agency may find it consistent with its (social)

objectives to support disadvantaged people living in depressed economic and social

areas who are clearly in a position of weakness compared to those better off. It is not

surprising that these people will ultimately perform worse than those better off.

This example also reminds us that we must understand the program’s direct

objectives as well as select a correct comparison (counterfactual) group. Evaluation

conclusions might be otherwise severely misleading.

Besides ATE, ATET, and ATENT, the knowledge of ATE(x), ATET(x), and

ATENT(x) may carry additional useful information on the characteristics of pro-

gram effects. In particular, an analysis of the distribution of those parameters

explicitly illustrates how results are dispersed around the mean effects. Figure 1.4

reports an example where we assume that the program target is a variable Y that the

program aims at increasing.

The figure shows that, as expected, the distribution of ATET(x) is localized on

the right compared to that of ATE(x) and ATENT(x). It means that there is a

tendency of the treated units to perform better than the untreated ones, thus proving

that the selection was correct. This is confirmed by the values taken by ATE, ATET,

and ATENT. But another aspect is useful to stress: the distribution of ATENT(x) is

much more dispersed around its mean (ATENT) than ATE(x) and ATET(x). This

implies that, while ATE and ATET are good proxies of the overall effect of the
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policy, the same cannot be maintained for ATENT. The larger tails in the distribu-

tion of ATENT(x) imply that untreated units are more diversified with regard to the

program effect. This questions the use of the mean for very dispersed and/or

asymmetric distributions of the effects. In this sense, Fig. 1.5 shows an example

in which ATE(x) presents a very strong asymmetry (i.e., very long right tail).

It is immediate to see that the value of ATE is in this case poorly representative

of the overall ATE(x) distribution, as indicated by the much lower value of the

median of ATE(x). In such a case, relying only on the mean of ATE(x)—, i.e.,

ATE—to draw conclusions about policy effectiveness may be seriously misleading,

    f (ATENT(x)) 

f (ATE(x))

f (ATET(x))

 ATENT    ATE ATET

Fig. 1.4 Distribution of ATE(x), ATET(x), and ATENT(x)

f (ATE(x))

   ATEMed{ATE(x)}

50% 30% 20%

Fig. 1.5 Strong asymmetric distribution of ATE(x)
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as around 80 % of the population receives an idiosyncratic ATE(x) lower than ATE.

In this sense, the knowledge of ATE(x), ATET(x), and ATENT(x) is an essential

ingredient for drawing more accurate conclusions about the actual effect of the

evaluated program.

Given these premises, the aim of the econometrician involved in program

evaluation is that of recovering previous parameters from observational data, that
is, from an i.i.d. sample of observed variables for each individual i of this type:

Yi;Di; xif g with i ¼ 1, . . . ,N

Observe that, according to this specification, we exclude the possibility that the

treatment of one unit affects the outcome of another unit. However, assuming that

units are independent might be rather restrictive in many evaluation contexts. In the

literature (Rubin 1978) this occurrence is called SUTVA—or stable unit treatment
value assumption—and we will assume the validity of this hypothesis throughout

this book. Assuming a lack of interaction among individuals might be plausible in

many biomedical experiments, although even in this field there are many cases in

which such “neighborhood” or “proximity” effects may be pervasive and SUTVA

no more plausible. In epidemiology, for instance, when treatments are vaccines for

contagious diseases, it is quite intuitive that one unit treatment can influence the

outcomes of others in their neighborhood. Similarly and a fortiori, in economic

applications such as the support to companies’ research and development (R&D)

activity, it might be hard to believe in the absence of “spillovers” from treated to

untreated units activated by some form of subsidization. This rises relevant ques-

tions regarding the identification and estimation of treatment effects when interfer-

ence between units is plausible.

It is worth stressing, however, that the literature on the estimation of treatment

effects in the presence of interference is still a recent field of statistical and

econometric study, and so far only a few papers have dealt formally with this

relevant topic.5

1.2.1 Identification Under Random Assignment

As said above, the problem in estimating ATE (and thus ATET and ATENT)

resides in the fact that for each observation we observe only one of the two states

(and never both). Nonetheless, if the sample was drawn at random (i.e., under

random assignment), it would be possible to estimate the ATE as the difference

between the sample mean of treated and the sample mean of untreated units, which

is the well-known “Difference-in-means” (DIM) estimator of classical statistics.

5 Key references are: Manski (1993, 2013), Rosenbaum (2007), Sobel (2006), Hudgens and

Halloran (2008), Tchetgen-Tchetgen and VanderWeele (2010), Cerulli (2014a).
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Correct estimation is feasible because in the case of random assignment “(Y1; Y0)
are independent of D.” This means that the process generating the sample selection
and thus producing D has nothing to do with the realization of the outcome in both

states of the world. We call this the independence assumption (IA) formally stating

that:

ðY1; Y0Þ⊥D ð1:15Þ

where the symbol ⊥ refers to probabilistic independence. Under randomization,

D is fully exogenous without other specifications. By using the POM of (1.4) and by

taking expectations under IA, we can show that:

E YjD ¼ 1ð Þ � E YjD ¼ 0ð Þ ¼ E Y1jD ¼ 1ð Þ � E Y0jD ¼ 0ð Þ
¼ E Y1ð Þ � E Y0ð Þ ¼ ATE ð1:16Þ

implying also that ATE¼ATET¼ATENT.

Thus, under random assignment, it is possible to apply the DIM estimator to

recover the ATE, being it the sample equivalent of (1.16):

dDIM ¼ 1

N1

XN1

i¼1

Y1, i � 1

N0

XN0

i¼1

Y0, i ð1:17Þ

where N1 is the number of treated and N0 that of untreated units. It is well known

that under the IA this estimator of ATE is consistent, asymptotically normal and

efficient, and it is also worth noting that, in this case, the knowledge of x is

unnecessary for a correct estimation of this casual effect.

1.2.2 A Bayesian Interpretation of ATE Under
Randomization

In Sect. 1.2, we gave a clear-cut definition of ATE and found that under

randomization:

ATE ¼ E YjD ¼ 1ð Þ � E YjD ¼ 0ð Þ

that is equivalent to the group Difference-in-means (DIM) estimator. Since it is well

known that such an estimator can be obtained by an OLS of this type:

Y ¼ μþ ATE � Dþ error

we can easily conclude that:
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ATE ¼ Cov Y;Dð Þ
Var Dð Þ ¼ Corr Y;Dð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Yð Þ
Var Dð Þ

s

showing that ATE¼ 0 if and only if the correlation between Y and D is zero. This

leads to the important conclusion that, under randomization, zero correlation

implies zero causation, and vice versa. Of course, ATE will be identified as long

as Var(D) 6¼ 0; indeed, since:

Var Dð Þ ¼ p D ¼ 1ð Þ � 1� p D ¼ 1ð Þ½ �

we can conclude that, for ATE to be identified, we need:

0 < p D ¼ 1ð Þ < 1

Although previous findings give to ATE a clear causal interpretation, it is less clear

which is the relation between ATE and the typical causal reasoning that epidemi-

ological and medical research poses between possible “causes” (treatments) and

observed “effects” (consequences). As known, this is generally embedded into a

Bayesian causal setting that is not apparently linked to the way in which ATE has

been defined, identified, and estimated above. However, ATE and Bayesian cau-

sality do not conflict; on the contrary, ATE can have a clear Bayesian interpretation

(Rubin 1978). In what follows, we briefly account for this.

Suppose there are two events, Y and D, and we are interested in the causal effect
of event D on event Y. Assume that both are represented by two dichotomous

variables taking value {0; 1}. For instance, D can be participation to a job training

(attendant vs. non-attendant), and Y subsequent employment status (employed

vs. unemployed), and so forth. The Bayes theorem states that:

p YjDð Þ ¼ p Yð Þp DjYð Þ
p Dð Þ

where p(Y ) is the unconditional probability function of Y generally assumed as

prior knowledge of the researcher; p(D|Y ) is the likelihood of observing the event

D, given the observation of event Y, and is generally estimated on observed data;

p(D), the unconditional probability of D, is assumed to be a scale parameter.

To see the relation between previous formula and ATE, consider the event

{Y¼ 1} and write previous Bayes formula for the events {D¼ 1} and {D¼ 0}

separately:

p Y ¼ 1jD ¼ 1ð Þ ¼ p Y ¼ 1ð Þp D ¼ 1jY ¼ 1ð Þ
p D ¼ 1ð Þ
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p Y ¼ 1jD ¼ 0ð Þ ¼ p Y ¼ 1ð Þp D ¼ 0jY ¼ 1ð Þ
p D ¼ 0ð Þ

By subtracting the two previous expressions, we get:

p Y¼ 1jD¼ 1ð Þ� p Y¼ 1jD¼ 0ð Þ¼ p Y¼ 1ð Þ p D¼ 1jY¼ 1ð Þ
p D¼ 1ð Þ � p D¼ 0jY¼ 1ð Þ

p D¼ 0ð Þ
� �

However, having Y a Bernoulli distribution, we can rewrite previous formula as:

E YjD ¼ 1ð Þ � E YjD ¼ 1ð Þ ¼ E Yð Þ p D ¼ 1jY ¼ 1ð Þ
p D ¼ 1ð Þ � p D ¼ 0jY ¼ 1ð Þ

p D ¼ 0ð Þ
� �

or equivalently:

ATE ¼ E Yð Þprior|fflfflfflfflfflffl{zfflfflfflfflfflffl} � p D ¼ 1jY ¼ 1ð Þ
p D ¼ 1ð Þ � p D ¼ 0jY ¼ 1ð Þ

p D ¼ 0ð Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

likelihood

which provides a link between ATE and usual Bayesian causal inference. Indeed,

we can see that, given the unconditional mean of Y, ATE is determined by the right-

hand-side (RHS) difference set out in squared brackets. What does this difference

refer to? And, what is its interpretation? The first term of that difference can be

interpreted as the relative likelihood to observe the event {D¼ 1} once the event

{Y¼ 1} has been observed first; as such, it returns a measure of how frequently the

event {D¼ 1} appears when the event {Y¼ 1} appears first. For the second term of

the difference, the one referring to {D¼ 0}, the same argument follows. As a

consequence, if the first term is remarkably high compared to the second, it

means that the observation of the event {Y¼ 1} is highly more associated to the

occurrence on the event {D¼ 1} than to the occurrence of the event {D¼ 0};

therefore, it seems more plausible (read “likely”) to consider the effect {Y¼ 1} as

determined by the cause {D¼ 1} rather than {D¼ 0}; it means that a positive ATE

should lead to the conclusion that the treatment {D¼ 1} has been the main factor

bringing about the observed outcome.

Finally, the last formula of ATE can also have a typical Bayesian learning

interpretation, as ATE can be seen as an update of the population mean of

Y (derived by some prior distribution of Y), where new information from observa-

tion is brought by the likelihood (i.e., the difference in brackets).
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1.2.3 Consequences of Nonrandom Assignment
and Selection Bias

Policy programs hardly select individuals to treat (and, equivalently, to not treat) at

random. This nonrandomness is inherent to a policy for two distinct reasons: (1) the

self-selection into the program operated by individuals and (2) the selection mech-
anism of the agency managing the program.

Self-selection concerns the choice of individuals to participate to a specific

supporting program. This generally entails a cost-benefit calculus, as applying for

a policy program can be costly to some reasonable extent. For instance, in industrial

incentives aimed at promoting company fixed investments, firms have to bear

opportunity costs, (private) information disclosure of ongoing business projects,

administrative costs needed for making an application, and so forth that should be

compared with the benefits of applying. As this decision is intrinsically “strategic,”

it should not be assumed to be done at random, as firms are “endogenously”

involved into this choice.

As for the program selection mechanism, generally operated by a public agency,
a nonrandom assignment process is even more evident, as agencies generally select

units to support according to some predetermined objectives. These objectives may

have a direct and indirect nature. The former refers to the main target of the policy

(such as, for instance, “reducing the rate of unemployment” in a certain area); the

latter may refer to collateral effects (such as alcohol abuse reduction in that area if

people get hired more easily). For project-funding programs, where units are

selected according to the submission of a proposal (as usual in industrial supporting

programs or in educational programs), individual’s and proposal’s characteristics
drive the selection-into-program, once specific selection criteria are established ex

ante (ex ante evaluation). In order to maximize the effect of the policy, an agency

could apply the principle of “picking-the-winner,” i.e., choosing to support those

units having the highest propensity to perform well; similarly, the agency objective

might be aimed at “aiding-the-poor”—as in the case of supporting economically

depressed areas or poorly educated people. This provides convincing arguments to

state that in socioeconomic programs, the sample of beneficiaries are far from being

randomly selected. On the contrary, they are not expected to be so at all, as they

have to comply at least with agency’s selection criteria that are, by definition, not

randomly established.

When the selection of treated and untreated units is done not randomly,

depending on either individual “observable” or “unobservable” characteristics,

the DIM estimator is no longer a correct estimation for ATE. In this case, in fact,

“(Y1; Y0) are probabilistically dependent on D,” so by using again the POM and the

expectation operator, we obtain:
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E YjD ¼ 1ð Þ � E YjD ¼ 0ð Þ ¼ E Y1jD ¼ 1ð Þ � E Y0jD ¼ 0ð Þ
þ E Y0jD ¼ 1ð Þ � E Y0jD ¼ 1ð Þ½ �

¼ E Y0jD ¼ 1ð Þ � E Y0jD ¼ 0ð Þ½ � þ ATET ð1:18Þ

Equation (1.18) states that a selection bias equal to [E(Y0 | D¼ 1)�E(Y0 | D¼ 0)]

arises using the DIM and it can be also proved that ATE 6¼ATET 6¼ATENT. To see

that, suppose that Y1¼ μ1 +U1 and Y0¼ μ0 +U0, where μ1 and μ0 are scalars and

E(U1)¼E(U0)¼ 0. By subtracting, we have:

Y1 � Y0 ¼ μ1 � μ0ð Þ þ U1 � U0ð Þ ¼ ATEþ U1 � U0ð Þ ð1:19Þ

By taking the expectation of this equation over D¼ 1, we have:

E Y1 � Y0jD ¼ 1ð Þ ¼ ATET ¼ ATEþ E U1 � U0jD ¼ 1ð Þ ð1:20Þ

where E(U1�U0|D¼ 1) can be thought of as the average “participation gain” for

those who actually participated in the program. Similarly, by taking the expectation

of (1.20) over D¼ 0, we can show that ATE 6¼ATENT, since:

E Y1 � Y0jD ¼ 0ð Þ ¼ ATENT ¼ ATEþ E U1 � U0jD ¼ 0ð Þ ð1:21Þ

As soon as E(U1�U0|D¼ 1) 6¼E(U1�U0|D¼ 0), then ATET 6¼ATENT. Only if

Y0 were independent of D, that is E(Y0|D)¼E(Y0), the selection bias does disappear
so that ATE¼ATET¼ATENT. Unfortunately, this event hinges on a too strong

assumption. Observe, furthermore, that the selection bias is unobservable since we
cannot recover E(Y0|D¼ 1) from observation. This leads to looking for an addi-

tional assumption for estimating ATE, ATET, and ATENT under nonrandom

selection. Before going on, however, we need to distinguish two different forms

of selection: the “observable” and the “unobservable.”

1.3 Selection on Observables and Selection

on Unobservables

On the part of an analyst interested in ex post program evaluation, the factors

affecting the nonrandom assignment of beneficiaries could have an observable or

an unobservable nature.
In the first case, the analyst knows and can observe with precision which are the

factors driving the self-selection of individuals and the selection of the agency. In

this case, the knowledge of x, the structural variables that are supposed to drive the

nonrandom assignment to treatment, are sufficient to identify—as we will see

later—the actual effect of the policy in question once adequately controlled for.

Nevertheless, when other factors driving the nonrandom assignment are impos-

sible or difficult to observe, then the only knowledge of the observable vector x is
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not sufficient to identify the effect of the policy. The nature of the unobservables

can be twofold. On the one hand, there are unobservable elements due to some lack

of information in the available datasets. This is more a problem of data availability

than genuine incapacity of gauging specific phenomena. For convenience, we can

call them contingent unobservables. In project-funding programs, for instance,

researchers might have full access to a great bulk of information on units’ charac-
teristics, while poor data might be available on proposed projects. On the other

hand, there are genuine unobservables that would be fairly impossible to measure,

even in the case of abundant information. Examples of this kind are represented by

factors, such as entrepreneurial innate ability, propensity to bear risks, ethical

attitudes, and so on. This last class of unobservables could be relevant, although

complex and sometimes hard to translate into feasible indicators.

These two different situations are known in the literature as the case of “selec-

tion on observable” and “selection on unobservables,” respectively: they ask for

different methodologies to identify the effect of a policy program, and the greatest

effort of past and current econometric literature has been that of dealing with these

two situations and provide suitable solutions for both cases.

1.3.1 Selection on Observables (or Overt Bias)
and Conditional Independence Assumption

Under selection on observables, the knowledge of x, the factors driving the

nonrandom assignment, may be sufficient to identify the causal parameters ATEs,

even in case of nonrandom assignment. Of course, since the missing observation

problem still holds, we need to rely on an assumption (or hypothesis) able to

overcome that problem. Rosenbaum and Rubin (1983) introduced the so-called

conditional independence assumption (CIA), stating that “conditional on the

knowledge of x (sometimes called pretreatment covariates) Y1 and Y0 are probabi-
listically independent of D.” Formally:

ðY1; Y0Þ⊥Djx ð1:22Þ

This assumption means that once the knowledge of the factors affecting the sample

selection is taken into account (or controlled for) by the analyst, then the condition

of randomization is restored. This assumption is too strong when we are interested,

as we are, in average effects, so it is usual to rely on a weaker assumption, the

so-called conditional mean independence (CMI), stating that:

E Y1jx,Dð Þ ¼ E Y1jxð Þ ð1:23Þ
E Y0jx,Dð Þ ¼ E Y0jxð Þ ð1:24Þ
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Assumption (1.23) and (1.24) restricts the independence only over the mean. The

CMI is the basis for (consistent) estimation of ATE, ATET, and ATENT by both

parametric and nonparametric methods. Showing how these parameters are identi-

fied under CMI is straightforward. By considering the POM in (1.4), and taking the

average of this conditional on (x, D), we get:

E Yjx,Dð Þ ¼ E Y0jx,Dð Þ þ D E Y1jx,Dð Þ � E Y0jx,Dð Þ½ �
¼ E Y0jxð Þ þ D E Y1jxð Þ � E Y0jxð Þ½ � ð1:25Þ

We can express (1.25) both for D¼ 1 and D¼ 0 as follows:

ifD ¼ 1 : E Yjx,D ¼ 1ð Þ ¼ E Y1jxð Þ ð1:26Þ
ifD ¼ 0 : E Yjx,D ¼ 0ð Þ ¼ E Y0jxð Þ ð1:27Þ

By subtracting (1.26) and (1.27) we obtain:

E Yjx,D ¼ 1ð Þ � E Yjx,D ¼ 0ð Þ ¼ E Y1jxð Þ � E Y0jxð Þ ¼ ATE xð Þ ð1:28Þ

that, once rewritten, shows that:

ATE xð Þ ¼ E Yjx,D ¼ 1ð Þ � E Yjx,D ¼ 0ð Þ ð1:29Þ

where the RHS consists of all “observable quantities,” meaning that ATE(x) is

correctly identified and no bias emerges. For the sake of simplicity, let’s then

define:

m1 xð Þ ¼ E Yjx,D ¼ 1ð Þ ð1:30Þ
m0 xð Þ ¼ E Yjx,D ¼ 0ð Þ ð1:31Þ

so that:

ATE xð Þ ¼ m1 xð Þ � m0 xð Þ ¼ m xð Þ ð1:32Þ

From (1.12) we have:

ATE ¼ Ex ATE xð Þf g ¼ Ex m xð Þf g ð1:33Þ

implying that an estimation of ATE can be obtained by the “sample equivalent” of

(1.33):

dATE ¼ 1

N

XN
i¼1

bm xið Þ ð1:34Þ
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provided that a consistent estimator of m(x), indicated by bm xð Þ in (1.34), having

known asymptotic variance and distribution, is available. A similar procedure can

be used to obtain the estimation of ATET and ATENT. Indeed, since:

ATET ¼ Ex ATE xð ÞjD ¼ 1f g ð1:35Þ

we get, by relying again on the sample equivalent:

dATET ¼ 1XN
i¼1

Di

XN
i¼1

Di � bm xið Þ
" #

ð1:36Þ

Similarly, as:

ATENT ¼ Ex ATE xð ÞjD ¼ 0f g ð1:37Þ

we also obtain:

dATENT ¼ 1XN
i¼1

1� Dið Þ

XN
i¼1

1� Dið Þ � bm xið Þ
" #

ð1:38Þ

showing that both the estimations of ATET and ATENT can be recovered once a

consistent estimator of m(x) is available.

1.3.2 Selection on Unobservables (or Hidden Bias)

When the selection-into-program is governed not only by observable-to-analyst

factors but also by unobservable-to-analyst variables (either contingent or genuine)

correlated with the potential outcomes, then the CI (or CMI) assumption is not

sufficient to identify program average effects. Indeed, in this case, what happens is

that:

E Y1jx,Dð Þ 6¼ E Y1jxð Þ ð1:39Þ
E Y0jx,Dð Þ 6¼ E Y0jxð Þ ð1:40Þ

and an equivalent bias emerges as in (1.18) although, this time, conditional on x:
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E Yjx,D ¼ 1ð Þ � E Yjx,D ¼ 0ð Þ ¼ E Y1jx,D ¼ 1ð Þ � E Y0jx,D ¼ 0ð Þ
þ E Y0jx,D ¼ 1ð Þ � E Y0jx,D ¼ 1ð Þ½ �

¼ E Y0jx,D ¼ 1ð Þ � E Y0jx,D ¼ 0ð Þ½ �
þ ATET xð Þ ð1:41Þ

Equation (1.41) illustrates that even in the subset of units identified by x, the DIM

produces a biased estimation of the causal effect of D on Y that cannot be retrieved

observationally as the quantity E(Y0 | x, D¼ 1) is unobservable.

Figure 1.6 shows a path diagram offering an intuition of why the causal effect is

not identified when the selection depends on unobservables that affect also the

target variable.

Suppose that D, the selection (or treatment) variable, is affected by two factors,

one observable (x) and one unobservable (a). Suppose that a determines not only

D but also the outcome Y in a direct way. In such a situation, we cannot produce

autonomous and independent modification of D without moving contemporane-

ously Y. For instance, suppose that a change in D—originated by a one unit change

in a—produces a change in Y of 20. One cannot conclude that the effect of D on Y is

20, as it might be the case that only 5 out of 20 is due to the actual effect of D on Y,
while the remaining 15 is due to the effect of a on Y. Since this latter effect is

unobservable, we do not have enough information for a correct conclusion about

the causal link between D and Y. This effect is thus not identifiable. To correctly

identify the direct effect of D on Y, more structural information needs to be added.

As we will see later in Chap. 3, this requires either further distributional hypotheses

(as in the Heckman Selection model) or the knowledge of at least one instrumental

variable for applying Instrumental-variables (IV) estimation.

1.3.3 The Overlap Assumption

Either in the case of selection on observables or selection on unobservables, the

identification of ATEs requires a second fundamental assumption besides CMI, i.e.,

the so-called overlap assumption. To show this, we first need to define a key notion

of the econometrics of program evaluation, the propensity-score, defined as the

“probability to get treated, given the knowledge of x,” that is:

x

YD

a

5

15

Fig. 1.6 Path diagram of the causal relation between D and Y in case of unobservable selection
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pðD ¼ 1jxÞ ¼ pro pensity�score ð1:42Þ

Given this definition, the overlap assumption states that, for each unit i, it must

happen that:

0 < p Di ¼ 1jxið Þ < 1 ð1:43Þ

i.e., units characterized by a set of attributes x have to belong both to the set of

treated and to the set of untreated units. For instance, if for x¼ x0 the propensity-

score assumes zero value, it means that there are no units in the treated group

having that specific value of x, and this entails that ATEs cannot be calculated (i.e.,

identified). To better understand how overlap may prevent ATEs identification,

consider just eight units and a binary variable x taking value 1 or 0. Table 1.1 shows
a simple but instructive example.

Here, we have just two units with x¼ 0 (unit 1 and 2), both in the untreated group

(D¼ 0), and no units in the treated group having such a value of x. In a situation like
this, p(D¼ 1 | x¼ 0)¼ 0 and ATE cannot be identified. Indeed, we have seen above

that ATE can be defined as:

ATE ¼ Ex ATE xð Þf g
¼ p x ¼ 1ð Þ � ATE x ¼ 1ð Þ þ p x ¼ 0ð Þ � ATE x ¼ 0ð Þ ð1:44Þ

where according to Table 1.1, p(x¼ 1)¼ 6/8 and p(x¼ 0)¼ 2/8. Nevertheless,

while when x ¼ 1 ATE can be identified (both treated and untreated present in

fact this kind of attribute) so that:

ATE x ¼ 1ð Þ ¼ 10þ 20þ 80þ 70ð Þ=4½ � � 4þ 6ð Þ=2½ � ¼ 45� 5 ¼ 40 ð1:45Þ

the same cannot be done for ATE(x¼ 0), as:

ATE x ¼ 0ð Þ ¼ ?½ � � 5þ 8ð Þ=2½ � ¼ ? ¼> ATE ¼ ? ð1:46Þ

Table 1.1 An example of unfeasible identification of ATE when the overlap assumption fails

Treatment (D) Covariate (x) Outcome (Y )

1 0 0 5

2 0 0 8

3 0 1 6

4 0 1 4

5 1 1 10

6 1 1 20

7 1 1 80

8 1 1 70
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so that we are only able to identify ATE in the subpopulation of units having x¼ 1.

From a policy assessment perspective, this is a limitation, as relying only on the

effect in a subgroup can be insufficient for understanding the effect of a given

program. Nevertheless, if we restrict our attention to the set of untreated (D¼ 0), we

can properly identify at least ATENT since:

ATENT ¼ ð6þ 4Þ=2��ð5þ 8Þ=2 ¼ �1:5 ð1:47Þ

while ATET—for the same reason of ATE—is not identifiable. Thus, as a general

rule, the identification of ATET just requires that p(D¼ 1 | x)< 1 and that of

ATENT that p(D¼ 1 | x)> 0 (or, equivalently, p(D¼ 0 | x)< 1 ). In other words,

we can conclude that in order to identify all ATEs, each cell built by crossing the

values taken by the various x—provided that they have finite discrete support—

must have both treated and untreated units.

In applications, as a large set of covariates are typically used and many of them

take on a continuous support, finding units where p(Di¼ 1|xi) is exactly equal to one

or exactly equal to zero is unlikely, and this helps considerably the identification of

ATEs. However, weak overlap—as in situations where some specific values of

x appear mostly either in the treated or in the untreated group but not in both, has

some (intuitive) consequences in the estimation precision of ATEs. As it will be

more clear in Chap. 2, weak overlap entails comparing outcome of individuals

belonging to opposite groups having very different relative frequency, thus produc-

ing a less reliable estimation of their outcome differences. Statistically, it turns to

produce estimates with larger variances independently of the method employed—

although some methods might be more sensitive to weak overlap than others

(Imbens 2004, pp. 23–24). Some tests for assessing the degree of overlap have

been proposed in the literature and will be discussed in Chap. 2 along with

sensitivity tests for assessing the reliability of conditional (mean) independence.

1.4 Characterizing Selection Bias

From basic statistics, we know that the DIM estimator of (1.17) is equal to the

coefficient α obtained by an OLS regression of this simple univariate linear model:

Y ¼ μþ α � Dþ u ð1:48Þ

Indeed, according to this equation we have, under randomization and for the two

regimes separately (treated and untreated):

E YjD ¼ 1ð Þ ¼ μþ α ð1:49Þ
E YjD ¼ 0ð Þ ¼ μ ð1:50Þ
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so that:

α ¼ E YjD ¼ 1ð Þ � E YjD ¼ 0ð Þ ¼ DIM ð1:51Þ

Assume now that the selection-into-treatment was driven by a factor x. It entails
that the outcome is also a function of x:

Y ¼ μa þ αaDþ βaxþ ua ð1:52Þ

or equivalently:

Y* ¼ μa þ αaDþ ua ð1:53Þ

with Y*¼ Y� βax. Since the regression is of the same kind of (1.48), it is quite clear

that:

αa ¼ E Y*jD ¼ 1
� �� E Y*jD ¼ 0

� � ð1:54Þ

which leads to:

αa ¼ E YjD ¼ 1ð Þ � E YjD ¼ 0ð Þf g � β E xjD ¼ 1ð Þ � E xjD ¼ 0ð Þf g ð1:55Þ

or equivalently:

αa ¼ DIM� BIAS ð1:56Þ

where DIM¼ α¼ {E(Y | D¼ 1)�E(Y | D¼ 0)} and BIAS¼ β{E(x | D¼ 1)�E(x |
D¼ 0)}. Equation (1.56) shows that the presence of a selection factor produces a

different result for the effect of D on Y compared to the random assignment case,

thus modifying the magnitude of the effect. This bias is exactly the difference

between the two effects:

BIAS ¼ α� αa ð1:57Þ

If the analyst erroneously assumes randomization in cases where this is not present,

a bias (different from zero) expressed as in (1.57) may arise. Algebraically, this bias

is equal to:

BIAS ¼ β E xjD ¼ 1ð Þ � E xjD ¼ 0ð Þf g ð1:58Þ

It is easy to see that the bias in (1.58) increases either as soon as: (1) β is different

from zero, and (2) the average value of x in the treated and untreated group is

different. The first cause of bias variation depends on the degree of dependence of

the outcome on factor x; the second cause of bias variation depends on how

“balanced” are the two groups in terms of the factor x. If the two groups are
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severely unbalanced in terms of x and the analyst does not control for this, as it may

happen if we estimate the effect of the policy by using (1.51) instead of (1.55), then

we can obtain a misleading result. An example can help understand this line of

reasoning.

Suppose two groups of people, group 1 and group 0, are to be used as treated and

control groups, respectively, in the evaluation of a given training program. Suppose

that, because of the underlying selection process, group 1 is made of young people

(let’s say, people with an average age of 20), whereas group 1 is made of older

people (with an average age of 60). Furthermore, suppose that we are interested in

evaluating the effect of this training program on individuals’ comprehension

capacity of a complex text, measured by scores associated with a final exam. We

might find that group 1 is highly performing with, let’s say, an average score of

70, and group 0 is poorly performing with an average of 20. The simple groups’
DIM, equal to 50 in this case, would suggest that the training program was effective

in fostering people’s comprehension capabilities. Nevertheless, this result is mis-

leading as the two groups are far from being balanced in terms of age. In fact, if age

has a nonnegligible impact on comprehension, as the common sense would suggest,

a selection bias of the kind visible in (1.55) is present. As an acceptable statement,

suppose that comprehension is significantly and negatively related to age, so that β
is negative and equal to, let’s say, �2. In this case we have that:

αa ¼ fE Y j D ¼ 1ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
70

� E YjD ¼ 0ð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
20

g � β|{z}
�2

�fE x j D ¼ 1ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
60

� E xjD ¼ 0ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
20

g ¼ 50� �2ð Þ � 40 ¼ �30 ð1:59Þ

showing that the “actual” effect of the policy—once groups are balanced over

age—was even negative. In this case, in fact, the BIAS (�80) outweighs the

value of DIM (50), thus leading to a final negative value of αa (�30).

It is now quite clear that randomness is the way in which nature balances

samples. On the contrary, when some nonrandomness is at work, sample unbal-

ances can be pervasive and evaluation trickier. It is also more evident at this stage

that the knowledge of the unbalance and of the strength of the predicting power of

the x-factors on Y are key to restore unbiased results. But what happens when x is
not observable? The next chapters will provide a comprehensive exposition of

econometric tools to deal with all of these possible cases.
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1.4.1 Decomposing Selection Bias

In previous sections, we have been able to show what the selection bias is equal to

in a nonrandomized setting. However, a more in-depth analysis of the form

assumed by the selection bias can highlight some further interesting aspects. In

(1.18) we have seen that:

DIM ¼ ATETþ B1 ð1:60Þ

where B1¼ [E(Y0 | D¼ 1)�E(Y0 | D¼ 0)] is the selection bias. Nevertheless, it can

also be easily proved that:

DIM ¼ ATENTþ B2 ð1:61Þ

where B2¼ [E(Y1 | D¼ 1)�E(Y1 | D¼ 0)]. In other words, this shows that two

different selection biases exist, one related to ATET (B1) and the other related to

ATENT (B0). By summing (1.60) and (1.61), we obtain:

DIM ¼ 1

2
ATET þ ATENTð Þ þ 1

2
B1 þ B0ð Þ ð1:62Þ

where B1 +B0¼B is the overall bias. Equation (1.62) sets out that DIM is just the

simple average of ATET and ATET plus the simple average of B1 and B0.

A more powerful decomposition of the selection bias has been proposed by

Heckman et al. (1998). They show that the selection bias B1 (similar conclusions

can be drawn for B0) can be decomposed into three sub-biases having interesting

interpretation. More specifically they prove that:

B1 ¼ BA þ BB þ BC ð1:63Þ

In order to see how to get this result, it is first useful to provide some notation:

(1) define the bias B1 conditional on x as B1(x); (2) define S1x¼ {x: f(x |D¼ 1)> 0}

and S0x¼ {x: f(x | D¼ 0)> 0} as the support of x for D¼ 1 and D¼ 0, respectively,

with f(x | D) being the conditional density of x given D; (3) define Sx¼ S1x \ S0x as
the overlap region; and (4) define y00 ¼ E Y0jx,D ¼ 0ð Þ and

y01 ¼ E Y0jx,D ¼ 1ð Þ. Given these definitions, we have:
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B1 ¼
ð
S1x

y01 dF x,D ¼ 1ð Þ �
ð
S0x

y00 dF x,D ¼ 0ð Þ

¼
ð
S1x�Sx

y01 dF x,D ¼ 1ð Þ �
ð
S0x�Sx

y00 dF x,D ¼ 0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
BA

þ
ð
Sx

y01 dF x,D ¼ 1ð Þ

�
ð
Sx

y00 dF x,D ¼ 0ð Þþ
ð
Sx

y00 dF x,D ¼ 1ð Þ �
ð
Sx

y00 dF x,D ¼ 1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

26664
37775
ð1:64Þ

where with {S1x� Sx} and {S0x� Sx} we have indicated the two nonoverlapping

sets. By rearranging the terms of the previous equation, it can be shown that:

B1 ¼
ð
S1x

y01 dF x,w ¼ 1ð Þ �
ð
S0x

y00 dF x,w ¼ 0ð Þ

¼
ð
S1x�Sx

y01 dF x,w ¼ 1ð Þ �
ð
S1x�Sx

y00 dF x,w ¼ 0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
BA

þ

ð
Sx

y00 dF x,w ¼ 1ð Þ � dF x,w ¼ 0ð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
BB

þ
ð
Sx

y01 dF x,w ¼ 1ð Þ �
ð
Sx

y00 dF x,w ¼ 1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
BC

ð1:65Þ

which proves (1.63). How can we interpret the three different biases BA, BB, and

BC?

• BA: bias due to weak overlap. Such a bias is present as soon as {S1x� Sx} and

{S0x� Sx} are nonempty. This means that there are subsets of x in the treated and

untreated population with no overlap and thus with no possibility of cross-

imputation. In other words, they are individuals that cannot be matched.

• BB: bias due to weak balancing. This bias arises when dFðx,D ¼ 1Þ 6¼ dFðx,D
¼ 0Þ although the x of the two populations overlaps. As soon as covariates x in

the treated and untreated groups do not come from the same distribution—as it

occurs in randomization—a bias due to this unbalance emerges and it is mea-

sured exactly by BB.

• BC: bias due to the presence of selection on unobservables. Such a bias appears

when some differences in outcomes still remain even after controlling for the
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observable confounders included in x. This bias is zero when y01 ¼ y00, that is,
when E(Y0 | x, D¼ 1)¼E(Y0 | x, D¼ 0), which is the condition implied by CMI.

In other words, BC appears when CMI fails so that the selection-into-program

was driven by unobservable confounders as well.

Econometric techniques for program evaluation are able to “cure” just some of

these biases and generally not all at once. For instance, Matching, as we will see, is

rather powerful to reduce the bias terms BA and BB, but not BC. IV methods are

generally more suitable to reduce bias BC than biases BA and BB. Regression

methods may be particularly problematic in the case of very weak overlap and

failure of CMI. Further, in empirical applications, many other aspects than only

theoretical biases have to be considered to correctly judge the goodness of a specific

estimation procedure. We will discuss this aspect at length in the next chapters. It

goes without saying that mixing up different methods may be a good strategy to

minimizing biases and thus increasing estimation precision.

1.5 The Rationale for Choosing the Variables

to Control for

In previous sections, we saw that controlling for specific observable variables is a

“must” if one does not want to run the risk of overlooking important characteristics

of individuals that might have been relevant in producing the sample

nonrandomness. Fundamental assumptions such as CMI, for instance, strictly

require covariates x to be controlled for and suitably exploited in the estimation

phase.

Which is however the rationale for choosing the variables to control for? Or, in

other words, is there some conceivable rule to endorse some variables and discard

some others? Answers to these questions are not immediate and need some further

elaboration in terms of the “causal chains” the evaluator assumes to lay behind the

available data. In choosing confounders, in fact, one should have as clear an

understanding as possible of the causal relations linking the variables entering his

model. In other words, this suggests that one relies on a clear-cut “theoretical”

representation of the relation among treatment, potential confounders, and out-

comes. In this sense, context’s conditions, theoretical background, past evidence,
and even personal beliefs may play a fundamental role in selecting variables to

control for.

Lee (2005, pp. 43–49) provided an excellent guideline for establishing how one

can wisely choose confounders. In what follows, we will draw heavily on Lee’s
account, although a bit different organization of his arguments will be presented.

As said, the choice to include or exclude a given covariate x does depend on the

specific causal links assumed among x (the potential confounder), D (the binary

treatment), and Y (the outcome). Figure 1.7 reports six possible cases that, at least in

principle, should account for the majority of real situations. In what follows, we
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discuss all these situations, thus suggesting how to deal with x in each of these

cases. Observe, for the sake of clarity, that an arrow between A and Bmeans that “A

affects (or causes) B.”

Case 1 In this pivotal case, x behaves as a pure pretreatment variable. Indeed,

x determines D that in turn determines Y. No relation between x and Y is assumed.

We show that, in this case, x does not need to be included as a confounder. We first

set out a formal explanation and then a more intuitive one.

Translated into equations, Case 1 can be represented by a system of two

equations, the selection equation (assumed to be linear for simplicity) and the

outcome equation, taking on this form:

D ¼ a1 þ ax � xþ u ð1:66Þ
Y ¼ b1 þ bw � Dþ v ð1:67Þ

Throughout this section, we assume that CMI holds, i.e., u ⊥ v | x. Since we are

working under CMI, we know that:

ATE ¼ Ex E Yjx,D ¼ 1ð Þ � E Yjx,D ¼ 1ð Þf g ð1:68Þ

This means that, using the previous Y-equation:

Case 1 Case 2

x D

Y

x D

Y
Case 3 Case 4

D Y x

xpre

D Y

xpost

Case 5 Case 6

D Yxpost

D Y

xpost

Fig. 1.7 Path diagrams representing causal links among x (the potential confounder), D (the

binary treatment), and Y (the outcome)
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E Yjx,D ¼ 1ð Þ ¼ E YjD ¼ 1ð Þ ¼ b1 þ bw ð1:69Þ
E Yjx,D ¼ 0ð Þ ¼ E YjD ¼ 0ð Þ ¼ b1 ð1:70Þ

which results in ATE¼ bw. Hence, either if the outcome is balanced or not over x,
this has no effect on the estimation of ATE. Therefore, conditioning on x is not

necessary in this case. The reason is quite clear: x is relevant in explaining D but

with no predictive power on Y; as a consequence, x has no effect on Y. In other

words, variables affecting only the selection without having an impact on the

outcome should be excluded from the analysis, as their presence does not modify

the sign and magnitude of ATE.

Case 2 In this second case, there is a direct effect of x on Y, as well as an effect of

x on D as above. The corresponding structural model is the following one (CMI still

holds):

D ¼ a1 þ ax � xþ u ð1:71Þ
Y ¼ b1 þ bw � Dþ bx � xþ v ð1:72Þ

In this case x appears in the Y-equation so that:

E YjD ¼ 1ð Þ ¼ Ex E Yjx,D ¼ 1ð Þf g ¼ b1 þ bw þ bx � E xjD ¼ 1ð Þ ð1:73Þ
E YjD ¼ 0ð Þ ¼ Ex E Yjx,D ¼ 0ð Þf g ¼ b1 þ bx � E xjD ¼ 0ð Þ ð1:74Þ

resulting in:

ATE ¼ bw þ bx � E xjD ¼ 1ð Þ � E xjD ¼ 0ð Þ½ � ð1:75Þ

Without balancing the treated and untreated group on x we would get that E(x,
D¼ 1) 6¼E(x, D¼ 0), thus conditioning (that is equivalent to “balancing”) on x is

required. Otherwise, a bias equal to bx ∙ [E(x, D¼ 1)�E(x, D¼ 0)] would appear in

the estimation of ATE.

Case 3 In this third case, we assume that D affects Y, x affects Y too, but there is no

relation between D and x. For this specific casual chain, we show that there is no

difference in controlling or not for x (thus becoming an “optional” choice). In fact,

the corresponding structural model becomes (again under CMI):

D ¼ a1 þ u ð1:76Þ
Y ¼ b1 þ bw � Dþ bx � xþ v ð1:77Þ

In this case, x appears in the Y-equation and thus:

1.5 The Rationale for Choosing the Variables to Control for 31



E YjD ¼ 1ð Þ ¼ Ex E Yjx,D ¼ 1ð Þf g ¼ b1 þ bw þ bx � E xjD ¼ 1ð Þ
¼ b1 þ bw þ bx � E xð Þ ð1:78Þ

E YjD ¼ 0ð Þ ¼ Ex E Yjx,D ¼ 0ð Þf g ¼ b1 þ bx � E xjD ¼ 0ð Þ
¼ b1 þ bw þ bx � E xð Þ ð1:79Þ

where we exploited E(x | D)¼E(x), as x and D are assumed to have no relation in

this causal chain. This immediately leads to this result:

ATE ¼ bw ð1:80Þ

that is the same as what we can get without conditioning on x.
As a conclusion, Cases 1, 2, and 3 lead to the following result: x must be

controlled for only if x affects at the same time both D and Y. If x affects either

only the selection equation or only the outcome equation, then controlling for x is

not strictly necessary. Nevertheless, adding additional covariates in the Y-equation
could result in a more precise estimation of ATEs.

Case 4 This case refers to a situation similar to Case 2, but this time we consider

also that: (1) a pretreatment x may have an effect on its posttreatment status (self-

effect), and (2) the outcome Y can also affect the posttreatment status of x. In such a
situation, while it is clearly needed to control for the pretreatment x (as in Case 2), it
is not necessary to control for its posttreatment status. This is because xpost is, in this
case, just the result of the whole causal chain not explaining any other variable. In

this sense, unbalancing on xpost is harmless.

Case 5 In this case the treatment D affects x that in turn affects D. As such, x takes
the form of a posttreatment variable working as a mediating factor (i.e., a factor

causally laying between the treatment D and the outcome Y ). The corresponding

structural system of such a causal chain is:

x ¼ c1 þ cw � Dþ ux ð1:81Þ
Y ¼ b1 þ bw � Dþ v ð1:82Þ

In this case, conditioning on x is not needed as x does not appear in the Y-
equation. Thus, one does not need to control for this variable.

Case 6 In this case, the treatment D affects both x and Y that in turn is affected also

by x. Again, x takes the form of a posttreatment variable working as amediator. The
corresponding structural system is:

x ¼ c1 þ cw � Dþ ux ð1:83Þ
Y ¼ b1 þ bw � Dþ bx � xþ v ð1:84Þ

In this case, by simple substitution, we obtain:
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Y ¼ b1 þ bw � Dþ bx � c1 þ cw � Dþ uxð Þ þ v
¼ b1 þ bx � c1ð Þ þ bw þ bx � cwð Þ � Dþ η ð1:85Þ

with η¼ (bx ∙ux + v) and where the Y-equation is the reduced-form of the previous

system of two equations. Within this framework, we can define three types of effect
of D on Y:

• Direct effect: E YjD ¼ 1, xð Þ � E YjD ¼ 0, xð Þ ¼ bw
• Indirect effect:

�
E xjD ¼ 1ð Þ � E xjD ¼ 0ð Þ � �E YjD, x ¼ 1ð Þ � E YjD, x ¼ 0ð Þ�

¼ cw � bx
• Total effect: E YjD ¼ 1ð Þ � E YjD ¼ 1ð Þ ¼ bw þ bx � cw

The total effect (bw+ bx ∙ cw) is the sum of the direct (bw) and indirect effect (bx ∙
cw) and can be obtained—under CMI—by an OLS regression of the reduced form

of the outcome Y. Instead, the direct effect can be obtained by an OLS of (1.84),

where both bw and bx are consistently estimated under CMI.

Therefore, it is quite clear that: if the analyst is interested in estimating the total

effect of D on Y, then x should not need to be controlled for. Since we are interested
in the direct effect of D on Y (i.e., the effect of D on Y “net of the effect of D on x”),
then controlling for x is mandatory.

In conclusion, choosing whether to control or not for a given observable variable

is not as straightforward as it might appear at first glance. Previous examples,

although not exhaustive of all possible situations, might however be a proper

point of departure for a wiser decision.

1.6 Partial Identification of ATEs: The Bounding

Approach

In Sect. 1.2, we have shown that ATEs cannot be identified because of the missing

observation problem of the counterfactual status. In this sense, without introducing

additional assumptions—such as the CIA—a point estimation of ATEs would be

impossible. Furthermore, imposing assumptions can be sometimes costly, not to say

misleading, when such assumptions cannot be tested, as in the case of the CIA.

An assumption-free approach for estimating ATEs, on the contrary, would be

more attractive, but it poses further limitations that we will discuss in what follows.

Manski et al. (1992) have proposed a simple model for estimating ATEs under

partial identification, i.e., without using too much a priori information or assump-

tions for identifying the causal relation of interest. In what follows, we will

reproduce their model.

First, suppose we have a binary target variable Y, a binary treatment D, and a

vector of confounders x. In such a case, being Y binomial, we have:
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ATE xð Þ ¼ E Y1 � Y0jxð Þ ¼ p Y1 ¼ 1jxð Þ � p Y0 ¼ 1jxð Þ ð1:86Þ

With no other information or assumptions available, the only conclusion we can

reach about the “true” value of ATE(x) is that it varies between �1 and +1, thus

having an interval width equal to 2, as given by the difference between the upper

and lower bound of such interval.

However, we can exploit some other information and restrict this width. In

particular, by applying LIE, we can show that:

ATEðxÞ ¼ EDfATEðxÞ
					Dg ¼ EDfATEðx,DÞg ð1:87Þ

This implies that, as for p(Y1¼ 1|x) we have:

p Y1 ¼ 1jxð Þ ¼ p Y1 ¼ 1jx,D ¼ 0ð Þ � p D ¼ 0jxð Þ þ p Y1 ¼ 1jx,D ¼ 1ð Þ
� p D ¼ 1jxð Þ ð1:88Þ

where it is clear that the only unidentifiable quantity of the RHS of the previous

equation is p(Y1¼ 1|x, D¼ 0), while the others are identifiable, as no counterfactual

is implicated. Since, by definition:

0 � p Y1 ¼ 1jx,D ¼ 0ð Þ � 1 ð1:89Þ

The substitution of these bounds into (1.88) yields:

p Y1 ¼ 1jx,D ¼ 1ð Þ � p D ¼ 1jxð Þ � p Y1 ¼ 1jxð Þ
� p D ¼ 0jxð Þ þ p Y1 ¼ 1jx,D ¼ 1ð Þ

� p D ¼ 1jxð Þ ð1:90Þ

where the width of this interval is p(D¼ 0 |x). Analogously, for p(Y0¼ 1|x) we

follow a similar procedure thus getting:

p Y0 ¼ 1jx,D ¼ 0ð Þ � p D ¼ 0jxð Þ � p Y0 ¼ 1jxð Þ
� p D ¼ 1jxð Þ þ p Y0 ¼ 1jx,D ¼ 0ð Þ

� p D ¼ 0jxð Þ ð1:91Þ

whose width is p(D¼ 1 | x). By considering these bounds for ATE(x)¼ p(Y1¼ 1 |

x)� p(Y0¼ 1 | x) using (1.90) and (1.91), we finally have6:

6 Observe that the lower bound of ATE(x) is equal to the lower bound of p(Y1¼ 1 | x) minus the

upper bound of p(Y0¼ 1 | x), while the upper bound of ATE(x) is equal to the upper bound of

p(Y1¼ 1 | x) minus the lower bound of p(Y0¼ 1 | x).
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LATE � p Y1 ¼ 1jxð Þ � p Y0 ¼ 1jxð Þ � UATE ð1:92Þ

where:

LATE ¼ C� p D ¼ 1jxð Þ and UATE ¼ Cþ p D ¼ 0jxð Þ ð1:93Þ

with:

C ¼ p Y1 ¼ 1jx,D ¼ 1ð Þ � p D ¼ 1jxð Þ � p Y0 ¼ 1jx,D ¼ 0ð Þ
� p D ¼ 0jxð Þ ð1:94Þ

It is immediate to see that, in such a case, the width of the interval for ATE(x) is

equal to:

p D ¼ 0jxð Þ þ p D ¼ 1jxð Þ ¼ 1 ð1:95Þ

which is half the width of the ATE(x) interval obtained above. Thus, as maintained

by Manski et al.: “using sample data alone, we can cut in half the range of
uncertainty regarding the treatment effect. Tighter bounds can be obtained only if
prior information is available” (1992, p. 30).

The information contained in the sample, therefore, allows for estimating the

quantities entering the lower and upper bounds. In particular, suppose that Y is

“obtaining or not obtaining a degree” and that D¼ 1 “if at least one of the parents

holds a degree.” In such a case, using a sample {Yi, Di, xi}, what is needed to

estimate the bounds is:

• p(D¼ 1|x): propensity to have a graduated parent, estimated using all

N observations

• p(Y1¼ 1|x, D¼ 1)¼ p(Y¼ 1|x, D¼ 1): probability to get a degree, estimated

using only observations for treated units (N1)
7

• p(Y0¼ 1|x, D¼ 0)¼ p(Y¼ 1|x, D¼ 0): probability to get a degree, estimated

using only observations for untreated units (N0)

Finally, both parametric and nonparametric estimation of previous probabilities

can be performed, and confidence intervals for LATE and UATE are possibly

obtained, for instance, via bootstrap.

Introducing further assumptions in the data generating process can allow to

reduce the range of variation of ATE(x) further. A possible way can be that of

assuming the so-called monotonicity entailing the following condition:

0 � p Y1 ¼ 1jx,D ¼ 0ð Þ � p Y1 ¼ 1jx,D ¼ 1ð Þ ð1:96Þ

In the previous example, this condition assumes that, ceteris paribus, the probabil-
ity to receive a degree for a given individual is higher when at least one of the

7Observe that an estimation of p(D¼ 0 | x) is obtained as 1� bp D ¼ 1jxð Þ½ �.
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parents owns a degree. This is a non-testable assumption as p(Y1¼ 1|x, D¼ 0) is

clearly unobservable. However, in many contexts, monotonicity may be a reason-

able assumption. We will come back to this assumption in Chap. 4 when discussing

identification in the context of the local average treatment effect (LATE).

It is easy to show that by substituting the monotonicity bounds in place of 0� p
(Y1¼ 1|x,D¼ 0)� 1 into (1.88), we can find the following new bounds for p(Y1¼ 1|

x):

p Y1 ¼ 1jx,D ¼ 1ð Þ � p D ¼ 1jxð Þ � p Y1 ¼ 1jxð Þ � p Y1 ¼ 1jx,D ¼ 1ð Þ ð1:97Þ

whose width is:

p D ¼ 0jxð Þ � p Y1 ¼ 1jx,D ¼ 1ð Þ ð1:98Þ

proving to be smaller than p(D¼ 0 | x), i.e., the width of the baseline case. As for

p(Y1¼ 1 | x), we can assume an analogous monotonicity assumption:

p Y0 ¼ 1jx,D ¼ 0ð Þ � p Y0 ¼ 1jx,D ¼ 1ð Þ � 1 ð1:99Þ

leading, similarly, to a new bounding relation for p(Y0¼ 1 | x), that is:

p Y0 ¼ 1jx,D ¼ 0ð Þ � p Y0 ¼ 1jxð Þ
� p D ¼ 1jxð Þ þ p Y0 ¼ 1jx,D ¼ 0ð Þ � p D ¼ 0jxð Þ ð1:100Þ

Given these results, we can get the new bounds for ATE(x)¼ p(Y1¼ 1|x)� p
(Y0¼ 1|x):

p Y1 ¼ 1jx,D ¼ 1ð Þ � p D ¼ 1jxð Þ � p D ¼ 1jxð Þ � p Y0 ¼ 1jx,D ¼ 0ð Þ
� p D ¼ 0jxð Þ
� p Y1 ¼ 1jxð Þ � p Y0 ¼ 1jxð Þ
� p Y1 ¼ 1jx,D ¼ 1ð Þ � p Y0 ¼ 1jx,D ¼ 0ð Þ ð1:101Þ

In such a case (we can call the “monotonicity case”), the width of the range of ATE(x)

is smaller than in the baseline case. In particular, while the lower bound is the same, the

upper bound is smaller. To show this, call p(Y1¼ 1|x,D¼ 1)¼A, p(Y0¼ 1|x,D¼ 0)¼
B, p(Y0¼ 1|x)¼ p0, and p(Y1¼ 1|x)¼ p1. The upper bound in the monotonicity case is

UMon¼ (A�B). Consider the upper bound of the baseline model:

UATE ¼ p0 þ A � p1 � B � p0 ¼ p0 þ A � A � p0 � B � p0 þ B� Bð Þ
¼ A� Bð Þ þ p0 � A � p0ð Þ þ B� B � p0ð Þ � A� Bð Þ ¼ UMon ð1:102Þ

The last inequality follows from the fact that {p0, A, B} are probabilities so that:

( p0�A ∙ p0)� 0 and (B�B ∙ p0)� 0.
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Another assumption sometimes used to tighten the bounds of ATE(x) is based on

exclusion restrictions, occurring when one assumes that an exogenous variable

z affects D, while not affecting Y directly (but only through D). See Lee (2005,

pp. 163–167) for a discussion.

In conclusion, we can state that as soon as we increase the number of assump-

tions to be brought into a treatment model, the level of uncertainty related to the

effects’ estimation drops. Some assumptions are however generally non-testable

and this may cast doubts on the reliability of results thus obtained. This is a risk we

can run anytime we wish to achieve point identification of a treatment effect to

avoid uncertainty in results. On the contrary, the bounding approach responds to the

need of sensibly reducing the number of relied upon assumptions. But in doing so,

this approach implies interval rather than point estimates of the effects that might be

poorly informative for a policymaker to assess the actual effectiveness of a policy

program. Nevertheless, this seems to deal more with the ontology of evaluation

exercises than only with technical considerations.

In line with the mainstream literature, however, this book will focus on the more

traditional non-bounding approach to treatment effect estimation. This section,

however, has shown the limitation of such a choice; as such, it should be taken as

a cautionary argument when obtaining and communicating policy evaluation

results. More on bounding approach and partial identification can be found in

Manski (2003).

1.7 A Guiding Taxonomy of the Econometric Methods

for Program Evaluation

In order to reliably measure policy effects, the econometrics of program evaluation

has to cope with a very complex system of interrelated phenomena: missing

observation, observable and unobservable selection, endogeneity, data availability,

and so forth. Two main philosophies have been followed to address this complexity.

The first and more extensively adopted approach, developed especially in the last

few years, seems to prefer a more empirical-based point of view, where not a great

deal of theoretical speculation is brought into the models, except for those specific

factors accounting for the selection criteria of supporting programs. Examples of

this kind are econometric exercises such as those based on the Control-function

regression (CFR), a specific case of the Regression-adjustment (RA), and Matching

(MATCH) estimators. Conversely, the second stream of research has tried to make

the theoretical background behind the data more explicit by building proper “quasi-

structural models,” where causal relations are more clearly enlightened (this is the

case of, for instance, IV and Selection-models (SM)).

The boundary between these two viewpoints is somewhat less sharp than it

might appear at first glance. Nevertheless, for the sake of clarity, Table 1.2—

drawing upon a readjustment of that provided by Cerulli (2010)—provides a
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tentative taxonomy of (binary) treatment models for program evaluation, by

distinguishing among the following three analytical dimensions:

Identification assumption: distinguishing between methods suitable to work with

selection on observables and/or selection on unobservables, according to the ana-

lyst’s knowledge of what drives the self-selection of individuals and the selection of
the agency. Only instrumental-variables, Selection-models, and the Difference-in-

differences (DID) estimators are able to cope with unobservable selection.

Regression-adjustment, Matching, as well as Reweighting (REW) can only deal

with selection on observables. The RDD method should deserve a special treatment

because this approach—as we will see in Chap. 4—draws upon a different identi-

fication assumption, based on locally replicating an experimental setting. However,

we have put it into this taxonomy for the sake of comprehensiveness, and because

practical estimation follows the observable selection type for sharp RDD (OLS

approach), and the unobservable selection type for Fuzzy-RDD (IV approach).

Type of specification: distinguishing between models adopting a structural/
analytical approach, where the outcome and the selection-into-program processes

are separately modeled in a system of simultaneous equations, and nonstructural
models where only the outcome equation (the so-called reduced-form) is estimated,

once controlling for specific covariates.

Data structure: models based on a cross-section dataset and models exploiting a

longitudinal or repeated cross-section structure. As evident in the table, only the

DID estimator exploits in a substantial way the availability of longitudinal or

repeated cross-section data. In applications, the large majority of works uses

cross-section datasets, while fewer studies make use of longitudinal data. Longitu-

dinal data are however suitable for before/after policy comparison and for long-run

impact assessment.

Although approximate, this taxonomy seems useful for positioning the program

evaluation methods we will describe and analyze in detail in the next chapters. The

previous taxonomy also offers the opportunity to provide an assessment of the

comparative advantages and drawbacks of each econometric method, as illustrated

in Table 1.3. We do not discuss the content of this table now, as the reader will find

it more useful and understandable after reading the next chapters.

It is however relevant to notice that this table also shows that we cannot identify

the “best” method to apply in absolute terms, as each approach presents compar-

ative advantages and drawbacks which are dependent on the specific context of

analysis. By and large, at least three elements seem necessary to consider before

choosing a specific econometric approach for an ex post program evaluation:

• Program institutional setup and operation

• Subjects’ behavior and interaction

• Data availability and data consistency

Paying attention to these aspects is an important precondition for a program

evaluation to be econometrically sound. They refer to the qualitative dimension of

the analysis, generally based on pilot surveys, interviews to the policy actors

involved in the program, and on the collection of program-related documentation.
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Relying on such information is a necessary step as a proper program evaluation

needs qualitative and quantitative analysis to be suitably combined.

1.8 Policy Framework and the Statistical Design

for Counterfactual Evaluation

Before describing and applying the various econometric approaches set out in

Table 1.2, it is worth stressing that a correct ex post program evaluation analysis

first needs to draw upon a rich and qualified set of information. This information

generally takes the form of: (1) suitable indicators, both qualitative and quantita-

tive, and (2) availability of an accurate sample of (treated and untreated) units.

Table 1.3 An assessment of the comparative advantages and drawbacks of econometric methods

for program evaluation

Method Advantages Drawbacks

Regression-

adjustment

(Control-function

regression)

Suitable for observable selection
Not based on distributional
hypotheses

Not suitable for unobservable selection
Based on a parametric estimation

Matching Suitable for observable selection
Not based on distributional
hypotheses
Based on a nonparametric
estimation

Not suitable for unobservable selection
Sensitive to sparseness (weak overlap)
Sensitive to confounders’ unbalancing

Reweighting Suitable for observable selection
Not based on distributional
hypotheses
Based on a semi-parametric
estimation

Not suitable for unobservable selection
Sensitive to propensity-score specifi-
cation and/or weighting schemes

Selection-model Suitable for both observable and
unobservable selection

Based on distributional hypotheses
Based on a parametric estimation

Instrumental-

variables

Suitable for both observable and
unobservable selection
Not based on distributional
hypotheses

Availability of instrumental variables
Based on a parametric estimation

Regression-dis-

continuity-design

Reproducing locally a natural
experiment (randomization)
No distributional hypothesis
Extendable to nonparametric
techniques

Availability of a “forcing” variable
Choice of the cutoff and of an appro-
priate bandwidth

Difference-in-

differences

Suitable for both observable and
unobservable selection
Not based on distributional
hypotheses

Specific form of the error term
Availability of a longitudinal dataset
Based on a parametric estimation
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While indicators are primarily aimed at measuring specific aspects of the decisional

processes characterizing the subjects involved in the policy, an appropriate sample

of units is the basis for implementing a reliable statistical design, since both the set

of beneficiaries (the supported units) as well as that of the counterfactual (approx-
imated by a given set of non-supported units) are to be chosen carefully.

The use of suitable indicators and of an appropriate sample of subjects are the

product of the “framework” characterizing the functioning of the policy considered.
This framework may also suggest what econometric approach might be more suited

for the specific context under scrutiny. In a very simplified way, and by restricting

the analysis to project-funding programs, Fig. 1.8 tries to set out such a framework

showing the actors involved and their role and relation along the policy design. This

logical framework, although general, is an essential basis for steering both the

choice of indicators and the statistical design for the econometric ex post evaluation

exercise (Potı̀ and Cerulli 2011).

In this scheme, we can observe the participation/decision process of two distinct

actors: a public agency (managing the program) and a set of units (undergoing the

program). Their strategies and interactions, along with those of other subjects that

we can roughly identify with the “environment” (whose role, at this stage, is left out

for simplicity), represent the basis for identifying the determinants of the policy

implementation and effect. Let us briefly describe this framework.

Non-applying units

Non-supported 
applying units

Counterfactual

Step 2.   
Unit self-selection

Step  3.   
Agency’s unit /project 

selection
(Ex-ante evaluation)

Step  5.   
Units’  behavior 

siStep  4.   
Agency implementation and 

control of the program
(In-itinere evaluation)

Step  6. 
Estimation of the policy effect

by a treatment model
(Ex-post evaluation) 

Step 7.
Using ex-post 

evaluation to predict 
future effect
(Learning)

Step 1.   
Unit eligibility

yes

no
Non-eligible units

yes

yes

no

no

Fig. 1.8 Logical framework for an ex post assessment of a project-funding policy program
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It starts from step 1, where each single unit may be distinguished between

eligible and non-eligible for the program considered. If the unit is eligible

(according to some preconditioning factors, stated in the rules accompanying the

program), then it passes to the second step (unit self-selection); otherwise, it

becomes part of the potential counterfactual set, being untreated. In the second

step, the eligible subjects have to decide whether or not to apply for receiving a

given support: it is the process of unit “self-selection” into program. This choice is

generally guided by a specific objective function of the unit, comparing benefits and

costs of applying. Subjects deciding not to apply are then collected within the group

of “non-supported” individuals and potentially used to build the counterfactual set.

Units choosing to apply go to step 3 where the public agency “selects” the

beneficiaries of the program on the basis of a specific “welfare function” whose

arguments should be consistent with the declared objectives of the policy. Even in

this case, the choice might be thought to be driven by a cost-benefit comparison (ex
ante evaluation). Those subjects that are not selected to benefit from the program

become part of the counterfactual set.

Step 4 concerns the factual implementation and control of the policy as operated
by the public agency: after receiving applications and choosing beneficiaries, the

public agency has to decide—unit by unit and/or project by project—the magnitude

of the support, the number of instalments in the provision of potential monetary

assets, etc. and it has to monitor timely the state-of-the-art of supported projects at

specific dates (in itenere evaluation).
Finally, step 5 concerns the actual behavior of the selected subjects. At this step,

given the level and/or quality of treatment, units perform a behavior that might be

guided, also in this case, by comparing costs and returns associated to the conse-

quences of their choices.

Step 6 is the downstream part of the program logical framework, where the

policy impact is assessed by means of a counterfactual (econometric) method. For

estimation purposes, a proper counterfactual set of non-supported units, built along

the policy framework (represented in the round frame of Fig. 1.8) is exploited.

Step 7, finally, concludes the framework by producing a cyclical learning
process. Indeed, by taking stock of past evaluation results, a public agency may

upgrade the ex ante choice of beneficiaries in order to increase the likelihood of

success in future policy rounds. Of course, an agency’s learning process might

encompass various program’s steps, and not only the one concerning the selection

process. Nevertheless, we deem it to be highly related to the exploitation of past

impact evaluation results, an essential mechanism for correcting and/or improving

future policy performance.
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1.9 Available Econometric Software

A final but essential ingredient to perform quantitative program evaluation concerns

the availability of specialized software for easily implement evaluation exercises.

In this book, we make use of the statistical and econometric software Stata 13 that

in recent years has seen a significant increase of both built-in and user-written

routines for applying program evaluation methods. Table 1.4 puts forward a list of

these Stata routines for treatment effect estimation. Many of them will be presented

and extensively used in the applications presented in the following chapters.

It is worth mentioning that Stata 13, the last release of Stata, provides a new far-

reaching package, called teffects, for estimating treatment effects for

observational data.

The teffects command can be used to estimate potential-outcome means

(POMs) and average treatment effects (ATEs) using observational data. As shown

in Table 1.5, this suit covers a large set of methods, such as regression adjustment

(RA); inverse-probability weights (IPW); “doubly robust” methods, including

inverse-probability-weighted regression adjustment (IPWRA); augmented

inverse-probability weights (AIPW); Matching on the propensity-score or

nearest-neighbor Matching. Finally, other sub-commands can be used for post-

estimation purposes and for testing results’ reliability (for instance: overlap plots

the estimated densities of the probability of getting each treatment level).

In applying teffects, the outcome models can be continuous, binary, count,

or nonnegative. Binary outcomes can be modeled using logit, probit, or

heteroskedastic probit regression; and count and nonnegative outcomes can be

modeled using Poisson regression. The treatment model can be binary or multino-

mial. Binary treatments can be modeled using logit, probit, or heteroskedastic

probit regression. For multinomial treatments, one can use pair-wise comparisons

and then exploit binary treatment approaches.

Table 1.4 Stata commands for performing econometric program evaluation

regress CFR (or linear RA), linear reweighting, DID (panel data)

ivreg Basic IV, LATE

treatreg Selection-model (HECKIT)

psmatch2a Matching (with nearest neighbor on covariates and on propensity-score)

pscorea Matching (with propensity-score)

nnmtacha Matching (nearest neighbor on covariates)

rda RDD (sharp and fuzzy)

ivtreatrega IV and HECKIT with heterogeneous response to confounders

treatrewa Reweighting on propensity-score

diffa DID (repeated cross-section)

RA regression-adjustment, CFR control-function regression, HECKIT Heckman-type selection-

model, IV instrumental-variables, DID difference-in-differences, RDD regression-discontinuity-

design
aUser-written routine downloadable from Stata SSC
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Depending on specific applications, this book will make use of either built-in or

user-written commands. Observe that the teffects command deals mainly with

estimation methods suitable under selection on observables. For methods appropri-

ate for selection on unobservables, we will mainly rely on some user-written

commands.

1.10 A Brief Outline of the Book

This book deals with the econometrics of program evaluation in a binary treatment

context. It is split into four chapters. Chapter 1 provides a detailed introduction and

overview of the main (theoretical and empirical) issues concerning the economet-

rics of program evaluation. It defines and discusses literature milestone concepts

and provides notation for a binary treatment setting. It is greatly recommended to

read it before examining the next chapters, where concepts and notation—herein

presented—are extensively used. As such, this chapter serves as a basic toolbox for

the rest of the book.

Chapter 2 focuses on methods based on selection on observables. Methods such

as Regression-adjustment, Matching, and Reweighting are presented, discussed,

and applied to real datasets using Stata 13. Besides these methods, specific attention

will be devoted also to salient aspects such as results’ sensitivity analysis and

robustness.

Chapter 3 deals with methods based on selection on unobservables. It presents

and examines methods such as: Instrumental-variables (IV), Selection-model (SM),

and Difference-in-differences (DID). Moreover, mixture of approaches and

methods for time-variant binary treatment are also discussed. Applications to real

and simulated datasets are also performed in this chapter using built-in as well as

user-written Stata routines (including some developed by the author).

Chapter 4, finally, describes and examines the Regression-discontinuity-design

approach, both in its sharp and fuzzy forms. Here, a presentation of the local

average treatment effect (LATE) and of its conceptual meaning within a quasi-

natural experiment is also illustrated. An application of such methods using simu-

lated data is then provided and discussed at length.

Table 1.5 Stata 13’s sub-commands of the teffects for estimating treatment effects for

observational data

aipw Augmented inverse-probability weighting

ipw Inverse-probability weighting

ipwra Inverse-probability weighted Regression-adjustment

nnmatch Nearest-neighbor Matching

overlap Overlap plots

psmatch Propensity-score Matching

ra Regression-adjustment
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2.1 Introduction

This chapter deals with the estimation of average treatment effects (ATEs) under

the assumption of selection on observables. In Sect. 1.3.1, we provided a systematic

account of the meaning and scope of such an assumption in program evaluation

analysis. We argued that working under selection on observables basically means

that all the relevant information about the true nonrandom selection-into-treatment

process, producing the observed sets of treated and untreated observations, is

known to the analyst. Hence, by assumption, we are ruling out any possible

presence of loosely defined unobservables as hidden drivers of the selection

process.

A plethora of econometric methods have been developed so far in the literature

to provide correct inference for causal parameters in such a setting. Here, we

discuss the four most popular approaches: Regression-adjustment (RA), Matching

(MATCH), Reweighting (REW), and the Doubly-robust (DR) estimator. Along this

chapter, the presentation of these methods will follow this order.

Section 2.2 develops the main notation and formulas for estimating ATEs by

Regression-adjustment. We interpret such a method as a generalized approach to

ATEs’ estimation under observable selection and discuss inference for the para-

metric (linear and nonlinear), the semi-parametric, and nonparametric case.

Section 2.3 examines at length the popular Matching estimators. Here, we start

by introducing the main conceptual framework in order to understand the philos-

ophy underlying the implementation of Matching approach. We then distinguish

between covariates and propensity-score Matching, discussing also the implications

of ATEs’ identification assumptions in these cases. We go on to examine the large

sample properties of Matching, focusing on the propensity-score Matching

(PS Matching), probably the most frequently implemented Matching estimator.

Finally, we present some empirical tests for assessing Matching’s quality and

reliability.

Section 2.4 is dedicated to the Reweighting estimators. This class of ATEs’
estimators is a valuable alternative to Regression-adjustment and Matching;

although, in many ways, it is strictly linked to both approaches. Particular attention

is given to inverse-probability weighting estimators and to ATEs’ analytical stan-
dard errors formulas in such a case.

Section 2.5, which concludes the theoretical part of this chapter, presents the

Doubly-robust estimator, a robustness approach combining Reweighting on inverse

probabilities with Regression-adjustment.

Finally, Sects. 2.6–2.8 and subsections offer a number of applications in a

comparative perspective.
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2.2 Regression-Adjustment

This section presents and develops the main conceptual building blocks, notation,

and formulas for estimating ATEs using the Regression-adjustment (RA) approach.

In the course of the discussion, we illustrate how one can interpret such an estimator

as a generalized approach to ATEs’ estimation under observable selection, and

discuss parametric (both linear and nonlinear), semi-parametric, and

nonparametric RA.

2.2.1 Regression-Adjustment as Unifying Approach Under
Observable Selection

In this section, we present the Regression-adjustment (RA) approach for estimating

consistently ATEs and illustrate how it can be seen as a general estimation

procedure under selection on observables. Indeed, RA is suitable only when the

conditional independence assumption (CIA) holds. In order to obtain the form of

this estimator, we start by rewriting explicitly what CIA implies, that is:

Y1; Y0ð Þ⊥D
��x

where (Y1; Y0) are the two potential outcomes, x is a vector of pretreatment

exogenous covariates, D the treatment binary indicator, and the symbol ⊥ refers

to probabilistic independence. As stated in Chap. 1, however, in order to identify

ATEs, a less restrictive assumption which only limits independence to the mean is

required. It is known as conditional mean independence (or CMI) and implies that:

E Y1

��x,D� � ¼ E Y1

��x� �
E Y0

��x,D� � ¼ E Y0

��x� �
As showed, CMI leads to the following two identification conditions of the

unobservable counterfactual mean potential outcomes:

E Y0

��x,D ¼ 1
� � ¼ E Y0

��x,D ¼ 0
� � ð2:1Þ

E Y1

��x,D ¼ 0
� � ¼ E Y1

��x,D ¼ 1
� � ð2:2Þ

where the right-hand side (RHS) of both previous equations are observable quan-

tities used to “impute” the unobservable quantities in the left-hand side (LHS). We

have also seen that under CMI:
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ATE xð Þ ¼ E Y
��x,D ¼ 1

� �� E Y
��x,D ¼ 0

� �
that can be interpreted as a conditional DIM estimator. By simply denoting:

m1 xð Þ ¼ E Y
��x,D ¼ 1

� � ð2:3Þ

and

m0 xð Þ ¼ E Y
��x,D ¼ 0

� � ð2:4Þ

we have that:

ATE xð Þ ¼ m1 xð Þ � m0 xð Þ

This implies that as soon as consistent estimators of m1(x) and m0(x) are available,

we can estimate causal parameters ATEs through the sample equivalents of previ-

ous formulas:

dATE ¼ 1

N

XN
i¼1

bm 1 xið Þ � bm 0 xið Þ½ � ð2:5Þ

cATET ¼ 1

N1

XN
i¼1

Di � bm 1 xið Þ � bm 0 xið Þ½ � ð2:6Þ

dATENT ¼ 1

N0

XN
i¼1

1� Dið Þ � bm 1 xið Þ � bm 0 xið Þ½ � ð2:7Þ

where the “hat” refers to an estimator of m1(x) and m0(x).

This estimation method is known as Regression-adjustment (RA) and can be

seen as a general estimation approach for ATEs; indeed, other approaches assuming

CMI can be seen as particular types of Regression-adjustment. Both m1(x) and

m0(x) can be estimated either parametrically, semi-parametrically, or nonparame-
trically: the choice depends on the assumption made on the form of the potential

outcome, which can be modeled in a parametric as well as nonparametric or semi-

parametric way. Note that the Regression-adjustment approach only uses the

potential outcome means to recover ATEs and does not use the propensity-score.1

Table 2.1 presents a simple example explaining the estimation logic behind

RA. As will become evident, it is mostly based on an imputation logic, where

imputation can be performed in various ways. This example represents a case in

1We have two different approaches for estimating ATEs under CMI (Imbens 2004): (1) the first

uses some specification and estimation of E(Yg | x) for g¼ 0,1; (2) the second uses some

specification and estimation of E(D | x)¼ prob(D¼ 1 | x), denoted as the propensity-score. We

start by considering case (1).
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which imputation is based on conditioning over the values of one single variable x,
which is supposed to take on four values: {A, B, C, D}. In the table, the numbers

reported in bold are those imputed according to the value assumed by x in the

sample. For instance, consider m1 for unit 5. In the sample, this unit is untreated: for

such a unit, we observe m0 but we do not observe the counterfactual m1.

Given E(Y1 | D¼ 0, x)¼E(Y1 | D¼ 1, x)¼E(Y | D¼ 1, x), using CMI, we can

impute the missing observation m1,i¼ 5¼E(Y1,i¼ 5 | Di¼ 5¼ 0, xi¼ 5¼B) with the

observable quantity E(Y1,i¼ 2 | Di¼ 2¼ 1, xi¼ 2¼B) being equal to the value of m1

for another unit in the treated set having the same x¼B as unit 5, i.e., unit

2. Similarly, the value of m0 for unit 3 can be imputed using the value of m1 of

unit 9, since both have x¼C, and so forth.

In this example, once all missing observations are imputed (see the numbers in

bold in Table 2.1), we can calculate the differences (m1i�m0i). The average of

these differences over the treated units returns the ATET, the one over the untreated

units the ATENT; finally, the average over the whole sample provides the value of

ATE. Notice that, by definition, ATE¼ATET ∙ (4/10) +ATENT ∙ (6/10).
This example clearly proves that RA imputation works well only if we are able

to “impute” m1(xi) to each individual i belonging to the control group with x¼ xi
and m0(xi) to each individual i belonging to the treatment group with x¼ xi.
Therefore, some minimal units’ overlap over x is necessary for imputation to be

achieved (and, thus, for identifying treatment effects).

Generally, however, perfect overlap between treated and untreated units (as in

the previous example) may not occur in real contexts. For instance, in the case of a

variable x assuming continuous values, it is unlikely that two units in the opposite

treatment status have exactly the same x. In such a case, imputation through RA can

be performed using “prediction” of Y conditional on x, using observations in the

opposite treatment status.

These predictions can be obtained by assuming either a parametric relation

between Y and x or a nonparametric one. Nevertheless, as it will be clearer later

on, a certain degree of overlap is still necessary for imputation to be reliable, both in

parametric and nonparametric approaches. In general, however, a lack of overlap

Table 2.1 An example explaining the estimation logic of the Regression-adjustment

Unit D x m1 = E(Y|D=1;x) m0 = E(Y|D=0;x) m1 – m0 ATET ATENT ATE
1 1 A 25 68 –43

–1.5

6.3

2 1 B 65 25 40
3 1 C 36 74 –38
4 1 D 47 12 35
5 0 B 65 25 40

11.5

6 0 D 47 12 35
7 0 D 47 12 35
8 0 A 25 68 –43
9 0 C 36 74 –38
10 0 B 65 25 40
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seems more problematic for semi- and nonparametric methods (Kernel and

Matching methods, for instance) than for parametric approaches, although even in

this case, poor overlap may have adverse effects on the estimation precision

of ATEs.

In order to illustrate clearly this important issue, Figs. 2.1 and 2.2 report the

imputation procedure, respectively, used by a parametric (linear, for simplicity) and

a nonparametric (Kernel) approach.

In this example, we have to impute the missing observation E(Y1 | D¼ 0, x¼ 5)

using the prediction from a regression of Y on x on the set of treated units, i.e., we

have to first estimate:

E Y1

��D ¼ 1, x ¼ 5
� � ¼ E Y

��D ¼ 1, x ¼ 5
� �

and then use it for imputing E(Y1 | D¼ 0, x¼ 5).

Figure 2.1 imputes this value by adopting a linear regression of the type:

E Y
��D ¼ 1, x

� � ¼ αþ βx

so that E(Y1 | D¼ 0, x¼ 5)¼ α+ β∙5. This imputation method—also known as the

Control-function regression (CFR)—is able to overcome identifying problems,

without excluding—however—possible overlap problems. To see this, suppose

we wish to impute the counterfactual mean potential outcome at, say, x¼ 40, a
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Fig. 2.1 Missing observation imputation in the linear (parametric) case
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larger value than x¼ 5. This implies that we need to find an imputation for

E(Y1 | D¼ 0, x¼ 40). As evident from Fig. 2.1, there are no units in the set of

treated with x¼ 40. Nevertheless, we could trust the reliability of the estimated

regression function and impute E(Y1 |D¼ 0, x¼ 40) with (α + β∙40). This prediction
can be computed even if no treated units appear with x¼ 40 in our dataset. Of

course, such an extrapolation might be worrying when the x of the untreated unit is
very far from the support of x in the treated set. Moreover, even if some of the

treated units have such a value, imputation remains problematic when such units are

few, as predictions for that part of the cloud are clearly less reliable (due to a lack of

data). Therefore, parametric imputation overcomes identification problems due to

weak overlapping, but with the caveat that prediction might be not reliable in the

nonoverlapping region.

Figure 2.2 imputes the same value by adopting a local smoothness approach.

Basically, it estimates E(Y | D¼ 1, x¼ 5) by fixing a bandwidth h¼ 2.5 around

x¼ 5 and by taking the average of Y within I¼ {x+ h� x� x� h}:

E Y1

��D ¼ 0; x ¼ 5
� � ¼ 1

NI

X
i2I

Yi ¼ 550

This imputation method—also known as the local average—can have more com-

plicated identification problems due to weak overlap than a parametric approach.

Why? Suppose—as above—that we wish to impute the counterfactual mean
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Fig. 2.2 Missing observation imputation using local (nonparametric) average
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potential outcome at, say, x¼ 40. This means that we need to find an imputation for

E(Y1 | D¼ 0, x¼ 40). As evident, there are no units in the set of treated within the

interval [x� h; x + h]� [37.5; 42.5]. This means that we cannot compute the value

to be imputed; thus, ATE is not identified. In order to obtain identification, one

possible solution might be to enlarge the bandwidth so as to obtain a new interval

containing at least some observations. The reliability of imputation under such an

enlargement is, however, highly questionable since, in order to calculate the

prediction, we are now considering values of Y whose x are very far from the

point of interest, that is, x¼ 40. Moreover, even if some treated units were present

in the interval around x¼ 40, smoothing techniques are very sensitive to observa-

tion sparseness: in points like, for example, x¼ 15 imputation is based on an

average of few observations, thus questioning the quality of this imputation.

In conclusion, nonparametric imputation might be more reliable as it does not

assume a parametric form of the potential outcomes, but it barely overcomes the

identification problems due to weak overlap. In this sense, the use of parametric and

nonparametric methods depends on the degree of overlap and sparseness of the

available data.

In what follows, we first present identification and estimation of ATEs in both

parametric and nonparametric case. We begin with the parametric approach, by

presenting and discussing the linear parametric RA, i.e., the so-called Control-

function regression (CFR), and nonlinear parametric RA. Subsequently, we give an

account of the semi- and nonparametric approaches proposed in the literature

discussing their statistical properties. Among the nonparametric methods, special

attention will be devoted to the Matching approach.

2.2.2 Linear Parametric Regression-Adjustment: The
Control-Function Regression

The linear parametric RA assumes that m0(x)¼ μ0 + xβ0 and m1(x)¼ μ1 + xβ1,
where μ0 and μ1 are scalars and β0 and β1 are two vectors of parameters. In such

a case, applying RA implies estimating two distinct OLS regressions: Yi¼ μ0 + xiβ0
only on untreated and Yi¼ μ1 + xiβ1 only on treated units, thus getting the predicted
values bm 1 xið Þ and bm 0 xið Þ. These quantities can be used to recover all the causal

parameters of interest by inserting them into the RA formulas (2.5)–(2.7).

It seems worth to link this approach with the more familiar regression setting so

to get all the elements necessary for ordinary inference, including obtaining stan-

dard errors. We therefore develop a standard regression model that can be shown to

lead to exactly the same results as the linear parametric RA. In other words, we

show that CFR is just a particular case of RA, the one in which a parametric/linear

form of the conditional expectation of Y given x and D is assumed.

As a specific RA, the Control-function regression is a method identifying ATEs

under CMI. As such, it is still useful to stress that CFR is suited only when the
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selection-into-program is due to observable determinants (i.e., overt bias). We

know that CMI states that:

E Y1

��x,D� � ¼ E Y1

��x� � ð2:8Þ
E Y0

��x,D� � ¼ E Y0

��x� � ð2:9Þ

where (2.8) and (2.9) restrict the independence only over the mean. To proceed

further, we first need to model the potential outcomes in a simple additive form as

follows:

Y0 ¼ μ0 þ v0 ð2:10Þ
Y1 ¼ μ1 þ v1 ð2:11Þ

Y ¼ Y0 þ D Y1 � Y0ð Þ ð2:12Þ

where v0 and v1 are random variables and μ1 and μ0 are scalars. In other words, we

are assuming that outcomes consist of a constant term plus a random component.

Additionally, we also assume that the random components take on the following

form:

v0 ¼ g0 xð Þ þ e0 ð2:13Þ
v1 ¼ g1 xð Þ þ e1 ð2:14Þ

with E(e0)¼E(e1)¼ 0. This implies that:

Y0 ¼ μ0 þ g0 xð Þ þ e0 ð2:15Þ
Y1 ¼ μ1 þ g1 xð Þ þ e1 ð2:16Þ

making it explicit the dependence of the potential outcomes on the observable

vector of covariates x. As seen in Chap. 1, we also assume x to be an exogenous set
of factors, a condition implying that:

E e0
��x� � ¼ E e1

��x� � ¼ 0 ð2:17Þ

By substituting (2.10) and (2.11) into (2.12), we thus obtain:

Y ¼ μ0 þ D μ1 � μ0ð Þ þ v0 þ D v1 � v0ð Þ ð2:18Þ

and by plugging (2.15) and (2.16) into (2.18), we get:

Y ¼ μ0 þ D μ1 � μ0ð Þ þ g0 xð Þ þ D g1 xð Þ � g0 xð Þ½ � þ e ð2:19Þ

where e¼ e0 +D (e1� e0). Consider now a parametric form of the expected value

of the potential outcomes over x, i.e., g0(x)¼ xβ0 and g1(x)¼ xβ1, where β0 and β1
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are two unknown vector parameters. By taking the expectation of (2.19) over the

support of (D, x) and assuming (2.17) we have, under CMI, that:

E Y
��D, x� � ¼ μ0 þ D μ1 � μ0ð Þ þ g0 xð Þ þ D g1 xð Þ � g0 xð Þ½ � ð2:20Þ

since: E(e | D, x)¼E(e0 | D, x) +D [E(e1 | D, x)�E(e0 | D, x)]¼E(e0 | x) +

D [E(e1 | x)�E(e0 | x)]¼ 0, where the second equality comes from CMI, and the

third and final ones from assumption (2.17), i.e., the exogeneity of x.

According to (2.20), two different models can be drawn. The first under the

hypothesis of a homogenous reaction function of Y0 and Y1 to x and the second

under a heterogeneous reaction.

Case 1 Homogenous reaction function of Y0 and Y1 to x: g1(x)¼ g0(x).

In this case, we can show that:

ATE ¼ ATE xð Þ ¼ ATET ¼ ATET xð Þ ¼ ATENT ¼ ATENT xð Þ
¼ μ1 � μ0 ð2:21Þ

E Y
��D, x� � ¼ μ0 þ D � ATEþ xβ ð2:22Þ

Thus no heterogeneous average treatment effect (over x) exists. Indeed, by

definition:

ATE ¼ E Y1 � Y0ð Þ ¼ E μ1 þ g1 xð Þ þ e1ð Þ � μ0 þ g0 xð Þ þ e0ð Þ½ �
¼ μ1 � μ0 ð2:23Þ

is a scalar. Moreover, (2.22) follows immediately from (2.20); thus, the coefficient

of D in an ordinary least squares (OLS) estimation of (2.22) consistently estimates

ATE¼ATET¼ATENT, as the error term has by construction a zero mean condi-

tional on (D, x). This procedure can therefore be applied on a sample of units with

size N:

OLS : Yi ¼ μ0 þ Diαþ xiβ0 þ errori, i ¼ 1, . . . ,N ð2:24Þ

where α¼ATE.

Case 2 Heterogeneous reaction function of Y0 and Y1 to x: g1(x) 6¼ g0(x).

In this second case, we can show that:

ATE 6¼ ATE xð Þ 6¼ ATET 6¼ ATET xð Þ 6¼ ATENT 6¼ ATENT xð Þ ð2:25Þ
E Y

��D, x� � ¼ μ0 þ D � ATEþ xβ0 þ D x� μxð Þβ ð2:26Þ

where μx¼E(x) and β¼ (β1� β0). In this case, heterogeneous average treatment

effects (over x) exist and the population causal parameters take on the following

form:
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ATE ¼ μ1 � μ0ð Þ þ μxβ ð2:27Þ
ATE xð Þ ¼ ATEþ x� μxð Þ ð2:28Þ

ATET ¼ ATEþ Ex x� μx

��D ¼ 1
� �

β ð2:29Þ
ATET xð Þ ¼ ATEþ x� μxð Þβ��D ¼ 1

� � ð2:30Þ
ATENT ¼ ATEþ Ex x� μx

��D ¼ 0
� �

β ð2:31Þ
ATENT xð Þ ¼ ATEþ x� μxð Þβ��D ¼ 0

� � ð2:32Þ

Given these formulas for the population causal parameters, the sample estimates

can be obtained by relying on the sample equivalents, that is:

dATE ¼ bα ð2:33ÞdATE xð Þ ¼ bα þ x� xð Þbβ ð2:34Þ

dATET ¼ bα þ N1ð Þ�1
XN
i¼1

Di xi � xð Þbβ ð2:35Þ

dATET xð Þ ¼ bα þ x� xð Þbβh i
D¼1ð Þ

ð2:36Þ

dATENT ¼ bα þ 1=N0ð Þ�1
XN
i¼1

�
1� Di

�
xi � xð Þbβ ð2:37Þ

dATENT xið Þ ¼ bα þ xi � xð Þbβh i
D¼0ð Þ

ð2:38Þ

In (2.33)–(2.38), the estimated causal parameters of interest depend in turn on the

unknown parameters: μ1, μ0, β1, β0, and μx. If a consistent estimation of these

parameters is available, then we can recover (consistently) all the causal effects,

thus using regression (2.26) and applying the following procedure:

• Estimate Yi¼ μ0+Di α+ xiβ0 +Di (xi�μx)β+ errori by OLS, thus getting con-

sistent estimates of μ0, α, β0, and β
• Plug these estimated parameters into the sample formulas (2.33)–(2.38) and

recover all the causal effects

• Obtain standard errors for ATET and ATENT via bootstrap.

Indeed, while the standard error of ATE is estimated directly within the regres-

sion, as ATE¼ α, no direct estimation is available for ATET and ATENT. Fortu-

nately, a bootstrap procedure can be reliably used in this case.

Before proceeding further, it might be useful to shed more light on the

implications of assuming heterogeneity in the potential outcome response to x.

Figure 2.3 draws the expected values implied by (2.13) and (2.14) on x¼ x (i.e., by
assuming just one confounding variable) when g1(x)¼ g0(x) (Fig. 2.3a) and when

g1(x) 6¼ g0(x) (Fig. 2.3b). In the first case, the ATE(x) does not vary over the support
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of x. It is steadily constant and equal to α¼ (μ1� μ0). In the second case, in contrast,
the ATE(x) varies along the support of x, taking a positive value for x¼ xa, a zero
value for x¼ xb, and a negative one for x¼ xc.

In some contexts, however, assuming homogeneous response to confounders

might be questionable. For example, allowing that individuals or companies react in

the same manner to, let’s say, their gender, location, or size when they are treated

E(y0 | x) = µ0 + g0(x)

E(y1 | x) = µ1 + g1(x)

µ0

µ1

xxa xb xc

ATE(xa) = a

ATE(xb) = a

ATE(xc) = a

a

E(y0 | x) = µ0 + g0(x)

E(y1 | x) = µ1 + g1(x)

µ0

µ1

xxa xb xc

ATE(xa) > 0

ATE(xc) < 0

ATE(xb) = 0

a

b

Fig. 2.3 A graphical representation of the potential outcomes function and of the corresponding

ATE(x) under homogeneous (a) and heterogeneous (b) response to x
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and when they are untreated may be a somewhat strong assumption. In many

sociological environments, for instance, people’s perception of the context may

change according to a different state of the world (treated vs. untreated situations).

In the economic context, a company characterized by a weak propensity to bearing

risks may become more prone to invest in a riskier business when public funding is

available: for instance, such a company might change its reaction to, let’s say, its
stock of fixed capital when financed, by increasing its productive response to this

asset. Similar conclusions can be reached from many psychological or sociological

programs, as passing from the untreated to the treated status may produce different

mental, relational, and environmental situations.

Interestingly, this econometric framework allows one to test for the presence of

such heterogeneity. In (2.26), a simple F-test of joint significance for the coeffi-

cients in vector β can be exploited to check the presence of heterogeneity; if the null

hypothesis H0: β¼ (β1� β0)¼ 0 is rejected, then it means that heterogeneity is at

work, and vice versa.

2.2.3 Nonlinear Parametric Regression-Adjustment

The Control-function regression method presented in the previous section assumes

a linear form of the potential outcome conditional means. When the outcome is

binary or count, however, the linearity assumption can be relaxed, and a proper

parametric form of m0(x) and m1(x) can be assumed. Table 2.2 presents common

possible nonlinear models with the corresponding outcome conditional mean.

By substituting previous formulas into the Regression-adjustment formulas

(2.5)–(2.7), we can obtain the corresponding non linear Regression-adjustment

estimators for ATEs. For instance, when the outcome variable is a count, a

consistent estimation of ATET is:

cATET ¼ 1

N1

XN
i¼1

Di � exp xibβ 1

	 

� exp xibβ 0

	 
h i
and similarly for ATE and ATENT.

Table 2.2 Type of outcome and distribution for parametric Regression-adjustment

Type of outcome Distribution mg(x), g¼ 1,0

Linear xβg
Binary Logit exp(xβg)/{1 + exp(xβg)}

Probit Φ(xβg)
Heteroskedastic probit Φ[xβg/exp(zγg)]

Count Poisson exp(xβg)
Note: in the heteroskedastic probit, z and γg are the variables and the parameters (excluding the

constant) explaining the idiosyncratic variance of the error term of the latent single-index model
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The problem with nonlinear models of this kind is with the estimation of the

standard errors for ATEs estimators. More specifically, the previous equation

contains estimators from a first-step estimation (generally, of a maximum likeli-

hood (ML) type); thus, the implied nested estimation error has to be taken into

account. As illustrated in the following example, a solution can be obtained

however.

Consider the case of ATE (for ATET and ATENT, it is similar), and consider a

generic parametric nonlinear form of the Regression-adjustment estimator:

dATE ¼ 1

N

XN
i¼1

m1 xi; bβ1

	 

� m1 xi; bβ0

	 
h i

Suppose that both bβ 0 and bβ 1 are
ffiffiffiffi
N

p
consistent and asymptotically normal

M-estimator with objective function qi(xi; β), score si(xi; β), and expected Hessian

A, derived from a first-step estimation (a probit, for instance). For compactness

purposes, we assume that:

m xi; βð Þ ¼ m1 xi; bβ1

	 

� m1 xi; bβ0

	 

with bβ ¼ bβ0; bβ1

h i
. As dATE is in turn an M-estimator, it eventually takes the form

of a two-step M-estimator (see Wooldridge 2010, pp. 409–420), thus implying thatdATE is also
ffiffiffiffi
N

p
consistent and asymptotically normal for ATE. In such cases, it can

be showed that the estimated asymptotic variance is:

dAsyvar dATEh i
¼ 1

N
dVar m xi; βð Þ½ � þ bG dAsyvar ffiffiffiffi

N
p bβ � β
	 
h ic

G
0

h i
where:

dVar m xi; βð Þ½ � ¼ 1

N

XN
i¼1

m1 xi; bβ1

	 

� m1 xi; bβ0

	 

� dATEh i2

bG ¼ 1

N

XN
i¼1

∂mi xi; bβ	 

∂bβ

8<:
9=;

and

dAsyvar ffiffiffiffi
N

p bβ � β
	 


¼ bA �1 bB bA �1

At this point, we only need to see to which matrix A and B in the last formula are

equal. By defining the score of the first-step M-estimator as:
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si xi; bβ	 

¼

∂qi xi; bβ	 

∂bβ

8<:
9=;

one can prove that:

bB ¼ 1

N

XN
i¼1

si xi; bβ	 

� si xi; bβ	 
0

( )

and

bA ¼ 1

N

XN
i¼1

∂qi xi; bβ	 

∂bβ∂bβ 0

8<:
9=;

In conclusion, once the asymptotic variance of dATE is computed using the above-

mentioned formula, the usual significance test can be correctly employed. Note also

that bootstrapping can in this case be a suitable option, provided that all sources of

uncertainty due to first-step estimation are taken into account when resampling

from the observed distribution.

2.2.4 Nonparametric and Semi-parametric Regression-
Adjustment

We have argued that the general estimator implied by the Regression-adjustment in

(2.5)–(2.7) takes the form of a sample average from the data that can be estimated

by parametric, nonparametric, or semi-parametric imputation methods for m1(x)

and m0(x) based on conditioning on x. Control-function regression represents the

parametric case. Local smoothing techniques such as kernel or local linear regres-

sion can be used to obtain nonparametric estimation of m1(x) and m0(x). As

illustrated in Fig. 2.2, these approaches are, however, unfeasible when no minimal

overlap between treated and control group is present over x. This may occur in

datasets where the support of the covariates x in the treated and untreated group is

very different, and thus, the overlap is poor. Figure 2.4 shows two cases in which

the distribution of a covariate x in the treated and untreated group results, respec-

tively, in a good and a poor overlap. We will return to this issue in Sect. 2.3.11 and

illustrate how to test the degree of overlap in a given dataset.

Anyway, when an acceptable level of overlap is present, it is possible to use

(local) kernel methods for estimating mg(x), with g¼ 1,0. Heckman et al. (1997,

1998) consider kernel methods for estimating mg(x), focusing in particular on the
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local linear regression approach. The logic of this approach is very close to the

example provided in Fig. 2.2. Their simple kernel estimator has the following form:

bm g xð Þ ¼
X
i:Di¼g

Yi � K xi � x

h

	 
�X
i:Di¼g

K
xi � x

h

	 

where x is the point in which the previous function is evaluated, K(∙) a specific

kernel function, and h the bandwidth parameter. In the local linear kernel regres-

sion, the function mg(x) is instead estimated as the intercept b0 in the following

minimization problem:

min
b0, b1

X
i:Di¼g

�
Yi � b0 � b1

�
xi � x

��
2 � K xi � x

h

	 
( )

The authors require specific kernel functions to control for the bias of their

estimators. Indeed, as known, kernel regressions are biased in finite samples,

although the bias disappears asymptotically if the bandwidth h goes to zero as

N goes to infinity: it is only in this case that the kernel is a consistent estimator.

From the central limit theorem, however, we can prove that the bias-corrected
kernel estimators of m0(x) and m1(x) are (hNg)

�1/2 consistent and asymptotically

normal with zero mean and finite variance. The problem here, however, is how to

deal with the estimation of the bias when it is thought to be non-negligible even if

N is sufficiently large; a further problem is then how to estimate the variance which

generally depends on unknown functions. We will come back to this issue in the

next section and again when analyzing Matching estimators, where it will become

clearer that kernel approaches are also inefficient in estimating ATEs.

Semi-parametric approaches can be also suitably exploited (Cattaneo 2010). In

such cases, however, the question is: which types of semi-parametric imputation

methods should be used and which are the related asymptotic properties of these

estimators? In a parametric case like CFR, we can invoke the classical asymptotic

theory suggesting that OLS are consistent, asymptotically normal, and efficient
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Fig. 2.4 Overlap over the covariate x
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since they reach the Cramér–Rao lower bound of the variance when the normality

assumption of the population probability density is satisfied.

In the case of semi-parametric methods, things are a bit more complicated.

Nevertheless, in the specific case of semi-parametric Regression-adjustment, Hahn

(1998) has shown that, under CMI, it is possible to identify the semi-parametric
efficiency bound for ATE and ATET by exploiting a previous result on the semi-

parametric analog of the (parametric) Cramér–Rao variance lower bound. Hahn’s
theorem states that if a N�1/2 consistent and asymptotically normal estimator ofm1(x)

and m0(x) are available, then the asymptotic variance of dATE is equal to:

σ dATE 2 ¼ 1

N0 þ N1

� E σ21 xð Þ
p xð Þ þ σ20 xð Þ

1� p xð Þ þ m1 xð Þ � m0 xð Þ � ATEð Þ2
 �

ð2:39Þ

where σ2g xð Þ ¼ Var yg
��x	 


¼ Var yg
��x,D ¼ g

	 

with g¼ 1,0—i.e., the variances

of Y0 and Y1 conditional on x.

In the case of dATET , two different lower bounds, therefore, emerge: one when

the propensity-score is assumed to be unknown:

σ2dATET �� p xð Þ is unknownf g
¼ 1

N0 þ N1

1

p2
� E σ21 xð Þ � p xð Þ þ σ20 xð Þ � p xð Þ2

1� p xð Þ þ p xð Þ � m1 xð Þ � m0 xð Þ � ATETð Þ2
" #

ð2:40Þ

and one when the propensity-score is assumed to be known:

σ2dATET �� p xð Þ is knownf g
¼ 1

N0 þ N1

1

p2
� E σ21 xð Þ � p xð Þ þ σ20 xð Þ � p xð Þ2

1� p xð Þ þ p xð Þ2 � m1 xð Þ � m0 xð Þ � ATETð Þ2
" #

ð2:41Þ

It is worth emphasizing that the variance in (2.41) is lower than that in (2.40), so

that knowledge of the propensity-score in this case increases efficiency.

Hahn (1998) also proposes a specific semi-parametric and efficient estimator of

ATE and ATET. Indeed, under CMI, he shows that:

E D � Y��x� � ¼ E D � Y1

��x� � ¼ E D
��x� � � E Y1

��x� � ¼ E D
��x� � � m1 xð Þ ð2:42Þ

implying that:

m1 xð Þ ¼ E DY
��x� �

E D
��x� � ð2:43Þ

and similarly:
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m0 xð Þ ¼ E 1� Dð ÞY��x� �
1� E D

��x� � ð2:44Þ

By using these results and (2.5), we obtain:

dATE ¼ 1

N

XN
i¼1

bE DiYi

��xi� �
bE Di

��xi� � �
bE 1� Dið ÞYi

��xi� �
1� bE Di

��xi� �" #
ð2:45Þ

When x has a finite support, the previous formula can be directly estimated by

substituting the following three estimations of the elements included into (2.45):

bE DiYi

��xi ¼ x
� � ¼X

i

DiYi � 1 xi ¼ xð Þ
.X

i

1 xi ¼ xð Þ ð2:46Þ

bE 1� Dið ÞYi

��xi ¼ x
� � ¼X

i

1� Dið ÞYi � 1 xi ¼ xð Þ
.X

i

1 xi ¼ xð Þ ð2:47Þ

bE Di

��xi ¼ x
� � ¼X

i

Di � 1 xi ¼ xð Þ
.X

i

1 xi ¼ xð Þ ð2:48Þ

On the contrary, when x has a continuous support, Hahn recommends estimating

the previous three conditional expectations using series estimators that are asymp-

totically normal. The efficient estimator proposed by Hahn for ATET takes there-

fore the following form:

cATET ¼ 1

N

XN
i¼1

bp xið Þ
bE DiYi

��xi� �
bp xið Þ �

bE 1� Dið ÞYi

��xi� �
1� bp xið Þ

" #,
1

N

XN
i¼1

bp xið Þ ð2:49Þ

where bp xið Þ ¼ bE wi

��xi� �
is a series estimator of the propensity-score. Series

estimators are global smoothing techniques approximating—uniformly on x—an

unknown function mg(x) as linear combination of K+ 1 basis-functions, that is:

m xð Þ ¼
XK
j¼0

θ jφ j xð Þ

with K + 1 representing the number of basis-functions to be used in estimation. The

set of basis-functions can be chosen among various typologies, for example, poly-

nomials (power series) such as φ j xð Þ ¼ x j. The set of parameters {θ0, . . . , θK} are

simply estimated by a linear regression of Yi on φ xð Þ0 ¼ φ0 xið Þ, . . . ,φK xið Þf g.
Under regularity conditions and, in particular, under the assumption that K is

chosen as a function of N growing slower than N, series estimators are uniformly

consistent and asymptotically normal with an estimable asymptotic variance

φ xð Þ0 bV Kφ xð Þ. See Newey (1997) for more technical details.
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Observe, finally, the difference between the nonparametric and the semi-

parametric approach; in the first case, just two unknown functions need to be

recovered in order to estimate ATEs, i.e., m1(x) and m0(x); in the semi-parametric

estimator proposed by Hahn (1998), however, we also need to estimate p(x).
As far as the estimation of the asymptotic variance for ATEs is concerned, we

have illustrated above that it is theoretically possible to calculate nonparametric and

semi-parametric estimators of ATEs that are consistent, asymptotically normal, and

(semi-parametrically) efficient. The estimation of the asymptotic variance of such

an estimator may nonetheless be cumbersome to calculate since (2.39), for instance,

entails the estimation of three unknown functions: two regressions—m1(x) and

m0(x)—two conditional variances—σ1(x) and σ0(x)—and the propensity-score—

p(x). As suggested by Imbens (2004, p. 21), there are three possible estimation

approaches for these variances:

1. Brute force: consistent estimation of the five functions of the asymptotic vari-

ance can be estimated by kernel methods or by series.
2. Series polynomials: in the case where either the regression functions or the

propensity-score are estimated by series methods, they become parametric.

Thus, given the number of terms in the series, the analyst can directly calculate

the asymptotic variance of the ATEs from their formula. Under general condi-

tions, this will produce valid standard errors and confidence intervals.

3. Bootstrapping: given that previous nonparametric estimators of ATEs are rather

smooth, it is likely that bootstrapping will lead to valid standard errors and

confidence intervals.

2.3 Matching

Matching is a popular statistical procedure for estimating treatment effect param-

eters in nonexperimental settings (Stuart 2010). Developed in the statistic and

epidemiological literature, Matching has become a relevant approach also in the

current theoretical and applied econometrics, as illustrated by the increasing num-

ber of applications using this approach in many economic and social studies

(Caliendo and Kopeinig 2008). This section starts by introducing the main concep-

tual framework to understand the philosophy lying behind the development of

Matching. We start by distinguishing between covariates and propensity-score

Matching, discussing also the implications of ATEs’ identification assumptions in

the Matching case. We then both examine the large sample properties of Matching

and how to perform a correct inference when such an approach is used. Given

its popularity, special attention is devoted to propensity-score Matching

(PS Matching). Finally, some useful tests for assessing the reliability and quality

of the estimated Matching are presented in the last two subsections of this section.
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2.3.1 Covariates and Propensity-Score Matching

From a technical point of view, Matching is equivalent to the nonparametric RA

estimator seen above where, instead of using a nonparametric estimation of the

observable conditional mean, one uses directly the observed outcome. The

Matching formulas for ATEs are:

cATETM ¼ 1

N1

XN
i¼1

Di � Yi � bm 0 xið Þ½ � ð2:50Þ

dATENTM ¼ 1

N0

XN
i¼1

1� Dið Þ � bm 1 xið Þ � Yi½ � ð2:51Þ

dATEM ¼ 1

N

XN
i¼1

Di Yi � bm 0 xið Þ½ � þ 1� Dið Þ bm 1 xið Þ � Yi½ �f g ð2:52Þ

As CFR and smoothing techniques, Matching also identifies ATEs under the CMI

assumption. In applications, Matching is sometimes preferred to parametric regres-

sion models as it entails a nonparametric estimation of ATE, ATET, and ATENT

and does not require to specify a specific parametric relation between potential

outcomes and confounding variables. Moreover, in contrast to the CFR approach, a

wide set of different Matching procedures can be employed, thus enabling one to

compare various estimators and provide robustness to results. Another characteris-

tic of the Matching approach is that it reduces the number of untreated to a

subsample (the so-called selected controls) having structural characteristics more

homogeneous to the those of treated units; furthermore, Matching usually considers

treated and untreated units to be compared only in the so-called common support,
dropping out all those controls whose confounders values are either higher or

smaller than that of the treated units. Many scholars interpret these characteristics

of Matching as more robust compared to usual parametric regression, although the

statistical justification for this conclusion is questionable (Zhao 2004).

The idea behind Matching is simple, intuitive, and attractive, and this can partly

explain its popularity. It can be summarized in the following statement: “recovering
the unobservable potential outcome of one unit using the observable outcome of
similar units in the opposite status.” To better understand this statement, take the

case of the estimation of ATET. We know from Chap. 1 that, for a single treated

unit i, the treatment effect and the ATET are, respectively, equal to:

TEi ¼ Y1i � Y0i

ATET ¼ E Y1i

��Di ¼ 1
� �� E Y0i

��Di ¼ 1
� � ð2:53Þ

where we only observe Y1i, while Y0i is unknown and TEi not computable. Suppose,

however, that Y0i is perfectly estimated by using some average of the outcome of
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(matched) untreated individuals and call this quantity Ŷ0i. Then, we will simply

have that:

Y0i ��������������������!imputed through a distance function f bY 0i

The choice of the function f corresponds to a specific distance metric between treated
and untreated units. Measuring such a distance can be done in two ways: either

(1) based on the vector of covariates x, so that one can calculate, in a meaningful

manner, how far xi is from xj, where unit j is assumed to be in the opposite treatment

group, i.e., Dj¼ 1�Di (covariates Matching or C Matching) (2) or on the basis of

only one single index-variable, the propensity-score p(xi), synthesizing all covariates
in a one-dimension variable (propensity-score Matching or PS Matching).

In either of the cases, we can use, however, different approaches: for example,

the one-to-one nearest-neighbor method selects only one unit j from the set of

untreated units whose xj or p(xj) is the “closest” value to xi or p(xi) according to a

prespecified metric. The kernel methods, in contrast, use all units in the untreated

set and downweights untreated observations that are more distant.

Irrespective of the specific method chosen, the estimation of the ATEi(xi) would

be simply given by:

dATE i xið Þ ¼ Y1i � bY 0i ð2:54Þ

and an estimation of ATE, ATET, and ATENT obtained by averaging properly

previous quantities over i:

dATE ¼ 1

N

XN
i¼1

bY 1i � bY 0i

	 

ð2:55Þ

cATET ¼ 1

N1

X
i2 D¼1f g

Y1i � bY 0i

	 

¼ 1

N1

XN
i¼1

Di Y1i � bY 0i

	 

ð2:56Þ

dATENT ¼ 1

N0

X
i2 D¼0f g

bY 1i � Y0i

	 

¼ 1

N0

XN
i¼1

1� Dið Þ bY 1i � Y0i

	 

ð2:57Þ

where {D¼ 1} identifies the set of treated units and {D¼ 0} that of untreated units.

By looking at previous formulas, it is easy to observe that Matching can be seen

as a special case of the nonparametric Regression-adjustment: ATET, for instance,

can be obtained from (2.6) by setting bm 1 xið Þ ¼ Y1i and bm 0 xið Þ ¼ bY 0i; equivalently,

ATENT can be obtained by substituting bm 1 xið Þ ¼ bY 1i and bm 0 xið Þ ¼ Y0i. Thus,

Matching directly uses the observed outcome for treated (ATET) and untreated

(ATENT) instead of an estimation of the conditional predictions as in the

Regression-adjustment. However, before presenting how Matching is implemented

in practice, it is important to highlight the statistical properties of this estimator.

The next section will focus on this important aspect.
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2.3.2 Identification of ATEs Under Matching

In Sect. 1.4.1, we saw that the selection biasmay be decomposed into three terms as

follows:

B1 ¼ BA þ BB þ BC

Where, BA is the bias due to weak overlap; BB is bias due to weak balancing; and
BC is bias due to the presence of unobservable selection.

Under specific assumptions, Matching is suited for eliminating biases BA and BB

but not Bc. In principle, Matching identifies ATEs only under two hypotheses, i.e.,

A.1 Conditional mean independence (CMI), i.e., E(Y1 | x, D)¼E(Y1 | x) and E(Y0 |
x, D)¼E(Y0 | x)

A.2 Overlap: 0< p(x)< 1, where:

p xð Þ ¼ Pr D ¼ 1
��x� � ð2:58Þ

is the propensity-score, defined as the probability to be treated given the condition-

ing variables x (see, Sect. 1.3.3).

More precisely, however, ATEs are only identified under assumptions A.1 and

A.2 if the Matching is exact, i.e., only if it is possible to build a finite number of

cells based on crossing the values taken by the various x (see Sect. 2.3.7). When

this is not possible, as usually happens, when x contains at least one continuous

variable, then we need a third hypothesis in order to identify ATEs:

A.3 Balancing: {(D _|_ x) | Matching}, i.e., after matching, the covariates’ distri-
bution in the treated and control group has to be equal.

It would appear worthwhile to shed further light on the implications of these

three assumptions for the Matching estimator.

2.3.2.1 Implications of Assuming “CMI”

We know that the conditional independence assumption implies, for ATET(x), that:

ATET xð Þ ¼ E Y1

��D ¼ 1, x
� �� E Y0

��D ¼ 1, x
� �

¼ E Y1

��D ¼ 1, x
� �� E Y0

��D ¼ 1, x
� �

þ E Y0

��D ¼ 0, x
� �� E Y0

��D ¼ 0, x
� �� � ð2:59Þ

However, since according to CMI the mean of Y0 given x does not depend on

variation of D, this mean is the same for any value of D, so that:
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E Y0

��D ¼ 1, x
� � ¼ E Y0

��D ¼ 0, x
� � ð2:60Þ

This relation suggests one should estimate (or impute) the unobservable

(or missing) value on the left side of (2.60) using the observable quantity on the

right side. Thus, following (2.59), ATET(x) becomes:

ATET xð Þ ¼ E Y1

��D ¼ 1, x
� �� E Y0

��D ¼ 0, x
� �

¼ E Y
��D ¼ 1, x

� �� E Y
��D ¼ 0, x

� � ð2:61Þ

that is a function of all observable quantities. An estimate of the “unconditional”

ATET is then obtained by averaging (2.61) over the support of x.

Similarly, the condition identifying ATENT is:

E Y1

��D ¼ 0, x
� � ¼ E Y1

��D ¼ 1, x
� � ð2:62Þ

so that the unobservable quantity in the left side of (2.62) becomes equivalent to the

observable quantity on the right side. ATE can be finally obtained as the usual

weighted average of ATET and ATENT.

2.3.2.2 Implications of Assuming “Overlap”

As seen, the overlap assumption states that 0< p(x)< 1. If this assumption does not

hold, there might exist units with specific characteristic x that either always receive

treatment (i.e., p(x)¼ 1) or never receive treatment (i.e., p(x)¼ 0), thus not permit-

ting us to identify ATEs. To better understand why, assume that there is an x* with

p(x*)¼ 1. All units in the sample having exactly x¼ x* are included in the treated

group. No units with x¼ x* are in the untreated group, thus preventing to find a

similar untreated set for units characterized by x¼ x*. In this case then, the ATET

(x*) cannot be recovered and ATET is not identified.

In empirical practice, fortunately, finding cases in which p(x)¼ 1 or p(x)¼ 0 is

unlikely. Thus, in the case of Matching, some imprecision in the capacity of x to

explain all the variability of p(x) solves the identification problem. As a result, the

model used to predict program participation should not be “too” good!

2.3.2.3 Implications of Assuming “Balancing”

As already mentioned, this assumption matters when Matching is not exact, a case

typically occurring when x presents at least one continuous variable. Indeed, in such

a case, finding two observations in the opposite status having the same covariates’
value might be infeasible, and frequencies are expected to be unevenly distributed

over x in a comparison between the treated and untreated set of observations. In

such cases, however, Matching should help to restore some balancing over x,
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although a perfect balancing is in general impossible to achieve empirically. In

order for Matching to be a reliable procedure for estimating the actual ATEs, we

have to rely on a “plausible degree” of balancing over the observables; this should

be possible to test using some suitable test statistics after Matching is completed.

Therefore, at least in principle, only when Matching passes the “balancing test,” can

we conclude that the unbalancing bias (BB) has been eliminated. In all other cases,

conclusions to be drawn with respect to the actual value of the treatment effect

estimated by Matching remain questionable.

Observe that the overlap and the balancing one are two distinct, although

partially linked, assumptions. Indeed, in usual datasets, we might find a good degree

of covariates’ overlap, sometimes accompanied with some strong imbalance.

Typically, overlap should help balancing, but the two concepts remain distinct.

Figure 2.5 shows an example of a good overlap over the covariate x in the presence
of relevant imbalance.

2.3.3 Large Sample Properties of Matching Estimator(s)

As said, Matching can be seen as a particular nonparametric RA estimator.

Nevertheless, the procedure used by Matching to recover the unobserved out-

comes—based on some type of comparison between treated and untreated matched

units—generally involves algorithms characterized by high non-smoothness. This

renders the identification of Matching’s asymptotic properties rather problematic.

In the literature so far, large sample properties have been clearly singled out only

for some types of Matching methods, while for other types, no clear understanding

of the behavior of this method when N becomes sufficiently large has been achieved

(this is the case, for instance, of stratification Matching).

0 1

untreated

treated

x

Fig. 2.5 Distribution of the

covariate x by treatment

status. Case in which a good

overlap combines with

some imbalance. By

assumption, x varies within
[0; 1]
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Generally speaking, Matching might be neither N�1/2 consistent nor efficient,

thus questioning sometimes the extensive use of this approach in empirical studies.

There are two types of Matching, however, for which asymptotic results are known:

kernel Matching (Heckman et al. 1998) and nearest-neighbor Matching (Abadie

and Imbens 2006, 2011).

Heckman et al. (1998), hereinafter HIT (1998), provided the following important

results for ATET. Assume that CMI and the overlap assumptions hold, that obser-

vations are i.i.d., and that we know the actual value of m0 xið Þ ¼ bY 0i ¼ Y0i. Under

these assumptions, the Matching estimator of ATET:

cATET ¼ 1

N1

X
i2 D¼1f g

Y1i � Y0ið Þ ¼ 1

N1

X
i2 D¼1f g

Y1i � E Y0

��D ¼ 0, x ¼ xi
� �� � ð2:63Þ

is consistent for ATET, and
ffiffiffiffiffiffi
N1

p cATET � ATET
	 


is asymptotically normally

distributed with zero mean and variance equal to:

Vx ¼ E Var Y1

��D ¼ 1, x
� ���D ¼ 1

� �þ Var E Y1 � Y0

��D ¼ 1, x
� ���D ¼ 1

� � ð2:64Þ

Likewise, if Matching is done using only the known propensity-score (instead of the

entire bundle of x), then:

V p xð Þ ¼ E Var Y1

��D ¼ 1, p xð Þ� ���D ¼ 1
� �

þ Var E Y1 � Y0

��D ¼ 1, p xð Þ� ���D ¼ 1
� � ð2:65Þ

In this case, the two variances do not dominate each other (Theorem 1, p. 270).

In real applications, however, these variances are unknown, as both the condi-

tional expected outcomes and the propensity-score are unknown functions and have

thus to be estimated. HIT (1998) established large sample properties for a specific

class of Matching estimators of ATET, the kernel types, estimating the missing

observation as:

bY 0i ¼
X

j2 D¼0f g
Y jK

xi � x j

a

	 
� X
j2 D¼0f g

K
xi � x j

a

	 

ð2:66Þ

where K(∙) is a convenient kernel function, and a is a prespecified bandwidth

parameter. The authors show that
ffiffiffiffiffiffi
N1

p cATET � ATET
	 


, using (2.66), is in this

case asymptotically biased but normally distributed with the mean as function of

the bias b and asymptotic variance equal to:
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V ¼ 1

Pr x
��D ¼ 1

� �
� varx Ex Y1 � Y1

��x,D ¼ 1
� ���D ¼ 1

� �þ Ex

�
varx Y1

��x,D ¼ 1
� �� �

þ 1

Pr x
��D ¼ 1

� �2 V1 þ 2 � cov1 þ θV0½ � ð2:67Þ

Therefore, HIT (1998) show that kernel Matching is in general not N�1/2 consistent

and only under particular sequence of the smoothing parameter N�1/2 consistency

can be guaranteed. To better understand previous formulas and how asymptotic

properties are drawn, HIT (1998) prove that the kernel Matching is a special case of

an asymptotically linear estimator that for a generic parameter β takes the following
form:

bβ N � β ¼ N�1
XN
i¼1

ψ zið Þ þ bb zið Þ þ br zið Þ ð2:68Þ

where zi is the random sample of observations, ψ(∙) a function of zi depending on

the type of estimator used (parametric or nonparametric type), bb zið Þ a stochastic

bias that is not N�1/2 consistent, and br zið Þ is a N�1/2 consistent residual term.2

This explains why the kernel approach leads to a biased estimation of ATET

when N is large, but finite. Observe that in the last term of the previous variance, V1

and V0 represent respectively the asymptotic conditional variance ofψ1 �ð Þ andψ0 �ð Þ
as two distinct functions estimated from observations with D¼ 1 and D¼ 0 have to

be set; cov1 is a limit probability of the product of the conditional expectation of

ψ1 �ð Þ and the expectation of Y1 � bβ N

	 

, and θ is the finite limit of N1/N0. This last

definition means that as soon as N0 increases in comparison with N1, then the

variance reduces accordingly. In particular, HIT (1998) illustrate that if only

untreated observations are used (i.e., ψ1 �ð Þ ¼ 0) for estimating the kernel function,

then V1 þ 2 � cov1 ¼ 0. As a consequence, the last variance term becomes θV0

implying that if one assumes θ goes to zero with N going to infinity, the kernel

becomes N�1/2 consistent as the variance becomes approximately equal to the case

of HIT (1998) Theorem 1 (see Theorem 2).

As for the comparison between the asymptotic variances, whenMatching is done

over all x or over p(x), the authors suggest that if one restricts the comparison to

kernel estimators that are N�1/2 consistent, no variance dominates each other even

in this case. Thus, Matching on covariates or Matching on propensity-score does

not provide ground for efficiency gain, even when the propensity-score is estimated

nonparametrically (pp. 269–271). Nevertheless, the use of the propensity-score—

by reducing dimensionality—can sensibly shrink the amount of calculation needed

2An estimator bN of the population parameter β is said to be N�1/2 consistent if
ffiffiffiffi
N

p
bN � βð Þ !p 0.
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when conditioning on all covariates, so that the use of propensity-score is justified

on the basis of computational burden but not in terms of efficiency.

Another fundamental contribution to the large sample properties of Matching

estimators is that provided by Abadie and Imbens (2006), focusing on the nearest-

neighbor Matching. The authors consider nearest-neighbor with replacement and a

fixed number of matched units M and show that although this Matching estimation

of ATE and ATET is consistent, it is generally not N�1/2 consistent being the order

of convergence of magnitude N�1/k, where k is the number of covariates used to

match units. More in details, and taking for simplicity the case of ATE, they show

that:

dATE � ATE ¼ AM þ EM þ BM ð2:69Þ

where AM ¼ Ex E Y1

��x� �� E Y0

��x� �� �� ATE
� �

, EM is a residual term and BM, a

bias term. Indeed, while the first two terms on the right side of previous equation are

N�1/2 consistent and asymptotically normal with zero mean and finite variance, the

bias term BM is only N�1/k consistent. It means that, as soon as N increases and

k� 3, BM goes to zero in probability slower than AM and EM, thus dominating

asymptotically these two last terms. Of course, when Matching is exact, the bias

disappears and the nearest-neighbor procedure will be fully N�1/2 consistent and

asymptotically normal. In real applications, however, exact matching is rare as

covariates usually take the form of continuous variables. However, when k¼ 1,

then the bias has an order of convergence equal to N�1 that is faster than N�1/2; in

this case, as N becomes larger, the bias vanishes and the nearest-neighbor estimator

is N�1/2 consistent and asymptotically normal. In the more general case of k higher
than one, Abadie and Imbens (2006) show, however, that:

VA þ VEð Þ�1=2
ffiffiffiffi
N

p dATE � ATE� BM

	 

!d N 0; 1ð Þ ð2:70Þ

where VA and VE are the variance of AM and EM, respectively, so that if a consistent

estimation of the bias term is available, then one can use the previous result for

doing usual inference.

Another important aspect related to the nearest-neighbor Matching is regarding

its asymptotic efficiency properties. The authors show that when k� 2, the nearest-

neighbor estimator is not efficient as it does not reach the Hahn (1998) lower bound.

In particular, they show that:

lim
N!1

N � VdATE � Veff

Veff
<

1

2M
ð2:71Þ

where the first term is the asymptotic efficiency loss of the nearest-neighbor

Matching (with Veff the asymptotic variance lower bound) and M the fixed number
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of matches. It is clear that, as soon as M becomes sufficiently large when N goes to

infinity, the efficiency loss becomes negligible.

As for the estimation of ATET, similar conclusions can be reached; in this case,

however, it can be proved that the bias can be approximately neglected if the

number of potential controls increases faster than the number of treated units as

N goes to infinity.

Finally, Abadie and Imbens (2011) propose a bias-corrected estimation making

Matching estimators N�1/2 consistent and asymptotically normal and provide an

estimation of the correct asymptotic variance. This approach is presented through a

Stata implementation in Sect. 2.7.1.

2.3.4 Common Support

We saw that the fundamental identification condition for Matching is (2.60):

E Y0

��D ¼ 1, x
� � ¼ E Y0

��D ¼ 0, x
� �

thus—to make it meaningful—we require that 0< p(x)< 1. HIT (1998), neverthe-

less, illustrate that a weaker assumption is needed in order to identify Matching.

They call it common support and it states that Matching can be equally consistently

estimated not only over the all support of x but also on the support of x common to

both participant and comparison groups. We may define it as S:

S ¼ Supp x
��w ¼ 1

� � \ Supp x
��w ¼ 0

� � ð2:72Þ

When the set in (2.72) is not empty, we may estimate Matching using a reduced

sample by applying a trimming rule, which is a rule to reduce the number of units

employed in estimation to the common support S. In general, the quality of the

matches may be improved by imposing the common support restriction. Note,
however, that in this way, high-quality matches may be lost at the boundaries of

the common support and the sample may be considerably reduced. Imposing the

common support restriction is not necessarily better, therefore, than not considering

it at all (Lechner 2008).

2.3.5 Exact Matching and the “Dimensionality Problem”

Equations (2.1) and (2.2) suggest a simple strategy for the estimation of ATEs by

Matching when x has a finite support. This procedure exploits the idea that—within

cells identified by x—the condition for random assignment is restored so that
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intracell DIM is a consistent estimator. More specifically, the procedure suggests

that:

• The data are stratified into cells defined by each particular value of x.

• Within each cell (i.e., conditioning on x), one should compute the difference
between the average outcomes of the treated and that of the controls.

• These differences should be averaged with respect to the distribution of x in the

population of treated (for ATET) or untreated (for ATENT) units.

This procedure leads to the following estimators of ATEs:

cATET ¼ Ex

�
E
�
Y1i � bY 0i

��D ¼ 1, x
� ¼

X
x

cTEx � p xi ¼ x
��Di ¼ 1

� �
dATENT ¼ Ex

�
E
�bY 1i � Y0i

��D ¼ 0, x
� ¼

X
x

cTEx � p xi ¼ x
��Di ¼ 0

� �
dATE ¼ ED

�
Ex

�
E
�bY 1i � bY 0i

��D, x��
¼ p D ¼ 1ð Þ � cATET þ p D ¼ 0ð Þ �dATENT ð2:73Þ

In other words, they are a weighted average of the treatment effects with weights

equal to the probability of x within the set of treated or untreated units.

The ATEs estimators in (2.73) is called exact Matching, and it is feasible only

when x has a very small dimensionality (taking, for instance, just three values). But

if the sample is small, the set of covariates x is large and many of them take discrete

multivalues or, even worse, they are continuous variables, then exact Matching is

unfeasible. For example, if x is made of K binary variables, then the number of cells

becomes 2K, and this number increases further if some variables take more than two

values.

If the number of cells (or “blocks”) is very large with respect to the size of the

sample, it is possible that some cells contain only treated or only control subjects.

Thus, the calculus of ATEs might become unfeasible and ATEs not identified. If

variables are all continuous, as happens in many socioeconomic applications, it

would be even impossible to build cells.

To avoid this drawback, known as the dimensionality problem, Rosenbaum and

Rubin (1983) have suggested that units are matched according to the propensity-

score (defined, as said above, as the “probability of being treated conditional on x”).

Using the propensity-score permits to reduce the multidimensionality to a single
scalar dimension, p(x).

In a parametric context, the estimation of the propensity-score is usually

obtained through a probit (or logit) regression of D on the variables contained in

x. Once the scores are obtained, one may match treated and control units with the

same propensity-score and then averaging on the differences so obtained. The

problem is that although the propensity-score is a singleton index, it is still a
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“continuous” variable, and this prevents us from being able to perform an exact

Matching.

Despite this, Dehejia and Wahba (1999) have provided a procedure estimating

ATEs using the propensity-score, which is capable of dealing with its continuous

nature. As we will see in Sect. 2.3.7, this procedure is based on the idea of building

intervals of the propensity-score so to transform it into a variable with finite

support. Before presenting the Dehejia and Wahba (1999) procedure, it is worth

to briefly discuss some fundamental properties of the propensity-score, which

justify its popularity and extensive use in many program evaluation applications.

2.3.6 The Properties of the Propensity-Score

According to the definition of Rosenbaum and Rubin (1983, 1984), the propensity-

score is the conditional probability of receiving the treatment, given the
confounding variables x. Interestingly, since D is binary, the following equalities

apply:

p xð Þ ¼ Pr D ¼ 1jxð Þ ¼ E Djxð Þ ð2:74Þ

that is, the propensity-score is the expectation of the treatment variable, conditional

on x. The propensity-score has two important properties which account for its

appeal: the balancing and unconfoundedness properties.

P1. Balancing of confounding variables, given the propensity-score:
If p(x) is the propensity-score, then:

D⊥xj p xð Þ ð2:75Þ

which implies that, conditionally on p(x), the treatment and the observables are

independent. To prove relation (2.75), we can first observe that:

Pr D ¼ 1jx, p xð Þ½ � ¼ E Djx, p xð Þ½ � ¼ E Djx½ � ¼ Pr D ¼ 1jx½ � ¼ p xð Þ ð2:76Þ

Similarly, using the law of iterated expectations (LIE):

Pr D ¼ 1j p xð Þ½ � ¼ E Dj p xð Þ½ � ¼ E p xð Þ E Djx, p xð Þ½ ��� p xð Þ� �
¼ E p xð Þ p xð Þj p xð Þ½ � ¼ p xð Þ ð2:77Þ

where the third equality uses the fact that p(x) is a function of x, thus setting x

implies setting p(x). By comparing (2.76) and (2.77), we obtain that:
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Pr D ¼ 1jx, p xð Þ½ � ¼ Pr D ¼ 1j p xð Þ½ � ¼ p xð Þ ð2:78Þ

which entails that conditionally on p(x), the treatment D and the observables x are

independent.

P2. Unconfoundedness, given the propensity-score
Suppose that the conditional independence assumption (CIA) holds, in other

words:

ðY1,Y0Þ⊥Djx ð2:79Þ

then assignment to treatment is random, also given the propensity-score, that is:

ðY1, Y0Þ⊥Dj p xð Þ ð2:80Þ

Property (2.80) is not tricky to prove. In fact, using LIE again, we initially have that:

Pr D ¼ 1
��Y1,Y0, p xð Þ� � ¼ E D

��Y1,Y0, p xð Þ� �
¼ E E D x, p xð Þ, Y1, Y0

��� ��Y1,Y0, p xð Þ� � ¼ E ED x,Y1,Y0

��� ��Y1, Y0, p xð Þ� ��
¼ E E D

��x� �
Y1,Y0, p xð Þ� ¼ E

�
p xð Þ�� ��Y1,Y0, p xð Þ� � ¼ p xð Þ ð2:81Þ

where the last equality comes from (2.79). From (2.78) we saw that:

Pr D ¼ 1
��x, p xð Þ� � ¼ Pr D ¼ 1

�� p xð Þ� � ¼ p xð Þ

and looking at (2.81) this implies that:

Pr D ¼ 1
��Y1, Y0, p xð Þ� � ¼ Pr D ¼ 1

�� p xð Þ� � ð2:82Þ

which shows that conditionally on p(x) the treatment D and the potential outcomes

(Y1, Y0) are stochastically independent.

Property P2 states that stratifying units according to p(x) produces the same

orthogonal condition between the potential outcomes and the treatment that is

stratifying on x, but with the advantage to rely just on one dimension variable.

Property P1, additionally, states that if the propensity-score is correctly specified,

then we should see that units stratified according to the propensity-score should be

indistinguishable in terms of their x (i.e., they are balanced). Thus, testing empir-

ically whether the balancing property holds is a way for assuring that the correct

propensity-score is being used to stratify units. As said, balancing observations is an

essential ingredient to draw reliable Matching results.
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2.3.7 Quasi-Exact Matching Using the Propensity-Score

Assumption P2 suggests to match treated units and controls directly on the basis of

the (estimated) propensity-score instead of using the larger set of variables in x. As

previously mentioned, even if the “dimensionality curse” is solved as a k-dimension

problem that reduces to just one dimension, the problem related to the continuous

form of the propensity-score still remains. In that, exact Matching with a continuous

variable is impossible, as none of the units have exactly the same value of such a

variable. Nevertheless, a discretization procedure of the propensity-score may still

be implemented to approximate the Exact-Matching approach.

Dehejia and Wahba (1999), hereinafter DW (1999), proposed a quasi-exact-

Matching procedure for estimating ATEs using propensity-score’s discretization.
The authors’ procedure exploits properties P1 and P2 to obtain reliable Matching

estimation of ATEs. A Stata implementation of this procedure has been provided by

Becker and Ichino (2002).

The idea underlying this approach is rather straightforward; in the first instance,

a stratification of the units is generated according to discrete intervals of the

propensity-score; secondly, DIMs within each interval are calculated; and thirdly,

ATEs by averaging over these DIMs are computed. This procedure is very close to

the exact matching, except that here strata have to be found empirically, whereas in

the exact matching, they are prior knowledge.

The problem with this approach, however, is how to choose the appropriate

number of strata to be considered in the averaging of the DIMs over strata.

Fortunately, the balancing property (P1) of the propensity-score suggests a criterion

to set the right number of strata, based on the idea that, when propensity-score is

used to stratifying units, in each stratum a quasi-randomization should be produced.

In this case, the values assumed by the covariates x for treated and untreated in each

stratum should be approximately equal. Thus, the optimal number of strata (also

called “blocks”) are those satisfying the balancing property as defined above.

Following DW (1999) and Becker and Ichino (2002), the algorithm to produce

the appropriate number of strata entails the following steps:

1. Estimating the propensity-score:

• First, start with a parsimonious specification in order to estimate the

propensity-score for each individual, using the following function:

p xð Þ ¼ Pr D ¼ 1
��x� � ¼ G f xð Þ½ � ð2:83Þ

where G[∙] can be probit, logit, or linear, and f(x) is a function of covariates

with linear and higher order terms.

• Second, order the units according to the estimated propensity-score (from the

lowest to the highest value).
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2. Identify the number of strata by satisfying the balancing property:

• Third, stratify all observations into blocks such that in each block, the

estimated propensity-scores for the treated and the controls are not statisti-
cally different:

– Start with five blocks of equal score range {0–0.2, . . ., 0.8–1}
– Test whether the means of the scores for the treated and the controls are

statistically different in each block (balancing of the propensity-score)

– If they are, increase the number of blocks and test again

– If not, proceed to the next step

• Fourth, test whether the balancing property holds in all strata for all

covariates:

– For each covariate, test whether the means for the treated and for the

controls are statistically different in all strata (balancing for covariates)

– If one covariate is not balanced in one block, split the block and test again

within each finer block

– If one covariate is not balanced in all blocks, modify the logit/probit/linear

estimation of the propensity-score adding more interaction and higher

order terms and then test the balancing property again.

3. Estimating ATEs:

• Fifth, once the balancing property is satisfied and, thus, the optimal number of

strata is found, then an (weighted) average of the DIM estimators calculated

in the final blocks provides an estimation of ATEs.

It is clear that the previous procedure approximates the exact matching by a

discretization of the propensity-score. Nonetheless, the large sample properties of

such an estimator, called stratification Matching, have yet to be proved. Stratifica-

tion Matching is, however, only one of many types of Matching estimators that can

be implemented. Later on in this chapter, we will discuss other types of Matching

that do not require a stratification procedure to be reliably used (although they need

to satisfy some balancing test too). In fact, in standard applications, the quasi-exact-

Matching procedure proposed by DW (1999) may be rather demanding, as it may

be difficult to assure balancing for all covariates within all strata.

Other Matching methods provide a less restrictive and, thus, easier way to obtain

reliable estimates of ATEs, without requiring to build blocks. A typical procedure

for estimating ATEs by these approaches takes the following form (see also

Fig. 2.6):

• First, choose a specification of the logit/probit and calculate the propensity-score

for each unit (both treated and untreated).

• Second, identify a specific type of Matching using some distance metric between

treated and untreated units and then match all units with the other units of

opposite treatment.
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• Third, test the balancing property by comparing, for each x in x, the mean of the

treated with the mean of the controls selected by the specific Matching type used.

• Fourth, if the balancing is satisfied, then calculate ATEs with the Matching

formula specified in step 2, otherwise modify the probit/logit specification until

the balancing is satisfied.

In this case, one should apply Matching estimation just when for each x and for

p(x), no difference emerges in terms of the mean of treated and matched untreated

units. The advantage of this approach is that it does not require balancing for each

x in x and for p(x) in each stratum since, comparatively, it is “as if” only one single

block was built. The limits reside in the use of a less sophisticated test of the

balancing property.

Of course, in practical situations, one generally modifies the propensity-score

specification by adding other variables and/or interactions, or—in the worst case—

by dropping a given x if unbalancing persists after several modifications, only if x is
not relevant to explain the outcome Y. Of course, evaluators must ponder and clarify

any choice made in order to attain balancing, as reaching balancing—at least at an

acceptable level of statistical significance—is neither easy nor sure. That is, how-

ever, probably a limit of Matching compared, for instance, to regression approaches

that do not need to comply with this property (although they assume a parametric

form of the imbalance).

It is clear that perfect balancing is impossible due to the random nature of the

data and even more importantly because the analyst rarely has access to the entire

set of confounders explaining the selection-into-program. Nevertheless, some diag-

nostic test to evaluate the quality of the Matching provided is useful.

Step 1
Define a set of observables x and a specification f(x) for the
model (possibly with interactions)

Step 3 
Test the Balancing Property on x and p(x)

Step 4
Estimate the ATET by Matching formulas 

yes

Step 2
Estimate p(x), the propensity score, by a probit (or logit)
regression of w on x for the all sample (both treated and
untreated units)

no

Fig. 2.6 Flow diagram of a Matching protocol
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As a good place to start, one could assume that a good Matching on propensity-

score occurs when treated and selected untreated units are similar in terms of x and

a fortiori in term of p(x). Thus, if treated and control units are largely different in

terms of observables, the reached Matching is not sufficiently robust and it might be

questionable. Comparison of the estimated propensity-scores across treated and

controls therefore provides a useful diagnostic tool to evaluate how similar treated

subjects and controls are and how reliable the estimation strategy is. More pre-

cisely, it would be useful to:

• Calculate the frequency of matched untreated cases having a propensity-score

lower than the minimum or higher than the maximum of the propensity-scores of

the treated units. Preferably, one would hope that the range of variation of

propensity-scores is the same in both groups.

• Draw histograms and kernel densities of the estimated propensity-scores for the

treated and the controls, before and after Matching when possible. In case of

stratification Matching, one should use histogram bins corresponding to the

strata constructed for the estimation of propensity-scores. One hopes to get an

equal frequency of treated and untreated units in each bin.

2.3.8 Methods for Propensity-Score Matching

Previous considerations have led to prefer propensity-score Matching over

covariates Matching for at least three reasons: (1) conditioning on p(x) rather

than x does not undermine consistency and does not increase the variance (preci-

sion) of estimation; (2) working with p(x) is easier than working with x, as p(x) is a
single variable indexing the overall x. It is computationally preferable to work on

only one dimension rather than on k dimensions; (3) knowing p(x) may be inter-

esting per se, having a meaningful theoretical interpretation as it derives from the

behavioral selection rule adopted by the individuals within the program/experi-

ment. Thus, in the remainder of this chapter, we will focus mainly on the

propensity-score Matching approach.

According to the previous procedures, once the balancing property is statistically

satisfied to a certain appreciable extent, results from Matching can be reliably

accepted. In the literature, different types of Matching methods have been pro-

posed: one-to-one nearest-neighbor, multiple-nearest-neighbors, radius (with vari-

ous calipers), kernel, local linear, ridge, and stratification are among the most used

(Busso et al. 2009; Caliendo and Kopeinig 2008; Dehejia and Wahba 2002;

Heckman et al. 1998).

What is interesting is that all these methods can be retrieved as specific case of a

general Matching formula, as showed by Smith and Todd (2005). Indeed, in the

case of Matching, the imputation of the missing counterfactual follows this rule:
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bY 0i ¼
Yi if Di ¼ 0X
j2C ið Þ

h i; jð ÞY j
if Di ¼ 1

8<:
and

bY 1i ¼
X
j2C ið Þ

h i; jð ÞY j ifDi ¼ 0

Yi ifDi ¼ 1

8<:
where the unobserved outcome is estimated as an average of the observed outcomes

for the observations j chosen as matches for i in the opposite treatment group of i.
Given this, we have:

cATET ¼ 1

N1

X
i2 D¼1f g

Yi � bY 0i

	 

¼ 1

N1

X
i2 D¼1f g

Yi �
X
j2C ið Þ

h i; jð ÞY j

0@ 1A ð2:84Þ

dATENT ¼ 1

N0

X
i2 D¼0f g

bY 1i � Yi

	 

¼ 1

N0

X
i2 D¼0f g

X
j2C ið Þ

h i; jð ÞY j � Yi

0@ 1A ð2:85Þ

dATE ¼ 1

N

X
i

Di

 !
�cATET þ 1

N

X
i

1� Dið Þ
 !

�dATENT ð2:86Þ

where C(i), called the “neighborhood” of i, is the set of indices j for the units

matched with unit i, that is: C(i)¼ {j: matched with i}; 0< h(i, j)� 1 are weights to

apply to the single jmatched with i, and they generally increase as soon as j is closer
to i. Observe that i may be treated or untreated.

Different propensity-score Matching methods can be obtained by specifying

different forms of the weights h(i, j) and of the set C(i) as showed in Table 2.3

(Busso et al. 2009).3 We briefly review these methods.

Nearest-neighbor Matching The classical nearest-neighbor Matching suggests to

match each treated unit with the closest untreated unit in the dataset, where

“closeness” is defined according to some distance metric over p(x) (or x in the

3Notation in Table 2.3 means as follows: bΔ i j ¼ p xið Þ � p x j

� �
; Ki j ¼ K bΔ i j=h

	 

where K(∙) is a

kernel function and h a bandwidth; Ld
i ¼

X
j2CKi j

bΔ d
i j for d¼ 1,2; eΔi j ¼ p xið Þ � p x j

� �
, where

p x j

� � ¼X
j2C p x j

� �
Ki j

.X
j2CKi j; rL is an adjustment factor suggested by Fan (1992), rR is an

adjustment factor suggested by Seifert and Gasser (2000), B is an interval that gives the bth stratum
for the stratification estimator, and B is the number of blocks used. For a Gaussian kernel, rL¼ 0

and for an Epanechnikov kernel, rL¼ 1/N2. For a Gaussian kernel, rR¼ 0.35 and for an

Epanechnikov kernel, rR¼ 0.31.
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case of Matching on covariates). When pair-wise matching is allowed, we have the

so-called one-to-one nearest-neighbor Matching. Generally, however, each unit in a

given treatment status is matched with the closest M neighbors in the opposite

status, and an average of them is thus produced as counterfactual. Observe that

matching may be done with and without replacement. When replacement is

allowed, then the same unit can be used for more than one unit in the opposite

status; on the contrary, when matching is done without replacement, the same unit

can be used only once per each unit in the opposite status. As we will see, adopting

replacement can have an impact on the variance of the Matching estimator.

The procedure for implementing the one-to-one Matching with replacement is

rather simple. Taking the case of ATET as example, we have:

• First, for each treated unit i find the nearest control unit j using the Mahalanobis/

Euclidean distance:

di j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x j � xi
� �0

Ω�1 x j � xi
� �q

for CovariatesMatching

di j ¼
���� p x j

� �� p xið Þ���� forPropensity scoreMatching

(

where Ω is the covariance Matrix of the covariates x.

• Second, if the nearest control unit has already been used, use it again

(replacement).

• Third, drop the unmatched controlled units.

• Fourth, calculate ATEs applying formulas (2.84)–(2.86).

Table 2.3 Different Matching methods for estimating ATEs according to the specification of C(i)
and h(i, j)

Matching

method

C(i) h(i, j)

One-nearest-

neighbor
Singleton j : min j pi � p j

�� ��� �
1

M-nearest-

neighbors
FirstM j : min j pi � p j

�� ��� �
1
M

Radius j : pi � p j

�� �� < r
� �

1
NC ið Þ

Kernel All control units (C) Ki jX
j2CKi j

Local-linear All control units (C) Ki jL
2
i �Ki j

bΔ i jL
1
iX

j2C Ki jL
2
i � Ki j

bΔ i jL
1
i þ rL

	 

Ridge All control units (C) Ki jX

j2CKi j

þ eΔ i jX
j2C Ki j

eΔ2
i j þ rRh

��eΔi j

��	 

Stratification All control units (C)

XB

b¼1
1 p xið Þ 2 I bð Þ½ ��1 p x jð Þ2I bð Þ½ �XB

b¼1
1 p x j

� � 2 I bð Þ� �
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In the case of ATET estimation, this algorithm delivers a set of N1 pairs of

treated and control units in which control units may appear more than once. Of

course, if for each treated i we considerM nearest-neighbors, then the mean of their

outcomes is considered as the counterfactual outcome of i.

Radius(or caliper) Matching A limit of the nearest-neighbor Matching is that it

does not consider the “level” of the distance between matches. This means that it

could match pairs even when they are very different (as pi and pj are far). To avoid

this shortcoming, radius Matching is sometimes preferred (Cochran and Rubin

1973). It can be seen as a variant of the nearest-neighbor, trying to avoid the

occurrence of “bad” matches by imposing a threshold on the maximum distance

permitted between pi and pj. It means that two units are matched only when their

distance in absolute terms is lower than a tolerance limit, identified by a

prespecified caliper “r” as illustrated in Table 2.3. Those treated units with no

matches within the caliper are eliminated. Thus, radius Matching naturally imposes

a common support restriction. Of course, defining a priori which is the correct

caliper to use can be sometimes difficult. There exists a tension between a larger

caliper and a higher precision: using a larger caliper increases the sample size but

reduces the extent of similarity among units; using a smaller caliper increases the

similarity but reduces the sample size. Thus, the choice of the correct caliper should

take into account this trade-off. The steps for implementing radius Matching with

replacement to calculate ATEs are as follows:

• First, for each treated unit i identify all the control units whose x differs by less

than a given tolerance r (the caliper) chosen by the researcher.

• Second, allow for replacement of control units.

• Third, when a treated unit has no control closer than r, take the nearest control or
delete it.

• Fourth, estimate ATEs applying formulas (2.84)–(2.86).

Observe that if in the third step, the unmatched unit is deleted, then the algorithm

delivers a set of N1(r)�N1 treated units and NC(i) untreated units, some of which

are used more than once. On the contrary, when this unit is matched with its nearest

control instead of being eliminated, then the algorithm delivers a set of N1(r)¼N1

treated units.

According to (2.84)–(2.86), the ATEs formulas for both nearest-neighbor and

radius Matching estimators are easy to be calculated:
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1� Dið Þ
 !

�dATENT
where hg j ¼

X
i2 D¼gf ghi j, g¼ 1,0 and h(i, j)¼ 1/NC(i) if j 2 C ið Þ and hij¼ 0

otherwise.

Kernel and local linear Matching The kernel Matching estimator can be

interpreted as a particular version of the radius Matching in which every treated

unit is matched with a weighted average of all control units with weights that are

inversely proportional to the distance between the treated and the control units.

Formally, the kernel Matching estimator for ATET (for ATE and ATENT formulas

can be similarly derived) is given by:

cATET ¼ 1

N1

X
i2 D¼1f g

Y1i �
X

j2 D¼0f g

K p j � pi=h
� �X

k2 D¼0f g
K p j � pi=h
� �

0BB@
1CCAY0 j

0BB@
1CCA ð2:88Þ

In (2.88), K(∙) is a kernel function (Gaussian or Epanechnikov, for instance) and
h the bandwidth parameter, which has the same role of the caliper in radius

Matching.

Local linear Matching is a variant of the kernel Matching, where a linear

component in the weights is introduced. As showed by Fan (1992), Local linear

Matching can have some advantages compared with standard kernel estimation

methods including, for instance, a faster rate of convergence close to boundary

points and greater robustness to different data design densities.

Stratification Matching As seen above, this method exploits directly the

propensity-score property P2 as stated in (2.45), i.e., independence conditional to
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the propensity-score. If this assumption holds, then it suggests that within cells

(or blocks), identified by splitting the sample according to the values assumed by x,

the random assignment is restored. Thus, by construction, stratification Matching

exploits the fact that in each block, defined by a given splitting procedure, the

covariates are balanced and the assignment to treatment can be assumed as random

within each block. Using the propensity-score, hence, and letting b index the

B blocks defined over intervals of the propensity-score, the stratification Matching

assumes for ATEs the following formulas:

dATE ¼
XB
b¼1

dATEb � Nb

N

 �

cATET ¼
XB
b¼1

dATEb �

X
i2I bð Þ

DiX
i

Di

2664
3775 ð2:89Þ

dATENT ¼
XB
b¼1

dATEb �

X
i2I bð Þ

1� Dið ÞX
i

1� Dið Þ

2664
3775

where dATE b ¼ 1=Nb
1

� �X
i2I bð Þyi � 1=Nb

0

� �X
j2I bð Þy j, I(b) is the set of units

present in block b, Nb
1 is the number of treated units in block b, Nb

0 is the number

of control units in block b, and Nb ¼ Nb
0 þ Nb

1 . The number of blocks B are those

obtained when the balancing property is satisfied according to the procedure

described in Sect. 2.3.7.

2.3.9 Inference for Matching Methods

As suggested in previous sections, large sample properties for previous matching

methods show—generally speaking—that Matching(s) generally have no really

appealing asymptotic properties. We saw, for example, that the nearest-neighbor

Matching on k covariates is not in general N�1/2 consistent and its asymptotic

Normal distribution contains a nonzero bias when k� 3.

However, when k¼ 1, namely when matching is done over just one variable, the

bias has an order of convergence equal to N�1 that is faster than N�1/2; in this case,

as N becomes larger, the bias vanishes and the nearest-neighbor Matching estimator

is N�1/2 consistent and asymptotically normal (although it is not fully efficient).

Thus, if the nearest neighbor is used by calculating only the propensity-score,

clearly equivalent to the case in which k¼ 1, we could rely on its “well-known”

asymptotic properties. The problem is that the propensity-score is a “generated

variable,” and this introduces an additional complication into the model, especially
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when the parametric hypothesis behind the probit or logit specification can be

questionable.

However, a recent paper by Abadie and Imbens (2012) derives the asymptotic

distribution of the nearest-neighbor Matching when the propensity-score is esti-

mated. Abadie and Imbens (2006, 2012) show that for Matching with replacement,

using the “true” propensity-score as the only matching variable, we have that:ffiffiffiffi
N

p dATE � ATE
	 


!d N 0; σ2
� � ð2:90Þ

where σ2 takes on the following form:

σ2 ¼ E

"	
m
	
1, pðxÞ



� m

	
0, pðxÞ



� ATE


2#

þE σ2
	
1, pðxÞ


 1

pðxÞ þ
1

2M

1

pðxÞ �
	
pðxÞ


� �� � �

þE σ2
	
0, pðxÞ


 1

1� pðxÞ þ
1

2M

1

1� pðxÞ �
	
1� pðxÞ


� �� � �
ð2:91Þ

with σ2(D, p(x))¼Var(Y | D¼ g, p(x)¼ p), g¼ 1,0. Suppose we are now interested

in estimating p(x) using a parametric model (logit or probit) F(xθ), and let θML be

the maximum likelihood estimation of this model. Then, it can be proved that:ffiffiffiffi
N

p dATE � ATE
	 


!d N 0, σ2 � c
0
I�1
θML

c
	 


ð2:92Þ

where IθML
is the Fisher information matrix, c a vector depending on the joint

distribution of the outcome, the treatment, and the covariates. Since IθML
is positive

semi-definite, nearest-neighbor Matching on the estimated propensity-score has, in

large samples, a smaller asymptotic variance than matching on the true propensity-

score. As for ATET, a similar formula appears; although in this case, it can be

shown that the variance adjustment can be either positive or negative, so that no

dominance emerges between knowing and estimating the propensity-score.

In practical applications, however, one could use the procedure implemented by

Abadie et al. (2004) (from here on ADHI (2004)). This approach is a Stata

implementation of the nearest-neighbor Matching as developed by Abadie and

Imbens (2006) reviewed above, thus it is suitable for nearest-neighbor on

covariates, although one could also use it for nearest-neighbor on the propensity-

score, even if it does not consider adjustment for estimating the propensity-score.

This approach might be useful as it provides the corrected standard errors compared

to other implementations of the nearest-neighbor Matching (see later on).

The ADHI (2004) approach, starts by considering the set CM(i) defined as the

“set of indices” for the units matched with unit i that are at least as close as theM-th

match:
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CM ið Þ � j ¼ 1, . . . ,N : D j ¼ 1� Di, x j � xi
�� �� � dM ið Þ� �

where dM(i) is the distance between the covariates of the unit i, i.e. xi, and the

covariates of theM-th nearest match of i in the opposite treatment status. Then, they

define the following quantity4:

KM ið Þ ¼
XN
j¼1

1 i 2 CM jð Þf g � 1

#CM jð Þ

K
0
M ið Þ ¼

XN
j¼1

1 i 2 CM jð Þf g � 1
#CM jð Þ
n o2

with #CM(i) indicating the number of elements in CM(i), as the number of times i is
used as a match for all observations j of the opposite treatment group, weighted by

the total number of matches for observation j. It is quite clear that potential

outcomes are estimated as follows:

bY 0i ¼
Yi ifDi ¼ 0

1

#CM ið Þ
X

j2CM ið Þ
Y j ifDi ¼ 1

8<:
and

bY 1i ¼
1

#CM ið Þ
X

j2CM ið Þ
Y j ifDi ¼ 0

Yi ifDi ¼ 1

8<:
where the unobserved outcome is estimated as an average of the observed outcomes

for the observations j chosen as matches for i in the opposite treatment group. The

authors prove that estimators for ATEs are in this case equal to:

dATE ¼ 1

N

XN
i¼1

bY 1i � bY 0i

	 

¼ 1

N

XN
i¼1

2Di�1
� �

1þ KM ið Þf gYi ð2:93Þ
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Y1i � bY 0i

	 

¼ 1

N1

XN
i¼1

�
Di�

�
1� Di

�
KM ið Þ�Yi ð2:94Þ

dATENT ¼ 1
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i2 D¼0f g

bY 1i � Y0i

	 

¼ 1

N0

XN
i¼1

�
DiKM ið Þ � �1� Di

��
Yi ð2:95Þ

As discussed in Sect. 2.3.3, previous estimators are asymptotically biased as exact

4Observe that:
X

i
KM ið Þ ¼ N,

X
i2 D¼1f gKM ið Þ ¼ N1 and

X
i2 D¼0f gKM ið Þ ¼ N0.
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matching is not possible. When k continuous covariates are considered, they will

have a bias term depending on the matching discrepancies (i.e., difference in

covariates between matched units and their matches) that will be of the order

N�1/k. The bias-corrected matching estimator eliminates the bias by adjusting the

difference within the matches for the differences in their values of x. In practice, the

adjustment is carried out by estimating the following two OLS regressions weighted

by KM(i) using only the data on the matched sample:

bμ 1 xð Þ ¼ bβ 0,1 þ xbβ 1,1bμ 0 xð Þ ¼ bβ 0,0 þ xbβ 1,0

and then taking the difference of these predictions for estimating the bias, so that:

bY 0i ¼
Yi if Di ¼ 0

1

#CM ið Þ
X

j2CM ið Þ
Y j þ bμ 0 xið Þ � bμ 0 x j

� �� �
ifDi ¼ 1

8<:
and

bY 1i ¼
1

#CM ið Þ
X

j2CM ið Þ
Y j þ bμ 1 xið Þ � bμ 1 x j

� �� �
ifDi ¼ 0

Yi ifDi ¼ 1

8<:
Observe that one only estimates a regression function over the controls to get Ŷ0i

and only a regression function over the treated to get Ŷ1i.

As for the estimation of the variance for the population parameters of (2.93)–

(2.95), ADHI (2004) provide these formulas:

Var dATE	 

¼ 1

N2

XN
i¼1

bY 1i � bY 0i � dATE	 
2
þ K2

M ið Þþ 2KM ið Þ�K
0
M ið Þ

n obσ wi
xið Þ

 �
ð2:96Þ

Var cATET	 
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N2
1
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i¼1

Di
bY 1i�bY 0i�cATET	 
2

þ 1�Dið Þ K2
M ið Þ�K

0
M ið Þ

n obσDi
xið Þ

 �
ð2:97Þ

Var dATENT	 

¼ 1

N2
0

XN
i¼1

1� Dið Þ bY 1i � bY 0i �dATENT	 
2

þDi K2
M ið Þ � K

0
M ið Þ

n obσ Di
xið Þ� ð2:98Þ

In order to estimate these variances, it is necessary to estimate consistently the

conditional variance of the outcomes, σDi
xið Þ ¼ Var Yig

��Di ¼ g,Xi ¼ xi
� �

with
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g¼ 1,0, using the available sample. ADHI (2004) distinguish between two cases:

(1) the case in which this variance is constant for both the treatment and control

group and for all values of x (homoskedasticity) and (2) the case in which it is not

constant but may depend either on D or x (heteroskedasticity). The authors provide
the formulas for both cases under the assumption of a constant treatment effect (i.e.,

Y1i� Y1i¼ α¼ constant).

It should be noted that it may be possible to use the previous formulas by

considering the propensity-score as unique covariate. In this case, k¼ 1 and the

previous formulas would return unbiased estimations. Nevertheless, those formulas

do not take into account the fact that the propensity-score is estimated in the first

step, so that they are not in principle “fully correct.” As discussed, however, Abadie

and Imbens (2012) have provided the correct formulas and estimation of the

variances for the nearest-neighbor Matching when k¼ 1 and matching is done on

a parametric estimation of the propensity-score. A Stata implementation for the

latter case is available using the command teffects psmatch.
Although these important results, in many applications variances are still calcu-

lated using software which do not consider previous formulas. Normally, an approx-

imation is assumed treating weights as if they are fixed scalars, so that standard results
from Difference-in-means (DIM) estimation under randomization is exploited

(although it might be incorrect). Starting from (2.84) to (2.86), this approximation

assumes that if (1) CMI holds, (2) overlapping holds, and (3) {Y1i; xi} are i.i.d., then
previous Matching estimators are consistent statistics for ATEs with a normal

asymptotic distribution having mean zero and variance equal to:

Var dATE	 

¼ N1

N

� �2

� Var cATET	 

þ N0

N

� �2

� Var dATENT	 

Var cATET	 


¼ 1

N2
1

X
i2 D¼1f g

Var Y1ið Þ þ 1

N2
1

X
j2 D¼0f g

h21 jVar Y0 j

� �

¼ 1

N2
1

N1σ1 þ σ0
X

j2 D¼0f g
h21 j

24 35 ¼ 1

N1

σ1 þ 1

N2
1

σ0
X

j2 D¼0f g
h21 j

¼ 1

N1

σ2 1þ 1

N1

X
j2 D¼0f g

h21 j

0@ 1A ð2:99Þ

Var dATENT	 

¼ 1

N2
0

X
j2 D¼1f g

h0 jVar Y j

� �þ 1

N2
0

X
i2 D¼0f g

Var Yið Þ

¼ 1

N2
0

σ1
X

j2 D¼1f g
h20 j þ

1

N0

σ0 ¼ 1

N0

σ
1

N0

X
j2 D¼1f g

h20 j þ 1

0@ 1A
where we have assumed that σ1¼ σ0¼ σ, since observations are i.i.d. (otherwise,

treatment group heteroskedasticity can also be assumed and in this case σ1 6¼ σ0).
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Previous variances are thus used to perform usual inference tests on ATEs, once a

common sample estimation of σ (or σ1 and σ0 in the heteroskedastic case) is

computed and plugged-into (2.99).

As for kernel Matching, under specific conditions showed by HIT (1998) on the

bandwidth and on the kernel function used, the estimator in (2.88) is a consistent

estimation of ATET (and ATE and ATENT) and thus of the counterfactual out-

comes. In particular, one needs to assume that K(·) has a zero mean and integrates to

one and that h converges to zero as N and N∙h go to infinity. Available software uses
bootstrap techniques to obtain standard errors, although it has however been shown

that bootstrapping may not be the correct technique to implement in the case of

Matching (Abadie and Imbens 2008).

In the case of the stratification Matching, by assuming once again independence

of outcomes across units (i.i.d.), the variance of the stratification Matching of ATEs

is easily shown to be equal to:

Var cATET	 

¼ 1

N1

σ1 þ
XB
b¼1

Nb
1

N1

Nb
1

Nb
0

σ0

" #
ð2:100Þ

Var dATENT	 

¼ 1

N0

XB
b¼1

Nb
0

N0

Nb
0

Nb
1

σ1 þ σ0

" #
ð2:101Þ

Once again, this is only an approximation of the true variance, as weights should not

be considered as fixed. Unfortunately, to date, large sample properties for this

matching estimator have to be provided yet. It is, however, useful to consider the

previous formulas, as they emphasize that a penalty arises when an unequal number

of treated and control units appears in a given stratum; if there is a stratum in which

the number of controls is smaller than the number of treated, the variance increases,

and the loss of efficiency is larger, the larger is the fraction of treated in that stratum.

Observe that, if Nb
1 ¼ Nb

0 , then:

Var cATET	 

¼ 1

N1

σ1 þ σ0½ � ¼ 2

N1

σ

Var cATET	 

¼ 1

N0

σ1 þ σ0½ � ¼ 2

N0

σ

Var dATE	 

¼ 2

N
σ

Observe, finally, that one could obtain the outcomes within each stratum as

predicted values from the estimation of linear (or more articulated) functions of

the propensity-score. DW (1999) illustrated, however, that the gain from using this

approach does not appear to be significant.
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2.3.10 Assessing the Reliability of CMI by Sensitivity
Analysis

Generally speaking, the aim of sensitivity analysis is that of assessing whether

results obtained by applying a given estimation method are sufficiently reliable

when the main assumptions under which the results are drawn may not be fully

satisfied (Saltelli et al. 2008).

For observational studies invoking Conditional (Mean) Independence as in the

case of Matching, sensitivity analysis is an important post-estimation practice for

checking the robustness of treatment effects estimation when such an assumption

can be questionable.

Rosenbaum (2002, 2005) provides a powerful sensitivity analysis test when

Matching is used in observational studies. The aim of this test is that of assessing

the reliability of ATEs estimations when unobservable selection (and thus “hidden

bias”) might be present.5

Suppose we have a set of S matched pairs derived from one-to-one nearest-

neighbor Matching satisfying the balancing property. As such, two units (one

treated and one untreated) forming a single matched pair are indistinguishable in

terms of observables x, and if no hidden bias is at work, they must have the same

probability to be treated: in fact, the intent of propensity-score Matching is exactly

that of matching units with the same probability to be treated, given x. Neverthe-

less, if selection-into-program was due also to, let’s say, one additional non-

observable variable v, then two matched units should not have the same probability

to be treated although balanced on observable variables.

By assuming a logistic distribution, two matching units i and j, having xi¼ xj,

have the following odds ratio:

pi
1� pi
p j

1� p j

¼ pi 1� p j

� �
p j 1� pið Þ ¼

exp xiβþ γvið Þ
exp x jβþ γv j

� � ¼ exp γ vi � v j

� �� � ð2:102Þ

showing that, as soon as vi 6¼ vj, the two probabilities to be treated are different,

actual balancing does not hold and a hidden bias arises. Suppose that vi and vj take
values in the interval [0; 1] and that γ� 0. This implies that�1� vi� vj� 1, so that

the odds ratio is in turn bounded this way:

1

eγ
� pi 1� p j

� �
p j 1� pið Þ � eγ ð2:103Þ

5 Stata implementations to deal with sensitivity analysis in observational studies under observable

selection can be found in: Nannicini (2007), Becker and Caliendo (2007), DiPrete and Gangl

(2004), and Gangl (2004).
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where odds are equal only when γ¼ 0, that is when no hidden bias is present

because unobservables have no effect on selection. Thus, given a positive value of

γ, we can depict a situation in which the odds ratio is maximum (the best case) and

one in which it is minimum (the worst case). This reflects the uncertainty due to the

presence of an unobservable confounder. By putting Γ¼ eγ, we can also say that in

the presence of a potential hidden bias, one unit has an odds of treatment that is up

to Γ� 1 times greater than the odds of another unit. When randomization is

allowed, however, the odds ratio is equal to one by definition and Γ¼ 1.

Rosenbaum proposes a sensitivity analysis test based on the Wilcoxon’s signed
rank statistic. The procedure to calculate this statistic is quite straightforward. Con-

sider Smatched pairs, with s¼ 1, . . ., S, where each pair is formed by one treated and

one untreated unit. For each pair, calculate the treated-minus-control difference (DIM)

in outcomes and call it Ds, thus getting the absolute differences |Ds|. Then, eliminate

from the sample any absolute difference score taking value zero, thereby yielding a set

of S0 nonzero absolute differences, where S0 � S becomes the new sample size. Assign

ranks Rs ranging from 1 to S0 to each |Ds|, so that the smallest absolute difference gets

rank 1 and the largest one rank S0. If ties occur, assign the average rank. TheWilcoxon

test statistic W is obtained as the sum of the positive ranks:

W ¼
XS0
s¼1

Rþ
s ð2:104Þ

The Wilcoxon test statisticW varies from a minimum of 0—where all the observed

differences are negative—to a maximum of S0(S0 � 1)/2—where all the observed

difference scores are positive. For a quite large randomized experiment and under

the null hypothesis of equality in the two (treated and untreated) populations’
medians (i.e., no-effect assumption), the W statistic is approximately normal dis-

tributed with mean equal to S0(S0 � 1)/4 and variance S0(S0 + 1)(2S0 + 1)/24. If the
null hypothesis is true, the test statistic W should take on a value approximately

close to its mean. Rosenbaum, however, shows that for a quite large observational

study, again under the null hypothesis of equality in the populations’ medians, the

distribution of W is approximately bounded between two normal distributions with

the following expectations:

μmax ¼ λS
0
S

0 þ 1
	 
.

2

μmin ¼ 1� λð ÞS0
S

0 þ 1
	 
.

2

and same variance:

σ2W ¼ λ 1� λð ÞS0
S

0 þ 1
	 


2S
0 þ 1

	 
.
6

where λ¼Γ/(1 +Γ). It is immediate to see that in the randomization case Γ¼ 1, the

two formulas become the same and are equal to the case of randomized experiment.
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Different levels of Γ (and thus of λ) modify the p-value of the W-test, thus

producing uncertainty in the results. For Γ� 2, the p-value is bounded between a

minimum and a maximum and one can use the upper bound to see up to which value

of Γ the usual 5 % significance is maintained in the experiment.

Suppose we have implemented a one-to-one Matching and the calculated treat-

ment effect is significant. Suppose we then test the robustness of this finding via the

W-test and discover that the 5 % significance of the test is attained up to a value of

Γ¼ 5. In this case, we can then trust our initial finding of a significant effect, as such

a value of Γ is very high and thus unlikely: it should mean that the probability to be

treated is five times higher for one unit than for another one, a situation that should

be really rare in reality. If, on the contrary, for a value of Γ equal, let’s say, to 1.2,

the p-value upper bound of W is higher than 0.05, thus very slight departures from

perfect randomization produce no significant results. In this case, we should be

really careful in coming to a positive effect of the treatment.

2.3.11 Assessing Overlap

As suggested several times in previous sections, a good overlap of treated and

control units over the covariates’ support is required in order to obtain reliable

estimates for ATEs. A question arises, however, how can we assess the goodness of

overlap in a given dataset? Imbens and Rubin (forthcoming) suggest three types of

overlap measures: (1) standardized difference in averages; (2) logarithm of the ratio

of standard deviations; and (3) Frequency coverage.

(i) Standardized difference in averages
Consider a covariate x. The formula for computing standardized difference

in averages is:

x1 � x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s20
� �

=2
q

where the numerator contains the difference of the means of x in the treated

and control group and the denominator the squared root of the unweighted

mean of the two variances. This measure is scale-free (it does not depend on

the unit of measure of x), but it has the limit to refer to a specific moment of the

distribution, the average.

(ii) Logarithm of the ratio of standard deviations
In addition to the previous approach, one may use a measure of the

differences in the dispersion of the treated and control distribution over x, by
computing the logarithm of the ratio of standard deviations:

ln s1ð Þ � ln s0ð Þ

This approach is straightforward, but it fails to take into account the overall

shape of the two distributions.
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(iii) Frequency coverage
Local measures described above are useful but somewhat limited in their

scope. A more reliable way to assess overlap is that of computing the share of

the treated (control) units taking covariate values that are near the center of the

distribution of the covariate values of the controls (treated). This can be

achieved for either the treated or control units by employing the following

formulas:

π0:951 ¼ F1 F�1
0 0:975ð Þ� �� F1 F�1

0 0:025ð Þ� �
π0:950 ¼ F0 F�1

1 0:975ð Þ� �� F0 F�1
1 0:025ð Þ� �

where F1(x) and F1(x) are the cumulative distribution functions for treated and

untreated units, respectively; F�1
1 αð Þ and F�1

0 αð Þ are the α-th quintile of the

treated and control units distribution, and π0:951 and π0:950 are the treated and

untreated units’ overlapping areas corresponding to a 95 % probability mass.

Figure 2.7 (referring just to π0:951 ) shows why previous measures can assess the

degree of data overlap. The overlapping area drawn in the middle contains just a

small share of the treated units’ frequency. Most of the treated individuals have a

value of x laying on the left of F�1
0 0:025ð Þ, thus implying that a very large number

of treated cannot find good control matches in that interval. As such, this figure

entails that π0:951 will be low and overlap for treated units weak. However, the

F0
-1(0.025) F0

-1(0.975)

Density function of controls

Density function of treated

x

Overlapping area

Overlap

Fig. 2.7 An example of frequency coverage measure
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opposite may happen for the control units, as in the same dataset, π0:950 can be

sufficiently large. In general, we have that:

0 � π0:95g � 0:95, g ¼ 1, 0

In the case of random assignment, one should have that π0:95g ffi 0:95, so that the

higher this probability, the higher the overlap and the more reliable the ATEs

estimation. An advantage of the frequency coverage measures is that of offering

two distinct overlapping measures, one for treated and one for untreated units. A

further useful tool for assessing overlap is the inspection and comparison of the

various quintiles, plotting jointly the two distributions and doing a Kolmogorov–

Smirnov test for the equality of distributions.

In a multivariate context, when many covariates are considered, we need,

however, a synthetic measure of overlap. An overall summary measure of the

difference in location of the two distributions may be:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x0ð Þ0 Σ1 þ Σ0ð Þ=2½ ��1

x1 � x0ð Þ
q

where x1 and x0 are M	 1 vectors of averages for the M covariates, and Σ1 and

Σ0 are corresponding covariance matrices.

In a multivariate case, assessing overlap using the propensity-score, taken as a

synthesis of the entire set of covariates, can also be a suitable and proper strategy.

Instead of considering M dimensions, one can consider just one dimension, with

significant advantages. Indeed, it is easy to see that: (1) any differences in the

covariate distributions by treatment status involve variation in the propensity-score,

and (2) a change in the propensity-score is equivalent to nonzero differences in

average propensity-score values by treatment status. This is sufficient to allow for

assessing overlap with one of the previous univariate method using the propensity-

score as reference covariate.

2.3.12 Coarsened-Exact Matching

In this section, we discuss an alternative approach to standard Matching models,

known as coarsened exact Matching (CEM), proposed by Blackwell et al. (2009).

The basic idea behind CEM is that of allowing the analyst to choose ex ante the

degree of the balancing of covariates, thus avoiding the necessity for its ex post

assessment and repeatedly reestimating the propensity-score until balancing is

satisfied. CEM aims to overcome such a laborious procedure.

We saw that, when covariates are continuous or discrete with high dimension-

ality, exact Matching is infeasible. One could, however, discretize continuous

variables, as well as reduce the number of values that a discrete covariate can

take. Such a procedure, which the authors call “coarsening mechanism,” enables
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one to build a tractable number of cells by: crossing all covariates’ values, deleting
cells that do not contain at least one treated and one control unit, and estimating

ATEs on the remaining cells (over a reduced number of either treated or untreated

units). More specifically, the CEM algorithm is as follows:

1. First, start with the covariates x and generate a copy, which we indicate by xc.

2. Second, “coarsen” xc according to user-defined cut points (the CEM’s automatic

binning algorithm can also be exploited).

3. Third, produce cells by crossing all values of xc and place each observation in its
corresponding cell.

4. Fourth, drop any observation whose cell does not contain at least one treated and
one control unit.

5. Fifth, estimate ATEs by stratification Matching on the remaining cells (or,

equivalently, run a WLS regression of Y on D using the remaining cells’
weights).

It is clear that the CEM approach does not overcome the typical trade-off arising

in Matching methods “with pruning”: indeed, if one increases the level of coars-

ening (i.e., he chooses larger intervals), this will result in a lower number of cells.

With fewer cells, however, it is highly more likely to observe observations with

very diverse covariates. In other words, an increasing degree of coarsening is

generally accompanied by higher imbalance in the covariates. In the opposite

case, we have that reducing coarsening increases balancing, but it increases also

the likelihood of finding cells which do not contain at least one treated and one

control unit, thereby reducing sample size and estimation precision.

To assess CEM quality, Iacus et al. (2012) suggest to examine a specific measure

of (global) imbalance:

L1 f ; gð Þ ¼ 1

2

XB
b¼1

f b � gbj j ð2:105Þ

where b indexes the generic cell; B is the number of cells produced by coarsening; fb
and gb are the relative frequencies for the treated and control units within cell b,
respectively. It is easy to see that a value of L1 equal to zero signals perfect global

balance; vice versa, the larger the L1 is, the larger the extent of imbalance, until

reaching a maximum of one which occurs when there is complete separation of

treated and control units in each cell.

The authors suggest to take the value of L1 obtained after coarsening (but

without trimming) as a benchmark to be compared with the value of L1 obtained
when observations with cells not containing at least one treated and one control unit

are dropped (trimming). By calling the first L1,unmtach and the second L1,match, we

expect that CEM has worked well if:

L1,match � L1,unmtach

i.e., if some improvement in balancing occurs. Of course, both values of L1 in the

previous inequality will depend on the cut points chosen. Such a choice—similar to
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fixing the caliper in the radius Marching—can be either theoretically or heuristi-

cally driven.

In conclusion, in order to obtain reliable estimates from CEM, one needs to find

a good compromise between the reduction of the imbalance achieved using CEM

on the one hand and the size of the sample obtained by deleting nonmatched cells,

on the other hand.

It is worthwhile noting that the ATEs’ standard errors obtained in the last-step

WLS regression take weights as fixed numbers, while they are subject to sampling

randomness. This implies—as in previous Matching methods—that the CEM

standard errors are not fully correct and should be taken just as approximations of

the actual ones.

2.4 Reweighting

Reweighting represents a large class of estimators of ATEs and is a powerful

approach to estimate (binary) treatment effects in a nonexperimental setting when

units’ nonrandom assignment to treatment is due to observable selection. As such,

Reweighting can be seen as an alternative option to previously discussed estimation

approaches, although we will illustrate that, in many regards, previous methods and

Reweighting are strictly linked.

Early developments and applications of Reweighting date back to the 1950s with

the works of Daniel G. Horvitz and Donovan J. Thompson who derived an inverse-

probability weighting estimator of totals and means for accounting for different

proportions of observations within strata in finite populations. As will be shown,

such an estimator can be also employed in program evaluation econometrics

without substantial changes.

This section provides an introduction to this subject. We set out by showing the

link between Reweighting and Weighted least squares (WLS) in estimating ATEs;

subsequently, we discuss a specific Reweighting estimator, the one based on the

propensity-score inverse-probability; Finally, we show how to obtain correct ana-

lytical standard errors for such an estimator when it is assumed that the propensity-

score is correctly specified.

2.4.1 Reweighting and Weighted Least Squares

The idea behind the reweighting estimation procedure is quite straightforward;

when the treatment is not randomly assigned, we expect that the treated and

untreated units present very different distributions of their observable characteris-

tics. As seen in Chap. 1, this may happen either because of the units’ self-selection
into the experiment or because the selection process is operated by an external
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entity (such as, for instance, a public agency). Many examples of such a situation

can be drawn both from socioeconomic and epidemiological contexts.

If this is the case, the distribution of the variables feeding into x could be strongly

unbalanced. To reestablish some balance in the covariates’ distributions, a suitable

way could be that of weighting the observations by suitable weights and then using a

Weighted least squares (WLS) framework to estimate the ATEs. As such, the WLS

framework can also be seen as a generalized approach to ATEs estimation under

selection on observables. Indeed, it can be proved that both Matching and

Reweighting estimators can be retrieved as the coefficient of the treatment indicator

D in a weighted regression, where different weighting functions are considered.

A general formula for the Reweighting estimator of ATEs takes the following

form:

dATE ¼ 1

N1

XN
i¼1

ω1 ið Þ � Di � Yi � 1

N0

XN
j¼1

1� D j

� � � ω0 jð Þ � Y j ð2:106Þ

cATET ¼ 1

N1

XN
i¼1

Di � Yi � 1

N0

XN
j¼1

1� D j

� � � ω jð Þ � Y j ð2:107Þ

dATENT ¼ 1

N0

N � dATE � N1 �cATET	 

ð2:108Þ

where the weights ω0(∙) and ω1(∙) in previous equations add to one in specific cases
only. As for ATET, when the weights add to one, we have that:

1

N0

XN
j¼1

1� D j

� � � ω jð Þ ¼ 1

The Reweighting estimator of ATET can be obtained as the coefficient of the binary

treatment D in a regression of the outcome Y on a constant and D using:

W ¼ Dþ 1� Dð Þ � ω �ð Þ

as weights. Likewise, if the weights ω0(∙) and ω1(∙) add to one, that is:

1

N0

XN
j¼1

1� D j

� � � ω0 jð Þ ¼ 1 and
1

N1

XN
j¼1

D j � ω1 jð Þ ¼ 1

then it can be showed that the Reweighting estimation of ATE can be obtained by

the same previous regression with weights equal to:

W ¼ D � ω1 �ð Þ þ 1� Dð Þ � ω0 �ð Þ

If weights do not add to one, then one can retrieve the estimations of ATEs by

directly implementing the previous formulas. The advantage of relying on a WLS
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framework is that standard errors for the Reweighting estimates of ATEs are

directly obtained by the regression analysis. Interestingly, one can notice that the

usual DIM estimator of standard statistics can be interpreted as a Reweighting

estimator where ω( j)¼ 1, that is:

dDIM ¼ 1

N1

XN
i¼1

Di � Yi � 1

N0

XN
j¼1

1� D j

� � � Y j

where, of course, 1=N1ð Þ
XN

i¼1
Di ¼ 1=N0ð Þ

XN

j¼1
1� D j

� � ¼1, and the DIM is

simply obtained by an OLS regression of Y on D.
It appears worthwhile briefly commenting on the contents of Table 2.4 illustrat-

ing a number of weighting functions generally used in applications. The IPW1 is a

popular weighting function provided by Rosenbaum and Rubin (1983) and consid-

ered in Dehejia and Wahba (1999), Wooldridge (2010), and Hirano et al. (2003).

When referring to Reweighting estimators, many scholars refer to IPW1. This

estimator has a number of interesting properties which will be discussed in more

depth in the following section. The drawback of IPW1 is that its weights do not add

to one, thus WLS regression is not feasible. Johnston and DiNardo (1996) and

Imbens (2004) have therefore proposed the IPW2 function which, by rescaling

weights in IPW1 so to add to one, allows one to estimate ATEs by WLS and thus

obtain standard errors. Finally, weights for IPW3 have been derived by Lunceford

and Davidian (2004), but they are rarely used in the evaluation literature.

Interestingly, Matching estimators of ATEs can be seen as peculiar Reweighting

estimators, and thus performed by WLS (Busso et al. 2009). By taking the case of

ATET, in fact, we can show that:

cATETMatching ¼ 1

N1

X
i2 D¼1f g

Yi �
X
j2C ið Þ

h i; jð ÞY j

0@ 1A
¼ 1

N1

XN
i¼1

DiYi �
XN
j¼1

1� D j

� �
Y j

1

N1

XN
i¼1

Dih i; jð Þ

¼ 1

N1

XN
i¼1

Diyi �
1

N0

XN
j¼1

1� D j

� �
Y jω jð Þ ¼cATETReweighting

whereω jð Þ ¼ N0=N1ð Þ
XN

i¼1
Dih i; jð Þ are reweighting factors, C(i) is the untreated

units’ neighborhood for the treated unit i, and h(i, j) are matching weights that—

once appropriately specified—produce different types of Matching methods. A

valuable aspect of this version of the Matching estimator is that it can be directly

estimated by WLS, as we can show that:
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1

N0

XN
j¼1

1� D j

� �
ω jð Þ ¼ 1

N0

XN
j¼1

1� D j

� � N0

N1

XN
i¼1

Dih i; jð Þ
" #( )

¼ 1

N1

XN
i¼1

Di

X
j2C ið Þ

h i; jð Þ
24 358<:

9=; ¼ 1

N1

XN
i¼1

Di ¼ 1

since
X

j2C ið Þh i; jð Þ ¼ 1 being h(i, j)¼ 1/NC(i) so that
X

j2C ið Þh i; jð Þ ¼
1=NC ið Þ
� �X

j2C ið Þ1 ¼ NC ið Þ=NC ið Þ
� � ¼ 1.

In the case of kernel Matching, a similar result can be achieved, since in that

case:

ω jð Þ ¼ N0

N1

XN
i¼1

Dih i; jð Þ ¼
XN

i¼1
DiKi j

.XN

i¼1
DiKi jXN

i¼1
1� Dið ÞKi j

.XN

i¼1
DiKi j

. p

1� p
:

Thus, a possible Reweighting estimation protocol for ATET is as follows:

1. Estimate the propensity-score (based on x) by a logit or a probit to obtain the

predicated probability pi.
2. Given a chosen specification of ω(∙), build regression weights as:

Wi ¼ Di þ 1� Dið Þ � ω ið Þ

3. If weights satisfy (at least approximately) the property of summing to one, run a

WLS regression of the outcome Yi on a constant and Di using Wi as regression

weights.

4. The coefficient of the binary treatment D in the previous regression is a consis-

tent estimation of ATET, provided that the propensity-score is correctly

specified.

This Reweighting procedure is a generalization of the popular inverse-probabil-
ity regression (Robins et al. 2000; Brunell and Dinardo 2004), and the intuitive idea
is that of penalizing (advantaging) treated units with higher (lower) probability to

be treated and advantaging (penalizing) untreated units with higher (lower) prob-

ability to be treated, thus rendering the two groups as similar as possible. In this

simplistic case, the previous procedure becomes:

1. Estimate the propensity-score (based on x) by a logit or a probit getting the

predicated probability pi;
2. Build weights as 1/pi for the treated observations, and 1/(1� pi) for the untreated

observations.

3. Calculate the ATE simply by a comparison of the weighted means of the two

groups (this is what indeed the weighted regression does).
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For each observation, the weight eliminates a component induced by the extent

of the nonrandom assignment to the program (a confounding element).

Compared with previous approaches, Reweighting estimators have the very

attractive advantage that they do not require one to estimate the regression func-

tions m0(x) and m1(x), but they provide estimations of ATEs only by relying on an

estimation of p(x), the propensity-score. This advantage may also be somewhat a

limitation, as Reweighting estimators are very sensitive to the specification of the

propensity-score, so that measurement errors in this specification could produce

severe bias.

As such, this approach relies on the assumption that the propensity-score spec-

ification is correctly estimated. This means that the Reweighting approach can be

inconsistent either if the specification of the explanatory variables is incorrect or the

parametric probit/logit approach does not properly explain the conditional proba-

bility of becoming treated.

Due to its popularity, the next section provides a more detailed treatment of

Reweighting under IPW1, showing how to obtain correct standard errors. This

seems relevant as weights for IPW1 do not add to one.

2.4.2 Reweighting on the Propensity-Score Inverse-Probability

In what follows, we focus on type 1 Reweighting on propensity-score inverse-

probability (IPW1) as proposed in the seminal paper by Rosenbaum and Rubin

(1983). In this case, we start with the following assumptions about the data

generating process (DGP)6:

Y1 ¼ g0 xð Þ þ e0, E e0ð Þ ¼ 0

Y0 ¼ g1 xð Þ þ e1, E
�
e1
� ¼ 0

Y ¼ DY1 þ Y0 1� Dð Þ
CMI

0 < p xð Þ < 1

xexogenous

8>>>>>><>>>>>>:
ð2:109Þ

where Y1 and Y0 are the unit’s outcomes when it is treated and untreated, respec-

tively; g1(x) and g0(x) are the unit’s reaction functions to the confounder xwhen the
unit is, respectively, treated and untreated; e0 and e1 are two errors with uncondi-

tional zero mean; x is a set of observable exogenous confounding variables assumed

to drive the nonrandom assignment into treatment. It can be proved that, when

assumptions in (2.109) hold, then:

6As reminder, we consider the following version of the Law of Iterated Expectations: LIE1:

Ey(Y )¼ μY¼Ex[Ey (Y|x)]; LIE2: Ey(Y | x)¼ μ2(x)¼Ez [Ey (Y | x, z) | x]¼Ez [μ1 (x, z) | x]; LIE3: E
(h)¼ p1 ∙ E(h | x1) + p2 ∙ E( h | x2) + ∙ ∙ ∙+ pM ∙ E(h | xM).
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ATE ¼ E
D� p xð Þ½ �Y

p xð Þ 1� p xð Þ½ �
� �

ð2:110Þ

ATET ¼ E
D� p xð Þ½ �Y

p D ¼ 1ð Þ 1� p xð Þ½ �
� �

ð2:111Þ

ATENT ¼ E
D� p xð Þ½ �Y

p D ¼ 0ð Þp xð Þ�
( )

ð2:112Þ

To this purpose, observe first that: DY¼D[DY1+Y0 (1�D)]¼
D2Y1+DY0�D2Y0¼DY1, since D

2¼D. Thus:

E
DY

p xð Þ
��x �

¼ E
DY1

p xð Þ
��x �

¼LIE2 E E
DY1

p xð Þ
��x,D ���x� �

¼ E
DE Y1

��x,D� �
p xð Þ

��x� �
¼CMI

E
DE Y1

��x� �
p xð Þ

��x� �
¼ E

Dg1 xð Þ
p xð Þ

��x� �
¼ g1 xð Þ � E D

p xð Þ
��x� �

¼ g1 xð Þ
p xð Þ � E D

��x� �
¼ g1 xð Þ

p xð Þ � p xð Þ ¼ g1 xð Þ ð2:113Þ

since: E(D | x)¼ p(x). Similarly, we can show that:

E
1� Dð ÞY
1� p xð Þ½ �

��x �
¼ g0 xð Þ ð2:114Þ

Combining (2.113) and (2.114), we have that:

ATE xð Þ ¼ g1 xð Þ � g0 xð Þ ¼ E
DY

p xð Þ
��x �

� E
1� Dð ÞY
1� p xð Þ½ �

��x �
¼ E

D� p xð Þ½ �Y
p xð Þ 1� p xð Þ½ �

��x �
ð2:115Þ

provided that 0< p(x)< 1. In order to obtain the ATE, it is sufficient to take the

expectation over x:

ATE ¼ Ex ATE xð Þf g ¼ ExE
D� p xð Þ½ �Y

p xð Þ 1� p xð Þ½ �
��x �

¼ E
D� p xð Þ½ �Y

p xð Þ 1� p xð Þ½ �
 �

ð2:116Þ

It is interesting to show that the previous formula for ATE is equal to the famous

Horvitz and Thompson (1952) estimator of the population mean. Indeed:
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ATE ¼ E
D� p xð Þ½ �Y

p xð Þ 1� p xð Þ½ �
 �

¼ E
DY � p xð ÞY þ p xð ÞDY � p xð ÞDY½ �

p xð Þ 1� p xð Þ½ �
 �

¼ E
p xð ÞDY

p xð Þ 1� p xð Þ½ � þ
DY 1� p xð Þ½ �
p xð Þ 1� p xð Þ½ � �

p xð ÞY
p xð Þ 1� p xð Þ½ �

 �
¼ E

DY

1� p xð Þ þ
DY

p xð Þ �
Y

1� p xð Þ
 �

¼ E
DY � Y

1� p xð Þ þ
DY

p xð Þ
 �

¼ E
DY

p xð Þ �
Y � DY

1� p xð Þ
 �

¼ E
DY

p xð Þ �
1� Dð ÞY
1� p xð Þ

 �
¼ E

DY

p xð Þ
 �

� E
1� Dð ÞY
1� p xð Þ
 �

Thus, by summing, we obtain:

ATE ¼ E
DY

p xð Þ
 �

� E
1� Dð ÞY
1� p xð Þ
 �

ð2:117Þ

whose sample equivalent is:

dATE ¼ 1

N

XN
i¼1

DiYi

p xið Þ �
XN
i¼1

1� Dið ÞYi

1� pi xð Þ ð2:118Þ

This can be easily seen through the following example. Suppose we have a dataset

with variables {Y, D, x} as described in Table 2.5.

If we define the inclusion probability of unit i into the sample S as:

πi ¼ Pr i 2 Sf g

it is immediate to see that:

• For treated units, the inclusion probability is equal to the propensity-score:

p(D¼ 1 | x);

• For untreated units, the inclusion probability is equal to: p(D¼ 0 | x)¼ 1�
p(D¼ 1 | x).

Thus, applying formula (2.118), we have:

Table 2.5 Dataset coming

from a nonexperimental

statistical setting

id Y D Inclusion probability

1 y1 1 π1¼ p1(x)

2 y2 0 π2¼ 1 – p2(x)

3 y3 1 π3¼ p3(x)

4 y4 1 π4¼ p4(x)

5 y5 0 π5¼ 1 – p5(x)
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dATE ¼ 1

5

y1
p x1ð Þ þ

y3
p x3ð Þ þ

y4
p x4ð Þ

 �
� 1

5

y2
1� p x2ð Þ þ

y5
1� p x5ð Þ

 �
¼ 1

5

y1
p x1ð Þ þ

y3
p x3ð Þ þ

y4
p x4ð Þ þ

y2
1� p x2ð Þ þ

y5
1� p x5ð Þ

 �
¼ 1

5

y1
p x1ð Þ þ

y2
1� p x2ð Þ þ

y3
p x3ð Þ þ

y4
p x4ð Þ þ

y5
1� p x5ð Þ

 �

¼ 1

5

y1
π1

þ y2
π2

þ y3
π3

þ y4
π4

þ y5
π5

 �
¼ 1

5

X5
i¼1

yi
πi

ð2:119Þ

Thus, we have proved that:

dATE ¼ bμ HT ¼ 1

N

XN
i¼1

yi
πi

ð2:120Þ

The inverse-probability Reweighting estimation of ATE is thus equivalent to the

Horvitz–Thompson estimator. As said previously, in sampling theory, it is a general

method for estimating the total and mean of finite populations when samples are

drawn without replacement and units have unequal selection probabilities.

Similarly, we can also calculate the ATET by considering that:

D� p xð Þ½ �Y ¼ D� p xð Þ½ �
� Y0 þ D � Y1 � Y0ð Þ ¼ D� p xð Þ � Y0 þ D � D� p xð Þ½ �
� Y1 � Y0ð Þ

¼ D� p xð Þ½ � � Y0 þ D � 1� p xð Þ½ � � Y1 � Y0ð Þ

since D2¼D. Thus, dividing the previous expression by [1� p(x)]:

D� p xð Þ½ �Y
1� p xð Þ½ � ¼ D� p xð Þ½ �Y0

1� p xð Þ½ � þ D Y1 � Y0ð Þ ð2:121Þ

Consider now the quantity D� p xð Þ½ �Y0 in the RHS of (2.121). We have that:

D� p xð Þ½ �Y0 ¼ E D� p xð Þ½ �Y0

��x� � ¼ E E D� p xð Þ½ �Y0

��x,D� ���x� �
¼ E D� p xð Þ½ �ð � E Y0

��x,D� ���x� ¼ E D� p xð Þ½ �ð � E Y0

��x� ���x�
¼ E D� p xð Þ½ � � g0 xð Þ��x� � ¼ g0 xð Þ � E D� p xð Þ½ ���x� �
¼ g0 xð Þ � E D

��x� �� E p xð Þ��x� �� � ¼ g0 xð Þ � p xð Þ � p xð Þ½ � ¼ 0:

Taking relation (2.121) and applying the expectation conditional on x, we get:
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E
D� p xð Þ½ �Y
1� p xð Þ½ �

��x� �
¼ E

D� p xð Þ½ �Y0

1� p xð Þ½ �
��x� �

þ E D Y1 � Y0ð Þ��x� �
¼ E D Y1 � Y0ð Þ��x� �

since we have shown that [D� p(x)]Y0 is zero. By LIE, we obtain that:

ExE
D� p xð Þ½ �Y
1� p xð Þ½ �

��x� �
¼ E

D� p xð Þ½ �Y
1� p xð Þ½ �

� �
ExE D Y1 � Y0ð Þ��x� � ¼ E D Y1 � Y0ð Þf g

8<:
In other words:

E
D� p xð Þ½ �Y
1� p xð Þ½ �

� �
¼ E D Y1 � Y0ð Þf g

From LIE we know that if x is a generic discrete variable assuming values

x¼ (x1, x2, . . . , xM) with probabilities p¼ ( p1, p2, . . . , pM), then E(h)¼ p1 ∙ E(h |

x1) + p2 ∙ E(h | x2) + ∙ ∙ ∙+ pM ∙ E(h | xM). Thus, by assuming h¼D(Y1� Y0), we
obtain that: E(h)¼E[D(Y1� Y0)]¼ p(D¼ 1) ∙ E[D(Y1� Y0) | D¼ 1] + p(D¼ 0) ∙
E[D(Y1� Y0) | D¼ 0]¼ p(D¼ 1) ∙ E[(Y1� Y0) | D¼ 1]¼ p(D¼ 1) ∙ ATET. Thus:

E
D� p xð Þ½ �Y
1� p xð Þ½ �

� �
¼ E D Y1 � Y0ð Þf g ¼ p D ¼ 1ð Þ � ATET

proving that:

ATET ¼ E
D� p xð Þ½ �Y

p D ¼ 1ð Þ 1� p xð Þ½ �
� �

ð2:122Þ

Recall that: ATE¼ p(D¼ 1)∙ATET+ p(D¼ 0)∙ATENT, thus:

ATENT ¼ ATE

p D ¼ 0ð Þ �
p D ¼ 1ð Þ
p D ¼ 0ð ÞATET ¼

¼ 1

p D ¼ 0ð ÞE
D� p xð Þ½ �Y

p xð Þ 1� p xð Þ½ � � p D ¼ 1ð Þ D� p xð Þ½ �Y
p D ¼ 1ð Þ 1� p xð Þ½ �

� �
¼

¼ 1

p D ¼ 0ð ÞE
D� p xð Þ½ �Y

p xð Þ 1� p xð Þ½ � �
D� p xð Þ½ �Y
1� p xð Þ½ �

� �
¼ 1

p D ¼ 0ð ÞE
D� p xð Þ½ �Y � p xð Þ D� p xð Þ½ �Y

p xð Þ 1� p xð Þ½ �
� �

¼

¼ 1

p D ¼ 0ð ÞE
D� p xð Þ�Y�1� p xð Þ� �

p xð Þ 1� p xð Þ½ �
� �

¼ 1

p D ¼ 0ð ÞE
D� p xð Þ½ �Y

p xð Þ�
( )

¼

¼ E
D� p xð Þ½ �Y

p D ¼ 0ð Þp xð Þ�
( )
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This implies, finally, that:

ATENT ¼ E
D� p xð Þ½ �Y

p D ¼ 0ð Þp xð Þ�
( )

ð2:123Þ

2.4.3 Sample Estimation and Standard Errors for ATEs

Assuming that the propensity-score is correctly specified, we can estimate previous

parameters simply by using the “sample equivalent” of the population parameters,

that is:

dATE ¼ 1

N

XN
i¼1

Di � bp xið Þ½ �Yibp xið Þ�1� bp �xi� � ð2:124Þ

cATET ¼ 1

N

XN
i¼1

Di � bp xið Þ½ �Yibp D ¼ 1ð Þ 1� bp i xð Þ½ � ð2:125Þ

dATENT ¼ 1

N

XN
i¼1

Di � bp i xið Þ½ �Yibp D ¼ 0ð Þbp xið Þ ð2:126Þ

The estimation is a two-step procedure: (1) first, estimate the propensity-score p(xi)
getting bp xið Þ; (2) second, substitute bp xið Þ into the formulas to get the parameter

estimation. Observe that consistency is guaranteed by the fact that these estimators

are M-estimators. In order to obtain the standard errors for these estimations, we

exploit the fact that the first step is an ML-estimation and the second step an

M-estimation. In our case, the first step is an ML based on logit or probit, and the

second step is a standard M-estimator. In such a case, Wooldridge (2007, 2010,

pp. 922–924) has proposed a straightforward procedure to estimate standard errors,

provided that the propensity-score is correctly specified. We briefly illustrate the

Wooldridge’s procedure and formulas for obtaining these (analytical) standard

errors.

(i) Standard errors estimation for ATE
First: define the estimated ML score of the first step (probit or logit), which is

by definition equal to:

bd i ¼ bd Di; xi; bγð Þ ¼ ∇γ bp xi; bγð Þ�0 � �Di � bp xi; bγð Þ� �
bp xi; bγð Þ 1� bp xi; bγð Þ½ � ð2:127Þ

Observe that d is a row vector of the R� 1 parameters γ and ∇γ bp xi; bγð Þ is the
gradient of the function p(x, γ).

Second: define the generic estimated summand of ATE as:
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bk i ¼ Di � bp xið Þ½ �Yibp xið Þ�1� bp �xi�� ð2:128Þ

Third: calculate the OLS residuals from this regression:

bk i on 1, bd 0
i

	 

with i ¼ 1, . . . ,N ð2:129Þ

and call them êi (i¼ 1, . . ., N ). The asymptotic standard error for ATE is equal

to:

1
N

XN
i¼1

be 2
i

" #1=2
ffiffiffiffi
N

p ð2:130Þ

which can be used to test the significance of ATE. Notice that d will have a

different expression according to the probability model considered. Here, we

consider the logit and probit case.

Case 1 Logit

Suppose that the correct probability follows a logistic distribution. This means

that:

p xi; γð Þ ¼ exp xiγð Þ
1þ exp xiγð Þ ¼ Λ xiγð Þ ð2:131Þ

Thus, by simple algebra, we obtain that:

bd 0
i|{z}

1	R

¼ xi Di � bp ið Þ ð2:132Þ

Case 2 Probit

Suppose that the right probability follows a Normal distribution. In other words:

p xi; γð Þ ¼ Φ xiγð Þ ð2:133Þ

Thus, by simple algebra, we have that:

bd 0
i ¼¼ ϕ xi; bγð Þxi � Di �Φ xiγð Þ½ �

Φ xiγð Þ 1�Φ xiγð Þ½ � ð2:134Þ

Observe that one can add also functions of x to estimate previous formulas. This

reduces the standard errors if these functions are partially correlated with k.
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Observe that the previous procedure produces standard errors that are lower than

those produced by ignoring the first step (i.e., the propensity-score estimation via

ML). Indeed, the naı̈ve standard error:

1
N

XN
i¼1

�bk i � dATE �2" #1=2
ffiffiffiffi
N

p ð2:135Þ

is higher than the one produced by the previous procedure.

(ii) Standard error for ATET
Following a similar procedure to that implemented for ATE, define:

bq i ¼
Di � bp xið Þ½ �Yibp D ¼ 1ð Þ 1� bp i xð Þ½ � ð2:136Þ

and calculate:

br i ¼ residuals from the regression of bq i on 1, bd 0
	 


ð2:137Þ

Then, the asymptotic standard error for ATET is given by:

bp D ¼ 1ð Þ½ ��1 � 1
N

XN
i¼1

�br i � Di �cATET �2
" #1=2

ffiffiffiffi
N

p ð2:138Þ

(iii) Standard error for ATENT
In this case, define:

bb i ¼ Di � bp i xið Þ½ �Yibp D ¼ 0ð Þbp xið Þ ð2:139Þ

and then calculate:

bs i ¼ residuals from the regression of bb i on 1, bd 0
	 


ð2:140Þ

The asymptotic standard error for ATENT is therefore:
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bp D ¼ 0ð Þ½ ��1 � 1
N

XN
i¼1

�bs i � 1� Dið Þ �dATENT �2" #1=2
ffiffiffiffi
N

p ð2:141Þ

Previous standard errors are correct as long as the probit or the logit are the

correct probability rules in the DGP. If this is not the case, then measurement error

is present and previous estimations might be inconsistent. The literature has pro-

vided more flexible nonparametric estimation of previous standard errors; see, for

example, Hirano et al. (2003) or in Li et al. (2009). Under a correct specification, a
straightforward alternative is to use bootstrap, where the binary response estimation

and the averaging are included in each bootstrap iteration.

2.5 Doubly-Robust Estimation

Combining different methods may sometimes lead to an estimation of the treatment

effects having better properties in terms of robustness. This is the case of the

so-called Doubly-robust estimator, which combines Reweighting (through an

inverse-probability regression) and Regression-adjustment (Robins and Rotnitzky

1995; Robins et al. 1994; Wooldridge 2007).

The robustness of this approach lies in the fact that either the conditional mean or

the propensity-score needs to be correctly specified but not both. This in itself is a

non-negligible advantage of this method.

In practice, the application of the Doubly-robust estimator is as follows:

• Define a parametric function for the conditional mean of the two potential

outcomes as m0(x, δ0) and m1(x, δ1), respectively, and let p(x, γ) be a parametric

model for the propensity-score.

• Estimate bp i xið Þ by the maximum likelihood (logit or probit).

• Apply a WLS regression using as weights the inverse probabilities to obtain, by

assuming a linear form of the conditional mean, the parameters’ estimation as:

mina1,b1

XN
i¼1

Di yi � a1 � b1xið Þ2=bp xið Þ ð2:142Þ

mina0,b0

XN
i¼1

1� Dið Þ yi � a0 � b0xið Þ2= 1� bp xið Þð Þ ð2:143Þ

• Finally, estimate ATEs by Regression-adjustment as:
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dATE ¼ 1=N
XN
i¼1

ba 1 � bb 1xi

	 

� ba 0 � bb 0xi

	 
h i
ð2:144Þ

cATET ¼ 1=N1

XN
i¼1

Di ba 1 � bb 1xi

	 

� ba 0 � bb 0xi

	 
h i
ð2:145Þ

dATENT ¼ 1=N0

XN
i¼1

1� Dið Þ ba 1 � bb 1xi

	 

� ba 0 � bb 0xi

	 
h i
ð2:146Þ

Two different arguments are invoked to illustrate why the Doubly-robust estimator

is consistent (see Wooldridge 2010, pp. 931–932):

1. In the first case, the conditional mean is correctly specified but the propensity-

score function is freely misspecified. In this case, robustness is assured by the

fact that WLS consistently estimate the parameters independently of the specific

function of x used to build weights. Thus, even an incorrect propensity-score

does not affect ATEs consistency.

2. In the second case, the conditional mean is misspecified but the propensity-score

function is correctly specified. In this case, the argument is somewhat tricky.

Under CMI, it can be showed that the parameters (δ

0, δ



1) estimated by the inverse-

probability regression (with the true weights) are also the (minimum) solution of

an unweighted “population” regression, such as E[(Yg� ag� bgx)
2] that identifies

the parameters of the linear projection of Yg in the vector space generated by (1, x).

Since a constant is included in the regression, thenE Yg

� � ¼ E a*g � b*gx
	 


, so that

ATE ¼ E Y1ð Þ � E Y0ð Þ ¼ E a*1 � b*1x
� �� a*0 � b*0x

� �� �
independently of the

linearity of the conditional means. This also continues to hold when we consider

functions of x.

The previous results can be seen to hold, with slight modifications, even in the

case of binary, fractional and count response variables, provided that the

corresponding conditional mean function is considered (Wooldridge 2010,

pp. 932–934).

2.6 Implementation and Application of Regression-

Adjustment

In this section, we illustrate how to estimate ATEs in Stata using the parametric

linear and nonlinear Regression-adjustment approaches. We use the dataset

JTRAIN2.DTA, freely available in Stata by typing:

. net from http://www.stata.com/data/jwooldridge/

. net describe eacsap

. net get eacsap

114 2 Methods Based on Selection on Observables



The dataset comes from the National Supported Work (NSW) demonstration, a

labor market experiment in which 185 participants were randomized into treatment

and 260 units were used as controls. In this experiment, treatment took the form of a

“on-the-job training” lasting between 9 months and a year in between 1976 and

1977. This dataset contains 445 observations.

The dataset, originally used by Lalonde (1986), was also used by Dehejia and

Wahba (1999, 2002) in their seminal papers on propensity-score Matching. In their

applications, the authors start by using the 260 experimental control observations to

obtain a benchmark estimate for the treatment impact. Subsequently, for the

185 treated units, they alternatively consider different sets of control groups coming

from the “Population Survey of Income Dynamics (PSID)” and the “Current

Population Survey (CPS).” In the empirical work of this section, we use the original

dataset of 445 observations.

Data refer to the real earnings and demographics of a sample of the men who

participated in this job training experiment. We are mainly interested in assessing

the effect of training on earnings. The objective is to calculate: (1) the simple

Difference-in-means (DIM) estimator; (2) the parameters ATE, ATE(x); ATET,

ATET(x); and ATENT, ATENT(x); (3) the combined density plot of ATE(x),

ATET(x), and ATENT(x); (4) the standard error and confidence interval for

ATET and ATENT by bootstrap. We begin with a description of the dataset:

. describe

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

obs: 445

vars: 19 5 Oct 2012 12:44

size: 16,910

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

storage display value

variable name type format label variable label

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

train byte %9.0g ¼1 if assigned to job training

age byte %9.0g age in 1977

educ byte %9.0g years of education

black byte %9.0g ¼1 if black

hisp byte %9.0g ¼1 if Hispanic

married byte %9.0g ¼1 if married

nodegree byte %9.0g ¼1 if no high school degree

mosinex byte %9.0g # mnths prior to 1/78 in expmnt

re74 float %9.0g real earns., 1974, $1000s

re75 float %9.0g real earns., 1975, $1000s

re78 float %9.0g real earns., 1978, $1000s

unem74 byte %9.0g ¼1 if unem. all of 1974

unem75 byte %9.0g ¼1 if unem. all of 1975

unem78 byte %9.0g ¼1 if unem. all of 1978

lre74 float %9.0g log(re74); zero if re74 ¼¼ 0
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lre75 float %9.0g log(re75); zero if re75 ¼¼ 0

lre78 float %9.0g log(re78); zero if re78 ¼¼ 0

agesq int %9.0g age^2

mostrn byte %9.0g months in training

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

We wish to assess whether individual’s real earnings in 1978, measured in

thousands of dollars, were affected by participating in a training program up to

2 years before 1978. We consider a series of covariates as observable confounders,

such as real earnings in 1974 (“re74”) and 1975 (“re75”), individual age (“age”),

individual age squared (“agesq”), a binary high school degree indicator

(“nodegree”), marital status (“married”), and a binary variable for being black

(“black”) and hispanic (“hisp”).

In order to carry out this analysis we use two Stata commands: the user-written

ivtreatreg (Cerulli 2014b) and the built-in Stata13 teffects ra. The syntax
for both is reported below.

Syntax for ivtreatreg
The basic syntax of ivtreatreg takes the following form:

ivtreatreg outcome treatment [varlist] [if] [in] [weight], model(cf–ols)

[hetero(varlist_h) graphic]

where varlist represents the set of confounders x. This command allows one to

compute the parametric Regression-adjustment under the linear assumption (i.e.,

the Control-function regression). It assumes a heterogeneous response to the con-

founders declared in varlist_h and estimates ATE, ATET, and ATENT as well

as these parameters conditional on varlist_h. Since ivtreatreg also esti-

mates other treatment models (more of which is discussed in the next chapter), the

Control-function regression is estimated by adding the option model(cf–ols).7

Syntax for teffects ra
The basic syntax of teffects ra takes this form:

teffects ra (ovar omvarlist [, omodel noconstant)] (tvar) [if] [in]

[weight] [, stat options]

where ovar is the output variable, omvarlist the confounders x, tvar the

binary treatment variable, and omodel specifies the model for the outcome

variable that can be one of these depending on the nature of the outcome:

7Note that the ivtreatreg option cf–ols is only available in a previous version of this

command. The present version of the command, as published in The Stata Journal, does not

provide such option. The old version can be obtained on request.
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

omodel Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

linear linear outcome model; the default

logit logistic outcome model

probit probit outcome model

hetprobit(varlist) heteroskedastic probit outcome model

poisson exponential outcome model

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Including the linear option in teffects ra produces the same results as

ivtreatreg. The latter, however, permits one to also select a subset of hetero-

geneous confounders (depending on analyst’s choice), while the former does not.

Moreover, ivtreatreg also provides, by default, an estimation of ATET,

ATENT, and of ATE(x), ATET(x), and ATENT(x). In contrast, teffects ra
does not provide an estimation of ATENT. teffects ra is, however, more suited

in the case of binary and count outcomes. Of course, one can elaborate further on

the results from teffects ra in order to eventually recover that which is not

directly provided by the command.

We start by renaming the target variable (“re78”) and the treatment variable

(“train”):

. gen y ¼ re78

. gen w ¼ train

In order to simplify the notation, we put all the confounders into a global macro

xvars:

. global xvars re74 re75 age agesq nodegree married black hisp

and generate a global macro called xvarsh affecting the heterogeneous

response to treatment, as follows:

. global xvarsh re74 re75age agesq nodegree married black hisp

Before going into ATEs estimation, it seems useful to look at some descriptive

statistics with regard to the variables employed in the model. To this aim, we use the

tabstat command:

. tabstat y w $xvars, columns(statistics) s(n mean sd min max)

variable | N mean sd min max

–––––––––––––+–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | 445 5.300765 6.631493 0 60.3079

w | 445 .4157303 .4934022 0 1

re74 | 445 2.102266 5.363584 0 39.5707
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re75 | 445 1.377139 3.150961 0 25.1422

age | 445 25.37079 7.100282 17 55

agesq | 445 693.9775 429.7818 289 3025

nodegree | 445 .7820225 .4133367 0 1

married | 445 .1685393 .3747658 0 1

black | 445 .8337079 .3727617 0 1

hisp | 445 .0876404 .2830895 0 1

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

It is also useful to report the descriptive statistics by treatment status:

. bysort w: tabstat y $xvars , columns(statistics)

–> w ¼ 0

variable | mean

–––––––––––––+––––––––––

y | 4.554802

re74 | 2.107027

re75 | 1.266909

age | 25.05385

agesq | 677.3154

nodegree | .8346154

married | .1538462

black | .8269231

hisp | .1076923

––––––––––––––––––––––––

–> w ¼ 1

variable | mean

–––––––––––––+––––––––––

y | 6.349145

re74 | 2.095574

re75 | 1.532056

age | 25.81622

agesq | 717.3946

nodegree | .7081081

married | .1891892

black | .8432432

hisp | .0594595

––––––––––––––––––––––––

As we can see, the difference between the outcome means is quite high, but at

this stage, we cannot conclude that this observed difference was caused by attend-

ing the training course.

Given this preliminary analysis of the data, we can estimate a series of regression

using first ivtreatreg:

*** MODEL 1: SIMPLE DIFFERENCE–IN–MEAN (DIM) ***

. qui xi: reg y w

estimates store DIM

*** MODEL 2: "cf–ols" WITH HOMOGENEOUS RESPONSE TO TREATMENT STATUS

. qui xi: ivtreatreg y w $xvars , model(cf–ols)

estimates store CFOLS1

*** MODEL 3: "cf–ols" WITH HETEROGENEOUS RESPONSE TO TREATMENT STATUS

. qui xi: ivtreatreg y w $xvars , hetero($xvarsh) model(cf–ols)

estimates store CFOLS2

*** COMPARE ESTIMATES OF ATE:

. estimates table DIM CFOLS1 CFOLS2 , ///

118 2 Methods Based on Selection on Observables



b(%9.5f) star keep(w) stats(r2) ///

title("ATE comparison between DIM, CFOLS1, CFOLS2")

ATE comparison between DIM, CFOLS1, CFOLS2

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Variable | DIM CFOLS1 CFOLS2

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––

w | 1.79434** 1.62517* 1.54472*

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––

r2 | 0.01782 0.04896 0.06408

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

legend: * p<0.05; ** p<0.01; *** p<0.001

Results from previous estimators are very similar indeed. This reflects the

random assignment entailed by the NSW demonstration: in such a case, controlling

for covariates was expected not to provide significant change in the ATE estima-

tion, and this is properly confirmed.

We can, in such a setting, also calculate ATET and ATENT and then test their

statistical significance by applying bootstrap procedures as follows:

*** BOOTSTRAP STD. ERR. FOR "ATET" AND "ATENT"

. xi: bootstrap atet¼e(atet) atent¼e(atent), rep(200): ///

ivtreatreg y w $xvars , hetero($xvarsh) model(cf–ols)

Bootstrap replications (200)

––––+––– 1 –––+––– 2 –––+––– 3 –––+––– 4 –––+––– 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Bootstrap results Number of obs ¼ 445

Replications ¼ 200

command: ivtreatreg y w re74 re75 age agesq nodegree married black hisp,

hetero(re74 re75 age agesq nodegree married black hisp) model(cf–ols)

atet: e(atet)

atent: e(atent)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Observed Bootstrap Normal–based

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

atet | 1.764007 .6654867 2.65 0.008 .4596768 3.068337

atent | 1.38869 .682661 2.03 0.042 .0506991 2.726681

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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The results obtained in regression CFOLS2 can be obtained using teffects
ra:

. teffects ra (y $xvars , linear) (w)

Iteration 0: EE criterion ¼ 1.808e–27

Iteration 1: EE criterion ¼ 1.929e–30

Treatment–effects estimation Number of obs ¼ 445

Estimator : regression adjustment

Outcome model : linear

Treatment model: none

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

––––––––––––––––––+–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

w |

(1 vs 0) | 1.544721 .6619304 2.33 0.020 .2473607 2.84208

––––––––––––––––––+–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmean |

w |

0 | 4.567414 .3374549 13.53 0.000 3.906015 5.228814

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

To obtain ATET, one simply types:

. teffects ra (y $xvars , linear) (w) , atet

Iteration 0: EE criterion ¼ 1.808e–27

Iteration 1: EE criterion ¼ 9.663e–31

Treatment–effects estimation Number of obs ¼ 445

Estimator : regression adjustment

Outcome model : linear

Treatment model: none

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATET |

w |

(1 vs 0) | 1.764007 .6719526 2.63 0.009 .4470038 3.08101

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmean |

w |

0 | 4.585139 .3576414 12.82 0.000 3.884174 5.286103

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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while, to get the potential outcome means with confidence interval:

. teffects ra (y $xvars , linear) (w) , pomeans

Iteration 0: EE criterion ¼ 1.808e–27

Iteration 1: EE criterion ¼ 2.272e–30

Treatment–effects estimation Number of obs ¼ 445

Estimator : regression adjustment

Outcome model : linear

Treatment model: none

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmeans |

w |

0 | 4.567414 .3374549 13.53 0.000 3.906015 5.228814

1 | 6.112135 .5725393 10.68 0.000 4.989978 7.234291

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Optionally, it is also possible to predict the ATE(x) by typing:

. predict ATE_x , te

thus showing that ATE, ATET, and ATENT are given by the following means:

. qui sum ATE_x

. display r(mean)

1.5447205 // ATE

. sum ATE_x if w¼¼1

. display r(mean)

1.7640067 // ATET

. sum ATE_x if w¼¼0

. display r(mean)

1.38869 // ATENT

Observe that the standard errors for ATENT can be obtained by bootstrap (not

reported).

Sometimes, it may be useful to report the estimated treatment effect as a

percentage of the untreated potential outcome mean. To this aim, we can include

the coeflegend option so that teffects ra reports the names of the parame-

ters. One can then exploit the command nlcom to obtain the percentage change

with standard errors calculated with the delta method:

2.6 Implementation and Application of Regression-Adjustment 121



. teffects ra (y $xvars , linear) (w) , coeflegend

Iteration 0: EE criterion ¼ 1.808e–27

Iteration 1: EE criterion ¼ 1.929e–30

Treatment–effects estimation Number of obs ¼ 445

Estimator : regression adjustment

Outcome model : linear

Treatment model: none

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Legend

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

w |

(1 vs 0) | 1.544721 _b[ATE:r1vs0.w]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmean |

w |

0 | 4.567414 _b[POmean:r0.w]

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

. nlcom _b[ATE:r1vs0.w]/ _b[POmean:r0.w]

_nl_1: _b[ATE:r1vs0.w]/_b[POmean:r0.w]

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––

_nl_1 | .3382046 .1589424 2.13 0.033 .0266832 .649726

––––––––––––––––––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––

The results indicate a significant 33 % increase in real earnings due to training.

One advantage of ivtreatreg over teffects ra is that it allows for

the possibility of plotting jointly the distributions of ATE(x), ATET(x), and

ATENT(x), by typing:

. ivtreatreg y w $xvars , hetero($xvarsh) model(cf–ols) graphic

Source | SS df MS Number of obs ¼ 445

–––––––––––––+–––––––––––––––––––––––––––––– F( 17, 427) ¼ 1.72

Model | 1251.29175 17 73.6053972 Prob > F ¼ 0.0367

Residual | 18274.3649 427 42.7971074 R–squared ¼ 0.0641

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.0268

Total | 19525.6566 444 43.9767041 Root MSE ¼ 6.5419

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

w | 1.544721 .6426025 2.40 0.017 .2816628 2.807778

re74 | .0772563 .0976092 0.79 0.429 –.1145981 .2691106

re75 | .0580198 .1841072 0.32 0.753 –.3038494 .4198891

age | –.0710885 .3397475 –0.21 0.834 –.7388741 .5966972
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agesq | .0016875 .0055277 0.31 0.760 –.0091773 .0125523

nodegree | –.3707108 1.141044 –0.32 0.745 –2.613473 1.872051

married | –.7515524 1.222282 –0.61 0.539 –3.153992 1.650887

black | –2.913191 1.684909 –1.73 0.085 –6.224939 .3985567

hisp | –.6138299 2.055351 –0.30 0.765 –4.653694 3.426035

_ws_re74 | –.0579181 .1651987 –0.35 0.726 –.3826219 .2667858

_ws_re75 | .0232402 .2744957 0.08 0.933 –.5162907 .5627711

_ws_age | .9239745 .5771688 1.60 0.110 –.210471 2.05842

_ws_agesq | –.0147917 .0094685 –1.56 0.119 –.0334024 .003819

_ws_nodegree | –1.588303 1.606886 –0.99 0.323 –4.746694 1.570088

_ws_married | 1.748556 1.80549 0.97 0.333 –1.800198 5.29731

_ws_black | 1.827491 2.360635 0.77 0.439 –2.812421 6.467403

_ws_hisp | .7387987 3.273411 0.23 0.822 –5.695206 7.172803

_cons | 7.856682 5.309304 1.48 0.140 –2.578942 18.29231

––––––––––––––––––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––

to obtain:
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Model cf-ols: Comparison of ATE(x) ATET(x) ATENT(x)

The graphical representation can be useful to analyze the dispersion of the effect

around the mean. As such, it may offer interesting information about the effect’s
heterogeneity over observations and about the potential presence of influential data.

Moreover, it can emphasize the presence of a different effect’s distribution pattern

between treated and untreated units.

A final remark relates to the standard errors of ATEs when using the

ivtreatreg versus using teffects ra command. As is evident from the

results, the standard errors are in fact slightly different due to the fact that

teffects ra does not make the small-sample adjustment that regression-based

methods do.

In addition, an interesting option available for teffects ra is that of

reporting the two potential outcomes estimations separately. In some contexts,
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this can be interesting in itself. To obtain this, we simply add the option

aequations as follows:

. teffects ra (y $xvars , linear) (w) , aequations

Some output omitted

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

w |

(1 vs 0) | 1.544721 .6619304 2.33 0.020 .2473607 2.84208

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmean |

w |

0 | 4.567414 .3374549 13.53 0.000 3.906015 5.228814

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

OME0 |

re74 | .0772563 .0930324 0.83 0.406 –.1050838 .2595963

re75 | .0580198 .1697555 0.34 0.733 –.2746948 .3907345

age | –.0710885 .2469855 –0.29 0.773 –.5551712 .4129942

agesq | .0016875 .0038335 0.44 0.660 –.005826 .009201

nodegree | –.3707108 .9035178 –0.41 0.682 –2.141573 1.400152

married | –.7515524 .994725 –0.76 0.450 –2.701178 1.198073

black | –2.913191 1.31429 –2.22 0.027 –5.489152 –.3372307

hisp | –.6138299 1.590098 –0.39 0.699 –3.730364 2.502704

_cons | 7.856682 4.031418 1.95 0.051 –.0447516 15.75812

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

OME1 |

re74 | .0193382 .2576129 0.08 0.940 –.4855738 .5242502

re75 | .0812601 .1941968 0.42 0.676 –.2993587 .4618788

age | .8528861 .5519752 1.55 0.122 –.2289655 1.934738

agesq | –.0131042 .0088728 –1.48 0.140 –.0304946 .0042862

nodegree | –1.959013 1.303733 –1.50 0.133 –4.514283 .596256

married | .9970032 1.50374 0.66 0.507 –1.950273 3.944279

black | –1.0857 1.602923 –0.68 0.498 –4.227372 2.055971

hisp | .1249687 2.646375 0.05 0.962 –5.061831 5.311769

_cons | –4.326628 8.146136 –0.53 0.595 –20.29276 11.63951

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In conclusion, ivtreatreg and teffects ra provide similar and comple-

mentary reports of results. The combined use of both commands can be a beneficial

strategy for linear potential outcomes models.
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When linearity is not appropriate, as in the case of a binary or count outcome,

using teffects ra is preferable, although ivtreatreg also provides in this

case a consistent estimation of ATEs.

To illustrate how one can exploit the teffects ra command in a nonlinear

case, take a binary outcome within the same dataset. Suppose, we wish to study the

effect of training on the probability of becoming unemployed using as outcome the

variable “unem78.” In this case, we can define

. teffects ra (unem78 $xvars , probit) (w)

Some output omitted

Treatment–effects estimation Number of obs ¼ 445

Estimator : regression adjustment

Outcome model : probit

Treatment model: none

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

unem78 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

w |

(1 vs 0) | –.105289 .0432818 –2.43 0.015 –.1901198 –.0204583

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmean |

w |

0 | .3555628 .0298023 11.93 0.000 .2971513 .4139742

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The coefficient is negative and significant, so that the probability to remain

unemployed decreases due to attending the training course. In order to estimate the

potential outcome means, we can type:

. teffects ra (unem78 $xvars , probit) (w) , pomeans

Treatment–effects estimation Number of obs ¼ 445

Estimator : regression adjustment

Outcome model : probit

Treatment model: none

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

unem78 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmeans |

w |

0 | .3555628 .0298023 11.93 0.000 .2971513 .4139742

1 | .2502737 .0318015 7.87 0.000 .187944 .3126035

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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These results indicate that on average over observations, the probability of being

unemployed when one is treated is around 25 %, while this probability increases to

around 35 % when one is untreated. Thus, the training has a positive effect on

employment.

2.7 Implementation and Application of Matching

In this section, we focus on ATEs estimation using nonparametric methods, in

particular, focusing on Matching. We consider the same dataset as we have used for

Regression-adjustment, and we proceed first by presenting an application using

covariates matching (C Matching) and then one using propensity-score matching

(PS Matching).

2.7.1 Covariates Matching

In order to apply C Matching, we use the Stata built-in command nnmatch, part of
the teffects package. The syntax of this command is very similar to that of

Regression-adjustment and takes the form:

Basic syntax of teffects nnmatch

teffects nnmatch (ovar omvarlist) (tvar) [if] [in] [weight] [, stat options]

stat Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ate estimate average treatment effect in population

atet estimate average treatment effect on the treat

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Main options Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

nneighbor(#) specify number of matches per observation

biasadj(varlist) correct for large–sample bias using varlist

ematch(varlist) match exactly on specified variables

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that the above table contains only some of the options available for the

teffects nnmatch command (see the Stata 13 manual for the other options).

As for those considered here, according to the Stata help file of this command, we

have that nneighbor(#) specifies the number of matches per observation. The

default is nneighbor(1); biasadj(varlist), which specifies that a linear

function of the specified covariates can be used to correct for a large sample bias

that exists when matching on more than one continuous covariate. By default, no

correction is performed. As we have seen, Abadie and Imbens (2006, 2012) have
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shown that nearest-neighbor matching estimators are not consistent when matching

is done on two or more continuous covariates and have proposed a bias-corrected

estimator that is consistent. The correction term uses a linear function of variables

specified in biasadj(); ematch(varlist) specifies that the variables in

varlist match exactly. All variables in varlist must be numeric and may

be specified as factors. teffects nnmatch exits with an error if any observation

does not have the requested exact match.

Given this premise, we can apply teffects nnmatch to the previous job

training example in the following manner:

. teffects nnmatch (y $xvars) (w)

Treatment–effects estimation Number of obs ¼ 445

Estimator : nearest–neighbor matching Matches: requested ¼ 1

Outcome model : matching min ¼ 1

Distance metric: Mahalanobis max ¼ 16

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| AI Robust

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

w |

(1 vs 0) | 1.625655 .6652704 2.44 0.015 .3217487 2.929561

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The results obtained are in line with those found using Regression-adjustment; in

other words, a significant positive effect of training on earnings.

We can now consider the possibility of performing an exact matching on some

specific covariates and of increasing, up to three, the number of neighbors. In this

case, we have:

. teffects nnmatch (y $xvars) (w) , nneighbor(3) ematch(hisp black)

Treatment–effects estimation Number of obs ¼ 445

Estimator : nearest–neighbor matching Matches: requested ¼ 3

Outcome model : matching min ¼ 3

Distance metric: Mahalanobis max ¼ 18

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| AI Robust

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

w |

(1 vs 0) | 1.263357 .6265118 2.02 0.044 .0354166 2.491298

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Finally, we consider an estimation incorporating bias adjustment in large sam-

ples. We assume that such bias depends on aging (“age”) and real earnings in 1974

(“re74”), so that:

. teffects nnmatch (y $xvars) (w) , biasadj(age re74)

Treatment–effects estimation Number of obs ¼ 445

Estimator : nearest–neighbor matching Matches: requested ¼ 1

Outcome model : matching min ¼ 1

Distance metric: Mahalanobis max ¼ 16

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| AI Robust

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

w |

(1 vs 0) | 1.501995 .6651594 2.26 0.024 .1983066 2.805684

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The adjustment provided slightly modifies the bias result, decreasing from

around 1.6 to 1.5.

2.7.2 Propensity-Score Matching

Matching on the propensity-score is probably the most diffused approach for

applying Matching within the program evaluation empirical literature. This popu-

larity can be understood given the previously discussed properties of the

propensity-score, but it is also due to its ability to provide direct information on

the factors driving the selection-into-treatment.

In what follows, we present three Stata commands available for PS Matching:

the first is the Stata built-in psmatch, part of the package teffects; the second
is pscore a user-written command provided by Becker and Ichino (2002); the

third is psmatch2, a user-written command carried out by Leuven and

Sianesi (2003).

2.7.2.1 PS Matching Using teffects psmatch

We start by providing the estimation of ATEs on the JTRAIN2 dataset, using

teffects psmatch. The syntax of the command is as follows:

Basic syntax of teffects psmatch
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teffects psmatch (ovar) (tvar tmvarlist [, tmodel]) [if] [in] [weight] [,

stat options]

tmodel Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

tmodel specifies the model for the treatment variable.

For multivariate treatments, only logit is available and multinomial

Logit used.

stat Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ate estimate average treatment effect in population; the

atet estimate average treatment effect on the treated

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

options Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

nneighbor(#) specify number of matches per observation;

caliper(#) specify the maximum distance for which two

observations are potential neighbours

generate(stub) generate variables containing the observation

numbers of the nearest neighbors

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that the syntax of teffects psmatch is slightly different from that of

teffects ra and teffects nnmatch, although easily manageable too.

Moreover, in contrast to C Matching, PS Matching does not require a bias correc-

tion, since it matches units on a single continuous covariate. Of course, the

underlying assumption is that the probability rule according to which the

propensity-score is estimated is correctly specified. Finally, teffects psmatch
also estimates standard errors adjusted for the first-step estimation of the

propensity-score, as suggested by Abadie and Imbens (2012).

We start with the baseline application, which by default is nneighbor(1) and

the estimation model for the propensity-score is a logit.

. teffects psmatch (y) (w $xvars)

Treatment–effects estimation Number of obs ¼ 445

Estimator : propensity–score matching Matches: requested ¼ 1

Outcome model : matching min ¼ 1

Treatment model: logit max ¼ 16

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| AI Robust

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
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–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

w |

(1 vs 0) | 1.936551 .7433629 2.61 0.009 .4795867 3.393516

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

As is evident from the table above, the result on ATE is a little higher than that

obtained in the previous estimations, although statistical significance and sign are

consistent.

An important post-estimation command that can be employed after running

teffects psmatch is the command teffects overlap, which enables

one to assess graphically the degree of overlap. In order to obtain the graphical

representation of the degree of overlap, we run the previous PS Matching command

using the option generate(stub):

. qui teffects psmatch (y) (w $xvars) , generate(near_obs)

. teffects overlap
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As it is clearly evident, problems of overlap do not appear in this dataset, neither

plot indicating the presence of a probability mass close to 0 or 1. Moreover, the

probability mass of the two estimated densities is concentrated in regions where

overlap occurs, thus indicating that the results obtained from the matching proce-

dure are reliable.

2.7.2.2 PS Matching Using pscore

In this section, we present an application of PS Matching performed using the user-

written command pscore provided by Becker and Ichino (2002). The basic syntax

of pscore is:
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pscore treatment varlist [weight] [if exp] [in range] , pscore(newvar)

[blockid(newvar) detail logit comsup level(#) numblo(#)]

The pscore routine estimates the propensity-score of the treatment on the

control variables using a probit (or logit) model and stratifies individuals in blocks

according to the propensity-score. It displays summary statistics of the propensity-

score and of the stratification. Moreover, it checks whether the balancing property is

satisfied or not; if it is not, it asks for a less parsimonious specification of the

propensity-score; it also saves the estimated propensity-score and optionally the

blocks’ number. The estimated propensity-scores can then be used together with the

sub-commands attr, attk, attnw, attnd, and atts to obtain estimates of the

average treatment effect on the treated using, respectively, radius Matching, kernel

Matching, nearest-neighbor Matching (in one of the two versions: equal weights

and random draw), and stratification Matching, the latter using the blocks number

as an input.

In this application, which is similar in sprit to the exercise presented in Cameron

and Trivedi (2005, Chapter 25), we use again data from the National Supported

Work (NSW) demonstration to evaluate the effect of training on earnings. In this

application, however, instead of considering the dataset with 260 control units (i.e.,

the dataset JTRAIN2.DTA), we consider a comparison group of individuals taken

from the Population Survey of Income Dynamics (PSID), and in particular the

subset PSID-1 including 2,490 controls.8 We call this dataset JTRAIN_CPS1.DTA;

the dataset includes 2,675 units.

The benchmark estimate obtained from the NSW experiment is $1,794, which is

equal to the average of RE78 for NSW treated units minus the average of RE78 for

NSW controls. This value is obtained using the DIM estimator (see Sect. 2.4.1).

We perform PS Matching by pscore using the same specification of the

propensity-score proposed in Dehejia and Wahba (2002). Firstly, we fix the number

of bootstrap replications:

. global breps 100

We then create a global macro, xvars_ps, containing the variables entering

the propensity-score specification:

. global xvars_ps age agesq educ educsq marr nodegree black ///

hisp re74 re74sq re75 u74 u75 u74hisp

The command pscore tabulates the treatment variable; estimates the

propensity-score by visualizing the logit/probit regression results; and tests whether

the balancing property is satisfied by identifying the optimal numbers of blocks. In

8 The subset PSID-1 is made of “all male household heads under age 55 who did not classify

themselves as retired in 1975” (see Dehejia and Wahba 1999, p. 1055).
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other words, it implements the algorithm presented in Sect. 2.3.7. If the balancing

property is not satisfied, then we are asked to change the propensity-score specifi-

cation by introducing other variables, powers, and/or interactions. According to

Dehejia and Wahba (2002)’s specification, we can estimate:

. pscore w $xvars_ps, pscore(myscore) comsup ///

blockid(myblock) numblo(5) level(0.005) logit

****************************************************

Algorithm to estimate the propensity–score

****************************************************

The treatment is w

w | Freq. Percent Cum.

––––––––––––+–––––––––––––––––––––––––––––––––––

0 | 2,490 93.08 93.08

1 | 185 6.92 100.00

––––––––––––+–––––––––––––––––––––––––––––––––––

Total | 2,675 100.00

Estimation of the propensity–score

Logistic regression Number of obs ¼ 2675

LR chi2(14) ¼ 951.10

Prob > chi2 ¼ 0.0000

Log likelihood ¼ –197.10175 Pseudo R2 ¼ 0.7070

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

w | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

age | .2628422 .120206 2.19 0.029 .0272428 .4984416

agesq | –.0053794 .0018341 –2.93 0.003 –.0089742 –.0017846

educ | .7149774 .3418173 2.09 0.036 .0450278 1.384927

educsq | –.0426178 .0179039 –2.38 0.017 –.0777088 –.0075269

marr | –1.780857 .301802 –5.90 0.000 –2.372378 –1.189336

nodegree | .1891046 .4257533 0.44 0.657 –.6453564 1.023566

black | 2.519383 .370358 6.80 0.000 1.793495 3.245272

re75 | –.0002678 .0000485 –5.52 0.000 –.0003628 –.0001727

hisp | 3.087327 .7340486 4.21 0.000 1.648618 4.526036

re74 | –.0000448 .0000425 –1.05 0.292 –.000128 .0000385

re74sq | 1.99e–09 7.75e–10 2.57 0.010 4.72e–10 3.51e–09

u74 | 3.100056 .5187391 5.98 0.000 2.083346 4.116766

u75 | –1.273525 .4644557 –2.74 0.006 –2.183842 –.3632088

u74hisp | –1.925803 1.07186 –1.80 0.072 –4.02661 .1750032

_cons | –7.407524 2.445692 –3.03 0.002 –12.20099 –2.614056

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note: 65 failures and 0 successes completely determined.

Note: the common support option has been selected

The region of common support is [.00036433, .98576756]

Description of the estimated propensity–score
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in region of common support

Estimated propensity–score

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Percentiles Smallest

1% .0003871 .0003643

5% .0004805 .0003669

10% .0006343 .0003702 Obs 1271

25% .0016393 .0003714 Sum of Wgt. 1271

50% .0090427 Mean .1447205

Largest Std. Dev. .2809511

75% .0897599 .9803043

90% .656286 .9830988 Variance .0789335

95% .9392306 .9855413 Skewness 2.049999

99% .9640553 .9857676 Kurtosis 5.748631

******************************************************

Step 1: Identification of the optimal number of blocks

Use option detail if you want more detailed output

******************************************************

The final number of blocks is 6

This number of blocks ensures that the mean propensity–score

is not different for treated and controls in each blocks

**********************************************************

Step 2: Test of balancing property of the propensity–score

Use option detail if you want more detailed output

**********************************************************

The balancing property is satisfied

This table shows the inferior bound, the number of treated

and the number of controls for each block

Inferior |

of block | w

of pscore | 0 1 | Total

–––––––––––+––––––––––––––––––––––+––––––––––

.0003643 | 960 9 | 969

.1 | 56 10 | 66

.2 | 33 14 | 47

.4 | 22 24 | 46

.6 | 7 33 | 40

.8 | 8 95 | 103

–––––––––––+––––––––––––––––––––––+––––––––––

Total | 1,086 185 | 1,271

Note: the common support option has been selected

*******************************************

End of the algorithm to estimate the pscore

*******************************************
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The results indicate that the balancing property is satisfied with a final optimal

number of propensity-score blocks equal to 6. This is a good news, as it ensures that

we can reliably apply matching, since observable covariates are balanced within

blocks (i.e., PS strata); this implies that differences in the output between treated

and control units should only be attributed to the effect of the treatment variable.

Observe that the command, as it is written above, generates three important vari-

ables: the estimated propensity-score (“myscore”), the block identification number

(“myblock”), and the binary common support variable (“comsup”); each observa-

tion will have a given estimated propensity-score, will belong to a specific block,

and will be (or will be not) in the common support. We can perform the same

estimation without the common support option. In what follows, however, we will

use this option in calculating all causal effects.

After running pscore, once the balancing property is properly satisfied, one

can estimate ATEs with various Matching methods by typing the proper

sub-command:

(a) Nearest-neighbor Matching

. set seed 10101

. attnd re78 w $xvars_ps , comsup logit

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

n. treat. n. contr. ATT Std. Err. t

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

185 60 1285.782 3895.044 0.330

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note: the numbers of treated and controls refer to actual

nearest neighbour matches

(b) Radius Matching for radius¼ 0.001

. set seed 10101

. attr re78 w $xvars_ps , comsup logit radius(0.001)

ATT estimation with the Radius Matching method

Analytical standard errors

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

n. treat. n. contr. ATT Std. Err. t

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

51 541 –7808.241 1146.418 –6.811

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note: the numbers of treated and controls refer to actual

matches within radius
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(c) Radius Matching for radius¼ 0.0001

. set seed 10101

. attr re78 w $xvars_ps , comsup logit radius(0.0001)

ATT estimation with the Radius Matching method

Analytical standard errors

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

n. treat. n. contr. ATT Std. Err. t

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

27 91 –6401.345 2054.218 –3.116

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note: the numbers of treated and controls refer to actual

matches within radius

(d) Radius Matching for radius¼ 0.00001

. set seed 10101

. attr re78 w $xvars_ps , comsup logit radius(0.00001)

ATT estimation with the Radius Matching method

Analytical standard errors

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

n. treat. n. contr. ATT Std. Err. t

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

16 17 –1135.184 3189.367 –0.356

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note: the numbers of treated and controls refer to actual

matches within radius

(e) Stratification Matching

. set seed 10101

. atts re78 w , pscore(myscore) blockid(myblock) comsup

ATT estimation with the Stratification method

Analytical standard errors

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

n. treat. n. contr. ATT Std. Err. t

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

185 1086 1452.370 920.769 1.577

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

(f) Kernel Matching

. set seed 10101

. attk re78 w $xvars_ps , comsup boot reps($breps) dots logit

ATT estimation with the Kernel Matching method
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Bootstrapped standard errors

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

n. treat. n. contr. ATT Std. Err. t

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

185 1086 1342.016 864.064 1.553

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Observe that for kernel Matching, the attk routine does not provide analytical

standard errors, only bootstrapped standard errors. The results are reported in

Table 2.6, together with the results obtained by Dehejia and Wahba (2002).

The obtained results show a strong variability of the treatment effect across the

type of Matching procedure. In particular, radius Matching estimators set out a

dramatic bias, showing even a negative estimate of ATET. Dehejia and Wahba

(2002, p. 155, Table 3), on the contrary, reported positive effects using caliper

Matching. This difference is due to the fact that the approach adopted does not discard

those treated units which do not find matches within the caliper’s area, but they are

matched with the nearest-neighbor found outside the area identified by the caliper.

This is a simple but significant example of how slight changes in the algorithm used

to match units can lead to very different and, possibly, contrasting results.

2.7.2.3 PS Matching Using psmatch2

Another Stata routine available for implementing Matching is psmatch2 (Leuven

and Sianesi 2003). The basic syntax of psmatch2 is as follows:

psmatch2 depvar [indepvars] [if exp] [in range] [, outcome(varlist) ///

pscore(varname) neighbor(integer) radius caliper(real) mahalanobis(varlist)

common

although many further options are included. The routine psmatch2 implements

full Mahalanobis Matching and a variety of propensity-score Matching methods to

Table 2.6 Comparison of ATET estimates over different matching methods

ATET (this

application)

ATET

as

% of

1,794

Dehejia and

Wahba (2002)

ATET

as

% of

1,794

Benchmark:

NSW

experiment

Nearest-neighbor 1,286 72 1,890 105 1,794

Radius¼ 0.001 –7,808 –435 1,824 102

Radius¼ 0.0001 –6,401 –357 1,973 110

Radius¼ 0.00001 –1,135 –63 1,893 106

Stratification 1,452 81

Kernel 1,342 75

Note: In the two ATET columns, nearest-neighbor estimates differ because of replacement
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adjust for pretreatment observable differences between a group of treated and a

group of untreated units. Treatment status is identified by depvar¼ 1 for the

treated and depvar¼ 0 for the untreated observations. In this application, we use

psmatch2 with the propensity-score calculated by pscore, but we may directly

calculate the propensity-score within psmatch2.
By considering again the JTRAIN_PSID1.DTA, we can estimate a 3-NN

Matching:

. psmatch2 w , out(re78) pscore(myscore) neighbor(3) common

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Variable Sample | Treated Controls Difference S.E. T–stat

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

RE78 Unmatched | 6349.14537 21553.9213 –15204.7759 1154.61435 –13.17

ATT | 6349.14537 5022.4331 1326.71227 2923.22823 0.45

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note: S.E. does not take into account that the propensity–score is estimated.

| psmatch2:

psmatch2: | Common

Treatment | support

assignment | On support| Total

–––––––––––+–––––––––––+––––––––––

Untreated | 2,490 | 2,490

Treated | 185 | 185

–––––––––––+–––––––––––+––––––––––

Total | 2,675 | 2,675

The ATET is equal to around 1,326 and, although not significant, it is of the

same magnitude of previous nearest-neighbor Matching estimates.

In order to test the balancing property, psmatch2 takes a different route

compared to that of pscore. More specifically, it does not provide a test before

matching but after matching is realized. This is done by a useful accompanying

routine called pstest, which performs a difference-in-mean test for the covariates

before and after Matching. The syntax of pstest is:

pstest varlist [,summary quietly mweight(varname) treated(varname)

support(varname)]

pstest calculates several measures of the balancing of the variables included in

varlist before and after matching. In particular, for each variable in varlist,
it calculates:

(a) t-tests for equality of means in the treated and untreated groups, both before

and after matching. t-tests are based on a regression of the variable on a

treatment indicator. Before matching, this is an unweighted regression on
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the whole sample; after matching the regression is weighted using the

matching weight variable “_weight” and based on the on-support sample;

(b) The standardized bias before and after matching, together with the achieved

percentage reduction in abs(bias). The standardized bias is the difference of

the sample means in the treated and untreated (full or matched) subsamples as

a percentage of the square root of the average of the sample variances in the

treated and untreated groups.

We first calculate a before/after difference-in-mean test for the estimated pro-

pensity-score:

. pstest myscore

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Mean %reduct | t–test

Variable Sample | Treated Control %bias |bias| | t p>|t|

––––––––––––––––––––––––+––––––––––––––––––––––––––––––––––+––––––––––––––––

myscore Unmatched | .69994 .02229 310.5 | 76.66 0.000

Matched | .69994 .70236 –1.1 99.6 | –0.08 0.937

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

and for all the covariates:

. pstest $xvars_ps

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Mean %reduct | t–test

Variable Sample | Treated Control %bias |bias| | t p>|t|

––––––––––––––––––––––––+––––––––––––––––––––––––––––––––––+––––––––––––––––

age Unmatched | 25.816 34.851 –100.9 | –11.57 0.000

Matched | 25.816 24.773 11.7 88.5 | 1.61 0.108

| |

agesq Unmatched | 717.39 1323.5 –97.1 | –10.59 0.000

Matched | 717.39 639.96 12.4 87.2 | 1.96 0.051

| |

educ Unmatched | 10.346 12.117 –68.1 | –7.69 0.000

Matched | 10.346 10.741 –15.2 77.7 | –2.01 0.045

| |

educsq Unmatched | 111.06 156.32 –78.5 | –8.52 0.000

Matched | 111.06 118.43 –12.8 83.7 | –1.89 0.060

| |

marr Unmatched | .18919 .86627 –184.2 | –25.81 0.000

Matched | .18919 .13874 13.7 92.5 | 1.31 0.191

| |

nodegree Unmatched | .70811 .30522 87.9 | 11.49 0.000

Matched | .70811 .68288 5.5 93.7 | 0.53 0.599

| |
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black Unmatched | .84324 .2506 148.0 | 18.13 0.000

Matched | .84324 .87027 –6.7 95.4 | –0.74 0.459

| |

hisp Unmatched | .05946 .03253 12.9 | 1.94 0.053

Matched | .05946 .05045 4.3 66.5 | 0.38 0.705

| |

re74 Unmatched | 2095.6 19429 –171.8 | –17.50 0.000

Matched | 2095.6 2448.2 –3.5 98.0 | –0.67 0.504

| |

re75 Unmatched | 1532.1 19063 –177.4 | –17.50 0.000

Matched | 1532.1 1700.4 –1.7 99.0 | –0.49 0.621

| |

re74sq Unmatched | 2.8e+07 5.6e+08 –85.7 | –8.30 0.000

Matched | 2.8e+07 3.3e+07 –0.8 99.0 | –0.45 0.655

| |

u74 Unmatched | .70811 .08635 164.2 | 27.54 0.000

Matched | .70811 .64324 17.1 89.6 | 1.33 0.184

| |

u75 Unmatched | .6 .1 122.8 | 20.70 0.000

Matched | .6 .56757 8.0 93.5 | 0.63 0.528

| |

u74hisp Unmatched | .03243 .00361 21.7 | 5.09 0.000

Matched | .03243 .03063 1.4 93.7 | 0.10 0.921

| |

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

It may be useful to show how to get pstest’s results by hand. As example, we

consider only the propensity-score:

. *1. For Treated

. sum myscore [aweight¼_weight] if w¼¼0

. *2. For Untreated

. sum myscore [aweight¼_weight] if w¼¼0

In order to assess the quality of the Matching, we can plot the distribution of the

propensity-score for treated and untreated before and after Matching in the same

graph. One should remember that weights can also be used when calculating the

density. We first define a label for the treatment status:

. label define tstatus 0 Comparison_sample 1 Treated_sample

. label values w tstatus

. label variable w "Treatment Status"

The propensity-score density graph “before” Matching can be obtained by the

following command:
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. qui graph twoway (kdensity myscore if TREAT¼¼1, msize(small) ) ///

(kdensity myscore if TREAT¼¼0, msize(small) lpattern(shortdash_dot)), ///

subtitle(, bfcolor(none)) ///

xtitle("propensity–score (Before)", size(medlarge)) ///

xscale(titlegap(*7) ytitle("Density", size(medlarge)) yscale(titlegap(*5)) ///

legend(pos(12) ring(0) col(1)) ///

legend( label(1 "Treated") label(2 "Untreated")) saving(BEFORE, replace)

Similarly, the propensity-score density graph “after” Matching can be obtained

using:

. qui graph twoway (kdensity myscore [aweight¼_weight] if TREAT¼¼1,

msize(small)) ///

(kdensity myscore [aweight¼_weight] if TREAT¼¼0, msize(small)

lpattern(shortdash_dot)), ///

subtitle(, bfcolor(none)) ///

xtitle(" propensity–score (After) ", size(medlarge))

xscale(titlegap(*7)) ///

ytitle("Density", size(medlarge)) yscale(titlegap(*5)) ///

legend(pos(12) ring(0) col(1)) ///

legend( label(1 "Treated") label(2 "Untreated")) saving(AFTER , replace)

Finally, we can combine the two previous graphs in a single graph by typing:

. graph combine BEFORE.gph AFTER.gph
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This above graph illustrates the improvement of post-matching propensity-score

and visually indicates that the matching operated was successful. When this does
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not occur, so that balancing is not fully achieved, one should find another specifi-

cation of the propensity-score or, in the worst case, try to carefully justify why

accepting results, despite the fact that full covariates’ balancing has not been

achieved. This is a limitation of Matching as an evaluation technique, since in

real datasets, it is not always possible to reach balancing (at least to some acceptable

extent), even in the presence of a rich set of covariates. This leads the researcher

sometimes to prefer methods for which such a problem is less relevant (e.g.,

Reweighting on the propensity-score).

Before concluding this section, we present an application of the Rosenbaum

sensitivity test, using the Stata user-written routine rbounds (Gangl 2004).

Syntax of rbounds

rbounds varname [if exp], gamma(numlist) [alpha(#) acc(#) sigonly dots]

Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

rbounds calculates Rosenbaum bounds for average treatment effects on the treated

in the presence of unobserved heterogeneity (hidden bias) between treatment

and control cases. rbounds takes the difference in the response variable

between treatment and control cases as input variable varname. The procedure

then calculates Wilcoxon sign–rank tests that give upper and lower bound

estimates of significance levels at given levels of hidden bias. Under the

assumption of additive treatment effects, rbounds also provides Hodges–

Lehmann point estimates and confidence intervals for the average treatment

effect on the treated. If installed, the input variable varname may be

generated from psmatch or psmatch2. Currently, rbounds implements the

sensitivity tests for matched (1x1) pairs only.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Main options

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

gamma(numlist) specifies the values of gamma for which to carry out

the sensitivity analysis. Estimates at cap gamma ¼ 1 (no heterogeneity)

are included in the calculations by default. gamma() is required by

rbounds.

alpha(#) specifies the values of alpha in the calculation of confidence

intervals for the Hodges–Lehmann point estimate of the average treatment

effect.

acc(#) specifies the convergence criterion of the line search algorithm

used to find the Hodges–Lehmann point estimates. Convergence level is set

to 1e–acc, the preset value is acc¼6.

sigonly restricts rbounds to calculate Wilcoxon signrank tests for

significance levels only.

dots may be specified for status information. The option is useful for

checking total execution time with large samples.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Although psmatch2 has been already run, we rerun it just for the sake of

completeness.

. global xvars re74 re75 age agesq nodegree married black hisp

. pscore w $xvars_ps, pscore(myscore) comsup

. psmatch2 w , out(re78) pscore(myscore) common

Before running rbounds, we first calculate, for each unit, the difference

between the actual and the imputed outcome by typing:

. gen delta ¼ RE78 – _RE78 if _treat¼¼1 & _support¼¼1

Now, we run the rbounds command by writing:

. rbounds delta, gamma(1 (1) 3)

Rosenbaum bounds for delta (N ¼ 185 matched pairs)

Gamma sig+ sig– t–hat+ t–hat– CI+ CI–

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 0 0 5251.77 5251.77 4318.09 6209.05

2 1.4e–15 0 3404.07 7255.29 2505.17 8674.72

3 5.7e–11 0 2443.75 8767.93 1598.29 10253

4 1.2e–08 0 1940.64 9678.02 976.635 11562.7

5 2.9e–07 0 1505.64 10548.3 647.205 12783.4

* gamma – log odds of differential assignment due to unobserved factors

sig+ – upper bound significance level

sig– – lower bound significance level

t–hat+ – upper bound Hodges–Lehmann point estimate

t–hat– – lower bound Hodges–Lehmann point estimate

CI+ – upper bound confidence interval (a¼ .95)

CI– – lower bound confidence interval (a¼ .95)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The W-test’s p-value upper bound (sig+) maintains the 5 % significance up to a

value of Γ equal to 5. In this case, we can therefore sufficiently trust our Matching,

since the results remain significant even with a very high and unlikely value of Γ;
indeed, Γ¼ 5 means that the probability to be treated is five times higher for one

unit than for another one, a situation that should be really rare in reality. Therefore,

our matching can be taken as soundly reliable.

2.7.3 An Example of Coarsened-Exact Matching Using cem

This section provides an illustrative example of Coarsened-exact Matching (CEM)

using the user-written Stata command cem provided by Blackwell et al. (2009).
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We consider again the dataset JTRAIN_PSID1.dta. The basic cem syntax is

reported below.

Syntax of cem

cem varname1 [(cutpoints1)] [varname2 [(cutpoints2)]] . . . [, options]

Main options Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

treatment(varname) name of the treatment variable

showbreaks display the cutpoints used for each variable

autocuts(string) method used to automatically generate cutpoints

k2k force cem to return a k2k solution

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Description

cem implements the Coarsened Exact Matching method described in Iacus, King, and

Porro (2012). The main input for cem are the variables to use and the

cutpoints that define the coarsening. Users can either specify cutpoints for

a variable or allow cem to automatically coarsen the data based on a binning

algorithm, chosen by the user. To specify a set of cutpoints for a variable,

place a numlist in parentheses after the variable’s name. To specify an

automatic coarsening, place a string indicating the binning algorithm to use

in parentheses after the variable’s name. To create a certain number of

equally spaced cutpoints, say 10, place “#10” in the parentheses (this will

include the extreme values of the variable). Omitting the parenthetical

statement after the variable name tells cem to use the default binning

algorithm, itself set by autocuts.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In this example, we start first by evaluating the degree of imbalance when cells

are not deleted. Of course, we first need to coarsen variables. To this aim, we leave

cem to apply its automated coarsening algorithm (although it is possible to choose a

user-defined level of coarsening). To calculate the state of “starting” imbalance

within our dataset, we make use of the imb command (provided by Stata when cem
is installed). The imb syntax is in what follows:

Syntax of imb

imb varlist [if] [in] [, options]

Main options Description

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

treatment(varname) name of the treatment variable

breaks(string) method used to generate cutpoints

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Description

Imb returns a number of measures of imbalance in covariates between treatment
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and control groups. A multivariate L1 distance, univariate L1 distrances,

difference in means and empirical quatiles difference are reported. The L1

measures are computed by coarsening the data according to breaks and

comparing across the multivariate histogram.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Considering a simple model with a parsimonious specification of the covariates,

we run the imb command:

. imb age educ black nodegree re74, treatment(treat)

Multivariate L1 distance: .94819277

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Univariate imbalance:

L1 mean min 25% 50% 75% max

age .37598 –9.0344 –1 –6 –8 –15 –7

educ .44049 –1.7709 4 –2 –1 –2 –1

black .59264 .59264 0 1 1 0 0

nodegree .40289 .40289 0 0 1 0 0

re74 .72282 –17333 0 –10776 –18417 –25159 –1.0e+05

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The overall multivariate imbalance, as calculated by the statistic L1, provides
evidence of a strong imbalance in this dataset, since the statistic is very close to one.

This is also reflected in univariate imbalances that are especially strong for real

earnings in 1974 (“re74”, with a value of 0.72) and the variable “black” (with a

value of 0.59).

Given this initial state of imbalance, we run the cem command to see whether

there is some balancing improvement when cells that do not contain at least one

treated unit and one control unit are dropped out:

. cem age educ black nodegree re74, treatment(treat)

Matching Summary:

–––––––––––––––––

Number of strata: 553

Number of matched strata: 61

0 1

All 2490 185

Matched 348 163

Unmatched 2142 22

Multivariate L1 distance: .69399345

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Univariate imbalance:

L1 mean min 25% 50% 75% max

age .01132 –.29306 –1 0 1 0 1

educ .05817 .05608 1 0 0 0 0
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black 2.8e–16 3.3e–16 0 0 0 0 0

nodegree 4.2e–16 –7.8e–16 0 0 0 0 0

re74 .62824 –4832.4 0 –3526.7 –6857.4 –8249.6 –226.7

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

We immediately see from previous results that a quite significant improvement

of multivariate balancing is achieved; the statistic L1 passes from 0.948 to 0.693

(with a decrease of around 27 %). The imbalance for “re74” (0.628), however,

remains fairly strong.

What is striking is the large number of cells deleted by the cem algorithm: we

started with 553 cells but only 61 out of them have matched. This is a rate of cells’
survivorship of just 11 %, which is quite low and is well reflected in the significant

decrease of untreated units, from 2,490 to 348 (just 13 %).

Although questionable, we accept this result at this stage and calculate the ATET

through a WLS approach, using as weights those automatically generated by cem,
i.e., cem_weights:

. regress re78 treat [iweight¼cem_weights]

Source | SS df MS Number of obs ¼ 511

–––––––––––––+–––––––––––––––––––––––––––––– F( 1, 509) ¼ 16.47

Model | 1.6537e+09 1 1.6537e+09 Prob > F ¼ 0.0001

Residual | 5.1108e+10 509 100408432 R–squared ¼ 0.0313

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.0294

Total | 5.2762e+10 510 103454192 Root MSE ¼ 10020

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

treat | –3859.77 951.0692 –4.06 0.000 –5728.275 –1991.266

_cons | 10221.63 537.1499 19.03 0.000 9166.326 11276.93

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The results indicate a negative, significant, and remarkable effect of training on

real earnings in 1978. The estimated value (�3,859) is, however, too far from the

true one (1,794), thus illustrating the bias induced by this Matching approach. As in

the case of radius Matching, this bias is probably due to a too strong trimming

process operated by the cem balancing algorithm. Thus, the trade-off between

estimation precision and balancing tended to be mainly against the first, implying

that one has to be very careful in drawing conclusions when a relatively high

reduction of observations is carried out by the Matching process. This is indeed

true for any Matching relying on some trimming procedure.
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2.8 Implementation and Application of Reweighting

In this section, we present a Stata implementation of the Reweighting method to

consistently estimate ATE, ATET, and ATENT. We first present the user-written

Stata command treatrew (Cerulli 2014a), to be going on, by comparing it with

the built-in Stata routine teffects ipw.

2.8.1 The Stata Routine treatrew

The user-written Stata module treatrew estimates ATEs by Reweighting on the

propensity-score as proposed by Rosenbaum and Rubin (1983). Either analytical or

bootstrapped standard errors are provided. The syntax follows the typical Stata

command syntax.

Syntax of treatrew

treatrew outcome treatment [varlist] [if] [in] [weight], model(modeltype)

[graphic range(a b) conf(number) vce(robust)]

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Description

treatrew estimates Average Treatment Effects by reweighting on propensity–score.

Depending on the model specified, treatrew provides consistent estimation of

Average Treatment Effects under the hypothesis of "selection on observables".

Conditional on a pre–specified set of observable exogenous variables x –

thought of as those driving the non–random assignment to treatment – treatrew

estimates the Average Treatment Effect (ATE), the Average Treatment Effect on

Treated (ATET) and the Average Treatment Effect on Non–Treated (ATENT), as

well as the estimates of these parameters conditional on the observable

factors x (i.e., ATE(x), ATET(x) and ATENT(x)). Parameters standard errors

are provided either analytically (following Wooldridge, 2010, p. 920–930) and

via bootstrapping. treatrew assumes that the propensity–score specification

is correct.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Main Options

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

model(modeltype): specifies the model for estimating the propensity–score, where

modeltype must be one out of these two: "probit" or "logit". It is always

required to specify one model.

graphic: allows for a graphical representation of the density distributions of

ATE(x), ATET(x) and ATENT(x)within their whole support.

range(a b): allows for a graphical representation of the density distributions

of ATE(x), ATET(x) and ATENT(x) within the support [a;b] specified by the

user. It has to be specified along with the graphic option.
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modeltype_options description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

probit The propensity–score is estimated by a probit regression

logit The propensity–score is estimated by a logit regression

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The user has to set: (a) the outcome variable, i.e., the variable over which the

treatment is expected to have an impact (outcome); (b) the binary treatment

variable (treatment); (c) a set of confounding variables (varlist); and finally
(d) a series of options. Two options are of particular importance: the option model
(modeltype) sets the type of model, probit or logit, that has to be used in

estimating the propensity-score; the option graphic and the related option

range(a b) produce a chart where the distribution of ATE(x), ATET(x), and

ATENT(x) are jointly plotted within the interval [a; b].
As treatrew is an e-class command, it provides an ereturn list of

objects (such as scalars and matrices) to be used in subsequent elaborations. In

particular, the values of ATE, ATET, and ATENT are returned in the scalars

e(ate), e(atet), and e(atent), and they can be used to obtain bootstrapped
standard errors. Observe that, by default, treatrew provides analytical standard

errors.

To illustrate a practical application of treatrew, we use an illustrative dataset
called FERTIL2.DTA accompanying the manual “Introductory Econometrics: A

Modern Approach” by Wooldridge (2013), which collects cross-sectional data on

4,361 women of childbearing age in Botswana. This dataset is freely downloadable

at http://fmwww.bc.edu/ec-p/data/wooldridge/FERTIL2.dta. It contains 28 vari-

ables on various woman and family characteristics.

Using FERTIL2.DTA, we are interested in evaluating the impact of the variable

“educ7” (taking value 1, if a woman has more than or exactly 7 years of education,

and 0 otherwise) on the number of children in the family (“children”). Several

conditioning (or confounding) observable factors are included in the dataset, such

as the age of the woman (“age”), whether or not the family owns a TV (“tv”),

whether or not the woman lives in a city (“urban”), and so forth. In order to

investigate the relationship between education and fertility and according to the

model’s specification ofWooldridge (2010, example 21.3, p. 940), we estimate ATE,

ATET and ATENT (as well as ATE(x), ATET(x), and ATENT(x)) by “reweighting”

using the treatrew command. We also compare Reweighting results with other

popular program evaluation methods, such as (1) the Difference-in-means (DIM),

which is taken as the benchmark case, (2) the OLS regression-based random-

coefficient model with “heterogeneous reaction to confounders,” estimated through

the user-written Stata routine ivtreatreg (Cerulli 2014b), and (3) a one-to-one

nearest-neighbor Matching, computed by the psmatch2 Stata module (Leuven

and Sianesi 2003). Results from all these estimators are reported in Table 2.7.

The results in column (1) refer to the Difference-in-means (DIM) and are

obtained by typing:

. reg children educ7
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Results on column (2) refer to CF-OLS and are obtained by typing:

. ivtreatreg children educ7 age agesq evermarr urban electric tv , ///

hetero(age agesq evermarr urban electric tv) model(cf–ols)

In the case of CF–OLS, standard errors for ATET and ATENT are obtained via

bootstrap procedures and can be obtained in Stata by typing:

. bootstrap atet¼r(atet) atent¼r(atent), rep(200): ///

ivtreatreg children educ7 age agesq evermarr urban electric tv , ///

hetero(age agesq evermarr urban electric tv) model(cf–ols)

Results set out in columns (3)–(6) refer to the Reweighting estimator (REW). In

column (3) and (4), standard errors are computed analytically, whereas in column

(5) and (6), they are calculated via bootstrap for the logit and probit model,

respectively. These results can be retrieved by typing sequentially:

. treatrew children educ7 age agesq evermarr urban electric tv , ///

model(probit)

. treatrew children educ7 age agesq evermarr urban electric tv , ///

model(logit)

. bootstrap e(ate) e(atet) e(atent) , reps(200): ///

treatrew children educ7 age agesq evermarr urban electric tv , model(probit)

. bootstrap e(ate) e(atet) e(atent) , reps(200): ///

treatrew children educ7 age agesq evermarr urban electric tv , model(logit)

Finally, column (7) presents an estimation of ATEs obtained by implementing a

one-to-one nearest-neighbor Matching on propensity-score (MATCH). Here, the

standard error for ATET is obtained analytically, whereas those for ATE and

ATENT are computed by bootstrapping. Matching results can be obtained by

typing:

. psmatch2 educ7 age agesq evermarr urban electric tv, ate out(children) com

. bootstrap r(ate) r(atu): psmatch2 educ7 $xvars , ate out(children) com

where the option com restricts the sample to units with common support. In order to

test the balancing property for such a Matching estimation, we provide a DIM on

the propensity-score before and after matching treated and untreated units, using

the psmatch2’s post-estimation command pstest:
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. pstest _pscore

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Mean %reduct | t–test

Variable Sample | Treated Control %bias |bias| | t p>|t|

––––––––––––––––––––––––+––––––––––––––––––––––––––––––––––+––––––––––––––––

_pscore Unmatched | .65692 .42546 111.7 | 37.05 0.000

Matched | .65692 .65688 0.0 100.0 | 0.01 0.994

| |

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This test suggests that with regard to the propensity-score, the Matching proce-

dure implemented by psmatch2 is balanced; thus we can sufficiently trust the

Matching results (indeed, the propensity-score was unbalanced before Matching

and balanced after Matching).

A number of results warrant commenting. Unlike DIM, results from CF-OLS

and REW are fairly comparable, both in terms of coefficients’ size and significance;
the values of ATE, ATET, and ATENT obtained using Reweighting on propensity-

score are only slightly higher than those obtained by CF-OLS. This means that the

linearity of the potential outcome equations assumed by the CF-OLS is an accept-

able approximation. Looking at the value of ATET, obtained by REW (reported in

column 3, Table 2.7), an educated woman in Botswana would have been—ceteris
paribus—significantly more fertile if she had been less educated. We can conclude

that “education” has a negative impact on fertility, resulting a woman having

around 0.5 fewer children. Observe that, if confounding variables were not consid-

ered, as in using DIM, this negative effect would appear dramatically higher, of

approximately 1.77 children. The difference between 1.77 and 0.5 (around 1.3) is

an estimation of the bias induced by the presence of selection on observables.

Columns (3) and (4) contain REW results using Wooldridge’s analytical standard
errors in the case of probit and logit respectively. As one might expect, these results

are very similar. Of more interest are the REW results when standard errors are

obtained via bootstrap (columns (5) and (6)). Here statistical significance is confirmed

when comparing these to the results derived from analytical formulas. What is

immediate to see is that bootstrap procedures seem to increase significance both for

ATET and ATENT, while ATE’s standard error is in line with the analytical one.

Some differences in results emerge when applying the one-to-one nearest-

neighbor Matching (column (7)) to this dataset. In this case, ATET becomes

insignificant with a magnitude that is around one-third lower than that obtained

by Reweighting. As previously discussed, ATE and ATENT’s standard errors are

obtained here via bootstrap, given that psmatch2 does not provide analytical

solutions for these two parameters. As illustrated by Abadie and Imbens (2008),

bootstrap performance is nevertheless generally poor in the case of Matching; thus,

these results have to be taken with some caution.
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Finally, Fig. 2.8 sets out the estimated kernel density for the distribution of

ATE(x), ATET(x), and ATENT(x) when treatrew is used with the

options “graphic” and “range(–30 30)”. It is evident that the distribution

of ATET(x) is slightly more concentrated around its mean (equal to ATET) than

ATENT(x), thus indicating that more educated women respond more

homogenously to a higher level of education. On the contrary, less educated

women react much more heterogeneously to a potential higher level of education.

2.8.2 The Relation Between treatrew and Stata 13’s
teffects ipw

As said, stata 13 provides a new far-reaching package, teffects, for estimating

treatment effects for observational data. Among the many estimation methods

provided by this suit, the sub-command teffects ipw (hereafter IPW) imple-

ments a Reweighting estimator based on inverse-probability weighting.

This routine estimates the parameters ATE, ATET, and the mean potential

outcomes using a WLS regression, where weights are function of the propensity-

score estimated in the first step. To see the equivalence between IPW and WLS, we

apply the new command to our previous dataset by computing ATE:

. teffects ipw (children) (educ7 $xvars, probit) , ate

Iteration 0: EE criterion ¼ 6.624e–21

Iteration 1: EE criterion ¼ 4.111e–32

Treatment–effects estimation Number of obs ¼ 4358

Estimator : inverse–probability weights

Outcome model : weighted mean

Treatment model: probit
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

children | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

educ7 |

(1 vs 0) | –.1531253 .0755592 –2.03 0.043 –.3012187 –.0050319

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmean |

educ7 |

0 | 2.208163 .0689856 32.01 0.000 2.072954 2.343372

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In this results table, we see that the value of ATE is�0.153 with a standard error

of 0.075 resulting in a moderately significant effect of “educ7” on “children.”

We can show that this value of ATE can also be obtained using a simple WLS

regression of y on w and a constant, with weights hi designed in this way:

hi ¼ hi1 ¼ 1=p xið Þ ifDi ¼ 1

hi ¼ hi0 ¼ 1= 1� p xið Þ½ � ifDi ¼ 0

The Stata code for computing such a WLS regression is as follows:

. global xvars age agesq evermarr urban electric tv

. probit educ7 $xvars , robust // estimate the probit regression

. predict _ps , p // call the estimated propensity–score as _ps

. gen H¼(1/_ps)*educ7+1/(1–_ps)*(1–educ7) // weighing function H for D¼1 and D¼0

. reg children educ7 [pw¼H] , vce(robust) // estimate ATE by a WLS regression

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Linear regression Number of obs ¼ 4358

F( 1, 4356) ¼ 2.00

Prob > F ¼ 0.1576

R–squared ¼ 0.0013

Root MSE ¼ 2.1324

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

children | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

educ7 | –.1531253 .1083464 –1.41 0.158 –.3655393 .0592887

_cons | 2.208163 .0867265 25.46 0.000 2.038135 2.378191

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This table shows that the IPW and WLS values for ATE are identical. One

difference, however, is in the estimated standard errors, which are quite divergent:

0.075 in IPW compared to 0.108 in WLS. Moreover, observe that ATE calculated

by WLS becomes nonsignificant.
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Why do these standard errors differ? The answer resides in the difference in the

approach used for estimating the variance of ATE (and, possibly, ATET): WLS

regression employs the usual OLS variance–covariance matrix adjusted for the

presence of a matrix of weights, let’s say Ω; WLS does not, however, consider the

presence of a “generated regressor”—namely—the weights computed through the

propensity-scores estimated in the first step. Stata 13’s IPW, in contrast, takes into

account also the variability introduced by the generated weights, by exploiting a

GMM approach for estimating the correct variance–covariance matrix in this case

(see StataCorp 2013, pp. 68–88). In this sense, Stata 13’s IPW is a more robust

approach than a standard WLS regression.

Both WLS and IPW in Stata make use by default of “normalized” weights, that

is, weights that add up to one. treatrew, instead, uses “non-normalized” weights

and this is the reason why the ATEs values obtained from treatrew (see the

previous section) are numerically different from those obtained from WLS and

IPW. Moreover, as illustrated by Busso et al. (2009, p. 7), it is easy to show that a

general formula for estimating ATE by Reweighting is:

dATE ¼ 1

N

XN
i¼1

DiYihi1 � 1

N

XN
i¼1

1� Dið ÞYihi0 ð2:147Þ

treatrew employs non-normalized inverse-probability weights defined as above,

that is:

hi1 ¼ 1= p xið Þ
hi0 ¼ 1= 1� p xið Þ½ �

The weights do not sum up to one; thus, analytical standard errors cannot be

retrieved by a weighted regression. The method suggested by Wooldridge

(implemented by treatrew) for obtaining correct analytical standard errors of

ATE, ATET, and ATENT is thus required, since a generated regressor from the

first-step estimation is employed in the second step.

The normalized weights used in WLS and IPW are instead:

hi1 ¼ 1=p xið Þ
1

N1

XN
i¼1

Di= p xið Þ

hi0 ¼ 1= 1� p xið Þ½ �
1

N0

XN
i¼1

1� Dið Þ= 1� p xið Þ½ �

Cerulli (2014a, appendix B) shows that if the formula for ATE uses “normalized”

(rather than “non-normalized”) weights, then the treatrew’s ATE estimation

would become numerically equivalent to the value of ATE obtained by WLS

and IPW.
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To conclude, we can assert that both IPW and treatrew lead to correct

analytical standard errors, as both take into account the fact that the propensity-

score is a generated regressor from a first-step (probit or logit) regression. The

different values of ATE and ATET obtained in the two approaches lie in the

different weighting scheme (normalized vs. non-normalized) adopted.

In short, treatrew is useful when considering non-normalized weights,

i.e. when a “pure” inverse-probability weighting scheme is employed. Moreover,

compared to Stata 13’s IPW, treatrew also provides an estimation of ATENT,

although it does not provide by default an estimation of the mean potential outcome

(s).

2.8.3 An Application of the Doubly-Robust Estimator

This last subsection illustrates how one can estimate ATEs using the Doubly-robust

estimator discussed in Sect. 2.4. In Stata 13, this can be performed using the

command teffects aipw where aipw stands for “augmented inverse-

probability weighting” estimator. As discussed, the Doubly-robust estimator uses

jointly Regression-adjustment and Reweighting methods for estimating ATEs and

also for estimating the potential outcome means. The Doubly-robust estimator

performs the following three-step procedure: (1) estimate the parameters of the

selection equation and compute inverse-probability weights; (2) estimate two

regressions of the outcome, one for treated and one for untreated units, to obtain

the unit-specific predicted outcomes; (3) calculate the weighted means of the unit-

specific predicted outcomes, where the weights are the inverse-probability weights

estimated in the first step; (4) take the difference between these two averages to

obtain ATEs.

It is important to note that this command allows also for various choices of the

functional forms of the outcome, including the possibility to model count and

binary outcomes. The basic syntax of this command is as follows:

Basic syntax of teffects aipw

teffects aipw (ovar omvarlist [, omodel noconstant]) (tvar tmvarlist [,

tmodel noconstant)] [if] [in] [weight] [, stat options]

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

omodel Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Model

linear linear outcome model; the default

logit logistic outcome model

probit probit outcome model

hetprobit(varlist) heteroskedastic probit outcome model

poisson exponential outcome model

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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tmodel Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

stat Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Stat

ate estimate average treatment effect; the default

pomeans estimate potential–outcome means

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The syntax follows the other teffects package’s sub-commands, except that

in this case, we can specify two distinct set of confounders, one for the outcome

(omvarlist) and one for the selection (or treatment) equation (tmvarlist).
The treatment binary variable is indicated by tvar and the outcome variable

by ovar.
We apply an estimation of ATE and POMs to the FERTIL2.DTA dataset:

. global xvars age agesq evermarr urban electric tv

. teffects aipw (children $xvars) (educ7 $xvars) atet

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Treatment–effects estimation Number of obs ¼ 4358

Estimator : augmented IPW

Outcome model : linear by ML

Treatment model: logit

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

children | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ATE |

educ7 |

(1 vs 0) | –.4012974 .0587055 –6.84 0.000 –.5163581 –.2862367

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmean |

educ7 |

0 | 2.494768 .0481193 51.85 0.000 2.400456 2.58908

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The ATE value (�0.401) is significant and very close to the one obtained using

the treatrew command (�0.415), which simply implements a Reweighting

estimator. Moreover, the standard errors are very close (0.059 vs. 0.068). To
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conclude then, the use of a three, rather than two-step approach would not appear to

result in appreciable improvements in the ATE estimation within this dataset.

By including the options pomeans and aequations, we can obtain estimates

of both POMs and also visualize the results of the three regressions performed to

obtain previous estimation of ATE:

. teffects aipw (children $xvars) (educ7 $xvars) , pomeans aequations

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Treatment–effects estimation Number of obs ¼ 4358

Estimator : augmented IPW

Outcome model : linear by ML

Treatment model: logit

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

children | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

POmeans |

educ7 |

0 | 2.494768 .0481193 51.85 0.000 2.400456 2.58908

1 | 2.093471 .0481605 43.47 0.000 1.999078 2.187864

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

OME0 |

age | .3606572 .0311193 11.59 0.000 .2996646 .4216498

agesq | –.0031604 .0005198 –6.08 0.000 –.0041793 –.0021416

evermarr | .8375024 .0903669 9.27 0.000 .6603864 1.014618

urban | –.3860406 .0835026 –4.62 0.000 –.5497027 –.2223786

electric | –.3695401 .1851556 –2.00 0.046 –.7324384 –.0066419

tv | –.2011699 .2748112 –0.73 0.464 –.7397899 .3374501

_cons | –4.991605 .4118896 –12.12 0.000 –5.798894 –4.184316

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

OME1 |

age | .2356515 .0261468 9.01 0.000 .1844048 .2868983

agesq | –.0014569 .0005144 –2.83 0.005 –.0024652 –.0004487

evermarr | .5700708 .0562416 10.14 0.000 .4598392 .6803024

urban | –.1214004 .0449316 –2.70 0.007 –.2094648 –.033336

electric | –.2762289 .0702917 –3.93 0.000 –.4139981 –.1384596

tv | –.3248643 .0820202 –3.96 0.000 –.4856209 –.1641077

_cons | –3.358809 .3099163 –10.84 0.000 –3.966233 –2.751384

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TME1 |

age | –.0182638 .0312554 –0.58 0.559 –.0795233 .0429957

agesq | –.0013532 .0005193 –2.61 0.009 –.0023711 –.0003353

evermarr | –.5350235 .0799502 –6.69 0.000 –.691723 –.378324

urban | .5037746 .0709056 7.10 0.000 .3648023 .642747

electric | .7766193 .1373618 5.65 0.000 .5073952 1.045843
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tv | 1.741456 .2073006 8.40 0.000 1.335154 2.147758

_cons | 1.61559 .434969 3.71 0.000 .7630665 2.468114

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

With the exception of the variable “tv” in the estimation of the untreated

potential outcome regression (OME0 in the previous table), all covariates are highly

significant in all three estimated regressions. Of course, one can be selective in

deciding which covariates have to explain the selection equation and which the

outcomes equations. One should, however, have convincing arguments to justify

which variables to include/exclude in the potential outcomes and the selection

equations, since this choice may remarkably change the causal links lying behind

the model (and, as a consequence, the magnitude and significance of estimates). We

will come back to this important question in the next chapter, where Instrumental-

variables (IV) and Selection-model (SM) approaches will be presented and exten-

sively discussed.

References

Abadie, A., Drukker, D., Herr, H., & Imbens, G. (2004). Implementing matching estimators for

average treatment effects in Stata. The Stata Journal, 4, 290–311.
Abadie, A., & Imbens, G. W. (2006). Large sample properties of matching estimators for average

treatment effects. Econometrica, 74(1), 235–267.
Abadie, A., & Imbens, G. W. (2008). On the failure of the bootstrap for matching estimators.

Econometrica, 76(6), 1537–1557.
Abadie, A., & Imbens, G. (2011). Bias-corrected matching estimators for average treatment

effects. Journal of Business & Economic Statistics, 29, 1–11.
Abadie, A., & Imbens, G. W. (2012). Matching on the estimated propensity score. Harvard

University and National Bureau of Economic Research.

Becker, S. O., & Caliendo, M. (2007). Sensitivity analysis for average treatment effects. The Stata
Journal, 7(1), 71–83.

Becker, S., & Ichino, A. (2002). Estimation of average treatment effects based on propensity

scores. The Stata Journal, 2, 358–377.
Blackwell, M., Iacus, S. M., King, G., & Porro, G. (2009). CEM: Coarsened exact matching. The

Stata Journal, 9, 524–546.
Brunell, T. L., & DiNardo, J. E. (2004). A propensity score reweighting approach to estimating the

partisan effects of full turnout in American presidential elections. Political Analysis, 12, 28–45.
Busso, M., DiNardo, J., & McCrary, J. (2009). New evidence on the finite sample properties of

propensity score matching and reweighting estimators. Unpublished manuscript, Dept. Of

Economics, UC Berkeley.

Caliendo, M., & Kopeinig, S. (2008). Some practical guidance for the implementation of propen-

sity score matching. Journal of Economic Surveys, 22, 31–72.
Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: Methods and applications. New

York: Cambridge University Press.

Cattaneo, M. D. (2010). Efficient semiparametric estimation of multi–valued treatment effects

under ignorability. Journal of Econometrics, 155, 138–154.

References 157



Cerulli, G. (2014a). TREATREW: A user–written Stata routine for estimating average treatment

effects by reweighting on propensity score. The Stata Journal, 14(3), 541–561.
Cerulli, G. (2014b). IVTREATREG: A new Stata routine for estimating binary treatment models

with heterogeneous response to treatment and unobservable selection. The Stata Journal, 14
(3), 453–480.

Cochran, W. G., & Rubin, D. B. (1973). Controlling bias in observational studies: A review.

Sankhya, Series A, 35, 417–446.
Dehejia, R., & Wahba, S. (1999). Causal effects in nonexperimental studies: Reevaluating the

evaluation of training programs. Journal of the American Statistical Association, 94,
1053–1062.

Dehejia, R., & Wahba, S. (2002). Propensity score–matching methods for nonexperimental causal

studies. The Review of Economics and Statistics, 84, 151–161.
DiPrete, T., & Gangl, M. (2004). Assessing bias in the estimation of causal effects: Rosenbaum

bounds on matching estimators and instrumental variables estimation with imperfect instru-

ments. Sociological Methodology, 34, 271–310.
Fan, J. (1992). Local linear regression smoothers and their minimax efficiencies. Annals of

Statistics, 21, 196–216.
Gangl, M. (2004). RBOUNDS: Stata module to perform Rosenbaum sensitivity analysis for

average treatment effects on the treated. Statistical Software Components S438301, Boston

College Department of Economics.

Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation of

average treatment effects. Econometrica, 66(2), 315–332.
Heckman, J. J., Ichimura, H., & Todd, P. E. (1997). Matching as an econometric evaluation

estimator: Evidence from evaluating a job training programme. Review of Economic Studies,
64(4), 605–54.

Heckman, J. J., Ichimura, H., & Todd, P. (1998). Matching as an econometric evaluation estimator.

Review of Economic Studies, 65(2), 261–94.
Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects

using the estimated propensity score. Econometrica, 71(4), 1161–1189.
Horvitz, D. G., & Thompson, D. J. (1952). A generalization of sampling without replacement from

a finite universe source. Journal of the American Statistical Association, 47, 663–685.
Iacus, S. M., King, G., & Porro, G. (2012). Causal inference without balance checking: Coarsened

exact matching. Political Analysis, 20, 1–24.
Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A

review. Review of Economics and Statistics, 86(1), 4–29.
Imbens, G. W., & Rubin, D. (forthcoming). Causal inference in statistics. Cambridge: Cambridge

University Press.

Johnston, J., & DiNardo, J. E. (1996). Econometric methods. New York: McGraw-Hill.

LaLonde, R. (1986). Evaluating the econometric evaluations of training programs with experi-

mental data. American Economic Review, 76, 604–620.
Lechner, M. (2008). A note on the common support problem in applied evaluation studies. Annals
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3.1 Introduction

This chapter covers econometric methods for estimating ATEs under “selection on

unobservables,” also known in the literature as “hidden bias.” When nonobservable

factors significantly drive the nonrandom assignment to treatment, recovering
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consistent estimations of ATEs relying only on observables (basically, the vector of

covariates x) is no longer possible. As a consequence, econometric methods based

on the conditional independence assumption (CIA) reviewed in Chap. 2 are no

longer appropriate for estimating the actual program effect on target variables.

As already suggested in Chap. 1, the nature of the unobservables can be twofold.

On one hand, there are unobservable elements due to some lack of information in

the available datasets. This is more of a problem of data availability than genuine

incapacity of gauging specific phenomena; for convenience, we will call these

contingent unobservables. On the other hand, there are genuine unobservables

that would be fairly impossible to measure also in case of abundant information

(for instance, individual entrepreneurial innate ability, propensity to bear risks,

ethical attitudes, and so on).

Regardless of what kind of “unobservableness” the analyst has to deal with, the

problem becomes one of finding suitable econometric procedures in order to

produce consistent estimation of ATEs under this more complicated setting. For-

tunately, the literature has provided three methods to cope with selection on

unobservables: Instrumental-variables (IV), Selection-models (SM), and

Difference-in-differences (DID). All the three approaches offer a solution to the

hidden bias problem. Their implementation requires, however, either additional

information or further assumptions, which are not always available or viable.

More specifically, the application of IV requires the availability of at least one

instrumental-variable, i.e., a variable in the dataset which is directly correlated with

the selection process, but (directly) uncorrelated with the outcome. Similarly,

Selection-models restore consistency under the assumption of joint normality of

the error terms of the potential outcomes and of the selection equation. Finally, the

DID estimator requires to have observations before and after the policy event, either

for different or for the same set of individuals.

It is quite clear that in many program evaluation contexts, such additional

assumptions and information are not always available. For this reason, working

under the potential presence of a hidden bias is generally recognized as much more

tricky than working under overt bias. Nevertheless, it is possible to find a solution

for some situations, and knowing how to technically and computationally imple-

ment a correct estimation in these cases is of the utmost importance. For this reason,

this chapter presents and discusses program evaluation econometric approaches

which deal with hidden bias along with related applications either with real and

artificial data.

The chapter is organized as follows: Sect. 3.2 and subsections present various IV

approaches and discuss some of their limitations; Sect. 3.3 discusses the Heckman

Selection-model; Sect. 3.4 sets out the DID estimator in a repeated cross section and

in a longitudinal (or panel) data structure; Sect. 3.5 focuses on an application of IV

and Selection-model on simulated and real data; Sect. 3.6 offers an implementation

of DID both in repeated cross sections and panel data.
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3.2 Instrumental-Variables

When selection into a program is driven not only by observables but also by

unobservable-to-the-analyst factors, then the conditional mean independence

(CMI) hypothesis no longer holds and Regression-adjustment (including Control-

function regression), Matching, and Reweighting generally bring biased estimates

of ATE, ATET, and ATENT (see Chap. 1).

In the regression approach, the treatment binary variable D becomes endoge-
nous, that is, correlated with the error term, thus preventing ordinary least squares

(OLS) from producing consistent estimates of regression parameters, including

ATE, ATET, and ATENT. In the case of Matching (and propensity-score based

Reweighting, for instance), the bias depends on excluding relevant covariates from

the variables generating the actual propensity-score and/or from the matching

procedure applied on units (as, for instance, in the nearest-neighbor approach).

In a regression setting, the typical econometric solution to deal with endogeneity

problems is represented by Instrumental-variables estimation (Sargan 1958;

Angrist and Krueger 1991; Abadie et al. 2002; Angrist and Imbens 1995; Angrist

and Pischke 2008; Angrist 1991; Angrist et al. 1996; Imbens and Angrist 1994; Lee

2005). The virtue of this approach lays in its capacity to restore causal parameters’
consistency, even under selection on unobservables (Angrist and Krueger 2001).

In practical cases, however, the application of IV has important limitations,

mainly due to the need for at least one exogenous variable z, the “instrumental-

variable,” which is assumed to have the following two fundamental properties:

• z is (directly) correlated with treatment D
• z is (directly) uncorrelated with outcome Y

These two requirements imply that the selection into program should possibly

depend on the same factors affecting the outcome plus z, the instrument, assumed to

not directly affect the outcome. The relation between the endogenous variable

D and the outcome Y can exist (so that empirical correlation might not be zero),

but it can be only an “indirect link” produced by the “direct effect” of z on D.
Algebraically, this represents the classical exclusion restriction assumption under

which IV methods identify the casual parameters of interest (Heckman and Vytlacil

2001).

The causal rationale lying behind the IV approach has been widely discussed in

Chap. 1, where we acknowledged that finding good instruments is neither easy nor

so common in applications. Indeed, according to Angrist and Pischke (2008,

p. 117), sources of instruments come “from a combination of institutional knowl-
edge and ideas about the processes determining the variable of interest.” In this

sense, institutional constraints may play a key role in generating suitable instru-

ments, thus providing grounds for creating quasi-randomized settings approximat-

ing “natural experiments.” For instance, in the celebrated paper of Angrist and

Krueger (1991) looking for the causal relation between years of schooling and

personal earning, the authors use “quarter-of-birth” in order to instrument years of
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education, assumed to be endogenous. Why should this be a good instrument? The

authors argue that as it is compulsory to attend school until the age of 16 in many

US states (and only after this threshold can a student freely drop out of school), and

as individuals born in the first quarters of the year start school before the age of

6, while ones later born are more than 6 years old at that time, this induces a

situation in which earlier born children have a longer education time than those

born later. Empirically, the authors find a positive relation between years of

education and quarter-of-birth, thus showing that this variable can serve as a

good instrument for years of education. In fact, the date of birth seems unrelated

to the (unobservable) variables which may influence earnings such as family

background, personal motivation, and genetic attitude; as such, quarter-of-birth

can be reliably assumed as randomly determined and, as such, purely exogenous.

Further analytical developments on the connection between IV and causality will be

presented in the next chapter where the notion of local average treatment effect

(LATE) will be set out and discussed. In this chapter, we will focus mainly on how

to restore consistency using IV when program’s selection on unobservables is

assumed. Unless stated otherwise, we assume that a reliable instrumental-variable

is available.

3.2.1 IV Solution to Hidden Bias

In Chap. 1 we saw that the Difference-in-means (DIM) estimator is equal to the

coefficient α obtained by an OLS regression of this simple univariate linear model:

Y ¼ μþ αDþ u ð3:1Þ

so that:

α ¼ E Y
��D ¼ 1

� �� E Y
��D ¼ 0

� � ¼ DIM ð3:2Þ

It is also known that in a univariate regression such as (3.1):

α ¼ Cov Y;Dð Þ=Var Dð Þ ð3:3Þ

Suppose now that the selection-into-treatment was driven by a factor x, that is
unobservable-to-the-analyst. We want to characterize this situation and show that

IV provides an unbiased estimate of α. Such a situation entails that the outcome is

also function of x. In other words, the true process generating Y is:

Y ¼ μþ αDþ βxþ u ð3:4Þ

Since in (3.4) x is unobservable, it is part of the error term; thus the model becomes:
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Y ¼ μþ αDþ u* ð3:5Þ

with u*¼ βx+ u showing that the treatmentD and the new error term u* are related,
for the selection-into-treatment is supposed to depend on x. A simple OLS of

regression (3.5), therefore, leads to a biased estimation of α; in fact:

αOLS ¼ Cov Y;Dð Þ=Var Dð Þ ¼ Cov μþ αDþ βxþ u;Dð Þ=Var Dð Þ
¼ αVar Dð Þ=Var Dð Þ þ βCov x;Dð Þ=Var Dð Þ ð3:6Þ

that is:

αOLS ¼ αþ βCov x;Dð Þ=Var Dð Þ ð3:7Þ

where, similarly to what is stated in (3.3), we get that:

αOLS ¼ αþ β E x
��D ¼ 1

� �� E x
��D ¼ 0

� �� � ð3:8Þ

which is also equivalent to (1.58). Equation (3.8) proves that in the case of

unobservable selection, a standard OLS is a biased estimator. This depends on the

fact that the basic assumption for OLS to be consistent in (3.5), i.e., Cov(D; u*)¼ 0,

fails when the error contains factors driving the selection-into-treatment, which

results in Cov(D; u*) 6¼ 0.

In such a situation, an IV approach can restore consistency, provided that an

instrumental-variable z, correlated with D but uncorrelated with u*, is available. If
we assume that u is a pure random component, thus uncorrelated by definition with

z, we can show that:

Cov z; u*
� � ¼ Cov z; βxþ uð Þ ¼ βCov z; xð Þ þ Cov z; uð Þ ¼ βCov z; xð Þ ¼ 0 ð3:9Þ

implying that Cov(z; x)¼ 0. By starting from (3.5), and assuming that Cov(z; u*) is
zero, with z as an instrument, we have that:

Cov z; u*
� � ¼ Cov z; Y � μ� αDð Þ ¼ Cov Y; zð Þ � αCov D; zð Þ ¼ 0 ð3:10Þ

implying immediately that:

αIV ¼ Cov Y; zð Þ=Cov D; zð Þ ð3:11Þ

We can now show that this estimator is consistent. In fact:

3.2 Instrumental-Variables 165



αIV ¼ Cov Y; zð Þ=Cov D; zð Þ ¼ Cov μþ αDþ βxþ u; zð Þ
Cov D; zð Þ

¼ α � Cov D; zð Þ � β � Cov x; zð Þ
Cov D; zð Þ ¼ α ð3:12Þ

as Cov(x; z)¼ 0 as assumed in (3.9). Equation (3.12) proves that the IV estimator of

the effect of D on Y is consistent for the true causal parameter α.

3.2.2 IV Estimation of ATEs

This section, which presents IV methods for consistently estimating ATEs, relies on

a vast literature on IV methods in the econometrics of program evaluation. In what

follows, however, we will refer to the excellent review by Wooldridge (2010,

pp. 937–954) and Angrist and Pischke (2008, Chap. 4), as well as to papers by

Angrist et al. (1996), Heckman (1997), and Heckman and Vytlacil (1998).

To see how IV can consistently estimate ATE, ATET, and ATENT consider, as

done in Chap. 2, the switching random coefficient regression derived from the

potential outcome model (POM):

Y ¼ μ0 þ D μ1 � μ0ð Þ þ v0 þ D v1 � v0ð Þ ð3:13Þ

This equation, assuming that CMI does not hold, yields:

E v1
��D, x� � 6¼ E v1

��x� � ð3:14Þ

and

E v0
��D, x� � 6¼ E v0

��x� � ð3:15Þ

As in the case of Control-function regression, we can distinguish two cases: (1) the

homogenous and (2) the heterogeneous cases.

Case 1 v1¼ v0 (homogenous case)

As seen for Control-function regression, in this case one assumes that v1¼ v0,
thus:

Y ¼ μ0 þ D μ1 � μ0ð Þ þ v0 ð3:16Þ

This equation implies that:
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ATE ¼ ATET ¼ ATENT ¼ μ1 � μ0 ð3:17Þ

Suppose, however, one has an instrumental-variable z. Formally, the two properties

that such a variable should have can be written as:

E v0
��x, z� � ¼ E v0

��x� � , z isuncorrelatedwithv0 ð3:18Þ
E D

��x, z� � 6¼ E D
��x� � , z is correlatedwithD ð3:19Þ

By considering firstly (3.18), we can assume that E(v0 | x, z)¼E(v0 | x)¼ g(x)¼ xβ,
which means that E(v0 | x, z) 6¼ 0. Simple algebra yields a regression model

containing an error term with zero unconditional mean of this type (see Wooldridge

2010, pp. 937–938):

Y ¼ μ0 þ D � ATEþ xβ þ u ð3:20Þ

that is a model in which (x, z) are uncorrelated with the error term u, i.e., (x, z) are
exogenous, but the error term u is still correlated with D, the treatment.

The previous assumptions and relationships can be more compactly summarized

in the following two-equation structural system:

að Þ Yi ¼ μ0 þ DiATEþ xiβþ ui
bð Þ D*

i ¼ ηþ qiδþ εi

cð Þ Di ¼ 1 if D*
i � 0

0 if D*
i < 0

�
dð Þ qi ¼ xi; zið Þ

8>>>><>>>>: ð3:21Þ

where ATE cannot be consistently estimated by an OLS of (3.21a), since without

invoking CMI, we have that Cov(ui; εi) 6¼ 0, thus D is endogenous in this equation.

In the previous system, (3.21a) is known as the outcome equation, whereas

(3.21b)—or, equivalently, (3.21c)—is known as the selection equation and

(3.21d) as the identifying exclusion restriction.
In program evaluation, (3.21b) represents the latent selection function derived

from: (1) an objective function of a supporting external agency choosing whether a

unit is, or is not, suitable for treatment; (2) self-selection into the program operated

by units themselves, according to some cost/benefit contrast within a proper unit

pay-offs function. Generally, it is assumed that D�
i , a rescaled scalar score associ-

ated with each eligible unit, is unknown to the evaluator as he only knows the (final)

binary decision indicator Di (selected vs. not selected for the program), along with

some other observable unit characteristics (covariates) affecting this choice.

In a system like (3.21), endogeneity arises when one assumes that the

unobservable factors affecting the selection into program (i.e., εi) are correlated

with the unobservable factors affecting the realization of units’ outcome (i.e., ui). In
the case of zero correlation between these two terms, OLS of (3.21a) produces

consistent estimation of ATE.
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An important question is: how can we estimate consistently ATE in system

(3.21) when Cov(ui; εi) 6¼ 0? In general, we may rely on three IV methods:

• Direct-2SLS

• Probit-OLS

• Probit-2SLS

They have different properties, and in what follows, we provide a brief exposi-

tion of these three approaches. As will be seen, an important role to qualify the

properties of such estimators is played by the assumption about the process gener-

ating the selection-into-treatment indicator D: Table 3.1 reports three classical

cases usually adopted in applications.

3.2.2.1 Direct Two-Stage Least Squares

This approach is the traditional IV procedure used in textbook econometrics

(Cameron and Trivedi 2005; Wooldridge 2010). It is based on two sequential

OLS regressions in order to calculate the predictions of the endogenous variable

D in the first step, and on using these predictions as a regressor in the outcome

equation in place of the actual D in the second step. This approach assumes that the

probability to be treated given x takes a linear form. As such, the selection equation

can be consistently estimated by OLS, regardless of the fact that the treatment

endogenous variable is binary. The implementation of direct two-stage least

squares (Direct-2SLS), therefore, follows this procedure:

1. Estimate the selection equation by running an OLS regression of D on x and z of
the type: Di ¼ ηþ xiδx þ ziδz þ errori, to obtain the “predicted values” of Di,

denoted by Dfv,i;

2. Estimate the outcome equation by running a second OLS of Y on x and Dfv,i. The

coefficient of Dfv,i is a consistent estimation of ATE.

It is evident that in step 1, what is fitted is a linear probability model, while in

step 2, a standard OLS regression is estimated. The second step also provides the

analytical estimation of ATE and of its standard error to perform usual significance

tests. As we will clarify later on, the robustness of this approach hinges mainly on

the quality of the chosen variable z, as a weak instrument (a z poorly correlated with
the treatment D) can inflate parameters’ standard errors, thus making estimates

highly imprecise.

Table 3.1 Common binary

outcome probability rules for

the selection-into-treatment

Model p(D¼ 1 | x)¼E(D¼ 1 | x)¼ F(xβ)
Lineal xβ
Probit Φ(xβ)
Logit Λ(xβ)¼ exp(xβ)/[1 + exp(xβ)]
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3.2.2.2 Probit-OLS (Logit-OLS)

Generally, assuming that the treatment probability varies linearly with x, and z is
too demanding, and nonlinear probability functions such as probit or logit are

generally preferred. The probit, for instance, assumes that the error term of the

latent selection equation in (3.21b) is standard normally distributed, while the logit

supposes a logistic distribution.

Take the case of the probit (the logit follows a similar argument), since it implies

the normality assumption of the selection error, using Direct-2SLS leads to effi-

ciency loss of estimations, as this latter method does not exploit suitably the

normality of the error term ε. This is an important limitation of Direct-2SLS.

Nevertheless, a more efficient estimation procedure (we call here Probit-OLS)

can be found in the normality case. To see how, we have to first observe that:

E D
��x, z� � ¼ p D ¼ 1

��x, z� � ð3:22Þ

showing that, when D is binary, the propensity-score is equivalent to the orthogonal

projection of the vector D in the vector space generated by the exogenous variable

(x, z). Among all the projections of D on the (x, z) subspace, the orthogonal one

produces the “smallest” projection error: Fig. 3.1 provides a visual representation of

this important property of the orthogonal projection.

Figure 3.1 illustrates that the projection error of D is minimized when the

projection is E(D | x, z); in fact, the vector norm of the error eop is always the

smallest one compared with the vector norm of any other generic projection vector

h. This derives from the following property of the conditional expectation:

E D
��x, z� � ¼ argmin f x;zð Þ

Xn
i¼1

Di � f x; zð Þ½ �2
( )

D

E(D | x, z)

eop eh

h
(x, z)

Fig. 3.1 Visualization of

the orthogonal projection of

D on the vector space

generated by (x, z)
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Thus, if one (erroneously) uses Direct-2SLS when E(D¼ 1 | x)¼Φ(xβ), then one is
not using the best representation of D as function of (x; z). This reduces the

precision of the estimation of the selection equation and thus that of ATE. Note,

however, that in this setup, Direct-2SLS is still consistent.

If the selection equation is estimated by a probit, a higher level of efficiency is

obtained, since the correct orthogonal projection is used. This suggests, therefore,

that a slightly different procedure—the Probit-OLS (or Logit-OLS)—should be

implemented:

1. Estimate the selection equation by running a probit (or logit) regression of D on

x and z thus obtaining the “predicted probabilities” of Di, denoted by p1D,i;
2. Estimate the outcome equation by running a second OLS of Y on x and p1D,i. The

estimated coefficient of p1D,i provides a consistent estimation of ATE.

Once again, the choice between a logit and a probit depends on whether a

standard normal or a logistic distribution of ε is assumed. Focus on the probit

case although the same augments apply for the logit model. The Probit-OLS can be

directly derived from the outcome equation. By taking the expectation of

Y conditional on (x, z) in (3.21a), we obtain:

E Y
��x, z� � ¼ μ0 þ ATE � E D

��x, z� �þ xβ ð3:23Þ

since E(u | x, z)¼ 0 being x and z exogenous by definition. Substituting (3.22) into

the previous equation we obtain:

E Y
��x, z� � ¼ μ0 þ ATE � p D ¼ 1

��x, z� �þ xβ ð3:24Þ

This relation suggests that one is able to consistently estimate ATE with a simple

OLS regression of Y on (1, p1D,i, x), which is exactly what Probit-OLS does.

Observe, however, that standard errors for ATE need to be corrected for both the

presence of a generated regressor in (3.24) and for heteroscedasticity.

This approach does, however, have an important limitation. In order to preserve

estimation efficiency, Probit-OLS requires that the probit is the “actual probability

rule” governing the conditional probability of being treated. This is somewhat of a

drawback, given that specification errors may occur frequently in applied work. It is

immediate to see that in such a case, inconsistency depends on the presence of a

“measurement error” from the first-step estimation of the propensity-score, which

directly enters the outcome equation in (3.24).

3.2.2.3 Probit-2SLS (Logit-2SLS)

As previously mentioned, consistency for Probit-OLS depends on relying on a

correctly specified propensity-score model. When this assumption does not hold,

previous procedure can lead to inconsistent results. A way to overcome this
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limitation is that of using instead of OLS a 2SLS after running the probit. This

alternative procedure, called here Probit-2SLS (or Logit-2SLS), works as follows:

first, apply a probit (logit) of D on x and z, thus obtaining the “predicted probability
of D”; then, use these probabilities to apply a (direct) 2SLS with the predicted

probabilities obtained from the probit (logit) estimation being used as an instrument

for D. In other words, the Probit-2SLS uses the estimated propensity-score as

instrument for D.
This procedure leads to higher efficiency than that of Direct-2SLS. Why? In the

case of Direct-2SLS, the instrument used for D is z; however, functions of (x; z)
might be more correlated with D than the z alone. In particular, as argued above,

there is a function of (x; z) which has the highest correlation withD, namely E(D | x,

z)¼ propensity-score , i.e., the orthogonal projection of D on all exogenous vari-

ables (including the instrument).

To conclude, when the probit (or logit, depending on the case) model is correctly

specified, Probit-2SLS uses the best instrument available in the class of all instru-

ments that are functions of (x, z). Probit-2SLS, therefore, is more efficient than

Direct-2SLS but generally no more than Probit-OLS (although with slight differ-

ences in this latter case).

The very advantage of using Probit-2SLS is that, unlike Probit-OLS, it returns

consistent estimations even when the first-step probit is incorrectly specified

(although, it is no more efficient in this case). This occurs since, unlike Probit-

OLS, the (incorrect) estimation of the probit does not enter directly in the outcome

equation. Furthermore, the propensity-score estimated by the probit, although

incorrect, still remains a function of x and z, and thus, it is a valid instrument. Of

course, in an incorrectly specified setting, Probit-2SLS loses efficiency. In practice,

Probit-2SLS follows these three steps:

1. Estimate a probit of D on x and z, getting p1D,i, i.e., the “predicted probability of
D.”

2. Run an OLS of D on (1, x, p1D,i), thus getting the fitted values D2fv,i.

3. Finally, estimate a second OLS of Y on (1, x, D2fv,i).

The estimated coefficient of D2fv,i is a consistent estimate of ATE, which does

not require that the process generating D is correctly specified in order to obtain

consistency.

Finally, in contrast to Probit-OLS, a further robust characteristic of Probit-2SLS

is that the standard errors in this case do not need to be adjusted for the presence of a

generated instrument, given that this estimator meets the condition for consistency

required in cases like this (see Wooldridge 2010, pp. 124–125).

3.2.2.4 The Identification Issue

From a technical point of view, when using Probit-OLS or Probit-2SLS, identifying

(μ0, ATE, β) in the outcome equation (3.21a) does not require one to introduce z as
additional regressor in the selection equation (3.21b). Indeed, for identification
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purposes, it is sufficient that the selection equation contains just the vector of

covariates x. Since F(xβ) is a nonlinear function of x, then it is not perfectly

collinear with x. F(xβ) can, therefore, be used as an instrument along with x,

since it does not produce problems of collinearity. Problems due to collinearity

can, however, emerge when F(∙) is assumed to be linear (as in the case of the linear

probability model).

Nevertheless, since x and F(xβ) are strongly correlated and are used jointly as

instruments, it can be proven that the previous IV estimators have larger variances,

thereby providing a more imprecise estimation of the actual policy effect. When

using IV methods such as Probit-OLS and Probit-2SLS, it is, therefore,

recommended to have access to at least one instrument z, which can be exploited

in the estimation of the selection equation.

3.2.3 IV with Observable and Unobservable Heterogeneities

The previous IV estimators did not take into account either observable or

unobservable heterogeneity. When we eliminate this assumption, minor changes

need to be incorporated into these IV procedures. It seems worth emphasizing how

one, however, proceeds in the case of both observable and unobservable heteroge-

neities, which we label as IV Case 2.

Case 2 v1 6¼ v0 (heterogeneous case)

Consider now the case in which v1 6¼ v0, so that Y¼ μ0 +D (μ1� μ0) + v0 +
D (v1� v0). As in the Control-function regression, this assumption implies that

ATE 6¼ATET 6¼ATENT. This is the case of observable heterogeneity, where ATE

(x), ATET(x), and ATENT(x) can be separately defined and estimated. As

suggested in Chap. 1, this assumption states that the same unit has a different

reaction to variations in the vector of observables x when it is treated and untreated.

For many empirical applications, this seems a more general and reasonable

assumption.

Suppose that v1 and v0 are independent of z: thus, z is assumed to be exogenous in

this model, that is:

E v0
��x, z� � ¼ E v0

��x� � ¼ g0 xð Þ ð3:25Þ
E v1

��x, z� � ¼ E v1
��x� � ¼ g1 xð Þ ð3:26Þ

This is equivalent to writing:

v0 ¼ g0 xð Þ þ e0 with E e0
��x, z� � ¼ 0 ð3:27Þ

v1 ¼ g1 xð Þ þ e1 with E e1
��x, z� � ¼ 0 ð2:28Þ
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By substituting these expressions for v0 and v1 into the POM for Y, we obtain that:

Y ¼ μ0 þ αDþ g0 xð Þ þ D g1 xð Þ � g0 xð Þ½ � þ e0 þ D e1 � e0ð Þ ð3:29Þ

By assuming in the previous equation that g0(x)¼ xβ0, g1(x)¼ xβ1, and ε¼ e0 +
D(e1� e0) and by applying the same procedure as seen in Case 1, we obtain the

following regression model:

Y ¼ μ0 þ ATE � Dþ xβ0 þ D x� μxð Þβþ ε ð3:30Þ

This model contains two endogenous variables, D and D(x�μx). How can we deal

with this additional endogenous variable? Intuitively, if h¼ h(x, z) is an instrument

for D, then a suitable instrument for D∙(x�μx) is h∙(x�μx). Thus, IV estimation

can still be implemented. Nevertheless, before applying IV as in Case 1, we need to

distinguish between two further sub-cases related to Case 2:

Case 2.1 e1¼ e0 (only observable heterogeneity)

Case 2.2 e1 6¼ e0 (both observable and unobservable heterogeneities)

In what follows we examine the two cases separately.

Case 2.1 e1¼ e0 (only observable heterogeneity)

This subcase assumes that unobservable heterogeneity is not at work and thus

only observable heterogeneity matters. This is a quite strong assumption, but one

that holds in many applications, especially when the analyst has access to a large set

of observable variables and is sure that diversity in units’ outcome response is

driven by these (available) observable factors. In this case, therefore, we have that

ε¼ e0. Recalling that E(e0 | x, z)¼ 0, we can immediately conclude that:

Y ¼ μ0 þ αDþ xβ0 þ D x� μxð Þβþ e0 ð3:31Þ

with E(e0 | x, z, D)¼E(e0 | D). Thus what remains in the model is simply the

endogeneity due to D and D(x�μx). The following procedure is therefore suitable

in order to obtain a consistent estimation of the parameters in (3.31):

• Apply a probit of D on x and z, obtaining pD, i.e., the “predicted probability of

D.”
• Estimate the following equation: Yi¼ μ0 + αDi+ xiβ0 +Di(xi�μx)β + errori

using as instruments: 1, pD, xi, pD (xi�μx).

This procedure is equivalent to the Probit-2SLS estimator presented in the

previous section. Of course, either Direct-2SLS or Probit-OLS procedure can, as

above, be applied here with minimal changes.1

1 For the sake of brevity, we do not report the implementation of these procedures for this case,

although it is evident how they can be performed.
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A particularly attractive property of a model with heterogeneity is that various

functions and interactions of (x, z) can be used to generate additional instruments, in

order to obtain an overidentified setting and thus test the (joint) exogeneity of the

instruments.

Case 2.2 e1 6¼ e0 (both observable and unobservable heterogeneities)

When the unobservable component affecting the outcome for a given unit is

different when such a unit is treated or untreated, unobservable heterogeneity

occurs. In this case, as seen above, the full and more general regression model

associated with the POM is:

Y ¼ μ0 þ αDþ g0 xð Þ þ D g1 xð Þ � g0 xð Þ½ � þ e0 þ D e1 � e0ð Þ ð3:32Þ

In this case, the error term contains the endogenous variable D so that the mean of

D(e1� e0) conditional on x and z is not equal to zero. Thus, to restore consistent

estimation, we need to assume some additional conditions.

One possible solution could be that of assuming that E[D(e1� e0) | x, z]¼
E[D(e1� e0)]. Applying previous algebra yields the following form of the outcome

equation:

Y ¼ μ0 þ αDþ xβ0 þ D x� μxð Þβþ e0 þ D e1 � e0ð Þ ð3:33Þ

By defining:

r ¼ D e1 � e0ð Þ � E D e1 � e0ð Þ½ �

and by adding and subtracting E[D(e1� e0)] in (3.18), we obtain:

Y ¼ ηþ αDþ xβ0 þ D x� μxð Þβþ e0 þ r ð3:34Þ

where η¼ μ0 + E[D(e1� e0)]. It is immediate to see that E(e0 + r | x, z)¼ 0. Thus,

any function of (x, z) can be used as instrument in the outcome equation. One can,

therefore, apply an IV procedure identical to that of Case 2.1, that is, one based on

estimating:

Yi ¼ ηþ αDi þ xiβ0 þ Di xi � μxð Þβþ errori ð3:35Þ

using as instruments 1, pD, xi, and pD (xi�μx). This IV estimator is consistent but

generally not efficient. In order to obtain an efficient estimation, one needs to

introduce some additional hypotheses. In what follows, we focus on the Heckman

(1978) Selection-model (known as “Heckit”) with unobservable heterogeneity. It is
a strong parametric model, but it can be useful in empirical applications to obtain

efficient estimation of ATEs.

It is also worth noting that a consistent estimation of ATET and ATENT can be

obtained using formulas analogous to those in (2.33)–(2.38) by replacing the
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unknown parameters of those formulas with those obtained from previous IV

estimation procedures. The IV estimations of ATEs therefore are:

dATE ¼ bα IV ð3:36ÞdATE xð Þ ¼ bα IV þ x� xð Þbβ IV ð3:37Þ

dATET ¼ bα IV þ N1ð Þ�1
XN
i¼1

Di xi � xð Þbβ IV ð3:38Þ

dATET xð Þ ¼ bα IV þ x� xð Þbβ IV

h i
D¼1ð Þ

ð3:39Þ

dATENT ¼ bα IV þ 1=N0ð Þ�1
XN
i¼1

�
1� Di

�
xi � xð Þbβ IV ð3:40Þ

dATENT xið Þ ¼ bα IV þ xi � xð Þbβ IV

h i
D¼0ð Þ

ð3:41Þ

As in the Control-function regression case, standard errors for ATET and ATENT

can be obtained via bootstrap procedures.

3.2.4 Problems with IV Estimation

IV estimation is a powerful tool to deal with treatment endogeneity produced by

selection on unobservables. As seen, in fact, IV methods are able to restore

consistent estimation of average treatment effects on the target variable without

taking on excessively strong parametric assumptions like, for instance, specific

distributional forms of the errors. Nevertheless, IV have a number of non-negligible

limitations; thus, the implementation of this approach is sometimes questionable in

empirical applications. In what follows, we consider three main drawbacks possibly

arising from the use of IV: (1) inconsistency; (2) lower efficiency; (3) small-sample

bias. See Cameron and Trivedi (2005, pp. 98–112) for a detailed review.

The inconsistency and lower efficiency limitations are related to problems

induced by so-called “weak” instruments (Bound et al. 1995), instruments that

are either not fully exogenous for the outcome or not sufficiently well correlated

with the treatment variable in a multivariate sense. If one of these two conditions is

not met, the reliability of IV estimation can be questionable due to possible

inconsistency and/or low precision (i.e., larger standard errors) of IV.

The third drawback refers to the bias of 2SLS when one cannot invoke the usual

asymptotic results. In finite samples, in fact, it can be proven that IV may be

inconsistent, with the bias possibly increasing with the number of instruments

used and the weakness of these instruments. In what follows, each of these

limitations are discussed separately.
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3.2.4.1 Inconsistency of IV

To illustrate how a weak instrument can produce inconsistent IV estimates, take the

case of a single-covariate/single-instrument linear regression of the type:

Y ¼ αDþ u ð3:42Þ

where we assume that both Y and D are standardized with mean equal to zero and

unit variance. This is identical to (3.1), except for the fact that with standardized

variables the intercept is now zero. Adapting (3.7) and (3.12), we have that:

αOLS ¼ Cov Y;Dð Þ
Var Dð Þ ¼ αþ Cov D; uð Þ

Var Dð Þ ð3:43Þ

αIV ¼ Cov Y; zð Þ
Cov D; zð Þ ¼ αþ Cov z; uð Þ

Cov z;Dð Þ ð3:44Þ

implying that IV are also inconsistent when Cov(z; u) 6¼ 0, in other words, when z is
no longer fully exogenous. Furthermore, the bias increases as the covariance of

z and D decreases, showing that poor projection of D on z leads to a larger bias.

Interestingly, we can also perform a ratio between the OLS and IV bias to see that:

plim bα IV � αf g
plim bα OLS � αf g ¼ Cov z; uð Þ

Cov D; uð Þ � 1

Cov z;Dð Þ ð3:45Þ

since Var(D)¼ 1 by definition. The previous ratio does not exclude the possibility

that the IV bias is greater than the OLS bias. For instance, if one supposes that

Cov(z; u)¼Cov(D; u)¼ 0.1, but that Cov(D; u)¼ 0.20, then the IV bias is five

times that of the OLS bias, and this result is obtained with a very low degree of

endogeneity of only 0.1. Unless we can rely on a “pure” exogenous instrument, IV

are strongly sensitive to departures from this hypothesis. Moreover, the lower the

covariance between z and D, the more the IV bias outweigh of the OLS; finally,

introducing exogenous covariates in (3.42) does not change this result.

3.2.4.2 Lower Efficiency of IV

Even when the instrument z is purely exogenous, so that IV is by definition

consistent, the presence of a weak instrument, one poorly correlated with the

endogenous D, creates further problems. In particular, poorly correlated instru-

ments result in inflated standard errors of the IV estimator that may become

significantly larger than those obtained with OLS. To illustrate this, take the

usual formula for the asymptotic variance of the IV estimator:
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V bα IVð Þ ¼ σ2 D
0
z

� 	�1

z
0
z

� 	
z
0
D

� 	�1

ð3:46Þ

Since we are assuming standardized variables and only one endogenous variable

and one instrument, we can write that:

V bα IVð Þ ¼ σ2 D
0
D

� 	�1

D
0
D

� 	
D

0
z

� 	�1

z
0
z

� 	
z
0
D

� 	�1
� 


¼ V bα OLSð Þ D
0
D

� 	
D

0
z

� 	�1

z
0
z

� 	
z
0
D

� 	�1
� 


¼ V bα OLSð Þ � N

� Var Dð Þ 1

N � Cov D; zð Þ � N � Var zð Þ � 1

N � Cov D; zð Þ
� 


¼ V bα OLSð Þ � 1

Cov D; zð Þ½ �2
( )

¼ V bα OLSð Þ
ρ2D, z

ð3:47Þ

By assumption Var(D)¼Var(z)¼ 1, thus the covariance between D and z is equiv-
alent to the coefficient of correlation ρD,z. Simply rewriting previous expression, we

therefore obtain:

V bα IVð Þ ¼ V bα OLSð Þ
ρ2D, z

ð3:48Þ

implying that the variance of IV is always higher than that of OLS, since 1/ρ2D;z is

higher or at most equal to one. More specifically, assuming that the variance of the

OLS estimator is equal to one, and the correlation between D and z equal to 0.2,

implies that the variance of IV is 25 times larger than that of OLS. As a conse-

quence, a weak instrument (weak correlation between D and z) may result in a very

low precision in estimating α. This result can be extended in the case in which

additional (exogenous) covariates are added, provided that the one-endogenous/

one-instrument setting is maintained.

The previous result implies, somewhat strikingly, that in a situation in which the

instrument is exogenous (and thus IV consistent) but poorly correlated with the

endogenous variable, the loss in efficiency of IV can outweigh gain in bias-

reduction vis-a-vis OLS. Thus, in terms of the mean square error (MSE), the OLS

might actually be superior to the IV estimator. More specifically, the MSE of a

generic estimator bθ is equal to:

MSE bθ� 	
¼ V bθ� 	

þ B bθ� 	2

where V(∙) is the variance and B(∙) the bias. Thus, we might obtain that:
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MSE bα IVð Þ > MSE bα OLSð Þ

in which case OLS is more appealing than IV as an estimator of the true population

parameter α. Figure 3.2 provides a graphical example of previous situation by

plotting the distribution of the IV and OLS estimators.

It is immediate to see that—with α equal to 7 and the OLS centered in α¼ 3—IV

is not a reliable estimator, as it presents very larger tails compared to those of OLS.

The probability mass of the OLS is, however, much more concentrated around the

true α, although this estimator shows a bias equal to 4. In such cases, OLS seems,

therefore, undoubtedly more reliable than IV.

3.2.4.3 Small-Sample Bias of IV

It is a well-known result that 2SLS are biased in finite samples (Nelson and Startz

1990a, b; Phillips 1983). This bias is cumbersome to calculate and may be large;

thus, the behavior of an IV estimator when the sample size is small may be

problematic. Following the paper by Murray (2006), we limit our attention here

to the case in which we have only one endogenous variable in a univariate

regression model and a number L of instrumental-variables. The model is therefore:

Y ¼ μþ αDþ u

D ¼ μþ zγþ u

with z equal to a row vector of L instruments. Hahn and Hausman (2005) have

showed that, for a model of this kind, the 2SLS bias is approximately equal to:

E bα 2SLSð Þ � α � L � ρ � 1� R2
� �

N � R2
ð3:49Þ
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Fig. 3.2 Example of a

consistent IV estimate of α
having a large variance (due

to the use of a weak

instrument), compared with

an inconsistent OLS having

smaller variance. The value

of the true parameter is

α¼ 7; OLS is centered

around α¼ 3
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where: L is the number of instrumental-variables; ρ is the correlation betweenD and

u, i.e., the degree of D’s endogeneity; and R2 is the share of D’s variance explained
by the instruments z, i.e., the multivariate correlation between D and z.

It is clear that, as soon as L and/or ρ increases, the bias increases accordingly.

This means that adding additional instruments without obtaining a higher R2 rate

actually worsens the extent of the bias. The simple addition of poorly explicative

instruments can therefore lead to further bias. Of course, as N increases, the bias

disappears. Figure 3.3 shows the 2SLS bias as function of R2, when L¼ 10, ρ¼ 0.6,

and N¼ 100; it is easy to see that, as function of R2, the bias take a hyperbolic shape

with the bias disappearing when R2¼ 1.

Finally, Hahn and Hausman (2005) show that the ratio between the 2SLS’s and
OLS’s bias is approximately equal to:

Bias bα 2SLSð Þ
Bias bα OLSð Þ � L

N � R2
ð3:50Þ

implying that, as soon as the denominator is higher than the number of instruments,

the 2SLS bias is lower than that of OLS. For instance, suppose that the OLS bias is

100 and that L¼ 3, N¼ 20, and R2¼ 0.3; in this case, the bias of 2SLS is 50. When

we have few observations and a relatively weak instrument, the bias of 2SLS is,

therefore, smaller than that of OLS. Moreover, as L/NR2 is positive, the bias of

2SLS has the same sign of the OLS bias2.
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Fig. 3.3 2SLS bias as function of R, when L¼ 10, ρ¼ 0.6, and N¼ 100

2 Stock and Yogo (2002) have proposed a test to establish when an instrument is good enough to

produce a 2SLS bias that is lower than a certain share of the OLS bias. With one single endogenous

variable, this test follows a standard F-statistics, while for more than one endogenous regressor, the

authors have tabulated the critical values. Performing this test, however, requires an overidentified

setting.

3.2 Instrumental-Variables 179



To conclude, as it is difficult to find relatively good instruments in practice (i.e.,

variables capable of explaining the selection-into-program, while at the same time

being not directly related to the outcome), the evaluator has to weigh up the

advantages/disadvantages of using IV approaches. Recall, for example, that it can

sometimes be better to use a biased OLS than a consistent IV with weak

instruments.

Finally note that even when a relatively strong instrument (in terms of correla-

tion with the endogenous variable) is available, its exogeneity cannot be assured.

Testing the exogeneity of instruments requires an overidentified setting, that is, a

setting where the analyst has access to more than one instrument for the endogenous

treatment D. In typical micro-econometric studies, finding more than one instru-

ment is rather hard, given the particular properties that such variables have to

possess. Moreover, to further complicate things, with more than one instrument at

hand, the analyst can statistically test only the joint exogeneity of “all” instruments

used and not that of each single instrument separately. In the case of just-identified

settings (i.e., only one instrument for D), testing the exogeneity of the instrument is

not possible and analysts normally have to provide convincing arguments in order

to support the suitability of the (single) instrument chosen, especially with regard to

its assumed exogeneity. In fact, the multivariate correlation of a potential instru-

ment with the treatment variable can be properly tested through a first-step Probit

regression. Justifying instrument’s exogeneity, on the other hand, is a much more

subtle task than simply demanding an acceptable correlation with the treatment

variable.

3.3 Selection-Model

In this section, we present the Selection-model (SM) approach to estimate ATEs,

originally developed by Heckman (1978, 1979). Although initially proposed for

regression models using datasets with truncated (unobservable) outcomes due to

some form of unit selection process (tobit-type settings), this approach has become

increasingly popular in the applied program evaluation literature, where it is

generally known as the “Heckit” model. By and large, such a model can be easily

compared (if not included) with the IV approach to consistently estimate the

parameters in system (3.21) without the necessity of including an instrument.

Naturally, the cost of not having an instrument to rely on is the necessity for

additional assumptions, in particular the joint normality of the error terms in system

such as (3.21). Before proceeding to a formal treatment of the Selection-model, we

give an account of the selection bias in models represented by (3.21), in order to

show which is the direction of the OLS selection bias when one does not control for

unobservable factors. This is useful, as in Selection-models the direction of the bias

has a clear statistical interpretation, in that it is proportional to the correlation

between the unobservables of the selection and the unobservables of the outcome

equation in the joint normal distribution of errors.
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3.3.1 Characterizing OLS Bias within a Selection-Model

In this subsection, we consider a simplified version of system (3.21), of the

following type:

Y ¼ μY þ βYxþ αDþ u Outcomeequation

D ¼ μD þ βDxþ ε Selectionequation

u ¼ γuQþ eu
ε ¼ γεQþ eε

ð3:51Þ

where α is the ATE; x is a common observable control variable; Q a common

unobservable component; and eu and eε are two exogenous random shocks with

zero unconditional mean. Since Q is unobservable, it is part of both error terms u
and ε. In this type of model, it can be shown that the bias of the OLS estimator takes

the following form:

αOLS ¼ αþ Cov ε; uð Þ
Var Dð Þ ð3:52Þ

that is:

αOLS ¼ αþ γεγu
Var Qð Þ
Var Dð Þ ð3:53Þ

Thus when:

• γuγε> 0, then OLS has an upward bias.

• γuγε< 0, then OLS has a downward bias.

• γuγε¼ 0, then OLS is unbiased (consistent).

The proof of the previous expression is quite straightforward. The first problem

to overcome is the presence of the covariate x. By defining eY ¼ Y � βYx, however,
we can rewrite the outcome equation as:

eY ¼ μY þ αDþ u

so that the OLS estimation of α is, by definition, equal to:

αOLS ¼
Cov eY ;D� 	
Var Dð Þ

Now, we can develop further the numerator as follows:
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Cov eY ;D� 	
¼ Cov Y;Dð Þ � βYCov x;Dð Þ
¼ Cov μY þ βYxþ αDþ u; μD þ βY þ εð Þ � βYCov x; μD þ βDxþ εð Þ
¼ βYβDVar xð Þ þ βYCov x; εð Þ þ αβDCov D; xð Þ þ αCov D; εð Þf

þβDCov x; uð Þ þ Cov ε; uð Þg � βYβDVar xð Þ þ βYCov x; εð Þf g

By simplifying, this implies that:

Cov eY ;D� 	
¼ αβDCov D; xð Þ þ αCov D; εð Þ þ Cov ε; uð Þ

By developing further these covariates, we finally obtain:

Cov eY ;D� 	
¼ αβ2DVar xð Þ þ αVar εð Þ þ Cov ε; uð Þ

Since Var Dð Þ ¼ Var μD þ βDxþ εð Þ ¼ β2DVar xð Þ þ Var εð Þ, we have that:

αOLS ¼
Cov eY ;D� 	
Var Dð Þ ¼ αβ2DVar xð Þ þ αVar εð Þ þ Cov ε; uð Þ

β2DVar xð Þ þ Var εð Þ ¼ αþ Cov ε; uð Þ
Var Dð Þ

proving (3.52). At this point, we can develop further the previous equation by

plugging in the equations of u and ε:

αOLS ¼ αþ Cov γεQþ eε; γuQþ euð Þ
Var Dð Þ ¼ αþ γεγu

Var Qð Þ
Var Dð Þ

proving (3.53). Of course, when more than one unobservable is included in the error

terms, the bias has a different and more complicated formula: by assuming, for

instance, to have two unobserved confounders, Q1 and Q2, we can show the OLS

bias to be equal to:

αOLS � α ¼ Cov γε1Q1 þ γε2Q2 þ eε; γu1Q1 þ γu2Q2 þ euð Þ
Var Dð Þ

¼ γε1γu1Var Q1ð Þ þ γε2γu2Var Q2ð Þ þ γε1γu2 þ γε2γu1½ �Cov Q1;Q2ð Þ
Var Dð Þ

If the two unobservables are also uncorrelated, so that Cov Q1;Q2ð Þ ¼ 0, we obtain:

αOLS � α ¼ γε1γu1Var Q1ð Þ þ γε2γu2Var Q2ð Þ
Var Dð Þ ¼ γε1γu1

Var Q1ð Þ
Var Dð Þ þ γε2γu2

Var Q2ð Þ
Var Dð Þ

thus the bias is a linear combination of the products of the two coefficients of Qj

( j¼ 1, 2) of both errors. Observe that:
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• γε1γu1Var(Q1)> γε2γu2Var(Q2), then OLS has an upward bias.

• γε1γu1Var(Q1)< γε2γu2Var(Q2), then OLS has a downward bias.

• γε1γu1Var(Q1)¼ γε2γu2Var(Q2), then OLS is unbiased (consistent).

Of course, with many unobservables, possibly also correlated, the conditions

required to identify the direction of the OLS bias become much more complicated,

no longer having a clear-cut meaning. One possible simplification is that of

assuming a distributional behavior of the joint distribution of the error terms ε
and u, independently of the number of unobservables they may contain. As pretty

outlined above, this is the route taken by Selection-models, allowing one to

correctly identify ATE without using IV methods. Furthermore, it is also straight-

forward to estimate the OLS bias and determine whether it has a downward or

upward direction. This still requires to assume the joint normality of errors that in

many contexts may be heroic.

3.3.2 A Technical Exposition of the Selection-Model

In this section, we offer a detailed exposition of the Heckman Selection-model for

the case in which both observable and unobservable heterogeneities are assumed.

This is the most general Selection-model, simpler models being just peculiar

sub-cases.

We begin by considering the Case 2.2 from the IV section; in such a case, we had

the following form for the (observable) outcome equation:

Y ¼ μ0 þ αDþ g0 xð Þ þ D g1 xð Þ � g0 xð Þ½ � þ e0 þ D e1 � e0ð Þ

which, under some manipulations leads to:

Y ¼ μ0 þ αDþ xβ0 þ D x� μxð Þβþ e0 þ D e1 � e0ð Þ

This model contains both observable and unobservable heterogeneities, and a

consistent estimation in this case requires ad-hoc assumptions (see the previous

IV section). Nevertheless, a generalized Heckit model (Heckman 1979) can be

implemented to obtain consistent and efficient estimates of the parameters. Esti-

mation is based on these assumptions:

að Þ Y ¼ μ0 þ αDþ xβ0 þ D x� μxð Þβþ u
bð Þ E e1

��x, z� � ¼ E e0
��x, z� � ¼ 0�

c
�

D ¼ 1 θ0 þ xθ1 þ θ2zþ a � 0½ �
dð Þ E a

��x, z� � ¼ 0

eð Þ a; e0; e1ð Þ e 3N

ðf� a e N 0; 1ð Þ ) σa ¼ 1

gð Þ u ¼ e0 þ D e1 � e0ð Þ ð3:54Þ
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where the most crucial hypothesis here is that of assuming a trivariate normal

distribution of the error terms of the potential outcomes (e1, e0) and of the selection
equation (a), respectively. Observe that, although z is reported in (3.54) as regres-

sor, the identification of such a model does not require an instrumental-variable to

be specified. The normality assumption is sufficient to obtain consistent results.

Estimating such a model requires to directly calculate E(Y | x, z, D). To this end,
write the Y-equation (3.54a) as Y¼A+ u, with A¼ μ0 + αD+ xβ0 +D(x�μx)β and

u¼ e0 +D(e1� e0). Thus:

Y ¼ Aþ E u
��x, z,D� �þ ε

with ε¼ [u�E(u | x, z,D)]. In this case, it is immediate to see that E(Y | x, z,D)¼A

+E(u | x, z, D) since, by definition, E(ε | x, z, D)¼ 0. Thus, once the expression of

E(u | x, z, D) is known in a parametric way, one may apply an OLS regression to

recover consistent estimates of the parameters. Therefore, to calculate what E(u | x,
z, D) is equal to, we can write:

E u
��x, z,D� � ¼ E e0 þ D e1 � e0ð Þ��x, z,D� �

¼ E e0
��x, z,D� �þ DE e1

��x, z,D� �� DE e0
��x, z,D� �

¼ 1� Dð ÞE e0
��x, z,D� �þ DE e1

��x, z,D� �
Since (e1, e0) are uncorrelated with (x, z), we have that:

E u
��x, z,D� � ¼ 1� Dð ÞE e0

��D� �þ DE e1
��D� �

Now, write the previous formula in the two states:

E u
��x, z,D� � ¼ E u

��D ¼ 1
� � ¼ E e1

��D ¼ 1
� �

if D ¼ 1

E u
��D ¼ 0

� � ¼ E e0
��D ¼ 0

� �
if D ¼ 0

�
This means that:

E u
��x, z,D� � ¼ 1� Dð ÞE e0

��D ¼ 0
� �þ DE e1

��D ¼ 1
� �

Since D¼ 1[θ0 + θ1x+ θ2z+ a� 0], then:

E u
��x, z,D� � ¼ 1� Dð ÞE e0

��a < �θ0 � θ1x� θ2z
� �

þ DE e1
��a � �θ0 � θ1x� θ2z

� �
From the properties of the trivariate normal distribution, we have that:
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E e0
��a < qθ

� � ¼ �σe0a
ϕ qθð Þ

1�Φ qθð Þ
E e1

��a � qθ
� � ¼ σe1a

ϕ qθð Þ
Φ qθð Þ

qθ ¼ �θ0 � θ1x� θ2z

8>>>><>>>>: ð3:55Þ

where
ϕ qθð Þ

1�Φ qθð Þ and
ϕ qθð Þ
Φ qθð Þ are known as “inverse Mills ratios,” sometimes also called

“selection hazards.” Thus, by putting:

E Y
��x, z,D� � ¼ Aþ ρ1D

ϕ qθð Þ
Φ qθð Þ þ ρ0 1� Dð Þ ϕ qθð Þ

1�Φ qθð Þ

and by making explicit A, we finally get:

E Y
��x, z,D� � ¼ μ0 þ αDþ xβ0 þ w x� μxð Þβ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{A

þρ1D
ϕ qθð Þ
Φ qθð Þ

þ ρ0 1� Dð Þ ϕ qθð Þ
1�Φ qθð Þ ð3:56Þ

A two-step procedure can be used to estimate this equation:

1. Run a Probit of Di on (1, xi, zi) and get: bϕi; bΦi

� 	
2. Run an OLS of Yi on: 1,Di, xi,Di xi � μxð Þi,Di

bϕ ibΦ i

, 1� Dið Þ bϕ i

1�bΦ i

� 
The previous procedure produces consistent estimations of the parameters of

regression (3.56). Once these parameters’ estimates are available, one can also test

the null hypothesis:

H0 : ρ1 ¼ ρ0 ¼ 0

that, if accepted, allows one to conclude that there is no selection on unobservables.

By setting:

λ1 qθð Þ ¼ ϕ qθð Þ
Φ qθð Þ and λ0 qθð Þ ¼ ϕ qθð Þ

1�Φ qθð Þ

we can also write previous regression as:

E Y
��x, z,w� � ¼ μ0 þ αDþ xβ0 þ D x� μxð Þβþ ρ1Dλ1 qθð Þ

þ ρ0 1� Dð Þλ0 qθð Þ ð3:57Þ

Once all the parameters in the previous equation are estimated by the two-step

procedure, one can calculate the usual causal parameters ATEs. In this case,
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however, the formulas are slightly different to the case of the Control-function

regression and IV. First, it is immediate to see that:

ATE ¼ α
ATE xð Þ ¼ αþ x� xð Þβ ð3:58Þ

which is obtained following the same procedure seen in the Case 2 of Control-

function regression. ATET(x), ATET, ATENT(x), and ATENT, however, assume a

different form compared to that of the Control-function Case 2. We start by

showing the formula for ATET(x) and ATET and then for ATENT(x) and

ATENT. Under previous assumptions, we have that:

ATET xð Þ ¼ E y1 � y0
��x,D ¼ 1

� �
¼ μ1 � μ0ð Þ þ g1 xð Þ � g0 xð Þ½ � þ E e1 � e0

��x,D ¼ 1
� �

We know that e1 and e0 are independent of x, so that E(e1� e0| x, D¼ 1)¼
E(e1� e0 | D¼ 1). The value of the last expectation is easy to determine. Setting:

e1 � e0 ¼ η

we know that η follows a normal distribution. This means that:

E η
��D ¼ 1

� � ¼ σηa
ϕ

Φ

From the linear property of the covariance, we have that:

σηa ¼ Cov η; að Þ ¼ Cov e1 � e0; að Þ ¼ Cov e1; að Þ � Cov e0; að Þ ¼ σe1a � σe0a
¼ ρ1 þ ρ0

since ρ0 ¼ �σe0a and ρ1 ¼ σe1a . This implies that:

ATET xð Þ ¼ αþ x� xð Þβ þ ρ1 þ ρ0ð Þ � λ1 qθð Þ½ � D¼1ð Þ

ATET ¼ αþ 1XN
i¼1

Di

XN
i¼1

Di xi � xð Þβ þ ρ1 þ ρ0ð Þ � 1XN
i¼1

Di

XN
i¼1

Di � λ1 qθð Þ ð3:59Þ

In a similar way, it is immediate to show that:
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ATENT xð Þ ¼ αþ x� xð Þbβ þ ρ1 þ ρ0ð Þ � λ0 qbθ� 	h i
D¼1ð Þ

ATENT ¼ αþ 1XN
i¼1

1� Dið Þ

XN
i¼1

1� Dið Þ xi � xð Þβþ ρ1 þ ρ0ð Þ

� 1XN
i¼1

1� Dið Þ

XN
i¼1

1� Dið Þ � λ0i qθð Þ ð3:60Þ

Having estimated {α, ρ1, ρ0, β, λ1, λ0} using the two-step procedure, one can

substitute them into previous ATEs’ formulas to recover all the causal effects of

interest. Observe that standard errors for the ATET and the ATENT can be obtained

by bootstrap procedures.

Finally, since under the joint-normality assumption, the model is fully paramet-

ric, a maximum likelihood estimation can be employed, thus not only yielding

consistent but also efficient estimations of the causal parameters. Generally, how-

ever, maximum likelihood estimation can result in convergence problems, espe-

cially when many discrete control variables are used. In such cases, the two-step

procedure is a valuable (although less efficient) alternative.

3.3.3 Selection-Model with a Binary Outcome

In many program evaluation applications, it is common to come across situations in

which the outcome variable takes on a binary form. For a given set of individuals,

for instance, one might be interested in knowing whether the likelihood of finding a

job is increased by participating in a training program; in this case, the outcome

Y presents only two values: “employed” and “unemployed.” In such cases, by

eliminating the interaction term and the instrument z for the sake of simplicity,

system (3.54) becomes:

Y ¼ 1 μþ αDþ xβþ u½ �
D ¼ 1 θþ xθþ a � 0½ �

where (Y; D) is still distributed as bivariate normal with mean zero, unit variance,

and correlation equal to ρ. It is immediate to see that in this framework, the ATE is

equal to:

ATE ¼ Φ μþ αþ xβð Þ �Φ μþ xβð Þ

Since Y is binary, assuming a linear probability model for the outcome equation

would be incorrect and estimating the previous system using the Heckman two-step
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procedure, as if the outcome was continuous, would lead to biased results. As the

model is fully parametric, however, a maximum likelihood (ML) estimation can be

performed noting that the joint density distribution of (Y; D) can be written as:

f Y,D
��x� � ¼ f Y

��D, x� �
f D

��x� �
From this decomposition of the joint density of the endogenous variables condi-

tional on the exogenous observables, it is not difficult to obtain the log likelihood;

maximizing the log likelihood, however, requires nonstandard integrals computa-

tion (quadrature methods) and possibly may have a number of convergence prob-

lems (Wooldridge 2010, pp. 594–596). To avoid computational burden, Burnett

(1997) proposed a simple two-step procedure which mimics the two-step approach

adopted by Rivers and Vuong (1988) in the case of a binary outcome model with a

continuous endogenous regressor. This procedure works as follows:

1. Estimate a probit of Di on {1, xi}, and get an estimate of the probit residuals:br i ¼ Di �Φ xibθ� 	
2. Estimate a second probit of Yi on 1; xi;Di;brif g to get parameters estimates.

Unfortunately, this does not lead to consistent estimates of ATE and other

parameters. Monte Carlo experiments conducted by Nicoletti and Peracchi

(2001), however, have shown that the bias of such a two-step procedure, especially

when taking heteroskedasticity into account, can be ignored and is not larger than

the ML estimator bias. Moreover, this result holds even when the correlation

coefficient between Y and D is remarkably high. Finally, note that while inconsis-

tent, the previous two-step approach offers a valid test for the endogeneity of D.
Indeed, under the null hypothesis of an exogenous D, the usual t statistic for br i is

consistent (Wooldridge 2010, p. 597).

3.4 Difference-in-Differences

A powerful approach to deal with endogenous selection without the need for

instrumental-variables or additional distributional assumptions is the so-called

difference-in-differences (DID) method (Abadie 2005; Angrist and Pischke 2008,

Chap. 5; Bertrand et al. 2004; Card and Krueger 2000; Donald and Lang 2007;

Meyer et al. 1995).

DID is suitable in evaluation contexts where observational data for treated and

untreated units are available both before and after treatment. It can be shown that

causal effects, under such a data structure, can be identified and estimated consis-

tently by DID.

Two types of DID estimators have been proposed in the literature, the choice of

which depends on whether the data are a pure longitudinal dataset (panel data) or a

repeated cross section. In the first case (panel), the same unit (either treated or
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untreated) is observed before and after a treatment occurred; in the second case

(repeated cross section), the units observed before and after treatment (either

treated or not) may be different. Identification assumptions of both types of DID

are, however, the same. In what follows, we present the more conventional type of

DID, which is used in repeated cross section of individuals, before going on to

discuss DID in a longitudinal data structure.

3.4.1 DID with Repeated Cross Sections

In this section we illustrate the DID method using an example similar to that of Card

and Krueger (1994)3. We will focus on the estimation of the ATE. Following those

authors, suppose to have a dataset made of repeated cross sections of N different

restaurants, located in both Rome and Milan. The restaurants are observed at time t0
and, successively, at time t1. Suppose that, in between t0 and t1, the restaurants in

Rome benefitted from an incentive to increase employment, the target variable

which we denote Y. It is clear, as indicated in Table 3.2, that only the restaurants

observed in Rome at time t1 are those actually treated.

We can define a binary variable s to identify the restaurant location, where

si¼R, if restaurant i is located in Rome, and si¼M, if restaurant i is located in

Milan. Likewise, we can define a time binary variable t taking the values ti¼ t1, if
restaurant i is observed after policy implementation, and ti¼ t0, if restaurant i is
observed before the implementation of the policy. Finally, let Yi indicate the

employment outcome of restaurant i after policy implementation occurrence. In

such a context, we can define the average treatment effect as:

ATE s; tð Þ ¼ E Y1ist � Y0ist

��s, t� � ¼ δ ¼ constant ð3:61Þ

where the location index s¼ {R, M} and time index t¼ {t0, t1}, and Y1 and Y0 are
the usual potential outcomes. It is immediate to see that this definition of ATE

assumes a constant effect over s and t. Indeed, as the counterfactual logic suggests,
in a two-period/two-location setting, one can define four average treatment effects

defined as:

Table 3.2 Two-way table of

the DID statistical setting
Location s

Rome Milan

Time t t0 Untreated Untreated

t1 Treated Untreated

3 Some econometrics of this section draws on Angrist and Pischke (2008, pp. 221–243).
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E Y1iRt0 � Y0iRt0ð Þ ¼ δ1
E Y1iRt1 � Y0iRt1ð Þ ¼ δ2
E Y1iMt0 � Y0iMt0ð Þ ¼ δ3
E Y1iMt1 � Y0iMt1ð Þ ¼ δ4

ð3:62Þ

Thus, the first assumption lying behind the traditional DID estimator is that

δ1¼ δ2¼ δ3¼ δ4¼ δ¼ constant. This means that the ATE conditional on s and

t is equal to the unconditional ATE, i.e., ATE(s, t)¼ATE.

The second assumption for identifying the causal effect using DID is the

so-called common-trend assumption, which states that:

E Y0ist

��s, t� � ¼ γs þ λt ð3:63Þ

where γs is a location-specific effect and λt a time-specific effect. This assumption

simply sets that the nontreatment employment time trend is in Rome (the treated

location) and Milan (the non-treated one) as the same. Indeed, it is easy to see that

this trend is equal to λt1 � λt0 for both locations.

To see how these two assumptions identiy δ, we have to specify how the

potential outcomes are modeled. In this sense, we assume that:

Y0ist ¼ γs þ λt þ e0ist
Y1ist ¼ γs þ λt þ δþ e1ist
Yist ¼ Y0ist þ Dst Y1ist � Y0istð Þ

ð3:64Þ

where E(e0ist | s,t)¼E(e1ist | s, t)¼ 0, and Dst¼ 1 if s¼R and t¼ t0, and Dst¼ 0

otherwise. Moreover, we also assume that E(e0ist | xst)¼E(e1ist | xst)¼ 0, so that

there is no need to control for state-time covariates in order to ensure consistency.

Given (3.64), by simple substitution, we obtain:

Yist ¼ γs þ λt þ Dstδþ eist ð3:65Þ

with E eist
��s, t� � ¼ E e0ist þ Dst e1ist � e0istð Þ��s, t� � ¼ 0. Thus, a simple OLS regres-

sion of Y on a location and time variable and on Dst provides a consistent estimation

of the ATE¼ δ.
To understand better how the previous assumptions identify the ATE in DID, we

first consider an analytical example and then its graphical representation (Fig. 3.4).

By definition, ATE is equal to:

β ¼ E Y1iRt1ð Þ|fflfflfflfflffl{zfflfflfflfflffl}
known

�E Y0iRt1ð Þ|fflfflfflfflffl{zfflfflfflfflffl}
unknown

ð3:66Þ

Suppose that E Y1iRt1ð Þ ¼ γR þ λt1 þ δ ¼ 3, whereas E Y0iRt1ð Þ ¼ γR þ λt1 ¼ ?. Thus:
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δ ¼ 3� γR þ λt1ð Þ ¼ 3� ?

so δ is not identified. Nevertheless, by observation, we know both these quantities:

E Y0iRt0ð Þ ¼ γR þ λt0 ¼ known ¼ 2

E Y1iRt1ð Þ ¼ γR þ λt1 þ δ ¼ known ¼ 3

entailing that δ ¼ 1� λt1 � λt0ð Þ. Using the data for s¼R, we cannot, however,

calculate λt1 � λt0ð Þ. We can nevertheless exploit data from s¼M, in order to

estimate quantity λt1 � λt0ð Þ. In fact:

E Y0iMt0ð Þ ¼ γM þ λt0 ¼ known ¼ 6

E Y1iMt1ð Þ ¼ γM þ λt1 ¼ known ¼ 3

implying that λt1 � λt0ð Þ ¼ 4� 6 ¼ 2; subsequently, we have that:

δ ¼ 1� λt1 � λt0ð Þ ¼ 1� �2ð Þ ¼ 3

and the ATE is identified and equal to 3. Note that this result is possible since we

assume that λt1 � λt0 , i.e., the time trend is the same in both Rome and Milan. If the

trend was not equal, the ATE would have not been identified.

Figure 3.4 shows a graphical representation of DID, from which it is evident that

the common-trend assumption is a necessary one in order to identify ATE. If this

were not the case, the counterfactual trend in Rome would be different from that of

Number of 

employees

Timet0
t1

ATE:

d=3 > 0

Policy

6

2

Counterfactual time-trend in Rome 
(assumed equal to that in Milan)

Observed time-trend in Milan 

4

3

Observed time-trend in Rome

Fig. 3.4 Identification of ATE by the difference-in-differences (DID) estimator
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Milan, thus implying a different value of ATE (e.g., ATE¼ 2), while we errone-

ously set the ATE¼ 3.

Correcting for possible differences in time trends across the two cities is

necessary in order for DID to remain unbiased. One way to relax the common-

trend assumption would be to allow the DID equation to contain a location-specific

trend coefficient, in other words:

Yist ¼ γs þ λt þ θst þ Dstδþ eist ð3:67Þ

To estimate a model with an s-specific trend as (3.67), one needs unfortunately at

least three periods; using just three periods to infer the difference in pre- and post-

trend may, however, be questionable. Additional pre-and post-treatment observa-

tions are thus needed to obtain more reliable estimates. A second possibility may be

to add covariates as a source of omitted location-specific trends (an option which is

discussed in the next section). In fact, although (3.65) can be correctly used for

estimating the ATE by DID, in empirical work researchers usually adopt a slightly

different regression-type model, resulting in the same form as (3.67)4:

Yi ¼ μþ βsi þ γti þ δ si � tið Þ þ εi ð3:68Þ

where E(εi | si, ti, si∙ti,)¼ 0, so that an OLS of (3.68) yields a consistent estimation of

the parameters. Note once again that the treatment variable is in this case

Di ¼ si � ti. We can show which parameters in (3.68) are equal to and also what is

their relationship to the parameters in (3.65). Since:

E Y
��s ¼ 1, t ¼ 0

� � ¼ E Y T
0

� � ¼ μþ β
E Y

��s ¼ 1, t ¼ 1
� � ¼ E Y T

1

� � ¼ μþ β þ γ þ δ
E Y

��s ¼ 0, t ¼ 0
� � ¼ E Y C

0

� � ¼ μ
E Y

��s ¼ 0, t ¼ 1
� � ¼ E Y C

1

� � ¼ μþ γ

ð3:69Þ

we can immediately see that:

μ ¼ γR þ λt0
β ¼ γM � λR
γ ¼ λt1 � λt0

ð3:70Þ

Given this result, it seems worth proving what exactly a consistent estimation of δ is
equal to, starting first from the two biased estimators:

1. Before/After estimator
This estimator is equal to the difference between the average of the outcome

of the treated units, before and after the policy:

4Observe that in (3.68) we consider these codifications of s and t: s¼ {R¼ 1; M¼ 0} and t¼
{t1¼ 1; t0¼ 0}.
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δBA ¼ E Y T
1

� �� E Y T
0

� � ¼ γ þ δ ð3:71Þ

which is biased as soon as γ 6¼ 0. It can be obtained by the following OLS

regression estimated on treated units (si¼ 1) only:

Yi ¼ μ1 þ δBA � ti þ errori
si ¼ 1

�
ð3:72Þ

2. Treatment/Control estimator
It is equal to the difference between the average of the outcome of treated

units and that of control units, once the policy intervention has taken place

(ti¼ 1):

δTC ¼ E Y T
1

� �� E YC
1

� � ¼ β þ δ ð3:73Þ

which is biased as soon as β 6¼ 0. An estimation of δTC can be obtained by the

following OLS regression, performed only on units observed after policy

(ti¼ 1):

Yi ¼ μ2 þ δTC � si þ errori
ti ¼ 1

�
ð3:74Þ

3. DID estimator
Finally, DID is defined as:

δDID ¼ E Y T
1

� �� E Y T
0

� �� �� E Y C
1

� �� E YC
0

� �� �
¼ μþ β þ γ þ δð Þ � μþ βð Þ½ � � μþ γð Þ � μ½ � ¼ δ ð3:75Þ

thus proving that δDID is an unbiased estimator of the average treatment effect δ.

3.4.1.1 Generalizing DID in Repeated Cross Sections

We saw that one way of relaxing the common-trend assumption may be that of

adding further covariates to the DID regression. This characteristic is in fact a

significant advantage of DID compared with other methods. Even when the

common-trend is not violated, including additional covariates (either t-invariant
or s-invariant or unit specific) helps to increase the precision of the ATE’s estima-

tion (efficiency) provided, of course, that the model is correctly specified (i.e., the

covariates are the correct predictors of outcome’s DGP). In such a case, the DID

assumes the usual regression form (Card 1992):

Yist ¼ γs þ λt þ Dstδþ βxist þ eist ð3:76Þ

where β is a vector of additional covariates parameters.
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An additional interesting generalization of the DID estimator is required when

Dst changes over time in the different locations. This is a generalization of the

two-location/two-time DID to multiple-location/multiple-time case. It could, for

example, be the case that a similar policy is implemented in various locations at

different times. Angrist and Pischke (2008), following Autor (2003), suggest one

should use in this case the following regression with lags and leads of the treatment

variable Dst:

Yist ¼ γs þ λt þ
Xm
τ¼0

Ds, t�τδ�τ þ
Xq
τ¼1

Ds, tþτδþτ þ βxist þ eist ð3:77Þ

Equation (3.77) allows for a dynamic interpretation of the policy effect. As we will

see in Sect. 3.4.4, it is possible to graph the pattern of the dynamic causal effects by

plotting over time coefficients point estimation and confidence intervals. Using lags

and leads can provide an interesting test to determine whether past treatments affect

current outcome, or for the presence of anticipatory effects, thus challenging the

conventional idea that causality works only “from the past to the present” (Granger

1969).

Anticipatory effects can also have a causal interpretation, once it is accepted that

individuals make decisions not only on the basis of past events but also by

formulating expectations of the future. This forward looking feature of the human

decision-making process can be seen to be rational; for example, if one expects to

become treated in 2 years from now, he (or she) could modify his (or her) current

behavior in order to be able to exploit the opportunity he (or she) will get. Consider,

for instance, a company expecting to receive support for R&D activity in 2 years

time; in this situation, the firm immediately increases its portfolio of innovative

projects so as they could potentially receive support in the future. An unemployed

worker, on the other hand, could be less keen to search for a new job if he (or she)

expects to be involved in a training course in the near future. Thus, future treat-

ments can have, as past treatments, a significant impact on the present outcome.

3.4.2 DID with Panel Data

The DID estimator can also be identified using longitudinal datasets, where the

same unit i can be observed before and after treatment (see, for instance, Lach

(2002)). Assume we have data for two points in time t¼ {0, 1} as in the cross-

section case. In a panel data setup, DID is defined as the OLS estimator of α in the

following regression:

t ¼ 1 : Yi1 ¼ μ1 þ αDi1 þ ui1
t ¼ 0 : Yi0 ¼ μ0 þ αDi0 þ ui0
Di0 ¼ 0

8<: ð3:78Þ
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where estimation is only carried out for those units which are untreated in t¼ 0. By

subtracting, we then obtain:

ΔYi1 ¼ μþ αΔDi1 þ Δui1
Di0 ¼ 0

�
ð3:79Þ

with μ¼μ1�μ0, which is equivalent to:

ΔYi1 ¼ μþ αDi1 þ Δui1
Di0 ¼ 0

�
ð3:80Þ

The previous relationship can be written in matrix form as follows:

Δy1 ¼ 1;D½ � μ
α

� �
þ Δu1 ð3:81Þ

By definition, the OLS estimation of the previous regression is:

bμbα
� �

OLS

¼ 1
0

D
0
1

� �
1;D1ð Þ

� �1

� 1
0

D
0
1

� �
� Δy1 ¼ 1

0
1 1

0
D1

D
0
11 D

0
1D1

� �1

� 1
0

D
0
1

� �
� Δy1 ¼

¼ N NT

NT NT

� �1

�

XN
i¼1

ΔYi1

XNT

i¼1

ΔYi1

0BBBB@
1CCCCA ¼ 1

NT � NC
� NT �NT

�NT N

� 
�

XN
i¼1

ΔYi1

XNT

i¼1

ΔYi1

0BBBB@
1CCCCA ¼

1

NT � NC
�

NT

XN
i¼1

ΔYi1 � NT

XNT

i¼1

ΔYi1

�NT

XN
i¼1

ΔYi1 þ N
XNT

i¼1

ΔYi1

266664
377775 ¼ 1

NT � NC
�

NT

XNC

i¼1

ΔYi1

�NT

XN
i¼1

ΔYi1 þ N
XNT

i¼1

ΔYi1

266664
377775 ¼

¼ 1

NT � NC
�

NT

XNC

i¼1

ΔYi1

�NT

XN
i¼1

ΔYi1 þ NT

XNT

i¼1

ΔYi1 þ NC

XNT

i¼1

ΔYi1

266664
377775 ¼

1

NC

XNC

i¼1

ΔYi1

1

NT

XNT

i¼1

ΔYi1 � 1

NC

XNC

i¼1

ΔYi1

266664
377775 ¼ Yi1 � Yi0

� �
control

Yi1 � Yi0

� �
treated

� Yi1 � Yi0

� �
control

� 

proving that:

bα DID ¼ Yi1 � Yi0

� �
treated

� Yi1 � Yi0

� �
control

ð3:82Þ
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Rearranging the previous expression, we obtain:

bα DID ¼ Y
T
i1 � Y

T
i0

� 	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Before=After
estimator for

Treated

� Y
C
i1 � Y

C
i0

� 	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Before=After
estimator for

Untreated

ð3:83Þ

or equivalently:

bα DID ¼ Y
T
i1 � Y

C
i1

� 	
� Y

T
i0 � Y

C
i0

� 	
ð3:84Þ

where we have that:

Y
T
i1 ¼ averageof Y on treated at t ¼ 1

Y
C
i1 ¼ average of Y on untreated at t ¼ 1

Y
T
i0 ¼ average of Y on treated at t ¼ 0

Y
C
i0 ¼ average of Y on untreated at t ¼ 0

Now, since:

bα DID ¼ Y
T
i1 � Y

T
i0

� 	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Before=After
estimator for

Treated

� Y
C
i1 � Y

C
i0

� 	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Before=After
estimator for

Untreated

¼ bα T
BA � bα C

BA ð3:85Þ

it follows that the before/after estimator on treated units is biased and that bias is

equal to:

Bias bα T
BA

� � ¼ bα DID � bα DID þ bα C
BA

� � ¼ �bα C
BA ð3:86Þ

Nevertheless, note that DID is consistent as soon as:

Cov Di1;Δui1ð Þ ¼ 0 ð3:87Þ

which is a stronger version of the CMI. Condition (3.87) is a shortcoming of DID,

although, as in the repeated cross-section case, one can control also for time and

individual effects in order to preserve exogeneity. Finally, DID with panel data can

also be easily extended to the case of dynamic treatment by introducing lags and

leads as we did in the cross-section case:
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Yit ¼ γi þ λt þ
Xm
τ¼0

Dt�τδ�τ þ
Xq
τ¼1

Dtþτδþτ þ βxit þ eit ð3:88Þ

Equation (3.88) is equivalent to that of (3.77), except from the omission of the

location dimension s. In this case, building lags and leads reduces the sample size as

missing values are generated over time. However, an OLS regression of the

previous regression provides consistent estimation of the causal effects. In

Sect. 3.4.4, we will focus more in detail on DID within a time-varying treatment

setting.

3.4.2.1 A Comparison Between DID and FE Estimator

In many program evaluation applications using longitudinal setting, fixed effects
(FE) estimation of the outcome equation, possibly augmented by treatment-lagged

variables, is used.

How does the FE estimation differ from that of the DID? Does the choice

between FE and DID matter in terms of the precision of the estimates? Intuitively,

DID estimator should be more robust than FE since, by definition, DID takes into

account a ceteris paribus condition that the FE estimator overlooks. To see this, we

write the two regressions for DID and FE:

DID :
Yit ¼ θi þ λt þ Ditαþ xitβþ uit
Di, t�1 ¼ 0

�
ð3:89Þ

FE : Yit ¼ θi þ λt þ Ditαþ xitβþ uitf ð3:90Þ

where, by substitution and by differencing, we obtain (omitting Δxit and Δλt for
simplicity):

DID : ΔYit ¼ αDit þ Δuit ð3:91Þ
FE : ΔYit ¼ αΔDit þ Δuit ð3:92Þ

thus yielding two different conditions for consistency. For the DID equation we

need that:

Cov Dit; uit � ui, t�1ð Þ ¼ Cov Dit; uitð Þ � Cov Dit; ui, t�1ð Þ ¼ 0 ð3:93Þ

that is:

Cov Dit; uitð Þ ¼ Cov Dit; ui, t�1ð Þ ð3:94Þ

and for the FE equation, we require:
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Cov Dit � Di, t�1; uit � ui, t�1ð Þ ¼ Cov Dit; uitð Þ � Cov Dit; ui, t�1ð Þ½ �
þ Cov Di, t�1; ui, t�1ð Þ � Cov Di, t�1; uitð Þ½ �

¼ 0 ð3:95Þ

that is:

Cov Dit; uitð Þ � Cov Dit; ui, t�1ð Þ½ � ¼ Cov Di, t�1; ui, t�1ð Þ � Cov Di, t�1; uitð Þ½ � ð3:96Þ

We observe immediately that when DID is consistent—i.e., (3.94) holds—(3.96)

becomes:

Cov Di, t�1; ui, t�1ð Þ � Cov Di, t�1; uitð Þ ¼ 0 ) Cov Di, t�1; ui, t�1ð Þ
¼ Cov Di, t�1; uitð Þ ð3:97Þ

Equation (3.97) implies that a second and more restrictive requirement with respect

to the correlation between D and u at different points in time is required by the FE

estimator. The condition under which the consistency of DID is achieved is

therefore less restrictive than that required for the FE estimator. In this sense,

DID is preferable to the FE estimator.

Nevertheless, even if estimation by DID entails less restrictive identification

conditions than FE, implementing DID reduces the number of observations

required to estimate the ATE due to the pre-period zero-treatment condition.

When reduction in observations is significant, the relative attractiveness of DID

vis-a-vis FE may reduce and a trade-off between identification requirements and

inferential precision can arise. If the number of observations falls dramatically, it is

likely that FE may produce a more robust estimation of the effect of the policy to be

evaluated than that obtained using DID.

3.4.3 DID with Matching

Hybrid program evaluation methods are generally more robust than stand-alone

approaches. In Sect. 2.5, we presented the case of the Doubly-robust estimator,

combining Reweighting on inverse-probability with Regression-adjustment.

Another type of hybrid method is the Matching-DID (M-DID), a combination of

DID with a propensity-score Matching (Heckman et al. 1998; Smith and Todd

2005). This estimator is similar to the DID estimator presented in Sects. 3.4.1 and

3.4.2, but it has the advantage that it does not require the imposition of the linear-in-

parameters form of the outcome equation. As such, it can be seen as a nonpara-

metric DID, reweighting observations according to a weighting function dependent

on the specific Matching approach adopted. As in the standard DID, there are two

types of M-DID: one for panel and one for repeated cross-section data. Both

198 3 Methods Based on Selection on Unobservables

http://dx.doi.org/10.1007/978-3-662-46405-2_2#Sec27


formulas are provided below, where our discussion is limited to the estimation of

ATET (the estimation of the ATENT follows a similar procedure).

In the case of panel data, the M-DID formula takes the following form:

cATET
M-DID ¼ 1

N1

X
i2 Tf g

Y T
i1 � Y T

i0

� �� X
j2C ið Þ

h i; jð Þ Y C
j1 � Y C

j0

� 	0@ 1A
where t¼ 1 is the after-policy time, and t¼ 0 is the before-policy time; T is the

treated set; C is the untreated set of units; h(i, j) the (specific) matching weights; and

C(i) is the neighborhood of the treated unit i.
For the repeated cross-section case, we have, respectively:

cATET
M-DID ¼ 1

NT, 1

X
i2 T1f g

Y T
i1 �

X
j2C1 ið Þ

h i; jð ÞY C
j1

0@ 1A
� 1

NT, 0

X
i2 T0f g

Y T
i0 �

X
j2C0 ið Þ

h i; jð ÞYC
j0

0@ 1A
where NT,1 is the number of treated units (T ) at time t¼ 1; NT,0 is the number of

treated units (T ) at time t¼ 0; T1 is the set of treated at time t¼ 1; T0 is the set of
treated at time t¼ 0; C1(i) is the neighborhood of unit i in time t¼ 1; and C0(i) is the
neighborhood of unit i in time t¼ 0 (see also Blundell and Costa Dias 2000).

As is usual with Matching, the advantage of using this nonparametric approach

should be reconsidered when the reduction in sample size, as a result of the

Matching trimming mechanism, is significant.

3.4.4 Time-Variant Treatment and Pre–Post Treatment
Analysis

In this section, we focus on treatment effect estimation in the presence of time-
variant treatment. Such a setting frequently characterizes numerous economic and

social phenomena, which generally change over time. One could, for example, be

interested in ascertaining both whether a certain treatment has had an impact on a

given target with some delays and whether there are possible anticipatory effects.

To begin with, consider a binary treatment indicator for individual i at time t:

Dit ¼ 1 if unit i is treatedat time t
0 if unit i isuntreatedat time t

�
and assume an outcome equation with one lag and one lead:
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Yit ¼ μit þ β�1Dit�1 þ β0Dit þ βþ1Ditþ1 þ γxit þ uit

In this setup, we have then the following sequence of treatments:

w j
� � ¼ Dit�1;Dit;Ditþ1f g ¼

w1 ¼ 0; 0; 0ð Þ
w2 ¼ 1; 0; 0ð Þ
w3 ¼ 0; 1; 0ð Þ
w4 ¼ 0; 0; 1ð Þ

8>><>>:
Where the sequence w1 is the usual benchmark of non-treatment over time. The

generic treatment sequence is indicated by wj (with j¼ 1, . . ., 4) and the associated

potential outcome as Y(wj). In this setting, we can easily define the “average

treatment effect between the two potential outcomes Y(wj) and Y(wk)” as:

ATE jk ¼ E Yit w
jð Þ � Yit w

k
� �� � 8 i; tð Þ

Under CMI, we have that:

ATE jk ¼ Ex ATE jk xð Þ� � ¼ Ex E Yit w
j; x

� �� Yit w
k; x

� �� �� �
¼ Ex E Yit

��w j, x
� �� E Yit

��wk, x
� �� �� �

In such a model with one lag and one lead, we can define and collect six ATEs as

follows:

w1 w2 w3 w4

w1 �
w2 ATE21 �
w3 ATE31 ATE32 �
w4 ATE41 ATE42 ATE43 �

266664
377775

Using the Y-equation we can also show that:

ATE21 ¼ E Yit

��w2

� �� E Yit

��w1

� �� � ¼ μþ β�1 þ γxð Þ � μþ γxð Þ ¼ β�1

ATE31 ¼ E Yit

��w3

� �� E Yit

��w1

� �� � ¼ β0
ATE41 ¼ E Yit

��w4

� �� E Yit

��w1

� �� � ¼ βþ1

ATE32 ¼ E Yit

��w3

� �� E Yit

��w2

� �� � ¼ β0 � β�1

ATE42 ¼ E Yit

��w4

� �� E Yit

��w2

� �� � ¼ βþ1 � β�1

ATE43 ¼ E Yit

��w4

� �� E Yit

��w3

� �� � ¼ βþ1 � β0

In general, we obtain a number of ATEs equal to (M2�M )/2, where M is the

number of binary treatments considered in the dynamic treatment setting. An

important advantage of a dynamic treatment model of this kind is the possibility

to plot graphically the results, i.e., the estimated potential outcomes and the effects
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over time. To this end, define the predictions of Yit given the sequence of treatment

as:

E Yit

��Dit�1,Dit,Ditþ1, xit
� � ¼ μt þ β�1Dit�1 þ β0Dit þ βþ1Ditþ1 þ γxt

Consider now only these two specific sequences of treatment:

wT ¼ Dit�1 ¼ 0,Dit ¼ 1,Ditþ1 ¼ 0f g
wC ¼ Dit�1 ¼ 0,Dit ¼ 0,Ditþ1 ¼ 0f g

where:

wT : treatmentonlyat the t
wC : never treatedover t

Define the prediction of Y at t� 1, t, and t+ 1:

E Yit�1

��Dit�1,Dit,Ditþ1

� � ¼ μt�1 þ β�1Dit�2 þ β0Dit�1 þ β1Dit þ γxt�1

E Yit

��Dit�1,Dit,Ditþ1

� � ¼ μt þ β�1Dit�1 þ β0Dit þ βþ1Ditþ1 þ γxt
E Yitþ1

��Dit�1,Dit,Ditþ1

� � ¼ μtþ1 þ β�1Dit þ β0Ditþ1 þ βþ1Ditþ2 þ γxtþ1

which can be used to calculate the expected outcome over {t� 1, t, t+ 1} of the

previous two sequences. Thus:

(i) For wT, we have that:

E Yit�1

��wT ¼ 0, 1, 0
� � ¼ μt�1 þ βþ1 þ γxt�1

E Yit

��wT ¼ 0, 1, 0
� � ¼ μt þ β0 þ γxt

E Yitþ1

��wT ¼ 0, 1, 0
� � ¼ μtþ1 þ β�1 þ γxtþ1

(ii) For wC, we have that:

E Yit�1

��wC ¼ 0, 0, 0
� � ¼ μt�1 þ γxt�1

E Yit

��wC ¼ 0, 0, 0
� � ¼ μt þ γxt

E Yitþ1

��wC ¼ 0, 0, 0
� � ¼ μtþ1 þ γxtþ1

We can plot these predictions over time (Fig. 3.5) and depict these situations:

• β+1> 0 and significant. In this case, there is a positive effect of the treatment at

t on the outcome at t� 1. This means that the current treatment had an effect on

past outcome (anticipatory effect). Therefore, the pretreatment period is char-

acterized by a positive effect of current treatment.

• β0> 0 and significant. In this case, there is a positive effect of the treatment at

t on the outcome at t. This means that the current treatment had an effect on
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current outcome (simultaneous effect). Therefore, the treatment period is char-

acterized by a positive effect of the treatment administrated in the same period.

• β�1> 0 and significant. In this case, there is a positive effect of the treatment at

t on the outcome at t+ 1. This means that the current treatment had an effect on

future outcomes (lagged effect). Therefore, the post treatment period is charac-

terized by a positive effect of current treatment.

This approach can naturally be extended to multiple lags and leads. See Autor

(2003) and Cerulli (2012) for more details.

3.5 Implementation and Application of IV and Selection-

Model

This section offers an application of the IV methods and Selection-model presented

in the theoretical sections. We begin by presenting the Stata user-written command

ivtreatreg (Cerulli 2014), performing IV and (generalized) Heckman

Selection-model estimations. Next, we illustrate a Monte Carlo exercise to assess

whether the theoretical properties of IV and Selection-model are confirmed in

practice. A subsection is dedicated to an application of IV and Heckit on real

data. Finally, an implementation of the Selection-model using the built-in Stata

routine etregress is also discussed.

t -1 t t +1

E(Yt-1 | DT)

E(Yt | DT)

E(Yt +1 | DT)

E(Yt-1| DC)

E(Yt | DC)

E(Yt +1 | DC)

b+1 b0

b-1

POST-TREATMENTTREATMENTPRE-TREATMENT

b+1 b-1

E(Yt | D)

Lead effect Lag effect

Fig. 3.5 Pre (t� 1)- and post (t+ 1)-treatment effect of a policy performed at t
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3.5.1 The Stata Command ivtreatreg

The Stata routine ivtreatreg (Cerulli 2014) estimates the four binary treatment

models presented in previous sections, i.e., Direct-2SLS, Probit-OLS, Probit-2SLS,

and Heckit, with and without idiosyncratic (or heterogeneous) average treatment

effects. As noted in Chap. 2, an older version of this command also estimated the

Control-function regression (CFR) model using the option model(cf-ols),
which can be now estimated using the built-in Stata13 command teffects ra.

Depending on the specifiedmodel, ivtreatreg provides consistent estimation

of ATEs either under the hypothesis of “selection on observables” (using, as said, the

option model(cf–ols), but only in the older version) or “selection on unobserv-
ables” (using one of the three Instrumental-variables (IV) models or the Heckman

Selection-model reviewed in previous sections). Conditional on a prespecified subset

of exogenous variables—those driving the heterogeneous response to treatment—

ivtreatreg calculates for each specific model, the average treatment effect

(ATE), the average treatment effect on treated (ATET), and the average treatment

effect on non-treated (ATENT), in addition to the estimates of these parameters

conditional on the observable factors x (i.e., ATE(x), ATET(x), and ATENT(x)).

The syntax of the command is fairly simple:

Syntax of ivtreatreg

ivtreatreg outcome treatment [varlist] [if] [in] [weight], model(modeltype)

[hetero(varlist_h) iv(varlist_iv) conf(number) graphic vce(robust)

const(noconstant) head(noheader)]

where outcome specifies the target variable that is the object of the evaluation;

treatment specifies the binary (i.e., taking 0¼ treated or 1¼ untreated) treat-

ment variable; varlist defines the list of exogenous variables that are considered

as observable confounders.

ivtreatreg allows for specifying a series of convenient options of different

importance:

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Required options

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

model(modeltype) specifies the treatment model to be estimated, where modeltype must be

one of the following (and abovementioned) four models: "direct–2sls", "probit–2sls",

"probit–ols", "heckit". It is always required to specify onemodel.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

modeltype description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

direct–2sls IV regression estimated by direct two–stage least squares

probit–2sls IV regression estimated by Probit and two–stage least squares

probit–ols IV two–step regression estimated by Probit and OLS

heckit Heckman two–step selection–model
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Optional options

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

hetero(varlist_h) specifies the variables over which to calculate the idyosincratic Average

Treatment Effect ATE(x), ATET(x) and ATENT(x), where x¼varlist_h. It is optional for all

models. When this option is not specified, the command estimates the specified model without

heterogeneous average effect. Observe that varlist_h should be the same set or a subset of

the variables specified in varlist.

iv (varlist_iv) specifies the variable(s) to be used as instruments. This option is

strictly required only for "direct–2sls", "probit–2sls" and "probit–ols", while it

is optional for "heckit".

graphic allows for a graphical representation of the density distributions of ATE(x),

ATET(x) and ATENT(x). It is optional for all models and gives an outcome only if

variables into hetero() are specified.

vce(robust) allows for robust regression standard errors. It is optional for all

models.

beta reports standardized beta coefficients. It is optional for all models.

const(noconstant) suppresses regression constant term. It is optional for all models.

conf(number) sets the confidence level equal to the specified number. The default is

number¼95.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The routine also creates a number of variables which can be used to analyze the

data further:

_ws_varname_h are the additional regressors used in model’s regression when hetero

(varlist_h) is specified. They are created for all models.

_z_varname_h are the instrumental–variables used in model’s regression when hetero

(varlist_h) and iv(varlist_iv) are specified. They are created only in IV models.

ATE(x) is an estimate of the idiosyncratic Average Treatment Effect.

ATET(x) is an estimate of the idiosyncratic Average Treatment Effect on treated.

ATENT(x) is an estimate of the idiosyncratic Average Treatment Effect on Non–Treated.

G_fv is the predicted probability from the Probit regression, conditional on the

observable confounders used.

_wL0, wL1 are the Heckman correction–terms.

Interestingly, ivtreatreg also returns some useful scalars:

e(N_tot) is the total number of (used) observations.

e(N_treated) is the number of (used) treated units.

e(N_untreated) is the number of (used) untreated units.

e(ate) is the value of the Average Treatment Effect.

e(atet) is the value of the Average Treatment Effect on Treated.

e(atent) is the value of the Average Treatment Effect on Non–treated.
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Further information on ivtreatreg can be found in the help file of this

command.

3.5.2 A Monte Carlo Experiment

In this section, we offer a Monte Carlo experiment to ascertain whether the IV and

Selection-models are consistent with theoretical predictions. Performing a Monte

Carlo simulation is also an essential robustness check to assess the reliability of any

user-written command.

The first step is to define a data generating process (DGP) as follows:

D ¼ 1 0:5þ 0:5x1 þ 0:3x2 þ 0:6zþ a > 0½ �
Y0 ¼ 0:1þ 0:2x1 þ 0:2x2 þ e0
Y1 ¼ 0:3þ 0:3x1 þ 0:3x2 þ e0

8<:
where:

x1 	 ln h1ð Þ
x2 	 ln h2ð Þ
z 	 ln h3ð Þ
h1 	 χ2 1ð Þ þ c
h2 	 χ2 1ð Þ þ c
h3 	 χ2 1ð Þ þ c
c 	 χ2 1ð Þ

8>>>>>>>><>>>>>>>>:
and

a; e0; e1ð Þ 	 N 0;Ωð Þ

Ω ¼
σ2a σa,e0 σa,e1

σ2e0 σa,e1
σ2e1

0@ 1A ¼
σ2a ρa,e0σaσe0 ρa,e1σaσe1

σ2e0 ρe0,e1σe0σe1
σ2e1

0@ 1A
σ2a ¼ 1, σ2e0 ¼ 3, σ2e1 ¼ 6:5,
ρa,e0 ¼ 0:5, ρa,e1 ¼ 0:3, ρe0,e1 ¼ 0

Assuming that the correlation between a and e0 (i.e., ρa,e0 ) and the correlation

between a and e1 (i.e., ρa,e1 ) are different from zero implies that D—the selection

binary indicator—is endogenous. The variable z denotes an instrument, which is

directly correlated with D but (directly) uncorrelated with Y1 and Y0. Given these

assumptions, the DGP is completed by the POM, Yi¼ Y0i+Di (Y1i� Y0i), generat-
ing the observable outcome Y.

The DGP is simulated 500 times using a sample size of 10,000. For each

simulation, we obtain a different data matrix (x1, x2, Y, D, z) on which we apply

the four models implemented by ivtreatreg and the CFR model.
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Table 3.3 and Fig. 3.6 present our simulation results. The true ATE value from

the DGP is 0.224. As expected, all the IV procedures provide consistent estimation

of the true ATE, a slight bias only being obtained with the Direct-2SLS model.

The CFR results are clearly biased, with a mean of 1.37, confirming that with

endogeneity, the implementation of CFR might lead to very unreliable conclusions.

Figure 3.6 confirms these findings, plotting the distributions of ATE obtained by

each single method over the 500 DGP simulations. This clearly emphasizes the very

different pattern of the CFR estimator.

Figure 3.7 shows the distributions of ATE using the IV methods. All methods

perform rather similarly, with the exception of Direct-2SLS which has a slightly

different shape with a larger right tail, thus suggesting we should look at the

estimation precision a bit more closely. Under our DGP assumptions, we expect

the Heckit model to be the most efficient method, followed by Probit-OLS and

Probit-2SLS, with Direct-2SLS being the worst performing. In fact, our DGP

follows exactly the same assumptions under which the Heckit is based

(in particular, the joint normality of a, e0, and e1).

Table 3.3 Simulation output. Unbiasedness of ATE estimators

No. of simulations Mean of ATE Std. dev. Min Max

Probit-OLS 500 0.229 0.098 �0.050 0.520

Direct-2SLS 500 0.250 0.112 �0.081 0.560

Heckit 500 0.216 0.090 �0.045 0.475

Probit-2SLS 500 0.235 0.092 �0.053 0.523

CFR (or CF-OLS) 500 1.371 0.045 1.242 1.504

0
2

4
6

8
K

er
ne

l d
en

si
ty

 o
f A

TE

0 .5 1 1.5
ATE

CF-OLS DIRECT-2SLS PROBIT-2SLS
PROBIT-OLS HECKIT

True ATE = .2243128688335419
Sample size = 10,000
Number of simulations = 500

Monte Carlo for ATE - Comparison of methods under endogeneity

Fig. 3.6 Distributions of ATE under the five models implemented by ivtreatreg
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The result in Table 3.4 confirms these theoretical predictions: the lowest stan-

dard error is obtained by Heckit (0.087) and the highest by Direct-2SLS (0.116), the

other methods falling in between. Note that the mean test presented in this table

indicates that standard errors values are precisely estimated, all being included

within the 95 % confidence interval. CFR, in particular, is very precisely estimated,

although it is severely biased. Table 3.4 contains simulation results also on

t-statistics and test size. The size of a test is the probability of rejecting a hypothesis

H0 when H0 is true. In our DGP, we have set a two-sided test, where H0:

ATE¼ 0.224 against the alternative H1: ATE 6¼ 0.224.

The results presented under the heading Test size in Table 3.4 represent the

proportion of simulations which lead us to reject the H0. These values are the

“rejection rates” and have to be interpreted as the simulation estimate of the true test

size. As it is immediate to see, the rejection rates are all lower than the usual 5 %

significance, and the values are precisely estimated, since they are contained within

the 95 % confidence interval in the simulation mean test. The only exception being,

as expected, the CFR, whose test size is equal to 1: the two-sided test considered

always leads to reject H0 in this case.

Finally, it can be showed (although not reported) that under treatment

exogeneity, CFR proves to be the most efficient unbiased estimator of ATE

among the methods considered.
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3.5.3 An Application to Determine the Effect of Education
on Fertility

In order to provide an application of IV and Selection-model to real data, we

consider an illustrative dataset called FERTIL2.DTA, which contains cross-

sectional data on 4,361 women of childbearing age in Botswana5.

This dataset contains 28 variables relating to various individual and family

characteristics. We are particularly interested in evaluating the impact of the

variable “educ7” (taking value 1 if a woman has more than or exactly 7 years of

education and 0 otherwise) on the number of children in the family (“children”).

Several conditioning (or confounding) observable factors are included in the

dataset, such as the age of the woman (“age”), whether or not the family owns a

TV (“tv”), whether or not the woman lives in a city (“urban”), and so forth. In order

to investigate the relationship between education and fertility, we estimate the

following specification for each of the four models implemented by ivtreatreg:

. set more off

. xi: ivtreatreg children educ7 age agesq evermarr urban electric tv , ///

hetero(age agesq evermarr urban) iv(frsthalf) model(modeltype) graphic

Table 3.4 Simulation output.

Standard errors, t-statistic,

and test size of ATE

estimators

Mean Std. err. [95 % Conf. interval]

Standard errors

Probit-OLS 0.0977 0.0001 0.0975 0.0979

Direct-2SLS 0.1159 0.0001 0.1156 0.1162

HECKIT 0.0874 0.0001 0.0872 0.0875

Probit-2SLS 0.0971 0.0001 0.0969 0.0973

CFR 0.0419 0.0000 0.0419 0.0419

T-statistic

Probit-OLS 0.0553 0.0429 �0.0289 0.1395

Direct-2SLS 0.2371 0.0430 0.1526 0.3216

HECKIT �0.0757 0.0441 �0.1624 0.0110

Probit-2SLS 0.1245 0.0419 0.0420 0.2069

CFR 27.3690 0.0403 27.2897 27.4482

Test size

Probit-OLS 0.0380 0.0086 0.0212 0.0548

Direct-2SLS 0.0440 0.0092 0.0260 0.0620

HECKIT 0.0400 0.0088 0.0228 0.0572

Probit-2SLS 0.0420 0.0090 0.0244 0.0596

CFR 1 0

5 This dataset is used in a number of examples in Introductory Econometrics: A Modern Approach
by Wooldridge (2008). It can be freely downloaded here: http://fmwww.bc.edu/ec-p/data/

wooldridge/FERTIL2.dta.
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Following Wooldridge (2001, example 18.3, p. 624), this specification adopts—

as an instrumental-variable—the covariate “frsthalf” which takes a value equal to

1 if the woman was born in the first 6 months of the year and zero otherwise. This

variable is (partially) correlated with “educ7,” but should not be related to the

number of children in the family. The choice of “frsthalf” as an instrument follows

the same rationale of the choice of “quarter-of-birth” used as an instrument for

years of education in Angrist and Krueger (1991) discussed in Sect. 3.2.

Table 3.7 shows that the simpleDifference-in-means (DIM) estimator (themean of

children in the group of more educated women, the treated ones, minus the mean of

children in the group of less educated women, the untreated ones) equals�1.77with a

t-value of �28.46. Thus the more educated women tend to have—without ceteris
paribus conditions—about two fewer children than the less educated ones. Adding

confounding factors in the regression specification, we obtain the OLS estimate of the

ATE that, in the absence of heterogeneous treatment, is equal to�0.394 with a t-value

of �7.94; although significant, the magnitude, as expected, is considerably lower

compared to that of the Difference-in-means estimation, indicating, therefore, that

confounders are relevant. When we consider OLS estimation with heterogeneity, we

obtain an ATE equal to �0.37, significant at 1 % (column CFR in Table 3.7).

When the IV estimation is considered, the results change, however, dramati-

cally. We estimate the previous specification for Probit-2SLS using ivtreatreg
with heterogeneous treatment response. Results are reported in Table 3.5, which

contains both results from the probit first step and from the IV regression of the

second step. The probit results indicate that “frsthalf” is sufficiently (partially)

correlated with “educ7”; thus, it can be reliably used as an instrument for this

variable. Step 2 shows that the ATE (again, the coefficient of “educ7”) is no longer

significant and, above all, it changes sign becoming positive and equal to 0.30.

The results are in line with the IV estimations obtained by Wooldridge (2010).

Nevertheless, having assumed heterogeneous response to treatment allows us to

now calculate also the ATET and ATENT and to investigate the cross-unit distri-

bution of these effects. ivtreatreg returns these parameters as scalars (along

with treated and untreated sample size):

. ereturn list

scalars:

e(N_untreat) ¼ 1937

e(N_treat) ¼ 2421

e(N_tot) ¼ 4358

e(atent) ¼ –.4468834318603838

e(atet) ¼ .898290019555276

e(ate) ¼ .3004007408742051

In order to obtain the standard errors for testing the significance of both ATET

and ATENT, a bootstrap procedure can be easily implemented in the following

manner:

3.5 Implementation and Application of IV and Selection-Model 209



. xi: bootstrap atet¼r(atet) atent¼r(atent), rep(100): ///

ivtreatreg children educ7 age agesq evermarr urban electric tv , ///

hetero(age agesq evermarr urban) iv(frsthalf) model(probit–2sls)

The results obtained are reported in Table 3.6. As it can be seen, both ATET and

ATENT are insignificant, indicating values not that substantially different from the

ATE. A simple check should show that ATE¼ATET p(D¼ 1) +ATENT p(D¼ 0):

.di "ATE¼ "(e(N_treat)/e(N_tot))*e(atet)+(e(N_untreat)/e(N_tot))*e(atent)

ATE¼ .30040086

Table 3.5 Results form ivtreateg when Probit-2SLS is the specified model and treatment

heterogeneous response is assumed

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Step 1. Probit regression                        Number of obs   =       4358

LR chi2(7)      =    1130.84
Prob > chi2     =     0.0000

Log likelihood = –2428.384 Pseudo R2       =     0.1889
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
educ7        |     Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
–––––––––––––+–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

frsthalf | –.2206627   .0418563 –5.27   0.000 –.3026995 –.1386259
age | –.0150337   .0174845 –0.86   0.390 –.0493027    .0192354

agesq | –.0007325   .0002897 –2.53   0.011 –.0013003 –.0001647
evermarr | –.2972879   .0486734 –6.11   0.000 –.392686 –.2018898

urban |   .2998122   .0432321    6.93   0.000     .2150789    .3845456
electric |   .4246668   .0751255    5.65   0.000     .2774235      .57191

tv |   .9281707   .0977462    9.50   0.000     .7365915     1.11975
_cons |    1.13537   .2440057    4.65   0.000     .6571273    1.613612

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Step 2. Instrumental variables (2SLS) regression

Source |       SS       df       MS             Number of obs =    4358
–––––––––––––+–––––––––––––––––––––––––––––– F( 11,  4346) =  448.51

Model |  10198.4139    11  927.128534          Prob > F      =  0.0000
Residual |  11311.6182  4346  2.60276536          R–squared     =  0.4741

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared =  0.4728
Total |  21510.0321  4357  4.93689055          Root MSE      =  1.6133

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
children |      Coef.   Std. Err.     t    P>|t|     [95% Conf. Interval]

–––––––––––––+–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
educ7 |   .3004007   .4995617    0.60   0.548 –.6789951    1.279797

_ws_age | –.8428913   .1368854 –6.16   0.000 –1.111256 –.5745262
_ws_agesq |    .011469   .0019061    6.02   0.000      .007732    .0152059

_ws_evermarr | –.8979833   .2856655 –3.14   0.002 –1.458033 –.3379333
_ws_urban |   .4167504   .2316103    1.80   0.072 –.037324    .8708247

age |    .859302   .0966912    8.89   0.000      .669738    1.048866
agesq | –.01003   .0012496 –8.03 0.000 –.0124799 –.0075801

evermarr |   1.253709   .1586299    7.90   0.000     .9427132    1.564704
urban | –.5313325   .1379893 –3.85   0.000 –.801862 –.260803

electric | –.2392104   .1010705 –2.37   0.018 –.43736 –.0410608
tv | –.2348937   .1478488 –1.59   0.112 –.5247528    .0549653

_cons | –13.7584   1.876365 –7.33   0.000 –17.43704 –10.07977
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Instrumented:  educ7 _ws_age _ws_agesq _ws_evermarr _ws_urban
Instruments:   age agesq evermarr urban electric tv G_fv _z_age _z_agesq

_z_evermarr _z_urban
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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which confirms the expected result. Finally, Fig. 3.8 plots the distributions of

ATE(x), ATET(x), and ATENT(x).

What emerges from this analysis is that ATET(x) shows a substantially uniform

distribution, while both the ATE(x) and the ATENT(x) distributions are more

concentrated on negative values. In particular, ATENT(x) shows the highest

modal value of approximately �2.2 children; thus, less educated women would

have been less fertile if they had been more educated.

Table 3.7 shows the ATE results obtained for all the models and also for the

simple Difference-in-means (DIM). The ATE obtained by IV methods is not always

significant and is positive only in the Probit-2SLS estimation. The rest of ATEs are

Table 3.6 Bootstrap standard errors for ATET(x) and ATENT(x) using ivtreatreg with

model Probit-2SLS

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Bootstrap results                             Number of obs      =      4358

Replications       =       100
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
command: ivtreatreg children educ7 age agesq evermarr urban electric tv,

hetero(age agesq evermarr urban) iv(frsthalf) model(probit–2sls)

atet:  r(atet)
atent:  r(atent)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
|   Observed   Bootstrap                         Normal–based
|     Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

–––––––––––––+–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
atet |    .89829   .5488267     1.64   0.102 –.1773905    1.973971

atent | –.4468834   .4124428 –1.08   0.279 –1.255257    .3614897
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Fig. 3.8 Distribution of ATE(x), ATET(x), and ATENT(x) in model Probit-2SLS
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always negative: thus more educated women would have been more fertile if they

had been less educated. The case of Heckit is a little more puzzling, as the result is

significant and very close to the DIM estimation, which is suspected to be biased;

this result could be due to the fact that the identification conditions of Heckit are not

satisfied in this dataset.

Figure 3.9, finally, plots the average treatment effect distribution for each

method. By and large, these distributions follow a similar pattern, although Direct-

2SLS and Heckit estimations show some appreciable differences. The Heckit, in

particular, exhibits a very different pattern, with a strong demarcation between the

plot of treated and untreated units. As such, it does not seem to be a reliable

estimation procedure in this example, and this result deserves further investigation6.

Finally, note that the distribution for Direct-2SLS is on the whole more uniform

than in the other cases where a strong left-side inflation dominates, with the ATENT

(x) being more concentrated on negative values than ATET(x) on positive ones.

What might this mean? It seems that the counterfactual condition of these women is

not the same: on average, if a less educated woman became more educated, then her

fertility would decrease more than the increase in fertility of more educated women

becoming (in a virtual sense) less educated.

3.5.4 Applying the Selection-Model Using etregress

Although ivtreatreg encompasses also the Heckman Selection-model

presented in Sect. 3.3.2, it seems useful to discuss the use of the Stata built-in

command etregress. In common with ivtreatreg, this command estimates

the ATE in a linear regression model with an endogenous binary treatment variable.

In contrast to ivtreatreg, the etregress module assumes a homogenous

Table 3.7 Estimation of the ATE for the five models estimated by ivtreatreg

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Variable         DIM CFR PROBIT–OLS   DIRECT–2SLS   PROBIT_2SLS   HECKIT
–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

educ7 | –1.770*** –0.372*** –1.044        0.300 –1.915***
|   0.06219    0.05020               0.66626      0.49956        0.39871
| –28.46 –7.42 –1.57         0.60 –4.80

G_fv | –0.11395
|                      0.50330
| –0.23

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
legend: b/se/t

6 A possible explanation for understanding this poor behavior of the Heckit may be that “children”

is a count variable, thus presenting a strong asymmetric shape in its distribution with a high

probability mass where the number of children is small. As such, it does not comply with the

normality assumption of the outcome required by the Heckit model; a logarithmic transformation

of “children” is likely to be correct for this problem.
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reaction of potential outcomes to confounders, but it offers the advantage of

exploiting a full maximum likelihood approach besides the two-step consistent

estimator. The basic syntax of this command is:

etregress depvar [indepvars], treat(depvar_t¼ indepvars_t) [twostep]

where depvar is the outcome; indepvars the exogenous covariates

explaining the outcome equation; depvar_t is the endogenous treatment; and

indepvars_t the confounders explaining the selection equation. This command,
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therefore, estimates the system represented in (3.51). The two-step procedure

follows the one provided by ivtreatreg; the ML approach is an original option

of this model.

Suppose that fertility depends not only on observable factors (those already

present in the dataset) but also—let’s say—on one unobservable component, that

we call Qi, representing a woman’s genetic ability to have children more easily.

Suppose that this genetic factor has also some explicative power on women’s
predisposition to education. Since Qi is not observable in both the outcome and

selection equations, then it will be a part of the error terms in the two equations. We

saw in Sect. 3.3.1 that because of the presence of a common unobservable factor,

the covariance between u and ε in system (3.51) will be different from zero. There,

we assumed that u¼ γu ∙ Q + eu and ε¼ γε ∙ Q + eε, where γu and γε denote the effect
of Q on u and ε, respectively, with eu and eε being two purely exogenous random

shocks; these assumptions imply that Cov(u; ε)¼ γuγεVar(Q), indicating that the

sign of the covariance between the two error terms depends on the sign of the

product γuγε. This sign can also provide us with an idea of the direction of the OLS

bias. We also saw in (3.53) that:

αOLS ¼ αSM þ γεγu
Var Qð Þ
Var Dð Þ

implying that when:

• γuγε> 0, then OLS has an upward bias.

• γuγε< 0, then OLS has a downward bias.

• γuγε¼ 0, then OLS is unbiased (consistent).

We can easily estimate and compare the SM and the OLS treatment effects in

this example. We set out by estimating αSM typing:

. xi: etregress children age agesq evermarr urban electric tv , ///

treat(educ7 ¼ age agesq evermarr urban electric tv)

Linear regression with endogenous treatment Number of obs ¼ 4358

Estimator: maximum likelihood Wald chi2(7) ¼ 5032.82

Log likelihood ¼ –10134.112 Prob > chi2 ¼ 0.0000

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––þ–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

children |

age | .2479356 .0198391 12.50 0.000 .2090517 .2868195

agesq | –.0021111 .0003189 –6.62 0.000 –.0027362 –.001486

evermarr | .4919836 .06138898 .010 .000 .3716635 .6123036

urban | –.0448949 .0540729 –0.83 0.406 –.1508758 .061086

electric | –.0706167 .0882316 –0.80 0.424 –.2435475 .1023141

tv | .1649312 .1063599 1.55 0.121 –.0435303 .3733927
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educ7 | –2.310078 .1046295 –22.08 0.000 –2.515148 –2.105008

_cons | –1.715568 .2956674 –5.80 0.000 –2.295065 –1.13607

–––––––––––––þ–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

educ7 |

age | .0060915 .016699 0.36 0.715 –.0266379 .0388209

agesq | –.001163 .0002743 –4.24 0.000 –.0017007 –.0006254

evermarr | –.2720595 .0477597 –5.70 0.000 –.3656669 –.1784521

urban | .293575 .0420911 6.97 0.000 .211078 .3760721

electric | .4497788 .0733312 6.13 0.000 .3060524 .5935053

tv | .965347 .0938972 10.28 0.000 .7813118 1.149382

_cons | .7168491 .2339981 3.06 0.002 .2582213 1.175477

–––––––––––––þ–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

/athrho | .8739284 .0487247 17.94 0.000 .7784298 .969427

/lnsigma | .5049432 .0176032 28.68 0.000 .4704415 .5394449

–––––––––––––þ–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

rho | .7033646 .0246195 .6518045 .7484524

sigma | 1.656891 .0291666 1.600701 1.715055

lambda | 1.165399 .058385 1.050966 1.279831

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

LR test of indep. eqns. (rho ¼ 0): chi2(1) ¼ 96.92 Prob > chi2 ¼ 0.0000

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The results obtained indicate that the estimated correlation (rho) between the

treatment (“educ7”) and the outcome (“children”) errors is 0.7, thus offering

evidence that when the unobservable factor Q raises the observed number of

children, it increases contemporaneously a woman’s propensity to get educated

(and vice versa). The estimated ATE (that is αSM) is equal to around �2.31.

Since the errors’ correlation is positive and quite high, we suspect that OLS

estimation is significantly upward biased. We estimate αOLS typing:

. reg children educ7 age agesq evermarr urban electric tv

Source | SS df MS Number of obs ¼ 4358

–––––––––––––+–––––––––––––––––––––––––––––– F( 7, 4350) ¼ 880.03

Model | 12607.4006 7 1801.05723 Prob > F ¼ 0.0000

Residual | 8902.63153 4350 2.04658196 R–squared ¼ 0.5861

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.5855

Total | 21510.0321 4357 4.93689055 Root MSE ¼ 1.4306

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

children | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

educ7 | –.3935524 .0495534 –7.94 0.000 –.4907024 –.2964025

age | .2719307 .0171033 15.90 0.000 .2383996 .3054618

agesq | –.001896 .0002752 –6.89 0.000 –.0024356 –.0013564

evermarr | .6947417 .0523984 13.26 0.000 .5920142 .7974691

urban | –.2437082 .0460252 –5.30 0.000 –.333941 –.1534753
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electric | –.336644 .0754557 –4.46 0.000 –.4845756 –.1887124

tv | –.3259749 .0897716 –3.63 0.000 –.501973 –.1499767

_cons | –3.526605 .2451026 –14.39 0.000 –4.007131 –3.046079

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

We immediately see that αOLS¼�0.393 is in fact higher than αSM¼�2.31, with

a bias calculated as αOLS minus αSM of 1.917. We can conclude that using OLS

provides an inconsistent estimate of ATE; of course, the results obtained are

acceptable, provided that the true data generating process is exactly the one

provided by the Selection-model’s assumptions.

3.6 Implementation and Application of DID

In this section, we implement the DID estimator in a repeated cross section and in a

longitudinal data structure. In repeated cross sections, each subject appears only

once in the dataset, either before or after treatment. In longitudinal data (panel), the

same subject is observed before and after the treatment occurs. In what follows, we

start illustrating first how to estimate DID in a repeated cross sections setting and

then in a longitudinal dataset by exploiting two ad-hoc artificial datasets built only

for illustrative purposes.

3.6.1 DID with Repeated Cross Sections

In this exercise, we make use of the dataset “DID_1.dta,” an artificial dataset very

similar to that analyzed in Card and Krueger (1994). Our aim is to measure the

effect of incentives offered to a number of restaurants in Rome, Milan being the

comparison location. More specifically, we are interested in measuring the incen-

tives’ effect on employment. The dataset, containing 20 restaurants, is reported

below:

Restaurant identifier Number of employees Location Time Interaction location/time

ID Y S T S ∙ T

1 34 1 0 0

2 67 0 0 0

3 5 0 0 0

4 150 1 1 1

5 78 0 1 0

6 98 0 0 0

7 200 1 1 1

8 45 0 0 0

(continued)
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Restaurant identifier Number of employees Location Time Interaction location/time

ID Y S T S ∙ T

9 33 0 0 0

10 45 0 1 0

11 22 1 0 0

12 12 0 0 0

13 34 0 1 0

14 180 1 1 1

15 88 0 1 0

16 9 0 0 0

17 56 1 0 0

18 4 0 0 0

19 3 0 0 0

20 190 1 1 1

The variable ID is the restaurant identifier; Y is the number of employees; S is the
location variable taking value 1 for “Rome” and 0 for “Milan”; T is the time

indicator equal to 0 if the restaurant is observed before the incentives are introduced

and 1 after incentives; and finally, S∙T is the interaction variable between S and T.
We can run regression (3.68) to obtain an estimate of the DID:

. regress Y S T ST

Source | SS df MS Number of obs ¼ 20

–––––––––––––+–––––––––––––––––––––––––––––– F( 3, 16) ¼ 26.93

Model | 65721.1333 3 21907.0444 Prob > F ¼ 0.0000

Residual | 13015.4167 16 813.463542 R–squared ¼ 0.8347

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.8037

Total | 78736.55 19 4144.02895 Root MSE ¼ 28.521

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

S | 6.666667 19.01419 0.35 0.730 –33.64161 46.97494

T | 30.58333 17.13916 1.78 0.093 –5.750058 66.91672

ST | 112.0833 27.7177 4.04 0.001 53.32443 170.8422

_cons | 30.66667 9.507094 3.23 0.005 10.51253 50.82081

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

We see the DID estimation of the ATE is equivalent to the coefficient of the

variable S∙T, which is significant and equal to about 112. As shown in Sect. 3.4.1,

however, we can also calculate DID by hand, by firstly estimating the Before/After

estimator of (3.72) as follows:
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. regress Y T if S¼¼1

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

T | 142.6667 15.25487 9.35 0.000 103.4528 181.8806

_cons | 37.33333 11.5316 3.24 0.023 7.690414 66.97625

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This estimate returns a coefficient equal to around 142. Thus, the comparison

within the group of treated subjects (restaurants located in Rome) before and after

support would lead to an overestimation (142� 112¼ 30 more employees!) of the

treatment effect. This happens because the Before/After estimator fails to take into

account the counterfactual situation. Indeed, we saw that δBA¼ γ + δ, so that we get
that γ¼ 30.

In a similar way, we can compute the Treatment/Control estimator of (3.74):

. regress Y S if T¼¼1

Source | SS df MS Number of obs ¼ 8

–––––––––––––+–––––––––––––––––––––––––––––– F( 1, 6) ¼ 49.73

Model | 28203.125 1 28203.125 Prob > F ¼ 0.0004

Residual | 3402.75 6 567.125 R–squared ¼ 0.8923

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.8744

Total | 31605.875 7 4515.125 Root MSE ¼ 23.814

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

S | 118.75 16.83931 7.05 0.000 77.54568 159.9543

_cons | 61.25 11.90719 5.14 0.002 32.11415 90.38585

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This comparison between the treated (restaurants in Rome) and non-treated

(restaurants in Milan) after treatment leads to a level of treatment equal to around

118, which still overestimates the actual effect given by DID, i.e., 112. We saw that

δTC¼ β + δ, thus β¼ 6. We can obtain the same result “by hand” by typing:

• Average over treated units in T¼ 0: μ+ β

. sum Y if S¼¼1 & T¼¼0

37.33333

• Average over treated units in T¼ 1: μ+ β + γ + δ

. sum Y if S¼¼1 & T¼¼1

180
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• Average over untreated units in T¼ 0: μ

. sum Y if S¼¼0 & T¼¼0

30.6

• Average over untreated units in T¼ 1: μ+ γ

. sum Y if S¼¼0 & T¼¼1

61.25

The same results can also be obtained using the user-written command diff
(Villa 2014). The Stata help-file of this command is displayed by typing:

. help diff

Title

diff – Differences in differences estimation

Syntax

diff outcome_var [if] [in] [weight] ,[ options]

Description

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

diff performs several differences in differences (diff–in–diff) estimations of the

treatment effect of a given outcome variable from a pooled base line and follow up

dataset: Single Diff–in–Diff, Diff–in–Diff controlling for covariates, Kernel–based

Propensity Score Matching diff–in–diff, and the Quantile Diff–in–Diff.

Options

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

required

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

period(varname) Indicates the dummy period variable (0: baseline; 1: follow up).

treated(varname) Indicates the dummy treated variable (0: controls; 1:treated).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

optional

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

cov (varlist) Specifies the pre–treatment covariates of the model. When option kernel

is selected these variables are used to generate the propensity score.

kernel Performs the Kernel–based Propensity Score Matching diff–in–diff. This option

generates _weights that contains the weights derived from the kernel density func-

tion, _ps when the Propensity Score is not specified in pscore(varname). This option

requires the id(varname) of each individual.

id(varname) Option kernel requires the supply of the identification variable.

bw (#) Supplied bandwidth of the kernel. The default is the optimum bw estimated by

Stata. See [R] kdensity
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ktype(kernel) Specifies the kernel function; the default is epanechnikov. See

[R] kdensity

qdid(quantile) Performs the Quantile Difference in Differences estimation at the spec-

ified quantile from 0.1 to 0.9 (quantile 0.5 performs the QDID at the medeian). You

may combine this option with kernel and cov options. qdid does not support weights

nor robust standard errors. This option uses [R] qreg and [R] bsqreg for

bootstrapped standard errors.

pscore(varname) Supplied Propensity Score.

logit Specifies logit estimation of the Propensity Score. The default is Probit.

support Performs diff on the common support of the propensity score given the

option kernel.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

SE/Robust

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

cluster(varname) Calculates clustered Std. Errors by varname.

robust Calculates robust Std. Errors.

bs performs a Bootstrap estimation of coefficients and standard errors.

reps(int) Specifies the number of repetitions when the bs is selected. The

default are 50 repetitions.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Balancing test

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

test Performs a balancing t–test of difference in means of the specified

covariates between control treated groups in period ¼¼ 0. The option test

combined with kernel performs the balancing t–test with the weighted

covariates. See [R] ttest.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Reporting

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

report Displays the inference of the included covariates or the estimation of

the Propensity Score when option kernel is specified.

nostar Removes the inference stars from the p–values.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In order to run such a command, at least two options are required: period
(varname)indicating the dummy period variable (0: baseline; 1: follow up) and

treated(varname) indicating the dummy treated variable (0: controls; 1:

treated). Thus, we have all the ingredients to estimate our DID by diff, that is:
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. diff Y, treated(D) period(T)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Number of observations: 20

Baseline Follow–up

Control: 9 4 13

Treated: 3 4 7

12 8

R–square: 0.83470

DIFFERENCE IN DIFFERENCES ESTIMATION

––––––––––––––––––––––––––––––––– BASE LINE –––––––––––––––––––– FOLLOW UP ––––––––––

Outcome Variable(s)| Control| treated| Diff(BL)| Control| treated| Diff(FU)| DID

–––––––––––––––––––+––––––––+––––––––+–––––––––+––––––––+––––––––+–––––––––+––––––––

Y | 30.667 | 37.333 | 6.667 | 61.250 | 180.000| 118.750 | 112.083

Std. Error | 9.507 | 16.467 | 19.014 | 14.261 | 14.261 | 20.168 | 27.718

t | 3.23 | 31.07 | 0.35 | 32.81 | 75.78 | 12.22 | 4.04

P>|t| | 0.005 | 0.038 | 0.730 | 0.001 | 0.000 | 0.000*** | 0.001***

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

* Means and Standard Errors are estimated by linear regression

**Inference: *** p<0.01; ** p<0.05; * p<0.1

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Although the results presented in the diff output table are identical to those

obtained previously, they are much better summarized and displayed. Note that

diff also performs DID adjusted for covariates and “DID with Matching”

(M-DID). As such, it is a valuable command for dealing with both observable

and unobservable selection in both the parametric and nonparametric case.

3.6.2 DID Application with Panel Data

In this section, we use the “DID_2.dta” dataset, an artificial longitudinal dataset of

12 units observed for 2 years: 2000 and 2001. The sample size is 24. We consider a

generic outcome Y, a binary treatment d, and two covariates x1 and x2. As usual, we
are interested in measuring the causal effect of d on Y. The dataset needed to

calculate DID according to (3.80) is reported below:

Id Year dit yit

x1,
it

x2,
it yit� 1 dit� 1

x1,
it� 1

x2,
it� 1 Δyit

Δx1,
it

Δx2,
it Δdit

1 2000 1 17 73 13 – – – – – – – –

1 2001 1 32 46 65 17 1 73 13 15 –27 52 0

2 2000 0 79 93 69 – – – – – – – –

2 2001 1 72 66 36 79 0 93 69 –7 –27 –33 1

3 2000 0 54 57 69 – – – – – – – –

3 2001 1 98 55 13 54 0 57 69 44 �2 �56 1

(continued)
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Id Year dit yit

x1,
it

x2,
it yit� 1 dit� 1

x1,
it� 1

x2,
it� 1 Δyit

Δx1,
it

Δx2,
it Δdit

4 2000 1 5 22 48 – – – – – – – –

4 2001 0 34 30 15 5 1 22 48 29 8 �33 –1

5 2000 0 41 0 40 – – – – – – – –

5 2001 1 20 60 17 41 0 0 40 �21 60 �23 1

6 2000 0 46 40 69 – – – – – – – –

6 2001 1 7 13 61 46 0 40 69 �39 �27 �8 1

7 2000 0 39 73 66 – – – – – – – –

7 2001 0 91 41 91 39 0 73 66 52 �32 25 0

8 2000 0 59 29 94 – – – – – – – –

8 2001 0 100 51 97 59 0 29 94 41 22 3 0

9 2000 1 77 70 23 – – – – – – – –

9 2001 0 33 69 85 77 1 70 23 �44 –1 62 �1

10 2000 0 75 61 6 – – – – – – – –

10 2001 1 24 75 5 75 0 61 6 �51 14 �1 1

11 2000 0 20 68 39 – – – – – – – –

11 2001 0 75 3 71 20 0 68 39 55 �65 32 0

12 2000 1 53 69 65 – – – – – – – –

12 2001 0 97 16 28 53 1 69 65 44 �53 �37 �1

In order to calculate DID, we first generate one-lag variables for the outcome

Y and the covariates x1 and x2 (reported in the previous table):

. sort id year

. by id: gen Y_1 ¼ Y[_n–1]

. by id: gen d_it_1 ¼ d_it[_n–1]

. by id: gen x1_1 ¼ x1[_n–1]

. by id: gen x2_1 ¼ x2[_n–1]

We then generate the first-differences for Y, x1 and x2, and D:

. sort id year

. gen delta_Y ¼ Y–Y_1

. gen delta_x1 ¼ x1–x1_1

. gen delta_x2 ¼ x2–x2_1

. gen delta_d ¼ d_it–d_it_1

Thus, we have all the components necessary to calculate the simple DID

estimator with no covariates presented in (3.80):
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. reg delta_Y d_it if d_it_1¼¼0

Source | SS df MS Number of obs ¼ 8

–––––––––––––+–––––––––––––––––––––––––––––– F( 1, 6) ¼ 8.32

Model | 7712.03333 1 7712.03333 Prob > F ¼ 0.0279

Residual | 5561.46667 6 926.911111 R–squared ¼ 0.5810

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.5112

Total | 13273.5 7 1896.21429 Root MSE ¼ 30.445

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

delta_Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––

d_it | –64.13333 22.23404 –2.88 0.028 –118.5381 –9.728594

_cons | 49.33333 17.57755 2.81 0.031 6.322611 92.34406

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

We obtain a DID estimate of approximately �64, significant at 5 %. Observe

that the sample size passes from 24 to 8 due to the lagged variables and the ceteris
paribus condition implied by “d_it_1¼¼0.” The same result can also be

obtained running alternative regressions:

. reg delta_Y d_it if delta_d¼¼d_it

or:

. reg delta_Y delta_d if d_it_1¼¼0

It seems worth also looking at the OLS estimates for this dataset:

* OLS model (standard)

. reg Y d_it

Source | SS df MS Number of obs ¼ 24

–––––––––––––+–––––––––––––––––––––––––––––– F( 1, 22) ¼ 2.73

Model | 2267.14286 1 2267.14286 Prob > F ¼ 0.1127

Residual | 18266.8571 22 830.311688 R–squared ¼ 0.1104

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.0700

Total | 20534 23 892.782609 Root MSE ¼ 28.815

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––

d_it | –19.71429 11.9306 –1.65 0.113 –44.45683 5.028258

_cons | 60.21429 7.701167 7.82 0.000 44.24304 76.18553

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

OLS estimation returns a negative effect of the policy (roughly �20) but which

is no longer significant. When compared to DID, the OLS bias is approximately
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44 in absolute value (quite high and around 69 %). Looking at the results of the

First-difference (FD) model, we have:

* FD model (First–differences)

. reg delta_Y delta_d , noconst

Source | SS df MS Number of obs ¼ 12

–––––––––––––+–––––––––––––––––––––––––––––– F( 1, 11) ¼ 0.83

Model | 1326.125 1 1326.125 Prob > F ¼ 0.3817

Residual | 17569.875 11 1597.26136 R–squared ¼ 0.0702

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ –0.0143

Total | 18896 12 1574.66667 Root MSE ¼ 39.966

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

delta_Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––

delta_d | –12.875 14.13003 –0.91 0.382 –43.97498 18.22498

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

We see that FD shows a negative effect smaller than DID and OLS (about �13)

but is insignificant. Finally, we can estimate the previous model also by a Fixed-

effect (FE) regression:

* FE model (Fixed effects)

. tsset id year

panel variable: id (strongly balanced)

time variable: year, 2000 to 2001

delta: 1 unit

. xtreg Y d_it , fe

Fixed–effects (within) regression Number of obs ¼ 24

Group variable: id Number of groups ¼ 12

R–sq: within ¼ 0.0702 Obs per group: min ¼ 2

between ¼ 0.1984 avg ¼ 2.0

overall ¼ 0.1104 max ¼ 2

F(1,11) ¼ 0.83

corr(u_i, Xb) ¼ 0.1672 Prob > F ¼ 0.3817

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––

d_it | –12.875 14.13003 –0.91 0.382 –43.97498 18.22498

_cons | 57.36458 8.242516 6.96 0.000 39.22293 75.50624

–––––––––––––+––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––

sigma_u | 21.057042

sigma_e | 28.260055

rho | .35699551 (fraction of variance due to u_i)

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

F test that all u_i¼0: F(11, 11) ¼ 1.08 Prob > F ¼ 0.4508

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––
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As expected, the FE estimator is equivalent to the FD, since we are only

considering 2 years. Indeed, it is known that when t¼ 2, then FE and FD return

the same result.

We can also calculate DID by hand to check whether the regression approach is

correct:

• Average Y over those treated units that were untreated in t¼ 2000:

. sum delta_Y if d_it ¼¼ 1 & d_it_1¼¼0

. scalar mean_t ¼ r(mean)

. di mean_t

• Average Y over those untreated units that were also untreated in t¼ 2000:

. sum delta_Y if d_it ¼¼ 0 & d_it_1¼¼0

. return list

. scalar mean_c ¼ r(mean)

. di mean_c

. scalar did ¼ mean_t – mean_c

. di "DID ¼ " did

DID ¼ –64.133333

showing that the previous regression provides the correct causal parameter. Finally,

we calculate the DID conditional on the covariates:

. reg delta_Y d_it delta_x1 delta_x2

Source | SS df MS Number of obs ¼ 12

–––––––––––––+–––––––––––––––––––––––––––––– F( 3, 8) ¼ 2.33

Model | 8270.00495 3 2756.66832 Prob > F ¼ 0.1507

Residual | 9465.66172 8 1183.20771 R–squared ¼ 0.4663

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.2662

Total | 17735.6667 11 1612.33333 Root MSE ¼ 34.398

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

delta_Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––

d_it | –39.89922 21.30604 –1.87 0.098 –89.03104 9.2326

delta_x1 | –.4002804 .3151978 –1.27 0.240 –1.127128 .3265671

delta_x2 | –.3985679 .2910458 –1.37 0.208 –1.069721 .2725849

_cons | 24.88193 15.47731 1.61 0.147 –10.80882 60.57268

––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––

The conditional-DID is around 40, but still significant at 1 %. Introducing

covariates has therefore resulted in some reduction in both the magnitude and

significance of the causal effect, but it has preserved the reliability of the simple

DID result.
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Chapter 4

Local Average Treatment Effect

and Regression-Discontinuity-Design
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4.1 Introduction

This chapter addresses two different but related subjects, both widely developed

and used within the literature on the econometrics of program evaluation: the Local

average treatment effect (LATE) and the Regression-discontinuity-design (RDD).

Considered as nearly quasi-experimental methods, these approaches have recently

been the subject of a vigorous interest as tools for detecting causal effects of

treatment on given target variables within a special statistical setting.
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A pioneering application of LATE can be found in the work by Angrist (1990)

seeking to detect the effect of Vietnam veteran status on civilian earnings. In his

work, the author makes explicit that LATE is equivalent to an Instrumental-

variables (IV) estimation (see Chap. 3), with the instrument taking a binary form

and assuming an explicit random nature. More importantly, Angrist proves that—in

an endogenous treatment setting—the whole population average treatment effect

cannot be identified; what is identified by IV is the treatment effect on a specific

subpopulation, the so-called compliers, defined as those individuals whose treat-

ment assignment complies with instrument inducement. In the specific case of

Angrist (1990), the assignment risk of military service associated to draft lottery

served as an instruments’ generator to produce a Wald (1940) type IV estimation of

the causal effect. Compliers are not observable but, quite surprisingly, Abadie

(2003) provided a powerful reweighting approach (Abadie’s kappas) to character-

ize the distribution of the treatment effect within this group, as only the average

treatment effect on compliers owns a causal interpretation.

The analysis of LATE is organized in the following manner: Sect. 4.2 presents

the theory behind LATE, illustrating how such approach can be embedded within

the setting of a randomized experiment with imperfect compliance (Sect. 4.2.1).

The discussion then goes on to present the Wald estimator and show its relation to

LATE (Sect. 4.2.2); then, Sect. 4.2.3 is dedicated to the sample estimation of

LATE, and Sect. 4.2.4 to the definition and estimation of average response for

compliers; Sect. 4.2.5 addresses the possibility of characterizing in the LATE

model the compliers’ subpopulation. Finally, Sect. 4.2.6 extends LATE in the

case of multiple instruments and multiple treatments. Section 4.4.1 presents two

LATE applications, one on real data and the other on simulated data: the former

makes use of the dataset CHILDREN.DTA containing a subset of data used in

Angrist and Evans (1998) to investigate the effect of childbearing on female labor

market participation; the latter exercise simulates a specific data generating process

(DGP) for LATE in order to assess the reliability of the Stata code developed in the

application on previous real data. Building such a DGP also provides a useful

laboratory experiment to help us better understand the findings presented in the

theoretical part of this chapter.

The Regression-discontinuity-design (RDD) is another powerful quasi-

experimental method to consistently estimate causal effects in program evaluation.

RDD can be applied when the selection-into-program is highly determined by the

level assumed by a specific variable (called the forcing variable) which is used to

define a threshold separating—either sharply or fuzzily—treated and untreated

units. What characterizes RDD is the fact that the treatment probability varies in

a discontinuous way at the threshold, thus producing conditions for correctly

identifying the effect of a given treatment. Basically, the idea is that, in a neigh-

borhood of the threshold, conditions for a natural experiment (i.e., random assign-

ment) are restored. Thus, as long as the threshold is well identified, and treatment

depends on the forcing variable, one can retrieve the effect of the policy simply by

comparing the mean outcome of individuals laying on the left and right of the

threshold (Van Der Klaauw 2008).
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As suggested by Cook (2008) in his survey paper, RDD was firstly conceptually

developed and applied by Thistlethwaite and Campbell (1960) in a paper studying

the effect of receiving scholarships on individual career. With no use of sophisti-

cated statistics, these authors proved that a correct identification of the actual causal

effect of receiving a scholarship on one’s career might be possible by exploiting

information about the selection criterion used by the institutions awarding scholar-

ships. As scholarships were awarded if a specific test score exceeded a certain

threshold, they suggested comparing the outcome of people on the right with that of

those on the left of such a threshold, assuming that—around a reasonable interval

around the threshold—the two groups might have been considered pretty similar.

Interestingly, it is only from about 1995 that the RDD approach was reconsidered as

a valuable estimation strategy for causal effects, while before that time its use was

relatively modest.

RDD has a remarkable potential to be applied in those social and economic

contexts where the rules underlying the program application can sometimes provide

certain types of discontinuities in the assignment to treatment. One example is the

Van Der Klaauw (2002) estimation of the impact of financial aid offers on college

enrolment, where the author relies on the discontinuity in students’ grade point

average and SAT score. Another example comes from the Angrist and Lavy (1999)

study, where the authors try to assess the impact of class size on students’ test scores
exploiting the rule which states that a classroom is added when the average class

size rises beyond a given cutoff.

Two types of RDD have been proposed in the literature: sharp RDD, used

when the relation between treatment and forcing variable is deterministic; and

fuzzy RDD, used when this relation is stochastic, thus subject to some uncer-

tainty. Interestingly, as we will see, the average treatment effect (ATE) estima-

tion in the case of a fuzzy RDD is simply a Wald estimator and thus equivalent

to LATE.

The part of this chapter dedicated to RDD is organized as follows: Sect. 4.3

presents the RDD econometric theoretical background; in particular, Sect. 4.3.1

discusses sharp RDD and Sect. 4.3.2 fuzzy RDD; Sect. 4.3.3 and subsections

discuss the choice of the bandwidth and of the polynomial order when nonpara-

metric RDD is applied, while Sect. 4.3.4 provides some insights into the case in

which additional covariates are considered; Sect. 4.3.5 examines a number of tests

for assessing the validity of an RDD experiment, while Sect. 4.3.6 suggests a

protocol for the empirical implementation of such approach. As applied example,

Sect. 4.4.2 presents a simulation model both for sharp RDD and fuzzy RDD: the use

of a simulation approach clearly illustrates the role played by each assumption lying

behind the applicability of RDD and provides a virtual laboratory to assess the

performance of such estimation approach in different settings.
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4.2 Local Average Treatment Effect

The following subsections present and discuss at length the econometrics of LATE.

They start from a discussion of a setting characterized by “randomization under

imperfect compliance,” and conclude with an examination of the form and proper-

ties of LATE with multiple instruments and multiple treatments1.

4.2.1 Randomization Under Imperfect Compliance

A straightforward way in order to understand what LATE actually identifies can be

seen by referring to a randomized experiment (or trial) where individuals do not

necessarily comply with assignment to treatment. For example: suppose one has an

experiment in which individuals are randomly assigned either to a treatment (a given

medicine, for instance) or to a placebo; moreover, assume the outcome of this random

draw is recorded in a variable z, which takes value one for those treated and zero for

those taking the placebo; assume, nonetheless, that individuals can arbitrarily decide

whether or not to comply with the value assumed by z; in this case then, we can have a
situation in which a person with z equal to one—that is, one drawn to be part of the

treated set—may refuse to be treated, thus becoming an untreated individual; on the

contrary, a person with z equal to zero—that is, one drawn to be part of the untreated

set—may refuse to stay untreated and decide to take the drug, thus becoming even-

tually a treated subject. Finally, suppose that the actual final treated/untreated status of

individuals are recorded into the treatment variableD, composed of ones and zeros: as

long as D 6¼ z such an experiment suffers from imperfect compliance on the part of

individuals, and the classical Difference-in-means (DIM) estimator, contrasting the

average outcome Y on treated with that on untreated, is likely to be biased.Why? If we

assume that the “choice to comply” is not random itself, but rather driven by individual

motivations and strategies that are not all observable to the analyst, we then find

ourselves in a hidden bias setting (selection on unobservables), the consequences and
solutions of which have been extensively discussed in Chaps. 1 and 3.

Under imperfect compliance, a single individual i can be classified in specific

subsets of units according to the realization of z and the perfect/imperfect compli-

ance to the treatment. By definingD1 as the unit i’s treatment status when z¼ 1, and

D0 as the unit i’s treatment status when z¼ 0 (with both D1 and D0 taking value one

or zero), we can build the following taxonomy of individual potential statuses in

such a setting, thus identifying four exclusive groups:

• Never-takers: individuals who, either if z¼ 1 or z¼ 0, decide not to get treated.

• Defiers: individuals who get treated when z¼ 0 and are untreated when z¼ 1.

• Compliers: individuals who get treated when z¼ 1 and are untreated when z¼ 0.

• Always-takers: individuals who, either if z¼ 0 or z¼ 1, decide to get treated.

1 The econometrics of LATE provided in these subsections draws mainly on: Imbens and Angrist

(1994); Angrist and Imbens (1995); Angrist and Pischke (2008, Chap. 4);Wooldridge (2010, Chap. 21).
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It is worth stressing that, by observation, it is not possible to know whether a

given individual in the sample is a never-taker, defier, complier, or always-taker.
Since we only observe the realization of the vector {Yi, Di, zi} for each unit i, we
cannot observe the realization of D0i and D1i which remain missing values (more

precisely, only one of these two variables is observed for the same individual). For

example, for an individual with z¼ 1 and D¼ 1, we cannot know what realization

of D he would have chosen if he had received z¼ 0. In this sense, if the choice of

this individual under z¼ 0 was D¼ 1, then he would be an always-taker; but if his
choice under z¼ 0 was D¼ 0, then he would be a complier. This argument is

similar to the missing observation problem presented at the outset of Chap. 1.

4.2.2 Wald Estimator and LATE

In light of the previous example, it seems interesting to derive the usual causal

parameters within such a framework. It is clear that, as long as z is taken as random

and thus strictly exogenous, it can be used as an instrument forD,D being endogenous

because of the presence of a hidden bias. An IV approach would therefore seem

appropriate. In such a context, characterized by a binary instrument, however, we can

go a bit further by giving to the IV estimation a more precise causal interpretation.

Consider the following definitions and assumptions: let Y be an outcome of interest,

D a binary treatment indicator, and z a binary instrumental variable.Ymay be earnings,

D the event of having or not attended a high school, and z the event of having received
a scholarship by lottery. The following assumption justifies z as an instrument:

Assumption 4.1 Suppose that z was assigned randomly, but that D depends on z,
that is, D and z are correlated to some extent; one can then think about D as a

function of z, that is D¼D(z) of this kind:

D 1ð Þ ¼ D1 ¼ treatment status when z ¼ 1

D 0ð Þ ¼ D0 ¼ treatment status when z ¼ 0

where both D1 and D0 can take values 0 or 1, given that for each unit we can only

observe one of these two variables and never both. This leads to the taxonomy of

potential statuses set out in Table 4.1.

For each individual, it is therefore possible to observe only his final status. Thus,

D is what is ultimately observed exactly in the same way as Y is the observable

counterpart in the potential outcome model encountered on numerous occasions in

our discussions above. Given its nature, we can make two assumptions about z:

Assumption 4.2 z is randomly assigned, that is, z is exogenous and uncorrelated

with potential outcome and potential treatments indicators:

Table 4.1 Classification of

unit i when z is random and

compliance to treatment is

imperfect

zi¼ 0

D0i¼ 0 D0i¼ 1

zi¼ 1 D1i¼ 0 Never-taker Defier

D1i¼ 1 Complier Always-taker
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Y01; Y00; Y10; Y11ð Þ;D1;D0f g⊥z

where (Y01, Y00, Y10, Y11) are the four potential outcomes corresponding to com-

bining the values assumed by D1 and D0.

Assumption 4.3 z is correlated with D:

p D z ¼ 1ð Þ ¼ 1½ � 6¼ p D z ¼ 0ð Þ ¼ 1½ �

that is, z has some predictive power on D.

The objective of this section is to provide an estimation of the average treatment

effect, by characterizing its causal interpretation under Assumptions 4.1 and 4.2 and

4.3. Before going ahead, however, it is worthwhile presenting a peculiar IV estima-

tor known in the literature as the Wald estimator (Wald 1940), taking on this form:

b ¼ E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ
E D j z ¼ 1ð Þ � E D j z ¼ 0ð Þ ¼

A

B
ð4:1Þ

This estimator has an immediate causal interpretation, as the numerator A is the

difference of the mean of Y in the group of individuals with z¼ 1 and the group with

z¼ 0, thus measuring the causal effect of z on Y. Part of this effect is due to the

effect of z on D, that is measured by the numerator B. Since both A and B can be

obtained by an OLS regression of Y on z and D on z (the two reduced forms),

respectively, one can also write that:

b ¼ Cov Y; zð Þ
Var zð Þ :

Cov D; zð Þ
Var zð Þ ¼ Cov Y; zð Þ

Cov D; zð Þ ð4:2Þ

Thus, it is clear that, in order to extract a correct measure of the effect of D on Y, we
need to divide A by B, as is represented graphically in Fig. 4.1, where the dotted line

between z an Y indicates that the relation between these two variables is only indirect,

that is, passing through the direct relation between z and D; as such, this offers a
graphical representation of the exclusion restriction of this specific IV estimator.

The effect of z on Y is the product of the effect of z on D (i.e., B) and of D on

Y (i.e., b), that is: A¼B ∙ b. Hence, the Wald estimator measures the causal effect of

D on Y. As an estimator of b, we can rely on its sample equivalent, i.e.:

z

D Y

A
B

b

Fig. 4.1 Path-diagram

representation of the causal

link between z, D, and Y
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bb ¼

X
i

YiziX
i¼1

zi
�

X
i

Yi 1� zið ÞX
i¼1

1� zið ÞX
i

DiziX
i

zi
�

X
i

Di 1� zið ÞX
i

1� zið Þ

¼ ð4:3Þ

For the law of large numbers (LLN), being (4.3) function of sums, we have that:

bb !p b

i.e., bb is a consistent estimation of b. It is possible to show under which conditions bb
is a consistent estimator of ATE, and to this aim we distinguish two cases:

Case 1. The treatment effect is constant over observations.
Case 2. The treatment effect is heterogeneous over observations.

Case 1 The treatment effect is constant over observations.

In this case, we assume that Y1i� Y0i¼ α¼ constant for each unit i, and bb
estimates consistently ATE¼ α. In order to prove this proposition, we start by

developing further the numerator A in (4.1). First, however, it is worth writing both

the potential outcome and the potential treatment equations, i.e.:

Y ¼ D � Y1 þ 1� Dð Þ � Y0

D ¼ z � D1 þ 1� zð Þ � D0

�
ð4:4Þ

Substituting the second into the first equation and using some simple algebra

gives us:

Y ¼ Y0 þ D0 � Y1 � Y0ð Þ þ z � D1 � D0ð Þ � Y1 � Y0ð Þ ð4:5Þ

Consider now the expectation of Y conditional on z¼ 1 and z¼ 0, thus:

E Y j z ¼ 1ð Þ ¼ E Y0ð Þ þ E D0 � Y1 � Y0ð Þ½ � þ E D1 � D0ð Þ � Y1 � Y0ð Þ½ �
E Y j z ¼ 0ð Þ ¼ E Y0ð Þ þ E D0 � Y1 � Y0ð Þ½ � ð4:6Þ

Since by definition:

A ¼ E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ ¼ E D1 � D0ð Þ Y1 � Y0ð Þ½ � ¼ α � E D1 � D0ð Þ½ �
B ¼ E D j z ¼ 1ð Þ � E D j z ¼ 0ð Þ ¼ E D1 � D0ð Þ½ �

ð4:7Þ

this implies that:

4.2 Local Average Treatment Effect 235



b ¼ A

B
¼ α � E D1 � D0ð Þ

E D1 � D0ð Þ ¼ α ð4:8Þ

proving that b identifies ATE and thus bb , the sample analog, consistently

estimates ATE.

Case 2 The treatment effect is heterogeneous over observations
In this case we have that Y1i� Y0i 6¼ α and each observation i owns its own

treatment effect. In this case, it can be proved that the Wald estimator does not

consistently estimate the ATE, but another parameter called Local average treat-

ment effect (LATE), which is equal to ATE calculated for a specific subpopulation

of individuals, i.e., the compliers. In general, ATE cannot be identified.

In order to show what LATE is equal to, we start again from the numerator A in

(4.1). We saw that:

A ¼ E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ ¼ E D1 � D0ð Þ Y1 � Y0ð Þ½ � ð4:9Þ

By defining h ¼ D1 � D0ð Þ Y1 � Y0ð Þ, we have that:
A ¼ E h½ � ð4:10Þ

From the law of iterated expectation (LIE) we know that, if x is a generic discrete
variable assuming values x¼ (x1, x2, . . . , xM) with probabilities p¼ ( p1, p2, . . . ,
pM), then E(h)¼ p1E(h j x1) + p2E(h j x2) + . . .+ pM E(h j xM). By defining h as in

(4.10), and x¼ (D1�D0)¼ [1, 0, �1] with probabilities p¼ ( p1, p0, p�1), then:

A ¼ E hð Þ
¼ p1E D1 � D0ð Þ Y1 � Y0ð Þ j D1 � D0 ¼ 1½ �

þ p0E D1 � D0ð Þ Y1 � Y0ð Þ j D1 � D0 ¼ 0½ �
þ p�1E D1 � D0ð Þ Y1 � Y0ð Þ j D1 � D0 ¼ �1½ � ð4:11Þ

that is:

A ¼ E Y1 � Y0ð Þ j D1 � D0 ¼ 1½ � p D1 � D0 ¼ 1ð Þ
� E Y1 � Y0ð Þ j D1 � D0 ¼ �1½ � p D1 � D0 ¼ �1ð Þ ð4:12Þ

It is easy to see in (4.12) that as soon as the two addends are equal, then A¼ 0 and

b¼ 0 although there could be, for instance, a positive treatment effect for all the

individuals considered. This is sufficient to show that, in the case of heterogeneous

treatment, the ATE is not identified. In order to identify the causal effect of D on Y,
we have to rely on the so-called monotonicity assumption, which states that

p(D1�D0¼�1)¼ 0; it occurs when:

D1 � D0 ð4:13Þ
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Under monotonicity, we get that:

A ¼ E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ
¼ E Y1 � Y0ð Þ j D1 � D0 ¼ 1½ � p D1 � D0 ¼ 1ð Þ ð4:14Þ

since the second addend becomes equal to zero. As for the denominator B, we had

that:

B ¼ E D j z ¼ 1ð Þ � E D j z ¼ 0ð Þ ¼ E D1 � D0ð Þ ð4:15Þ

Given monotonicity, (D1�D0) is a binary variable taking value zero or one; we can

thus conclude that:

E D1 � D0ð Þ ¼ p D1 � D0 ¼ 1ð Þ ð4:16Þ

thus implying that:

b ¼ A

B
¼ E Y1 � Y0 j D1 � D0 ¼ 1ð Þ � p D1 � D0 ¼ 1ð Þ

p D1 � D0 ¼ 1ð Þ
¼ E Y1 � Y0 j D1 � D0 ¼ 1ð Þ ð4:17Þ

To conclude, in Case 2 the Wald estimator of b is equal to the LATE, defined as the
ATE in the subgroup of compliers, those individuals having D1¼ 1 and D0¼ 0 or

equivalently D1>D0:

b ¼ LATE ¼ E Y1 � Y0 j D1 � D0 ¼ 1ð Þ ð4:18Þ

It is important to observe that monotonicity, by assuming that D1�D0, rules out the

possible presence of defiers within the population; this assumption is however not

empirically testable.

4.2.3 LATE Estimation

This section illustrates the steps required in order to estimate LATE empirically and to

obtain usual standard errors for testing hypotheses. For the numerator A, we saw that:

A ¼ E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ ¼ E Y1 � Y0ð Þ j D1 � D0 ¼ 1½ � p D1 � D0 ¼ 1ð Þ
¼ LATE � p D1 � D0 ¼ 1ð Þ
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that implies:

LATE ¼ E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ
p D1 � D0 ¼ 1ð Þ ð4:19Þ

To estimate LATE, we need to have the denominator of the previous ratio in terms

of observables, that is:

p D1 � D0 ¼ 1ð Þ ¼ E D1 � D0ð Þ ¼ E D1ð Þ � E D0ð Þ
¼ E D j z ¼ 1ð Þ � E D j z ¼ 0ð Þ
¼ p D ¼ 1 j z ¼ 1ð Þ � p D ¼ 1 j z ¼ 0ð Þ ð4:20Þ

From this we get:

LATE ¼ E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ
p D ¼ 1 j z ¼ 1ð Þ � p D ¼ 1 j z ¼ 0ð Þ ð4:21Þ

which is expressed in terms of all observable components. Given the previous

population formula, a simple (consistent) estimation in the sample is:

cLATE ¼ Y1 � Y0

D1 � D0

ð4:22Þ

which is equivalent to bb in (4.3). Observe that the numerator in (4.22) is the

difference between the average of Y in the subsample with z¼ 1 and that in

the subsample with z¼ 0, whereas the denominator is the difference between the

frequency of individuals with D¼ 1 in the subsample having z¼ 1 and the fre-

quency of individuals with D¼ 0 in the subsample having z¼ 0.

It is immediate to see from (4.2) that a consistent estimation of LATE can be

obtained from an IV estimation of α in the following regression:

Y ¼ μþ αDþ error ð4:23Þ

using z as instrument for D. In this case, we can directly get the standard error

for LATE.

Observe, finally, that there is a special case in which LATE is equal to the

average treatment effect on treated (ATET): this occurs when E(Di | zi¼ 0)¼
p(Di¼ 1 | zi¼ 0)¼ 0, i.e., when individuals that were not drawn for treatment are

prevented from choosing to become treated. In such a case, D0i can only take one

value equal to zero, as shown by Table 4.2.

The proof is straightforward (Bloom 1984). Using POM, we have that

E(Y | z¼ 1)¼E(Y0 | z¼ 1) + E(D(Y1� Y0) | z¼ 1), but E(Y | z¼ 0)¼E(Y0 | z¼ 0),

since E(D(Y1� Y0) | z¼ 0)¼ 0 given that D¼ 0 when z¼ 0. As a result, we have

that E(Y | z¼ 1)�E(Y | z¼ 0)¼E(D(Y1� Y0) | z¼ 1) since, by independence of z,
E(Y0 | z¼ 1)¼E(Y0 | z¼ 0). However, E(D(Y1� Y0) | z¼ 1)¼E(Y1� Y0 | z¼ 1,

D¼ 1) p(D¼ 1 | z¼ 1) + E(0∙(Y1� Y0) | z¼ 1, D¼ 0) p(D¼ 0 | z¼ 1)¼E(Y1� Y0 |
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z¼ 1, D¼ 1) p(D¼ 1 | z¼ 1)¼E(Y1� Y0 | D¼ 1) p(D¼ 1 | z¼ 1), where the last

equality derives from independence of z. Thus, we have that:

E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ ¼ E Y1 � Y0 j D ¼ 1ð Þp D ¼ 1 j z ¼ 1ð Þ

Since, by assumption, p(D¼ 1| z¼ 0)¼ 0, we obtain that:

LATE ¼ E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ
p D ¼ 1 j z ¼ 1ð Þ � p D ¼ 1 j z ¼ 0ð Þ

¼ E Y1 � Y0 j D ¼ 1ð Þp D ¼ 1 j z ¼ 1ð Þ
p D ¼ 1 j z ¼ 1ð Þ ¼ E Y1 � Y0 j D ¼ 1ð Þ ð4:24Þ

that is what we aimed at proving.

4.2.4 Estimating Average Response for Compliers

So far, we have considered identification and estimation of LATE without condi-

tioning on the covariates x. The previous framework, however, can be generalized

by assuming that the independence of z is conditional on x:

Assumption 4.4 Conditional independence of z. We assume that:

Y01; Y00; Y10; Y11ð Þ;D1;D0f g⊥z j x

Of course, it is also possible to define LATE conditional on x, that is:

LATE xð Þ ¼ E Y1 � Y0 j x,D1 > D0ð Þ ð4:25Þ

An interesting property of LATE(x) is that it is possible to show that:

LATE xð Þ ¼ E Y j x,D ¼ 1,D1 > D0ð Þ � E Y j x,D ¼ 0,D1 > D0ð Þ ð4:26Þ

Table 4.2 Classification of unit i when z is random, compliance to treatment is imperfect, but

individuals that were not drawn for treatment are prevented from being treated

zi¼ 0

D0i¼ 0

zi¼ 1 D1i¼ 0 Never-taker

D1i¼ 1 Complier
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The relationship in (4.26) comes from the POM using the fact that for compliers

z¼D and exploiting conditional independence of z, so that:

E Y j x,D ¼ 0,D1 > D0ð Þ ¼ E Y0 j x, z ¼ 0,D1 > D0ð Þ ¼ E Y0 j x,D1 > D0ð Þ
E Y j x,D ¼ 1,D1 > D0ð Þ ¼ E Y1 j x, z ¼ 1,D1 > D0ð Þ ¼ E Y1 j x,D1 > D0ð Þ

Abadie (2003) calls E Y j x,D,D1 > D0ð Þ as the local average response function

(LARF). By assuming to know the true form of previous expectations, one could

estimate LATE(x) by contrasting the result of an OLS regression of Y on x in the

subgroup of compliers with D¼ 0, with that of compliers with D¼ 1. Although

interesting, it is not possible as we cannot know from the observations theirselves

which unit is a complier and which is not.

Abadie (2003) does however provide a fundamental theorem that allows us to

estimate previous expectations without knowing as to which units are compliers.

Ababie theorem Suppose that all previous LATE identification assumptions

(including monotonicity) hold conditional on x; let g(Y, D, x) be any measurable

function of (Y, D, x) with finite expectation; define:

k0 ¼ 1� Dð Þ 1� zð Þ � p z ¼ 0 j xð Þ
p z ¼ 0 j xð Þp z ¼ 1 j xð Þ ð4:27Þ

k1 ¼ D
z� p z ¼ 1 j xð Þ

p z ¼ 0 j xð Þp z ¼ 1 j xð Þ ð4:28Þ

k ¼ k0 p z ¼ 0 j xð Þ þ k1 p z ¼ 1 j xð Þ ¼ 1� D 1� zð Þ
p z ¼ 0 j xð Þ �

1� Dð Þz
p z ¼ 1 j xð Þ ð4:29Þ

Then we can prove that:

E g Y;D; xð Þ j D1 > D0½ � ¼ 1

p D1 > D0ð ÞE k � g Y;D; xð Þ½ � ð4:30Þ

E g Y0; xð Þ j D1 > D0½ � ¼ 1

p D1 > D0ð ÞE k0 � g Y; xð Þ½ � ð4:31Þ

E g Y1; xð Þ j D1 > D0½ � ¼ 1

p D1 > D0ð ÞE k1 � g Y; xð Þ½ � ð4:32Þ

where we saw that p D1 > D0ð Þ ¼ E D j z ¼ 1ð Þ � E D j z ¼ 0ð Þ; thus all previous
formulas are functions of observable quantities. Furthermore, the last three relations

also hold conditional on x. Observe also that p D1 > D0ð Þ ¼ E kð Þ.
This theorem is extremely useful, as it allows to compare the characteristics of

treated and untreated individuals within the compliers’ subset, without knowing
who is and who is not a complier. In the case of LARF estimation, if we have a
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sample of i.i.d. observations {Yi, Di, zi, xi,} and define the LARF as h D; x; θ0ð Þ ¼
E Y j x,D,D1 > D0ð Þ where:

θ0 ¼ argminθ2ΘE Y � h D; x; θð Þð Þ2 j D1 > D0

n o
then, by applying the Abadie theorem, we can write that:

θ0 ¼ argminθ2ΘE k Y � h D; x; θð Þð Þ2
n o

which is now expressed in terms of all observable quantities. Notice that, in

defining θ0 as the solution, we eliminate p D1 > D0ð Þ as this term does not affect

the population objective function of the previous minimization problem. Moreover,

since h(∙) has the form of a minimum square errors estimator, one can also think

about LARF as the best least square approximation under functional form misspeci-

fication. If we assume a linear parametric form for h(∙) we obtain:

μ0; α0; δ0ð Þ ¼ argmin μ;α;δð ÞE k Y � μ� αD� xδð Þ2
n o

ð4:33Þ

thus we can provide the following two-step procedure for estimating LARF:

1. Calculate the weights k by first estimating parametrically (or nonparametrically)

p(z¼ 1 | x);

2. Estimate (μ0, α0, δ0) by a Weighted least square (WLS) with weights equal to

k and estimate the LARF.

Two problems arise with such a procedure: (1) the weights in step 1 are

generated variables to be used in the second step; thus, asymptotic standard errors

should be corrected for this; (2) the estimated weights can be negative, thus the

usual WLS cannot be feasible.

Regarding point (1), Abadie (2003) has provided analytical formulas for stan-

dard errors and also showed that bootstrap can be a valuable alternative; moreover,

Abadie et al. (2002) have provided a solution to the negative estimated weights

issue, suggesting to use the following weights:

E k j Y,D, xð Þ ¼ 1� D 1� E z j Y,D ¼ 1, xð Þ½ �
1� p z ¼ 1 j xð Þ

� 1� Dð ÞE z j Y,D ¼ 0, xð Þ
p z ¼ 1 j xð Þ ð4:34Þ

instead of the weights expressed as in (4.29). The most important advantage of

using weights as in (4.34) is that:
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E k j Y,D, xð Þ ¼ p D1 � D0 j Y,D, xð Þ ð4:35Þ

which is a probability and thus constrained to vary between zero and one. Using

such a weighting scheme, therefore, leads to the following modified procedure for

estimating LARF:

1. Calculate the weightsE k j Y,D, xð Þby first estimating parametrically (or nonpar-

ametrically) E z j Y,D ¼ 1, xð Þ, E z j Y,D ¼ 0, xð Þ, and p(z¼ 1 j x) in (4.34). In

the parametric case, this involves:

• Estimating a probit of z on {Y, D, x} for D¼ 1 and D¼ 0, then saving the

fitted values

• Estimating a probit of z only on x, then saving the fitted values

2. Calculate E k j Y,D, xð Þ by plugging the previously fitted values into formula

(4.34), by replacing with one values that are larger than one and with zero values

that are lower than zero.

3. Estimate (μ0, α0, δ0) by a WLS with weights equal to the estimated E k j Y,D, xð Þ
and get standard errors using the analytical formulas provided by Abadie (2003,

section 4.3) or by bootstrap to take into account the generated estimation from

the second step.

Finally, it is worth stressing that if in the minimization (4.33) we adopt,

in constructing k, a linear model for the probability of z¼ 1 given x of the type

p(z¼ 1 j x)¼ xγ, then the parameters estimated by (4.33) coincide with the usual

2SLS estimation; this is no longer true, however, if p(z¼ 1 | x) is estimated

parametrically but nonlinearly or directly nonparametrically.

4.2.5 Characterizing Compliers

Previous analysis allows us for characterizing compliers, in the sense of making it

possible to both count the overall number of compliers and their characteristics by

treatment status. Indeed, under previous assumptions (including monotonicity), it is

possible to estimate consistently the following quantities:

N � p D1 > D0ð Þ ¼ number of compliers

N � p D1 > D0 j D ¼ 1ð Þ ¼ number of treated compliers

N � p D1 > D0 j D ¼ 0ð Þ ¼ number of untreated compliers

Indeed, we have already proven in (4.20) that:

p D1 > D0ð Þ ¼ p D1 � D0 ¼ 1ð Þ ¼ p D ¼ 1 j z ¼ 1ð Þ � p D ¼ 1 j z ¼ 0ð Þ

which is a function of observable terms. We can also show how to express the

quantity p(D1>D0 j D¼ 1) in terms of observables, namely:
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p D1 > D0 j D ¼ 1ð Þ ¼ p D1 > D0ð Þ � p D ¼ 1 j D1 > D0ð Þ
p D ¼ 1ð Þ

¼ p D ¼ 1 j z ¼ 1ð Þ � p D ¼ 1 j z ¼ 0ð Þ½ � � p z ¼ 1 j D1 > D0ð Þ
p D ¼ 1ð Þ

¼ p D ¼ 1 j z ¼ 1ð Þ � p D ¼ 1 j z ¼ 0ð Þ½ � � p z ¼ 1ð Þ
p D ¼ 1ð Þ

ð4:36Þ

where the first equality uses the Bayes theorem, the second equality the fact that for

compliers D¼ z, and the third equality exploits the independence of z.
A further attractive characterization of the compliers subgroup is that of com-

paring the distribution of the covariates for this set of individuals by treatment

status. This is relevant, as differences in attributes for compliers have a causal

interpretation. To this purpose, we can still use the Ababie theorem, using the k-
weighting scheme for the variables of interest; for instance, suppose that we wish to

compare the average value of a covariate x as taken in the treated and in the control
group of compliers; by using the weights as reported in (4.27) and (4.28), and

appropriately using formulas (4.31) and (4.32), we obtain:

E x j D ¼ 1;D1 > D0ð Þ ¼ E k1 � xð Þ
p D1 > D0ð Þ

¼ E k1 � xð Þ
p D ¼ 1 j z ¼ 1ð Þ � p D ¼ 1 j z ¼ 0ð Þ ð4:37Þ

E x j D ¼ 0;D1 > D0ð Þ ¼ E k0 � xð Þ
p D1 > D0ð Þ

¼ E k0 � xð Þ
p D ¼ 1 j z ¼ 1ð Þ � p D ¼ 1 j z ¼ 0ð Þ ð4:38Þ

whose sample equivalent is immediate. In such a way, it is possible to compare any

attribute we are interested in within the compliers subgroup by treatment status.

Computational implementation is also straightforward (see Sect. 4.4.1).

4.2.6 LATE with Multiple Instruments and Multiple
Treatment

Previous analysis regarding LATE can be quite easily generalized to the case of:

(1) multiple instruments and (2) multiple treatment.

In the case of multiple instruments, Imbens and Angrist (1994) and Angrist and

Imbens (1995) have shown that LATE takes the form of a weighted average of

single LATEs estimated using separately z1 and z2, these being two mutually
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exclusive instrumental dummies. In this framework, we can define the two LATEs

as follows:

LATE z1ð Þ ¼ Cov Y; z1ð Þ
Cov D; z1ð Þ ð4:39Þ

LATE z2ð Þ ¼ Cov Y; z2ð Þ
Cov D; z2ð Þ ð4:40Þ

If we consider the first-stage fitted value as defined by:

bD ¼ bλ 0 þ bλ 1z1 þ bλ 2z2 ð4:41Þ

we can immediately write down—as shown by Angrist and Pischke (2008, pp. 173–

175)—that 2SLS estimator of LATE as:

LATE ¼
Cov Y; bD� �
Cov D; bD� � ¼

Cov Y; bλ 0 þ bλ 1z1 þ bλ 2z2

� �
Cov D; bD� �

¼
bλ 1Cov Y; z1ð Þ þ Cov Y; z2ð Þ

Cov D; bD� �
¼
bλ 1Cov Y; z1ð Þ
Cov D; bD� � � Cov D; z1ð Þ

Cov D; z1ð Þ þ
bλ 2Cov Y; z2ð Þ
Cov D; bD� � � Cov D; z2ð Þ

Cov D; z2ð Þ

¼ bλ 1

Cov D; z1ð Þ
Cov D; bD� �

24 35 � Cov Y; z1ð Þ
Cov D; z1ð Þ þ

bλ 2

Cov D; z2ð Þ
Cov D; bD� �

24 35
� Cov Y; z2ð Þ
Cov D; z2ð Þ

¼ ϕ � LATE z1ð Þ þ 1� ϕð Þ � LATE z2ð Þ ð4:42Þ

where:

ϕ ¼
bλ 1Cov D; z1ð Þbλ 1Cov D; z1ð Þ þ bλ 2Cov D; z2ð Þ

ð4:43Þ

is a weight ranging from zero to one depending on the first-stage importance of each

single instrument in explaining the treatment D. Equation (4.42), hence, shows that
the overall LATE is a weighting mean of the LATE obtained by exploiting one

instrument at time.

244 4 Local Average Treatment Effect and Regression-Discontinuity-Design



In the case of multiple treatment, Angrist and Imbens (1995) have provided a

fundamental theorem linking this case with the ordinary LATE estimator. To

illustrate this, let the potential outcome take such a form:

Yd ¼ f dð Þ ð4:44Þ
with d 2 0; 1; 2; . . . ; d

� �
indicating a multinomial treatment variable taking ordinal

values between 0 and d : one could think about d as the number of years of

education, the number of children some women had, and so forth.

As in the binary case, assume knowing an instrument z is randomly assigned,

with d depending on z; as such, d is a function of z, such that:

d1 ¼ treatment status when z ¼ 1

d0 ¼ treatment status when z ¼ 0

where d1 and d0 can take values within 0; 1; 2; . . . ; d
� �

, and where for each unit we

can only observe one of these two variables, never both. Given the corresponding

independence assumption:

Y0; Y1; . . . ; Yd

� �
, d1, d0⊥z

and the corresponding first-stage condition:

E d1½ � 6¼ E d0½ �

which simply suggests that z has some predictive power on d, the monotonicity

assumption in such a multinomial case takes on this (corresponding) form:

d1 � d0:

Given previous assumptions, it can be proved in such a setting that LATE takes on

the following form:

LATE ¼ E Y j z ¼ 1ð Þ � E Y j z ¼ 0ð Þ
E d j z ¼ 1ð Þ � E d j z ¼ 0ð Þ

¼
Xd
k¼1

θk � E Yd � Yd�1 j d0 < k � d1ð Þ ð4:45Þ
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where we have that:

θk ¼ p d0 < k � d1ð ÞXd
k¼1

p d0 < k � d1ð Þ
ð4:46Þ

represents a weighting scheme with weights by definition adding to one. Equation

(4.45) suggests that with multinomial treatment, LATE is an average of single

LATEs singularly defined as the unit average treatment effect calculated in the

subpopulation of compliers at k. In other words, those individuals comply with the

instrument, so that when z¼ 0 they get a treatment higher than d0, and when z¼ 1

they get a treatment at most equal to d1.
Within the entire population, the share of compliers at k can be calculated by

observing that:

p d0 < k � d1ð Þ ¼ p k � d1ð Þ � p k � d0ð Þ
¼ 1� p k > d1ð Þ½ � � 1� p k > d0ð Þ½ �
¼ p k > d0ð Þ � p k > d1ð Þ ¼ p d0 < kð Þ � p d1 < kð Þ ð4:47Þ

Since by independence we have that:

p d0 < kð Þ � p d1 < kð Þ ¼ p d < k j z ¼ 0ð Þ � p d < k j z ¼ 1ð Þ ð4:48Þ

we can calculate the share of compliers using observable data as showed by (4.48).

Finally, it is quite easy to show that:

E d j z ¼ 1ð Þ � E d j z ¼ 0ð Þ ¼
X
k¼1d

p d < k j z ¼ 0ð Þ � p d < k j z ¼ 1ð Þ½ �

¼
X
k¼1d

p d0 < k � d1ð Þ ð4:49Þ

thus the weights θk can be consistently estimated, and both the numerator and

denominator can be computed using observable variables. The first equality of

(4.49) comes from the property of the mean of a finite count variable. Indeed, for a

finite count variable d 2 0; 1; 2; . . . ; d
� �

, it can be proven that:

E dð Þ ¼
X
d¼0d

d � p dð Þ ¼
X
k¼0d

1�
Xk
d¼0

p dð Þ
" #

ð4:50Þ

where:
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Xk
d¼0

p dð Þ ¼ p d � kð Þ ¼ F kð Þ ð4:51Þ

is the cumulative distribution function of the stochastic variable d. To prove (4.50),

consider the case of d ¼ 2; in this case:

X2
k¼0

1�
Xk
d¼0

p dð Þ
" #

¼ 1� p 0ð Þ½ � þ 1� p 0ð Þ � p 1ð Þ½ �

þ 1� p 0ð Þ � p 1ð Þ � p 2ð Þ½ �
¼ 3� 3p 0ð Þ � 2p 1ð Þ � p 2ð Þ ð4:52Þ

At the same time, the mean of d is equal to:

E dð Þ ¼
X
d¼0d

d � p dð Þ ¼ 0p 0ð Þ þ 1p 1ð Þ þ 2p 2ð Þ ¼ p 1ð Þ þ 2 p 2ð Þ ð4:53Þ

However, since by definition p 0ð Þ ¼ 1� p 1ð Þ � p 2ð Þ, then (4.52) becomes:

X2
k¼0

1�
Xk
d¼0

p dð Þ
" #

¼ 3� 3 p 0ð Þ � 2 p 1ð Þ � p 2ð Þ

¼ 3� 3þ 3p 1ð Þ � 3p 2ð Þ � 2p 1ð Þ � p 2ð Þ
¼ p 1ð Þ þ 2 p 2ð Þ ð4:54Þ

which is equal to (4.53), thus proving relation (4.50). Observe that, since the first

value taken by d is zero, we can start previous summations directly from d¼ 1

leading to the same result with:

E dð Þ ¼
X
d¼1d

d � p dð Þ ¼
X
k¼1d

1�
Xk
d¼1

p dð Þ
" #

ð4:55Þ

where:

Xk
d¼1

p dð Þ ¼ p d < kð Þ ð4:56Þ

Given (4.55) and (4.56), we finally get—by substitution—(4.49).
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4.3 Regression-Discontinuity-Design

Regression-discontinuity-design (RDD) can be used when the selection-into-pro-

gram (D) is highly determined by the level assumed by a specific variable

s (sometimes called “forcing” variable), defining a threshold s separating treated

and untreated units (Imbens and Lemieux 2008; Lee and Lemieux 2009). In the

literature, two types of RDD have been proposed and studied:

• Sharp RDD: when the relation between D and s is deterministic, thus creating a

strict “jump” in the probability of receiving the treatment at the threshold

• Fuzzy RDD: when this relation is stochastic, thus producing a milder jump at the

threshold

The idea behind RDD is that, in a neighborhood of the threshold, conditions for a

natural experiment (i.e., a random assignment to treatment) are restored. Therefore,

as long as: (1) the threshold is well identified and (2) the treatment is dependent on

s, the analyst can obtain the policy effect simply by comparing the mean outcome of

individuals laying on the left and the mean outcome of individuals laying on the

right of the threshold. In what follows, we separately present and examine the sharp

and fuzzy RDD setting (Fig. 4.2).

Fig. 4.2 Discontinuity in the probability to be treated in the sharp and fuzzy RDD
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4.3.1 Sharp RDD

In sharp RDD, the selection-into-treatment follows a deterministic rule defined as:

Di ¼ 1 s � s½ � ð4:57Þ

The idea behind such approach is that, in the threshold point s ¼ s, random
assignment is in place so that independence assumption (IA) holds exactly in that

point (i.e., locally).

A fundamental assumption in order for RDD to be able to identify the actual

causal effect of interest is the so-called continuity of the mean potential outcomes at

the threshold. Although not strictly necessary, this assumption is generally strength-

ened by requiring the continuity to hold over all the support of s:

Assumption 4.5 The two potential outcomes E(Y1 | s) and E(Y0 | s) are continuous
functions over the support of s.

Under this assumption and using POM, i.e., Y¼ Y0+D (Y1� Y0), we have that:

E Y0 j s ¼ sð Þ ¼ lim
s"s

E Y0 j S ¼ sð Þ ¼ lim
s"s

E Y0 j D ¼ 0, S ¼ sð Þ

¼ lim
s"s

E Y j S ¼ sð Þ ð4:58Þ

E Y1 j s ¼ sð Þ ¼ lim
s#s

E Y j S ¼ sð Þ ð4:59Þ

Consequently, ATE is equal to the difference between (4.59) and (4.58), that is:

ATESRD ¼ E Y1 j s ¼ sð Þ � E Y0 j s ¼ sð Þ
¼ lim

s#s
E Y j S ¼ sð Þ � lim

s"s
E Y j S ¼ sð Þ ð4:60Þ

or equivalently:

ATESRD ¼ mR sð Þ � mL sð Þ ð4:61Þ

where, for simplicity, mR sð Þ ¼ lim
s#s

E Y j S ¼ sð Þ and mL sð Þ ¼ lim
s"s

E Y j S ¼ sð Þ.
Equation (4.61) implies that a simple Difference-in-means (DIM) of units laying

on the right and on the left of a neighborhood of the threshold gives a consistent

estimation of ATE.

In order to understand the relevance of Assumption 4.5 in the identification of

ATE, assume that E(Y0 | s) is continuous while E(Y1 | s) is discontinuous in s at the
threshold. Figure 4.3 presents such a situation; as clearly evident, E(Y1 | s) sets out a
discontinuity at the threshold, implying that its right side limit C is different from its

left side limit B. This means that the actual value of ATE is uncertain, equal to
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(B-A) when seen from the left and equal to (C-A) when seen from the right. This

uncertainty is ruled out if the function E(Y1 | s) crosses the vertical threshold line

only in one point: this is equivalent to assuming that E(Y1 | s) is continuous.
By assuming that Assumption 4.5 holds, one can estimate (4.60) nonparame-

trically, once a given interval around the threshold of width h has been selected

beforehand; for the moment, let us assume a given value for h so that the estimation

is restricted to observations in the interval s� h; sþ hð Þ. As a suitable nonpara-

metric estimation technique, one could use a kernel weighted average, thus esti-

mating (4.60) as:

dATE SRD ¼

X
i2 Rf g

K
si � s

h

	 

Yi

X
i2 Rf g

K
si � s

h

	 
 �

X
i2 Lf g

K
si � s

h

	 

Yi

X
i2 Lf g

K
si � s

h

	 
 ð4:62Þ

where K(∙) is a specific kernel function and {R} and {L} the set of units laying on

the right and on the left of the cutoff, respectively. By choosing a uniform

(or rectangular) kernel, (4.62) becomes:

Fig. 4.3 Ambiguity in identifying ATE when mean potential outcomes are discontinuous in s at
the threshold
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dATE SRD ¼

X
i2 Rf g

1
si � s

h
< 1

	 

Y

X
i2 Rf g

1
si � s

h
< 1

	 
 �

X
i2 Lf g

1
si � s

h
< 1

	 

Y

X
i2 Lf g

1
si � s

h
< 1

	 
 ¼ YR,h � YL,h ð4:63Þ

where the index function 1(a) is equal to one when expression a is true and zero

otherwise. Equation (4.63) shows that the use of a rectangular kernel simply returns

the difference between the mean of Y on the right and the mean of Y on the left of

the threshold, where only observations within s� h; sþ hð Þ are used.
As other nonparametric methods, the estimator proposed in (4.62) presents some

problems when used at boundaries. It can be shown that the bias of such estimator at

boundary is O(h), whereas typical kernel regressions have a bias that is O(h2).
Porter (2003) shows that the limiting distribution of the Nadaraya–Watson estima-

tor at the boundary point s is:

ffiffiffiffiffiffi
Nh

p
� dATE SRD � ATE
� �

� N 2 � C � K1 0ð Þ � m
0
R sð Þ � m

0
L sð Þ

h i
; 4δ0

σ2R sð Þ � σ2L sð Þ
f 0 sð Þ

� 
ð4:64Þ

where K1(0) and δ0 depend on the kernel, and C is a finite number defined as the

following limit: h
ffiffiffiffiffiffi
Nh

p ! C, when h ! 0 andNh ! 1. Therefore, given (4.64) we

have that asymptotically:

E
ffiffiffiffiffiffi
Nh

p
� dATE SRD � ATE
� �h i

ffi 2 � h
ffiffiffiffiffiffi
Nh

p
� K1 0ð Þ � m

0
R sð Þ � m

0
L sð Þ

h i
thus:

Bias dATE SRD

� �
¼ ATEþ 2 � h � K1 0ð Þ � m

0
R sð Þ � m

0
L sð Þ

h i
ð4:65Þ

which increases linearly with h.
Since the rate of convergence of the bias to zero, as N approaches infinity, is

quite slow compared to other parametric methods, it seems convenient to search for

some alternatives such as local linear regressions, which have the advantage of a

bias O(h2) also at boundaries (Fan and Gijbels 1996; Lee et al. 2004)2.

2 For kernel regressions, the optimal bandwidth in interior points is O(h2) and is proportional to

N–1/5 (Härdle and Marron 1985), so that 1/5¼ 0.2 is the speed of convergence of the bias to

zero; at boundaries, however, we saw that such convergence rate becomes O(h) that is propor-
tional to (N–1/5)1/2, that is, half time the usual rate of convergence in interior points. This

questions seriously the use of kernel regressions at boundaries.
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The local linear regression simply requires us to run the following two regres-

sions, estimated via standard OLS, on the left (L ) and on the right (R) side of the

threshold:

Yi ¼ αL þ δL si � sð Þ þ εL, i ð4:66Þ
Yi ¼ αR þ δR si � sð Þ þ εR, i ð4:67Þ

using only units belonging to s� h; sð Þ in regression (4.66) and only units belonging
to s; sþ hð Þ in regression (4.67). Note that εL,i and εR,i are two pure random errors

with unconditional mean equal to zero. The conditional expectations are therefore:

E Yi j sið Þ ¼ αL þ δL si � sð Þ ð4:68Þ
E Yi j sið Þ ¼ αR þ δR si � sð Þ ð4:69Þ

By combining the previous two equations into a unique local pooled linear regres-

sion, we obtain:

Yi ¼ αL þ ATE � Di þ δL si � sð Þ þ δR � δLð Þ � Di � si � sð Þ þ εi ð4:70Þ

where ATESRD¼ (αR� αL) and εi¼ εL,I+Di (εR,i� εL,i). This equation can in turn

be estimated by OLS on the full sample and locally around the cutoff point using

different sample windows h, i.e., in the subsample identified by the set

Ss,h 	 s� h < s < sþ hf g. Furthermore, regression (4.70) also provides the cor-

rect standard errors for ATE, provided that the rate of convergence of the bandwidth

to zero, as N goes to infinity, is “sufficiently” high and is assumed to be higher than

the usual rate 1/5 (see footnote 2). Indeed, if a rate of 1/5 is assumed, a bias would

arise also asymptotically. For the bias to disappear asymptotically, we need that the

bias goes to zero faster than the variance and, for this to happen, we have to assume

a rate of convergence δ such that 1/5< δ< 2/5, where 2/5 is the fastest rate of

convergence for nonparametric estimators (Stone 1982). This assumption is known

as “undersmoothing.”

Interestingly, regression (4.70) has a powerful graphical representation

(as illustrated by Fig. 4.4) showing that, for sharp RDD, ATE is equal to the

discontinuity in the outcome at the threshold (assuming in this case a linear form

of the potential outcomes as function of s).
One limitation of estimating ATE by (4.70) lies in the linear assumption: when

potential outcomes are nonlinear functions of s, then bias due to functional

misspecification can arise. For robustness purposes, one can generalize (4.70)

using: (1) a local polynomial regression or (2) a kernel local polynomial regression,

as long as a bandwidth h has been properly specified. Figure 4.5 provides a

252 4 Local Average Treatment Effect and Regression-Discontinuity-Design



graphical representation of the potential bias due to functional misspecification in

the sharp RDD case.

In the case in which a local polynomial regression is implemented, (4.70)

becomes:

Fig. 4.4 Sharp RDD. ATE¼ discontinuity in the outcome. Linear form of the potential outcomes

as function of s

Fig. 4.5 Discontinuity in the outcome for sharp RDD: linear bias of ATE estimation due to

functional misspecification of the potential outcomes
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Yi ¼ αL þ ATE � Di þ
XP
p¼1

δL, p si � sð Þ p þ Di

XP
p¼1

δR, p � δL, p
� � � si � sð Þ p þ ε

i 2 s� h < si < sþ hf g
ð4:71Þ

where P is the degree of the polynomial function and h the bandwidth. One could

also fit a weighted local regression function on either side of the discontinuity point,

by using a kernel local polynomial regression:

Min
αL, δL,1

X
i: xi<x0

K
si � s

h

	 

� Yi � αL � δL, 1 si � sð Þ � � � � � δL, p si � sð ÞP
h i2( )

Min
αR, δR,1

X
i: xi�x0

K
si � s

h

	 

� Yi � αR � δR, 1 si � sð Þ � � � � � δR, p si � sð ÞP
h i2( )

ð4:72Þ

where K(∙) is a prespecified kernel function. Observe that, in this case, all the

observations on the left and on the right of the cutoff are used in the estimation,

although the final number of observations considered depends on the specific kernel

function adopted, as well as on h. Estimation of ATE in the case of (4.72) proceeds

by estimating a regression like (4.71), weighting observations through a specific

kernel function. In general, and coherently with the semi-experimental nature of

RDD, kernel functions give more (less) weight to observations whose value of s is
closer to (farther from) the threshold.

4.3.2 Fuzzy RDD

In the fuzzy RDD, the probability of receiving the treatment does not change from

zero to one at the threshold, as in the deterministic case of sharp RDD. Even if

eligibility for treatment depends on a cutoff rule, not all the eligible individuals may

obtain the treatment because imperfect compliance at the threshold is assumed. In

this sense, the statistical setting of fuzzy RDD presents strong similarities with the

randomization under imperfect compliance presented in Sect. 4.2.1.

Fuzzy RDD allows for a milder jump in the probability of assignment to treat-

ment at the threshold. To see this, we can assume—with no loss of generality—a

linear probability model in the left and right side of the threshold as:

p Di ¼ 1 j si ¼ sð Þ ¼ μL þ πL si � sð Þ ð4:73Þ
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p Di ¼ 1 j si ¼ sð Þ ¼ μR þ πR si � sð Þ ð4:74Þ

As in the sharp case, in order to work more compactly, we can estimate both

previous regressions in a single pooled one by writing:

p Di¼1 j si�sð Þ¼μLþ μR�μLð Þ �TiþπL si�sð Þþ πR�πLð Þ �Ti � si�sð Þ ð4:75Þ

where Ti¼1 si� s½ �. Observe that in the fuzzy RDD, “Ti can be different from Di”

because of imperfect compliance, while in the sharp RDDwe have that Ti is equal to
Di. In this sense, Ti plays the same role as that played by zi in the LATE setting

presented in Sect. 4.2. Finally, observe that since D is a binary variable, we also

have:

Di ¼ p Di ¼ 1 j si � sð Þ þ ηi ð4:76Þ

where ηi is a genuine error term independent of s:

E Di j si � sð Þ ¼ p Di ¼ 1 j si � sð Þ þ E ηi j si � sð Þ ¼ p Di ¼ 1 j si � sð Þ ð4:77Þ

It can be proved that the estimation of the causal effect of D on Y in the case of

fuzzy RDD is equivalent to the following LATE:

ATEFRD ¼ E Y1i � Y0i j unit is a complier \ s ¼ sð Þ ð4:78Þ

where, in this setting, compliers are those units i following this rule:

1. When Ti ¼1, then Di ¼1

2. When Ti¼ 0, then Di¼ 0

thus compliers are units having Ti¼Di. As previously argued, we cannot

identify these units by observation, since for each unit i we observe either (1) or

(2), but never both. We can conclude that the identification and estimation of the

average treatment effect for fuzzy RDD strictly follows that of LATE. Thus, it

envisages a Wald estimator form of the treatment effect based on an IV estimation

of Y on D, with T playing the role of the instrumental variable for D in a

neighborhood of the threshold (Hahn et al. 2001). In this sense, fuzzy RDD leads

to an estimation procedure very close to that of other methods suitable under

selection on unobservables, with the advantage that in this case extensions to a

nonparametric environment are relatively easier to implement (Imbens and

Lemieux 2008).

In order to identify the ATE in the case of fuzzy RDD, we have to rely on a less

restrictive assumption than IA:
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Assumption 4.6 Identification of ATE for fuzzy RDD (IAFuzzy-RDD):

ðY1��Y0Þ⊥D j s

that is, the selection-into-treatment is independent of the participation gain, given s. In
fact, under this assumption, considering again Y¼ Y0+D (Y1� Y0), we can show that:

E Y j sð Þ ¼ E Y0 j sð Þ þ E D Y1 � Y0ð Þ j sð Þ ¼ E Y0 j sð Þ þ E D j sð Þ � E Y1 � Y0ð Þ j s�
¼ E Y0 j sð Þ þ E D j sð Þ �ATE sð Þ

that is:

E Y j sð Þ ¼ E Y0 j sð Þ þ E D j sð Þ � ATE sð Þ ð4:79Þ

As in the case of sharp RDD, taking the limit from the left and from the right

produces:

lim
s#s

E Y j S ¼ sð Þ ¼ lim
s#s

E Y0 j S ¼ sð Þ þ lim
s#s

E D j S ¼ sð Þ � lim
s#s

ATE sð Þ ð4:80Þ

lim
s"s

E Y j S ¼ sð Þ ¼ lim
s"s

E Y0 j S ¼ sð Þ þ lim
s"s

E D j S ¼ sð Þ � lim
s"s

ATE sð Þ ð4:81Þ

and by taking (4.80) minus (4.81) we obtain:

ATEFRD ¼
lim
s#s

E Y j S ¼ sð Þ � lim
s"s

E Y j S ¼ sð Þ
lim
s#s

E D j S ¼ sð Þ � lim
s"s

E D j S ¼ sð Þ

¼
lim
s#s

E Y j S ¼ sð Þ � lim
s"s

E Y j S ¼ sð Þ
lim
s#s

p D ¼ 1 j S ¼ sð Þ � lim
s"s

p D ¼ 1 j S ¼ sð Þ ð4:82Þ

which formally shows that the ATE in fuzzy RDD is in fact a Wald estimator.

Observe that formula (4.82) generalizes the formula for ATE obtained for sharp

RDD, as in the sharp case:

lim
s#s

p w ¼ 1 j S ¼ sð Þ ¼ 1

lim
s"s

p w ¼ 1 j S ¼ sð Þ ¼ 0
) lim

s#s
p D ¼ 1 j S ¼ sð Þ � lim

s"s
p D ¼ 1 j S ¼ sð Þ ¼ 1

8<:
meaning that in sharp RDD the denominator in (4.82) is equal to 1 (i.e., sharp
jump). Formula (4.82) states therefore that a comparison of treated and untreated

units around the threshold is a biased estimator, when the forcing variable does not

discriminate sharply between treated, and untreated (i.e., in the absence of perfect

compliance). This means that around the threshold individuals can be different for a

different propensity to be treated: this confounding effect needs to be taken into

account and the denominator in (4.82) properly clears out this effect.
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Formula (4.82) correctly allows to estimate this effect both parametrically and

nonparametrically. This formula is equal to “the ratio between the discontinuity of

the outcome and the discontinuity of the probability to be treated at the threshold.”

A consistent estimator is the sample analog:

dATE FRD ¼
bE Y j S ¼ sð Þþ � bE Y j S ¼ sð Þ�bp D ¼ 1 j S ¼ sð Þþ � bp D ¼ 1 j S ¼ sð Þ� ð4:83Þ

provided that both the numerator and the denominator are consistent estimators of

the two discontinuities. A consistent estimation procedure for implementing (4.83)

may therefore be the following:

1. Estimate the numerator: calculate the average of the outcome Y on the sample on

the right and on the left of the cutoff, given a certain sample window, and take

the difference

2. Estimate the denominator: calculate the frequency of treated individuals on the

left and on the right of the cutoff, given a certain sample window, and take the

difference

3. Form the ratio between the numerator and the denominator to obtain:

dATE FRD ¼ YR � YL

DR � DL

ð4:84Þ

where the standard error can be computed via bootstrap.

Since formula (4.83) is a special case of the Wald estimator, a simple IV

regression of Y on D using T as instrument for D, around the threshold, allows for

correct inference, including the analytical standard error.

An alternative to the previous approach is to use a more parametric approach

based on a linear specification of bE Y j S ¼ sð Þ and bp D ¼ 1 j S ¼ sð Þ, which can be
implemented as follows:

1. Estimate consistently the discontinuity in the outcome at the threshold as the

difference between the two intercepts of the right and left regression, which can

be obtained as the coefficient of Ti in an OLS of this regression:

Yi ¼ αL þ αR � αLð Þ � Ti þ δL si � sð Þ þ δR � δLð Þ � Ti � si � sð Þ þ εi ð4:85Þ

2. Estimate consistently the discontinuity in the probability at the threshold as the

difference between the two intercepts of the right and left regression, which can

be obtained as the coefficient of Ti in an OLS of this regression:

Di ¼ μL þ μR � μLð Þ � Ti þ δL si � sð Þ þ πR � πLð Þ � Ti � si � sð Þ þ ηi ð4:86Þ

4.3 Regression-Discontinuity-Design 257



3. Obtain a consistent estimation of ATE as:

dATE FRD ¼ bα R � bα Lbμ R � bμ L

ð4:87Þ

Observe that (4.85) and (4.86) can also be seen as the reduced forms associated

with a two-equation structural system in which Y and D are endogenous and

T exogenous; formula (4.87) can therefore be obtained by the IV estimation of

ATE of the following regression (Hahn et al. 2001):

Yi ¼ αL þ ATEFRD � Di þ δL si � sð Þ þ δR � δLð Þ � Ti � si � sð Þ þ εi ð4:88Þ

using Ti as instrument for D. In practice, one can first derive the fitted values of D
(Dfv) from the OLS of:

Di ¼ μL þ μR � μLð Þ � Ti þ πL si � sð Þ þ πR � πLð Þ � Ti � si � sð Þ þ ηi ð4:89Þ

and then run an OLS regression of (4.88) using Dfv instead of D. In this manner, we

apply a Direct-2SLS estimation (see Chap. 3, Sect. 3.2.2.1), thus providing standard

errors for all the parameters, including ATE.

Rather than using a local linear model for the probability of treatment, one can

use a local logit or probit model such as:

p D ¼ 1 j sð Þþ ¼ G θL þ γL s� sð Þ½ � if s < s
p D ¼ 1 j sð Þ� ¼ G θR þ γR s� sð Þ½ � if s � s

ð4:90Þ

so that:

dATE FRD ¼ bα R � bα L

G bθ R

� �
� G bθ L

� � ð4:91Þ

where G(∙) is the normal (probit) or logistic (logit) c.d.f. This approach corresponds

to the Probit/Logit-OLS procedure presented in Chap. 3.

Finally, one can estimate the ATE for fuzzy RDD by an IV local polynomial

regression, namely:

Yi ¼ αL þ ATE � Di þ
XP
p¼1

δL, p si � sð Þ p þ Ti

XP
p¼1

δR, p � δL, p
� � � si � sð Þ p þ ε

Di ¼ μL þ μR � μLð Þ � Ti þ
XP
p¼1

πL, p si � sð Þ p þ Ti

XP
p¼1

μR, p � μL, p
� � � si � sð Þ p þ η

ð4:92Þ

using Ti as instrument for D with i 2 s� h < si < sþ hf g. Thus, a kernel local

polynomial regression can be employed also for fuzzy RDD.
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4.3.3 The Choice of the Bandwidth and Polynomial Order

In the next subsections, we discuss methods for choosing correctly the bandwidth

for an RDD nonparametric estimation, as well as the order of the polynomial when

a local polynomial regression is used.

4.3.3.1 Computing Optimal Bandwidth

While it is straightforward to estimate previous regressions within a given window

of width h around the cutoff point, a more difficult question is how to select such a

bandwidth (Fan and Gijbels 1996). In general, choosing a bandwidth estimation

involves finding an optimal balance between estimation precision and estimation

bias:

• On the one hand, a larger bandwidth yields more precise estimates as a larger

number of observations can be used in the estimation phase (higher efficiency)

• On the other hand, when a larger bandwidth is used, estimation is less likely to be

accurate, for we are considering observations that are increasingly far from the

threshold (higher bias).

Figure 4.6 displays the trade-off between estimation efficiency and correctness

as function of the bandwidth h. It is easy to see that there exists a decreasing pattern
between efficiency and unbiasedness. Points A and B are two extreme situations in

which: a larger h allows for a larger efficiency with lower correctness (point B), and

Fig. 4.6 Trade-off between estimation efficiency and correctness as function of the bandwidth

h in nonparametric regression
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a smaller h allows for a larger correctness accompanied with a smaller efficiency

(point A).

The choice of the bandwidth h therefore seeks to balance efficiency and cor-

rectness. In the nonparametric statistics literature, two kinds of approaches have

been proposed to choose the bandwidth: (1) plug-in estimation and (2) cross-

validation (Pagan and Ullah 1999; Härdle 1991).

Before presenting these methods in the RDD contexts, it is first necessary to

define the notion of “optimal” bandwidth for local nonparametric regressions.

Given a generic regression function m(x0) evaluated at x0 and given a nonparamet-

ric estimation bm x0ð Þ of such a function, we define the optimal bandwidth as the one

minimizing the mean integrated square error (MISE) of bm x0ð Þ, i.e.:

h* ¼ argmin

Z
MSE bm x0ð Þ½ � f x0ð Þdx0

� �
ð4:93Þ

where MSE is the mean square error defined as:

MSE bm x0ð Þ½ � ¼ E bm x0ð Þ � m x0ð Þ½ �2 ð4:94Þ

The MSE is in turn equal to:

MSE bm x0ð Þ½ � ¼ Var bm x0ð Þf g þ E bm x0ð Þ½ � � m x0ð Þf g2 ð4:95Þ

i.e., the variance of the nonparametric estimator of m(x0) plus its squared bias. In

general, the optimal bandwidth is that which allows for the same asymptotic rate of

convergence of the variance and the squared bias as the sample size goes to infinity.

Thus, at least asymptotically, choosing a bandwidth different from the optimal one

implies either increasing the rate of convergence to zero of the bias at the expenses

of the rate of convergence of the efficiency (h< h* or undersmoothing) or increas-
ing the rate of convergence to zero of the variance at the expenses of the rate of

convergence of the bias (h> h*, or oversmoothing).
Estimating the optimal bandwidth is not straightforward, since it is function of

unknown quantities that have to in turn be estimated nonparametrically, thus

requiring estimation of nested bandwidths. This produces a cyclicality which is

computational burdensome and imprecise. Furthermore, in the context of RDD, we

have to estimate two regressions around one single point, thus boundary problems

also arise.

Recently, methods for estimating optimal bandwidths for RDD have been

provided in the case of local linear regression. We distinguish between plug-in

and cross-validation approaches.

Plug-in approach In the case of sharp RDD, assuming an estimation of ATE based

on a local linear regression as in (4.70), Imbens and Kalyanaraman (2012) have

suggested estimating h* by minimizing the following MSE over h:
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h* ¼ argmin E dATE SRD � ATESRD

h i2
¼ argmin E bα R � αRð Þ � bα L � αLð Þ½ �2 ð4:96Þ

Using a mean square error approximation of previous formula and adopting a

number of convenient assumptions (including “regularization”), the authors illus-

trate that the two-side unique estimation of the optimal bandwidth takes on the

following form:

bh *
Sharp-RDD ¼ CK � bσ 2

R sð Þ � bσ 2
L sð Þbf sð Þ bm 00

R sð Þ � bm 00
L sð Þ½ �2 þ br R þ br L

 !1
5

� N�1
5 ð4:97Þ

where bσ 2
j sð Þ is an estimation ofVar j Y j s ¼ sð Þ; bm 00

j sð Þ is an estimation of the second

derivative (curvature) of the regression curve; bf sð Þ is an estimation of the density

function of s at the threshold; br j is an estimation of Var bm 00
j sð Þ

h i
, with j¼R, L.

Computing (4.97) requires estimating all previous quantities that are unknown,

which need to be nonparametrically estimated. Imbens and Kalyanaraman (2012),

however, provide a consistent procedure to estimate the optimal bandwidth, involv-

ing the following steps:

1. Estimate the sample variance of the forcing variable and call it V2
s . Use the

so-called Silverman rule-of-thumb to estimate a pilot bandwidth h1 using uni-

form kernel thus obtaining:

h1 ¼ 1 � 84 � Vs � N�1=5 ð4:98Þ

2. Using h1 as bandwidth, estimate bσ 2
R sð Þ and bσ 2

L sð Þ using sample equivalents andbf sð Þ by a kernel approach;

3. Estimate bm 00
R sð Þand bm 00

L sð Þ in the following manner: first, fit globally a third-order

polynomial regression of this type:

Yi¼ γ0þγ1 �1½si� s�þγ2 � ðsi�sÞþγ3 � ðsi�sÞ2þγ4 � ðsi� sÞ3þerror ð4:99Þ

and estimate the third derivative of this function as bm 000
sð Þ¼6 �bγ 4. Calculate two

pilot bandwidths as:

h2,R ¼ 3 � 56 � bσ 2
R sð Þbf sð Þ bm 000 sð Þ½ �2

 !1=7

� N�1=7
R ð4:100Þ
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h2,L ¼ 3 � 56 � bσ 2
L sð Þbf sð Þ bm 000 sð Þ½ �2

 !1=7

� N�1=7
L ð4:101Þ

where NR and NL are the number of observations in the right and left of the

threshold. Given these pilot bandwidths, fit using OLS a local quadratic regres-

sion of Y on S on the right and left separately, using only those observations

falling in the interval defined by h2,R and h2,L, respectively. For the RHS, for

example, this involves estimating:

Yi ¼ λ0 þ λ1 � 1 si � s½ �λ2 � si � sð Þ þ λ3 � si � sð Þ2 þ error

i 2 s < si < sþ h2,Rf g
ð4:102Þ

thus estimating the curvature as bm 00
R sð Þ ¼ 2 � bλ 3, and similarly on the left side;

4. Finally, calculate the regularization terms as follows:

br R ¼ 2160 � bσ 2
R sð Þ

N2,R � h42,R
and br L ¼ 2160 � bσ 2

L sð Þ
N2,L � h42,L

and set CK¼ 3·4375, thus providing the final ingredients required to feasibly

calculate the optimal bandwidth as expressed in formula (4.97).

This procedure leads to a consistent estimation of the optimal bandwidth in the

case of sharp RDD (Imbens and Kalyanaraman 2012, Theorem 4.1).

As for the estimation of the optimal bandwidth in the case of fuzzy RDD, the

authors provide a formula and an estimation procedure very close to that previously

illustrated for sharp RDD. In the case of fuzzy RDD, the proposed formula takes the

following form:

bh *
Fuzzy-RDD ¼ CK�

bσ 2
Y,R sð Þ þ bσ 2

Y,L sð Þ�þ dATE 2
FRD bσ 2

D,R sð Þ þ bσ 2
D,L sð Þ� �� 2 dATE FRD

�bσ YD,R sð Þ þ bσ YD,L sð Þ
� �

bf sð Þ bm 00
Y,R sð Þ � bm 00

Y,L sð Þ� �2 � dATE FRD bm 00
D,R sð Þ � bm 00

D,L sð Þ� �þ br Y,R þ br Y,L þ dATE FRD br D,R þ br D,L½ �

0@ 1A
1
5

� N�1
5

ð4:103Þ

and estimation follows the same algorithm illustrated for the sharp RDD case, with

the exception of the presence of the covariances between Y and D and few other

terms that are to be additionally estimated. Of course, estimating such a formula is

computationally more intensive and generally less precise because of the presence

of a higher number of unknown terms. Fortunately, Imbens and Kalyanaraman find

that in general such a formula provides bandwidths that are close to those based on

the optimal bandwidth for estimation of only the numerator of the fuzzy RDD

estimator. In other words, it is possible to use the algorithm provided for sharp
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RDD, thus ignoring the fact that the Regression-discontinuity-design is fuzzy

(Imbens and Kalyanaraman 2012, p. 14).

Cross-validation approach Ludwig and Miller (2007) and Imbens and Lemieux

(2008) have proposed a cross-validation approach to select the optimal bandwidth

in a local linear regression setting for RDD. Cross-validation is a general compu-

tational technique used for estimating the optimal bandwidth for nonparametric

regressions when plug-in approaches may be problematic (Härdle and Marron

1985). Cross-validation is based on the “leave-one-out” procedure, in which a

regression function is estimated by leaving out one observation at the time. In our

RDD context, the cross-validation procedure requires the following steps:

1. Fix a given bandwidth h;
2. Consider an observation i. In order to assess the goodness of fit associated to the

fixed h, perform a linear regression of Y on s by leaving out observation i. If si
falls on the left of the cutoff, then estimate the regression only on those

s belonging to {si� h; si}. If si falls on the right of the cutoff on the other

hand, then estimate the regression only on those s belonging to {si; si+ h};
3. Estimate the predicted value of previous regression calculated at s¼ si and call itbY�i sið Þ;
4. Repeat steps 2 and 3 for each observation and finally compute the following

quadratic loss function:

CVY hð Þ ¼ 1

N

XN
i¼1

bY�i � bY�i sið Þ
� �2

ð4:104Þ

which is the cross-validation criterion and is clearly a function of h;
5. The optimal bandwidth is the one which minimizes (4.104) over a grid of chosen

h and such a minimum is found numerically.

In order to increase the precision of the bandwidth’s estimate, Imbens and

Lemieux (2008) suggest a cross-validation criterion with trimming, using specific

quantiles of the distribution of s. On the left of the cutoff, one could, for example,

use only observations having a value of s falling on the right of the median of s in
that part. On the right of the cutoff, instead, one could use only observations having

a value of s falling on the left of the median of s in that part. Of course, it is also

possible to use a larger rule than the 50 % cutoff observations on both sides by

choosing other quantiles.

In the case of fuzzy RDD, an identical cross-validation criterion can be used for

estimating the conditional probabilities in the denominator of the fuzzy RDD

estimand. In practice, Imbens and Lemieux (2008) suggest to use only one band-

width, chosen as the smallest between CVY(h) and CVD(h).
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Finally, observe that the plug-in and the cross-validation approaches, although

asymptotically equivalent, can lead to different estimations of the optimal band-

width in finite samples.

4.3.3.2 Optimal Bandwidth for Local Polynomial Regression

The previous discussion regarding the choice of the bandwidth referred to the case

of a local linear regression. When a local polynomial is fitted, one can however rely

on the so-called rule-of-thumb (ROT) method of bandwidth selection based on a

plug-in approach. Although not yet specifically derived for RDD, we know that for

a generic function m(s)¼E(Y | s) to be estimated nonparametrically, the ROT is the

asymptotically optimal constant bandwidth as it minimizes the conditional

weighted mean integrated squared error. Following (Fan and Gijbels 1996), the

ROT is estimated by:

bh ROT, pol ¼ CK,P �
bσ 2

Z
w0 sð Þds

N

Z bm Pþ1ð Þ sð Þ
� �2

w0 sð Þbf sð Þds

0BB@
1CCA

1
2Pþ3

ð4:105Þ

where: CK,P is a constant depending on the kernel function used and the degree P of

the polynomial; bσ 2 is the residual variance assumed to be constant over s; w0(s) is an
indicator function on the interval [min(s) + 0.05 ∙ range(s);max(s)� 0.05 ∙ range(s)]
withmin(s),max(s), and range(s) indicating the minimum, maximum, and the range

of s, respectively; bm Pþ1ð Þ is an estimation of the (P + 1)th derivative of m(s) andbf sð Þ an estimation of the density of s.
In order to obtain an estimation of the constant residual variance and of the

(P+ 1)th derivative of m(s), a global polynomial fit in s of order (P+ 3) is appro-

priate, thus estimating bσ 2 by the standardized residual sum of squares of such

regression.

Heuristically, one could estimate (4.105) either on the right or on the left of the

cutoff, thus obtaining two different bandwidths on the two sides. One could then

choose the same bandwidth on both sides by taking, for instance, an average of the

two bandwidths or the lowest of them. Although this approach gives useful guid-

ance for selecting the bandwidth, it is not specific to RDD, given the additional

complication of finding an optimal bandwidth at a discontinuous point of s. It can
however be used as an acceptable approximation. It goes without saying that

checking robustness by providing a comparison of results for this and other possible

choices of the bandwidth is highly recommended.
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4.3.3.3 Choosing the Polynomial Order

Previous procedures detect the optimal bandwidth when a local linear regression is

interpolated. When a local polynomial regression is used instead, a comparable

optimal rule is not available and it becomes more important to decide in the first

instance the order of the polynomial, and then calculate the RDD causal effect for

different choices of the bandwidth (Lee and Lemieux 2009).

To detect the order of polynomial, one could use the traditional Akaike infor-

mation criterion by comparing the value of such index for models with different

polynomial order; the Akaike index takes the form:

AIC ffi N � ln RSS

N

	 

þ 2 Pþ 1ð Þ ð4:106Þ

where RSS is the residual sum of squares of the estimated regression and P the order

of the polynomial. The specification with the smallest AIC should be selected.

The problem with this measure is that it is based on a global parametric

regression, while in RDD we have stressed the role played by locality and non-

parametric approach. Thus, in order to take into account this aspect, an alternative

test for choosing the order of the polynomial has been proposed. The idea behind

this test is that of choosing the order by rendering the explicative power of local

information useless as explanation of the variance of the outcome Y. In practice, this
is done by including K bin dummies Bk, for k going from 2 to K� 1, into the

polynomial regression thus fitting:

Yi ¼ αL þ ATE � Di þ
XP
p¼1

δL, p si � sð Þ p

þ Di

XP
p¼1

δR, p � δL, p
� � � si � sð Þ p þ

XK�1

k¼2

ϕkBk, i þ ε ð4:107Þ

and then testing the null hypothesis that ϕ2 ¼ ϕ3 ¼ � � � ¼ ϕK�1 ¼ 0; one should

choose a P corresponding to the polynomial specification leading to accept such

hypothesis; one should continue to add higher order terms until it is rejected.

Of course, the choice of the number of bins to be included will depend on the

choice of the bandwidth h and should follow such a procedure:

1. For a given bandwidth h, fix the number of bins equal to K¼KL+KR, where KL

is the number of bins on the left and KR the one on the right of the threshold;

2. Define the k-th bin as the interval (bk; bk+ 1] for k going from 1 to K, where:

bk ¼ s� K0 � k þ 1ð Þ � h ð4:108Þ

3. For each observation i, construct the generic dummy Bk,i as:
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Bk, i ¼ 1 if i 2 �bk; bkþ1

�
0 otherwise

�
ð4:109Þ

with k going from 1 to K.

It is worth stressing that in regression (4.107), two bin dummies are excluded

because of collinearity.

A further benefit of such an approach is that it is also useful to detect disconti-

nuity in the conditional expectation of the outcome different from that in the

threshold. To see how, assume we have built only two bins, so that regression

(4.107) becomes:

E Yi j si;Di;B2, ið Þ ¼ f si;Dið Þ þ ϕ2B2, i ð4:110Þ

where f(si;Di) is the polynomial. Using (4.110), we see that

ϕ2 ¼ E Yi j si;Di;B2, i ¼ 1ð Þ � E Yi j si;Di;B2, i ¼ 0ð Þ ð4:111Þ

thus, as long as ϕ2 6¼ 0, a discontinuity in the conditional mean of the outcome

arises. Such a discontinuity can jeopardize the RDD continuity assumption; thus,

since testing ϕ2 ¼ ϕ3 ¼ � � � ¼ ϕK�1 ¼ 0 is equivalent to test whether

ϕK�1 � ϕK�1 ¼ 0, accepting such an hypothesis is necessary to assure RDD

reliability.

For practical purposes, Lee and Lemieux (2009, p. 48) suggest to use: higher

order polynomials when the bandwidth is large (i.e., equal or more than 0.50);

lower order polynomials for bandwidths ranging between 0.05 and 0.50; finally,

zero order polynomials for bandwidths lower than 0.05. Note that the choice of zero

order polynomial coincides with the comparison of the two means as expressed by

(4.63).

4.3.4 Accounting for Additional Covariates

Although the identification assumptions behind a reliable use of RDD do not

involve any exploitation of the additional covariates x, usually present in standard

datasets, using such additional information may be worthwhile.

Firstly, additional covariates can be used to test whether, around the threshold,

conditions for a quasi-randomized experiment are correctly in place. In general, one

should not find any statistically significant discontinuities of x at the threshold. If

they are in fact found, we could erroneously attribute the effect to the treatment

when, on the contrary, the effect could have been driven by discontinuities in the

covariates. This is the typical “observable confounders’ effect” we met several

times in previous chapters. We will come back on this point more in detail in the

next section.
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Secondly, as long as discontinuities in x can be excluded, it may be wise to add

the variables x in previous RDD regressions in order to eliminate some minor biases

arising from the use of a too large bandwidth, including observations far from the

threshold. In such a situation, conditioning on x would provide a good account of

units’ observable differences either to the left or to the right of the threshold.

Thirdly, as also happens in pure randomized settings, including covariates which

have some nonnegligible explicative power on the outcome, generally increases the

precision of the estimations by reducing standard errors. Furthermore, they may

also increase the R2 of the regression, thus providing a more compelling fit of the

model.

4.3.5 Testing RDD Reliability

It is essential, when applying RDD, to carry out a series of tests to assess the RDD

reliability. This allows to evaluate whether the assumptions under which RDD

should return correct inference are actually met in practice. In what follows, we

provide a number of tests that, taken altogether, should help practitioners when

running RDD analysis on real datasets.

Testing quasi-randomness at the threshold

In order to assess whether the “natural experiment” approximation at the threshold

characterizing RDD is appropriate, the calculation of difference-in-means (DIM)

estimators for the covariates x is recommended, comparing units’ characteristics on
the left and right of the threshold. If no significant differences are found, then the

assumption of randomness in a neighborhood of the cutoff can be accepted. In other

words, a sort of “balancing property,” very similar to the one defined for Matching

methods in Chap. 3, has to be tested. If the threshold is well defined, then the mean

of the x-variables on the right and left of the cutoff point should be approximately

the same. If not, the threshold is not a good demarcating point and the idea to

replicate a natural experiment around that point should be questioned.

Testing “non-manipulation” of the forcing variable

To be reliable, RDD requires that the forcing variable is not manipulated by

individuals. Manipulation means that individuals may strategically modify the

value of the variable s in order to take advantage of changing position around the

cutoff. When this is the case, one cannot trust the idea that s is purely exogenous as
it becomes, on the contrary, a variable determined by individuals and thus inher-

ently endogenous.

For example, Article 18 of the Italian labour legislation (“workers’ statute”)
establishes that Italian companies with more than 15 employees must reinstate

unfairly dismissed workers, provided that the Italian courts decide whether or not

dismissals are justified. As judges usually tend to be sympathetic with workers, thus

deciding to reinstate workers most of the time, there is an ongoing debate in Italy
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around the suitability of such a rule. Since companies with less than 15 employees

are not subject to Article 18, the “15 threshold” might be a good candidate for a

cutoff point to assess, by means of an RDD, whether Article 18 produces or not

adverse effects on company activity. Yet, since companies can control, at least to

some relevant extent, the number of employees, the idea that around the 15 thresh-

old a natural experiment takes place is somewhat questionable. Companies may, for

example, not extend their workforce beyond the threshold in order to avoid Article

18 constrains. Many other examples of this kind are set out in the literature.

McCrary (2008) has suggested testing the presence of such manipulation by

assessing the continuity of the density of the forcing variable at the threshold.

Although the presence of a discontinuity should not be immediately interpreted as

representing some form of manipulation, when the discontinuity is relevant, some

doubts about pure randomization at the cutoff may be cast. Figure 4.7 displays two

different shapes of the density function of the forcing variable, with panel

(a) representing a continuity at the threshold (non-manipulation case) and panel

(b) a strong discontinuity (possible manipulation).

Note that in such graphical representations, it is recommended not to use kernel

density estimates, rather histograms with different numbers of bins.

Testing the continuity of the outcome conditional expectation

We have seen that continuity of the conditional expectation of the potential out-

comes at the cutoff is necessary in order to identify ATE in an RDD setting. As

suggested by Imbens and Lemieux (2008), one possible way to test whether such

condition holds in our data is to estimate the jump of the conditional expectation of

Y at points of the forcing variable different from that of the threshold. On both the

left and right side of the cutoff, one can consider a specific quantile of the (left and

right) distribution of s such as, for example, the median. One can then run an RDD

using formula (4.70) by substituting swith qs,τ,L (in the left) and qs,τ,L (in the right),
which indicate the value of the specific quantile τ in the two sides, respectively. For
instance, τ is equal to 0.5 for the median. If we accept the null hypothesis of a no

Fig. 4.7 Density function of the forcing variable. Panel (a) sets out a continuity at the threshold

(non-manipulation case), whereas panel (b) shows a strong discontinuity suggesting some manip-

ulation on the part of the individuals
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jump on both the left and right side, we can conclude fairly reliably that the

continuity of the conditional expectation of the outcome is confirmed and RDD

results trustable.

Testing the sensitivity of results to different bandwidths and polynomial orders

As argued above, the choice of the bandwidth and that of the polynomial order can

remarkably affect the results of an RDD. Although the literature has suggested ways

to find optimal bandwidths and polynomial order, it is worthwhile conducting a

sensitivity analysis presenting results for a range of bandwidths and various poly-

nomial orders. Such a sensitivity test is important to guarantee transparence in the

results and, possibly, inconsistencies of the dataset (due, for instance, to the

presence of outliers).

4.3.6 A Protocol for Practical Implementation of RDD

As a final step, following Imbens and Lemieux (2008) and Lee and Lemieux (2009),

it seems useful to summarize previous discussions by providing some guidelines for

implementing RDD empirically.

A plausible protocol for implementing sharp RDD may be the following:

1. Visualizing outcome discontinuity. To this end, plot two overlapping histograms

of the outcome variable, one for values of Y on the left and one for values of Y on

the right of the cutoff by varying the number of bins. See whether there is

evidence of a significant difference of such distributions.

2. Testing balancing at the threshold. Once the discontinuity at the threshold has

been detected, look at whether, in a neighborhood of the threshold, the charac-

teristics x of individuals placed on the left and on the right of the cutoff are

sufficiently similar. If not, randomization may be questionable and RDD possi-

bly invalidated. If yes, local randomization can be accepted and one can proceed

to step 3.

3. Testing non-manipulation of the forcing variable. To assess whether the forcing

variable is properly exogenous, plot its density and see whether a discontinuity at

the threshold is visible. If yes, RDD may not be reliable; if not, proceed to step 4.

4. Estimating ATE by sharp RDD. If step 1, 2, and 3 have been satisfied, consider a
given bandwidth as, for instance, the optimal one provided in (4.97), and use a

local linear regression to calculate ATE by (4.70), with standard errors obtained

using robust OLS. For the sake of comparison, calculate ATE as the difference

of the outcome means in the left and in the right of the cutoff using a standard

t-test.

5. Checking robustness. First, look at the possible presence of discontinuities in the
covariates x, by using the quantile approach proposed by Imbens and Lemieux

(2008) presented in the previous section. If discontinuities are present, then

argue why (or why not) RDD results should be questionable. Second, try various

additional RDD estimation by varying the bandwidth and the polynomial order
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of the basic local regression. Third, add covariates to previous regressions to see

what happens to results. Finally, assess whether results are similar or signifi-

cantly different.

A similar protocol for implementing fuzzy RDD may encompass:

1. Visual analysis of outcome and treatment discontinuity. Plot two overlapping

histograms of the outcome variable and two overlapping histograms of the

probability of treatment, one for values of Y and p(D¼ 1) on the left and one

for values of Y and p(D¼ 1) on the right of the threshold by varying the number

of bins. See whether there is evidence of a significant difference of such

distributions.

2. Testing balancing at the threshold. Follow the same procedure outlined in step

2 for sharp RDD.

3. Testing non-manipulation of the forcing variable. Follow the same procedure

outlined in step 3 for sharp RDD.

4. Estimating ATE by fuzzy RDD. If previous steps have been successfully

implemented, consider a given bandwidth as, for instance, the fuzzy optimal

one in (4.103), and use a local linear regression to calculate ATE by (4.88)–

(4.89), standard errors being obtained by robust 2SLS, using the T variable as

instrument for treatment. Just for the sake of comparison, calculate ATE as the

ratio between the difference of the outcome means and the difference in the

probability of treatment in the left and in the right of the cutoff obtaining

standard errors by bootstrap.

5. Checking robustness. Follow the procedure outlined in point 5 for the practical

implementation of sharp RDD.

Of course, the guidelines presented above are to be considered tentative and the

minimal protocol to follow, as other relevant steps will depend on the specific

context of the application in hand.

4.4 Application and Implementation

This section is dedicated to the application and implementation of LATE and RDD.

We begin with LATE first to go on with RDD. Both the sharp and the fuzzy cases

are considered.

4.4.1 An Application of LATE

In this section we present an application of LATE to both real and simulated data. In

the first case, we consider an exercise using the same data as Angrist and Evans

(1998). In the second case, we simulated a specific data generating process (DGP)
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for LATE in order to check the reliability of the Stata code developed in the

application on real data.

4.4.1.1 LATE Estimation with Real Data

We consider the dataset CHILDREN.DTA containing a subset of data from the

paper by Angrist and Evans (1998) where the authors investigate the effect of

childbearing on female labor market participation (labor supply). The dataset

comes from the 1980 Census Public Use Micro Samples (PUMS) and considers a

sample of married women aged within 21 and 35 having at least two children. In

order to capture childbearing the authors assume a binary covariate having a value

equal to one for additional childbearing (more than two children), and zero

otherwise.

In order to deal with a potential omitted-variables bias that OLS would produce,

Angrist and Evans (1998) suggest estimating the relationship between childbearing

and labor participation of women by a LATE estimator using as an instrument a

binary variable accounting for “sibling sex composition,” indicating whether the

first two children are of the same sex or not. The choice of this variable as

instrument rests on the assumption that when parents have already had two children

of the same sex, they will be more prone to have a third children than in the case in

which the gender of the first two kids is different. On the one hand, having a mixed

pair of children can be taken as a random event, thus being independent of potential

outcomes or other characteristics of women; on the other hand, this is a variable

expected to be correlated with having had more than two kids. Sibling sex compo-

sition, therefore, seems a good candidate as instrument for childbearing.

As the outcome variable for this example, we consider the variable “weeksm,”
indicating the number of weeks worked by women; as treatment variable, we

consider the dummy “morethan2,” having a value one if the woman has had

more than two children and zero otherwise; as instrument, we use the variable

“samesex,” taking value one if the first two kids are same sex and zero otherwise.

We set out this application by declaring a series of global macros:

. set more off

. global Y weeksm // outcome

. cap drop morethan2

. gen morethan2¼(kidcount>2)

. global D morethan2 // treatment

. global z samesex // instrument

As a first step, we calculate LATE by hand, to then observe that the obtained

value is equivalent to a 2SLS of Y on D, using z as instrument for D. To begin with,
we calculate the DIM estimator of ATE by running this OLS regression:
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. reg $Y $D

Source | SS df MS Number of obs ¼ 254654

––––––––––+–––––––––––––––––––––––––––––––––– F( 1,254652) ¼ 3696.02

Model | 1742078.14 1 1742078.14 Prob > F ¼ 0.0000

Residual | 120027337254652 471.338679 R–squared ¼ 0.0143

––––––––––+–––––––––––––––––––––––––––––––––– Adj R–squared ¼ 0.0143

Total | 121769415254653 478.177816 Root MSE ¼ 21.71

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

weeksm1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

––––––––––+–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

morethan2 | –5.386996 .0886093 –60.79 0.000 –5.560667 –5.213324

_cons | 21.06843 .0546629 385.42 0.000 20.96129 21.17557

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

We find out an ATE equal to �5.38, which we assume to be biased as some

selection on unobservables is assumed. In such a situation, we can estimate the

value of LATE by using formula (4.22) as follows (observe that no use of the

covariates is needed at this stage):

• Compute an estimate of E(Y | z¼ 1) and put it into a scalar:

. qui sum $Y if $z ¼¼ 1

. scalar mean_y_z1 ¼ r(mean)

• Compute an estimate of E(Y | z¼ 0) and put it into a scalar:

. qui sum $Y if $z ¼¼ 0

. scalar mean_y_z0 ¼ r(mean)

• Compute an estimate of p(D¼ 1 | z¼ 1) and put it into a scalar:

. count if $D ¼¼ 1 & $z ¼¼ 1

. scalar num_d_z1 ¼ r(N)

. count if $z¼¼1

. scalar num_z1 ¼ r(N)

. scalar p_1_1 ¼ num_d_z1/num_z1

• Compute an estimate of p(D¼ 1 | z¼ 0) and put it into a scalar:

. count if $D ¼¼ 1 & $z ¼¼ 0

. scalar num_d_z0 ¼ r(N)

. count if $z¼¼0

. scalar num_z0 ¼ r(N)

. scalar p_1_0 ¼ num_d_z0/num_z0
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• Compute the value of LATE and put it into a scalar:

. scalar late ¼ (mean_y_z1–mean_y_z0)/(p_1_1–p_1_0)

We can finally look at the value of LATE typing:

. di late

–6.3136852

showing that LATE is equal to �6.313. Such a value can also be obtained by a

2SLS estimation as follows:

. ivreg $Y ($D ¼ $z)

Instrumental variables (2SLS) regression

Source | SS df MS Number of obs ¼ 254654

–––––––––––––+–––––––––––––––––––––––––––––– F( 1,254652) ¼ 24.54

Model | 1690526.44 1 1690526.44 Prob > F ¼ 0.0000

Residual | 120078889254652 471.541119 R–squared ¼ 0.0139

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.0139

Total | 121769415254653 478.177816 Root MSE ¼ 21.715

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

weeksm1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

morethan2 | –6.313685 1.274604 –4.95 0.000 –8.811875 –3.815496

_cons | 21.42109 .4869726 43.99 0.000 20.46664 22.37555

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Instrumented: morethan2

Instruments: samesex

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

confirming what was expected. Observe that our results indicate a positive bias

of around 14.6 % in the OLS estimation.

We can move on to estimate LATE(x) using the Abadie-kappas in order to

estimate (4.26) and the so-called LARF. A set of exogenous covariates x is now

needed. Following the authors, we consider the following set: “agem,” age of the

mother at 1980 census; “agefstm,” age of the mother when she gave birth to the first

child; “boy1st,” dummy taking one if the first child was a boy; “boy2nd,” taking

value one if the second child was a boy; “black,” dummy equal to one if the mother

is black; “hispan,” equal to one if the mother is Hispanic; and, finally, “othrace,”
taking value one if the mother belongs to other ethnic group.

To begin with, these covariates are placed into the global macro xvars:

. global xvars agem agefstm boy1st boy2nd black hispan othrace
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We calculate the Abadie-kappas as follows:

• Start by computing E(z | Y, D¼ 1, x):

. probit $z $Y $xvars if $D¼¼1

. predict p_z1 , p // that is equal to E(z|Y,D¼1,x)

• Compute E(z | Y, D¼ 0, x):

. probit $z $Y $xvars if $D¼¼0

. predict p_z0 , p // that is equal to E(z|Y,D¼0,x)

• Compute p(z¼ 1 | x):

. probit $z $xvars

. predict p_z , p // that is equal to p(z¼1|x)

• Compute E(k | Y, D, x)

. gen Ek ¼ 1– $D*(1–p_z1)/(1–p_z) – (1–$D)*p_z0/p_z

• Eliminate values of E(k | Y, D, x) not included within [0;1]:

. replace Ek¼1 if Ek>¼1 & Ek!¼.

. replace Ek¼0 if Ek<¼0 & Ek!¼.

• Compute the Weighted least squares (WLS) using E(k | Y, D, x) as weights:

regress $Y $D $xvars [pweight¼Ek]

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Linear regression Number of obs ¼ 252248

F( 8,252239) ¼ 1975.86

Prob > F ¼ 0.0000

R–squared ¼ 0.0748

Root MSE ¼ 20.773

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

weeksm1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

morethan2 | –5.435849 .090615 –59.99 0.000 –5.613452 –5.258246

agem1 | 1.411412 .0147141 95.92 0.000 1.382573 1.440251

agefstm | –1.481689 .0181049 –81.84 0.000 –1.517174 –1.446204

boy1st | –.4159261 .0902139 –4.61 0.000 –.592743 –.2391092

boy2nd | –.499382 .0901446 –5.54 0.000 –.6760631 –.3227009

black | 10.51577 .2205934 47.67 0.000 10.08341 10.94812
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hispan | .136516 .1939291 0.70 0.481 –.2435798 .5166118

othrace | 2.99749 .2269159 13.21 0.000 2.552741 3.442239

_cons | 7.531347 .4402346 17.11 0.000 6.668499 8.394195

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The value of LATE is now found to be approximately �5.43 and is still

significant. We might however be interested in estimating LARF for D¼ 1 and

D¼ 0. For D¼ 1, we want to obtain an estimate of:

E Y j D ¼ 1,D1 > D0ð Þ ¼ Ex E Y j x,D ¼ 1,D1 > D0ð Þf g

which can be obtained in Stata using the margins command as follows3:

. margins , at($D¼1) atmeans

–––––––––––––––––––––––––––––––––––––––––j–––––––––––––––––––––––––––––––––––––
Adjusted predictions Number of obs ¼ 252248

Model VCE : Robust

Expression : Linear prediction, predict()

at : morethan2 ¼ 1

agem1 ¼ 30.83818 (mean)

agefstm ¼ 20.57244 (mean)

boy1st ¼ .4338817 (mean)

boy2nd ¼ .4310196 (mean)

black ¼ .0388756 (mean)

hispan ¼ .0643707 (mean)

othrace ¼ .0511755 (mean)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Delta–method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

_cons | 15.31421 .0669219 228.84 0.000 15.18305 15.44538

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The result obtained suggests that, among the compliers’ subgroup, the average of
Y (number of weeks worked) for those compliers who are treated (i.e., D¼ 1)—

once observable confounders are neutralized—is equal to 15.31; observe that it is

roughly the same as the unconditional average outcome of all treated we obtain by

typing:

3Observe that variables’mean at which predictions are calculated using margins are in this case

weighted means; for instance, for variable “agem1” this weighted mean can be got by typing: sum
agem1[iweight¼Ek] returning exactly 30.83818.
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. sum $Y if $D¼¼1

Variable | Obs Mean Std. Dev. Min Max

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––

weeksm1 | 96912 15.68143 20.76991 0 52

Similarly, we can get an estimate of LARF for D¼ 0, i.e.:

E Y j D ¼ 0,D1 > D0ð Þ ¼ Ex E Y j x,D ¼ 0,D1 > D0ð Þf g

by typing:

. margins , at($D¼0) atmeans

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Adjusted predictions Number of obs ¼ 252248

Model VCE : Robust

Expression : Linear prediction, predict()

at : morethan2 ¼ 0

agem1 ¼ 30.83818 (mean)

agefstm ¼ 20.57244 (mean)

boy1st ¼ .4338817 (mean)

boy2nd ¼ .4310196 (mean)

black ¼ .0388756 (mean)

hispan ¼ .0643707 (mean)

othrace ¼ .0511755 (mean)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Delta–method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

_cons | 20.75006 .0610766 339.74 0.000 20.63036 20.86977

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

illustrating that, among the compliers’ subgroup, the average of Y for those

compliers that are untreated (i.e., D¼ 0)—when observable confounders are neu-

tralized—is equal to 20.75. Note that it is slightly lower than the unconditional

average outcome of all untreated obtained by typing:

. sum $Y if $D¼¼0

Variable | Obs Mean Std. Dev. Min Max

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––

weeksm1 | 157742 21.06843 22.26841 0 52

Moreover, we can see that:
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LATE ¼ E Y j D ¼ 1,D1 > D0ð Þ � E Y j D ¼ 0,D1 > D0ð Þ

since it is immediate to see that: (15.31 – 20.75)¼ –5.43

We can also calculate the predictions used by margins to calculate previous

means. In other words, we are interested in computing both

E Y j x,D ¼ 1,D1 > D0ð Þ and E Y j x,D ¼ 0,D1 > D0ð Þ. In estimating previous

quantities, we proceed as follows:

• Estimate E Y j x,D ¼ 1,D1 > D0ð Þ calling it y_1est by typing:

. cap drop y_1est

. qui regress $Y $xvars [pweight¼Ek] if $D¼¼1

. predict y_1est

. sum y_1est [iweight¼Ek]

Variable | Obs Weight Mean Std. Dev. Min Max

–––––––––––+–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y_1est | 252248 17613.8365 15.30617 4.80354 2.605387 36.65147

• Estimate E Y j x,D ¼ 0,D1 > D0ð Þ calling it y_0est by typing:

. cap drop y_0est

. qui regress $Y $xvars [pweight¼Ek] if $D¼¼0

. predict y_0est

. sum y_0est [iweight¼Ek]

Variable | Obs Weight Mean Std. Dev. Min Max

–––––––––––+–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y_0est | 252248 17613.8365 20.73786 5.747229 5.344197 45.69891

Observe that: 15.30� 20.73¼�5.43¼LATE

• Obtain a joint density plot of the estimations by typing:

. graph twoway ///

(kdensity y_1est [aweight=Ek] , lpattern (solid)) ///

(kdensity y_0est [aweight=Ek] , lpattern(dash)) , ///

title("Outcome response distr. for compliers by treatment" , size(med)) ///

xtitle(E(Y|x,D;compliers)) ///

legend(label(1 "D¼1: treated compliers") label(2 "D¼0: untreated compliers"))

///

note(Note: A linear form of the potential outcomes is assumed)
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The above graph shows that treated women compliers have a lower tendency to

supply work than untreated compliers. Furthermore, this difference can be

interpreted in a causal sense, as the difference in means of the two distributions

returns exactly the LATE equal to �5.43.

Finally, we can plot directly the distribution of LATE(x) as follows:

. cap drop late_x

. gen late_x ¼ y_1est – y_0est

. tw (kdensity late_x) [aweight=Ek] , title(Distribution of LATE(x)) xtitle(LATE(x))
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The density of LATE(x) has a clear bell-shaped form centered in LATE that is

equal to the mean of such distribution.
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4.4.1.2 LATE Estimation with Simulated Data

In this sub-section, we generate a simulated dataset. The usefulness of working with

a simulation is twofold. On the one hand, it is a good exercise itself obliging us to

determine the data generating process behind a quasi-randomized experiment (i.e.,

experiment with imperfect compliance). On the other hand, it allows us to compare

data results with simulated results, thus providing a useful tool to determine

whether our generating process and formulas are correct. The Stata code for the

data generating process (DGP) of LATE is as follows:

* Data generating process for LATE

. clear

. set seed 10101

. set obs 5000

. gen z ¼ uniform()>.5 // assign the instrument randomly

. sort z

. gen D1¼rnormal()>0 // generate D1

. gen D0¼5+5*rnormal()>0 // generate D0

. tostring D1 D0 , replace

. gen group¼D1+D0

. encode group , generate(group2)

. la def gr_lab 1 never_taker 2 defier 3 complier 4 always_taker

. la values group2 gr_lab

. drop if group2¼¼2

. destring D0 D1 , replace

. gen D¼D0+z*(D1–D0)

. gen x¼rnormal(0,1)

. gen y1 ¼ 20 + 3*x + (rchi2(1)–1)

. gen y0 ¼ 10 + 6*x + 5*rnormal(0,1)

*LATE¼E(y1–y0)¼(20–10)+(6–3)E(x)¼10+3*0¼10

. gen te¼y1–y0 // treatment effect

. sum te

. gen y¼y0+D0*(y1–y0)+z*(D1–D0)*(y1–y0)

In this DGP, LATE is fixed equal to 9.76. This is obtained by typing:

* LATE in the DGP

. sum te if group2¼¼3

. scalar LATE_dgp¼r(mean)

. di LATE_dgp

9.7633642
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For the sake of comparison, we calculate LATE by hand using the Wald

estimator formula as follows:

* E(y|z¼1)

. qui reg y if z¼¼1

. scalar yz1¼_b[_cons]

* E(y|z¼0)

. qui reg y if z¼¼0

. scalar yz0¼_b[_cons]

* E(D|z¼1)

. qui reg D if z¼¼1

. scalar Dz1¼_b[_cons]

* E(D|z¼0)

. qui reg D if z¼¼0

. scalar Dz0¼_b[_cons]

* Wald estimator

. scalar wald¼(yz1–yz0)/(Dz1–Dz0)

. di wald

9.8477456

The compliers can be characterized by counting their number and characteris-

tics, by treatment status. In our DGP, it is immediate to see that the number of

compliers is equal to:

. count if group2¼¼3

404

We can estimate this value by using the formula provided in the theoretical part

of this chapter, that is:

N � p D1 > D0ð Þ ¼ N p D ¼ 1 j z ¼ 1ð Þ � p D ¼ 1 j z ¼ 0ð Þ½ �

obtained in Stata by writing:

. scalar Num_compl¼_N*(Dz1–Dz0)

. di Num_compl

397.43418

showing, as expected, that we do a slight sample error of around 1.7 %

(¼|(404� 397)/404|
 100) when we use previous formula.

In order to characterize compliers, we can apply the formula:

E x j D1 > D0ð Þ ¼ E k � xð Þ=E kð Þ
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where first we need to compute k; to that aim, we write:

*compute p_xz¼p(z¼1|x)

. probit z x

. cap drop p_zx

. predict p_zx , p

. cap drop k

. gen k ¼ 1–D*(1–z)/(1–p_zx)–(1–D)*z/p_zx

*compute E(k)

. sum k

. scalar sc_Ek¼r(mean)

. di sc_Ek

*compute kx¼k·x

. cap drop kx

. gen kx¼k*x

. sum kx

. scalar sc_Ekx¼r(mean)

Given k, we can compute the mean of x in the compliers’ subgroup as follows:

*Compute E(x|D1>D0)¼E(k·x)/E(k)

. scalar sc_ExD1D0¼sc_Ekx/sc_Ek

. di sc_ExD1D0

.09138501

where a mean equal to 0.091 is obtained. The true value obtained by our DGP is:

* Calculate E(x|D1>D0)¼E(x|compliers) as from simulation

. sum x if group2¼¼3

Variable | Obs Mean Std. Dev. Min Max

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––

x | 404 .0855207 1.003132 –2.946875 2.853899

The value obtained, 0.085, is only slightly lower than the estimated value. If we

run the DGP using a larger sample size (as, for instance N¼ 200,000), we can see

that the simulated and estimated values are reasonably similar.

We can now go on to estimate LATE(x) using the Abadie-kappas to estimate

(4.26), the so-called LARF. To this end, we first calculate the Abadie-kappas as we

did with real data as follows:
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*start by computing E(z | Y, D¼1, x):

. probit z y x if D¼¼1

. predict p_z1 , p // that is equal to E(z|Y,D¼1,x)

*compute E(z | Y, D¼0, x):

. probit z y x if D¼¼0

. predict p_z0 , p // that is equal to E(z|Y,D¼0,x)

*compute p(z¼1 | x):

. probit z x

. predict p_z , p // that is equal to p(z¼1|x)

*compute E(k | Y, D, x)

. gen Ek ¼ 1– D*(1–p_z1)/(1–p_z)–(1–D)*p_z0/p_z

*eliminate values of E(k | Y, D, x) not included within [0;1]:

. replace Ek¼1 if Ek>¼1 & Ek!¼.

. replace Ek¼0 if Ek<¼0 & Ek!¼.

*compute the weighted least squares (WLS) using E(k|Y,D,x) as weights:

. regress y D x [pweight¼Ek]

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Linear regression Number of obs ¼ 2909

F( 2, 2906) ¼ 1715.83

Prob > F ¼ 0.0000

R–squared ¼ 0.7279

Root MSE ¼ 3.979

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Robust

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

D | 9.15505 .2166926 42.25 0.000 8.730163 9.579936

x | 4.5947 .1187562 38.69 0.000 4.361845 4.827554

_cons | 10.315 .2132976 48.36 0.000 9.896768 10.73323

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The value of LATE is now around 9.15, that is a bit lower than the true value 9.76.

We might also be interested in estimating LARF for D¼ 1 and D¼ 0. For D¼ 1 and

D¼ 0, we want to get an estimate of E(Y | D¼ 1, D1>D0) and E(Y | D¼ 0, D1>D0),

respectively, which can be obtained in Stata using the margins command as follows:

. margins , at(D¼1) atmeans

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Adjusted predictions Number of obs ¼ 2909

Model VCE : Robust

Expression : Linear prediction, predict()

at : D ¼ 1

x ¼ .0924395 (mean)
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Delta–method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

_cons | 19.89478 .0364695 545.52 0.000 19.82327 19.96629

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

. margins , at(D¼0) atmeans

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Adjusted predictions Number of obs ¼ 2909

Model VCE : Robust

Expression : Linear prediction, predict()

at : D ¼ 0

x ¼ .0924395 (mean)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Delta–method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

_cons | 10.73973 .2135455 50.29 0.000 10.32101 11.15845

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

We can see that LATE¼E(Y | D¼ 1, D1>D0) – E(Y | D¼ 0, D1>D0)¼ 9.15.

We can also calculate the predictions used by margins to calculate previous

means. In other words, we are interested in computing both:

E Y j x,D ¼ 1,D1 > D0ð Þ and E Y j x,D ¼ 0,D1 > D0ð Þ

In the simulated DGP, the true values of these quantities are computed as follows:

* calculate now E(y|x,D¼1,D1>D0) in the DGP:

. cap drop y_1dgp

. gen y_1dgp¼ 20+3*x if D¼¼1 & group2¼¼3

* calculate now E(y|x,D¼0,D1>D0) in the DGP:

. cap drop y_0dgp

. gen y_0dgp¼ 10+6*x if D¼¼0 & group2¼¼3

and a graph can be plotted as:

. graph twoway ///

(kdensity y_1dgp , lpattern (solid)) ///

(kdensity y_0dgp , lpattern(dash)) , ///

title("Outcome response distr. for compliers by treatment in DGP" , size(med))

///
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xtitle(E(Y|x,D;compliers)) ///

legend(label(1 "D¼1: treated compliers") label(2 "D¼0: untreated compliers"))

///

note(Note: A linear form of the potential outcomes is assumed)
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Outcome response distr. for compliers by treatment in DGP

In the estimation phase previous quantities are instead computed as follows:

. qui regress y x [pweight¼Ek] if D¼¼1

. predict y_1est

. qui regress y x [pweight¼Ek] if D¼¼0

. predict y_0est

so that a graph can be plotted as:

. graph twoway ///

(kdensity y_1est [aweight=Ek], lpattern (solid)) ///

(kdensity y_0est [aweight=Ek], lpattern(dash)) , ///

title("Outcome response distr. for compliers by treatment in estimation" ,

size(med)) ///

xtitle(E(Y|x,D;compliers)) ///

legend(label(1 "D¼1: treated compliers") label(2 "D¼0: untreated compliers"))

///

note(Note: A linear form of the potential outcomes is assumed)
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The two graphs look very similar, thus offering support for the correctness of our

estimation procedure for compliers’ characterization.

4.4.2 An Application of RDD by Simulation

The next subsections present two simulative experiments for sharp RDD and fuzzy

RDD, respectively. The virtue of such a simulation approach lies in being able to

write down the correct data generating process of each RDD type. Thus, it allows an

in-depth inspection of the assumption, properties, and expected results relative to

this quasi-experimental technique. Of course, the Stata codes presented can be

easily used in real datasets.

4.4.2.1 Simulating Sharp RDD

In this application we generate by simulation a sharp RDD setting producing a

forcing variable s with a cutoff at s ¼ 10. Recall that, in the sharp RDD, the

treatment D is a deterministic function of s. The outcome Y is modeled as a cubic

function of s to allow for some nonlinearity in the response of Y to s. Given such a

simulative setting, the objectives of this application are: (1) to estimate ATE using

standard polynomial regression approach and graph the result; (2) to estimate ATE

using a nonparametric local polynomial regression and graph the result; (3) to write

a simple program to obtain the bootstrapped standard error of ATE in case (2); and

(4) to replicate these results using the user-written Stata command rd.
The first step is that of generating a sharp RDD (observe that the treatment D is

here indicated by the variable “w”):

4.4 Application and Implementation 285



. clear all

. set scheme s1mono

. set obs 1000 // generate N¼1000

. set seed 1010 // set the simulation seed to get same results

. gen s ¼ 10 +5 * invnorm(uniform())

. global s_star ¼ 10

. gen x¼s–$s_star // define x as (s–s*)

. gen w¼1 if s > $s_star // define w¼treatment

. replace w¼0 if s <¼ $s_star

. gen y1 ¼ 600+6.5*x–2*x^2+0.001*x^3 + 300*invnorm(uniform()) // generate y1

. gen y0 ¼ 200+6.5*x–0.20*x^2+0.01*x^3+ 300*invnorm(uniform()) // generate y0

. gen y¼y0+w*(y1–y0) // generate the observable outcome by POM

Given such a data generating process, we saw that ATE is equal to the difference

between the intercept of “y1” and that of “y0,” that is 600� 200¼ 400. As the

simulated value for ATE is 400, we take this value as benchmark for the next

analysis. Firstly, we visualize the outcome discontinuity at the cutoff. To that end,

we plot two overlapping histograms of the outcome variable, one for values of Y on

the left and the other for values of Y on the right of the cutoff by typing:

. twoway ///

hist y if s>$s_star, barw(60) bcolor(gray) ///

|| ///

hist y if s<$s_star , barw(60) bcolor(black) ///

legend(order(1 "Right side" 2 "Left side") pos(11) col(1) ring(0)) ///

xtitle() ytitle(Frequency) ylabel()

0
5.

0e
-0

4
.0

01
.0

01
5

Fr
eq

ue
nc

y

-500 0 500 1000 1500
y

Right side
Left side

This plot shows evidence of a significant difference in such distributions, leading

one to suspect that a relevant jump of the outcome at the threshold is present.
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We then illustrate that, by construction, manipulation in the forcing variable is

excluded plotting its density as follows:

. hist s , xline(10)
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Given this result (namely, non-manipulation), we can go on to apply sharp RDD

in the linear case using formula (4.70) and in the polynomial regression case using

formula (4.71). We set out by using a full parametric model interpolated globally

over all observations, so that no bandwidth has to be declared. Note that we adopt a

third degree polynomial, whose terms are calculated as follows:

. gen wx¼w*x

. gen wx2¼w*x^2

. gen wx3¼w*x^3

. gen x2¼x^2

. gen x3¼x^3

Thus, we have all the ingredients necessary to estimate ATE in the first instance

by a linear regression:

. reg y w x wx // linear regression

Source | SS df MS Number of obs ¼ 1000

–––––––––––––+–––––––––––––––––––––––––––––– F( 3, 996) ¼ 144.39

Model | 41978638.2 3 13992879.4 Prob > F ¼ 0.0000

Residual | 96521388.4 996 96909.0245 R–squared ¼ 0.3031

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.3010

Total | 138500027 999 138638.665 Root MSE ¼ 311.3

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

w | 417.6347 32.37368 12.90 0.000 354.1063 481.1632

4.4 Application and Implementation 287



x | 13.70573 4.682043 2.93 0.003 4.517933 22.89353

wx | –31.77256 6.53887 –4.86 0.000 –44.6041 –18.94102

_cons | 235.5256 22.89783 10.29 0.000 190.592 280.4591

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The obtained results provide us with an estimation of ATE (i.e., the coefficient of

“w”) equal to 417, which is highly significant too. Such a value is slightly biased in

that the true value of ATE is equal to 400: a (small) bias of around 4.25 %,

calculated as |(400� 417)/400| ∙ 100, appears. We conclude that the linear approx-

imation is a little imprecise with a small, but evident, overestimation of the true

causal effect. A graphical analysis may at this point be useful too. We save the fitted

values of previous linear regression by typing:

. predict y_hat_l , xb // global linear fit

We can therefore plot the sharp RDD graph for the linear fit by typing:

. graph twoway ///

(scatter y s if s>¼$s_star , clstyle(p1)) ///

(scatter y s if s<¼$s_star , clstyle(p1)) ///

(scatter y_hat_l s if s>¼$s_star , msymbol(o)) ///

(scatter y_hat_l s if s<¼$s_star , msymbol(o)) ///

, xline($s_star, lpattern(dash)) ///

title("Sharp–RDD – Parametric linear regression") ///

legend( label(1 "Right Actual Data") label(2 "Left Actual Data") ///

label(3 "Right Prediction") label(4 "Left Prediction"))

-1
00

0
0

10
00

20
00

-10 0 10 20 30
s

Right Actual Data Left Actual Data
Right Prediction Left Prediction

Sharp-RDD - Parametric linear regression

This graph clearly suggests the presence of a jump at the threshold, although the

global linear approximation results in a rather unsatisfying estimation.
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In an attempt to increase estimation precision, we subsequently estimate ATE by

a global third degree polynomial regression and save the fitted values as follows:

. reg y w x x2 x3 wx wx2 wx3 // global polynomial regression

Source | SS df MS Number of obs ¼ 1000

–––––––––––––+–––––––––––––––––––––––––––––– F( 7, 992) ¼ 64.01

Model | 43094373.3 7 6156339.05 Prob > F ¼ 0.0000

Residual | 95405653.3 992 96175.0537 R–squared ¼ 0.3112

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.3063

Total | 138500027 999 138638.665 Root MSE ¼ 310.12

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

w | 399.6854 54.4856 7.34 0.000 292.7652 506.6057

x | –14.40288 26.97959 –0.53 0.594 –67.34651 38.54074

x2 | –2.833962 4.92639 –0.58 0.565 –12.5013 6.833381

x3 | –.0177433 .2431435 –0.07 0.942 –.494878 .4593914

wx | 33.2883 37.41278 0.89 0.374 –40.12898 106.7056

wx2 | –1.101202 6.589222 –0.17 0.867 –14.03162 11.82921

wx3 | .0810121 .313127 0.26 0.796 –.5334552 .6954794

_cons | 191.4839 37.43172 5.12 0.000 118.0295 264.9384

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

. predict y_hat , xb // polynomial fit

The previous Stata output table illustrates an estimation of ATE equal to

399, which is highly significant. This value of the ATE proves to be almost exactly

equal to the true value 400. As we did with the linear fit, we plot the sharp RDD

graph for this third degree polynomial by typing:

. graph twoway ///

(scatter y s if s>¼$s_star , clstyle(p1)) ///

(scatter y s if s<¼$s_star , clstyle(p1)) ///

(scatter y_hat s if s>¼$s_star , msymbol(o)) ///

(scatter y_hat s if s<¼$s_star , msymbol(o)) ///

, xline($s_star, lpattern(dash)) ///

title("Sharp–RDD – Parametric Polynomial Regression") ///

legend( label(1 "Right Actual Data") label(2 "Left Actual Data") ///

label(3 "Right Prediction") label(4 "Left Prediction"))
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where, again, the significance of the jump at the cutoff is clearly visible.

We can now proceed to estimate the ATE using a local polynomial regression

(i.e., a nonparametric approach) and graphing the results. To this end, we apply a

smoothing approach using the Stata command lpoly. Before proceeding, it is

useful to look at the help file of this command:

. help lpoly

Title

[R] lpoly –– Kernel–weighted local polynomial smoothing

Syntax

lpoly yvar xvar [if] [in] [weight] [, options]

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

options description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Main

kernel(kernel) specify kernel function; default is kernel(epanechnikov)

bwidth(#|varname) specify kernel bandwidth

degree(#) specify degree of the polynomial smooth; default is

degree(0)

generate([newvar_x]newvar_s) store the grid in newvar_x and smoothed points in

newvar_s

n(#) obtain the smooth at # points; default is min(N,50)

at(varname) obtain the smooth at the values specified by varname

nograph suppress graph

noscatter suppress scatterplot only

SE/CI

ci plot confidence bands

level(#) set confidence level; default is level(95)

se(newvar) store standard errors in newvar

pwidth(#) specify pilot bandwidth for standard error calculation

var(#|varname) specify estimates of residual variance

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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The main options for lpoly are reported above. For our purposes, the most

relevant are: the one for the choice of the bandwidth, i.e., bwidth(); the one for
the choice of the kernel, i.e., kernel(); the one specifying the degree of the

polynomial smooth, i.e., degree(#). As for the choice of the bandwidth, if not

differently specified, lpoly uses by default the rule-of-thumb (ROT) formula of

(4.105). As clearly discussed, this adopts a plug-in approach using all the observa-

tions present in the dataset. With regard to the choice of the kernel function, lpoly
uses, by default, the Epanechnikov kernel, although many other options are possible

as it is listed below:

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

kernel description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

epanechnikov Epanechnikov kernel function; the default

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Moreover, lpoly also allows for considering a local varying bandwidth that

can be specified by the user as bwidth(varname), along with an explicit

smoothing grid using the at() option.

In this exercise, we fix a bandwidth equal to 5, we consider the forcing variable

as the grid, we call the left-side smoothing estimates “f0” and the right-side

estimates as “f1,” and we assume a third degree local polynomial:

. global bendw 5 // Fix the bandwidth

. capture drop f0 f1

* Left (smoothed) estimates are called "f0".

* The grid is "s".

* The bandwight is 5.

* The polynomial degree is 3.

. lpoly y s if s<$s_star, gen(f0) at(s) k(tri) bw($bendw) deg(3) nogr

* Right (smoothed) estimates are called "f1".

* The grid is "s".

* The bandwight is 5.

* The polynomial degree is 3.

. lpoly y s if s>¼$s_star, gen(f1) at(s) k(tri) bw($bendw) deg(3) nogr
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Finally, we graph the results:

. graph twoway ///

(scatter y s if s>¼$s_star , clstyle(p1)) ///

(scatter y s if s<¼$s_star , clstyle(p1)) ///

(scatter f0 s if s<$s_star, msize(medsmall) msymbol(o)) ///

(scatter f1 s if s>¼$s_star, msize(medsmall) msymbol(o)) ///

, xline($s_star, lpattern(dash)) ///

title("Sharp RDD – Local polynomial regression (LPR)") ///

legend(label(1 "Right actual data") label(2 "Left actual data") ///

label(3 "Right LPR prediction") label(4 "Left LPR prediction")) ///

note(Bandwidth ¼ $bendw)
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Sharp RDD - Local polynomial regression (LPR)

We can now also calculate the ATE in this framework. The trick here is to put

the grid equal to a constant variable z ¼ s returning a single value for “f1” and “f0”
equal to the difference in the two curves in z ¼ s (namely, in the threshold) that we

know to be exactly the ATE:

. cap drop f0 f1

. gen z¼$s_star

. qui lpoly y s if s<$s_star, gen(f0) at(z) k(tri) bw($bendw) deg(3) nogr

. qui lpoly y s if s>¼$s_star, gen(f1) at(z) k(tri) bw($bendw) deg(3) nogr

. scalar ate¼f1[1]–f0[1]

. display ate

. 306.80612

We see that the value of the ATE in this case is around 307, resulting in a bias of

around 23 % given by:

. di(400–307)/400*100

23.25
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indicating that the nonparametric approach has in this case reduced the estimate

precision, given that our DGP is perfectly interpolated by a cubic function over all

observations. Unlike the parametric case, however, the previous nonparametric

approach does not provide the standard error of the ATE estimate, so that the

usual test of significance cannot be implemented. Nevertheless, we can in this case

write a simple Stata program to recover the bootstrapped standard error for ATE.

We call such a program rdd_s; observe that this is not a Stata ADO program, but

just a program returning the estimate of ATE and taking as arguments the degree of

the polynomial degree (deg) and the type of kernel function (ker):

* Program "rdd_s"

. capture program drop rdd_s

. prog rdd_s, rclass

version 13

args deg ker band cut

cap drop f0 f1z

gen z¼‘cut’

qui lpoly y s if s<‘cut’, gen(f0) at(z) k(‘ker’) bw(‘band’) deg(‘deg’) nogr

qui lpoly y s if s>¼‘cut’, gen(f1) at(z) k(‘ker’) bw(‘band’) deg(‘deg’) nogr

return scalar ate¼f1[1]–f0[1]

end

In order to get the estimation of ATE using, for instance, a three-degree

polynomial and a triangular kernel, we can type:

. rdd_s 3 tri 5 10

. return list

scalars:

r(ate) ¼ 306.8061226179061

This returns an ATE equal to around 307 as obtained above. It is now possible to

bootstrap the ATE’s standard error in a straightforward way as follows:

. bootstrap r(ate), reps(50) seed(101): rdd_s 3 tri

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Bootstrap results Number of obs ¼ 1000

Replications ¼ 50

command: rdd_s 3 tri

_bs_1: r(ate)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Observed Bootstrap Normal–based

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

_bs_1 | 306.8061 93.06776 3.30 0.001 124.3967 489.2156

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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From this result, we can conclude—as expected—that the previous ATE esti-

mation is still statistically significant.

Now, we can replicate the previous results using the rd.ado user-written Stata

command (Nichols 2007). The syntax of this command, along with its main options,

is displayed below (more information can be obtained by typing help rd):

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

rd implements a set of regression–discontinuity estimation methods. rd estimates

local linear or kernel regression models on both sides of the cut–off, using

a triangle kernel. Estimates are sensitive to the choice of bandwidth, so by

default several estimates are constructed using different bandwidths. In

practice, rd uses kernel–weighted suest (or ivreg if suest fails) to estimate

the local linear regressions and reports analytic SE based on the

regressions.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Syntax

rd outcomevar [treatmentvar] assignmentvar [if] [in] [weight] [, options]

Note: there should be two or three variables specified after the rd command; if

two are specified, a sharp RD design is assumed, where the treatment variable

jumps from zero to one at the cut–off. If no variables are specified after the

rd command, the estimates table is displayed.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Main options

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

mbw(numlist): specifies a list of multiples for bandwidths, in percentage terms.

The default is "100 50 200" (i.e. half and twice the requested bandwidth) and

100 is always included in the list, regardless of whether it is specified.

z0(real): specifies the cut–off Z0 in assignmentvar Z.

x(varlist): requests estimates of jumps in control variables varlist.

ddens: requests a computation of a discontinuity in the density of Z. This is

computed in a relatively ad hoc way, and should be redone using McCrary’s

test described at: http://www.econ.berkeley.edu/~jmccrary/DCdensity/.

s(stubname): requests that estimates be saved as new variables beginning with

stubname.

graph: requests that local linear regression graphs for each bandwidth be

produced.

bdep: requests a graph of estimates versus bendwidths.

bwidth(real): allows specification of a bandwidth for local linear regressions.

The default is to use the estimated optimal bandwidth for a "sharp" design as
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given by Imbens and Kalyanaraman (2012). The optimal bandwidth minimizes MSE,

or squared bias plus variance, where a smaller bandwidth tends to produce

lower bias and higher variance. Note that the optimal bandwidth will often

tend to be larger for a fuzzy design, due to the additional variance that

arises from the estimation of the jump in the conditional mean of treatment.

kernel(rectangle): requests the use of a rectangle (uniform) kernel. The default

is a triangle (edge) kernel.

covar(varlist): adds covariates to Local Wald Estimation.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The rd command considers only local linear regressions, thus excluding the

possibility to fit local polynomial regressions as we did using rdd_s. One impor-

tant advantage, however, is that—by default—rd considers bandwidth as the

optimal one provided by Imbens and Kalyanaraman (2012) expressed in (4.97).

Users can also choose to set different bandwidths.

First of all, we show that rd provides the same results as the program rdd_s,
provided that in rdd_s we consider a polynomial of degree one (i.e., a local linear

regression) and in rd the same bandwidth. If we run program rdd_s with a

polynomial degree option equal to one, we get an ATE equal to:

. rdd_s 1 tri

. return list

scalars:

r(ate) ¼ 379.8166986980401

which is the same as the one obtained by typing :

. rd y s , z0($s_star) bw($bendw)

Two variables specified; treatment is

assumed to jump from zero to one at Z¼10.

Assignment variable Z is s

Treatment variable X_T unspecified

Outcome variable y is y

Estimating for bandwidth 5

Estimating for bandwidth 2.5

Estimating for bandwidth 10

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

lwald | 379.8167 49.66377 7.65 0.000 282.4775 477.1559

lwald50 | 343.0671 66.97426 5.12 0.000 211.7999 474.3342

lwald200 | 410.6234 37.5783 10.93 0.000 336.9713 484.2755

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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The result for the bandwidth equal to 5 is 379.81, that is rather close to the true

ATE value. rd also provides by default results for proportionally smaller and larger

bandwidths as displayed in the results’ table above. One can also declare a series of
proportional bandwidths separated by a specific step and then plot the various ATE

estimates versus bandwidths using the following command:

. rd y s , z0($s_star) bw($bendw) mbw(10(10)200) bdep

Estimating for bandwidth 5

Estimating for bandwidth .5

Estimating for bandwidth 1

Estimating for bandwidth 1.5

Estimating for bandwidth 2

Estimating for bandwidth 2.5

Estimating for bandwidth 3

Estimating for bandwidth 3.5

Estimating for bandwidth 4

Estimating for bandwidth 4.5

Estimating for bandwidth 5.5

Estimating for bandwidth 6

Estimating for bandwidth 6.5

Estimating for bandwidth 7

Estimating for bandwidth 7.5

Estimating for bandwidth 8

Estimating for bandwidth 8.5

Estimating for bandwidth 9

Estimating for bandwidth 9.5

Estimating for bandwidth 10

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

lwald | 379.8167 49.66377 7.65 0.000 282.4775 477.1559

lwald10 | 213.1167 136.7133 1.56 0.119 –54.83646 481.0698

lwald20 | 307.2441 96.9611 3.17 0.002 117.2039 497.2844

lwald30 | 318.5954 82.2223 3.87 0.000 157.4426 479.7481

lwald40 | 335.6237 73.66202 4.56 0.000 191.2488 479.9986

lwald50 | 343.0671 66.97426 5.12 0.000 211.7999 474.3342

lwald60 | 350.7385 61.32289 5.72 0.000 230.5479 470.9292

lwald70 | 358.5919 57.70817 6.21 0.000 245.4859 471.6978

lwald80 | 369.8862 54.58116 6.78 0.000 262.9091 476.8633

lwald90 | 376.8164 51.8844 7.26 0.000 275.1249 478.508

lwald110 | 384.7128 47.83083 8.04 0.000 290.9661 478.4595

lwald120 | 389.6336 46.09231 8.45 0.000 299.2943 479.9728

lwald130 | 394.7869 44.29958 8.91 0.000 307.9614 481.6125

lwald140 | 401.0488 42.76487 9.38 0.000 317.2312 484.8664

296 4 Local Average Treatment Effect and Regression-Discontinuity-Design



lwald150 | 405.1497 41.47248 9.77 0.000 323.8651 486.4343

lwald160 | 407.381 40.40292 10.08 0.000 328.1927 486.5692

lwald170 | 408.767 39.51606 10.34 0.000 331.317 486.2171

lwald180 | 410.2129 38.75568 10.58 0.000 334.2531 486.1726

lwald190 | 410.7 38.12595 10.77 0.000 335.9745 485.4255

lwald200 | 410.6234 37.5783 10.93 0.000 336.9713 484.2755

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The graph obtained is particularly explicative in showing that, as soon as the

bandwidth increases, estimation becomes more precise. Observe, moreover, that the

optimal bandwidth can be obtained by default by writing:

. rd y s , z0($s_star)

Estimating for bandwidth 3.193236072866368

Estimating for bandwidth 1.596618036433184

Estimating for bandwidth 6.386472145732736

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

lwald | 352.2594 59.74646 5.90 0.000 235.1585 469.3603

lwald50 | 324.9141 80.21817 4.05 0.000 167.6893 482.1388

lwald200 | 393.4936 44.70381 8.80 0.000 305.8757 481.1114

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

where it is visible that the optimal (default) bandwidth is equal to 3.16. Note that

for this bandwidth, the estimated value of the ATE is 352 that is quite far from the

true value, 400, with a bias of around 12 %. The fact we still obtain a bias with an

optimal bandwidth in large samples is not surprising. As argued in the theoretical

part of this chapter, the asymptotic normal distribution of nonparametric estimates
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presents an asymptotic nonzero bias with convergence occurring at rate N�0.4. In

this case, however, since our DGP assumes a global parametric regression, it is not

surprising that precision increases as soon as the bandwidth increases.

4.4.2.2 Fuzzy RDD

For fuzzy RDD, we follow in the footsteps of the previous example but this time, for

the sake of simplicity, we generate a forcing variable with a cutoff at 0. Recall that

in the fuzzy RDD, the treatment variable is a stochastic (rather than deterministic)

function of s. Moreover, we assume, as in the case of sharp RDD, potential

outcomes to be nonlinear functions of s. In this exercise, once a fuzzy RDD data

generating mechanism has been produced, the objective will be that of: (1) estimat-

ing ATE using a global parametric regression approach and graph the results;

(2) estimating ATE using a nonparametric local linear regression and graph the

results; (3) writing a simple Stata program to obtain the bootstrapped standard error

for ATE in case (2); (4) replicating results using the rd Stata command.

We set out by producing the following fuzzy RDD setting, similar to that of

Yang (2013): the forcing variable is drawn from a uniform distribution in the

interval [�1; 1]. This implies that the variable s has mean equal to 0 and variance

equal to 1/3. As the threshold is at zero, we assume at that point a discontinuity in

the probability of getting treated. The binary treatment variable is thus defined

through the following index function:

Di ¼ 1 �0:5þ Ti þ si þ ui � 0½ �
Ti ¼ 1 si � 0½ �
ui � N 0; 1ð Þ

where Ti is equal to 1 if unit i is located in the right and 0 if located in the left of the
zero cutoff. The previous DGP generates a discontinuity in the probability of

treatment at the cutoff equal to 0.383. In fact, we immediately see that:

lim
s#s

p D ¼ 1 j S ¼ sð Þ � lim
s"s

p D ¼ 1 j S ¼ sð Þ ¼ Φ 0:5ð Þ �Φ �0:5ð Þ ¼ 0:383

with Φ �ð Þ representing the Normal cumulative distribution function. Finally, we

assume the following form of the potential outcomes:

Y1 ¼ 2þ f sð Þ þ v
Y0 ¼ 1þ f sð Þ þ v
f sð Þ ¼ sþ s2 þ 3s3

v � N 0; 1ð Þ
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This DGP for the potential outcomes results in this form of the observable

outcome Y:

Y ¼ Y0 þ D Y1 � Y0ð Þ ¼ 1þ Dþ f sð Þ þ v

Since:

E Y j sð Þ ¼ 1þ E D j sð Þ þ f sð Þ ¼ 1þ p D ¼ 1 j sð Þ þ f sð Þ

we have that:

lim
s#s

E Y j S ¼ sð Þ � lim
s"s

E Y j S ¼ sð Þ ¼ 1þΦ 0:5ð Þ½ � � 1þΦ �0:5ð Þ½ �

¼ Φ 0:5ð Þ �Φ �0:5ð Þ ¼ 0:383

showing that the Wald estimator of such a DGP is equal to 1. In other words:

lim
s#s

E Y j S ¼ sð Þ � lim
s"s

E Y j S ¼ sð Þ
lim
s#s

p D ¼ 1 j S ¼ sð Þ � lim
s"s

p D ¼ 1 j S ¼ sð Þ ¼
0:383

0:383
¼ 1

We now implement such a DGP in Stata as follows:

. clear all

. set seed 10101

. set scheme s1mono

. set obs 1000 // Generate N¼1000

. gen s ¼ –1+2*runiform()

. gen T¼(s>¼0)

* Generate w (binary treatment variable)

. gen v ¼ rnormal(0,1)

. gen w ¼ (–0.5+T+s+v>¼0)

. gen y1 ¼ 2 + s + s^2 + 3*s^3 + invnorm(uniform())

. gen y0 ¼ 1 + s + s^2 + 3*s^3 + invnorm(uniform())

. gen y ¼ y0 + w*(y1–y0)

We show that, in this DGP, the actual value of ATE is equal to 1 by performing

an Instrumental-variables regression of Y on D using T as instrument:

. gen s2 ¼ s^2

. gen s3 ¼ s^3

. reg w T s s2 s3

. ivreg y (w¼T) s s2 s3
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Instrumental variables (2SLS) regression

Source | SS df MS Number of obs ¼ 1000

–––––––––––––+–––––––––––––––––––––––––––––– F( 4, 995) ¼ 1088.22

Model | 4513.46408 4 1128.36602 Prob > F ¼ 0.0000

Residual | 995.058127 995 1.00005842 R–squared ¼ 0.8194

–––––––––––––+–––––––––––––––––––––––––––––– Adj R–squared ¼ 0.8186

Total | 5508.52221 999 5.51403625 Root MSE ¼ 1

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

w | .9988115 .451382 2.21 0.027 .1130416 1.884581

s | 1.006081 .4235583 2.38 0.018 .1749108 1.837251

s2 | .8569674 .1030806 8.31 0.000 .6546871 1.059248

s3 | 3.051368 .3222467 9.47 0.000 2.419007 3.683729

_cons | 1.035791 .225424 4.59 0.000 .5934302 1.478152

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Instrumented: w

Instruments: s s2 s3 T

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

which reports an ATE equal to 0.998, very close to 1, as expected.

We can go on by estimating nonparametrically the outcome discontinuity, using

a local third degree polynomial and then drawing the corresponding graph:

* Outcome discontinuity

. global s_star 0

. global bendw 5 // Fix the bandwidth

. capture drop f0 f1

* Left estimates are called "f0".

* The grid is "s".

* The bandwight is 5.

* The polynomial degree is 3.

. lpoly y s if s<$s_star, gen(f0) at(s) k(tri) bw($bendw) deg(3) nogr

* Right estimates are called "f1".

* The grid is "s".

* The bandwight is 5.

* The polynomial degree is 3.

. lpoly y s if s>¼$s_star, gen(f1) at(s) k(tri) bw($bendw) deg(3) nogr

* Make the graph:

. graph twoway ///

(scatter y s if s>¼$s_star , clstyle(p1)) ///

(scatter y s if s<¼$s_star , clstyle(p1)) ///

(scatter f0 s if s<$s_star, msize(medsmall) msymbol(o)) ///
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(scatter f1 s if s>¼$s_star, msize(medsmall) msymbol(o)) ///

, xline($s_star, lpattern(dash)) ///

title("Fuzzy–RDD – Outcome Non–parametric Local Linear Regression" ,

size(medlarge)) ///

legend(label(1 "Right Actual Data") label(2 "Left Actual Data") ///

label(3 "Right LLR Prediction") label(4 "Left LLR Prediction")) ///

note(Bandwidth ¼ $bendw)

-5
0

5
10

-1 -.5 0 .5 1
s

Right Actual Data Left Actual Data
Right LLR Prediction Left LLR Prediction

Bandwidth = 5

Fuzzy-RDD - Outcome Non-parametric Local Linear Regression

Likewise, we can do the same for the probability discontinuity:

* Probability discontonuity

. global s_star 0

. global bendw 5 // Fix the bandwidth

. capture drop f0 f1

* Left estimates are called "g0".

* The grid is "s".

* The bandwight is 5.

* The polynomial degree is 3.

. lpoly w s if s<$s_star, gen(g0) at(s) k(tri) bw($bendw) deg(3) nogr

* Right estimates are called "g1".

* The grid is "s".

* The bandwight is 5.

* The polynomial degree is 3.

. lpoly w s if s>¼$s_star, gen(g1) at(s) k(tri) bw($bendw) deg(3) nogr

* Graph:

. graph twoway ///

(scatter w s if s>¼$s_star & w¼¼1 , clstyle(p1)) ///

(scatter w s if s<¼$s_star & w¼¼0, clstyle(p1)) ///

(scatter g0 s if s<$s_star, msize(medsmall) msymbol(o)) ///
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(scatter g1 s if s>¼$s_star, msize(medsmall) msymbol(o)) ///

, xline($s_star, lpattern(dash)) ///

title("Fuzzy–RDD – Probability Non–parametric Local Linear Regression") ///

legend(label(1 "Right Actual Data") label(2 "Left Actual Data") ///

label(3 "Right LLR Prediction") label(4 "Left LLR Prediction")) ///

note(Bandwidth ¼ $bendw)

0
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.4
.6

.8
1

-1 -.5 0 .5 1
s

Right Actual Data Left Actual Data
Right LLR Prediction Left LLR Prediction

Bandwidth = 5

Fuzzy-RDD - Probability Non-parametric Local Linear Regression

Finally, we write a simple program to obtain the bootstrapped standard error for

ATE in the nonparametric case. We call this program rdd_f, taking as arguments

the degree of the polynomial (deg), the type of kernel function (ker), the band-

width (band), and the cutoff (cut):

* Program "rdd_f"

capture program drop rdd_f

prog rdd_f, rclass

version 13

args deg ker band cut

* Outcome discontinuity

cap drop z f0 f1

gen z¼‘cut’

cap drop f0 f1

qui lpoly y s if s<‘cut’, gen(f0) at(z) k(‘ker’) bw(‘band’) deg(‘deg’) nogr

qui lpoly y s if s>¼‘cut’, gen(f1) at(z) k(‘ker’) bw(‘band’) deg(‘deg’) nogr

scalar disc_y¼f1[1]–f0[1]

* Probability discontinuity

cap drop g0 g1

qui lpoly w s if s<‘cut’, gen(g0) at(z) k(‘ker’) bw(‘band’) deg(‘deg’) nogr

qui lpoly w s if s>¼‘cut’, gen(g1) at(z) k(‘ker’) bw(‘band’) deg(‘deg’) nogr

scalar disc_w¼g1[1]–g0[1]

return scalar ate¼disc_y/disc_w

end
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. rdd_f 3 tri 5 0

. return list

scalars:

r(ate) ¼ .681765296755097

It is now possible to bootstrap the standard error for ATE in a straightforward

way:

. bootstrap r(ate), reps(10): rdd_f 3 tri 5 0

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Bootstrap results Number of obs ¼ 1000

Replications ¼ 10

command: rdd_f 3 tri 5 0

_bs_1: r(ate)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

| Observed Bootstrap Normal–based

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

_bs_1 | .6817653 1.082933 0.63 0.529 –1.440745 2.804275

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Finally, as in the sharp RDD case, we replicate results using the rd Stata

command. For the sake of comparison, however, we have to consider a polynomial

of degree 1, as rd implements a local linear approach:

. rdd_f 1 tri 5 0

. return list

scalars:

r(ate) ¼ –1.747380009730471

that is equivalent to running:

. rd y w s , z0(0) bw(5)

Estimating for bandwidth 5

Estimating for bandwidth 2.5

Estimating for bandwidth 10

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

numer | –.7499524 .1483967 –5.05 0.000 –1.040805 –.4591003

denom | .4291868 .0534704 8.03 0.000 .3243868 .5339868

lwald | –1.74738 .4720134 –3.70 0.000 –2.672509 –.8222507

numer50 | –.6751287 .1489964 –4.53 0.000 –.9671563 –.3831011
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denom50 | .4246377 .0542582 7.83 0.000 .3182935 .5309819

lwald50 | –1.589893 .4671927 –3.40 0.001 –2.505574 –.6742127

numer200 | –.7828516 .1482526 –5.28 0.000 –1.073421 –.4922819

denom200 | .4311897 .0531644 8.11 0.000 .3269893 .53539

lwald200 | –1.815562 .4743201 –3.83 0.000 –2.745212 –.8859117

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

We can see that, according to the previous results, the Wald estimator obtained

using rd is equal to �1.747, the same as the one obtained using rdd_f. Such a

value seems however really far from the true value of ATE, which we saw to be

equal to 1. This result is caused by an incorrect choice of the bandwidth, so that we

need to reestimate the model using the optimal bandwidth as follows:

. rd y w s , z0(0)

Estimating for bandwidth .4713549912056355

Estimating for bandwidth .2356774956028178

Estimating for bandwidth .942709982411271

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

numer | .2267855 .2365194 0.96 0.338 –.2367841 .6903551

denom | .3243078 .0919351 3.53 0.000 .1441183 .5044973

lwald | .699291 .6594338 1.06 0.289 –.5931755 1.991757

numer50 | .2075673 .3331399 0.62 0.533 –.445375 .8605096

denom50 | .2442051 .1298294 1.88 0.060 –.0102558 .498666

lwald50 | .8499711 1.219224 0.70 0.486 –1.539664 3.239606

numer200 | –.1048066 .1662147 –0.63 0.528 –.4305815 .2209682

denom200 | .3901452 .0639885 6.10 0.000 .26473 .5155603

lwald200 | –.268635 .4467665 –0.60 0.548 –1.144281 .6070113

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The value of ATE with optimal bandwidth (equal to 0.471) is now equal to 0.7,

while is much closer to 1, it is not exactly one. The bias which occurs depends on

the fact that, in the case of nonparametric regressions, even asymptotically, the bias

does not disappear although it tends to become smaller when N is rather large.

Moreover, recall that the rate of convergence of nonparametric methods is N�0.4,

that is slower than that of parametric approaches. It is interesting to see that when

the bandwidth is chosen as half of the optimal one (see the value for lwald50 in

the previous table), then we have a reduction of the bias which moves from

(1� 0.699)¼ 0.301 to (1� 0.849)¼ 0.151. This is the case of undersmoothing,

which occurs with a choice of the bandwidth (0.235) lower than the optimal one

(0.471). Of course, undersmoothing has a price, since it returns a larger estimated

standard error (1.219) compared to the one obtained under optimal smoothing

(0.659).
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Finally, in what follows, we write a Stata code to calculate the value of the Wald

estimator for different sample sizes. We put the attained results into a matrix A with

six rows and two columns:

. mat def A¼J(6,2,.)

. local k¼1

foreach i of numlist 1000 10000 50000 100000 200000 300000 {

. clear

. set seed 10101

. set obs ‘i’

. gen s ¼ –1+2*runiform()

. gen T¼(s>¼0)

* Generate w (binary treatment variable)

. gen v ¼ rnormal(0,1)

. gen w ¼ (–0.5+T+s+v>¼0)

. gen y1 ¼ 2 + s + s^2 + 3*s^3 + invnorm(uniform())

. gen y0 ¼ 1 + s + s^2 + 3*s^3 + invnorm(uniform())

. gen y ¼ y0 + w*(y1–y0)

. qui rd y w s , z0(0)

. matrix A[‘k’,1]¼_b[lwald]

. matrix A[‘k’,2]¼‘i’

. local k¼‘k’+1

}

. matrix colnames A ¼ Wald_est Sample_size

. mat list A

A[6,2]

Wald_est Sample_size

r1 .69929098 1000

r2 1.0268281 10000

r3 .98720917 50000

r4 .82719328 100000

r5 1.0884702 200000

r6 .99637508 300000

As expected, we clearly see that—when using optimal bandwidth—and as long

as N becomes sufficiently large, the Wald estimator converges to 1. Finally, after

regenerating the simulation with N¼ 10,000, as we did at the outset of this section,

we can draw the Wald estimator for different bandwidths as follows:

. rd y w s , z0(0) mbw(10(10)100) bdep

Estimating for bandwidth .4713549912056355

Estimating for bandwidth .0471354991205636

Estimating for bandwidth .0942709982411271

Estimating for bandwidth .1414064973616906
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Estimating for bandwidth .1885419964822542

Estimating for bandwidth .2356774956028178

Estimating for bandwidth .2828129947233813

Estimating for bandwidth .3299484938439448

Estimating for bandwidth .3770839929645085

Estimating for bandwidth .424219492085072

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

–––––––––––––+––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

numer | .2267855 .2365194 0.96 0.338 –.2367841 .6903551

denom | .3243078 .0919351 3.53 0.000 .1441183 .5044973

lwald | .699291 .6594338 1.06 0.289 –.5931755 1.991757

numer10 | –.9352515 .500547 –1.87 0.062 –1.916306 .0458026

denom10 | .1389788 .2854189 0.49 0.626 –.420432 .6983896

lwald10 | –6.729454 15.31744 –0.44 0.660 –36.75109 23.29219

numer20 | –.3321133 .4564705 –0.73 0.467 –1.226779 .5625524

denom20 | .1718275 .1987912 0.86 0.387 –.2177961 .561451

lwald20 | –1.93283 4.102229 –0.47 0.638 –9.973051 6.10739

numer30 | –.1312488 .4242862 –0.31 0.757 –.9628345 .7003369

denom30 | .126333 .1716659 0.74 0.462 –.210126 .4627921

lwald30 | –1.038911 4.159927 –0.25 0.803 –9.192218 7.114396

numer40 | .0881357 .3747688 0.24 0.814 –.6463976 .822669

denom40 | .1784971 .1472767 1.21 0.226 –.1101599 .467154

lwald40 | .4937656 1.948472 0.25 0.800 –3.325169 4.3127

numer50 | .2075673 .3331399 0.62 0.533 –.445375 .8605096

denom50 | .2442051 .1298294 1.88 0.060 –.0102558 .498666

lwald50 | .8499711 1.219224 0.70 0.486 –1.539664 3.239606

numer60 | .1859986 .3084208 0.60 0.546 –.418495 .7904922

denom60 | .2625558 .1198433 2.19 0.028 .0276673 .4974443

lwald60 | .7084156 1.061916 0.67 0.505 –1.372901 2.789732

numer70 | .1985204 .2853907 0.70 0.487 –.3608351 .7578759

denom70 | .2687388 .1102866 2.44 0.015 .052581 .4848966

lwald70 | .7387114 .9581545 0.77 0.441 –1.139237 2.61666

numer80 | .2127692 .2653003 0.80 0.423 –.3072099 .7327483

denom80 | .289658 .102578 2.82 0.005 .0886087 .4907073

lwald80 | .7345531 .8263895 0.89 0.374 –.8851404 2.354247

numer90 | .2260461 .2495957 0.91 0.365 –.2631524 .7152446

denom90 | .3120691 .0968244 3.22 0.001 .1222967 .5018414

lwald90 | .7243465 .721625 1.00 0.315 –.6900126 2.138706

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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The results obtained seem to confirm that a moderate undersmoothing reduces

the bias, although with a slighter increase in the variance of the estimator.
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