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Preface

This book presents applications of optimal control theory and dynamic game theory
in a broad range of problems associated with environmental economics. The book
consists of 15 chapters, roughly half of which are based on research presented at the
“12th Viennese Workshop on Optimal Control, Dynamic Games and Nonlinear Dy-
namics”, which was held at the Vienna University of Technology (TU Wien) from
May 30th to June 2nd, 2012. The workshop, which hosted more than 200 partici-
pants, was organized by Gustav Feichtinger, Josef L. Haunschmied, and Alexander
Mehlmann, and two editors of this book, Gernot Tragler and Vladimir M. Veliov
(all from TU Wien).

While that workshop provided the motivation to produce this book, the book can-
not be considered as the proceedings thereof. Rather, for the purpose of providing a
broader view of late-breaking applications of dynamic optimization in environmen-
tal economics, the chapters that stem from selected presentations at the workshop
have been complemented by chapters from distinguished invited scientists in this
field. The chapters are collected in two parts of the book and are ordered alphabeti-
cally according to the name of the first author within each part.

The first part, “Interactions between economy and climate”, addresses the “econ-
omy �→ pollution �→ climate change �→ economy” circle. The eight chapters in this
part cover a variety of different approaches to modeling the feedbacks between the
environment and the economy. For instance, some contributions describe the en-
vironment by its quality, concentration of pollutants, temperature, or a renewable
resource stock, while others involve the environment only implicitly, represented
by tax levy on emission or emission caps. Environmental policy instruments that
are considered for the purpose of diminishing the climate change include (public)
abatement, cap-and-trade, taxes, R&D, or technological change in several variants
(e.g., exogenous versus endogenous, directed versus undirected).

The second part of the book, “Optimal extraction of resources”, deals with opti-
mal or rational utilization of renewable and non-renewable resources. The problems
described in the seven chapters in this part include commercial fishery, forest man-
agement and biodiversity under climate change, the effects of resource exploitation
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vi Preface

and landowning on growth, export and import of fossil fuels, and harvesting of size-
structured biological populations.

From a methodological perspective, the authors use various types of models and,
therefore, various tools to analyze them appropriately. For instance, we find op-
timal control models in cases of a central planner, and dynamic games in cases
of competing decision makers. While most of the models are deterministic, some
also include stochastic uncertainties. In addition to standard problem formulations
that rely on ordinary differential equations, there are also size-structured and spa-
tially distributed systems. The tools used to analyze the problems include, but are
not limited to, Pontryagin’s maximum principle, nonlinear model predictive control
techniques, nonlinear programming and the Karush-Kuhn-Tucker (KKT) theorem,
the computation of Nash and Stackelberg equilibria, solution of Hamilton-Jacobi-
Bellman equations, and numerical solution techniques such as the “Escalator Boxcar
Train”. Not only are some of the solution procedures innovative and sophisticated,
but we also find complex solutions involving multiple equilibria and indeterminacy.

This book will be particularly interesting for economists, engineers, environmen-
tal managers, and applied mathematicians working on all kinds of dynamic opti-
mization problems related to the interaction between environment, resources, and
economic growth.

Finally, we wish to express our sincere gratitude to all of the authors of this book
for their contributions, and the referees for their constructive suggestions on how to
improve the individual chapters.

Elke Moser
Willi Semmler
Gernot Tragler

Vladimir M. Veliov

Vienna, Austria
November, 28, 2013
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Climate Change and Technical Progress:
Impact of Informational Constraints

Anton Bondarev, Christiane Clemens, and Alfred Greiner

Abstract In this paper we analyse a growth model that includes environmental and
economic variables as well as technological progress under different informational
constraints on the behavior of economic agents. To simulate the informationally
constrained economy, we make use of the non-linear model predictive control tech-
nique. We compare models with exogenous and endogenous technical change as
well as directed and undirected endogenous technical change under different infor-
mational structures. We show that endogenous technical change yields lower envi-
ronmental damages than exogenous technical change with a fully informed social
planner. At the same time, welfare may rise or decline depending on the efficiency
of the technology in use. In the case of directed technical change, a green growth
scenario generates a smaller temperature increase that, however, goes along with
less output and lower welfare. This holds both for the informationally constrained
market economy and for the social optimum. We find that the effects of informa-
tional constraints, with respect to the climate system, increase with the degree of
endogeneity of technology in the model.

1 Introduction

In this paper we develop the simple dynamic endogenous growth model of the world
economy which takes into account environmental damages. There are a great many
such models in the literature, starting with the seminal paper by Nordhaus (2007).
Some of these models are of integrated assessment type (IAM) and employ the
detailed description of the economy under consideration together with many sec-
tors and parameters which are then estimated. Other types of models are of simpler
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4 A. Bondarev et al.

structure and are employed to study some new approaches to the modeling of the
environment in endogenous growth theory. In this second strand of literature there
are two different approaches to modeling environmental damages and environmen-
tal threat for the economy: through the inclusion of environmental quality into the
utility function of the representative household, as in the paper by Ligthart and Van
Der Ploeg (1994), or through the assumption of productivity decreases due to the
environmental degradation, or both. An example of such an approach is the paper
by Bovenberg and Smulders (1995), where the notion of pollution-augmenting tech-
nical change is adopted. According to this classification, our paper belongs to the
second approach.

The main focus of this paper is the influence of different forms of technical
change on the evolution of the economy and on the environment under different
informational regimes for the economy. Hence, there are two main departures from
the majority of the literature on endogenous growth taking into consideration the en-
vironment. The first concerns the way the technological change is modeled and, the
second, the way the representative household takes into account the environmental
change in its decision making.

As concerns the first aspect, the technology in environmental models was usually
modeled as an exogenous process of accumulation of knowledge according to some
given function, without any influence from the part of the optimizing agent. Later
on, there appeared a number of papers where the environmental variables are subject
to the control of the agent together with the technology. These papers build up upon
two well-known models of endogenous growth, namely that of Romer (1990) and
that of Aghion and Howitt (1992). As an example for an endogenous growth model
with environmental damages, based on variety expansion, one may take the paper
by Barbier (1999), while papers by Grimaud (1999) and Grimaud and Rougé (2003,
2005) are based on the model of vertical innovations by Aghion and Howitt (1992).
These and similar papers do not take into account the environmental friendliness
of technologies being developed and deal only with productivity. At the same time,
there is a discussion in the literature on the possibility of “green growth”, where
the productivity increase of the economy does not lead to environmental damages.
In recent years, endogenous growth models have appeared that distinguish between
“clean” and “dirty” technologies. This type of modeling uses the notion of directed
technical change and the most recent example of such a literature is the paper by
Acemoglu et al. (2012). The natural question one may ask is: what additional insight
and implications follow from the inclusion of directed technical change into such a
model. To answer it, we employ the same strategy as in the early paper by Smulders
and Gradus (1996) and compare three simplified models in their predictions. We
compare the results of the model with exogenous technical change, similar to the
one employed in the paper of Bréchet et al. (2011), with those of undirected but
endogenous technical change in the spirit of papers by Barbier (1999), Grimaud
(1999) and with the outcome of the model featuring directed endogenous technical
change with similar ideas as in Acemoglu et al. (2012). We come to the conclusion
that in the absence of external stimuli, the planner will choose the more productive
technology with higher environmental damages, rather than the cleaner one under
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directed technical change. At the same time, with undirected exogenous technical
change, environmental damages may be lower than under directed change, given the
“dirty” scenario of the economy.

Another aspect of interest for our research is the comparison of performance
of the model under different informational regimes being allowed for. To this end,
we employ the non-linear model predictive control (NMPC) approach which has
been proposed for the environmental growth model in the paper by Bréchet et al.
(2011), while developed earlier on in the literature on the NMPC technique, see
the collection of contributions in Allgöwer and Zheng (2006) for reference. We
compare the results of the model with an “optimal” (Pareto-optimal) behavior of the
social planner, who cares about the environment to a full extent acting as a perfect-
foresighted individual, with the outcome of a representative household with limited
rationality, modeled as a receding planning horizon of the household.

As concerns the household sector, we assume a homogeneous household sector
of mass one with household production, where each individual household has mea-
sure zero. Thus, the representative household has a negligible effect on aggregate
emissions so that it neglects its emissions of greenhouse gases, which result as an
external effect of production. Therefore, it does not invest in abatement but only
chooses the optimal consumption share and the optimal share of investment in the
creation of new technologies, which gives the laissez-faire or market solution. How-
ever, the household knows that the environment changes over time and, therefore,
updates its optimal controls at certain discrete points in time, taking into account
the new state of the environment. But, due to informational constraints, it does not
continuously observe the changes in the environment. This makes our approach dif-
ferent from the usual modeling of externalities, where the representative household
does not take into account the external effect but continuously observes the state of
the environment, as in Greiner (1996, 2003) or more recently in Antoci et al. (2011).

It turns out that under receding horizon decision rules, the difference in terms
of social welfare and environmental degradation between smart management of en-
dogenous directed and undirected technological change and exogenously given pat-
tern of technology is higher, compared to full information regime rules. At the same
time, the directed technical change differs to a lesser extent from the undirected
endogenous one (again in terms of welfare and environment) under informational
constraints than under the full information regime. These differences in ordering of
social welfare under different decision rules may help us to clarify the role that the
management of technological progress plays with respect to the urgently desired
switch of the equilibrium dynamics towards cleaner growth policies.

The rest of the paper is organised as follows. In the next section the formal de-
scription of all three versions of the model is given together with some necessary
comments on the model structure. The main part is taken by the simulation re-
sults and their analysis, where the comparison between different models of technical
change as well as different decision rules is made. The concluding section contains
some brief discussion of results.
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2 Model

We introduce the model of endogenous technical change in this section. First, we
model undirected technical change by allowing for the productivity parameter, A(t),
to be controlled by the social planner, while leaving the emissions reduction technol-
ogy, e(t), exogenous which, later on, is controlled by the planner, too. The model
presented below may be viewed as a straightforward extension of the model with
exogenous technical change by Bréchet et al. (2011). We take this model with ex-
ogenous technical change as the benchmark.

2.1 Undirected Endogenous Technical Change

Consider first the model with only productivity being controlled by the social plan-
ner. There is also a gradual process of reduction of emission intensity, which is
assumed to be exogenous for the time being. The social planner in the model repre-
sents some central authority (government). This planner has full information about
the influence of economic activities on the environment. The economic part of the
model is rather stylized and represented by the capital accumulation process. The
climate change is represented by a pair of equations for the dynamics of temperature
and greenhouse gas (GHG) concentrations.

The social planner optimally chooses the rate of consumption per capita and
the rate of abatement activities to maximize social welfare and keep environmental
degradation limited. The planner can also increase the productivity of the economy
through R&D investments. With these assumptions the control problem of the plan-
ner contains 4 state variables (capital, temperature, GHG concentration and the state
of technology) and 3 control variables (consumption rate, abatement rate and R&D
investments per capita):

JE =max
u,a,g

{∫ T

0
e−rt

[ [u(t)Y (t)]1−γ
1− γ

]
dt

}
(1)

s.t.

k̇(t)=−δk(t)+ [
1− u(t)− c1

(
a(t)

)− c1
(
g(t)

)]
Y(t), (2)

τ̇ (t)=−λτ(t)+ d
(
m(t)

)=−λτ(t)+ η ln
m

m∗0
, (3)

ṁ(t)=−νm(t)+ (
1− a(t)

)
e(t)Y (t), (4)

ẋ(t)= βg(t)− δ2x(t), (5)

Y(t)=AE(t)φ
(
τ(t)

)
k(t)α =AE(t)

(
1

1+ θ1τ θ2

)
k(t)α, (6)

AE(t)= 1+ωx(t), (7)

where:

JE is the objective functional;
r is the discount rate;
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u(t) is the consumption rate per capita;
Y(t) is the total output;
k(t) is the total capital;
δ is the depreciation rate of capital;
δ2 is the depreciation rate of technology;
a(t) is the abatement rate;
g(t) are R&D investments;
τ(t) is the temperature increase from the preindustrial level;
λ is the rate of temperature decrease due to natural causes;
m(t) is the GHG concentration in the world’s atmosphere;
ν is the rate of recovery of the atmosphere due to natural absorption;
e(t) is the reduction of intensity of emissions from economic activities;
x(t) is the state of technology;
AE(t) is the productivity of the economy;
φ(τ(t)) is the damage function depending from the temperature increase;
α is the parameter of capital productivity;
ω is the rate of transformation of the current state of technology into the pro-

ductivity of the economy.

In the model the evolution of state variables is given in the following way:

• Capital increases due to investments into capital, (2);
• Temperature increases as a function of the GHG concentration in the atmosphere,

(3);
• GHG concentration increases due to economic activity in the economy (it is as-

sumed that natural causes may be neglected), while the impact of economic ac-
tivity is weakened through abatement and exogenous improvement in cleaning
technologies, (4);

• Technology improves in a linear way from R&D investments while decreasing in
the absence of such investments, (5);

• Output is of Cobb-Douglas type with labor supply normalized to unity with no
population growth, (6);

• At last, productivity grows due to the transmission of a (fixed) proportion of tech-
nology into the production technology, (7).

It has to be noted that the original model of Bréchet et al. (2011) is easily ob-
tained from this model by assuming a constant and linear increase in productivity,
i.e. by substituting (7) with the linear technology AB = κ1t + κ2 and by setting
e(t)= e−ι1t−ι2 as well as dropping the (5) and the term c1(g(t)) from (2).

The form of dynamics of technical progress itself is rather simple: the technology
improves via the investments into the technological progress, g(t) and declines in
the absence of investments with some rate δ2. Such a form of dynamics is rather
simple and yet allows for the existence of steady state and endogenous technology.
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In the case of (undirected) endogenous technical change we assume the same
cost function for technology investments and for abatement a(t):

c1
(
g(t)

)= 0.01
g(t)

1− g(t)
,

c1
(
a(t)

)= 0.01
a(t)

1− a(t)
.

(8)

This specification guarantees that there will be some resources left for consumption
with any positive values of abatement and R&D investments. However, negative
investments into the capital are possible: in this case capital decreases in time.

Making use of this specification of cost functions, we write down the analytic
form of optimal controls for the problem given by (1) s.t. (2)–(7):

uEopt =
ψk(t)

− 1
γ k(t)−α

1
1+θ1τ(t)

θ2
(1+ωx(t))

,

aEopt (t)= 1− 0.1

√− exp(ι1t + ι2)ψm(t)ψk(t)

ψm(t)
,

gEopt (t)= 1− 0.1

√
β1

1
1+θ1τ(t)

θ2
(1+ωx(t))ψx(t)ψk(t)kα(t)

β1ψx(t)
.

(9)

It can be seen that the optimal abatement rate depends only on the ratio of shadow
costs of capital and environmental degradation (which coincides with the benchmark
model), but the consumption rate now negatively depends on technical progress that
is endogenous. This means that technology boosting the total output, makes con-
sumption higher even with the same share of output being devoted to consumption
and, thus, the faster is the technological change, the lower this consumption share
has to be. Investments into technology depend on the level of technology achieved,
on the capital level and on the ratio of shadow costs of capital and technology. The
resulting dynamical system for the state variables is 4-dimensional and explicitly
includes technical progress:

k̇(t)=−δk(t)+
[

1− uEopt (t)− 0.01
aEopt (t)

1− aEopt (t)
− 0.01

xEopt (t)

1− xEopt (t)

]

· (1+ωx(t)
) 1

1+ θ1τ θ2
k(t)α,

τ̇ (t)=−λτ(t)+ η ln
m

m∗0
,

ṁ(t)=−νm(t)+ (
1− aEopt (t)

)
exp(ι1t + ι2)

(
1+ωx(t)

) 1

1+ θ1τ θ2
k(t)α,

ẋ(t)= β1g
E
opt (t)− β2x(t),

(10)

where uEopt (t), a
E
opt (t), g

E
opt (t) are given by equations in (9).
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The main difference in this system compared to that of the model with exogenous
technical change comes from the endogenous technology which increases produc-
tivity by the factor ω and which is governed by technological investments, rather
than by the exogenous growth rate. In such a system emissions of GHGs depend not
only on the capital accumulation but also on technological advances in the econ-
omy which creates a link between the technological and the environmental sector.
However, the abatement rate does not depend on technology and is exactly the same
as in the benchmark model. Thus, the model becomes of an endogenous growth
type, where the growth rates are defined through technological change. This tech-
nological change, however, is described in rather a stylized way and does not take
into account the impact of technology on the reduction of emission intensity, e(t).
This is achieved by further extending the basic model to account for the direction of
technological change.

2.2 Directed Endogenous Technical Change

To model directed technical change we relax the assumption of the exogenous rate
of emission intensity decrease, e(t). Now, we allow this to depend on the endoge-
nous technological development, too. To this end, we assume that a certain fraction
of technological progress is devoted to the reduction of emission intensity without
increasing productivity, while the other fraction is devoted to the increase in produc-
tivity without reducing emissions. We respecify the functions e(t),A(t) as follows:

eD(t)= e0

1+ (1− ε)ωx(t)
,

AD(t)= 1+ εωx(t),

and the dynamic problem is formulated with the same constraints as in Eqs. (1)–(7).
The parameter e0 is set to the initial level of the emission intensity from the
benchmark model, e0 = e(0). In such a formulation, the (exogenous) parameter
ε ∈ [0, . . . ,1] measures the direction of technical progress. With ε = 0 all of the
technical progress is devoted to the reduction of emissions from production without
increasing productivity at all, while with ε = 1 all of the technical progress is going
to the increase in productivity. Parameter ω, as before, is measuring the efficiency
of technical progress for productivity increase.

The optimal controls in this case are:

uDopt =
ψk(t)

− 1
γ k(t)−α

1
1+θ1τ(t)

θ2
(1+ εωx(t))

,

aDopt (t)= 1− 0.1

√
− e0

1+(1−ε)ωx(t)ψm(t)ψk(t)

ψm(t)
,

gDopt (t)= 1− 0.1

√
β1

1
1+θ1τ(t)

θ2
(1+ εωx(t))ψx(t)ψk(t)kα(t)

β1ψx(t)
.

(11)
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It can be seen that for the case of directed technical change, the abatement rates
are different from the benchmark model as well as from undirected endogenous
progress and include the evolution of technology as an argument. This links abate-
ment efforts to technology, whereas in the undirected version of the model such a
link is absent and technology influences the environment only through productivity
increases in a negative way. In this case, the dynamical system for state variables
changes and emissions accumulation depends on technical progress in an ambigu-
ous way: it may decrease due to the evolution of clean technology or increase be-
cause of higher productivity and more production. The exact direction depends on
the parameter ε:

k̇(t)=−δk(t)+
[

1− uDopt (t)− 0.01
aDopt (t)

1− aDopt (t)
− 0.01

xEopt (t)

1− xEopt (t)

]

· (1+ εωx(t)
) 1

1+ θ1τ θ2
k(t)α,

τ̇ (t)=−λτ(t)+ η ln
m

m∗0
,

ṁ(t)=−νm(t)+ (
1− aDopt (t)

) e0(1+ εωx(t))

1+ (1− ε)ωx(t)

1

1+ θ1τ θ2
k(t)α,

ẋ(t)= β1g
D
opt (t)− β2x(t),

(12)

where uDopt (t), a
D
opt (t), g

D
opt (t) are given by the equations in (11). For the case

ε = 0.5 technical progress is environmentally neutral as the term (1+εωx(t))
1+(1−ε)ωx(t) can-

cels out from the emissions equation. In this case, technology influences only the
productivity growth, but productivity growth does not influence the environment,
as its negative externality is exactly counterbalanced by the reduction in emission
intensity from the clean technology. In all other cases, the technology is not neutral
and influences emissions negatively or positively.

2.3 Informational Regimes of the Economy

The main focus of this paper is in the comparison of the dynamics of the environ-
ment and the economy under different informational regimes. Both versions of the
model presented above assume that the social planner possesses full information
about the links between economic and technological activities and the environment.
In contrast to that, the laissez-faire or market solution assumes an informationally
constrained representative household that does not continuously observe the influ-
ence of its activities on the environment. Instead, the household maximizes wel-
fare over a certain period of time neglecting the environment. After the period has
elapsed, it observes the state of the environment and its effect on output and solves
a new optimization problem, again over a certain period of time neglecting environ-
mental concerns. To model such an informationally constrained economy, we make
use of the non-linear model predictive control (NMPC) technique.
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In the modern world, economic agents should be aware of the changing envi-
ronment. However, real-time online measurement of the state of the environment
is costly and hence such a measurement might be made at some regular periods of
time. Another argument for economic intuition might be that economic processes
have much higher speed than environmental ones and the representative household
in the economy may assume the state of environment to be constant for some peri-
ods.

With the help of the NMPC technique one may model such infrequent observa-
tions of the state of the environment. To this end, assume that the household un-
der consideration is measuring the state of environment every k periods of time
and revises its optimal controls over consumption and technology investments. In
such a case, one has to consider the full dynamical system given by (1)–(7) for true
state dynamics and the reduced one for the determination of optimal controls of the
household under informational constraints of this type.

Following the idea of Bréchet et al. (2011), we define strategies of the informa-
tionally constrained household as Business-as-Usual (BaU) scenarios in the follow-
ing way:

1. At the initial point in time, t0, the household is solving the reduced dynamical
problem (defined in the Appendix) on some fixed time horizon Θ (with Θ being
some long but finite time horizon being chosen in such a way, as this length al-
lows the system to be marginally close to the steady state) and defines its optimal
controls;

2. These controls are then used to determine the evolution of the full dynamical
system which includes environmental variables as well as economic ones for the
same time horizon;

3. After h = th − t0 time (being the step of measurement of the environment) the
household measures the state of the full system at the time t = th and revises its
optimal controls with this state of the system given as an initial state from t = th

onwards till t = th + Θ (thus obtaining the new optimal policy for the whole
planning horizon and not just till the next measurement time);

4. When the next measurement time th+1 is reached, the household again revises its
policies in the view of new information obtained about the state of the environ-
ment;

5. The procedure repeats until the terminal time is reached.

Note that such a procedure essentially requires a limited time horizon for the house-
hold since, otherwise, it could not be completed in a finite number of steps. This
difficulty is resolved by choosing rather a long terminal time θ , as the system may
arrive to its steady state within this time length.1

1See the Appendix for an illustration of NMPC for the model with directed technical change.
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3 Numerical Simulation

3.1 Computational Issues and Calibration

To obtain solutions for all of the versions of the model we make use of the gradient
projection method of simulations. The basic idea is as follows: at each simulation
step the vector of optimal controls is computed iteratively as the preceding value
plus the gradient increase. As the control approaches the optimal value, the gradient
decreases. At the optimal point the gradient of the system is zero. In practice, iter-
ations are performed until the gradient reaches a sufficiently small value. The steps
of the algorithm of iterations is described below:

1. Set initial values for controls u0, a0, g0;
2. Solve the system for state variables, one of Eqs. (10), (12), depending on the

version of the model;
3. Calculated state variables k0,m0, τ 0, x0 are used for the solution of the co-state

system;
4. Solutions of both systems are used to compute the next-step gradient of the sys-

tem, ∇X1;
5. Next step controls have the form u1 = u0 + b · ∇X1;
6. The procedure repeats until ∇Xk→ 0.

The gradient of the system is given by first-order conditions for controls, (13), (14)
or (15), depending on the model under consideration. The b parameter is chosen
arbitrarily and is the scale of one iteration step, remaining constant for all iterations,
but varying from system to system. This is determined experimentally and depends
on the numeric scale of the gradient being computed.

Note that the algorithm above is valid only for the computation of solutions under
full information, while for implementing the NMPC technique for informationally
constrained economies it is not sufficient. In the latter case, the procedure above
has to be repeated at each time step, ti , along the whole time path. Otherwise, the
algorithm remains the same. The values of the parameters ω and ε depend on the
respective scenario under consideration and are explained below. As concerns the
other parameters, these are the same for all different scenarios and for the calibration
we set the parameters to the values given in Table 1.

Concerning the evolution of technology, we consider different scenarios with
respect to the choice of exogenously given transformation rate ω and the proportions
of clean and dirty technologies ε. These scenarios are summarized in Table 2.

Here, the upper part gives values of the transformation rate ω being considered
in simulations for endogenous undirected technical change. Since the technology
is transformed only in productivity increase, this is equivalent to setting the ε pa-
rameter to 1, as the table shows. The lower part of the table shows how different
proportions of technical change, going into cleaning or more productive technolo-
gies, affect the resulting effective transformation rate, εω, and the fraction of tech-
nical change in cleaner technologies, (1 − ε)ω. Setting ε = 0.5 implies environ-
mentally neutral technical change. With a productivity impact of ω= 0.2 this yields
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Table 1 Parameter values

Economic parameters

Depreciation rate δ 0.075

Inverse of elasticity of substitution γ 2

Interest rate r 0.015

Capital elasticity α 0.45

Climate parameters

Temperature re-absorption λ 0.11

Climate sensitivity η 0.59

Pre-industrial carbon concentration m∗0 5.964

Damage function parameter 1 θ1 0.0057

Damage function parameter 2 θ2 2

GHG re-absorption rate ν 0.0054

Technological parameters

Emission intensity reduction parameter 1 ι1 0.00384

Emission intensity reduction parameter 2 ι2 3.1535

Initial emission intensity reduction for endogenous models e0 0.0427

Linear technology parameter 1 κ1 1

Linear technology parameter 2 κ2 0.0014

Efficiency of technological investments β1 0.7

Decay of technology in absence of investments β2 0.1

Table 2 Simulated
technological parameters
values

Scenario ω ε ωε (1− ε)ω

Undirected change

Slow growth 0.05 1 0.05 0

Normal growth 0.10 1 0.10 0

Directed change

Clean growth 0.20 0.1 0.02 0.18

Neutral growth 0.20 0.5 0.1 0.1

Dirty growth 0.20 0.9 0.18 0.02

the same overall productivity growth as for the undirected change (ε · ω = 0.1).
Next, we consider the “green” or “clean growth” scenario, where the technologi-
cal progress is biased towards the reduction of emission intensity, with ε = 0.1. In
such a case, overall productivity growth is much slower than for the undirected
technical change, ε · ω = 0.02, while emission intensity reduces with the factor
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Table 3 Damage function
Temperature increase Decrease in productivity

+2 °C −2.23 %

+4 °C −8.36 %

+6 °C −17.02 %

+8 °C −26.73 %

1/(1+ (1− ε) ·ω) = 0.84 from the initial state of cleaning technology e(0). Fi-
nally, we consider the “dirty growth” scenario with ε = 0.9 and the resulting pro-
ductivity growth ε ·ω= 0.18 higher than for undirected change and higher emission
intensity with only slight reduction to 0.98 level in 100 years.

3.2 Discussion of the Damage Function

Here we discuss our choice of parameters of the damage function, θ1, θ2. With the
chosen functional form of this function, given by (6), the parameter θ1 measures the
linear impact of the temperature on the productivity of capital, while θ2 is chosen
due to the functional form considerations to provide a hyperbolic type decay rate for
productivity with temperature increases. This specification follows the one assumed
in the paper by Bréchet et al. (2011): an increase in the mean temperature by 2 °C
leads to a 2.23 % decrease in productivity. However this effect is not linear but rises:
the higher increase in temperature leads to even stronger decreases in productivity,
as Table 3 shows.

It can be seen that the worst case scenario leads to an extreme rise in temperature
of 8 °C and implies a reduction of productivity by more than 25 %. At the same
time, the chosen specification of exogenous productivity growth in the benchmark
model implies an increase of productivity by the same 25 % in 100 years. Thus,
in the exogenous growth scenario the technology growth always has a higher sig-
nificance than environmental damage, which is one reason for taking such a high
damage function compared to Nordhaus (2007), where the damage is almost twice
as low for the same temperature increase: for a 2 °C increase in temperature only
a 1 % decrease in productivity is assumed there. In the view of recent data, how-
ever, such an assumption appears too optimistic, since it does not account for the
additional losses in GDP due to the impact of higher temperatures on the sea level
increase, which has already started. With this in mind, it might be the case that more
pessimistic estimates, as adopted here, might be useful. Our calibration is more in
line with the calibration of damage functions for Europe as in the model by Hassler
and Krusell (2012), where it is claimed that environmental damages differ from re-
gion to region and appear to be higher for Africa and for the EU than for the US
or China. There, it is assumed that a 2 °C increase leads to a 2.83 % productivity
damage for Europe and to 3.91 % damages for Africa. Hence, our calibration values
are in between the values used in the two papers above mentioned.
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Fig. 1 Optimal policies for the exogenous and endogenous technology

3.3 Economy with Full Information

3.3.1 Exogenous vs. Undirected Endogenous Technology

The introduction of the endogenous technology into the benchmark model, de-
scribed by (1)–(7), allows a more efficient environmental policy of the social planner
in the case of full information. The efficiency of technological progress in respect
of increasing productivity plays a crucial role for social welfare in terms of con-
sumption. We consider two values for this parameter, which give the productivity
growth lower and higher than the exogenous linear growth in the benchmark model.
Namely, we take ω = 0.05 for low yield of technology for productivity growth and
ω= 0.1 for high yield.

First, consider the dynamics of optimal abatement and technology investments
per capita in Fig. 1. One can see that abatement efforts are higher for both scenarios
and the difference between low and high technology yields is rather small. Both are
stabilized at the level between 0.5 and 0.6, while in the exogenous technology case
it is much lower, at the level of 0.2. This differs from the dynamics of the benchmark
model in Bréchet et al. (2011) substantially due to different values of parameters.
One would expect higher abatement efforts for a higher technology impact. It is
indeed so, since abatement efforts in Fig. 1a are given in per capita terms. In terms
of final output these investments are higher for the high technology yield scenario,
since the output itself is higher.

Technology investments in both endogenous technology scenarios are also al-
most constant in time with more investments being made for the higher omega pa-
rameter. There are more incentives to invest into technology if it has more impact
on productivity, thus a higher output share is invested.
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Fig. 2 Economic dynamics for the basic model and with endogenous technology

Fig. 3 Productivity for the
basic model and with
endogenous technology

Because of the reduced consumption share due to endogenous technology (see
Fig. 5a), capital accumulation is boosted in comparison to the benchmark model as
well as the total output of the economy. Furthermore, in the scenario with low impact
of technology on productivity capital accumulation rates at later stages of develop-
ment decline and are outperformed by the linearly rising exogenous technology of
the basic model. The same is true for the output. This can be seen in Fig. 2.

This figure demonstrates the importance of parameter ω for the economy. With
high efficiency of the transformation of technical change into the productivity
growth, the growth of capital and output is stimulated by higher technological ad-
vances and by lower consumption shares, while for lower values of ω the reduction
in consumption per se is not sufficient to outperform the exogenous technology. To
see this, consider the relative productivity growth for all three scenarios in Fig. 3.
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Fig. 4 Climate dynamics for the basic model and with endogenous technology

As a result of lower consumption shares and higher abatement investments per
capita, the climate in the endogenous technology version of the model demonstrates
much less drastic temperature increases and GHG concentrations than the bench-
mark model as Fig. 4 shows.

It should be noted that after 120 years of simulation, the model with endogenous
technology tends to the stabilization of temperature and emissions at some lower
level compared to the model with exogenous technical change. In particular, with
slower advances in productivity (ω= 0.05) the temperature increase amounts to not
more than 2 °C, while for the benchmark model with exogenous technology this
value is higher than 3.5 °C and approaches 4 °C. Slower environmental degradation
together with higher economic performance of the endogenous technology model
are the consequences of different dynamics of technical change in comparison with
the linear one in the benchmark model. The highest increase of productivity happens
in the first 20 years of simulation, while later on R&D investments are being made
on the level just to support the achieved productivity level. In such a way the impact
of technology on the environment is minimized and the environmental degradation
slows down. Additional resources which are gained through this rapid technological
advance are then devoted mainly to abatement activities further reducing the impact
of the output on the environment. Thus, under endogenous technological change it
appears to be optimal for the fully informed planner to “grow up first and clean up
later”, rather then gradually increase the productivity and invest into the abatements
simultaneously. As a result, the environment suffers less, since abatement activi-
ties are initially and all over the simulation period higher than in the scenario with
exogenous technology.

In terms of consumption and welfare, the scenario with a high impact of tech-
nology on productivity delivers greater consumption to the representative consumer
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Fig. 5 Consumption
dynamics for the basic model
and with endogenous
technology

Table 4 Present value
consumption changes with
endogenous technology
(relative to exogenous)

ω t = 50 t = 100

0.05 −0.96 % −0.80 %

0.1 13.78 % 17.27 %

than the benchmark scenario, while this is not true for the low impact scenario. This
is demonstrated in Fig. 5.

At last, we compute welfare gains or losses expressed as relative changes of
present value consumption. To be precise, we compute the present value of the nec-
essary change in the consumption stream (in percent) that makes welfare in the sce-
nario with exogenous technology equal to welfare in the scenario with endogenous
technology. The results over 50 and 100 years of simulations are shown in Table 4.
The planning horizon for the planner is the same for all the scenarios and equals
180 years. Thus, we compare present value consumption changes along the same
optimal trajectory in two different time points.

For longer time horizons the model with exogenous technology outperforms the
model with endogenous technology with low impact (ω = 0.05) in terms of con-
sumption. The scenario with higher technology impact yields a much higher con-
sumption path, increasing to more than 17 % in 100 years above the benchmark
model. For shorter time horizons, this difference is less drastic with an almost 14 %
increase in consumption in the case of endogenous technology with a high trans-
formation rate. It should be noted, that these differences may be explained by the
different assumptions on the form of technical change. In our endogenous technol-
ogy model, technical change has an exponential form, while in the benchmark model
it is linear. However, these simulations demonstrate, that exponential-type technical
change is better for the environment and for consumption if the planner controls
technical change.
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Fig. 6 Optimal controls with directed and undirected technical change

3.3.2 Directed vs. Undirected Endogenous Technological Change

Next we consider the extension of the model to the case of directed endogenous
technical change. To this end we introduce the parameter of the direction of tech-
nical change through ε. We consider 3 different scenarios and compare them with
the endogenous undirected change, discussed above, with a productivity impact of
ω = 0.1, since this is the value which allows for productivity growth comparable
to the exogenous one and is the “medium” scenario with the respect to economic
and environmental dynamics. All the configurations of technological parameters are
given in the Table 2.

Consider abatement and investments into technology in per capita terms dis-
played in Fig. 6. The first thing to note is that abatement activities are increased for
all scenarios of directed technical change in comparison with the undirected one.
The highest abatement rate is obtained for the dirty growth scenario, while the low-
est (among directed growth scenarios) for the clean growth. This seems rather intu-
itive: the higher productivity growth with dirty technology frees more resources for
abatement activities, while with clean technology productivity grows much slower
but, at the same time, the environmental damage is also lower such that abatement
activities are not that necessary. However, in the case of undirected growth with
comparable productivity, abatement rates are lower than for the neutral technical
change which gives the same rate of productivity increase as the undirected change
with ω= 0.1. This points to the difference between undirected and directed techni-
cal change models: with an exogenously given reduction of emissions, which is not
part of the technical change managed by the planner, the planner has lower concerns
for abatement activities even with a comparable productivity growth. The abatement
rate dynamic is displayed in Fig. 6a.
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Fig. 7 Consumption with
directed and undirected
technical change

The interesting difference can be observed for technology investments. These are
also constant for all scenarios after 100 years. In the case of clean growth, techno-
logical investments are lower than for both scenarios of undirected growth, while
they are higher for neutral and dirty growth. In these last two scenarios, technolog-
ical investments are almost the same, although the return for such investments in
terms of productivity is twice as high as for dirty growth. The economic intuition
for this result may be as following. After achieving some sufficiently high produc-
tivity level, new additional resources are rather spent for abatement activities and
consumption. It becomes more profitable, in terms of consumption gains, for the
planner to invest additional resources into abatement to decrease damages, rather
than to boost productivity further, since at the high level of productivity achieved,
additional R&D investments would increase productivity to rather a small extent. At
the same time, additional abatements will significantly slow down the environmen-
tal degradation, thus, decreasing threats to the output and consumption coming from
the φ(τ) damage function. This also means that the threat of dirty technology is at
least partially counterbalanced by reduced productivity growth (and the associated
environmental threat) at later stages of development in the dirty growth scenario.
R&D investments are displayed in Fig. 6b.

The level of consumption is the lowest one for the clean growth scenario and the
highest one with dirty growth. Undirected technical change, with technology impact
ω= 0.1, yields lower consumption than the neutral directed growth scenario, which
has the same overall impact of technology on productivity, εω = 0.1. The differ-
ence in steady state consumption levels between clean and dirty growth scenarios
is almost 300 %. This is the direct consequence of lower capital accumulation and
output for the clean growth scenario, since the productivity growth is much slower
there. The dynamics of consumption is displayed in Fig. 7.

The dynamics of capital and output is displayed in Fig. 8. One can observe that in
the case of clean growth, capital accumulation and output of the economy are lower
compared to undirected technical change, while these two are higher both for neutral
and dirty growth scenarios. In all scenarios, the steady state levels of both variables



Climate Change and Technical Progress: Impact of Informational Constraints 21

Fig. 8 Economic dynamics with directed and undirected technical change

are achieved after 100 years of simulations and remain constant afterwards. This
is different from the benchmark model with exogenous technology because tech-
nology growth is not linear but rather of exponential type. Despite of almost equal
technology investments in per capita terms for neutral and dirty scenarios, the cap-
ital and output dynamics in the latter case are higher by roughly 25 %. This is the
effect of higher productivity. Technology for the growth model with directed tech-
nical change is described by two variables rather than by one: emission intensity
reduction due to cleaner technology and productivity growth, displayed in Fig. 9.

As it can be seen, productivity growth is higher in the case with directed techni-
cal change only for the dirty growth scenario, while directed technical change in the
clean scenario generates smaller productivity growth than directed neutral and undi-
rected technical progress. In the case of dirty growth, productivity grows twice in
100 years while in all other cases the growth is below 40 %. This is the explanation
why in the dirty growth case technology investments are the same as for the neutral
case: higher capital accumulation gives more investments in absolute value with the
same share and still the productivity grows much faster. Emissions reduction for all
directed growth scenarios is less intensive than for the exogenous function, even for
the case of clean growth where 90 % of technological progress is going into the
emissions reduction. It is important to note that for the neutral case, the emissions
reduction is not constant, as it is displayed on the graph, but the total influence of
productivity growth plus emissions reduction technology is constant. One can con-
clude that the bias towards clean technology is not sufficient to achieve the same
emissions reduction ratio as for the model with undirected technical change while
losses in economic variables are substantial in comparison with dirty growth, as it
is displayed in Fig. 8.
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Fig. 9 Technology dynamics with directed and undirected technical change

Fig. 10 Environmental dynamics with directed and undirected technical change

At last, consider the dynamics of the environmental part of the model in Fig. 10.
One realizes that, in terms of environmental damages, the dirty growth scenario is
very close to the undirected change, while the productivity is almost twice as high.
At the same time neutral and clean growth scenarios provide a better environment
but at the cost of economic losses. As a result, one may conclude that the dirty
growth scenario is the most beneficial for the economy by the total of economic and
climate characteristics.
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Table 5 Present value
consumption changes with
directed technical change
(relative to undirected)

ε t = 50 t = 100

0.1 (clean) −14.42 % −17.16 %

0.5 (neutral) 28.63 % 29.98 %

0.9 (dirty) 79.17 % 84.35 %

To obtain this aggregate measure, we compare welfare of the economy in the case
of directed technical change with the undirected one, with welfare again expressed
as percentage change of present value consumption. The change in present value
consumption is calculated for a time period of 50 and 100 years as above. Changes
are computed for directed technical change scenarios with ω = 0.2 relative to the
undirected endogenous technical change model with ω= 0.1. Consumption changes
are displayed in the Table 5.

One can see that the dirty growth scenario is by far the most beneficial one with
an 80 % rise in consumption in 50 years in comparison to the undirected change. The
case of neutral technical progress also gives some improvement of roughly 30 %.
This happens due to lower environmental damages and higher economic dynam-
ics in this scenario than for undirected change. The main drawback of the neutral
technical progress is that it may happen only for exactly one value of the direc-
tion parameter, ε, and this is not easy to achieve in practical implementations of
environmental policy. However, one may conclude, that if to choose between clean
and dirty technological scenarios, the dirtier is better, ε ≥ 0.5, since the increase in
productivity sets free resources for partial compensation of environmental damages
through increases in abatement, rather than reduction in emission intensity.

3.4 Informationally Constrained Economy

3.4.1 Full Information vs. Informationally-Constrained Scenarios

Here, we compare the simulation results for the fully informed social planner with
the informationally constrained (BaU) behaviour of the representative household. It
turns out that in all cases, the environmental damages for BaU scenarios are higher
than for the economy with full information. This is rather intuitive, since the main
feature of the informationally constrained economy is the neglect of the influence
of economic variables on the environment. The dynamics of the state variables in
the benchmark model with exogenous technology under full information against the
BBaU (basic BaU) scenario are illustrated in Fig. 11.

From this figure, it may be clearly seen that in the case of the BBaU scenario,
GHG accumulation and the temperature increase are higher than for the benchmark
model with full information whereas the capital stock is higher too. This is the typ-
ical feature for the majority of informationally constrained scenarios: higher envi-
ronmental damages and higher capital growth. For the benchmark model with our
set of parameters the general claim of the paper Bréchet et al. (2011) holds: the in-
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Fig. 11 BaU dynamics compared to full information (exogenous technology)

formationally constrained economy yields lower consumption paths. However, the
difference is very small. It amounts to a 0.68 % decline in consumption in 50 years
and to 1.12 % decline in 100 years, in comparison with the full information scenario.

In the case of endogenous technology (EBaU), the difference is more drastic,
since not only the influence of economic variables is neglected, but also the effect of
technological variables on the environment. Technology influences the environment
through productivity growth which boosts the emissions accumulation, while the
household is unaware of this influence when determining its policy. As a result, the
difference in dynamics between full information and informationally constrained
scenarios is larger than for the exogenous model. This can be seen in Fig. 12.

Even more differences between the two solutions are revealed for the case of
directed technical change (EDBaU), since now there is another additional influence
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Fig. 12 BaU dynamics compared to full information (endogenous technology)

of technology on the environment the household in the BaU scenario is unaware of:
the emissions reduction intensity, e(t), which is also endogenous in this version of
the model. As a result, not only environmental damages are higher, as for undirected
technical change, but the capital accumulation is lower for the EDBaU scenario than
under the full information. This is seen in Fig. 13 for the dirty growth scenario.

3.4.2 Comparison of Different Technological Change Scenarios
for the Informationally Constrained Economy

Finally, we compare all of the computed scenarios with informational constraints
with each other to find out possible gains and losses in social welfare as well as the
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Fig. 13 BaU dynamics compared to full information (directed technical change)

dynamics of the economic-environmental system. First, consider the dynamics of
technology investments for BaU systems in Fig. 14.

Abatement rates are not controlled for in BaU scenarios since the household is
unaware of the dynamic link of the economy and the environment and, thus, can-
not influence the degree of environmental damages. Technology investments are
the highest for the BaU scenario with undirected endogenous technology (EBaU)
(with ω= 0.1), while minimal for the clean growth BaU scenario with directed en-
dogenous technology (EDBaU) (with εω= 0.02). Thus, one may conclude that the
level of technology investments depends not only on the total productivity parameter
(ω and ε ·ω for EBaU and EDBaU scenarios, respectively), since this one is higher
for the dirty growth scenario than for the EBaU scenario, but also on the achieved
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Fig. 14 Technology
investments for BaU
scenarios

level of technology. There is a maximal level of technology which is sufficient for
the household and it does not continuously increase productivity, in the same way
as for the full information scenarios above.

The economic dynamics of BaU scenarios is displayed in Fig. 15. One may see
that the dynamics of capital accumulation and output for the case of the clean growth
EDBaU system is very close to the one of the BBaU scenario, while the consump-
tion dynamics in general follows the same pattern as that of output. The ordering
of consumption, output and capital accumulation paths is the same as for full in-
formation systems. Further, the capital accumulation for the EDBaU scenario is
lower than for the full information directed growth case. In the case of undirected
technical change, capital accumulation is higher for the EBaU scenario than for
full information undirected growth. Thus, the difference between the dirty growth
EDBaU scenario and EBaU is smaller than the difference between these scenarios
under full information. To see that, just compare capital accumulation for EBaU and
dirty EDBaU in Fig. 15a and for their full information counterparts in Fig. 8a.

Technology for BaU models is endogenous only for EBaU and EDBaU scenarios
and its evolution is displayed in Fig. 16. As it can be seen, productivity growth for
EDBaU models may be lower or higher than for the EBaU model in the same way
as for their optimal counterparts. In the clean growth scenario, only 2 % of the total
technical progress are going to the increase in productivity and the latter grows less
than 10 % in 100 years. With dirty growth, productivity grows almost twice which,
however, is lower than for the optimal case since in the EDBaU scenario the effect of
technological investments for productivity is overestimated. As a result, both capital
accumulation as well as productivity growth are lower than in the full information
case. On the other hand, productivity growth in the EBaU scenario is higher than
for the full information strategy of undirected growth (roughly 50 % against 30 %)
which leads to higher capital accumulation.

Such a difference appears because in the undirected growth case, the emissions
reduction technology is exogenous and partially dissipates the effect of the produc-
tivity growth. As a result, the underestimation of the effect of technological invest-
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Fig. 15 Economic dynamics for BaU scenarios

ments by the household in the EBaU scenario leads to lower capital accumulation
and, consequently, to lower environmental damages compared to the EDBaU sce-
nario. In the latter case, emissions reduction intensity is rather low, especially for
the dirty growth scenario in comparison to the exogenous reduction technology.

Finally, consider the climate dynamics for BaU scenarios in Fig. 17. Again, one
can see that for the case of directed technical change the outcome ranges from catas-
trophic, in the case of dirty growth with a temperature increase up to 8 °C, to moder-
ate for the optimistic one of the clean growth scenario with an increase of only 3 °C.
BaU model and EBaU model dynamics lie within this range in the same way as for
full information models. At the same time, the increase in emissions and tempera-
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Fig. 16 Technology for BaU models

Fig. 17 Climate module for BaU scenarios

ture for BaU scenarios is much higher for all three models being considered and is
not stabilizing in the long-run. In the full information case, there exists at least one
scenario (clean growth) with a stabilizing temperature, while this is not the case for
BaU simulations.

Table 6 gives the relative welfare losses and gains, expressed in present value
consumption, for the EBaU and EDBaU scenarios in comparison with the BBaU and
EBaU scenarios. From this table, one can see that both the model with undirected
and directed endogenous technical change yield higher social welfare than the basic
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Table 6 Present value
consumption changes
between BaU scenarios

Scenario t = 50 t = 100

EBaU/BBaU 48.89 % 51.64 %

EDBaU(dirty)/BBaU 98.15 % 98.23 %

EDBaU(neutral)/BBaU 41.58 % 43.56 %

EDBaU(clean)/BBaU 2.43 % 1.48 %

EDBaU(dirty)/EBaU 33.09 % 30.72 %

EDBaU(neutral)/EBaU −4.90 % −5.32 %

EDBaU(clean)/EBaU −31.20 % −33.08 %

model with exogenous technology, even if environmental damages are higher in
almost all cases (except the clean growth scenario). The clean growth scenario yields
almost the same welfare as the BaU scenario with exogenous technical change, but
with stabilized emissions and temperature. In addition, the dirty growth scenario
with directed technical change yields higher social welfare than the scenario with
undirected technical change in BaU scenarios in the same way as in the case of
optimal strategies. For clean and neutral technical change, one sees that directed
technical change leads to a loss of social welfare compared to the scenario with
undirected technical progress for BaU strategies, whereas with optimal strategies
the neutral growth scenario with directed technical change exhibits higher welfare
than the model with undirected technical change.

One can conclude that even in BaU scenarios there is a way to improve the envi-
ronment without incurring social welfare losses. This is the case in the clean growth
scenario where capital accumulation is reduced in order to invest in clean technolo-
gies that generate less GHG emissions. On the other hand, accelerated productivity
growth in the scenario with directed technical change can lead to social welfare
gains, however, at the expense of higher environmental losses for BaU strategies.
The best performance among BaU scenarios is obtained for the undirected endoge-
nous technical change, while models with directed technical progress display the
highest diversity of possible outcomes and, thus, a high potential for policy.

4 Conclusion

In this paper we have analysed how technical change affects climate dynamics and
economic variables in a basic growth model. We found that endogenous undirected
technical change yields less greenhouse gas emissions and a lower temperature in-
crease than the model with exogenous technical progress. This holds for the ver-
sion of the model with full information but not for the informationally constrained
version, where the optimizing representative household neglects the influence of
economic and of R&D activities on the environment. Concerning welfare, a better
outcome in the case of endogenous technical change can be only guaranteed for a
sufficiently high efficiency of the technology in use in the social optimum.

In the case of directed technical change, where a certain fraction of the technical
progress raises efficiency of production while the rest is devoted to the emission
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intensity reduction, results are more complicated. In the green growth scenario with
a large fraction of technical progress devoted to the emission intensity reduction,
the rise in temperature is clearly smaller compared to the model of undirected en-
dogenous technical change. However, that goes at the cost of output and consump-
tion such that the green growth scenario implies lower welfare than the model with
undirected technical progress. That also holds for the informationally constrained
version of the model.

The introduction of informational constraints decreases the consumption paths
in all versions of the model and under all of the scenarios of technical change being
considered. The higher is the degree to which the central authority may influence
the technology, the more drastic are the differences between the outcome of the
social optimum with full information and the laissez-faire or market economy with
informational constraints of the type being considered here. However, in the class of
informationally constrained economies it is possible to implement the clean growth
scenario, since this one yields a higher present value consumption, i.e. higher wel-
fare, than the scenario with exogenous technical progress. At the same time, the
scenario of dirty growth is preferable under both full information and under informa-
tional constraints on the economy. If the informationally constrained household is
allowed to choose between undirected and directed technical change, it will choose
the dirty growth scenario. However, the simulations demonstrate that the fixed di-
rection of technical change might be the key factor for the dirty growth alternative
to be preferred by the household. The option of control over this direction of tech-
nical change may stimulate some dynamic adjustments in the R&D policy of the
household after some initial period of accumulation of productivity.
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Appendix

Optimality Conditions

The basic model with exogenous technical change contains 3 state variables and 2
controls. The (current-value) Hamiltonian associated with this problem is:

H B(k, τ,m,ψk,ψτ ,ψm)

= [u(t)A(t)φ(τ(t))k(t)
α]1−γ

1− γ

+ψk(t)
[−δk(t)+ [

1− u(t)− c1
(
a(t)

)]
A(t)φ

(
τ(t)

)
k(t)α

]
+ψτ (t)

[−λ(m(t))τ(t)+ d
(
m(t)

)]
+ψm(t)

[−νm(t)+ (
1− a(t)

)
e(t)A(t)φ

(
τ(t)

)
k(t)α +E

(
τ(t)

)]
.
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Yielding first-order conditions on controls u(t), a(t):

∂H B

∂u
= [A(t)φ(τ(t))k(t)

α]1−γ
u

−ψk(t)A(t)φ
(
τ(t)

)
k(t)α = 0,

∂H B

∂a
=−A(t)φ(τ(t))k(t)α

(
ψk(t)

∂c1(a)

∂a
+ψme(t)

)
= 0,

(13)

and co-state equations:

ψ̇k =
(−φ(τ)eAαkα−1 + aφ(τ)eAαkα−1)ψm
+ (

r + φ(τ)Aαc1(a)k
α−1 + δ − φ(τ)Aαkα−1 + uφ(τ)Aαkα−1)ψk

− uφ(τ)
(
uAφ(τ)kα

)−γ
Aαkα−1,

ψ̇τ =
(
−e ·A∂φ(τ)

∂τ
kα + eA

∂φ(τ)

∂τ
kαa

)
ψm

+
(
−A∂φ(τ)

∂τ
kα + uA

∂φ(τ)

∂τ
kα +A

∂φ(τ)

∂τ
kαc1(a)

)
ψk

+ (
r + λ(m)

)
ψτ − uAkα

(
uAφ(τ)kα

)−γ ∂φ(τ)
∂τ

,

ψ̇m = (r + ν)ψm −ψτ
∂d(m)

∂m
+ψτ

∂λ(m)

∂m
τ.

These equations are non-linear and do not separate from the state equations, which
makes analytic closed-form solution difficult to achieve. Therefore, we have used
numerical simulations to approximate the dynamics.

In the case of undirected endogenous technical change the (current-value) Hamil-
tonian is given by:

H E(k, τ,m,x,ψk,ψτ ,ψm,ψx)

= [u(t)(1+ωx(t))φ(τ(t))k(t)α]1−γ
1− γ

+ψk(t)
(−δk(t)+ [

1− u(t)− c1
(
a(t)

)− c1
(
g(t)

)]
· (1+ωx(t)

)
φ
(
τ(t)

)
k(t)α

)
+ψτ (t)

(−λ(m(t))τ(t)+ d
(
m(t)

))
+ψm(t)

(−νm(t)+ (
1− a(t)

)
e(t)

(
1+ωx(t)

)
φ
(
τ(t)

)
k(t)α

)
+ψx(t)

(
β1g(t)− β2x(t)

)
.

First-order conditions on controls u(t), a(t), g(t):

∂H E

∂u
= [(1+ωx(t))φ(τ(t))k(t)α]1−γ

u
−ψk(t)

(
1+ωx(t)

)
φ
(
τ(t)

)
k(t)α = 0,

∂H E

∂a
=−(

1+ωx(t)
)
φ
(
τ(t)

)
k(t)α

(
ψk(t)

∂c1(a)

∂a
+ψm(t)e(t)

)
= 0,

∂H E

∂g
=−(

1+ωx(t)
)
φ
(
τ(t)

)
k(t)αψk(t)

∂c1(g)

∂g
+ β1ψx(t)= 0.

(14)
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With directed endogenous technical change, the first-order conditions from the
Hamiltonian (of the same type as for undirected change) are:

∂H D

∂u
= [(1+ εωx(t))φ(τ(t))k(t)α]1−γ

u
−ψk(t)

(
1+ωx(t)

)
φ
(
τ(t)

)
k(t)α = 0,

∂H D

∂a
=−(

1+ εωx(t)
)
φ
(
τ(t)

)
k(t)α

·
(
ψk(t)

∂c1(a)

∂a
+ψm(t)

e0

1+ (1− ε)ωx(t)

)
= 0,

∂H D

∂g
=−(

1+ εωx(t)
)
φ
(
τ(t)

)
k(t)αψk(t)

∂c1(g)

∂g
+ β1ψx(t)= 0.

(15)

The NMPC Technique

The full dynamical system, which describes the evolution of economic and environ-
mental variables, consists of 3 (in the case of the basic model) or 4 (for endogenous
technology) dynamical equations. Consider, for example, the dynamical system for
directed endogenous technology:

k̇(t)=−δk(t)+ [
1− u(t)− c1

(
a(t)

)− c1
(
g(t)

)]
Y(t),

τ̇ (t)=−λτ(t)+ ln
m(t)

m∗0
,

ṁ(t)=−νm(t)+ (
1− a(t)

)
eD(t)

(
1+ εωx(t)

)
kα(t),

ẋ(t)= β1g(t)− β2x(t).

(16)

At the same time the household solves the optimization problem that depends only
on economic and technology variables for each period [th, . . . , th +Θ], assuming
environmental variables being constant on the level of the last measurement:

JEDBaU =max
u,g

{∫ th+Θ

th

e−rt
( [u(t)Y (t)]1−γ

1− γ

)
dt

}

s.t.

k̇i (t)=−δki(t)+
[
1− u(t)− c1

(
g(t)

)]
Y(t),

ẋ(t)= β1g(t)− β2x(t),

Yi(t)=AD(t)φ(τi)ki(t)
α,

AD(t)= 1+ εωx(t),

τi = τ(ti),

where Yi(t), ki(t) are different from the true evolution of capital, k(t), and output,
Y(t), and are defined from the reduced problem without environmental constraints.
This “capital” defines the optimal consumption share of the household, while the
consumption is defined from the true capital and output, given by the evolution of
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the system (16). With such a problem the Hamiltonian of the household contains
only two constraints (on “capital” and technology):

H EDBaU (ki, x,ψki ,ψx)

= [u(t)(1+ εωx(t))φ(τi)ki(t)
α]1−γ

1− γ

+ψki (t)
(−δki(t)+ [

1− u(t)− c1
(
g(t)

)](
1+ εωx(t)

)
φ(τi)ki(t)

α
)

+ψx(t)
(
β1g(t)− β2x(t)

)
,

and one may define only consumption share and technology investments, but not
abatement rates from such a problem. Abatement rates are equal to zero for all BaU
problems considered under this scheme.

The same type of logic of construction is applied for all three versions of the
model: basic one, with undirected endogenous technical change and with the di-
rected one. To obtain solutions in the BaU case we make use of the numerical meth-
ods, since no analytic solution may be derived for this NMPC technique. We also
obtain numeric solutions for full problems of the type (1) s.t. (2)–(7).
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Environmental Policy in a Dynamic Model
with Heterogeneous Agents and Voting

Kirill Borissov, Thierry Bréchet, and Stéphane Lambrecht

Abstract We consider a population of infinitely-lived households split into two:
some agents have a high discount factor (the patients), and some others have a low
one (the impatients). Polluting emissions due to economic activity harm environ-
mental quality. The governmental policy consists in proposing households to vote
for a tax to maintain environmental quality. By studying the voting equilibrium at
steady states we show that the equilibrium maintenance level is the one of the me-
dian voter. We also show that (i) an increase in total factor productivity may produce
effects described by the Environmental Kuznets Curve, (ii) an increase in the pa-
tience of impatient households may foster environmental quality if the median voter
is impatient and maintenance positive, finally (iii) a decrease in inequality among
the patient households leads to an increase in environmental quality if the median
voter is patient and maintenance is positive. We show that, when the median in-
come of the median voter is lower than the mean (which is empirically founded),
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our model with heterogeneous agents predicts a lower level of environmental qual-
ity than what the representative agent model would predict, and that increasing the
public debt decreases the level of environmental quality.

1 Introduction

With the growing importance of global environmental issues, such as global warm-
ing, and the emphasis put on the general question of sustainable growth and devel-
opment, environmental policies and their financing have become a major subject of
concern in many developing or developed countries. As a response, economic the-
ory, and especially in macro-economics, elaborated dynamic models based on the
representative agent assumption to disentangle the nexus between economic growth
and pollution, or more generally environmental quality (see among many others,
Gradus and Smulders 1993; Stokey 1998, or Xepapadeas 2005). Though, it is strik-
ing to notice that the public debate about environmental policies and their financing
very often focus on the distributive aspects of the policies, and more precisely on
the distribution of their burden among heterogenous agents. To capture that dimen-
sion, economists must get rid of the representative agent and must start considering
heterogeneous agents in their macrodynamic models. There exist several ways of
introducing heterogeneity, e.g. in wealth (Kempf and Rossignol 2007), in individual
labor productivity (Jouvet et al. 2008), or in age with overlapping generations (John
and Pecchenino 1994; Jouvet et al. 2008).

In this paper we consider heterogeneity in agents’ discount factors.1 We assume
that the population is exogenously divided into two groups, one with patient house-
holds and the other with impatient households. Each individual votes in favor, or
against a public policy for environmental maintenance. Maintenance is a public pol-
icy financed by a tax on households, and pollution flows from firm’s activity. We
define a voting equilibrium and the related general equilibrium of the economy at
the steady state.

Our main results can be summarized as follows. First, if the policy choice were
one-dimensional (i.e. static with one homogeneous agent) then the median-voter
theorem would straightforwardly apply. Unfortunately, it cannot be applied in our
dynamic multidimensional. We show that, at the steady state, a voting equilibrium
coincides with the solution the one that would result from the median voter theo-
rem. We thus provide a logically consistent definition of the median voter theorem
in a dynamic setting. This establishes the applicability of the median voter theorem
on steady state equilibria. This is an important theoretical result because the cur-
rent literature always assumes that the median voter theorem can be applied after
the steady state is defined, though the steady state equilibrium should itself depend
on the voting outcome (see e.g. Kempf and Rossignol 2007; Corbae et al. 2009).

1For a general survey of the literature on models of economic growth with consumers having
different discount factors, see Becker (2006).
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Our theoretical contribution is to prove that a dynamic voting equilibrium coincides
with the application of the median voter theorem. Furthermore, to highlight the ad-
vantages of considering heterogenous agents, we compare our results with what the
representative agent framework would provide. The results differ in many respects.

Beyond the theoretical aspects, we also contribute to the literature on political
economy and environmental policy. With some comparative statics, we show many
novel results. We first show that, if the median voter is impatient, she consumes all
her revenue, and the maintenance level is zero. But if the median voter is patient,
then maintenance is positive but not uniquely determined. Then we go further and
stress that there exist two channels through which discount factors shape agents’
choices on maintenance, a direct one and an indirect one. In our model, the higher
the agents’ discount factor, the larger is her desired level of maintenance (it is the
direct channel). But in the same time, the richer the agent, the stronger her desired
level for maintenance. It is well-established in the literature that only agents with a
high discount factor have positive savings in the long run. Those with a low discount
factor save nothing. Thus, the former become wealthy in the long run and are prone
to ask for high levels of environmental maintenance. In the meantime the latter
become poorer and ask for lower levels of maintenance (it is the indirect equilibrium
channel). Combining these two channels provides us with new results about the
relationship between economic development and environmental quality through the
voting process, i.e. a new rationale for the so-called Environmental Kuznets Curve
(see e.g. Dasgupta et al. 2002; Prieur 2009). As far as inequality among agents
is concerned, we also show that when the median voter is patient, then reducing
inequality has a positive effect on environmental quality.

Actually, this discussion also relates to the broad debate about how discounting
impacts the choice of environmental policies.2 Although discounting is generally
considered as a normative issue, it also has a positive content, as stressed by Das-
gupta: “discount rates on consumption changes combine values with facts. Dasgupta
(2008, p. 144) or by Arrow et al. (1995) who distinguishes prescriptive and descrip-
tive positions. In environmental economics, a high discount factor leads to modest
and slow environmental maintenance levels, while a low discount rate leads to im-
mediate and strong action. The common characteristics in all this literature is to rely
on the assumption that there exists a representative agent in the economy whose
preferences are considered as given by a benevolent social planner. This agent fur-
ther acts as a benevolent social planner.3 We depart from the representative agent
hypothesis by considering an economy populated with heterogeneous agents. Then,
we are able to provide a microeconomic rationale to determine the implicit global
discount rate in this economy. This departs from the normative discussion on what
the discount rate should be. In our analysis we take heterogeneous agents’ pref-
erences beforehand and we scrutinize how heterogeneity shapes the policy in the

2Recently this debate has experienced a strong revival after the publication of the Stern Review
(Stern 2006, 2008). Prominent economists have contributed to the debate, like Dasgupta (2008),
Nordhaus (2008) or Weitzman (2007).
3Or the social evaluator, to take Dasgupta’s words.
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global economy. This is a novel contribution to the debate on discounting based on
a positive approach.

Applying the median voter theorem to dynamic models requires a suitable an-
alytical redesign of the political settings in this model. Models of such a kind are
much harder to analyze than their static counterparts or than the usual intertem-
poral models without political ingredients. There is a growing interest in the re-
cent literature on the analysis of the performance of majoritarian settings in dy-
namic frameworks, see e.g. Baron (1996), Krusell et al. (1997), Cooley and Soares
(1999), Rangel (2003) and Bernheim and Slavov (2009). The stage of development
of the theory is still in its infancy. In particular, there is no consensus about how to
model dynamic majoritarian voting. Without going into detail in this introduction,
it should be stressed that our approach to voting is different from the approaches
used in the above-mentioned papers. We propose a novel definition of voting equi-
librium, which is related to Kramer-Shepsle equilibrium concept (Kramer 1972;
Shepsle 1979). This definition will allow us to provide new theoretical results about
voting equilibrium in a dynamical setting.

These results also yield a discussion about alternative financing schemes of the
environmental maintenance policy. We look at the different impacts on heteroge-
nous households and especially on the median voter, of financing maintenance both
with taxes and with issuance of public bonds. We show that, under common as-
sumption about income distribution, an increase in the public debt leads to a lower
environmental quality.

The paper is organized as follows. In Sect. 2 we present the model, define the
competitive equilibria and describe steady-state equilibria for a given policy. In
Sect. 3 we endogenize the voting procedure on environmental maintenance, define
the intertemporal and steady state voting equilibria, and show the logical consis-
tency between the median voter theorem and the voting equilibrium in dynamic
general equilibrium. In Sect. 5 the comparison with the representative agent frame-
work is proposed. In Sect. 4 we perform comparative statics exercises to analyze
how environmental quality is impacted by an increase in total factor productivity, an
increase in patience, and a decrease in inequality. The discussion about the impact
of public debt on the environmental quality is carried out in Sect. 6. Section 7 is the
conclusion.

2 The Model

Our objective is to define and to study the intertemporal competitive equilibria with
voting on maintenance. We define voting equilibria in two steps. In this section, we
do the first step as we determine the competitive equilibrium production and con-
sumption paths for a given maintenance policy. The second step will be presented
in the next section where, among these competitive equilibria, the ones for which
a voting equilibrium exists will be selected. We use a discrete-time framework of
infinitely-lived consumers who inelastically supply one unit of labor at each time
period, with a representative polluting firm and a global public bad, a stock pollu-
tion.



Environmental Policy with Heterogeneous Agents and Voting 41

2.1 Production and Pollution

Output is determined by means of a production function aF(Kt ,Lt ) = Laf (kt ),
where a is total factor productivity, Kt and Lt are capital and labor at time t ,
kt =Kt/L is capital intensity, f (k) = aF(k,1) is the production function in in-
tensive form. Capital is assumed to fully depreciate each period. Output can be used
for consumption, investment or environmental maintenance. For the sake of sim-
plicity we will forget about the total factor productivity TFP a until Sect. 4 where it
really becomes useful. The dynamics of capital is given by

Kt+1 = F(Kt ,Lt )−Ct −Mt,

where Ct is aggregate consumption and Mt is aggregate maintenance. The pollution
flow, Pt , is proportional to output:

Pt = λF(Kt ,L)= λLf (kt ), λ > 0. (1)

LetQt be an index of environmental quality defined as Q̄−St , where Q̄ is some pre-
industrial (prior to global warming) quality level and St is the cumulative pollution
stock at time t . The dynamics of Qt is given by the following function:

Qt+1 = Ψ

(
Qt − κPt + Mt

μ

)
, (2)

where Ψ : R+ → R+ is a concave increasing function, κ > 0 and μ > 0 are two
exogenously given coefficients (for dimensional issues). Because the “marginal en-
vironmental productivity” of maintenance (∂Qt+1/∂Mt = Ψ ′(·)/μ) depends nega-
tively on μ, one may interpret 1/μ as the environmental efficiency of maintenance.
Let Q̄ be a unique positive solution to the following equation: Ψ (Q)=Q, i.e. the
stationary value of environmental quality with no pollution and no maintenance. For
example, the following specifications of Ψ (X) can be used: Ψ (X)=XνQ̄1−ν , with
0< ν < 1, or Ψ (X)= νX+ (1− ν)Q̄, with 0< ν < 1. Let Φ(·)= Ψ−1(·). We can
rewrite (2) as:

μΦ(Qt+1)= μ(Qt − Pt )+Mt.

It should be noticed that μΦ ′(Q) is the marginal cost of quality improvement.
The representative firm maximizes its profit πt under the constraint of the tech-

nology F(Kt ,Lt ) by choosing Kt and Lt and by taking real wage (wt ) and interest
rates (rt ) as given. The firm’s problem reads:

max
Kt ,Lt

πt = F(Kt ,Lt )− (1+ rt )Kt −wtLt . (3)

The first-order conditions are F ′K(Kt ,Lt )= 1+ rt and F ′L(Kt ,Lt )= wt , or in in-
tensive terms: f ′(kt )= 1+ rt and f (kt )− f ′(kt )kt =wt .
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2.2 The Consumers

Population consists of L consumers, with L an integer and odd. Each consumer is
endowed with one unit of labor force. The objective function of consumer i is:

∞∑
t=0

βti
[
u(ct )+ v(Qt)

]
,

where ct is consumption at time t and βi is a discount factor. Let us assume that
u(c) and v(Q) satisfy the following conditions:

u′(c) > 0, u′′(c) < 0, u′(0)=∞,

v′(Q) > 0, v′′(Q) < 0, v′(0)=∞.

Each consumer i is either patient (βi = βh) or impatient (βi = βl), with 0 < βl <

βh < 1. The set of patient consumers (with a discount factor equal to βh) is Hh, and
the set of impatient consumers (those with βl) is Hl . Consumers pay a tax mt =
Mt/L to finance the public provision of environmental maintenance. The budget
constraint of a consumer at time t is thus:

ct + st +mt ≤wt + (1+ rt )st−1,

ct ≥ 0, st ≥ 0, (4)

where wt is the wage rate, rt is the interest rate, and st are her savings at time t .4

Consumers’ utility depends on variables on which she has full control (ct and st )
but also on maintenance mt , which will be determined by voting (yet to be intro-
duced). At this stage, the result of voting is taken as given by the agents. Hence,
we need to solve the consumer’s program (to choose the optimal values for ct
and st , ∀t), considering mt as given.

Suppose that at time τ consumer i is given her predetermined level of savings
ŝiτ−1, the predetermined level of environmental quality Q̂τ , the stream of pollution
(Pt )

∞
t=τ and some maintenance policy which is represented by a sequence m =

(mt )
∞
t=0 of non-negative numbers. The problem P1(τ ) of this consumer reads as

follows:

max
(ct )

+∞
t=τ ,(st )+∞t=τ

∞∑
t=τ

βti
[
u(ct )+ v(Qt)

]

subject to:

μΦ(Qt+1)= μ(Qt − κPt )+Lmt, t = τ, τ + 1,

ct + st +mt ≤wt + (1+ rt )st−1, t = τ, τ + 1,

sτ−1 = ŝiτ−1, Qτ = Q̂τ ,

ct ≥ 0, st ≥ 0, t = τ, τ + 1.

4Consumers are forbidden to borrow against their future labor income. Hence, their savings must
be non-negative.
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It must be noticed that, since m = (mt )
∞
t=0 is given, the sequence (Qt )

+∞
t=τ is

in fact predetermined by Q̂τ and m. Hence, the utility consumer i derives from
environmental quality,

∑∞
t=τ βti v(Qt ), does not depend on her choice. In what fol-

lows, when we will define voting equilibrium, it will be key to keep in mind that, if
(si∗t−1, c

i∗
t ,Q

∗
t )
∞
t=0 is a solution to problem P1(0), then (si∗t−1, c

i∗
t ,Q

∗
t )
∞
t=τ is also a

solution to problem P1(τ ) at ŝit−1 = si∗t−1 and Q̂t =Q∗t .

2.3 Competitive Equilibrium Paths and Steady-State Equilibria

Let at time 0 the environmental policy be represented by some given sequence
m = (mt )

∞
t=0 of non-negative numbers. Let an initial state {(ŝi−1)

L
i=1, k̂0, Q̂0} also

be given. Here, ŝi−1 ≥ 0 stand for the initial savings of consumers i = 1, . . . ,L,

k̂0 > 0 is the initial per capita stock of capital (
∑L

i=1 ŝ
i
−1 = Lk̂0), and Q̂0 > 0 is the

initial value of environmental quality.

Definition 1 (Competitive equilibrium path) Given m, the sequence Em = {k∗t ,
1+ r∗t ,w∗t , (si∗t−1, c

i∗
t )

L
i=1,P

∗
t ,Q

∗
t }∞t=0 is called a competitive equilibrium path start-

ing from {(ŝi−1)
L
i=1, k̂0, Q̂0} if:

1. capital and labor markets clear at the following prices: 1 + rt = 1 + r∗t =
f ′(k∗t ),wt =w∗t = f (k∗t )− f ′(k∗t )k∗t , t = 0,1, . . . ;

2. for each household i = 1, . . . ,L the sequence (si∗t−1, c
i∗
t ,Q

∗
t )
∞
t=0 is a solution to

problem P1(0) at 1+ rt = 1+ r∗t ,wt =w∗t , t = 0,1, . . . ;
3.

∑L
i=1 s

i∗
t−1 = Lk∗t , t = 0,1, . . . ;

4. P ∗t = λLf (k∗t ), t = 0,1, . . . ;
5. μΦ(Q∗t+1)= μ(Q∗t − κP ∗t )+Lmt, t = 0,1, . . . .

Notice that, at each time t , maintenance mt is given and smaller than the wage
rate wt . We will not discuss the existence of equilibrium paths. Our main emphasis
is on steady-state equilibria.

Definition 2 (Competitive steady state equilibrium) Let an m ≥ 0 be given and
let m = (mt )

∞
t=0, with mt = m, t = 0,1, . . . . We call a tuple Em = {k∗,1 + r∗,

w∗, (si∗, ci∗)Li=1,P
∗,Q∗} a competitive steady-state equilibrium if the sequence

{k∗t ,1+ r∗t ,w∗t , (si∗t−1, c
i∗
t )

L
i=1,P

∗
t ,Q

∗
t }∞t=0 given for all t = 0,1, . . . by

k∗t = k∗, 1+ r∗t = 1+ r∗, w∗t =w∗, (5)(
si∗t−1, c

i∗
t

)L
i=1 =

(
si∗, ci∗

)L
i=1, (6)

P ∗t = P ∗, Q∗t =Q∗, (7)

is an equilibrium path starting from the initial state {(ŝi−1)
L
i=1, k̂0, Q̂0} = {(si∗)Li=1,

k∗,Q∗}.
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Provided the above definition, the following proposition describes the structure
of steady-state equilibria. It is an adaptation of the well-established results of Becker
(1980, 2006) to our model.

Proposition 1 (Structure of steady state equilibrium) A tuple Em = {k∗,1 + r∗,
w∗, (si∗, ci∗)Li=1,P

∗,Q∗} satisfying m < w∗ is a steady-state equilibrium if and
only if

βh = 1

1+ r∗
, 1+ r∗ = f ′

(
k∗

)
, w∗ = f

(
k∗

)− f ′
(
k∗

)
k∗, (8)

P ∗ = λLf
(
k∗

)
, (9)

μΦ
(
Q∗

)= μ
(
Q∗ − κP ∗

)+Lm, (10)

si∗ = 0, i ∈Hl, (11)

si∗ ≥ 0, i ∈Hh, (12)
L∑
i=1

si∗ =
∑
i∈Hh

si∗ = Lk∗, (13)

c∗ + s∗ +m=w∗ + (
1+ r∗

)
s∗. (14)

Proof See Sect. 8.1. �

In this proposition, (8) shows that the steady-state capital intensity, interest rate,
and the wage rate are determined by the discount factor of the patient consumer.
Equations (11)–(12) tell us that impatient consumers have zero savings. It means
that all the capital is owned by the patient consumers. As a consequence, in a steady-
state equilibrium all impatient consumers have the same income and savings levels.
In contrast, the distribution of savings among the patient consumers is indeterminate
in a steady state. As shown by (13), only aggregate savings is determined.

3 Voting Equilibria

There is no reason for heterogenous agents to agree on the desired level of environ-
mental maintenance. One way to solve this problem is to choose maintenance by
majority voting. If policy choices were one-dimensional, one could refer to the me-
dian voter theorem. But this theorem does not apply here. In this section we propose
a definition of voting equilibrium and we prove that the level of maintenance that
comes out at the voting steady-state equilibrium is the one that would have been
chosen by the median voter.

Let m = (mt )
∞
t=0 be an environmental policy. The optimal value of problem

P1(τ ) for consumer i is a function of ŝτ−1, Q̂τ and m. We will denote this opti-
mal value by Vi,τ (ŝτ−1, Q̂τ ,m).
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Definition 3 (Preferred change in environmental maintenance) Suppose that the en-
vironmental policy is represented by some sequence m̄= (m̄t )

∞
t=0 of non-negative

numbers and that at m= m̄ the function Vi,τ (ŝτ−1, Q̂τ ,m) is differentiable in mτ .

We say that consumer i is in favor of increasing mτ if ∂Vi,τ (ŝτ−1,Q̂τ ,m)

∂mτ
> 0 and is in

favor of decreasing mτ if ∂Vi,τ (ŝτ−1,Q̂τ ,m)

∂mτ
< 0 and m̄τ > 0.

Let us assume that, for an equilibrium path

Em̄ = {
k∗t ,1+ r∗t ,w∗t ,

(
si∗t−1, c

i∗
t

)L
i=1,P

∗
t ,Q

∗
t

}∞
t=0

the function Vi,τ (s
∗
τ−1,Q

∗
τ ,m) is differentiable in mτ at m = m̄. We denote by

N+τ (Em̄) the number of consumers who are in favor of increasing m̄τ , and by
N−τ (Em̄) the number of consumers who are in favor of decreasing m̄τ . We are now
equipped to define intertemporal voting equilibria.

Definition 4 (Intertemporal voting equilibrium) Let m∗ = (m∗t )∞t=0 be a mainte-
nance policy and Em∗ be an equilibrium path constructed at this policy. We call
the couple (m∗,Em∗) an intertemporal voting equilibrium path if at m = m∗
∀τ = 0,1, . . . the function Vi,τ (s∗τ−1,Q

∗
τ ,m) is differentiable in mτ , and

N+τ
(
Em∗)< L

2
, N−τ

(
Em∗)< L

2
, ∀τ = 0,1, . . . .

According to this definition, an intertemporal voting equilibrium is reached if,
at each time period there exists neither a majority of agents who are in favor of
increasing maintenance, nor a majority of agents who are in favor of decreasing
maintenance. And because we take the number of agents as odd by assumption,
then there exists an agent for whom the maintenance level is optimal in equilibrium.

This definition is in line with the usual way of defining intertemporal equilib-
rium, as articulated by Hicks (1936) and, more recently, by Grandmont (1983). In
our model, any intertemporal voting equilibrium can be seen as a sequence of tem-
porary voting equilibria in which agents perfectly anticipate the whole future, in-
cluding voting results. Indeed, let (m∗,Em∗) be an intertemporal voting equilibrium.
Suppose that at time τ the agents are asked to vote on mτ and that they correctly
anticipate m∗t for all t = τ + 1, τ + 2, . . . . Then it is clear that all the conditions
for the median voter theorem hold in this one-dimensional voting, and that the pre-
ferred value of mτ for the median voter coincides with m∗τ . A key implication is that
intertemporal voting equilibria are time consistent.

In the rest of the paper we shall focus on steady state voting equilibria. Consider a
couple (m∗,Em∗), where m∗ ≥ 0 and Em∗ = {k∗,1+ r∗,w∗, (si∗, ci∗)Li=1,P

∗,Q∗}
is a steady-state equilibrium constructed at the maintenance policy m∗ =
(m∗0,m∗1, . . .), m∗t =m∗, t = 0,1, . . . . Let Em∗ be an equilibrium path corresponding
to Em∗ .
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Definition 5 (Steady state voting equilibrium) We call the couple (m∗,Em∗)
a steady state voting equilibrium if the couple (m∗,Em∗) is an intertemporal voting
equilibrium path.

To answer the question of whether a couple (m∗,Em∗) is a steady state voting
equilibrium or not, it is sufficient to know which consumers are in favor of an in-
crease in m∗0 = m∗ at time 0, and which ones are in favor of a decrease. We know
that, for each consumer i, the sequence (s̃it−1, c̃

i
t , Q̃t )

∞
t=0 given by

s̃it−1 = si∗, c̃it = ci∗, Q̃t =Q∗, (15)

is a solution to

max
(ct )

+∞
t=0 ,(Qt )

+∞
t=0

∞∑
t=0

βti
[
u(ct )+ v(Qt)

]
, (16)

μΦ(Qt+1)= μ
(
Qt − κP ∗

)+Lm∗t , t = 0,1, . . . , (17)

ct + st +m∗t ≤w∗ + (
1+ r∗

)
st−1, t = 0,1, . . . , (18)

si−1 = ŝi−1, Q0 = Q̂0, (19)

ct ≥ 0, st ≥ 0, Qt ≥ 0, t = 0,1, . . . (20)

at ŝi−1 = si∗, Q̂0 =Q∗.

Lemma 1 (Differentiability of value function w.r.t. maintenance and sign of deriva-
tive) Let for some i the sequence (s̃it−1, c̃

i
t , Q̃t )

∞
t=0 given by (15) be a solution

to problem (16)–(20) at given m∗t = m∗ ∈ [0,w∗), t = 0,1, . . . and at ŝi−1 = si∗,
Q̂0 =Q∗. Then Vi,0(si∗,Q∗,m∗) is differentiable in m∗0 and

∂Vi,0(s
i∗,Q∗,m∗)
∂m∗0

� 0⇔ βiLv
′(Q∗)� μu′

(
ci∗

)(
Φ ′

(
Q∗

)− βi
)
. (21)

Proof See Sect. 8.2. �

The interpretation of Lemma 1 runs as follows. Consider the first inequality in
(21) at a given maintenance m∗0 and suppose that the left-hand side is higher than
the right-hand side. In this case, out of a marginal change in maintenance, the in-
duced marginal utility of environmental quality (i.e. the LHS of (21)), is larger than
the induced marginal utility of consumption (i.e. the RHS of (21)). This is likely to
happen when the given maintenance level m∗0 is low. In such a case the consumer
will be in favor of an increase in maintenance. In the opposite case, the given main-
tenance m∗0 is likely to be large so that the induced marginal utility of consumption
is higher than the induced marginal utility of quality and the consumer is in favor of
decreasing maintenance.
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To check whether a couple (m∗,Em∗) is a voting steady-state equilibrium or not,
let us consider the following problem P2 in which household i is free to determine
her preferred level of maintenance mt :

max
(ct )

+∞
t=0 ,(st )

+∞
t=0 ,(mt )

+∞
t=0 ,(Qt )

+∞
t=0

∞∑
t=0

βti
[
u(ct )+ v(Qt)

]
,

subject to:

μΦ(Qt+1)≤ μ
(
Qt − κP ∗

)+Lmt, t = 0,1,

ct + st +mt ≤w∗ + (
1+ r∗

)
st−1, t = 0,1,

s−1 = ŝ−1,Q0 = Q̂0,

ct ≥ 0, st ≥ 0,mt ≥ 0,Qt ≥ 0, t = 0,1.

Let (s̃, c̃, m̃, Q̃) ∈ R4+ determine a steady-state solution to this problem if the
sequence (s̃t−1, c̃t , m̃t , Q̃t )

∞
t=0 given by

s̃t−1 = s̃, c̃t = c̃, m̃t = m̃, Q̃t = Q̃ (22)

is its solution at ŝ−1 = s̃ and Q̂0 = Q̃.
Prior to formulating the following lemma, remind that βh(1+ r∗)= 1 and hence

that βi(1+ r∗) < 1,∀i ∈Hl , and βi(1+ r∗)= 1,∀i ∈Hh.

Lemma 2 (Characterization of steady state solution to P2) The tuple (s̃, c̃, m̃, Q̃) ∈
R4+ determines a steady-state solution to P2 if and only if

βi
(
1+ r∗

)
< 1⇒ s̃ = 0, (23)

βiLv
′(Q̃)≤ μu′(c̃)

(
Φ ′(Q̃)− βi

)
(= if m̃ > 0), (24)

c̃=w∗ + r∗s̃ − m̃, (25)

μ
(
Φ(Q̃)− Q̃+ κP ∗

)= Lm̃. (26)

Proof See Sect. 8.3. �

For the sake of simplicity we can get rid of m̃ by noticing that m̃ > 0 ⇔ c̃ <

w∗ + r∗s̃. We can thus rewrite conditions (24)–(25) as follows:

c̃=
(
w∗ + r∗s̃ − μκ

L
P ∗

)
+ μ

L

(
Q̃−Φ(Q̃)

)
, (27)

c̃ ≤w∗ + r∗s̃, (28)

βiLv
′(Q̃)≤ μu′(c̃)

(
Φ ′(Q̃)− βi

) (= if c̃ < w∗ + r∗s̃
)
. (29)

Equation βiLv
′(Q)= μu′(c)(Φ ′(Q)− βi) shows that c in increasing in Q. As

for equation c= (w∗+ r∗s̃− μκ
L
P ∗)+ μ

L
(Q−Φ(Q)), it shows that, for any given s̃,

the relationship between c and Q is either always decreasing, or first increasing
(Φ ′(Q) < 1) and then decreasing (Φ ′(Q) > 1). Suppose we are given m∗ ∈ [0,w∗),
where w∗ is given by (8). Let Em∗ = {k∗,1 + r∗,w∗, (si∗, ci∗)Li=1,P

∗,Q∗} be a
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Fig. 1 Left: zero-maintenance equilibrium (Regime 1)—right: positive maintenance equilibrium
(Regime 2)

steady-state equilibrium constructed at the maintenance policy m∗ = (m∗,m∗, . . .).
Put all households in ascending order of their savings and take the median one, im.5

Lemmas 1 and 2 lead to the following theorem.

Theorem 1 (Steady state voting equilibrium and median voter) The couple
(m∗,Em∗) is a steady-state voting equilibrium if and only if for i = im, the tuple
(si∗, ci∗,m∗,Q∗) is a steady-state solution to problem P2.

The economic interpretation of the theorem runs as follows. We know from
Proposition 1 that the per capita stock of capital in a steady-state voting equilibrium
(k∗) and the wage and interest rates (w∗ and r∗) are determined by the discount fac-
tor of patient households (βh). In the meantime, Theorem 1 says that maintenance
and environmental quality do depend on the median discount factor and the median
savings. Combining the two yields the following outcome. If the median value of the
discount factor is βl , and so βim = βl , then maintenance and environmental quality
are determined by βl and w∗, because the savings of agent im are unambiguously
zero. But if the median value of the discount factor is βh and hence βim = βh, then
they are determined by βh, w∗, r∗ and the savings of agent im, sim∗, which can be
either zero or positive.

It follows from this theorem that there exist two possible equilibria depending on
whether cim∗ =w∗ + r∗sim∗ (⇔m∗ = 0) or cim∗ <w∗ + r∗sim∗ (⇔m∗ > 0). They
are illustrated by the left and right panel of Fig. 1, in which we take sim∗ as given.
On these graphs the three curves C1, C2 and C3 are defined as follows:

5More formally, we can put the set of households in an order such that, if βi < βj and if si∗ < sj∗,
then i precedes j . Such an order exists because the impatient consumers do not save in a steady-
state equilibrium. Now take the household median in the sense of the introduced order, im.
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Curve C1: βimLv
′(Q)= μu′(c)(Φ ′(Q)− βim)

Curve C2: c=w∗ + r∗sim∗
Curve C3: c= (w∗ + r∗sim∗ − μκ

L
P ∗)+ μ

L
(Q−Φ(Q)).

Let us describe these two regimes.

Regime 1 Zero-maintenance. The equilibrium point (Q∗, cim∗) is at the intersection
of the C2 curve and the C3 curve (see Fig. 1a) and, as far as curve C1 is concerned,
we have βimLv

′(Q∗) < μu′(cim∗)(Φ ′(Q∗)− βim).
Regime 2 Positive-maintenance. The equilibrium point (Q∗, cim∗) is at the inter-

section of the C1 curve with the C3 curve (see Fig. 1b) and, as far as curve C2 is
concerned, we have cim∗ <w∗ + r∗sim∗ .

In combination with the above-mentioned two regimes, two cases must be dis-
tinguished:

Case 1 Impatient median voter. βim = βl and savings of the median voter are
uniquely determined, sim∗ = 0.

Case 2 Patient median voter. βim = βh and the savings of the median voter, sim∗,
are not unique: they can take any value in the interval [0, 2

L+1Lk
∗].

In both cases, the regime of equilibrium maintenance can be nil or positive. In
Case 1, the equilibrium level of maintenance and environmental quality are uniquely
determined. As for Case 2, if there exists at least one equilibrium with positive
maintenance, the equilibrium levels of maintenance and environmental quality are
indeterminate since there is a continuum of these.

The very existence of steady-state voting equilibria deserves some comments. It
is clear that if the majority of consumers is impatient, then steady-state voting equi-
libria exist for any distribution of savings among patient consumers because, in this
case, the solution to problem P2 for the median voter, (s̃, c̃, m̃, Q̃), uncondition-
ally satisfies m̃ < w∗. But if the majority of consumers is patient, then steady-state
voting equilibria do exist for any distribution of savings among patient consumers,
where the savings of the median voter are nil or small enough.

4 Some Comparative Statics on Preferences, Income Inequality,
and Technology

In our model, comparative statics requires some caution. As stressed above, if the
median voter is patient, in a steady state the savings of the median voter are not de-
termined uniquely. They can take any value in the interval [0, 2

L+1Lk
∗]. Therefore,

when making a comparative statics exercise, a change in a parameter will have an
indeterminate effect on the savings of the median voter. To circumvent this prob-
lem we will assume that k∗ is does not change with sim∗. We will also assume that
the ratio sim∗/(

∑L
i=1 s

i∗), and hence the ratio sim∗/k∗, remain unchanged when a
parameter changes (notice that since k∗ = (

∑L
i=1 s

i∗)/L shows the mean savings,
sim∗/k∗ shows the proportion between the median and mean savings).
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4.1 An Increase in sim∗ Other Things Equal

Let us first carry out a comparative statics exercise relevant in Case 2, when the
median voter is patient and his savings can be positive. Assume that k∗ is kept
unchanged and sim∗ increases. The increase in sim∗ translates a change in the dis-
tribution of savings among the patient consumers only. Consequently, it leads to
a different income distribution (an increase in the median income relative to the
mean).

• Under Zero-Maintenance Equilibrium (Regime 1), a small increase in sim∗, other
things equal, will shift C2 and C3 upwards by the same magnitude. Hence, con-
sumption of the median voter cim∗ will increase, but environmental quality Q∗
will remain unchanged. A larger increase in sim∗ may shift the economy to
Regime 2.

• Under Positive-Maintenance Equilibrium (Regime 2), a small increase in sim∗,
other things equal, will shift C3 upwards, while letting C1 untouched. Hence the
environmental quality Q∗ will increase.

Following the literature in political economy and income inequality (see e.g.
Meltzer and Richard 1981), the “more equal” the income distribution, the higher
the median income relative to the mean (this is only reasonable in the case where
the median income does not exceed the mean, which is considered as a typical sit-
uation). In our model, it means that, in developed economies where maintenance is
positive, lower inequality has a positive effect on environmental quality. Conversely,
in developing economies where there is no maintenance, inequality itself does not
effect the environmental quality.

4.2 An Increase in Total Factor Productivity

In the following sub-sections of this section, we consider a Cobb-Douglas produc-
tion function, f (k)= kα,0< α < 1. We also assume that the fraction of output nec-
essary to remove all emissions is lower than the labor share in output, 1− α > μλ.
Geometrically, the latter assumption implies that the curve C3 shifts upwards after
an increase in capital intensity.

Let us first consider an increase in the total factor productivity by introducing
a scale parameter a in the production function, aF(K,L) = Laf (k). The impact
of an increase in total factor productivity will depend on the regime the economy
follows in equilibrium.

Regime 1. Zero-Maintenance Equilibrium In this regime, a small increase in
a leads to an increase in k∗, w∗ and w∗ + r∗sim∗. It will also increase the out-
put Lf (k∗) and pollution P ∗ levels, but it cannot make maintenance positive. As
a consequence, the environmental quality Q∗ decreases. Graphically (see Fig. 2,
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Fig. 2 An increase in total factor productivity in Regime 1 (left) and Regime 2 (right)

left panel), C2 shifts upwards due to the increase in w∗ + r∗sim∗. C3 also shifts up-
wards, but to a smaller extent because both w∗ and P ∗ increase. If the increase
in a becomes large enough, then the economy switches to Regime 2, namely the
Positive-maintenance Equilibrium.

Regime 2. Positive-Maintenance Equilibrium In this regime, an increase in a

will shift C3 upwards, as shown in Fig. 2, right panel, and hence to an increase
in Q∗.

To sum up, if the economy starts in Regime 1, then an increase in a from 0 to
+∞ first leads to a decrease in environmental quality Q∗, and then to an increase,
as shown in Fig. 2. If one considers that developing countries most likely corre-
spond to Regime 1 and rich countries to Regime 2, then this conclusion means that
technological progress first goes with a decrease in environmental quality, and af-
ter some stage of development with an increase in environmental quality. This result
provides a new rationale for an Environmental Kuznets Curve (see e.g. Stokey 1998;
Dasgupta et al. 2002 or Prieur 2009) with heterogeneous agents and voting.

4.3 Patient Agents Become More Patient: An Increase in βh

We first consider an increase in βh, which means that patient agents become even
more patient. The effects on the environmental quality will depend on which regime
the economy experiences.

Under Zero-Maintenance Equilibrium (Regime 1), a small increase in βh leads
to an increase in capital intensity k∗, wage rate w∗, output Lf (k∗) and pollution P ∗,
but it cannot make maintenance positive. Hence Q∗ decreases as βh increases under
Regime 1. Graphically (see Fig. 2, left panel), C2 shifts upwards due to the increase
in w∗; C3 also shifts upwards, but to a smaller extent (w∗ will increase but P ∗ will



52 K. Borissov et al.

Fig. 3 Impatient agents
become less impatient

also increase). If the median voter is patient (Case 2) then, C1 shifts to the right. As
a consequence the economy may well switch to the Positive-maintenance regime
(Regime 2).

Under Positive-Maintenance Equilibrium (Regime 2, see Fig. 2b) an increase in
βh will lead to an upward shift of C3 and, in Case 2, to a shift of C1 to the right.
Hence Q∗ will increase.

4.4 Impatient Agents Become Less Impatient: An Increase in βl

Let us now consider the case where impatient agents become less impatient, i.e. an
increase in βl . The effect on Q∗ will depend on whether the median consumer is
impatient or patient, what we referred to as Case 1 and Case 2, respectively. In the
case where the median voter is impatient (Case 1, βim = βl), then the two regimes
have to be considered.

• Under Zero-Maintenance Equilibrium (Regime 1), a small increase in βl does not
change k∗, w∗, Lf (k∗) or P ∗. It neither changes Q∗. This case results in a shift
of C1 to the right, as illustrated in Fig. 3. Still, if the increase in βl becomes large
enough, then the economy switches to Regime 2.

• Under Positive-Maintenance Equilibrium (Regime 2), a small increase in βl does
not change k∗, w∗, Lf (k∗) or P ∗, but it does increase Q∗, as illustrated in Fig. 3.

In the case where the median voter is patient (Case 2, βim = βh), then it is clear
that changing βl has no effect on Q∗.

5 How Agents’ Heterogeneity Shapes Environmental
Maintenance

In this section we compare the level of environmental quality in voting steady-state
equilibria with that in steady-state equilibria of a similar economy, but populated
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with symmetric agents. We constrain our consideration to the case where the equi-
librium values of the capital stock, and hence the output level, are the same in both
models. The question we address is the following: how does agents’ heterogeneity
in discount factor and wealth shape environmental maintenance when agents are
asked to vote?6

How to reduce our heterogeneous agent model to an homogeneous agent one is
not straightforward. We have one alternative: either to assume that all agents have
the same high discount factor (βh), or the same low discount factor (βl). The im-
portant issue is that these options do not yield the same outcome. Actually, the
latter option cannot be considered because it will be associated to different levels of
macroeconomic variables in equilibrium. What we are interesting in is the analysis
of the effect of heterogeneity on pollution, so we need to keep all other macroeco-
nomic variables unchanged. Thus, the only solution is to assume that all agents have
the same—high discount factor.

Moreover, the steady-state equilibria in the homogenous population model co-
incides with the symmetric voting steady-state equilibria in this particular case, i.e.
equilibria where the level of savings for all consumers is the same and, consequently,
the level of consumption is also the same. To be more precise, voting is irrelevant in
symmetric equilibria, because it is unanimous.

Let {k∗S,1 + r∗S ,w∗S, (s
i∗
S , c

i∗
S )

L
i=1,P

∗
S ,Q

∗
S} be a symmetric steady-state voting

equilibrium with βi = βh, i = 1, . . . ,L, and {k∗,1+ r∗,w∗, (si∗, ci∗)Li=1,P
∗,Q∗}

be a steady-state voting equilibrium with arbitrary discount factors. By “symmetric”
we mean that s1∗

S = · · · = sL∗S . It must be noticed that

k∗S = k∗, r∗S = r∗, w∗S =w∗,

and that, by assumption,

si∗S = k∗, i = 1, . . . ,L.

The last equation says that the savings of agents in the symmetric steady-state vot-
ing equilibrium with βi = βh, i = 1, . . . ,L, are equal to the mean of the savings in
the heterogeneous-agent economy. We assume that the discount factor shared by all
consumers in the former model is βh, and not βl . This is simply because, other-
wise, the equilibrium level of capital stock and output would differ between the two
models.

Let

m∗ =w∗ + r∗sim∗ − cim∗,
m∗S =w∗S + r∗Sk∗S − c∗S

(=w∗ + r∗k∗ − c∗S
)
,

6Note that this is different from the question raised by Caselli and Ventura (2000): under which
condition does a model with heterogenous agents “admits” a representative agent model, namely
a model with homogenous agents displaying the same aggregate and average behavior. Indeed, in
our case, by assumption, we assume capital intensity to be the same in both models. On the other
hand we do not fix the maintenance level, nor do we look at the representative agent version of the
model which would yield the same maintenance level.
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where c∗S = c1∗
S (= · · · = cL∗S ). The following proposition can be proved with the

same argument as in the previous section.

Proposition 2 (Homogeneous vs. heterogeneous population equilibria) (1) Suppose
that βim = βl and hence sim∗ = 0 in the heterogenous-agent economy. Then:

1. if m∗S = 0, then m∗ = 0 and Q∗ =Q∗S ;
2. if m∗S > 0, then m∗ <m∗S and Q∗ <Q∗S .

(2) Suppose that βim = βh in the heterogenous-agent economy. Then:

1. if sim∗ ≤ si∗S = k∗, then:

(a) if m∗S = 0, m∗ = 0 and Q∗ =Q∗S ;
(b) if m∗S > 0, m∗ <m∗S and Q∗ <Q∗S ;

2. if sim∗ ≥ si∗S = k∗, then:

(a) if mi∗ = 0, m∗S = 0 and Q∗ =Q∗S ;
(b) if m∗ > 0, then m∗ >m∗S and Q∗ >Q∗S .

In the last section we have seen why developed countries are likely to vote in fa-
vor of environmental maintenance, and developing countries against. According to
the proposition, the predictions of the two models coincide for developing countries:
no maintenance in steady-state equilibria irrespective of whether the median voter
is patient or impatient. However, the models’ predictions differ for developed coun-
tries. If the majority of agents is impatient, then the maintenance equilibrium levels
and environmental quality are lower than those predicted by the homogenous-agent
model. If the majority of agents is patient, then the median saving or income must
be compared with the mean ones. If the median savings are lower than the mean (or,
equivalently, if the median income is lower then the mean income) then the mainte-
nance equilibrium levels and environmental quality are lower in the heterogenous-
agent model that in the homogenous-agent model. Otherwise, the opposite outcome
holds.7

To sum up, our comparison shows that, because of heterogeneity, in most cases in
the real world the observed levels of environmental maintenance and quality will be
lower than what the homogenous-agent model would predict. Taking heterogeneity
into account is key, even when interested in macroeconomic outcomes.

6 Debt-Financed Versus Tax-Financed Maintenance Policy

Until now we have assumed that the maintenance policy was financed by a pay-
as-you-go tax (τt ), a so-called tax-financed scheme. An alternative scheme could

7The case where the median income is lower than the mean is usually considered as typical on
empirical grounds.
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be a debt-finance one. It would consist for the government to issue public bonds to
finance the environmental maintenance. Comparing the two schemes makes sense
in our setting because heterogenous households are likely to be hit differently by the
taxes needed to finance the public debt and by the interest earned on public bonds.
The median voter may well depend on the funding scheme. On the government
side, reducing the funding of environmental maintenance by taxes could improve its
political acceptability. Finally, because introducing a public debt in our infinitely-
lived agent model does not impact on the equilibrium steady state capital intensity,
we can focus on its impact on environmental quality.

In this section we assume that the government is able to raise the voted tax τt
or to issue one-period public bonds dt+1 to finance environmental maintenance mt .
The repayment of interests and principal of public bonds will appear in its budget
constraint. It is assumed that public bonds and physical capital are perfect substitute
and bear the same market interest rate rt .

Let dt ≥ 0 be the per capita public debt and τt ≥ 0 be the lump-sum tax at time t .
The government budget constraint reads:

τt + dt+1 =mt + (1+ rt )dt ,

and the consumer’s budget constraint (see (4)) becomes:

ct + st + τt ≤wt + (1+ rt )st−1, st ≥ 0.

One can easily update the definitions of competitive equilibrium path consequently.
The only thing that deserves attention is that condition 3 (equilibrium in the capital
market) now turns to:

L∑
i=1

si∗t−1 = L
(
k∗t + dt

)
, t = 0,1, . . . .

Suppose that the public debt is constant over time, dt = d, t = 0,1, . . . . Then we
can define the competitive steady-state equilibrium. Consider such an equilibrium,
(m∗,Em∗), where Em∗ = {k∗,1 + r∗,w∗, (si∗, ci∗)Li=1,P

∗,Q∗}. As in Mankiw
(2000), government debt does not affect the steady-state capital stock and national
income. So, as in the case with no governmental debt, we have:

βh = 1

1+ r∗
, 1+ r∗ = f ′

(
k∗

)
, w∗ = f

(
k∗

)− f ′
(
k∗

)
k∗.

In the meantime, the governmental debt does influence the distribution of income
among households. The higher the debt, the higher the level of taxation to pay for
the interest payments on that debt. The tax falls on both patient and impatient con-
sumers, but the interest payments entirely go to the patient consumers, just because
only patient consumers have positive savings in a steady-state equilibrium. In the
steady-state equilibrium the budget constraint of the government becomes

τt + d =m∗ + (
1+ r∗

)
d.

Hence, τt = τ(d), t = 0,1, . . . , where

τ(d)=m∗ + r∗d.
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Therefore, the budget constraint of a consumer in the steady-state equilibrium is as
follows:

ct + st ≤w∗ − τ(d)+ (
1+ r∗

)
st−1, st ≥ 0.

If the median voter is impatient, then we have sim∗ = 0 in a steady-state equilib-
rium, and hence

cim∗ +m∗ =w∗ − r∗d.

As a result, an increase in d is equivalent for the median voter to a decrease in
the post-tax wage rate. It follows that (in the case where maintenance is positive)
an increase in public debt unambiguously leads to a decrease in maintenance and
environmental quality in the voting steady-state equilibrium if the majority of agents
is impatient.

If the median voter is patient, in a steady state the savings of the median voter
are not determined uniquely. Hence a change in d will have an indeterminate effect
on the savings of the median voter. Let us assume that the ratio sim∗/(

∑L
i=1 s

i∗)
does not change. Since, in equilibrium, (

∑L
i=1 s

i∗)/L= k∗ + d , it implies that the
ratio γ = sim∗/(k∗ + d) (which is the proportion between the median and the mean
savings) remains unchanged. Under this assumption, the key parameter becomes γ
because we now have:

cim∗ +m∗ =w∗ + r∗sim∗ − r∗d =w∗ + r∗
(
γ k∗ + (γ − 1)d

)
.

It is clear from the previous equation that an increase in d leads to a decrease in
cim∗ +m∗, if γ < 1, and to an increase in cim∗ +m∗, if γ > 1.

Thus, in the case where maintenance is positive, m∗ > 0, if the median savings
and income are lower than the mean (γ < 1), then an increase in public debt leads to
a decrease in maintenance and environmental quality. But if the median savings and
income are higher than the mean (γ > 1), then an increase in public debt increases
environmental maintenance quality. As noticed above, the case where the median
savings and income are lower than the mean is usually considered as common.

7 Conclusion

In this paper we assumed that the population is exogenously divided into two
groups: one with patient households and the other with impatient households. The
environmental maintenance is voted by the households. We introduce the notion of
voting equilibrium, look for steady state voting equilibria and find that the median
voter theorem applies to them. If the majority of households is impatient, then the
equilibrium level of maintenance and environmental quality is determined uniquely,
but if the majority of households is patient, there can exist a continuum of these.
We also fulfill comparative statics analysis and we show that (i) an increase in total
factor productivity may produce a so-called Environmental Kuznets Curve, (ii) an
increase in the patience of impatient households may improve the environmental
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quality if the median voter is impatient and maintenance positive, (iii) in the case
where the median voter is patient and maintenance positive, and in the case where
the median income is lower than the mean one (which is empirically grounded),
then a shrink in inequality can lead to an increase in the environmental quality.

We also compare our model with a representative agent model, which is defined
as a particular case of our model where all consumers are patient and savings are
distributed evenly across them. We show that, in the case of impatient median voter,
the level of environmental quality predicted by the heterogeneous-agent model is
lower than the one predicted by the representative agent model. The same holds true
if the median voter is patient but the median income lower that the mean, which is
the common case.

Finally, some policy implications of our model are discussed. In this purpose we
introduce public debt as an alternative source of financing environmental mainte-
nance. We show that, if the median income is lower than the mean, then an increase
in public debt leads to a lower environmental quality in the long run.
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Appendix

8.1 Proof of Proposition 1

It is sufficient to notice that since in a steady-state equilibrium we have μΦ(Q∗)=
μ(Q∗ − κP ∗)+Lm̄ and for each i, the sequence (s̃it−1, c̃

i
t )
∞
t=0 given by s̃it−1 = si∗,

c̃it = ci∗ is a solution to

max
∞∑
t=0

βti u(ct ), ct + st ≤
(
w∗ − m̄

)+ (
1+ r∗

)
st−1, s

i
−1 = si∗,

ct ≥ 0, st ≥ 0

and to refer to Becker (1980, 2006).
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8.2 Proof of Lemma 1

We have:

∂Vi,0(s
i∗,Q∗,m∗)
∂m∗0

= ∂Λi,0(Q
∗,m∗)

∂m∗0
+ ∂Γi,t (s

i∗,m∗)
∂m∗0

,

where the functions Λi,0 and Γi,0 are defined as follows:

Λi,0
(
Q0,m∗)= max

(Qt )
∞
t=1

{ ∞∑
t=0

βti v(Qt ) | μΦ(Qt+1)≤ μ
(
Qt − κP ∗

)+Lm∗t ,

Qt+1 ≥ 0, t = 0,1, . . .

}
,

Γi,0
(
s−1,m∗)= max

(ct )
∞
t=0,(st )

∞
t=0

{ ∞∑
t=0

βti u(ct ) | ct + st +m∗t ≤w∗ + (
1+ r∗

)
st−1,

ct ≥ 0, st ≥ 0, t = 0,1, . . .

}
.

It is not difficult to check that

∂Λi,0(Q
∗,m∗

t )

∂m∗t
= βi

Lv′(Q∗)
μ(Φ ′(Q∗)− βi)

,

∂Γi,0(s
i∗,m∗

t )

∂m∗t
=−u′(c∗).

Therefore,

∂Vi,0(s
i∗,Q∗,m∗)
∂m∗t

= βi
Lv′(Q∗)

μ(Φ ′(Q∗)− βi)
− u′

(
c∗

)
,

which implies (21).

8.3 Proof of Lemma 2

Using a traditional argument (see e.g. McKenzie 1986) we can prove that a sequence
(s̃t−1, c̃t , m̃t , Q̃t )

∞
t=0 given by (22) is a steady-state solution to problem P2 if and

only if there exist q and p such that for pt = βipt−1 = · · · = βti p and qt+1 = βiqt =
· · · = βt+1

i q the following relationships hold:

βti u
′(c̃t )= pt ,

βti v
′(Q̃t )+ qt+1μ− qtμΦ

′(Q̃t )= 0,(
1+ r∗

)
pt ≤ pt−1 (= if s̃t−1 > 0),

qt+1L− pt ≥ 0 (= if m̃t > 0),

qt+1Q̃t + pt s̃t−1 →t→∞ 0,
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or, equivalently,

u′(c̃)= p,

v′(Q̃)= μq
(
Φ ′(Q̃)− βi

)
,

βi ≤ 1

1+ r∗
(= if s̃ > 0),

βiLq − p ≥ 0 (= if m̃ > 0).

The existence of such q and p is equivalent to conditions (23)–(24).
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Optimal Environmental Policy in the Presence
of Multiple Equilibria and Reversible Hysteresis

Ben J. Heijdra and Pim Heijnen

Abstract We study optimal environmental policy in an economy-ecology model
featuring multiple stable steady-state ecological equilibria. The policy instruments
consist of public abatement and a tax on the polluting production input, which we
assume to be the stock of capital. The isocline for the stock of pollution features two
stable branches, a low-pollution (good) and a high-pollution (bad) one. Assuming
that the ecology is initially located on the bad branch of the isocline, the ecological
equilibrium is reversibly hysteretic and a suitably designed environmental policy
can be used to steer the environment from the bad to the good equilibrium. We study
both first-best and second-best social optima. We show that, compared to capital
taxation, abatement constitutes a very cheap instrument of environmental policy.

1 Introduction

In this chapter we study optimal environmental policy using a dynamic model fea-
turing interactions between the ecological system and the macro-economy. In line
with the recent environmental literature, we assume that the ecological process is
nonlinear such that (i) ecosystems do not respond smoothly to gradual changes in
dirt flows and abrupt “catastrophic shifts” may be possible in the vicinity of thresh-
old points, (ii) there may be multiple stable equilibria, and (iii) irreversibility and
hysteresis are both possible (Scheffer et al. 2001). The nonlinear ecological dy-
namics described by Scheffer (1998) and employed by us now carries the name
Shallow-Lake Dynamics (SLD hereafter).1

1There is an emerging literature on the SLD approach as it is used in economics—see Heijdra and
Heijnen (2013) for an extensive list of references.
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To describe the macroeconomic system we use a standard Ramsey-Cass-
Koopmans model of a closed economy. Households practice intertemporal con-
sumption smoothing and accumulate capital that is rented out to perfectly com-
petitive firms. Following Bovenberg and Heijdra (1998, 2002), we assume that the
capital stock is the polluting production factor. Households enjoy living in a clean
environment but act as free riders and thus fail to internalize the external effects
caused by their capital accumulation decisions.

We assume that the initial steady-state confronting the policy maker has the fol-
lowing features. First, there is no pre-existing policy regarding the environment, i.e.
public abatement activities are absent and there is no externality-correcting tax on
capital in place. Second, the flow of dirt is such that there exist two stable ecological
steady-state equilibria. Third, the ecological system has settled down at the “bad”
equilibrium featuring a high stock of pollution. In this setting the policy maker is in
principle able to engineer substantial welfare gains by choosing the appropriate mix
of capital taxation and abatement activities.

The chapter is structured as follows. Section 2 presents the model, consisting of
an ecological system featuring SLD and an economic system. Section 3 studies the
first-best social optimum. The optimal environmental policy can be decentralized
with the aid of time-varying abatement and capital taxation. Section 4 studies op-
timal environmental policy in a second-best setting. In particular we consider the
repercussions of two types of constraints on the policy maker’s choices, namely the
unavailability of instruments and the insufficient flexibility of a given instrument.
Finally, in Sect. 5 we offer a brief summary of the main results, whilst the Appendix
presents some computational details.

2 The Model2

We model the environment as a renewable resource stock, the quality of which de-
pends negatively on the flow of dirt, D(t), that is generated in the production pro-
cess:

D(t)≡ κK(t)− γG(t), κ > 0, γ > 0, (1)

where K(t) is the private capital stock (see below), and G(t) represents abatement
activities by the government. Capital is the polluting factor of production, just as
in Bovenberg and Heijdra (1998, 2002). By definition the flow of dirt must be non-
negative (D(t)≥ 0). Denoting the stock of pollution at time t by P(t), we write the
general form of the emission equation as:

Ṗ (t)=−Φ(
P(t)

)+D(t), (2)

2Apart from the introduction of a tax on capital, the model used here is identical to the one
discussed in more detail in Heijdra and Heijnen (2013).
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Fig. 1 Ecological dynamics

where Ṗ (t)≡ dP (t)/dt and Φ(P (t)) is a nonlinear function whose definition and
properties are stated in the following Lemma.

Lemma 1 Let Φ(x) for x ≥ 0 be given by:

Φ(x)≡ πx − x2

x2 + 1
,

1

2
< π <

3
√

3

8
.

The first- and second derivatives of Φ(x) are given by:

Φ ′(x)≡ π − 2x

[x2 + 1]2 , Φ ′′(x)≡ 2[3x2 − 1]
[x2 + 1]3 .

The following properties can be established: (i) Φ(x)= 0 for x = 0 and Φ(x) > 0
for x > 0; (ii) Φ(x) attains a local maximum at x1 such that Φ ′(x1) = 0 and
Φ ′′(x1) < 0 and a local minimum at x2 such that Φ ′(x2) = 0 and Φ ′′(x2) > 0;
(iii) Φ ′(x) > 0 for 0< x < x1 and x > x2; (iv) Φ ′(x) < 0 for x1 < x < x2.

The isocline for the stock of pollution is depicted in Fig. 1. Given the range of
values of π , the pollution isocline is S-shaped, with sharp turns at points C and B.
The dirt levels associated with these threshold point are denoted by, respectively,
DL and DU . The vertical arrows depict the dynamic forces operating on the stock
of pollution off the isocline. The upward sloping branches of the isocline are locally
stable: Lemma 1(iii) establishes that ∂Ṗ (t)/∂P (t)=−Φ ′(P (t)) < 0 there. In con-
trast, the downward sloping (dashed) branch is unstable because Lemma 1(iv) shows
that ∂Ṗ (t)/∂P (t) > 0 for these points. For future reference we state the following
Definition.

Definition 1 Define the clean branch of the pollution isocline as ΦC(x) ≡ Φ(x)

for 0≤ x < x1 and the dirty branch as ΦD(x)≡Φ(x) for x > x2.
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Consider a time-invariant dirt flow D̂. Depending on its magnitude, three regimes
are possible:

• Unique stable and clean steady-state. For 0 ≤ D̂ < DL there exists a unique
steady-state pollution level that is located on the lower branch of the pollution
isocline.

• Multiple steady-state pollution levels. For DL ≤ D̂ ≤ DU there exist three eco-
logical steady-state equilibria, of which two are stable and one is unstable. For
example, if D̂ = 0.04 the stable equilibria are at points A and D in Fig. 1 whilst
the instable one is at point E. Which particular steady state is attained depends on
initial conditions, i.e. the ecological model features reversible hysteresis.

• Unique stable and polluted steady-state. For D̂ >DU there exists a unique steady-
state pollution level that is located on the upper branch of the pollution isocline.

To capture the key features of the economic system we formulate a simple general
equilibrium model of the macro-economy. This model describes a closed economy
consisting of a government and representative households and firms who are blessed
with perfect foresight. The representative household lives forever, and features the
following utility functional:

Λ(t)≡
∫ ∞

t

[
lnC(τ)+ εE ln

[
Ē − P(τ)

]] · e−ρ(τ−t)dτ, (3)

where C(τ) denotes consumption of private commodities at time τ , E(τ) ≡ Ē −
P(τ) > 0 measures the quality of the environment, Ē is some pristine value at-
tained in a non-polluting society, εE denotes the weight in overall utility attached
to environmental amenities, and ρ > 0 stands for the pure rate of time preference.
Since utility is separable in its two arguments, the quality of the environment does
not directly affect household consumption. As the felicity function for private con-
sumption is logarithmic, the model features a unitary intertemporal elasticity of sub-
stitution. Without leisure entering utility, labour supply is exogenously fixed.

Households face the following budget identity:

Ȧ(τ )= r(τ )A(τ)+w(τ)− T (τ)−C(τ), (4)

where r(τ ) denotes the real rate of interest on financial assets, w(τ) represents the
wage rate, T (τ) are net lump-sum taxes, and A(τ) stands for real financial assets
owned in period τ .

The representative agent chooses paths for C(τ) and A(τ) which maximize (3)
subject to (4) and a solvency requirement of the form limτ→∞A(τ)e−

∫ τ
t r(s)ds = 0.

He takes as given the stock of financial assets in the planning period, A(t). The
optimal consumption level that the agent chooses at time t is given by:

C(t)= ρ
[
A(t)+H(t)

]
, (5)

where human wealth, H(t), is defined as:

H(t)≡
∫ ∞

t

[
w(τ)− T (τ)

] · e− ∫ τ
t r(s)dsdτ. (6)
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The optimal time profile for consumption is given by the Euler equation:

Ċ(τ )

C(τ)
= r(τ )− ρ, τ ≥ t. (7)

The intuitive interpretation of these expressions is as follows. Equation (5) shows
that the agent consumes a constant proportion of total wealth in the planning period,
whilst Eq. (7) indicates that consumption growth over time is chosen to be equal to
the anticipated gap between the interest rate and the rate of time preference. Finally,
the expression in (6) implies that human wealth is given by the discounted value of
after-tax wage payments using the market rate of interest for discounting purposes.
Intuitively it represents the after-tax value of the agent’s unitary time endowment.

The production sector of the economy is perfectly competitive. The production
function is Cobb-Douglas, with constant returns to scale to the factors capital, K(t),
and labour, L(t):

Y(t)≡ F
(
K(t),L(t)

)=Ω0K(t)
1−εLL(t)εL, Ω0 > 0, 0< εL < 1, (8)

where Y(t) denotes gross output. The value of the firm, V (t), is given by the present
value of the after-tax cash flow using the market rate of interest for discounting
purposes:

V (t)=
∫ ∞

t

[(
1− θ(τ )

)[
Y(τ)−w(τ)L(τ)

]− I (τ )
] · e− ∫ τ

t r(s)dsdτ, (9)

where θ(τ ) is the capital tax and I (τ ) is gross investment. The capital stock evolves
according to:

K̇(τ )= I (τ )− δK(τ), (10)

where K̇(τ )≡ dK(τ)/dτ denotes the rate of change in the capital stock and δ is the
depreciation rate (δ > 0).

The representative firm chooses paths for Y(τ), K(τ), L(τ) and I (τ ) which
maximize the value of the firm (9) subject to the production function (8), and the
capital accumulation identity (10). The capital stock in the planning period, K(t),
is taken as given. The first-order conditions yield the usual marginal productivity
conditions:

∂Y (τ)

∂K(τ)
= r(τ )+ δ

1− θ(τ )
, (11)

∂Y (τ)

∂L(τ)
= w(τ). (12)

Since we abstract from adjustment costs in investment, the value of equity corre-
sponds to the replacement value of the capital stock, i.e. V (t)=K(t).

For convenience, the key equations of the core model have been gathered in Ta-
ble 1. Equation (T1.1) is the Euler equation (7), whilst Eqs. (T1.5) and (T1.8)–(T1.9)
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Table 1 The model

Ċ(t)

C(t)
= r(t)− ρ, ρ > 0 (T1.1)

K̇(t) = Y (t)−C(t)−G(t)− δK(t) (T1.2)[
r(t)+ δ

]
K(t) = (1− εL)

[
1− θ(t)

]
Y (t) (T1.3)

w(t)L(t) = εLY (t) (T1.4)

Y (t) = Ω0L(t)
εLK(t)1−εL , Ω0 > 0,0< εL < 1 (T1.5)

L(t) = 1 (T1.6)

T (t) = G(t)− θ(t)
[
Y (t)−w(t)L(t)

]
(T1.7)

Ṗ (t) = −πP (t)+ P (t)2

P (t)2 + 1
+D(t),

1

2
< π <

3
√

3

8
(T1.8)

D(t) = κK(t)− γG(t), κ > 0, γ > 0 (T1.9)

Endogenous: consumption, C(t), capital stock, K(t), output, Y (t), interest rate, r(t), wage rate,
w(t), employment, L(t), pollution stock, P (t), dirt flow, D(t). Exogenous: capital tax θ(t) and
government abatement, G(t). Parameters: rate of time preference, ρ, depreciation rate of capital,
δ, labour coefficient in the technology, εL, and scale factor in the technology, Ω0. Ecological
parameters: lake resilience, π , capital dirt coefficient, κ , and abatement clean-up coefficient, γ

just restate, respectively (8), (2), and (1). labour supply is exogenous so L(t)= 1—
see (T1.6). The factor demand expressions in (11)–(12) have been rewritten by us-
ing the production function—see (T1.3) and (T1.4). Equation (T1.2) is obtained by
combining (10) with the goods market clearing condition for a closed economy, i.e.
Y(τ)= C(τ)+ I (τ )+G(τ). Finally, in the absence of government debt, claims on
the capital stock are the only assets available, i.e. A(t)=K(t).

The phase diagram for the economic system is depicted in Fig. 2. The initial
equilibrium, by assumption featuring no public abatement, is at point E0. Steady-
state consumption and the capital stock are given by, respectively, Ĉ and K̂ . The
equilibrium is saddle-point stable, with SP0 representing the saddle path, and is
dynamically efficient, i.e. K̂ is strictly less than the golden-rule capital stock, K̂GR .

3 First-Best Social Optimum

In the remainder of this chapter we consider optimal environmental policy. The
initial situation facing the policy maker is as follows. First, both the economic and
ecological systems are in a steady-state equilibrium and environmental abatement
is zero. Second, the steady-state dirt flow resulting from the equilibrium capital
stock is such that there exist three possible ecological steady-state equilibria. Third,
for otherwise unspecified reasons, the ecological system has settled down at the
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Fig. 2 Consumption-capital
dynamics

“bad” equilibrium featuring a high stock of pollution. In Fig. 2 the initial economic
equilibrium is thus at point E0. In Fig. 1 the dirt flow equals κK̂ and the ecological
equilibrium is located at point D. Given this initial condition, can the policy maker
bring about substantial welfare gains by choosing the appropriate mix of capital
taxation and abatement activities?

In this section we characterize the first-best social optimum, i.e. we study the al-
location that would be selected by a benevolent social planner aiming to maximize
lifetime utility of the representative agent. In the planning period t = 0, the planner
chooses paths for C(t), P(t), and K(t) (for t ≥ 0) in order to maximize (3) sub-
ject to the resource constraint (T1.2), the emission equation (2), and the dirt flow
definition (1). The initial conditions are:

K(0)= K̂, P (0)= P̂B =Φ−1
D (D̂0), (13)

where P̂B is the steady-state pollution level consistent with the upper branch of the
pollution isocline (see Definition 1) and with a dirt flow equal to D̂0 = κK̂—see
point D in Fig. 1. Abatement, the dirt flow, and gross investment must remain non-
negative:

G(t)≥ 0,
[
D(t)≡]

κK(t)− γG(t)≥ 0,[
I (t)≡]

F
(
K(t),1

)−C(t)−G(t)≥ 0.
(14)

Dropping the time index, the current-value Lagrangian can be written as:

L ≡ lnC + εE ln[Ē − P ] + λK
[
F(K,1)−C −G− δK

]
+ λP

[−Φ(P )+ κK − γG
]+ ηD[κK − γG] + ηI

[
F(K,1)−C −G

]
.

The control variables for this optimization problem are C and G (and thus implicitly
D and I ), the state variables are K and P , the co-state variables are λK and λP , and
ηD and ηI are the Lagrange multipliers for, respectively, the dirt and investment
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constraints. The first-order conditions are:

∂L

∂C
= 1

C
− (λK + ηI )= 0, (15)

∂L

∂G
=−(λK + ηI )− γ (λP + ηD)≤ 0, G≥ 0, G

∂L

∂G
= 0, (16)

∂L

∂ηD
= κK − γG≥ 0, ηD ≥ 0, ηD

∂L

∂ηD
= 0, (17)

∂L

∂ηI
= F(K,1)−C −G≥ 0, ηI ≥ 0, ηI

∂L

∂ηI
= 0, (18)

λ̇K − ρλK =−∂L
∂K

=−κ(λP + ηD)−
[
FK(K,1)− δ

]
λK − ηIFK(K,1), (19)

λ̇P − ρλP =−∂L
∂P

= εE

Ē − P
+ λPΦ

′(P ). (20)

The first-best social optimum is characterized by (2), (T1.2), (14), (15)–(20) and the
transversality conditions:

lim
t→∞ e−ρtλK(t)K(t)= lim

t→∞ e−ρtλP (t)P (t)= 0.

3.1 Long-Run Optimum

We first study the long-run properties of the first-best equilibrium. In terms of no-
tation, hatted variables denote steady-state values and the subscript “f ” denotes
first-best. In the steady state gross investment is strictly positive, i.e. Îf = δK̂f > 0
and it follows from (18) that η̂I = 0. Depending on the structural parameters and
the resulting magnitude of Ĝf two cases are possible.

Case 1: With Long-Run Abatement Assume that 0 < Ĝf < (κ/γ )K̂f so that
η̂D = 0 and γ λ̂P =−λ̂K < 0. It follows that the steady-state first-best equilibrium
is given by:

FK(K̂f ,1) = ρ + δ + κ

γ
, (21)

ρ +Φ ′C(P̂f ) = γ
εEĈf

Ē − P̂f
, (22)

F(K̂f ,1) = Ĉf + Ĝf + δK̂f , (23)

ΦC(P̂f ) = κK̂f − γ Ĝf , (24)

where ΦC(x) is the function representing the lower branch of the P -isocline—
see Definition 1. The key thing to note is that a (Pigouvian) capital tax can be
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used to decentralize the first-best equilibrium. Equation (T1.3) shows that private
saving behaviour will result in a steady-state capital stock such that FK(K̂,1) =
(ρ + δ)/(1− θ̂ ). By comparing this expression to (21) we find that K̂ = K̂f if and
only if the steady-state capital tax is set equal to:

θ̂f = κ/γ

ρ + δ + κ/γ
.

The optimal Pigouvian capital tax is feasible (as it satisfies 0 < θ̂f < 1) and is in-
creasing in κ/γ . Intuitively, the more polluting is capital (κ up) and the less potent
is abatement (γ down), the higher is the optimal environmental tax.

Case 2: Without Long-Run Abatement Assume that λ̂K > −γ λ̂P so that
Ĝf = 0. Since K̂f > 0 it follows that D̂f > 0 and thus η̂D = 0 also. The first-best
steady-state equilibrium can now be written as:

FK(K̂f ,1) = ρ + δ− κλ̂P Ĉf , (25)

ρ +Φ ′C(P̂f ) = −
1

λ̂P

εE

Ē − P̂f
, (26)

F(K̂f ,1) = Ĉf + δK̂f , (27)

ΦC(P̂f ) = κK̂f . (28)

Just as for the previous case, a capital tax is needed to decentralize the first-best
optimum:

θ̂f = −κλ̂P Ĉf
ρ + δ − κλ̂P Ĉf

.

Since λ̂P < 0 and Ĉf > 0 it follows that the optimal Pigouvian capital tax is feasi-
ble, i.e. 0< θ̂f < 1.

3.2 Optimal Dynamic Allocation

In order to avoid having to deal with a taxonomy of possible cases, we use a pa-
rameterized version of the model to illustrate its main properties. For reasons of
comparison we use the same parameterization as in Heijdra and Heijnen (2013)—
see Table 2. For these parameter values we find that −λ̂K − γ λ̂P = −0.9198, i.e.
Case 2 is the relevant one and abatement is not needed in the long run, i.e. Ĝf = 0.
We furthermore compute K̂f = 2.3177, Ĉf = 0.7901, Ŷf = 0.9524, P̂f = 0.0766,
and D̂f = 0.0340. For ease of comparison, we report these values in column (b) in
Table 3. The long-run Pigouvian capital tax is θf = 0.1066 and consumption, out-
put, and the capital stock are all lower than in the initial steady-state equilibrium the
key features of which have been reported in column (a) of Table 3.
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Table 2 Structural parameters and steady-state features

Economic system:

ρ = 0.04 δ = 0.07 εL = 0.70 Ω0 = 0.7401

r̂ = 0.04 K̂ = 2.7273 Ŷ = 1.000 Ĉ = 0.8091 Î = 0.1909 G= 0

Ecological system:

π = 0.52 κ = 0.0147 γ = 0.302 εE = 0.9 Ē = 2

DL = 0.0196 DU = 0.0735 D̂0 = 0.04 P̂B = 1.2482 P̂G = 0.0936 PE = 0.6581

Table 3 Quantitative effects of taxation and abatementa

BM FBSO SBSO

Taxation Abatement

TV TI TV TI

(a) (b) (c) (d) (e) (f)

Ŷ 1.0000 0.9524 0.9524 0.9524 1.0000 1.0000

C(0) 0.8677 1.0000 1.0000 0.6798 0.6933

Ĉ 0.8091 0.7901 0.7901 0.7901 0.8091 0.8091

K̂ 2.7273 2.3177 2.3177 2.3177 2.7273 2.7273

P̂ 1.2482 0.0766 0.0766 0.0766 0.0936 0.0936

Λ(0) −11.9092 −2.7722 −7.7638 −7.9525 −3.2471 −4.3087

θ(0) 0.1234 0.1891 0.8500

θ̂ 0.1077 0.1077 0.1077

G(0) 0.1326 0.1324 0.1166

Ĝ 0.0000 0.0000 0.0000

tE 39.5 28.2 30.0

EV(0) 44.1 17.1 16.2 40.5 34.5

aBM: parameterized base model. FBSO: first-best social optimum. SBSO: second-best social opti-
mum. Policy instrument lacking or not sufficiently flexible. TV: time-varying instrument. TI: time-
invariant instrument. Notation: x(0) and x̂ denote, respectively, the impact- and long-run (steady-
state) value of the variable x(t)

The dynamic properties of the first-best optimum are illustrated in Fig. 3. Details
of the computations are found in the Appendix. There are two critical dates char-
acterizing the optimal solution, namely the earliest time at which the irreversibility
constraint on investment ceases to bind, tI = 1.27, and the time at which the dirt
constraint becomes slack, tD = 27.01. Together these dates define the three regimes
through which the optimal paths evolve.



Optimal Environmental Policy 71

Parameters: see Table 2. The initial ecological equilibrium is at point D in panel (b)

Fig. 3 The first-best optimal policy

3.2.1 Regime 1

For 0 ≤ t ≤ tI both the dirt flow and gross investment are zero, i.e. Df (t) = 0
and If (t) = 0. It follows that abatement is at its maximum feasible level given
by Gf (t) = (κ/γ )Kf (t), consumption is described by Cf (t) = F(Kf (t),1) −
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(κ/γ )Kf (t), whilst the capital stock satisfies K̇f (t) = −δKf (t). By combining
these expressions and noting that K(0)= K̂ we find:

Kf (t) = K̂e−δt ,

Cf (t) = Ŷ e−δ(1−εL)t − κ

γ
K̂e−δt ,

Gf (t) = κ

γ
K̂e−δt .

The transition paths for Kf (t), Cf (t), and Gf (t) have been depicted in, respec-
tively, panels (c), (d), and (a) of Fig. 3. With the flow of dirt reduced to zero, the
stock of pollution falls according to:

Ṗf (t)=−Φ
(
Pf (t)

)
.

3.2.2 Regime 2

For tI < t ≤ tD the dirt flow is zero but gross investment is strictly positive,
i.e. Df (t) = 0 and If (t) > 0. Abatement remains at its maximum feasible level,
Gf (t)= (κ/γ )Kf (t). Since the capital stock is continuous for all t , it follows that
the path of abatement is also continuous throughout this regime. Since the non-
negativity constraint for gross investment ceases to be binding for t > tI , the con-
sumption path follows the Euler equation:

Ċf (t)

Cf (t)
= F

(
Kf (t),1

)−
(
ρ + δ + κ

γ

)
,

whilst the stocks of capital and pollution evolve according to:

K̇f (t) = F
(
Kf (t),1

)−Cf (t)−
(
δ + κ

γ

)
Kf (t),

Ṗf (t) = −Φ
(
Pf (t)

)
.

Consumption is continuous at time tI , i.e. limt↗tI Cf (t)= limt↘tI Cf (t)= Cf (tI ),
so that Cf (tI )= Ŷ e−δ(1−εL)tI − κ

γ
K̂e−δtI and Kf (tI )= e−δtI K̂ are the initial con-

ditions for the system of differential equation in Cf (t) and Kf (t).

3.2.3 Regime 3

At time tD abatement is permanently reduced to zero (Gf (t) = 0) and the
dirt flow becomes positive (as Df (t) = κKf (t)). The value of tD is such that
−γ λP (tD)Cf (tD)= 1. Again, like the stocks of capital and pollution, consumption
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is continuous at time tD , i.e. limt↗tD Cf (t)= limt↘tD Cf (t)= Cf (tD). The optimal
path for t > tD is described by:

Ċf (t)

Cf (t)
= FK

(
Kf (t),1

)− (ρ + δ)+ κλP (t)Cf (t),

λ̇P (t) = εE

Ē − Pf (t)
+ [

ρ +Φ ′C
(
Pf (t)

)]
λP (t),

K̇f (t) = F
(
Kf (t),1

)−Cf (t)− δKf (t),

Ṗf (t) = −Φ
(
Pf (t)

)+ κKf (t).

This system converges to the steady state given in (25)–(28).
In passing through the three regimes, the first-best social optimum is decentral-

ized by means of a tax on capital, θf (t), which is implicitly defined by:

Ċf (t)

Cf (t)
= (

1− θf (t)
)
FK

(
Kf (t),1

)− (ρ + δ).

As is illustrated in panel (b) of Fig. 3, the tax is quite high during the early phase of
the environmental cleanup.

The welfare effect of the first-best optimal policy is considerable. Indeed, as our
equivalent variation welfare measure EV(0) in Table 3 reveals, the welfare gain due
to the optimal environmental cleanup amounts to 44.1 percent of initial steady-state
consumption.3 Despite the fact that consumption is lower than its initial level during
much of the transition, the gradual improvement in environmental quality more than
compensates for this.

4 Second-Best Social Optimum

In this section we study optimal environmental policy in a second-best setting. In
particular we consider the repercussions of two types of constraints on the policy
maker’s choices, namely the unavailability of instruments and the insufficient flexi-
bility of a given instrument. In Sects. 4.1 and 4.2 we assume that the policy maker
cannot use the abatement instrument and conducts constrained optimal environmen-
tal policy with either a time-varying capital tax (in Sect. 4.1) or a time-invariant
(step-wise) capital tax (in Sect. 4.2).

In Sects. 4.3 and 4.4 we study the alternative case in which the policy maker
cannot use the tax instrument and is constrained to conduct optimal environmental
policy with, respectively, a time-varying or time-invariant abatement program. The
latter case coincides with the ad hoc policy studied in our earlier paper Heijdra and
Heijnen (2013).

3See Heijdra and Heijnen (2013) for a further discussion of the equivalent variation measure used
here.
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4.1 Time-Varying Taxation

The social planner chooses paths for C(t), P(t), and K(t) (for t ≥ 0) in order to
maximize (3) subject to the resource constraint (T1.2), the emission equation (2),
and the dirt flow definition (1). The initial conditions are as given in (13) above, and
the non-negativity constraint on investment in (14) is still relevant. Compared to the
first-best policy, however, the abatement instrument is not available, i.e. G(t) = 0
forms an additional constraint. As a result of this, the dirt flow constraint is slack,
i.e. D(t) > 0 for all t . The second-best optimal plan can be decentralized with the
aid of a time-varying tax on capital.

Of course, since abatement is not needed in the long-run first-best social op-
timum, the steady-state equilibrium under the second-best equilibrium consid-
ered here is still as given in (25)–(28) above, i.e. K̂TVT

s = K̂f , ĈTVT
s = Ĉf , and

P̂ TVT
s = P̂f , where the subscript “s” denotes second-best and the superscript “TVT”

indicates that the policy is decentralized with the aid of a time-varying tax. For con-
venience these quantitative results are reported in column (c) in Table 3.

Whereas the first- and second-best solutions are identical in the long run, the
optimal transition paths differ substantially for these two cases. The dynamic prop-
erties of the second-best optimum are illustrated in Fig. 4. There is one critical date
characterizing the optimal solution, namely tI = 21.46, and there exist two adjust-
ment regimes. Since there is no abatement, the flow of dirt is proportional to the
capital stock and environmental pollution evolves in both regimes according to:

Ṗ TVT
s (t)=−Φ(

P TVT
s (t)

)+ κKTVT
s (t).

4.1.1 Regime 1

For 0 ≤ t ≤ tI gross investment is zero and the capital stock gradually falls. Since
abatement is also absent, consumption is equal to output. To summarize we find for
this regime that:

KTVT
s (t) = K̂e−δt ,

CTVT
s (t) = Ŷ e−δ(1−εL)t .

These paths have been depicted in panels (b) and (c) in Fig. 4. Because consumption
growth in the decentralized equilibrium follows the Euler equation (T1.1) and con-
sumption growth during this social planning regime equals −δ(1− εL) we find that
the second-best social optimum can be decentralized with a time-varying capital tax
of the following form:

θTVT
s (t)= 1− ρ + δεL

ρ + δ
e−δεLt .

The capital tax is increasing over time in order to ensure that the gap between the
equilibrium interest rate and the rate of time preference stays constant despite the
fact that the capital stock falls over time. See panel (a) in Fig. 4.
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Fig. 4 Second-best optimal policy: time-varying taxation

4.1.2 Regime 2

For t > tI gross investment is strictly positive (If (t) > 0) and the consumption path
is characterized by:

ĊTVT
s (t)

CTVT
s (t)

= FK
(
KTVT
s (t),1

)− (ρ + δ)+ κλP (t)C
TVT
s (t),
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λ̇P (t) = εE

Ē − P TVT
s (t)

+ [
ρ +Φ ′C

(
Pf (t)

)]
λP (t)

whilst the stock of capital evolves according to:

K̇TVT
s (t)= F

(
KTVT
s (t),1

)−CTVT
s (t)− δKTVT

s (t).

Consumption is continuous at time tI , i.e. limt↗tI C
TVT
s (t) = limt↘tI C

TVT
s (t) =

CTVT
s (tI ), so that CTVT

s (tI ) = Ŷ e−δ(1−εL)tI and KTVT
s (tI ) = K̂e−δtI are the initial

conditions for the system of differential equation in CTVT
s (t) and KTVT

s (t). Since
the optimal growth rate in consumption features a downward jump at t = tI and the
capital stock is a predetermined variable, the optimal capital tax exhibits a discrete
increase at that time—see panel (a) in Fig. 4. In the long run the system converges
to the steady-state equilibrium discussed above.

Even though steady-state allocations are the same in the first- and second-best
social optimum, the “road traveled” to get from the initial (dirty) steady-state to the
socially optimal (clean) equilibrium is much more expensive when the policy maker
lacks the abatement instrument. Indeed, as is indicated in Table 3 our equivalent
variation measure EV(0) falls from 44.1 % to 17.1 % of current consumption when
a time-varying capital tax is the sole environmental policy instrument available. The
tax is thus a rather blunt instrument in the sense that it must be set at very high
(and strongly distortionary) levels during much of the transition in order to sharply
reduce the capital stock (and the associated dirt flow) such that the ecology is steered
to the basin of attraction of the lower branch of the P -isocline in Fig. 1. In contrast,
in the first-best case abatement forms a very cheap instrument to get the pollution
dynamics on the right track because it is financed by means of nondistortionary
lump-sum taxes.

4.2 Time-Invariant Taxation

In this subsection we further restrict the policy maker’s instruments by assuming
that the capital tax can only take on two values.4 In particular, we postulate that θ(t)
is set according to:

θ(t)=
{
θh for 0≤ t ≤ tE,

θl for t > tE,

where θh, θl , and tE are chosen optimally by the social planner. Intuitively, in view
of the results obtained from the time-varying taxation case (θh, tE) must ensure
that the ecology is out on the right track whereas θl corrects for the environmental
externality in the long run.

4See Moser et al. (2013) for a general analysis of multi-stage optimal control techniques in the
presence of history dependence.
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Fig. 5 Second-best optimal policy: time-invariant taxation

Figure 5 depicts the optimal paths for the key variables whilst column (d) in
Table 3 presents the quantitative results. Several things are worth noting. First, the
long-run allocation is the same under time-varying and time-invariant taxation. Sec-
ond, during transition the regime configuration is also the same although tI (the
time until which the investment constraint is binding) is highest under time-invariant
taxes (tI = 32). Third, the initial capital tax is quite high (θh = 0.85) and must be
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maintained for quite a long time (tE = 39.5) in order to move the ecology to the
basin of attraction of the lower branch of the P -isocline in Fig. 1. Fourth, the welfare
cost of the instrument inflexibility is modest, i.e. the equivalent variation measure
falls from 17.1 % under time-varying taxation to 16.2 % under time-invariant taxes.

4.3 Time-Varying Abatement

In the absence of capital taxation, the policy maker must conduct environmental pol-
icy exclusively with the abatement instrument. In order to compute the second-best
optimal policy, we follow the approach exposited by Judd (1999). In the determi-
nation of the best feasible allocation the social planner faces not only the resource
constraint (T1.2), the emission equation (2), and the dirt flow definition (1), but also
the following private sector constraints:5

λH (t)= 1

C(t)
, λ̇H (t)=

[
ρ + δ − FK

(
K(t),1

)]
λH (t). (29)

Substituting the dirt constraint into the emission equation and dropping the time
index, the current-value Lagrangian can now be written as:

L ≡ lnC + εE ln[Ē − P ] + λK
[
F(K,1)−C −G− δK

]
+ λP

[−Φ(P )+ κK − γG
]+ ηλ

[
ρ + δ − FK(K,1)

]
λH

+ ηC

[
1

C
− λH

]
+ ηD[κK − γG] + ηI

[
F(K,1)−C −G

]
.

The control variables are C and G (and thus D and I ), the state variables are K ,
P , and λH , the associated co-state variables are λK , λP , and ηλ, and the Lagrange
multipliers are ηC , ηD and ηI . The most relevant first-order conditions are the ex-
pressions in (16)–(18), (20), (29) and:

∂L

∂C
= 1

C
− (λK + ηI )− ηC

C2
= 0,

λ̇K − ρλK = −∂L
∂K

=−κ(λP + ηD)−
[
FK(K,1)− δ

]
λK − ηIFK(K,1)

+ FKK(K,1)ηλλH ,

η̇λ − ρηλ = − ∂L

∂λH
= [

FK(K,1)− δ− ρ
]
ηλ + ηC.

5Together these give rise to the Euler equation in the decentralized equilibrium, i.e. Ċ(t)/C(t)=
r(t)− ρ, where r(t)≡ FK(K(t),1)− δ.
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Since the capital tax is unavailable, the long-run capital stock returns to its initial
level:

K̂TVA
s = K̂,

where the superscript “TVA” stands for time-varying abatement. Whilst it is in prin-
ciple possible for long-run abatement to be positive, the parameter values ensure that
this case does not materialize (just as in the first-best social optimum). In summary
we find that:

GTVA
s = 0,

ĈTVA
s = F

(
K̂TVA
s ,1

)− δK̂TVA
s = Ĉ,

P̂ TVA
s = Φ−1

l

(
κK̂TVA

s

)= P̂G,

D̂TVA
s = D̂0.

In the second-best optimum, the ecology moves from point D to A in Fig. 1. Of
course, by construction, the second-best optimum can be decentralized with an
abatement policy.

The dynamic properties of the second-best optimum are illustrated in Fig. 6.
There is one date characterizing the optimal solution, namely tD = 28.2, and there
exist two adjustment regimes. Throughout the two regimes consumption is con-
strained to follow its decentralized Euler equation:

ĊTVA
s (t)

CTVA
s (t)

= FK
(
KTVA
s ,1

)− (ρ + δ),

whilst gross investment remains non-negative (ITVA
s (t) ≥ 0) and the dynamic path

for capital accumulation for 0≤ t ≤ tD is given in Fig. 6(b).

4.3.1 Regime 1

For 0 ≤ t ≤ tD abatement is at its maximum feasible level and the dirt flow is re-
duced to zero (DTVA

s (t)= 0). It follows from (1), (T1.2), and (2) that:

GTVA
s (t) = κ

γ
KTVA
s (t),

K̇TVA
s (t) = F

(
KTVA
s (t),1

)−CTVA
s (t)−

(
δ + κ

γ

)
KTVA
s (t),

Ṗ TVT
s (t) = −Φ(

P TVT
s (t)

)
.

Together with the consumption Euler equation these conditions determine the paths
depicted in Fig. 6.
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Fig. 6 Second-best optimal policy: time-varying abatement

4.3.2 Regime 2

For t > tD abatement is reduced to zero and the dirt flow becomes positive. Together
with the consumption Euler the paths for the main variables are given by:

GTVA
s (t) = 0,



Optimal Environmental Policy 81

K̇TVA
s (t) = F

(
KTVA
s (t),1

)−CTVA
s (t)− δKTVA

s (t),

Ṗ TVA
s (t) = −Φ(

P TVA
s (t)

)+ κKTVA
s (t).

The optimization problem implies that consumption is continuous at time tD , i.e.
limt↗tD CTVA

s (t) = limt↘tD C
TVA
s (t) = CTVT

s (tD). This system converges to the
steady state discussed above. The quantitative effects of the optimal time-varying
abatement policy are reported in column (e) in Table 3. At impact abatement is
quite high (G(0)= 0.13) and consumption is reduced substantially by about 16 per-
cent. During the early phase of transition the capital stock is crowded out though
by a relatively small amount compared to the time-varying taxation case discussed
above. The abatement policy is thus a cheap instrument to direct the ecology to the
basin of attraction of the lower branch of the P -isocline in Fig. 1. Indeed, as we re-
port in column (e) of Table 3 the welfare gain under time-varying abatement is 40.5
percent of initial consumption which is quite close to the result under the first-best
environmental policy.

4.4 Time-Invariant Abatement

In Heijdra and Heijnen (2013) we study the case in which the social planner uses an
ad hoc abatement policy of the following form:

G(t)=
{
G for 0≤ t ≤ tE,

0 for t > tE,
(30)

where G and tE are chosen optimally by the policy maker. Intuitively, in view of
the results obtained from the time-varying abatement case (G, tE) must ensure that
the ecology is put on the right track. The value of G must be chosen such that the
non-negativity constraint on the dirt flow is violated nowhere along the adjustment
path. The optimal policy is demonstrated to possess a “cold turkey” property: within
the class of stepwise abatement function (30) the largest feasible G must be chosen
for the briefest possible duration.

Figure 7 depicts the optimal paths for the key variables whilst column (f) in Ta-
ble 3 presents the quantitative results. Several things are worth noting. First, the
long-run allocation is the same under time-varying and time-invariant taxation. Sec-
ond, abatement is set at G= 0.1166 which initially is lower than the values it takes
under the time-varying policy. As a consequence, abatement must be continued for
a slightly longer period (tE = 30 instead of tE = tD = 28.2). Third, the welfare cost
of the instrument inflexibility is relatively small, i.e. the equivalent variation mea-
sure falls from 40.3 % under time-varying abatement to 34.5 % under time-invariant
abatement.
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Parameters: see Table 2. The initial ecological equilibrium is at point D in panel (b)

Fig. 7 Second-best optimal policy: time-invariant abatement

5 Conclusions

In this paper we have studied optimal environmental policy in the presence of an
ecological process featuring multiple stable steady-state ecological equilibria and
reversible hysteresis. Assuming that the ecological steady-state equilibrium is ini-
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tially located on the high-pollution (low-welfare) branch of the pollution isocline,
the policy maker is in principle able to engineer substantial welfare gains by choos-
ing the appropriate mix of Pigouvian taxation and abatement activities.

In the first-best social optimum the two available policy instruments each play a
very distinct role. During the initial phase of the policy, abatement is used to choke
off the flow of dirt as much as is feasible whereas the tax is employed to bring
down the stock of the polluting capital input as quickly as possible. In the long
run, however, abatement is no longer needed and the capital tax settles down at its
externality-correcting Pigouvian level.

Interestingly, in a second-best setting it matters very much which additional con-
straint is faced by the policy maker. In the case where capital taxation is unavailable
as an instrument for environmental policy, a suitably designed abatement policy can
achieve a social outcome that is only marginally worse than the first-best result. Intu-
itively, lump-sum tax financed abatement is a cheap instrument to steer the ecology
from the high- to the low-pollution equilibrium.

In contrast, if the abatement instrument is not available and the tax must be used
to clean up the environment then the “road traveled” is a very expensive one. In-
tuitively, because of the distorting nature of the capital tax, using it to get out of
the hysteretic equilibrium is a high-price option. Indeed, we show that in that case
it is only marginally welfare improving to steer the ecology from the high- to the
low-pollution equilibrium and to correct for the environmental externality.
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Appendix: Computational Details

First-Best (FB) We use a continuation method to compute the first-best. Let Xs =
(K,P ) denote the state variables, Xc = (λK,λP ) the costates, and X = (Xs,Xc).
The controls and the Lagrange-multipliers are denoted by U = (C,G,ηI , ηD).
From Pontryagin’s maximum principle, we get U = U∗(X): the state- and costate-
variables determine consumption, abatement and the multipliers for the investment-
and dirt constraints. Recall that the other first-order conditions can be written as
follows:

Ẋ(t)=H
(
X(t),U∗

(
X(t)

))
.

The optimal path is determined by constraints on Xs(0) and X(∞). In particular
Xs(0)= (K̂, P̂B) and X(∞)=X∗, where X∗ is a root of H(·). The end condition
is replaced by the requirement that at time T = 200, the trajectory is orthogonal
to the stable manifold of X∗. We approximate the first-order condition as follows.
First, we discretize the time grid t ∈ {0,1, . . . ,200} and at time t we replace the
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differential equation by a fourth-order Runge-Kutta approximation. This leads to a
system of equations of which we have to find the root.

For the continuation method, we need a trivial solution. Note that X(t)≡X∗ is a
solution for the initial conditionXs(0)=X∗s . We slowly change this initial condition
into the direction of the actual initial condition, using a simple predictor-correction
algorithm. See Grass (2012) for details.

The time at which the investment constraint stops being binding is calculated in
the following manner. Suppose that for t ≤ t∗, we have ηI (t) > 0 (and ηI (t)= 0 for
t > t∗). This means that the investment constraint is binding until tI ∈ [t∗, t∗ + 1].
Using cubic extrapolation, we determine the value of tI . It turns out that tI = 1.27.
For the dirt constraint, we use a similar method and it turns out that tD = 27.01.

Time-Varying Tax (TVT) In principle, in this case we should be able to use a
similar algorithm as for the first-best. However, the continuation algorithm fails to
terminate (the path “bends back” to the Xs(0) = X∗s ). We note that at some point
the investment constraint becomes binding. Therefore, we postulate that the optimal
path first goes through a regime where the investment constraint is binding. If the
investment constraint is binding until t = tI , then we can calculate the value of
capital and pollution at t = tI . We take these as the initial value for capital and
pollution and solve for the optimal time-varying tax from that point onward. Then
we choose tI such that this is the point where the investment constraint stops being
binding (i.e. λK(tI )F (K(tI ),1)= 1). It turns out that this is the case for tI = 21.46.

Please note that in both FB and TVT the long-run tax rate is θ̂ = 0.1066.

Time-Invariant Tax (TIT) In the long-run, we set the tax rate equal to θ̂ , but we
start with a higher tax rate to move the system towards a lower pollution level. It
turns out that the initial tax rate θ0 is high enough to make the investment constraint
binding. This means that we have to determine tI (the time at which the investment
constraint stops being binding) and tE (the time at which the tax rate shifts from θ0

to θ̂ ). Since the consumption path cannot jump, we can only switch from θ0 to θ̂ if
we are on the stable saddle path leading to the clean equilibrium. Hence, the free
variables are θ0 and tI . We somewhat crudely search for the lowest values that can
force the system to the clean steady state by increasing θ0 with step size 0.05 and tI
with step size 1. We end up with θ0 = 0.85 and tI = 32. Since the EV under TIT is
close to the EV under TIA (time-invariant abatement), we are confident that these
values are close to the optimal tax of this form.

Time-Varying Abatement and Time-Invariant Abatement (TVA and TIA)
See Heijdra and Heijnen (2013). We have added a bit of accuracy for the case with
TVA: full abatement until tE = 28.2, increases the EV to 40.5 %.

Calculation of Utility Levels In the FB, we calculate utility level by calculating
the Lagrangian at time zero and dividing this value by ρ. In all other cases, we use
the following method to calculate the utility of the representative consumer. Given
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paths for consumption and pollution, this amounts to evaluating an integral of the
form

W =
∫ ∞

0
u
(
C(s),P (s)

)
e−ρsds.

As inputs we have the levels of consumption and pollution at discrete points in time
t ∈ {t0, t1, t2, . . . , tn}, where tn is sufficiently large for consumption and pollution to
be close to the steady state values. Then, as is also noted by Heijnen and Wagener
(2013), W is approximately equal to:

W ≈ 1

2

n∑
i=1

[
u
(
C(ti),P (ti)

)
e−ρti + u

(
C(ti−1),P (ti−1)

)
e−ρti−1

]
(ti − ti−1)

+ u
(
C(tn),P (tn)

)e−ρtn
ρ

.

Since our grid is not very dense, this gives a rather rough approximation, limiting
the accuracy with which we can calculate the optimal policy.
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Modeling the Dynamics of the Transition
to a Green Economy

Stefan Mittnik, Willi Semmler, Mika Kato, and Daniel Samaan

Abstract Recent academic work argues for a greater urgency to implement effec-
tive climate policies to combat global warming. Concrete policy proposals for re-
ducing CO2 emissions have been developed by the IPCC. Yet, it has not been suf-
ficiently explored to what extent mitigation policies, such as cap-and-trade, carbon
tax or the phasing in of green technology, will entail structural change in an econ-
omy. Here, we explore the transition to a green economy using a growth model with
structural change resulting from three types of policies: (1) shifting preferences,
(2) taxing high-carbon intensive goods, or (3) imposing a carbon tax while subsi-
dizing low-carbon intensive economic activities. We also will consider a strategy of
imposing a carbon tax and subsidizing labor cost. Our focus will be on two ques-
tions: What impact do the policies under consideration have on employment and
output, and whether resulting growth paths will be stable. We also indicate how the
effects of carbon policies can be assessed empirically.

1 Introduction

Given the recent scientific evidence on global warming and its consequences, as
documented in the numerous reports by the IPCC, the importance of climate change
mitigation policies has been sufficiently demonstrated. The need for climate actions
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becomes particularly urgent if—as recent research indicates—some threshold has
already been reached.1 This produces the danger of doing “too little too late.” In
Greiner and Semmler (2008) and Greiner et al. (2009), models are presented that
motivate a great urgency of actions. As shown there, discount rates, which have
heavily been stressed in previous academic studies (see Nordhaus 2008; Weitzmann
2009; Stern 2007), are not as important as the danger of delaying actions. Delaying
action can mean that a high temperature (and low growth path) is approached that
becomes irreversible.

Along those lines, IPCC reports have been published that propose a large num-
ber of policy measures to prevent further emission of Greenhouse Gases and a fur-
ther rise of global temperature. The IPCC 4th Assessment Report urgently sug-
gests a broad range of mitigation policies, such as coordinated and integrated cli-
mate policies, broader development policies, regulations and standards, voluntary
agreements, information instruments and financial incentives to control and reduce
Greenhouse Gas emission. As measures toward a green economy, it emphasizes the
role of technology policies to achieve lower CO2 stabilization levels, a greater need
for more efficient R&D efforts, and higher investment in new technologies over the
next few decades. It also recommends government initiatives for funding or subsi-
dizing alternative energy sources (solar energy, ocean power, windmills, biomass,
and nuclear fusion). Overall, the IPCC stresses the fact that there are a number of
effective policy measures available now that can reduce Greenhouse Gas emission.

Yet, the major instruments that the IPCC and a number of economists propose are
two specific tools in order to fulfill the agreements of the Kyoto protocol and other
international agreements. These two tools are decentralized market trading of emis-
sion right (tradeable permits) and carbon taxation—in the public discussion often
called “cap-and-trade” and “carbon tax” (see Uzawa 2003; Nordhaus 2008; Mankiw
2007; IPCC 2007). Both measures have a long-standing history in economic theory,
originating in the works of Pigou and Coase. Most economists seem to agree now
that an emission (or carbon) tax is preferable to a cap&trade system.2 Here, we

1This is, for example, occurring through some albedo effect. This effect refers to the reflection of
incoming energy from the sun. As scientists have found out, the amount of energy reflected back to
space is decreasing as the earth becomes warmer. The melting of the arctic ice, for example, leads
to an absorption of a higher fraction of energy by the earth and the amount of energy reflected back
to space, the albedo, falls. This in turn heats up the earth faster. For details of such a canonical
model of climate change with threshold effects, see Greiner et al. (2009).
2Cap-and-Trade System: Cap-and-trade system requires that the actual polluter can be identified,
for example firms. Enforcement of the cap is difficult and trading of emission certificates are ex-
posed to speculative investments, generating a high volatility of the carbon price as the European
example shows. According to an estimate by Nell and Semmler (2009), the carbon price, in case
of emission trading, is even ten times more volatile than stock prices, which is already about seven
times more volatile than the GNP.

Carbon Tax: Carbon tax, on the other hand, allows for a broader application, including energy
supply, major polluting industries, the service sector, transport system and households. Further-
more, the generated tax revenue can be employed to reduce other taxes, and tax funds can to be
used to compensate developing economies, or can be used to induce climate-friendly investment
behavior as argued in Uzawa (2003).
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mainly focus on tax schemes as regulatory instruments. Yet, whatever measure will
be pursued, it will have a major impact on growth and the structure of the economy.

Below, we propose a growth model that, in contrast to much recent work, allows
for structural change due to policy influences. In economics, models that allow to
study simultaneously growth and structural change have been developed by Kuznets
(1957), Kaldor (1957), and Pasinetti (1981) in the context of traditional Keynesian-
oriented growth models. In Pasinetti (1981), for example, structural change occurs
through a change in final demand—driven by the income elasticity of demand (En-
gel curves). The Kuznets-Kaldor-Pasinetti ideas are incorporated into a recent opti-
mal growth model that allows for structural change (see Kongsamut et al. 2001). In
the latter, three types of preferences are driving structural change: preferences for
agricultural goods, manufactured goods, and services. The authors call such a path
a generalized balanced growth path. Since models of this type allow one to trace the
impact of climate policies on structural change along the growth path, we use them
as a starting point to model the impact of climate policies on growth and also the
structure of output and employment.

One can generally distinguish different factors that have an effect on total CO2

emissions of an economy (see Proops et al. 1993): the carbon intensity of the en-
ergy sources used, C/E, the energy intensity of the production, E/TO, and the total
output, TO.3 Total output effects can be further decomposed into the structure of
intermediate goods, the structure of final demand and the volume of final demand.
Thus all climate policies have to influence ultimately at least one of those factors. It
is important to note that TO can affect CO2 emissions through its level and through
its structure. Furthermore, we can distinguish a share of total output that directly
satisfies final demand and another share that is used to produce intermediate goods.
However, the volume of intermediate goods produced will directly depend on the
volume of final goods demanded. We will propose a type of carbon tax which em-
phasizes a dependency of the structure of intermediate goods on the structure of final
demand. For lasting and long-term results, climate policies have to induce structural
changes in an economy, and this can be best achieved through a change of the de-
mand structure.

We, thus, can perceive three main ways of how carbon intensity of an economy
can be reduced:

Although economists seem to lean toward a carbon tax, policy makers appear to tend toward a
market-based cap-and-trade system, as it is unpopular to announce the increase of tax rates when
running for public offices.
3This can be seen from the following identity:

C≡ C

E
· E

TO
· TO,

with C denoting the absolute CO2 emissions, E the energy use, and TO the total output of the
economy. We can, therefore, identify the five listed factors that affect CO2 emissions.
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• Preferences can shift over time, away from carbon-intensive and towards less-
carbon-intensive industries. This implies that the final demand will change.

• Carbon-intensive sectors can be taxed and the tax revenue can be used to reduce
wage cost. This is often seen as a policy measure that generates a double dividend.

• Carbon-intensive sectors and products can be taxed and less-carbon intensive sec-
tors and activities can be subsidized.

Yet, capital goods are delivered and used in final-goods sectors, so one also has
to consider the capital goods sector and its generation of CO2. We will show that
also the carbon intensity of the capital goods sector that delivers inputs to the fi-
nal goods sector can be reduced which will finally reduce the carbon intensity of
the economy. Thus, although we are considering a capital goods sector, our model
makes preferences for final goods central. What we are claiming is that preferences
shape the final demand of goods and, hence, the CO2 emissions of the economy. If
preferences shift from high- to low-carbon intensive goods, overall carbon intensity
will be reduced. The same holds for an industry: If, for an industry, preferences are
redirected to a product variety with less carbon intensity, an industry’s carbon in-
tensity will also be reduced. As we will show below, this implies a change of final
demand which will entail a change of the carbon intensity of the capital goods sector
as mentioned above. We will show that even if the capital goods sector is not given
direct incentive to reduce carbon intensity, a reduction will indirectly occur through
changed preferences for final goods.4

As to the first point, however, the question is how to impact preferences through
policies in such a way that they change in the desired direction. Preferences are of-
ten evolving historically and are impacted by sociological and cultural factors, such
as through role models and adapting the behavior of others. Conspicuous consump-
tion in the sense of Veblen is another example which leads to a certain preference
adoption. Population segments may copy the behavior of other population segments
as Veblen suggested, or activities of green political movements may influence the
behavior of households purchasing less-carbon intensive goods and services.

Preferences may also change through regulations and standards, norms and con-
ventions. development policies, voluntary agreements, and information instruments.
If standards and rules are set for construction of housing and for fuel efficiency of
cars, then preferences are likely to change over time. Moral persuasion is another
way to change preferences. Moreover, there exist policy tools to affect final de-
mand. Final demand may, for example, be changed through financial incentives,
such as taxes, emission certificates and subsidies, and, thus, help to redirect demand
to less-carbon incentive sectors and goods.

In our subsequent model, we first will consider indirect influences on preferences
by looking at the way how private preferences are shaped over time. This represents
our baseline dynamic model, which is presented in Sect. 2. In the second version

4Note that one could also introduce a financial penalty, for example, a tax on the use of capital
goods or intermediate goods with high direct and indirect carbon emission. A VAT on consumption
whose rates are based on the cumulated carbon intensity could achieve this.
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of our model, in Sect. 3, we study the issue when a carbon tax (or tradeable emis-
sion permits) are imposed. In a third version of our model, in Sect. 4, we consider
a further extension where we allow for both carbon taxes on emission-intensive in-
dustries and subsidization of low-carbon intensive products. The latter model will
exhibit what has been called a generalized steady state. Although there are some
common growth rates, there will be a structural change and thus a change of the
composition of sectors over time. Thus, the output composition of the economy and
the fraction of labor and capital employed will change over time. In Sect. 5, we
briefly summarize how one can take the model to the data, to empirically estimate
employment and output effects of mitigation policies, as suggested by Mittnik et al.
(2013). Empirical implications will be spelled out, but for a detailed econometric
treatment of those issues, using a double-sided VAR, we refer the reader to Mittnik
et al. (2013).

2 A Baseline Dynamic Model with Preferences

In the baseline model we explain the main mechanism of how our model works.5

We also show here what role preferences play for the sectoral composition of the
economy and how preferences can evolve over time.

2.1 Allocation of Labor and Capital

Consider an economy with three (high-CO2-emitting, low-CO2-emitting, and
capital-goods) sectors. There are two factors of production, capital Kt and labor Nt .
The total amount of labor available in the economy is normalized to 1.

Denote the fraction of capital devoted to sector i as φit Kt for i ∈ {H (high-CO2-
emitting sector), L (low-CO2-emitting sector), K (capital-goods sector)} and

∑
i∈{H,L,K}

φit = 1,

for all t .
Denote the fraction of labor devoted to sector i as Ni

t for i ∈ {H,L,K} where

∑
i∈{H,L,K}

Ni
t = 1, (1)

for all t .

5Our baseline model is related to Kongsamut et al. (2001).
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2.2 Production and Technology

The level of technological progress is denoted by Xt and the path of Xt is given.
We, however, assume that the growth rate of technology gradually converges to a
constant rate g, i.e.,

Ẋt =Xtgt ,

with a given X0 > 0 and

lim
t→∞gt = g ≥ 0.

Moreover, we assume that technological progress is labor augmenting.
Then the output of the high-CO2-emitting sector is

Ht = BHF
(
φHt Kt ,N

H
t Xt

)
, (2)

the output of the low-CO2-emitting sector is

Lt = BLF
(
φLt Kt ,N

L
t Xt

)
, (3)

and the output of the capital-goods sector is

K̇t + δKt = BKF
(
φKt Kt ,N

K
t Xt

)
, (4)

where Bi measures the efficiency of production in sector i ∈ {H,L,K}.
For reasons of simplicity, the functions, F(φit Kt ,N

i
t Xt ), in (2), (3), and (4) are

identical to all three sectors and assumed to have constant returns to scale. Denote
the partial derivatives using subscripts as

F1 ≡ ∂F (φit Kt ,N
i
t Xt )

∂(φit Kt )
and F2 ≡ ∂F (φit Kt ,N

i
t Xt )

∂(Ni
t Xt )

,

so BiF1 and BiF2 are the marginal products of capital and labor in sector i ∈
{H,L,K}, respectively.

Note that the outputs of the high-CO2- and the low-CO2-emitting sectors can
only be consumed while the output of the capital-goods sector can only be invested.

2.3 Efficient Factor Allocation

We assume that factor markets are competitive and that both factors are fully mo-
bile across sectors. As the three sectors have identical F , efficiency of production
in each sector should be measured by Bi only. Then an efficient factor allocation
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requires the fraction of capital employed in sector i and the fraction of labor em-
ployed in sector i be equalized, i.e., φit =Ni

t . That is, capital-labor ratios of all three
production sectors are

φHt

NH
t

= φKt

NK
t

= φLt

NL
t

= 1, (5)

for all t .
Similarly, the price Pi should reflect efficiency of production in sector i, i.e., the

higher the efficiency is, the lower the price is. Competitive factor markets imply that
the marginal products of capital,BiF1, and marginal products of labor,BiF2, have to
be equalized in all three production sectors. Then, using the price of capital goods as
numeraire, the relative prices of high-CO2-emitting products and low-CO2-emitting
products in terms of capital goods are

PH = BK

BH
and PL = BK

BL
when PK = 1. (6)

2.4 Investment and Capital Accumulation

Since production functions F have constant returns to scale, from (2), (5), and (6),
the total revenue from the high-CO2-emitting sector is

PHHt = PHBHN
H
t F (Kt ,Xt )

= BKN
H
t F (Kt ,Xt ), (7)

and from Eqs. (3), (5), and (6), the total revenue from the low-CO2-emitting sector
is

PLLt = PLBLN
L
t F (Kt ,Xt )

= BKN
L
t F (Kt ,Xt ). (8)

Then, from Eqs. (1), (4), (5), (7), and (8), the accumulation of capital, Kt , should
follow the law of motion,

K̇t + δKt = BKN
K
t F (Kt ,Xt )

= BK
(
1−NH

t −NL
t

)
F(Kt ,Xt )

= BKF(Kt ,Xt )− PHHt − PLLt , (9)

with a given K0 =K(0) > 0.
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2.5 Preferences

We use a constant relative risk aversion (CRRA) type utility function,

Ut =
∫ ∞

0
e−ρt (H

β
t L

θ
t )

1−σ − 1

1− σ
dt, (10)

where parameters ρ, β , θ , σ are all strictly positive and β + θ = 1.

2.6 Equilibrium

Let us define capital per unit of efficiency labor as kt ≡ Kt/Xt . Since production
functions F have constant returns to scale and from (5), we may rewrite the output,
(4), of the capital-goods sector as

BKF
(
φKt Kt ,N

K
t Xt

)= BKN
K
t XtF (kt ,1),

and similarly the cost of capital in the capital-goods sector as

(rt + δ)φKt Kt = (rt + δ)NK
t Xtkt .

Competitive equilibrium requires that the marginal products of capital,
BKN

K
t XtF1(kt ,1), should be equal to the marginal cost of capital, (rt + δ)NK

t Xt .
Therefore, at an equilibrium, we should have the interest rate, rt , that satisfies

rt = BKF1(kt ,1)− δ, (11)

which implies that capital is paid the marginal products of capital net of deprecia-
tion.

2.7 Consumption

Let us define output per unit of efficiency labor as ht ≡ Ht/Xt and lt ≡ Lt/Xt .
Using kt , ht , and lt , the law of motion of kt , Eq. (9), can be rewritten as6

k̇t + (gt + δ)kt + PHht + PLlt = BKF(kt ,1). (12)

6Dividing both sides of (9) by Xt gives

K̇t

Xt

+ δkt + PHht + PLlt = BKF(kt ,1).

As k̇t = K̇t /Xt − gkt , inserting this fact into the above equation derives the law of motion of kt .
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Similarly, the utility function, Eq. (10), can be rewritten as

Ut =
∫ ∞

0
e−ρt [(htXt )

β(ltXt )
θ ]1−σ − 1

1− σ
dt. (13)

The optimal consumption can be obtained by solving the following problem:

max
ht ,lt

(13)

subject to (12), for an initial value of capital per unit of efficiency labor, k0 ≡ k(0)=
K(0)/X(0), with K(0) > 0 and X(0) > 0 given.

To solve this dynamic problem, we use Pontryagin’s maximum principle. The
current-value Hamiltonian function, Φt , is defined as

Φt ≡ [(htXt )
β(ltXt )

θ ]1−σ − 1

1− σ
+ qt

[
BKF(kt ,1)− PHht − PLlt − (δ + gt )kt

]
,

where qt is the costate variable.
Then an optimal solution must satisfy the following first-order necessary condi-

tions:

∂Φt/∂ht = 0⇔ [·]−σ β(htXt )
β−1(ltXt )

θXt = PHqt , (14)

and

∂Φt/∂lt = 0⇔ [·]−σ θ(htXt )
β(ltXt )

θ−1Xt = PLqt , (15)

for all t . The optimal solution must also satisfy the law of motion of kt , (12), and
the following law of motion of qt ,

q̇t = ρqt − ∂Φt/∂kt

= ρqt −
[
BKF1(kt ,1)− (δ + gt )

]
qt , (16)

for all t . The transversality condition, limt→∞ ktqt e
−ρt = 0, must be also satisfied.

From (14) and (15), we get

β

θ

(
lt

ht

)
= PH

PL
. (17)

Equation (17) implies that along the optimal path, lt and ht must grow at the same
rate (denoted by κ), i.e.,

l̇tXt + lt Ẋt

ltXt

= ḣtXt + ht Ẋt

htXt

≡ κ. (18)

By taking the natural log of (14) and then taking its time-derivative, we get

−σ
(
β
ḣtXt + ht Ẋt

htXt

+ θ
l̇tXt + lt Ẋt

ltXt

)

+ (β − 1)
ḣtXt + ht Ẋt

htXt

+ θ
l̇tXt + lt Ẋt

ltXt

+ Ẋt

Xt

= q̇t

qt
,
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but from (18) and β + θ = 1, it can reduce to

κ =− 1

σ

(
q̇t

qt
− gt

)
. (19)

As competitive equilibrium requires (11), we may rewrite the law of motion of qt ,
(16), as

q̇t

qt
= ρ − rt + gt . (20)

Thus, from (19) and (20), we have

κ = rt − ρ

σ
. (21)

2.8 Balanced Growth

The growth rate of technology, gt , by assumption, should approach a constant rate g.
Thus (18) becomes

l̇t

lt
= ḣt

ht
= κ − g.

The law of motion of kt , (12), suggests that the only path along which all variables
grow at constant rate is that Lt , Ht , Kt , and Xt grow at rate g, i.e.,

κ − g = 0. (22)

Let k∗, h∗, and l∗ be the steady-state values. Then in balanced growth,

BKF
(
k∗,1

)= (g + δ)k∗ + PHh
∗ + PLl

∗. (23)

From (21) and (22), the equilibrium interest rate rt is

rt = ρ + σg. (24)

Inserting (24) into (11), the steady-state value k∗ solves

ρ + σg+ δ = BKF1
(
k∗,1

)
.

We can also obtain, from (17) and (23), the steady-state values h∗ and l∗ as

h∗ = β

PH

[
BKF

(
k∗,1

)− (g + δ)k∗
]
, (25)

and

l∗ = θ

PL

[
BKF

(
k∗,1

)− (g + δ)k∗
]
. (26)
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Stability of the dynamics in the vicinity of these steady-state values is analyzed in
the Appendix.

2.8.1 Output and Employment

In balanced growth, the output in high-CO2-emitting sector and the output in low-
CO2-emitting sector grow at the given long-run technological growth rate g, i.e.,

H ∗
t =

β

PH

[
BKF

(
k∗,1

)− (g + δ)k∗
]
Xt,

and

L∗t =
θ

PL

[
BKF

(
k∗,1

)− (g + δ)k∗
]
Xt .

From (2) and (25), employment of the high-CO2-emitting sector is

NH ∗ = β

PHBHF(k∗,1)

[
BKF

(
k∗,1

)− (g + δ)k∗
]
, (27)

and similarly, from (3) and (26), employment of the low-CO2-emitting sector is

NL∗ = θ

PLBLF(k∗,1)

[
BKF

(
k∗,1

)− (g + δ)k∗
]
. (28)

Finally, from (1), (27), and (28), employment of the capital-goods sector is

NK∗ = 1−NH ∗ −NL∗ . (29)

3 Preferences and Carbon Tax

Policy measures to change preferences has already been discussed in Sect. 1. Next
we want to study the effects of a carbon tax on preferences.

3.1 A Carbon Tax

For such a version of a dynamic decision model with preferences we could rewrite
the above baseline model with the utility function of (13), but including a tax on
high-CO2-emitting sector, in our model aggregated as htXt .

We introduce a form of carbon tax policy that imposes a negative endowment of
high-CO2-emitting goods, −H̄ < 0, on each household. By reducing endowments,
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such a policy changes households’ preferences (see Kongsamut et al. 2001). Then
the utility function, (13), can be rewritten as

Ut =
∫ ∞

0
e−ρt [(htXt −H)β(ltXt )

θ ]1−σ − 1

1− σ
dt, (30)

with β + θ = 1. We may interpret H̄ > 0 as a type of carbon tax imposed on high-
CO2-emitting goods.7

3.2 Consumption Under Carbon Tax

In order to obtain an optimal consumption, we solve the following problem:

max
ht ,lt

(30)

subject to (12) for a given value of k0 = k(0) > 0.
As before, we use Pontryagin’s maximum principle to solve this problem. The

current-value Hamiltonian function, Ψt , is newly defined as

Ψt ≡ [(htXt −H)β(ltXt )
θ ]1−σ − 1

1− σ
+qt

[
BKF(kt ,1)−PHht −PLlt − (δ+gt )kt

]
,

where qt is the costate variable.
The optimal solution must satisfy the following first-order necessary conditions:

∂Ψt/∂ht = 0⇔ [·]−σ β(htXt −H)β−1(ltXt )
θXt = PHqt , (31)

and

∂Ψt/∂lt = 0⇔ [·]−σ θ(htXt −H)β(ltXt )
θ−1Xt = PLqt , (32)

for all t . The optimal solution must also satisfy the law of motion of kt , (12), the law
of motion of the costate variable, qt , (16), for all t and the transversality condition,
limt→∞ ktqt e

−ρt = 0.
From (31) and (32), we get

β

θ

(
ltXt

htXt −H

)
= PH

PL
. (33)

7We could also assume that the price PH is raised in imperfectly competitive markets and then
the reallocation of production and employment from high to low-carbon-intensive goods could
occur through relative prices: As the price PH is raised the relative share of high-carbon-intensive
industries would decline. In this latter case the derivation of our baseline model of Sect. 3.1 would
hold. The relative prices of the two sectors could also change through an environmental tax reform.
In the latter case one can think, as Boehringer et al. (2008) suggest, that one has some tax incidence
effect, where the tax is shifted forward and the demand for those products will react—reducing
demand as a result of higher prices.
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Equation (33) implies that along the optimal path, consumption of low-CO2-
emitting goods, ltXt , and consumption of high-CO2-emitting goods, htXt − H̄ ,
must grow at the same rate (denoted by κ), i.e.,

ḣtXt + ht Ẋt

htXt −H
= l̇tXt + lt Ẋt

ltXt

≡ κ. (34)

By taking the natural log of (31) and then taking its time-derivative, we get

−σ
{
β
ḣtXt + ht Ẋt

htXt −H
+ θ

l̇tXt + lt Ẋt

ltXt

}

+ (β − 1)
ḣtXt + ht Ẋt

htXt −H
+ θ

l̇tXt + lt Ẋt

ltXt

+ Ẋt

Xt

= q̇t

qt
,

but from Eq. (34) and β + θ = 1, it can reduce to

κ =− 1

σ

(
q̇t

qt
− gt

)
. (35)

The competitive equilibrium is described as (11). Thus the law of motion of the
costate, qt , (16), that describes the competitive equilibrium is the same as (20).
Inserting this fact into (35), we have

κ = rt − ρ

σ
.

3.3 Balanced Growth Under Carbon Tax

We attempt to find a trajectory along which the real interest rate rt is constant.
Kongsamut et al. (2001) call such a trajectory a “Generalized Balanced Growth
Path”.

From (11), we know that kt has to be constant in order for the real interest rate
rt to be constant. Moreover, by assumption, gt converges to a constant rate g in the
long run.

Then, from (12), along the GBG path where k̇t = 0, we have

PHht + PLlt = BKF(k,1)− (g + δ)k. (36)

The right side of (36) is constant. The left side of (36), on the other hand, is not
constant because from (34),

ḣt = (κ − g)ht − H

Xt

κ, (37)
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and

l̇t = (κ − g)lt , (38)

and therefore,

PH ḣt + PLl̇t = (PHht + PLlt )(κ − g)− PHH̄

Xt

κ. (39)

Thus, for H > 0, there exits no κ that makes the right side of (39) zero unless
g = 0. There exists no competitive equilibrium path along which the requirement
of a constant real interest rate is satisfied.8 This implies that a GBG path does not
exists under the given carbon tax policy.

3.4 Output and Employment

When κ = g and g > 0, consumption of high-CO2-emitting goods, htXt −H , and
low-CO2-emitting goods, ltXt , grow at the rate g. Inserting this fact into (37), we
get

ḣt =−H

Xt

g ≤ 0. (40)

Thus, the growth rate of output in high-CO2-emitting sector is

Ḣt

Ht

= ḣt
Xt

Ht

+ g

= g
Ht −H

Ht

.

Similarly, from (38), when κ = g,

l̇t = 0. (41)

Thus, the growth rate of output in low-CO2-emitting sector is

L̇t

Lt
= g.

From (2), the output per unit of efficiency labor is ht = BHN
H
t F (kt ,1) in the high-

CO2-emitting sector. Taking a time derivative of this gives

ṄH
t =

ḣt

BHF(kt ,1)
, (42)

8The effect of a carbon tax case on the price PH in an environment of imperfect competition is
discussed in a later subsection.
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but from (40), we find the evolution of the employment in the high-CO2-emitting
sector as

ṄH
t =−

H

XtBHF(kt ,1)
g ≤ 0. (43)

Similarly, from (3), the output per unit of efficiency labor is lt = BLN
L
t F (kt ,1) in

the low-CO2-emitting sector. Taking a time derivative of this gives

ṄL
t =

l̇t

BLF (kt ,1)
, (44)

but from (41), we find the evolution of the employment in the low-CO2-emitting
sector as

ṄL
t = 0. (45)

Finally, from (1), (43), and (45), the evolution of the employment in the capital-
goods sector is

ṄK
t = −ṄH

t − ṄL
t

= H

XtBHF(kt ,1)
g ≥ 0. (46)

So, due to taxation of the high carbon intensive sector, its output and employment
will shrink, whereas the low carbon intensive sector stays unchanged and output and
employment for the capital goods sector is rising.

Note however, as mitigation policy instrument, we might also assume that instead
of a carbon tax a cap-and-trade system with emission permits, that have to be bought
and traded, can be established that would imply a cost on the carbon-intensive ac-
tivities.

4 Preferences, Carbon Tax and Product Subsidies

Next we consider the case of a double sided action, namely a carbon tax on high
carbon intensive sectors and subsidies on low carbon intensive sectors.

4.1 Tax and Product Subsidies

In the next version we allow for taxation and subsidies of the sectors simultaneously.
We consider an environmental policy through which each household is imposed a
negative endowment of high-CO2-emitting goods, −H̄ < 0, and a positive endow-
ment of low-CO2-emitting goods, L > 0. We may express such an endowment-
effect, as in Kongsamut et al. (2001), in the utility function. Due to this policy
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change, the utility function of the baseline model, (13), can be rewritten as

Ut =
∫ ∞

0
e−ρt [(htXt −H)β(ltXt +L)θ ]1−σ − 1

1− σ
dt. (47)

We may interpret the two policy parameters, H̄ and L̄, as a type of carbon tax im-
posed on high-CO2-emitting goods and subsidies in the form of low-CO2-emitting
goods, respectively.

We also introduce a policy requirement that the levels of H̄ and L̄ are chosen by
a policy maker such that they satisfy

PLL− PHH = 0. (48)

An interpretation of (48) is that the market value of these endowments be equal to
zero.

4.2 Consumption Under Carbon Tax and Product Subsidies

The household’s problem is

max
ht ,lt

(47)

subject to (12) for a given k0 = k(0) > 0.
The current-value Hamiltonian function, Θt , is defined as

Θt ≡ [(htXt −H)β(ltXt +L)θ ]1−σ − 1

1− σ

+ qt
[
BKF(kt ,1)− PHht − PLlt − (δ + gt )kt

]
.

The optimal solution must satisfy the following first-order necessary conditions:

∂Θt/∂ht = 0⇔ [·]−σ β(htXt −H)β−1(ltXt +L)θXt = PHqt , (49)

and

∂Θt/∂lt = 0⇔ [·]−σ θ(htXt −H)β(ltXt +L)θ−1Xt = PLqt , (50)

for all t . As before, the optimal solution must also satisfy the law of motion of kt ,
(12), the law of motion of the costate variable, qt , (16), for all t and the transversality
condition, limt→∞ ktqt e

−ρt = 0.
From (49) and (50),

β

θ

(
ltXt +L

htXt −H

)
= PH

PL
. (51)
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Equation (51) implies that along the optimal path, ltXt + L̄ and htXt − H̄ must
grow at the same rate (denoted by κ), i.e.,

l̇tXt + lt Ẋt

ltXt +L
= ḣtXt + ht Ẋt

htXt −H
≡ κ. (52)

By taking the natural log of (49) and then its time derivative, we get

−σ
(
β
ḣtXt + ht Ẋt

htXt −H
+ θ

l̇tXt + lt Ẋt

ltXt +L

)

+ (β − 1)
ḣtXt + ht Ẋt

htXt −H
+ θ

l̇tXt + lt Ẋt

ltXt +L
+ Ẋt

Xt

= q̇t

qt
,

but from (52) and β + θ = 1, it reduces to

κ =− 1

σ

(
q̇t

qt
− gt

)
. (53)

Inserting (20) into (53), we have

κ = rt − ρ

σ
.

4.3 Balanced Growth Under Carbon Tax and Product Subsidies

We find again a GBG path along which the real interest rate rt is constant. From (11),
kt has to be constant in order for rt to be constant. Moreover, in balanced growth,
gt is constant at g.

Then, from (12), along the GBG path where k̇t = 0, we have

PHht + PLlt = BKF(k,1)− (g + δ)k. (54)

The right side of (54) is constant. On the other hand, the left side of (54) is not
constant without additional assumptions.

However, recall our environmental policy requirement, (48). Then we may
rewrite (51) as

PLltXt = θ

β
PHhtXt − 1

β
PHH. (55)

Inserting (55) into (54) gives

1

β
PH (htXt −H)= [

BKF(k,1)− (g + δ)k
]
Xt . (56)

The right side of (56) grows at a given constant rate g. On the left side, from (52),
htXt−H̄ also grows at a constant rate κ . Thus there exists a competitive equilibrium
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path at κ = g along which the real interest rate is constant. This implies that a GBG
path exists under our environmental policy with a requirement, (48).

4.4 Output and Employment

In the generalized balanced growth, consumption of both high-CO2-emitting goods,
htXt −H , and low-CO2-emitting goods, ltXt + L, grow at rate g, i.e., κ = g. In-
serting this fact into (52) gives

ḣt =−H

Xt

g ≤ 0. (57)

Thus, the growth rate of output in high-CO2-emitting sector is

Ḣt

Ht

= ḣt
Xt

Ht

+ g

= g
Ht −H

Ht

.

Similarly, from (52),

l̇t = L

Xt

g ≥ 0. (58)

Thus, the growth rate of output in low-CO2-emitting sector is

L̇t

Lt
= l̇t

Xt

Lt
+ g

= g
Lt +L

Lt
.

From (42) and (57), the evolution of the employment in the high-CO2-emitting sec-
tor is

ṄH
t =−

H

XtBHF(kt ,1)
g ≤ 0. (59)

Similarly, from (44) and (58), the evolution of the employment in the low-CO2-
emitting sector is

ṄL
t =

L

XtBLF(kt ,1)
g ≥ 0. (60)

Finally, from (1), (59), and (60),

ṄK
t = −ṄH

t − ṄL
t

= H

XtBHF(kt ,1)
g − L

XtBLF(kt ,1)
g. (61)
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However, recall our environmental policy requirement, (48). Then we may rewrite
(51) as

H

L
= BH

BL
.

Thus, plugging this into (61), we obtain the evolution of the employment in the
low-CO2-emitting sector as

ṄK
t = 0. (62)

The theoretical analysis in this section leads to the prediction that, due to the
two-track policy—i.e., taxation of high-carbon intensity goods and subsidies for
low-intensity goods—output and employment will shrink in the high-carbon sector
and expand in the low-carbon sector. Next, we examine to what extent this prediction
can be examined empirically.

5 Empirics of the Model

The effects of mitigation policies on output and employment can be estimated
through econometric techniques. This is undertaken in Mittnik et al. (2013).

First one has to construct appropriate data sets. One can employ input-output ta-
bles in order to identify high- and low-carbon intensive industries. In Mittnik et al.
(2013) German input-output tables, which are available for 71 sectors, are aggre-
gated into two sectors: a high-carbon intensive sector (HCIS), and a low-carbon
intensive sector (LCIS). In addition to traditional input-output tables, the German
Federal Statistical Office provides industry specific data on CO2 emission in kilo
tons. With these data, one can calculate the CO2-intensity of each industry mea-
sured in kilo tons over gross output in million euros (direct CO2 intensity). This
ratio describes how many kilo tons of CO2 emissions a specific sector in the econ-
omy creates in order to generate one million euros of gross output. With the help of
these key figures, we can rank different industries according to their CO2 intensity
and classify industries in the two sectors (HCIS and LCIS). Industries whose carbon
intensity per unit of output is above (below) the median are classified as belonging
to the high carbon intensity (low carbon intensity) sector.

Note that this grouping can be done on basis of one country’s CO2 intensity data
and this information can be used for other countries as well by assuming that the
ranking of industries is identical for other countries analyzed. The absolute level of
CO2 emissions as well as the absolute CO2 intensity in a particular sector may of
course differ among countries. This depends on the size of the industry, the tech-
nology used, the energy mix, and possibly on other factors. However, the relative
position of an industry within a country can be expected to be roughly the same, es-
pecially among industrialized countries. Thus, energy intensive manufacturing in-
dustries like metals, coke, and mechanical wood can be expected to be relatively
high-carbon intensive in any country. Since we aim at aggregating the industries
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into just two sectors (HCIS and LCIS), only changes in CO2 intensities of indus-
tries around the median have an effect on the composition of the HCIS and LCIS
in a country. As a next step, we use the industry time series data from EU KLEMS,
available from the OECD, to determine the past growth of output and employment
in the HCIS and the LCIS for our countries under study. The countries examined in
Mittnik et al. (2013) are Germany, Australia, France, Hungary, Japan, South Korea,
Sweden, UK, and the United States.

Next given the two sectors aggregation with respect to HCIS and LCIS, one can
implement—following the sub-division of the economy in the two sectors in the
theoretical model—a vector autoregression (VAR) and estimate concrete policy ef-
fects. Mittnik et al. (2013) consider three types of policies: (1) imposing a carbon tax
on carbon intensive industries, (2) imposing a carbon tax and subsidizing the less
carbon intensive industries, and (3) imposing a carbon tax and subsidizing wage
cost of industries (reducing overhead cost for labor).9 The policy effects of (1) and
(2) correspond to our model variants of Sects. 3 and 4. Also the effects of the pol-
icy (3) were also estimated empirically in Mittnik et al. (2013), employing impulse
response analysis involving individual and simultaneous policy shocks, and led to
interesting results. The least favorable outcome was obtained when only a carbon
tax was imposed on carbon-intensive industries and the revenue not used for other
purposes, such as reducing other tax rates, subsidizing wages or the development of
other (less carbon intensive) products. Since the proposed double-sided VAR setup
employed allows one to impose budgetary neutrality one can study the cases when
the revenue is used for other purposes. The empirical results show that in particu-
lar the second policy measure, i.e., carbon tax revenues are used to subsidize the
development of other products, has the greatest net gains in terms of output and
employment.

In summary, Mittnik et al. (2013) find that the specified simultaneous policy
shocks do not have a huge impact on the level of aggregate output and employ-
ment. For the most part, structural adjustments are triggered and not reductions of
economic activity as a whole. In several countries, like the US or Hungary, Mittnik
et al. (2013) observe somewhat positive effects on total economic activity. For Aus-
tralia, the effects are on the negative side. The reasons for these differences on an
individual country level need to be studied further. It is likely, however, that also
the initial conditions (for example, sizes of the HCIS and LCIS in terms of output
and employment) at the time of the shock as well as differing sample periods play a
role.

9This was a key element of the German ecological tax reform which was implemented in 1999,
see Boehringer et al. (2008). If wages are subsidized in all sectors, high- and low-carbon intensive
sectors, then the firms can employ labor at a lower cost. In this version of mitigation policy, we
would have a reduction of employment in the carbon-intensive sector and an overall increase in
employment due to the use of the tax revenue to subsidize wages across the board. Yet, the over-
all output and employment effects are ambiguous for such a mitigation policy, see Mittnik et al.
(2013).
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6 Conclusions

Recently, academic work has been put forward that argues for a greater urgency
to implement effective climate policies to combat global warming. Concrete pol-
icy proposals for reducing CO2 emissions have been developed by the IPCC. So
far, however, it has not been sufficiently explored to what extent mitigation poli-
cies, such as cap-and-trade, carbon tax or phasing in of green technology, will
entail a structural change of the economy, and what implication this may have
for the stability of the growth path. Another essential issue that had not been
sufficiently studied—done here using a growth model with structural change—
is the question of the consequences of a transition to a green economy with re-
spect to output and employment. Here, we have considered four types of policies:
(1) changing households’ preferences, (2) imposing a carbon tax, (3) imposing a
carbon tax and subsidizing low-carbon-intensive economic activities, and (4) im-
posing carbon tax and subsidizing wage costs. Further research on these questions
is needed.
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Appendix

Stability Analysis

From the equilibrium market condition, (11), and the first-order necessary condi-
tions, (12), (16), (18), and (21), we may summarize our model’s dynamics by the
following 3× 3 dynamic system:

l̇t =
(
BKF1(kt ,1)− δ − ρ

σ
− gt

)
lt ,

ḣt =
(
BKF1(kt ,1)− δ − ρ

σ
− gt

)
ht ,

k̇t = BKF(kt ,1)− PHht − PLlt − (gt + δ)kt .

Then the Jacobian matrix, J , of our 3× 3 dynamic system is

J =

⎡
⎢⎢⎣

∂l̇t
∂lt

∂ l̇t
∂ht

∂ l̇t
∂kt

∂ḣt
∂lt

∂ḣt
∂ht

∂ḣt
∂kt

∂k̇t
∂lt

∂k̇t
∂ht

∂k̇t
∂kt

⎤
⎥⎥⎦
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=
⎡
⎣

BKF1(kt ,1)−δ−ρ
σ

− gt 0 1
σ
BKF11(kt ,1)lt

0 BKF1(kt ,1)−δ−ρ
σ

− gt
1
σ
BKF11(kt ,1)ht

−PL −PH BKF1(kt ,1)− (gt + δ)

⎤
⎦ .

Let J ∗ be J evaluated at the vicinity of the steady state where lt = l∗, ht = h∗,
kt = k∗, gt = g, and BKF1(kt ,1)= ρ + σg+ δ.

Then the associated characteristic equation is

det
(
J ∗ − λI

) =
∣∣∣∣∣∣
−λ 0 1

σ
BKF11(k

∗,1)l∗
0 −λ 1

σ
BKF11(k

∗,1)h∗
−PL −PH BKF1(k

∗,1)− (g + δ)− λ

∣∣∣∣∣∣
= −λ

{
λ2 − [

BKF1
(
k∗,1

)− (g + δ)
]
λ

+ 1

σ
F11

(
k∗,1

)(
PHBKh

∗ + PLBKl
∗)},

where λ is the eigenvalue of J .
Thus the eigenvalues are

λ1 = 0 and λ2,3 = BKF1(k
∗,1)− (g + δ)±√�

2
,

where

�≡ [
BKF1

(
k∗,1

)− (g + δ)
]2 − 4

σ
F11

(
k∗,1

)(
PHBKh

∗ + PLBKl
∗)> 0.

Therefore, we have a zero eigenvalue, a real positive eigenvalue, and a real negative
eigenvalue.
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One-Parameter GHG Emission Policy
with R&D-Based Growth

Tapio Palokangas

Abstract This document examines the GHG emission policy of regions which use
land, labor and emitting inputs in production and enhance their productivity by de-
voting labor to R&D, but with different endowments and technology. The regions
also have different impacts on global pollution. The problem is to organize common
emission policy, if the regions cannot form a federation with a common budget and
the policy parameters must be uniform for all regions. The results are the following.
If a self-interested central planner allocates emission caps in fixed proportion to past
emissions (i.e. grandfathering), then it establishes the Pareto optimum, decreasing
emissions and promoting R&D and economic growth.

1 Introduction

This document examines regions that produce the final good from land, labor and an
emitting input and enhance their productivity by devoting labor to R&D. There is no
limit to how much a region can emit, but because local emissions harm local produc-
tion, there is an optimal level of emissions for a region. There is a central planner
that decides how much each region can emit greenhouse gases (GHGs). Because
the regions cannot form a federation, the central planner is self-interested (i.e. sub-
ject to lobbying) with no budget of its own. Furthermore, the central planner can
use only one policy parameter that must be uniformly applied to all regions. In this
framework, it is instructive to compare the cases of laissez-faire, Pareto optimum
and lobbying.

It has been common in environmental economics to consider abatement in a two-
sector framework where one sector produces a final good, but the other sector alle-
viates the use of natural resources (cf. Xepapadeas 2005, Chap. 4.3). The problem
of environmental policy is then basically static: it answers the question of how re-
sources could be optimally allocated between the sectors. Because that approach ig-
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nores the long traces that environmental policy may cause for the economic growth
of countries, this document examines emissions in a R&D-based growth model.

Haurie et al. (2006) examine a negotiation game where the regions talk over an
international agreement on their use of GHGs to foster their economic development.
They show that if GHGs in the atmosphere are exogenously constrained, then there
is a Pareto optimum in these talks. Böhringer and Lange (2005) and Mackenzie et al.
(2008) consider emissions-based allocation rules for which the basis of allocation is
updated over time. They show that if the emission cap is absolute, then grandfather-
ing schemes—which allocate allowances proportionally to past emissions—lead to
the first-best. This document extends the analysis of these papers as follows. First,
the policy maker in the coalition is self-interested, being subject to lobbying from
the regions. Second, the international emission cap is endogenously determined by
the same bargaining between the coalition members and the policy maker.

Jouvet et al. (2008) incorporate externality through pollution in an overlapping-
generations (OLG) model, showing that the optimal growth path can be decen-
tralized only with lump-sum transfers and a market for GHG permits. All permits
should then be auctioned, which rules out all grandfathering practises. Jouvet et al.
(2008) explain these results as follows: grandfathering practices cause a distortion
by raising the return on investment, but the lump-sum provision of pollution rights
to households does not distort anything. In contrast, this document considers the
coordination of environmental policy through the design of a policy maker with no
budget. It is instructing to see whether grandfathering schemes distort in that setting.

Palokangas (2009) considers emission policy with a self-interested central plan-
ner in a coalition of identical regions. That paper however assumes, rather unreal-
istically, that technology and primary resources are similar in all regions and that
the central planner can negotiate over different emission caps with different regions.
In this document, that assumption is relaxed: the central planner has only one pol-
icy parameter—the proportion of grandfathering in allocating emissions caps—that
must be uniformly applied to heterogeneous regions. Section 2 presents the structure
of the economy and Sect. 3 constructs the model for a single region. Sections 4, 5
and 6 examine the cases of laissez-faire, the Pareto optimum and lobbying, respec-
tively. It is shown that a one-parameter grandfathering agreement is self-enforcing
(cf. Haurie et al. 2006): no region has incentives to break it.

2 The Economy

The economy contains a large number (a “continuum”) of regions that are placed
evenly in the limit [0,1]. The regions have different endowments of labor and land,
different production functions in manufacturing and different technology in R&D.
Their emissions have different impacts on global pollution. All regions produce the
same consumption good from land, labor and energy. That good is chosen as the
numeraire in the model, for convenience.
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Each region j ∈ [0,1] supplies land Aj and labor Lj inelastically, and devotes lj
units of labor to production and the remainder,

zj = Lj − lj , (1)

to R&D. There exists an emitting input called energy the extraction costs of which
are ignored, for simplicity. It is assumed that emissions are proportional to the use
of energy, mj , in each region j . Pollution m is a linearly homogeneous function M
of the emissions of all regions j ∈ [0,1]:

m=M
(
mj | j ∈ [0,1]), M homogeneous of degree one. (2)

In global warming problems, it is the stock of GHGs that causes damages and
not the flow. In this document, however, the flow is used instead to simplify the
dynamics. In the model, pollution affects the economy in two ways. First, pollution
decreases utility globally. Second, local pollution harms local production. Except
realism, there is also a technical reason to introduce the “local” effect: it enables the
existence of the laissez-faire equilibrium in the case there is no international agent
running emission policy.

To enable that the regions can increase their efficiency and consequently grow at
different rates in a stationary-state equilibrium, we eliminate

• the terms-of-trade effect by the assumption that all regions produced the same
internationally-traded good, and

• international capital movements by the assumption that all regions share the same
constant rate of time preference, ρ.

On the assumption of perfect markets, each region j ∈ [0,1] behaves as if there
were a single agent (hereafter called region j ) that controls fully the resources in
that region. This document ignores free riding, for simplicity: all regions j ∈ [0,1]
are committed to common emission policy.

3 Single Region j ∈ [0,1]

3.1 Production

When region j develops a new technology, it increases its productivity by constant
proportion aj > 1. The level of productivity in region j is then equal to aj γj , where
γj is its serial number of technology. The innovation of new technology in region j
increases γj by one.

Region j produces its output yj from land Aj , labor lj and energy mj . It is as-
sumed that local emissions, which are proportional to energy input mj , harm local
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production.1 It is furthermore assumed that labor lj and energy mj form a compos-
ite input φj (lj ,mj ) through CES technology, but otherwise there is Cobb-Douglas
technology:2

yj = aj
γj f j (lj ,mj )m

−β
j , f j (lj ,mj )

.=A
1−αj
j φj (lj ,mj )

αj , 0< αj < 1, β > 0,

f
j
l > 0, f jm > 0, φjl > 0, φjm > 0, φjll < 0, φjmm < 0, φjlm > 0, (3)

where the subscripts l andm denote the partial derivative of the function with respect
to lj and mj , respectively, aj γj is total factor productivity, αj a parameter and β is
the constant elasticity of output with respect to emissions mj . The higher β , the
more local emissions mj harm local production.

When the markets are perfect in region j , one can interpret 1− αj as the expen-
diture share of land and αj that of labor and energy taken together. Noting (3), the
expenditure shares of energy and labor in production are

mjf
j
m(lj ,mj )

f j (lj ,mj )
= αj

mjφ
j
m(lj ,mj )

φj (lj ,mj )
= αj

φ
j
m(lj /mj ,1)

φj (lj /mj ,1)
.= ξj

(
lj

mj

)
∈ (0, αj ),

lj f
j
l (lj ,mj )

f j (lj ,mj )
= αj

ljφ
j
l (lj ,mj )

φj (lj ,mj )
= αj

[
1− mjφ

j
m(lj ,mj )

φj (lj ,mj )

]

= αj − ξj
(
lj

mj

)
∈ (0, αj ).

(4)

Because the composite input φj (lj ,mj ) is a CES function, one obtains

(ξ j )′
(
lj

mj

)
= dξj

d(lj /mj )

{
> 0 for 0< σj < 1,
< 0 for σj > 1,

(5)

where σj is the constant elasticity of substitution between inputs lj and mj .

3.2 Research and Development (R&D)

An increase in productivity in region j , aj γj (cf. the production function (3)), de-
pends on labor devoted to R&D, zj , in that region: the probability that input zj leads
to development of a new technology with a jump from γj to γj +1 in a small period

1Without this assumption, region j would use an indefinitely large amount of energy in the case of
laissez-faire (cf. Sect. 4).
2The use of a general production function yj = a

γj
j F (Aj , lj ,mj ) would excessively complicate

the analysis.
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of time dθ is given by λjzj dθ , while the probability that input zj remains without
success is given by 1− λj zj dθ , where λj > 0 is a constant. Noting (1), this defines
a Poisson process χj with

dχj =
{

1 with probability λj zj dθ ,
0 with probability 1− λjzj dθ ,

zj = Lj − lj , (6)

where dχj is the increment of the process χj .

3.3 Preferences

All regions have the same preferences: the expected utility of region j ∈ [0,1] start-
ing at time T is given by

E

∫ ∞

T

cjm
−δe−ρ(θ−T )dθ, δ > 0, ρ > 0, (7)

where E is the expectation operator, θ time, cj consumption in region j , ρ the con-
stant rate of time preference and δ the constant elasticity of temporary utility with
respect to economy-wide emissions m. The lower ρ, the more patient the regions
are. Total pollution m decreases welfare in all regions j ∈ [0,1], but a single region
is so small that it ignores this dependence. The higher δ, the more pollution m is
disliked.

4 Laissez-Faire

Because all regions j ∈ [0,1] produce the same consumption good, then, without
GHG emissions management, each region j consumes what it produces, cj = yj .
Noting (3) and cj = yj , the expected utility of the region starting at time T , (7),
becomes

Υ j =E

∫ ∞

T

yjm
−δe−ρ(θ−T )dθ =E

∫ ∞

T

a
γj
j f

j (lj ,mj )m
−β
j m−δe−ρ(θ−T )dθ.

(8)

Assume for a while that energy input mj is held constant. Region j then maximizes
its expected utility (8) by its labor devoted to production, lj , subject to its tech-
nological change (6), given pollution m. The solution of this maximization is the
following (cf. Appendix 1):

Proposition 1 The expected utility of region j is

Υ j =m−δΠj (γj ,mj ,T ), for which
∂Πj

∂mj

= Πj

mj

[
ξj

(
lj

mj

)
− β

]
. (9)
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Region j chooses its labor input lj so that

(aj − 1)λj lj
ρ + (1− aj )λj (Lj − lj )

= αj − ξj
(
lj

mj

)
. (10)

In the presence of laissez-faire, region j can optimally determine its energy input
mj as well: it maximizes the value of its program, Υ j , by mj . Given (9), this leads
to the first-order condition

∂Υ j

∂mj

=m−δ ∂Π
j

∂mj

=m−δ Π
j

mj

[
ξj

(
lj

mj

)
− β

]
= 0 and ξj

(
lj

mj

)
= β. (11)

The second-order condition of the maximization is given by

∂2Υ j

∂m2
j

=− m−δ Π
j

mj︸ ︷︷ ︸
+

(ξ j )′
lj

m2
j︸︷︷︸
+

< 0 and (ξ j )′ > 0.

Given this and (5), labor and energy are gross complements, 0 < σj < 1, and
(ξ j )′ > 0 holds true everywhere. From this, (10) and (11) it follows that

(aj − 1)λj lLj
ρ + (1− aj )λj (Lj − lLj )

= αj − β, ξj
(
lLj

mL
j

)
= β with (ξ j )′ > 0, (12)

where the superscript L denotes the laissez-faire equilibrium.
Finally, the following result is proven in Appendix 2:

Proposition 2 The more emissions harm locally (i.e. the higher β), the less there
are emissions mL

j , dmL
j /dβ < 0, and the more there is R&D (i.e. the higher zLj ),

dzLj /dβ > 0.

Because technological change generated by R&D decreases the need for pollut-
ing energy, there are incentives to perform R&D.

5 The Pareto Optimum

Grandfathering means that emission caps have a base that is determined by the his-
tory, but updated over time. In models with discrete time, that base would be cal-
culated by a moving average of past emissions. In the quality-ladders model of this
document where time is continuous, the base is specified as follows. The central
planner sets the pollutant caps in fixed proportion ε to the energy input of that re-
gion under previous technology, m̂j :

mj ≤ εm̂j for j ∈ [0,1] and ε > 0. (13)
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If the current number of technology is γj , then the allocation base m̂j is calculated
by energy input under previous technology γj − 1 (cf. Sect. 3.1). If the central
planner tightens emission policy by decreasing ε below one, then the constraint
(13) becomes binding for all regions j ∈ [0,1]. Because the function M in (2) is
linearly homogeneous, one then obtains:

mj = εm̂j for j ∈ [0,1], m= εm̂, m̂
.=M

(
m̂j | j ∈ [0,1]). (14)

In the grandfathering scheme, there is thus only one policy parameter ε.
Because all regions j ∈ [0,1] produce the same consumption good, total con-

sumption is equal to total production,
∫ 1

0 cjdj =
∫ 1

0 yjdj . To construct the Pareto
optimum, let us introduce a benevolent central planner that maximizes the welfare
of the representative agent of the economy, W . Given (7), (8), (9) and

∫ 1
0 cjdj =∫ 1

0 yjdj , that welfare is

W
.=
∫ 1

0

[
E

∫ ∞

T

cjm
−δe−ρ(θ−T )dθ

]
dj =E

∫ ∞

T

(∫ 1

0
cj dj

)
m−δe−ρ(θ−T )dθ

=E

∫ ∞

T

(∫ 1

0
yjdj

)
m−δe−ρ(θ−T )dθ =E

∫ 1

0

(∫ ∞

T

yjm
−δe−ρ(θ−T )dθ

)
dj

=
∫ 1

0
Υ jdj =m−δ

∫ 1

0
Πj(γj ,mj ,T )dj

which should be maximized by the policy parameter ε. Given (9) and (14), this leads
to the first-order conditions

0= dW

dε
=m−δ

∫ 1

0

∂Πj

∂mj

∂mj

∂ε︸︷︷︸
=m̂j

dj − δm−δ−1 ∂m

∂ε︸︷︷︸
=m̂

∫ 1

0
Πjdj

=m−δ
[∫ 1

0

∂Πj

∂mj

m̂j dj − δ
m̂

m

∫ 1

0
Πjdj

]

=m−δ
{∫ 1

0
Πj

[
ξj

(
lj

mj

)
− β

]
m̂j

mj

dj − δ
m̂

m

∫ 1

0
Πjdj

}

=m−δ
∫ 1

0
Πj

{[
ξj

(
lj

mj

)
− β

]
m̂j

mj

− δ
m̂

m

}
dj. (15)

In the stationary state, all inputs (lj ,mj ) for all regions j ∈ [0,1] must be constant.
Once the economy attains the stationary state, the emissions under the previous and
current technology become equal: m̂ = m and m̂j = mj for j ∈ [0,1]. Plugging
these conditions and into (15) yields

0=m−δ
∫ 1

0
Πj

[
ξj

(
lj

mj

)
− β − δ

]
dj. (16)
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Because the expected utilities Πj for j ∈ [0,1] are random variables, then, given
(16), the only possible stationary state is

ξj
(
lj

mj

)
= β + δ for j ∈ [0,1]. (17)

The equilibrium conditions (10) for the regions j ∈ [0,1] as well as those (17) for
the central planner can be written as

ξj
(
lPj

mP
j

)
= β + δ,

(a − 1)λj lPj
ρ + (1− a)λj (Lj − lPj )

= αj − β − δ, (18)

where the superscript P denotes the Pareto optimum equilibrium.
The comparison of (18) with (12) shows that the introduction of a benevolent

central planner increases the parameter β up to β + δ in the system. Thus, Proposi-
tion 2 has the following corollary:

Proposition 3 A shift from laissez-faire to the Pareto optimum decreases emissions,
mP
j <mL

j , and increases R&D, zPj > zLj .

The introduction of a benevolent central planner internalizes the negative ex-
ternality through emissions. This increases incentives to perform R&D. With the
uniform proportionality rule ε, all regions face the same marginal benefits from
pollutants via allocation in subsequent periods. In contrast to Böhringer and Lange
(2005), the regulatory cap mP is not exogenous but endogenously determined.

6 Regulation

In this section, regions j ∈ [0,1] lobby the central planner over the policy param-
eter ε. Following Grossman and Helpman (1994), it is assumed that the central
planner has its own interests and collects political contributions Rj from regions
j ∈ [0,1]. This is a common agency game, the order of which is then the following
(cf. Grossman and Helpman 1994, and Dixit et al. 1997). First, the regions j ∈ [0,1]
set their political contributions Rj conditional on the central planner’s prospective
policy ε. Second, the central planner sets its policy ε and collects the contributions
from the regions. Third, the regions maximize their utilities. This game is solved in
reverse order: Sect. 6.1 considers the equilibrium of the regions and Sect. 6.2 the
political equilibrium.

6.1 Optimal Program

Region j pays its political contributions Rj to the central planner. It is assumed,
for simplicity, that the central planner consists of civil servants who inhabit regions
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j ∈ [0,1] evenly. Thus, the regions gets an equal share R of total contributions,

R
.=
∫ 1

0
Rjdj

/∫ 1

0
dk =

∫ 1

0
Rjdj. (19)

Noting the production function (3), consumption in region j is then

cj = yj +R−Rj = a
γj
j f

j (lj ,mj )m
−β
j +R −Rj , (20)

where yj is income from production and R −Rj net revenue from political contri-
butions in region j . Noting (20), the expected utility of region j starting at time T ,
(7), becomes

Θj =E

∫ ∞

T

[
a
γj
j f j (lj ,mj )m

−β
j +R −Rj

]
m−δe−ρ(θ−T )dθ. (21)

Region j maximizes its expected utility (21) by its labor devoted to production, lj ,
subject to technological change in the region, (6), given the emission cap mj , pollu-
tion m and political contributions Rj and R. The solution for this optimal program
is the function (cf. Appendix 3)

Θj(mj ,m,R,Rj , γj ),
∂Θj

∂mj

=m−δ
Γ j (γj ,mj ,T )

mj

[
ξj

(
l∗j
mj

)
− β

]
,

∂Θj

∂m
=−δm−δ−1

(
Γ j + R−Rj

ρ

)
, −∂Θ

j

∂Rj
= ∂Θj

∂R
= m−δ

ρ
,

(22)

where the random variable Γ j is the expected value of the flow of output for region
j and l∗j is the optimal labor input in production for which

(aj − 1)λj l∗j
ρ + (1− aj )λj (Lj − l∗j )

= αj − ξj
(
l∗j
mj

)
. (23)

6.2 The Political Equilibrium

Because each region j affects the central planner by its contributions Rj , its contri-
bution schedule depends on the central planner’s policy ε (cf. (19)):

Rj (ε) for j ∈ [0,1], R(ε)
.=
∫ 1

0
Rk(ε)dk. (24)

The central planner maximizes present value of the expected flow of the political
contributions R from all regions j ∈ [0,1]:

G(R)
.=E

∫ ∞

T

Re−θ(θ−T )dθ = R

ρ
. (25)

Each region j maximizes its expected utility Θj (cf. (22)).



120 T. Palokangas

According to Dixit et al. (1997), a subgame perfect Nash equilibrium for this
lobbying game is a set of contribution schedules Rj (ε) and a policy ε such that the
following conditions (i)–(iv) hold:

(i) Contributions Rj are non-negative but no more than the contributor’s income,
Θj ≥ 0.

(ii) The policy ε maximizes the central planner’s welfare (25) taking the contribu-
tion schedules Rj (ε) as given,

ε = arg max
ε

G
(
R(ε)

)= arg max
ε∈[0,1]

R(ε). (26)

(iii) Region j cannot have a feasible strategy Rj (ε) that yields it a higher level
of utility than in equilibrium, given the central planner’s anticipated decision
rule (14),

ε = arg max
ε

Θj
(
mj ,m,R,Rj (ε), γj

)
with mj = εm̂j and m= εm̂. (27)

Because the region is small, it takes the total contributions of all regions, R, as
given. However, the region observes the dependency of pollution m on envi-
ronmental policy ε (cf. (14)).

(iv) Region j provides the central planner at least with the level of utility than in
the case it offers nothing (Rj = 0), and the central planner responds optimally
given the other regions contribution functions,

G
(
R(ε)

)≥max
ε

G
(
R(ε)

)∣∣
Rj=0.

6.3 The Stationary State

Noting (22), the conditions (27) for regions j ∈ [0,1] is equivalent to

0= dΘj

dε
= ∂Θj

∂Rj

dRj

dε
+ ∂Θj

∂mj

∂mj

∂ε︸︷︷︸
=m̂j

+∂Θ
j

∂m

∂m

∂ε︸︷︷︸
=m̂

= ∂Θj

∂Rj

dRj

dε
+ ∂Θj

∂mj

m̂j + ∂Θj

∂m
m̂

=−m
−δ

ρ

dRj

dε
+m−δΓ j

[
ξj

(
lj

mj

)
− β

]
m̂j

mj

− δm−δ
(
Γ j + R −Rj

ρ

)
m̂

m

and

1

ρ

dRj

dε
= Γ j

[
ξj

(
lj

mj

)
− β

]
m̂j

mj

− δ

(
Γ j + R −Rj

ρ

)
m̂

m
for j ∈ [0,1]. (28)

Once the economy attains the stationary state, the emissions under the previous and
current technology become equal: m̂ = m and m̂j = mj for j ∈ [0,1]. Plugging
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these conditions into (28) yields

1

ρ

dRj

dε
=

[
ξj

(
lj

mj

)
− β

]
Γ j − δ

(
Γ j + R −Rj

ρ

)
for j ∈ [0,1].

Noting these equations and (24), the central planner’s equilibrium condition (26) is
equivalent to

0= dR

dε
=

∫ 1

0

dRj

dε
dj = ρ

∫ 1

0

{[
ξj

(
lj

mj

)
− β

]
Γ j − δ

(
Γ j + R−Rj

ρ

)}
dj

= ρ

{∫ 1

0

[
ξj

(
lj

mj

)
− β − δ

]
Γ jdj − δ

ρ

∫ 1

0
(R −Rj )dj︸ ︷︷ ︸

=0

}

= ρ

∫ 1

0

[
ξj

(
lj

mj

)
− β − δ

]
Γ jdj. (29)

In the stationary state, all inputs (lj ,mj ) for all regions j ∈ [0,1] must be con-
stant. Because the expected value of the flow of output, Γ j , is a random variable
for all regions j ∈ [0,1], then, given (29), the only possible stationary state in the
economy of regions j ∈ [0,1] is

ξj
(
lj

mj

)
= β + δ for j ∈ [0,1]. (30)

This means that if region j ∈ [0,1] has confidence on stable development, then it
expects that its expenditure share of energy, ξj , will be equal to β + δ in the long
run. From the equilibrium conditions (23) of the regions j ∈ [0,1] as well as those
(30) of the central planner, one obtains

ξj
(
lGj

mG
j

)
= β + δ,

(aj − 1)λj lGj
ρ + (1− aj )λj (Lj − lGj )

= αj − β − δ, (31)

where the superscript G denotes grandfathering of emissions.
Comparing the systems (18) and (31) yields the following result:

Proposition 4 Regulation leads to the Pareto optimum, (lGj ,m
G
j ) = (lPj ,m

P
j ) for

j ∈ [0,1].

The introduction of a self-interested central planner has the same impact as that
of a benevolent central planner: it internalizes the externality of emissions through
pollution, leading to the Pareto optimum. This means that an agreement on a self-
interested policy maker is self-enforcing: no region has incentives to break it.
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7 Conclusions

This document examines the design of emission policy for a large number of regions
which use land, labor and emitting inputs in production, but which can increase their
total factor productivity by allocating labor to R&D. The use of emitting inputs
pollutes, decreasing welfare everywhere. The regions can agree on a central planner
and authorize it to grant them GHG emission caps. Because the regions do not form
a federation with a budget of its own, the central planner is non-benevolent, self-
interested and subject to lobbying. It is plausible to assume that the policy parameter
of the central planner is uniform throughout all regions.

By the use of grandfathering schemes with one policy parameter only, the central
planner internalizes the negative externality through GHG emissions. When emis-
sion caps are set in proportion to past emissions, all regions face the same marginal
benefits from emissions via allocation in subsequent periods. Because the basis for
allocation is updated over time, the central planner has the full control of resources.
Thus, an agreement on the central planner, benevolent or self-interested, leads to
the first-best allocation of resources (i.e. the Pareto optimum). Consequently, that
agreement is self-enforcing.

Appendix 1

Region j maximizes (21) by (lj ,mj ) subject to (6), given m. It is equivalent to
maximize

E

∫ ∞

T

a
γj
j f

j (lj ,mj )m
−β
j e−ρ(t−T )dt

by (lj ,mj ) subject to (6).
Assume for a while that energy input mj is kept constant. The value of this

maximization is

Πj(γj ,mj ,T )= max
lj s.t. (6)

E

∫ ∞

T

a
γj
j f

j (lj ,mj )m
−β
j e−ρ(t−T )dt. (32)

Let us denote Πj = Πj(γj ,mj ,T ) and Π̃j = Πj(γj + 1,mj ,T ). The Bell-
man equation corresponding to the optimal program (32) is given by (cf. Dixit and
Pindyck 1994)

ρΠj = max
lj ,mj

Ψ (lj ,mj , γj , T ), where

Ψ (lj ,mj , γj , T )= a
γj
j f j (lj ,mj )m

−β
j + (

Π̃j −Πj
)
λj (Lj − lj ). (33)

Noting (4), this leads to the first-order condition

∂Ψ

∂lj
= a

γj
j f

j
l (lj ,mj )m

−β
j − λj

(
Π̃j −Πj

)

= 1

lj
a
γj
j f

j (lj ,mj )m
−β
j

[
1− ξj

(
lj

mj

)]
− λj

(
Π̃j −Πj

)= 0. (34)
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To solve the dynamic program (32), assume that the value of the program, Πj , is
in fixed proportion ϑj > 0 to instantaneous utility at the optimum. Noting (4), this
implies

Πj(γj ,mj ,T )= ϑja
γj
j f

j (l∗j ,mj )m
−β
j with

∂Πj

∂mj

=Πj

[
f
j
m(lj ,mj )

f j (lj ,mj )
− β

mj

]
= Πj

mj

[
ξj

(
lj

mj

)
− β

]
,

(35)

where l∗j is the optimal value of the control variable lj . This implies

(Π̃j −Πj)/Πj = aj − 1. (36)

Inserting (35) and (36) into the Bellman equation (33) yields

1/ϑj = ρ + (1− aj )λj (Lj − l∗j ) > 0. (37)

Inserting (35), (36) and (37) into (34), and noting (ξ j )′ > 0 yield (12):

0= ϑj
lj

Πj

∂Ψ

∂lj
= a

γj
j f j (lj ,mj )m

−β
j

ϑj

Πj︸ ︷︷ ︸
=1

[
αj − ξj

(
lj

mj

)]
−

(
Π̃j

Π
j
j︸︷︷︸

=aj

−1

)
λj ljϑj

= αj − ξj
(
lj

mj

)
− (aj − 1)λj lj
ρ + (1− aj )λj (Lj − l∗j )

. (38)

From (8), (32) and (37) it follows that

Υ j = max
lj s.t. (6)

E

∫ ∞

T

a
γj
j f

j (lj ,mj )m
−β
j m−δe−ρ(θ−T )dθ

=m−δE
∫ ∞

T

a
γj
j f

j (lj ,mj )m
−β
j e−ρ(θ−T )dθ =m−δΠj (γj ,mj ,T ). (39)

Results (35), (38) and (39) lead to Proposition 1.

Appendix 2

Given (1), (3), (4) and (12), it then holds true that

ρ + (1− aj︸ ︷︷ ︸
−

)λj (Lj − lLj︸ ︷︷ ︸
+

) ξ j︸︷︷︸
∈(0,1)

> ρ + (1− aj )λj (Lj − lLj ) > 0,

(aj − 1)λj lLj
ρ + (1− aj )λj (Lj − lLj )

< αj − β < αj < 1, ρ + (1− aj )λjLj > 0.

(40)
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Noting (1), (12) and (40) yield

d

dlLj
log

[
(aj − 1)λj lLj

ρ + (1− aj )λj (Lj − lLj )

]
= 1

lLj

[
1− (aj − 1)λj lLj

ρ + (1− aj )λj (Lj − lLj )︸ ︷︷ ︸
∈(0,1)

]
> 0

and

d

dlLj

[
(aj − 1)λj lLj

ρ + (1− aj )λj (Lj − lLj )

]
> 0.

Noting this and differentiating the left-hand equation in (12), one obtains

d

dlLj

[
(aj − 1)λj lLj

ρ + (1− aj )λj (Lj − lLj )

]

︸ ︷︷ ︸
+

dlLj + dβ = 0,

and dlLj /dβ < 0. Given (1), this implies dzLj /dβ =−dlLj /dβ > 0. Finally, differen-
tiating the right-hand equation in (12), and noting (12), one obtains

dmL
j

dβ
= mL

j

lLj

[
dlLj

dβ︸︷︷︸
−

− mL
j

(ξj )′︸ ︷︷ ︸
+

]
< 0.

Appendix 3

Region j maximizes (21) by lj subject to (6), given (m,mj ,R,Rj ). It is equivalent
to maximize the expected value of the flow of output for region j ,

E

∫ ∞

T

a
γj
j f

j (lj ,mj )m
−β
j e−ρ(θ−T )dθ,

by lj subject to (6), given mj . The value of this maximization is

Γ
j
j (γj ,mj ,T )= max

lj s.t. (6)
E

∫ ∞

T

a
γj
j f

j (lj ,mj )m
−β
j e−ρ(θ−T )dθ. (41)

Denote Γ j = Γ j (γj ,mj ,T ) and Γ̃ j = Γ j (γj + 1,mj ,T ). The Bellman equa-
tion corresponding to the optimal program (41) is

ρΓ j =max
lj

Ψ (lj , γj ,mj ,R −Rj ,T ), where

Ψ (lj , γj ,mj ,T )= a
γj
j f j (lj ,mj )m

−β
j + λj (Lj − lj )

(
Γ̃ j − Γ j

)
. (42)
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Noting (4), this leads to the first-order condition

∂Ψ

∂lj
= a

γj
j f

j
l (lj ,mj )m

−β
j − λj

(
Γ̃ j − Γ j

)

= 1

lj
a
γj
j f j (lj ,mj )m

−β
j

[
αj − ξj

(
lj

mj

)]
− λj

(
Γ̃ j − Γ j

)= 0. (43)

To solve the dynamic program (41), assume that the value of the program, Γ j , is
in fixed proportion ϑj > 0 to instantaneous utility:

Γ j (γj ,mj ,T )= ϑja
γj
j f

j (l∗j ,mj )m
−β
j , (44)

where l∗j is the optimal value of the control variable lj . This implies

(Γ̃ j − Γ j )/Γ j = aj − 1. (45)

Inserting (44) and (45) into the Bellman equation (42) yields

1/ϑj = ρ + (1− aj )λj (Lj − lj ) > 0. (46)

Plugging this (46) into (44), one obtains

Γ j (γj ,mj ,T )=
a
γj
j f

j (lj ,mj )m
−β
j

ρ + (1− aj )λj (Lj − l∗j )
, (47)

where l∗j —the optimal value of the control variable lj—is taken as given.
Inserting (47), (45) and (46) into (43), one obtains (23):

0= ϑj
lj

Γ j

∂Ψ

∂lj
= a

γj
j f j (lj ,mj )m

−β
j

ϑj

Γ j︸ ︷︷ ︸
=1

[
αj − ξj

(
lj

mj

)]
−

(
Γ̃ j

Γ j︸︷︷︸
=aj

−1

)
λj ljϑj

= αj − ξj
(
lj

mj

)
− (aj − 1)λj lj
ρ + (1− aj )λj (Lj − lj )

.

Noting (41) and (47), the expected utility (21) becomes (22):

Θ(mj ,m,Rj ,R)

=m−δE
∫ ∞

T

[
a
γj
j f

j (lj ,mj )m
−β
j +R −Rj

]
e−ρ(θ−T )dθ

=m−δ
[
E

∫ ∞

T

a
γj
j f j (lj ,mj )m

−β
j e−ρ(θ−T )dθ +

∫ ∞

T

(R −Rj )e
−ρ(θ−T )dθ

]

=m−δ
[
E

∫ ∞

T

a
γj
j f j (lj ,mj )m

−β
j e−ρ(θ−T )dθ + R −Rj

ρ

]
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=m−δ
[
Γ j (γj ,mj ,T )+ (R −Rj )/ρ

]
,

∂Θ

∂mj

= Γ j

mδ

[
f
j
m(lj ,mj )

f j (lj ,mj )
− β

mj

]
= Γ j

mδmj

[
ξj

(
lj

mj

)
− β

]
,

∂Θ/∂M =−δm−δ−1[Γ j + (R −Rj )/ρ
]
, −∂Θ/∂Rj = ∂Θ/∂R =m−δ/ρ.
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Pollution, Public Health Care, and Life
Expectancy when Inequality Matters

Andreas Schaefer and Alexia Prskawetz

Abstract We analyze the link between economic inequality in terms of wealth,
life expectancy, health care and pollution. The distribution of wealth is decisive for
the number of households investing in human capital. Moreover, the willingness to
invest in human capital depends on agents’ life expectancy which determines the
length of the amortization period of human capital investments. Life expectancy
is positively affected by public health care expenditures but adversely affected by
the pollution stock generated by aggregate production. Our model accounts for an
endogenous take-off in terms of human capital investments. Higher initial inequality
delays the take-off because a given set of policies (abatement measures and public
health care) is less effective in improving agents’ survival probabilities. We compare
a change in taxes to a change in expenditure shares on health and abatement given
different amounts of (initial) inequality. The advantage of the latter as compared to
the former is the achieved increase in the tax base which induces more expenditures
on health care and abatement measures, such that an even higher economic activity
is compatible with a similar level of long-run pollution.

1 Introduction

Beginning with the work of John and Pecchenino (1994) and John et al. (1995)
several authors have argued that one of the difficulties in the interaction of the en-
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vironment and economic activity is the different life span of both systems. While
the lifetime of the environment is infinite, the lifetime of economic agents is finite.
Hence, the incentive to invest into the environment might be limited by the lifetime
of the individuals. Recently a paper by Mariani et al. (2010) has extended this litera-
ture considering the two way interaction between pollution and life expectancy, i.e.
it is assumed that life expectancy and environmental quality are jointly determined.
In an extension to the model by Mariani et al. (2010), Raffin and Seegmuller (2012)
studied the path of pollution and economic growth when households’ longevity is
endogenously determined not only by environmental quality but also by health pol-
icy. While economic growth may induce negative externalities on the environment,
it may also be the engine of growth for investment into health and thereby enhance
life expectancy. As argued in Raffin and Seegmuller (2012) the tax base will be
positively associated with higher economic growth and hence more resources will
be available to finance investments such as health expenditures and abatement mea-
sures. These models allow for multiple steady states, with a low level trap of high
pollution and low life expectancy and a high level equilibrium with low pollution
and high life expectancy. None of these models has so far considered the role of
inequality in the process of economic growth. However, the initial distribution of
wealth in a society may limit the possibilities for economic growth and the effec-
tiveness of economic policy in terms of public health care and abatement measures.

In this paper, we analyze the link between economic inequality in terms of
wealth, life expectancy, health care and pollution based on the work by Galor and
Zeira (1993). In our framework, life expectancy is positively affected by public
health care expenditures but adversely affected by the pollution stock generated
by aggregate production. Life expectancy plays a key role in our model since it de-
termines the level of human capital investment and therefore aggregate output. If
households expect to live longer, they are more inclined to invest in human capi-
tal as the returns to human capital will accrue over a longer period and borrowers’
credit costs shrink. We assume that the government levies taxes on households’ in-
come (where we distinguish between skilled and unskilled households) and uses
taxes to finance health care and abatement measures. As earlier stages of economic
development are characterized by low life expectancy, human capital investments
are zero. However, tax financed health care and abatement measures may improve
life expectancy such that agents start to invest in skills once the level of the life ex-
pectancy has passed a certain threshold. Therefore, our framework takes account for
an endogenous take-off in terms of human capital investment. Higher initial inequal-
ity delays the take-off because a given set of policies reflected by income taxes and
expenditure shares on public health care and abatement measures is less effective.

Moreover, we compare a change in taxes to a change in expenditure shares on
health and abatement given different amounts of (initial) inequality. Our results
show that an increase in the tax rate (hence, the government budget) benefits skilled
and unskilled agents in terms of wealth as long as the marginal cost of taxes in terms
of foregone lifetime earnings are smaller than the marginal increase in lifetime net-
earnings generated through the improvement in life expectancies. However, since
the marginal benefit of an increase in tax revenues for the skilled group exceeds
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Fig. 1 Expectation of life at
birth (London excluded)
(Szreter 1997)

the corresponding level of the marginal benefit of the unskilled population group,
economic policy increases long-run inequality in terms of wealth. An increase in
health expenditures compared to investments in abatement always raises the wealth
of skilled and unskilled, but again the gain is greater for skilled workers. Moreover,
we find that an increase in the expenditure share on public health care increases
the tax base which induces more expenditures on health care and abatement mea-
sures, such that an even higher economic activity is compatible with a similar level
of long-run pollution as compared to the levels resulting from an increase in the
income tax.

The initially adverse impact of economic development on individuals’ health is
mirrored in the evolution of life expectancy at birth as shown in Fig. 1. Average
life expectancy at birth stagnated during the second phase of the industrial revo-
lution and started to increase only in the last four decades of the 19th century. In
cities, life expectancies at birth started even to decline and reached a level passed
in the 15th century already, although per capita output was already growing. It is
well documented that the gap in mortality rates between cities and rural areas can
be explained by environmental degradation and pollution. In this line of argumen-
tation the significance of water as an industrial raw material has been documented
by Hassan (1985): fresh water was used for commercial purposes while the new
entrepreneurial class saw no point in spending money for sanitation and sewage
treatment plants. In addition, Haines (2004) and Komlos (1998) provide evidence
for the adverse impacts of economic development during the Industrial Revolution,
in the sense that physical height of soldiers declined during the 19th century in the
US as well as England and the Netherlands indicating an increase in morbidity over
the same period of time. Adverse effects of economic growth on the environment
in earlier stages of economic development are even today of greatest concern, for
example the combined health and non-health cost of outdoor air and water pollu-
tion for China’s economy comes to around 5.8 % of the GDP per year (World Bank
2007). Moreover, as regards later stages of economic development, Chay and Green-
stone (2003) provide evidence for the impact of air pollution on infant mortality in
the US during the recession period 1981–1982 and conclude that a 1—percent re-
duction in total suspended particulates results in a 0.35—percent decline in infant
mortality at the county level.
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The remainder of the paper is organized as follows: in Sect. 2, we introduce the
model. Section 3 explores the evolution of wealth and Sect. 4 discusses the set of
economic policies in terms of income taxes and expenditures shares on public health
care and abatement measures. In order to capture the entire evolution of the economy
towards its steady state and in order to illustrate our analytical findings, we perform
numerical experiments in Sect. 5. In Sect. 6, we provide a critical discussion of our
results and, finally, Sect. 7 concludes.

2 The Model

Households live for two periods and decide in their first period whether or not to
invest in skills. The amount of inherited wealth by the parental household deter-
mines whether agents acquire skills since the human capital investment is subject to
indivisibilities and capital market imperfections in the sense that borrowers’ interest
rate exceeds lenders’ opportunity costs. Moreover, the willingness to invest in hu-
man capital depends on agents’ life expectancy as it triggers the amortization period
of human capital investments. The long-run performance of the economy depends
on the initial distribution of wealth which determines the number of agents investing
in skills.

2.1 Production

Consider a small open economy which produces a homogeneous good Yt in two
sectors, an unskilled and a skilled sector denoted by superscripts u, s in the follow-
ing. Output of the unskilled sector, Yut , is subject to a linear production function
employing unskilled labor, Lut , only

Yut = aLut , a > 0,

with a denoting a positive scaling factor. The high skilled sector produces Y st subject
to a neoclassical production function of Cobb-Douglas type and employs skilled
labor, Lst , as well as physical capital, Kt , such that

Y st = b(Kt )
γ
(
Lst

)1−γ
, b > 0, γ ∈ (0,1),

with b denoting a positive scaling factor and γ representing the output elasticity of
capital. Aggregate output is given by

Yt = Y st + Yut .

The small open economy assumption implies an exogenous interest rate that
equals the international interest rate r̄ . Markets are assumed to be perfectly com-
petitive. Given r̄ and profit maximizing behavior of firms, the capital intensity, kt ,
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Fig. 2 Demographics

is determined by:

r̄ = γ bk
γ−1
t − δ,

with kt = Kt/L
s
t , and 0 ≤ δ ≤ 1 representing the rate of depreciation of physical

capital. In addition the wage rates for skilled and unskilled labor are given as

ws
t = (1− γ )bk

γ
t ,

wu
t = a.

Hence, the small-open economy assumption switches off any dynamics with respect
to k and factor prices, such that k, ws and wu are constant for all t , since

kt =
(

γ b

r̄ + δ

) 1
1−γ

.

Thus, in period t , the level of output in the skilled sector depends only on the amount
of skilled labor and exogenously fixed parameters:

Y st = b
(
ktL

s
t

)γ (
Lst

)1−γ = b
1

1−γ
(

γ

r̄ + δ

) γ
1−γ

Lst .

2.2 Demographics and Households’ Decisions

An individual born in t − 1 expects to live for 1+φt periods with 0≤ φt ≤ 1 repre-
senting the probability to reach the end of period t (see also Fig. 2). Hence, the terms
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life expectancy and survival probability can be used interchangeably. The probabil-
ity to reach the end of the second period of life is determined by the level of public
health expenditures, Ht , and the exposure to pollutants, Pt , i.e. φt = φ(Ht ,Pt ).

Definition 1 Life expectancy 0 ≤ φt ≤ 1 is a non-decreasing function in public
health care expenditures,Ht , and a non-increasing function in the pollution stock Pt ,
such that

∂φ(Ht ,Pt )

∂Ht

≥ 0,

∂φ(Ht ,Pt )

∂Pt
≤ 0.

Moreover, the cross-derivative is non-positive, i.e.

∂2φ(Ht ,Pt )

∂Ht∂Pt
≤ 0.

A non-positive cross-derivative of the life expectancy with respect to H and P

means that an increase in pollution may reduce the effectiveness of public health
expenditures on φ.

At this point it is worth to notice that public health expenditures improve the life
expectancy of those generations which are taxed while an improvement of environ-
mental quality reflected by a decline of the pollution stock in the subsequent period,
Pt+1, benefits only those generations which are alive from t + 1 onwards. More-
over, in Sect. 2.3, we will see that public health expenditures depend on aggregate
tax revenues, i.e. aggregate income. Since we abstract from population growth an
increase in aggregate income corresponds to an increase in per capita income and
thus to an improvement in health expenditures and life expectancy. Thus, our the-
ory is compatible to the well-known Preston-curve suggesting a positive association
between per capita income and life expectancy.

Note that we only consider public expenditures on health and ignore private
health expenditures. Our approach is similar to Aisa and Pueyo (2006). Different
to Aisa and Pueyo we assume that the level of health expenditures and not the share
of health expenditures in total GDP positively affects life expectancy.1 By only fo-
cusing on public health care we aim to emphasize the role of the allocation of public
expenditures between health care and pollution abatement on economic growth (see
also Agenor and Neanidis 2011). On one hand health expenditures reduce income
through taxes thereby also reducing spending on pollution abatement, on the other
hand higher taxes induce a higher life expectancy and thereby foster human capital
accumulation and economic growth.

1But remember that pollution adversely affects agents’ life expectancy in our framework. More-
over, we will assume further below a logistic functional form of φ(Ht ,Pt ). Thus, our model is not
more optimistic with respect to the effectiveness of public health expenditures on improvements of
φ compared to existing literature.
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Agents, j , work either as unskilled workers, j = u, in both periods or invest in
their first period of life in human capital and become a skilled worker, j = s, in
their second period of life. Fertility is exogenous in the sense that each household
has exactly one descendant which replaces him after she dies. Agents born in t − 1
derive utility out of consumption, cjt , and out of bequests to their offspring, xjt , in
their second period of life. Lifetime utility in t of an agent j born in period t − 1 is
specified as

u
j
t =E

[
ū
j
t

]= φ
j
t ū

j
t , (1)

with φjt = φt ∀j and ūjt = α ln cjt + (1− α) lnxjt . Hence, we assume the same life
expectancy for skilled and unskilled people.

An agent j born in period t − 1 maximizes lifetime utility (1) subject to lifetime
earnings net of taxes, τ ∈ (0,1), resulting in

c
j
t = α(1− τ)y

j
t , (2)

x
j
t = (1− α)(1− τ)y

j
t , (3)

with yjt denoting agents’ second period’s income depending on life expectancy φt .
Before we specify life time earnings further below, we obtain the indirect utility
function from (1)–(3) as

ū
j
t = ᾱ + ln

[
(1− τ)y

j
t

]
, (4)

with ᾱ = α lnα + (1− α) ln[1− α].

2.3 The Government

The government raises income taxes τ ∈ (0,1) in order to finance public health
expenditures Ht and abatement measures At . In period t the government taxes un-
skilled households working in their first period of life, Lut , and skilled and unskilled
households born in t − 1 that survived to period t , i.e. φt (Lut−1 +Lst−1). Hence, tax
revenues in period t are

Gt = τ
(
φt

(
yst L

s
t−1 + yut L

u
t−1

)+wuLut
)
.

Abstracting from intertemporal debts and assuming constant expenditure shares for
public health, ν, and abatement measures, 1− ν, a balanced budget in each period
requires

Ht = νGt ,

At = (1− ν)Gt , ν ∈ (0,1).

In t + 1, the stock of pollutants, Pt+1, increases by current emissions, Et , generated
by the production process. We assume for simplicity Et = E(Yt ) = ε0Yt . On the
other hand, the impact of emissions on the pollution stock can be reduced through
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tax financed abatement measures, At . Moreover, the environment regenerates at rate
0< η < 1, such that the pollution stock evolves over time according to

Pt+1 = (1− η)Pt + ε0Yt − ε1At, 0< ε1 < ε0, η ∈ (0,1),

with ε0 denoting the impact of one unit of output on the pollution stock and ε1
reflecting the productivity of abatement measures.

2.4 The Credit Market

The credit market is subject to imperfections as in Galor and Zeira (1993), in the
sense that borrowers’ interest rate, it , exceeds the world market interest rate, r̄ .
In contrast to Galor and Zeira (1993), it depends inversely on agents’ life ex-
pectancy, φt . Moreover, as φt = φ(Ht ,Pt ), borrowers’ credit costs are not time
invariant and affected by public health expenditures and abatement measures trig-
gering the wedge between it and r̄ . Thus, economic policy affects the incentive to
invest in skills (by determining life expectancy), but the effectiveness of economic
policy will depend on the amount of economic inequality. Before we come back to
this issue further below, we elaborate more on the mechanisms on the credit market.

Human capital investments are (see Galor and Zeira 1993) subject to indivisi-
bilities, in the sense that it requires an amount h > 0 to become a skilled worker.
Workers born in t − 1 with inherited wealth x

j

t−1 < h can borrow h− x
j

t−1 at the
capital market, but since human capital investments are unobservable and the tran-
sition to the end of the second period of life is uncertain, moral hazard and mortality
risks induce a wedge between the equilibrium interest rate r̄ and the interest rate it
at which lenders are willing to lend money to borrowers. Hence, credits are subject
to monitoring costs z, such that the zero profit condition is given by

(1+ it )φt
(
h− x

j

t−1

)= z+ (1+ r̄)
(
h− x

j

t−1

)
.

The left hand side denotes the lender’s credit costs, i.e. the interest rate that the
lender faces times the probability to survive to the end of the next period and times
the amount of investment to be borrowed. The right hand side indicates the costs
that accrue to the borrower. These are the monitoring costs, z, plus the value of the
borrowed investment if it would be invested at the international interest rate.

As lenders can still evade repayment by spending βz with β > 1, borrowers
set monitoring effort, z, such that lenders are indifferent between repayment and
evasion

(1+ it )φt
(
h− x

j

t−1

)= βz.

From the last two equations we obtain it

(1+ it )φt
(
h− x

j

t−1

)= (1+ it )φt (h− x
j

t−1)

β
+ (1+ r̄)

(
h− x

j

t−1

)

⇒ it = β

(β − 1)

(1+ r̄)

φt
− 1.
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The following proposition summarizes the association between borrower’s and
lender’s interest rates as well as life expectancy.

Proposition 1 Since β > 1 it follows that it > r̄ .2 Moreover, the interest rate for
credits, it , is inversely related to life expectancy, i.e. ∂it

∂φt
< 0, such that higher health

risks increase lenders’ credit costs.

3 The Evolution of Wealth

Lifetime utility (4) of agents born in t depends positively on lifetime earnings yjt+1
which in turn depends on human capital investment. Whether or not to invest in
human capital depends on the level of inherited bequests, i.e. xjt � h, and life ex-
pectancy φt+1, with h representing an exogenous fixed cost of human capital invest-
ment. Households with xjt ≥ h invest in human capital, if lifetime utility of becom-
ing a skilled worker is at least as high as lifetime utility from remaining unskilled,
i.e. ust+1 ≥ uut+1 which implies in light of (4) that yst+1 ≥ yut+1, such that3

φt+1w
s + (

x
j
t − h

)
(1+ r̄)︸ ︷︷ ︸

yst+1

≥ φt+1w
u + (

(1− τ)wu + x
j
t

)
(1+ r̄)︸ ︷︷ ︸

yut+1

.

In contrast, households with xjt < hwish to invest in human capital, if uu,st+1 ≥ uut+1.4

These households borrow h−xjt at an interest rate it+1 from the capital market, such
that

(1− τ)y
u,s
t+1 = (1− τ)

(
wsφt+1 +

(
x
j
t − h

)
(1+ it+1)

)
, with xjt < h.

The requirement of uu,st+1 ≥ uut+1 implies again in light of (4) that the last expression
holds with equality, if

y
u,s
t+1 = yut+1. (5)

Condition (5) determines the minimum level of inherited wealth necessary to be-
come a skilled worker, xjt = xcritt , conditional on the survival probability φt+1:

2it > r̄ implies (1+r̄)β
φt (β−1) > 1 + r̄ and therefore β

(β−1) > φt which is valid as long as β > 1 since
0< φt ≤ 1.
3The left-hand side of the last expression captures the lifetime income of a skilled household
in her second period of life, i.e. labor income, ws , multiplied by the corresponding level of life
expectancy, φt+1 plus wealth net human capital investment times accrued interests, (xjt −h)(1+r).
The right-hand side captures lifetime income of an unskilled household that does not invest in
human capital, i.e. labor income, wu, multiplied by φt+1, plus the sum out of first-period labor
income net of taxes, (1− τ)wu, and wealth, xjt , times accrued interests.
4The superscript u, s denotes agents that are born in unskilled households and decide to invest in
skills.
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Fig. 3 Evolution of wealth conditional on life expectancies φt+1 and taxes τ

xcritt = 1

it+1 − r̄

[
(1− τ)wu(1+ r̄)+ h(1+ it+1)− φt+1

(
ws −wu

)]
.

Since xjt+1 = (1− α)(1− τ)y
j

t+1 and given that yst+1 ≥ yut+1, wealth of agents born
in t given life expectancy, φt+1, evolves according to:

1. Agents born in unskilled households with xut < xcritt remain unskilled

xut+1 = (1− α)(1− τ)yut+1

= (1− α)(1− τ)
[(
xut + (1− τ)wu

)
(1+ r̄)+wuφt+1

]
. (6)

2. Agents born in skilled households with xst ≥ h invest in skills

xst+1 = (1− α)(1− τ)yst+1

= (1− α)(1− τ)
[
wsφt+1 +

(
xst − h

)
(1+ r̄)

]
. (7)

3. Agents born in unskilled households with h > xut ≥ xcritt invest in skills

x
u,s
t+1 = (1− α)(1− τ)y

u,s
t+1

= (1− α)(1− τ)
[
wsφt+1 +

(
xut − h

)
(1+ it+1)

]
. (8)

The system (6)–(8) can be presented graphically in the (xt+1, xt )—plane for a given
stock of pollution and public health expenditures, i.e. a given life expectancy φt+1.
Thus, the loci depicted in Fig. 3 are conditional on the state of φt+1. This is the rea-
son why we refer to conditional loci and steady states. The positions and the slope
of these conditional loci and steady states are important as they trigger the dynam-
ics of the economy to their long-run values and the composition of the population
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in terms of skilled and unskilled agents. We will describe the behavior of the con-
ditional steady states and xcritt in detail further below (see also Fig. 4). Noting that
it+1 is a function of φt+1, the conditional stationary solutions read as follows

xs∗,φt+1
= (1− α)(1− τ)(wsφt+1 − h(1+ r̄))

1− (1− α)(1− τ)(1+ r̄)
, (9)

xu∗,φt+1
= (1− α)(1− τ)wu((1+ r̄)(1− τ)+ φt+1)

1− (1− α)(1− τ)(1+ r̄)
, (10)

x
u,s
∗,φt+1

= (1− α)(1− τ)(h(1+ it+1)−wsφt+1)

(1− α)(1− τ)(1+ it+1)− 1
, (11)

with 1> (1− α)(1− τ)(1+ r̄) and (1− α)(1− τ)(1+ it+1) > 1.5

The steady state of the economy is determined by the initial distribution of
wealth, Γ0, and the policy set Φ = {τ, ν}. Both in combination determine the long-
run distribution of wealth Γ∗ which in turn is determined by the distribution of
the population between the two stable steady states xu∗,φ∗ and xs∗,φ∗ . The following
proposition describes the steady state of our economy.

Proposition 2 The steady state of the economy is characterized by a constant life
expectancy, φt = φ∗ ≤ 1, which implies a constant interest rate

i∗ = β(1+ r̄)

(β − 1)φ∗
− 1,

a constant level of wealth for skilled and unskilled households

xs∗,φ∗ = =
(1− α)(1− τ)(wsφ∗ − h(1+ r̄))

1− (1− α)(1− τ)(1+ r̄)
,

xu∗,φ∗ = =
(1− α)(1− τ)wu((1+ r̄)(1− τ)+ φ∗)

1− (1− α)(1− τ)(1+ r̄)
,

x
u,s
∗,φ∗ =

(1− α)(1− τ)(h(1+ i∗)−wsφ∗)
(1− α)(1− τ)(1+ i∗)− 1

,

with 1 > (1 − α)(1 − τ)(1 + r̄) and (1 − α)(1 − τ)(1 + i∗) > 1, and a constant
distribution of households between the two exterior steady states xs∗,φ∗ and xu∗,φ∗ ,
such that Lut = Lu∗ ≥ 0 and Lst = Ls∗ ≥ 0 with Lu∗ +Ls∗ = L. Therefore, the level of
aggregate production Yt = Y∗ is constant as well and reads

Y∗ = Yu∗ + Y s∗ = aLu∗ + b
1

1−γ
(

γ

r̄ + δ

) γ
1−γ

Ls∗,

such that the level of pollution, P , tax revenues, G, public health expenditures, H ,
and abatement measures, A, are constant as well and given by

5As can be verified easily: φt+1 > (1 − α)(1 − τ)(1 + r̄) implies that the exterior (conditional)
steady states are stable while (1−α)(1− τ)(1+ it+1) > 1 implies that the interior one is unstable.
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P∗ = ε0Y∗ + ε1(1− ν)τG∗
η

,

G∗ = τ
(
φ∗

(
yst L

s∗ + yut L
u∗
)+wu

t L
u∗
)
,

H∗ = νG∗,
A∗ = (1− ν)G∗.

4 Policy

In this section we analyze changes in the policy set Φ = {τ, ν}. Changes in Φ al-
ter life expectancy and therefore, the skill composition of the population given the
initial distribution of wealth Γ0. Thus, economic policy has a direct impact on the
evolution of inequality and the long-run performance of an economy. Changes in
τ alter life expectancies, interest rates, disposable incomes of households, and re-
sources available for abatement measures. In contrast, a change in ν leaves dispos-
able incomes unaffected.

Before turning to changes in Φ , it will be instructive to analyze the effects of
changes in life expectancies, φ, on the (conditional) steady states and xcritt . We thus
analyze the dynamics of the conditional steady states (i.e. the shift of the respective
intercepts with the 45◦—line in Fig. 3), in response to the transition of φ towards its
long-run value φ∗ ≤ 1. As we will see, the increase in φ gives rise to an endogenous
take-off in terms of human capital investments. This take-off is essentially triggered
by the dynamics of the conditional stable steady states, xu∗,φt+1,

and xs∗,φt+1
, while

the dynamics of the wealth distribution and the composition of the population in
terms of skilled and unskilled households is affected by xcritt and xu,s∗,φt+1

.6 The an-
alytical results are summarized in Propositions 3 and 4. The following proposition
summarizes the dependence of xu∗,φt+1

and xs∗,φt+1
in response to a change in φ.

Proposition 3 (Exterior Steady States, Changes in φ)

(i) An increase in longevity increases the (conditional) long-run levels of wealth

for skilled and unskilled households, i.e.
∂xu∗,φt+1
∂φt+1

≥ 0 and
∂xs∗,φt+1
∂φt+1

≥ 0 for
φt+1 ∈ (0, φ∗), and φ∗ ≤ 1, where

∂xu∗,φt+1

∂φt+1
= (1− α)(1− τ)wu

1− (1− α)(1− τ)(1+ r̄)
≥ 0,

∂xs∗,φt+1

∂φt+1
= (1− α)(1− τ)ws

1− (1− α)(1− τ)(1+ r̄)
≥ 0,

with equality, if φt+1 = 1. Moreover,
∂xu∗,φt+1
∂φt+1

<
∂xs∗,φt+1
∂φt+1

since wu <ws .

6Remember that xcritt determines the necessary amount of wealth to become a skilled worker for
a given life expectancy while xu,s∗,φt+1

determines the basin of attraction of the superior steady state
for a given life expectancy.
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Fig. 4 The (conditional) steady states and xcritt as a function of life expectancy φ

(ii) As life expectancy approaches zero, the (conditional) stable steady states of
both population groups reach a minimum value

xs∗,min =−
(1− τ)(1− α)(1+ r̄)h

1− (1− α)(1− τ)(1+ r̄)
< 0,

xu∗,min =
(1− τ)2(1+ r̄)(1− α)wu

1− (1− α)(1− τ)(1+ r̄)
> 0.

(iii) Given that φ∗ is such that xs∗,φ∗ > xu∗,φ∗ , it follows from (i) and (ii) that there

exists a critical φc < φ∗ implying that xs∗,φc = h, such that agents with xjt ≥ h

start to invest in skills for φ ≥ φc .7

In Fig. 4, we depict the conditional steady states xu∗,φt+1
and xs∗,φt+1

as linear
functions of φ starting at xu∗,min > 0 and xs∗,min < 0, respectively. In light of item (i),
both population groups benefit from increasing life expectancies, but the marginal
effect is stronger for the skilled population group as ws > wu. Moreover, life ex-
pectancy must exceed a threshold φc in order to make investments in human capital
profitable, in the sense that life expectancies above φc (items (ii) and (iii)) assure
that lifetime utility of a skilled agent exceeds lifetime utility of remaining unskilled
given that the amount of inherited wealth xjt is at least h. The threshold φc implies
that the (conditional) steady state level of wealth for the skilled population group is
as least as high as h. Since life expectancy is endogenous, our model is therefore
able to generate an endogenous take-off in terms of human capital investment.

7Note that xu∗,φ̃ = xs∗,φ̃ implieswsφ̃−(1+ r̄)h= (1−τ)(1+ r̄)wu+ φ̃wu. This threshold, however,

is irrelevant, since h > xs∗ .
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The next feature of our framework is the dynamics of the wealth distribution as
influenced by the evolution of life expectancies over time. For the long-run compo-
sition of the population in terms of skilled and unskilled households, the location of
the minimum amount of wealth necessary to invest in skills, xcritt , and the location
of the unstable interior (conditional) steady state, xu,s∗,φt+1

, are crucial. More pre-

cisely, the distance between xcritt and xu,s∗,φt+1
is crucial for the long run distribution

of the population. Though a decline in xcritt facilitates more unskilled households
to invest in skills, it is the location of xu,s∗,φt+1

that demarcates the basin of attraction

of the two exterior steady states. Hence, a reduction in xcritt given a distribution of
wealth Γt is beneficial for unskilled households during the transition, but not neces-
sarily in the long-run as long as the decline in xcritt is not accompanied by a decline
in x

u,s
∗,φt+1

which assures that more unskilled dynasties transit towards the superior
steady state. The following proposition shows the sensitivity of the interior (condi-
tional) steady state and the minimum level of wealth necessary to invest in skills
when life expectancy changes.

Proposition 4 (Interior Steady State, xu,s∗,φt+1
, xcritt , and Changes in φt+1) The

minimum level of wealth, xcritt , necessary to become a skilled worker for agents

with wealth x
j
t < h and the interior unstable conditional steady state x

u,s
∗,φt+1

are

hump-shaped in φt+1, whereby it holds that xu,s∗,φt+1
> xcritt if 0 < φt < φ̃, where

φ = φ̃ implies xcritt = x
u,s
∗,φt+1

. Moreover, xcritt and x
u,s
∗,φt+1

are declining in φ for
φc ≤ φt+1 ≤ φ∗. (Proof, see Appendix.)

In light of Proposition 4, see also Fig. 4, it follows that an increase in life ex-
pectancy lowers the minimum level of wealth necessary to become a skilled worker,
xcritt , and the unstable interior (conditional) steady state, xu,s∗,φt+1

, in the relevant in-

terval φ ∈ (φc,φ∗). Since, xcritt = x
u,s
∗,φt+1

, if φt = φ̃, the distance between xcritt and

x
u,s
∗,φt+1

declines with increasing life expectancy. Thus, the improvement in life ex-
pectancy is beneficial for descendants of unskilled households that wish to invest
in skills. With the induced decline of xu,s∗,φt+1

the demarcation line of the two basins
of attraction shrinks as well, such that more descendants of unskilled households
that invested in skills may transit towards the superior long-run equilibrium xs∗,φ∗
which would have converged otherwise towards the inferior equilibrium xu∗,φ∗ . How
sizable this effect is depends on the distribution of wealth, Γt , in the sense that a
more equal distribution of wealth locates more unskilled households in the vicinity
of xu,s∗,φt+1

, such that more unskilled households investing in skills benefit from the
improvement in φ and transit towards xs∗,φ∗ . In other words, the effect of improving
health conditions on the long-run performance of the economy depends on Γt . Like-
wise, we will see that the effectiveness of economic policy in terms of Φ depends
on Γt .

We next study the reaction of the (conditional) steady states in response to a
change in the policy set Φ = {τ, ν}. The following proposition summarizes the sen-
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sitivity of the two exterior stable (conditional) steady states in response to change in
the tax rate τ :

Proposition 5 (Effects of τ on xs∗,φt+1
and xu∗,φt+1

)

(i) The (conditional) steady state of the skilled population group increases in re-
sponse to an increase in τ , if

(1− τ)ws ∂φt+1

∂τ
>

ws − h(1+ r̄)

1− (1− τ)(1− α)(1+ r̄)
= xs∗,φt+1

(1− α)(1− τ)
= ys∗,φt+1

.

(ii) The (conditional) steady state of the unskilled population group increases in
response to an increase in τ , if

(1− τ)

(
∂φt+1

∂τ
− (1+ r̄)

)
wu

>
[(1+ r̄)(1− τ)+ φ]wu

1− (1− τ)(1− α)(1+ r̄)
= xu∗,φt+1

(1− α)(1− τ)
= yu∗,φt+1

.

Proposition 5 states that an increase in τ benefits skilled and unskilled agents in
terms of wealth as long as the marginal cost of taxes in terms of forgone lifetimes
earnings (right-hand side of the equations) are smaller than the marginal increase
in lifetime net-earnings generated through the improvement in life expectancy,
∂φt+1
∂τ

> 0 (left-hand side of the equations). Furthermore, the marginal benefit of the
skilled population group exceeds the marginal benefit of the unskilled population
group, as

ws

wu
>

∂φt+1
∂τ

− (1+ r̄)

∂φt+1
∂τ

,

since ws > wu and
∂φt+1
∂τ

−(1+r̄)
∂φt+1
∂τ

< 1. Moreover, the marginal benefit of the unskilled

population group may even turn negative, if ∂φt+1
∂τ

< (1+ r̄). Interestingly, economic
policy increases long-run inequality in terms of wealth through its asymmetric im-
pact on the long-run levels of wealth for the skilled and the unskilled population
group. However, this effect is at least partially compensated by a reduction in xcritt

and xu,s∗,φt+1
in response to an increase in taxes.

Proposition 6 (Effects of τ on xu,s∗,φt+1
and xcritt )

(i) The interior steady state declines in response to an increase in τ , i.e.
∂x

u,s
∗,φt+1
∂τ

< 0, if
[
h(1+ it+1)−wsφt+1

]+ (1− τ)
∂φt+1

∂τ

[
ws − h

∂(1+ it+1)

∂φt+1

]

< (1− τ)
∂φt+1

∂τ
ws

[
(1− α)(1− τ)

[
(1+ it+1)− ∂(1+ it+1)

∂φt+1
φt+1

]]

(12)

with ∂(1+it+1)

∂φt+1
< 0, and h(1+ it+1)−wsφt+1, (1−α)(1− τ)(1+ it+1)−1 > 0.
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(ii) The minimum level of wealth necessary to invest in skills declines in response
to an increase in taxes, since

∂xcritt

∂τ
=

[
−wu(1+ r̄)+ h

∂(1+ i)

∂φt

∂φt

∂τ
− ∂φt

∂τ

(
ws −wu

)]

− 1

i − r̄

[
(1− τ)wu(1+ r̄)+ h(1+ i)− φt

(
ws −wu

)]
< 0,

as the first term in squared brackets is negative while the second term in squared
brackets equals xcritt which is positive.

According to item (i) of Proposition 6, the change of xu,s∗,φt+1
in response to an

increase in τ is ambiguous: Because of (11), an improvement in life expectancy
financed by an increase in τ has an ambiguous effect on x

u,s
∗,φt through the decline

in it+1. On the one hand, it increases second period incomewsφt−h(1+ i) (reduces
debts), but diminishes the return on wealth. If condition (12) is met, the latter effect
is lower than the former. Item (ii), in turn, states that xcritt is negatively associated to
an increase in taxes. Both results in combination affect the dynamics of the wealth
distribution. Given a favorable distribution of wealth, Γt , it is possible that the re-
duction in xcritt and xu,s∗,φt+1

affects all unskilled households, such that the long-run
composition of households exhibits only skilled dynasties. Then, the induced asym-
metric impact of τ on the exterior steady states doesn’t play any role. The adverse
impact on the inferior steady state gains in importance, however, the larger the ini-
tial amount of inequality is. Furthermore, we can not exclude the case that a decline
in xcritt is accompanied by an increase in x

u,s
∗,φt+1

, such that in an extreme case dy-
nasties would start to invest in skills initially, but their descendants would cease to
acquire human capital since the basin of attraction of the inferior steady state is at
least temporarily larger.

We now turn our attention to the effects of a change in the public expenditure
share for health care services, ν, given τ on the (conditional) steady states and
on xcritt .

Proposition 7 (Effects of ν on xs∗,φt+1
and xu∗,φt+1

) The steady states of the skilled
and the unskilled population group increase in response to an increase in ν

∂xs∗,φt+1

∂ν
= (1− τ)(1− α)ws

1− (1− τ)(1+ r̄)(1− α)

∂φ

∂ν
> 0,

∂xu∗,φt+1

∂ν
= (1− τ)(1− α)wu

1− (1− τ)(1+ r̄)(1− α)

∂φ

∂ν
> 0,

such that
∂xs∗,φt+1

∂ν
>

∂xu∗,φt+1
∂ν

since ws > wu and given φt+1 < 1.

In light of the last proposition it becomes apparent that an increasing health ex-
penditure share benefits both population groups while an increase in τ could ben-
efit the skilled but harm the unskilled. Nevertheless, the skilled population group
again benefits more in terms of long-run wealth, such that even this policy change
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Table 1 Parameters
Technology γ = 0.3; δ = 1; a = 0.2; b= 8

Pollution η= 0.95; ε0 = 0.1; ε1 = 0.048

Human capital β = 1.6; h= 0.515; r̄ = 4

Preferences α = 0.85

Φ = {τ, ν} τ = 0.1; ν = 0.8

increases inequality in the long-run. But again, the long-run distribution of the pop-
ulation over the two exterior steady states is influenced by the dynamics of the con-
ditional interior steady state, xu,s∗,φt+1

, and xcritt . The reaction of xu,s∗,φt+1
and xcritt is

summarized in the following proposition.8

Proposition 8 (Effects of ν on xu,s∗,φt+1
and xcritt )

(i) The interior steady state declines in response to an increase in ν, if

ws − h
∂(1+ it+1)

∂φt+1
< (1− α)(1− τ)

(
(1+ it+1)− ∂(1+ it+1)

∂φt+1
φt+1

)
ws,

since ∂(1+it+1)

∂φt+1
< 0 and ∂φt+1

∂ν
≥ 0.9

(ii) The minimum level of wealth necessary to invest in skills declines in response
to an increase in taxes, as

∂xcritt

∂ν
=

[
h
∂(1+ it+1)

∂φt+1

∂φt+1

∂ν
− ∂φt+1

∂ν

(
ws −wu

)]

− 1

it+1 − r̄

[
(1− τ)wu(1+ r̄)+ h(1+ it+1)− φt+1

(
ws −wu

)]
< 0,

since the first term in squared brackets is negative while the second term in
squared brackets equals xcritt which is positive.

5 Numerical Experiments

In this section, we explore the dynamics of our economy numerically. The set of
parameters is presented in Table 1. The capital income share, γ , is set to 0.3. Since
one period encompasses approximately 30 years, we set the rate of capital depre-
ciation, δ, equal to 1. r̄ = 4 implies an annual interest rate of 4.7 %. The weight
of consumption in the utility function, α, is 0.85. The parameter β = 1.6 implies a
borrowers’ interest rate of 9 % p.a., if φt = 1. As far as the evolution of the pollution
stock is concerned, there are obviously several degrees of freedom. We therefore fix
η = 0.95 which seems to be plausible over 30 years. The remaining parameters are

8The qualitative results are similar to Proposition 6.
9See the explanation following Proposition 6.
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Fig. 5 Evolution of the wealth distribution (kernel density estimation)—left-hand panel: first
five periods (dashed: increased inequality (mean preserving spread); solid: baseline sce-
nario)—right-hand panel: complete transition of the baseline scenario

fixed in combination with the survival function, φt , (see Eq. (13)) in an iterative way
assuring that life expectancy starts around 0.5 and the transition to the steady state
is completed after 8 periods, i.e. 240 years.

We assume that life expectancy follows a logistic function in health expenditures
and pollution

φt = F +A ∗ 0.0001

0.0001+ exp(−k ∗ (ψHHt −ψPPt )) ∗ (A/F − 1)
, (13)

with F = 0.5; k = 10; A= 200; ψH = 0.0038; ψP = 0.0005.
In performing the numerical experiments, we generate an artificial sample of

households (N = 1000) and draw the initial level of wealth xj0 , j ∈N out of a log-
normal distribution F0 ∼ (μx;σx). Since our experiments will deal with different
amounts of initial inequality, we increase the variance of initial wealth, but keep the
mean of the distribution constant and assure therefore the comparability between
the experiments.

Our first experiment deals with different amounts of initial inequality in terms of
wealth. The evolution of the wealth distribution over time is depicted in Fig. 5: the
left-hand panel shows the kernel density estimation for the first periods for different
amounts of initial inequality and the right-hand panel depicts the overall transition
of the wealth distribution. Since the population converges either to xs∗,φ∗ or xu∗,φ∗ ,
the wealth distribution collapses into two spikes located at xu∗,φ∗ and xs∗,φ∗ , with the
height of the two spikes representing the amount of inequality.

In Fig. 6, we present the dynamics of the conditional steady states xu∗,φt+1
, x

u,s
∗,φt+1

,
xs∗,φt+1

towards their respective stationary values indicated by subscript φ∗, and the

critical level of wealth necessary to invest in skills, xcritt . The baseline scenario with
low initial inequality is depicted in solid lines and the scenario characterized by
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Fig. 6 Dynamics of the
conditional steady states and
xcritt with different amounts
of initial inequality.
High inequality= dashed lines;
low inequality= solid lines

higher initial inequality is illustrated by dashed lines. As regards the response of
the conditional steady states and xcritt to improvements in life expectancy, Fig. 6
reflects the insights of Fig. 4. Figure 7 shows the dynamics of aggregate output,
Y , tax revenues, G, pollution, P , life expectancy, φ, the number of skilled and un-
skilled households, nj , j = s, u, and the number of unskilled households investing
in skills, nu,s . The baseline scenario is again depicted in solid lines while dashed
lines represent the scenario characterized by higher initial inequality.

During the initial stages of economic development, production is low which im-
plies low levels of pollution. Tax revenues are low as well allowing only for low
levels of public health care expenditures and hence, low levels of life expectancy.
There are no incentives to invest in skills, since a low value of the life expectancy,
φ, implies high interest rates of borrowers and a short amortization period of human
capital investment. These dynamics are reflected by the fact that the conditional
steady state of the unskilled, xu∗,φt , exceeds the conditional steady state that results
from skill investments, i.e. xs∗,φt (see Fig. 6). Therefore, the entire population is
composed of unskilled households, i.e. nu = N . Since wealth evolves according
to (6), the tax base of the government will however increase over time allowing for
an increase in health expenditures and consequently an increase in life expectancy.
Although the increase in life expectancy is ineffective with respect to human capital
investment, as long as φ < φc , it is effective insofar as an increase in φ increases
labor supply, and therefore, the level of aggregate production. Moreover, higher life
expectancy increases the second period income of unskilled households, i.e. lifetime
earnings and therefore, the accumulation of wealth. Both factors in combination in-
crease tax revenues and life expectancy even further. In the simulation with low
inequality, the threshold level of φ = φc is reached in period t = 5. From period five
onwards, the conditional steady state of unskilled households falls below the con-
ditional steady state of skilled households (xu∗,φt+1

< xs∗,φt+1
), inducing households

with xjt > xcritt to invest in skills. Since further increases in φ reduce borrowers’ in-
terest rate it+1, and thereby xcritt and xu,s∗,φt , more and more unskilled households are
not only willing to invest in skills but are also attracted by the superior steady state in
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Fig. 7 Dynamics of aggregate Output, Y , tax revenues, G, pollution stock, P , life ex-
pectancy, φ, the number of skilled and unskilled households nj , j = u, s and the number
of unskilled households investing in skills, nu,s , with different amounts of initial inequality.
High inequality= dashed lines; low inequality= solid lines
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the long-run.10 The endogenous switch to human capital accumulation increases the
level of output since a more productive technology is used. As we assume a symmet-
ric impact of the skilled and the unskilled sector on the environment, the pollution
stock increases as a consequence of an increased level of aggregate production.11

An increase in initial inequality has no impact on the long-run values of wealth
per household xu∗φ∗ , x

u,s
∗,φ∗ and xs∗,φ∗ given that φ∗ = 1.12 Nevertheless, a higher

amount of initial inequality reduces the tax base since agents accumulate wealth at
a slower pace. Consequently, life expectancy rises more slowly as compared to the
low-inequality scenario. Accordingly, since lifetime earnings are lower, the levels of
the conditional exterior steady states are reduced as well (see Fig. 6). Consequently,
the threshold level φc is only reached in period t = 7 and the take-off in terms of
human capital accumulation is delayed by two periods. Since the transition of life
expectancy is delayed due to a higher initial inequality, the levels of xu,s∗φt+1

and xcritt

are also higher during the transition.13 The latter has far reaching consequences for
the long-run performance of the economy. Although the conditional steady states
and xcritt as well as the level of life expectancy converge to the same long-run val-
ues, the transitory higher value of xcritt hinders more unskilled households to invest
in human capital while more unskilled households that invested in human capital
are still in the basin of attraction of the inferior steady state caused by the increase
in x

u,s
∗,φt+1

. Therefore, the economy exhibits a lower number of skilled households
as compared to the low-inequality scenario. Summing up, a larger amount of initial
inequality reduces the tax base and therefore, the effectiveness of the policy set on
life expectancy φ, for any exogenously fixed level of Φ and initial level of pollution.
The lower production level (due to less skilled workers) reduces the pollution level.

Having explored the effects of different degrees of initial inequality on the long-
run performance of the economy, as reflected by the level of aggregate output and
pollution, we turn our focus now to changes in the policy set Φ . We start with a
change in the income tax rate τ and compare the results (as presented in Fig. 8) to
the baseline scenario. Thereafter, we analyze the impact of higher initial inequality
in the high-tax regime with the low-tax regime (see Fig. 9). Finally, we conduct the
same experiments with different shares of public health care, i.e. ν.

In Fig. 8, the high-tax scenario is depicted by dashed lines while the low-tax
scenario is presented by solid lines. Higher taxes increase expenditures for public
health care and abatement measures. Therefore, life expectancy φ increases faster as
compared to the reference scenario. Accordingly the critical level of life expectancy,

10Remember the reduction in xcritt and xu,s∗,φt reduces the basin of attraction of the inferior steady
state.
11Note that the model is also able to account for an Environmental Kuznets Curve, if we would
assume an asymmetric impact of both sectors on the environment in the sense that the s—sector
would harm the environment less as compared to the u—sector. In this case, the evolution of the
pollution stock would read as Pt+1 = (1− η)Pt + εu0Y

u
t + εsY st − ε1At with εu0 > εs0.

12Off course an extreme case of initial inequality could result in a long-run value of φ∗ below 1
such that the long-run values of x would be reduced as well.
13This effect stems from lower life expectancies and higher interest rates.
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Fig. 8 Dynamics of the conditional steady states, xcritt , life expectancy, φ, the pollution stock, P ,
and the number of skilled households, ns , with different tax rates (τ = 0.15: dashed lines; τ = 0.1:
solid lines)

Fig. 9 Dynamics of the number of skilled households, ns , and the pollution stock, P with different
tax rates (τ = 0.15: dashed lines; τ = 0.1: solid lines) and higher initial inequality
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φc, is reached already in period t = 2. From now on the conditional steady state that
applies for households that wish to acquire human capital is above the conditional
steady state of the unskilled population group. During the transition, the conditional
steady states of the high-tax regime are above the ones of the low-tax regime. This
fact is owed to the fast increase in life expectancy which compensates households
for the lower post-tax income at a given level of life expectancy. In later stages
of economic development, the effect of reduced post-tax incomes overcompensates
further gains in life expectancy such that the long-run levels of wealth for both pop-
ulation groups are reduced compared to the reference scenario with lower taxes. Un-
skilled households with a relatively high level of inherited wealth may benefit from
a faster increase in life expectancy inasmuch as the critical level of wealth necessary
to acquire skills and the interior conditional steady state not only declines faster but
converges also to a lower long-run steady state. Thus, the basin of attraction of the
superior exterior steady state extends. Accordingly, the favorable evolution of life
expectancy increases the number of skilled households, thereby aggregate produc-
tion and pollution compared to the reference scenario.

Nevertheless, it is worth to notice that there may be a draw back of a higher tax
rate depending on the initial distribution of wealth. As we have shown, the favorable
evolution of life expectancy induces a fast decline in xcritt and xu,s∗,φt+1

. This increases
human capital investments and enhances the possibility of households with a level of
wealth below h to transit in the long-run towards the superior steady state. However,
this possibility depends on the initial amount of inequality. Given a more unfavor-
able initial distribution of wealth, the fast decline in xu,st may block the transition of
unskilled households that acquired human capital towards the superior equilibrium,
such that the number of skilled households shrinks. This effect is shown in Fig. 9.
There, we consider two regimes that are characterized by high initial inequality but
different tax rates. The high-tax regime is again depicted in dashed lines while the
low-tax regime is presented in solid lines. Apparently, higher inequality reduces the
favorable impact of higher taxes on human capital investments, but reduces the level
of pollution.

In our next experiment we analyze a change in the expenditure share for public
health care, ν, see Fig. 10. Contrary to a change in τ , a change in ν leaves (c.p.)
disposable incomes of households unaffected. The long-run values of wealth for
different population groups remain unaffected given that φ∗ = 1. Like an increase
in τ , an increase in ν induces a faster increase in life expectancy which favors hu-
man capital investments.14 Since the long-run values of wealth are unaffected by a
change in ν, and the number of skilled households has increased, the economy’s tax
base will increase compared to the base line scenario. That is, although economic
activity and its adverse impact on the environment have increased, there are also
more resources available for abatement measures due to an increase in the tax base.
Therefore, the level of pollution is similar compared to the one resulting from an

14Like in Fig. 8, the increase in ν induces also a fast decline in xcritt and xu,sφt ,∗ such that the benefit
of an increased ν depends also in this case on the initial distribution of wealth.
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Fig. 10 Dynamics of the conditional steady states, xcritt , life expectancy, φ, the pollution stock,
P , and the number of skilled households, with different expenditures shares ν for public health
cares (ν = 0.85: dashed lines; ν = 0.8: solid lines)

increase in taxes although the number of skilled households and hence, the level of
economic activity has increased even further (compare Figs. 8 and 10).

6 Discussion

By only focusing on public health care we aim to emphasize the role of the allocation
of public expenditures between health care and pollution abatement on economic
growth (see also Agenor and Neanidis 2011). On one hand health expenditures re-
duce income through taxes thereby also reducing spending on pollution abatement,
on the other hand higher taxes allow for an increase in health expenditures thereby
inducing a higher life expectancy and fostering human capital accumulation and
economic growth.

Our analysis is valid for a given policy set, Φ , but we refrain from modeling
explicitly the political process which may explain this policy set. That is, we analyze
for a given policy set, the interplay between economic inequality, human capital
investment and life expectancy while the latter is, in turn, influenced by the specific
policy set, Φ , whose effectiveness depends on the amount of inequality.
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Nevertheless, our framework opens an avenue for future research which takes
account of the endogenous determination of Φ . Obviously, the determination of Φ
requires a two-stage optimization with respect to ν and τ .

Assume that the government sets the tax rate given an optimal division of expen-
ditures between health and abatement policy, ν. Then the government would seek
to maximize the utility of a representative agent, j , for example the median voter,
which could be either a skilled agent, an unskilled agent or a descendant of an un-
skilled household that invests in skills. Thus, the government would maximize agent
j ’s lifetime utility (4)

max
0≤τ≤1

{
φt

[
ᾱ + ln

[
(1− τ)y

j
t

]]}
.

The associated first-order condition reads

∂φt

∂τ

[
ᾱ + ln

[
(1− τ)y

j
t

]]+ φt

(1− τ)y
j
t

[
−yjt + (1− τ)

∂y
j
t

∂φt

∂φt

∂τ

]
= 0.

The term −yjt in large squared brackets on the left hand side captures the marginal

cost of taxes while the first term on the left hand side and (1− τ)
∂y

j
t

∂φt

∂φt
∂τ

captures
the marginal benefit of an increase in taxes due to the associated increase in the sur-
vival probability. Obviously, the marginal benefit of raising taxes is zero, if φt = 1
and/or ∂φt

∂τ
= 0, such that the first-order condition reduces to − φt

(1−τ) .
15 As has been

discussed already, an income tax is welfare improving as long as the benefits that
result from an increase in life expectancy and the associated increase in lifetime
earnings overcompensate the income loss. Thus, the preferred tax rate depends on
the sensitivity (curvature) of the survival function in response to changes in P and
H and the income level of the representative agent. In addition it seems reasonable
that wealthier agents are less exposed to pollutants as compared to poorer agents.
Thus, the marginal benefit of wealthier agents may be lower which explains that the
new entrepreneurial class saw no point in paying taxes for sanitation in cities. We
come back to this point further below in this section.

As the life expectancy, φt , is increasing in aggregate health expenditures Ht , the
welfare maximizing expenditure share would be ν = 1. This result can be explained
by the fact that the current pollution stock cannot be reduced by current abatement
measures, At = (1− ν)Gt , and that the generation born in t − 1 behaves entirely
selfish in the sense that their impact on the future pollution stock is not internal-
ized by their lifetime utility function. Thus, non-altruistic agents would opt for zero
abatement measures. This result would change, if we assume at least imperfect al-
truism with respect to the future stock of pollution. An illustrative example may be
represented by the following utility function:

u
j
t = φt

[
ᾱ + ln

[
(1− τ)y

j
t

]]− π ln[Pt+1],

15Note that φt = 1 implies ∂φt
∂τ
= 0 but ∂φt

∂τ
= 0 may also result for φt < 1.
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where π reflects the weight of environmental damages for the future generation
captured by the pollution stock in the subsequent period. The first-order condition
thus reads

∂φt

∂ν

[
ᾱ + ln

[
(1− τ)y

j
t

]]+ φt

(1− τ)y
j
t

[
(1− τ)

∂y
j
t

∂ν

∂φt

∂ν

]
− π

Pt+1

∂Pt+1

∂ν
= 0.

In light of the last expression it becomes apparent that although φt is an increasing
function in ν it is not necessarily welfare maximizing to set ν = 1 given that the
marginal benefit from abatement weighted by π is sufficiently high.

As we just clarified, we may expect that the marginal benefit of taxation for
wealthier agents is low or even zero, a phenomenon which is very much in line with
historical observations. The significance of water as an industrial raw material has
been documented by Hassan (1985): fresh water was used for commercial purposes
while the new entrepreneurial class saw no point in spending money for sanitation
and sewage treatment plants. This finding points directly at the role of economic
inequality especially as wealthier households moved to cleaner areas with signif-
icantly lower exposures to local pollutants. In this line of argumentation Szreter
(1997) stresses

. . . there is indeed something intrinsically dangerous and socially destabilizing in the wake
of economic growth. . . .

He underlines his statement by the following two observations: (1) local authorities
were failing the management of their environments, and, as regards the role of in-
equality, (2) as a consequence of it wealthier citizens moved to the periphery of the
cities.

Our setting does not include spatial segregation and differential exposures to pol-
lutants. Nevertheless, it opens an avenue to analyze the emerging social conflict
between wealthier citizens living in cleaner areas and the majority of people liv-
ing in overcrowded and polluted cities. This can be achieved by regionally differing
survival functions capturing the local impact of pollutants on citizen’s survival prob-
ability (see Schaefer 2013).

7 Summary and Conclusions

Based on the work by Galor and Zeira (1993), we analyzed the link between eco-
nomic inequality in terms of wealth, life expectancy and pollution. The distribution
of wealth is decisive for the number of households investing in human capital. More-
over, the willingness to invest in human capital is affected by agents’ life expectancy
since it triggers the length of the amortization period of human capital investments.
In our framework, life expectancy is endogenous and positively affected by pub-
lic health care expenditures but adversely affected by the pollution stock stemming
from aggregate production.

Due to a low level of health expenditures owed to a low level of tax revenues,
life expectancies are low in earlier stages of economic development such that there
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is no incentive to invest in human capital. Nevertheless, increasing accumulation of
wealth increases step by step the tax base and agents’ life expectancy. After a thresh-
old level of life expectancy has been passed, households begin to acquire skills. Our
model is therefore able to take account of an endogenous take-off in terms of human
capital accumulation.

Higher initial inequality retards the take-off, since the tax base of the economy
is reduced which implies lower expenditures on public health care and abatement
measures. Consequently, the increase in life expectancy is slower. The latter in turn
reduces human capital investments, such that the economy is characterized by a
lower aggregate long-run level of production and pollution. In other words, higher
inequality reduces the effectiveness of a given set of economic policies in terms of
health and abatement expenditures.

An increase in taxes or the expenditure share for public health care increases
life expectancy. The more favorable evolution of the life expectancy is beneficial
for human capital investment given that the initial distribution of wealth is not too
unequal. An increase in taxes, given a higher amount of initial inequality, may be
harmful in the sense that less descendants of unskilled households invest in skills.
In general, an increase in taxes reduces long-run wealth of households. Contrary to
an increase in taxes, an increase in the public health expenditure share leaves (c.p.)
disposable incomes of agents constant, such that the long-run levels of wealth per
household remain unaffected or even increase. Since the more favorable evolution of
life expectancy increases the tax base, higher health care expenditure shares increase
in general (like an increase in the tax rate) the number of skilled households and
the level of aggregate production in the long-run. The advantage compared to an
increase in taxes however is the achieved increase in the tax base which induces
more expenditures on health care and abatement measures, such that an even higher
economic activity is compatible with a similar level of long-run pollution.
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Appendix

Proof of Proposition 4

We first show that xu,sφt ,∗ is hump-shaped. In the second step, we demonstrate that

xcritt is hump-shaped as well and always below x
u,s
φt ,∗.

1. Since limφt→0 xφt ,∗ = h and xsφt ,∗ = x
u,s
φt ,∗ = h, if φt = φc = h

(1−α)(1−τ)ws it fol-

lows that xu,sφt ,∗ is non-monotonous is φt . As moreover

lim
φt→0

∂x
u,s
φt ,∗
∂φt

= (β − 1)h

β(1− α)(1− τ)(1+ r̄)
> 0,

it follows outright that xu,sφt ,∗ is hump-shaped.
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2. Since limφt→0 x
crit
t = h and

lim
φt→0

∂xcritt

∂φt
= β − 1

β

(
(1− τ)wu + h

)
> 0,

it follows that xcritt = x
u,s
φt ,∗ = h as φt approaches zero and that xcritt has a initially

a positive slope as well. Moreover, xcritt has a unique intercept with x
u,s
φt ,∗ and

xuφt ,∗, such that xcritt = x
u,s
φt ,∗ = xuφt ,∗, if φt = φ̃. Since xu,sφt ,∗ cuts xsφt ,∗ from above

at φc while xuφt ,∗ is strictly below xsφt ,∗ for φt > φc , it follows that φ̃ > φc. Since

the intercept between xcritt and x
u,s
φt ,∗ is unique it follows that xcritt is hump-

shaped in φt as well and always below x
u,s
φt ,∗ for φt < φ̃.

3. From 1. and 2. it follows immediately that xcritt and xu,sφt ,∗ are declining in φt for
φc ≤ φt ≤ φ∗.
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Uncertain Climate Policy and the Green
Paradox

Sjak Smulders, Yacov Tsur, and Amos Zemel

Abstract Unintended consequences of announcing a climate policy well in advance
of its implementation have been studied in a variety of situations. We show that
a phenomenon akin to the so-called “Green-Paradox” holds also when the policy
implementation date is uncertain. Governments are compelled, by international and
domestic pressure, to demonstrate an intention to reduce greenhouse gas emissions.
Taking actual steps, such as imposing a carbon tax on fossil energy, is a different
matter altogether and depends on a host of political considerations. As a result,
economic agents often consider the policy implementation date to be uncertain. We
show that in the interim period between the policy announcement and its actual
implementation the emission of green-house gases increases vis-à-vis business-as-
usual.

1 Introduction

An increasing body of economic literature suggests that the very large potential
damage due to emissions-induced climate change calls for effective regulation mea-
sures to limit the accumulation of atmospheric pollution. The costly measures would
be justified only if the response they entail actually advances the desired goal of re-
duced emissions. Recent studies reveal, however, that this is not always the case,
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and climate policies may paradoxically give rise to more emissions relative to the
laissez-faire scenario. For example, partial participation in an international emis-
sion reduction program may introduce a leakage effect, whereby the response of
the non-participating parties more than offsets the reduction activities of the partici-
pants. The resulting “Green Paradox” is analyzed, for example, in Sinn (2008) and in
Eichner and Pethig (2011). A similar paradoxical outcome may stem from the regu-
lator’s wish to allow the parties prepare in advance to the proposed policy measures
and spread their adjustment efforts over time. A model based on this mechanism
has been developed in Di Maria et al. (2012) where a study of the response of coal
or oil fields owners to an advance announcement of an anticipated climate policy
finds that the inelastic supply of the non-renewable resources might induce them to
lower prices prior to the policy implementation, encouraging enhanced emissions.
The robustness of the paradoxical outcome to various assumptions concerning the
cost of backstop substitutes to the polluting resource is studied in van der Ploeg and
Withagen (2012).

At the core of the mechanisms driving these results lies a finite resource stock
that owners wish to exploit before the announced policy interrupts their supply ac-
tivities. A recent contribution, Smulders et al. (2012), shows that scarcity is not the
sole driver of such effects and obtain the paradoxical outcome in a model with an
unlimited supply of fossil energy. Introducing regulation via a carbon tax, which ef-
fectively raises the price of fossil energy, and assuming that the regulator announces
the plan to levy the tax well in advance, they show that the early announcement
distorts resource allocation processes in a number of ways. In particular, it reduces
consumption and increases saving, thus giving rise to a larger capital stock. The
larger capital stock, in turn, enhances the demand for fossil energy by firms that use
capital, energy and labor as factors of production. Thus, announcing a policy aimed
at reducing the use of fossil energy well in advance gives rise to the opposite effect
until the policy is actually realized. The result holds both when the regulation policy
involves a mild tax rate which reduces fossil use but does not induce the use of al-
ternative, clean (solar) energy as well as when the tax rate is high enough to trigger
a transition to solar energy.

In this work we extend the results of Smulders et al. (2012) by considering uncer-
tainty as yet another driver of paradoxical effects. We incorporate uncertainty into
the model by assuming that the government announces the intention to levy the car-
bon tax, but the date of implementation depends on political conditions and is there-
fore uncertain. The distinction appears to be important as it affects the underlying
mechanism that drives the paradox. In particular, the continuity of the consump-
tion process plays a key role in deriving the early announcement effect when the
implementation date is known in advance. In contrast, under uncertain implemen-
tation date, the consumption path undergoes a discontinuous jump at the (random)
time when the policy is implemented. Nevertheless, we establish the “green para-
dox” also under uncertainty, and show that it is driven by the same economic forces:
anticipating that the tax will reduce energy use in the future induces households to
enhance saving today in order to accumulate more capital that can substitute for the
lower energy input. Prior to implementation of the tax policy, the increased capital
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stock is associated with increased energy input, hence the paradoxical outcome. In-
deed, since uncertainty regarding implementation appears to be a common feature
characterizing climate policies, the negative effect of the paradox may be significant.

Of course, the saving efforts must come at the expense of consumption, and the
realization of the effect depends on a condition relating the production elasticity of
capital to the elasticity of marginal utility of consumption. As explained in Smulders
et al. (2012), this condition would be satisfied in any empirically relevant calibration,
and the paradoxical nature of the uncertainty effect appears to be robust.

2 Setup

We begin with a brief summary of the unregulated case on which the early an-
nouncement analysis is based.

2.1 The Unregulated Economy

Early responses to expectations regarding the future introduction of a climate policy
are studied in the framework of Tsur and Zemel (2011) where the penetration of
solar technologies into competitive energy markets is analyzed. We outline briefly
the main components of this model and the results that drive the present analysis.
The economy consists of a final good sector, an energy sector, and capital owning
households. The final goods are produced using energy x and capital k as inputs.
We employ the Cobb-Douglas (CD) production technology

y(k, x)= Fkαxγ (1)

with α + γ < 1 and F > 0.1 The energy sector consists of fossil energy firms that
supply energy at the price ζ and of solar energy firms that invest in solar infrastruc-
ture (capital) s. Once the latter has been installed, the generation of solar energy
entails no additional cost but is limited by the available stock s of solar capital. The
two sources of energy are perfect substitutes, hence

x = xf + bs, (2)

where xf is fossil energy and b > 0 is an efficiency parameter measuring how much
solar power can be delivered from one unit of solar capital.2 Solar energy is supplied

1All quantities are given in per capita terms, hence the labor input is omitted. The CD specification
is not essential for our analysis, but it allows for a simple and transparent derivation.
2This formulation evidently abstracts from many features characterizing the fossil-solar competi-
tion such as the stochastic nature of the solar input, the significant ongoing improvements in the
efficiency of solar energy generation or new discoveries of fossil resources. This simplification is
consistent with our general approach of focusing only on those features that are directly relevant
to the green paradox effect considered here.
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at the going market price and the forward-looking solar firms base their investment
decisions on their forecast regarding the evolution of future energy demand. The
solar stock, then, evolves according to

ṡ = ι− δs, (3)

where ι is the investment rate and δ > 0 is the capital depreciation rate.
Households have a concave utility function u(·) over consumption c of final

goods and seek to maximize the present-value utility stream over an infinite horizon∫ ∞

0
u
(
c(t)

)
e−ρtdt (4)

subject to the budget constraint3

k̇ = y
(
k, xf + bs

)− ζxf − ι− δk − c, (5)

where ρ is the pure (utility) rate of discount.
Absent market failures, the competitive equilibrium processes are determined by

finding nonnegative {c(t), xf (t), ι(t)} that maximize (4) subject to (3), (5), k(0)=
k0 > 0 and s(0)= 0.

The competitive allocation is characterized in Tsur and Zemel (2011) in terms of
the critical price

ζ c = (ρ + δ)/b, (6)

and three conditions:

1. The condition for fossil energy use, equating its price to the marginal product of
energy

yx = Fγ kαxγ−1 = ζ (7)

yielding

x =
(
Fγ

ζ

)1/(1−γ )
kα/(1−γ ). (8)

2. A steady state (Ramsey) condition,

yk = Fαkα−1xγ = ρ + δ, (9)

yielding

x =
(
ρ + δ

Fα

)1/γ

k(1−α)/γ . (10)

3Observe that the same depreciation rate δ has been assumed for both types of capital. In fact, both
k and s consist of numerous types of equipment, each with its particular depreciation rate. For
simplicity of presentation we take δ to represent an average rate holding for both capital stocks.
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3. A simultaneous growth condition, equating the marginal product for both types
of capital

yk = byx (11)

yielding

x = (bγ /α)k. (12)

The following characterization is established in Tsur and Zemel (2011):

Proposition 1 (i) When the fossil energy price ζ falls short of ζ c, no investment in
solar ever takes place, s(·)≡ 0, and the competitive processes converge to a steady
state (k̂, x̂) determined by conditions (7) and (9). (ii) When the fossil energy price
ζ exceeds ζ c the competitive processes converge to an exclusively solar steady state
with (k̂, x̂) determined by conditions (9) and (11), where x̂f = 0 and ŝ = x̂/b.

Economies satisfying condition (i) are referred to as fossil-based economies,
while those satisfying condition (ii) are called solar-based. These terms describe
long term behavior. In the interim, when the initial capital stock k0 is small, energy
is derived exclusively from fossil sources and investment in solar capital is delayed
(or avoided if the economy is fossil-based), while fossil energy use is determined
by (8).

2.2 Regulation

The discussion so far has focused on the economic and technological aspects of
the distinction between fossil and solar technologies, ignoring the externalities as-
sociated with the use of the former, due, e.g. to the polluting emissions it entails.
A common policy addressing such externalities entails imposing Pigouvian taxes
on emissions. In our setting, such a policy is equivalent to increasing the fossil
price ζ . If the “carbon tax” τ is imposed abruptly, the parties will respond promptly
by switching from the competitive processes corresponding to the initial (low) price
ζ l to the higher price ζ h = ζ l+τ . Imposing such a policy by surprise entails discon-
tinuities in the consumption and saving processes, which may raise political opposi-
tion. Support-seeking regulators, thus, may choose to announce the tax policy well
ahead of its actual implementation in order to allow agents to adjust gradually to the
forthcoming changes. The early announcement effects of this policy were shown in
Smulders et al. (2012) to give rise to a ‘green paradox’, whereby the use of fossil
energy will actually increase, rather than decrease, during the intermediate period
between the announcement of the tax policy and its actual implementation. This re-
sult holds both when the tax rate leaves the originally fossil-based economy at the
same type classification (albeit less energy intensive) and when τ is large enough
to bring ζ h well above the critical price ζ c of (6), turning the economy into a solar-
based type. In both cases, agents know the implementation date precisely and adjust
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their behavior so as to ensure a smooth consumption process, even though this en-
tails results that diametrically oppose the regulator’s original aim.

Here we extend the analysis to situations where the regulator announces the in-
tention to levy the tax, but is unable or unwilling to commit to a specific date of im-
plementing it. When the policy actually takes place, it implies a prompt adjustment
to the higher fossil energy price and discontinuous disruptions cannot be avoided.
The agents’ response, therefore, differs from that following a pre-specified (known)
implementation date. We refer to this scenario as ‘uncertain announcement’ and in-
vestigate whether it can also give rise to paradoxical outcomes. We restrict attention
to the case of a mild tax rate which leaves the economy as a fossil-based type also af-
ter the tax is imposed. Higher tax rates implying a transition to solar-type economies
entail a more tedious analysis, but the paradoxical effects are expected to be driven
by the same mechanism, as in Smulders et al. (2012).

2.3 Allocation Dynamics

The analysis is based on a comparison of the competitive processes following an
uncertain announcement to those corresponding to a fixed low price ζ l free of reg-
ulation. Here we characterize the latter processes. Employing the energy input at its
demand (cf. (8)) gives the output

y = F

(
Fγ

ζ

)γ /(1−γ )
kα/(1−γ ), (13)

and implies

ζx = yxx = Fγ kαxγ = γy.

Net production, then, can be expressed as a function of capital only:

y − ζx = (1− γ )y = F(1− γ )

(
Fγ

ζ

)γ /(1−γ )
kα/(1−γ ) ≡A(ζ )kβ, (14)

where

β ≡ α/(1− γ ) < 1 (15)

is the effective capital share and

A(ζ )≡ F(1− γ )

(
Fγ

ζ

)γ /(1−γ )
(16)

decreases in the fossil price ζ . Fossil based economies with different fossil prices
follow the same dynamics, differing only in the parameter A(ζ ). The optimization
problem (4), thus, reduces to a single state (k) and single control (c) problem whose
solution is governed by the pair of dynamic equations

k̇ =A(ζ )kβ − δk − c (17)
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and

ċ= cσ (c)
[
A(ζ )βkβ−1 − (ρ + δ)

]
, (18)

where

σ(c)=−u′(c)/[u′′(c)c] (19)

is the intertemporal elasticity of substitution.
The steady state (k̂, ĉ) of this system is given by the relations

A(ζ )βk̂β−1 = ρ + δ (20)

and

ĉ=A(ζ )k̂β − δk̂ = k̂
[
(ρ + δ)/β − δ

]≡ r∞k̂, (21)

where

r∞ = (ρ + δ)/β − δ (22)

is independent of ζ . The steady state consumption-capital relation coincides with
the straight line ĉ= r∞k̂ for all values of the fossil price below the critical price ζ c .

For the autonomous system at hand we can write c= c(k), hence ċ= c′(k)k̇ and
Eqs. (17)–(18) imply

c′(k)= σ(c(k))c(k)

k

A(ζ )βkβ − (ρ + δ)k

A(ζ )kβ − δk − c(k)
. (23)

Combined with the boundary condition c(k̂)= ĉ, Eq. (23) determines consumption
for every positive capital stock:4

Proposition 2 If βσ(c) < 1 for all c then the c(·) curve lies above the straight line
c= r∞k for all k ∈ (0, k̂) and it lies below this straight line for all k > k̂.5

Proof At k = k̂, c(k̂) = r∞k̂ and Eq. (23) cannot be used directly to determine c′
because both numerator and denominator vanish. However, c′(k̂) can be obtained
by applying l’Hôpital’s rule, yielding the quadratic equation

Θ
(
c′
)≡ c′2 − ρc′ − r∞σ(ĉ)[ρ + δ](1− β)= 0 (24)

with Θ(0) < 0, while Θ(r∞)= r∞(r∞ + δ)(1− β)(1− βσ(ĉ)) > 0 hence the pos-
itive root c′(k̂) of (24) is smaller than r∞. Just below k̂, then, the c(·) curve lies
above the straight line c = r∞k. Suppose that the two curves cross at some state

4Strictly speaking, (23) corresponds to the market solution only for k ≤ k̂. For our purpose, how-
ever, it turns out expedient to characterize the properties of its formal solutions also at larger capital
stocks.
5Symmetric considerations show that if βσ(c) > 1 for all c then the relation between c(·) and the
straight line c = r∞k is reversed. In this work we maintain the condition βσ(c) < 1 cited in the
Proposition, because it corresponds to any empirically relevant calibration.
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0 < k̃ < k̂ where c(k̃)= r∞k̃. Then c′(k̃)≥ r∞. However, at k̃ we can use (22) and
(23) to obtain

c′(k̃)= σ(r∞k̃)r∞
A(ζ )βk̃β − (ρ + δ)k̃

A(ζ )k̃β − (δ + r∞)k̃
= βσ(r∞k̃)r∞ < r∞, (25)

and the curves cannot cross. The relation at k > k̂ is established in a symmetric
manner. �

2.4 Different Fossil Energy Prices

Next we compare two unregulated c(·) curves corresponding to different fossil
prices. We consider the prices ζ h > ζ l and use the superscripts h and l to denote
all quantities associated with the high and low price, respectively. We assume that
even the higher price ζ h is insufficient to induce the economy to use solar energy,
hence the dynamics of the previous subsection hold for both processes. Observe that
r∞ is independent of ζ and the steady-states corresponding to both fuel prices lie
on the straight line c = r∞k. According to (20), k̂l > k̂h and therefore ĉl is propor-
tionately larger than ĉh.

According to Proposition 2, cl(k̂h) > r∞k̂h = ch(k̂h), hence the low-price con-
sumption curve lies above its high-price counterpart at k = k̂h. We establish now
that this property holds for all capital stocks.

Proposition 3 If βσ(c) < 1 for all c then the cl(·) curve lies above the ch(·) curve
for all k > 0.

Proof The Proposition holds for k = k̂h. Suppose that the two curves cross at some
point (k̃, c̃) with k̃ ∈ (0, k̂h). It follows that dcl(k̃)/dk ≥ dch(k̃)/dk. Using (23) we
find

A(ζ l)βk̃β − (ρ + δ)k̃

A(ζ l)k̃β − δk̃ − c̃
≥ A(ζh)βk̃β − (ρ + δ)k̃

A(ζ h)k̃β − δk̃− c̃
. (26)

All terms of (26) are positive, because both k and c increase below their correspond-
ing steady states. Thus,

(ρ + δ)k̃A
(
ζ h

)+ β(δk̃ + c̃)A
(
ζ l
)≤ (ρ + δ)k̃A

(
ζ l
)+ β(δk̃ + c̃)A

(
ζ h

)
,

or

β(δk̃ + c̃)
[
A
(
ζ l
)−A

(
ζ h

)]≤ (ρ + δ)k̃
[
A
(
ζ l
)−A

(
ζ h

)]
.

Now, A(ζ l) > A(ζh), yielding

β(δk̃ + c̃)≤ (ρ + δ)k̃

or, using (22)

c̃ ≤ r∞k̃,
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violating Proposition 2. It follows that the two consumption curves do not meet in
the interval (0, k̂h].

At k > k̂h the inequality (26) and the signs of its terms are reversed, but a crossing
of the consumption curves can be ruled out via the same considerations, recalling
that the curves lie below the straight line c= r∞k when the capital stock k exceeds
their respective steady states. �

Proposition 3 lies at the core of the early announcement effects studied in Smul-
ders et al. (2012). We proceed now to investigate how the analysis can be extended
to study uncertain announcements.

3 Uncertain Implementation Date

Suppose that implementation of the carbon tax τ , under which the price of fossil en-
ergy increases from ζ l to ζ h = ζ l + τ , is considered to take place at some unknown
future date T . The realization of T may depend on the successful ratification and
implementation of some international treaty, or on other developments in the global
arena, and is taken as exogenous to the economy under consideration. Thus, from
the vantage point of the economy, the hazard rate π corresponding to the random T

is constant. The payoff, conditional on T , is∫ T

0
u
(
c(t)

)
e−ρtdt + e−ρT v

(
k(T )|ζ h), (27)

where v(k|ζ ) represents the value given a constant fossil price ζ :

v(k|ζ )=max
{c(t)}

∫ ∞

0
u
(
c(t)

)
e−ρtdt (28)

subject to (17), given k(0)= k. Note that dv(k|ζ h)/dk = λh(k)= u′(ch(k)), where
λh is the current-value shadow price of capital under the optimal policy correspond-
ing to v(k|ζ h).

A hazard process π(·) is related to the survival function and density of the event
occurrence time, S(t)= Pr{T > t} and f (t)=−S′(t), according to

π(t)�≡ Pr
{
T ∈ (t, t +�) | T > t

}= f (t)

S(t)
�=−S

′(t)
S(t)

�.

Thus, π(t)=−d ln(S(t))/dt . Integrating, using the initial value S(0)= 1, gives

S(t)= exp

(
−

∫ t

0
π(θ)dθ

)

and

f (t)= π(t)S(t).

The first term of (27) is written as
∫∞

0 u(c(t))I (T > t)e−ρtdt where the indicator
I (·) obtains the value of unity when its argument holds true and zero otherwise,
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so that its expected value with respect to the T -distribution is ET {I (T > t)} =
S(t). The expectation of the second term is written as ET {v(k(T )|ζ h)e−ρT } =∫∞

0 f (t)v(k(t)|ζ h)e−ρtdt . A constant hazard π implies that T is exponentially dis-
tributed (with f (t)= πe−πt and S(t)= e−πt ) and the expected payoff is

ET

{∫ T

0
u
(
c(t)

)
e−ρtdt + e−ρT v

(
k(T )|ζ h)

}

=
∫ ∞

0

[
u
(
c(t)

)+ πv
(
k(t)|ζ h)]e−(ρ+π)t dt.

The allocation problem with uncertain carbon tax date T becomes

vπ
(
k0|ζ l, ζ h

)=max
{c(t)}

∫ ∞

0

[
u
(
c(t)

)+ πv
(
k(t)|ζ h)]e−(ρ+π)t dt (29)

subject to (17) with ζ = ζ l , given k(0) = k0. We compare the emission path cor-
responding to v(k0|ζ l), under which no carbon tax is contemplated, with that cor-
responding to vπ(k0|ζ l, ζ h), under which a carbon tax τ will be imposed at an
uncertain time T .

The capital process kπ (·) corresponding to vπ(k0|ζ l, ζ h) follows (17) with
ζ = ζ l (the prevailing price until the tax is imposed) while Eq. (18) becomes

ċπ (t)= σ
(
cπ (t)

)
cπ (t)

[
A
(
ζ l
)
βkπ(t)β−1 − (ρ + δ)+ P

(
kπ (t)

)]
, (30)

where

P(k)≡ π

(
u′(ch(k))
u′(cπ (k))

− 1

)
. (31)

Comparing (30) with (18), we see that the uncertainty in T , with π > 0, is repre-
sented by the P(k) term, the sign of which depends on the relative magnitudes of
ch(k) and cπ (k). We turn now to study the effects of this term.

3.1 The Consumption-Capital Trajectory

We consider the capital dependence of consumption under the π regime. Equa-
tion (23) becomes

dcπ(k)

dk
= σ

(
cπ (k)

)
cπ (k)

A(ζ l)βkβ−1 − (ρ + δ)+ P(k)

A(ζ l)kβ − δk − cπ (k)
, (32)

with the steady state values k̂π and ĉπ , given by

A
(
ζ l
)(
k̂π

)β − δk̂π − ĉπ = 0 (33)

and

βA
(
ζ l
)(
k̂π

)β−1 − (ρ + δ)+ P
(
k̂π

)= 0. (34)

We compare these steady state values with their regulation-free counterparts.
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Fig. 1 The steady state
capital k̂π as a function of the
hazard rate π . The upper and
lower horizontal lines
indicate k̂l and k̂h,
respectively. The curves in all
figures were derived under the
above function specifications
and the parameter values:
α = γ = 1/3, F = 1, σ = 1,
ρ = δ = 5 % annually, ζ l = 1
and ζ h = 2

From (20) and (34) we obtain

A
(
ζ l
)
β
[(
k̂l
)β−1 − (

k̂π
)β−1]= P

(
k̂π

)
. (35)

According to (31), P(k̂π ) is small when π is small, hence k̂π is close to k̂l and (33)
implies that

cπ
(
k̂π

)= ĉπ ≈ ĉl = cl
(
k̂l
)≈ cl

(
k̂π

)
> ch

(
k̂π

)
.

With u′′(·) < 0, it follows that u′(cπ (k̂π )) < u′(ch(k̂π )) and P(k̂π ) > 0. Turning
again to (35) and recalling that β − 1 < 0, we find that k̂π > k̂l when the hazard
rate π is small. We show that this relation between the steady states extends to
arbitrary positive values of π . Consider the steady state k̂π as a function of π and
assume that at some π value this function crosses the constant k̂l so that the left hand
side of (35) vanishes. However, (33) holds for both cπ (·) and cl(·) hence cπ (k̂π )=
cl(k̂π ) > ch(k̂π ). According to (31) P(k̂π ) > 0 hence the right hand side of (35)
is positive, while the left hand side vanishes. Thus, the crossing cannot occur. We
conclude, therefore that

k̂π > k̂l ∀π > 0, (36)

as Fig. 1 illustrates.
Next we compare the complete consumption curves by relating cπ (k) to cl(k).

Since k̂l represents the steady state for the kl(·) process, it follows that k̇l(t) = 0
at this state. However, the steady state k̂π of kπ (·) exceeds k̂l , hence k̇π (t) > 0
when kπ (t)= k̂l . Thus, (17) implies cl(k̂l) > cπ(k̂l). We show that this relation can-
not reverse at other capital states. Suppose otherwise, that cl(k∗) = cπ (k∗) (hence
P(k∗) > 0) at some capital state k∗ < k̂l but cl(k) > cπ(k)∀k ∈ (k∗, k̂l]. It follows
that dcl(k∗)/dk ≥ dcπ(k∗)/dk. However, we can write (32) as

dcπ (k∗)
dk

= dcl(k∗)
dk

+ σ(cl(k∗))cl(k∗)P (k∗)
A(ζ l)k∗β − δk∗ − cl(k∗)

>
dcl(k∗)
dk

,
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Fig. 2 Consumption curves
as functions of capital under
uncertain T (cπ ), low fossil
energy price (cl ) and high
fossil energy price (ch). In
this and the following figures
we use the value π = 0.1
corresponding to
E{T } = 10 years

because the denominator of the second term is also positive at k∗. A crossing of
the consumption curves (with dcl(k∗)/dk ≤ dcπ(k∗)/dk) can be ruled out also for
k∗ > k̂l using the same argument, since the denominator is negative above k̂l . Thus,

cπ (k) < cl(k) ∀k > 0.

We wish to compare the uncertain consumption curve also to its high price coun-
terpart, ch(·). We use (36) to deduce from (35) that P(k̂π ) > 0 hence ch(k̂π ) <

cπ(k̂π ). To establish the same relation for smaller capital stocks, we assume other-
wise, that ch(k̃)= cπ (k̃) at some stock k̃ < k̂π , where dch(k̃)/dk ≤ dcπ (k̃)/dk but
P(k̃) = 0. This, however, implies (26) which can be ruled out via the same argu-
ments used to establish Proposition 3. We summarize these considerations in Fig. 2
and in

Proposition 4 If βσ(c) < 1 ∀c, then ch(k) < cπ(k) < cl(k) ∀k ∈ (0, k̂π ].

Uncertainty, then, reduces consumption but not by as much as would be implied
by a prompt implementation of the tax.

3.2 The “Green Paradox”

The time trajectories of kl and kπ are given, respectively, by the implicit solutions
of (17):

t =
∫ kl(t)

k0

dk

A(ζ l)kβ − δk − cl(k)
dk,

and

t =
∫ kπ (t)

k0

dk

A(ζ l)kβ − δk − cπ (k)
dk.
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Fig. 3 Time trajectories of
capital stocks under uncertain
T (kπ ) and low fossil energy
price (kl )

Thus, the relation cl(k) > cπ(k) implies that

kl(t) < kπ(t) ∀t > 0,

as indicated in Fig. 3. Indeed, this result provides the manifestation of the “Green
Paradox” effect in the case of uncertain T . Since both kl(·) and kπ (·) proceed under
the same price of fossil energy and with the same production technology, the larger
kπ (·) process entails enhanced energy use at each point of time (until implementa-
tion), in contrast to the original purpose of the announcement. As in the case of a
certain early announcement, preparing for the anticipated tax consists of accumulat-
ing a larger capital stock so that when the tax is eventually levied, the larger capital
stock will partly compensate for the reduced energy use implied by the tax.

Interestingly, a comparison of the corresponding consumption time trajectories
does not display the same simple pattern in time: With a higher steady state con-
sumption, cπ (t) must exceed cl(t) at large time (but prior to actual implementa-
tion). This relation between the consumption processes, however, cannot extend all
the way back to t = 0 (when the capital stock equals k0 under both regimes) because
if it did, the relation between the capital processes displayed in Fig. 3 would be re-
versed. The two consumption processes, therefore, must cross at some finite time, as
shown in Fig. 4. Efforts to prepare for the tax (in terms of reduced consumption) are
concentrated at the early stages of the growth process, while at later times, parts of
the fruits of the oversized capital (relative to the prevailing low fossil energy price)
are used again to finance enhanced consumption.

4 Concluding Comments

The model presented in this work suggests yet another mechanism to produce “para-
doxical” outcomes of climate policies without resorting to the scarcity of the fossil
resource. Here, the effects are due to uncertainty regarding the timing of introduc-
ing the carbon tax. While the economic forces at work are similar to those driving
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Fig. 4 Time trajectories of
consumption processes under
uncertain T (cπ ) and low
fossil energy price (cl ). The
arrow indicates the time when
the trajectories cross

the early announcement model of Smulders et al. (2012), the two mechanisms op-
erate differently because in the present model economic agents cannot predict the
tax implementation date at which they must ensure a smooth transition of the con-
sumption process. In fact, consumption will undergo a discontinuous jump on this
date and the adopted processes are tuned so as to minimize the expected utility loss
associated with the jump. The solution involves delicate tradeoffs as manifested by
the crossing of the time profiles of the consumption processes displayed in Fig. 4.
Nevertheless, the “paradoxical” effect of increased fossil energy use persists at all
times until the tax policy is realized.

For brevity and simplicity of exposition, the results are presented in terms of
the simplest specification of a Cobb-Douglas technology, constant hazard rate and
a mild tax rate which does not imply a transition to a solar-based economy. As
indicated in Smulders et al. (2012), none of these assumptions is essential and the
“paradoxical” effect can be obtained in a more general setting, albeit at the cost of
more tedious derivations.
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Uniqueness Versus Indeterminacy
in the Tragedy of the Commons:
A ‘Geometric’ Approach

Franz Wirl

Abstract This paper characterizes continuous Markov perfect equilibria as smooth
connections between an ‘initial’, i.e., at the origin of the state space, and an ‘end’
manifold that result from patching with the boundary solution. The major result
is that multiple equilibria require a non-monotonic initial manifold. This neces-
sary condition for multiple equilibria can be tested without (or prior to) solving
the Hamilton-Jacobi-Bellman equation. Application to a familiar dynamic tragedy
of the commons with nonlinear instead of linear-quadratic utilities shows that the
elasticity of marginal utility is the crucial property: If this elasticity is (everywhere)
greater than n−1

n
, n= number of polluters, then the Nash equilibrium is unique. As-

suming the opposite inequality (globally) implies that no saddle-point equilibrium
exists. Therefore, the ‘focal’ point equilibrium is gone and all conceivable boundary
conditions determine a corresponding equilibrium, e.g. ‘anything goes’ for power
utility functions.

1 Introduction

The much discussed possibility of a family of multiple equilibria in dynamic games
and the search for underlying economic and arithmetical reasons motivates this in-
vestigation. This interest is in particular due to the much quoted and discussed paper
of Dockner and van Long (1993) with its claim that nonlinear Markov strategies in-
stead of the familiar linear ones in a linear-quadratic differential game ‘solve’ the
tragedy of the commons. However, nonlinear strategies have only local support. This
requires an ad hoc and ex post (i.e., after having obtained the solutions) restriction
of the state space to ensure subgame perfection. Rubio and Casino (2002) is a first
attempt to reduce the set of equilibria, Wirl (2008a) investigates a stochastic version
of a stock pollution game, and Jorgensen et al. (2010) is a comprehensive survey
of dynamic pollution games. Harstad (2012) is a recent application of this dynamic
tragedy of the commons to global warming extended for technology (renewable en-
ergy) and (incomplete) contracts. Rowat (2000, 2006) gives a rigorous analysis of
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the Dockner-Long game and shows that the local nonlinear strategies can be ex-
tended by patching with the boundary strategy (‘zero’= no emissions) in order to
obtain globally defined strategies. This raises the vague hope that imposing Inada
conditions, which rule out a priori a ‘zero’ strategy, lead to a unique equilibrium due
to the implicit requirement of globally interior strategies. The common denominator
of all these variations is that nonlinear and multiple equilibrium strategies mitigate
the tragedy of the commons; Rowat (2006) conjectures that some kind of folk the-
orem is behind this optimistic result. However, Wirl (2007) rejects the generality
of this conclusion—the multiple equilibria increase conservation—by showing that
multiple equilibria aggravate the tragedy of the commons for utility functions with
hyperbolic risk aversion. The following paper differs from this rather narrow objec-
tive in Wirl (2007) by establishing general criteria for multiple equilibria applicable
at the outset (i.e., ideally without solving the differential game) and by ruling out
hyperbolic risk aversion.

More precisely, this paper proposes an alternative view and uses geometric means
in order to characterize Markov perfect equilibria in differential games but restricted
to one-state. Other non-standard characterizations of such equilibria are: Dockner
and Wagener (2008) introduce a system of auxiliary ordinary differential equations
(thus also restricted to a single state) and Rincon-Zapatero et al. (1998) apply the
Hamiltonian approach, derive a system of quasi-linear partial differential equations,
and this approach is then applicable also to higher dimensional state spaces. Speak-
ing in formal terms, the paper exploits a particular result from Rowat (2006) and
the optimality conditions of value matching and smooth pasting at the level(s) of
patching. This allows to describe global, continuous and stable Markov strategies
as a continuous connection between two manifolds, ‘initial’ and ‘end’. The major
result is the link between unique or multiple equilibria and the shape of the initial
manifold. This in turn allows to solve the question of potential multiple equilib-
ria without solving the Hamilton-Jacobi-Bellman equation. The application to the
above quoted dynamic tragedy of the commons shows that it is the magnitude of the
elasticity of marginal utility (or the degree of relative risk aversion) that determines
whether the equilibrium is (i) unique (and then given by a singular or ‘saddle-point’
path, which is the linear strategy in linear-quadratic games) or whether (ii) an entire
family of equilibria exists without the saddle-point equilibrium, or (iii) the standard
case in linear-quadratic differential games of a unique singular combined with a
family of uncountably many strategies. In other words, preferences, more precisely
the implied flexibility and thus the elasticity of demand determine in this application
whether multiple equilibria are possible or not. Even given this possibility of mul-
tiple equilibria, further conditions can render uniqueness, e.g., low external costs in
the application below.

The paper is organized as follows. Section 2 introduces the framework. The op-
timality conditions are derived and analyzed in Sect. 3. Section 4 studies initial
and end manifolds of (continuous, stationary) Markov-strategies and derives con-
ditions for uniqueness as well as for ‘maximal’ indeterminacy (i.e. each conceiv-
able boundary condition induces a Nash equilibrium). Section 5 presents some ex-
amples and explains the striking differences in outcomes—uniqueness and max-
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imal indeterminacy—which occur even within the same class of utility functions
(CRRA).

2 Framework

In spite of the general applicability of the following analysis, this paper focuses on
the much discussed dynamic tragedy of the commons. Following Dockner and van
Long (1993), each player i = 1, . . . , n chooses a non-negative xi (‘emission’) such
that the individual net present value (using the discount rate r > 0) is maximized

Vi
(
X(0)

)= max
{xi(t)≥0}

∫ ∞

0
e−rt

[
u
(
xi(t)

)−C
(
X(t)

)]
dt. (1)

The instantaneous payoff consists of the individual benefit u minus the external
costs

C(X)= c

2
X2. (2)

The stock of pollution X accumulates over time,

Ẋ(t)= xi(t)+
∑
j �=i

xj (t)− δX(t), X(0)=X0 given, δ ≥ 0, (3)

and provides the constraint for the optimization in (1). Using a linear-quadratic util-
ity u and quadratic damages (as in (2)), Dockner and van Long (1993) claim that
nonlinear strategies can mitigate the tragedy of the commons. Martin-Herran and
Rincon-Zapatero (2005) use the method developed in Rincon-Zapatero et al. (1998)
to characterize Pareto-efficient Nash equilibrium outcomes. The non-negativity con-
straint in (1) accounts for irreversibility—it is impossible to reduce actively the stock
of pollution (x < 0 is infeasible)—and may require patching of interior strategies
with the boundary strategy x = 0 in order to obtain globally defined strategies. Al-
though local strategies are considered in many papers, this contradicts the demand
for a subgame perfect equilibrium, because the strategies must be defined ex ante
over the entire state space.

The following assumptions are made: first the standard assumptions about the
strategy space (A1) and benefits (A2), and then some more specific assumptions
about the preferences, (B1)–(B3):

• (A1) the analysis is restricted to symmetric Nash equilibria in continuous, glob-
ally defined, stationary Markov strategies,

x = ϕ(X) ∀X ∈ [0,∞), ϕ ∈ C0,

which are stable (Ẋ = nϕ(X) − δX = 0 has a stable steady state). The value
function V (X) is twice differentiable in the interior, x > 0. These assumptions are
standard except for demanding a global support for the strategies. Furthermore,
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the value of the cooperative solution, denoted by W(X), is finite for all X ≥ 0;
this provides an upper bound on V (X).

• (A2) benefit u= u(x) need not be linear-quadratic as in Dockner and van Long
(1993) and its follow ups in Rubio and Casino (2002) and in Rowat (2006) but
satisfies the usual properties u′(0) > 0, u′′ < 0; if existing,

x̂ := arg maxu(x),

denotes saturation and u′(0)= the choke price (see discussion below).
• (B1) u(0)= 0,
• (B2) the elasticity of marginal utility,

σ(x)≡−u
′′(x)x
u′(x)

, (4)

is non-decreasing, i.e., σ ′ ≥ 0, and
• (B3) the familiar Inada conditions, limx→0u

′(x)→∞ and limx→∞u′(x)→ 0.

The standard Assumptions (A1) and (A2) are assumed throughout the paper with-
out further mentioning. Assumption (B1) simplifies the boundary solution, but is
ignored when imposing Inada conditions, because (B3) rules out x = 0 (hence, the
value of u(0) is irrelevant anyway) and because familiar examples do not satisfy
this normalization. The marginal willingness to pay (u′) defines the inverse demand
function, u′(x)= p in a partial equilibrium framework for the (hypothetical) price p
per unit of emission x. Since the price elasticity is then ε = 1/σ , (B2) stipulates that
(individual) demand is getting not less elastic as prices increase. This assumption
of a non-decreasing elasticity σ generalizes a (crucial) property of the much used
linear-quadratic utility. It also holds for the often used specifications implying either
constant relative risk aversion (short CRRA since u′′x/u′ is constant) or constant
absolute risk aversion (short CARA since u′′/u′ is constant). Wirl (2007) considers
utilities with hyperbolic risk aversion (known as HARA) and shows that multiple
equilibria are then worse than the counterpart of the linear strategy (= singular or
saddle-point strategy) if σ ′ < 0.

Remark 1 The following results can be easily generalized into two directions.
Firstly, by allowing general external cost functions C(X). This changes little as
long as C(0)= 0 is assumed but eliminates the analytical solution along the bound-
ary x = 0 (derived below). Secondly and similarly, nonlinear depreciation D(X)

with D(0)= 0, D′(0) > 0,D′′ ≤ 0 instead of δX has little effect (as becomes clear
below) yet at the cost of eliminating again the explicit determination of the value
function along the boundary.



Uniqueness vs. Indeterminacy in the Tragedy of the Commons 173

3 Optimality Conditions

The value functions must satisfy the Hamilton-Jacobi-Bellman equation (see e.g.
Dockner et al. 2000):

rVi(X)=max
xi≥0

{
u(xi)−C(X)+ V ′i (X)

(
xi +

∑
j �=i

xj − δX
)}
. (5)

Maximization on the right hand side yields the optimal strategy xi either as a func-
tion of the derivative of the value function (by the implicit function theorem since
u′′ < 0) or as boundary solution due to the non-negativity constraint:

x∗i = ϕ(X)≡
{
f (V ′i (X)), f ′ = − 1

u′′
0

}
if V ′i (X)

{
>

≤
}
− u′(0). (6)

Substituting (6) into (5) not only for player i but by assumed symmetry also for
j �= i yields along the interior (x > 0):

rV = u
(
f
(
V ′

))−C(X)+ nV
′
f
(
V ′

)− δXV ′ if V ′i (X) >−u′(0), (7)

and along the boundary, x = 0, using Assumption (B1), u(0)= 0,

rV =−C(X)− δXV ′ if V ′i (X)≤−u′(0). (8)

Any value function V (X) of this game is bounded from above by the value of the
cooperative solution (social optimum). Let y denote the socially optimal level of
pollution by each player and W the corresponding value function, then this value
function must satisfy the following Hamilton-Jacobi-Bellman equation,

rW(X)=max
y≥0

{
u(y)−C(X)+W ′(X)(ny − δX)

}

=
{
u(g(W ′))−C +W

′
(ng(W ′)− δXW ′)

−C − δXW ′
}

if W ′
{
>

≤
}
− u′(0)

n
. (9)

Therefore, V (X) ≤W(X) for all X ≥ 0 and y∗ = g(W ′)≡ u′−1(−nW ′) is the so-
cially optimal interior pollution policy obtained from the maximization of the right
hand side in the first line in (9) with the derivative g′ = −n/u′′ > 0 determined by
the implicit function theorem.

3.1 Boundary Solution (x = 0)

The differential equation in (8) has an analytical solution (at least for the quadratic
specification of costs which explains their assumed specification),

Vb(X)=AX−r/δ − c

2

X2

(r + 2δ)
. (10)
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The subscript b indicates that this value function applies only in the boundary do-
main (x = 0) andA is the integration constant. Vb(X) describes the net present value
of benefits minus costs including those from future emissions, because X declines
in this stopping domain due to depreciation.

3.2 Patching

Whenever an interior strategy hits the boundary x = 0 at the level X (such threshold
levels are identified by the upper bar), patching of interior and boundary strategies
is necessary, a point stressed in Rowat (2006) in order to obtain global strategies.
This requires that the corresponding value functions, i.e. the solutions of (7) and (8),
can be connected in a continuous (value matching) and differentiable (smooth past-
ing) manner. These conditions are mostly ignored including Rowat (2006) and if not
as, e.g., in Fershtman and Kamien (1987) and in Benchekroun (2003), then they are
relegated to appendices and their economic consequences are not fully used. One ex-
planation is that these conditions seem irrelevant for the linear equilibrium strategy
(but are of course satisfied). However off the equilibrium and/or for particular equi-
librium strategies, decisions have to be made about optimal ‘stopping’. For instance
if δ = 0, then the nonlinear strategies advocated in the linear-quadratic model of
Dockner and van Long (1993) will hit the constraint x ≥ 0 in finite time. Or consider
a case where the players are in a situation of X > X (of course, due to erroneous
moves in the past). Thus they emit nothing but each must decide when to ‘re-start’
emitting. Accounting for the individual rationality of these decisions implies smooth
pasting in analogy to the real options literature, see Dixit and Pindyck (1994, p. 109).
Furthermore, applying this smooth pasting condition can render uniqueness, e.g., it
eliminates the nonlinear strategies in Wirl (1994) and in Wirl and Dockner (1995)
as equilibria of the games. Unfortunately, it cannot render uniqueness in general.

Proposition 1 Assume (B1) and that interior and boundary solutions are joined
at X, then

lim
X→X

− V (X)= lim
X→X

+ Vb(X)=AX
−r/δ − c

2

X
2

(r + 2δ)
, (11)

lim
X→X

− V
′(X)=−u′(0)= lim

X→X
+ V

′
b(X)=−

r

δ
AX

(−r/δ−1) − cX

(r + 2δ)
. (12)

Proof See Appendix. �

Proposition 2 x > 0 at X = 0.

A proof of Proposition 2 can be found in Rowat (2000). Proposition 2 states an
economically rather obvious property: why should one refrain from emitting into
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a pristine environment given that polluting is advisable for positive stocks and the
public nature of the externality? It is a consequence of the explicit solution (10)
along the boundary and of the continuity of the derivative. Combined they imply
that equilibrium emissions must be positive at (and by continuity close to) the origin
of the state space. This allows to exclude at least some of the (local) strategies that
are often considered as (local) equilibria, e.g., in Dockner and van Long (1993).

4 Equilibria

Differentiating (7), solving for the second derivative, and arranging as a ratio yields

V ′′ = P(X,V ′)
Q(X,V ′)

= (r + δ)V ′ + cX

nf − δX− n−1
u′′ V

′ , X <X. (13)

Note that V is not twice continuously differentiable at X (although social value W
defined in (9) must be, see Wirl 2008b), since

lim
X→X

+V
′′ = (r + δ)u′(0)− cX

δX
�= lim

X→X
−V

′′ = (r + δ)u′(0)− cX

δX− (n− 1) u
′(0)

u′′(0)
.

The optimal strategy is according to (6) a monotonic transformation of V ′. There-
fore the solution curves V ′ of the differential equation (13) are candidates for Nash
equilibrium strategies. In order to characterize these solution curves the following
three crucial loci in the (X,V ′) phase plane are analyzed. The second order differ-
ential equation (13) is given by a ratio and has thus the following two crucial loci in
the (X,V ′) phase plane: First, the set of local extrema, ϕ′ = −V ′′

u′′ = 0 implies that
the numerator in (13) vanishes,

P
(
X,V ′

)= 0 ⇐⇒ V ′ = − cX

r + δ
.

This condition is as in the linear-quadratic case because numerator P is independent
of the specification of the benefits u. Second, the set of singularities (|V ′′| →∞) is
given by the roots of the denominator,

Q
(
X,V ′

)= 0 ⇐⇒ (n− 1)V ′ − (
nf

(
V ′

)− δX
)
u′′

(
f
(
V ′

))= 0. (14)

Hence, no strategy can cross Q= 0 except through the intersection with P = 0.1 It
is this passing through a uniquely determined point (coupled with the requirement of
stable strategies) that renders uniqueness for the optimization problem (i.e. for W )

1In order to simplify notation Q= 0 refers to the set {(X,V ′) |Q(X,V ′)= 0} or to its correspond-
ing manifold, Ω :Q= 0; analogous for P = 0.
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but not necessarily for the game. Third, the set of steady states is implicitly defined
by:

Ẋ = nf
(
V ′

)− δX = 0.

Since the derivative of Ẋ with respect to V ′ exists and since nf ′ = −n/u′′ > 0,
the implicit function theorem implies the existence of a monotonically increasing
function

V ′ = s(X), s′ = −δu
′′

n
> 0, s(0)=−u′(0) along Ẋ = 0,

which starts at the origin of the state space at the level V ′ = −u′(0). This deter-
mines simultaneously the level of V ′ at which the interior solution joins the bound-
ary solution x = 0. If u satisfies the first Inada condition, limx→0u

′(x) =∞, then
V ′ →−∞ for X→ 0 and patching with x = 0 is infeasible.

Lemma 1 Assume that u satisfies (B2), then Q(V ′,X)= 0 defines a unique V ′ =
q(X) < 0 for each X < nx̂

δ
, iff the elasticity of marginal utility (σ defined in (4))

satisfies

σ (̂x) >
n− 1

n− δX
x̂

. (15)

Hence, finite saturation (̂x <∞) is sufficient for the existence of q(X). If u satisfies
in addition Assumption (B3) (thus x̂→∞), then q exists iff

lim
x→∞σ(x)= lim

V ′→0
σ
(
f
(
V ′

))
>
n− 1

n
. (16)

If q exists, then q > s (for X < nx̂
δ

) and q ′ > 0 (due to Assumption (B2)).

Proof See Appendix. �

The characteristic of an interior solution at the origin of the state space (Propo-
sition 2) and the conditions of value matching (11) and smooth pasting (12) at the
level of joining interior and boundary solutions (Proposition 1) imply the follow-
ing characterization: Nash equilibria (in stationary, continuous and stable Markov
strategies as assumed in (A1)) are those solutions of the Hamilton-Jacobi-Bellman
equation (7) that allow to connect the associated initial and end manifolds, which
are derived and investigated below. Given that Nash equilibria are smooth connec-
tions between these two manifolds the question is: What are the implications of the
properties of these manifolds on equilibria and in particular whether the equilibrium
is unique or not if a family of such connections can exist. The analysis starts with
the initial manifold, followed by the end manifold, and the conditions for unique or
indeterminate outcomes.
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4.1 Initial Manifold, X = 0

Proposition 2 ensures an interior solution at the origin of the state space. Therefore
evaluating (7) at X = 0 determines the initial manifold from which any equilibrium
strategy must originate:

I ≡ {(
V ′(0),V (0)

)}

s.t. V (0) ∈ (−u′(0),0],V (0)= u(f (V ′(0)))+ nV
′
(0)f (V ′(0))

r
.

(17)

Note that the tuple (V ′(0),V (0)) does not refer to the value function (which still
needs to be determined) but to the relation between V ′ and V that any value func-
tion candidate must satisfy at X = 0. This notational convenience—treating V ′(0)
as something like an independent variable—is also applied in the following charac-
terizations of the initial manifold I and in the examples.

Proposition 3 The initial manifold I is decreasing in that domain of V ′(0) where

σ
(
u
(
f
(
V ′(0)

)))
<
n− 1

n
,

and increasing where

σ
(
u
(
f
(
V ′(0)

)))
>
n− 1

n
.

Assuming that (B2) holds, the local minimum of I is at

σ
(
u
(
f
(
V ′(0)

)))= n− 1

n
; (18)

if existing, it is unique, coincides with Q = 0 evaluated at X = 0 and separates I
into an increasing (I1) and a decreasing (I2) part.

Proof Differentiating the expression for V (0) in (17)

dV (0)

dV ′(0)
= 1

r

(
nf − u′

u′′
− nV ′

u′′

)
= nf

r

(
1− n− 1

nσ

)

proves the claimed slopes of the initial manifold and it remains to show that Q= 0
simplifies at X = 0 to (18). Setting X = 0 in (14) implies:

V ′(0)= n

n− 1
u′′

(
f
(
V ′(0)

))
f
(
V ′(0)

)
. (19)

A solution of this implicit relation (19) requires that

u′′(f (V ′(0)))f (V ′(0))
V ′(0)

=−u
′′(f (V ′(0)))f (V ′(0))

u′(f (V ′(0)))︸ ︷︷ ︸
≡σ

= n− 1

n
.
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Therefore, the value of Q = 0 at X = 0 is determined by the level of V ′(0) that
would induce emissions x(0) such that the associated elasticity of marginal utility
(σ ) is equal to the ratio n−1

n
.

The uniqueness of the minimum (under the proviso of its existence) and its con-
sequence of separating I follow from Assumption (B2), σ ′ ≥ 0. �

Remark 2 Consider the increasing part of I denoted by I1: V1(0) > V2(0)⇐⇒
V ′1(0) > V ′2(0)⇐⇒ x1(0) > x2(0), i.e., a higher value (at X = 0) is associated with
larger emissions. Furthermore the condition for the existence of an increasing part
of the initial manifold ensures in turn the existence of V ′ = q(X) for X > 0 due to
Lemma 1.

Remark 3 A larger payoff requires less pollution along the subset I2 where V (0)
decreases with respect to V ′(0).

Remark 4 The initial manifold of the cooperative solution (setting X = 0 in (9))
consists only of the increasing part, dW(0)/dW ′(0)= ny > 0, which is the reason
for the uniqueness of the socially optimal policy, and consequently, it will be the
decreasing part that allows for multiple equilibria, as shown below.

Remark 5 The initial manifold I as well as the characterization of the manifold
Q= 0 does not depend on the specification of the costs and depreciation except for
the assumptions C(0)= 0=D(0).

In order to demonstrate the applicability of the above, the following simple ex-
ample of a non-saturating logarithmic utility function is introduced,

u(x)= ln(1+ x), (20)

in order to go beyond the usual linear-quadratic case although it has nevertheless
similar implications. It leads to the following Hamilton-Jacobi-Bellman equation in
the interior (x∗ = −1− 1

V ′ > 0):

rV =−n− c

2
X2 + ln

(
− 1

V ′

)
− (n+ δX)V ′,

which reduces at X = 0 to

rV = ln

(
− 1

V ′

)
− n

(
1+ V ′

)
. (21)

This initial manifold (21) is shown in Fig. 1. It consists of the two parts, I = I1∪ I2,
increasing (I1) for V ′ > − 1

n
and decreasing (I2) for V ′ ≤ − 1

n
since σ = x

1+x ∈[0,1) covers both domains addressed in Proposition 3.
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Fig. 1 Initial and end manifold for the example u(x)= ln(1+x); starting at I2 avoids the crossing
of the singularity Q= 0 and thus allows for multiple equilibria, while starting at I1 requires to pass
through Q= 0 which renders uniqueness if departing from I1

4.2 End Manifold, X = X

This manifold characterizes the value of any value function at any level X = X

where an interior strategy x > 0 is joined with the boundary strategy, x = 0. Fea-
sibility of x = 0 rules out utility functions satisfying the first Inada condition in
Assumption (B3) and therefore, u′(0) <∞ and normalization (B1) are assumed
in the following. Solving (12) for A and substituting into (10) yields a quadratic
polynomial:

V (X)= u′(0)δ
r

X− c

2r
X

2
. (22)

This end manifold is shown on the left hand side in Fig. 1.

4.3 Conditions for Uniqueness and Indeterminacy

Summarizing the analysis so far: a stationary, stable and continuous Markov per-
fect equilibrium strategy must satisfy the differential equation (13) and must connect
‘initial’ (17) and ‘end’ (22) manifolds in a continuous manner. Although Fig. 1
is based on the example (20) it highlights the general reasons and geometry for
multiple equilibria: ‘starting’ from the decreasing part of the initial manifold (17),
V ′(0) ∈ I2, means to start at X = 0 below the critical set Q = 0. This allows the
corresponding ‘strategy’2 V ′(X) to bypass the singularity Q = 0 on its way to

2Of course, x = f (V ′(X)) is the Markovian strategy, yet completely determined as a monotonic
transformation of V ′, which is thus for short also called strategy.
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Fig. 2 Phase diagram
(X,V ′), u(x)= ln(1+ x);
bold = saddle-point (or)
singular solution, the dashed
solution curves of (23) are not
equilibria

the stopping (22) and patching level V ′(X) = −u′(0). Or conversely, each solu-
tion curve associated with a patching level X, V (X) from (22) and V ′(X)=−u′(0)
that results from integrating (13) backwards and that ends up at the initial manifold
I characterizes an equilibrium.

The example in Fig. 1 implies negative values already at the origin, V (0) < 0,
along the decreasing part of the initial manifold and thus for all multiple equilibria
(if existing). This constrains at the outset the set of thresholds X that can be sup-
ported by strategies originating from this part (I2), because V (X) < V (0) due to
V ′ < 0 along emitting.

Starting at the increasing part of the manifold, V ′(0) ∈ I1, means to begin with
V ′(0) > V ′ ∈ {Q = 0} ∩ {X = 0} > V ′(X) = −u′(0) (both if existing otherwise
the limit) and this allows, at least in principle for V (0) > 0 although Fig. 1 shows
a negative one. However, any solution V ′(X) starting from the increasing part I1
must pass through the singularity Q= 0. This is only possible through the intersec-
tion {P = 0} ∩ {Q = 0}, which is unique given the declining locus P = 0 and the
increasing manifold Q= 0 if existing as addressed in Lemma 1. This in turn renders
conditional uniqueness to solutions that originate from I1.

Therefore, two different kinds of smooth connections and thus of equilibria are
conceivable in general and in particular for (20): the unique saddle-point (or “singu-
lar” as Rowat 2006 calls it) equilibrium originating from I1 and a family of multiple
equilibria from I2. A phase diagram based on (20),

V ′′ = P(X,V ′)
Q(X,V ′)

= (−V ′)[cX+ (r + δ)V ′]
1+ (n+ δX)V ′

,

Q= 0⇔ V ′ = q(X)=− 1

n+ δX
,

Ẋ = 0 : V ′ = s(X)=− n

n+ δX
, (23)

looks similar to the linear-quadratic model, see the phase plane analysis in Fig. 2.
Therefore it has the same qualitative implications: a family of multiple equilibria can
exist (three corresponding examples are shown in Fig. 2), which is more conserva-
tionist than the saddle-point strategy (the point Dockner and van Long 1993 stress).
Of course this phase diagram highlights also the properties addressed in Lemma 1
such as the existence of q(X) and that q > s.
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Fig. 3 Two examples for u= x − 1/2x2 and n= 2: one with (c = 0.10 and thus higher external
cost) and one without (c= 0.01) multiple equilibria in nonlinear strategies due to x(0) > 0

However, the absence of such smooth connections between the decreasing part
of the initial manifold (i.e., of I2) and the end manifold establishes uniqueness due
to Proposition 1. A particular example is Fig. 2 in Rubio and Casino (2002) in
which global nonlinear strategies would have to start with x = 0. Indeed it is easy
to construct corresponding numerical examples even within the Dockner and van
Long (1993) framework of (normalized) linear-quadratic utility, u(x) = x − 1

2x
2,

see Fig. 3. In these two examples, the one on the left hand side allows for smooth
connections between initial and end manifold staying in the feasible domain, but the
one on the right hand side does not. Therefore, the parameters shown on the right
hand side of Fig. 3, which are characterized by low external costs, allow only for
the saddle-point outcome, which is then the unique equilibrium. Therefore,

Proposition 4 The existence of the decreasing part of the initial manifold is nec-
essary but not sufficient for multiple equilibria. In particular, the requirement x > 0
at X = 0 from Proposition 2 can render uniqueness in particular cases.

Utility functions satisfying the Inada condition limx→0u
′(x) → ∞ rule out

x = 0. This implicit requirement of a global interior strategy suggests uniqueness
of the Nash equilibrium. This would render the multiplicity of equilibria an arti-
fact of particular utility functions, which may be implausible anyway (such as the
linear-quadratic description that implies saturation).

Proposition 5 Assume that (B2) and (B3) hold and that the Q(X,V ′)= 0 implic-
itly defined function V ′ = q(X) exists, then the equilibrium is unique.

Proof P = 0 crosses linearly through the entire relevant quadrant, X ≥ 0,V ′ ≤ 0.
The set of steady states, s, is below Q = 0 and both functions are increasing and
have a pole at the origin of the state space, V ′ → −∞ for X→ 0. Therefore, any
strategy must begin (i.e. at X = 0) above Q = 0 (→−∞ for X→ 0) and must
thus cross Q = 0 on its way to s (and beyond). This is only possible through the
intersection of Q= 0 with P = 0. Hence, only a single solution curve allows for a
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global, continuous, stationary and stable strategy; see the phase diagram in Fig. 4
(for a corresponding example discussed in Sect. 5). �

Remark 6 Actually, monotonicity of the Q= 0 (and thus Assumption (B2)) is not
necessary for uniqueness given (B3). All that matters is that Q= 0 and P = 0 inter-
sect only once.3

The above proposition might suggest that Inada conditions ensure unique equi-
libria. This turns out to be wrong according to the major result classifying either
uniqueness or indeterminate outcomes:

Theorem 1 Consider the nonlinear differential game (1)–(3) and suppose that util-
ity u(x) satisfies the Assumptions (B2) and (B3).

1. If u such that σ ≥ n−1
n
∀x > 0, then the Nash equilibrium is unique.

2. If u such that σ < n−1
n
∀x > 0, then {Q= 0} = ∅. As a consequence, each solu-

tion of (13) determines an equilibrium for any of the boundary conditions

V ′(0) ∈ (0,−∞), V (0)= u(f (V ′(0)))+ nV
′
(0)f (V ′(0))

r
,

and the saddle-point equilibrium is missing.

Proof See Appendix. �

Remark 7 The existence of q(X) and of multiple equilibria is linked to the elasticity
of marginal utility in the same way as the properties of increasing and decreasing of
the initial manifold (17). Therefore, already the shape of the initial manifold (17)—
increasing or decreasing or both—determines the nature of equilibria saving a much
more involved phase diagram analysis.

Although this theorem is expressed in terms of global properties of the elasticity
of marginal utility this can be reduced to a single check due to the assumption that
σ is non-decreasing.

Corollary 1 Given Assumptions (B2) and (B3), then

lim
x→0

σ >
n− 1

n

3Multiple intersections and associated saddle-point equilibria would still induce a substantial re-
duction from the uncountably many. Indeed Wirl (2007) shows an example of two intersections of
Q= 0 and P = 0 through which the nevertheless unique singular equilibrium strategy must pass.



Uniqueness vs. Indeterminacy in the Tragedy of the Commons 183

is sufficient for the uniqueness of the Nash equilibrium in Markov strategies. In
contrast,

lim
x→∞σ <

n− 1

n

is sufficient for multiple equilibria and in fact for ‘maximal indeterminacy’, because
a saddle-point equilibrium is then ruled out.

Corollary 2 Given Assumption (B2) then

lim
x→0

σ <
n− 1

n

is necessary for multiple equilibria.

Remark 8 σ > n−1
n

holds for all satiating utilities for x→ x̂ (= saturation level).
Hence, multiple equilibria are located in the domain where x is small—strictly
speaking, x must be only small at X = 0—yielding the implicit conservation ob-
served in Dockner and van Long (1993). Hence, this conservation is a consequence
of σ ′ > 0 and might be turned upside down for utilities with σ ′ < 0; and so it is, see
Wirl (2007).

Summarizing, the properties of uniqueness versus multiple equilibria (includ-
ing the case of maximal indeterminacy) are linked to the value of the elasticity of
marginal utility (or the degree of relative ‘risk aversion’, or the intertemporal sub-
stitution elasticity) such that a relatively ‘large’ value of this elasticity (and at least
greater than 1) ensures uniqueness (high risk aversion), while a low value of this
elasticity (little risk aversion) can provide for a considerable freedom of equilibrium
choice. An economic explanation of this result is given in the following section.

5 Examples

This section presents examples with unique or indeterminate outcome and gives
an economic reason for this stark difference. The linear-quadratic utility and the
above example (20) blend these two different outcomes. This blending extends to
all utilities for which the elasticity of marginal utility varies sufficiently to cover both
cases of Theorem 1 and CARA utilities provide another example since a constant
absolute risk aversion of ρ implies σ = ρx and thus a variation in σ that allows for
both, a saddle-point equilibrium and a family of equilibria.

Proposition 5 ensures uniqueness for utility functions satisfying the Inada condi-
tions and what seems a rather technical condition, the existence of the function q .
However, the set Q= 0 can be empty even for standard specifications such as power
functions:

u(x)= 1

a
xa, 0 < a < 1. (24)



184 F. Wirl

Fig. 4 Phase diagram
(X,V ′), u(x)= xa, a < 1/n,
unique equilibrium

This specification implies a constant elasticity, σ = 1− a, x∗ = (−V ′) 1
a−1 , and

V ′′ = P(X,V ′)
Q(X,V ′)

= (a − 1)[cX+ (r + δ)V ′]
(an− 1)(−V ′) 1

a−1 + (1− a)δX
. (25)

As we know already, the set P = 0 is unaffected by the choice of u and

s =−
(
δX

n

)a−1

(26)

has the familiar shape (starting at −∞, increasing through the entire relevant quad-
rant, s→ 0 for X→∞). The initial manifold in this example is

rV (0)= 1− an

a

(−V ′(0)) a
a−1 , (27)

so that its slope (either positive or negative) depends on the sign of (1− an). There-
fore one must differentiate between the two cases addressed in Proposition 3 and
Theorem 1.

If a < 1
n
⇔ σ < n−1

n
, the initial manifold is increasing, Q= 0 exists,

V ′ = −
(
(1− a)δX

1− an

)a−1

,

and the equilibrium is unique. Figure 4 highlights the reasons for the uniqueness
of the Nash equilibrium: since only the increasing and ‘unstable’ part of the initial
manifold exists, one must start at X = 0 above Q= 0 and a later crossing of Q= 0,
which is necessary to reach a steady state (i.e., s), is only possible through the
intersection of P = 0 with Q= 0.

If σ > n−1
n
⇐⇒ 1 − an < 0, the initial manifold is decreasing (and negative,

V (0) < 0) and the set Q = 0 is empty according to Theorem 1 and the singular-
ity is gone. Hence, the right hand side of the differential equation (25) is defined
over the entire and relevant quadrant, X ≥ 0 and V ′ < 0. Therefore, all solution
curves starting at X = 0 at an arbitrary V ′(0) ∈ (−∞,0) and V (0) from (27), and
satisfying the Hamilton-Jacobi-Bellman equation are globally defined, continuous
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Fig. 5 Phase diagram
(X,V ′), u(x)= xa, a > 1/n,
“maximal indeterminacy”
(three examples)

(actually everywhere differentiable), and stable. Hence, they determine correspond-

ing Nash equilibria x = (−V ′(X)) 1
a−1 ; Fig. 5 highlights this case and shows three

examples from the uncountably many equilibria. As a consequence, not only the di-
mension of indeterminacy is increased, but a potential focal point, the saddle-point
path equilibrium, is gone if {Q= 0} = ∅.

This feature—(almost) anything goes (to quote Paul Feyerabend) for a > 1
n

—
is puzzling and applies whenever the number of polluters is sufficiently large. The
good news is that this indeterminacy allows for more conservationist strategies by
choosing a smaller V ′(0). In spite of this high degree of flexibility, however, station-
ary pollution remains excessive compared with the social optimum:

Proposition 6 Given (24), stationary pollution must exceed

X ≡
(

nc

nr + δ

) 1
a−2

(
n

δ

) a−1
a−2

>X∗ =
(

nc

r + δ

) 1
a−2

(
n

δ

) a−1
a−2

and thus in particular X∗, which is the efficient stationary outcome.

Proof See Appendix. �

The extreme difference in outcomes—uniqueness on the one hand, maximal in-
determinacy on the other hand—and all this within the same class of utility functions
is astonishing. The crucial economic magnitude is the elasticity of marginal utility
(σ ), which is the reciprocal of the price elasticity, ε = 1

σ
, for the individual players’

emission demands. Sufficiently elastic demand with a price elasticity greater n
n−1

suggests substantial flexibility. And given such flexibility globally as in the case of
1
n
< a < 1 for the above power function eliminates the saddle-point equilibrium with

the consequence of maximal indeterminacy. In contrast, less elastic, ε < n
n−1 , and

thus in particular inelastic (e.g. for the familiar CRRA utilities u(x)=−x−α,α > 1)
demand stands for too little flexibility. If this limited flexibility holds globally, then
it is impossible to implement more cooperative, non-saddle-point equilibria such
that the equilibrium is unique.
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6 Summary

This paper reconsidered the much discussed multiplicity of Nash equilibria in
Markov strategies in dynamic games; in line with this literature, the analysis was
restricted to stationary, continuous and stable Markov strategies. Using the Dockner
and van Long (1993) framework of a stock externality the following was introduced:
(1) Global strategies (instead of local ones), which may require patching with the
boundary solution (here: no emissions) in the case of multiple equilibria and in
particular for nonlinear strategies in a linear-quadratic model. (2) This demand for
global strategies implies mostly neglected boundary conditions at the origin of the
state space and at the point of patching with the boundary solution (value match-
ing and smooth pasting). (3) These conditions allow to characterize Nash equilib-
ria as smooth connections of an ‘initial’ with an ‘end’ manifold. (4) Extension to
general nonlinear instead of linear-quadratic utilities. These extensions and differ-
ent characterizations have the following implications. The different kinds of Nash
equilibria—on the one hand a unique saddle-point equilibrium (a likely focal point
of the game that implies a linear strategy in the linear-quadratic model) and on the
other hand the possibility of a continuous family of Nash equilibria—are related to
two different parts of an initial manifold (increasing and decreasing). This holds for
the familiar linear-quadratic framework as well as for nonlinear extensions. In the
latter case, Inada conditions do not ensure uniqueness despite their implicit demand
for global interior strategies.

The Nash equilibrium is unique if the elasticity of marginal utility (σ ) is every-
where greater than n−1

n
, because this ensures that only the increasing part of the

initial manifold exists; uniqueness can also follow from the property of positive
emissions at the origin of the state space despite the existence of the decreasing
part of the initial manifold. In contrast, maximal indeterminacy—each initial condi-
tion V ′(0) < 0 determines a corresponding global Nash equilibrium—results if the
elasticity of marginal utility is everywhere less than n−1

n
. The reason is that only the

decreasing part of the initial manifold exists, which eliminates the saddle-point equi-
librium and thus a potential focal point among the many equilibria. This is not a the-
oretical artifact since it arises for the familiar power function, u(x)= xa, 1

n
< a < 1,

where the inequality is always satisfied for a sufficient number of players. Despite
this enormous flexibility, feasible conservation is restricted such that the implemen-
tation of the socially optimal stationary stock of pollution is impossible, let alone of
the efficient policy.

An economic explanation of this puzzling difference—uniqueness versus max-
imal indeterminacy—for similar utility functions (power functions) with similar
properties (constant elasticities of marginal utility) is the following: The (absolute)
price elasticity of demand equals the reciprocal of the elasticity of marginal utility,
here from emissions (within the caveat of no income effects or of a partial equi-
librium framework). Sufficient flexibility, i.e., a price elasticity greater n

n−1 , allows
for multiple equilibria (and no saddle-point equilibrium and maximal indetermi-
nacy if this property holds globally). In contrast, too less elastic (and in particular
inelastic) demand implies little flexibility, which makes it impossible to implement
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more cooperative, non-saddle-point equilibria such that a unique equilibrium re-
sults if the elasticity is globally less than n

n−1 . Unfortunately, this seems to apply
to global warming due to the inelastic demand for energy. A blend of the above ex-
treme cases—a saddle-point equilibrium as well as a family of (non-saddle-point)
equilibria—applies to utility functions that include both domains of the elasticity,
e.g. the familiar linear-quadratic utility, and CARA utilities.

These results can be applied to other differential games in which utilities depend
nonlinearly on the strategies; a nonlinear evaluation of the stock only will not change
the qualitative properties from the linear-quadratic game (e.g., in the public good
game of Fershtman and Nitzan 1991). Finally, as in the related literature, the analysis
was restricted to symmetric equilibria, yet little is known about the possibility and
properties of asymmetric ones (Rowat 2000 makes some attempts in this direction).

Acknowledgement I acknowledge helpful comments from an anonymous referee.

Appendix

7.1 Proof of Proposition 1

First, value matching is obvious to rule out arbitrage from increasing or reducing X
marginally so that the proof is confined to establish smooth pasting.

After moving for some time along the boundary (thus assuming the normaliza-
tion (B1) and also symmetry), the optimal strategy of an individual player to start
emitting again at T is

max
T

∫ T

0
e−rt

(−C(
X(t)

))+ e−rT V
(
X(T )

)
,

Ẋ =−δX,

in which the interior value function V describes the scrap value. Defining the Hamil-
tonian, H =−C − λδX, the condition for the optimal choice of T is

H(T )=−C(
X(T )

)− λ(T )δX(T )= rV
(
X(T )

)
.

Using V ′b = λ from continuous dynamic programming on the left hand side, (7) and
continuity of the strategies (x(T )= 0) on the right hand side, yields:

−C(
X(T )

)− V ′b
(
X(T )

)
δX(T )=−C(

X(T )
)− δX(T )V ′

(
X(T )

)
,

which requires V ′b = V ′. �
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Fig. 6 Interior and boundary
domain in terms of the state
X and integration constant A,
similar to Rowat (2006) for
the linear-quadratic case

7.2 Proof of Proposition 2

The following sketch of a proof follows Rowat (2000, 2006). Due to (12),

V ′b =−
Ar

δ
X−

r+δ
δ − cX

(r + 2δ)
=−u′(0)

characterizes the border between interior and boundary solutions, which establishes
a relation between the state X and the constant of integration A as shown in Fig. 6. If
A> 0 then for x = 0: V = Vb→∞ for X→ 0, contradicting the in (A1) assumed
upper bound. The boundary strategy is impossible for A < 0 in a surrounding of
X = 0 (see Fig. 1) and the knife-edge case, A= 0, can be excluded by showing that
a deviating strategy, x > 0 at least for X close to 0, is profitable (see Rowat 2006). �

7.3 Proof of Lemma 1

We show below that the inequality (15) is necessary and sufficient for the existence
of Q= 0 for any X < nx̂

δ
. From this follows immediately the first part for satiating

utilities, x̂ <∞, since then σ →∞ for x→ x̂ and this inequality (15) is trivially
fulfilled. Assuming instead non-satiating utilities, inequality (16) follows readily
from the second Inada condition, x̂ =∞.

Sufficiency: We have to show that inequality (15) ensures the existence of Q= 0.
Rearranging (14) and holding X < nx̂

δ
fixed yields

σ
(
f
(
V ′

))= n− 1

n− δX
f (V ′)

, (28)

i.e., two functions—one on the left hand side and the other on the right hand
side—defined for V ′ ≤ 0. The elasticity of marginal utility, σ , is positive and non-
decreasing in x (due to Assumption (B2)) and thus also in V ′ (due to (6)). Hence,
the left hand side is positive, non-decreasing, σ ′f ′ ≥ 0, and reaches its maximum
σ(f (0))= σ (̂x) at V ′ = 0, since V ′ → 0 implies u′ → 0 and thus x→ x̂. The right
hand side declines monotonically for all V ′ ∈ (s(X),0] and assumes all positive
real numbers from [ n−1

n− δX
x̂

,∞). The upper bound results from V ′ → s(X), the lower
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from the above implication of V ′ = 0. Summarizing: (a) the right hand side of (28)
is declining and covering [ n−1

n− δX
x̂

,∞); (b) the left hand side is positive, increasing (or

constant) and surpassing the minimal level of the right hand side if inequality (15)
holds. Therefore, there exists a unique intersection that determines the value of V ′
uniquely for each value of X < nx̂

δ
along Q= 0 and thus the function, V ′ = q(X).

Necessity follows because the opposite of the inequality of (15) rules out an
intersection of the left hand and right hand sides in (28) so that {Q= 0} = ∅ ∀X ≥ 0
in contradiction to the assumed existence.

The claim that q > s holds in fact in general and without Assumption (B2). For
this purpose, rewrite (14) moving the term defining s to the right hand side

Q= 0 ⇐⇒ (n− 1)V ′

u′′
= (nf − δX)= Ẋ.

This implies that V ′ from Q= 0 is in the domain of Ẋ > 0 (for any X < nx̂
δ

since
V ′ = q < 0). Hence q(X) > s(X) since it takes a larger negative value of V ′ to
induce Ẋ = 0.

Finally, the last claim, q ′ > 0, is proven. The choice of X has no effect on the left
hand side of (28), but a larger value of X reduces the support on the right hand side
(s(X),0], because s(X) is increasing. This implies in turn a larger value of V ′ (i.e.
a smaller negative number), shifts the curve defined by the right hand side of (28)
upwards and, as a consequence, the point of intersection at V ′ must increase (from
applying Assumption (B2) to the left hand side). Hence the set {Q= 0} defines (if
existing) an increasing function in the (X,V ′) plane. �

7.4 Proof of Theorem 1

The first part of the Theorem for σ > n−1
n
∀x > 0 follows directly from Lemma 1

and Proposition 5 since only passing through the then unique intersection between
P = 0 and Q= 0 allows for a globally defined strategy.

If in contrast σ < n−1
n
∀x > 0 and thus in particular for all V ′ ∈ (−∞,0], then

the left hand side of (28) is always below the right hand side for V ′ ∈ (s(X),0],
and always above for V ′ ∈ (−∞, s(X)) (irrespective of the sign of σ ′). Therefore,
the set Q= 0 is empty for all X. P = 0 is linearly declining and thus crossing the
entire relevant quadrant X ≥ 0 and V ′ < 0. The set s is monotonically increasing
and also covering the entire relevant domain if u satisfies the two Inada conditions:
s(X)→−∞ for X→ 0, s(X)→ 0 for X→∞. As a consequence, any solution
curve V ′(X) starting at an arbitrary initial value V ′(0) < 0 (and V (0) determined
from the initial manifold (17)) must stay within the quadrant X ≥ 0 and V ′ < 0
since it must start above s, must increase until it intersects P = 0 at a feasible value
of V ′ < 0 and must decline after this intersection. Therefore this solution has global,
interior support.

It remains to show that each strategy originating from an arbitrary V ′(0) < 0 en-
sures a unique and stable steady state. Stability of the associated Markov strategy
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requires that such a solution curve V ′ crosses s from above (and only from above).
And clearly given the shapes of P = 0 and s any of these strategies must cross s,
which ensures stability of this steady state. Therefore further and in particular unsta-
ble steady states must be excluded. Indirectly, assume such an unstable steady state
at X2, (i.e., intersections from below yet clearly in the domain V ′′ > 0⇐⇒ P < 0):

V ′′ = −u
′′[cX+ (r + δ)V ′]
(n− 1)V ′

> s′ = −δu
′′

n
⇔ V ′ <− ncX

nr + δ
at X =X2.

Since V ′(0) > limX→0s = −∞ it must follow an intersection from above at
X1 <X2: V ′′ < s′ ⇔ V ′(X1) >− ncX1

nr+δ . Therefore, V ′(X1) > V ′(X2), which is im-
possible in the domain P < 0 and thus V ′′ > 0. Contradiction. �

7.5 Proof of Proposition 6

The proof falls into three parts. First, the socially optimal policy is derived. Second
a lower bound on steady states attainable by Nash behavior is derived. Finally, this
lower bound is compared with the efficient stationary pollution.

7.5.1 Derivation of the Social Optimum for Utility (24)

The Hamilton-Jacobi-Bellman equation for the corresponding value function W is

rW(X)=max
x≥0

{
n

(
xa

a
− c

2
X2

)
+W ′(X)(nx − δX)

}
. (29)

Maximization on the right hand side yields for interior policies:

x∗ = (−W ′) 1
a−1 ,

which implies for (29):

rW = n

(
(−W ′)

a
a−1

a
− c

2
X2

)
+W ′(n(−W ′) 1

a−1 − δX
)
. (30)

Differentiating (30), simplifying and representing as a ratio yields,

W ′′ = P(X,W ′)
Q(X,W ′)

= cnX+ (r + δ)W ′

n(−W ′)
1

a−1 − δX
.

Therefore

P
(
X,W ′) = 0 ⇐⇒ W ′ = − ncX

r + δ
,
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Q
(
X,W ′) = 0 ⇐⇒ W ′ = −

(
δX

n

)a−1

.

Moreover, {Q = 0} coincides with s. Therefore, the intersection of P = 0 with
Q= 0 determines simultaneously a point of the saddle-point path and the steady
state. Hence, solving the equation

− ncX

r + δ
=−

(
δX

n

)a−1

yields

X∗ =
(

nc

r + δ

) 1
a−2

(
n

δ

) a−1
a−2

. �

7.5.2 Lower Bound for X̄

Figure 5 suggests that the solution curves cut the steady state line s only after the
intersection of P = 0 with s. This intersection between P and s occurs at

X̃ =
(

c

r + δ

) 1
a−2

(
n

δ

) a−1
a−2

.

This bound clearly exceeds the social optimum, X̃ > X∗, but one cannot exclude
in principle the possibility of an intersection at a lower level, i.e. when V ′′ > 0.
A stable intersection (i.e. one from above) requires

V ′ >− ncX

nr + δ
,

which is independent from the specification of u. Intersecting now this general
(lower) bound of V ′ with the specific s from (26) yields

− ncX

nr + δ
=−

(
δX

n

)a−1

.

The solution of this equation determines the lower bound on stable steady states

X =
(

cn

nr + δ

) 1
a−2

(
n

δ

) a−1
a−2

.

Therefore it remains to compare the social optimum with the above lower bound,

X∗

X
= ( nc

r+δ )
1

a−2 ( n
δ
)
a−1
a−2

( cn
nr+δ )

1
a−2 ( n

δ
)
a−1
a−2

=
(
nr + δ

r + δ

) 1
a−2 =

(
r + δ

nr + δ

) 1
2−a

< 1. (31)

�
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Part II
Optimal Extraction of Resources



Dynamic Behavior of Oil Importers
and Exporters Under Uncertainty

Lucas Bretschger and Alexandra Vinogradova

Abstract We consider long-run incentives for oil-importing and -exporting coun-
tries when the arrival of a backstop technology is uncertain. Oil importers invest in
research and development to avoid their dependence on foreign oil; the arrival of the
oil substitute is modeled with a Poisson process. The optimum resource extraction
path is determined by the optimization of oil exporters, which take the Poisson rate
as exogenously given. We provide clear-cut solutions of the optimization plans for
both types of countries. We find that the optimal consumption rate of oil importers
may be either constant or falling during substitute development; it is a decreasing
function of the oil price. When the substitute arrives, the rate of resource depletion
jumps down and the depletion pace during the post R&D phase is slower than during
the R&D phase, provided that the Poisson arrival rate is sufficiently large. We also
show under which conditions there is never strategic behavior and when strategic
behavior may take place.

1 Introduction

Extraction and the use of the world’s most important natural resource, oil, divides
the world into two types of countries: oil-importing and oil-exporting. The costs for
oil imports are high, and have even increased in the new millennium. Shares of GDP
spent for these imports vary between 2.1 percent for Germany and 2.5 percent for the
United States to 2.8 percent for China and 2.9 percent for Japan up to 7.6 percent for
India.1 Besides current and future costs, oil-importers worry about the market power
of the suppliers organized in a cartel, the OPEC, which controls more than 75 % of
proven world reserves. Another issue is the political volatility in the oil extracting

1Data are for the year 2008 and taken from the BP Statistical Review of World Energy 2010 and
WDI online data of the World Bank.
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regions and the associated possibility of supply shortages. Moreover, there are major
concerns about the environmental impacts, particularly with climate change.

Taken together, the significantly increased interest in the development of a sub-
stitute for fossil fuels can well be explained. Especially in the US, there has been a
notable increase of Research, Development and Demonstration (RD&D) spending
on renewables and on energy sources just after the 2008 peak of oil costs, while
in the European countries the same can be observed with a minor delay; the sharp
rise in research spending was in the years 2010 and 2011.2 Importing countries co-
ordinate on energy policy and energy security issues through various international
organizations such as the international energy agency (IEA), OECD and EU, and
cooperate in the development of renewable alternatives. As in all the sectors in the
economy, technical development cannot be predicted precisely; it involves risks and
uncertainties, affecting the behavior of both importers and exporters.

The model developed in this chapter reflects the division of the world into the
two asymmetric types of countries and analyzes the long-run incentives for both
oil-importing and oil-exporting countries. Our main focus is on the impact of uncer-
tainty in the development of a substitute for oil on innovative behavior and resource
extraction. The arrival of the substitute is modeled with a Poisson process. We derive
two possible cases and show that the optimal R&D expenditure on substitute devel-
opment may be completely independent of the oil price and thus of the actions of
oil-exporting countries. We also show the analytics of resource extraction under the
chosen type of uncertainty. We establish that the extraction rate declines over time,
like in the standard theory of exhaustible resource extraction. Finally, a comparison
to extraction without uncertainty is drawn.

The paper is related to different strands of literature. The original model of a mo-
nopolist extraction firm facing a backstop resource is given in Hoel (1978). A series
of earlier papers focuses on optimal timing of when to adopt an alternative, fixed
technology at a given exogenous cost, see e.g. Heal (1976), Dasgupta et al. (1983),
Gallini et al. (1983), Olsen (1993). The seminal paper by Kamien and Schwartz
(1978) endogenizes the uncertain arrival date of the substitute through investment
in R&D. Hung and Quyen (1993) go further to determine the optimal time to ini-
tiate the R&D project. Their R&D investment policy is simplified to a single-date
expenditure, after which a backstop may arrive with a constant Poisson rate. We
adopt a similar assumption in the present paper. As regards the strategic aspects of
the decisions, these papers use various assumptions on the ability to commit and the
timing of moves. In a more recent contribution, Gerlagh and Liski (2011) study a
(deterministic) game in which the importer can trigger a process which ends with the
introduction of the substitute. The delay between the decision to develop the substi-
tute and the arrival of the technology acts as a commitment device. An incremental
process of backstop development has been considered by Tsur and Zemel (2003),
where the socially optimal case is derived. Because the marginal cost of research
activities is constant, the planner steers the economy to the steady-state process as

2Data extracted from OECD iLibrary in March 2013.
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quickly as possible. In Tsur and Zemel (2005), R&D activities gradually reduce the
backstop cost. Depending on the initial conditions the paper derives a wide variety
of optimum investment solutions. Van der Ploeg and Withagen (2012) show that,
with monopolistic supply of a polluting resource, an (exogenous) decrease of the
cost of the substitute may lead to a permanent reduction of resource use. Valente
(2011) analyzes a two-phase endogenous growth model in which the optimal timing
of switching to a backstop resource is determined by welfare maximization. The
major contribution on dynamic interactions under uncertainty is Harris and Vickers
(1995) who model a probabilistic R&D process of an oil importer which affects the
extraction path of the exporter. The optimal path then follows a modified Hotelling
rule and may exhibit non-monotonicity due to strategic considerations.

To add to the literature, our model takes up the important issue of uncertainty
in research and combines it with other crucial features, specifically with an endoge-
nous R&D process, increasing marginal costs of R&D, and a gradual introduction of
the backstop technology. Although we do not explicitly analyze strategic behavior
of oil importers and exporters, we provide a clear-cut solution for their respective
optimization programs and discuss conditions under which strategic behavior may
take place. Non-monotonicity of the extraction path, as in Harris and Vickers (1995),
may arise in our model even without strategic considerations on behalf of the ex-
porter. The remainder of the chapter is organized as follows. Section 2 presents the
optimization problem and the results for the oil importers. Section 3 derives the
optimum for resource exporters. Section 4 concludes.

2 Oil-Importing Country

Consider a resource-importing country (RIC) which has no resource reserves of its
own. We shall refer to this resource as oil. The country must therefore satisfy the
entire demand by imports from abroad at a price P per unit. It seeks to develop a
perfect substitute for oil, although the discovery of the substitute is uncertain. We
assume that the arrival of the substitute is governed by the Poisson process with the
mean arrival rate λ(K), where K is the initial investment in the R&D project and
λ′(K) > 0, λ′′(K) ≤ 0. By an initial investment we mean a one-time expenditure
which determines the probability of a technological breakthrough. One may think
of this expenditure as of a fixed cost of setting up an R&D facility. A bigger facility
requires a bigger investment but also brings larger returns, in the sense that the
chances of making a discovery are higher.

RIC produces a composite consumption good, with oil and labor as two essential
inputs, according to a Cobb-Douglas technology Yt = LαR1−α

t , where L denotes a
constant labor input and Rt stands for oil. When the substitute arrives, a constant
quantity B becomes available every period at negligible cost. Then RIC discon-
tinues its imports of oil and uses only the substitute for final goods production.3

3We implicitly assume that the cost of producing a unit of the substitute is below the price of a unit
of oil.
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RIC’s objective is to maximize the present discounted value of lifetime welfare
given an infinite planning horizon and a constant discount rate, δ. Utility is derived
from consuming the composite good and the utility function is such that u′(ct ) > 0,
u′′(ct ) < 0, where ct denotes the consumption rate at time t . RIC’s optimization
problem reads

max
ct ,c

b
t ,Rt ,K

∫ ∞

0

(∫ τ

0
u(ct )e

−δt dt +
∫ ∞

τ

u
(
cbt

)
e−δt dt

)
fτ dτ − u(K)

subject to4

ct = Y(Rt ,L)− PRt , t ∈ [0, τ ],
cbt = Y(B,L)≡ Ȳ , t > τ,

(1)

where fτ = λ(K)e−λ(K)τ is the density of an exponentially distributed random vari-
able.5 RIC’s optimization program therefore includes two phases: the first while the
substitute has not yet arrived and the second after its arrival. Note that once the sub-
stitute is online, RIC’s consumption rate in the second phase, cbt , becomes constant
and equal to the output, Ȳ . The value of the second-phase program can therefore be
written as ∫ ∞

τ

u
(
cbt

)
e−δt dt = u(Ȳ )

e−δτ

δ
.

During the first phase, RIC must optimally choose the size of the R&D project,
K , and the oil imports so as to maximize utility from consumption until the sub-
stitute arrives (if ever). Thus oil will be imported to the point where its marginal
productivity equals its price, ∂Y

∂R
= P , which yields the oil demand

R =
(

1− α

P

)1/α

L. (2)

Substituting (2) into (1) and assuming that the resource price is constant, we obtain
a constant optimal consumption rate in Phase 1

c= LαR1−α − (1− α)LαR−αR = αLαR1−α = αL

(
1− α

P

) 1−α
α

.

4The term u(K) can be viewed as an approximation to the present value of all future costs if they
are incurred at each point in time. It would be, perhaps, more appropriate to subtract investment
expenditure evaluated by the marginal utility of consumption at time zero. This would, however,
make the calculation more complicated. We therefore opted in favor of a simpler specification by
ignoring the secondary effect of the investment expenditure on the marginal utility of consumption,
while taking into account only the direct effect. In Hung and Quyen (1993), for instance, a lump-
sum investment cost incurred at a single date τ is simply discounted to time zero at the rate of time
preference and subtracted from the value function.
5Since the discovery of the substitute is governed by the Poisson process with arrival rate λ, the
waiting time until the first arrival is an exponentially distributed random variable.
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Fig. 1 Optimal consumption rate and oil imports

This implies that ∫ τ

0
u(ct )e

−δt dt = u(c)
1− e−δτ

δ
.

Proposition 1 The optimal consumption rate of an oil importer is constant during
the phase of substitute development and is a decreasing function of oil price. At the
time of the invention, consumption jumps to a new, higher level and remains at this
level forever.

Note that if the oil price were to change over time, say increase, then the optimal
consumption rate of an oil importer would decrease over time at the rate equal to
− 1−α

α
times the rate of increase of the oil price. The time paths of oil imports and

the consumption rate are shown in Fig. 1. In Figs. 1a and 1b it is assumed that the oil
price is constant. The oil imports are then constant over time until t = τ , when they
drop to zero since the substitute has become available. The consumption rate also
remains constant until t = τ and jumps upward to Ȳ at time τ . In Figs. 1c and 1d we
assumed an increasing oil price over time. The oil imports are then decreasing at the
rate −P̂ /α until t = τ and then drop to zero. The consumption rate also decreases
but at a slower rate − 1−α

α
P̂ and jumps upwards at t = τ .
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We turn next to the determination of the optimal size of the R&D project. It is
such that

∂

∂K

[∫ ∞

0

(
u(c)

1− e−δτ

δ
+ u(Ȳ )

e−δτ

δ

)
λ(K)e−λ(K)τ dτ

]
= u′(K).

Let us assume for simplicity that λ(K)= σK , with σ ∈ (0,1) being the efficiency
of R&D investment. The optimality condition with respect to K becomes

∫ ∞

0

(
u(c)

1− e−δτ

δ
+ u(Ȳ )

e−δτ

δ

)
(σ − τσK)e−σKτ dτ = u′(K).

Assuming log utility, i.e., u(c)= ln c, it can be further simplified to yield a quadratic
equation in K

σ

∫ ∞

0

(
u(c)

1− e−δτ

δ
+ u(Ȳ )

e−δτ

δ

)
e−σKτ dτ

− σK

∫ ∞

0

(
u(c)

1− e−δτ

δ
+ u(Ȳ )

e−δτ

δ

)
τe−σKτ dτ = 1/K,

σu(c)

∫ ∞

0

e−σKτ − e−(σK+δ)τ

δ
dτ + σu(Ȳ )

∫ ∞

0

e−(σK+δ)τ

δ
dτ

− σu(c)K

∫ ∞

0
τ
e−σKτ − e−(σK+δ)τ

δ
dτ

− σu(Ȳ )K

∫ ∞

0
τ
e−(σK+δ)τ

δ
dτ = 1/K,

σu(c)

δ

(
1

σK
− 1

δ + σK

)
+ σu(Ȳ )

δ

1

δ + σK
− σu(c)K

δ

[
1

(σK)2
− 1

(δ + σK)2

]

− σu(Ȳ )K

δ

1

(δ + σK)2
= 1/K.

Multiplying both sides by K and defining K
δ+σK = x, we get a quadratic equation

in x

x2(u(Ȳ )− u(c)
)− x

(
u(Ȳ )− u(c)

)+ δσ + u(c)(1− σ)

σ 2
= 0.

Or, setting b≡ u(Ȳ )− u(c) > 0 and d ≡ δσ+u(c)(1−σ)
σ 2 > 0, we have

bx2 − bx + d = 0. (3)

The roots are given by

x1,2 = b±√b2 − 4bd

2b
.
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Three cases are then possible: (i) a unique root when b2 − 4bd = 0; (ii) two real
positive roots when b2−4bd > 0; (iii) two complex roots when b2−4bd < 0. Only
the first two cases have economic sense and we shall therefore ignore the last one.
The condition for real positive roots is b − 4d ≥ 0 or, in terms of the relationship
between the oil price, P , and the quantity of the substitute, B

B ≥ eωP−ν, (4)

where ω≡ 4[(1−σ) lnαL+δσ ]+[4(1−σ)+σ 2] 1−α
α

ln (1−α)
σ 2(1−α) > 0 and ν ≡ 4(1−σ)+σ 2

ασ 2 > 0.
Multiple solutions for the optimal R&D investment expenditure exist. Case (i):

A unique root occurs only if (4) holds with equality. Then we have x = 1/2 and
thus K∗ = δ

2−σ . The optimal R&D investment depends only on the discount rate δ
and the efficiency of the R&D lab, σ . Case (ii): If (4) holds with strict inequality,

then two roots exist and both of them are strictly positive: x1 = 1+√1−4d/b
2 > 0 and

x2 = 1−√1−4d/b
2 > 0. Then K∗1 = x1δ

1+σx1
and K∗2 = x2δ

1+σx2
<K∗1 .

The second-order condition for the optimum is such that the derivative of (3)
with respect to K , evaluated at the extremum, must be negative. That is,

z≡ (2xb− b)
dx

dK

∣∣∣∣
K=K∗

< 0.

The unique root x = 1
2 clearly does not satisfy this condition since dx/dK = 0.

Evaluating z at K∗1 yields

z|K=K∗1 = b(2x1 − 1)
(1+ σx1)

2

δ
.

The sign of this expression hinges on the sign of 2x1 − 1. This is clearly positive
since 2x1 − 1 = √1− 4d/b > 0 and thus K∗1 does not satisfy the second-order
condition. Finally, evaluating z at K∗2 yields

z|K=K∗2 = b(2x2 − 1)
(1+ σx2)

2

δ
.

Again, the sign depends on 2x2 − 1, which is negative since 2x2 − 1 =
−√1− 4d/b < 0 and therefore K∗2 is the only root that satisfies the second-order
condition.

Differentiating K∗2 with respect to P , we find that

∂K∗2
∂P

=−2du′(c)L(1− α)1/αP−1/α

b2(1+ σx2)2
√

1− 4d/b
< 0,

implying that an increase in the price of oil will lead to a smaller investment in
the R&D activity. If an oil exporter has an objective of delaying the technological
breakthrough, it would then restrain its exports thereby pushing the oil price up, so
that RIC optimally chooses a smaller K .
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The fact that the optimal investment in R&D decreases in oil price is somewhat
counterintuitive. If the non-renewable resource becomes more and more expensive,
an argument can be made that investment in a renewable substitute should increase,
so that the arrival date of the substitute is shifted to the present. But, on the other
hand, an increase in investment requires a larger sacrifice of current consumption
and, moreover, with a higher resource price the budget constraint of the economy
becomes tighter (since resource imports are now more expensive). Therefore, the
sacrifice of current consumption is more difficult to implement. Overall, there are
two conflicting forces at work. On the one hand, the urge to develop a backstop call-
ing for a higher investment rate and, on the other hand, a tighter budget constraint
calling for a lower investment rate. Under specific conditions one or the other effect
dominates. In particular, the elasticity of intertemporal consumption substitution
(EICS) plays a crucial role as it determines how willing the economy is to shift its
consumption intertemporally. When EICS is relatively low, the economy cares rela-
tively more about the time profile of consumption as opposed to the total discounted
consumption. This is the case in our setting since we have assumed a logarithmic
utility function, so that EICS equals unity.6

3 Oil-Exporting Country

The resource-exporting country (REC for short) believes that a substitute arrives
at the constant Poisson rate λ, which it takes to be exogenous. It also knows that
once the substitute is developed, the demand for oil drops to zero. Thus, REC’s
time horizon may be split in two phases: One where the substitute has not yet been
invented, and the other where the substitute is online and oil exports are zero. REC’s
objective is to maximize its lifetime welfare with respect to consumption in phase 1,
c∗t , consumption in phase 2, c∗bt , the extraction rate in both phases, R∗t , and R∗bt and
the exports of oil in phase 1, Rt . The objective function can be written as7

max
c∗t ,c∗bt ,R∗t ,R∗bt ,Rt

∫ ∞

0

(∫ τ

0
u
(
c∗t

)
e−δt dt +

∫ ∞

τ

u
(
c∗bt

)
e−δt dt

)
fτ dτ

subject to

c∗t = Y
(
R∗t −Rt,L

∗)+ P(Rt )Rt , t ∈ [0, τ ], (5)

c∗bt = Y
(
R∗bt ,L∗

)
, t > τ, (6)

6More details about the relationship between oil price and investment in renewables R&D are
provided in Vinogradova (2012). It is shown, in particular, that in the empirically relevant range of
EICS the optimal response of the investment rate to an increase in oil price is negative, even when
the economy can borrow in the international capital market at a constant interest rate.
7An alternative way of solving REC’s optimization problem is to use the method presented in
Boukas et al. (1990).



Dynamic Behavior of Oil Importers and Exporters Under Uncertainty 203

Ṡt =−R∗t , if substitute is not online, S0 given,

Ṡt =−R∗bt , if substitute is online,
(7)

Pt = (1− α)LαR−αt , t ∈ [0, τ ], (8)

where St denotes the oil stock at time t and Ṡt ≡ dSt/dt . (5) states that consumption
in phase 1 is equal to total output plus the proceeds from oil sales. The output in
phase 1 is produced with constant labor, L∗, and a quantity of oil, which is equal
to total extraction, R∗t , minus exports, Rt . (6) states that there are no oil exports in
phase 2 and thus consumption is just equal to total output. Note that REC takes into
account the demand for oil from RIC, (8). The solution to this program is found
by splitting it into two subprograms, namely the one pertaining to phase 1 and the
other pertaining to phase 2. The subprogram of phase 2 is standard since it does not
involve any uncertainty: once the substitute has arrived, the demand for oil from RIC
drops to zero, so that the oil extracted in a given period is used entirely domestically.

Phase 2 REC’s optimization program in the second phase reads

max
c∗bt ,R∗bt

∫ ∞

τ

u
(
c∗bt

)
e−δt dt

subject to (6), (7) and the initial resource stock Sτ . We shall assume that RIC and
REC share the same production technology and differ only with respect to their labor
endowment and there is no population growth, so that Y(R∗bt ,L∗) = L∗αR∗b1−α

t .
The current-value Hamiltonian may be written as

H = u
(
c∗bt

)+ ν
(
Y
(
R∗bt ,L∗

)− c∗bt
)−μR∗bt

and the first-order conditions

c∗bt : u′
(
c∗bt

)− ν = 0,

R∗bt : ν
(
∂Y/∂R∗bt

)−μ= 0,

S: 0= δμ− μ̇.

Combining these three conditions and recalling our assumption of logarithmic util-
ity function, we get δ =−ĉ∗bt −αR̂∗bt . By (6), ĉ∗bt = (1−α)R̂∗bt and thus R̂∗bt =−δ,
implying that R∗bt = R∗bτ e−δ(t−τ). Inserting this extraction path in (7) and integrat-
ing yields R∗bτ = δSτ . The optimal consumption path is then equal to

c∗bt = L∗α(δSτ )1−αe−δ(1−α)(t−τ)

with the initial consumption rate in Phase 2 being c∗τ = L∗α(δSτ )1−α .
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Phase 1 We now turn to phase 1 and write the Hamilton-Jacobi-Bellman equation
for REC’s optimization under uncertainty

max
R∗t ,Rt

{
u
(
Y
(
R∗t −Rt,L

∗)+ P(Rt )Rt
)−R∗t

∂Vt

∂St

}
+ λ

(
V b
t − Vt

)− δVt = 0,

where we inserted (5) directly in the utility function, Vt is the value function in
phase 1 (while the substitute has not yet arrived) and V b

t is the value function in
phase 2 (after the substitute has arrived). The first-order conditions are given by

R∗t : u′
(
c∗t

) ∂Y

∂(R∗t −Rt)
− ∂Vt

∂St
= 0, (9)

Rt : u′
(
c∗t

)[− ∂Y

∂(R∗t −Rt)
+Rt

∂P (Rt )

∂Rt
+ P(Rt )

]
= 0, (10)

S: −R∗t
∂2Vt

∂S2
t

+ λ

(
∂V b

t

∂St
− ∂Vt

∂St

)
− δ

∂Vt

∂St
= 0. (11)

Equation (10) determines the optimal split of per period oil production between ex-
ports and domestic use. It equates the marginal revenue from oil sales to the marginal
productivity of oil

Rt
∂P (Rt )

∂Rt
+ P(Rt )= ∂Y

∂(R∗t −Rt)
.

By (8), we obtain

(1− α)2LαR−α = (1− α)L∗α
(
R∗ −R

)−α
and thus oil exports represent a constant fraction of per period oil extraction

R =R∗
[

1+ (1− α)−1/α L
∗

L

]−1

=R∗(1− γ ), (12)

where we defined 1− γ ≡ [1+ (1−α)−1/α L∗
L
]−1, so that γ ≡ (1−α)−1/α L∗

L

1+(1−α)−1/α L∗
L

is the

fraction of per period extraction used domestically. Note that the share of oil exports
is a positive function of the importer’s market size, L.

Equations (9) and (11) can be used to obtain the Keynes-Ramsey rule under un-
certainty. First divide (11) throughout by ∂Vt

∂St
to get

−R∗t
∂2Vt/∂S

2
t

∂Vt/∂St
+ λ

(
∂V b

t /∂St

∂Vt/∂St
− 1

)
− δ = 0. (13)

From (9), the numerator of the first term in (13) can be calculated as

−R∗t
∂2Vt

∂S2
t

=
d[u′(c∗t ) ∂Y

∂(R∗t −Rt ) ]
dt

= u′′
(
c∗t

)
ċ∗t

∂Y

∂(R∗t −Rt)
+ u′

(
c∗t

) d
dt

[
∂Y

∂(R∗t −Rt)

]
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= u′′
(
c∗t

)
ċ∗t (1− α)L∗α

(
R∗ −R

)−α
− αu′

(
c∗t

)
(1− α)L∗α

(
R∗ −R

)−α−1(
Ṙ∗ − Ṙ

)

= (1− α)L∗α
(
γR∗

)−α
u′
(
c∗t

)(u′′(c∗t )ċ∗t
u′(c∗t )

− αR̂∗
)
,

where we made use of (12). This expression can be further simplified by noting that
with logarithmic utility we have

−u
′′(c∗t )ċ∗t
u′(c∗t )

= ĉ∗t .

From the budget constraint (5)

c∗t = L∗α
(
γR∗

)1−α + (1− α)Lα
[
(1− γ )R∗

]1−α

= R∗1−α[L∗αγ 1−α + (1− α)Lα(1− γ )1−α
]
,

which implies that ĉ∗t = (1− α)R̂∗. Then

−R∗t
∂2Vt

∂S2
t

= (1− α)L∗α
(
γR∗

)−α
u′
(
c∗t

)[−(1− α)R̂∗ − αR̂∗
]

= −(1− α)L∗α
(
γR∗

)−α
u′
(
c∗t

)
R̂∗.

Inserting this in (13) yields

− (1− α)L∗α(γR∗)−αu′(c∗)R̂∗

u′(c∗)(1− α)L∗α(γR∗)−α
+ λ

[
u′(c∗b)(1− α)L∗αR∗b−α

u′(c∗)(1− α)L∗α(γR∗)−α
− 1

]
− δ = 0

−R̂∗ + λ

[
(c∗b)−1R∗b−α

(c∗)−1(γR∗)−α
− 1

]
− δ = 0

−R̂∗ + λ

{
R∗1−α[L∗αγ 1−α + (1− α)Lα(1− γ )1−α](γR∗)α

L∗α(δSτ )1−α(δSτ )α
− 1

}
− δ = 0

−R̂∗ + λ

{
R∗

[
γ 1−α + (1− α)(1− γ )1−α

(
L

L∗

)α]
γ α(δSτ )

−1 − 1

}
− δ = 0,

R̂∗ = λR∗(δSτ )−1 − (λ+ δ),

where [γ 1−α + (1 − α)(1 − γ )1−α( L
L∗ )

α]γ α = 1, given the definition of γ . The
solution to this non-linear differential equation is given by

R∗t =
(λ+ δ)δSτ e

−(λ+δ)t

λe−(λ+δ)t +C1(λ+ δ)δSτ
,
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where C1 is a constant of integration. Evaluating the expression at t = 0, we get

C1 = (λ+δ)δSτ−λR∗0
(λ+δ)δSτR∗0 . The complete solution is then

R∗t =
R∗0(λ+ δ)δSτ

λR∗0 + [(λ+ δ)δSτ − λR∗0 ]e(λ+δ)t
. (14)

This solution is then used in Eq. (5) describing the evolution of the resource stock to
solve for the initial extraction rate in Phase 1, R∗0 , and the remaining resource stock
at the time of the switch, Sτ :

S0 =
∫ ∞

0
R∗t dt =

∫ ∞

0

R∗0(λ+ δ)δSτ

λR∗0 + [(λ+ δ)δSτ − λR∗0 ]e(λ+δ)t
dt

= δSτ

λ

{
(λ+ δ)t − ln

([
(λ+ δ)δSτ − λR∗0

]
e(λ+δ)t + λR∗0

)}∣∣∞
0

= δSτ

λ
ln

(
(λ+ δ)δSτ

(λ+ δ)δSτ − λR∗0

)
, (15)

Sτ = S0 −
∫ τ

0
R∗t dt = S0 −

∫ τ

0

R∗0(λ+ δ)δSτ

λR∗0 + [(λ+ δ)δSτ − λR∗0 ]e(λ+δ)t
dt

= S0 − δSτ

λ

{
(λ+ δ)t − ln

([
(λ+ δ)δSτ − λR∗0

]
e(λ+δ)t + λR∗0

)}∣∣τ
0

= S0 − δSτ

λ

{
(λ+ δ)τ + ln

(
(λ+ δ)δSτ

[(λ+ δ)δSτ − λR∗0 ]e(λ+δ)τ + λR∗0

)}
. (16)

Combining (15) and (16), and after some rearrangements, we finally obtain the solu-
tion for the initial extraction rate in terms of the exogenous parameters of the model

R∗0 =
(λ+ δ)S0[1− e−(λ+δ)τ (eλ/δ − 1)−1]

(λ+ δ)τ + ln (eλ/δ − 1)

and the remaining resource stock at time τ

Sτ = λS0

δ[(λ+ δ)τ + ln (eλ/δ − 1)] .

It can then be clearly established that the extraction rate declines over time with the
rate of decline being

R̂∗t = λR∗t (δSτ )−1 − (λ+ δ)= λR∗0(λ+ δ)

[(λ+ δ)δSτ − λR∗0 ]e(λ+δ)t + λR∗0
− (λ+ δ)

= λ+ δ

[ (λ+δ)δSτ
λR∗0

− 1]e(λ+δ)t + 1
− (λ+ δ)
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= (λ+ δ)

{
1

1+ e(λ+δ)t [ eλ/δ−1
eλ/δ−1−e−(λ+δ)τ − 1]

− 1

}

= − (λ+ δ)e(λ+δ)(t−τ)

eλ/δ − 1+ e−(λ+δ)τ [e(λ+δ)t − 1] < 0. (17)

Consequently the optimal consumption growth rate is also negative:

ĉ∗ = (1− α)R̂∗ = − (1− α)(λ+ δ)e(λ+δ)(t−τ)

eλ/δ − 1+ e−(λ+δ)τ [e(λ+δ)t − 1] < 0.

Proposition 2 At the time of the technological breakthrough, extraction rate may
jump either up or down, depending primarily on the relationship between the arrival
rate, λ, and the time preference rate, δ.

This can be seen by comparing the extraction rate the moment just before the
invention, R∗τ , with the extraction rate just after the invention, R∗bτ ,

R∗τ ≷R∗bτ
(λ+ δ)S0[eλ/δ − e−(λ+δ)τ − 1]

[(λ+ δ)τ + ln (eλ/δ − 1)][eλ/δ − e−(λ+δ)τ ] ≷
δλS0

δ[(λ+ δ)τ + ln (eλ/δ − 1)]
(λ+ δ)[eλ/δ − e−(λ+δ)τ − 1]

eλ/δ − e−(λ+δ)τ
≷ λ

(λ+ δ)
[
eλ/δ − e−(λ+δ)τ − 1

]
≷ λ

[
eλ/δ − e−(λ+δ)τ

]
δ
[
eλ/δ − e−(λ+δ)τ − 1

]− λ≷ 0

eλ/δ − e−(λ+δ)τ − 1 ≷ λ

δ
.

(18)

If the chances of the technological breakthrough are slim, say λ→ 0, then the ex-
pression on the left-hand side is negative, equal to −e−δτ , while on the right-hand
side we have zero. Then R∗τ < R∗bτ and the extraction rate jumps upwards at the
time of the invention. The intuition behind the optimal upward jump is the fol-
lowing. When REC believes that the chances of a substitute discovery are low, it
optimally spreads the exports over a longer time horizon, and thus “underextracts”
at each point in time. When the substitute suddenly arrives, REC finds itself with a
resource stock higher than what is optimal and therefore instantaneously adjusts the
extraction rate upwards. This is shown in Fig. 2a.

Proposition 3 The extraction rate in phase 1 may fall faster or slower than in
phase 2, depending on the relationship between the arrival rate, λ, and the time
preference rate, δ.
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Fig. 2 Oil stock and extraction paths

Recall that R̂∗bt =−δ while R̂∗t is given by (17) and compare their absolute val-
ues ∣∣R̂∗t ∣∣≷ δ

(λ+ δ)e(λ+δ)(t−τ)

eλ/δ − 1+ e−(λ+δ)τ [e(λ+δ)t − 1] ≷ δ

(
1+ λ

δ

)
e(λ+δ)(t−τ) ≷ eλ/δ − 1+ e−(λ+δ)τ

[
e(λ+δ)t − 1

]

λ

δ
e(λ+δ)(t−τ) ≷ eλ/δ − 1− e−(λ+δ)τ .

(19)

The expression on the RHS of (19) is identical to the expression on the LHS of (18).
It follows that if eλ/δ − e−(λ+δ)τ − 1 ≥ λ

δ
in (18), then λ

δ
e(λ+δ)(t−τ) < eλ/δ − 1−

e−(λ+δ)τ in (19) because it is relevant only for t < τ , i.e., phase 1. The extraction
path then must be as depicted in Fig. 2a. That is, during phase 1 it declines at the
rate |R̂∗t |< δ, at time τ it jumps upwards (a possibility of no jumps at all also exists
if (18) is satisfied with strict equality), and afterwards it declines at the rate δ until
the end of the planning horizon. It is also easy to show that R∗bτ < R∗0 , i.e., the
extraction rate cannot jump above the initial rate in phase 1.



Dynamic Behavior of Oil Importers and Exporters Under Uncertainty 209

If we now turn to the possibility that the chances of a breakthrough are relatively
high, say λ→ δ and τ→ 1/λ, then the expression on the LHS of (18) is greater than
on the RHS, implying that a downward jump may occur: R∗τ > R∗bτ . In this case it
is also likely that the absolute value of the rate of decline in the extraction rate is
above δ (or, algebraically, the growth rate is smaller than −δ), such as depicted in
Fig. 2c. The evolution of the oil stock over time in the case of low and high λ is
shown in Figs. 2b and 2d, respectively. If |R̂∗t |< δ (|R̂∗t |> δ), oil stock declines at
a slower (faster) rate in phase 1 than it does in phase 2. If there is a jump in the
extraction rate at the time of invention, the time path of the oil stock has a kink at
t = τ . In Fig. 2b, the slope of the schedule to the left of τ is smaller than the slope
to the right of τ . In Fig. 2d the opposite is true.

We examine next the following question: How does the optimal behavior of an oil
exporter facing uncertainty compare to his optimal behavior in the case of certainty,
i.e., when the date of substitute arrival is known with certainty. Let us assume that
the substitute arrives on date τ . Then REC’s optimization problem reads

max
c∗t ,c∗bt ,R∗t

∫ τ

0
u
(
c∗t

)
e−δt dt +

∫ ∞

τ

u
(
c∗bt

)
e−δt dt

subject to

c∗t = Y
(
R∗t −Rt ,L

∗)+ P(Rt )Rt , t ∈ [0, τ ],
c∗bt = Y

(
R∗bt ,L∗

)
, t > τ,

Ṡt =−R∗t , S0 given,

Pt = (1− α)LαR−αt , t ∈ [0, τ ].

(20)

This problem is solved using the standard dynamic optimization technique. The
optimal consumption and extraction paths in phase 2 are described by exactly the
same equations as in the case of uncertainty, namely R̂∗t =−δ, ĉ∗bt =−(1−α)δ for
t > τ . The optimal paths in the first phase are, however, different from those under
uncertainty. We write the current-value Hamiltonian

H = u
(
Y
(
R∗t −Rt ,L

∗)+ P(Rt )Rt
)−μtR

∗
t

and the first-order conditions

R∗t : u′
(
c∗t

) ∂Y

∂(R∗t −Rt)
−μt = 0, (21)

Rt : u′
(
c∗t

)[− ∂Y

∂(R∗t −Rt)
+Rt

∂P (Rt )

∂Rt
+ P(Rt )

]
= 0, (22)

S: δμt − μ̇t = 0. (23)

Note that condition (22) is identical to (10), implying that the optimal split between
oil exports and domestic use is the same as under uncertainty, Rt = (1 − γ )R∗t .
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Using this in the budget constraint (20) and applying the hat calculus, yields ĉ∗t =
(1− α)R∗t . Then, noting that with log utility du′(c∗t )/dt

u′(c∗t )
=−ĉ∗t and combining (21)

with (23), we finally obtain −R̂∗t = δ. The extraction path is then

R∗t =R∗0e−δt . (24)

Contrary to the case of uncertainty, the extraction rate under certainty declines over
time at the rate δ before and after the invention of the substitute. Recall (14) and set
λ= 0, then we obtain precisely (24). Does the presence of uncertainty imply a faster
or slower resource depletion? In other words, how does the path in (14) compare to
the path in (24)? We already have the answer to this question in (19). Depending
on how likely it is that the substitute is going to be invented, extraction path under
uncertainty may happen to be steeper or flatter than in the certainty case. If REC
believes that the chances are slim, he will choose a relatively conservationist path,
i.e., slower extraction. If it believes that the chances are fairly high, it will choose a
relatively fast extraction profile.

If we depart from our assumption of costless extraction and assume instead that
oil extraction costs are larger than the backstop price, REC may also want to switch
from oil to the backstop. Whether it will do so or not will depend on the structure of
the market for the substitute. If the backstop is specific to RIC’s geographic location,
then there is no scope for sharing it with REC. If, however, the backstop can be
easily spread, then it is most likely that RIC will patent the invention. Then, being
the monopolist on the substitute market, RIC will try to extract all the rents from
the buyer. It will therefore set the price just slightly below the oil extraction cost in
order to induce REC to shift from oil to the renewable energy source. Presumably,
some of the oil stock will remain unextracted. But then REC’s optimization in the
first phase must take into account the fact that it may not be optimal to leave oil
stock unexploited. On the one hand, leaving some oil in the ground means losing
the revenue. On the other hand, extracting everything by the time the substitute
arrives means selling more at each point in time and therefore exerting a downward
pressure on the price. Whether it is optimal to leave some of the oil stock unexploited
or increase current exports depends, of course, on the elasticity of demand for oil.
Given the demand function of RIC, this elasticity is simply equal to −α, smaller
than unity in absolute value. Thus, an increase in supply has a positive effect on
total revenue and it is then optimal to increase current exports and aim at extracting
everything by the time the backstop arrives.

4 Conclusion

This chapter provides an analysis of the optimal behavior of an oil importer and
an oil exporter under uncertainty. We assume that the importer engages in an R&D
activity aimed at developing a renewable perfect substitute for the non-renewable
fossil resource. The invention is intrinsically uncertain and governed by the Pois-
son process with the arrival rate being an increasing function of the expenditure
devoted to R&D. We cast the importer’s and the exporter’s problem in the form of
the dynamic stochastic optimization in continuous time.
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With regard to the oil importer, we show that the invention of the substitute entails
a discontinuous upward jump in the consumption rate to a higher level (determined
by the quantity of the substitute). The optimal investment expenditure in R&D fea-
tures multiple solutions, depending on the parameters of the model. It is feasible that
the optimal investment is uniquely determined and depends only on the country’s
rate of time preference and the efficiency of the R&D activity but is completely in-
dependent of other parameters, such as, for example, oil price. In this case, there is
no scope for the oil exporting country to affect the importer’s investment decision. It
is also feasible that, under certain conditions, the optimal investment is not uniquely
determined, i.e., the solution involves two roots. They do depend on the price of oil,
the quantity of the substitute and the structure of the production technology. In this
case the oil exporter may reduce the chances of the technological breakthrough by
reducing its exports and thus forcing the importer to cut the R&D expenditure.

With regard to the oil extraction, we show that after the arrival of the substitute
the total per period extraction falls over time at the rate of time preference. How-
ever, before the substitute is available, the extraction declines over time at the rate
which may be either smaller or greater than the time preference rate, depending on
whether the chances of the technological breakthrough are relatively small or large,
respectively. One cannot therefore unambiguously conclude that uncertainty about
an eventual discovery of an oil substitute contributes to a faster or slower resource
depletion.

In our present model we refrained from introducing an accumulative factor of
production, such as physical capital, in order to keep the analysis tractable. How-
ever, a possibility of investing into capital accumulation and building a stock of a
productive factor which can to some extent substitute for other inputs, opens up a
wider range of options for both the oil importer and the exporter. For example, the
importer will face a tradeoff between investing into physical capital or investing into
R&D, the outcome of which will depend on the interplay between the productivity
of capital and efficiency of the research lab. The oil exporter will have to optimally
choose how much of revenue from oil sales to consume and how much to invest in
capital accumulation. We leave these questions on the agenda for future research.

Appendix

Let us now consider a more general case of CRRA utility, u(c)= c1−θ−1
1−θ , the limit

of which is ln(c) when θ goes to unity. Parameter θ is the inverse of the elasticity of
intertemporal consumption substitution. The new specification for the utility func-
tion will affect the derivation of the Keynes-Ramsey rule. Combining (9) and (11),
we now obtain:

− (1− α)L∗α(γR∗)−αu′(c∗)R̂∗[α + θ(1− α)]
u′(c∗)(1− α)L∗α(γR∗)−α

+ λ

[
u′(c∗b)(1− α)L∗αR∗b−α

u′(c∗)(1− α)L∗α(γR∗)−α
− 1

]
− δ = 0,
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− R̂∗
[
α+ θ(1− α)

]+ λ

[
γ α

(
c∗

c∗b

)θ(
R∗

R∗b

)α

− 1

]
− δ = 0,

− R̂∗
[
α+ θ(1− α)

]

+ λ

{
γ α

{
R∗1−α[L∗αγ 1−α + (1− α)Lα(1− γ )1−α]

L∗αR∗b1−α

}θ(
R∗

R∗b

)α

− 1

}
− δ

= 0,

− R̂∗
[
α+ θ(1− α)

]

+ λ

{
γ α

[
γ 1−α + (1− α)

(
L

L∗

)α

(1− γ )1−α
]θ(

R∗

δSτ

)α+θ(1−α)
− 1

}
− δ

= 0,

R̂∗
[
α+ θ(1− α)

]

= λγ α
[
γ 1−α + (1− α)

(
L

L∗

)α

(1− γ )1−α
]θ(

R∗

δSτ

)α+θ(1−α)
− (λ+ δ),

R̂∗η=R∗ηε− (λ+ δ),

where η≡ α+ θ(1−α) and ε ≡ λγ α[γ 1−α+ (1−α)( L
L∗ )

α(1−γ )1−α]θ (δSτ )−η =
λγ α(1−θ)(δSτ )−η. The solution to this differential equation is given by:

R∗t =
[
εe−(δ+λ)t +C1(λ+ δ)

λ+ δ

]−1/η

e
− λ+δ

η
t
,

where C1 is a constant of integration which can be found by evaluating the above
expression at t = 0: C1 = R

∗−η
0 − ε

λ+δ . The complete solution for the extraction
path is then:

R∗t =
{
R
∗−η
0 e(λ+δ)t − ε[e(λ+δ)t − 1]

λ+ δ

}−1/η

.

We can check that when θ = 1, as in our baseline case, then η= 1 and we are back
to our solution in (14).
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Robust Control of a Spatially Distributed
Commercial Fishery

William A. Brock, Anastasios Xepapadeas, and Athanasios N. Yannacopoulos

Abstract We consider a robust control model for a spatially distributed commer-
cial fishery under uncertainty, and in particular a tracking problem, i.e. the problem
of robust stabilization of a chosen deterministic benchmark state in the presence
of model uncertainty. The problem is expressed in the form of a stochastic linear
quadratic robust optimal control problem, which is solved analytically. We focus on
the emergence of breakdown from the robust stabilization policy, called hot spots,
and comment upon their significance concerning the spatiotemporal behaviour of
the system.

1 Introduction

An important issue in understanding ecosystems and designing efficient manage-
ment rules with the purpose of preventing collapse and secure long-term sustainable
productivity, is their spatial and temporal structure. The study of the emergence and
the properties of regular spatial or spatiotemporal patterns which can be found in
abundance in nature, such as for example stripes or spots on animal coats, ripples in
sandy desserts, vegetation patterns in arid grazing systems or spatial patterns of fish
species, has drawn much attention in natural sciences (e.g. Murray 2003).
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Thus, in the management of natural resources and the regulation of pollution it
seems natural to analyze mechanisms causing spatiotemporal patterns to arise, and
to design regulatory policies with spatial characteristics. In renewable resource eco-
nomics, modelling with spatial-dynamic processes Smith et al. (2009) has been used
to study issues such as harvesting in metapopulation models governed by discrete
spatial-dynamic processes, design of optimal policies in a spatiotemporal domain,
marine or terrestial reserve policies, or bioinvasions (see, e.g., Sanchirico and Wilen
1999; Wilen 2007). Pattern formation and spatially dependent policies in renewable
resource management have been also studied in the context of optimal control of
reaction diffusion spatiotemporal systems (Brock and Xepapadeas 2008, 2010). In
spatial pollution regulation the main objective is the internalization of the pollution
externality through spatially dependent taxes (see, e.g., Goetz and Zilberman 2000),
while spatial analysis has also been used to study water pricing in which the con-
cept of a spatial distribution is combined with a two-stage optimal control problem
(Xabadia et al. 2004).

Another issue which is of considerable interest in resource management is de-
cision making when the decision maker is trying to make good choices when she
regards her model not as the correct one but as an approximation of the correct one,
or to put it differently, when the decision maker has concerns about possible mis-
specifications of the correct model and wants to incorporate these concerns into the
decision-making rules (e.g., Salmon 2002; Hansen and Sargent 2001, 2008; Hansen
et al. 2006; JET 2006).

The purpose of the present paper is to study the regulation of a commercial fish-
ery following the classic model of commercial fishing (Smith 1969) with explicit
spatial dependence where spatial interconnections in economic and biological vari-
ables are captured by local and non-local spatial effects. In this model the regulator
has concerns about possible misspecifications of the spatiotemporal evolution of the
phenomenon. That is, the regulator regards her model as an approximation of the
correct spatiotemporal dynamics and seeks spatially dependent regulation that per-
forms well under the approximating model. In this context we try to study how a
regulator could design optimal spatiotemporal robust control for this fishery, how
hot spots, which are location where the qualitative properties of the system change
along with the structure of the regulation, may emerge, and what implications they
might have for regulation.

The contribution of this approach is that it allows us to study in a unified model
the optimal regulation of spatially interconnected distributed parameter fishery when
concerns about model misspecification vary across the spatial domain. We follow
Hansen et al. (2006) or Hansen and Sargent (2008), and regard concerns about
model misspecification to imply that the regulator distrusts her model and wants
robust decisions over a set of possible models that surround the regulator’s approx-
imating or benchmark model, and which are difficult to distinguish with finite data
sets. The robust decisions are obtained by introducing Nature, a fictitious “adversar-
ial agent”. Nature promotes robust decision rules by forcing the regulator, who seeks
to maximize profits from the commercial fishery over an entire spatial domain, to
explore the fragility of decision rules with respect to departures from the benchmark
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model. A robust decision rule to model misspecification means that lower bounds to
the rule’s performance are determined by Nature—the adversarial agent—who acts
as a minimizing agent when constructing these lower bounds. Hansen et al. (2006)
show that robust control theory can be interpreted as a recursive version of max-min
expected utility theory (Gilboa and Schmeidler 1989).

In our model, considering the spatial domain of the fishery as a ring of cells, the
regulator is trying to determine an optimal level of harvesting per vessel in each
spacial cell. This harvesting level can be used, for example, to set up a quota system
in each site of the fishing area. The regulator’s objective could be either the maxi-
mization of discounted profits over the whole ring, or the minimization deviations
(or the cost of deviations) from target harvesting and biomass levels in each ring, by
taking into account biomass diffusion as well as stock, congestion, and productivity
externalities

The regulator is however uncertain regarding the true statistical distribution of the
state of the system. This means that the regulator has concerns regarding the spec-
ification of biomass dynamics in each cell, and depending on her scientific knowl-
edge, she might trust a benchmark model of the fishery more or less depending on
the specific cell. For a large enough ring, this assumption—which implies spatially
differentiated degrees of model uncertainty—seems plausible, and it is related to
a localized in space entropy constraint of the spatially varying interconnected sys-
tems. In this context we derive optimal robust harvesting rules for each site and
identify conditions under which concerns about model misspecification at specific
site(s) could cause regulation to break down or to be very costly. We call sites asso-
ciated with these phenomena hot spots. We are also able to identify spatial hot spots
where the need to apply robust control induces spatial agglomerations and breaks
down spatial symmetry. From the theory point of view this is a new source for gener-
ating spatial patterns as compared to the classic Turing diffusion induced instability
(Turing 1952) which belongs to the recently identified family of optimal diffusion
or spatial-spillover-induced instabilities (Brock and Xepapadeas 2008, 2010; Brock
et al. 2012).

Distributed parameter models result in optimal control problems in infinite di-
mensional spaces. By using Fourier methods and exploiting the property of spatial
invariance of a class of linear quadratic problems, we are able to obtain closed form
solutions to these infinite dimensional problems which reveal important informa-
tion on the qualitative features of the optimal policy, possible deviations from it or
breakdowns as well as its dependence on the choice of model. Furthermore, by ob-
taining a linear quadratic approximation around a deterministic optimal trajectory
of a nonlinear distributed parameter robust control problem of a commercial fish-
ery, the tracking problem of keeping the controlled trajectory under uncertainty and
concerns about model misspecification close to the optimal deterministic trajectory,
representing the ideal benchmark model of the fishery manager, and comment upon
hot spot formation and their importance.
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Fig. 1 The circular fishery
and the relevant state
variables

2 Modelling a Fishery with Spatial Interactions

2.1 A Spatial Profit Maximization Fishery Model

We consider a commercial fishery occupying an area that consists of a circular ring
of N cells or sites on a finite lattice, so that space can be considered as the finite
group of integers modulo N , ZN . The state of the system is quantified in terms of
the fish biomass in each cell, xn, and the number of vessels or firms fishing in each
cell Vn, n ∈ ZN (see Fig. 1).

Let xn(t) denote biomass at time t ≥ 0 and cell n ∈ ZN . Fish biomass moves
from cell to cell. The movements if there are strictly local can be described by
classic diffusion with diffusion coefficient D > 0, which means that fish move from
cells of high biomass concentration to adjacent cells of low biomass concentration.
In this case the spatial movement can be modelled using the discrete Laplacian
by a term D[xn+1(t)− 2xn(t)+ xn−1(t)]. More general spatial interactions across
locations can be modelled by an influence “kernel” (or rather a discretized version
of an influence kernel) which can be represented in terms of a matrix A= (αnm) ∈
R
N×N . The entry αnm provides a measure of the influence of the biomass of the
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system at point m to the biomass concentration of the system at point n. If there
is no movement of biomass across cells then A = αnm = δn,m where δn,m is the
Kronecker delta. If only next neighborhood movements are possible then αnm is
non-zero only if m is a neighbor of n. Such an example is the discrete Laplacian,
and matrix A in this case has a general form

A=D

⎛
⎜⎜⎜⎝

1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1 −2 1

⎞
⎟⎟⎟⎠ .

This can be considered as the discretization of the Laplace operator A=D ∂2

∂z2 , when
the space is considered as continuous e.g. the interval [−π,π].

Let Vn(t) denote the number of identical vessels or firms operating at cell n of
the ring, and hn(t) the harvest rate at cell n per unit time. Thus total harvesting at
cell n is hn(t)Vn(t). The temporal evolution of biomass of the fishery is subject to
statistical fluctuations (noise), which is introduced into the model via stochastic fac-
tors (sources),1 modelled in terms of a stochastic process w = {wn}, n ∈ ZN , which
is considered as a vector valued Wiener process on a suitable filtered probability
space (Ω, {Ft }t∈R+ ,F ,P) (see e.g., Karatzas and Shreve 1991). The introduction
of noise turns the biomass for a fixed time t into an R

N -valued random variable,
thus x(·) is an R

N -valued stochastic process. We assume that this stochastic process
is the solution of a stochastic differential equation:

dxn(t)=
[
f
(
xn(t)

)+∑
m

αnmxm(t)− hn(t)Vn(t)

]
dt +

∑
m

snmdwm,

xn(0)= x0,n, n,m ∈ ZN.

(1)

In the above equation f (x), x ≥ 0, is the recruitment rate or growth function for
the fishery. This function has the properties that there exist three values x, x̄ and
x0 with 0 ≤ x < x0 < x̄, such that f (x) = f (x̄) = 0, f ′(x0) = 0, f ′′(x0) < 0. An
example of such a function is a quadratic function which models logistic growth. It is
assumed that the parameters of model (1) are chosen so that positivity of solutions
is guaranteed (i.e. noise levels are assumed to be small and have a weak effect).
Furthermore, for the rest of the paper

∑
m will be used as a shorthand for

∑
m∈ZN .

1There is uncertainty concerning the state of the system (i.e. the true figures for the biomass) which
is represented in terms of the vector valued stochastic process w. These common factors affect the
state of the biomass x at the different sites. Each factor has a different effect on the state of the
biomass on each particular site; this will be modelled by a suitable correlation matrix. It is not
of course necessary that the number of factors is the same as the number of sites in the system
however, without loss of generality we will make this assumption and assume that there is one
factor or source of uncertainty related to each site. This assumption can be easily relaxed.
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The last term of (1), describing the fluctuations of the biomass due to the stochas-
ticity, is understood in the sense of the Itô theory of stochastic integration. In com-
pact form it can be represented by a finite matrix S = (snm) with elements snm
indicating how the uncertainty at site m is affecting the uncertainty concerning the
biomass of the fishery at site n. The matrix S= (snm) can be thought of as the spa-
tial autocorrelation operator for the system. Thus the evolution of the system can be
written in a compact form as:

dx = [
F(x)+ Ax − y

]
dt + Sdw, (2)

where we have used the vector notation

x = (x1, . . . , xN)
tr ,

w = (w1, . . . ,wn)
tr ,

y = (h1V1, . . . , hNVN)
tr ,

F(x)= (
f (x1), . . . , f (xN)

)tr
,

and A,S : RN → R
N are linear operators, representable by finite matrices with el-

ements {αnm}, {snm}, respectively. We will also use the notation y = h⊗ V for the
vector which is defined by componentwise multiplication of the vectors h, V .

The cost per vessel operating at a cell n for harvesting rate h is determined by a
cost function c(hn(t), xn(t),Cn(t),Pn(t)). This is a function of the harvesting rate;
the biomass level at the specific cell, xn(t) which reflects recourse stock external-
ities; and the number of other vessels operating in the neighborhood of the cell n,
which reflect two types of externalities: crowding or congestion externalities and
productivity or knowledge externalities. Crowding externalities, which are negative
(cost increasing), and productivity externalities, which are positive (cost reducing),
are non-local effects, which are modeled by spatial kernels as:

Cn(t)=
∑
m

cnmVm(t)=: (CV )n(t),

Pn(t)=
∑
m

γnmhm(t)=: (Γ h)n(t),
(3)

where C,Γ : RN → R
N are linear operators, representable by finite matrices with

elements cnm, γnm, respectively. We assume that: (i) ∂c
∂h

> 0, ∂2c

∂h2 ≥ 0; (ii) ∂c
∂x

< 0,

which implies resource stock externalities; (iii) ∂c
∂C

> 0, which implies crowding
externalities due to congestion effects. We assume that an increase in vessels in a
given cell will always increase costs, that is ∂c

∂C
> 0. This kernel formulation in the

cost function means that vessels not only in cell n but also near cell n could create
congestion effects and increase operating costs of the vessels operating in cell n; and
(iv) ∂c

∂P
< 0, which implies knowledge or productivity externalities because harvest-

ing that takes place near cell n helps the development of harvesting knowledge in n
and reduces operating costs.



Robust Control of a Spatially Distributed Commercial Fishery 221

Assuming that harvested fish is sold at an exogenous price P , which is homoge-
neous over the whole ring, profit per vessel at n is defined as:

πn(t)=Phn(t)− c
(
hn(t), xn(t), (CV )n(t), (Γ h)n(t)

)
. (4)

Vessels are attracted to cell n if profits per vessel at this site are higher than the
average profit over the whole spatial domain. Vessels can be attracted to the ring
from locations outside the ring if profits are positive in cells of the ring, so the
number of vessels in the ring does not need to be conserved.2 Assuming that the
rate of growth of vessels in each cite is proportional to the difference between the
profit per vessel at n with the average profit per vessel over the whole lattice, the
evolution of vessels in each site is described by:

d

dt
Vn(t)= φ

(
πn(t)− 1

N

∑
m

πm(t)

)
Vn(t),

Vn(0)= V0,n,

(5)

where φ > 0 measures the speed of adjustment and is set equal to one without loss
of generality. Note that Eq. (5), though not an Itô stochastic differential equation, is
now a random differential equation since x is a stochastic process.

A regulator is trying to determine in each cell an optimal level of harvesting per
vessel, hn. This harvesting level can be used, for example, to set up a quota system
in each cell of the ring. The regulator’s objective is the maximization of discounted
profits over the whole ring by taking into account biomass diffusion as well as stock,
congestion and knowledge externalities.3 The regulator’s objective is therefore

max
{hn(t)}

E

[∫ ∞

0
e−rt

(∑
n

Vn(t)πn(t)

)
dt

]
,

subject to (2) and (5),

(6)

where the per vessel profit πn is given by (4). It is clear that the state of the system
is characterized by the biomass x and the vessel distribution V , and we will use the
notation X = (x,V )tr where X ∈R

2N×1.

2.2 Misspecification Concerns

We now assume that the regulator has concerns regarding the specification of
biomass dynamics in each cell, which can be modelled as follows: Assume that

2To simplify we ignore transportation costs.
3To simplify the interpretation of results and the analysis, we do not include existence values for
the biomass.
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there is some uncertainty concerning the “true” statistical distribution of the state
of the system. This corresponds to a family of probability measures Q such that
each Q ∈Q corresponds to an alternative stochastic model (scenario) concerning
the state of the system. From Girsanov’s theorem w̄n(t)= wn(t)−

∫ t
0 vn(s)ds is a

Q-Brownian motion for all n ∈ Z, where the drift term vn may be considered as a
measure of the model misspecification at lattice site n, where v = (v1, . . . , vN)

tr

is an R
N -valued stochastic process which is measurable with respect to the fil-

tration {Ft } satisfying the Novikov condition E[exp(
∫ T

0

∑
n v

2
n(t)dt)]<∞. Thus,

Girsanov’s theorem (see e.g. Karatzas and Shreve 1991) shows that the adoption of
the family Q of alternative measures concerning the state of the system, leads to a
family of differential equations for the biomass

dxn(t) =
[
f
(
xn(t)

)+∑
m

αnmxm(t)− hn(t)Vn(t)+
∑
m

snmvm

]
dt

+
∑
m

snmdw̄m, n,m ∈ ZN, (7)

xn(0) = x0,n,

parameterized by the information drift v. In (7) x indicates the state of the system
when the measure4 Q corresponding to the information drift v and the control pro-
cedure h = (h1, . . . , hN)

tr , which will be denoted by Qv , is adopted. This is an
Ornstein Uhlenbeck equation which in compact form can be expressed as

dx = [
F(x)+ Ax − h⊗ V + Sv

]
dt + Sdw̄. (8)

The regulator’s problem when there are concerns about model misspecification is
solved under the adoption of the measure Q, related to the drift v, i.e. it is solved
under the dynamic constraints (7) and (5). This will provide a solution leading to a
value function V (X;v); corresponding to the maximum discounted profits over the
whole spatial domain obtained for the model Qv under the optimal harvesting effort,
given that the system had initial state X = (x(0),V (0)) = (x,V ). Being uncertain
about the true model, the decision maker will opt to choose the strategy that will
work in the worst case scenario; this being the one that minimizes V (X;v)—the
maximum over all h having chosen v—over all possible choices for v. Therefore,
the robust control problem to be solved is of the general form

V (X)=max
h

min
v
J (h, v),

subject to (7) and (5),
(9)

where

J (h, v)= EQv

{∫ ∞

0
e−rt

[∑
n

Vn(t)πn(t)+
∑
n

θn
(
vn(t)

)2
]
dt

}
.

4We will identify a model by a probability measure.
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The vector θ = (θ1, . . . , θN)
tr corresponds to the weight assigned to concerns re-

lated to model misspecification in a local sense (differentially in space). To clarify
this point, we refer to Brock et al. (2012), as by a simple modification of the argu-
ments in this work it can be shown that robust optimization problems of the form

sup
h

inf
Q∈Q

EQ

[∫ ∞

0
e−rt

∑
n

Vn(t)πn(t)dt

]
,

subject to H (Pn |Qn) <Hn, n ∈ ZN,

(10)

and the dynamic constraints (7) and (5), can be written as equivalent to (9) where
now the vector θ ∈ R

N+ plays the role of a Lagrange multiplier associated with the
constraints in (10). In (10) by H (Pn |Qn) we denote the Kullback-Leibler entropy
of the marginal probability measures Pn and Qn (i.e. the probability measures P

and Q respectively, averaged over all possible states of the noise over the remaining
sites). The localized entropic constraints mean that the regulator is only considering
models in each cell (i.e., measures Qn) whose deviation in terms of the relative
entropy from the “true” model in the cell (i.e., the measure Pn) is less than Hn.

The introduction of the local entropic constraints means that the concern of the
policy maker about uncertainty on site n is quantified by Hn, the smaller Hn is the
less model uncertainty she is willing to accept for site n, given her information about
this site. This assumption is not unreasonable as certain cells may be considered as
more crucial than others therefore specific care should be taken for them.

In the robust control problem the minimizing adversarial agent—Nature—
chooses a {vn(t)} while θn ∈ (θn,+∞], θn > 0, is a penalty parameter restraining
the maximizing choice of the decision maker. As noted above θn is associated with
the Lagrange multiplier of the entropy constraint at each site. In the entropy con-
straint Hn is the maximum misspecification error that the decision maker is willing
to consider given the existing information about the system at site n.5 The lower
bound θn is a so-called breakdown point beyond which it is fruitless to seek more
robustness because the adversarial (i.e. the minimizing) agent is sufficiently un-
constrained so that she/he can push the criterion function to −∞ despite the best
response of the maximizing agent. Thus when θn < θn for a specific site robust
control rules cannot be attained. In our terminology this site is a candidate for a
“nucleus” of a hot spot since misspecification concerns for this site will break down
robust control for the whole spatial domain. On the other hand when θm→∞ or
equivalently Hm = 0 there are no misspecification concerns for this site and the
benchmark model can be used. The effects of spatial connectivity can be seen in
this extreme example. The spatial relation of site m with site n could break down
regulation for both sites. If site m was spatially isolated from n there would have
been no problem with regulation at m.

5If the decision maker can use physical principles and statistical analysis to formulate bounds
on the relative entropy of plausible probabilistic deviations from her/his benchmark model, these
bounds can be used to calibrate the parameters Hn (Athanassoglou and Xepapadeas 2012).
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2.3 Robust Stabilization of a Desired Optimal State

Problem (9) is a non linear robust control problem. The full nonlinear problem,
eventhough accessible to either abstract analysis or numerical treatment, will not
allow an analysis in terms of closed form expressions and as such will obscure our
main interest in this paper, which is to show the existence of hot spots and spatial
pattern formation. To illustrate these points we will instead choose to work in terms
of a linear quadratic approximation of the full nonlinear problem, which allows a
rather detailed analytical treatment. However, rather than taking a linear quadratic
local approximation of the full problem (9) we choose an alternative approach. This
alternative approach is related to a tracking problem, which allows the decision
maker to “correct” her benchmark policy in such a way as to optimally make up for
possible misspecifications of the model. Tracking problems have been addressed by
the control theory community and find important applications in a variety of prob-
lem in mathematical, environmental and financial economics (see e.g., Leizarowitz
1985, 1986; Artstein and Leizarowitz 1985).

In this section we formulate a related linear quadratic robust control problem
which is associated with a stabilization policy, under the effect of noise and uncer-
tainty with respect to the nature of this noise, which allows the decision maker to
keep the system as close as possible to a desired optimal state of (9). We assume
that the desired optimal state is the one that corresponds to the deterministic ver-
sion of the model, i.e. the case where there is no noise present. Let us call this state
(x(0), V (0)) and assume that it is supported by the optimal control procedure h(0).
The triple (x(0), V (0), h(0)) is thus the solution of the deterministic optimal control
problem

max
h

∫ ∞

0
e−rt

∑
n

Vn(t)πn(t)dt,

subject to

ẋn =
∑
m

anmxm − f (xn)− Vnhn, n ∈ ZN

V̇n = φ

(
πn − 1

N

∑
m

πm

)
Vn, n ∈ ZN.

(11)

This is the idealized problem that the fishery manager wants to solve. The solution
of that, furnishes the “best” she can do to optimize her profit, given the capabilities
of the fishery, in the absence of unforeseen event (i.e. noise).

The solution x(0) is determined by the deterministic Pontryagin principle, asso-
ciated with the Hamiltonian function

H(x,V,p, p̄;h) =
∑
n

Vnπn +
∑
n

pn

(∑
m

anmxm − f (xn)− Vnhn

)

+
∑
n

p̄n

[
φ

(
πn − 1

N

∑
m

πm

)
Vn

]
,
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where p = (p1, . . . ,pN)
tr , p̄ = (p̄1, . . . , p̄N)

tr are the adjoint variables associated
with the state variables x = (x1, . . . , xN)

tr and V = (V1, . . . , VN)
tr respectively.

The solution of the benchmark optimal control problem is reduced to the solution
of the system of differential equations

∂H

∂xn
(x,V,p, p̄;h)− ṗn − rpn = 0, n ∈ ZN,

∂H

∂Vn
(x,V,p, p̄;h)− ˙̄pn − r p̄n = 0, n ∈ ZN,

∂H

∂pn
(x,V,p, p̄;h)− ẋn = 0, n ∈ ZN,

∂H

∂ p̄n
(x,V,p, p̄;h)− V̇n = 0, n ∈ ZN,

∂H

∂hn
(x,V,p, p̄;h)= 0, n ∈ ZN,

(12)

where the last set of equations is an optimality condition. The solution (x(0), V (0),

h(0)) of this system gives the optimal benchmark path. In general this system has
a solution which is spatially dependent, i.e., xn(t) �= xm(t) for n �= m. However, it
may also have solutions which are uniform in space. For example in the case of dif-
fusive coupling,

∑
m anm = 0,

∑
m βnm = 0 and

∑
m γnm = 0 the system (12) may

admit a solution which is uniform in space, i.e. a solution {x0
n(t),V

0
n (t)} such that

x0
n(t) = x0(t), V 0

n (t) = V 0(t) for all n ∈ Z. Similarly for the optimal control h(0).
Furthermore, we may assume that these equations have a stationary uniform in space
solution, i.e., a solution that is time independent. While this assumption is not nec-
essary for the development of the proposed model, it simplifies the exposition and
will be adopted. It should be stressed though that a general theory for time dependent
as spatially nonhomogeneous x(0), V (0), h(0) can be formulated and the necessary
modifications are technical.

However, true life is often far from the idealized model, that the manager has in
mind. This means that the manager should be adept to sidetrack from the idealized
optimal control procedure h(0) as an effect of unforeseen circumstances, modeled
here by noise. An important question is the following: Can we design optimally a
corrective policy h(1) which will take into account the effects of noise so that the
true system keeps as close as possible to the idealized optimal state (x(0), V (0)) as
provided by the solution of the optimal control problem (11)?

Assume that we have the nonlinear problem (1), subject to weak additive noise.
The problem is subject to model uncertainty (with respect to the nature of the noise
term) which may be modelled in terms of a drift v so that applying Girsanov’s
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theorem we obtain the family of models

dxn =
[
f (xn)+

∑
m

αnmxn − hnVn + ε
∑
m

snmvn

]
dt + ε

∑
m

snmdwm,

dVn = φ

(
πn − 1

N

∑
m

πm

)
Vndt, n ∈ ZN.

(13)

This family of models will give the “observed” state of the system (x,V ). The
system is still subject to a control procedure h, and it is our aim to choose h so that
the actual state of the system (x,V ) is kept as close as possible to the ideal profit
maximizing state (x(0), V (0)) with h as close as possible to h(0).

Since the noise is assumed to be weak we may consider as a zeroth order ap-
proximation to (13) (i.e., the solution setting ε = 0) the deterministic optimal path
(x(0), V (0)). Let us consider perturbations of {x,V,h, v} around this reference so-
lution, i.e. let us consider solutions of the above problem of the form

{x,V,h, v} = {
x0,V 0, h0,0

}+ ε
{
x1,V 1, h1, v1},

where now {x,V,h, v} are subject to uncertainty and are solutions of the stochas-
tic biomass equation (13) with ε a small parameter. The terms (x(1), V (1)) quantify
the divergence of the actual state of the system from the ideal profit maximizing
optimal state (x(0), V (0)), the fishery manager would like to follow. This deviation
is in general going to be spatially dependent; this spatial dependence will depend
on the interaction between the dynamics of the system and noise. We still allow the
manager a control procedure (h(1), v(1)), this is considered as the correction proce-
dure on top of the pre-planned ideal optimal control procedure h(0) where v(1) takes
care of model uncertainty which will be chosen so as to minimize deviation from
the ideal plan of action (x(0), V (0), h(0)). As we shall see this correction procedure
can be chosen in terms of a feedback control procedure, whereby the corrections are
determined upon observation of the deviation from the ideal desired state.

We linearize the state equations around the state s(0) := {x(0), V (0), h(0), v(0)} to
obtain to first order in ε that

dx(1) = [
A(1)x(1) +A(2)V (1) +B(1)h(1) + Sv(0)

]
dt + Sdw̄,

dV (1) = [
A(3)x(1) +A(4)V (1) +B(2)h(1)

]
dt,

where x(1), V (1), h(1), v ∈ R
N and A(i),B(j), i = 1, . . . ,4, j = 1,2 are R

N×N ma-
trices with elements

A(1)
nm = f ′

(
x(0)n

)
δnm + anm,

A(2)
nm =−h(0)n δnm,

A(3)
nm =−φV (0)

n

(
∂c0

∂x

)
n

δnm + 1

N
φV (0)

n

(
∂c0

∂x

)
m

,
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A(4)
nm = φ

(
π(0)n − 1

N

∑
k

π
(0)
k

)
δnm − φV (0)

n

(
∂c0

∂C

)
n

βnm

+ 1

N
φV (0)

n

(∑
k

βkm

(
∂c0

∂C

)
k

)
,

B(1)
nm =−V (0)

n δnm,

B(2)
nm = φV (0)

n

(
P −

(
∂c0

∂h

)
n

)
δnm − φV (0)

n γnm

(
∂c0

∂P

)
n

− 1

N
φPV (0)

n

+ 1

N
φV (0)

n

(
∂c0

∂h

)
m

+ 1

N
φV (0)

n

(∑
k

γkm

(
∂c0

∂P

)
k

)
,

where by (
∂c0
∂z
)n, z = h,x,C,P , in the above we mean that the respective partial

derivatives are calculated at the state s(0) and at site n. Assuming that the zeroth or-
der state is spatially uniform, and assuming also that the interaction kernels have the
property that

∑
m βnm = 0,

∑
m γnm = 0 (diffusive coupling) the above expressions

can simplify considerably to

A(1)
nm = f ′

(
x(0)n

)
δnm + anm,

A(2)
nm =−h(0)n δnm,

A(3)
nm =−φV (0)

n

(
∂c0

∂x

)
δnm + 1

N
φV (0)

n

(
∂c0

∂x

)
,

A(4)
nm = φ

(
π(0)n − 1

N

∑
k

π
(0)
k

)
δnm − φV (0)

n

(
∂c0

∂C

)
βnm,

B(1)
nm =−V (0)

n δnm,

B(2)
nm = φV (0)

n

(
P −

(
∂c0

∂h

)
n

)
δnm − φV (0)

n γnm

(
∂c0

∂P

)

− 1

N
φPV (0)

n + 1

N
φV (0)

n

(
∂c0

∂h

)
.

We may now express the linearized system in compact form as the stochastic
control system

dX = [AX+Bu+ Sv]dt + Sdw̄, (14)

where

A :=
(
A(1) A(2)

A(3) A(4)

)
, B :=

(
B(1)

B(2)

)
, S :=

(
S

0

)
,

where 0 is the N ×N zero matrix and X = (x(1), V (1))tr , u = h(1), v = v(1). It is
clear that X ∈ R

2N×1, u,v,w ∈ R
N×1, A ∈ R

2N×2N , B,S ∈ R
2N×N . It should be
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noted that matrices A and B incorporate stock, congestion and productivity exter-
nalities in the linearized dynamics

We now consider the problem of controlling the linearized system by proper
choice of the control procedure u so that the system is kept as close as possible and
at the minimum possible cost at the zeroth order desired steady state s(0). Ideally,
we would like to choose u= 0 and keep X = 0 at all times, as this would correspond
to keeping the system to the profit maximizing state (x(0), V (0), h(0)). However, this
is not possible and we choose the less ambitious task of minimizing the deviation
of X from 0 at the minimum possible cost. This is equivalent to the robust optimal
control problem6

min
u

max
v

J̄ (u, v),

subject to (14),
(15)

where

J̄ (u, v) := E

[
1

2

∫ ∞

0
e−rt

(
Xtr(t)PX(t)+ utr (t)Qu(t)− vtr (t)Rv(t)

)
dt

]
.

The solution to problem (15) guarantees that we get as close as possible to the
desired state, at the worst possible deviation from our ideal model (11). The matrices
P ∈ R

2N×2N , Q ∈ R
N×N and R ∈ R

N×N are positive definite and invertible and
without loss of generality can be considered to be copies of the identity matrix, i.e.

P=
(
pI 0
0 p̄I

)
, Q= qI, R= θI,

where I is theN×N identity matrix. For this particular case the objective functional
becomes

J̄ (u, v)=E

[
1

2

∫ ∞
0

e−rt
∑
n

(
p
(
x
(1)
n (t)

)2 + p̄
(
V
(1)
n (t)

)2 + q
(
h
(1)
n (t)

)2 + θ
(
v
(1)
n (t)

)2)
dt

]
.

(16)
In objective (16) the coefficients (p, p̄, q, θ) reflect the relative importance attache
by the regulator to deviations from the optimal deterministic path, with r expressing
the cost or being robust. Without loss of generality and to simplify the expressions
we may choose p = p̄. The parameter θ in (16) should be interpreted as the pa-
rameter associated with the global entropic constraint. If we are dealing with local

6It is obvious that upon setting Ĵ = −J̄ the minu maxv J̄ problem becomes equivalent to the

maxu minv Ĵ problem, which is in a form similar to the robust control problem (9), where now
the profit functional is a replaced by the negative of a loss functional quantifying costs of deviation
from a target.
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entropic constraints matrix R should be defined as:

R=
⎛
⎜⎝
θ1 · · · 0

0
. . . 0

0 · · · θn

⎞
⎟⎠ .

This a more complicated case which can be dealt with methods appropriate for the
solution of the general linear quadratic robust control problem presented in Brock
et al. (2012). Because of its relative simplicity functional (16) allows us to use the
Fourier space solution of the problem as we will see in the next section.

Note that this problem is different from the problem treated in Magill (1977a,
1977b) where a linear quadratic approximation of a nonlinear stochastic optimal
control problem is proposed. Here instead, we propose an exact linear quadratic pro-
cedure, which minimizes the tracking error from the optimal solution of a nonlinear
idealized deterministic profit maximization problem. Our approach differs in spirit,
however, correspond to a realistic situation. Most policy is designed upon ideal and
simplified models (as for instance model (11)). It is important for the policy maker
to have guidelines concerning the necessary corrections needed when the true state
of the system deviates from the ideal state (as for instance under model (13)), so as
to correct her policy in order to minimize deviations from the target. However, the
generalization of Magill’s procedure to a robust control problem is of interest in its
own right, and will be treated elsewhere.

3 Robust Stabilization of the Benchmark Solution

Problem (15) can now be treated using the Hamilton-Jacobi-Belman-Isaacs equa-
tion. This is expressed in terms of the generator L of the Ornstein-Uhlenbeck pro-
cess (14), defined through its action on a twice continuously differentiable function
V :R2N →R

L V = (AX+Bu+ Sv)DXV + 1

2
SS

trD2
XV ,

where DXV is the gradient of V with respect to the coordinates of the vector X and
D2
XV is the Hessian matrix of the function V with respect to the coordinates of the

vector X. The above are shorthands for the relevant expressions in coordinate form,
e.g.,

DXV =
(
∂V

∂x
(1)
1

, . . . ,
∂V

∂x
(1)
N

,
∂V

∂V
(1)
1

, . . . ,
∂V

∂V
(1)
N

)tr

,

and similarly for the Hessian. Using the generator we may define the Hamiltonian
function

H(V ;X,u,v)=L V + 〈PX,X〉 + 〈Qu,u〉 − θ〈Rv, v〉,
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where by 〈·, ·〉 we denote the inner product in R
2N . The value function V is the

solution of the Hamilton-Jacobi-Belman-Isaacs (HJBI) equation

rV +min
u

max
v

H(V ;X,u,v)= 0

(since by the saddle point theorem we may interchange the order of the minu and
maxv operations). The optimal policy is then related to the solution of the optimiza-
tion problem for the Hamiltonian function. The HJBI equation is a fully nonlinear
PDE, but on account of the linear quadratic nature of the system it can be solved
in terms of the matrix Ricatti equation. Adapting the general results of Brock et al.
(2012) to the model under consideration we find that the optimal correction policy
is given by

u=−Q−1
B
trHX, (17)

where H ∈R
2N×2N is the symmetric solution of the matrix Ricatti equation

HA+A
trH−HEsH− rH+ P= 0

and

Es = 1

2

(
E+ Etr

)
,

E= BQ−1
B
tr − 1

θ
SR−1

S
tr .

Once the matrix H computed, in principle numerically, the correction u = h(1)

needed to modify the benchmark control procedure h(0) so as to keep the true state
of the system as close as possible to the benchmark optimal state (x(0), V (0)) is
given by the feedback rule (17). This rule is very easy to apply as it only requires
the manager to monitor the current value of the state X(t), i.e. the current devia-
tions (x(1)(t),V (1)(t)) of the true state of the system from the benchmark optimal
state (x(0), V (0)). We remark that our approach through the Ricatti equation does
not necessarily require the benchmark state to be time independent not spatially ho-
mogeneous. However, even in the benchmark state enjoys both these properties, the
deviations from this state, X(t) will not necessarily satisfy them; it is in general
expected to be both time varying and is expected to display spatial patterns. Fur-
thermore, the optimal state X (i.e. the optimal deviations from the benchmark state
once the optimal correction policy u = h(1) is adopted) is given by the solution of
the Ornstein-Uhlenbeck equation

dX =
(
A−BQ−1

B
trH+ 1

θ
SR−1

S
trH

)
Xdt + Sdw.

The matrix Ricatti equation can be treated through a multitude of analytic or nu-
merical methods leading to either interesting qualitative features of its solution, or
to accurate computations. Therefore the above analysis provides a general and com-
putationally feasible approach to the problem of correcting the benchmark optimal
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strategy in order to lead the realistic system to the desired state. Here, in order to pro-
vide some qualitative results with the less possible technicalities involved, we treat
the simple, yet realistic case where the operators related to the matrices A, B, S are
translation invariant, the fishery is situated on a ring (i.e. periodic boundary condi-
tions x1(t)= xN(t) and V1(t)= VN(t) for all t are imposed) and the loss functional
related to the deviations of the system from the benchmark model is given in the
form (16). We note that operators such as the discrete Laplacian often employed in
models concerning the transport of biomass enjoy the translation invariant property.
Furthermore, for this particular approach we have to assume that the benchmark
state is spatially invariant, while the analysis is simplified considerably if it is also a
steady state.

When all the above assumptions are satisfied, we may treat the robust control
problem (15) with the choice of objective functional as in (16) by using the discrete
Fourier transform. Importantly, the problem decouples7 in Fourier space, a fact that
allows us to obtain closed form solutions in terms of the Fourier transform of X.

For a vector x = {xn} = (x1, . . . , xN) defined on the spatial domain ZN , we may
define a vector x̂ = {x̂k} = (x̂1, . . . , x̂N ), by

x̂k :=
N∑
n=1

xn exp

(
−i2πkn− 1

N

)
, k ∈ ZN.

The k coordinates of the vector x̂ are considered as taking values in a dual space,
often called the Pontryagin dual space or simply Fourier space, which in this simple
case coincides with ZN . The discrete Fourier transform of X = (x,V ) where x and
V are vectors defined on the spatial domain ZN is defined by X̂ = (x̂, V̂ ). The dis-
crete Fourier transform has very interesting properties, one of which is very impor-
tant in the simplification of problem (15) with the choice of objective functional as
in (16). The Fourier transform turns a convolution to a product, in the sense that the
Fourier transform of Ax is equal to Âx̂ as long as A is translation invariant, i.e. com-
mutes for all m with the translation operators Tm defined by (Tmx)n = xn−m where
of course periodicity is taken into account. Matrices such as those corresponding
to the discrete Laplacian have this form. This property leads to a decoupled set on
equations for the state variables, when treated in Fourier space. Furthermore, by the
special form of the objective functional (16), the use of the Parceval identity allows
us to rewrite the objective functional in essentially identical form but now inter-
preted in Fourier space. This leads to a decoupling of the full problem into N scalar
problems which are amenable to full analytic consideration.

Denoting by X̂ the Fourier transform of X it can be shown (see Brock et al. 2012)
that the optimal state is the solution of the Ornstein-Uhlenbeck equation

dX̂k =RkX̂k + σ̂kdwk, k ∈ ZN,

7Essentially turning the matrix Ricatti equation to a set of scalar, uncoupled Ricatti equations,
amenable to analytic solution.
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where σ̂k is a constant whose exact expression is not needed for what follows,

Rk := âk − b̂2
kM2,k

2q
+ ĉ2

kM2,k

2θ
,

and M2,k is the solution of

(
ĉ2
k

2θ
− b̂2

k

2q

)
M2

2,k + (2âk − r)M2,k + 2p = 0. (18)

The terms âk , b̂k and ĉk are related to the Fourier transform of the matrices A, B
and S. Furthermore, the optimal controls are given by the feedback laws

ûk =− b̂kM2,k

2q
x̂k, v̂k = ĉk M2,k

2θ
x̂k.

4 Hot Spot Formation

In this section we study the validity and the qualitative behavior of the controlled
system (15). We will call the qualitative changes of the behavior of the system hot
spots. In the present context, hot spots will correspond to important deviations of
the stabilization procedure presented in the previous section, that will have as conse-
quence important quantitative and qualitative deviations of the true controlled sys-
tem from the desired ideal benchmark model, no matter what the decision maker
does in order to correct her policy by proper adjustment procedures. We may thus
consider hot spots as possible failures of the adjustment procedure, which may have
important consequences on the true state of the controlled fishery.

We will define three types of hot spots:

Hot spot of type I: This is a breakdown of the solution procedure, i.e., a set of
parameters where a solution to the above problem does not exist.
Hot spot of type II: This corresponds to the case where the solution exists but
may lead to spatial pattern formation, i.e., to spatial instability similar to the Tur-
ing instability.
Hot spot of type III: This corresponds to the case where the cost of robustness
becomes more that what is offering us, i.e., where the relative cost of robustness
may become very large.

In what follows, for simplicity, we discuss the formation of hot spots under the
assumption that the tracking problem (15) with the choice of objective functional
as in (16) is translation invariant (which requires certain symmetry conditions). The
results are stated in terms of a number of propositions, providing relevant parameter
values for the formation of the different types of hotspots, the proofs of which may
be found in Brock et al. (2012). However, similar results hold for the general case of
non-translation invariant systems, by the full treatment of the matrix Ricatti equation
(see Brock et al. 2012).
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4.1 Hot Spots of Type I

The breakdown of the solution procedure can be seen quite easily by the following
simple argument. The value function assumes a simple quadratic form, as long as
the algebraic quadratic equation

(
ĉ2
k

2θ
− b̂2

k

2q

)
M2

2,k + (2âk − r)M2,k + 2p = 0, (19)

admits real valued solutions, at least one of which is positive. The positivity of the
real root is needed since, by general considerations in optimal control, the value
function must be convex. If the above algebraic quadratic equation does not admit
at least one positive real valued solution this is an indication of breakdown of the
existence of a solution to the robust control problem which will be called a hot spot
of Type I.

Proposition 1 (Type I hot spot creation) Hot spots of Type I may be created in one
of the following two cases:

(IA) Either,

(2âk − r)2 < 8p

(
ĉ2
k

2θ
− b̂2

k

2q

)
. (20)

(IB ) Or,

(2âk − r)2 > 8p

(
ĉ2
k

2θ
− b̂2

k

2q

)
,

(
ĉ2
k

2θ
− b̂2

k

2q

)
> 0, 2âk − r > 0. (21)

Hot spots of this type may arise either due to low values of θ , or due to high
values of q or low values of r . For example, they may arise either if

θ <
pĉ2

k

(âk − r
2 )

2 + p
q
b̂2
k

, k ∈ ZN,

or if

θ >
pĉ2

k

(âk − r
2 )

2 + p
q
b̂2
k

,
q

θ
>
b̂2
k

ĉ2
k

, r < 2âk, k ∈ ZN.

In particular hot spots are expected to occur in the limit as θ→ 0 while they are not
expected to occur in the limit as θ→∞.

As mentioned above, a hot spot of Type I represents breakdown of the solvability
of the optimal control problem. We argue that this represents some sort of loss of
convexity of the problem thus leading to non existence of solution. To illustrate this
point more clearly let us take the limit as θ → 0 which corresponds to hot spot
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formation. For such values of θ , the particular ansatz employed for the solution
breaks down and in fact as θ → 0 we expect M2,k → 0 so that the quadratic term
in the value function will disappear. This leads to loss of strict concavity of the
functional, which may be seen as follows: The functional contains a contribution
from v̂k through the dependence of x̂k on v̂k which contributes a quadratic term of
positive sign in v̂k . The robustness term, which is proportional to −θ contributes a
quadratic term of negative sign in v̂k . For large enough values of θ the latter term
dominates in the functional and guarantees the strict concavity, therefore, leading
to a well defined maximization problem. In the limit of small θ the former term
dominates and thus turn the functional into a convex functional leading to problems
with respect to the maximization problem over {v̂k}. We call this breakdown of
concavity in v, which lead to loss of convexity of the value function in x, for small
values of θ a hot spot of type I. When this happens, there is a duality gap, since the
assumptions of the min-max theorem do not hold. In terms or regulatory objectives
this means that concerns about model misspecification make regulation impossible.

The effect of the parameters of the fishery model employed on the formation of
hot spots, can quantified by the results of Proposition 1 through the dependence of
the Fourier transformed operators A, B, S on the model parameters. For instance,
if prices P increase, whereas the rest of the parameters remain fixed, then b̂k will
increase with respect to the other parameters âk and ĉk . This will result to a decrease
of the right hand side of e.g., Eq. (20) thus leading to a suppression of such a hot
spot. Due to the large number of parameters of the model, extreme care should be
taken when interpreting qualitatively the above conditions. However, having chosen
a particular model and having estimated some of the parameters, the decision maker
may investigate numerically the above analytic conditions and provide parameter
regimes for creation or suppression of the various type of hot spots. Since our ma-
jor interest here is the formulation of a general methodology, rather than a detailed
treatment of a particular model, we provide two simplified examples that allow us to
provide a qualitative understanding of hot spot formation as a result of the various
interacting “forces” that influence the system and comment upon their relative im-
portance. These examples are provided here, for lack of space, to hot spots of type I
only, but they can be extended to the study of the other hot spots as well.

The following examples show some interesting limiting situations, in terms of
simplifications of the operators A, B and S:

Example 1 Assume that A is the discrete Laplacian whereas B and S are copies of
the identity operator. This corresponds to the case that there is diffusive coupling
in the state equation but controls as well as the uncertainty have purely localized
effects. A quick calculation shows that in this case ak = α(1+ 2 cos( 2πk

N
)) where

α is the diffusion coefficient whereas bk = β and ck = γ for every k ∈ ZN where β
and γ is a measure for the control and the uncertainty respectively. In this particular
case, the quadratic equation becomes

(
γ 2

2θ
− β2

2q

)
M2

2,k +
(

2α

(
1+ 2 cos

(
2πk

N

))
− r

)
M2,k + 2p = 0,
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which must have a real valued solution for every k. There will not exist real valued
solutions if

� :=
(

2α

(
1+ 2 cos

(
2πk

N

))
− r

)2

− 8p

(
γ 2

2θ
− β2

2q

)
< 0

or equivalently after some algebra

((
1+ 2 cos

(
2πk

N

))2

− r

2α

)
<

p

α2

(
γ 2

θ
− β2

q

)
.

This is the condition for generation of a hot spot of Type I in this particular example.
If this condition holds for some k ∈ ZN , this particular k is a candidate for such a
hot spot. We may spot directly that this cannot hold for any k ∈ ZN if the right hand

side of this inequality is negative, i.e., when θ > θcr := q
γ 2

β2 , therefore hot spots of
this type will never occur for large enough values of θ . The critical value of θ for
the formation of such hot spots will depend on the relative magnitude of uncertainty
over control. For θ < θcr then a hot spot of Type I may occur for the modes k such
that

(
1+ 2 cos

(
2πk

N

))2

≤ r

2α
+ ρ

or equivalently for k such that

(
1+ 2 cos

(
2πk

N

))2

≤
(
r

2α
+ ρ

) 1
2

,

where ρ2 = p

α2 (
γ 2

θ
− β2

q
).

Example 2 The opposite case is when A is again the discrete Laplacian while B

and S are multiples of matrices containing 1 in the diagonal and the same entry ν

in every other position. This means that the controls as well as the uncertainty has
a globalized effect to all lattice points, in the sense that the controls even at remote
lattice sites have an effect at each lattice point. Then b̂k = βδk,0, ĉk = γ δk,0, i.e.,
the Fourier transform is fully localized and is a delta function. Then, for k = 0 the
quadratic equation becomes

(
γ 2

2θ
− β2

2q

)
M2

2,0 − (6α − r)M2,0 + 2p = 0,

while for k �= 0 the quadratic term vanishes yielding

−
(

2α

(
1+ 2 cos

(
2πk

N

))
− r

)
M2,0 + 2p = 0.



236 W.A. Brock et al.

4.2 Hot Spots of Type II

We now consider the spatial behavior of the optimal path, as given by the Itô stochas-
tic differential equation

dx̂∗k =Rkx̂
∗
k dt + ĉkdŵk.

The optimal path is a random field, thus leading to random patterns in space, some
of which may be short lived and generated simply by the fluctuations of the Wiener
process. We thus look for the spatial behavior of the mean field as described by the
expectation X̂k := EQ[x̂∗k ]. By standard linear theory X̂k(t)= X̂k(0) exp(Rkt) and
this means that for the modes k ∈ ZN such that Rk ≥ 0 we have temporal growth
and these modes will dominate the long term temporal behavior. On the contrary
modes k such that Rk < 0 decay as t →∞ therefore such modes correspond to
(short term) transient temporal behavior, not likely to be observable in the long term
temporal behavior. The above discussion implies that the long time asymptotic of
the solution in Fourier space will be given by

X̂k(t) 
{
x̂k(0) exp(Rkt), k ∈P := {k ∈ ZN :Rk ≥ 0},
0, otherwise.

To see what this pattern will look like in real space, we simply need to invert the
Fourier transform, thus obtaining a spatial pattern of the form

Xn(t) := EQ

[
xn(t)

]= ∑
k∈P

x̂k(0) exp(Rkt) cos

(
2π

k

N
n

)
. (22)

The above discussion therefore leads us to a very important conclusion, which is of
importance to economic theory of spatially interconnected systems:

If as an effect of the robust optimal control procedure exerted on the system there exist
modes k ∈ ZN such that Rk > 0, then this will lead to spatial pattern formation which will
create spatial patterns of the form (22). As we will see there are cases what such patterns will
not exist in the uncontrolled system and will appear as an effect of the control procedure.
We will call such patterns an optimal robustness induced spatial instability or hot spot of
Type II.

The economic significance of this result should be stressed. We show the emer-
gence of a spatial pattern formation instability, which can be triggered by the optimal
control procedures exerted on the system; in other words emergence of spatial clus-
tering and agglomerations in the fishery (as observed in the spatial distribution of
the biomass and the number of vessels) caused by uncertainty aversion and robust
control. This observation can further be extended in the case of nonlinear dynam-
ics, in the weakly nonlinear case. When the dynamics are nonlinear in the state the
emergence of hot spots of Type II and optimal robustness induced spatial instability
should be linked to the spatial instability of a spatially uniform steady state corre-
sponding to the linear quadratic approximation of a nonlinear system. This instabil-
ity which can be thought as pattern formation precursor will induce the emergence
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of spatial clustering. As time progresses and the linearized solution (22) grows be-
yond a certain critical value (in terms of a relevant norm) then the deviation from
the homogeneous steady state is so large that the linearized dynamics are no longer
a valid approximation. Then the nonlinear dynamics will take over and as an effect
of that some of the exponentially growing modes could be balanced thus leading to
more complicated stable patterns. At any rate even in the nonlinear case the mecha-
nism described here will be a Turing type pattern formation mechanism explaining
the onset of spatial patterns in the fishery.

The next proposition identifies which modes can lead to hot spot of Type II
formation (optimal robustness induced spatial instability) and in this way through
Eq. (22) identifies possible spatial patterns that can emerge in the fishery.

Proposition 2 (Pattern formation for the primal problem) There exist pattern for-
mation behavior for the primal problem if there exist modes k such that Rk > 0, i.e.,
if there exist modes k such that

1

2

(
r −

√
r2 + 8p

(
ĉ2
k

2θ
− b̂2

k

2q

))
≤ âk ≤ 1

2

(
r +

√
r2 + 8p

(
ĉ2
k

2θ
− b̂2

k

2q

))
,

r2 + 8p

(
ĉ2
k

2θ
− b̂2

k

2q

)
≥ 0. (23)

It is interesting to see what is the behavior of the system as a function of param-
eters with respect to pattern formation and the qualitative behavior of the optimal
path.

Note that this pattern formation behavior is in full accordance with the fact that
our state equation is the optimal path for the linear quadratic control problem. Since
it solves this problem it is guaranteed that I := EQ[

∫∞
0 e−rt x̂2

k (t)dt] is finite8 there-

fore x̂k(t) can at most grow as e
r
2 t , otherwise the quantity I would be infinite. This

is verified explicitly by the observation that Rk ≤ r
2 for every k ∈ ZN . Therefore,

all possible patterns may at most exhibit growth rates less or equal to r/2. In the
limit as r→ 0 i.e. in the limit of small discount rates pattern formation is becoming
increasingly difficult in the linear quadratic model since growing patterns will be
suppressed by the control procedures.

Proposition 3 (Stabilizing or destabilizing effects of control) The robust control
procedure may either have a stabilizing or destabilizing effect with respect to pat-
tern formation. in the sense that it may either stabilize an unstable mode of the
uncontrolled system or on the contrary facilitate the onset of instabilities.

In particular,

(i) If q
θ
<

b̂2
k

ĉ2
k

then the robust control procedure has a stabilizing effect

8This is in fact equivalent to the assertion that the optimal path satisfies temporal transversality
conditions at infinity.
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(ii) If q
θ
>

b̂2
k

ĉ2
k

then the robust control procedure has a destabilizing effect.

Case (ii) suggests robust control caused pattern formation, in the sense that we
obtain a growing mode leading to a pattern which would not have appeared in the
uncontrolled system.

As seen by Proposition 3 in the θ→∞ limit, the control has a stabilizing effect
on unstable modes of the uncontrolled system. Similarly, by Proposition 3 in the
θ → 0 limit, the robust control has a destabilizing effect on modes of the uncon-
trolled system which are “marginal” to be stable i.e. with α̂k negative but close to
zero.

In closing this discussion we wish to ponder upon some similarities and differ-
ences of Type II hot spots with the occurrence of the celebrated Turing instability;
Formation of hot spots of type II is similar to Turing instability leading to pattern for-
mation but with a very important difference! In contrast to Turing instability which
is observed in an uncontrolled forward Cauchy problem, this instability is created
in an optimally controlled problem in the infinite horizon. This has important con-
sequences and repercussions both from the conceptual as well as from the practical
point of view. On the conceptual level, a controlled system is related to a system that
somehow its final state (at t→∞ in our case) is predescribed. Therefore, our result
is an “extension” of Turing instability in a forward-backward system and not just to
a forward Cauchy problem, as is the case for the Turing instability. On the practical
point of view, the optimal control nature of the problem we study here induces se-
rious constraints on the growth rate of the allowed patterns which has a strict upper
bound is related only to the discount factor of the model and not on the operator A.
This is not the case for the standard Turing pattern formation mechanism, in which
the growth rate upper bound is simply related to the spectrum of the operator A.

4.3 Hot Spots of Type III: The Cost of Robustness

The value function is of the form Vk = M2,k
2 x̂2

k + ĉ2
kM2,k

2r . This gives us the total cost
of the minimum possible deviation from the desired goal and it is made up from
contributions by three terms:

• the term proportional to p in the cost functional which corresponds to the cost
related to the deviation from the desired target,

• the term proportional to q in the cost functional which corresponds to the cost
related to the cost of the control u needed to drive the system to the desired target
and

• the term proportional to θ in the cost functional which corresponds to the cost of
robustness (which is the cost incurred by the regulator because she wants to be
robust when she has concerns about the misspecification of the model).
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The value function depends on all these three contributions and this may be
clearly seen since M2,k is in fact a function of the parameters p, q , θ .

An interesting question is which is the relevant importance of each of these con-
tributions in the overall value function. Does one term dominates over the others or
not?

A simple answer to this question will be given by the elasticity of the value
function with respect to these parameters, i.e., by the calculation of the quantities
1
V
∂V
∂p

, 1
V
∂V
∂q

and 1
V
∂V
∂θ

. It is easily seen that these elasticities are independent of x̂k

and reduce to 1
M2,k

∂M2,k
∂p

, 1
M2,k

∂M2,k
∂q

and 1
M2,k

∂M2,k
∂θ

, respectively. Whenever one of
these quantities tends to infinity, that means that the contribution of the relevant
procedure dominates the control problem.9

In particular whenever 1
M2,k

∂M2,k
∂θ

→∞, then we say that the cost of robustness
becomes more expensive than what it offers, and we will call that a hot spot of
type III. This quantity can be calculated directly from the solution of the quadratic
equation (18) through straightforward but tedious algebraic manipulations, which
we choose not to reproduce here.

However, an illustrative partial case, which allows some insight on the nature of
hot spots of type III is the following:

Differentiating (18) with respect to θ yields

− ĉ2
k

2θ2
M2

2,k + 2

(
ĉ2
k

2θ
− b̂2

k

2q

)
M2,k

∂M2,k

∂θ
+ (2âk − r)

∂M2,k

∂θ
= 0.

Dividing by M2
2,k we obtain

− ĉ2
k

2θ2
+ 2

(
ĉ2
k

2θ
− b̂2

k

2q

)
1

M2,k

∂M2,k

∂θ
+ (2âk − r)

1

M2
2,k

∂M2,k

∂θ
= 0.

Let us now take the particular case where 2âk = r , so that

1

M2,k

∂M2,k

∂θ
= ĉ2

k

4θ(
ĉ2
k

2θ −
b̂2
k

2q )

,

which becomes infinite for values of θ such that θ→ qĉ2
k

b̂2
k

. The general case 2âk �= r

may present similar phenomena.

9This interpretation arises from observation that close to a point (p0, q0, θ0) the value function
behaves as

Vk  ∂Vk

∂p

∣∣∣∣
p=p0

(p− p0)+ ∂Vk

∂q

∣∣∣∣
q=q0

(q − q0)+ ∂Vk

∂θ

∣∣∣∣
θ=θ0

(θ − θ0).
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5 Concluding Remarks

In this paper we studied the optimal management of a commercial fishery which is
distributed over a finite spatial domain, is characterized by stock, congestion and
productivity externalities, and the fishery manager has concerns about model mis-
specification.

We solve this problem as a robust control linear quadratic distributed parame-
ter model. The linear quadratic approximation is formulated as a tracking problem
where stochastic dynamics indicating model uncertainty are linearized around a de-
terministic optimal path, and the control process aims at keeping the system close to
the optimal path. Harvesting rules are obtained as robust tracking rules which can be
used by the manager to set policy such as quotas on each site of the spatial domain.

An important result of our paper is the identification of spatial hot spots, which
are sites of special interest emerging from the interactions between concerns about
model uncertainty, spatial interactions and the structure of the fishery. In such hot
spots optimal robust regulation may be impossible and the inability to regulate is
extended to the whole domain (type I hot spot); regulation may lead to spatial non-
homogeneity in the harvesting rules, implying spatially differentiated quotas (type II
hot spots); or misspecification concerns may lead to very costly regulation, indicat-
ing excessive cost of robust regulation (type III hot spot).

These results although qualitative in nature provide insights to regulation of a
commercial fishery under model uncertainty and under explicit spatial interactions.
Future research may include solution of a linear quadratic approximation in the
sense of Magill approximations, instead of solution of the optimal tracking problem,
or attempts to characterize the solution of the full nonlinear problem.
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On the Effect of Resource Exploitation
on Growth: Domestic Innovation
vs. Technological Diffusion Through Trade

Francisco Cabo, Guiomar Martín-Herrán, and María Pilar Martínez-García

Abstract The economic growth in a developing country endowed with a natural
resource and with a resource-dependent economy can be based on its own invest-
ments in new technology. Conversely, it can rely on trade as a channel for technology
diffusion from a technologically advanced country. The existence, uniqueness and
stability of a sustainable growth path are proved under both assumptions. Our sec-
ond concern is on the resource curse hypothesis. When the developing country does
not export the natural resource but uses it as an essential input in the production of
a final good, resource bounty is not a curse. Resource abundance increases long-run
growth in the closed-economy scenario, and it is growth-neutral but consumption-
enhancing when technology is transmitted from abroad through international trade.

1 Introduction

A significant number of developing economies are linked to the extraction of natural
resources, which can be either exported or transformed in the productive process.
One of the main challenges for these economies is to achieve unlimited economic
growth with a finite natural-resource sector. The finite character of the resource sec-
tor refers to the fact that, although a renewable resource is considered, its availability
as a productive input at each time is bounded from above. The debate on the effect
of resource richness on the growth rate of the economy is closely connected to this
aim of sustainability. While resource abundance seems to slow economic growth
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down in many countries, others take advantage of this resource bounty to improve
their own growth rate (see, for example, the excellent surveys by van der Ploeg 2011
and Frankel 2012). The conditions that cause a natural resource to be a curse or a
blessing are at the core of our analysis. Moreover, our paper deals with the challenge
of sustainability of resource-dependent economies within a context of international
trade.

Since the 90s, authors like Grossman and Helpman (1991), Smulders (1995),
Bovenberg and Smulders (1995) and Elbasa and Roe (1996) among others, sug-
gest that the chances of achieving sustainable growth are critically dependent on
maintaining a steady flow of technological innovation, a conclusion that is roughly
consistent with the historical experience of industrialized countries. However, many
developing economies rely on underdeveloped, or even non-existent R&D sectors.

To understand the mechanism through which a developing economy endowed
with a renewable natural resource can attain sustainability, two models are studied.
A closed economy that invests in innovation and an open economy which imports
new technology from abroad. The first model follows the literature on endogenous
growth and the environment developed during the 90s. Investment in R&D is the
base for sustainable growth, although it may not completely explain the realities
of developing countries with a weak or null investment sector. The major source
of innovation in developing countries is not domestic but foreign R&D investment,
which can be transferred by international trade.1

However, most endogenous growth models that tackle environmental problems
study an isolated country and do not take into account trade relationships as a trans-
mission channel for economic growth.2 The technology transfer through interna-
tional trade is analyzed in the second model in this paper, where technological im-
provements occur in a technologically leading country as an increase in the number
of varieties of intermediate goods. These new varieties are adapted to the produc-
tion process in the developing economy, which buys them from their producers in
the leading country. Technology diffusion through international trade is presented
as the key to sustainability in industrializing economies. Given the conditions for
sustainable growth, the second question at stake is the effect of resource wealth on
the growth rate of the economy.

A large body of empirical work shows a negative relationship between resource
abundance and economic performance (see, for example, Gylfason 2001 and Sachs
and Warner 2001). However, history asserts that some countries have managed to
take advantage of their natural wealth and received a blessing. Many authors think

1Coe et al. (1997) reports that, in 1990, industrial countries accounted for 96 % of the world’s
R&D expenditure. Ninety percent of the world’s patents originate from countries like the United
States, Japan, Germany, France and the UK. The rest of the countries in the world are considered
technological followers. For a recent study see Coe et al. (2009).
2An exception is Cabo et al. (2005), where a natural resource extracted in one country is traded in
exchange for consumption goods. Although no technology is transferred through this trade chan-
nel, the consumption growth in the resource-dependent economy is a direct consequence of the
economic growth in the industrialized country.
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that the positive economic development of countries like Australia, Canada, Iceland,
United States, New Zealand and the Scandinavian countries was stimulated by their
resource wealth (see, for example, Stevens 2003; Mehlum et al. 2006 and references
therein). There is no single explanation of which conditions create a curse rather
than a blessing. Auty (2001), for example, cites several causes: structuralist policies,
Dutch disease, policy failure, inefficient investment and rent seeking. Recently, there
has been a growing evidence that institutions are a key element in avoiding the curse
(see, for example, Holder 2006 and Mehlum et al. 2006).

Within this debate, our model, which is to some extent based on Elíasson and
Turnovsky (2004), is in contrast to their conclusion of a resource curse. Within an
international trade framework, Elíasson and Turnovsky (2004) model a small open
economy in which the renewable resource is used to purchase imports of a con-
sumption good. They prove the existence of a sustainable growth path with produc-
tion being independent of the harvested resource. One of their main conclusions is
that resource abundance reduces the long-run growth rate. More labor is allocated
in the resource sector at the expense of less employment in the final output sec-
tor, and consequently, the long-run growth rate is shortened. This result is obtained
without invoking other explanatory variables given in the literature, such as rent
seeking, sub-optimal allocation of resources, terms of trade or political incentives
(see Stevens 2003; Papyrakis and Gerlagh 2004; Robinson et al. 2006).

In Cabo et al. (2008) the harvested resource is not exported, but used as an es-
sential input to produce an elaborated final consumption good, which constitutes
the exports of the developing economy. Two scenarios are compared depending on
whether innovation only occurs in the technologically leading country or also in the
resource-abundant developing economy. In either case resource abundance affects
the real exchange rate and hence consumption, however it has no effect on the long-
run growth rate. The idea that the natural resource is not a curse if it is transformed
before exporting, is empirically supported by Brunnschweiler and Bulte (2008). The
authors find a natural resource curse when considering primary export, but a re-
source blessing if resource wealth data do not take exports into account.

In the present paper the modelization of the technology diffusion through trade
is inherited from Cabo et al. (2008), giving entrance to a more general harvesting
function. Therefore, resource abundance does not affect the long-run growth rate of
a resource-abundant open economy which imports technology from abroad. More-
over, we also analyze the case of a closed economy which carries out innovative
activities, and which growth rate will be dependent on resource bounty.

This paper throws light on two of the main challenges faced by developing
economies. First, sustainable economic growth can be attained even if the country
does not invest in technological progress but innovation is imported from a techno-
logically leading country. Secondly, the growth rate of the economy does not nec-
essarily shrink with the resource wealth if the harvested resource is not directly ex-
ported but it is transformed into a final consumption good. Resource curse is turned
into a blessing when considering a closed developing country that carries out R&D
activities. Alternatively, resource abundance is growth-neutral when technology im-
provements are internationally traded from the technologically leader country.
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The rest of the paper is organized as follows. In Sect. 2, we present a closed econ-
omy endowed with a natural resource that also invests in technological innovation.
In Sect. 3, the economy does not carry out R&D activities, but relies on technol-
ogy diffusion through international trade. In both sections we study the existence,
uniqueness and stability of a steady-state equilibrium. We provide a sensitivity anal-
ysis of the steady-state equilibrium. In Sect. 4, we compare the long-run growth
rates and the consumer welfare obtained with domestic innovation and technology
diffusion through international trade. Section 5 gives our conclusions.

2 Sustainable Growth with Domestic Innovation

In this section we deal with a closed economy endowed with a stock of a renewable
natural resource, which is harvested and used as an essential input in the produc-
tion of final output, combined with labor and intermediate nondurable goods. The
total labor force is allocated between the harvesting of the natural resource and the
production of final output. Intermediate goods are invented and produced by mo-
nopolistic entrepreneurs. Population is assumed to be constant, L̄.

In the resource sector, the property rights associated with the natural resource are
equally distributed among identical consumer-owner agents. Each agent initially
owns a portion s0 of the natural resource.3 The net growth rate of each agent’s
resource share is given by its natural reproduction minus the harvesting, that is,4

ṡ = g(s)− h= g̃s(1− s/κ)− h, s(0)= s0, (1)

where s is the stock of the consumer-owned natural resource, g(s) describes its gross
reproduction rate of the logistic or Verlhust type (see, for example, Clark 1990) and
h is the rate of harvest. Parameters g̃ and κ denote the intrinsic growth rate and the
carrying capacity or saturation level of each agent’s resource share.

A representative consumer is also endowed with one unit of labor per unit of
time. At each time, the consumer supplies a fraction v of its labor to produce final
output and a fraction 1 − v to harvest its natural resource share, with v ∈ [0,1].

3Historically, the distribution of communal resources among the users is one of the solutions that
the economic literature has proposed to avoid the overexploitation of open-access resources. This
approach relies on an external authority, who distributes the property rights. However, researchers
have recently proved that private property rights may emerge internally as a result of individual
agents’ desire to avoid cost externalities. See Birdyshaw and Ellis (2007) and the real examples
therein. Cabo et al. (2012) analyze how the ownership and distribution of the exploitation rights
upon the natural resource may affect the sustainable growth rate for the two trading economies and
the resource conservation.

Although the distribution of property rights among users can be easily established is same cases,
like forestry, partitioning is unfeasible for other resources such as fisheries. Nevertheless, results
hereafter remain valid if the resource is managed by some institution like a fishers’ association or
cooperative that regulates the optimal exploitation of the resource.
4The time argument is eliminated when no confusion can arise.
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The harvesting of the resource h depends on labor and on the size of the renewable
resource (its stock). The harvesting function presents decreasing marginal returns to
the effort (in our case, labor) and the stock level. Thus, the per-capita harvest rate is:

h(v, s)= b(1− v)1−δsθ , b > 0, 0< δ < 1, 0≤ s ≤ κ, 0≤ θ ≤ 1. (2)

In particular, θ = 0 implies that harvesting is independent of the stock size; while
θ = 1, corresponds to the well-known Schaefer pattern. In this case, the harvest is
proportional to the stock of the renewable resource.5 In what follows we shall name
the harvest flow h, omitting the arguments v and s.

A representative consumer sells the extracted natural resource to final output
producers, who use it as a productive input. A consumer receives the income derived
from the exploitation of the resource, which is sold at a price ph, and a wage income
derived from its labor services in the final output sector, where w is the wage rate.
In addition, a consumer accumulates assets and receives financial interest income
from them. Thus, the per-capita budget constraint for a representative consumer is

ȧ = ra + vw+ phh− c, a(0)= a0, (3)

where a are the per-capita assets, r is the rate of return on assets, c is the per-capita
consumption of final good, and a0 is the initial amount of per-capita assets.

A representative consumer has to decide consumption, c, and the fraction of la-
bor, v and 1− v, employed either in the final-output production or in harvesting, to
maximize discounted utility:6

max
c,v

∫ ∞

0
ln(c)e−ρtdt, ρ > 0, (4)

subject to (1) and (3).7

The final output sector comprises a large number of identical firms. Output pro-
duction demands labor, natural resources and intermediate goods. Thus, the output-
production function of a representative firm is given by

Y =A(vL̄)1−α−β
N∑
j=1

Xα
j (hL̄)

β, A > 0, 0< α, β, α + β < 1, (5)

where N is the number of intermediate good varieties and Xj is the amount of the
j th type of intermediate goods, j ∈ {1, . . . ,N}. This is the standard production func-
tion with an increasing variety of inputs, (see, for example, Barro and Sala-i Martin

5The hypothesis θ = 0 is appropriate for forests or fish living close to the surface; whereas, θ = 1
is suitable for bottom-dwelling fish (see Elíasson and Turnovsky 2004 and references therein).
6Our results are upheld for any iso-elastic utility function. For the sake of simplicity we have
chosen the logarithmic expression.
7Under the assumption of perfect property rights, each consumer bears the full cost of their actions
and the resource is used more efficiently than under open-access.
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1999, Chap. 6). Additionally, the natural resource is a necessary factor for produc-
tion in (5). Output production has diminishing marginal productivity for each input
(vL̄,Xj ,hL̄), and constant returns to scale for all inputs taken together. The final
good sector is competitive and firms take prices as given. Therefore, the problem of
a representative firm in the final-good sector is given by

max
v,h,Xj ,j=1,...,N

A(vL̄)1−α−β
N∑
j=1

Xα
j (hL̄)

β −w(vL̄)−
N∑
j=1

pjXj − phhL̄, (6)

where pj is the price of intermediate good j and the price of the final output is
normalized to one.

Technological progress takes place in an innovative sector. In this sector there is
a changing number of firms, each of which monopolizes the production of a spe-
cific intermediate good. At a given point in time, the existing technology allows the
production of N varieties of intermediate goods. Technological progress takes the
form of an expansion in this number of varieties.8 Once invented, an intermediate
good of type j costs σ units of Y to produce. The monopolist sets the price pj , at
each date, to maximize instantaneous profits, πj = (pj − σ)Xj , taking the demand
function for the intermediate good derived from (6) as given.

The cost of inventing a new type of product is fixed at η times the production
cost, that is, ησ units of output Y . We assume free entry into the business of being
an inventor so, in equilibrium, the present value of the profits for each intermediate
good must equal ησ , that is,

ησ =
∫ ∞

t

πj e
−r̄(z,t)(z−t)dz, (7)

with r̄(z, t)= [1/(z− t)] ∫ z
t
r(u)du the average interest rate between times t and z.

2.1 Steady-State Equilibrium9

The economy faces a problem of environmental shortage when consumers harvest at
rates below the harvesting rate under an open-access regime. The following propo-
sition shows the fraction of labor that consumers devote to output production and to
harvesting in the case of an open-access natural resource.

Proposition 1 If the natural resource is an open-access resource, the representa-
tive consumer would allocate a fraction of labor voa = 1/φ, to output production

8Technology increases productivity in the final output sector. It does not, however affect the re-
source sector.
9The proofs of the propositions are available from the authors upon request.
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(and correspondingly, 1− 1/φ, to harvesting), where

φ = 1− α− δβ

1− α − β
> 1. (8)

Under open access consumers do not take into account the dynamics of the nat-
ural resource (1). They solve the maximization problem (4) subject to their budget
constraint given by (3). From the necessary conditions for optimality, the result im-
mediately follows. Consequently, a natural resource is scarce if v > voa = 1/φ, that
is, the harvesting rates are below hoa = b(1− 1/φ)1−δ , the open-access rate.

The maximization of consumers’ utility needs the standard Euler equation de-
scribing the evolution of per-capita consumption

ċ

c
= r − ρ. (9)

Firms maximize benefits by equalizing net marginal products to factor prices:

w = (1− α− β)
Y

vL̄
, ph = β

Y

hL̄
, Xj =

(
αA

pj

) 1
1−α

L̄v
1−α−β

1−α h
β

1−α . (10)

Taking the demand function for an intermediate good j as given in the third expres-
sion in (10), the monopoly that produces it maximizes profits at price pj = σ/α > σ .
Using this price in the demand we obtain

Xj =X =
(
A

σ

) 1
1−α

α
2

1−α L̄v
1−α−β

1−α h
β

1−α ,

Y =A(vL̄)1−α−βNXα(hL̄)β = σ

α2
NX.

(11)

Note that the amount of the intermediate good Xj is the same for all j ∈ {1, . . . ,N}
and depends on variables v and s. Using the first expression in (11) in (7) and dif-
ferentiating the latter with respect to t it follows that

r = 1

η

1− α

α
X = 1

η

1− α

α

(
A

σ

) 1
1−α

α
2

1−α L̄v
1−α−β

1−α h
β

1−α . (12)

Since the economy is closed to international asset exchange, total households’
assets, aL̄, equal the market value of the firms that produce the intermediate goods,
ησN . Taking into account (3), (10), (11) and (12), the dynamics of the number of
intermediate goods, N , is

Ṅ = 1

η

[
Y − cL̄

σ
−NX

]
, N(0)=N0. (13)

Definition 1 Given N0 and s0, an equilibrium consists of time paths for N , s, c
and v that maximize the utility of a representative consumer who is subject to (1)
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and (3), where w, ph, and X, are given by (10) and (11). A steady-state equilibrium
would be an equilibrium where all variables grow at constant rates (which could be
zero for some variables).

Note that v and s cannot grow indefinitely at a non-zero constant rate (they are
lower and upper bounded). The constancy of v and s implies that h and r are also
constant at a steady-state equilibrium. From (9), (10), (11) and (13), the following
proposition, which characterizes a steady-state equilibrium, immediately follows.

Proposition 2 If a steady-state equilibrium exists, along this path:

• s, v,h and r remain constant;
• Y, c,ph and w, all grow at the same rate as N .

A steady-state equilibrium can be seen as a sustainable growth path. In such a so-
lution, the economy will grow continuously, while maintaining a constant stock of
the renewable resource. Note that a steady-state equilibrium, as described in Propo-
sition 2, will exist if and only if variables v, s and c̃ = c/N remain constant. The
dynamics of these three variables are given in the following lemma.

Lemma 1 Any steady-state equilibrium for the model previously described corre-
sponds to a steady state of the following three differential equations:

.

c̃ = c̃

{
L̄

η

[
c̃

σ
−

(
1− α

α

)
α

1+α
1−α

(
A

σ

) 1
1−α

v
1−α−β

1−α h
β

1−α
]
− ρ

}
, (14)

v̇ =Ω(v)

{
Θ(v, s)+ (φv − 1)

.

c̃

c̃

}
, (15)

ṡ = g(s)− h(v, s), (16)

where c̃= c/N , φ is given in (8) and

Ω(v) = (1− α)v(1− v)

(1− α)(1− v)+ (1− α − β)(1− δv)(φv − 1)
,

Θ(v, s) =
[
ρ − g̃

(
1− 2s

κ

)
+ θ

1− α − β

1− α

ṡ

s

]
(φv − 1)− θ(1− v)

h

s
.

Expressions (14)–(16) immediately arise from the necessary conditions for an
interior solution of the consumer’s maximization problem (4) subject to (1) and (3),
taking into account (2), (10) and (13). The following proposition collects all the
hypotheses needed to guarantee the existence of a unique steady state.
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Proposition 3 The existence and uniqueness of a steady-state equilibrium with
c̃∗ > 0, 1/φ < v∗ < 1 and 0< s∗ < κ have been proven:10

• for θ = 1, under sufficient condition g̃ ≥ ρ;
• for θ = 0, under necessary and sufficient condition g̃ ∈ (ρ, g̃+), where

g̃+ = hoa

κ/2
+

√(
hoa

κ/2

)2

+ ρ2,

and hoa is the harvesting rate under an open-access regime.

When the stock of the resource does not affect harvesting, θ = 0, steady-state
values s∗ and v∗ can be explicitly found:

s∗ = g̃− ρ

2g̃
κ <

κ

2
, v∗ = 1−

[
(g̃2 − ρ2)κ

4g̃b

] 1
1−δ

. (17)

Thus, a necessary condition for the positivity of s∗ is g̃ > ρ, which also guarantees
v∗ < 1. That is, the intrinsic growth rate of the resource must be greater than the rate
of temporal discount, in order for a feasible interior steady state to exist.

Recall that we assume a scarce natural resource, i.e., we focus on equilibria with
a harvesting rate, h∗ below the open-access’ hoa = b(1− 1/φ)1−δ . This condition
is guaranteed if and only if g̃ < g̃+, for θ = 0, which also ensures v∗ > 1/φ.

When the stock of the resource linearly affects harvesting (i.e. θ = 1), a closed
form for the stock of the resource and the labor share in the final output sector at the
steady state cannot be found. However, the assumption g̃ ≥ ρ, ensures the existence
of a unique equilibrium with h∗ ≤ hoa .

The lack of complete stability is a typical property of balanced paths in en-
dogenous growth models when transversality conditions are satisfied (see Martínez-
García 2003). This is also the case for our model. The following proposition proves
conditional stability when θ = 0 or θ = 1 because the conditions in Martínez-García
(2003) are satisfied.

Proposition 4 The steady-state equilibrium is a saddle point with a one-dimensio-
nal stable manifold.

Below we shall concentrate on the particular cases θ = 0 and θ = 1, where the
existence, uniqueness, and saddle-point stability are proved.

The following proposition presents the responses of the steady-state equilibrium
values of the natural resource stock and of the labor allocated to each sector, to
changes in the environmental parameters. They can be easily obtained taking partial
derivatives in expressions (17), when θ = 0, and by implicit differentiation when
θ = 1.

10Transversality conditions together with the concavity of functions guarantee the optimality of
the unique steady-state equilibrium.
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Proposition 5 When a unique steady-state equilibrium exists, the stock of the re-
source, s∗, increases while the labor share in the final output sector, v∗, decreases,
with the intrinsic growth rate of the resource, g̃. Likewise, s∗ increases with the
carrying capacity, κ , while its effect on v∗ is negative for θ = 0 but is null for θ = 1.

A higher g̃ leads consumers to devote a larger labor share to the resource sector,
1− v∗, which pushes up harvesting. Nevertheless, since the resource grows faster,
this situation is compatible with a larger stock of the resource at the steady state.

The carrying capacity of the natural resource, κ , has a positive effect on the equi-
librium resource stock, s∗. Nevertheless, the effect of κ on the labor share in each
sector depends on the value of θ . When the stock of the natural resource does not
affect harvesting, θ = 0, a greater carrying capacity requires an increment in har-
vesting to maintain a constant resource stock, which requires a higher extraction
effort, 1 − v∗. However, when the stock of the natural resource does affect har-
vesting, θ = 1, the increment in κ also raises the stationary resource stock, s∗. The
increment in κ increases harvesting in the same proportion as the increment in s∗,
which renders unnecessary a higher extraction effort, 1− v∗. Thus, for θ = 1, the
labor share in each sector is unaffected by the carrying capacity.

From the consumption growth rate in (9) and the rate of return in (12), the growth
rate of the economy, γ , along a steady-state equilibrium is as follows:

γ = 1

η

1− α

α
X− ρ = 1

η

1− α

α
α

2
1−α L̄

(
A

σ

) 1
1−α

v∗
1−α−β

1−α h
(
v∗, s∗

) β
1−α − ρ. (18)

The following proposition presents the responses of the long-run growth rate of the
economy to changes in the cost of innovation and environmental parameters. The
results are immediate by taking into account (18) and the results in Proposition 5.

Proposition 6 The long-term growth rate of the economy, γ , decreases with η, and
increases with κ and g̃.

An increment in the cost of innovation, η, reduces the rate of return on assets for
investors, which lessens the growth rate of the economy.

As Eq. (18) states, the stock of the resource at the steady state, s∗, only affects
the growth rate through its effect on harvesting. Therefore, resource abundance, as
measured by the carrying capacity, κ , or by the intrinsic growth rate, g̃, influences
the economic growth rate in the long term through its effect on v∗, when θ = 0, or
on both v∗ and s∗, when θ = 1.

When θ = 0, a higher κ (or a higher g̃) reduces the labor share in the final output
sector, v∗, increasing the labor share in the resource sector, 1− v∗. The decrease in
v∗ has two opposite effects on the growth rate in the long term. On the one hand, a
direct negative effect on the growth rate in the long run. This is the effect in Elíasson
and Turnovsky (2004), where the extracted resource is traded to obtain foreign con-
sumption goods and harvesting has no effect on the production of final output. Then,
if the economy has access to a more bountiful natural resource, it will choose more
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consumption today, at the cost of slower growth in the long run. However, in our
model, harvesting the resource has a positive influence on the final-output produc-
tion. Thus, the decrease in v∗ associated with a higher κ (or a higher g̃) presents an
indirect effect on the growth rate: a larger labor share in the resource sector increases
harvesting, which is then used to augment the final-output production, which in turn
raises the economy’s growth rate. These two effects have opposite signs. Under open
access, consumers would choose the labor share, voa = 1/φ, where these two effects
exactly cancel out. However, the assumption of perfect property rights over the re-
source leads consumers to devote a lower share of labor to harvesting the resource,
h(v∗, s∗) < hoa , and consequently v∗ > voa . In this situation, the environmental re-
striction is forcing an overlarge labor force in final output and an underutilization
of the resource. Resource abundance relaxes the environmental restriction, and the
labor share in the final output sector moves down towards voa . The indirect effect of
a higher harvesting is stronger than the direct effect of less labor in the final output
sector. Thus, we can conclude that an economy that has access to a more bountiful
natural resource will grow faster.

When θ = 1, a larger intrinsic growth rate, g̃, lowers the labor share in the final-
output sector, and raises the labor share devoted to harvesting, which pushes extrac-
tion up. In addition, the increment in the stationary stock of the resource, s∗, which
is associated with a higher g̃, pushes extraction up further. Thus, the net effect of a
higher intrinsic growth rate in the economy’s growth rate is positive, as for θ = 0.
As for the carrying capacity, it has no effect on the labor share devoted to each sec-
tor. However, the stock of the natural resource, which now has a positive effect on
the growth rate, will be greater, leading to a higher growth rate.

It is easy to show that the effect on c̃∗ of changes in the environmental parameters
κ and g̃ is the same as that on the economy’s growth rate, γ . This therefore leads to
the following corollary:

Corollary 1 The steady-state equilibrium of consumption per variety of intermedi-
ate good, c̃∗, depends positively on η, κ , and g̃.

Since an increment in the cost of innovation, η, reduces the rate of return on
assets, consumers tend to increase their consumption with respect to investment,
augmenting the ratio of consumption per variety of intermediate good, c̃∗. More-
over, a more bountiful resource increases harvesting, and so, consumers attain a
larger income from their extraction activities in the resource sector, which increases
consumption and the ratio c̃∗.

3 Sustainable Growth with Technological Diffusion Through
Trade

Developing economies tend to rely on foreign innovation rather than on domes-
tic innovation as the source of technological development. Following this idea, we
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present a model of bilateral trade between a technological leading country (coun-
try L) and a country endowed with a renewable natural resource, which is a tech-
nological follower (country F ). We assume that final output producers in country F
import new intermediate inputs from country L, whereas consumers in the latter buy
final output produced in country F . This model is an extension of the two-country
endogenous growth model of Barro and Sala-i Martin (1999) (Chap. 8). We shall
see how, despite the fact that no technological investments are carried out in the
country endowed with the natural resource, the trade relationship with a technolog-
ical leader enables sustained economic growth that allows the conservation of the
natural resource. This possibility is also analyzed in Cabo et al. (2008).

We assume that the countries’ decisions determine pricing. This situation can
arise when one country is the only supplier and its counterpart, the only demander
of the exchanged goods. The terms of trade are determined by their actions when L
(resp. F ) is a representative economy of many clone technologically leading (resp.
follower) economies. We shall describe the problem each sector faces.

As in the model of the previous section, a representative consumer in country
F manages a natural resource whose net growth rate is given by (1)–(2). Since
no innovative activity exists in this country, and there is no international trade on
financial assets, consumers from country F do not accumulate assets. Thus, the per-
capita budget constraint for a representative consumer is

vwF + phh= cF , (19)

where wF is the wage rate and cF is per capita consumption in country F .
The only asset that this country’s consumers can hold is the ownership of the

natural resource. Thus, a representative consumer has to decide the consumption cF
and the fraction of labor, v and 1−v, employed either in the final-output production
or in harvesting, to maximize utility:

∫ ∞

0
ln(cF )e

−ρtdt, (20)

subject to (1) and (19).
Firms in country F import existing intermediate goods from country L. Final

output production presents the same functional form as (5):11

YF =AF (vLF )
1−α−β

N∑
j=1

Xα
Fj (hLF )

β.

Consumers of the innovating country consume, together with domestic final out-
put, a final good imported from country F . In contrast to consumers in country F ,
they accumulate assets in the form of ownership claims on innovative firms and

11Subscript F denotes variables corresponding to the follower country.



On the Effect of Resource Exploitation on Growth 255

receive financial interest from them. Thus, the per-capita budget constraint for a
representative consumer is

ȧL = raL +wL − cL − pF cLF , aL(0)= aL0, (21)

where aL is the per-capita assets, r is the assets-return rate,wL is the wage rate, cL is
the per-capita consumption of the domestic final good, and cLF is the per-capita
consumption of the good imported from country F at price pF . A representative
consumer has to decide the consumptions cL and cLF to maximize utility:

∫ ∞

0

[
ln(cL)+ ln(cLF )

]
e−ρtdt, (22)

subject to (21).12

We consider the price of the domestic final good as a numeraire, pL = 1. Conse-
quently, pF not only represents the price of the good imported from F , but also the
follower’s real exchange rate, i.e., the value of one unit of consumption imported
from country F in units of country L’s output. Production of final output by a rep-
resentative firm in country L is described by13

YL =ALL
1−α
L

N∑
j=1

Xα
Lj .

Production of intermediate goods is carried out in the leading country. This situ-
ation applies as long as intellectual-property rights are protected both domestically
and internationally. Once invented, an intermediate good of type j costs σL units
of YL to produce, while the innovator who produces this intermediate good obtains
pj unit of YL. For simplicity, we normalize σL = 1. The monopolist decides the
price pj to maximize instantaneous profits from sales to final-output producers in L
and F , given by πj = (pj − 1)(XLj +XFj ), where XLj and XFj are the demand
functions of intermediate good j in countries L and F , respectively.

As in the closed economy, the cost of creating a new intermediate is supposed to
be η times the cost of producing it, that is, η units of YL. However, an innovator must
pay a cost beyond the initial R&D outlay to transfer and adapt his product for use in
country F . This cost is represented by ν and is lower than η assuming that the inno-
vator is better suited than other entrepreneurs to the process of adapting a discovery
for use in other country. We assume also that the cost ν is low enough to ensure
this adaptation is immediately worthwhile. Once more, the free-entry assumption

12Our model assumes that families in country L consume final output imported from country F .
However, families in country F do not import consumption goods from abroad. None of the prop-
erties and conclusions of the paper would be affected if consumers in country F are allowed to
import final output.
13Subscript L denotes variables corresponding to the leading country.
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equates the present value of the profits for each intermediate to η+ ν,

η+ ν =
∫ ∞

t

πj e
−r̄(z,t)(z−t)dz. (23)

3.1 Steady-State Equilibrium

By solving the profit-maximization problem of firms in the final output sector in
country F we obtain that net marginal products are equated to factor prices:

wF = (1− α − β)
YF

vLF
, ph = β

YF

hLF
, XFj = vLF

(
αAF

pFj

) 1
1−α(h

v

) β
1−α

,

(24)
with pFj the price paid for the intermediate goods to the leading country’s en-
trepreneurs.

A firm producing final-output in country L solves its profit-maximization prob-
lem to yield

wL = (1− α)
YL

LL
, XLj = LL

(
αAL

pj

) 1
1−α

, (25)

where pj is the price of intermediate input j in this country.
The maximization problem (21) and (22) leads to the necessary condition for an

interior solution

cL = pF cLF (26)

and the following consumption growth rates

ċL

cL
= r − ρ,

ċLF

cLF
= r − ρ − ṗF

pF
. (27)

The growth rate of the domestic-good consumption is again as in (9), with a pos-
sibly different value for the interest rate, r . The difference between this rate and
the growth rate of the follower’s real exchange rate gives the growth rate of the
imported-good consumption.

Given the demand functions for intermediate good j in countries F and L in
(24) and (25), the firm that produces it solves its profit-maximization problem to
yield pj = 1/α > 1. Then, pFj = 1/(αpF ), and consequently, the amount of every
intermediate in each country is

XLj =XL = LLA
1

1−α
L α

2
1−α , XFj =XF = LF (pFAF )

1
1−α α

2
1−α v

1−α−β
1−α h

β
1−α .

(28)
Note that while XL is constant, the quantity XF depends on pF , v and h (which is,
in turn, a function of v and s).
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Using (28) in (23) and following the same reasoning carried out for the closed
economy, we obtain the rate of return on innovation and foreign investment- that is,
adaptation of products for use in country F—that would be given by

r = 1

η+ ν

1− α

α
(XL +XF ). (29)

Investment returns in the technologically leading country are linked to the mo-
nopolistic benefits in the intermediate-goods sector. If we consider an economy that
is closed to international asset exchange, total households’ assets, aLLL, are equal
to the market value of the firms that produce these intermediate goods, (η + ν)N .
From aLLL = (η + ν)N and taking into account (25), as well as the relationship
α2YL = NXL, and the dynamics of the assets in (21), the dynamics of N is ob-
tained:

Ṅ = 1

η+ ν

[
YL − (cL + pF cLF )LL −N

(
XL − 1− α

α
XF

)]
, N(0)=N0.

As we will show, the permanent increment in this number fuels production growth
in the final-output sector, not only in the technologically leading country, but also in
the follower, without reducing the stock of the natural resource.

Before defining an equilibrium for the two trading economies described above,
let us consider the problem to be solved in each country. The problem for the leader
country, PL: a representative consumer of country L chooses cL and cLF to maxi-
mize (22) subject to (21). The salary wL and the rate of return r will be given by
(25) and (29). In a symmetric fashion, the problem for the follower country, PF:
a representative consumer of country F chooses v to maximize (20) subject to (1)
and (19). The wage rate, wF , and the price of the resource, ph, will be given by (24).

The price, pF , is determined by equating the value of the final good traded from
F to L, to the value of the intermediate goods sold from innovators in L to producers
in F :

LLpF cLF = pjNXF . (30)

Definition 2 The equilibria of the model are such that given N0 and s0, and consid-
ering time paths for N , s, cL, cLF and v, problems PL and PF are solved and pF
is endogenously determined from Eq. (30).

Below we concentrate exclusively on the steady-state equilibria. Following the
same reasoning as in Proposition 2 it can be shown that the behavior of the different
variables along a steady-state equilibrium is characterized as follows.

Proposition 7 If a steady-state equilibrium exists, along this path,

• v, s, h, pF and r remain constant;
• YL, YF , cL, cLF , cF , ph, wL, and wF grow at the same rate as N .
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The steady-state equilibrium corresponds to a constant growth path in the leading
country. Furthermore, although the follower country does not invest in technological
improvements, the trade relationship with the leader allows a sustainable growth
path in this country. Both trading economies grow at the same constant rate.

As in Sect. 2, the steady-state equilibrium corresponds with a steady state of
variables c̃L ≡ cL/N , v and s. Following the same reasoning as in Lemma 1, ex-
pressions (31)–(33) can be obtained from the necessary conditions for an interior
solution of the consumer’s maximization problems (20) and (22).

Lemma 2 Any steady-state equilibrium for the trade model described by the dy-
namic problems for countries L and F , corresponds to a steady state of the follow-
ing three differential equations:14

.

c̃L = c̃L

{
1

η+ ν

[
2LLc̃L − (1− α)LLA

1
1−α
L α

2α
1−α

]− ρ

}
, (31)

v̇ =Ωoe(v)Θoe(v, s), (32)

ṡ = g(s)− h(v, s), (33)

where

Ωoe(v) = v(1− v)

1− v + (1− δ)v(φv − 1)
,

Θoe(v, s) =
(
ρ − g′(s)+ θ

ṡ

s

)
(φv − 1)− θ(1− v)

h(v, s)

s
.

Notice that we can study the existence of the steady state by isolating the two
last dynamic equations, which is equivalent to the system solved in Proposition 3.
Moreover, the negative sign of the determinant of the Jacobian matrix associated
with the system ensures the saddle-point property.

Proposition 8 Under the conditions in Proposition 3, there exists a unique steady-
state equilibrium with c̃∗L > 0, 1/φ < v∗ < 1 and 0 < s∗ < κ . Furthermore, values
v∗ and s∗ coincide with those obtained for the closed economy. The steady-state
equilibrium is a saddle point with a one-dimensional stable manifold.15

We should note that the steady-state values of the stock of the resource, s∗, and
the labor share in the final output sector, v∗, are solutions of the same equation
system as those obtained for the closed economy. Thus, the effect of changes in
the carrying capacity and in the intrinsic growth rate, as collected in Proposition 5
remains valid. However, the effect of resource abundance on the growth rate is not

14From now on superscript oe denotes open economy scenario.
15Transversality conditions together with the concavity of functions guarantee the optimality of
the unique steady state equilibrium.
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the same. The reason is the follower’s real exchange rate, which has a significant
influence on the economic-growth rate, and is determined by the balanced-trade
condition (30) in the case of open economies.

Proposition 9 When a unique steady-state equilibrium exists, the follower’s real
exchange rate along this equilibrium, p∗F , increases with η and ν; and, it decreases
with κ and g̃.

The previous result is directly obtained from the expression of p∗F as a function
of v∗, s∗ and the parameters. This expression can be explicitly obtained from (30),
(26), (28) and the expression of the steady-state value c̃∗L. An increment in either
the cost of innovation, η, or the cost of adaptation, ν, implies a reduction in the
rate of return on assets for investors in the leading country, r . Lower returns lead
consumers to increase their consumption (domestic and imported) with respect to
investment, augmenting the ratio of foreign consumption per variety of intermediate
good, c̃LF = cLF /N , in the leading country at the steady state. As long as η and ν
do not affect the demand for intermediate inputs in F , the bilateral trade equilibrium
leads to a gain for the follower’s real exchange rate, p∗F .

An increment in either the carrying capacity, κ , or the intrinsic growth rate, g̃,
leads consumers in the follower country, who own the resource, to reduce the labor
share in the final output sector in favor of a higher harvesting, which pushes up the
final-output production. The second effect is stronger both when s∗ does not affect
harvesting (θ = 0), and when the increment in s∗ further fuels harvesting and final-
output production (θ = 1). A higher final-output production in the follower country
requires higher imports of intermediate inputs. As long as κ and g̃ do not affect the
demand for foreign consumption in the leading country, the equilibrium in bilateral
trade leads to a drop in the follower’s real exchange rate.

These changes in the follower’s real exchange rate may also affect consumption.
The next proposition can be easily shown and studies the effects upon consumption
per variety of intermediate good, along the steady-state equilibrium.

Proposition 10 When a unique steady-state equilibrium exists, along this equilib-
rium, c̃∗L, c̃∗LF and c̃∗F , (with c̃i = ci/N, i ∈ {L,LF,F }) increase with η and ν.

An increment in κ or g̃ would increase c̃∗LF and c̃∗F , while c̃∗L remains constant.

As previously explained, an increment in either η or ν leads consumers in the
leading country to increase their consumption (domestic and imported) with respect
to investment. Therefore, η and ν have positive effects on c̃∗L = c∗L/N and p∗F , which
reduces imported consumption in country L. This reduction cuts down, but does not
fully offset the rise in c̃∗LF = c∗LF /N .

As long as η and ν do not affect the demand for intermediate inputs in F , their
effect on consumer income in this country is null. However, η and ν lead to a gain in
the follower country’s real exchange rate, p∗F , increasing its income and consump-
tion, c̃∗F .
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The relative price for the follower country drops with κ and g̃, increasing the
consumption of imported goods in the leading country, as stated in Proposition 10.

The effect of resource bounty on the consumption per variety of intermediate
good in the follower country, c̃∗F , is twofold. On the one hand, a higher κ or g̃
increases harvesting, h(v∗, s∗), and so, consumers attain larger incomes from their
extraction activities. Conversely, resource abundance also means a lower relative
price for F , pushing down net revenues from bilateral trade. The first effect, which
boosts consumption in F , is greater than the negative effect of a lower real exchange
rate.

Finally, the next proposition states the long-term growth rates for open econo-
mies and shows the results of the sensitivity analysis.

Proposition 11 Along a steady-state equilibrium, the economies in both the tech-
nological-leader and -follower countries grow at the rate given by

γ oe = (1+ α)

[
(1− α)α

2α
1−α

2(η+ ν)
LLA

1
1−α
L − ρ

]
.

γ oe decreases with η and ν. Furthermore, γ oe is independent of κ and g̃.

An increment in the cost of innovation, η, or the cost of adaptation, ν, reduces
the net benefits of innovators and then the rate of return on assets for investors in the
leading country, r . Thus, by the usual definition of the growth rate presented in (27),
the negative effect on γ oe follows.

The resource bounty, described either by the carrying capacity or the intrinsic
growth rate, has no effect on the growth rate of open economies.

Resource bounty fuels final-output production in country F . A higher final-
output production requires more imports of each type of intermediate input. How-
ever, resource bounty lessens the real exchange rate, pF , pushing down the imports
of intermediate goods in country F . This negative effect exactly compensates for
the previous pressure to increase the import of intermediates to maintain the value
of consumption imports in L invariant, p∗F c̃∗LF = c̃∗L. Since resource bounty has no
influence on the amount of intermediate goods traded, neither does it affect the rate
of return in L or the growth rate of both countries. Empirical evidence supports this
result (see, for example, Evans 1996).

4 Domestic Innovation vs. Technological Diffusion Through
Trade

We have proved that both domestic innovation and technological diffusion through
trade with a leading country (TDT hereafter) allow sustainable economic growth
in a country that is endowed with a renewable natural resource that has a limited
regeneration rate and a bounded carrying capacity. The main question asked in this
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section is whether the country is better off when innovation is carried out within
its borders or when technology is imported from abroad. This section compares the
long-run growth rates and the representative consumer’s consumption and utility
under both scenarios.

In the case of two open economies with TDT, innovators in the leading country
pay one unit of YL to produce an already-invented intermediate good. If there were
inventors in the follower country, we assume that they would face the same produc-
tion cost, that is, one unit of YL, or equivalently, 1/p∗F units of the good produced
in this country, YF . Thus, to compare the domestic-innovation and TDT scenar-
ios, parameter σ equates 1/p∗F in the former. Moreover, for comparison purposes,
L= LF , A=AF , and thus, X(v∗, s∗)=XF (v

∗, s∗).

Proposition 12 The long-run growth rate under domestic innovation, γ , is higher
than that under TDT, γ oe, if and only if ν/η >XL/XF (v

∗, s∗).

From Eqs. (12) and (29), the rates of return on assets under domestic innovation
and under TDT coincide if and only if XF (v

∗, s∗)/η= [XL+XF (v
∗, s∗)]/(η+ ν).

That is, for each intermediate good, the employed amount over the cost of innova-
tion in the domestic scenario matches the employed amount over the costs of inno-
vation and adaptation under TDT. Under this condition, the return to asset holders is
the same under both scenarios. Since this rate of return determines the growth rate
of consumption both under domestic innovation in (9) and under TDT in (27) the
economies grow at the same rate.

Proposition 12 shows that the higher the cost of adaptation in terms of the cost of
innovation, the stronger is the incentive to switch from TDT to domestic innovation.
Equivalently, the greater the amount of each intermediate good in the country that
has to decide whether to innovate or to import intermediate goods from the leading
country, the stronger is again its incentive to innovate.

Corollary 2 For an open economy, the shift from TDT to domestic innovation en-
hances the long-run growth rate if the ratio ν/η is not lower than 2α/(1 − α).
Conversely, the long-run growth rate decreases if the output elasticity of the inter-
mediate good is sufficiently large, specifically, α ≥ 2/3.

Corollary 2 establishes two sufficient conditions to ensure that it is more (or less)
profitable for the economy to innovate rather than to import new intermediate goods.
The economy grows faster with domestic innovation if the cost of adaptation with
respect to the cost of innovation surpasses a lower bound, which depends positively
on the output elasticity of the intermediate goods, α. Since ν < η this first sufficient
condition can only occur if α < 1/3, and it is more likely the smaller α gets. The
smaller the output elasticity of the intermediate goods, the less beneficial it is to im-
port them from abroad. Conversely, domestic innovation slows down growth when
the output elasticity of the intermediate good is large enough.

Resource bounty affects the economic growth rate and the consumption per va-
riety of intermediate goods differently under domestic innovation and under TDT.
These effects are collected in the two propositions below.
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Proposition 13 A switch from TDT to domestic innovation leads to a greater con-
sumption per variety of intermediate goods at the steady state. This increment is
larger the more abundant the natural resource (the lower the follower’s real ex-
change rate).

To know whether resource wealth is or it is not an incentive for an economy to
switch from TDT to domestic innovation, we need to analyze its effect on the growth
rate of the number of these varieties.

Proposition 14 If the long-run growth rate is greater when technology is traded
from abroad, γ < γ oe , this gap is shortened by resource abundance. Conversely,
resource abundance will widen the gap if the long-run growth rate is greater under
domestic innovation.

In consequence, resource abundance either makes more profitable domestic in-
novation, or makes it less attractive to import the technology developed abroad.

5 Concluding Remarks

For a country that is endowed with a natural resource and that has a resource-
dependent economy, two models have been analyzed depending on whether the
economy invests in new technology or imports technology developed abroad. The
first concern of the paper is to analyse the sustainability of the economic growth,
in both models. Furthermore, we have focused on the effect of resource abundance
on the growth rate of the economy, the follower’s real exchange rate, the resource
stock, and the consumers’ welfare along the balanced path.

Our findings are compared for the two scenarios of domestic innovation and tech-
nological diffusion through trade. Under both scenarios, we prove the existence,
uniqueness and saddle-point stability of a steady-state equilibrium that allows sus-
tained economic growth, while maintaining the natural-resource stock constant.

The results contest the literature of the resource curse. It differs from the nega-
tive relationship between an economy’s resource wealth and its long-term growth
rate, established by Elíasson and Turnovsky (2004). In their model, the stock of the
resource does not influence extraction, and the extracted resource is used to pur-
chase imports of a foreign consumption good. In our model, the natural resource
is an essential input in the production of a final good, and technological innovation
enhances its productivity. In this study we assert that if technological improvements
enhance the resource returns on income, the economy will avoid the resource curse.
The resource curse turns into a blessing under domestic innovation; and the resource
wealth is growth-neutral but consumption-enhancing under TDT.

The first model assumes a resource-dependent economy that develops its own
R&D sector. Resource wealth, measured either by the carrying capacity or the intrin-
sic growth rate, enhances the long-run growth rate of the economy. A more bountiful
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natural resource also increases the consumption per variety of intermediate good.
Both effects lead to a higher consumer welfare.

In the second model, the economy endowed with the natural resource can obtain
new technology from abroad. A technologically leading country invests in techno-
logical innovation, which is exported to the technological follower. To the best of our
knowledge, this is one of the first attempts to simultaneously tackle trade, technol-
ogy transfer and natural-resource management, in the context of endogenous growth
economies. Our approach allows us to study the existence of sustainable growth in
some economies of developing countries, which are linked to the extraction of a
natural resource, and with an underdeveloped or non-existent R&D sector.

Our results prove that technological innovation in the leading country guarantees
sustainable economic growth in both countries. The diffusion of technology through
trade permits the reconciliation of unlimited economic growth with bounded natural
resources in developing countries.

For open economies, a more bountiful natural resource reduces the real exchange
rate of the country owning the natural resource, canceling out the positive effect on
the growth rate and making growth independent of the resource wealth. Empirical
evidence in Evans (1996) supports this result.

Consumption per variety of intermediate good increases with resource wealth
in the follower country. This abundance also affects consumption in the leading
country, where an increment in imports is associated with lower real exchange rate
in the follower.

The adaptation and innovation costs, and the amounts of intermediate goods em-
ployed in each country establish a condition that determines if the long-run growth
rate is larger under domestic innovation or TDT. The better the economy is supplied
with natural resources, the greater is the increment (resp. the lower the decrement) in
welfare associated with a change from TDT to domestic or a non-dependent policy
of technology innovation. Thus, the incentive to carry out R&D investment activities
is strengthened by resource bounty.
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Forest Management and Biodiversity
in Size-Structured Forests Under Climate
Change

Renan Goetz, Carme Cañizares, Joan Pujol, and Angels Xabadia

Abstract Climate change is threatening biodiversity conservation at a global scale,
urging the need for action in order to prevent current and future losses. In forestry,
the consideration of some stand features such as requiring a certain volume of dead-
wood and/or large trees as a part of the management regime may help to preserve
and enhance biodiversity. However, it is likely to lead to a decrease in the benefits
obtained from timber sales. This chapter presents a bioeconomic model that allows
the optimal selective logging regime of a size-distributed forest to be determined,
while taking climate change and biodiversity into account. It analyzes to what ex-
tent structural targets related to biodiversity affect the optimal forest management
regime and the profitability of forests. For this purpose, an empirical analysis under
various climate change scenarios is conducted for two diameter-distributed stands of
Pinus sylvestris in Catalonia. The results show that the costs of biodiversity conser-
vation in terms of reduced profitability can be significant, and augment with climate
change.

1 Introduction

The effects of climate change on forests have been analyzed over the last 20 years.
Initially academic studies focused on changes in forest growth and its economic
consequences (Solberg et al. 2003; Perez-Garcia et al. 2002; Sohngen et al. 2001;
Shugart et al. 2003). Soon this effort was widened by also looking at the im-
portance of carbon sequestration in forest and agriculture to mitigate climate
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change (UNFCCC, http://unfccc.int/essential_background/items/6031.php accessed
28.02.2013). The interest is based on the fact that biological carbon sequestration
can be considered as a policy option to reduce the impact of climate change. To
evaluate its competitiveness with policy options outside the land-use sector, most
studies aimed to determine the cost of forest carbon sequestration. The specification
of these costs allows the cost of very different climate change mitigation policies to
be compared (Alig et al. 2002; Murray et al. 2005; White et al. 2010).

Over the last ten years, however, the predominant focus on timber and forest car-
bon sequestration has been abandoned. At the international level for example the
United Nations Forum of Forests, UNFF, adopted a multi-year program of work
(2007–2015) which centers its interest on the forest ecosystem with respect to eco-
nomic and biological parameters. More specifically it calls for sustainable forest
management in the presence of climate change and it additionally aims for the con-
servation of biodiversity. The European Union forest policy also reenacted this shift
of paradigm. In 2006 the European Union Commission approved the Forest Action
Plan (EU 2006) which provides a coherent framework for forest-related initiatives at
European Union level. The different formulated key actions bring together aspects
such as competitiveness of the forest sector, compliance with international obliga-
tions on climate change mitigation (UNFCCC 1997, Kyoto protocol) and preserva-
tion of biodiversity. To respond to these different demands all at the same time it
is necessary to model this complex decision making problem by taking account of
sustainability and the multifunctional role of the forest.

The mere maximization of timber benefits has resulted in clear-cutting becoming
the prevailing logging technique in many regions of the world. Traditionally, forest
economists determined the optimal rotation period of the forest stand with the Faust-
mann formula (Conrad and Clark 1987). However, apart from timber, forests have
a multifunctional role, for instance they are a source of important by-products such
as mushrooms or cork (Croitoru 2007) and present scenic and recreational values
(Scarpa et al. 2000). Likewise, a diversified size structure of trees and canopy is the
basis for biological diversity (Whittam et al. 2002) as it provides habitat for a wide
range of species (Doyon et al. 2005; Sawadogo et al. 2005). Finally, forests also
provide important environmental services, such as protection of floods, avalanches
and landslides, the enhancement of the water buffering capacity and the sequestra-
tion of carbon (van Kooten and Sohngen 2007). If the multifunctional role of forests
were taken into account, clear-felling would most likely not be the optimal logging
regime.

Responding to social demand, the literature has begun to study the adoption of
management regimes which take the multifunctional role of forests into account.
Two prominent examples of these different management regimes are modified clear-
felling known as green-tree retention (GTR) and selective-logging (Koskela et al.
2007; St-Laurent et al. 2008; Tahvonen et al. 2010). Summerville and Crist (2002)
for instance, analyzed the effects of timber harvest on the presence of Lepidoptera
(order of insects including moths and butterflies) and found that the diversity and
presence of these species were significantly lower in clear-cut stands, but were
identical between selectively logged and unlogged stands. Rosenvald and Lõhmus

http://unfccc.int/essential_background/items/6031.php
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(2008) reviewed a large number of studies to determine the effect of different man-
agement regimes on biodiversity. They found that GTR improves the habitat for a
number of species, but the selective logging regime seems to preserve biodiversity
to a larger extent. Thus, a selective-logging regime is especially indicated for stands
with species that have a high biodiversity value and poor survival rate under GTR.

In this chapter we present a theoretical model to determine the optimal selective-
logging regime of a size-distributed forest under changing climatic conditions when
biodiversity conservation is taken into account. The law of motion of the economic
model is governed by a partial integrodifferential equation that describes the evo-
lution of the forest stock over time. Given the complexity of the problem, it is not
possible to obtain an analytical solution. To solve the problem numerically we em-
ploy a technique known as the “Escalator Boxcar Train”, previously employed by
Goetz et al. (2008, 2011).

The empirical part of the chapter determines the selective-logging regime that
maximizes the discounted net benefits from timber production of a stand of Pinus
sylvestris (Scots Pine), and compares it with the optimal selective-logging regime
when biodiversity is accounted for. The results show that the costs of biodiversity
conservation in terms of reduced profitability can be significant when stringent tar-
gets are implemented. Moreover, we found that these costs are accentuated by cli-
mate change. Our results show that targeting biodiversity in terms of deadwood vol-
ume and large trees is substantially cheaper in mature stands than in young stands.
Hence, it is important to determine the link between the chosen indicators for bio-
diversity and the type of forest in order to determine the costs of biodiversity.

The chapter is organized as follows. The next section describes the features of
the bioeconomic model and explains the different components of the biological
processes. Section 3 presents the empirical study which determines the optimal
selective-cutting regime of two particular stands, and conducts a sensitivity analysis
of the previous results with respect to various biological parameters. The chapter
closes with a summary and discussion of the results.

2 Bioeconomic Model

In order to specify the economic model, one needs to characterize the underlying
biological model that describes the dynamics of the forest. The description of the
evolution of the stand is quite brief; a more detailed explanation can be found in
Goetz et al. (2010).

2.1 Stand Dynamics

In forest sciences the size of a tree is usually measured by the diameter at breast
height, that is, the diameter of the trunk at height of 1.30 meters above the ground.



268 R. Goetz et al.

Given this definition, time, denoted by t, and diameter, denoted by l, are incorporated
as the domain of the control and state variables. The lower boundary of the diameter
domain, l0, indicates the diameter of the seedlings and the upper boundary of the
domain, lm, can be interpreted as the maximum diameter a tree can reach under
perfect environmental conditions. It is assumed that a diameter-distributed forest can
be fully characterized by the number of trees and by the distribution of the diameter
of the trees. In other words, the spatial distribution or particular location of the trees
is not accounted for. It is assumed that all individuals have the same environmental
conditions and the same amount of space. Moreover, given that the diameter of a
tree lies in the interval [l0, lm), and that the number of trees is sufficiently large, the
forest can be represented by a density function. This function is denoted by x(t, l)
and indicates the population distribution with respect to the structuring variable, l,
at time t. Thus, the number of trees in the forest at time t is given by

X(t)=
∫ lm

l0

x(t, l)dl.

In order to model the dynamics of the forest, the processes of growth, reproduc-
tion and mortality are determined in the following paragraphs; where the influence
of the individual tree on the vital functions of other individuals (intra-specific com-
petition) is taken into consideration.

In order to express the biotic or abiotic factors which influence the life cycle of
the individual, biologists use the term environment. The maximum height of a tree
is determined only by its genetic information. However, its diameter is a function of
time and environmental conditions.

Let g(E(t, l), l) define the change in diameter of a tree over time as a function
of its current diameter, and of a collection of environmental characteristics, E(t, l),
which affect the individual life cycle. In a context where the atmospheric and soil
conditions are given, and in the absence of diseases and pests, these characteristics
are given by the local environmental conditions of the tree, and by the pressure
of competition between trees from the same stand for space, light and nutrients.
Since our model does not consider the exact location of each tree, E(t, l), measures
exclusively the intra-specific competition. Thus, the change in the diameter of a
single tree over time is given by

dl

dt
= g

(
E(t, l), l

)
.

The instantaneous death rate is denoted by μ(E(t, l), l). It describes the rate at
which the probability of survival of a tree with diameter l, given the environmental
characteristics E(t, l), decreases with time.

Finally, as far as reproduction is concerned, we assume assisted natural regen-
eration.1 The seedlings with diameter l0 are the result of natural reproduction and

1Assisted natural regeneration (ANR) is a cost-effective regeneration method that facilitates forest
growth. It is based on the natural regeneration of forest trees, and aims to accelerate natural succes-
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posterior selection for upgrowth by the forest manager. Thus, the control variables
of the model, u(t, l) and p(t, l0), denote the density of cutting in time t with di-
ameter l, and the flow of trees selected for upgrowth in time t with diameter l0,
respectively.

These processes allow us to model the forest dynamics based on the equations
described by de Roos (1997), and Metz and Diekmann (1986). It can be modeled
as:

∂x(t, l)

∂t
+ ∂(g(E(t, l), l)x(t, l))

∂l
=−μ(E(t, l), l)x(t, l)− u(t, l). (1)

2.2 Biodiversity Considerations

The Convention on Biological Diversity defines biodiversity as the variability
among living organisms from all sources, including diversity within genes, between
species and of ecosystems. In this study we focus on the second type. According
to the literature, biodiversity of forest ecosystems is measured either directly, by
the number of species for a given territory, or indirectly, by assessing the presence
of different factors that favor biodiversity (Norddahl-Kirsch and Bradshaw 2004;
Torras and Saura 2008; Mäkelä et al. 2012).

Within the indirect factors, the volume of deadwood accumulated in the for-
est ecosystem, and the number of large-diameter trees are considered fundamen-
tal for biodiversity (Harmon et al. 1986; McComb and Lindenmayer 1999; Nils-
son et al. 2001). Deadwood, including fallen trees and standing dead trees, is
of vital importance for the survival of many different species. It has also been
proposed under the initiative “Streamlining European Biodiversity Indicators”
(http://biodiversity.europa.eu/topics/sebi-indicators accessed 03.01.2013) which is
supported by, among others, the United Nations Environmental Program, the Euro-
pean Environmental Agency and the European Commission. Steele (1972) stresses
that 20 % of animal species associated with wood are associated with deadwood.
For instance, wood-consuming insects which in turn are the prey for insectivorous
birds. Bütler et al. (2004) point out that deadwood is essential for the development
of the three-toed woodpecker. Brin et al. (2009) found significant correlations be-
tween the volume of deadwood and the variety and number of saproxylic beetle
species. Moreover, deadwood also allows, among other things, the development of
flora such as lichens and mosses (Ódor et al. 2006; Moning et al. 2009).

Besides deadwood, high and old trees also provide important ecological func-
tions. They offer birds a diverse and abundant supply of natural cavities in the trunk

sion by removing or reducing barriers, such as intra-specific competition, and forest disturbances
(Shono et al. 2007). We assume that the ingrowth of trees is sufficiently large, and thus the effect
of ANR is limited to obtaining the optimal number of trees. Although it represents a simplification,
the effect is not decisive since insufficient ingrowth could be resolved through enrichment planting,
that is, by planting additional trees to reach the desired number of trees.

http://biodiversity.europa.eu/topics/sebi-indicators
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and branches for nesting and refuge (Camprodon et al. 2008; Vaillancourt et al.
2008). Old trees also accommodate a great diversity of mycorrhizae, which are ab-
sent or very scarce in younger trees. In the case of Scots pine, for instance, the
cavities are normally found in trees older than 150 years. Since trees are typically
cut within the range of 80–120 years, most managed forests do not provide these
habitats for birds.

The volume of deadwood and the number of old trees are also employed as indi-
cators in the ongoing Fourth National Forest Inventory to determine the status of the
biodiversity of Spanish forest ecosystems. For these reasons, we will focus on these
two structural elements as indicators for biodiversity in forest ecosystems. In par-
ticular we consider trees as old once their diameter at breast height exceeds 50 cm,
since they start presenting cavities (Alberdi et al. 2005). For the sake of brevity we
will denote these trees as large-diameter trees throughout the chapter.

The most immediate approach to introduce biodiversity in the economic model
would be to express the social benefits of biodiversity in economic terms and in-
clude them in the objective function of a mathematical optimization problem. The
resulting solution of the optimization problem would determine the optimal struc-
ture of standing and dead trees, and of young and old trees. Given the complexity
and vagueness of the concept of biodiversity, it becomes very difficult to define a
function which expresses biodiversity in economic terms.

Since the former approach is not feasible, an alternative option is to include bio-
diversity in the economic problem in the form of constraints. In other words, we
establish a minimum requirement level for the indicators of biodiversity which the
forest manager has to meet. In this way one does not need to express biodiversity in
economic terms. Instead, one can identify the difference between the timber benefits
obtained by the optimal logging regime without restrictions and with restrictions.
These constraints require a minimum volume of deadwood and a minimum number
of large-diameter trees.

2.3 The Decision Problem of the Forest Manager

We assume that the forest is privately owned and managed over a planning horizon
of T years. Using the previously defined components of the model, the decision
problem of the forest owner to maximize private net benefits from timber production
when biodiversity is not considered can be stated as:

∫ T

0

∫ lm

l0

B
(
x(t, l), u(t, l)

)
e−rt dldt −

∫ T

0
C
(
p(t, l0)

)
e−rt dt

+
∫ lm

l0

ST
(
x(T , l)

)
e−rT dl, (2)

subject to (1) and

g
(
E(t, l0), l0

)
x(t, l0)= p(t, l0), (2a)
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x(t0, l)= x0(l), (2b)

p(t, l0)≥ 0, (2c)

u(t, l)≥ 0, (2d)

where r denotes the discount rate. The function B(x,u)e−rt presents the discounted
net benefits of timber production. It depends not only on the amount of logged trees
but also on the amount of standing trees so that the maintenance costs of the forest
can be taken into account. The strictly convex function C(p)e−rt expresses the dis-
counted costs of upgrown trees with diameter l0, and the function ST (x) the value
of the standing trees at the final point in time of the planning horizon. The restriction
g(E(t, l0)l0)x(t, l0)= p(t, l0) requires that the flux of the change in diameter at di-
ameter l0 coincides with the total flux of trees selected for upgrowth. The term x0(l)

denotes the initial diameter distribution of the trees. Finally, the control variables,
u(t, l) and p(t, l0), have to be non-negative.

In order to account for biodiversity we add three additional constraints to the
decision problem:

∫ lm

50
x(t, l)dl ≥ bmin ∀t, (3)

M(t)=
∫ lm

l0

μ
(
E(t, l), l

)
αx(t, l)βdl, (4)

∫ t

0
e−δ(t−τ)M(τ)dτ ≥ Smin ∀t. (5)

Equation (3) requires that the amount of trees with a diameter higher than 50 cm
be greater or equal to a minimum ecological value, bmin. Equation (4) is an identity
that specifies the volume of the trees which die at time t , where α and β are parame-
ters that convert the amount of trees into volume. Finally, (5) establishes a minimum
stock of deadwood in the forest, Smin. Many authors assume that all the materials
of dead biomass are equally decomposable, and the single-exponential model is the
most frequent model used to determine decomposition constants (Zhou et al. 2007).
Therefore, based on the literature, we assume a constant decomposition rate of the
deadwood in the forest ecosystem, denoted by δ.

In practice, the necessary conditions of the optimization problem (2), two equa-
tions and a system of partial integrodifferential equations, can only be solved an-
alytically under severe restrictions with respect to the specification of the mathe-
matical problem (Muzicant 1980). Thus, one has to resort to numerical techniques
in order to solve the distributed control problem. To take the analysis further we
propose to employ a numerical solution technique known as the “Escalator Boxcar
Train” used initially by de Roos (1988) to describe the evolution of physiologically-
structured populations. The convergence of the EBT was evaluated by Brännström
et al. (2013). They found that this method converges weakly to the true solution
under weak conditions on the biological parameters.
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Applying the EBT allows the partial integrodifferential equations of problem (2)
to be transformed into a set of ordinary differential equations which are subse-
quently approximated by difference equations. Besides a brief presentation of the
EBT method, Goetz et al. (2008) show how this approach can be extended to ac-
count for optimization problems by incorporating decision variables. The trans-
formed model is subsequently implemented in GAMS (General Algebraic Model-
ing System, Brooke et al. 1992) “that is frequently” used for solving mathematical
programming problems. To transform the decision problem (2), we first divide the
range of diameter into equal parts, and define Xi(t) as the number of trees in the
cohort i, being i = 0,1,2, . . . , n, that is, the trees whose diameter falls within the
limits li and li+1 are grouped in the cohort i. Likewise, we define Li(t) as the av-
erage diameter, Ui(t) as the amount of cut trees within cohort i, and P(t) as the
amount of trees selected for upgrowth.

3 Numerical Analysis

The purpose of the numerical analysis is to determine the optimal logging regime
of a diameter-distributed forest taking biodiversity into account. In other words
we determine the logging regime that maximizes the discounted private net ben-
efits from timber production of a stand of Pinus sylvestris over a time horizon of
150 years while satisfying constraints with respect to the volume of deadwood and
large-diameter trees in the forest ecosystem. The election of Pinus sylvestris was
motivated by the fact that it is the most important commercial species for timber
production in Catalonia.

3.1 Economic Data

The net benefit function (in €) of the economic model, B(x(t, l), u(t, l)), consists
of the net revenue from the sale of timber at time t, minus the costs of maintenance,
which comprises clearing, pruning and grinding the residues. The net revenue is
given by the sum of the revenue of the timber sale minus logging costs defined as:
[∑n

i=1(ρ(Li(t))− vc(Li(t)))tv(Li(t))mv(Li(t))Ui(t)] − [mc(X(t))] where X(t)
denotes the total number of trees in the stand, that is, X(t)=∑n

i=0Xi(t). The terms
in the first square brackets denote the sum of the revenue of the timber sale minus the
cutting costs of each cohort i, and the term in the second square brackets, mc(X(t)),
accounts for the maintenance costs. The parameter ρ(Li) denotes the timber price
per cubic meter of wood as a function of the diameter; tv(Li) is the total volume of
a tree as a function of its diameter; mv(Li) is the part of the total volume of the tree
that is marketable; vc(Li) are logging costs.

Timber price per cubic meter was taken from a study by Palahí and Pukkala
(2003), who analyzed the optimal management of a Pinus sylvestris forest in
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a clear-cutting regime. They estimated a polynomial function given by ρ(L) =
min{−23.24+ 13.63

√
L,86.65}, which is an increasing and strictly concave func-

tion, for a diameter lower than 65 cm. At L = 65 the price reaches its maximum
value, and for L> 65 it is considered constant. The logging cost comprises logging,
pruning, cleaning the understory, and collecting and removing residues. Based on
the work by Palahí and Pukkala (2003), the logging cost per cubic meter of logged
timber is given by the function vc(L)= 6+ exp(4.292− 0.506 ln(L)). Data about
maintenance costs were provided by the consulting firm Tecnosylva, which elab-
orates forest management plans throughout Spain. According to the data supplied
by Tecnosylva, the maintenance cost function is approximated by mc(X(t)), and is
given by mc(X(t)) = 10 + 0.0159X(t) + 0.0000186X(t)2. The nursing costs are
linear in the amount of trees selected for upgrowth and are given by C(P )= 0.73P .
The thinning and nursing period, �t , is set at 10 years, which is common practice
for a Pinus sylvestris forest (Cañellas et al. 2000).

3.2 Biological Data

The basis for the specification of the forest dynamics is sufficiently long time se-
ries for the key biological variables of a forest. This data can be obtained either
from historical observation of real data or from data generated with biogeochemi-
cal process-based models. While the first approach is widely used in forestry eco-
nomics, it is not suitable for the analysis of the optimal management regime under
climate change, since it is based on recorded data, that is, it implicitly assumes
that future climatic conditions will be similar to current conditions (Garcia-Gonzalo
et al. 2007; Hynynen et al. 2002). In contrast, biogeochemical process-based models
are able to incorporate changes in the climate that most likely affect the evolution of
trees (Mäkelä 1997). Therefore, we opted for the latter approach and we simulated
the growth of a diameter-distributed stand of Pinus sylvestris without thinning with
the bio-physical simulation model GOTILWA (Growth Of Trees Is Limited by Wa-
ter). The model generates data related to growth and mortality and thus allows the
exploration of how the life cycle of an individual tree is influenced by the climate,
by the characteristics of the tree itself and environmental conditions. GOTILWA is
defined by 11 input files specifying more than 90 parameters related to the site, soil
composition, tree species, photosynthesis, stomatal conductance, forest composi-
tion, canopy hydrology, and climate. These parameters were chosen in accordance
with the location of the study, which is situated in the Alta Garrotxa (county of
Girona, Spain), since it is a region with a large extension of forest stands of Pinus
sylvestris (Ibáñez 2004).

To obtain the data to estimate the growth function, different initial diameter distri-
butions of a forest were chosen. These distributions were specified as a transformed
beta density function θ(l) since it allows a great variety of distinct shapes of the
initial diameter distributions of the trees to be defined (Hunter 1990). The shape
parameters are denoted by γ and ϕ, and we allowed these parameters to take on
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either a value of 0.5, 1, or 2. We generated a variety of initial diameter distributions
considering all possible combinations of the three possible values of the parameters
γ and ϕ. The density function of the diameter of trees, θ(l;γ,ϕ), is defined over a
closed interval, and thus the integral

∫ li+1

li

θ(l;γ,ϕ)dl

gives the proportion of trees lying within the range [li , li + 1). The initial forest
consists of a population of trees with diameters within the interval [0 cm ≤ l ≤
50 cm). This interval was divided into 10 subintervals of identical length, and the
initial number of trees in any cohort, Xi(0), is calculated for each combination of γ
and ϕ with three different basal areas (15, 20 and 25 m2/ha). These different basal
areas were chosen to isolate the effects of the initial distributions and the density of
the stand on the biological processes.

The simulations in GOTILWA were conducted for different climate change sce-
narios to determine their effect on forest growth. For this purpose, we considered
three different climate scenarios. The first one does not take climate change into ac-
count, and we refer to it as the baseline (BL). Additionally, we considered two other
climate change scenarios, denoted by A2 and B2 in accordance with the IPCC’s
Third Assessment Report (2001) on climate change. Although both scenarios pre-
dict increases in CO2 emissions in the near future, neither of the two scenarios is
extreme compared to the range of scenarios considered in the report. A2 presents
a more pessimistic setting, since it forecasts a higher increase in CO2 emissions
than B2. Specifically, scenario A2 estimates a CO2 concentration of 870 ppm by the
year 2100, and a rise of 2.0–5.4 °C in temperatures, while B2 calculates a CO2 con-
centration of 621 ppm, and a temperature increase within the range of 1.4–3.8 °C.
For this study we used the reported evolution of the CO2 concentration in the atmo-
sphere, as well as the estimated variations in temperature and rainfall in the Mediter-
ranean region (Ruosteenoja et al. 2003) to supply GOTILWA with estimated time
series for CO2, temperature and rainfall for each of the three climate change scenar-
ios analyzed.

Based on the previously specified initial diameter distributions and the time se-
ries related to each specific scenario, we simulated the growth of the forest over
150 years. The generated data from the series of simulations allows us to esti-
mate the function g(E,Li), which describes the change in diameter over time. The
type of function was specified as a von Bertalanffy growth curve (von Bertalanffy
1957), generalized by Millar and Myers (1990) which allows the rate of growth
of the diameter to vary with environmental conditions. The concrete specification
of the function is given by g(E,Li) = (lm − Li)(β0 − β1 · BA+ β2 · BAi ), where
the exogenous variables of this function, provided by GOTILWA, are the diam-
eter at breast height (Li ), the basal area of the stand (BA) and the basal area of
cohort i (BAi ). Forest growth is simulated within limits by an increasing concen-
tration of CO2 in the atmosphere due to its fertilizer effect (Heimann and Reich-
stein 2008). Therefore, the parameters to be estimated, β0, β1 and β2, were as-
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sumed to depend on CO2 concentrations. The estimation yielded the growth func-
tion: g(E,Li)= (183.74−Li)[(0.021+ 0.19 · 10−4CO2)+ (−0.24 · 10−3+ 0.19 ·
10−7CO2)BA+ (0.064− 0.58 · 10−4CO2)BAi].

The value of the tree volume parameters, tv(Li), has also been estimated us-
ing the data generated with GOTILWA. The tree volume is based on the allomet-
ric relation tv(L) = 0.000135L2.429685. A study by Cañellas et al. (2000) pro-
vides information that allows the marketable part of the tree volume, mv(Li(t)),
to be estimated as a function of the diameter. The marketable part of the tim-
ber volume of each tree is an increasing function of the diameter and is given by
mv(L)= 0.699+ 0.0004311L.

The mortality function was designed based on the survival function of González
et al. (2005), and it is given by:

μ(E,Li)= 1− 1/
(
1+ exp

(−3.954+ 0.035BA− 2.297(Li/A)
))2

.

Mortality depends on the diameter of the individual, the basal area, and the aver-
age age of the stand, denoted by A. In accordance with the literature, we assumed
that climate change exacerbates the rate at which the woody debris is decomposed,
due to higher bacterial activity (Mackensen et al. 2003; Garrett et al. 2012). Ac-
cording to the latter work, the decomposition rate of the deadwood is given by
δ = 0.0429 · exp(0.093 · T e), where T e denotes the mean temperature.

The two stands considered are characterized by the difference in the magnitude of
their average diameter. Stand 1 consists of a young population of trees and Stand 2
of a mature population and are presented in Table 1. The specification of these two
different initial distributions allows the sensitivity of the optimal trajectories to be
evaluated.

The initial distributions were obtained from the database of the EFIC (Ecological
and Forest Inventory of Catalonia), an inventory of Catalan forests set up between
1988 and 1998 by the CREAF (Center for Ecological Research and Forestry Appli-
cations). This database offers a large variety of data, such as biomass, above-ground
production of wood, leaves, branches, and the diameter distribution of the invento-
ried stand.

3.3 Optimization Results

To find the optimal logging regime for the two stands considered, the Conopt3 solver
available within GAMS was employed. The numerical solution of the problem pro-
vides the optimal values of the stock variable Xi and decision variables, Ui and P
for every 10 year period. Based on these values the economic variables, such as the
revenues from timber sale, cutting and maintenance costs can be determined. We
initially calculated the optimal logging regime for the stands in the baseline sce-
nario given a discount rate of 2 %. The results show that it is optimal to harvest the
trees selectively according to their size.
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Table 1 Initial diameter distributions of the analyzed stands

Stand 1

Basal area: 23.42 m3/ha

UTM X Coordinate: 456600

UTM Y Coordinate: 4664800

Diameter class (cm) N◦ of trees/ha

2.5 400

7.5 319

12.5 287

17.5 223

22.5 96

27.5 64

32.5 64

Stand 2

Basal area: 47.82 m3/ha

UTM X Coordinate: 448500

UTM Y Coordinate: 4674900

Diameter class (cm) N◦ of trees/ha

2.5 37

7.5 74

12.5 294

17.5 368

22.5 404

27.5 147

32.5 74

37.5 37

Tables 2 and 3 present the main biological variables resulting from the optimiza-
tion for the case where biodiversity is not considered and where it is considered for
Stands 1 and 2, respectively. Jönsson and Jonsson (2007) observed an average of
19.5 m3/ha of coarse woody debris for key habitats in Sweden, and Penttilä et al.
(2004) found that threatened species are practically only found in forests where the
volume of deadwood exceeds 20 m3/ha. Therefore, we consider this value as an
adequate stand-level threshold of a high-quality habitat, and consequently, Smin is
set equal to 20. A review of the literature reveals that a general threshold for large-
diameter trees cannot be easily established. Given some references in the literature
we required that the optimal management regime needs to maintain at least 15 trees
with a diameter of at least 50 cm, that is, bmin = 15. Therefore, we opted to set
bmin = 15 and present a subsequent sensitivity analysis with respect to the mini-
mum number of large-diameter trees.

For a stand of predominantly young trees (Stand 1), Table 2 shows that when
biodiversity forms part of the management objective, the investment of the forest
manager in young trees is advanced and higher. For example, the number of trees
selected for upgrowth is positive from year 30 onwards while, when biodiversity is
not considered, only from year 70. Moreover, when biodiversity is taken into ac-
count, the first thinning is delayed until year 10, and the number of logged trees in
this period is considerably lower, leading to a decrease in the volume of logged trees.
As a result, the benefits from timber sales are lower when biodiversity is taken into
account. Thus, when the stand is managed only for timber, the discounted sum of
the net benefits obtained from forest management over 150 years (NPV of the bene-
fits for short) is about 4663 Euro/ha. However, when biodiversity considerations are
incorporated in the formulation of the decision problem, the NPV of the benefits de-
creases to 4174 Euro/ha, since the forest owner needs to maintain a specific amount
of big trees that have passed the rotation age. Thus, the incorporation of biodiver-
sity in the economic problem leads to a decrease of 10.48 % in the NPV of benefits
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Table 2 Optimal selective-logging regime of a young stand (Stand 1)

Year Number
of treesa

Upgrown
trees

Logged
trees

Logged
volume
(m3/ha)

Dead
wood
volume

Average
forest age
(years)

Average
diameter
(cm)

Benefits
(Euro/ha)

Considering only timber

0 1845 0 10 1.46 3.41 33.21 10.55 −1016.49

10 1509 0 249 45.70 9.45 43.44 14.59 −67.97

20 1138 0 289 83.50 16.14 52.47 17.83 1370.94

30 946 0 132 75.82 23.08 60.47 20.87 1444.87

40 730 0 166 103.64 27.50 68.02 23.16 2314.56

50 640 0 56 31.70 34.05 73.93 24.89 486.35

60 528 0 79 81.86 39.08 82.71 28.02 2426.30

70 508 94 89 60.48 42.04 77.21 25.65 1309.40

80 555 127 53 46.61 43.66 68.37 22.91 1060.13

90 539 93 80 65.74 43.47 65.63 22.20 1606.76

100 565 116 61 63.87 41.93 60.36 20.33 1752.11

110 545 62 53 70.56 39.90 60.21 20.42 2259.18

120 515 41 45 72.90 37.77 61.10 20.95 2614.63

130 456 2 38 76.96 35.87 65.26 22.77 3076.39

140 405 0 34 82.13 34.10 69.05 24.50 3582.11

150 421 36 6 17.38 33.74 67.15 24.02 628.82

Considering timber and biodiversity

0 1855 0 0 0.00 3.48 33.21 10.55 −1036.25

10 1577 0 191 22.92 10.95 43.51 14.62 −682.71

20 1160 0 324 70.15 20.00 53.18 18.14 862.15

30 912 1 178 109.41 26.58 61.88 21.68 2425.23

40 732 1 131 79.87 32.01 68.45 23.42 1684.98

50 636 28 86 68.32 36.76 72.95 24.72 1663.87

60 520 3 86 61.40 40.98 79.65 26.89 1434.15

70 584 159 68 45.09 43.50 68.78 22.93 806.76

80 584 131 98 59.30 43.79 63.49 21.35 1126.70

90 572 90 70 55.21 43.07 61.73 20.81 1262.53

100 526 48 62 62.63 41.79 63.32 21.54 1742.12

110 518 48 27 90.61 40.38 63.60 21.82 4260.43

120 465 7 35 80.00 39.17 69.00 23.63 3470.95

130 428 20 37 71.73 37.87 70.96 24.48 2807.10

140 400 8 18 51.26 37.37 73.94 25.86 2296.40

150 491 106 0 0.30 38.32 65.33 22.79 −290.26

aThe number of trees in the forest is calculated just after the trees are planted, and before the
thinning takes place
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Table 3 Optimal selective-logging regime of a mature stand (Stand 2)

Year Number
of trees

Upgrown
trees

Logged
trees

Logged
volume
(m3/ha)

Dead
wood
volume

Average
forest age
(years)

Average
diameter
(cm)

Benefits
(Euro/ha)

Considering only timber

0 1127 0 271 114.71 8.52 48.65 19.74 2135.85

10 929 0 142 81.31 16.92 56.88 21.86 1556.52

20 728 0 154 78.33 24.27 65.31 24.07 1460.85

30 575 0 117 79.14 30.12 73.87 26.55 1837.65

40 520 63 91 56.95 34.79 74.99 26.14 1170.45

50 521 110 83 66.41 37.09 70.53 24.15 1595.39

60 529 100 66 67.48 37.60 66.39 22.40 1869.27

70 553 96 47 47.43 37.57 62.78 20.96 1220.31

80 549 83 58 69.81 36.66 62.03 20.76 2115.32

90 522 48 48 71.34 35.35 62.37 21.06 2445.23

100 467 11 42 78.02 33.97 65.81 22.56 3003.73

110 462 35 22 45.94 33.24 65.54 22.69 1775.59

120 404 0 39 84.30 32.41 72.10 25.42 3499.88

130 497 107 0 0.00 32.75 60.99 21.59 −303.17

140 507 70 38 44.74 33.54 64.12 22.79 1249.28

150 504 67 47 55.62 33.95 64.03 22.72 1634.98

Considering timber and biodiversity

0 1117 0 281 108.37 8.78 48.65 19.74 1903.43

10 919 1 142 81.11 17.39 57.07 22.04 1554.21

20 720 1 152 77.39 24.93 65.49 24.24 1439.02

30 597 28 114 76.72 30.79 71.72 25.81 1740.17

40 496 27 98 59.74 35.59 76.79 26.97 1247.06

50 509 118 81 64.19 37.85 70.74 24.37 1523.10

60 564 130 49 45.33 38.94 63.83 21.59 1066.40

70 556 93 69 64.97 38.70 62.80 21.15 1698.58

80 518 46 54 64.26 37.88 63.69 21.63 1946.85

90 496 50 45 66.31 36.64 63.66 21.78 2244.41

100 480 33 26 43.83 36.02 64.89 22.44 1523.09

110 448 17 26 95.24 35.48 69.54 24.36 4584.18

120 414 11 26 72.21 35.13 73.18 25.58 3313.99

130 480 82 0 0.01 36.43 66.77 23.27 −278.84

140 499 85 43 41.79 37.77 67.40 23.48 1032.60

150 483 73 63 55.92 38.10 66.71 23.17 1422.24
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obtained from forest management. This is a very significant result, since it implies
that forest owners are not likely to adapt their management regime to incorporate
biodiversity targets unless they are required to do so. Therefore, the promotion of
conservation and enhancement of forest biodiversity can only be achieved if specific
policies are put in place.

The results of the optimization for the mature stand (Stand 2), presented in Ta-
ble 3 show a similar time profile for the investment. When biodiversity is incorpo-
rated into the model, nursing starts at year 10, in comparison with the case without
biodiversity consideration where nursing starts at year 40. As shown in Table 3, in
both cases logging begins in the initial period of the planning horizon. However, in
the case where biodiversity is considered the logged trees have a smaller diameter,
and consequently the volume of logged trees is lower. Hence, the structure of the
logging regime required to maintain a minimum number of standing large-diameter
trees reduces the net benefits from timber sale during the initial time periods. How-
ever, since the forest owner obtains their first benefits during the initial years, the
losses in the NPV of the benefits due to the consideration of biodiversity are less
pronounced, compared to the case of a young stand. The losses of the NPV of ben-
efits in this case amount to 4.44 %.

The effects of climate change on the selective-logging regime can be observed
in Fig. 1, cases (1a) to (1d) for the scenarios BL and A2. It depicts the evolution
of the number of standing trees, the average forest age, the average diameter and
the deadwood volume over time when biodiversity is not considered and when it is
considered. Specifically, for the management of biodiversity, the optimal selective
logging regime guarantees, as a minimum, 15 standing trees with a diameter of
at least 50 cm (bmin = 15), and not less than 20 m3/ha of deadwood (Smin = 20).
Figure 1 shows that climate change leads, at the end of the planning horizon for
the management regime for “timber benefits only”, to an increase in the number
of trees by 123.19 % and by 83.11 % for the management regime of timber and
biodiversity. This evolution is due to the fertilization effect of the increase in the
CO2 concentration in the atmosphere, which facilitates forest growth and makes
investment in forest more profitable. We also observe in Fig. 1 that the average age
(Fig. 1b) and diameter of the standing trees (Fig. 1c) decrease with climate change.
Finally, in the presence of climate change more deadwood is accumulated in the
forest ecosystem, and this effect is even more accentuated if biodiversity is taken
into account (see Fig. 1d).

To analyze to what extent the losses from biodiversity conservation targets can
be limited, we varied the constraint on the number of standing large-diameter trees
from 0 to 30 for the case of the young stand (Stand 1). Figure 2 depicts the NPV of
the different optimization scenarios. It shows that the NPV of the benefits increase
with climate change, however they decrease with the number of standing large-
diameter trees. This decrease is more pronounced in scenario A2, even to the extent
that the benefits of A2 are less than those of B2, when 30 large-diameter trees are
required. This fact can be best observed in Fig. 3, which depicts the losses in the
NPV of the benefits aggregated over 150 years as a function of the standing large-
diameter trees in comparison with the case where the forest is managed for timber
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Fig. 1 Variation in the
evolution of the structural
variables over time when
accounting for biodiversity

only. It shows that foregone profits can be substantial. In the most extreme case,
where it is assumed that the forest owner is required to maintain a minimum stock
of 30 large-diameter trees, the losses total 23.27 %, 26.15 %, and 29.12 % in the
BL, B2, and A2 scenarios, respectively.

Half of key Swedish woodland habitats have more than 38.94 m3/ha of coarse
woody debris (Jönsson and Jonsson 2007). Thus, we also conducted a sensitivity
analysis and evaluated the effects of a variation in the required volume of deadwood
in the forest ecosystem.
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Fig. 1 (Continued)

Fig. 2 Net present value of
the benefits of forest
management over 150 years
as a function of the required
minimum number of
large-diameter trees

Fig. 3 Decrease in the net
present value of the benefits
of forest management over
150 years as a function of the
required minimum number of
large-diameter trees

Table 4 presents the NPV benefits of the optimal selective logging regime for
Stands 1 and 2 obtained by varying the number of large-diameter trees and the vol-
ume of deadwood. Table 4 shows that for the baseline scenario and scenario A2 the
foregone profits of maintaining biodiversity can be very substantial and moreover,
they are exacerbated by climate change. In the case of a young stand (Stand 1), for
instance, the constraint of 30 large-diameter trees and a minimal volume of 38.94 m3

of deadwood per hectare leads, for the baseline scenario, to a decrease in the NPV
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Table 4 Sensitivity analysis of the NPV with respect to the large-diameter trees and the minimum
amount of deadwood in the forest

Large-diameter
trees (#)

Dead wood
volume
(m3/ha)

NPV in the
NCH scenario
(Euro/ha)

NPV losses
(NCH) (%)

NPV in the A2
scenario
(Euro/ha)

NPV losses
(A2) (%)

Stand 1

0 0 4662.79 – 5136.35 –

10 20 4324.78 7.25 4721.64 8.07

20 20 4033.88 13.49 4353.17 15.25

30 20 3577.77 23.27 3640.53 29.12

10 38.94 2448.65 47.49 2844.80 44.61

20 38.94 2162.44 53.62 2499.40 51.34

30 38.94 1421.09 69.52 868.62 83.09

Stand 2

0 0 9332.94 – 9821.36 –

10 20 9041.88 3.12 9408.27 4.21

20 20 8775.34 5.97 9068.49 7.67

30 20 8506.98 8.85 8653.22 11.89

10 38.94 8885.24 4.80 9323.68 5.07

20 38.94 8624.97 7.59 8924.36 9.13

30 38.94 8402.87 9.97 8556.99 12.87

of benefits by 69.52 % compared to the case where biodiversity in not considered.
These losses increase to 83.09 % when climate change is taken into account.

Table 4 also shows that the foregone profits are more moderate in the case of
a mature stand (Stand 2). In this case the losses are only 9.97 % for the baseline
scenario and 12.87 % for scenario A2. This result shows the need to target areas
to establish or conserve biodiversity, which are less sensitive to changes in the log-
ging regime. In particular more mature forests are less affected by changes in the
management regime than young forests.

4 Conclusions

This chapter presents a theoretical model that allows us to determine the optimal
management regime of a diameter-distributed forest where biodiversity conserva-
tion is taken into account, that is, when the forest manager is required to meet cer-
tain requirements with respect to various indirect indicators of biodiversity in forest
ecosystems. The chosen indicators are the volume of deadwood existing in the forest
and the number of large-diameter trees.

The economic decision problem for determining optimal forest management is
formulated as a distributed optimal control problem where the control variables and
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the state variable depend on both time and the diameter of the tree, where the growth
and mortality processes depend not only on individual characteristics but also on the
distribution of the individual characteristics over the entire population.

The problem is solved numerically by applying the Escalator Boxcar Train
method and subsequently implementing the transformed model in GAMS. In the
numerical analysis, the optimal selective-logging regime of two real stands of Pinus
sylvestris in Alta Garrotxa (Catalonia) is determined, and the optimal management
plans, with and without biodiversity considerations are compared, for three given
climate scenarios. The results of this study indicate that the costs of biodiversity
conservation in terms of reduced profitability can be significant and that they are
exacerbated by climate change. They also suggest that it is especially important
to assess the link between the indirect indicators and biodiversity to properly de-
termine which type of forest can be targeted to biodiversity conservation without
compromising future timber benefits.
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Carbon Taxes and Comparison of Trading
Regimes in Fossil Fuels

Seiichi Katayama, Ngo Van Long, and Hiroshi Ohta

Abstract We study a dynamic game involving a fossil fuel exporting cartel and
a coalition of importing countries that imposes carbon taxes. We show that there
exists a unique Nash equilibrium, where all countries use feedback strategies. We
also obtain two Stackelberg equilibria, one where the exporting cartel is the leader,
and one where the coalition of importing countries is the leader. Not surprisingly,
the world welfare under the Nash equilibrium is lower than that under the social
planning, even though both solutions have the same steady state. Comparison of
the Stackelberg equilibria with the Nash equilibrium is performed numerically. All
our numerical examples reveal that world welfare under the Nash equilibrium is
higher than that under the Stackelberg game where the exporting cartel is the leader.
The worst outcome for world welfare occurs when the importing coalition is the
Stackelberg leader.

1 Introduction

The publication of the Stern Review of the Economics of Climate Change (Stern
2007) has provided impetus to economics analysis of climate change. Much
progress has been achieved in climate change studies over the last decade. A large
literature has appeared, bringing new insights to the field of climate change research.
Some of the pressing economic issues are discussed in Heal (2009) and Haurie et al.
(2012), among others.
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Issues of climate change are broad and can be analyzed from multiple perspec-
tives. In this paper we adopt a dynamic game approach, because there are strategic
considerations that extend into the far future. We hope that the model will contribute
toward a formulation of a useful framework for thinking about policies to combat
climate change. We focus on international aspects of the exploitation of fossil fuels
under the threat of global warming, where carbon taxes are used as policy instru-
ments for mitigating its adverse effects.

We study a dynamic game involving a fossil-fuel exporting cartel and a coali-
tion of fuel importing countries that impose carbon taxes. The fossil fuel is a non-
renewable resource, and its consumption leads to stock externality in the form of
carbon dioxide concentration which is largely responsible for global warming. We
will focus on the case where the importing countries form a coalition and agree on
their carbon policies. We show that there exists a unique Nash equilibrium in a game
by exporting and importing countries, where they use feedback strategies to set fuel
price and carbon tax. Further we compare the Nash outcome with the Stackelberg
equilibria in which either Stackelberg leadership rests with exporting or importing
countries.

Our model borrows some features from Wirl (1995) and Fujiwara and Long
(2011). The main differences are that Wirl (1995) derives a Nash equilibrium but
does not deal with the Stackelberg leader-follower relationship and Fujiwara and
Long (2011) do not consider the externalities of fossil fuel consumption.

After deriving the solutions, we compare welfare levels of participants under
Nash equilibrium with the efficient outcome, which is a benchmark scenario where
a single world social planner maximizes world welfare. Furthermore, we take two
Stackelberg leadership scenarios, one where the importing coalition is the leader
and the other with the leadership by exporters. After showing analytical results, we
provide numerical comparisons among alternative regimes under a range of possible
parameter values.

The paper is organized as follows. Section 2 presents the basic model. In Sect. 3
a benchmark scenario is analyzed by assuming the existence of a world social plan-
ner. In Sect. 4 we consider the optimal behavior of the oil cartel facing an arbitrary
carbon-tax rule set by oil importing countries and, in turn, in Sect. 5 the behav-
ior of oil importing countries against an arbitrary price-setting rule of the oil car-
tel. Section 6 derives the feedback Nash equilibrium. Section 7 compares the Nash
equilibrium with the outcome under the social planner, both in terms of welfare and
in terms of speed of accumulation of the pollution stock. Extending the analyses
in the previous sections, Sect. 8 derives the global Stackelberg equilibria in linear
strategies of the importing and exporting countries as leader. After pinning down
the analytical conditions to solve, numerical examples are presented to shed light
on the comparison of welfare under four different regimes.
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2 Model

There are three countries, denoted by 1, 2, and 3. Countries 1 and 2 import fossil fu-
els from country 3. The consumption of fossil fuels generates CO2 emissions, which
contributes to greenhouse gas concentration, causing climate change damages. We
assume that climate change damages to country 3 are negligible.

For simplicity, assume that country 3 consists of N identical oil producers.
(In what follows, “oil” stands for “fossil fuels”.) Each producer takes the price path
of oil as beyond its control. Its sole objective is to maximize the present value of its
stream of revenue. Extraction is assumed to be costless. Each producer j is endowed
at time t = 0 with a deposit of size Rj0. Let R0 =∑N

j=1Rj0. Let q(t) ≥ 0 denote
their aggregate extraction at time t . Let Y(t) denote their cumulative extraction.
Then

Ẏ (t)= q(t), Y (0)= Y0.

It is required that total cumulative extraction from time zero to time t cannot exceed
the available stock at time zero, R0:

Y(t)− Y0 ≤R0 for all t ≥ 0.

The importing country i (where i = 1,2) consists of Mi identical consumers. Let
M =M1 +M2. Each consumer k has a utility function U(ck, xk, gk) where ck is
the consumption of oil, xk is the consumption of a numeraire good, and gk is the
damage caused by global warming. Assume that U(ck, xk, gk) is of the form

U(ck, xk, gk)=Ack − 1

2
c2
k + xk − gk ≡ u(ck)+ xk − gk

where u′(ck)=A− ck is the consumer’s marginal utility of oil consumption.
For simplicity, assume that the damage is quadratic in cumulative extraction:

gk(t)= γ

2
Y(t)2, γ ≥ 0.

Note that this view (relating damages to cumulative extraction, rather than GHG
concentration level) is based on the scientific work of Allen et al. (2009).

At each point in time, each consumer is endowed with x units of the numeraire
good. It is assumed that x is sufficiently large, so that the consumers after paying
for the oil they purchase still have some positive amount of the numeraire good to
consume.

3 A Benchmark Scenario: World Social Planner

As a benchmark, suppose there is a world social planner who wants to maximize the
welfare of all consumers and producers. The planner treats all consumers identically.
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Then, if the aggregate oil extraction at t is q(t), the planner would let each individual
consume c(t)= q(t)/M units of oil. Each individual is asked to pay p(t) for each
unit of oil consumed. The revenue to the producers is then p(t)q(t). The utility at
time t of the representative consumer k is then

U(t)=A
q(t)

M
− 1

2

(
q(t)

M

)2

+
(
x − p(t)

q(t)

M

)
− γ

2
Y(t)2

and the revenue of the collection of producers is Π(t) = p(t)q(t). The world’s
welfare is the weighted sum of producers’ welfare and consumers’ welfare, where
ω is the weight given to producers:

W =
∫ ∞

0
e−rt

(
ωΠ(t)+MU(t)

)
dt. (1)

The rate of discount r > 0 is exogenously given.
Considering the standard case where ω = 1, i.e., consumers and producers re-

ceive the same weight, the social welfare function (1) reduces to

W =
∫ ∞

0
e−rt

(
Aq(t)− 1

2M
q(t)2 +Mx − Mγ

2
Y(t)2

)
dt. (2)

The social planner chooses q(t) to maximize (2) subject to

Ẏ = q,

given Y(0)= Y0, lim
t→∞

(
Y(t)− Y0

)≤R0.

Before solving this problem, consider some extreme cases that will provide us
some useful intuition.

First, the case where γ = 0 (i.e. no climate change damages). Then the prob-
lem (2) reduces to a standard resource-extraction problem with a quadratic utility
function. The marginal benefit of extracting q is

A− 1

M
q.

In this case, it is optimal to exhaust the resource at some finite time T . The extraction
rate q(t) will fall over time, with q(T ) = 0. At time T , the price of the resource
reaches its “choke price” level A, and extraction stops.

Second, consider the case where γ and Y0 are so large that at time zero the present
value of the stream of marginal damage cost of adding to the cumulative extraction,
γMY0
r

, is greater than the marginal utility of consuming oil, A. Then clearly it is
optimal not to extract the resource, i.e. q∗(t)= 0 for all t ≥ 0.

Armed with the above intuition, we now consider the case where 0 < γMY0/

r < A.
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It is easy to see that in this case, the following result holds:

Proposition 1 Assume that 0< γMY0/r < A. Define Y∞ by

MγY∞
r

=A. (3)

Then,

(i) it is optimal to extract the resource during some time interval, and
(ii-a) if (Y0 + R0) ≥ Y∞, then exhaustion will not take place, and the remaining

resource stock R(t) will asymptotically approach a critical level RL defined
by

Y0 +RL = Y∞.

In this case the steady state pollution is Y∞. If Y0 = 0, the social welfare is
given by

α = M

2r

[
(A+ β)2 + 2x

]= M

2r

[
A+ AμM

(r −Mμ)

]2

+ Mx

r

where

μ= r −√
r2 + 4γM2

2M
< 0.

(ii-b) If Y0+R0 < Y∞, then extraction should proceed until the remaining resource
stock falls to zero (in finite time).

All the detailed derivation of equations in the paper is found in Katayama et al.
(2013).

In what follows, we focus on the case where

Y0 +R0 >
rA

γM
.

Then, as shown in Katayama et al. (2013), the social planner will not exhaust the
stock of the resource. The optimal extraction path is positive, with q(t) approaching
zero asymptotically, as t→∞. The optimal consumer price for oil is

pc(t)=A− c(t)=A− q(t)

M
=A− ( rA

γM
− Y0)γM

(r − λ1)
eλ1t (4)

where

λ1 = 1

2

(
r −

√
r2 + 4γM2

)
< 0.
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Remark 1 In case (i), the resource will never be exhausted. Therefore its scarcity
value is zero. This implies that the producer price is zero, while the consumer price
is A− (q/M). The difference between the consumer price and the producer price is
the carbon tax. We see that the carbon tax rises over time.

Remark 2 It is easy to introduce a constant extraction cost b, where A> b > 0. In
this case, we can define Ã = A − b. Then Eqs. (3) and (4) apply, with Ã replac-
ing A. The carbon tax per unit is then pc− b. The ad valorem carbon tax is τ where
(1+ τ)b= pc − b.

4 Behaviour of the Oil Cartel Facing an Arbitrary Carbon-Tax
Rule by Oil Importing Countries

In this section, we assume that the coalition of importing countries set a carbon tax
rate θ(t) per barrel of oil at time t . Assume θ(t) is linked to Y(t) by the following
rule

θ = σ + ηY

where σ ≥ 0 and η > 0 are some constants. Assume σ < A. Then the tax θ will
approach value A when Y approaches the value Y defined by

Y = A− σ

η
.

When Y reaches this level, the carbon tax is so high that even if the producer price
p is zero, the consumer will not buy oil.

The cartel of oil producers takes the linear Markovian tax rule θ = σ + ηY as
given. It knows that if it charges a price p(t)≥ 0 per barrel at time t , the represen-
tative consumer will demand the quantity c(t) such that

u′(c)= p(t)+ θ(t)= p(t)+ σ + ηY (t)

i.e.

A− c(t)= p(t)+ σ + ηY (t)

i.e. the demand function from each consumer is

c(t)=A− p(t)− σ − ηY (t).

Since there are M consumers, the market demand is

q(t)=Mc(t)=M
(
A− p(t)− σ − ηY (t)

)≡ q(p,Y ).

Since extraction cost is zero, the profit of the cartel at time t is

π(t)= p(t)q(t)=M
(
A− p(t)− σ − ηY (t)

)
p(t).
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The cartel seeks to maximize∫ ∞

0
e−rt

[
M

(
A− p(t)− σ − ηY (t)

)
p(t)

]
dt

subject to

Ẏ (t)=M
(
A− p(t)− σ − ηY (t)

)
Y(0)= Y0

Y(t)− Y(0)≤R0 for all t.

(5)

Let us solve the cartel’s optimal extraction path, and show how it depends on the
tax parameters σ and η.

To proceed with the analysis, we make the following assumption, which implies
that the cartel will never exhaust the stock of oil:

R0 > Y − Y0 = A− σ

η
− Y0.

To solve the cartel’s optimization problem, we use the Hamilton-Jacobi-Bellman
(HJB) equation. Let VX(Y ) be the value function of the cartel of oil exporters. Its
HJB equation is

rVX(Y )=max
p

{
M(A− p− σ − ηY )p+ V ′X(Y )M(A− p− σ − ηY )

}
. (6)

Maximizing the right-hand side (RHS) of the HJB equation with respect to p yields
the FOC

−2p+A− σ − ηY − V ′X(Y )= 0.

Therefore the cartel’s producer price rule satisfies

p = 1

2

(
A− σ − ηY − V ′X(Y )

)≡ p(Y ). (7)

Then the RHS of the HJB equation can be written as

M
(
p(Y )+ V ′X(Y )

)(
A− σ − p(Y )− ηY

)=M
(
A− σ − p(Y )− ηY

)2

= M

4

(
A− σ − ηY + V ′X

)2
.

Let us conjecture that the value function is quadratic:

VX(Y )= αX + βXY + 1

2
μXY

2,

where αX , βX and μX are to be determined. Then

V ′X(Y )= βX +μXY (8)
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and (6) becomes

r

(
αX + βXY + 1

2
μXY

2
)
= M

4
(A− σ − ηY + βX +μXY)

2

i.e.

4r

M

(
αX + βXY + 1

2
μXY

2
)

= [
(A− σ + βX)+ (μX − η)Y

]2

= (A− σ + βX)
2 + 2(A− σ + βX)(μX − η)Y + (μX − η)2Y 2.

This equation must hold for all feasible values of Y . Therefore the coefficient of
the Y 2 term on the left-hand side must equal the coefficient of the Y 2 term on the
right-hand side:

2rμX
M

= (μX − η)2. (9)

Similarly, the coefficient of the Y term on the left-hand side must equal the coeffi-
cient of the Y term on the right-hand side:

4rβX
M

= 2(A− σ + βX)(μX − η) (10)

and, likewise for the constant term:

4rαX
M

= (A− σ + βX)
2. (11)

The three equations (9), (10), and (11) determine the three coefficients αX , βX ,
μX of the quadratic value function VX(Y ). We first determine μX from (9):

2rμX
M

= μ2
X + η2 − 2ημX

i.e.

μ2
X − 2

(
η+ r

M

)
μX + η2 = 0.

This quadratic equation in μX has two positive real roots, μX1 and μX2 where
μX1 >μX2 > 0,

μX1 = 1

2

[
2

(
η+ r

M

)
+

√
22

(
η+ r

M

)2

− 4η2

]
= η+ r

M
+

√(
r

M

)2

+ 2

M
ηr

and

μX2 = 1

2

[
2

(
η+ r

M

)
−

√
22

(
η+ r

M

)2

− 4η2

]
= η+ r

M
−

√(
r

M

)2

+ 2

M
ηr.
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Which root should we select? As usual, we should choose the root such that the
differential equation for Y has a solution that converges to a steady state. The dif-
ferential equation is, from (5), (7) and (8),

Ẏ =M(A− p− σ − ηY )

=M

[
A− 1

2

(
A− σ − ηY − V ′X(Y )

)− σ − ηY

]

= M

2

(
A− σ + βX − (η−μX)Y

)
. (12)

This equation gives a converging solution to a steady state if and only if
(η−μX) > 0. This requires that the smaller root μX2 be chosen.

Therefore

μ∗X = μX2 = η+ r

M
−

√(
r

M

)2

+ 2

M
ηr.

Notice that

η−μ∗X =
√(

r

M

)2

+ 2

M
ηr − r

M
> 0.

Having solved for μX , we now turn to (10) to solve for βX :

4rβX
M

= 2(A− σ + βX)
(
μ∗X − η

)
.

Then

βX

[
4r

M
+ 2

(
η−μ∗X

)]= 2(A− σ)
(
μ∗X − η

)
< 0.

Thus

β∗X =−
(A− σ)(η−μ∗X)
(η−μ∗X)+ 2r

M

< 0

since η−μ∗X > 0. And thus

A− σ + β∗X = (A− σ)

[
1+ (μ∗X − η)

2r
M
+ (η−μ∗X)

]

= (A− σ)

[ 2r
M

2r
M
+ (η−μ∗X)

]
> 0. (13)

Finally, from (11),

4rαX
M

= (A− σ + βX)
2,
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we obtain

α∗X =
M

4r

(
A− σ + β∗X

)2
> 0.

Substituting (13) into (12) we get

Ẏ = M

2

{
(A− σ)

[ 2r
M

2r
M
+ (η−μ∗X)

]
− (

η−μ∗X
)
Y

}
.

This equation has a stable steady state Ŷ defined by

Ŷ =
(A− σ)[ 2r

M
2r
M
+(η−μ∗X)

]
(η−μ∗X)

= (A− σ)

[ 2r
M

2r
M
(η−μ∗X)+ (η−μ∗X)2

]
.

Now we use (9) to simplify Ŷ :

Ŷ = (A− σ)

[ r
M

r
M
(η−μ∗X)+ rμ∗X

M

]
= A− σ

η
.

Thus

Ŷ = Y .

The following Proposition summarizes the result of this section:

Proposition 2 When the oil cartel faces a carbon tax rule of the form θ = σ + ηY ,
where σ < A, and η > 0, its optimal response is to set the producer price according
to the rule

p = 1

2

[(
A− σ − β∗X

)− (
η+μ∗X

)
Y
]

for all Y ≤ Y

where

μ∗X = η+ r

M
−

√(
r

M

)2

+ 2

M
ηr > 0

and

β∗X =−
(A− σ)(η−μ∗X)
(η−μ∗X)+ 2r

M

< 0

with η + μ∗X > 0 and A − σ − β∗X > 0. Thus the producer’s price will fall over
time, and the quantity demanded, q , will also fall over time. As Y approaches Y =
(A−σ)/η, the producer’s price approaches zero, while the consumer’s price, p+θ ,
approaches A.
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Proof It remains to show that q̇(t) < 0. Now

q =M(A− σ − p− ηY )

=M(A− σ)−M(p+ ηY ).

So

q̇ = −M(ṗ+ ηẎ )

= −M
[
−1

2

(
η+μ∗X

)+ η

]
Ẏ

= 1

2
M

(
μ∗X − η

)
Ẏ

= 1

2
M

[
r

M
−

√(
r

M

)2

+ 2

M
ηr

]
Ẏ < 0. �

5 Behavior of Oil Importing Countries Facing an Arbitrary
Price-Setting Rule of the Oil Cartel

Now suppose that the oil cartel uses a price-setting rule which relates the price at
time t to the state variable Y(t), where Y(t)≤ Y0 +R0,

p = δ− λY (14)

with δ < A and λ≷ 0.
Suppose the governments of the oil importing countries take δ and λ as given,

and agree on coordinating their carbon-tax policy to maximize the welfare of the
representative consumer.

Let θ(t) be the carbon tax that consumers must pay to their governments per
barrel of oil consumed. Let c(t) be the quantity of oil demanded per person, and
q(t)=Mc(t) be the aggregate demand for oil. The aggregate consumer surplus at
time t is

Aq(t)− 1

2M
q(t)2 − (

p(t)+ θ(t)
)
q(t).

The quantity demanded is

q(t)=M
(
A− p(t)− θ(t)

)
(15)

and the carbon-tax revenue is

R(t)≡ θ(t)q(t). (16)
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Assume that the carbon-tax revenue is redistributed in a lump-sum fashion to con-
sumers. Let L(t) be the lump-sum transfer to the consumers. The instantaneous
welfare flow of the consumers at time t is

W(t)=Aq(t)− 1

2M
q(t)2 − (

p(t)+ θ(t)
)
q(t)+L(t)+Mx −M

γY(t)2

2
, (17)

where q(t) is given by (15) and p(t) = δ − λY(t). The coalition of the two gov-
ernments chooses θ(t) and L(t) to maximize the integral of the discounted flow of
welfare:

max
∫ ∞

0
e−rtW(t)dt

subject to the government’s budget constraint

L(t)=R(t) (18)

and the dynamic equation

Ẏ (t)=M
(
A− p(t)− θ(t)

)

where Y(0)= Y0 and Y(t)≤ Ỹ .
Using (15), (16), (17) and (18), the instantaneous welfare flow W(t) becomes

W =
(
A− p− 1

2M
q

)
q +Mx −M

γY 2

2

=
[
A− p− 1

2
(A− p− θ)

]
M(A− p− θ)+Mx −M

γY 2

2

= M

2

[
(A− p+ θ)(A− p− θ)+ 2x − γ Y 2]

= M

2

[
(A− p)2 − θ2 + 2x − γ Y 2]. (19)

Let VI (Y ) denote the value function for the coalition of the two oil importing coun-
tries. The HJB equation is

rVI (Y )=max
θ

{
M

2

[
(A− p)2 − θ2 + 2x − γ Y 2]+ V ′I (Y )M(A− p− θ)

}
. (20)

Maximizing the right-hand side of (20) with respect to θ gives the first order condi-
tion (FOC)

−θ − V ′I (Y )= 0.

Substitute this FOC into (20) to get

rVI (Y ) = M

2

[(
A− p− V ′I

)(
A− p+ V ′I

)+ 2x − γ Y 2 + 2V ′I
(
A− p+ V ′I

)]

= M

2

[(
A− p+ V ′I

)2 + 2x − γ Y 2]. (21)
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Let us conjecture that

VI (Y )= αI + βIY + μI

2
Y 2.

Then
V ′I = βI +μIY. (22)

Substituting (22) and (14) into (21) yields

r

(
αI + βIY + μI

2
Y 2

)

= M

2

{
2x + (A− δ + βI )

2 + 2(μI + λ)(A− δ + βI )Y +
[
(μI + λ)2 − γ

]
Y 2}.

It follows, by comparison, that

rμI =M
[
(μI + λ)2 − γ

]
,

rβI =M(μI + λ)(A− δ + βI ),

rαI = M

2

[
2x + (A− δ + βI )

2].
(23)

Equation (23) gives the quadratic equation

μ2
I +

(
2λ− r

M

)
μI −

(
γ − λ2)= 0.

To avoid complex roots and repeated roots, let us assume that the discriminant is
positive:

�≡
(
r

M
− 2λ

)2

+ 4
(
γ − λ2)> 0.

For this to hold, it is necessary and sufficient that

γ >
r

M

(
λ− r

4M

)
.

Note: Either of the following conditions is sufficient for �> 0:

γ >
rλ

M
,

γ > λ2.

(24)

With �> 0, we have two roots, μI1 >μI2,

μI1 = 1

2

[(
r

M
− 2λ

)
+

√(
r

M
− 2λ

)2

+ 4
(
γ − λ2

)]
,

μI2 = 1

2

[(
r

M
− 2λ

)
−

√(
r

M
− 2λ

)2

+ 4
(
γ − λ2

)]
.
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As before, we should choose the root such that the differential equation for Y has a
solution that converges to a steady state. The differential equation is

Ẏ =M(A− p− θ)

=M
(
A− δ+ λY + V ′I

)
=M

[
(A− δ + βI )+ (μI + λ)Y

]
.

This equation gives a converging solution to a steady state if and only if

(μI + λ) < 0. (25)

We must choose μI that satisfies the convergence condition (25). Since the bigger
root μI1 gives

μI1 + λ= λ− λ+ 1

2

[
r

M
+

√(
r

M
− 2λ

)2

+ 4
(
γ − λ2

)]
> 0

we reject μI1. Turning to the smaller root, λI2, we find that

μI2 + λ= 1

2

[
r

M
−

√(
r

M
− 2λ

)2

+ 4
(
γ − λ2

)]
(26)

is negative if and only if

(
r

M

)2

<

(
r

M
− 2λ

)2

+ 4
(
γ − λ2)

i.e. iff

γ >
r

M
λ. (27)

In what follows, we assume that condition (27) is satisfied. This condition is satisfied
if λ < 0 or λ > 0 but sufficiently small.

Under Assumption (24), we select the smaller root μI2 and denote it by μ∗I :

μ∗I =
1

2

[
r

M
− 2λ−

√(
r

M
− 2λ

)2

+ 4
(
γ − λ2

)]
.

Next, we solve for βI .

βI
[
M

(
μ∗I + λ

)− r
]=−M(A− δ)

(
μ∗I + λ

)
> 0.

Then βI < 0 because (μ∗I + λ) < r
M

by (26).

β∗I =
(A− δ)(μ∗I + λ)

(r/M)− (μ∗I + λ)
< 0
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i.e.

β∗I =
(A− δ)[ r

M
−

√
( r
M
− 2λ)2 + 4(γ − λ2)]

r
M
+

√
( r
M
− 2λ)2 + 4(γ − λ2)

< 0

given that condition (27) is satisfied. Finally,

α∗I =
M

2r

[
2x + (

A− δ + β∗I
)2]

> 0.

The steady state is

Ỹ = A− δ + βI

−(μI + λ)

= 1

−(μI + λ)

[
(A− δ)[(r/M)− (μ∗I + λ)] + (A− δ)(μ∗I + λ)

(r/M)− (μ∗I + λ)

]

= (A− δ)(r/M)

(μ∗I + λ)2 − (μ∗I + λ)(r/M)

= (A− δ)(r/M)

(
rμ∗I
M
+ γ )− rμ∗I

M
− rλ

M

= (A− δ)(r/M)

γ − rλ
M

> 0.

The following Proposition summarizes the result of this section.

Proposition 3 Suppose that the coalition of oil importing countries faces an ar-
bitrary producer’s price rule of the form p = δ − λY , where δ < A, λ ≷ 0, and
γ > r

M
λ.

Assume that

Y0 +R0 ≥ Ỹ ≡ (A− δ)(r/M)

γ − rλ
M

.

The intertemporal welfare maximizing behaviour of the coalition of importing coun-
tries will result in setting the carbon tax according to the rule

θ =−β∗I −μ∗I Y

where

μ∗I =
1

2

[
r

M
− 2λ−

√(
r

M
− 2λ

)2

+ 4
(
γ − λ2

)]

and

β∗I =
(A− δ)[ r

M
−

√
( r
M
− 2λ)2 + 4(γ − λ2)]

r
M
+

√
( r
M
− 2λ)2 + 4(γ − λ2)

< 0.
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Thus the consumer’s price satisfies

pc = p+ θ = (
δ − β∗I

)− (
μ∗I + λ

)
Y.

As Y rises, the consumer’s price rises (recall μ∗I + λ < 0). The quantity demanded,
q , will fall over time.1 As Y approaches Ỹ , the carbon tax approaches A, and the
consumer’s price, p+ θ , approaches A.2

Note that since we do not make any assumption about the sign of λ, it is possible
that the carbon tax falls as Y rises, provided that λ < 0, so that the producer’s price
rises with Y . We will see later that this cannot happen in a Nash equilibrium.

Finally, to prove that q falls over time, we write

q =M(A− p− θ)=M
(
A− δ + λY + β∗I +μ∗I Y

)
.

Then

q̇ = (
λ+μ∗I

)
Ẏ < 0

because λ+μ∗I < 0.

6 Nash Equilibrium

In the two preceding sections, we looked at the reaction of one player (either the
cartel, or the coalition of importing countries) to a given linear Markovian strategy
(either a carbon-tax rule, or a producer-price setting rule) of the other player. It
is now time to put our pieces together to find the Nash equilibrium of the games
between the two players.

Given any linear Markovian tax rule θ = σ + ηY , we found that the cartel’s
reaction function (or best reply) is the following pricing rule

p = 1

2

(
A− σ − β∗X

)− 1

2

(
η+μ∗X

)
Y

where

μ∗X = η+ r

M
−

√(
r

M

)2

+ 2

M
ηr ≡ μ∗X(η)

and

β∗X =−
(A− σ)(η−μ∗X(η))
(η−μ∗X(η))+ 2r

M

≡ β∗X(σ,η).

1See the proof below.
2This follows from (A− δ + β∗I )+ (μ∗I + λ)Y → 0 as Y → Ỹ .
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Conversely, given any linear Markovian producer-price setting rule p = δ − λY

(where λ≷ 0), we found that the coalition’s reaction function (or best reply) is the
following carbon-tax rule

θ =−β∗I −μ∗I Y

where

μ∗I =
1

2

[
r

M
− 2λ−

√(
r

M
− 2λ

)2

+ 4
(
γ − λ2

)]≡ μ∗I (λ)

and

β∗I =
(A− δ)[ r

M
−

√
( r
M
− 2λ)2 + 4(γ − λ2)]

r
M
+

√
( r
M
− 2λ)2 + 4(γ − λ2)

≡ β∗I (δ, λ).

In a Nash equilibrium, it must hold that, for all Y ,

σ + ηY =−β∗I −μ∗I Y

and

δ − λY ≡ 1

2

(
A− σ − β∗X

)− 1

2

(
η+μ∗X

)
Y.

These two conditions are satisfied if and only if the following four equalities are
met:

σ =−β∗I (δ, λ), (28)

δ = 1

2

(
A− σ − β∗X(σ,η)

)
, (29)

η=−μ∗I (λ), (30)

λ= 1

2

(
η+μ∗X(η)

)
. (31)

Note that the right-hand side of (28) is positive; and the right-hand side of (29)
is positive if A− σ > 0. We will verify that in a Nash equilibrium, A− σ > 0. The
four equations (28) to (31) determine the Nash equilibrium tuple (σ, δ, η,λ).

We are able to show that a solution (σ, δ, η,λ) exists and is unique.
We find that (see Katayama et al. 2013) under assumption (27), there are two

possible values of λ:

λ∗1 =
2

3

Mγ

r
+ 1

9

[
r

M
−

√
3γ +

(
r

M

)2]
> 0,

λ∗2 =
2

3

Mγ

r
+ 1

9

[
r

M
+

√
3γ +

(
r

M

)2]
> 0.
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However, the bigger root is not admissible (see Katayama et al. 2013 for a proof).
So in what follows, we define

λ∗ = λ∗1 =
2

3

Mγ

r
+ 1

9

[
r

M
−

√
3γ +

(
r

M

)2]
> 0.

After some simple manipulations, we obtain the solution

η∗ = 2

(
Mγ

r
− λ∗

)
> 0.

Finally, we can solve for σ ∗ and δ∗. We can show that

δ∗ = Arλ∗

γM
> 0,

σ ∗ = 2δ∗ −A> 0.

Proposition 4 There exists a unique Nash equilibrium. At the equilibrium, the
coalition of importing countries imposes a carbon tax rule of the form θ(t) =
σ ∗ + η∗Y(t) where η∗ > 0 and 0 < σ ∗ < A, and the oil cartel sets producer’s
price according to the pricing rule of the form p(t) = δ∗ − λ∗Y(t) where δ∗ > 0
and 0 < λ∗ <Mγ/r . The quantity demanded will fall over time, and the consumer
price will approach A as the stock of pollution Y approaches Y where

Y ≡ A− σ ∗

η∗
= A− σ ∗

2[(Mγ/r)− λ∗] = Ỹ ≡ A− δ∗

(Mγ/r)− λ∗
= Y∞ ≡ Ar

γM
.

In the Nash equilibrium, the importing countries use the carbon tax strategy

θ = σ ∗ + η∗Y

while the oil cartel uses the price setting strategy

p = δ∗ − λ∗Y = λ∗
(
Ar

γM
− Y

)
.

Therefore the tax increases and the producer price falls as the stock of pollution
increases. The consumer price is

pc = p+ θ = (
σ ∗ + δ∗

)+ (
η∗ − λ∗

)
Y

where η∗ − λ∗ > 0. As Y increases toward its steady state value Y∞ = Ar/(γM),
the carbon tax tends to A and the cartel’s producer price tends to zero.

The rate of increase in pollution is

Ẏ =Mc= q =M(A− p− θ)=M
[
A− (

σ ∗ + δ∗
)− (

η∗ − λ∗
)
Y
]
.
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Thus, as Y rises, Ẏ (the rate of increase in pollution) becomes smaller and smaller:

dẎ

dY
=−M(

η∗ − λ∗
)= M

3

[
r

M
−

√
3γ +

(
r

M

)2]
< 0.

Remark 3 The socially optimal steady state stock is

Y∞ = Ar

Mγ
.

Then Y∞ = Ỹ is true if and only if

δ∗ = λ∗Ar
γM

.

See Katayama et al. (2013).

Remark 4 Under the social planner, the pollution stock also tends to the steady
state Y∞ = Ar/(γM). However, the rate of change in Y is not the same in the
two regimes. In fact,

dẎ

dY
=−M

3

[√
3γ +

(
r

M

)2

− r

M

]
for Nash equilibrium

while

dẎ

dY
=−M

2

[√
4γ +

(
r

M

)2

− r

M

]
for social planning.

It is clear that the former takes a smaller negative value than the latter. Thus,
compared with the social planner case, the Nash equilibrium results in lower con-
sumption earlier on. This is because cartel conserves the resource stock. This is
another confirmation of Solow’s claim that the resource monopolist is the conserva-
tionist’s best friend.

7 Welfare Comparison

Since the social planner maximizes world welfare, it is clear that, in terms of world
welfare, the Nash equilibrium outcome cannot dominate the outcome under the so-
cial planner.

For the sake of illustration, we provide a numerical example. Assume M = 1,
Y0 = 0, r = 0.05, A= 5, and γ = 0.02.

Then the social planner’s optimal pollution stock is

Y∞ = rA

γM
= (0.05)5

0.02
= 12.5
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and welfare under the social planner is3

V (0)= α = M

2r

[
(A+ β)2 + 2x

]= M

2r

(
A+ AξM

r −Mξ

)2

+ Mx

r

where

ξ = r −√
r2 + 4γM2

2M
,

M

2r

(
A+ AμM

r −Mμ

)2

= 21.983.

In the case of Nash equilibrium,

γ = λ1 = 1

9

[
6
Mγ

r
+ r

M
−

√
3γ +

(
r

M

)2]
= 0.244.

We keep only λ1 and call it λ∗. Next, compute η∗:

η∗ = 2

(
Mγ

r
− λ∗

)
= 0.311.

Then

μX
(
η∗

)= η∗ + r

M
−

√(
r

M

)2

+ 2

M
η∗r = 0.177,

z
(
η∗

)= η∗ −μ∗X
η∗ −μ∗X + 2r

M

= 0.571,

δ∗ = A(1− z(η∗))(1+ z(η∗))
2− z(η∗)(1+ z(η∗))

= 3.055,

σ ∗ = Az(η∗)(1− z(η∗))
2− z(η∗)(1+ z(η∗))

= 1.111,

2δ∗ −A= 1.111,

Y = A− σ ∗

η∗
= 12.499,

Y∞ = A− δ∗

(Mγ/r)− λ∗
= 12.499.

Therefore, we confirm that Y = Y∞.

3Since the term Mx
r

is a constant, we can omit it in all welfare expressions.
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Notice that the steady state pollution stock in the Nash equilibrium is the same
as under the social planner. However, the rates at which the pollution stock grows
toward the steady state are different under the two regimes.

Concerning welfare in the Nash equilibrium, for simplicity, we set Y0 = 0. The
welfare of the importing coalition, as seen from time t = 0, is

VI (0)= α∗I =
M

2r

[
2x + (

A− δ∗ + β∗I
)2]= Mx

r
+ M

2r

(
A− δ∗ + β∗I

)2
.

The welfare of the cartel of oil exporters is

VX(0)= α∗X =
M

4r

(
A− σ ∗ + β∗X

)2

= M

4r

[
A− σ ∗ − (A− σ ∗)(η−μ∗X)

(η−μ∗X)+ 2r
M

]2

= M

4r

[(
A− σ ∗

)(
1− z

(
η∗

))]2
.

In the Nash equilibrium, λ= λ1 = 0.244 44. So the welfare of the coalition of im-
porters is Mx

r
plus

1

2r

(
A− δ∗ + β∗I

)2 = 1

2r

(
A− δ∗ − σ ∗

)2 = 6.944.

The welfare of the cartel of exporters is

α∗X = 13.888.

The sum of their welfare levels is

Mx

r
+ 6.944+ 13.888= Mx

r
+ 20.832.

Recall the welfare under the social planner, which is Mx
r
+21.983. This implies that

welfare in the social planner regime is greater than that in the Nash equilibrium.

8 Stackelberg Solutions

In Sect. 4, we have shown how the cartel determines its pricing strategy facing
a given tax rule θ = σ + ηY by the importing coalition, i.e., given the parameters
σ < A and η > 0. Suppose the importing coalition knows this “reaction function” of
the cartel. Then it seems tempting for the coalition to choose the “best” parameters
σ and η to maximize its welfare.
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Let us formulate this problem. We have found that given (σ, η) the cartel’s best
reply takes the form

p = 1

2

(
A− σ − β∗X(σ,η)

)− 1

2

(
η+μ∗X(η)

)
Y.

For simplicity, define

G(η)=
(
r

M

)2

+ 2rη

M

and define the cartel’s reaction functions

δR(σ,η)≡ 1

2

(
A− σ − β∗X(σ,η)

)= (A− σ)( r
M
+ 2η−√G(η))
2η

and

λR(η)≡ 1

2

(
η+μ∗X(η)

)= 1

2

(
r

M
+ 2η−√

G(η)

)

then the cartel’s price setting reaction is

pR = δR(σ,η)− λR(η)Y.

The consumer price is

p = pR + θ.

Then the transition equation becomes

Ẏ =M
(
A− pR − θ

)=M
[
A− (

σ + δR
)]−M

(
η− λR

)
Y.

Then Y(t) converges to the steady state Y = (A− σ)/η and

Y(t)= Y + (Y0 − Y) exp

(
(r −M

√
G(η))t

2

)
. (32)

From (19), the instantaneous welfare of the importing country is

W =Mx +M

[
(A− pR)2 − θ2

2
− γ Y 2

2

]
,

which can be expressed as

W = κY 2 + ρY +ψ +Mx

where

κ(η)≡−M
2

[(
η− λR(η)

)(
η+ λR(η)

)+ γ
]
,
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ρ(σ,η)≡M
[−ση+ (

A− δR(σ,η)
)
λR(η)

]
,

ψ(σ,η)≡ M

2

(
A− σ − δR(σ,η)

)(
A+ σ − δR(σ,η)

)
.

It follows that, after substituting for Y(t) using (32), instantaneous welfare at t is

W(t) = κ(Y0 − Y )2e(r−MG1/2)t + (2κY + ρ)(Y0 − Y)e(r−MG1/2)t/2

+ κY
2 + ρY +ψ +Mx.

Thus
∫ ∞

0
e−rtW(t)dt = κ

MG1/2
(Y0 − Y )2 + 2(2κY + ρ)

r +MG1/2
(Y0 − Y )

+ κY
2 + ρY +ψ

r
+ Mx

r

which can be simplified as

∫ ∞

0
e−rtW(t)dt = κ

MG1/2
(Y0 − Y )2 + 2(2κY + ρ)

r +MG1/2
(Y0 − Y)+ Mx

r
− MγY

2

2r
.

(33)
The task of the importing coalition, acting as leader, is to choose η and σ to

maximize the right-hand side of (33). Note that Y = Y (σ,η). The first order con-
ditions that determine the optimal pair (σ, η) would involve the term Y0. Suppose
that at some future time τ the leader can replan, by choosing η and σ again to max-
imize the integral of instantaneous welfare flow starting from time τ , where Yτ is
the current pollution stock:

Vτ (Yτ )=
∫ ∞

τ

e−r(t−τ)W(t)dt = κ

MG1/2
(Yτ − Y )2

+ 2(2κY + ρ)

r +MG1/2
(Yτ − Y )+ Mx

r
− MγY

2

2r
. (34)

Then the new first order conditions that determine the optimal pair (σ, η) would in-
volve the term Yτ , which is different from Y0. This observation leads us to conclude
that the optimal policy of the leader is time-inconsistent. This time inconsistency in
dynamic games with Stackelberg leadership is a well-known result, see e.g. Kemp
and Long (1980).

To resolve the problem of time inconsistency, several authors have imposed time-
consistent conditions that would constrain the choice set available to the Stackelberg
leader, see for example Karp (1984), Fujiwara and Long (2011). In what follows we
use the approach advocated by Fujiwara and Long (2011). They propose that the
leader’s choice of the parameters of the tax function should lead to the socially
optimal steady state. The rationale for this requirement is that if a policy leads to a



310 S. Katayama et al.

steady state that is not efficient, there will be the incentive for the leader to deviate
from it to achieve gains. In terms of our model, this requirement is

Y = A− σ

η
= Ar

γM
= Y∞

i.e.

σ = A(Mγ − ηr)

Mγ
.

This requirement allows us to simplify the coefficients of the terms (Yτ − Y ) and
(Yτ − Y )2 as follows:

2(2κY + ρ)

r +MG1/2
=−A,

κ

MG1/2
= r(3η+ r/M)− (2η+ r/M)MG1/2 − 2γM

4MG1/2
.

Therefore the right-hand side of (34) becomes

Vτ (Yτ ) =
[
r(3η+ r/M)− (2η+ r/M)MG1/2 − 2γM

4MG1/2

](
Yτ − Ar

γM

)2

−A

(
Yτ − Ar

γM

)
+ Mx

r
− Mγ

2r

(
Ar

γM

)2

.

It follows that the time-consistent leader’s optimization problem amounts to choos-
ing η to maximize the term inside the square brackets. Set M = 1 for simplicity. The
first order condition for this optimization problem is

3rG− [
r(3η+ r)− 2γ

]
r − 2G3/2 = 0.

We can show (see Katayama et al. 2013) that the above FOC has a unique positive
root η. Unfortunately, it is not possible to express the leader’s optimal choice of η
as an explicit function of the parameter values r and γ . We must therefore resort to
numerical computations.

Given the numerical values of r and γ , we must solve for η. The solution pro-
ceeds as follows. Define the new variable s = 2η+ r . First, we must find the unique
positive root of the following cubic equation in s:

4s3 − 9r

4
s2 − 3r

(
r

2
+ 2γ

r

)
s − r

(
r

2
+ 2γ

r

)2

= 0.

Next, we find η from s = 2η+ r , and compute

G1/2 =
√(

r

M

)2

+ 2rη

M
.

After that, we find the welfare Vτ (Yτ ).
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Numerical Example Assume M = 1, r = 0.05, γ = 0.02, A = 5. Solving the
cubic equation in s, we obtain the real root s = 0.265. Then

η= 0.107.

Turning to G(η)1/2 =
√
( r
M
)2 + 2rη

M
,

G(η)1/2 = 0.115.

Moreover,

σ = A(Mγ − ηr)

Mγ
= 3.653.

Then, assuming Y0 = 0, the leader’s payoff is 13.644+ x
r

. This is an improvement
over the Nash equilibrium welfare (which was 6.944+ x

r
).

What about the follower’s welfare?
Recall that in Sect. 4, for any arbitrary tax function θ = σ + η, the payoff of the

cartel, when Y0 = 0, is

αX∗ = M

4r

(
A− σ + β∗X

)2

where

β∗X =−
[
(A− σ)(η−μ∗X)
(η−μ∗X)+ 2r

M

]

and

η−μ∗X =
√(

r

M

)2

+ 2

M
ηr − r

M
=√

G(η)− r

M
= 0.065.

Then β∗X = −0.531 and α∗X = 3.321. Therefore the payoff for the follower (the
cartel) is much smaller than under the Nash equilibrium (which was 13.888).

World welfare under the leadership of the importing coalition is 16.966 + x
r

,
which is smaller than under the Nash equilibrium, which is in turn smaller than
under the social optimum.

Next, we turn to the Stackelberg regime with the exporter cartel as the leader.
However, the analysis and derivation under this regime are quite similar to the
case of Stackelberg under importer coalition leadership that we have just devel-
oped. Therefore, let us avoid cumbersome repetition of equations but present only
the result of the numerical example. (The full exposition is available in Katayama
et al. 2013). Assuming as before M = 1, r = 0.05, γ = 0.02, A= 5, we obtain that
the payoff of the cartel (the leader) is 15.810 and that of the importer coalition is
2.901+ x

r
. Thus the world welfare is 18.711+ x

r
, which is greater than that under

importer’s leadership, 16.966+ x
r

.
To check the robustness of our results, we have computed a number of numer-

ical examples to make the welfare comparisons for three entities (world welfare,
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importer and exporter welfare) across four regimes (social planner, Nash, leader-
ship by exporters, and leadership by importers). They are conducted with different
values of r , keeping other parameters as fixed at M = 1, γ = 0.02,A= 5. The rate
of discount is varied from 0.001 to 0.10. For all the different values of r , we find
that world welfare is highest under social planning, which dominates world welfare
under Nash, which is in turn superior to world welfare when the exporters are the
Stackelberg leader. World welfare is always lowest when the coalition of importers
is the Stackelberg leader. The last inequality is interesting. This direction of inequal-
ity seems to hold in general (or at least over all numerical examples of ours). This
could be model-specific, since the exporters manage to control the resource and to
act as the conservationist’s friend and by that reason, atmospheric carbon accumu-
lates at a slower rate.

Thus, as the conclusion of the present paper, we interpret the order of ranking
in welfare comparison among social planning, Nash equilibrium, Stackelberg solu-
tion under exporter leadership and Stackelberg solution under importer leadership
as follows. Naturally, we would expect that social planning gives the highest welfare
for the world as a whole and Nash and Stackelberg would not surpass the socially
optimal solution. Then, the ranking between Nash and Stackelberg is more of our in-
terest and our conjecture is that the degree of competitiveness is greater under Nash
type interaction between two players than under Stackelberg interactions since nei-
ther of Nash players exerts any power to infer the other party’s reaction function
while in the Stackelberg case, one of them does. In other words, the Nash equi-
librium is established on equal footing among players, while Stackelberg solutions
require stronger imperfectness in competition implying, in turn, greater distortion
from social optimality.

Finally, between two Stackelberg welfare results, the one with exporter leader-
ship is better than the other because the exporter/producer of natural resource fuels
cares for its profit by directly controlling export price while the importer’s main
interest, in our model, is not in directly controlling resource reserves but in imple-
menting environmental tax to curb the cumulative effect of fossil fuel consumption,
while at the same time seeking more favorable terms of trade. It has been known
from the literature that the resource monopolist is in favor of a slow mode of ex-
ploitation. Therefore, in the context of climate change driven largely by emissions
from the burning of fossil fuels, we can expect to have higher welfare when the sole
exporter of resource in our model leads the world rather than when the importing
coalition targeting on environmental damages takes the lead.
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Landowning, Status and Population Growth

Ulla Lehmijoki and Tapio Palokangas

Abstract This paper considers the effects of the landowning and land reforms on
economic and demographic growth by a family-optimization model with endoge-
nous fertility and status-seeking. A land reform provides the peasants with strong
incentives to limit their family size and to improve the productivity of land. Even
though the income effect due to the land reform tends to raise fertility, a strong
enough status-effect outweighs it, thus generating a decrease in population growth.
The European demographic history provides supporting anecdotal evidence for this
theoretical result.

1 Introduction

The core of the Malthusian thinking is the inescapable relationship between popu-
lation and land: as land is fixed but population growing, a contradiction cannot be
avoided (Malthus 1798). This document shows that it is essential to know who owns
the land. Land ownership creates incentives to increase the productivity of land and
to limit the family size. Therefore, land reforms have often diminished population
growth, in particular where land ownership generates social status and appreciation.

Lucas (2002) characterizes land-population relationship by models of human his-
tory as follows. In primitive economies, the land is commonly owned so that even
altruistic parents cannot improve the lot of their descendants. Nevertheless, once
land property rights are established, parents decide on the optimal number of chil-
dren and hand their farm over to their children. With private ownership, a newcomer
decreases income per capita so that the steady state population growth rate falls.
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Parents can also educate their children which increases the cost of the newcomers,
decreasing the steady state population growth even further. However, the transition
from high to low fertility occurs only if there is a mechanism through which modern
technology can gradually replace agricultural technology (Lucas 2002). A mecha-
nism of this kind was postulated by Galor et al. (2009): they argue that unequal
land ownership discourages human capital, thus preventing the decline in popula-
tion growth. Benefiting from cheap labor, the landed aristocracy retards education
by its political and social status. For this reason, land reforms have triggered both
modernization and demographic change.

The essential difference between Lucas (2002) and Galor et al. (2009) is that the
former focuses on the productive role of land while the latter consider the land also
as a source of social status and political power. We extend the concept of status
from landowning in two ways. First, we assume that status-seeking is important not
only for the landed aristocracy but also for peasants. Where the status of the peasant
depends on land per capita, farming families have a strong incentive to limit their
family size. Second, we show that land reforms generate modernization, i.e., a shift
from high fertility and low income to low fertility and high income.

Land reforms redistribute land from the landed aristocracy to tenants. We model
a channel from land reforms to population growth through the social status, which is
characterized by land per capita in the family relative to that elsewhere in the econ-
omy. A land reform decreases population growth the more, the stronger is the desire
of status. The importance of status has already been recognized by Smith (1776),
who denoted the appreciation of productive assets as the “Spirit of Capitalism”.
Kurz (1968), Corneo and Jeanne (2001) and Fisher and Hof (2005) used status to
explain economic growth in advanced economies. Later, Lehmijoki and Palokangas
(2009, 2010) applied status-seeking to explain economic and demographic growth
in developing countries.

This document is organized as follows: Sect. 2 considers the optimal behavior of
peasant families. Section 3 examines the dynamics of the economy. Sections 4 and 5
consider the long-run and short-run effects of land reforms, illustrating the transi-
tion from high fertility and low income to low fertility and high income. Section 6
provides supporting evidence from Europe. Section 7 summarizes the results.

2 Peasant Families

We consider an economy containing a large number of similar peasant families, who
derive welfare from their children and status, and invest in agricultural technology to
improve the productivity of land, and landowners, who do not farm but consume all
their income. The analysis is based on a tradeoff between investment in children and
investment in land productivity. We construct a model of a representative peasant
family for this purpose.
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2.1 Fertility, Production and Investment

The representative peasant family (hereafter the family) has L(t) members at
time t .1 Its fertility rate n is

n
.= L̇

L

.= 1

L

dL

dt
, (1)

where (·) is the time derivative.
We normalize the area of land at unity. The family owns a fixed proportion β ∈

[0,1] of the land it farms, but rents the remainder 1 − β from the representative
landowner (hereafter the landowner). The model contains two important special
cases: an independent farmer for β = 1 and a landless tenant farmer for β = 0.

The landowner requires the family to obey “good farming practises” when cul-
tivating the rented land. To simplify the dynamics of the model, we specify this re-
quirement as follows: the family must keep its rented land as productive as its own
land. Let A be the productivity of land and simultaneously the supply of efficient
land. The family improves the productivity A by its investment I in agricultural
technology:

Ȧ
.= dA

dt
= I. (2)

There is only one good which is used in consumption and investment, and which
we choose as the numeraire. The number of family members employed in child
rearing, qnL, is in fixed proportion q to total fertility nL at any time. The rest of the
family, L− qnL= (1− qn)L, works in the family farm. The output Y of the good
is produced from labor (1− qn)L and efficient land A according to the neoclassical
technology with constant returns to scale:

Y = F
(
(1− qn)L,A

)
, F1

.= ∂F

∂[(1− qn)L] > 0, F2
.= ∂F

∂A
> 0,

F11
.= ∂2F

∂[(1− qn)L]2 < 0, F22
.= ∂F

∂A2
< 0, F12

.= ∂2F

∂[(1− qn)L]∂A > 0,

F linearly homogeneous.
(3)

We denote per capita efficient land by a
.= A/L for the family and by a for the

entire economy. The family takes the macroeconomic variable a as given, but in
equilibrium a = a holds true.

Because both the family and the landowner observe the productivity of land, rent
r is set on efficient land. The family’s investment I is thus equal to output Y minus

1We ignore mortality in this document, for convenience. The introduction of a constant mortality
rate would complicate the analysis, without qualitatively changing the results.
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rents for efficient land r(1−β)Aminus consumptionC. Noting c= C/L, a =A/L,
(2) and (3), this implies

Ȧ= I = Y − r(1− β)A−C = F
(
(1− qn)L,A

)− (1− β)rA−C

= [
F(1− qn,a)− (1− β)ra − c

]
L. (4)

Noting a =A/L, (1) and (4), we obtain the per capita budget constraint

ȧ = Ȧ

L
− L̇

L

A

L
= Ȧ

L
− na = F(1− qn,a)− (1− β)ra − c− na. (5)

2.2 Utility

Following Razin and Ben-Zion (1975) and Becker (1991), the family derives tem-
porary utility from the (logarithm of) per capita consumption and the proportion of
new people in population, n (= the fertility rate). In addition, the peasant family
benefits from its status in the society. This is proxied by the per capita efficient land
the family cultivates, a, relative to that for the economy as a whole, a. Thus, we
augment the temporary utility by an increasing and concave function v(a − a) of
the status a − a:2

u(t)= log c+ θ logn(t)+ εv
(
a(t)− a(t)

)
, θ > 0, v′ > 0, v′′ < 0, v′(0)= 1,

(6)
where θ > 0 and ε > 0 are the constant weights for children and status. The bigger ε,
the higher desire for status due to land. The bigger θ , the more children the families
should like to have.

Let the constant ρ be a family’s rate of time preference. Noting (1) and (6), the
representative peasant family’s expected utility at time t = 0 is then

U =
∫ ∞

0
u(t)e−ρtdt =

∫ ∞

0

[
log c+ θ logn+ εv(a − a)

]
e−ρtdt,

v′ > 0, v′′ < 0, v′(0)= 1, ρ > 0, θ > 0. (7)

2.3 The Family’s Optimal Behavior

The representative family maximizes its utility (7) by choosing its fertility n and
consumption per capita, c, subject to its budget constraint (5), given the rent r . The

2If the measure for status, v, were a linearly homogeneous function of a and a, we would obtain
the same results with some complication.
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Hamiltonian of this maximization is

H = log c+ θ logn+ εv(a − a)+ λ
[
F(1− qn,a)− (1− β)ra − c− na

]
, (8)

where the co-state variable λ evolves according to

λ̇= ρλ− ∂H

∂a
= [

ρ + n+ (1− β)r − F2(1− qn,a)
]
λ− εv′(a − a),

lim
t→∞λae−ρt = 0. (9)

The maximization of the Hamiltonian (8) by the control variables (c, n) for a
given λ yields the first-order conditions

∂H

∂c
= 1

c
− λ= 0,

∂H

∂n
= θ

n
− [

qF1(1− qn,a)+ a
]
λ= 0.

Given these two equations, (3) and (7), we can replace λ by n as the co-state variable
and define per capita consumption c as a function of productivity per capita, a, and
the fertility rate n as follows:

c
.= 1/λ= z(a,n)/θ > 0, z(a,n)

.= [
qF1(1− qn,a)+ a

]
n > 0,

za
.= ∂z

∂a
= ( q︸︷︷︸

+
F12︸︷︷︸
+
+1)n > n > 0, zn

.= ∂z

∂n
= z

n︸︷︷︸
+

− q2n︸︷︷︸
+

F11︸︷︷︸
−

> 0. (10)

Inserting the function (10) into the differential equation (5), the change of per capita
efficient land, ȧ, can be defined as a function of per capita efficient land a, the
fertility rate n and the family’s proportion of land, β , as follows:

ȧ = F(1− qn,a)− (1− β)ra − z(a,n)/θ − na. (11)

Noting (3) and (10), this function has the properties:

∂ȧ

∂n
=−qF1 − a − zn

θ
< 0,

∂ȧ

∂a
= F2 − n− za

θ
,

∂ȧ

∂β
= ra > 0. (12)

3 The Dynamics of the Economy

In equilibrium, a = a holds true. Because the market for efficient land is competi-
tive, the rent r is equal to the marginal product of efficient land for the given supply
A of efficient land:3

r = F2
(
(1− qn)L,A

)= F2(1− qn,a). (13)

3Because the production function F is homogeneous of degree one [cf. (3)], its partial derivative
F2 must be homogeneous of degree zero. This and a =A/L yields (13).
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Consider the evolution of the economy. Given a = a, (7), (10) and (13), we can
transform the differential equation (9) into the following form:

ρ + n− βF2(1− qn,a)− ε

θ
z(a,n)

= ρ + n+ (1− β)r − F2(1− qn,a)− ε

λ

= ρ + n+ (1− β)r − F2(1− qn,a)− v′(0) ε
λ
= λ̇

λ
= d logλ

dt

=− d

dt
log z(a,n)=−za

z
ȧ − zn

z
ṅ. (14)

Thus

ρ + n= βF2(1− qn,a)+ εz(a,n)/θ ⇔ ȧ = ṅ= 0. (15)

Rearranging terms in (14) and noting 0 ≤ β < 1, (3), (10), (12), (13) and (15), we
obtain the change of the fertility rate, ṅ, as a function of per capita efficient land a,
the fertility rate n and the family’s proportion of land, β ,

ṅ= z

zn

[
βF2(1− qn,a)+ ε

θ
z(a,n)− n− ρ

]
− za

zn
ȧ, (16)

with the following partial derivatives:

∂ṅ

∂a

∣∣∣∣
ȧ=ṅ=0

= z

zn

(
βF22 + ε

θ
za

)
− za

zn

∂ȧ

∂a

= z

zn

(
βF22 + ε

θ
za

)
− za

zn

(
F2 − n− za

θ

)
> 0

⇔ ε

θ
>

1

z

(
F2 − n− za

θ

)
− βF22/za, (17)

∂ṅ

∂n

∣∣∣∣
ȧ=ṅ=0

=− z

zn
βF12q + z

zn

(
ε

θ
zn − 1

)
− za

zn

∂ȧ

∂n

=− z

zn
βF12q + z

zn

(
ε

θ
zn − 1

)
+ za

zn

(
qF1 + a + zn

θ

)

=− z

zn
βF12q + ε

θ
z− z

zn
+ za

zn
(qF1 + a︸ ︷︷ ︸
=z/n

)+ za

θ

=− z

zn
βF12q + ε

θ
z− z

zn
+ za

zn

z

n
+ za

θ

= ε

θ
z+ z

zn

(
za

n
− 1︸ ︷︷ ︸

qF12

−βF12q

)
+ za

θ
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= ε

θ
z︸︷︷︸
+

+(1− β︸ ︷︷ ︸
+

)
zq

zn︸︷︷︸
+

F12︸︷︷︸
+
+ za

θ︸︷︷︸
+

> 0, (18)

∂ṅ

∂β
= z

zn
F2 − za

zn

∂ȧ

∂β
= z

zn
F2 − za

zn
ra = z

zn
F2 − za

zn
F2a =

(
1− za

z
a

)
z

zn
F2.

(19)

The ambiguous sign of the partial derivative (17) can be explained as follows. If
the status effect is strong enough (i.e. if ε

θ
is high enough), then the family invests

in wealth rather than in children. In that case, higher per capita wealth (= per capita
efficient land a) generates higher income and a lower marginal utility of wealth,
λ̇ < 0, and a lower opportunity cost of child rearing. This encourages to transfer
labor from farming to child rearing, increasing the fertility rate, ṅ > 0. On the other
hand, the sign of (18) is always clear. If the fertility rate n is over its short-run equi-
librium level, then labor input in farming and the level of income are low, generating
a lower marginal utility of wealth and a lower opportunity cost of child rearing, thus
encouraging to transfer from farming to child rearing, i.e. ṅ > 0.

4 Long Run Effects of a Land Reform

The system (11) and (16) of per capita efficient land, a, and the fertility rate n can
be linearized in the neighborhood of the steady state ȧ = ṅ= 0 as follows:

(
∂ȧ/∂a ∂ȧ/∂n

∂ṅ/∂a ∂ṅ/∂n

)(
da

dn

)
+

(
∂ȧ/∂β

∂ṅ/∂β

)
dβ = 0.

If the Jacobian in this equation is negative,

J
.= ∂ȧ

∂a

∂ṅ

∂n
− ∂ȧ

∂n

∂ṅ

∂a
< 0, (20)

then the system has a saddle point: there is only one initial value of the jump variable
n that leads to the steady state. This is assumed to be the case in the following.

Consider now a land reform that increases the family’s proportion of land, β .
Noting (3), (10), (12), (13), and (20), the steady state values of per capita efficient
land, a∗, and the fertility rate, n∗, are functions of preferences concerning status
relative to children, ε/θ , and the family’s proportion of land, β , with the properties

∂a∗

∂β
=− 1

J

∣∣∣∣∂ȧ/∂β ∂ȧ/∂n

∂ṅ/∂β ∂ṅ/∂n

∣∣∣∣=− 1

J

∣∣∣∣∂ȧ/∂β ∂ȧ/∂n
z
zn
F2 − z

zn
βF12q + z

zn
( ε
θ
zn − 1)

∣∣∣∣
=− 1

J

z

zn

∣∣∣∣ ra −qF1 − a − zn
θ

F2
ε
θ
zn − βF12q − 1

∣∣∣∣=− 1

J

z

zn
F2

∣∣∣∣a −qF1 − a − zn
θ

1 ε
θ
zn − βF12q − 1

∣∣∣∣
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=− 1

J︸︷︷︸
−

z

zn︸︷︷︸
+

F2︸︷︷︸
+

[
ε

θ
azn + qF1 + zn

θ
− aβF12q

]
> 0

⇔ ε

θ
> βq︸︷︷︸

+
F12︸︷︷︸
+

/ zn︸︷︷︸
+
− 1

a︸︷︷︸
+

( q︸︷︷︸
+

F1︸︷︷︸
+

/ zn︸︷︷︸
+
+ 1/θ︸︷︷︸

+
), (21)

∂n∗

∂β
=− 1

J

∣∣∣∣∂ȧ/∂a ∂ȧ/∂β

∂ṅ/∂a ∂ṅ/∂β

∣∣∣∣=− 1

J

∣∣∣∣ ∂ȧ/∂a ∂ȧ/∂β
z
zn
(βF22 + ε

θ
za)

z
zn
F2

∣∣∣∣
=− 1

J

z

zn

∣∣∣∣−qF1 − a − zn
θ

ra

βF22 + ε
θ
za F2

∣∣∣∣=− 1

J

z

zn
F2

∣∣∣∣−qF1 − a − zn
θ

a

βF22 + ε
θ
za 1

∣∣∣∣
=− 1

J︸︷︷︸
−

z

zn︸︷︷︸
+

F2︸︷︷︸
+

[
−
(
qF1 + a + zn

θ

)
− a

(
ε

θ
za + βF22

)]
< 0

⇔ ε

θ
>

1

za︸︷︷︸
+

[
−
(
q

a
F1︸︷︷︸
+

+1+ zn

aθ︸︷︷︸
+

)
− β︸︷︷︸

+
F22︸︷︷︸
−

]
. (22)

From (21) and (22) it follows that

lim
β→0

∂a∗

∂β
> 0, lim

β→0

∂n∗

∂β
< 0, lim

(ε/θ)→∞
∂n∗

∂β
/
∂a∗

∂β
=−za

zn
. (23)

The results (21), (22) and (23) can be rephrased as follows:

Proposition 1 In the long run, a land reform (i.e. an increase in the family’s propor-
tion of land, β) increases per capita efficient land a∗, but decreases the population
growth rate n∗ if and only if either of the following conditions holds true:

(i) The family’s initial proportion of land is small enough, β→ 0.
(ii) The status-effect is strong enough (i.e. ε

θ
is high enough) for the inequalities in

(21) and (22) to hold.

This result can be interpreted as follows. A land reform definitely increases the
income of the peasant family as rent payments decrease. This increases the demand
for children as these are normal goods. If the status-effect of efficient land is weak,
then the income effect dominates and the number of children increases after the
land reform. On the other hand, if the status-effect is strong, then the peasant family
limits its size and invests the extra income to improve the efficiency of land.
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Fig. 1 The phase diagram: (a) the dynamics of the model and (b) the effects of a land reform

5 Short-Run Effects of a Land Reform

The saddle-point condition (20) is equivalent to

∂ȧ

∂a

∂ṅ

∂n
<
∂ȧ

∂n

∂ṅ

∂a
. (24)

Noting (12), (17) and (18), this implies

∂ȧ

∂a
<

∂ȧ

∂n︸︷︷︸
−

∂ṅ

∂a︸︷︷︸
+

/
∂ṅ

∂n︸︷︷︸
+

< 0.

Assume first that the system is initially in the steady state (a∗0 , n∗0). Once β in-
creases, the steady state moves to (a∗1 , n∗1). Given (21), the status a rises but the
fertility rate n falls, a∗0 < a∗1 and n∗0 > n∗1. Given (12), (18) and (24), both singular
curves (ȧ = 0) and (ṅ = 0) are decreasing, but (ȧ = 0) falls more steeply: in the
(a,n) space:

∂n

∂a

∣∣∣∣
ȧ=0

=−∂ȧ
∂a

/
∂ȧ

∂n︸︷︷︸
−

<− ∂ṅ

∂a︸︷︷︸
+

/
∂ṅ

∂n︸︷︷︸
+

= ∂n

∂a

∣∣∣∣
ṅ=0

< 0.

Since ∂ȧ/∂n < 0 by (12), the variable a increases (decreases) below (above) the sin-
gular curve (ȧ = 0). Since ∂ṅ/∂n > 0 by (18), the variable n increases (decreases)
above (below) the singular curve (ṅ= 0). Hence, the stable saddle path SS is down-
ward sloping (cf. Fig. 1a).

Noting (12) and (16), an increase in β shifts both singular curves (ȧ = 0) and
(ṅ= 0) upwards in the (a,n) plane (cf. Fig. 1b):

dn

dβ

∣∣∣∣
ṅ=0

=− ∂ṅ

∂β︸︷︷︸
−

/
∂ṅ

∂n︸︷︷︸
+

> 0,
dn

dβ

∣∣∣∣
ȧ=0

=− ∂ȧ

∂β︸︷︷︸
+

/
∂ȧ

∂a︸︷︷︸
−

> 0.



324 U. Lehmijoki and T. Palokangas

Fig. 2 The development of per capita productivity (a) and population growth (n) after a land
reform

Figure 2 illustrates, that two types of developments are possible. In Fig. 2a, popula-
tion growth undershoots.4 In this case, population growth starts to decrease imme-
diately after the land reform. Furthermore, the initial decrease may be considerable,
i.e. population growth falls drastically. Nevertheless, population growth may also
adopt a reverse course in the short run (cf. Fig. 2b): it overshoots, indicating that the
income effect dominates over the status effect immediately after the land reform.

Given (11), (16), (21) and (22), the population growth rate n undershoots (cf.
Fig. 2a), if and only if

∂n∗

∂β︸︷︷︸
−

/
∂a∗

∂β︸︷︷︸
+

= dn∗

da∗
<

dn

dt︸︷︷︸
−

/
da

dt︸︷︷︸
+

< 0, (25)

where dn∗
da∗ is the slope of the line between points (n0, a0) and (n1, a1) and dn

dt
/ dn
dt

is the slope of the saddle path from (a0, n̂) to (n1, a1). Furthermore, given (16) and
(23), it holds true that

lim
(ε/θ)→∞

(
dn

dt

/
da

dt

)
= z

zn
lim

(ε/θ)→∞

(
F2 + ε

θ
z− n− ρ

)
︸ ︷︷ ︸

+

/
da

dt︸︷︷︸
+

−za
zn

>−za
zn
= lim

(ε/θ)→∞
∂n∗

∂β

/
∂a∗

∂β
.

Thus, the inequality (25) corresponding to undershooting (cf. Fig. 2a) holds for high
enough values of ε

θ
. This result can be rephrased as follows:

4This case is illustrated in Fig. 1b.
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Fig. 3 The decline of
fertility in France, England
and Germany. Source: Festy
(1979) (pages 266–267, 262
and 222)

Proposition 2 If the status-effect is strong enough (i.e. ε
θ

is high enough), then the
land reform (i.e. an increase in β) decreases the population growth rate n immedi-
ately (cf. Fig. 2a).

If the status effect is very strong, then the family generates status immediately by
transferring resources from child rearing into investment in efficient land a.

6 Supportive Evidence

In this section, we provide suggestive evidence in favor of the landowning hypothe-
sis from European history.

One of the greatest puzzles in demographic history is why fertility declined in
rich and urbanized England much later than in poor and rural France.5 Figure 3
illustrates the fertility trends in England, France, and Germany from 1831–1840 to
1936–1945, showing that even though fertility was declining everywhere, its level
in 1831–1840 was much lower and its decrease much faster in France.6 If economic
factors were the driving forces of the fertility decline, this should have started first in
England. Nevertheless, this was not the case. In 1831–1840, the fertility in England
was more than 40 % higher than in France. Furthermore, it took over 30 years for
England to reach the 1831–1840 numbers in France. On the other hand, England
was ahead of Germany as one expected (cf. Fig. 3). Why was the fertility rate so
low in France?

5In 1820, the GDP per capita in England was 1.4 times larger than that in France, and the advantage
of England only increased towards the end of the century (Maddison 1995, 194–196, and Guinnane
2011).
6The cohort fertility rate in Fig. 3 gives the total number of births given by women born in the time
period indicated in the figure.
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Fig. 4 The marital fertility
rate expressed as the share of
the maximum fertility rate
(1.00) in France. Source:
Weir (1994)

Fig. 5 The total fertility rate
(children per woman) from
1776 to 1935 in Finland and
Sweden. Sources: Statistics
Finland (2013), Statistics
Sweden (2013)

Figure 4 presents the (marital) fertility in France from 1740 to 1911. It shows that
fertility declined sharply at the time of the land reform during the Great Revolution
1789–1799, while no land reform occurred in England or Germany: in 1830, 63 %
of the population was landowning peasants in France, while in Britain the share
of landowners was only 14 % (Chesnais 1992, p. 337). Actually, the widespread
ownership of land was a unique feature of France (Cummins 2013). For the new
rural bourgeoisie class, fertility control supplied a powerful method for social rise.
Thus, it is likely that the fertility decline in France was due to the decline in the
child demand among the peasants (Cummins 2013). Furthermore, by associating
early wealth and fertility data, Gummings shows that those peasants who had the
greatest land property also had the lowest fertility and their fertility decline was the
fastest, indicating that status-seeking may have played an important role.

Another example comes from Finland and Sweden. Finland was part of Sweden
from 1150 to 1809, thus sharing many social institutions and cultural features with
the latter. Figure 5 shows that, once onset, the phase of the fertility decline was fast
in both countries. In Sweden, fertility decreased steadily from 1880 to 1935, falling
from 4.5 to 1.765 children per woman. In Finland, however, fertility remained high
(4.72 children per woman) until 1908, but then started declining, reaching the num-
ber 2.37 in 1935. The decline of 2.35 children in only 27 years is one of the fastest
in Western countries, and may be associated with the land reform which started in
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1908 as the tenants were allowed to buy their farms.7 Note that both France and
Finland exhibit strong undershooting, i.e., a sudden downward jump in fertility af-
ter the land reform, indicating that the status effect may have been strong in both
countries.

7 Conclusions

This paper examines the effects the landowning and land reforms by a family-
optimization model with endogenous fertility and status-seeking. A land reform
decreases the costs of farming by decreasing the rents, generating more income
for peasants. The outcome of this depends on preferences. If the role of status is
small, then the peasants rear more children which are normal goods for them. This
leads to a persistent stagnation of income and productivity. But if the role of sta-
tus is sufficient, then peasants limit their family size and invest in efficient land. If
status-seeking is strong enough, then fertility decreases immediately after the land
reform.

The demographic history in Europe provides some supportive evidence for this
landowning hypothesis. Fertility declined in rich and urbanized England much later
than in poor and rural France due to the land reform in the latter during Great Rev-
olution 1789–1799. The fertility control, which supplied a powerful method for so-
cial rise for the new rural bourgeois class, led to an exceptional fertility decline in
France. There is evidence that the peasants with the greatest land property had the
lowest fertility indicating they were subject to strong status-seeking. In Finland as
well, the land reform in 1908 generated one of the most drastic fertility declines in
Western countries.
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Optimal Harvesting of Size-Structured
Biological Populations

Olli Tahvonen

Abstract The question of harvesting size-structured biological resources is generic
in resource economics but purely understood. This study is based on a well known
density-dependent size-structured population model that includes an age-structured
model as a special case. Harvest from each size class can be chosen indepen-
dently. Mathematically the model is an any number of state and control variables
discrete-time optimization problem. While earlier studies have analysed the Max-
imum Sustainable Yield (MSY) steady states using problem-specific optimization
procedures, this study applies non-linear programming and analyses the dynamic
economic problem. It is shown that with two size classes, there may exist six steady
state regimes. The optimal steady state is shown to be either unique or a continuum
implying that earlier MSY-theorems are not entirely correct. Given a unique steady
state the optimal solution converges toward a saddle point steady state or a stationary
cycle. Optimal harvest of single individuals deviates from Faustmann-type timing,
and a higher interest rate may cause a shift to harvesting older age classes. For the
general specification with any number of size classes, equations for optimal steady
states and a stability result are obtained.

1 Introduction

Economic analysis on biologically regenerating natural resources is heavily based
on two distinct approaches. These are the optimal rotation model (Faustmann 1849;
Samuelson 1976) and the dynamic biomass harvesting model (Gordon 1954; Clark
1990). The optimal rotation approach solves the question when to clear-cut a group
of even-aged trees and it leads to harvest every 50 years, for example. The dynamic
biomass approach describes how to optimize the rate of harvest of a biomass (e.g.
fish population). Both approaches have produced extensive literature including the-
oretical extensions and practical applications. In spite of this success the limitation
of the rotation approach is the a priory commitment to point-input, point-output
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structure and silence on whether there could be other possibilities to cope with bio-
logical density dependence, to organize the tree age class structure and the resulting
timing of harvest and regeneration. The limitation of the biomass model is that it
cannot answer the question on whether one should direct the harvesting activity to
some age or size group and save the others.

Overcoming these limitations requires extending the description of the biologi-
cally regenerating natural resource under harvest. This can be done by specifying
the population as an age- or size-structured system. One route toward such models
can be based on the well-known studies by Leslie (1945) and Usher (1966), who pi-
oneered in developing discrete-time structured population models that are currently
considered basic workhorses of population ecology (Cushing 1998; Caswell 2001).
In biological sciences these models are used e.g. for fish, plant, mammal and insect
populations.

For clarity it is important to distinguish at least two different classes of discrete
time structured optimal harvesting models. The first class is based on Leslie (1945)
or Usher (1966) age- or size structured population models and on various density
dependence assumptions. In these models harvest may be age class specific (perfect
selectivity assumption) or models may include some specific harvesting technol-
ogy and “effort” as a single control variable (Getz and Haight 1989, pp. 45, 143).
The second class of models has a centuries long historical background in forest sci-
ences and forest planning (Reed 1986; Getz and Haight 1989, p. 308). These models
consist of a number of biologically separate “even-aged stands” in a larger region
(e.g. a country). The economic problem is to allocate the total land area over time
and over the stands (with varying ages) in order to find optimal harvest and an equi-
librium market price of timber. Clearly, the land allocation model is developed to
analyse a very different problem compared to the single population model and not
recognizing this difference has caused a rather serious confusion (Goetz and Xaba-
dia 2011; Xabadia and Goetz 2010; Goetz et al. 2011).

The first steps in understanding the problem of harvesting a single population
were taken by Baranov (1918), Beverton and Holt (1957) and Walters (1969). Bed-
dington and Taylor (1973) and Rorres and Fair (1975) developed a model where har-
vesting activity is age-class specific (the prefect selectivity assumption). While these
studies apply the linear Leslie matrix model (and ad hoc restrictions), Reed (1980),
Getz (1980) and Getz and Haight (1989) base their models on Walters (1969) and
Allen and Basasibwaki (1974), and include density dependence in recruitment. In
contrast Clark (1990) studies the problem following Beverton and Holt (1957) and
assumes constant exogenous recruitment. In spite of the various extensions of this
model (see Getz and Haight 1989) and its use in many empirical studies (Haight
1985; Tahvonen 2011a), the main theoretical results are still offered by the works of
Reed (1980) and Getz (1980).

Both of these studies solve the Maximum Sustainable Yield (MSY) steady state
and apply a problem-specific solution method that separates the model into linear
and non-linear programming problems. Their main theorem states that optimal MSY
harvesting is bimodal, i.e. it involves a partial or total harvest of only one age class,
or a partial harvest of one age class and a total harvest of another, older age class.
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Getz and Haight (1989) generalized this MSY approach to size-structured models,
and proceeded to a general discussion of how the analysis could be extended by
applying the discrete-time Maximum Principle. However, they did not present any
further results.

In spite of its merits, the solution procedure in Reed (1980) and Getz (1980) is
designed for steady-state analysis and cannot be applied for obtaining dynamic solu-
tions. Its specific nature has perhaps additionally discouraged further developments
in the analytical understanding of this problem.

This study analyses the general dynamic economic problem by applying non-
linear programming and the Karush-Kuhn-Tucker (KKT) theorem. A study by Wan
(1994) and further studies by Salo and Tahvonen (2002, 2003) present an example
in which most theoretical properties of a structured model (land allocation forestry
model) can be found by including only two classes. Applying this method for the
population level model, this study shows the existence of six different steady-state
regimes. These steady states are unique, except for a case of a steady state contin-
uum. This continuum is not recognized in the main theorem by Reed (1980) or Getz
(1980).

The model specifies a problem in optimal harvest timing, but the solution is not
within the realm of the Faustmann rotation model: it is optimal to harvest the co-
horts after they have reached their maximum discounted value, and an increase in
interest rate may result in harvesting of older age classes rather than younger ones.
Comparing solutions with the biomass approach shows that neglecting information
on population interior structure leads to suboptimal steady states and misleading
“optimal extinction” results (cf. Clark 1973).

Given zero interest rate the interior steady states are shown to be local saddle
points. Under some additional restrictions, the saddle point property is shown to
also hold with positive interest rates. However, given “high” discounting, the opti-
mal solution may converge toward a stationary cycle. In contrast, a boundary-type
regime is independent of (small) changes in interest rate and the steady state is lo-
cally stable. Earlier literature does not present any stability results.

The analysis of two solution regimes is extended to steady-state equations with
any number of age or size classes. Given the age-structured specification, it is pos-
sible to show a local stability result independently of the number of age classes.
A numerical example demonstrates that the optimal harvest level within the struc-
tured approach may equal zero, even if the initial population biomass exceeds its
optimal steady state level.

2 The Size- and Age-Structured Optimization Problem

Let xst , s = 1, . . . , n, t = 0,1, . . . denote the number of individuals in size class s in
the beginning of period t. A fraction 0 < αs < 1, s = 1, . . . , n moves to class s + 1
by the end of period t and a fraction 0≤ βs < 1, s = 1, . . . , n remains in class s. The
remaining fraction, i.e. 0 ≤ 1− αs − βs < 1, equals natural mortality. The number



332 O. Tahvonen

of offspring x0t is given as

x0t =
n∑

s=1

γsxst , (1)

where γs ≥ 0, s = 1, . . . , n denotes fecundity. Offspring are vulnerable to density,
and let the twice continuously differentiable function ϕ denote the number of off-
spring that survive over their first period. This function satisfies:

(A1): ϕ(0)= 0,

(A2): 0< ϕ′(0)≤ 1,

(A3): ϕ′′ < 0,

(A4): lim
x0→∞

ϕ′(x0)= 0.

Let hst ≥ 0, s = 1, . . . , n, t = 0,1, . . . . Denote the number of individuals harvested
at the end of any period t. The size-structured population model is now given by (1)
and

x1,t+1 = ϕ(x0t )+ β1x1t − h1t , (2)

xs+1,t+1 = αsxst + βs+1xs+1,t − hs+1,t s = 1, . . . , n− 1. (3)

The (valuable) size of individuals in units of weight or volume is fs ≥ 0, s =
1, . . . , n. The total harvested (valuable) biomass is Ht ≥ 0 and

Ht =
n∑

s=1

fshst . (4)

The utility function U is twice continuously differentiable, increasing and concave
in H. Let b= (1+ r)−1 denote the discount factor and r the interest rate. The prob-
lem is to

max
{hst ,s=1,...,n,t=0,1,...}

∞∑
t=0

U(Ht)b
t ,

subject to (1)–(4), the nonnegativity conditions hst ≥ 0, xst ≥ 0, s = 1, . . . , n, t =
0,1, . . . and the given initial size distribution xs0, s = 1, . . . , n.

If the recruitment function ϕ was linear and ϕ′ = 1, the population model (1)–(3)
would be the standard size-classified model in population ecology (Caswell 2001,
p. 59). Given assumptions (A1)–(A4), the population model is a size-classified spec-
ification with density dependence in recruitment (Caswell 2001, p. 504). A concave
increasing recruitment function is common in fishery models (Beverton and Holt
1957), but also possible for shade-tolerant trees. Assuming βs = 0, s = 1, . . . , n−1,
the model yields the standard density-dependent age-structured model as a special
case. Note that the harvest levels hst , s = 1, . . . , n can be chosen independently.
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This is natural e.g. with trees, but sometimes it is also possible in fisheries, if spe-
cific harvesting gear types exist or different cohorts can be found from different
locations.

When the utility function is bounded and b < 1, the existence of optimal solutions
follows from Theorem 4.6 in Stokey and Lucas (1989, p. 79). The Lagrangian and
the Karush-Kuhn-Tucker (KKT) conditions are written as

L =
∞∑
t=0

bt

[
U

(
n∑

s=1

fshst

)
+ λ1t

(
ϕ(x0t )+ β1x1t − h1t − x1,t+1

)

+
n−1∑
s=1

λs+1,t (αsxst + βs+1xs+1,t − hs+1,t − xs+1,t+1)

]
,

∂L

∂hst
b−t = U ′fs − λst ≤ 0, (5a)

hst ≥ 0, (5b)

hst
∂L

∂hst
b−t = 0, s = 1, . . . , n, (5c)

∂L

∂xs+1,t+1
b−t = bλ1,t+1ϕ

′γs+1 + bλs+1,t+1βs+1

+ bλs+2,t+1αs+1 − λs+1,t ≤ 0, s = 0, . . . , n− 1, (6a)

xs+1,t+1 ≥ 0, (6b)

∂L

∂xs+1,t+1
b−t xs+1,t+1 = 0, s = 0, . . . , n− 1, (6c)

where t = 0,1, . . . and αn ≡ 0. Because the utility and recruitment functions are
concave and other functions are linear, these conditions are sufficient for optimality
given that the discrete analogue of the transversality condition in the Mangasarian
(1966) sufficiency theorem is satisfied (Sydsaeter et al. 2008, p. 447). This holds
for solutions converging to a steady state or stationary cycle. Numerical solutions
will be computed by an interior point algorithm described and tested by Byrd et al.
(1999) and Wächter and Biegler (2006).

3 Two Size Classes

3.1 Steady State Regimes

When n= 2, the optimality conditions are

U ′(Ht )fs − λst ≤ 0, (7a)
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hst ≥ 0, (7b)

hst
b−t ∂L
∂hst

= 0, s = 1,2, (7c)

bλ1,t+1ϕ
′(x0,t+1)γ1 + bλ1,t+1β1 + bλ2,t+1α1 − λ1t ≤ 0, (8a)

x1,t+1 ≥ 0, (8b)

x1,t+1
b−t ∂L
∂x1,t+1

= 0, (8c)

bλ1,t+1ϕ
′(x0,t+1)γ2 + bλ2,t+1β2 − λ2t ≤ 0, (9a)

x2,t+1 ≥ 0, (9b)

x2,t+1
b−t ∂L
∂x2,t+1

= 0, (9c)

x1,t+1 = ϕ(γ1x1t + γ2x2t )+ β1x1t − h1t , (10)

x2,t+1 = α1x1t + β2x2t − h2t . (11)

Given a steady state the time subscripts can be canceled. Equations (10) and (11)
determine the admissible steady state levels of x1 and x2 and the possible solution
regimes. By (10) any steady state satisfies h1 = ϕ− x1(1−β1) implying the bound-
ary: h1 = ϕ − x1(1− β1)= 0. At the (x1, x2)-plane h1 = 0 defines x2 as a convex
function of x1 (Fig. 1). From (11) any steady state satisfies h2 = α1x1− x2(1−β2).
Denote the boundary by h2 = α1x1 − x2(1− β2)= 0. A carrying capacity equilib-
rium with x1 > 0, x2 > 0 exists, if the slope of h1 = 0 is below the slope of h2 = 0
at the origin of the (x1, x2)-plane, i.e.

(A5): 1− β1 − ϕ′(0)γ1

ϕ′(0)γ2
<

α1

1− β2
.

Denote this equilibrium by xc1, x
c
2. If ∂h1/∂x1 = ϕ′(0)γ1 − 1+ β1 > 0, the slope of

h1 = 0 is negative at the origin and the function intersects the x1-axis with some
x̂1 > 0 (Fig. 1).

At admissible steady states, h1 ≥ 0 and h2 ≥ 0, i.e. the steady states exist be-
tween or on the lines h1 = 0, h2 = 0 but above or on the x1-axis. When x̂1 > 0
the population can survive even if all individuals entering size class 2 are harvested
(at the end of every period) implying x2 = 0 and α1x1 = h2. Note that the states
0 < x1 < x̂1, x2 = 0 require h1 > 0, h2 > 0. In addition to the carrying capacity
level (with no harvest) Fig. 1 shows the six different steady state solution regimes:

A: x1 > 0, x2 > 0, h1 > 0, h2 = 0,

B: x1 > 0, x2 > 0, h1 = 0, h2 > 0,
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Fig. 1 Steady state regimes

C: x1 > 0, x2 = 0, h1 = 0, h2 > 0,

D: x1 > 0, x2 = 0, h1 > 0, h2 > 0,

E: x1 > 0, x2 > 0, h1 > 0, h2 > 0,

F : x1 = 0, x2 = 0, h1 = 0, h2 = 0.

Excluding regime F, the steady states satisfy x1 > 0 and (8a) holds as an equality.
In addition, either h1 = 0 or h2 = 0 or both h1 > 0 and h2 > 0. Define

μ1(x1, x2)≡ f1
{
1− b

[
ϕ′(γ1x1 + γ2x2)γ1 + β1

]}− bα1f2.

Applying (7a)–(7c) together with (8a) as an equality it follows that

μ1 > 0⇒ h1 > 0, h2 = 0, (12a)

μ1 < 0⇒ h1 = 0, h2 > 0, (12b)

μ1 = 0⇒ h1 ≥ 0, h2 ≥ 0, (12c)

where in (12c) the case h1 = h2 = 0 is excluded. It is possible that μ1 is positive or
negative for all x1 ≥ 0, x2 ≥ 0 or that μ1 = 0 defines a decreasing straight line in
the (x1, x2)-plane with slope −γ1/γ2 as shown in Fig. 2a. Above the μ1 = 0 curve
it holds that μ1 > 0 and h1 > 0 and below the curve that μ1 < 0 and h2 > 0.

Given x1 > 0 and x2 > 0 both (8a) and (9a) hold as equalities and imply

μ2(x1, x2)= (1− bβ1)− bϕ′(γ1x1 + γ2x2)

(
γ1 + bγ2α1

1− bβ2

)
= 0, (13)
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Fig. 2 Optimality of steady state regimes

while for steady states with x1 > 0, x2 = 0 it must hold that

μ2 > 0. (14)

Differentiation shows that μ2(x1, x2)= 0 is a straight line in the (x1, x2)-plane with
slope −γ1/γ2. Above (below) the line μ2 > 0 (μ2 < 0). Assumptions (A3)–(A5)
imply that the locus of μ2(x1, x2)= 0 always exists below the population’s carrying
capacity level.



Optimal Harvesting of Size-Structured Biological Populations 337

Any steady state with x1 > 0, x2 > 0 must satisfy (13), i.e. μ2 = 0. Given the
locus of μ1 = 0 below the locus of μ2 = 0, (12a) implies that h1 > 0 and h2 = 0,
i.e. the optimal steady state exists in regime A and on the line h2 = 0 (Fig. 2a).
Assume that the locus of μ1 = 0 exists above the locus of μ2 = 0 and that the latter
exists above point (x̂1,0). By (12b) the optimal steady state satisfies h1 = 0 and
h2 > 0, i.e. the optimal steady state exists in regime B and on line h1 = 0 (Fig. 2b).

If x̂1 > 0, the optimal steady state may also exist in regimes C or D. Given
μ1(x̂1,0) < 0 and μ2(x̂1,0) > 0, conditions (12b) and (14) imply that the optimal
steady state satisfies h1 = 0, h2 > 0, x1 = x̂1 > 0 and x2 = 0. This is regime C in
Fig. 2c. The other possibility is that μ1(x̂1,0) > 0 and μ2(x̂1,0) > 0, i.e. regime D
(Fig. 2d) and h1 > 0, h2 > 0. If the locus of μ1 = 0 coincides with the locus of
μ2 = 0, the steady states exist in regime E, which is a continuum between curves
h2 = 0 and h1 = 0 (Fig. 2e). The findings so far can be summarized as

Proposition 1 Given (A1)–(A5) and

1. μ2(0,0) < 0, μ1(x1, x2)|μ2(x1,x2)=0 > 0, A is optimal,
2. μ2(x̂1,0) < 0, μ1(x1, x2)|μ2(x1,x2)=0 < 0, B is optimal,
3. x̂1 > 0, μ2(x̂1,0) > 0, μ1(x̂1,0)≤ 0, C is optimal,
4. x̂1 > 0, μ1(x̂1,0) > 0, μ1(0,0) < 0, μ2(x1, x2)|μ1(x1,x2)=0 > 0, D is optimal,
5. μ2(0,0) < 0, μ1(x1, x2)|μ2(x1,x2)=0 = 0, E is optimal.

3.2 Interpretations

Regime A (x1 > 0, x2 > 0, h1 > 0, h2 = 0) satisfies (from (8a)–(8c)–(11))

f1[ϕ′(x0)γ1 − (1− β1)] + α1f2

f1
< r, (15a)

ϕ′(x0)

(
γ1 + bα1γ2

1− bβ2

)
− (1− β1)= r, (15b)

h1 = ϕ(x0)− x1(1− β1), (15c)

where x0 = γ1x1 + γ2α1x1/(1− β2). The derivative of the LHS of (15b) w.r.t. x1
is negative, i.e. the steady state is unique. Given the level of x1, Eq. (15c) deter-
mines h1. The LHS of (15a) is the marginal rate of return when decreasing h1 in
order to harvest one unit of x2. It is lower than the interest rate, i.e. it is optimal to
harvest class 1 instead of class 2. In addition to the return in terms of h2(α1f2), de-
creasing h1 increases h1 of the next period by increasing the recruitment net of the
fraction that dies or moves to class 2. Equation (15c) defines a sustainable harvest
and is concave in x1 and zero with x1 = 0 or x1 sufficiently large. Maximizing h1
using (15c) results in the LHS of (15b) if b= 1. Increasing x1 marginally increases
the net output of x1 by increasing the recruitment net of the fraction not remaining
in class 1, i.e. by ϕ′γ1 − (1− β1). In addition, an increase in x1 causes an increase
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in x2, which after a delay, increases the level of x1 and h1. Delays in term bα1γ2
1−bβ2

in the LHS of (15b) are discounted (over infinite periods). Thus by (15b) the rate
of interest equals the present value of the marginal surplus production of the size-
structured population. Differentiation of (15b) shows that the levels of x0, x1, x2
and h1 decrease with the discount rate.

The inequality sign in (15a) is reversed in regime B, and it is thus worth saving
all individuals in class 1 and only harvesting class 2. The unique x1 and x2 levels are
given by x1 = ϕ(x0)+ β1x1 and (15b), and the harvest by h2 = α1x1 − x2(1− β2).
When regime C is optimal, the LHS of (15a) is higher and the LHS of (15b) is lower
than the interest rate and x0 = γ1x̂1. Although it is optimal to save all individuals in
class 1 and harvest them from class 2, the discounted marginal surplus production
is too low for retaining class 2 for reproduction. Finally, in regime D the latter con-
dition still holds, but the marginal rate of return of harvesting all individuals from
class 2 is too low, and it is therefore optimal to harvest a fraction of class 1. Optimal
x1 is given by the equality of the LHS of (15a) and the discount rate and the harvests
by x1 = ϕ(x0)+ β1x1 − h1 and h2 = α1x1.

When the optimal steady state is in regime C, decreasing the discount factor
decreases the LHS of (15a) and (15b), implying that an increase in the interest rate
may cause a switch from regime C to regime D. Decreasing the discount factor in
regime D decreases the steady state level of x1, implying lower x1, h1 and h2. These
comparative static results are intuitive: if an increase in the interest rate has an effect,
it causes a lower steady-state population size and the harvesting of individuals from
(size or age) class 1 rather than class 2.

Equation (15b) holds for regimes A and B. It yields x0 as an increasing function
of b, i.e. x0 = x0(b), x′0(b) > 0. Thus, the lower the interest rate, the lower is the
steady state number of recruits in these regimes. Equation (15a) and its derivative
w.r.t. b can be written as

y ≡ f1
(
bϕ′(x0)γ1 + bβ1 − 1

)+ bf2α1,

∂y/∂b = f1
(
ϕ′γ1 + bϕ′′x′0γ1 + β1

)+ f2α1

= f1γ1[α1γ2(b
2β1β2 − 1)− β1γ1(bβ2 − 1)2]

[α1bγ2 − γ1(bβ2 − 1)]2 + α1f2 + β1f1,

where the last line is obtained by (15b). If γ1 = 0 or low, ∂y/∂b > 0 implies that
increasing the interest rate (decreasing the discount factor) may result in a switch
from regime B to regime A, but not vice versa. Thus, in these cases a higher interest
rate implies harvesting from class 1, where individuals are younger and/or smaller.
However, when γ1 > 0, the sign of ∂y/∂b is indeterminate. If it is negative, a de-
crease in the discount factor may cause a switch from regime A to regime B, i.e.
a switch to harvesting older or larger individuals under a higher interest rate. An
example is shown in Fig. 3. When the interest rate is below r = 0.111, the LHS of
(15a) is negative, regime A and harvesting only from class 1 are optimal. Increasing
the interest rate above this level implies that (15a) becomes positive, i.e. regime B is
optimal and harvesting is only optimal from class 2.
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Fig. 3 Optimal steady state and the case where higher interest rate implies a switch of harvest
from class 1 to class 2. Note: ϕ = x0/(1+ 0.4x0), γ1 = 1, γ2 = 0.6, α = 0.7, β1 = 0.1, β2 = 0.98,
f1 = 1, f2 = 1.1

The intuition is that when a higher interest rate decreases the number of offspring
(x′0(b) > 0), the marginal rate of return from saving class 1 individuals to class 2
increases and this effect may dominate the “normal” effects of a higher discount
rate.

The next question concerns the possible non-existence of steady states with
strictly positive population size and harvesting:

Proposition 2 Regime F (xi = hi = 0, i = 1,2) is the optimal steady state if and
only if μ2(0,0)≥ 0 and (i) 1− β1 − ϕ′(0)γ1 > 0 or (ii) μ1(0,0)≥ 0.

Proof Appendix 1. �

Condition μ2(0,0) ≥ 0 is equivalent to the LHS of (15b) being lower than the
interest rate, even when both x1 and x2 are zero. Thus, x2 > 0 cannot be optimal.
Yet this is not sufficient for x1 = 0 and regime F to be optimal. It must either hold
that regimes x1 > 0, x2 = 0 are not admissible (x̂1 = 0), or if admissible, they must
not be optimal. The former case follows if 1− β1 − ϕ′(0)γ1 > 0, and the latter if
μ1(0,0)≥ 0, i.e. if the LHS of (15a) is always lower than the interest rate. Note that
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Fig. 4 Comparison of steady states between the size-structured and the biomass model. Note:
ϕ = 0.9γ2x2/(1+ 0.1γ2x2), γ1 = 0, γ2 = 2, α1 = 0.4, β1 = 0.5, β2 = 0.4, f1 = 1, f2 = 1.5

in the case where regime D is always non-optimal (e.g. if f1 = 0), the solution will
remain in regime C even if r→∞.

The size-structured population model can be used to develop an equilibrium
biomass model. Assume that the population biomass is given as X = f1x1 + f2x2.
It is not possible to optimize harvesting between age classes within the biomass
framework. Firstly assume that only size class 2 is harvested, implying h2 = α1x1−
x2(1−β2) and ϕ(γ1x1+γ2x2)−x1(1−β1)= 0. The last equation and the biomass
equation can be used to obtain both x1 and x2 as functions of population biomass X.
The remaining function for h2 yields harvest as a function of population biomass.
Similarly, if only size class 1 is harvested, h1 = ϕ(γ1x1 + γ2x2)− x1(1− β1) and
α1x1 − x2(1 − β2) = 0, it is once again possible to obtain the equilibrium har-
vest h1 as a function of population biomass X. Denote these equilibrium harvests
as hs = Fs(X), s = 1,2. The optimal steady state condition within the biomass
model is F ′s(X) = r , s = 1,2. Fig. 4 shows numerical examples of these steady
states and the optimal steady states obtained by the size-structured model. The max-
imum sustainable harvest is obtained by harvesting size class 2 only (Fig. 4a). Thus,
the steady states of the size-class and biomass models are equal when r = 0 and
h1 = 0, h2 > 0 in the biomass model (Fig. 4b). When 0 < r ≤ 0.1, the equilibrium
biomass in the size-class model is slightly lower than in the biomass model. When
r = 0.1, the equilibrium continuum is optimal in the size-class model (regime E) and
when 0.1 < r < 0.577, it is optimal to harvest only from size class 1 (regime A).
As shown, the biomass model based on h1 = 0, h2 > 0 yields “optimal extinc-
tion” when r > 0.39 while the critical discount rate in the size-structured model
is 0.578. The comparison of the two models becomes different if h1 > 0, h2 = 0 in
the biomass model. In this case the biomass model yields a lower MSY steady state,
but the biomass becomes higher when r > 0.1. In addition, the “optimal extinction
discount rate” in the biomass model is now higher compared to the size-structured
model.
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3.3 Discussion

In their main theorems Reed (1980) and Getz (1980) state that assuming the max-
imization of sustainable yield, either a single age class or two age classes are har-
vested. In the latter case, the harvest is partial for the younger class and total for the
older class. Reed’s theorem (1980) explicitly states that in the former case where
only one age class is harvested, the harvest may be partial or total. Here only a sin-
gle age class is harvested in regimes A, B and C, with the harvest being partial in
regimes A and B and total in regime C. Regime D is a case where two classes are
harvested, the younger one partially and the older one totally. However, in addition
to these regimes, regime E has two partially-harvested classes. This is not covered
in the theorems by Getz (1980) and Reed (1980). They study MSY steady states
and the age-structured model, i.e. the special case b = 1, β1 = β2 = 0. However,
this difference is not essential, and it is possible to obtain regime E as an optimal
solution in an age-structured model with zero interest rate. For example, if

ϕ =Ax0/(1+Bx0), A= 1, B = 1/5,

γ1 = 1, γ2 = 2, α1 = 7/10, f2 = 5f1/4, b= 1,

both μ1 = 0 and μ2 = 0 imply x2 =
√

10− 5/2− x1/10, i.e. regime E is optimal.
Clark (1990) analyses the famous dynamic pool or cohort model by Beverton and

Holt (1957). Their model coincides with the age-structured special case studied here
assuming interest rate is zero, recruitment is an exogenous constant and the analy-
sis is restricted to steady states. Clark presents the result that given non-selective
harvesting gear, pulse fishing is optimal, instead of continuous harvesting as sug-
gested by Beverton and Holt (1957). The period length between pulses is solved
by an optimal rotation solution for the Faustmann (1849) formula. In his review,
Wilen (1985) suggests this to be incorrect, because nothing similar to the land area
constraint exists in the given problem and thus the problem must be viewed as a
Fisherian “single-shot” model. However, the argument by Wilen (1985) appears to
be incorrect: the assumption of non-selective fishing gear has exactly the same effect
as the land area constraint in the rotation model (Tahvonen 2011b).

A similar question related to the connection with the Faustmann model can be
asked here. Assuming exogenous and constant recruitment (and the age class struc-
ture), Eq. (15a) can be written as f1 − bf2α1 ≥ 0. This is simply the optimality
condition for harvesting age class 1 in a discrete-time two-period Fisherian “single
shot” optimal timing problem. Given endogenous recruitment, (15a) can be written
as f1(1 − bϕ′γ1) − bf2α1 ≥ 0. As adding endogenous recruitment decreases the
LHS of this equation (increases the LHS of (15a)), it implies that cohorts should be
harvested after they reach their maximum (discounted) biomass. This result is a con-
sequence of the fact that saving individuals to be harvested from older age classes
increases recruitment. Theorem 2 in Reed (1980) states the same result with zero
interest rate. The land area constraint in the Faustmann model implies that cohorts
should be harvested sooner than at the age of maximum (discounted) biomass. To-
gether this shows that the model studied here does not include any Faustmann-type
rotation structure.
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Reed (1980) expects that introducing discounting would decrease the age of the
harvested cohort. Our result shows that due to endogenous recruitment this need not
be the case (Fig. 3).

4 Stability of Steady States

The steady state stability analysis calls for an analysis of the four non-linear differ-
ence equations (conditions (7a)–(7c)–(11)). However, some special cases where the
optimal solution can be found in closed form exist. Denote the steady state harvests
in regimes A and B by h1 and h2, respectively.

Proposition 3 Given (A1)–(A5), μ2(x̂1,0) < 0, γ1 = γ2, α1 + β1 = β2 and
μ2(x10, x20) = 0, the optimal solution is (a) h1t = h1, h2 = 0, t = 0,1, . . . , if
μ1(x10, x20) > 0, and (b) h2t = h2, h1t = 0, t = 0,1, . . . , if μ1(x10, x20) < 0.

Proof Case (a): Recall that the slope of μ2(x1, x2) = 0 in the (x1, x2)-plane is
−γ2/γ1. Denote this linear function by x2 = η − x1, where η is a constant and
positive by μ2(x̂1,0) < 0. When μ1(x10, x20) > 0, the steady state satisfies x1 =
ϕ+ β1x1− h1, x2 = α1x1+ β2x2 and x2 = η− x1. This yields h1 = ϕ− η(1− β2).
Given μ2(x10, x20)= 0, it follows that x1,t+1 = ϕ(η)+β1x1t −[ϕ(η)− η(1−β2)],
and x2,t+1 = α1x1t + β2x2t for t = 0. Thus x11 + x21 = η and then by induction
x1,t+1 + x2,t+1 = η for t = 1,2, . . . . In addition, x1t → ϕ(η)(1 − β2)/(1 − β1)

and x2t → αη(1− β1), as t→∞ since 0 < β1 < 1. The constants λ1 = U ′f1 and
λ2 = f1U

′(1− bϕ′(η)− bβ1)/(bα) solve (7a)–(7c)–(9a)–(9c) by μ2(x10, x20)= 0
and μ1(x10, x20) > 0, implying that the solution is optimal. Case (b) is analogous to
case (a). �

In the case of Proposition 3, the size classes are symmetric in the sense that
fecundities and natural mortalities coincide, although the usable size of harvested
individuals may differ. The symmetry property, together with specific initial states,
implies that harvest and recruitment levels are constant over time. Numerical exam-
ples of these solutions are given in Fig. 5 by the solid straight lines.

When applying conditions (7a)–(7c)–(11) more generally for interior solutions,
solutions in regime A are determined by the system:

x1,t+1 = ϕ(γ1x1t + γ2x2t )+ β1x1t − h1(λ1t ), (16)

x2,t+1 = α1x1t + β2x2t , (17)

λ1,t+1 = λ2t α1 − λ1t β2

bϕ′(x1,t+1, x2,t+1, λ1,t+1)(α1γ2 − β2γ1)− bβ1β2
, (18)

λ2,t+1 = ϕ′(x1,t+1, x2,t+1, λ1,t+1)(λ1t γ2 − λ2t γ1)− λ2t β1

bϕ′(x1,t+1, x2,t+1, λ1,t+1)(α1γ2 − β2γ1)− bβ1β2
, (19)

ϕ′(x1,t+1, x2,t+1, λ1,t+1)

= ϕ′
(
γ1

[
ϕ(γ1x1t + γ2x2t )+ β1x1t − h1(λ1t )

]+ γ2(α1x1t + β2x2t )
)
, (20)
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Fig. 5 Optimal solutions under the assumptions in Propositions 3 and 4. Note: ϕ = 0.9x0t
1+0.1x0t

,

x0t = x1t + x2t , b = 1, U = H 0.9
t , α1 = 0.4, β1 = 0.5, β2 = 0.9, f1 = 1, f2 = 0.5 in (a), f2 = 2

in (b). Equilibrium in (a): x1 = 4, x2 = 16, h1 = 4, h2 = 0, and in (b): x1 = 12, x2 = 8, h2 = 4.
Roots of the characteristic equation in (a): r1 = 1

2 , r2 = 2, r3 = 3
5 , r4 = 5

3

h′1(λ1t )= 1/
(
U ′′f1

)
, (21)

and in regime B by (18), (19) and

x1,t+1 = ϕ(γ1x1t + γ2x2t )+ β1x1t , (22)

x2,t+1 = α1x1t + β2x2t − h2t (λ2t ), (23)

ϕ′(x1,t+1, x2,t+1, λ2,t+1)

= ϕ′
(
γ1

[
ϕ(γ1x1t + γ2x2t )+ β1x1t

]+ γ2
(
α1x1t + β2x2t − h2t (λ2t )

))
, (24)

h′2(λ2t )= 1/
(
U ′′f2

)
. (25)

Proposition 4 Given the conditions of Proposition 3 and U ′′ < 0, but excluding the
initial state restrictions, the optimal equilibria in regimes A and B are local saddle
points, i.e. two characteristic roots have absolute values below 1 and two above 1.

Proof For regimes A and B, computing the Jacobian matrix and the associated char-
acteristic equation yields the fourth order polynomial

Ωs(r)= (β1 − r)[Qsr + (1− r)(br − 1)](bβ1r − 1)

b2β1
,

where Qs = λsb
2ϕ′′h′, s = 1,2. The characteristic roots are: r1 = β1, r2 = 1/(bβ1),

r2,3 =
[√

Q2
s + 2Qs(b+ 1)+ b2 − 2b+ 1± (Qs + b+ 1)

]
/(2b), s = 1,2.

Obviously 0 < r1 < 1 and 1 < r2. When Qs = 0, s = 1,2, the value of rs3 (=√•+
Qs + b+ 1) equals b−1 and the value of rs4 (=√•−Qs − b− 1) equals 1. Since
∂rs3/∂Qs > 0 and ∂rs4/∂Qs < 0 and limQs→∞ rs4 = 0 for both s = 1,2 the steady
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Fig. 6 Optimal stationary
cycle. Note: ϕ = 0.9x0t

1+0.1x0t
,

x0t = 5x1t + 20x2t , b= 0.45,
U =H 0.99

t , α1 = 0.4,
β1 = 0.4, β2 = 0.05, f1 = 5,
f2 = 1. Equilibrium:
x1 = 0.80, x2 = 0.34,
h1 = 4.2, h2 = 0. Roots:
r1 =−1.70, r2 =−1.31,
r3 = 0.01, r4 = 206.55

states are saddle points where two roots have absolute values above 1 and two roots
have absolute values below 1. �

Examples under the assumptions in Proposition 4 are shown by black dashed
lines in Fig. 5. The next result does not require symmetry, but is restricted to zero
discounting and cases where the Jacobian matrix for system (16)–(21) can be eval-
uated at the steady state.

Proposition 5 Given (A1)–(A5), b= 1, U ′′ < 0 and τ2 ≡ (β2−1)(α1γ2−β2γ1)+
α1γ2β1 �= 0, the steady state in regime A is a (local) saddle point, i.e. two charac-
teristic roots have absolute values below 1 and two above 1.

Proof Appendix 2. �

The zero discount rate assumption in Proposition 5 is far from necessary for the
steady state properties stated in the proposition. However, when the discount rate is
high enough, the stability properties may change and three of the roots may become
unstable.

The cyclical solution is depicted in Fig. 6. The initial state is close to the steady
state, but because of a small deviation the solution diverges and approaches a sta-
tionary cycle.

When τ2 = 0, the denominators of (18)–(19) approach zero when the solution ap-
proaches the steady states. Since the Jacobian matrix becomes indeterminate at the
steady state, the stability properties cannot be analysed by the linearization method.
However, numerical computation suggests that optimal solutions are perfectly con-
tinuous around τ2 = 0. With the age-structured model (i.e. β1 = 0), this special
case implies that the difference equation system collapses into three equations, and
the steady-state stability properties can be analysed using the ordinary linearization
method:

Proposition 6 Assume (A1)–(A5), b= 1, U ′′ < 0 and β1 = 0. If α1γ2 − β2γ1 �= 0,
the steady state in regime A is a local saddle point and two of the characteristic
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roots have absolute values above 1 and two have values below 1. If α1γ2−β2γ1 = 0,
optimal solutions are determined by three difference equations with a steady state,
where the absolute values of two characteristic roots are below 1 and one above 1.

Proof When α1γ2 − β2γ1 �= 0, the structure of characteristic roots follows from
Proposition 5. When α1γ2 − β2γ1 = 0, optimal solutions are defined by (20)–(21)
and

x1,t+1 = ϕ(γ1x1t + γ2x2t )− h1(λ1t ), x2,t+1 = α1x1t + β2x2t ,

λ1,t+1 = λ1t

β2 + ϕ′(x1t , x2t , λ1t )γ1
, λ2t = λ1t γ2

γ1
.

The Jacobian matrix of this system evaluated at the steady state has two character-
istic roots with absolute values below 1 and one above 1. �

Propositions 5 and 6 assume zero discounting. However, ordinary saddle point
properties can be shown to hold over a wide range of positive discount rates:

Proposition 7 Given (A1)–(A5), U ′′ < 0, γ1 = 0 and 1
β1+β2+1 ≤ b < 1

β1+β2
, the

steady state in regime A is a (local) saddle point, i.e. two characteristic roots have
absolute values below 1 and two above 1.

Proof Appendix 3. �

Propositions 5, 6 and 7 show stability properties for the steady states of regime A.
Identical propositions can also be given for the stability properties of regime B
steady states, with only some minor changes in the proofs. The stability properties
of regime C and D are given as:

Proposition 8 Given (A1)–(A5) and U ′′ < 0, the steady state in regime C is locally
stable and the steady state in regime D is a local saddle point.

Proof Appendix 4. �

Note that given the steady state solution exists in these regimes, the qualitative
stability properties are independent of the discount rate. In regime C the optimal
harvest is simply h1t = α1x1t , implying that the solution is unique despite the steady
state being locally stable. Given the solution is already in this regime at the initial
state, it is independent of changes in the discount rate and utility function.

Earlier studies of this model have not analysed the steady-state stability prop-
erties. Reed (1980) writes that such analysis appears to be difficult, but if initial
numbers of individuals exceed the steady state levels in all age classes, a constant
escapement policy where all age classes are harvested down to their steady state
values “would certainly be an acceptable policy”. However, even with a linear ob-
jective function such a solution is, in general, non-optimal. The reason is simply
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that if it is optimal to only harvest one age class at a steady state, a similar regime
is optimal also in the vicinity of the steady state. Another simple example of the
non-optimality of constant escapement is regime C, where the optimal solution is
h1 = 0, h2 = α1x1t in the vicinity of the steady state, implying that the steady state
is approached asymptotically.

5 Any Number of Size Classes

A natural extension of the two classes specification is to assume that the optimal
steady state harvest is targeted to some size class m such that 1<m and m+ 1< n,
i.e. the harvest targets interior size classes. Thus, suppose: xs > 0, s = 1, . . . ,m,
xs = 0, s = m + 1, . . . , n, and either hs = 0, s = 1, . . . ,m, hm+1 = αmxm > 0,
hs = 0, s =m+1, . . . , n or hm = αm−1xm−1− (1−βm)xm > 0, hm+1 = αmxm > 0.
The former case is an extension of regime C and the latter an extension of regime D.
The steady state satisfies

xs = μsxs−1, μs = αs−1/(1− βs), s = 2, . . . ,m− 1,

xm = αm−1xm−1/(1− βm)− hm/(1− βm)= μmxm−1 − hm/(1− βm),

xs = lsx1, s = 1, . . . ,m− 1, xm = lmx1 − hm/(1− βm),

x0 = x1

m∑
s=1

γsls − γmhm/(1− βm)≡Rm
0 x1 − γmhm/(1− βm),

where

ls =
s∏

i=2

μi, s = 1, . . . ,m, l1 =
1∏
i=2

μi ≡ 1 and Rm
0 =

m∑
s=1

γsls,

implying that

x1 = ϕ
(
Rm

0 x1 − γmhm/(1− βm)
)+ β1x1,

which directly yields equilibrium x1 if hm = 0. Note that Rm
0 equals the expected

steady state number of offspring individuals produce over their lifetime, and is called
the net reproductive value (Fisher 1930; Samuelson 1977).

At the steady state xs > 0, s = 1, . . . ,m and the KKT conditions (6a)–(6c) can
be written as

λs+1 + λs(bβs − 1)/(bαs)=−λ1bϕ
′γs/(bαs), s = 1, . . . ,m,

where λm+1 = U ′fm+1 and, if hm > 0, in addition λm ≥ U ′fm. Equation (19) is
a linear non-autonomous difference equation for λs with λm+1 = U ′fm+1 as the
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boundary condition. It can be solved iteratively starting from s =m and proceeding
toward λ2. This yields

λs = λ1Ψ1s +Ψ2sU
′fm+1, s = 2, . . . ,m+ 1,

where

Ψ1s =
m∑
j=s

σj

j−1∏
k=s

ηk, Ψ2s =
m∏
i=s

ηi, s = 2, . . . ,m+ 1,

σj = bϕ′γj
1− bβj

, ηi = bαi

1− bβi
, j, i = s, . . . ,m+ 1.

Finally, solution (20) for λ2 and (6a)–(6c) for x1 > 0 yields

λ1 = bα1Ψ22U
′fm+1

1− bϕ′γ1 − bβ1 − bα1Ψ12
.

In addition, the optimal solution must satisfy conditions (5a), (5b), i.e. U ′fs ≤ λs ,
s = 1, . . . ,m. Applying solutions (21) and (20) for λs , s = 1, . . . ,m yields:

(
α1Ψ22Ψ1s

1− bϕ′γ1 − bβ1 − bα1Ψ12
+ b−1Ψ2s

)
fm+1

fs
− 1≥ r, s = 1, . . . ,m, (26)

where Ψ21 = 0. When hm > 0 Eq. (22) for s =m holds as an equality, and it with
(18) determines hm and xm. For size classes s = m + 1, . . . , n it must hold that
U ′fs − λs ≤ 0 and ∂L/∂xs,t+1 ≤ 0. Setting U ′fs = λs , s = m + 1, . . . , n yields
conditions (6a)–(6c) in the form

ϕ′γsbα1Ψ22fm+1

(1− bϕ′γ1 − bβ1 − bα1Ψ12)fs
+βs + αsfs+1

fs
− 1≤ r, s =m+ 1, . . . , n, (27)

where αn ≡ 0.

6 Interpretations

Conditions (26) state that saving any individual from classes s = 1, . . . ,m to be har-
vested as a size class m+1 individual is an investment with a marginal rate of return
higher or at least equal to the discount rate. This equation is a generalization of (15a).
Assuming constant recruitment (ϕ′ = 0) implies that the first LHS quotient of (26)
is zero, and in the case of the age-structured specification (βs = 0, s = 1, . . . , n) the
condition collapses to

bsfs

m−1∏
s=1

αs ≤ bm−1fm+1

m∏
s=1

αs, s = 1, . . . ,m, (28)
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i.e. to the discrete-time Fisherian “single shot” optimality condition. Given ϕ′ > 0,
the first LHS quotient of (26) is positive (by (21) and (5a)–(5c)), implying that
it is never optimal to harvest a cohort (at the steady state) before it reaches the
maximum discounted biomass level. The size-structured case generalizes this set-
up and the outcome is similar. Conditions (27) in turn state that given size classes
s =m+1, . . . , n−1, saving an individual from size class s to be harvested as a size
class s + 1 individual is an investment with a marginal rate of return lower than the
discount rate.

In his analysis on multiple cohorts/selective gear and exogenous recruitment
Clark (1990, p. 301) obtains a continuous time analogue of Eq. (28) and writes that
including recruitment that depends on population level would lead to severe theo-
retical difficulties. Equations (26) and (27) represent solutions to such extension in
discrete time.

7 On Steady-State Stability

In the vicinity of the steady state in regime C, the solution is defined as

x1,t+1 = ϕ(x0)+ β1x1, xs,t+1 = αs−1xs−1,t + βsxs,

s = 1, . . . ,m, hm+1,t = αmxmt . (29)

This solution is optimal within the region of the state space where conditions (5a)–
(5c) and (6a)–(6c) are satisfied, and it is not optimal to harvest other size classes
besides m+ 1. Such a region can be guaranteed to exist, by assuming that fs , s =
1, . . . , n, s �=m+ 1 are low enough. Given this solution regime the system of state
variables (29) and conditions (5a)–(5c) and (6a)–(6c) are separate in the sense that
state variable development determines the development of the Lagrange multipliers,
but no feedback from the Lagrange multipliers to optimal harvesting, i.e. to the level
of hm+1,t exist. Thus, it is possible to study the local stability of the steady state by
simply analysing system (29), and to extend the regime C part of Proposition 8. For
simplicity the analysis is restricted to the special case of the age-structured model.

Proposition 9 Given (A1)–(A7), n≥ 2, βs = 0, s = 1, . . . , n and that the optimal
steady state is in regime C, the steady state is locally stable.

Proof The Jacobian matrix of system (29) is

J =

⎡
⎢⎢⎢⎢⎢⎣

ϕ′γ1 · · · ϕ′γm−1 ϕ′γm
α1 · · · 0 0
...

. . .
...

...

0 · · · 0 0
0 · · · αm−1 0

⎤
⎥⎥⎥⎥⎥⎦
.
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Fig. 7 A numerical example of solutions approaching a steady state in regime C. Note: αs = 0.8,
s = 1, . . . ,10, f = 1,2.7,6.9,16.7,35.5,60,80.3,91.7,98.8,100, γ = 0,1,2,2,2,2,2,2,2,2,
U =Ht , r = 0, ϕ = 10x0/(1− 0.1x0)

The characteristic equation can be given as

m∑
s=1

ϕ′γsμs
rs

= 1, (30)

assuming that r �= 0. This implies by the Perron-Frobenius theorem that the absolute
values of all characteristic roots remain below 1 if

ϕ′
m∑
s=1

γsμs = ϕ′Γm < 1.

The steady state must satisfy ϕ(x1Γm)− x1 = 0. Since ϕ is a concave function, the
steady state must satisfy ϕ′Γm− 1< 0, implying that the Perron root is positive and
lower than 1 and that the steady state is locally stable. �

The dynamic properties of this system coincide with those of an unharvested
age-structured population when n=m− 1 and βm−1 = 0. This was studied by Getz
and Haight (1989, p. 40), who derived the characteristic equation (30).

Figure 7a shows how increasing the discount rate transforms the optimal steady
state solution from the m = 6 steady state to the m = 5 steady state via regime D,
where it is optimal to simultaneously harvest from age classes 6 and 7. An example
of the solution described in Proposition 9 is shown in Fig. 7b. Initially individuals
exist only in age class 1. With no discounting it is optimal to apply a steady state
harvest only in age class 7, i.e. xs > 0, s = 1, . . . ,6, xs = 0, s = 7, . . . ,10. Given the
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Fig. 8 Optimal dynamic solution (a) and the dependence of the steady state on discounting (b)
using the data in Reed (1980)

linear utility function, this is the only age class that is harvested during the whole
transition period.

Finally, Fig. 8 shows the optimal solutions for the data in Reed (1980). Given no
discounting, the optimal steady state (i.e. MSY) harvest is to remove about 44 %
from age class 6 (as obtained in Reed 1980). Thus, the number of individuals in
all age classes remains positive and the solution is an example of regime B. Fig-
ure 8a shows the optimal dynamic solution (not computed by Reed 1980). Note that
although the initial biomass slightly exceeds the steady state biomass, the initial har-
vest level is zero because the biomass is located in age classes that are too young for
harvesting. Almost half of the biomass at the steady state is in age classes 6, . . . ,12.
Such a solution is clearly impossible to obtain within the unstructured biomass ap-
proach. Figure 8b shows that the optimal steady state exists only if the discount rate
is below 11.5 %.

8 Summary

The objective of this study has been to extend the understanding of a generic
discrete-time age- and size-structured optimization model where the harvest is per-
fectly selective. Given an increasing and concave function for recruitment, this
model can be viewed as a theoretical description of harvesting shade-tolerant
uneven-aged tree populations. Selective harvesting may be possible in fisheries if
e.g. different age classes can be found in different locations. The model was first
studied assuming two age or size classes, and it was shown that six different steady-
state regimes exist. One of the steady states is a continuum. It was shown that the
structured model can be viewed as a generalization of the biomass model. However,
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neglecting information on population structure will not yield correct optimal steady
states.

The classic Faustmann (1849) model answers the question “at what age it is opti-
mal to fell a tree”. According to the answer (and assuming no regeneration cost), it is
optimal to harvest the tree before it reaches its discounted maximum value, because
waiting postpones all future harvests. The model studied here can be interpreted to
answer the same question. However, the model does not include the Faustmann-type
(1849) rotation structure, and it is optimal to harvest the tree after it reaches the dis-
counted maximum value because waiting increases regeneration. In the Faustmann
(1849) model, increasing the discount rate decreases the age of the harvested cohort,
but a higher interest rate in the study at hand may imply a switch to harvesting an
older age class.

Analysing steady-state stability reveals that with a zero or “low” interest rate
the optimal steady states are saddle point stable. However, it was possible to give
a numerical example showing that with a “high” interest rate the optimal solution
may converge toward a limit cycle. Given a linear objective, constant escapement is
optimal in the generic biomass model (Reed 1979) but it is not, in general, optimal
in structured models.

Finally, the optimal steady-state equations were solved without limiting the num-
ber of age or size classes. These equations (not presented in earlier studies) further
reveal the structure of the optimal solution: when the harvest is moved forward in
the age or size classes, the yield per capita may increase but natural mortality has a
negative effect on the number of individuals obtained. This decrease is compensated
by increased recruitment due to an increased number of reproductive individuals. Fi-
nally, these trade-offs are influenced by discounting, but differently than in optimal
rotation models.

Given the age-class specification and the optimal steady-state regime where only
one age class is harvested and the harvest is total, it was possible to show that the
steady state is locally stable, i.e. harvesting all individuals at the end of the period
when they enter the (optimal harvestable) age class yields a convergence to a stable
age structure. This suggests that instead of the constant escapement solution often
proposed, a simple practically applicable harvesting rule may be just to harvest the
individuals when they enter the age class that is the oldest at the optimal steady
state.
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Tapio Palokangas for generous help. This study was initiated during my 2004–2005 stay in Bris-
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Appendix 1

Proof of Proposition 2 Case (i): Because 1− β1 − ϕ′(0)γ1 > 0 the condition (7a),
i.e. λ1(bϕ

′(0)γ1 + bβ1 − 1) + bλ2α1 ≤ 0 will always be satisfied as an equality
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by some choice λ1 ≥ U ′(0)f1, λ2 ≥ U ′(0)f2. Eliminating λ1 from (8a) shows that
this condition is satisfied as an inequality when μ2(0,0) ≥ 0. Thus, regime F sat-
isfies the necessary optimality conditions and must be optimal. Case (ii): Setting
λ1 = U ′(0)f1 and λ2 = U ′(0)f1[1− b(ϕ′γ1 + β1)]/(bα1) implies by μ2(0,0) ≤ 0
that (8a) is satisfied with x1 = x2 = 0. The solutions for λ1 and λ2 imply that (6a)
is satisfied for i = 1 as an equality and h1 = 0 and by μ1(0,0) ≤ 0 for i = 2 as
an inequality with h2 = 0 and (7a) as an equality, i.e. regime F is optimal. Thus,
conditions μ2(0,0) ≥ 0 and (i) or (ii) are sufficient for regime F to be optimal.
If condition μ2(0,0) ≥ 0 holds but neither conditions (i) or (ii) hold, the optimal
steady state is in regime D or E. If condition μ2(0,0) ≥ 0 does not hold, the opti-
mal solution is in regime A, B , C, D or E. Thus conditions are necessary for the
optimality of regime F . �

Appendix 2

Proof of Proposition 5 Given (16)–(21) and b= 1, the characteristic equation eval-
uated at the steady state is

Ω1(r)= r4 + y1r
3 + y2r

2 + y1r + 1,

where

y1 =
[
λ1ϕ

′′h′γ1(α1γ2 − β2γ1)τ
2
1 − α2

1γ
2
2 β

2 + γ1
(
β2

2 − 1
)(

2α1γ2β − γ1β
2
2 + γ1

)]
/τ2,

y2 =
{
λ1ϕ

′′h′τ2
1 (γ

2
2 α

2
1 − 2β2γ1γ2α1 + γ 2

1 β
2
2 + γ 2

1 )+ 2[α2
1γ

2
2 (β

2 − β + 1)]
+ α1γ1γ2(1− β2)(2β1β2 + β1 + 2β2

2 + 1)+ γ 2
1 (β2 − 1)2(β2

2 + β2 + 1)

}
/τ2,

where τ1 = α1γ2−γ1β2+γ1, τ2 = τ1τ3, τ3 = (β2 − 1)(α1γ2 − β2γ1)+ α1γ2β1 �= 0,
β = β1 + β2. Computing yields:

Ω1(1)= λ1ϕ
′′h′τ 3

1

τ2
,

Ω1(−1)= λ1ϕ
′′h′τ 2

1 (γ2α1 − γ1β2 − γ1)
2 + 4[γ2α1β + γ1(1− β2)(1+ β2)]2
τ2

.

Thus, if u is a root then 1/u is a root. The numerators of both Ω(1) and Ω(−1)
are strictly positive. Thus, when τ3 < 0, it holds that Ω(1) < 0, Ω(−1) < 0 and
by Ω(0) = 1 there exist four real roots, two with absolute values above one and
two below one. Write Ω1(r)r

−2 = r2 + w1r + w2 + w1r
−1 + r−2 and |r| = 1,

⇒ r = eia = cos(a)+ i sin(a) implying

Ω(r)r−2 = λ1ϕ
′′h′

τ2
Θ1 + 4

(
cos2(a)− 1

)+Θ2
(
cos(a)− 1

)
,



Optimal Harvesting of Size-Structured Biological Populations 353

Θ1 =
{[

2γ1τ
2
1 (α1γ2 − β1γ1)

]
cos(a)+ τ 2

1

(
γ 2

2 α
2
1 − 2β2γ1γ2α1 + γ 2

1 β
2
2 + γ 2

1

)}
,

Θ2 =− 2

τ2

[
γ2α1β + γ1

(
1− β2

2

)]2
.

The minimum of term Θ1 is zero and is attained when a = π and γ2 =
γ1(β2 + 1)/α1. Given these values for a and γ1, it follows that Ω(r)r−2 > 0 by
τ3 > 0. The minimum of 4(cos2(a)− 1)+Θ2(cos(a)− 1) is attained when a = 0
and is zero because Θ2 ≤ 8. When a = 0 it holds that λ1ϕ

′′h′
τ2

Θ1 > 0. Thus, no root
lying on the unit circle can solve the polynomial implying that the steady state must
be a saddle point. �

Appendix 3

Proof of Proposition 7 The characteristic equation is Ω(r) = r4 + r3y1 + r2y2 +
ry1/b+ 1/b2 = 0, where

y1 = β(βb+ b− 1)

1− bβ
,

y2 = λ1α
2
1b

4ϕ′′γ 2
2 h
′3β2 + b2(β2

1 + 2β1β2 + β2
2 + 1)− 2bβ + 1

b2(bβ − 1)
.

This yields

Ω(1)= λ1α
2
1b

2ϕ′′γ 2
2 h
′

bβ − 1
,

Ω(−1)= λ1α
2
1b

3ϕ′′γ 2
2 h
′ + 2β[b2(β + 1)] + bβ − 1

b2β − b
.

Recall that β = β1 + β2. Given b < 1
β1+β2

the denominators of both Ω(1) and
Ω(−1) are negative. The numerator of Ω(1) is positive and Ω(1) < 0. The nu-
merator of Ω(−1) is positive if 1

β1+β2+1 ≤ b, implying together with Ω(0)= 1/b2

that under these conditions roots are real and the absolute value of two roots are
below 1 and the absolute values of two roots are above 1, i.e. the steady state is a
saddle point. �

Appendix 4

Proof of Proposition 8 Regime C is defined by x1,t+1 = ϕ(γ1x1t ) + β1x1t , h2t =
α1x1t . This regime exists only when ∂σ2(0,0)/∂x1 = 1− β1 − ϕ′(0)γ1 < 0 and at
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the steady state x1 = x̂1 it must hold that ∂σ2(x̂1,0)/∂x1 = 1− β1 − ϕ′(x̂1)γ1 > 0
implying that ϕ′(x̂1)γ1 + β1 < 1, i.e. that the steady state is locally stable.

In regime D λ1t = U ′f1, λ2t = λ1t f2/f1, λ1,t+1(bϕ
′γ1 + bβ1 + bα1f2/f1) −

λ1t = 0, x1,t+1 = ϕ(γ1x1t )+ β1x1t − h1t and h2t = α1x1t . This leads to the system:

U ′(H1,t+1)f1
(
bϕ′(γ1x1,t+1)γ1 + bβ1 + bα1f2/f1

)−U ′(Ht )= 0,

x1,t+1 = ϕ(γ1x1t )+ β1x1t − h1t .

The characteristic equation is given as:

Ω(r)= r2 − r
(
δ1 + ϕ′γ1 + β1

)+ δ1
(
ϕ′γ1 + β1

)+ δ2,

where

δ1 = 1+ f2α1

f1
+ U ′bϕ′′γ 2

1

U ′′f1

and

δ2 =−f2α1(ϕ
′γ1 + β1 − 1)

f1
− U ′bϕ′′γ 2

1 (ϕ
′γ1 + β1)

U ′′f1
.

Since Ω(0) = ϕ′γ1 + β1 + f2α1
f1

> 0, and Ω(1) = −U ′bϕ′′γ 2
1

U ′′f1
< 0, both roots are

positive and the value of one root is below 1 and the value of the other is above 1,
i.e. the steady state is a saddle point. �
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