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Preface

Energy markets (and commodity markets in general) present a number of
challenges for quantitative modeling. High volatilities, small sample sizes, structural
market changes, and operational complexity all make it very difficult to straightfor-
wardly apply standard methods to the valuation and hedging of products that are
commonly encountered in energy markets. It cannot be denied that there is an un-
fortunate tendency to apply, with little skeptical thought, methods widely used in
financial (e.g., bond or equity) markets to problems in the energy sector. Generally,
there is insufficient appreciation for the trade-off between theoretical sophistica-
tion and practical performance. (This problem is compounded by the temptation
to resort to, in the face of multiple drivers and physical constraints, computational
machinations that give the illusion of information creation through ease of sce-
nario generation i.e., simulation.) The primary challenge of energy modeling is to
correctly adapt what is correct about these familiar techniques while remaining fully
cognizant of their limitations that become particularly acute in energy markets. The
present volume is an attempt to perform this task, and consists of both general and
specialized facets.

First, it is necessary to say what this book is not. We do not attempt to provide a
detailed discussion of any energy markets or their commonly transacted products.
There exist many other excellent books for this purpose, some of which we note in
the text. For completeness and context, we provide a very high-level overview of
such markets and products, at least as they appear in the United States for natural
gas and electricity. However, we assume that the reader has sufficient experience in
this industry to understand the basics of the prevailing market structures. (If you
think a toll is just a fee you pay when you drive on the highway, this is probably not
the right book for you.) Furthermore, this is not a book for people, regardless of ex-
isting technical ability, who are unfamiliar with the basics of financial mathematics,
including stochastic calculus and option pricing. Again, to facilitate exposition such
concepts will be introduced and summarized as needed. However, it is assumed that
the reader has a reasonable grasp of such necessary tools that are commonly pre-
sented in, say, first-year computational finance courses. (If your first thought when
someone says “Hull” is convex hull, then you probably have not done sufficient
background work.)

So, who is this book for? In truth, it is aimed at a relatively diverse audience, and
we have attempted to structure the book accordingly. The book is aimed at readers
with a reasonably advanced technical background who have a good familiarity with

xiv
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energy trading. Assuming this is not particularly helpful, let us elaborate. Quanti-
tative analysts (“quants”) who work on energy-trading desks in support of trading,
structuring, and origination and whose job requires modeling, pricing, and hedg-
ing natural gas and electricity structures should have interest. Such readers should
have the necessary industry background as well as familiarity with mathematical
concepts such as stochastic control. In addition, they will be reasonably expected
to have analyzed actual data at some point. They presumably have little trepidation
in rolling up their sleeves to work out problems or code up algorithms (indeed,
they should be eager to do so). For them, this book will (hopefully) present useful
approaches that they can use in their jobs, both for statistical work and model de-
velopment. (As well, risk control analysts and quantitatively oriented traders who
must understand, at least at a high level, valuation methodologies can also benefit,
at least to a lesser extent.)

Another category of the target audience is students who wish not only to un-
derstand more advanced techniques than they are likely to have seen in their
introductory coursework, but also to get an introduction to actual traded prod-
ucts and issues associated with their analysis. (More broadly, academics who have
the necessary technical expertise but want to see applications in energy markets can
also be included here.) These readers will understand such foundational concepts
as stochastic calculus, (some) measure theory, and option pricing through replica-
tion, as well as knowing how to run a regression if asked. Such readers (at least at
the student level) will benefit from seeing advanced material that is not normally
collected in one volume (e.g., affine jump diffusions, cointegration, Lévy copulas).
They will also receive some context on how these methods should (and should not)
be applied to examples actually encountered in the energy industry.

Note that these two broad categories are not necessarily mutually exclusive. There
are of course practitioners at different levels of development, and some quants who
know enough about tolling or storage, say, to operate or maintain models may
want to gain some extra technical competency to understand these models (and
their limitations) better. Similarly, experienced students may require little techni-
cal tutoring but need to become acquainted with approaches to actual structured
products. There can definitely be overlap across classes of readership.

The structure of the book attempts to broadly satisfy these two groups. We divide
the exposition into the standard blocks of theory and application; however, we re-
verse the usual order of presentation and begin with applications before going into
more theoretical matters. While this may seem curious at first, there is a method to
the madness (and in fact our dichotomy between practice and theory is rather soft,
there is overlap throughout). As stated in the opening paragraph, we wish to retain
what is correct about most quantitative modeling while avoiding those aspects that
are especially ill-suited for energy (and commodity) applications. Broadly speak-
ing, we present valuation of structured products as a replication/decomposition
problem, in conjunction with robust estimation (that is, estimation that is not
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overly sensitive to the particular sample). We essentially view valuation as a port-
folio problem entailing representations in terms of statistical properties (such as
variance) that are comparatively stable as opposed to those which are not (such
as mean-reversion rates or jump probabilities). By discussing the core economet-
ric and analytical issues first, we can more seamlessly proceed to an overview of
valuation of some more popular structures in the industry.

In Part I the reader can thus get an understanding for how and why we choose
our particular approaches, as well as see how the approaches manifests themselves.
Then, in Part II the more theoretical issues can be investigated with the proper con-
text in mind. (Of course, there is cross-referencing in the text so that the reader can
consult certain ideas before returning to the main flow.) Although we advise against
unthinkingly applying popular sophisticated methods for their own sake, it is un-
questionably important to understand these techniques so as to better grasp why
they can break down. Cointegration, for example, is an important and interesting
idea, but its practical utility is limited (as are many econometric techniques) by the
difficulty of separating signal from noise in small samples. Nonetheless, we show
that cointegration has a relationship to variance scaling laws, which can be robustly
implemented. We thus hope to draw the reader’s attention to such connections, as
well as provide the means for solving energy market problems.

The organization is as follows. We begin Part I with a (very) brief overview of
energy markets (specifically in the United States) and the more common structured
products therein. We then discuss the critical econometric issue of time scaling and
how it relates to the conventional dichotomy stationarity/non-stationarity and vari-
ance accumulation. Next, we present valuation as a portfolio construction problem
that is critically dependent on the prevailing market structure (via the availability
of hedging instruments). We demonstrate that the gain from trying to represent
valuation in terms of the actual qualitative properties of the underlying stochastic
drivers is typically not enough to offset the costs. Finally we present some valuation
examples of the aforementioned structured products.

Part II, as already noted, contains more theoretical material. In a sense, it fills
in some of the details that are omitted in Part I. It can (hopefully) be read more
profitably with that context already provided. However, large parts of it can also
serve as a stand-alone exposition of certain topics (primarily the non-econometric
sections). We begin this part with a discussion of (stochastic) process modeling, not
for the purposes of valuation as such, but rather to provide a conceptual framework
for being able to address the question of which qualitative features should be re-
tained (and which features should be ignored) for the purposes of robust valuation.
Next we continue with econometric issues, with an eye toward demonstrating that
many standard techniques (such as filtering) can easily break down in practice and
should be used with great caution (if at all). Then, numerical methods are discussed.
The obvious rationale for this topic is that at some point in any problem, actual
computations must be carried out, and we go over techniques particularly relevant
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for energy problems (e.g ., stochastic control and high-dimensional quadrature). Fi-
nally, given the key role joint dependencies play in energy markets, we present some
relevant ideas (copulas being chief among these).

We should point out that many of the ideas to be presented here are more gener-
ally applicable to commodity markets as such, and not simply the subset of energy
markets that will be our focus. Ultimately, commodity markets are driven by fi-
nal (physical) consumption, so many of the characteristics exhibited by energy
prices that are crucial for proper valuation of energy structures will be shared by the
broader class of commodities (namely, supply-demand constraints and geograph-
ical concentration, small samples/high volatilities, and most critically, volatility
scaling). We will not provide any specific examples in, say, agriculture or metals,
except to note when certain concepts are more widely valid. We will also employ
the term “commodity” in a generic, plain language sense. (So, reader beware!)
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1 Synopsis of Selected Energy
Markets and Structures

1.1 Challenges of modeling in energy markets

Although it is more than ten years old at the time of this writing, Eydeland and
Wolyniec (2003, hereafter denoted by EW) remains unparalleled in its presentation
of both practical and theoretical techniques for commodity modeling, as well as its
coverage of the core structured products in energy markets.1 We will defer much
discussion of the specifics of these markets to EW, as our focus here is on model-
ing techniques. However, it will still be useful to highlight some central features of
energy markets, to provide the proper context for the subsequent analysis.2

1.1.1 High volatilities/jumps

Energy markets are characterized by much higher volatilities than those seen in
financial or equity markets. Figure 1.1 provides an illustration.

It is worth noting that the general pattern (of higher commodity volatility) has
persisted even in the post-crisis era of collapsing volatilities across markets. In large
part, this situation reflects the time scales associated with the (physical) supply and
demand factors that drive the dynamics of price formation in energy markets. These
factors require that certain operational balances be maintained over relatively small
time horizons, and that the arrival of new information propagates relatively quickly.
Demand is a reflection of overall economic growth as well as stable (so to speak3)
drivers such as weather. Supply is impacted by the marginal cost of those factors
used in the production of the commodity in question. A familiar example is the
generation stack in power markets, where very hot or very cold weather can increase
demand to sufficiently high levels that very inefficient (expensive) units must be
brought online.4 See Figure 1.2. for a typical example.

The presence of high volatilities makes the problem of extracting useful informa-
tion from available data much more challenging, as it becomes harder to distinguish
signal from noise (in a sample of a given size). This situation is further exacerbated
by the fact that, in comparison to other markets, we often do not have much data
to analyze in the first place.

1



2 Modeling and Valuation of Energy Structures

0

1/
31

/2
00

0

1/
31

/2
00

1

1/
31

/2
00

2

1/
31

/2
00

3

1/
31

/2
00

4

1/
31

/2
00

5

1/
31

/2
00

6

1/
31

/2
00

7

1/
31

/2
00

8

1/
31

/2
00

9

1/
31

/2
01

0

1/
31

/2
01

1

1/
31

/2
01

2

1/
31

/2
01

3

1/
31

/2
01

4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
30-Day Rolling Volatility

Brent Money mkt DJI AUD
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Figure 1.2 Spot electricity prices.

Source: New England ISO (www.iso-ne.com).

1.1.2 Small samples

The amount of data, both in terms of size and relevance, available for statistical and
econometric analysis in energy markets is much smaller than that which exists in
other markets. For example, some stock market and interest rate data go back to the
early part of the 20th century. Useful energy data may only go back to the 1980s at
best.5 This situation is due to a number of factors.
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Commodity markets in general (and especially energy markets) have tradition-
ally been heavily regulated (if not outright monopolized) entities (e.g., utilities)
and have only relatively recently become sufficiently open where useful price his-
tories and time series can be collected.6 In addition (and related to prevailing and
historical regulatory structures), energy markets are characterized by geographical
particularities that are generally absent from financial or equity markets. A typical
energy deal does not entail exposure to natural gas (say) as such, but rather exposure
to natural gas in a specific physical location, e.g. the Rockies or the U.S. Northeast.7

Certain locations possess longer price series than others.
Finally, and perhaps most importantly, we must make a distinction between spot

and futures/forward8 prices. Since spot commodities are not traded as such (phys-
ical possession must be taken), trading strategies (which, as we will see, form the
backbone of valuation) must be done in terms of futures. The typical situation we
face in energy markets is that for most locations of interest, there is either much less
futures data than spot, or there is no futures data at all. The latter case is invari-
ably associated with illiquid physical locations that do not trade on a forward basis.
These include many natural gas basis locations or nodes in the electricity generation
system. However, even for the liquidly traded locations (such as Henry Hub natural
gas or PJM-W power), there is usually a good deal more spot data than futures data,
especially for longer times-to-maturity.

1.1.3 Structural change

Along with the relatively recent opening up of energy markets (in comparison to say,
equity markets), has come comparatively faster structural change in these markets.
It is well beyond the scope of this book to cover these developments in any kind
of detail. We will simply note some of the more prominent ones to illustrate the
point:

• the construction of the Rockies Express (REX) natural gas pipeline, bringing
Rockies gas into the Midwest and Eastern United States (2007–09)

• the so-called shale revolution in extracting both crude oil and natural gas (asso-
ciated with North Dakota [Bakken] and Marcellus, respectively; 2010–present)

• the transition of western (CAISO) and Texas (ERCOT) power markets from bi-
lateral/zonal markets to LMP/nodal markets (as prevail in the East; 2009–2010).

These developments have all had major impacts on price formation and dynamics
and, as a result, on volatility. In addition, although not falling under the cate-
gory of structural change as such, macro events such as the financial crisis of 2008
(leading to a collapse in commodity volatility and demand destruction) and regula-
tory/political factors such as Dodd-Frank (implemented after the Enron scandal in
the early 2000s and affecting various kinds of market participants) have amounted
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to kinds of regime shifts (so to speak) in their own right. The overall situation
has had the effect of exacerbating the aforementioned data sparseness issues. The
(relatively) small data that we have is often effectively truncated even more (if
not rendered somewhat useless) by structural changes that preclude the past from
providing any kind of guidance to the future.

1.1.4 Physical/operational constraints

Finally, we note that many (if not most) of the structures of interest in energy mar-
kets are heavily impacted by certain physical and operational constraints. Some of
these are fairly simple, such as fuel losses associated with flowing natural gas from
a production region to a consumer region, or into and out of storage. Others are
far more complex, such as the operation of a power plant, with dispatch sched-
ules that depend on fuel costs from (potentially) multiple fuel sources, response
curves (heat rates) that are in general a function of the level of generation, and
fixed (start-up) costs whose avoidance may require running the plant during un-
profitable periods.9,10 Some involve the importance of time scales (a central theme
of our subsequent discussion), which impact how we project risk factors of inter-
est (such as how far industrial load can move against us over the time horizon in
question).11

In general, these constraints require optimization over a very complex set of op-
erational states, while taking into account the equally complex (to say nothing of
unknown!) stochastic dynamics of multiple drivers. A large part of the challenge of
valuing such structures is determining how much operational flexibility must be ac-
counted for. Put differently, which details can be ignored for purposes of valuation?
This amounts to understanding the incremental contribution to value made by a
particular operational facet. In other words, there is a balance to be struck between
how much detail is captured, and how much value can be reasonably expected to be
gained. It is better to have approximations that are robust given the data available,
than to have precise models which depend on information we cannot realistically
expect to extract.

1.2 Characteristic structured products

Here we will provide brief (but adequately detailed) descriptions of some of the
more popular structured products encountered in energy markets. Again, EW
should be consulted for greater details.

1.2.1 Tolling arrangements

Tolling deals are, in essence, associated with the spread between power prices and
fuel prices. The embedded optionality in such deals is the ability to run the plant
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(say, either starting up or shutting down) only when profitable. The very simplest
form a tolling agreement takes is a so-called spark spread option, with payoff given
by

(PT −H ·GT −K)+ (1.1)

with the obvious interpretation of P as a power price and G as a gas price (and
of course x+ ≡ max(x, 0). The parameters H and K can be thought of as corre-
sponding to certain operational costs, specifically a heat rate and variable operation
and maintenance (VOM), respectively12 The parameter T represents an expira-
tion or exercise time. (All of the deals we will consider have a critical time horizon
component.)

Of course, tolling agreements usually possess far greater operational detail than
reflected in (1.1). A power plant typically entails a volume-independent cost for
starting up (that is, the cost is denominated in dollars, and not dollars per unit of
generation),13 and possibly such a cost for shutting down. Such (fixed) costs have
an important impact on operational decisions; it may be preferable to leave the
plant on during uneconomic periods (e.g., overnight) so as to avoid start-up costs
during profitable periods (e.g., weekdays during business hours). In general, the
pattern of power prices differs by temporal block, e.g., on-peak vs. off-peak. In fact,
dispatch decisions can be made at an hourly resolution, a level at which no market
instruments settle (a situation we will see also prevails for load following deals).
There are other complications. Once up, a plant may be required to operate at some
(minimum) level of generation. The rate at which fuel is converted to electricity will
in general be dependent on generation level (as well as a host of other factors that
are typically ignored). Some plants can also operate using multiple fuel types. There
may also be limits on how many hours in a period the unit can run, or how many
start-ups it can incur. Finally, the very real possibility that a unit may fail to start or
fail to operate at full capacity (outages and derates, resp.) must be accounted for.

The operational complexity of a tolling agreement can be quite large, even when
the contract is tailored for financial settlement. It remains the case, however, that
the primary driver of value is the codependence of power and fuel and basic spread
structures such as (1.1). The challenge we face in valuing tolling deals (or really any
other deal with much physical optionality) is integrating this operational flexibility
with available market instruments that, by their nature, do not align perfectly with
this flexibility. We will see examples in later chapters, but our general theme will
always be that it is better to find robust approximations that bound the value from
below,14 than to try to perform a full optimization of the problem, which imposes
enormous informational requirements that simply cannot be met in practice. Put
differently, we ask: how much operational structure must we include in order to
represent value in terms of both market information and entities (such as realized
volatility or correlation) that can be robustly estimated? Part of our objective here
is to answer this question.
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1.2.2 Gas transport

The characteristic feature of natural gas logistics is flow from regions where gas
is produced to regions where it is consumed. For example, in the United States
this could entail flow from the Rockies to California or from the Gulf Coast to the
Northeast. The associated optionality is the ability to turn off the flow when the
spread between delivery and receipt points is negative. There are, in general, (vari-
able) commodity charges (on both the receipt and delivery ends), as well as fuel
losses along the pipe. The payoff function in this case can be written

(
DT − 1

1− f
RT −K

)+
(1.2)

where R and D denote receipt and delivery prices respectively, K is the (net)
commodity charge, and f is the fuel loss (typically small, in the 1–3% range).15

Although transport is by far the simplest16 structure we will come across in this
book, there are some subtleties worth pointing out.

In U.S. natural gas markets, most gas locations trade as an offset (either positive
or negative) to a primary (backbone or hub) point (NYMEX Henry Hub). This
offset is referred to as the basis. In other words, a leg (so to speak) price L can
be written as L = N + B where N is the hub price and B is the basis price. Thus,
transacting (forward) basis locks in exposure relative to the hub; locking in total
exposure requires transacting the hub, as well. Note that (1.2) can be written in
terms of basis as (

BD
T −

1

1− f
BR

T −
f

1− f
NT −K

)+
(1.3)

Thus, if there are no fuel losses (f = 0), the transport option has no hub depen-
dence. Hence, the transport spread can be locked in by trading in basis points only.
Alternatively, (1.3) can be written as

(
BD

T −BR
T −K − f

1− f
RT

)+
≈ (BD

T −BR
T −K)+− f

1− f
RT ·H(BD

T −BR
T −K)

(1.4)
We thus see that transport options are essentially options on a basis spread, and
not a price spread as such. (Mathematically, we might say that a Gaussian model is
more appropriate than a lognormal model.) Decomposing the payoff structure as
in (1.4) we see that the optionality consists of both a regular option and a digital
option, as well. We emphasize these points because they illustrate another basic
theme here: market structure is critical for proper valuation of a product. Looking
at leg prices can be misleading because in general (depending on the time horizon)
the hub is far more volatile than basis. Variability in the leg often simply reflects
variability in the hub. This is of course a manifestation of differences in liquidity,
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which as we will see is a critical factor in valuation. For transport deals with no (or
small) fuel costs, hedging (which is central to valuation through replication) will
be conducted purely through basis, and care must be taken to not attribute value
to hub variability.17 These points are illustrated in Figure 1.3.18 The implications
here concern not simply modeling but (more importantly) the identification of the
relevant exposure that arises from hedging and trading around such structures.

1.2.3 Gas storage

Another common gas-dependent structure is storage. Due to seasonal (weather-
driven) demand patterns, it is economically feasible to buy gas in the summer (when
it is relatively cheap), physically store it, and sell it in the winter (when it is relatively
expensive). The embedded optionality of storage is thus a seasonal spread option:

(
(1− fwdr)P

wdr
T − 1

1− finj
P

inj
T −K

)+
(1.5)

As with transport, there are typically fuel losses (on both injection and withdrawal),
as well as (variable) commodity charges (on both ends, aggregated as K in (1.5).
However, unlike transport, there is no common backbone or hub involved in the
spread in (1.5), and the underlying variability is between leg prices (for different
temporal flows19).
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One may think of the expression in (1.5) as generically representing the seasonal
structure of storage. More abstractly, storage embodies a so-called stochastic con-
trol problem, where valuation amounts to (optimally) choosing how to flow gas in
and out of the facility over time:

−
T∫

t

qs(f(qs ,Qs)Ss+ c(qs ,Qs))ds , Q̇= q (1.6)

where q denotes a flow rate (negative for withdrawals, positive for injections), Q is
the inventory level, S is a spot price, and f and c are (action- and state-dependent)
fuel and commodity costs, respectively. A natural question arises. The formulations
of the payoffs in (1.5) and (1.6) appear to be very different; do they in fact represent
very different approaches to valuation, or are they somehow related? As we will see
in the course of our discussion, there is in fact a connection. The formulation in
(1.5) can best be understood in terms of traded (monthly) contracts that can be
used to lock in value through seasonal spreads, and in fact more generally through
monthly optionality that can be captured as positions are rebalanced in light of
changing price spreads (e.g., a Dec–Jun spread may become more profitable than
a Jan–Jul spread). In fact, once monthly volumes have been committed to, one is
always free to conduct spot injections/withdrawals. We will see that the question of
relating the two approaches (forward-based vs. spot-based) comes down to a ques-
tion of market resolution (or more accurately the resolution of traded instruments).
Put roughly, as the resolution of contracts becomes finer (e.g., down to the level of
specific days within a month), the closer the two paradigms will come.

As with tolling, there can be considerable operational constraints with storage
that must be satisfied. The most basic form these constraints take are maximum
injection and withdrawal rates. These are typically specified at the daily level, but
they could apply over other periods as well, such as months. Other volumetric con-
straints are inventory requirements; for example, it may be required that a facility
be completely full by the end of October (i.e., you cannot wait until November to
fill it up) or that it be at least 10% full by the end of February (i.e., you cannot com-
pletely empty it before March). These kinds of constraints are actually not too hard
to account for. A bit more challenging are so-called ratchets, which are volume-
dependent flow rates (for injection and/or withdrawal). For example, an injection
rate may be 10,000 MMBtu/day until the unit becomes half full, at which point the
injection rate drops to 8,000 MMBtu/day. We will see that robust lower bound valu-
ations can be obtained by crafting a linear programming problem in terms of spread
options such as (1.5). The complications induced by ratchets effectively render the
optimization problem nonlinear. As we stated with tolling, our objective will be to
understand how much operational detail is necessary for robust valuation.
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1.2.4 Load serving

The final structured product we will illustrate here differs from those we have just
considered in that it does not entail explicit spread optionality. Load-serving deals
(also known as full requirements deals) are, as the name suggests, agreements to
serve the electricity demand (load) in a particular region for a particular period of
time at some fixed price. The central feature here is volumetric risk: demand must
be served at every hour of every day of the contract period, but power typically only
trades in flat volumes for the on- and off-peak blocks of the constituent months.
(Load does not trade at all.) Hedging with (flat) futures generally leaves one under-
hedged during periods of higher demand (when prices are also generally higher)
and over-hedged during periods of lower demand (when prices are also generally
lower).

Of obvious interest is the cost-to-serve, which is simply price multiplied by
load.20 On an expected value basis, we have the following useful decomposition:

Et LT ′PT ′ = Et ET (LT ′ −ET LT ′ +ET LT ′)(PT ′ −ET PT ′ +ET PT ′)

= Et [ET (LT ′ −ET LT ′)(PT ′ −ET PT ′)+ET LT ′ ·ET PT ′] (1.7)

Alternatively, we can write

Et (LT ′ −Et LT ′)(PT ′ −Et PT ′)

= Et ET (LT ′ −ET LT ′ +ET LT ′ −Et LT ′)(PT ′ −ET PT ′ +ET PT ′ −Et PT ′)

= Et [ET (LT ′ −ET LT ′)(PT ′ −ET PT ′)+ (ET LT ′ −Et LT ′)(ET PT ′ −Et PT ′)]
(1.8)

In the expressions (1.7) and (1.8), t is the current time, T ′ is a representative
time within the term (say, middle of a month), and T is a representative in-
termediate time (say, beginning of a month). These decompositions express the
expected value of the cost-to-serve, conditioned on current information, in terms
of expected values conditioned on intermediate information. For example, from
(1.7), we see that the expected daily cost-to-serve (given current information) is
the expected monthly cost-to-serve Et [ET LT ′ ·ET PT ′] plus a cash covariance term
Et [ET (LT ′ −ET LT ′)(PT ′ −ET PT ′)]. (By cash we mean intra-month [say], condi-
tional on information prior to the start of the monthly.) This decomposition is
useful because we often have market-supplied information over these separate time
horizons (e.g., monthly vs. cash) that can be used for both hedging and information
conditioning. (A standard approach is to separate a daily volatility into monthly and
cash components.)

It is helpful to see the role of the covariance terms from a portfolio perspective.
Recall that the deal consists of a fixed price PX (payment received for serving the
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load), and assume we put on a (flat) price hedge (with forward price PF ) at expected
load (L):

�=−LT ′PT ′ +LT ′PX +L(PT ′ −PF)= PF L

(
LT ′

L
− 1

)(
PT ′

PF
− 1

)
+ (PX −PF)LT ′

(1.9)
Since changes in (expected) price and load and typically co-move, we see from (1.9)
that the remaining risk entails both over- and under-hedging (as already noted).
The larger point to be made, however, is that in many deals the (relative) covaria-

tion contribution
(

LT ′
L
− 1
)(

PT ′
PF
− 1
)

covaries with realized price volatility.21 (This

behavior is typically seen in industrial or commercial load deals [as opposed to res-
idential]). Thus, an option/vega hedge (i.e., an instrument that depends on realized
volatility) can be included in the portfolio. As such, this relative covariation is not
a population entity, but rather a pathwise entity. The fixed price PX must then be
chosen to not only finance the purchase of these option positions, but to account for
residual risk, as well. Of course, this argument assumes that power volatility trades
in the market in question; this is actually often not the case, as we will see shortly.
However, in many situations one has load deals as part of a larger portfolio that
includes tolling positions, as well, the latter of which have a “natural” vega com-
ponent, so to speak. There is thus the possibility of exploiting intra-desk synergy
between the two structures, and indeed, without complementary tolling positions
load following by itself is not a particularly viable business (unless one has comple-
mentary physical assets such as generation [e.g., as with utilities]).22 What we see
here is a theme we will continue to develop throughout this book: the notion of
valuation as a portfolio construction problem.

A final point we should raise here is the question of expected load. As already
noted, load does not trade, so not only can load not be hedged, there are no forward
markets whose prices can be used as any kind of projection of load. Thus, we must
always perform some estimation of load. We will begin discussing econometric is-
sues in Chapter 2 (and further in Chapter 6), but we wish to note here two points.
First, the conditional decomposition between monthly and cash projections proves
quite useful for approaching the problem econometrically. We often have a good
understanding of load on a monthly basis, and can then form estimates conditional
on these monthly levels (e.g., cash variances,23 etc.). Furthermore, we may be able
to reckon certain intra-month (cash) properties of load robustly by conditioning on
monthly levels. Second, load is an interesting example of how certain time scales (a
central theme in this work) come into play. Some loads (residential) have a distinct
seasonal structure, as they are driven primarily by weather-dependent demand.
After such effects are accounted for, there is a certain residual structure whose infor-
mational content is a function of the time horizon in question. Currently, high or
low demand relative to “normal” levels will generally affect our projections of future
levels (again, relative to normal) inversely with time horizon.24 On the other hand,
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other load types (industrial or commercial) generally do not display sharp seasonal
patterns, and are dominated by the responsiveness of customers to price and switch-
ing of providers (so-called migration). These loads (perhaps not surprisingly) have
statistical properties more reminiscent of financial or economic time series such as
GDP.25 The informational content of such load observations accumulates directly
with time horizon. We will give more precise meaning to these notions in Chapter 2.

1.3 Prelude to robust valuation

In this brief overview of energy markets and structures, we have already managed
to introduce a number of important concepts that will receive fuller exposition in
due course. Chief among these are the following facts:

• The perfect storm of small data sets, high volatility, structural change, and op-
erational complexity make it imperative that modeling and analysis properly
balance costs and benefits.

• Structured products do not appear ab initio but always exist within the context
of a certain (energy) market framework that only permits particular portfolios
to be formed around those structures.

These points are actually not unrelated. The fact that we have only specific market
instruments available to us means that we can approach a given structured product
from the point of view of replication or relative valuation, which of course means a
specific kind of portfolio formation. Since different portfolios create different kinds
of exposure, it behooves us to identify those portfolios whose resulting exposure
entails risks we are most comfortable with.

More accurately, these risks are residual risks, i.e., the risks remaining after some
hedges have been put on.26 Portfolio constructs or hedging strategies that require
information that cannot be reliably obtained from the available data are not par-
ticularly useful, and must be strenuously avoided. We will have much more to say
about valuation as portfolio formation in Chapter 3. Before that, we will first turn to
the precursor of the valuation problem, namely the identification of entities whose
estimation can be robustly performed given the data constraints we inevitably face
in energy markets.



2 Data Analysis and Statistical
Issues

2.1 Stationary vs. non-stationary processes

2.1.1 Concepts

2.1.1.1 Essential issues, as seen through proxy hedging

Let us start with an example that is very simple, yet illustrates well both the kind of
econometric problems faced in energy markets as well as the essential features the
econometric analysis must address. Invariably, we are not interested in estimation as
such, but only within the context of valuing some structured product/deal. Suppose
we are to bid on a deal that entails taking exposure to some (non-traded) entity y,
which we believe (for whatever reason) to stand in a relation to some (forward
traded) entity x. We thus anticipate putting on some kind of hedge with this entity
x. A critical aspect of this deal is that the exposure is realized at a specific time in
the future, denoted by T . Examples of proxy hedging include:

• Hedging short-term exposure at a physical node in PJM with PJM-W
• Hedging very long-term PJM-W exposure with Henry Hub natural gas
• Hedging illiquid Iroquois gas basis with more liquid Algonquin basis.

To determine the price K at which we would be willing to assume such exposure,
we consider (as we have throughout) the resulting portfolio:1

�= yT −K −�(xT −Fx)= yT −� · xT +� · Fx −K (2.1)

where Fx is the forward price of x. The first thing to note from (2.1) is that we
must be concerned with the residual exposure that results from the relationship
between the exposure y and the hedge x. So, it would be sensible to try to estimate
this relationship, and a natural (and common) first attempt is to look for a linear
relationship:

yT = αxT +β+ εT (2.2)

12
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where εT is some (as yet unspecified) zero-mean random variable, commonly re-
ferred to as the relationship disturbance (or statistical error).2 In the course of this
chapter (and Chapter 6) we will discuss various techniques (and their associated
assumptions/limitations) for estimating models more general than (2.2). In addi-
tion, we must have some understanding of how the estimation procedure relates
to some property (or properties) of the assumed model (and hence the underly-
ing model parameters). In other words, we must be able to relate the sample to
the population. In fact, this issue is closely related to (but ultimately distinct from)
the question of how strongly the statistical evidence supports the assumption of the
purported relationship. We will fill in these details shortly; our concern here is with
what information we require for the valuation problem at hand.

2.1.1.2 The requirements: relationships and residuals

If the estimation did provide evidence of a strong relationship between x and y,
then the next step would be clear: take the hedge to be�= α̂ and K = α̂Fx+ β̂+φε
(where hats denote estimated entities), and φε denotes a risk adjustment based on
the estimated disturbance (e.g., we may want coverage at the 25th percentile, such
that we would only lose money 25% of the time3). This latter point (concerning
risk adjustment) is critical, because we now consider the case where the economet-
rics does not provide evidence of a strong relationship. A natural question to ask is:
should we still form our price in light of the estimated (weak) relationship, or dis-
regard the econometrics and bid based on unconditional information? The answer
to this question is actually not obvious. There may well be situations where we have
a priori reasons to believe that there is a relationship between the exposure and the
available hedging instrument, yet the formal diagnostics (meaning tests of statisti-
cal significance of the assumed relationship) prove inconclusive (or possibly offer
rejection). (We note in passing that liquid futures markets are known to be efficient
processors of information.) In such cases, it may well be the case that the estimated
disturbances from (2.2), although (formally) weak evidentially, do provide useful
information that can be combined with conditional data (namely, the current state
of the market, e.g., through forward prices). This issue will become much more ap-
parent when we discuss the impact that small samples have on such assessments,
because it is precisely in this all-too-common situation that formal diagnostics can
be especially misleading. We must always seek a balance between what the data itself
says, and what relationships can be exploited via liquid (futures) markets.

To make these points more abstractly, write (2.1) in the following way:

�= yT −K −�(xT −Fx)= εxy(�;T)+� · Fx −K (2.3)

where εxy denotes the (realized) residuals from a particular hedge � over a par-
ticular time horizon T . Obviously, this residual is simply the stochastic variable
yT −� · xT , but written in the form (2.3), we see clearly the fact that the entity
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of interest, namely, an actual portfolio, does not necessarily depend on the exis-
tence of a relationship (linear or otherwise) between x and y (as in (2.2)).4 Rather,
the critical dependence is on the hedge volume and the time horizon in question
for which the resulting exposure in (2.3) is deemed preferable to a naked position.
That is to say, the econometric question of interest is not simply estimation as such,
but rather what kind of (historical) information can be exploited to construct port-
folios around some structured product. Now, formal econometric techniques can
still be very useful in this task (and we will devote time to discussing some of these
techniques), but their limitations must always be kept in mind (and subordinated
to the larger goal of robust valuation).

We thus see that even in this very simple example (which is not at all contrived,
it is a very common situation in energy markets that longer-term deals at illiq-
uid, physical locations cannot be directly hedged using existing market instruments,
hence some sort of proxy (“dirty”) hedge must be employed (thus rendering even
the notion of intrinsic value illusory, as some residual risk must be worn)) that a
number of subtle econometric issues are involved, that are often given short shrift
in many standard treatments of the subject. Much of what we have said to this
point is a cautionary tale about conventional statistical techniques needing to be
congruent with the primary goals of robust valuation, which itself always takes
place in the context of an actual market environment (with a specific level of liq-
uidity, across both time horizons and products). We will see examples where some
of these techniques break down surprisingly quickly in fairly simple problems. The
point we wish to focus on here, however, is the role that time scales play in identify-
ing the salient features of a problem, features that must be adequately captured by
an econometric analysis, even (especially?) if it means ignoring other, (ostensibly)
more complex features.5

2.1.1.3 Formal definitions and central principles

To this end, we start with a description of certain general categories that serve to
delineate the kinds of (stochastic) time series for which various techniques must be
brought to bear.6 The broadest category here is that of stationary vs. non-stationary
time series. A stationary time series is essentially one for which the statistics of
future states do not depend on the current time. More accurately, the joint dis-
tribution of future states depends only on the relative times of those states, and not
absolute times, i.e.,

Pr(xt+τ1 ,xt+τ2 , . . .xt+τn)= Pr(xτ1 ,xτ2 , . . .xτn) (2.4)

This time invariance means, for example, that it is meaningful to speak of un-
conditional statistics such as the mean and variance. Examples of stationary time
series include white noise, physical processes such as (deseasonalized) temperature,
and economic entities such as heat rates. (Mean reversion is commonly associated



Data Analysis and Statistical Issues 15

with stationarity, and while they are not unrelated, they are not really the same
concept either.) Not surprisingly, a non-stationary time series is one that is not
stationary; in other words, its statistics are not time invariant and there is no mean-
ingful sense in which we can refer to unconditional mean and variance (say). (Only
conditional statistics can be formed.) Examples include Brownian motion and fi-
nancial or economic time series such as GDP, inflation rates, and prices in general.
Note, of course, that non-stationary time series can often be analyzed by looking
at constituent series that are stationary, e.g., (log-) returns in GBM. (Heuristi-
cally speaking, a stationary time series cannot “wander” too far off over a long
enough time horizon, whereas a non-stationary time series can; we will render these
common-language notions more precise when we discuss variance scaling laws in
Section 2.2.)

There are various categories of stationarity (e.g., covariance stationarity), the dis-
tinction between which we will not dwell on here. The critical point (a theme we
have emphasized throughout) concerns the nature of information flows, i.e., volatil-
ity. For a stationary time series, there are unconditional or time-invariant properties
(e.g., a long-term mean) which limit the extent to which current information (or
more accurately, a change in current information) is relevant for projecting future
states of the process in question. In other words, the incremental benefit (so to
speak) of new information is of declining value as the distance to those future states
increases. By contrast, there are no such restrictions on a non-stationary process
and new information is of great relevance for projecting future states; the incre-
mental value of new information tends to be uniform over the time horizon in
question. To illustrate, a hot day today means that tomorrow will probably be hot,
as well. (Indeed, notions of “hot” or “cold” only make sense in reference to some
“normal” – i.e., time-invariant – level.) However, there is little reason to think that
next month’s temperature will be very different from normal.7 In distinction, our
projection of what next quarter’s or next year’s GDP will be depends very largely
on where GDP is right now. There is no long-term level to which we could refer in
making such projections.

Note that we have introduced a very important concept in this discussion, namely
the crucial notion of time scales.8 In truth, what is important is not whether a pro-
cess is distributionally time-invariant as such, but rather the time scales over which
information relevant to that process accumulates. We already indicated this when
we mentioned that, over a small enough time horizon, (changes in) current in-
formation about temperature is important. For prices the situation is a bit more
complicated, and we do not intend to discuss in detail the issue of whether there is
(formal) mean reversion in commodity markets (see EW for a fuller exposition). We
will see, though, that there is definite evidence for nonuniformity of time scales for
information flows in energy markets (and commodity markets in general). Indeed,
there is no doubt of the existence of the so-called Samuelson effect in commod-
ity markets, namely the term structure of volatility. While this effect is commonly
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associated with mean reversion of the underlying spot process,9 this does not nec-
essarily have to be the driving force. We will return to these points in great detail
later, but they should be kept in mind as we discuss conventional techniques that
rely on a rather strict delineation between stationary and non-stationary processes.

2.1.1.4 Statistical significance: why it matters (and why it does not)

This distinction between stationary and non-stationary processes is important for
a number of reasons. One reason of course is that the projection of the future
value of some random variable is very different when there is a (long-term) un-
conditional distribution to which reference can be made, and when there is not.
Another important reason is that most common econometric methods are only
valid when the underlying time series to which they are applied are stationary.10

However, most time series encountered in actual markets are, to a large degree,
non-stationary.11 When such familiar methods are applied outside their range of
validity, extremely misleading results can arise. On top of this, many of these tech-
niques only provide diagnostics in an asymptotic sense, i.e., in the limiting case
of very large samples. Even in the case of stationarity, depending on the operative
time scales, these asymptotic results may be of little practical value, and may in fact
generate erroneous conclusions.

It needs to be stressed that estimation must be accompanied by some means of
carrying out diagnostics (which ultimately are a way of detecting whether the ex-
ercise is simply fitting to noise or not). By this we mean assessing the results for
sensitivity to noise (that is, determining whether they are simply an artifact of
the sample in question or whether they are robust to other realizations of [non-
structural] noise [and hence indicative of some actual population property]). In
standard terminology this can be thought of as statistical significance, but as will
be seen we mean it in a more general sense. (It should be noted that common
measures of estimation quality, such as goodness-of-fit [e.g., R-squared values in
ordinary least squares to be considered below], while useful for some purposes,
are not diagnostics or tests of significance.) Recall our prime objective: valuation
through replication via portfolio formation, plus appropriate accounting for expo-
sure that cannot be replicated (residual risk). This objective requires that we put on
specific positions (in some hedging instruments), and charge for residual risk at a
specific level of (remaining) exposure. Both of these aspects of the valuation prob-
lem rely on two sides of the same econometric coin, namely the distinction between
structure and noise (or more, accurately, the need to be able to distinguish between
the two). We will see exactly such an example in Section 6.1.1, when spurious re-
gressions based on unrelated, non-stationary time series are considered: there is no
meaningful distinction between structure and noise, no matter how large the sample.

A very broadly encompassing example is finding relationships between so-called
value drivers (see Chapter 3) that cannot be hedged and other variables which can
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be (recall the example in (2.1)). A specific example would be a (pathwise) rela-
tionship between price and load convexity in full requirements deals12 and realized
price quadratic variation. Since the latter entity can (at least in certain markets)
be vega-hedged with options, knowing a relationship between convexity (which
is the relevant exposure in structured deals such as full requirements/load serv-
ing) and quadratic variation amounts to being able to hedge, and hence value,
the former. Thus we must be able to determine two things from any estimation
procedure:

1. Does it reveal a real relationship that we can exploit?
2. Are the resulting residuals (estimation errors) indicative of the kinds of remain-

ing exposures/risks we face after the relationship is accounted for?

To dispel any potential misunderstanding, we should emphasize that our princi-
pal objective here is not hypothesis testing of models as such, although the formal
language may often be employed. Rather, the concern is with the conditional infor-
mation that can be provided by econometric analysis. In this sense, while points
1 and 2 above are both important (and related), it is really point 2 that is of
greater relevance. This central point must be stressed here. For the purposes of
pricing and hedging (which as we have endeavored to show throughout, are iso-
morphic, so to speak), we seldom care only about explicit estimations such as
(2.2). What we also care about is residual exposure, as manifested in actual port-
folios such as (2.1) or (2.3). This is precisely why formal hypothesis testing (and
more generally tests of statistical significance) is tangential to our primary con-
cern. Hypothesis testing is, ultimately, a binary procedure: either a hypothesized
relationship is deemed true (at some specified level of significance), or it is not.
By contrast, the formation of optimal (in the appropriate sense) portfolios is a
continuous problem across hedge volumes and un-hedged risk (in terms of some
distributional property, say, percentiles). It is not obvious how these two problems
relate to one another (if at all), but one thing is certain: they are not equiva-
lent, and the former issue must be subordinate to the latter issue for purposes of
valuation.

The ultimate question is: do the estimated residuals (that arise from any econo-
metric procedure) provide useful information about realized exposures after suit-
able hedges are implemented? Again, it is difficult to provide any kind of definitive
answer to this question in light of standard econometric practices (such as hypoth-
esis testing for formal parameter estimates). Doubtless, confirmatory econometric
information is useful to have. However, it must always be kept in mind that our
chief concern in valuation is having a good understanding of residual error, because
valuation takes place in the context of a portfolio where one exposure is exchanged
for another. Thus, whenever we speak of diagnostics here, we are principally con-
cerned with whether the resulting residuals have informational content, and not
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whether a particular estimated relationship takes one set of values or another. It re-
mains the case that one must still understand the underlying mechanics, so at the
risk of misdirecting the proper emphasis, we will continue to speak in terms of the
conventional language of hypothesis testing/diagnostics and pursue the appropriate
analysis. Clearly, inferring whether a relationship exists can be useful (although not
always decisive) in projecting the nature of residuals that a particular portfolio is
exposed to.

2.1.1.5 A quick recap

After this somewhat lengthy discourse, one may reasonably ask: what does all of
that have to do with the topic of stationary vs. non-stationary time series? Precisely
the point is that, as assumptions of stationarity (under which many common es-
timation techniques are constructed) are relaxed, familiar diagnostics may be very
misleading, if not completely wrong. As we will formalize presently, estimators are
maps from a realization of some random variable to an estimate of some property
of that random variable. As such, estimators inherit, if only indirectly, certain sta-
tistical features of that variable. As the assumptions under which the estimator is
known to relate sample entities to population entities are weakened, it correspond-
ingly becomes less valid to use that estimator to draw conclusions. (We remind the
reader again about the time dependence in (2.3), an aspect of the problem that is
usually only implicitly accounted for [if at all].) In other words, potentially dis-
astrous inferences can be drawn from common statistical tests if great care is not
exercised.

It is important to understand that the categories stationary and non-stationary,
even allowing for gray areas introduced by time scales, are population categories. As
we have already noted (and will discuss in great detail in Section 2.2), the variance
scaling law of a process is of critical importance. We can broadly characterize the
behavior of a process in terms of how the variance accumulates over different time
scales: does it eventually flatten out, or continue growing (say, linearly) without
limit? Now, it is certainly useful conceptually to understand these concepts (in a
rather binary sense) and their associated (theoretical) econometric analysis (hence
our efforts to that end here). However, it must always be kept in mind that any
actual econometric study takes place in the context of a data set of a particular fi-
nite size. In other words, we are always faced with a problem of samples, and not
populations. (Or more accurately, the issue concerns how to derive population in-
formation from actual samples, without assuming that the samples at our disposal
are arbitrarily large.) The challenges presented by time scaling will depend greatly
on sample size. We will see an example in Section 2.1.2 of a time series that is sta-
tionary in population, but very weakly so.13 However, standard, popular techniques
applied to this series in finite samples will perform very poorly.14 The operational
challenge can be characterized as an interaction between population (variance) time
scales and (actual) sample size.
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Our objective in this chapter is to make clear those issues that have to be
taken into account, in order to effectively conduct econometric analysis. A not-
insignificant part of this task will be to examine where, precisely, standard tech-
niques break down. To do so, we will obviously have to understand what those
techniques entail. While we do not intend to be (nor can we be) an econometrics
text book, we will have to provide some amount of overview.

2.1.1.6 Estimators

Now, the essential feature of any econometric procedure is to infer the charac-
teristics of some population from a sample. That is to say, for some parameter-
dependent stochastic variable X(θ) and a set of realizations {Xi} of (finite) size
N , we seek a map (the estimator) E : {Xi} → θ̂ taking the sample to an estimated
parameter and a (perhaps probabilistic) relationship �N (θ , θ̂ )= 0 between the es-
timate and the true parameter value. In addition, the model underlying X implies
some probability distribution Pr(X ;θ). Note that the relationship is (typically) de-
pendent on the sample size. This is actually a very important aspect of the problem.
As we will see in greater detail in the course of the discussion, the relationship asso-
ciated with a particular estimator is often only known (analytically) asymptotically,
that is, for very large sample sizes. In other words, the actual relationship associated
with the estimator usually takes the form lim

N→∞�N (θ , θ̂ ) = 0. As we will see fur-

ther, the question of what qualifies as “very large” is very much dependent on the
problem in question. This problem is amplified in energy markets, where it is quite
common to have sample data of small size relative to equity and bond markets.

2.1.1.7 Ordinary least squares

Let us lead into some of the underlying issues by considering the well-known
method of ordinary (linear) least squares (OLS). This method assumes there is a
linear relationship between two sets of data x and y with Gaussian (white) noise:

y = αx+β+ ε (2.5)

with ε ∼ N(0,σ 2), and with each realization being independent of other realiza-
tions. (Compare with (2.2).) Now, this model has certain assumptions, which
we will not explicitly spell out here as they are most likely familiar to the reader
(see Hamilton [1994])15. The point we wish to make is that OLS is an estima-
tion procedure, with estimators formally obtained from the following optimization
problem:

(α̂ β̂)T = argmin
α,β

∑
i

(yi−αxi−β)2 (2.6)
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The solution of (2.6) is easily found to be:16

α̂ = 〈xy〉− 1
N 〈x〉〈y〉

〈x2〉− 1
N 〈x〉2

β̂ = 1

N
(〈y〉− α̂〈x〉)

σ̂ 2 = 1

N − 2
〈ε̂2〉

(2.7)

where N is the number of data points in the sample, 〈〉 denotes ensemble sum, and
ε̂≡ y−α̂x− β̂ are the (realized) residuals. Clearly, it can be seen how (2.7) conforms
to our abstract definition of an estimator (as a function of a [realized] sample).

Now, the obvious question is the following: what does the output from the recipe
in (2.6) really mean? Put differently, what can we say about the relationship be-
tween the sample entities in (2.7), and the population entities of the data generating
process (DGP) in (2.5)? Note that the following relationship holds:17

α̂ = α+ 〈xε〉−
1
N 〈x〉〈ε〉

〈x2〉− 1
N 〈x〉2

(2.8)

The seemingly uninteresting expression in (2.8) is important for a number of rea-
sons. First, it shows that the estimator is itself a random variable, depending not
only on the regressors x but also on the realized (random) deviations ε. Second, it
shows an important relationship between the estimator and the “true” parameter
(i.e., the entity that the estimator is estimating), namely unbiasedness:

Eα̂ = α (2.9)

Back to our abstract framework, (2.9) is an example of a relationship between es-
timate and true parameter value. (Note further that in this case, the estimator is
unbiased in any sample size; this is usually not the case, i.e., unbiasedness is often an
asymptotic relationship.)

Finally, (2.8) gives important information about the distribution of the (ran-
dom) estimator. For example, the variance can be seen to be (given the underlying
assumptions)

E(α− α̂)2 = σ 2

〈x2〉− 1
N 〈x〉2

(2.10)

We do not write out the specifics here (again, consult Hamilton [1994]), but we
emphasize the crucial point that (2.8) allows us to conduct inferences about the
model parameters in (2.5).18 For example, we can ask: if the true value of α was
zero (so that there really was no relationship between x and y), how likely would
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it be that a particular realization of the data (such as the one being analyzed)
would produce the observed numerical estimate α̂? In other words, are the results
of the estimation statistically significant? Depending on one’s threshold for accep-
tance/rejection (conventionally, 5% is a standard criteria for deeming a particular
output as unlikely), a given model may be rejected.19,20

2.1.1.8 Maximum likelihood

Another very common estimator, at the heart of a great many econometric tech-
niques, is so-called maximum likelihood estimation (MLE). We will employ it
frequently here (as well as emphasize its shortcomings), so it merits some expli-
cation here. As the name suggests, the essence of the idea is to find values of the
model parameters that maximize the probability of the (realized) sample:

θ̂ = argmax
θ

Pr(X1, . . . ,XN ;θ) (2.11)

Typically, the assumption of identical independent distribution (i.i.d.) across the
sample is made, so that (2.11) can be written as

θ̂ = argmax
θ

∏
i

Pr(Xi ;θ) (2.12)

We will later investigate the ramifications of weakening the i.i.d. assumptions,
but for now we will simply assume its validity for the problems we examine. It
is convenient to then conduct the analysis in terms of the log-likelihood function,
defined as

L(X ;θ)≡ 1

N

∑
i

logPr(Xi ;θ) (2.13)

The first order condition for optimality implies

∂

∂θ
L(X ; θ̂ )= 1

N

∑
i

∂

∂θ
logPr(Xi ; θ̂ )= 0 (2.14)

Now, by the law of large numbers, under the prevailing assumptions (i.i.d.), en-
semble averages like that in (2.14) converge21 in the limit to the corresponding
expectation:

1

N

∑
i

∂

∂θ
logPr(Xi ; θ̂ )= 0↔ E

∂

∂θ
logPr(X ;θ∗)= 0 (2.15)
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where θ∗ denotes the true parameter value. The expectation in (2.15) follows from∫
Pr(X ;θ)dX = 1⇒∫
∂

∂θ
Pr(X ;θ)dX =

∫
Pr(X ;θ)

∂

∂θ
logPr(X ;θ)dX = 0⇒

E
∂

∂θ
logPr(X ;θ∗)= 0

(2.16)

We thus see that the intuitive (and popular) econometric technique of maximum
likelihood corresponds (in the limit) to a specific population condition. We will see
later how more detailed (asymptotic) information regarding the estimates (such as
the covariances of the estimator22) can be derived. We will see further just how
dangerous it can be to rely on asymptotic results when dealing with the sample
sizes typical of most energy market problems. Before doing so, however, we must
continue with some (appropriately focused) overview.

2.1.2 Basic discrete time models: AR and VAR

2.1.2.1 AR estimator and its properties

Consider the following popular extension of (2.5), the so-called auto-regressive AR
process:

xt = φxt−1+ εt (2.17)

with |φ| < 1 (which, we will see, implies that the process is stationary so it makes
sense to speak of its long-term or unconditional means and variances). The term
εt ∼ N(0,σ 2) is assumed to be independent of xt−1 (i.e,. it is unconditionally nor-
mal). It is not difficult to show that, under MLE23, the estimator for the coefficient
φ is formally the same as the OLS result:

φ̂ = 〈xt−1xt 〉
〈x2

t−1〉
(2.18)

which implies the following relationship:

φ̂ = φ+ 〈xt−1εt 〉
〈x2

t−1〉
(2.19)

It is worth noting here that, as one of the standard assumptions of OLS is relaxed,
namely non-stochasticity of the regressors, we lose the unbiassedness property (2.9)
of the estimator.24 However, it can be shown that the estimator is still consistent, i.e.
as the sample size increases the bias gets smaller. Thus (2.18) is still useful. Fur-
thermore, in this case we can no longer appeal to exact distributional results for
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the estimator, but instead must rely on large sample-size (asymptotic) results. In
fact (leaving aside the question of how large the sample must be for asymptotic re-
sults to be valid [which turns out to very non-trivial]) the asymptotic distribution
is (standard) normal, making diagnostics quite easy to carry out.

Specifically, we have

√
T(φ̂−φ)=

1√
T
〈xt−1εt 〉

1
T 〈x2

t−1〉
(2.20)

where T is the sample size. For large T , the denominator in (2.20) is asymptoti-
cally the long-term variance (which is easily seen to equal σ 2/(1− φ2); remember
the assumption of stationarity), while the numerator is asymptotically normal with
variance σ 4/(1−φ2)). (See Hamilton [1994] for a more rigorous demonstration.)
Thus √

T(φ̂−φ)∼N(0,1−φ2) (2.21)

demonstrating the aforementioned consistency of the estimator: as the sample size
increases, the estimator clusters around the true value with standard deviation

shrinking like O
(

1√
T

)
.

2.1.2.2 Non-stationarity and the limits of asymptotics

However, certain complications can arise. Suppose that φ = 1, so that (2.17) de-
scribes a random walk (discrete time Brownian motion). In other words, (2.17)
becomes a non-stationary process. The most obvious problem is that the diagnos-
tics in (2.21) become trivial! What is going on of course is that the estimator is
converging at a rate faster than O( 1√

T
), in fact with rate O( 1

T ). In fact, intuitively

we can see (via the scaling property of Brownian motion) that

T(φ̂− 1)∼
∫ 1

0 wsdws∫ 1
0 w2

s ds
=

1
2 (w

2
1 − 1)∫ 1

0 w2
s ds

(2.22)

where w is a standard Brownian motion. This expression is of course the basis of
the well-known Dickey-Fuller test for unit roots.25 The entity in (2.22) has a non-
standard distribution and the critical values (for acceptance/rejection of inferences)
are typically obtained via simulation. The point we are trying to make here is that, in
the presence of non-stationary, the relevant diagnostics can radically change, even
if the underlying estimation algorithm is unchanged.

This point is worth emphasizing. The power of many of these standard tests can
be very low in small samples. (The power of a test refers to its ability to detect a re-
lationship when it really exists, i.e., to reject the null hypothesis [of no relationship]
when the null relationship is actually false.) This is particularly true when one relies
on asymptotic results (which are often the only theoretical results available). It is
not hard to see why. Consider a near-unit root process, e.g.,
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xn = 0.999xn−1+ εn (2.23)

For a given sample size, it will be very hard to distinguish this stationary series
from a non-stationary random walk, based on asymptotic results such as (2.22).
(This is also true of non-asymptotic tests such as Dickey-Fuller, which use as the
test statistic the OLS estimate of φ divided by its standard error [i.e., the usual
t-statistic from linear regression], with associated critical values obtained via sim-
ulation.) In fact, simple simulations show (again, for a given sample) that the
distribution of the estimator (2.18) is much greater than the asymptotic results
in (2.21) would imply for this value of φ (about 3.5 times larger, for a sample
size of 500), with the distribution being decidedly non-Gaussian. (This reflects
the omission of higher-order terms in approximating 〈x2

t−1〉 in the denomina-
tor of (2.19) by the long-term [that is, asymptotic] population variance.) Thus,
the estimator would tend to over-suggest the presence of (strong) mean rever-
sion (or alternatively under-suggest the presence of near non-stationarity). These
results can be seen in Figures 2.1 and 2.2 (note the extreme skewness of the
estimator).

Interestingly, the estimator of the disturbance variance in (2.23) does conform to
its asymptotic distribution. The MLE estimator of the variance is given by

v̂ = 1

T
〈(xn− φ̂xn−1)

2〉 = 1

T

(
〈ε2

n〉−
〈εnxn−1〉2
〈x2

n−1〉

)
(2.24)

where v ≡ σ 2. Now, the expression in (2.24) should be compared with the estima-
tor for the AR coefficient in (2.19). For the AR coefficient, the estimator consists of
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the exact value plus some non-standard RV. It is precisely the extreme deviations
from normality of this RV that leads to a breakdown of asymptotic results in small
samples. By contrast, the variance estimator consists of an average of the squared
(realized but unobserved) disturbances plus another non-standard RV (similar to
the one for the AR coefficient). Since the disturbances are (by assumption) i.i.d.,
we would expect the average of their squared sum to be a good representative of
the true variance. This sub-estimator (so to speak) has its own variability, which is
characterized by approximate normality with O(T−1/2) standard deviation.26 So,
if this variability greatly exceeds the variability of the non-standard component
of the estimator, overall estimator variability will be asymptotically normal. This
condition is typically satisfied in practice, and we frequently see that variance esti-
mators are much better behaved than mean-reversion estimators. These claims are
illustrated in Figures 2.3 and 2.4. Note further that we would anticipate that the un-
certainty associated with variance estimators will decrease much faster with sample
size27 compared with the uncertainty associated with mean-reversion estimators:
we will typically require far fewer data to form robust estimations of variance than
we would for mean-reversion rates. We will make great use of these properties in
the course of our exposition.

The failure of asymptotically valid results to provide reliable diagnostics in fi-
nite samples points to the need for alternative means of assessing the output of
any econometric technique. A powerful and useful approach is the so-called boot-
strap methodology, which falls under the general category of resampling; we will
consider this topic in greater detail in Section 6.4. Another cautionary tale about
conducting econometric tests with non-stationary variables concerns so-called spu-
rious regressions, regressions that show statistically significant results when in fact
no real relationship exists. This topic will also be revisited in Section 6.1.1 when
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we consider cointegration, but we will first need to consider a generalization of the
one-dimensional case studied thus far.

2.1.2.3 Extension to higher dimensions

To better illustrate the underlying methods, it is worthwhile to go into a bit of
operational detail for a multivariate situation. Consider the vector autoregression
model

xt =�xt−1+ εt (2.25)
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for some N-dimensional process, with the noise term independent between time
steps but possessing a contemporaneous covariance structure denoted by�; specif-
ically, εt ∼ N(0,�). In addition, we assume all of the eigenvalues of the matrix
� are within the unit circle, so that the process is stationary. With this latter as-
sumption we can validly rewrite (2.25) as an infinite series moving average (MA)
representation as

xt = εt +�εt−1+�2εt−2+·· · (2.26)

We will return to (2.26) shortly. After a bit of algebra, ML estimation of (2.25)
yields28

�̂= 〈xt xT
t−1〉〈xt−1xT

t−1〉−1 (2.27)

It thus follows that

�̂−�= 〈εt xT
t−1〉〈xt−1xT

t−1〉−1 (2.28)

To determine the asymptotic diagnostics of this estimator, consider the second
matrix factor in (2.28). Using (2.26), we have that

1

T
〈xt−1xT

t−1〉 =
1

T

∑
t

∑
i,j

�iεt−iε
T
t−j�

Tj (2.29)

In the large sample size limit, (2.29) converges in probability to (recall the
condition on the eigenvalues of � and the non-contemporaneous independence
of ε): ∑

i

�i��Ti (2.30)

If we further assume that the eigenvalues λ of� are distinct,29 we have the factor-
ization�= V�V−1 where� is a diagonal matrix with the eigenvalues of� along
the diagonal, and V is a matrix comprising the corresponding eigenvectors as its
columns. Consequently (2.30) can be written as:

V

(∑
i

�iV−1�V−T�i

)
V T (2.31)

Writing �V ≡ V−1�V−T and exploiting the diagonal form of �, the matrix in
(2.31) becomes V�λV T , where the elements of�λ are given by:

�λij =
�V

ij

1−λiλj
(2.32)
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Denote the matrix in (2.31) by Q; it is essentially the long-term covariance
matrix for the (stationary) process (2.25). (Compare with the results for the one-
dimensional case, where the long-term variance is easily seen to be σ 2/(1− φ2)).
The asymptotic diagnostics thus become:

√
T
(
�̂−�

)
∼ 1√

T
〈εt xT

t−1〉Q−1 (2.33)

It should be clear from (2.33) that the estimator, though biased, is consistent. We
can say a bit more by noting the (i, j) element of the estimator is distributed as:

1√
T
〈εi

t xk
t−1〉Q−1

kj (2.34)

which has expectation (in population) 0 and covariance (again in population):

1

T
E〈εi

t xk
t−1Q−1

kj ε
i′
t ′x

k′
t ′−1Q−1

k′j′ 〉

= 1

T
〈xk

t−1Q−1
kj xk′

t−1Q−1
k′j′�ii′ 〉 ∼Q−1

kj Q−1
k′j′�ii′Qkk′ =�ii′Q

−1
jj′ (2.35)

Thus, we anticipate that:30

√
T(vec(�̂)− vec(�))∼N(0,�⊗Q−1) (2.36)

where ⊗ denotes the Kronecker product and vec(A) is a vector formed by stacking
the rows of the matrix A. (See Proposition 11.1 in Hamilton [1994] for a more
detailed derivation.)

2.1.2.4 Limits to asymptotics revisited

Again, apart from illustrating some operational details, we wish to highlight the
importance of the stationarity assumption in deriving the necessary diagnostics.
In particular, note the non-standard diagnostics (along with completely different
asymptotic behavior) in the presence of non-stationarity. Intuitively, for large T ,
we would expect the process in (2.25) to behave like its continuous time limit over
a scaled time horizon, i.e.:

dx = Axdt + dw (2.37)

with I+Adt →� and where w represents a vector-valued Brownian motion.31 We
would thus expect the estimator in (2.28) to behave like:

�̂−�∼ 1√
T

∫ 1

0
dwsx

T
Ts

(∫ 1

0
ds · xTsx

T
Ts

)−1

(2.38)
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Now, for a stationary process, the long-term limits of xTs make sense and it can be
seen that (2.38) recovers the result in (2.36). However, for non-stationary processes,
the dynamics of x will have a purely Brownian component (as can be seen from an
eigenvalue analysis of the matrix A; we will demonstrate this fact when we consider
the relationship between cointegration and scaling laws of variance later32). Thus,
due to the scaling property of Brownian motion, it can be seen from (2.38) that,
at least for some of the components, O( 1

T ) will be introduced. (Note that since
the Q-matrix exhibits pathological behavior via (2.32), the asymptotic diagnostics
in (2.36) break down.) It is not immediately clear if any tractable general results
can be stated via this approach, but for the very simple case � = I , the relevant
diagnostics are:

�̂−�∼ 1

T

∫ 1

0
dwsw

T
s

(∫ 1

0
ds ·wsw

T
s

)−1

(2.39)

which can be seen as a multidimensional extension of the Dickey-Fuller statistic for
unit root testing. (Compare with (2.22); yet again we refer the reader to Hamilton
[1994] for a more thorough discussion).

We have thus seen already with even this brief overview of standard time se-
ries results that a great many problems can arise when these methods are applied
outside their theoretical setting and in the actual situations we face in energy mar-
kets, namely small samples in the presence of non-stationary effects. Indeed, strict
non-stationarity is not at all necessary to create problems, as the example in (2.23)
shows. (The interplay of such effects is particularly acute in energy markets, where
price formation depends on both more-or-less stationary, fundamental demand
drivers on the one hand and more-or-less non-stationary capital supply effects on
the other.) It is thus imperative that we have an alternative (or more accurately,
more robust) framework for extracting information from available data. The idea
of variance as a measure of information accumulation over specific time horizons
proves crucial here.

2.2 Variance scaling laws and volatility
accumulation33

In truth, most time series of interest do not fall clearly into one category (stationary
vs. non-stationary) or the other. A simple example is the standard mean-reverting
process (the continuous-time34 version of the AR process in (2.17)):

dz = κ(θ − z)dt +σdw (2.40)
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with κ > 0. The conditional statistics are normal, with:

zT ∼N

(
ze−κτ + θ(1− e−κτ ),σ 2 1− exp(−2κτ)

2κ

)
(2.41)

with τ ≡ T − t denoting the time horizon (and z the current [time t] value of the
process). Clearly, the distribution of future states is dependent on the state at the
current time, in terms of the technical definition the process cannot be called sta-
tionary. However, just as clearly this dependence is weak over sufficiently long time
horizons (which of course depends on the strength of mean reversion). Put dif-
ferently, we can ask: how much does current information affect our projections
of the future? From (2.41), the expected value of the process can be written as
θ + (z− θ)eκτ , so on the one hand, there is a sense in which we can talk about un-
conditional means: namely, the (long-term) mean reversion level θ . On the other
hand, our projection must take into account both the current deviation from that
(unconditional) level as well as the time horizon in question. The shorter the time
horizon and/or the weaker the mean-reversion rate, the more important current
information will be in forming projections. There is thus an interplay and bal-
ance between these two effects that must be properly accounted for. This point has
obvious ramifications for trading strategies based on mean reversion (such as con-
vergence plays): one may indeed identify a situation where a price (say) is above or
below its long-term mean (assuming this mean is known, an important but sepa-
rate issue), but the question of whether one should take a counterposition (sell if
above, buy if below) depends crucially on how long one expects it to take before the
position moves into profitable territory.35

Now, as is well known, directly estimating mean-reversion rates (e.g., from regres-
sions) is extremely non-robust. This is actually a special case of the issue discussed
previously, on the low power of many econometric tests in small samples. How-
ever, there is a robust alternative to detecting the presence of mean-reverting effects
(which we will improperly conflate with stationarity, as the two concepts have suf-
ficiently common features of importance). As we have discussed previously, the
variance of the process (2.40), as a function of time horizon, has a distinctly dif-
ferent structure from that of a non-stationary process (such as Brownian motion).
Specifically, the variance of a mean-reverting process tends to flatten out over long
enough time horizons, while the variance of a non-stationary process tends to grow
linearly with time.36 In fact, depending on the strength of mean reversion, the time
scale over which flattening out occurs can vary. Given that variances and covari-
ances are typically more robust to estimate than mean-reversion rates, looking at
how the variance of a process behaves over different time horizons can serve as a
useful diagnostic for detecting the presence of stationarity. This will be our next
topic to consider.
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2.2.1 The role of fundamentals and exogenous drivers

As we have stated, energy markets present a number of econometric challenges,
chief among them comparatively small sample sizes and relatively large volatilities.
It is therefore critical to exploit as many advantages as we may in analyzing such
data. One ameliorating feature of energy markets is that we often have some idea of
certain fundamental or exogenous37 drivers that affect prices and volatilities, if only
indirectly.38 These drivers can be broadly characterized as reflective of supply-and-
demand conditions. A bit more narrow (but still fairly inclusive) characterization
would be the capital structure (e.g., the generation stack in power or the pipeline
network in natural gas) that produces commodities, and weather and economic
conditions (e.g., greater demand for electricity in the summer and gas in winter or
general economic growth influencing the price of oil) that drive demand for com-
modities. To the extent that (at least some of) these fundamental factors may be
relatively well understood (in comparison to commodities themselves), such infor-
mation should be exploited as much as possible. In particular, we should endeavor
to understand how the time scales influencing these factors manifest themselves in
the dynamics of energy prices and, if possible, separated out from the analysis of
these dynamics.

2.2.1.1 A confluence of effects

As a simple example, consider a spot price model for (log-) power: p = g + h+ l
where

dg = μg dt +σg dwg

dh= κy(θ − h)dt +σhdwh

dl =−κl ldt + jdq

(2.42)

which is an augmentation of an example to be considered in Section 3.1.3. The con-
stituent terms in (2.42) can be thought of respectively as (log-) gas (the fuel cost of
generation), (log-) heat rate (of the marginal generating unit), and an outage term
(signifying jumps within the stack, i.e., supply shocks). For our purposes we can
think of the heat rate as equivalent to temperature or load/demand. Now, a use-
ful application of the characteristic function methods to be studied in Chapter 5
is to derive expressions for the forward prices (we will ignore any questions as to
the measure being employed) and the corresponding dynamics. (We are of course
very interested in forwards and their associated dynamics, since they are the pri-
mary hedging instruments in energy markets.) If FP

t ,T = Et epT (with corresponding
expressions for the other entities), then with these methods it is straight-forward to
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show that

logFP
t ,T = logFG

t ,T + logFH
t ,T + logFL

t ,T + γT−t

dFP
t ,T

FP
t ,T

=−λlE(exp(je−κl(T−t))− 1)dt

+σg dwg +σhe−κh(T−t)dwh+ (exp(je−κl(T−t))− 1)dq (2.43)

(In (2.43), γ is some [deterministic] function of time-to-maturity whose precise
form is unimportant here.)

2.2.1.2 Impact on information flows

Now, each of the stochastic drivers in the dynamics in (2.43) has a ready inter-
pretation in terms of time scales and the different horizons over which certain
kinds of information are important (and over which other kinds of information are
unimportant). First, gas contributes an essentially flat term structure to the flow of
information. This is not surprising, as in this model gas is purely non-stationary,
so a change in today’s gas price affects expectations of future power prices equally
across time horizons/times-to-maturity. Put differently, the incremental contribu-
tion of information flow (as measured by cumulative variance) is constant for gas
(linear variance scaling law). Second, the heat rate (or more broadly considered,
demand) contributes a typical Samuelson-type information shape, with a volatil-
ity term structure that increases as time-to-maturity decreases. This is again not
surprising, owing to the mean-reverting nature of the heat rate. Thinking in terms
of temperature, a heat wave far from maturity will have little effect on our expec-
tations of prices, however a heat wave close to maturity will have a much bigger
impact. The incremental contribution of information dies off as the time horizon
in question grows (asymptotically flattening variance scaling law).

The effect of jumps/outages is similar to heat rate/demand, but on the supply
side. Knowing that a unit has gone done when we are far from maturity will not
affect our expectations nearly as much as when the unit goes down near expiry.
This behavior can be seen in the jump amplitude in (2.43). Whatever the intensity
of jumps is, far from the maturity the exponential term is close to 1. Of course, the
rate at which capacity is restored to the stack (effectively, the mean-reversion rate
κl) determines the horizon over which we can say this or that piece of information
is unimportant (for forming expectations). A small unit that goes down but comes
back quickly will have fewer consequences than a large unit that takes a while to
come back online. Note that the presence of jumps close to maturity can make
the estimation of volatility for short-dated contracts rather tricky, if not prone to
instability. This is a good example of how knowledge of exogenous drivers can be
used to temper our analysis of certain effects of interest, if only as a warning system
(so to speak).
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These are not the only conclusions that we can draw here. As we just saw, each of
the constituent stochastic drivers in the dynamics in (2.43) makes its own particular
contribution to the overall variability of the power forward over any given time
horizon. This fact lays open the possibility of identifying and quantifying the impact
(on the dynamics of expected power) on the propagation of information arising
from changes in these drivers. For example, in markets with liquidly traded gas
options, option prices (as in any reasonable efficient market) are typically good
projections of realized (gas) volatility. Knowledge of changing demand conditions
(e.g., for stationary load patterns, large deviations from normal levels do not die out
immediately, but dissipate with some characteristic “half-life,” so to speak) and/or
supply conditions (knowing the state of outages in a particular generation region)
can also be exploited in crafting an understanding of forward power dynamics (if
only in qualitative manner).

The point of this discussion is of course not forward power price modeling as
such, but rather the point that in general energy markets entail certain (more-or-
less) well-known drivers and relationships, and the manner in which information
accumulates due to these drivers is often reasonably well understood. This under-
standing can (and should) be used to delimit the scope of a given econometric
problem as much as possible. With this we should begin a more detailed discussion
of (variance) scaling laws as a measure of information accumulation.

2.2.2 Time scales and robust estimation

We discussed in Subsection 2.1.2 the dangers in relying on asymptotic results in
econometric analysis. The behavior of an estimator in an actual, finite size sample
can be very different from its large sample behavior. The reality of our situation is
that we always deal with samples that are small in relation to the amount of struc-
ture that we would like to impose on the data. By this we simply mean that we
do not doubt actual prices dynamics are driven by stochastic volatility, jumps, etc.,
however, the amount of data at our disposal simply does not permit robust estima-
tion of such models. In fact, as we will discuss in Section 6.5, even for samples that
appear large (say, more than 500 points), many popular estimators can perform
quite poorly, even when we know the true DGP (and of course we never do).

It is thus generally preferable to consider the distribution of some statistic that is
both reflective of a population characteristic of interest, and robust in relation to
the actual sample size. The statistic should also be amenable to analysis in terms of
a random outcome of a given size from some population. In other words, we are
interested in the statistic’s sampling distribution.

We will have more to say about sampling distributions when we discuss Wishart
processes in Section 6.3. For now, we wish to focus on the question of robust statis-
tics that, if only indirectly, reveal information about the population that otherwise
could only be estimated with great unreliability. We have already examined (if only
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somewhat briefly) the issue of the comparative performance of MLE for mean-
reversion rates as opposed to disturbance variances in Section 2.1.2. We have also
noted the behavior of (population) variance over particular time scales as it per-
tains to the distinction between stationary and non-stationary processes (e.g., the
introductory discussion centered about (2.41)). In light of the more robust behav-
ior of variance estimators compared to (say) mean-reversion estimators, we will
see that the analysis of variance scaling laws are precisely the alternative we seek to
problematic estimations of mean reversion, whose existence in commodity mar-
kets (and associated impact on the temporal accumulation of information) is not
in doubt.

Before illustrating with actual data, however, we must first indicate some sub-
tleties arising from the inherently conditional nature of the data we are confronted
with (that is to say, the kinds of effects we are interested in by nature preclude
the ability to speak of unconditional distributions, which are at the heart of much
econometric analysis).

2.2.3 Jumps and estimation issues

2.2.3.1 Why we should care

A central concern in any econometric investigation is the size of the available data.
As we will continue to stress, size matters, in a relative sense. Depending on the
nature of the time scales at work, a given sample may appear large but in reality
be too small to extract certain characteristics of interest. We are not simply re-
ferring to long-term effects here; even short-term effects that are commonly the
focus of many energy market valuation problems can be impacted. This point
is worth emphasizing, because it is often thought that the availability of data at
very high resolutions (e.g., hourly LMP data for power, or tick data for crude oil)
provides samples of sufficient size for robust estimation. After all, a year of daily
data comprises a sample of nearly 400 points, and a year of hourly data consists
of nearly 10,000 points. However, this sense of security is illusory if the under-
lying DGP is driven by factors whose characteristic time scales are measured on
the order of years. A year of data is still one year of data, no matter how finely
it is resolved. Even for an entity as nicely behaved as temperature (leaving aside
issues of human effects on climate), if certain cycles take place over the order of
a century, then a 50-year data set will be inadequate for extracting that kind of
information.

Let us proceed to illustrate with a tractable framework that incorporates both
multiple time scales and multiple underlying drivers. We will first note some
complications arising from jumps, before focusing on more manageable diffusive
processes.
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2.2.3.2 The impact of jumps on volatility term structure and scaling

We have already seen in (2.43) how particular time scales determine how the effects
of certain kinds of jump drivers play out. In particular, it was seen how volatility
scaling manifests itself in the presence of jumps whose presence is most acutely
felt close to maturity. It is worth considering the opposite situation, where jump
phenomena have a greater impact far from maturity. For simplicity we will focus
on heat rates, so sans gas consider the following modification of (2.42):

dh= κy(θ − h)dt +σhdwh

dθ =−κθθdt + jdq
(2.44)

Note the subtle difference: in (2.44), jumps occur in the long-term mean, not off
of it, as in (2.42). This seemingly minor change actually has major ramifications
for the underlying scaling law. Proceeding as before, the corresponding forward
dynamics39 can be shown to be

dFH
t ,T

FH
t ,T

=−λθE(ejβ − 1)dt +σhe−κh(T−t)dwh+ (ejβ − 1)dq (2.45)

where

β = κh

κθ − κh

(
e−κh(T−t)− e−κθ (T−t)

)
(2.46)

The first thing to note about the expression in (2.46) is that as time-to-maturity
tends zero, so does this modulation factor. Moving away from expiry, this factor ini-
tially grows, until eventually dying out. In the extreme case of no mean reversion in
jumps (i.e., κθ = 0), the factor actually asymptotes to 1. The thrust of this behavior
is that, close to maturity, jumps in the mean-reversion level have little effect on ex-
pectations of future heat rate. However, sufficiently far from maturity, these jumps
do have a definite effect on expectations. There is thus a very clear contrast between
the informational flow pertaining to the dynamics in (2.44) and that in (2.42).

The kind of behavior evinced by (2.44) is typically due to some kind of structural
change in the (fundamental) underlying supply conditions driving price formation.
For example, a long, unplanned outage (say, for emergency maintenance) of a big,
baseload unit (e.g., a nuclear plant) would fit into this category. So would unantici-
pated weather conditions that remove a significant amount of generation, such as a
weak winter drying up hydro facilities. (This situation in fact prevailed in the West-
ern United States in the spring of 2000, during the perfect storm of price spikes
that led to outcry [some founded, some unfounded] against trading practices by
companies such as Enron.) Such events typically have a greater effect on mid- to
long-term expectations, rather than short-term expectations. In contrast to the ef-
fects described by the model in (2.43), which manifest themselves as much greater
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volatility (if not outright instability) close to maturity, the model in (2.45) exhibits
structural breaks in volatility far from expiry.

This discussion, in conjunction with that in Section 2.2.1, seeks to address a fa-
miliar question in the context of jumps: when and why do they matter? Broadly, we
can answer the first part by saying: it depends on the structural changes taking place
in the market environment (by which we mean the endogenous and exogenous fac-
tors driving price formation) under consideration. In some situations, jumps are
driven by stack outage and have their primary effects close to maturity. In other
situations, jumps are driven by structural changes and are chiefly felt far from ma-
turity. Whether these two cases are relevant (and, of course, there is never a clean
dividing line) depends on the problem at hand. As to the second part, jumps mat-
ter because they exacerbate one of the central challenges confronting econometric
analysis of (typically small-sample) energy market data sets: high volatilities. How-
ever, in connection to the first query, the enhanced complications depend on the
maturities encompassed by the data in question.

The general remedy to these problems is thus to know when jumps might be a
problem, and adjust the analysis appropriately. For example, consider the prob-
lem of estimating the volatility (really, quadratic variation) that can be captured
from delta-hedging some option (on futures). For short-term options, estimation
will likely show fairly high volatilities when the jumps are driven by dynamics such
as (2.43). These results must be viewed with great care. First, it is well known that
delta-hedging options in the presence of jumps is quite challenging. Second, the un-
certainty (standard errors, if you will) associated with the estimation of collectible
volatility will itself be rather high. These considerations warrant great caution in
placing bets on realized volatilities close to maturity. On the other hand, jumps
given by processes such as (2.45) generally give rise to overestimates of the volatility
that can be collected over longer terms. Data in the sample that happened to pass
through the structural change characterized by these kinds of jumps are generally
not indicative of the new market structure (especially when the change is relatively
non-stationary), and it is probably wise to filter these out (in the plain language
sense) of the analysis. (Jumps have somewhat of a corrupting effect in this case.)

In very broad terms, then, we can consider jumps to have rather localized effects,
which can be accounted for by increased risk adjustment or proper censoring of
data. For the remainder of our discussion here, we will focus on the diffusive case.

2.2.3.3 Multiple scales and econometric impact

We consider an example introduced by Grzywacz and Wolyniec (2011). Assume
we have two (independent) diffusive processes, both mean-reverting with the same
reversion level (zero) but different reversion rates:

dx =−κxxdt +σxdwx

dy =−κyydt +σydwy

(2.47)
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Imagine, however, that we only observe z = x+ y and attempt to estimate a stan-
dard AR(1) model from these observations: zn = φzzn−1+εn. The estimator can be
written as

φ̂z = 〈znzn−1〉
〈z2

n−1〉
= 〈xnxn−1〉+ 〈ynxn−1〉+ 〈xnyn−1〉+ 〈ynyn−1〉

〈x2
n−1〉+ 2〈xn−1yn−1〉+ 〈y2

n−1〉

∼ φ̂x〈x2
n−1〉+ φ̂y〈y2

n−1〉
〈x2

n−1〉+ 〈y2
n−1〉

(2.48)

where φ̂x,y denote the estimators for the discrete-time analogues of the system in
(2.47) and we use the (asymptotic) independence of x and y in (2.48) to drop out
the cross-term ensemble entities. We thus see from (2.48) that the estimated mean-
reversion parameter for the observed variable z is a weighted sum of the individual
mean-reversion parameters of the unobserved variables. In particular, the estima-
tor φ̂z will be dominated by the component with the lowest mean-reversion rate,
i.e., the least stationary component. This is due to the presence of the summed
squared terms; in a sample of a given size, the more non-stationary a variable
is, the less applicable is the law of large numbers (as a means of associated sam-
ple averages with population properties; we will discuss this issue much more in
Section 6.5).

More accurately, the weights reflect the relative contribution of each component
to total variance. A sample with a near-unit root process (say) will accumulate vari-
ance very slowly (in terms of convergence of the ensemble sums-of-squares), and
thus estimation will tend to identify this component. While this is technically the
correct diagnosis, it is decidedly unhelpful (indeed, basically incorrect) in ascertain-
ing the short- to medium-term accrual of variance for the process. Ultimately, the
issue comes down to the sample size in relation to the underlying time scales (which
are of course just the counterpart to the operative mean-reversion rates). This ex-
ample highlights yet again the difficulties of attempting to directly estimate mean
reversion.40

What about indirect estimation? In fact, it is worth asking which population en-
tities ensemble averages like those in (2.48) correspond to in the presence of mean
reversion, for in this case the standard assumption of i.i.d. increments cannot be
appealed to. This brings us to another interesting result of Grzywacz and Wolyniec
(2011), namely that mean-reversion rates inferred from observed scaling laws are
half the true rate. To see this fact, consider a sample size N with time �t between
observations (focusing only on the component x for simplicity). Using the law of
iterated expectations, we have that:41
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as claimed.42 (Note that the stronger the mean-reversion rate is, the larger the sam-
ple must be for this asymptotic result to be practically useful.43) An example is
shown in Figure 2.5.

The result (2.49) can be extended to higher dimensions, and as in the situation
considered in (2.48), the problem of less stationary/more non-stationary compo-
nents in distorting the estimation again arises. (See the Appendix to Chapter 6
for greater elaboration; the result can also be extended to jump processes, e.g.,
(2.44).) We have thus given some reason to be concerned about the effects that
the (relatively) most non-stationary drivers can have on conventional estimation
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techniques, even those which are generally known to be fairly robust. Nonetheless,
variance scaling laws are a very powerful tool for identifying the presence (at least)
of the relevant operative time scale for a wide range of processes. We will now turn
to specific energy market examples.

2.2.4 Spot prices

Spot commodities generally do not trade as such; physical possession must be taken
at some point. Spot prices are thus subject to more-or-less fundamental supply-
and-demand conditions, reflecting both weather-driven demand factors (to be
examined in Section 2.2.6) and generation/supply factors whereby marginal costs of
production cannot wander too far without limit. (This latter statement is somewhat
inaccurate because generation itself can grow or shrink, but this point is somewhat
tangential here.) We would thus expect to see some evidence of variance scaling
reminiscent of mean reversion, even though we would also not expect prices as such
to be purely stationary. It is useful to conduct the analysis here in terms of average
monthly prices. We do this because we wish to abstract as much as possible from
localized (say, daily) phenomenon such as jumps, as such effects are not central
to the point here. (These effects are best analyzed by conditioning on such entities
as monthly averages, because it is only these entities that can have connection to
the instruments that actually trade in energy markets, namely futures/forwards.)
We start by showing spot time series for two important commodities, Henry Hub
natural gas and Brent crude oil. See Figures 2.6 and 2.7.

We note from inspection that neither of these time series could be character-
ized as stationary, at least in the sense that, say, temperature could be (again, see
Section 2.2.6).44 Nonetheless, the variance scaling laws (for difference of log prices
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Figure 2.6 Monthly (average) natural gas spot prices.

Source: EIA (www.eia.gov).
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Figure 2.7 Monthly (average) crude oil spot prices.

Source: EIA (www.eia.gov).

[in essence, returns] over increasing time horizons) do display some features of
stationarity. See Figures 2.8 and 2.9.

Both natural gas45 and crude oil display tell-tale signs of mean reversion, namely
a flattening of the variance over long enough time horizons. In truth, the charac-
teristic time scale of the mean reversion is quite long, on the order of two years.
There is thus little reason to think that there are short-term opportunities that can
be readily exploited, at least on a monthly level. However, even this issue is some-
what beside the point, as spot commodities do not trade as such (again, physical
possession must be taken). Forward commodities do trade, and we will consider
forwards in the next subsection. What we wish to demonstrate here is that the vari-
ance scaling laws exhibited on a spot basis are consistent with volatility collection
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Figure 2.8 Variance scaling law for spot Henry Hub
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on a forward basis. We are referring of course to the term structure of (forward)
volatility.

We look at the realized (ATM) option replication volatility (for crude and natural
gas) across a set of contracts, for different times-to-maturity. We term this volatility
quadratic variation (QV). (The methods underlying this analysis will be made clear
in Section 3.1.3.) Results are shown in Figures 2.10 and 2.11, for different samples
(we omit the period associated with the 2008 financial crisis).

We will see later simple models where a basic mean-reverting log-price spot
model gives rise to (implied) forward dynamics exhibiting a volatility term structure
(see Section 5.2.7). This result is reflected in Figures 2.10 and 2.11, demonstrating
consistency with the scaling law behavior of spot variance shown in Figures 2.8 and
2.9. In truth the picture is somewhat complicated for crude oil. Precrisis, forward
crude exhibits typical commodity-like behavior (Samuelson effect/term structure
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of volatility). Postcrisis, the volatility term structure is quite flat, almost like eq-
uities. (The backend rise reflects the volatility collected through the chaos of the
crisis in mid-2008, which would have affected cal-10 contracts.) There appears to
be some kind of dissociation between spot and forward crude during this period.
We cannot speculate on the reasons for this here, except to note a general pattern of
financialization of crude postcrisis.46

We now examine the variance scaling laws of forwards as such. With these we
begin to anticipate the difference between static and dynamic hedging strategies in
commodity markets (essentially, the difference between variance and QV).

2.2.5 Forward prices

Unlike spot prices, forward prices47 do arise from transactions/trades (by def-
inition). In liquid futures markets, we expect forward prices to be reasonably
informationally efficient, and would not expect that conditioning on current prices
will provide exploitable information about futures prices (such as expected values).
In other words, we would expect the martingale hypothesis about futures prices to
hold. Obviously, we cannot conduct an exhaustive treatment of this subject here.48

We will illustrate the central ideas as follows. First, we show front month futures
time series for Brent crude oil and Henry Hub natural gas, during a rather tumul-
tuous period for commodities (and economic entities in general): January 2008
through December 14. See Figures 2.12 and 2.13.

As with the corresponding spot-price time-series considered in Section 2.2.4,
these futures time series show little visual evidence of stationarity. However, it can-
not be denied that there are subsamples of these series that have some (superficial,
we will see) appearance of mean reversion (“range-bound” in trading parlance). In
particular, front-month Brent appears fairly stable in the period April 11–July 14.49
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Figure 2.12 Front month futures prices, crude oil, daily resolution.

Source: quandl.com.

0

2

4

6

8

10

12

14

16
Front Month Henry Hub

1/
2/

20
08

1/
2/

20
09

1/
2/

20
10

1/
2/

20
11

1/
2/

20
12

1/
2/

20
13

1/
2/

20
14

Figure 2.13 Front month futures prices, natural gas, daily resolution.

Source: quandl.com.

One might expect to see some evidence of stationarity in the variance scaling laws,
confined to this sample. We examine these in Figures 2.14 and 2.15.

We see, as expected, that forward natural gas displays little evidence of stationary
or mean-reverting effects. Forward crude, over the sample in question, does show
such evidence. However, it is very slow mean reversion (if that is in fact an accurate
characterization). It is difficult to view forward crude as exploitable on a short-term
basis.50

2.2.6 Demand side: temperature

The prototypical demand driver in energy markets is of course weather, and
somewhat more narrowly temperature. Hot summers mean more demand for air
conditioning and hence high electricity prices; cold winters mean more demand for
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Figure 2.15 Henry Hub scaling law, April 11–July 14 subsample

heat and hence high natural gas prices.51 These differing demand patterns translate
into well-known seasonal structures of energy price (and volatility) forward curves.
(Crude oil markets do not really display seasonal effects.) This predictability reflects
the deterministic aspect of temperature, shown in Figure 2.16.

This (apparent) periodicity strongly suggests the presence of stationary effects,
and thus that we can meaningfully extract unconditional information by averaging
across the sample. In other words, we can deseasonalize the time series. By subtract-
ing the average January, February, etc. temperatures from the corresponding raw
temperature data, we obtain a time series (of residuals) which displays distinctive
patterns associated with mean reversion. We deduce this from the variance scaling
law over increasing time horizons, as shown in Figure 2.17.

This result should not be surprising. From everyday experience we know that
unusually hot or cold days are typically followed by a day or two of such weather,
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Figure 2.16 Average Boston area temperatures by month.

Source: National Climatic Data Center (www.ncdc.noaa.gov).
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Figure 2.17 Variance scaling for Boston temperature residuals

meaning that deviations from the norm (and indeed, our experience suggests that
we can meaningfully speak of normal weather in the first place) do indeed peter
out, but only after some lag period. We generally see this same kind of behavior
at different levels of resolution (e.g., monthly). While the characterization of (de-
seasonalized) temperature as mean-reverting is accurate, there are in fact multiple
stationary factors at play here, over differing time scales. By fitting an AR(1) model
to these temperature residuals, we typically find values for the auto-correlation pa-
rameter in the range 0.2–0.3 and values for the disturbance variance in the range
6–7. Such values give rise to variance scaling laws that asymptote much faster than
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the behavior shown in Figure 2.17. Much better fits are given by two-factor models,
with (say) independent components and variance scaling laws given by

σ 2
x

2κx
(1− e−2κxτ )+ σ 2

y

2κy
(1− e−2κyτ ) (2.50)

with κx � κy . In other words, the residuals are better described by a quickly revert-
ing component and a more slowly varying transient. We do not address here the
issue of the origin of such (relatively more non-stationary) effects, but merely note
the clear evidence for their existence.52

2.2.7 Supply side: heat rates, spreads, and production
structure

Like fundamentals on the demand side (e.g., temperature), supply-side entities such
as heat rates can also be (broadly) characterized as stationary/mean-reverting. This
is not too surprising, owing to the nature of the generation stack (or more accu-
rately, the manner in which marginal capacity is brought online/taken offline in
response to changes in [stationary] demand53). In truth, owing to various com-
plications of marginal cost (such as fuel-switching units in the U.S. Northeast), it
is not straightforward to craft a definitive, single measure of the market heat rate.
However, for our purposes here we can simply show the ratio of a representative
(monthly) price and a representative (monthly) gas price; see Figure 2.18.

Visually, (spot) heat rates appear stationary, certainly more stationary than
prices themselves. This appearance is borne out by the variance scaling law; see
Figure 2.19.54
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Figure 2.18 Representative market heat rate (spot). Monthly MA-Hub 5 × 16 price divided by

monthly Massachusetts Citygate natural gas price.

Source: NE ISO (power) and EIA (gas).
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Figure 2.19 Variance scaling law for spot heat. Same pair as

2.3 A recap

Let us review what we have seen thus far, and how it is relevant for the next steps.
First, we have argued that the objective of econometrics as it concerns valuation is
not formal hypothesis testing as such (however useful that language often may be),
but rather the extraction of information about the exposure that results from partic-
ular hedging strategies around the product being valued. It is actually good that we
do not rely on hypothesis testing, as we saw very simple examples where the results
of standard statistical tests would give extremely misleading results regarding in-
ferences concerning certain estimated entities. More than this: flawed conclusions
about the nature of the underlying process itself can arise. However, we did see
that some entities, namely variances/covariances, often serve as suitable entities of
interest in risk assessment as well as possess estimators with reasonably stable char-
acteristics. In addition, we saw the role of variance scaling as revealing the nature of
information flows impacting processes of interest, and how they are proxies for en-
tities which are generally not robustly estimated (such as mean-reversion rates). We
further note here that the role of time horizons in information flows is particularly
important in commodity markets.

It is not terribly surprising that standard deviations are so frequently resorted
to in statistical analysis. They are generally robustly estimated and often indicative
of underlying structures of interest. We speculate that they could potentially be of
great use in valuation programs. This is the subject of our next investigation.



3 Valuation, Portfolios, and
Optimization

3.1 Optionality, hedging, and valuation

We now turn to fundamental questions of valuation and hedging, and their close
(indeed, inseparable) connection; we will see that they are really two sides of the
same coin. We have already introduced a series of (spread) option structures in
Chapter 1 in the context of energy market structures, and we will later focus the
discussion on such products. However, it should be stressed that the ideas to be
presented here are quite general, and can (in principle, at least) be applied to any
nonlinear product.

3.1.1 Valuation as a portfolio construction problem

3.1.1.1 Payoffs

With this in mind, let us lay out abstractly the problem we wish to solve. In general
we will be presented with a structure with a payoff that can be expressed as

V(St≤τ≤T ;ϑt≤τ≤T ) (3.1)

where t is the current time, T is expiry, S is a spot process (in general vector-
valued), and ϑ denotes some process of controls/actions. The form (3.1) indicates
that the payoff depends on the realization of some commodity prices (potentially
across some time horizon [not just expiry]), as well as (possibly) some set of actions
undertaken across the term of the deal.1

Although it may seem obvious, payoffs are central to any valuation problem. If
we can relate the payoff to other entities in the market for which (transactable)
prices exist, we have gone a long way toward valuing (and equivalently, replicat-
ing/hedging) the structure in question. This point is worth stressing because there
is an unfortunate tendency to overemphasize explicit modeling of the processes
underlying a given structure. This step is often a detour at best and sometimes a
barrier to robust valuation at worst. (We will explore these themes in greater detail
in Section 3.2 and Chapter 6.) There is a widespread belief that a suitably chosen

48



Valuation, Portfolios, and Optimization 49

price process (capturing certain stylized facts such as jumps or stochastic volatility)
that is (somehow) made consistent with (“calibrated to”) available market quotes
can then be used to value and hedge other products. This common procedure ac-
tually has the steps backward: it is value itself that must first be modeled, in such
a way as to be robust under as wide a range of price processes as possible. (It goes
without saying that we never actually know what processes prevail in reality.) Let us
look closer at representations of value.

3.1.1.2 Measures and portfolios

Generically, we are interested in the expected value of this payoff, conditional on
information at the current time:

EM
t V(St≤τ≤T ;ϑt≤τ≤T ) (3.2)

It is important to notice that this conditional expectation is taken with respect to
some (as yet unspecified) probability measure M , a concept we will elaborate upon
in Section 3.2 (and Chapter 5, as well). The point we wish to convey here is that
the particular choice of measure is closely related to (indeed, inseparable from) a
specific hedging/trading strategy put on against the structure in question.2 In other
words, we will be considering specific portfolios comprised of a payoff structure
(such as V) and some set of traded instruments. These instruments, which we will
denote by Xk , have some (market) prices that relate to the underlying spot prices3

as follows:
FXk

t ,T = EQ
t Xk(S(T)) (3.3)

For example, for futures we would have Xk(S)= Sk ,4 and for options we would have

Xk(S)= (Sk −K)+ (for some strike K).5 Note, of course, that FXk
T ,T = Xk(S(T)).

From (3.3), it can be seen that the prices of these instruments are equal to the
expected value of their terminal payoff under a particular probability measure Q,
which we will term the pricing measure (in the customary nomenclature). In other
words, they are (Q−)martingales.6 We consequently seek to consider portfolios of
the following form:

�=V(St≤τ≤T ;ϑt≤τ≤T )−Vt +
∑
τ ,p,k

�k
τ ,p(F

Xk
τ+δk ,Tp

−FXk
τ ,Tp
) (3.4)

That is to say, the portfolio consists of the structure in question and some specific
positions �k

τ ,p in the traded instruments Xk , with particular expiries Tp within the

time period specified by the structure.7 The positions are in general dynamic, with
the rebalancing period δk being instrument-dependent; some energy futures can be
rebalanced relatively frequently (e.g., more than once a day),8 others less so. (The
representation in (3.4) obviously includes static hedges as a special case.) Finally,
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we have an initial value or premium Vt that is to be paid out (for purchases) or re-
ceived (for sales) to acquire exposure to the structure. In truth, this value is properly
conceived as a process in its own right, and we shall refer to it as a value function.
We now raise the following questions:

• Is there a connection between the value function Vt and the (conditional)
expected value of the structure payoff in (3.2)?

• If so, what is the relation between the aforementioned measures M and Q?
• What is the precise role of the hedge positions �k

τ ,p in (3.4)? How (if at all) do
they relate to the value function Vt ?

• How should the actions ϑ be (optimally) chosen, in light of operational
flexibility/constraints?

Ultimately, the portfolio in (3.4) creates a type of residual exposure. It is this expo-
sure that we are primarily concerned with. It is important to stress that hedging
does not (necessarily) reduce risk (as it is commonly claimed); rather, hedging
changes the nature of risk. Our objective is to understand and account for this
(transformed) risk by identifying an appropriate set of entities that encapsulate the
exposure through their expectation and manifestation in a specific portfolio. We
will term such entities value drivers, and will have much more to say about them.
For now, we simply note that in terms of some residual risk function ε and a value
driver υ and its projection/expectation υ̂, the expression (3.4) can be synopsized as

�= ε(υ, υ̂;Vt ,�,ϑ)9 (3.5)

We can thus add another question to our list:

• What is the relationship between the value drivers and the value function,
hedges, and controls?

Perhaps an illustration is in order. Consider a special case of the portfolio con-
struction (3.4) in continuous time, with trading in the (observable) underlyings
only:

�=V(S1
T ,S2

T )−V (S1,S2; σ̂ )+
T∫

t

�1
s dS1

s +
T∫

t

�2
s dS2

s (3.6)

for some arbitrary payoff function V (e.g. (S2− S1)+ for a spread option). The pa-
rameter σ̂ is a projection of some (pathwise) property of the joint process (S1,S2),
e.g,. the volatility of the ratio S2/S1 (as in the case of a heat rate).10 The value func-
tion V (as well as the hedges�1,2) depends on this parameter. The precise manner
in which the portfolio (3.6) depends on the realization of this (again, pathwise)
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property (call it σ ) will determine the nature of the residual risk (3.5). (Conse-
quently, depending on our risk tolerance, we do not project value drivers as such,
but rather risk-adjusted projections.) In fact, it is not clear at all that the portfolio
creates an exposure to any arbitrary property of the (physical) process, as portfolio
construction depends critically as well on the properties of the underlying market,
most importantly liquidity. In other words, it is only specific properties that can in
general be extracted from particular hedging regimens (more than this, from a prac-
tical standpoint: only certain properties that can further be robustly estimated).11

So yet another question is raised:

• What role does the underlying market structure play in portfolio construction
(and hence valuation)?

Much of our concern in this work will be with addressing these questions. We will
see that these points are all closely intertwined.

3.1.1.3 A unified approach to valuation

In fact, we can already call attention to two strands of thought that are often viewed
as diametrically opposed in the literature but actually share a dual nature: spot vs.
forward valuation. Broadly speaking, one typically sees two approaches to valua-
tion. Spot-based valuation, as the name suggests, attempts to model the underlying
spot processes against which payoffs, physical operation, and constraints must
be applied. Forward-based valuation attempts to represent (or approximate) the
structure in question in terms of derivative products that either do trade in the un-
derlying or can be replicated therein. (The two approaches can also be characterized
as physically based or financially based, for obvious reasons.)

Both approaches have their strengths and weaknesses. Spot-based methods,
while being better tailored to the inherent physical optionality of a given com-
modity structure, must somehow be linked to (or conditioned upon) existing
market information (such as prices and volatilities) and efficiently hedged with
market instruments.12 Forward-based methods obviously have a direct connection
to the market, but at the cost of suboptimally representing the underlying physical
optionality (if it in fact captures any of it at all).

In truth we regard this dichotomy to be a false one. First of all, in liquid futures
markets, it is always more efficient to bet on prices directly (through futures posi-
tions) than indirectly via some structured product. That is, regardless of one’s view
of prices, a structured product hedged with futures creates some non-price expo-
sure representing a new bet, and it is suboptimal to mix this bet with a bet on prices.
It is imperative that one be able to clearly identify the sources of profit (or loss) from
a particular portfolio. It is in this sense that model “calibration” to futures makes
sense, and is indeed mandatory: namely, within the context of a specific portfo-
lio involving these traded instruments. Second, much of the disconnection between
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spot-based and forward-based modeling is ultimately an issue of market resolution.
In most markets, there is only limited (if any) ability to hedge with instruments set-
tling at the level of individual days (or hours). Thus, flexibility that may appear
at such levels from a spot perspective may in fact be largely illusory, if no (opera-
tional) means exist for extracting or monetizing this flexibility. We will in fact see
examples where, as the level of resolution of traded instruments increases, there is
convergence between spot- and forward-based valuations. Finally, we will see that
there exists means for bounding forward-based valuations and thus providing an
assessment or diagnostic of how well a particular (necessarily lower bound) repre-
sentation of operational optionality performs. In other words, we can (often) tell
how much incremental value we omit with a particular approximation to physical
flexibility.

The viewpoints presented here will perhaps become clearer by considering a very
well-known example.

3.1.2 Black Scholes as a paradigm

Much of what we have just said in the last section can now be considered in the
context of standard approaches to the problem of option valuation, a task we now
undertake. First we start with some overview. The theory of rational option pric-
ing (by which we mean pricing without reference to subjective preferences) is very
well developed, and we will only cover the basics here. The seminal references are of
course Black and Scholes (1973) and Merton (1990). The essential idea is conveyed
(albeit with insufficient rigor) in Hull (2005). A superb treatment that does not sac-
rifice clarity for rigor can be found in Baxter and Rennie (1996). We will establish in
this section the essential concepts that we will employ throughout the volume. We
intend to emphasize the central ideas that are often either obscured by standard and
(necessarily) simplified treatments of the subject or sidetracked by excessive techni-
cal detail. Specifically, our focus will be on the notion of replication of the desired
payoff (which in general will be much more complicated than a vanilla option).
Replication is impacted both directly by the structure of the underlying market,
and indirectly by the features of the actual stochastic processes driving the prices
of the assets in question. However, it remains highly instructive to consider option
pricing under the usual (again, necessarily) idealized conditions that are standard
in the literature, with the caveat that the standard argument has wider applicability
beyond these narrow assumptions.

3.1.2.1 Portfolios and hedging

We start by assuming that the underlying price process follows Geometric Brownian
Motion (GBM) under the physical measure:13,14

dS

S
= μdt +σdw (3.7)
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with the drift μ and volatility σ known constants. Now consider the price V of a
call option15 (with strike price K and [terminal] payoff (S − K)+) on this asset,
expiring at time T . We want to know what, if any, relationship exists between the
price of the option and the properties of the underlying asset. To derive useful re-
sults requires that we make certain assumptions about the overall market structure.
One assumption almost universally resorted to is that of absence of arbitrage. There
exist various ways of formalizing this assumption, but it has a very simple meaning:
if the terminal payoffs of two securities are always the same, then the current prices
of those securities must be equal (“the law of one price”).16 Another frequently used
assumption regards liquidity, the extent to which trading in the underlying asset is
possible, and at what cost. The most common such assumption is that the underly-
ing can be dynamically traded costlessly in continuous time. We will discuss in this
volume the ramifications of relaxing these assumptions. For now, we will simply
review the standard results that can be drawn from them.

We will hold the following portfolio: a (long) static position in an option,
and a (short) position −�t in the underlying. Ignoring discounting effects (for
convenience), the portfolio can be written

�= (ST −K)+−V −
T∫

t

�sdSs =
T∫

t

(dVs−�sdSs) (3.8)

Using basic results from Itô calculus, (3.8) becomes17

�=
T∫

t

(
∂V

∂t
+ 1

2
σ 2S2 ∂

2V

∂S2

)
s
ds+

T∫
t

(VS−�s)dSs (3.9)

Assume we choose the hedge position to satisfy �s = VS. Then, the standard ar-
gument claims that the portfolio is “instantaneously riskless,” and hence, by the
assumption of no arbitrage, the portfolio (3.9) is equivalent to a risk-free bond.
Since we are neglecting interest rates, this means that the option price satisfies the
celebrated Black-Scholes (BS) equation:

Vt + 1

2
σ 2S2VSS = 0 (3.10)

with terminal condition V (S,T) = (S−K)+. We will note here the well-known
analytic solution:

V (S, t)= S ·N
(

log(S/K)+ 1
2σ

2(T − t)

σ
√

T − t

)
−K ·N

(
log(S/K)− 1

2σ
2(T − t)

σ
√

T − t

)
(3.11)
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(It is straightforward to show that the coefficient of S in (3.11) is the option
delta VS.)

The heuristic argument used to derive (3.10) can be made more rigorous (e.g.,
Carr [2002]), but we will here provide a more “global” approach, so to speak,
that will serve to illustrate approaches that will prove useful when the standard
assumptions are relaxed.

3.1.2.2 Prelude to value drivers

It is important to understand what was established in the previous subsection. Un-
der the specified assumptions (GBM with known volatility, costless continuous
time rehedging, etc.), if the option trades (and thus has a market price), and if the
market in question is arbitrage-free, then the option price must be the Black-Scholes
result. This point can be seen in another way.

Note that, as a convention, the price of the option can be expressed in terms
of any other volatility, not necessarily the volatility governing the data-generating
process. Indeed, actual market option prices are commonly quoted in terms of the
so-called implied volatility, the volatility that recovers the observed price when used
in the BS formula. Denoting this volatility by σI , we have (by definition) that

Vt + 1
2σ

2
I S2VSS = 0 (3.12)

Thus, when we hedge with the BS delta, the portfolio (3.9) can be written as

�= 1
2 (σ

2−σ 2
I )

T∫
t

S2
s
∂2Vs

∂S2
ds (3.13)

Now note that, by convexity of the payoff function and the fact that the option price
is homogenous of degree one,18 the option “gamma” is strictly positive: Vss > 0.
Thus, under this hedging strategy the portfolio has a definite sign. If the implied
volatility is less than the volatility under the physical measure, then this hedging
strategy will yield a profit with certainty. (Similarly, if the implied volatility is greater
than the physical volatility, the reverse portfolio [short option, long underlying]
will yield a profit with certainty.) Since this contradicts the assumption of non-
arbitrage, we cannot have a situation where the market (implied) volatility differs
from the volatility of the data-generating process. We have thus established that a
necessary condition for non-arbitrage in this model is that market option prices
satisfy the BS equation. Let us stress this point: we have established here a rela-
tion between a market price and a specific property of the data generating process
(DGP), as must prevail under a specific market structure.

The situation is rather different when the option in question does not trade and
hence no market price exists for it; indeed, the very point of valuation is to establish
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a price at which one wishes to transact. In the case where the process volatility σ is
known, the two parties involved in the transaction can readily agree on the price:
both sides will take σI = σ , as the exposure on either side can be precisely replicated
through delta-hedging with this volatility. There is no reason for buyers to bid more
than this volatility, and no reason for sellers to ask less. In fact, there appears to be
little point in engaging in this transaction. As is well known, in complete markets
(such as the BS setting), options are essentially redundant securities. Matters are
considerably more interesting in the (incomplete) market case where volatility is
not known (and indeed, might not even be deterministic), and this case will be
the subject of much of our focus later (in Section 3.2).19 In this case, some view
must be taken regarding the realization of volatility, a view which must be reflected
in the pricing and hedging, as these two entities (realized vs. projected) manifest
themselves in the overall portfolio exposure, as in (3.13).

We must also emphasize here a theme that we will employ throughout this book,
namely that valuation of an instrument only makes sense within the context of
an overall portfolio that includes a specific hedging strategy. For example, the BS
paradigm leading to (3.13) entails the BS delta under a particular volatility. A cen-
tral part of such strategies (already introduced in Section 3.1.1) is what we will term
value drivers, or parameters that entail the following:

1. A mapping taking parameters onto values and hedges
2. A projection of their realization over the term of the contract
3. A connection to residual risk around a definite portfolio.

Diagrammatically, we have

Portfolio(t ,T)⇒
Terminal Payoff(T)− Initial Premium(t , σ̂ )−Accrued Hedges(t ,T , σ̂ )⇒
Residual Risk(t ,T ; σ̂ ,σ) (3.14)

(Recall the discussion leading up to (3.5).)
In this generic notation, σ represents the value driver, which often will be some

entity such as (realized) volatility but as will be seen, can be much more general
(e.g., a correlation).20 Its projection is denoted by σ̂ . The functional dependencies
make explicit the fact that (over the time horizon of the deal) the (projected) value
drivers are a means for producing both the price to pay21 for entering the deal and
the hedges to pursue over the course of the deal. Finally, the penultimate cash flow
of the portfolio is likewise a function of both this value driver and the projection.
It is thus stochastic, and hence the task is to not only identify an appropriate value
driver, but also to project it in accordance with the residual exposure arising from
the (aggregate) portfolio (which is what the residual risk term represents).22
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In fact, in speaking of projection, we necessarily introduce an econometric aspect
to the problem. Namely, a (good) value driver must possess some degree of stability
in relation to the (valuation) problem at hand. It must not only be stable across the
available information set, but must be (reasonably) expected to retain this stabil-
ity over the time horizon in question. We have already encountered such issues in
Chapter 2 (and we will provide a more rigorous exposition of terms such as “stabil-
ity” in Chapter 6 when we consider econometrics more abstractly), but essentially
we mean that the actual numerical expression (of a value driver) that we extract
from a given set of data does not vary wildly when that set changes (e.g., due to the
arrival of new information, etc.)

With reference to the classic BS model, we saw that, if we priced and hedged
an option under the BS functional for which the (market implied) volatility dif-
fered from the volatility of the underlying asset, the residual was strictly positive
(with certainty!). With the additional constraint that the underlying market was
arbitrage-free, we then concluded that the implied volatility could not differ from
the asset volatility, and thus that the BS price was the “right” one. But again, this re-
sult followed from the basic portfolio argument, and not abstract economics. A final
point that cannot be emphasized enough: available hedging strategies are driven by
the liquidity of the market. We will study in this book various ramifications of de-
partures from perfect liquidity. For now it is sufficient to note that the BS argument
depends critically on the existence of such liquidity.

3.1.2.3 Coming back to commodities

Before tying up a few loose ends, we need to connect the previous discussion to
the overall objective of valuation in energy markets. We have already mentioned
the role of liquidity in valuation and hedging. We will consider these issues as they
pertain to energy markets later in the chapter, but can simply note here the range
of traded instruments is rather more truncated in energy markets (indeed, more
generally commodity markets) than in financial or equity markets. Thus, the ability
to form specific portfolios is correspondingly more limited in energy markets, a fact
that has important implications for how we must approach the valuation problem.

There is another important point to be raised here. We note that the drift in (3.7)
is completely unspecified (apart from being a constant), and in fact is completely
absent in the valuation formula (3.11). (In the standard business school exposition,
the drift is “hedged away.”) Far from being an irrelevant annoyance, the drift of
commodity processes is at the heart of valuation in energy (and commodity) mar-
kets. Actually, the constancy of drift is not necessary for the BS argument, and here
lies the issue in energy markets. It is precisely because of the physical factors im-
pacting price dynamics in energy markets that the phenomenon of volatility time
scales arises. For our purposes right now, we can very broadly characterize this be-
havior as mean reversion. As we will see, such effects critically affect the kind of
value that can be extracted from different hedging strategies. Specifically, a static
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strategy will collect less value than a dynamic strategy. We will see in the course of
our discussion that in energy markets, it is imperative that we identify the kinds of
hedging and trading strategies that are available around a given structure, as this set
will determine the kinds of exposure the resulting portfolio creates, and thus what
kind of value we can attribute to that structure.

3.1.2.4 A first look at measures

It is useful to highlight an important concept that we will discuss in greater de-
tail later in Chapter 5. Under the physical measure, prices have the following
expectation:

EP
t ST = Seμ(T−t) (3.15)

This of course means that prices are not martingales, which are random variables
for which Et XT = Xt . However, it can be seen from the BS formula that the drift
μ does not appear at all, and in fact from the Feynman-Kac formula, the BS value
is an expectation of the terminal payoff with respect to a measure under which
prices have no drift.23 That is, valuation can be formulated in terms of a martingale
measure. Specifically, under a measure Q24 for which the dynamics are given by

dS

S
= σdw, (3.16)

the option price is given by

V = EQ
t (ST −K)+ (3.17)

This measure is commonly referred to as the risk-neutral measure, although this
is somewhat misleading as the terminology obscures somewhat the notion of rela-
tive pricing inherent in this approach to valuation.25 It is not hard to see that the
associated delta (i.e., the dynamic hedging volume) is given by

�= EQS
t 1(ST > K) (3.18)

where the measure QS defines the following dynamics:

dS

S
= σ 2dt +σdw (3.19)

(Recall (3.11).) As will be seen later, this measure corresponds to redenominating
the underlying market in terms of S (i.e., the asset is now numeraire instead of cash).
In other words, under this measure, S−1 is a martingale (as is easy to check).

We will have much more to say about changes of measure and representation
of value in terms of martingale pricings in Section 3.2 (and further in Chapter 5).
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However, what must be stressed now is the fact that these approaches are fundamen-
tally encapsulations of a particular hedging strategy. This can be seen very plainly
in the discussion here, where the BS hedging paradigm produces a portfolio that
is (pathwise) identically zero. This amounts to saying that the option can be pre-
cisely replicated by following this hedging strategy. We will see that these concepts
retain great utility even in those cases where such perfect replication is not possible.
But it will remain the case that such representations are inextricably connected to
some hedging strategy, in particular through the nature of unhedgeable risk. The
chief point here is that one cannot first specify a price measure and then compute
hedges; rather, the process works the other way around.

We thus see that even within the basic and familiar BS framework, there are a
number of subtle and deep points which will form the basis of valuation in much
more general settings. Now, we must turn attention to the impact imposed by liq-
uidity constraints, specifically as they concern the kinds of portfolios that can be
formed around a particular valuation problem.

3.1.3 Static vs. dynamic strategies

3.1.3.1 Quadratic variation vs. variance

Previously we have assumed that dynamic hedging in the underlying is possible (in
continuous time). This is of course unrealistic, especially in energy markets, where
there are typically a few backbone or hub markets, and then local, geographically
affiliated markets that trade as offsets to this hub, and only (if at all) become in-
dependently traded entities over small time horizons (e.g., a year at most). In such
cases, it will only be possible to put on a static hedge against an option on such
underlyings. (It may only be possible to put on a proxy hedge; this case will be
considered later, as well.) The option portfolio would become

�= (ST −K)+−V −
T∫

t

�t dSs = (ST −K)+−V −�(ST − S) (3.20)

Conceptually, the problem posed in (3.20) is really no different than before: assum-
ing we retain a BS pricing functional, we must choose a projected volatility under
which to establish the initial premium and initial (static) hedge. As we continually
promise, detailed examples will be considered in subsequent sections. What we wish
to call attention to here is the fact that the character of the physical price process (or
more accurately the scaling of the returns of the physical process) has an enormous
impact on the kinds of value that can be extracted via hedging. Heuristically, in the
static hedge case (3.20) we are essentially exposed to the variability of the under-
lying over the global (so to speak) time horizon, as opposed to the variability over
local time horizons as in the dynamic hedge case.
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Consider the intuition commonly put forth in non-rigorous derivations of the BS
equation. Specifically, it is said that the process drift does not matter for valuation
because it is canceled out by the delta hedge. This is not really a proper way of
phrasing the issue, but it is probably acceptable as a pedagogical device on certain
levels. The point to be taken away is that the nature of the hedge cannot be ignored:
the drift can impact not only the expected value of an asset, but also the variance
of that asset over a given time horizon. This is critically important in commodity
markets in contrast to equity or financial markets, because of the presence of mean
reverting effects. (The reader is again referred to EW for an extensive discussion of
the fundamental drivers giving rise to mean reversion in energy markets.) We will
have much more to say about this issue, but for now consider the following two
models of log-prices:

dz = (μ− 1
2σ

2)dt +σdw (3.21)

and

dz = κ(θ − z)dt +σdw (3.22)

Neither process is a martingale, but the instantaneous stochastic dynamics of both
processes are the same. However, the variance over finite time horizons (call it τ )
differs greatly. For the process in (3.21) (geometric Brownian motion [GBM] with
drift), this variance is

σ 2τ (3.23)

whereas for the process in (3.22) (mean reversion) the variance is given by

σ 2 1− exp(−2κτ)

2κ
(3.24)

These plainly have a very different character. In particular, for GBM the vari-
ance (3.23) grows linearly, while for mean reversion the variance (3.24) becomes
asymptotically flat. This is seen in Figure 3.1:

The GBM variance always dominates the mean reverting variance (for the same
instantaneous volatility σ ), with the spread increasing with higher mean reversion
rate (κ). The difference between the two expressions illustrates the distinction be-
tween quadratic variation and variance. The latter needs little explanation. The
former should also be familiar and is essentially a measure of local variation (in
an appropriate [probabilistic] limiting sense):

QVτ = lim
h→0

[τ/h]−1∑
i=0

(z((i+ 1)h)− z(ih))2 (3.25)
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Figure 3.1 Comparison of variance scaling laws for different processes. Geometric Brownian

motion vs. Ornstein-Uhlenbeck (mean reversion). Same instantaneous volatility (30%), mean-

reversion rate equal to 2

Note that while the two processes (GBM and mean-reverting) have very different
variances, they have the same quadratic variation. This has very important rami-
fications for the value that can be collected with different hedging strategies under
the two processes.

One might expect intuitively (from inspecting the portfolio expression (3.20))
that, when the underlying process follows GBM, local variance (that is to say,
quadratic variation) can be captured even from a static hedging strategy, while if
the process is mean-reverting, a much smaller variance can be captured (over a
given time-to-maturity). It turns out that this intuition is correct. In fact, the sit-
uation is a bit richer than this, as will be seen when we consider spread options
(options on the difference between two assets, say gas and power). Here, energy
prices can exhibit effects of both drift and mean reversion, and the variance that
can be collected from static hedging strategies depends critically on which asset is
statically hedged and which one is dynamically hedged. Basically, if there are any
mean reversion effects present, then dynamic hedging is essential for capturing the
classic quadratic variation. This point is often overlooked in equity markets, but it
is of vital importance in energy markets.

In fact, there is a much more general framework for considering this problem
that does not involve a specific mechanism such as mean reversion (although this is
a very common mechanism). Alternatively, what really matters here is the presence
of variance scaling laws, a topic that received much attention in Chapter 2.26 Obvi-
ously, mean reversion manifests itself in a (nonlinear) scaling of variance, while
GBM does not. The significance of such scaling lies not only in the impact on
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option pricing under different hedging regimes, but crucially in the fact that volatil-
ity estimation is typically more robust than direct estimation of mean reversion.
Robustness of estimation and identification of value drivers is one of the central
themes of this book.

3.1.3.2 Spark spread example

Let us consider a concrete example from Mahoney and Wolyniec (2012) to show
how these effects can interact. A very common model for power prices relates the
cost of production (some kind of fuel, call it gas) to the marginal generation unit
(a heat rate). Owing to the nature of the supply stack and the principal demand
drivers (typically weather),27 we anticipate that heat rates will be mean-reverting.
Fuel prices typically are not.28 We thus put forth the following model (in terms of
log-entities):

p= g + h

dg = μdt +σg dwg

dh= κ(θ − h)dt +σhdwh

(3.26)

with instantaneous correlation represented by dwg dwh = ρdt . From (3.26), the
power dynamics are given by

dp= (μ+ κ(θ − p+ g))dt +σpdwp (3.27)

with σ 2
p = σ 2

g + 2ρσgσh+σ 2
h .29

For fuel, the (cumulative) variance over some time horizon τ is given by the
same expression in (3.23): σ 2

g τ . The (cumulative) variance of power inherits be-
havior from (3.23) and (3.24). Using techniques that will be thoroughly explained
in Chapter 5 (keep in mind the power process is still fundamentally Gaussian), this
latter variance is given by

σ 2
g τ + 2ρσgσh

1− exp(−κτ)
κ

+σ 2
h

1− exp(−2κτ)

2κ
(3.28)

Given the presence of both GBM and mean reversion in this system, we ask a similar
question to the one posed in the preceding section: what are the implications for
dynamic as opposed to static hedging strategies?

Consider a (spark) spread option between power and gas. (Assume for conve-
nience that units have been chosen so that heat rate has unit expected value.) We
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form the following portfolio around this structure (reverting to uppercase variables
for non-logs):

�= (PT −GT )
+−V (Gt ,Pt ; σ̂ )−

T∫
t

�P
s (σ̂ )dPs−

T∫
t

�G
s (σ̂ )dGs (3.29)

for some valuation/hedging volatility σ̂ (i.e., the value driver). As we will see in
Section 7.1, the value function/value driver pair that permits perfect replication of
the option is given (as a generalization of the standard BS case) by the so-called
Margrabe formula:

V = P ·N
(

log(P/G)+ 1
2 σ̂

2τ

σ̂
√
τ

)
−G ·N

(
log(P/G)− 1

2 σ̂
2τ

σ̂
√
τ

)
,

σ̂ = σh

(3.30)

and the deltas�P,G are given by the coefficients of P and G in (3.30) (recall Euler’s
theorem; note that (3.30) can be expressed in terms of the BS functional as G ·
V BS( P

G , 1, σ̂ ,τ)).
We now refine our question by asking: does it matter if we only dynamically hedge

one of the legs, and if so, which one allows for greater volatility to be collected? For
example, consider the following portfolios:

�1 = (PT −GT )
+−V −�P

t (PT −Pt )−
T∫

t

�G
s dGs

�2 = (PT −GT )
+−V −

T∫
t

�P
s dPs−�G

t (GT −Gt )

�3 = (PT −GT )
+−V −�P

t (PT −Pt )−�G
t (GT −Gt )

(3.31)

So if (3.29) represents the case of dynamically hedging both legs, the cases in (3.31)
represent, respectively, statically hedged power/dynamically hedged gas, dynami-
cally hedged power/statically hedged gas, and both statically hedged. We can now
properly phrase our question: which of the (mixed) strategies in (3.31) will collect
more value on an expected value basis? We will spare the reader any more suspense
and present the results (from quadrature; see Chapter 7) in Figure 3.2:

Figure 3.2 represents the expectations, under the physical measure (i.e., the ob-
served dynamics in (3.26) and (3.27)), of the portfolios in (3.29) and (3.31) when
the heat rate value σh is 30%. (In Chapter 7 we will discuss techniques that can be
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used for facilitating these computations.) It can be seen from this figure that for the
full dynamic case, the expected (portfolio) value is positive/negative when valua-
tion and hedging is conducted at valuation volatilities below/above the true value.
This result is not too surprising. What is interesting here is that when the power leg
is dynamically hedged and the gas leg only statically hedged, the expected value is
essentially the same as the full dynamic case. In contrast, when power is only stat-
ically hedged (but regardless of how gas is hedged) the expected value is less for a
given valuation volatility. Alternatively, we can say that we must value (and hedge)
at a lower volatility to attain a given expected value if we do not dynamically hedge
power.

In other words, it is critical that we employ a dynamic hedging strategy regarding
power if we hope to collect the volatility we project when bidding on this struc-
ture. What distinguishes power from gas here? We will see in Chapter 6 that there
is a specific sense (Granger causality) in which gas can be thought of as driving
power, and not vice versa. More crudely, it is the leg that has (roughly speaking)
more mean-reverting effects (even if it is not mean-reverting as such) that has to
be actively hedged to extract volatility sufficient to acquire the structure in the first
place.30 The intuition here is that specific (in this case, dynamic) hedging strategies
are necessary to “suppress” (so to speak) mean reversion (however it is manifested)
and extract “optimal” volatility. It is worth noting that this example is not a mere
curiosity, but models behavior that we observe in actual energy markets (as we will
see in the next subsection). We again contrast this example with the situation en-
countered in equity markets. Generally speaking, it is far less important in those
markets whether dynamic or static hedging strategies are employed for extracting
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volatility (indeed, static strategies may be preferable for reducing transaction costs).
The situation is very different in energy markets, where the difference between static
and dynamic strategies is of overriding importance.

3.1.3.3 Forward volatility examples

The example we have considered here is not merely an academic exercise; the
behavior in question can be observed in actual markets. Consider the following
portfolio:

�(F1
0 ,F2

0 ,σα)= (F2
T −αF1

T )
+−F1

0 ·V BS

(
F2

0

F1
0

,α,σα ,T

)

−
T−1∑
i=0

�BS
K

(
F2

D1(i)

F1
D1(i)

,α,σα ,τD1(i)

)
(F1

i+1−F1
i )

−α
T−1∑
i=0

�BS
S

(
F2

D2(i)

F1
D2(i)

,α,σα ,τD2(i)

)
(F2

i+1−F2
i ) (3.32)

(Recall the valuation formula in (3.30).) In (3.32), F1,2 denote futures prices, say gas
(1) and power (2), α reflects the (inception) moneyness of the option in question

(e.g., α = F2
0

F1
0

corresponds to ATM), and the hedge volumes �BS
S,K denote the BS

price and strike deltas, respectively (we will see how these arise in the well-known
Margrabe formula for spread option pricing, to be discussed in Section 7.1; we have
actually already encountered this result in (3.30)). The time horizon is given by
[0,T], and τ represents a time-to-maturity.

The static or dynamic nature of the hedges in (3.32) is controlled through the in-
dex mapping D. If D1,2(i)= i, then both legs are dynamically hedged; if D1,2(i)= 0,
then both legs are dynamically hedged. Mixed cases (one leg dynamic, the other
static) are handled by, say, taking D1(i)= i and D2(i)= 0 (corresponding to a static
power hedge/dynamic gas hedge).31 In contrast to the case considered in Subsec-
tion 3.1.3.2 (where we looked at expected PnL as a function of hedging volatility),
we instead ask, what volatility permits exact replication of the payoff in (3.32)?
This amounts to solving the (nonlinear) equation �(σα) = 0 across paths.32,33 A
pathwise illustration of this estimator is shown in Figure 3.3.34

We carry out these calculations for an ATM PJM-W/Tetco M3 heat rate with up
to two years to maturity, using the range of contracts Dec 06–Jul 14. We solve (3.32)
for each (contract) time series in the sample, for different months-to-maturity,
and average across the summer contracts (Jul–Sep; recall the cautionary tale in
endnotes 33 and 34). The results are presented in Figure 3.4. Although the struc-
ture is not pristine (the static estimators are typically very noisy, especially for
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Figure 3.3 Realized (pathwise) heat rate ATM QV. Using the algorithm in (3.22) (and based on

futures data from SNL/Swiss Re). Note the generally stationary appearance, with a spike associ-

ated with the extreme weather conditions in the northeast United States in the winter of 2013–14.

Output for different levels of moneyness can be similarly obtained; the general pattern will be that

OTM/ITM effects are most pronounced closest to maturity. A useful exercise for the reader is to

apply the change of measure techniques from Chapter 5 to show that pathwise, HR QV is largely

invariant to calculations using gas as the unit of account (numeraire).

Source: SNL Financial LC. Contains copyrighted and trade secret material distributed under

license from SNL. For recipient’s internal use only.

shorter times-to-maturity), the main pattern can be seen, most clearly for longer
times-to-maturity.

In fact, we can also illustrate the difference between QV (from a dynamic strat-
egy) and variance (from a static strategy). Figure 3.5 shows, for summer contracts
in the sample Jan 07–Dec 09, the average volatility collected from dynamic hedging
(via (3.32)) vs. the static return volatility for the same (summer) sample. (The lat-
ter is essentially the annualized standard deviation of FT ,T/F0,T across the sample.)
As expected, the dynamic strategy collects a higher volatility than the static strat-
egy, reflecting the presence of mean-reverting effects (not to be confused here with
the volatility term structure). We see here a very striking example of the difference
between a pricing measure and the physical measure from probability theory.

3.1.3.4 Cash volatility example

The impact of a static hedge (which is often the only instrument available) can also
be seen in an example where the issue is not mean reversion as such, but rather
jumps. Consider the following portfolio (recall (3.32)):
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�(F ,σα)=
N∑

i=1

(Si−αF)+−N ·V BS(F ,αF ,σα ,τ)

−�BS(F ,αF ,σα ,τ) ·
N∑

i=1

(Si−F) (3.33)
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In (3.33), we are considering N daily options (say, within some calendar month)
that are struck at the futures price F settled prior to the start of the exercise period;
τ is a representative time-to-maturity, say middle of the month (e.g., 15 days). The
parameter α represents the moneyness of the option (or reciprocal moneyness, de-
pending on convention), so ATM corresponds to α = 1. Only a static hedge can
be put on during this period, which we represent as a BS functional. This func-
tional is parameterized by the replication volatility σα . Obviously, the profit and
loss from the portfolio (3.33) depends on the choice of this volatility. The question
we ask here is the following: on a pathwise basis, how does the volatility that per-
mits perfect replication (i.e., solves �(σα) = 0) compare with standard measures
of (annualized) return volatility? (Recall that we have made no assumptions about
the underlying price process.) We present some typical results in Figure 3.6 for the
ATM case.

As can be seen from Figure 3.6, the volatility of price returns (by calendar month)
is systematically much higher than the volatility that permits perfect replication of
the (ATM) option in the portfolio (3.33). In other words, pricing (and hedging) the
option in question by projecting return volatilities would greatly overstate the value
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Figure 3.6 Comparison of volatility collected from static strategy vs. return volatility. (Based on

data from NE ISO.) In most energy markets, a daily option cannot be dynamically (e.g., delta)
hedged intra-month (apart from not very common cases where balance-of-month [“balmo”] is

possible), and the only volatility that can be collected arises from static hedge put on at futures

expiry (e.g., a few days before the start of the month in question). This volatility is typically well

below the volatility estimated from daily returns. Hence the latter can give a very misleading (i.e.,
wrong) picture of option valuation. If there are no market instruments that give exposure to daily

price changes, then these measures of variability should be employed very carefully in valuation
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that can be collected. However, due to the nature of the available (static) hedges
there simply is no other way to capture the higher volatility.35

Over the time horizons in question, mean reversion does not play a particularly
large role; rather, in the case of power, jumps characterize the dynamics, at least
in part; recall Figure 1.2. To further illustrate, we simulate paths from a lognor-
mal process (with zero drift), as in (3.16), and compare the replication and return
volatilities as was done for actual data in Figure 3.6. The simulated results are shown
in Figure 3.7.

As can be seen, both static (cash) volatilities and (annualized) return standard
deviations are distributed about the true volatility (50% in this case). The static
volatility is extremely noisy and in fact for a fair number of paths is actually above
the return volatility, in contrast to the observed data shown in Figure 3.6. Whatever
the source of the effects giving rise to the observed pattern (jumps are likely one
candidate), the chief point here is that the instruments available for intra-month
hedging are quite limited in energy markets, and it is this availability that directly
drives valuation. But differently, the indirect effects of the actual physical price pro-
cess are of interest, not their actual properties (to the extent that they cannot be
exposed through actual hedging strategies).

3.1.4 More on dynamic hedging: rolling intrinsic

3.1.4.1 Overview of local time

Consider the following scenario. Assume the market price of an option with strike
K is the (theoretical) BS value. We sell the option and engage in the following trad-
ing strategy: if the price of the underlying goes above the strike, hold the intrinsic
position, namely long one unit of the underlying and short one unit of a bond with
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Figure 3.7 Static vs. return analysis for simulated data. Lognormal process, 50% volatility
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face value K . If the underlying goes below the strike, exit both positions. This is the
so-called stop-loss start-gain strategy. It can also be termed rolling intrinsic. Plainly,
this strategy will replicate the terminal payoff, and the initial cost is intrinsic value.
The portfolio can be written

�= VBS− (ST −K)++
T∫

t

H(Ss−K)dSs = VBS− (S−K)+ (3.34)

where H is the Heaviside step function: H(x)= 1 for x> 0 and zero otherwise. Now,
there seems to be a contradiction here, for the extrinsic36 value of the BS option is
strictly positive. The above argument suggests that there is a trading strategy that
gives certain, positive payoff, in other words, an arbitrage. This is clearly a violation
of the BS premises.

However, this paradox is only apparent, as shown by Carr and Jarrow (1990). The
above strategy is not in fact self-financing. This follows from the generalization of
Itô’s formula for convex functions (for which second derivatives do not necessarily
exist), known as the Tanaka-Meyer formula. This result can be seen heuristically
from a formal application of Itô to the call payoff function:

d(S−K)+ =H(S−K)dS+ 1
2δ(S−K)dS2 (3.35)

The technical result (for more details we refer the reader to Karatzas and Shreve
[1991]) is37

f (xt )− f (x0)=
t∫

0

f ′(xs)dxs+ 1
2

∞∫
−∞

Lt (x)f
′′(x) (3.36)

for x a continuous semi-martingale, and where L denotes the local time of the
process:38

Lt (x)= lim
ε→0

1

2ε

t∫
0

1(|xs− x|< ε)d〈x〉s (3.37)

With this result, we can see that indeed the stop-loss start-gain strategy is not self-
financing, and in fact the contribution due to the local time precisely recovers the
missing extrinsic value. The intuition has to do with the fact that the strategy is not
measureable with respect to the underlying filtration (that is, say, it is not resolvable
with respect to the available information set). At any given time, we only know
when the underlying hits the strike level, not when it is strictly above or below it.
The technical reason has to do with the infinite crossing property of GBM. Once
the price hits the strike level from below (say), it is as equally likely to go above as
it is to come back down, and in fact will return to this level infinitely often over any
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interval of time (however small). Since the trader must make some decision when
the level is hit, and since he is equally likely to guess wrong as guess right about the
next move, some external financing is required, an amount represented by the local
time contribution.

Now, we mention this issue because (apart from the inherent theoretical inter-
est), it has relevance for a popular hedging strategy in energy markets, namely
that of rolling intrinsic. Specifically, we always hold the intrinsic position against
an option position, specifically a long option position (to illustrate). Now, from
Tanaka-Meyer, the portfolio (3.34) can be written as

�= (ST −K)+−V −
T∫

t

H(Ss−K)dSs

= (S−K)+−V + 1
2�t ,T (S;K) (3.38)

where� denotes the local time contribution and V is the initial premium. Formally,
we can express this term via delta functions:

�= (S−K)+−V + 1
2σ

2K 2

T∫
t

δ(Ss−K)ds (3.39)

From (3.39), we can see quite plainly that rolling intrinsic is not risk free, as it en-
tails exposure to realized local time (netted against initial premium). We can also
understand the interpretation of local time as a measure of the time that the un-
derlying crosses the strike. Carr and Jarrow demonstrate that the expectation of the
local time component with respect to the pricing/martingale measure is precisely
the BS extrinsic,39 which of course is just another way of saying that this portfo-
lio can be counter-hedged (so to speak) yielding precise replication, which in turn
requires that V equal the BS price in an arbitrage-free market.40

Thus, we see the ramifications of entering into rolling intrinsic against a struc-
tured product: we create exposure to realized local time (akin to the manner in
which delta-hedging creates exposure to realized variance). In the context of valua-
tion of structured products, the question then becomes: how do we project the value
driver (pertaining to this strategy) such that we can assign an initial price/value to
this option (and equally important, conducting the hedging strategy necessary to
capture this value)? We will see shortly that in a wide variety of cases rolling intrin-
sic can recover the same volatility that can be extracted from delta-hedging. Before
turning to this topic, we note the following important points. First, the hedge po-
sitions will show very big swings, from 100% to 0% (in terms of the deal/contract
volume). Thus, when we consider the reality of transaction costs, it can easily be
anticipated that such frictions can consume a great deal of extrinsic value. Second,
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the distribution of cash flows that will arise from rolling intrinsic will in general
have much greater variability than strategies based on incremental changes in po-
sition (such as delta-hedging). This will have correspondingly big impacts on risk
adjustment. Both of these points argue for the importance of understanding what
kinds of value drivers are created (or more accurately, what kinds of exposure are
created) from different kinds of hedging strategies, because even though the same
magnitude of value (in some broad average sense) may be captured by different
strategies, it does not follow that there are no other criteria for identifying one kind
of value as superior to another kind.

3.1.4.2 Example: gas storage

To illustrate, we consider the example of natural gas storage. A complete discussion
of such deals can again be found in EW. For our present purposes we simply note
the essential features (again, recall Section 1.2.3). Due to the fundamental fact that,
with colder weather in winter as opposed to summer, there is a seasonal structure
to demand for natural gas (for heating) and hence differences in seasonal prices.
Thus, it makes economic sense to buy summer gas forward and sell winter gas for-
ward. However, to realize this strategy requires that something be done with the gas
physically between the two seasons. This is where storage comes in, as a means for
taking physical possession of the gas to satisfy the forward transactions: gas must
be injected in summer (to satisfy the forward purchase) and withdrawn in winter
(to satisfy the forward sale). It should be plain that purchasing41 a storage facility
entails the purchasing of optionality between seasons. More generally, storage is a
collection of options between the various months of injection and withdrawal.

We will provide a very simple example here. In doing so, we will have to jump
ahead to a topic that we will cover in great detail in Chapter 7, namely the valuation
of spread options. As the name suggests, these are simply options on the difference
between two assets. In the current example, the relevant payoff is

(Fwinter −Fsummer)
+ (3.40)

Where Fs denotes the seasonal forward price.42 In fact, we will jump ahead even
further and note that this payoff can be written as

Fsummer

(
Fwinter

Fsummer
− 1

)+
(3.41)

which suggests that, if we consider our units of measurement to be denominated in
summer gas (really no different economically than switching from dollars to yen),
the essential option structure is basically a standard option on the winter/summer
ratio. We will see (when we consider change of measure techniques) that this
interpretation is correct. For now we will consider the following simple scenario.
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Assume the storage facility can be rapidly filled and emptied; in fact in one
month’s time each way (as is the case with so-called salt-dome facilities). Consider
a deal starting in April of the following year. (The typical one-year North American
storage deal runs from April to March, with summer/injection months being April–
October and winter/withdrawal months being November–March.) If the cheapest
month is currently June, and the most expensive month is January, then the opti-
mal intrinsic43 is clearly: buy June, sell January. We can lock this spread in today by
putting on these (forward) positions. However, conditions may change the next day
so that July becomes cheapest and February most expensive. We can thus close out
the previous positions and put on the new ones. This is the essence of rolling in-
trinsic. Here we will focus only on hedging strategies up to the start of the injection
period.44

So, if we are asked to value this basic storage deal, we can consider two strategies.
The first is simply the rolling intrinsic we just discussed. We pay some premium to
enter the deal, and then follow rolling intrinsic. The second strategy follows from
the fact that we can wait until the start of the deal (the start of the injection sea-
son) to lock in the optimal spread. Now, consider an option with the following
payoff:

(max
i

FT ,Ti −min
i

FT ,Ti )
+ (3.42)

Here, T denotes the start of the injection period (e.g., April 2013) and Ti repre-
sents the various months comprising the deal (e.g., April 2013–October 2014). This
expression can be written as

max
i,j
(FT ,Ti −FT ,Tj )

+ (3.43)

That is, a lower bound45 on the option value inherent in the storage facility is given
by the most valuable spread option over all possible pairs of injection/withdrawal
(12.11/2= 6 total). Now, if this option traded on the market, we could simply sell
it, use the premium to enter the storage deal, and be done (again, to the extent that
we ignore spot-forward optionality, etc.). Typically, however, exotic options such as
these do not trade46 in any energy market, so we have to ask instead: what is the cost
of replicating this option? Under generalized BS assumptions of joint lognormality
of the underlying processes, this cost is an expected value of the above payoff under
a (unique) martingale measure. We will discuss in greater detail various methods
for evaluating such expectations in Chapters 5 and 7. For now we simply note that
the extension of the BS formula (known as the Margrabe formula) is driven by the
ratio volatility given by

σ 2 = σ 2
i − 2ρijσiσj +σ 2

j (3.44)

where ρij denotes the correlation between the two legs. (The intuition here simply
follows from the covariance structure of the difference of two Gaussian variables
[log-returns]).
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So, we compare the following two portfolios (with the same terminal payoff):

1. Rolling intrinsic
2. Delta-hedging the spread options that are optimal at inception.

A comparison of these two portfolios should shed some light on the relation be-
tween realized local time (as created through rolling intrinsic) and realized volatility
(as created through delta-hedging). We will approach this problem through simula-
tion. (We will discuss simulation methods in some detail in Chapter 7, although we
assume familiarity with the basic concepts on the reader’s part.) For convenience,
we will assume a flat volatility structure across contracts of 30%, and a correlation
structure given by

ρij = α|i−j| (3.45)

with α = 95% (reflecting the characteristic high correlation between neighbor-
ing contracts in natural gas markets). A representative forward curve is shown in
Figure 3.8.

We simulate the forward curve daily from deal inception to the start of the injec-
tion period, computing the relevant hedges for each day along each path. We collect
the portfolio results in Figure 3.9.

For 500 simulations (that is, 500 simulated price curve evolutions, through term),
the relevant statistics are as follows:47

• Rolling Intrinsic: average = 3.55, standard deviation = 0.73
• Delta-hedged Option Portfolio: average = 3.57, standard deviation = 0.27.

As can be seen, both hedging strategies yield the same cash flows (or more accu-
rately the same extrinsic value [intrinsic value in this case is 1.47, basically April
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injection and January withdrawal]). This reflects the nature of local time as dis-
cussed above. But there is a more important point to emphasize here. The variability
of cash flows is much lower for the delta-hedged option strategy than it is for rolling
intrinsic. This is of course due to the comparatively large variability of extrinsic
value for any set of realized curve evolution. Zero extrinsic value is certainly a con-
ceivable outcome, for example. One would expect to see large swings in portfolio
value under such a strategy. Indeed, note that the underlying positions similarly
undergo large swings. At one point in time, one might hold positions of long May
and short January, say. The next day, as the curve changes, these may get completely
closed out in favor of positions of long July and short December. This behavior has a
big implication on the hedge costs that will be faced in reality, as the bid-ask spread
(present in all markets) will be repeatedly crossed over large volumes. In contrast,
the delta-hedging approach can be expected to incur much smaller (dynamic) costs,
as the bid-ask will only be incurred on the incremental volumes needed to adjust the
deltas.

Still, there is an even larger lesson to be learned here. The comparatively greater
variability of cash flows under rolling intrinsic also indicates the correspondingly
lower robustness of local time in comparison to another pathwise entity, namely
realized volatility/quadratic variation. This is a crucial point, as any structured
product valuation problem entails the identification and projection of those en-
tities underlying the hedging strategies that are put in place against the structure
in question. We are talking of course about value drivers, the central theme of this
chapter to this point. We have here a fairly realistic example (or at least a tractable
example of a structure commonly encountered in the industry), in which we see
that not only does a particular value driver (in this case, realized variation) recover
the same value as an intuitive (and common) hedging strategy, but also permits
better (in the sense of more robust) projection of value. We will see more examples
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throughout the book, but this simple case should suffice to indicate the strength of
the approach.

With the proper context now provided, the final (and in a way, the most
important) step is to look into the issue of market structure.

3.1.5 Market resolution and liquidity

It was necessary to begin the exposition with some abstraction. However, the very
first question that must always be asked when approaching a valuation problem is:
what is the structure of the underlying market? By this we mean the following:

• What actually trades?
• How far out (maturity-wise) do they trade?
• How frequently can positions be rebalanced, and at what cost?

These questions are actually not unrelated, but it is useful to keep them separate at
first. Let us examine them in turn, as they pertain to energy markets.

3.1.5.1 The extent of traded instruments

The most obvious thing we need to know is what instruments trade in the mar-
ket in question. It must be stressed that valuation always takes place in a specific
market, and different markets possess different transactional characteristics. These
characteristics are critical to the valuation problem. The valuation of a tolling deal
in PJM is different from the valuation of a tolling deal in NEPOOL. Even within a
given market, substructures can be identified. The valuation of a toll based on PJM-
W is different from one based on PEPCO. By this we do not mean that a power
plant in two different regions has radically different operational properties. (The
basic structure is always the option to convert some fuel to electricity.) Rather, what
we mean is the formation of portfolios around tolling arrangements (or any other
structured product) depends on the kinds of instruments available for inclusion in
the portfolio. This is a simple, but not at all trivial point. As we shall see, the kinds
of residual exposure that results from an actual portfolio is central for characteriz-
ing the measures needed for representing the value of the underlying structure (and
by extension, the associated hedges).

By far the most common instruments are futures and options. Owing to their ul-
timate nature in physical use/consumption, energy markets are typically structured
regionally. In the United States, the major power markets of interest reflect both
demand patterns and jurisdictional boundaries, e.g., PJM (mid-Atlantic region),
NEPOOL (New England), ERCOT (Texas), etc. The natural gas pipeline system is
likewise based on geographical demarcations, typically originating in the Gulf Coast
and delivering to points further north, with various segmentations along the way,
e.g. TETCO going into the mid-Atlantic and New York, or Algonquin going from
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there onto New England. Again, EW is an outstanding source for further informa-
tion on this kind of market topology.48 These markets all possess traded futures of
varying degrees of liquidity. For example, PJM-W is highly liquid, more geographi-
cally localized points such as PEPCO less so. Gas markets display similar gradations,
with the primary benchmark (Henry Hub) being extremely liquid and the various
basis locations less so (recall from Section 1.2.2 that basis locations such as Tetco
M3 trade as adders [positive or negative] to Henry Hub).

In energy markets, option products do trade but they are typically far less liquid
and diverse than futures. In U.S. energy markets, for example, as of this writing
(2014), only Henry Hub gas, WTI crude,49 and PJM-W power support liquid mar-
kets in monthly options.50 PJM-W daily options51 trade, but they are far less liquid
than the corresponding month products (i.e., they have very large bid-ask spreads).
Henry Hub daily options do not trade at all.52 Invariably, the most liquidly traded
options are at-the-money (ATM). The ability to include options in portfolio con-
structions such as (3.4) is fairly limited. When attempting to value a structured
product, one must employ great caution, if not outright skepticism, in unthinkingly
employing volatility quotes that are not connected to an actual, transactable market
(e.g., pulling numbers that are uploaded by traders and marked in an internal risk
control system to “calibrate” a model).

It is not our intention here to catalogue the extent of liquidity in energy markets.
Rather, our point is that, for any given structured deal, we must determine how
the (spot) entities underlying the payoff relate to the available (forward) traded
instruments that may or may not settle against these entities. For a toll settling
against PJM-W (say) we obviously can put on (forward) hedges that correspond to
the actual exposure. For a toll settling against some illiquid, physical node within
PJM the situation is very different. Then, we cannot hedge the exposure in question.
We can only put on some kind of proxy (“dirty”) hedge, and therefore the value we
can attribute to portfolios such as (3.4) must take this additional risk source into
account. Very crudely (and we will explain in the course of things the precise nature
of this statement), the question concerns what price to “plug into” functionals such
as Black-Scholes. As with volatility marks, there is a tendency to simply assume that
some number that comes out of a formal “system” that has been marked by a trader
is adequate for valuation purposes. This very common practice must be guarded
against at every step. Of course, good traders can provide reliable insight on this
matter. However, good quantitative analysis must also ensure that these marks make
sense.

The critical point is that we are forming an actual portfolio about the structure
question, and thus we must know what can actually be included in that portfolio.
The next question concerns whether traded instruments are available throughout
the entire term of the deal.
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3.1.5.2 The (time) maturity of traded instruments

Any deal takes place over a particular time horizon, some longer, some shorter.
For example, a gas storage deal valued in January will typically commence in the
upcoming April for a one-year cycle; deals spanning several such seasons are now
somewhat rare but certainly not unheard of (especially precrisis). Tolling deals may
start a few months from inception and may simply cover the peak summer period or
an entire calendar year. Multiyear tolling deals also are rare in the postcrisis era (re-
flecting the drying up of liquidity and volatility, a topic we will return to), but were
once not that uncommon (especially in the western U.S. power market). The point
is that the structure in question has some time horizon that may not correspond to
the range of traded products over that horizon.

The scenario we envision here is one where at least part of the underlying ex-
posure cannot be (directly) hedged for the entire term of the deal. For example, a
long-term toll at, say, PEPCO may only be hedgeable with PEPCO contracts for the
first year of the deal. The later years (“back end”) of the deal must then be proxy
hedged (e.g., with PJM-W). A similar situation can prevail on the gas side, as well,
e.g., with a long-term transport deal. A somewhat related scenario is one where the
underlying does in fact trade throughout the term, but for longer time horizons
may only trade in seasonal or even annual blocks. For example, it may only be pos-
sible to put on a July–August power hedge for a toll starting in next year’s summer,
and only put on individual (“bullet month”) hedges closer to the start of the deal.
Another example would be buying winter gas contracts a year out and only break-
ing these out into constituent monthly contracts much closer to the start of the deal
term.

We have already seen examples of how dynamically hedged option portfolios can
create exposure to realized volatility/QV. It is still possible to capture this kind of
exposure (which is generally what is desired from a structured product) even when
we cannot cleanly hedge throughout the term. However, one must be very careful
to identify incrementally the volatilities that are being extracted given the need to
stagger (so to speak) the particular hedging instruments employed. Ultimately the
issue comes down to aggregation of variance, e.g.:

σ 2
aggτ = σ 2

yrτ1+σ 2
seas(τ2− τ1)+σ 2

mnth(τ − τ1) (3.46)

where we can think of total (collected) variance as consisting of the variance col-
lected from trading yearly blocks (over a particular time horizon), plus the variance
collected from trading seasonal blocks (again, over some specific time frame), plus
finally the variance collected from trading monthly contracts. (There is little point
in trying to craft (3.46) in general, abstract terms, as the idea should be clear.)

Obviously, the aggregate volatility in (3.46) need not be equal to the monthly
volatility (and will almost certainly be less), and great care must always be exercised
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in understanding the resolution of hedging instruments that are available through-
out the deal term. Note that we are not simply talking about term structure effects
here, which manifest themselves even over the range on which individual contracts
trade (the well-known Samuelson effect in commodity markets). Rather, we are
talking about decomposing a value driver into components that directly correspond
to the market structures that prevail over specific terms encompassing the deal in
question. As always, the issue comes down to portfolio formation and the available
instruments for such formation.

3.1.5.3 The liquidity of traded instruments

We have already discussed differences in liquidity as it relates to the extent of traded
products. There is another sense in which liquidity is important. This concerns
the ability to rebalance positions. Recall the basic portfolio expression in (3.4). In
general, dynamic hedging positions can be put on. It may help to recall the famous
Black-Scholes valuation framework. In that framework, a standard (European) call
option (on a lognormally distributed price process) can be perfectly replicated by
a particular dynamic hedging strategy. This strategy entails holding (in continuous
time) a position in the underlying equal to the (negative) Black-Scholes delta. (The
replication cost is of course the Black-Scholes value.)

The point is that this value can be extracted only from a (particular) dynamic
hedging/trading strategy. A different (say, static) hedging strategy will not extract
this value. This distinction turns out to be critical in energy markets and is far more
important than in, say, equity markets. The issue ultimately comes down to the
presence of time scales in commodity markets and the resulting manner in which
volatility accumulates with time horizon. Roughly speaking, it is the presence of
mean-reverting effects in commodity markets that give rise to such effects.

Now, there are a few issues to stress. If we are to implement a dynamic hedging
strategy, we must first know if such a strategy is feasible. In all markets there are
transaction costs. At any instant in time, it is generally more expensive to buy an
asset than it is to sell it (the difference being the so-called bid-ask spread that market
makers earn). Obviously, the more frequently we change positions (rebalance), the
more transaction costs we will incur, and these costs must be taken into account. It
is thus imperative to understand from the outset whether dynamic hedge strategies
can realistically be included in the portfolio construction in (3.4). Of course, as the
saying goes, everything has its price, so the issue is not whether rebalancing can be
done, but rather at what price or cost. In some markets, it may be effectively possible
to only put on static hedges around some structured product. For example, it may
be reasonably cheap to rebalance PJM-W positions, but prohibitively expensive to
do so with PEPCO, say.

In addition, the time horizon in question plays an important role in delineating
the extent of (dynamic) liquidity. Some commodities can be rebalanced at tolerable
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Table 3.1 Typical value drivers for selected energy deals

Hedge Example deals Value driver

Static future/forward Long-term swap Heat ratio/ratio

Static future/forward Medium-term tolls, storage, transport Cumulative variance

Dynamic future/forward Short-term tolls, storage, transport Quadratic variation

Static option, delta-hedged Short-term tolls, storage, transport Correlation

Static option, delta-hedged Full requirements/load serving Convexity

cost over short time horizons, but not over longer ones. In addition, some com-
modities are more dynamically liquid than others. One can envision a scenario with
a spark spread option where the gas leg is more readily rebalanced than the power
leg (or vice versa). The situation can have important ramifications for valuation, as
we have already seen (recall the examples in Section 3.1.3). Very often, only mixed
dynamic-static strategies are viable, so it is critical to make a proper accounting of
liquidity in the market in question. .

At this stage, in light of the various instruments we have broadly discussed in
the context hedging and valuation (static vs. dynamic forwards, vega/option hedg-
ing, etc.) and the associated exposures/value drivers, it might be helpful to collect
some results here pertaining to energy markets, which we present in Table 3.1.
We do not propose to discuss any of them in great detail, although we will do so
eventually. Rather, we hope to tie things together at this stage (at least to some
extent) by providing some concrete examples that will presumably mesh with the
reader’s background in the industry (recall we assume some basic familiarity with
the standard products).53

Note that the simple BS framework serves to illustrate many of these points, even
if they are buried in the customary presentation. We will turn now to a few sub-
sidiary (but important) issues before going deeper into the issue of replication and
portfolio formation in energy markets.

3.1.6 Hedging miscellany: greeks, hedge costs, and
discounting

3.1.6.1 Connection of value drivers to greeks: delta and vega hedging

Keeping with the spirit of jumping ahead to concepts that will be discussed in
greater detail later, we note here another example of a value driver. As we have
stressed previously, a value driver is an exposure that is created by a particular
hedging strategy around a particular structure. We discussed the specific example
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of realized and projected volatility in connection with delta hedging of an option.
Let us recall the basic result from (3.13):

�= 1
2 (σ

2− σ̂ 2)

T∫
t

�̂sS
2
s ds (3.47)

Note that the option gamma is not merely an interesting byproduct of the calcu-
lation, but plays a central role in the overall portfolio profit and loss.54 Indeed, all
models require back testing to gauge their effectiveness, and gamma would play as
critical a role here as the premium and deltas. A more general result can be seen
in higher dimensional problems (such as spread options). As we will see when we
discuss spread options in the Section 7.1, the basic valuation equation is given by

Vt + 1
2σ

2
1 S2

1VS1S1 +ρσ1σ2S1S2VS1S2 + 1
2σ

2
2 S2

2VS2S2 = 0 (3.48)

with terminal condition V (S1,S2,T) = (S2− S1−K)+. Again, we will derive this
equation and discuss its properties later. For now we simply note, following steps
very similar to the one-dimensional case, that delta hedging both legs of the op-
tion under some projected covariance structure (that is, both volatilities and the
correlation) creates the following portfolio:
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ds((σ 2
1 − σ̂ 2

1 )S
2
1�̂11+ 2(ρσ1σ2− ρ̂σ̂1σ̂2)S1S2�̂12+ (σ 2

2 − σ̂ 2
2 )S

2
2�̂22)

(3.49)
where the hats denote projected entities and the meaning of the gammas should be
clear enough (e.g. �ij ≡ VSiSj ). Now, using Itô’s lemma it is not hard to derive the
volatility of the ratio S2/S1:

σ 2 = σ 2
1 − 2ρσ1σ2+σ 2

2 (3.50)

Further, as noted previously, the option premium is expected (by economic intu-
ition) to be homogeneous of degree one in the prices and strike (doubling these,
say, should simply double the option price).55 Thus, by Euler’s theorem, we have
the following relationships across deltas and gammas:

V = S1�1+ S2�2+K�K

S1�11+ S2�12+K�1K = 0

S1�12+ S2�22+K�2K = 0

S1�1K + S2�2K +K�KK = 0

(3.51)
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with the subscript K representing a derivative with respect to strike. Using these
results, the portfolio expression becomes

�= 1
2

T∫
t

ds((σ 2
1 − σ̂ 2

1 )S1K �̂1K − (σ 2− σ̂ 2)S1S2�̂12+ (σ 2
2 − σ̂ 2

2 )S2K �̂2K ) (3.52)

In general, we can see how different kinds of exposures are created from the basic
delta-hedging strategy. We can also see how the realization of the value drivers will
affect risk adjustment, based on the determinate sign of the various cross-gammas:

�̂12, �̂2K < 0

�̂1K > 0
(3.53)

In particular, for the special case of no fixed strike (K = 0) the exposure is due en-
tirely to realized ratio volatility (as we pointed out above): the portfolio makes/loses
money when the realized ratio volatility is greater than/less than projected volatil-
ity. Observe that, contrary to what one might expect, realized correlation does not
necessarily play a role as a value driver. This is a very significant point, for as we
shall see in a later chapter, estimation/projection is typically much more robust for
volatilities (such as heat rates or ratios) than for correlations.

Note that we do not say that correlation is irrelevant here. In some cases (as
we will see), projecting ratio volatility can be conditioned on traded market leg
volatilities, and in such cases, projected correlation often serves as a usefully robust
proxy, an alternative to a regression analysis, say. On the topic of market volatilities,
we must mention that quasi-dynamic hedging strategies are not limited to hedges
around the legs. Static option positions that are themselves delta hedged can also
create exposures to certain value drivers. In other words, vega hedging is a viable
strategy for valuing structured products.56 Although we will not derive the results
now (consult the Appendix to this chapter), it can be shown that a delta-hedged
spread option combined with static vega hedges (for both leg volatilities) will pro-
duce a portfolio involving terms explicitly proportional to ρ − ρ̂. In other words,
this strategy will produce an exposure to realized correlation.

Apart from indicating that value drivers are indeed more general than volatilities,
this discussion again demonstrates the central role liquidity plays in our under-
standing of valuation: the appropriate value drivers are always a function of the
available hedging instruments. If leg options do not trade, then estimations of cor-
relation can produce very misleading pictures of value, and of course hedges of very
dubious quality. This issue becomes even more important when we recognize that
there are intermediate levels of liquidity, e.g., markets where monthly options trade
but not daily options.
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As might be expected, option vegas play a very important role in determining
the right hedge volume, and are not free-floating, abstract sensitivities. In fact, in
a rather general setting, they are closely related to the gammas, as we will now
indicate.

3.1.6.2 Relations between gamma and vega

The results that follow will be derived in detail when we consider so-called like-
lihood ratio methods for computing greeks via Monte Carlo in Chapter 7. For
now we simply present the results as a means of illustrating that in fact the gamma
and vega coefficients that drive profit and loss are related. Apart from highlighting
the role that both entities play in the model reconciliation process, these results
show that there can be significant computational savings from exploiting these
connections.

First we note, from standard results, the expressions for gamma and vega in the
BS setting:57
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with the usual notation d1 = logS/K+ 1
2σ
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. From (3.54) we get

υ

�
= S2στ (3.55)

Thus, note that the classic gamma-neutral strategy for hedging two options is also
vega-neutral. This result is no accident, and for a general, n-dimensional lognormal
process we will show later that the follow results hold:

υkl = SkSlσkσlτ�kl , k �= l

υkk = Skτ
∑

l

ρklσlSl�kl
(3.56)

where the “cross vegas,” so to speak, represent sensitivities with respect to a corre-
lation. So, apart from considerable computational savings offered by these results,
we see again a connection between the various hedging quantities that arise from
the standard greeks. This should not be surprising, as we are operating in a setting
where the “natural” choice of pricing functional gives rise to greeks that are opera-
tionally meaningful in terms of hedges for the extraction of value. We stress again
that the value to be extracted depends on the value driver arising from a particu-
lar hedging strategy. We also point out (and will elaborate more when we consider
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departures from the standard setting, e.g., incomplete markets) that this pricing
functional, as well as the associated greeks/hedge ratios, can still be extremely useful
even outside the BS environment.

It is worth saying a few things now about how to account for hedge costs (both
static and dynamic), which are an important aspect of any actual deal.

3.1.6.3 Transaction costs

As is well-known, in any market (be it commodities, equities, etc.), trading is not
costless and buyers and sellers confront different prices. This difference is the bid-
ask spread, and depending on the depth of liquidity, can be either fairly small or
quite large. In particular, dynamic hedging in some cases may be prohibitively
expensive. Let us see how this plays out. The main ideas can be gleaned from a
delta-hedged option portfolio:

�= (ST −K)+−Vt −
T−1∑
i=0

�i(Si+1− Si)+ c
T−1∑
i=0

|�i+1−�i| (3.57)

where c is the cost of rebalancing (at each step we must adjust the position in the
underlying by �i+1−�i , and this cost is symmetric58 with respect to (wrt.) buy-
ing and selling, hence only the absolute value of the change matters). More generally
(although, not realistically), the hedge costs can be taken as state-dependent; for the
particular choice of proportional to price (so that c → ci = γ Si), the well-known
formula of Leland, wherein the valuation volatility is adjusted by a term propor-
tional to gamma is obtained (see Wilmott et al. [1997]; there is also an excellent
discussion in Joshi [2003]). For the more realistic constant transaction costs case,
the change of measure techniques to be studied in Chapter 5 can be employed to in-
tegrate numerically the expected value of the hedge cost term in (3.57); in fact, we
can obtain multidimensional results that generalize the standard one-dimensional
Leland result.59

The main points we wish to make here about hedge costs are the following:

1. Not all dynamic strategies are created equal: for a given degree of liquidity, it is
definitely preferable to follow strategies that require smaller incremental rebal-
ancing. Thus, e.g., (dynamic) strategies such as rolling intrinsic where�i equals
0 or 1 can potentially be prohibitively costly in high volatility environments
(where frequent rebalancing is likely).

2. In light of what we have seen regarding the importance of dynamic strategies
for value collection in energy markets, the interplay of time horizons becomes
critical for valuation. Increasing the period between rebalancing reduces hedge
costs, but at the expense of increasing the horizon over which mean-reversion
effects can reduce realized volatility (from the portfolio perspective).
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3. Hedge costs must always be accounted for, obviously. However, it is operationally
preferable to separate identification of value drivers from transaction costs, as
explicit incorporation of the latter typically induces numerical instabilities and
thus renders estimation non-robust. Hedge costs should be incorporated after
suitable risk adjustment of the value driver, conventionally as a discount to that
driver (thus notions of bid-mid-ask valuation are quite separate from the level of
risk adjustment underlying the valuation).

4. Somewhat in modification of point number 3 above, for a given value driver
there may be cases where it is preferable to hedge at a level of risk adjustment
different than the level at which (initial) pricing takes place. Specifically, hedging
should take place at a more aggressive level than initial valuation. This effectively
creates a term V (σH )−V (σ0) in (3.57) that can offset (to some degree) dynamic
hedge costs. These considerations are most important when we are dealing with
value drivers and functionals exhibiting little but (non-zero) extrinsic value, such
as natural gas transport deals with low ratio volatilities/high correlations.

3.1.6.4 The role of discounting

On the subject of hedging and portfolios, it is important to understand that, for
the self-financing strategies under consideration, there must be a (dynamic) bond
hedge. This point is obscured by the fact that in the presence of zero interest rates,
there is of course no pathwise accrual of cash flows from bonds (the dynamics of a
bond B would trivially take the form dB = 0). This can be seen most clearly in the
discrete time case. The cash flows over a path are given by

(ST −K)+−V −
T−1∑
i=0

�i(Si+1− Si) (3.58)

which can be written as

T−1∑
i=0

[Vi+1−Vi−�i(Si+1− Si)] (3.59)

Now, by homogeneity and Euler’s theorem, we have V = S�+K�K (where�K is
the strike delta) so the cash flow expression becomes

T−1∑
i=0

[Vi+1−�iSi+1−�K
i K ] =

T−1∑
i=0

[(�i+1−�i)Si+1+ (�K
i+1−�K

i )K ] (3.60)

Using Euler again, we have S�S +K�K
S = 0. Consequently, for small enough time

steps, the cost associated with the rebalancing of the price hedge is precisely coun-
tered by the change in the strike delta, except at expiration (that is, for i = T − 1
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in (3.60)), where the gammas (derivatives of deltas) have a delta-function form60

and the small time limit only makes sense in an integral (distributional) framework.
Thus, the requirement of self-financing, namely that there are no external cash flows
but only transfers of money between trading accounts, implicitly requires that at
any time, we hold a dynamic bond (conventionally paying off K dollars at expiry)
position of �K

i . However, this position obviously makes no pathwise contribution
(again, except at expiry) due to the fact that Bi+1−Bi = 0.

Let us stress again that self-financing implies that, after the initial outlay (pre-
mium), there are only transfers between trading accounts, with penultimate cash
flows depending only on prices (through option payoffs and terminal positions)
at expiry. However, as we see from expressions such as (3.13), realized cash flows
do have a pathwise aspect, but only through realized vs. projected entities (such as
volatility), not through cash accruals along any path. Self-financing does not mean
that the hedging strategy (broadly understood to understand the initial cost and
terminal payoffs) pays for itself, only that no additional inflows are necessary af-
ter deal inception. (Effectively, the initial premium represents borrowing that is
parceled out [so to speak] along a path so that rebalancing requires no [further] ex-
ternal financing.) The upshot of this discussion is that, since it proves notationally
quite convenient to neglect discounting and explicit accounting for bond hedges,
we will thus do so, with the understanding that we always implicitly assume the
presence of such hedges in the overall portfolio.

We can now begin to examine the incomplete market case in more detail.

3.2 Incomplete markets and the minimal
martingale measure61

As is well known, option products in the Gaussian, Black-Scholes framework are re-
dundant. Any contingent claim can be perfectly replicated by a suitable (dynamic)
hedging strategy, from which the value of the option is immediately obtained from
absence-of-arbitrage arguments. That is, assuming that rather weak, common-
sense conditions hold (e.g., that the law of one price prevails in liquid futures
markets [say]), necessary and sufficient results for the price of a contingent claim
can be derived. This happy set of events is most definitely not the situation with
which we are faced in the vast majority of valuation problems, especially in en-
ergy and commodity markets. Once we depart from the Gaussian world, structured
products cannot be perfectly replicated through trading (dynamic or otherwise)
in underlying contracts. This challenge applies to even rather simple structures. For
example, in most power markets a plain vanilla spark spread option cannot be repli-
cated through trading power and gas contracts, and the structure entails a (risky!)
bet on realized heat rate volatility.62 The situation becomes far more complicated
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when we introduce physical constraints that characterize so many energy-based
products, such as physical tolls, with their array of start-up costs, ramp rates, and
outages.

Happily, it turns out that many of the familiar, standard techniques (which are
so often carelessly imported from their use in financial markets) can be brought
to bear in the commodity arena, as long as proper care and understanding of the
relevant concepts are employed. As we continue to emphasize, the correct valuation
of a structure entails the construction of suitable portfolios around the structure
that enable one to identify an induced exposure that is (presumably) preferable
to the exposure that exists in the absence of that portfolio. A central lesson that
will be learned is the following: a model that is “wrong” (in the sense of failure
to capture known qualitative features) can out-perform (in the sense of providing
better portfolio profiles) the “right” model. Put differently: simplicity often trumps
structure.63

Let us now provide some examples as well as a theoretical framework for analysis.

3.2.1 Valuation and dynamic strategies

It is worth recalling a basic concept that is central to martingale pricing in complete
markets (e.g., Black-Scholes). Under suitable technical conditions, the martingale
representation theorem states that if V and S are (square-integrable) martin-
gales under some probability measure Q (associated with some filtered probability
space), both adapted to the (natural) filtration64 of a standard Brownian motion
(also under Q), then there exists a pre-visible65 process�t such that

VT = Vt +
T∫

t

�sdSs = EQ
t VT +

T∫
t

�sdSs (3.61)

If V is thought of as the value of some derivative security and S the price of an
asset on which that security depends, then it is not hard to see that (3.61) entails
a (dynamic) replication strategy for that security, with the Q-expectation of the
terminal payoff as its value.66 A very nice discussion of the martingale representa-
tion theorem in the context of option pricing can be found in Baxter and Rennie
(1996).67

There are a few important points to make. First, as noted, (3.61) entails a dynamic
trading/replication strategy. Second, it is optimal in the (admittedly somewhat
trivial) sense of perfectly replicating the derivative security in question. Third,
the martingale representation theorem only establishes the existence of replica-
tion strategy; it says nothing about how to actually construct that strategy. (That
is, it does not specify the relationship between the value process and the hedg-
ing process.) Fourth, the critical assumption behind (3.61) is that the only source
of randomness/uncertainty in the underlying market is Gaussian in nature. (This
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is the meaning of requiring that the two Q-martingales be adapted to a stan-
dard Brownian motion.) Fifth (and most important), the ability to associate the
representation in (3.61) with hedging or replication strategies presumes that all
of the sources of randomness are associated with actual, traded instruments. In
other words, market completeness is here intimately connected to a very special as-
sumption about the nature of the market drivers. It is the assumption of market
completeness we wish to relax, and to spell out the ramifications thereof. Specif-
ically, we wish to analyze in detail portfolios of the form (3.61), but in incomplete
markets (that is to say, under the condition that not all of the sources of randomness
can be laid off in the market68).

Our approach will be to examine the construction of optimal valuation/hedging
strategies for linear and nonlinear products in such (incomplete) markets. Our ma-
jor departure from the existing body of work on the topic is the importance we
place on minimal informational requirements in constructing optimal strategies
(i.e., pricing measures) in environments with limited information about the nature
of the underlying DGP. (The limited information is typically driven by relatively
small samples compared to the scale of structural changes in the markets hosting the
underlying DGP, but also by the fact that only some of the relevant state processes
are observable.) We will develop an abstract characterization of the optimal strategy
(pricing measure) and a range of the sufficient statistics required for the sufficient
characterization of the optimal strategy. This last point is of crucial importance. The
informational requirements of the optimal strategy fall significantly short of the full
characterization of the underlying DGP (a point we made explicit in an economet-
ric sense in Chapter 2, and will further pursue in Chapter 6). This result enables us
to develop robust optimal pricing/hedging strategies without detailed knowledge of
the underlying DGP.

The subsequent discussion will make clear what, exactly, we mean by “optimal.”
What we are interested in is the behavior of the risk residuals that arise from differ-
ent (dynamic) hedging strategies, and characterizing a particular strategy as optimal
in a suitable sense (e.g., akin to the BS conclusion for (3.61) where the residual is
[identically] zero). Valuation then takes place with reference to this optimal strategy
(precisely akin to the standard BS case, properly understood). The general thrust of
our analysis will be to split the optimization problem into a dynamic and static part;
in other words, to separate dynamically hedgeable risks from the unhedgeable ones.
Our setting is the analysis of portfolios of the following form:

�=V(PT ,GT )−Vt −
T∫

t

�G
s dGs−

T∫
t

�P
s dPs (3.62)

where V is some (typically, but not necessarily, convex) payoff function of two (in
our example) tradeables (variables). The integrals in (3.62) represent accumulated
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dynamic hedges69 and V the value at inception (i.e., the initial premium). We are
interested in characterizing the “optimal” dynamic strategy and the associated op-
timal value. It is important to understand that the value and hedges stand in a very
definite relation to each other (it is no accident that we explicitly write the time de-
pendence of V in (3.62), both value and hedges are processes). Our objective to find
optimal hedging strategies as they relate to the value associated with those strate-
gies. As valuation through measure change is a central concept here, this will be the
starting point of our investigation.70

3.2.2 Residual risk and portfolio analysis

3.2.2.1 The fundamental theorems of asset pricing (and the question of

relevance).

As already noted in Section 3.1.2, in the BS setting the value of any contingent claim
is the expectation of its (terminal) payoff under a particular measure, equivalent to
the physical measure under which the actual DGP is observed. To be specific, this
measure Q is one for which the underlying tradeables are martingales: EQ

t ST = St
71

This measure is inextricably related to a specific trading/hedging strategy around
that claim (indeed, this is precisely its meaning, recall the discussion of the martin-
gale representation theorem pertaining to (3.61)), a point whose essence is actually
applicable far outside the original BS premises, as we will see. For now, we will sim-
ply state some conventional results that connect measure changes to the issue of
valuation:

• First Fundamental Theorem of Asset Pricing: No arbitrage ⇔ There exists an
equivalent measure under which tradeables are martingales

• Second Fundamental Theorem of Asset Pricing: No arbitrage and complete-
ness ⇔ There exists a unique equivalent measure under which tradeables are
martingales.

In the second theorem, “completeness” means that any contingent claim can be
replicated via appropriate positions in other tradeables. These are very familiar in
the usual BS setting: any contingent claim can be replicated by an appropriate (dy-
namic) hedging strategy (namely, delta-hedging), and the resulting value of the
claim is the expectation of the terminal payoff under the only equivalent martin-
gale measure (EMM) for the underlying process (geometric Brownian motion). It
must be stressed here that martingale pricing means a representation of the claim
in terms of a replicating hedging strategy. Pricing and hedging are two sides of the
same coin, and valuation here means relative valuation.

We are, of course, concerned here with incomplete markets, in which case
absence-of-arbitrage arguments are not sufficient to establish a rational72 value for a
contingent claim. In general, there is no unique EMM in such cases and martingale
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pricing loses its interpretation as an encapsulation of an underlying hedging strat-
egy around the claim in question.73 As noted in Björk (2009), martingale pricing in
incomplete markets amounts to a consistency condition across traded assets.

3.2.2.2 Minimal martingales and residual risk

Having said this, martingale pricing in connection with trading strategies remains
a compelling framework, and it can be asked if much of the underlying thrust
(namely, relative valuation) can be retained. To this end, we briefly discuss here the
concept of the so-called minimal martingale measure (MMM), with much greater
detail to appear later in this subsection. (See Föllmer and Schweizer [2010] and
the references therein for more background.) This is the EMM under which P–
martingales that are orthogonal to tradeables remain martingales under the new
measure. By orthogonal we mean (see the context of continuous semi-martingales
in Chapter 5) random variables which have zero quadratic covariation. The intu-
ition here is akin to a regression. Imagine that a derivative security is projected (in
some dynamic, but otherwise unspecified, sense) onto the space of tradeables, plus
some residual. Abstractly we write:

dV = δidSi+ dM (3.63)

with EP
t dM = 0 and < dSi ,dM >= 0. Under the MMM Q, EQ

t dM = 0 and thus
we also have that the value process V is a Q–martingale (since the tradeables S are
Q–martingales). Thus, as in the complete market case, we have an interpretation of
martingale pricing as entailing a certain (“optimal”, so to speak) hedging strategy.
Note that this does not imply that there are no other risk factors associated with the
residual M for which we need not account; it only means that, as a formal repre-
sentation of value this particular martingale measure is perfectly analogous to the
complete market case.74 Note further that, precisely because of this point (risk ad-
justment), this expected value is not necessarily the price at which we would want
to transact.

MMM clearly provides a very nice framework, not least because it maintains
some kind of connection to the original, powerful BS replication argument. (In
fact, for a very general set of processes to be considered in Chapter 5, analytical
results for deriving the MMM can be obtained.) However, a rather small problem
can already be seen: as we noted, the manner in which a derivative security (whose
value we seek) is to be projected onto the space of tradeables (and hence deriving
the value and appropriate hedging strategy) is completely undetermined! What is
in fact needed is a methodology that explicitly specifies this projection (i.e., the set
of trading strategies around the claim in question) as the starting point, and then
expresses the value of the claim as an appropriate representation of this projection.
As we will see, the cost here is that we lose, in some sense, the framework of EMM
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pricing. However, this is hardly a catastrophe, since in the case of incomplete mar-
kets there is no necessary requirement that the value function be an expectation
under an EMM. This brings us now to the question of pricing functional, which we
approach in an abstract manner before turning to concrete examples.

3.2.2.3 Abstract representation of optimal hedging strategies: pricing

functionals and informational efficiency

Our basic viewpoint that we have emphasized throughout is the notion that val-
uation is inextricably linked to the question of portfolio optimization, broadly
understood. We will provide here a fairly abstract discussion of this theme followed
by some specific examples as a means of conveying the general idea. Assume we
have a derivative security to which we wish to assign a price/value, in conjunction
with a hedging strategy around that security which makes operationally meaning-
ful this assignment. Thus, we are faced with an aggregate portfolio consisting of the
security, and some set of tradeables whose hedges/portfolio weights will be denoted
by�i . The portfolio dynamics are given by

d�= dV −�idSi (3.64)

where the value V and hedges �i (both processes) are to be determined. Let us
denote (somewhat heuristically) by I the information set on which valuation and
hedging decisions are made. We define a value function to be a map from this
information set to the set of values and hedges:

�θ : It → (Vt (It ;θ),�s(It ;θ)) (3.65)

where there may be some kind of parametric dependence represented by θ . (Note
that the value function involves both value and hedge.) In fact, (3.65) provides a for-
malization of a concept we have employed throughout, namely a parameterization
of value drivers. The portfolio dynamics in (3.65) can be written as

�=
T∫

t

dVs−
T∫

t

�i,sdSi,s =
T∫

t

(∂t V + 1
2 VII dI2

s )ds+
T∫

t

(VI dIs−�i,sdSi,s) (3.66)

We leave unspecified for now the dynamics of the information set, as well as the
precise dependency of value and hedge on this information. An obvious example
would be where the only information used is price information.75

We can interpret the terms in (3.66) as follows. The second (ensemble) term
represents effectiveness of the hedges. As information changes, the hedges also
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change based on whatever appropriate risk criteria are adopted, e.g., local variance
minimization:

�s = VI
〈dIsdSs〉
〈dS2

s 〉
(3.67)

The first term in (3.66) represents the realized (residual) exposure. We will see that
we can choose an appropriate form, given the parametric dependence in question,
so that a particular exposure is created.76,77 As an indication, assume that the basic
DGP belongs to the class of continuous semimartingales (see Chapter 5) and that
the relevant information set is the set of process state variables. Then by Itô’s lemma,
(3.64) can be written as

d�= (Vt + 1
2LV )dt + (VSi −�i)dSi+VS′ i dS′i (3.68)

where the primes denote non-traded entities (such as stochastic volatility) and L is
a second-order partial differential operator with the following form:

L= SiSj(aij∂SiSj + 2bij∂SiS′ j + cij∂S′ iS′ j ) (3.69)

3.2.2.4 Value drivers: cause vs. effect

Now, following the motivation for the MMM in the previous section (e.g.,
(3.63)), we ask the following question: can we integrate the choice of portfolio
weights/hedge volumes with the construct of valuation in such a way that the resid-
ual portfolio is optimal or efficient in some sense? Note that this question is in some
sense in opposition to the manner by which the problem is typically approached,
in which some appropriate (in the sense of broadly capturing certain statistical or
qualitative characteristics that are deemed relevant) martingale measure is speci-
fied, and then hedges are determined. It is important to understand that we are not
saying anything about absence-of-arbitrage arguments, which are usually invoked
to justifying EMM pricing, without first ascertaining the precise sense in which such
pricing is meaningful.

In particular, we are free to select value drivers as a means of choosing hedge ra-
tios such that the residual portfolio permits, in an efficient manner (in the sense
of exploiting available information [market or otherwise]), a decomposition of the
unhedgeable risks that must be accounted for, with the corresponding value drivers
as the key components to be determined. This viewpoint is, essentially, the analogue
to the MMM framework introduced in (3.63). The meaning of (3.65) is the follow-
ing: the operational meaning of an appropriate value function is that it facilitates
an analysis/understanding of the residual portfolio risk through its corresponding
hedging regime (via its dependence on some value drivers). The primary thing to
understand is that a value function should be chosen in such a way that we can bet-
ter understand the resulting exposure (as laid out in (3.66)) than we could with an
alternative valuation/hedging program. A very intuitive (and as we will see, often
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very suitable) choice for the class of processes under consideration is a projected
(not implied) volatility in comparison to realized volatility (or more generally pro-
jected covariance structure against realized). As we will also see, a benefit from this
approach is robustness of estimation, in comparison to approaches that require the
imposition of greater structure.

For example, if we choose the value function and associated (delta) hedges to
be functions only of the (observable) prices of tradeables, with the value function
solving the following Partial Differential Equation (PDE):

Vt + 1
2 SiSj âijVSiSj = 0 (3.70)

for some (as yet unspecified) process â, then the (residual) portfolio process (3.68)
becomes

d�= 1
2 SiSj(aij − âij)VSiSj dt (3.71)

From (3.71), it can be seen that the portfolio dynamics are driven by a (“gamma
weighted”) difference between the realized characteristics (a) and the valuation
characteristics (â). In other words, even though our pricing functional in (3.70)
is “wrong” (it is essentially based on counterfactual Gaussian dynamics), the result-
ing portfolio (hedging) stratagem readily provides an understanding of the entailed
exposures.

We need to stress here what we are not saying. We do not seek an EMM which
is “more realistic” than GBM, or which is "better calibrated” to market data. It is
a very popular approach in the industry to construct valuations via expectations
under some pricing measure, and to derive hedges from these valuations. Typi-
cally, appeal is made to the fundamental theorems of asset pricing to justify this
endeavor, but this viewpoint is mistaken, frankly. Consider the following simple
example. Assume we have a price process following GBM, except that the volatility
is unknown. Assume further that the realized volatility (over a given time horizon)
is independent of terminal price. Then, as we will see in Section 5.2.2, expecta-
tions under this measure allow one to separate price from (integrated/cumulative)
volatility. Thus, a common approach is to assert that the value of an option on an
underlying following this process is given by the following:

EQ
t (ST −K)+ = EQ

t EQ
σ (ST −K)+ = EQ

t VBS(S,K ,σ) (3.72)

where VBS denotes a Black-Scholes functional and σ is realized cumulative volatil-
ity. The first thing to note is that, even if (stochastic) volatility and price are
independent under the physical measure, there is no reason to assume that they
would remain so under a pricing measure, in which case it is not even clear how
useful (3.72) is on its own terms.78 But there is a much larger problem with expres-
sions such as (3.72): there is no operational meaning assigned to the measure Q.
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It means nothing to assign value without also relating that value to some hedging
strategy designed to realize that value.79

Failure to understand this basic point can (and has, we can attest) lead to much
confusion. In this example, the exposure is clearly to realized volatility (or more
accurately variance, but we neglect the distinction here). However, the relevant
question is how that realization manifests itself. We argue that, since any structured
product can only be partially replicated, there will necessarily be exposure arising
from the connection between valuation and associated hedges (as in (3.71)) and
that proper assessment of this exposure (e.g., through optimization of some port-
folio characteristic such as variance) cannot be addressed by (arbitrarily) choosing
some equivalent pricing measure. To understand the distinction, note that from ba-
sic convexity considerations that EQ

t VBS(S,K ,σ) �= VBS(S,K ,EQ
t σ).

80 This fact can
be misleading, because it can erroneously lead to the conclusion that exposure to
volatility (the actual risk factor) manifests itself in the initial premium, and not in
the context of an overall portfolio in which that premium is but one component.
This view (although quite standard) is simply false. These points should become
clearer with a concrete example.

3.2.2.5 Case study: Heston with one traded asset

Consider the popular Heston stochastic volatility process81 under the physical
measure:82

dS

S
= μdt +√vdw1

dv = κ(θ − v)dt +σ√vdw2

(3.73)

The standard approach to deriving the pricing relation for an option under Heston
is as follows (see Wilmott [2000]): assume the underlying (S) trades, as well as some
option (say, ATM)83. Then, to price another option (say, ITM or OTM) with price
V , we can form the following portfolio:

�= V −�S−�1V 1 (3.74)

where V 1 denotes the traded option. Self-financing implies

d�= dV −�dS−�1dV 1 (3.75)

All randomness can be eliminated from this portfolio by requiring that (note
that we unrealistically assume that variance, although untraded, is nonetheless
observable)

VS =�+�1V 1
S

Vv =�1V 1
v

(3.76)
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Assuming interest rates are zero, by arbitrage conditions we see that

Vt +LV − Vv

V 1
v
(V 1

t +LV 1)= 0 (3.77)

where L denotes a second-order partial differential operator from the Itô calculus:

LV ≡ 1
2 v(S2VSS+ 2ρσSVSv +σ 2Vvv) (3.78)

Now, since the second option is a tradeable, it is a martingale under some measure
(call it Q) so it must satisfy

V 1
t +LV 1+ κQ(θQ− v)V 1

v = 0 (3.79)

where for convenience we assume that under the pricing measure the affine form of
the underlying process is retained. Now, we can readily see that the primary option
price must also satisfy this PDE, so in particular is also a Q–martingale.84 As we have
already pointed out, martingale pricing amounts to relative pricing, a consistency
condition across tradable assets (Björk [2009]).

3.2.2.6 Heston case study: absence of arbitrage to the rescue (not)

Now, we relax one of these assumptions and consider the case where the second
option does not trade. In this case, we cannot appeal to arbitrage arguments to
deduce the price of the primary option. We can completely eliminate exposure to
the underlying but not to the stochastic variance, by taking � = VS. However, as
we will see, the local variance minimizing hedge includes a vega term, specifically
ρσ
S Vv , and we will retain this adjustment when we study the global properties of the

resulting portfolio. The portfolio evolution then becomes

d�= (Vt +LV )dt +Vv

(
dv−ρσ dS

S

)
(3.80)

Now, purely for convenience, we may express the value function as an expectation
of the terminal payoff under some arbitrary martingale measure (again retaining
affine structure), so the portfolio evolution becomes

d�= Vv

(
−κ ′(θ ′ − v)dt + dv−ρσ dS

S

)
(3.81)

(The primes denote the parameters under this new measure.) The advantage of
this choice clearly is to permit a simple connection of the portfolio dynamics to
the dynamics of both price and the unhedgeable stochastic variance. However, it
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still remains the case that there is residual exposure to that variance that must be
accounted for. We can choose (if we like) to represent the value function (and as-
sociated hedging strategy) in terms of an EMM expectation, but only after we have
specified how we want to account for the unhedgeable risk. Without this prior spec-
ification, any kind of representation of the value function in terms of martingale
pricing is essentially meaningless. Simply put, risk-neutral pricing does not apply
in this case.

To highlight this point, suppose that we take the value function to have the
following form:

V = VBS(S,K ,τ , σ̂ ) (3.82)

where σ̂ is some (projected) volatility at which we price and hedge in terms of
Black-Scholes (BS) entities (i.e., call values and deltas). By construction, Vt +
1
2 σ̂

2S2VSS = 0. In this case, the value function has no “vega” dependence (all partial
derivatives wrt. v are zero), so there is no adjustment to the delta and the portfolio
evolution becomes

d�= 1
2 (v− σ̂ 2)S2Vssdt (3.83)

which is very reminiscent of the standard result for hedging with unknown volatility
in a Black-Scholes environment (i.e., when volatility is not stochastic). We should
stress that this representation of the value function does not entail EMM pricing;
there is no change of measure that can take the Heston stochastic volatility process
into a constant volatility process.

3.2.2.7 Heston case study: portfolio optimization criterion

This freedom gives us two possible approaches: specify parameters κ ′ and θ ′ in an
EMM pricing framework, or specify the parameter σ̂ in a BS pricing framework.
(Note that in the EMM framework the covariance structure is the same as under
the physical measure.) This specification is made to ensure some property of the
portfolio in light of the unhedgeable risk, such as variance minimization. In other
words, we consider the following two problems:

min
κ ′,θ ′

var(�)=min
κ ′,θ ′

var

⎛⎝ T∫
t

Vv(−κ ′(θ ′ − vs)ds+ dvs−ρσ dSs

Ss
)

⎞⎠ (3.84)

and

min
σ̂

var(�)=min
σ̂

var

⎛⎝ 1
2

T∫
t

(vs− σ̂ 2)S2
s Vssds

⎞⎠ (3.85)

Note that both results in some sense express the residual risk in terms of a
gamma/vega weighted integral of realized variance over expected/projected vari-
ance. In truth, both of these expressions arise from the basic delta-hedged85

portfolio
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(ST −K)+−Vt −
T∫

t

�sdSs (3.86)

so it will be convenient to work with this form. To repeat, in each case the (dynamic)
hedge is the derivative of the option value function wrt. price. What differs is how
we calculate the value (and hedge) at each point at time, and as a consequence, what
the residual risk is.

Our basic framework is as follows: we assume we know the data-generating pro-
cess under the physical measure. That is, we know that the underlying process is
Heston, and that we know the underlying parameters. Then, for the two hedging
approaches (in terms of EMM and in terms of BS) we look for the valuation/hedging
parameters that minimize terminal variance of the resulting portfolio. We will do
this via simulation.86

3.2.2.8 Heston case study: simulated results

We use the following parameters:

μ= 0.1,σ = 0.3,ρ =−0.6,κ = 4,θ = 0.1 (3.87)

and time-to-maturity one year. As we will see in Section 5.2, Heston permits an
efficient quadrature-based approach to the calculation of option prices and deltas
in terms of an analytical result for the (conditional) characteristic function of the
terminal (log) price. To facilitate our objective here, we assume that the stochastic
variance is observable, although not traded; this (very heroic) assumption will actu-
ally serve to reinforce the point we wish to make. (Of course, in reality the stochastic
variance is not observable and the need to filter an estimate of v from observed price
data is a major challenge to using continuous-time stochastic volatility models such
as Heston, a topic we will address in Chapter 6.)

We will simulate 1,000 paths throughout. For the BS case, we have the following
results for portfolio variance, as function of projected (hedging) vol (ATM options)
in Figure 3.10:

For the EMM case, we have (as a function of mean reversion rate) in Figure 3.11:
From the simulations it appears that the minimum variance is close in each case.

In truth, the BS variance is about 8% higher than the EMM variance (1.45e-4 vs.
1.35e-4). However, the replication cost (the Q-expectation) is about 4% higher
(0.129 vs. 0.124), giving rise to nearly equal Sharpe ratios for the two portfolios.
This is significant, because even in the case where we know everything about the
data-generating process under the physical measure, there is no compelling reason
to not adopt the model-free BS approach with its “wrong” distributional assump-
tion. It stands to reason, in the usual case where we do not know the process that
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Figure 3.10 Valuation and hedging with BS functional. Portfolio variance for non-EMM pricing
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Figure 3.11 Valuation and hedging with Heston functional. Portfolio variance for EMM pricing

generates the data (much less the values of the underlying parameters), that the BS
approach should be superior. The optimal results for the two cases are as follows:

σ̂ = 0.325, non-EMM case

κ̂ = 4, θ̂ = 0.1, EMM case
(3.88)

(To clarify: the optimal σ̂ in the non-EMM is the volatility at which we [counterfac-
tually] price and hedge assuming a BS framework. For the EMM case the covariance
structure is unchanged relative to the physical measure.) Note that the optimal BS
hedging volatility is approximately the square root of the mean reversion level of the
stochastic variance. Also note that the optimal hedging parameters for the EMM
case appear to correspond to the mean reversion level and rate of the stochastic
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variance under the physical measure. As we will see, the locally minimizing EMM
parameters are the physical mean reversion rate (4) and level equal to 0.105.

In Figure 3.12 we show the ratio of minimum variances (between non-EMM and
EMM cases) as a function of mean reversion rate:

We see again that the reduction in minimal variance (by using EMM valua-
tion/hedging instead of BS) is not large, and becomes less as the mean reversion
rate increases. Where the benefit (of EMM-based valuation and hedging) is greatest
(in terms of global minimization), is precisely where the problems of estimation
are most acute: low mean reversion rates.87 This is significant, as in practice mean
reversion rates are difficult to estimate robustly. These results show that for cases
where the stochastic variance exhibits high mean reversion, the incremental bene-
fit of getting a good estimate of the underlying parameters is decreasingly small.88

Alternatively, we have a measure of the incremental benefit of portfolio variance
reduction as the cost of information extraction (i.e., filtering of unobserved stochas-
tic variance) increases. This benefit is of the order of 15–20%, and this reduction
prevails if filtering provides the exact parameter values (which it generally never
does; see Chapter 6). We thus have a practical example arguing against the standard
use of EMM valuation, and in terms of non-equivalent (i.e., qualitatively wrong)
measures.

3.2.2.9 Heston case study: small sample considerations

In general we will not know the actual dynamics of the underlying price process,
and we will usually have a small sample of data (e.g., forward price histories is some
energy markets are no more than four years long). In this section we will investigate
some of the implications of this situation. We first note a natural way of looking at
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the expression driving the minimal variance under the non-EMM case. The P&L,
for a given path, is given in this case by

P&L= 1
2

T∫
t

(vs− σ̂ 2)S2
s Vssds (3.89)

It seems natural to ask, for a given path, what is the hedging volatility that makes the
P&L exactly zero? (Recall that we considered this question in Section 3.1.3 for actual
energy market data.) For each price path in the sample, it is straightforward to solve
the nonlinear equation that arises from the terminal payoff minus initial premium
plus accrued delta hedging proceeds. This yields a sample of replication volatili-
ties, which can be compared against the results of hedging to minimize portfolio
variance across the price paths in the sample. Assuming we know the underlying
price process (as we have done here), both of these entities can be compared to the
“known” optimal result (known from a large enough simulation). Typical results
(for a set of 50 simulated paths) are shown below in Figure 3.13:

As a function of time to maturity we see the results for:

1. Large sample variance-minimizing volatility (blue)
2. Small sample variance-minimizing volatility (red)
3. Average replication volatility across small sample paths (green).

Generally speaking, pathwise analysis of the replication volatility seems to be a bet-
ter proxy for the large sample portfolio statistic of interest than the corresponding
small sample estimate of that statistic.
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3.2.2.10 Filtering issues

We have endeavored to present the best case possible for the Heston valuation
function in comparison with a BS functional. This case entailed assuming that
the stochastic variance, although not traded (and hence not hedgeable), was
nonetheless (perfectly) observable. In reality, of course, we cannot directly ob-
serve stochastic variance, and (at best) can only employ some sort of estimate of
it in terms of (observable) prices. This problem falls under the general category
of (stochastic) filtering, and will be discussed in more detail in Chapter 6 (see
also the Appendix to this chapter). Here we wish to only indicate an approach to
ascertaining the effects of filtering on portfolio construction.

For a specific example, consider the following (discrete-time) filter:

v̂t = (1−β)v̂t−1+ γ0+ γ1�zt + γ2(�zt )
2 (3.90)

which has the obvious interpretation of a weighted sum of past projections plus cur-
rent (observed) log-price deviations. In the continuous-time limit, (3.90) becomes
(suitably rescaling the various coefficients)

dv̂ = (γ0+ γ1(μ− v/2)+ γ2v−β v̂)dt + γ1
√

vdw1 (3.91)

which of course retains affine dynamics. Now consider again the delta-hedged
portfolio:

P&L= (ST −K)+−V −
T∫

t

�sdSs (3.92)

Taking expectations under P, we get that

EP
t P&L= EP

t (ST −K)+−V −μ
T∫

t

EP
t �sSsds

= EP
t (ST −K)+−V −μ

T∫
t

EP
t Ss ·EPS

t �sds (3.93)

under a suitable change of numeraire. Recall that we price and hedge under
some (nonequivalent!) pricing measure Q (e.g., Heston) but with filtered variance
“plugged in” to the valuation functional. (See also the Appendix to this chapter.)
Thus we have (again employing numeraire change)

�s = EQS
s 1(zT > k) (3.94)
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where k ≡ logK . Using characteristic function methods (see Chapter 5), (3.94) can
be written as

�s = 1

2π

∫
�

dφ
eiφ(zs−k)+α(φ)v̂s+β(φ)

iφ
(3.95)

assuming, say, a Heston pricing functional in terms of the projected/filtered vari-
ance and using a suitable contour of integration �. (Recall that the actual hedge
also consists of a vega correction, which we ignore here for convenience, as it is
straightforward to obtain from expressions similar to (3.95).) Thus, the physical
expectation in the integrand of (3.93) will entail expectations of the form

EPs
t eiφzs+α(φ)v̂s (3.96)

which should be tractable owing to the affine dynamics in (3.91). Hence, akin to the
static-dynamic problem considered in the lognormal case, the physical expectations
should be reducible to quadrature (see Chapter 7), and more readily analyzed (than
say through simulation).

Having seen some practical demonstrations of valuation and hedging in incom-
plete markets, we now consider tools necessary for understanding the operational
issues associated with energy structures.

3.3 Stochastic optimization

We will discuss in this section various tools broadly associated with so-called opti-
mal (stochastic) control. As usual, our intent is not to supply a thorough account
but only to provide the reader with sufficient background to understand applica-
tions to energy market valuation problems.89 For greater details the reader should
consult any standard text, e.g., Kall and Stein (1994) for stochastic programming
and Nocedal and Wright (2006) for numerical optimization.

3.3.1 Stochastic dynamic programming and HJB

3.3.1.1 Control problems and stopping time problems

Dynamic programming (DP) refers to an optimization problem, where a choice (or
action or control) made now affects the decisions that can be made in the future.
In stochastic dynamic programming (SDP), these decisions are confronted with
uncertainty regarding the relevant drivers for the problem in question. We have
already seen several examples, which we recap here:

• American (early exercise) options: the decision to exercise the option now must
be compared with the value of holding on to the option (in the hopes that the
underlying price will go higher still)
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• Natural gas storage: for a given (current) inventory level and prices, a decision
can be made to either inject gas (at a cost), withdraw gas (and sell it), or do
nothing; in each case, the cost/benefit of the action must be compared with the
expected value of storage at the new inventory level

• Power plant/tolling: if the unit is currently down (say), a decision must be made
to start up the unit (incurring both variable capacity fuel costs and fixed [inde-
pendent of generation level] start-up costs) or stay down; the comparison is with
the expected value of future spark spreads in the same/alternate state (keeping
in mind that, once up, no additional start-up costs are required to maintain that
state).90

These problems can typically be abstractly characterized as follows. For stochastic
control problems we look to solve

V (St ,At , t)= sup
a

Et

⎛⎝ T∫
t

e−r(s−t)g (Ss ,As ;as)ds+ e−r(T−t)f (ST ,AT )

⎞⎠ ,

A ∈A, a ∈ a (3.97)

where we consider some finite time horizon [t ,T]. In (3.97), S denotes some (possi-
bly vectorial) underlying stochastic driver, such as the price of some commodity. A
represents the state of the system and a is the policy/control (essentially, the dynam-
ics of the state), assumed adapted to the driver. (In fact, we will assume throughout
that we are dealing with Markovian decision rules). In some sense the policy is akin
to a stopping time. The two terms in (3.97) represent accumulated gains/losses (g)
through time plus a terminal payoff (f ), both state (and driver) dependent (and
discounted continuously via the rate r, assumed constant). We seek the policy (the
manner in which the state changes through time) such that the expectation in (3.97)
is maximized. Note that in general there can be constraints on the allowable state, as
well as on the dynamics of the state (and hence allowable policies; this is the mean-
ing of the two set memberships following the expectation in (3.97)). For example,
in the gas storage problem, there are typically maximum withdrawal and injection
rates, maximum and minimum capacity levels (all of which may vary determinis-
tically, e.g., seasonally), and other physical restrictions on operation that must be
taken into account; see EW for a greater discussion of such deals.

The perhaps more familiar optimal stopping time problems (e.g., American
option valuation) can be framed similarly: Here we wish to solve

V (St , t)= sup
t≤τ≤T

Et

⎛⎝ τ∫
t

e−r(s−t)g(Ss)ds+ e−r(τ−t)f (Sτ )

⎞⎠ (3.98)
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for some (bounded) stopping time τ over a finite interval. In the context of the
examples considered above, we would have

• American (put) options: f = (K − S)+, g = 0
• Gas storage: f = 0, g = −aS, a is injection/withdraw rate, A continuous,

bounded between 0 and facility maximum capacity
• Tolling: f = 0, g = a((P−HR ·G−VOM)− (1−A)X), a = 1 or 0 (up/down),

A discrete, 0 or 1 (on/off)

To be clear, we are omitting many important technical details here; for these we
refer to sources like Pham (2010). Our primary purpose is to provide a reasonable
amount of intuition and formality to enable the reader to understand some of the
applications in energy markets. To further fix matters, we will assume state and
driver dynamics of the following (diffusive) form:

dS= μ(S,A)dt +σ(S) · dw

dA= adt
(3.99)

where we allow the drift of the of driver to be state dependent;91 of course, for
optimal stopping problems, there is no state as such and hence no state dependence
in the driver dynamics. (As usual the dot · denotes Hadamard [element-by-element]
vector product.)

3.3.1.2 Backward induction as a way forward

So, we turn attention to the question of how problems such as (3.97) and (3.98) can
actually be solved. We will actually have much more to say about this in Chapter 7,
but there are some important concepts that must be introduced here. First is the
rather important question of how these optimizations are to be carried out. It
would seem that these problems are inherently high dimensional and effectively in-
tractable. However, for the class of Markov decision processes that we will confine
attention to, this turns out to not be the case. We here appeal to Bellman’s (1957)
principle, which we quote here: “An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision.”

In other words, the value function equals the maximum over all actions taken
now, plus the expected value of the value function over later times given the state
changed induced by that action. This idea permits the use of so-called backward
induction to iteratively solve these control problems. To understand the main idea,



104 Modeling and Valuation of Energy Structures

consider the following discretization of the control problem (3.97) (for convenience
we will drop reference to the set in which the controls must belong):

V (St ,At , t)= sup
a

Et

⎛⎜⎜⎜⎝
t+�t∫

t
e−r(s−t)g(Ss ,As ;as)ds+

T∫
t+�t

e−r(s−t)g(Ss ,As ;as)ds+ e−r(T−t)f (ST ,AT )

⎞⎟⎟⎟⎠
≈max

a
(g(St ,A;a)�t + e−r�t Et V (St+�t ,A+ a�t , t +�t)) (3.100)

and for the stopping time problem (3.98):

V (St , t)≈max

⎛⎝f (St ),e−r�t sup
t+�t≤τ≤T

Et

⎛⎝ τ∫
t

e−r(s−t−�t)g(Ss)ds

+e−r(τ−t−�t)f (Sτ )

⎞⎠⎞⎠
=max

⎛⎝f (St ),e−r�t Et sup
t+�t≤τ≤T

Et+�t

⎛⎝ τ∫
t

e−r(s−t−�t)g(Ss)ds

+e−r(τ−t−�t)f (Sτ )

⎞⎠⎞⎠
=max(f (St ), e−r�t (g�t +Et V (St+�t , t +�t))) (3.101)

Now, the first thing to note is, as discrete-time approximations, (3.100) and (3.101)
provide means of valuation via backward induction (we know the terminal val-
ues) so long as the underlying expectations and subsequent optimizations can be
efficiently (or at least tractably) carried out.92 We will consider such techniques in
Chapter 7. Here, we wish to provide alternative formulations of (3.100) and (3.101)
in the continuous-time limit, heuristically considered (leaving the relevant techni-
cal details and justifications to Pham [2010]). Using Itô’s lemma and the dynamics
in (3.99), the stochastic control problem (3.100) becomes93

Vt + 1
2LV +max

a
(g(S,A;a)+μT VS+ aVA)− rV = 0 (3.102)

where L is a second-order partial differential operator associated with the Itô gen-
erator of the (driver) process in (3.99). Similarly, for the optimal stopping time
problem in (3.101) we find

max
(

f (S)−V ,Vt +μT VS+ 1
2LV − rV + g

)
= 0 (3.103)

Although of different forms, expressions (3.102) and (3.103) are both referred
to as the Hamilton-Jacobi-Bellman (HJB) equations for the problem in question.
These justly celebrated equations have wide application in mathematical finance in
general, and many energy market problems.
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A few observations can be made here. First, the optimal stopping time problem
solved in (3.103) is the usual variational formulation/linear complementarity con-
dition from American option pricing (e.g., see Wilmott et al. [1997]), so the basic
idea here should not be completely unfamiliar to most readers. Essentially what
(3.103) implies is that there are two regions characterizing the valuation problem:
one where early exercise takes place (so that V = f (S)) and one where it is better
to hold on to the structure in question (so that the usual Itô equation governing
martingale price processes holds). Second, the optimal stochastic control extracted
from (3.102) involves a relation between the instantaneous cost/benefit from a state
change, the state-dependent drift of the driver, and the incremental value of a state
change. (The latter is commonly referred to as a shadow price.) For example, in the
case of gas storage this term reduces to max

a
a(VA− S), which has the obvious inter-

pretation that, when the incremental state value is above the current driver price,
injection (a > 0) is the optimal action, and when the incremental value is below
the current driver price, withdrawal (a < 0) is the optimal action. Finally, we see
a distinction between control and stopping problems (although there are obvious
similarities). The problem in (3.102) is linear in the value function but entails a
nonlinear optimization (over the control a). In contrast, (3.103) is nonlinear in the
value function but without explicit reference to the policy.94

3.3.1.3 Example: optimal investment

As a generic example, consider the optimal investment problem from Boguslavsky
and Boguslavskaya (2004). The underlying asset follows a standard mean-reverting
process with zero mean:

dx =−κxdt +σdw (3.104)

The investor seeks a position αt in the asset such that his terminal expected (power)
utility95 is maximized. With the mean reversion in (3.104), we can think of this sce-
nario as representing spread/pairs trading in commodity markets. The problem can
be expressed as an optimal control problem. Denoting wealth (from self-financing
position) by w, we have the value of terminal wealth/utility given by

V (x,w, t)= sup
α

Et
1
γ wγT

dw = αdx =−καxdt +ασdw
(3.105)

with relative risk aversion represented by 1−γ . Invoking HJB, we have the following
value function dynamics:

Vt − κxVx + 1
2σ

2Vxx + sup
α

(−ακxVw + 1
2α

2σ 2Vww +ασVwx
)= 0 (3.106)

and of course V (x,w,T) = 1
γ wγ . Owing to the quadratic nature of the supre-

mum term in (3.106), the first order optimality condition is easily obtained, and
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the resulting PDE (and thus the associated optimal control/position) can be solved
analytically; see Boguslavsky and Boguslavskaya (2004) for details.96 (We will re-
visit this problem in Section 6.2.2 when we address the issue of filtering out the
[typically] unobservable mean-reversion level.)

3.3.2 Martingale duality

3.3.2.1 Optimization

Let us lead into our discussion of duality by recalling the more familiar application
in standard optimization theory. Consider the following constrained optimization
problem:

max f (x)

st gi(x)≤ 0
(3.107)

where x ∈ Rn and there are m constraints. Now, as is well known from first-year
calculus, equality-constrained problems can be solved via the standard technique of
Lagrange multipliers.97 However, for the general case of inequality constraints, the
issue is a bit subtler, although the more familiar association with Lagrange multi-
pliers is retained to a large degree. We introduce non-negative multipliers μ ∈ Rm≥0
and a so-called Lagrangian given by

L(x,μ)= f (x)−μT g(x) (3.108)

Note that, for any feasible point x (that is, a point satisfying the constraints in
(3.107)) we must have L ≥ f . Therefore the maximum of f is bounded from above
by L, and this prompts us to investigate the so-called dual problem98 given by

minL(x,μ)

st ∇f −μT∇g = 0,

μ≥ 0

(3.109)

where we introduce a stationarity (first-order) condition in (3.109), as any so-called
active constraint (one satisfied by equality) must be tangent to the contours of the
objective function, as in the usual equality-constrained case. In fact, the famous
Karush-Kuhn-Tucker (KKT) conditions provide a necessary criteria for optimal-
ity in (3.109), namely that either a constraint is active, or the associated Lagrange
multiplier is 0; see Nocedal and Wright (2006). (This condition is again reminis-
cent of the linear complementarity approach for valuing American options.) For a
very wide class of problems, namely, convex optimization, the so-called duality gap
(the difference between optimal solutions of (3.107) and (3.109)) is zero and the
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KKT conditions become sufficient, as well. (This class of problems is commonly
encountered in mathematical finance, as well.)

3.3.2.2 Generalizations

Note that the essence of the duality formulation is to transform an optimization
problem over one category (points in Rn) into an optimization problem over a dif-
ferent category (effectively, the set of active constraints). As this approach often
leads to progress in a problem, we speculate as to whether it could be applied to the
kinds of stochastic optimization problems we are interested in here. Gratifyingly,
the answer turns out to be in the affirmative. We first turn to the important work of
Haugh and Kogan (2004, 2008).

Consider the following standard American option pricing problem:

V (St , t)= sup
t≤τ≤T

Et (e
−r(τ−t)f (Sτ )) (3.110)

and its discrete-time analogue

V (St , t)=max(f (St ),e−r�t Et V (St+�t , t +�t)) (3.111)

Now, it should be clear that the discounted value function V is a supermartingale:
Vt ≥ e−r�t Et VT for t ≤T .99 This fact leads us to seek approximations to the primal
problem (3.110) as follows. For any supermartingale πt , we have that

V (St , t)= sup
t≤τ≤T

Et (e
−r(τ−t)f (Sτ )−πτ +πτ )

≤ sup
t≤τ≤T

Et (e
−r(τ−t)f (Sτ )−πτ )+πt ≤ Et max

t≤τ≤T
(e−r(τ−t)f (Sτ )−πτ )+πt

(3.112)

The first inequality in (3.112) follows from the optional stopping theorem, and the
second should be obvious. Note that in the final expression in (3.112), the supre-
mum over (random) stopping times has been replaced by a (pathwise) maximum
over deterministic times. Thus, taking the infimum over supermartingales, we see
that

V (St , t)≤ inf
π

{
Et max

t≤τ≤T
(e−r(τ−t)f (Sτ )−πτ )+πt

}
(3.113)

Thus, we can already see an analogue with the duality result for standard (deter-
ministic) optimization in (3.109). In fact, since the (discounted) value function is
itself a supermartingale (and also dominates the payoff), we also have that

V (St , t)≤ Et max
t≤τ≤T

e−r(τ−t)(f (Sτ )−Vτ )+Vt ≤ Vt (3.114)
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Obviously this point is not particularly helpful in and of itself, as the value func-
tion is precisely the thing we are interested in determining. However we do have the
very useful result that we can bound from above the American option value, and in
particular if we can approximate the value function with supermartingales that are
close to the true value, we can attain a tight bound. We will see specific (tolling) ap-
plications in Section 4.2 when we consider numerical implementations. The main
point to be stressed here is that the original problem in (3.110), an optimization
over controls, can be transformed to a new problem in (3.113), which is an opti-
mization over classes of candidate solutions.100 It thus precisely corresponds to the
more familiar duality results from standard optimization theory.

Let us also consider the corresponding results for the control problem in (3.97).
We introduce a state-dependent process h (whose properties we will specify shortly)
and, using the notation Ph≡ ht +μT hS+ ahA+ 1

2Lh, we write

V (St ,At , t)= sup
a

Et

⎛⎜⎜⎜⎝
T∫
t
(e−r(s−t)g(Ss ,As ;as)+Pe−r(s−t)h)ds−

T∫
t

Pe−r(s−t)hds+ e−r(T−t)f (ST ,AT )

⎞⎟⎟⎟⎠

= sup
a

Et

⎛⎜⎜⎜⎝
T∫
t

e−r(s−t)(g(Ss ,As ;as)+ (P− r)h)ds−
T∫
t

Pe−r(s−t)hds−
T∫
t

e−r(s−t)hT
S σ · dws+ e−r(T−t)f (ST ,AT )

⎞⎟⎟⎟⎠
= sup

a
Et

⎛⎝ T∫
t

e−r(s−t)(g(Ss ,As ;as)+ (P− r)h)ds−
T∫
t

de−r(s−t)hds

+e−r(T−t)f (ST ,AT )

⎞⎠

= sup
a

Et

⎛⎝ T∫
t

e−r(s−t)(g(Ss ,As ;as)+ (P− r)h)ds+ ht

+e−r(T−t)(f (ST ,AT )− hT )

⎞⎠ (3.115)

Now, let us choose h such that hT = f (ST ,AT ). Then, proceeding similarly to
(3.112), we see that

V (St ,At , t)≤ Et max
a

⎛⎝ T∫
t

e−r(s−t)(g(Ss ,As ;as)+ (P− r)h)ds

⎞⎠+ ht (3.116)
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from which we get the following upper bound analogous to (3.113):

V (St ,At , t)≤ inf
h

⎧⎨⎩Et max
a

⎛⎝ T∫
t

e−r(s−t)
(

ht +μT hS+ 1
2Lh− rh+

g + ashA

)
ds

⎞⎠+ ht

⎫⎬⎭
(3.117)

Continuing the analogy with the early exercise (stopping time) case, we see that
a supremum over controls is replaced by an infimum taken over an expectation
in terms of pathwise maxima (essentially, perfect foresight execution). It is worth
applying this approach to the more general stopping-time problem in (3.98). In this
case we find the following upper bound:

V (St , t)≤ inf
h

⎧⎨⎩Et max
τ

⎛⎝ τ∫
t

e−r(s−t)
(
ht + 1

2Lh− rh+ g +μT hS
)

ds+
e−r(τ−t)

(
fτ − hτ

)
⎞⎠+ ht

⎫⎬⎭
(3.118)

Consider now using the value function itself as the argument in the infimum oper-
ators in (3.117) and (3.118). Using the equations satisfied by the value function in
(3.102) and (3.103), it can readily be seen that the duality gap is zero, again demon-
strating that tight upper bounds can be attained by employing good proxies for the
actual value function.

3.3.2.3 Example: gas storage

Again, we will see concrete, numerical illustrations of these concepts in Chapter
4. However, it should already be clear that duality methods provide a very pow-
erful way of crafting optimal control problems. As a short application, consider
the following valuation of a natural gas storage facility.101 Consider again a
mean-reverting (log) price with dynamics:

dS

S
= κ(θ − logS)dt +σdw (3.119)

We seek an injection/withdrawal policy (the control; positive for injection, nega-
tive for withdrawal) subject to the constraints of the facility. Ignoring discounting
effects, the most basic representation of the problem takes the form

V (S,Q, t)= sup
q

⎡⎣−Et

T∫
t

qsSsds

⎤⎦ ,

dQ= qdt

qmin ≤ q≤ qmax,0≤Q ≤Qmax

(3.120)
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Here Q denotes the cumulative inventory in storage (i.e., current capacity), clearly
bounded from above and below.102 Standard HJB analysis yields the following PDE
in terms of controls:

Vt + κ(θ − logS)SVS+ 1
2σ

2S2VSS+max
q
(q(VQ− S))= 0 (3.121)

Note in (3.121) the familiar interpretation of the so-called shadow price (incremen-
tal/marginal value of inventory) as the criterion for injection/withdrawal. We also
have the discrete-time version in terms of inventory changes:

V (S,Q, t)=max
Q′
(−(Q′ −Q)S+Et V (St+�t ,Q′, t +�t)) (3.122)

The duality result (3.117) becomes

V (St ,Qt , t)≤ inf
h

⎧⎨⎩Et max
q

⎛⎝ T∫
t

(
ht + κ(θ − logSs)SshS+ 1

2σ
2S2

s hSS+
qs(hQ− Ss)

)
ds

⎞⎠+ ht

⎫⎬⎭
(3.123)

Now, the obvious question presents itself: how should we choose the test function
(so to speak) h to get a good upper bound? As we have noted, good choices are
those that are close to the true value function. A frequently used lower bound for
storage valuation is the so-called basket of (spread) options103 approach. We have
already encountered this idea in Section 3.1.4, and more details are provided in EW.
The essential idea is that we replicate the storage payoff by buying/selling options
such that, regardless of how the options are exercised, no physical constraint of the
facility will be violated. The problem thus amounts to a constrained optimization
problem.104

The particular details of this optimization do not concern us here. The crucial
point is that the optimal solution is a linear combination of spread option values,
which are of course expectations of terminal value under the appropriate measure
(we make no distinction between physical and pricing measure here). As such, their
value has the form

h1,2 = Et (FT1,T2 −FT1,T1)
+ (3.124)

where Ft ,T = Et ST . As martingales, these value functions satisfy the PDE associated
with the Itô generator of the spot process.105 Thus, the corresponding operator
terms in the duality expression (3.123) vanish! The duality (upper-bound) result
then becomes simply
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V (St ,Qt , t)≤ Et max
q

⎛⎝ T∫
t

qs(hQ− Ss)ds

⎞⎠+ ht (3.125)

The expression in (3.125) has the obvious intuition of adjusting the baseline spread
option value by the expected value of (perfect foresight) injection/withdrawal in
terms of the shadow price. Note further that the result (3.125) is actually completely
general, and does not depend on the particulars of the process (3.119) at all. (We
introduced that process simply as a means of providing a familiar context for the
analysis.106) We will not attempt to quantify now how tight an upper bound (3.125)
is. We will simply note that the spread option lower bound is, in practice, typically a
good approximation (at least for facilities where the injection/withdrawal rates are
not too high, i.e., reservoirs as opposed to salt domes), so we would anticipate the
result in (3.125) to be a fairly tight upper bound.107

3.4 Appendix

3.4.1 Vega hedging and value drivers

In this section we explain (somewhat heuristically) how vega hedging a spread op-
tion creates exposure to realized correlation. We start (as usual) with the relevant
portfolio:

�= (S2(T)− S1(T))
+−V −

T∫
t

�1(s)dS1(s)−
T∫

t

�2(s)dS2(s)

−υ1

⎛⎝(S1(T)− S1)
+−C1−

T∫
t

�′1(s)dS1(s)

⎞⎠
−υ2

⎛⎝(S2(T)− S2)
+−C2−

T∫
t

�′2(s)dS2(s)

⎞⎠ (3.126)

For simplicity, we assume a zero-strike spread option and that the available leg op-
tions are ATM (at inception). The spread option (denoted by V ) is delta hedged, as
well as vega hedged (the leg options are denoted by Ci). The vega hedges are taken
to be static, but for the particular (fixed) volumes, the leg options are themselves
delta hedged. The portfolio (3.126) can be written as
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�= 1
2

T∫
t

((σ 2
1 − σ̂ 2

1 )S
2
1�11+ 2(ρσ1σ2− ρ̂σ̂1σ̂2)S1S2�12+ (σ 2

2 − σ̂ 2
2 )S

2
2�22)ds

− 1
2υ1

T∫
t

(σ 2
1 − σ̂ 2

1 )S
2
1�1ds− 1

2υ2

T∫
t

(σ 2
2 − σ̂ 2

2 )S
2
2�2ds (3.127)

in terms of realized and projected (denoted by hats) covariances. (Actually we are
being a bit sloppy here: the projected [leg] volatilities should actually be taken as the
implied volatilities that [by assumption here] exist in the market.) Now, we must
say something about the (option) hedge volumes. We take these to be the usual
vega-neutral ratios (between spread option and hedge options); using (3.55) and
(3.56), these are given by (in terms of inception and projection entities)

υ1 = S1(S1σ̂1�11+ S2ρ̂σ̂2�12)

S2
1σ̂1�1

= �11

�1
+ ρ̂ S2σ̂2

S1σ̂1

�12

�1

υ2 = S2(S1ρ̂σ̂1�12+ S2σ̂2�22)

S2
2σ̂2�2

= �22

�2
+ ρ̂ S1σ̂1

S2σ̂2

�12

�2

(3.128)

With these expressions (as well as the result (3.51)), the portfolio (3.126) becomes

�= 1
2

T∫
t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(σ 2
1 − σ̂ 2

1 )S
2
1(s)

(
�11(s)− �11

�1
�1(s)

)
+

2(ρσ1σ2− ρ̂σ̂1σ̂2)S1(s)S2(s)�12(s)−
ρ̂ S2σ̂2

S1σ̂1

�12
�1
�1(s)(σ 2

1 − σ̂ 2
1 )S

2
1(s)−

ρ̂ S1σ̂1
S2σ̂2

�12
�2
�2(s)(σ 2

2 − σ̂ 2
2 )S

2
2(s)+

(σ 2
2 − σ̂ 2

2 )S
2
2(s)

(
�22(s)− �22

�2
�2(s)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
ds (3.129)

or

�= 1
2

T∫
t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(ρ− ρ̂)σ1σ2S1(s)S2(s)�12(s)+
(σ 2

1 − σ̂ 2
1 )S

2
1(s)

(
�11(s)− �11

�1
�1(s)

)
+

(σ 2
2 − σ̂ 2

2 )S
2
2(s)

(
�22(s)− �22

�2
�2(s)

)
+

ρ̂σ̂1σ̂2�12S1S2

⎛⎝ 2
(
σ1
σ̂1

σ2
σ̂2
− 1
)

S1(s)
S1

S2(s)
S2

�12(s)
�12

−
�1(s)
�1

S2
1(s)

S2
1
(
σ 2

1

σ̂ 2
1
− 1)− �2(s)

�2

S2
2(s)

S2
2
(
σ 2

2

σ̂ 2
2
− 1)

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
ds

(3.130)
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Now, assuming the hedging period is sufficiently small (the typical case in tolling,
say, is to rebalance the vega hedges at the start of each month in the deal), we antici-
pate that the second and third terms in (3.130) will be close to zero. The fourth term
is proportional (approximately) to ( σ1

σ̂1
− σ2
σ̂2
)2 , and in reasonably efficient volatil-

ity markets (where implied volatility is a good projection of realized volatility), we
would expect this term to likewise be small. This leaves us with the first term, which
is proportional to the difference between realized and projected correlation.

3.4.2 Value drivers and information conditioning

It is worth introducing some complications to the valuation problem to better draw
out the points of interest. These issues will receive greater treatment in Chapter 6
when we discuss filtering; for now the basics will be sufficient.

3.4.2.1 Hedging in the presence of unobservable states

The quintessential example of a process with an unobservable component is
stochastic volatility. There is little doubt that volatilities of prices in actual energy
markets (or many other markets) are nonconstant, indeed nondeterministic. (EW
should be consulted for further illustration.) A very popular model (which we will
make much use of throughout this volume) is due to Heston (1993):

dS

S
= μdt +√vdw1

dv = κP(θP − v)dt +σ√vdw2

(3.131)

where the superscript P denotes parameter values under the physical measure
(again, the probability measure characterizing the distribution of observed prices).
The Brownian terms in (3.131) satisfy the Itô isometry dw1dw2 = ρdt . Now, we
have already seen in Section 3.1.2 that in the familiar BS case there is a connection
between replication and expectation wrt. a measure under which prices are mar-
tingales. The condition that the price S (the only tradeable in this example) be a
martingale is that it have zero drift; however, in general there is no unique con-
straint on the drift108 of the (unobservable) stochastic variance v. One possible set
of dynamics under some (martingale) measure Q is

dS

S
=√vdw1

dv = κQ(θQ− v)dt +σ√vdw2

(3.132)

This nonuniqueness is a characteristic feature of so-called incomplete markets,
under which replication of derivative securities is not possible. We discussed this
situation in detail in Section 3.2.109 Our interest here is in applying standard mar-
tingale pricing to valuing an option under the Heston dynamics in (3.131). This
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application will not only reveal the critical role that value drivers play in the valu-
ation problem, but also highlight the general applicability of the idea beyond the
standard BS setting. In fact, we will see that the standard approach of appealing
to martingale pricing imposes severe informational requirements on the problem,
and that we are advised to seek alternatives (while still keeping within the central
framework of valuation via portfolio construction).

In general, stochastic variance v and its dynamics are unobservable, so we cannot
form valuations or hedges by conditioning directly on variance. We can only extract
projections of stochastic variance from observed prices. In other words, we must
resort to some (Markovian110) filter/estimator, whose dynamics we will represent
as

dv̂ =μv(S, v̂)dt +σv(S, v̂)
dS

S

dσ̂ =μσ dt +σσ dS

S

dρ̂ =μρdt +σρ dS

S

dκ̂P =μκdt +σκ dS

S

dθ̂P =μθdt +σθ dS

S

(3.133)

and where we omit explicit dependence on the projected parameters (volatility of
variance, correlation, and mean reversion rate/level). (We will discuss filtering in
much greater detail in Chapter 6.) The main points to take from (3.133) are that
the dynamics of the estimators depend on both the prior values of the estimators
as well as observed prices, and that the only source of stochasticity comes from
price, hence the representation in terms of relative price changes. Now, assume we
value and hedge a derivative security according to risk-neutral Heston dynamics,
using the projected/estimated entities in a martingale formulation. Using (3.132)
and invoking Feynman-Kac/Itô, the value function V satisfies

Vt + κQ(θQ− v̂)Vv̂ + 1
2 S2v̂VSS+ ρ̂σ̂Sv̂VSv̂ + 1

2 σ̂
2v̂Vv̂v̂ = 0 (3.134)

In other words, we are taking the value function to be the (risk-neutral) martingale
expectation; however, we plug the estimates of the (unobserved) stochastic variance
into the valuation functional instead of the true value (which we cannot know).111

Our objective is to choose the (valuation) parameters (κQ,θQ) appropriately.
An obvious question presents itself: what does this value function mean? As

we have stressed, valuation can only take place within the context of a portfolio
construction. So, consider the following dynamics of a delta-hedged portfolio:
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d�= dV −�dS

= Vt dt +VSdS+Vν̂dv̂+ 1
2 VSSdS2+VSv̂dSdv̂+ 1

2 Vv̂v̂dv̂2+·· ·−�dS
(3.135)

where we omit terms involving derivatives wrt. projected process (covariance) pa-
rameters, as they will prove somewhat ancillary to our main point. Plainly, we will
take the hedge to be the vega-adjusted delta:

�= VS+ σv

S
Vv̂ (3.136)

Using the valuation PDE in (3.134), the portfolio dynamics (3.135) then becomes

d�=
⎛⎝ Vν̂ (μv − κQ(θQ− v̂))+

1
2 VSSS2(v− v̂)+VSv̂S(σvv− ρ̂σ̂ v̂)+ 1

2 Vv̂v̂(σ
2
v v− σ̂ 2v̂)+

·· ·

⎞⎠dt (3.137)

The expression (3.137) can be written as

d�=

⎛⎜⎜⎜⎜⎜⎜⎝

Vν̂ (κ̂
P(θ̂P − v̂)− κQ(θQ− v̂))+

Vν̂ (μv − κ̂P(θ̂P − v̂))+
1
2 VSSS2(v− v̂)+
VSv̂S((ρσ − ρ̂σ̂ )v̂+σvv−ρσ v̂)+
1
2 Vv̂v̂((σ

2− σ̂ 2)v̂+σ 2
v v−σ 2v̂)+

·· ·

⎞⎟⎟⎟⎟⎟⎟⎠dt (3.138)

3.4.2.2 Decomposing portfolio (residual) risk

We can see from each of the constituent terms in (3.138) a combination of effects.
In the first vega term, we have the usual (as we will see) difference between the drift
of the (unhedgeable) stochastic variance (filtered) under the physical and pricing
measures (or more accurately, the estimated/filtered drift). There is also, in the sec-
ond vega term, the difference between the mean of the filtered variance and the
corresponding estimate of the physical drift. In the gamma terms, the term propor-
tional to VSS is the (hopefully by now) familiar difference between realized variance
and projected variance. In the next two (gamma) terms, there is the difference be-
tween actual parameters (instantaneous covariance between price and stochastic
variance and instantaneous variance of stochastic variance) and filtered/estimated
parameters, and the difference between the variability of the estimators (essentially,
estimation error) and actual parameters.

Note that there is no reason to think that the variability of the estimators will cor-
respond to the actual dynamics of the physical process in (3.131). In particular, the
cross vega term VSv̂ has the contribution σvv− ρσ v̂. Even if the filtered variance v̂
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is close to the actual variance v, there is no reason to think that the variability σv

will be close to the actual (instantaneous) covariance ρσ . Indeed, since the estima-
tor is perfectly correlated with price (by construction), in some sense it cannot well
capture the joint movements of stochastic variance and price. In other words, there
are two sources of risk introduced into the portfolio dynamics (3.138). The first is
the usual estimation error between realized and projected entities. The second is
the difference between actual dynamics of the unobserved process and the dynam-
ics implied from the estimation dynamics in (3.133). Even if the estimator is good
at reducing the former, there is no reason to think it will be good at reducing the
latter.

It is reasonable to ask at this stage: what does this mathematics mean? Recall that
we are trying to value (and of course hedge) a derivative security through martin-
gale pricing methods that are standard in the literature. Since the underlying process
is not (completely) observable, this valuation can only be based on some estimate
of the unobservable components (as well as its dynamics). The portfolio process
that arises as a result of (dynamically) hedging the security propagates estimation
error, both in terms of the direct estimates and the indirect estimates of the (unob-
served) process dynamics. The valuation parameters (κQ,θQ) must in some sense
do double work: from (3.138) it can be seen that the portfolio entails exposure to
the realized (filtered) drift, plus the accumulation of filter error that is independent
of any valuation. The resulting residual risk must be accounted for through a partic-
ular choice of (κQ,θQ) in the valuation function (and associated hedging scheme),
and it is not immediately obvious how exactly to do this.

We thus come to our main point here. Akin to the standard BS case (3.13),
the portfolio dynamics in (3.138) create an exposure to the realization of some
property of price volatility, which must be accounted for through certain param-
eters in the valuation functional. However, we see that in more general cases of
interest (yet still sufficiently simple to prove reasonably tractable), the informa-
tional requirements for conducting the standard procedure of martingale pricing
are enormous. We must somehow create a filtering regimen (represented abstractly
by (3.133)) and then ascertain how the output of this procedure (or more accurately
its error) interacts with the value function through a particular choice of parame-
terization. Neither of these tasks is easy in any way. We are led to wonder if there is
an alternative approach.

Fortunately, there is, and we actually have already seen it here. We have actually
been a bit misleading here. We are in fact not employing standard martingale pric-
ing here. That approach involves pricing in terms of the actual unobservables, not
some (filtered) estimate. (This fact alone raises questions as to that paradigm’s fea-
sibility.) What we have proposed doing here is actually an alternative to martingale
pricing, while retaining the formal trappings. Since we have essentially weakened
the constraints imposed by strict martingale pricing, we can ask how much further
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we can go in relaxing the form of the value function. In fact, we have already an-
swered this question. We saw in Section 3.2 that we can go surprisingly far, and in
fact the BS functional performs quite robustly, even in non-BS environments. The
reason, we saw, is related to why a Heston functional is problematic, even when the
underlying dynamics are correctly specified by (3.132): the informational require-
ments are far less stringent for the BS functional. A good value driver must allow
for robust conditioning on available information.

Although we have presented this material in fairly general form, we have to stress
that the underlying issues that we seek to address are amplified in energy markets,
where the nature of price dynamics can cause standard modeling approaches to
run headlong into the structure vs. robustness conflict. The fact that, e.g., volatility
is stochastic112 is not a reason in and of itself to employ formal stochastic volatility
models. Nonetheless, models such as Heston in (3.131) are very useful for a number
of reasons, not least their analytical and numerical tractability. We will consider
many examples in Chapter 5. Another thing we have seen here is the appearance of
well-known greeks (sensitivities to various underlyings) in the valuation problem.
This is not an accident, and these entities in fact play an important role in valuation.



4 Selected Case Studies

4.1 Storage

We have already described the basics of storage deals in Section 1.2.3, and intro-
duced spot-based control problem formulations in Section 3.3.2. (Recall that we
also considered storage in Section 3.1.4 in contrasting dynamic hedging strategies
[delta-hedging vs. rolling intrinsic].) In fact, in the discussion of control-based
approaches, we pointed out that essentially forward-based valuations in terms of
baskets-of-spread options provide lower bounds to this generally intractable opti-
mization problem. This connection was not accidental; in Section 3.1.1 we stressed
the basic unity of the two valuation paradigms (spot vs. forward). We will now
provide a concrete example in support of these claims.

4.1.0.1 Spot vs. forward modeling

We will ignore throughout this chapter the distinction between physical and pricing
probability measures. Recall the basic (log-) mean-reverting spot model in (3.119),
with a (deterministic) seasonality factor χ introduced:

dS

S
= (κ(θ − logS)+ χ̇ + κχ)dt +σdw (4.1)

The basic relationship between spot and forward prices is given by Ft ,T = Et ST .
Using methods that will be fully developed in Chapter 5, we will see that the
corresponding forward dynamics are given by

dFt ,T

Ft ,T
= σ e−κ(T−t)dw (4.2)

with explicit solution

Ft ,T = exp

(
ge−κ(T−t)+ θ(1− e−κ(T−t))+χT −χt e−κ(T−t)+ σ

2

4κ
(1− e−2κ(T−t))

)
(4.3)
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In Chapter 7 we will see a detailed description of computational approaches to the
basic control algorithm in (3.122). Our purpose here is to simply compare this spot-
based solution to optimal (static) spread-option allocations based on the (implied)
forward representation in (4.3).

4.1.0.2 Relation between daily and monthly valuation1

An alternative means of valuation is to consider, at a monthly level, the value from
selling static (monthly) option positions such that total value is maximized while
ensuring that, regardless of option exercise, the physical constraints of the system
(flow rates, inventory levels, etc.) are not violated (see EW for a more detailed
discussion). The underlying setup is a linear programming problem in terms of
the monthly options across months (e.g., options to inject in a given month and
withdraw in some later month); see the Appendix to this chapter for details of the
algorithm. These spread options can be computed from the forward curve implied
by the underlying spot process (see (4.3)) and using the associated volatility term
structure from the dynamics (4.2):

σ

√
1− exp(−2κ(T − t))

2κ(T − t)
(4.4)

and using the fact that the movements of the individual forward prices are very
nearly perfectly correlated.

Now, we can consider the limit of the monthly option value as we increase the res-
olution of monthly hedging. In other words, for a given deal term, we can construct
a daily forward curve, and then we segment that curve into blocks corresponding
to the temporal resolution of the spread options we can sell against the facility.
For example, for a 365-day term and a 32-day resolution, we have 12 blocks of
“monthly” contracts (11 blocks of length 32 days, 1 block of length 13 days) which
can serve as inputs to a monthly storage valuation model. In the limit of daily
hedging resolution, we would expect the monthly value to correspond to the daily
value.

This is in fact what we see. Consider a specific example with the following
parameters (incl. monthly seasonality factor):

σ = 1.58, θ = 0.05,κ = 0.74,g0 = 4

χ = {1.02,1.02,0.56,0.55,0.53,0.49,0.46,0.44,0.48,0.57,0.56,0.73} (4.5)

Facility max capacity is 1,000,000 MMBtu, max injection rate is 20,000 MMBtu/day,
max withdrawal rate is 40,000 MMBtu/day (for convenience we exclude any injec-
tion and withdrawal charges and any fuel losses). The implied forward curve at the
daily resolution is shown in Figure 4.1. (We assume a single day until the start of
the deal.)
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Figure 4.1 Implied daily curve. Constructed from (4.3) and (4.5). Note that the seasonality factor

in this case only has calendar-month dependence

The comparison of daily and monthly value for increasing resolution is shown in
Table 4.1 and Figure 4.2.

So we see that, indeed, the monthly value does approach the daily value in the
limit of daily hedging. (We were unable to run the monthly valuation for a resolu-
tion of one day because of memory constraints; there is an enormous number of
spread options to compute in that case. Still, the pattern is clear.) In truth, the daily
and monthly valuations do not seem to converge exactly; this is a reflection of the
fact that the underlying monthly representation is actually a lower bound, but it
becomes tighter as the spot mean-reversion rate decreases (or equivalently, as the
volatility term structure becomes flatter).

Table 4.1 Daily and monthly values.

Values are in dollars

Option value
Resolution Monthly Daily

32 3,754,335 4,462,576

16 4,231,060 4,462,576

8 4,360,514 4,462,576

4 4,394,548 4,462,576

2 4,426,909 4,462,576
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Figure 4.2 Daily and monthly values. Note that as the resolution of the monthly hedge increases,

the monthly value approaches the daily value

4.1.0.3 Assessment

Obviously, actually existing spot prices are considerably more complex than the
simple model given by (4.1). And of course, as we saw in Chapter 2 (to be further
confirmed in Chapter 6), even if prices were so well described, it is unlikely that we
would be able to robustly estimate the underlying mean-reversion rates (and levels)
from available data. However, as the simple example considered here reveals, we can
expect to obtain reasonable lower bounds to the storage valuation problem through
a suitable spread option representation in terms of forwards. The relevant inputs to
these spread option valuation functionals are of course the ratio volatilities between
pairs of injection and withdrawal months. These ratio volatilities of course manifest
the underlying mean reversion through the term structure of volatility. In practice,
the algorithms laid out in Section 3.1.3, for estimating realized QV, can provide a
robust alternative to detailed spot- and control-based valuations (in conjunction of
course with the [static] optimization algorithms provided in the Appendix to this
chapter). Again, the idea is valuation through replication of good lower bounds.2

4.2 Tolling

Tolling deals were introduced in Section 1.2.1. Although the core embedded option-
ality in such deals is a spread option between electricity and fuel (typically natural
gas, at least in the United States), there is an enormous amount of operational com-
plexity that makes the valuation problem far more interesting (and challenging).
In particular, even approximations to the problem are sufficiently computationally
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taxing that simulation methods, of which we generally caution against overuse, are
a necessary resort (see Section 7.5). These techniques are further hampered by the
fact that simulation, by its essentially forward-looking nature, is ill equipped to
handle control problems, whose solution generally requires backward-proceeding
methods such as dynamic programming.

A common approach to this difficulty is so-called regression-based techniques for
optimal control problems with simulation. These will be discussed in greater detail
in Section 7.6. For the purposes here, one should simply recall the modern defi-
nition of conditional expected value as a projection onto a certain sigma-algebra
(roughly speaking, the set of events generated by the entity being conditioned
upon). This notion of projection has obvious affinities with regression. A further
point that will be elaborated upon in Chapter 7 is that tolling problems generally
have multiple exercise rights, e.g., the right to start up only for onpeak periods and
shut down during offpeak periods. The basic duality results introduced in Section
3.3 must then be extended, and we discuss in Chapter 7 important work due to
Meinshausen and Hambly (2004).

After this (admittedly very brief) overview of the main computational issues,3 we
will now look more closely at tolling problems.

4.2.0.1 Control problems: application to tolling

While the Meinshausen-Hambly results are clearly an important extension of the
basic upper-bound duality result, some modifications are required for control prob-
lems, as undertaken by Gyurkó et al. (2011). It proves more convenient to analyze
the problem directly in terms of (state-dependent) value, as opposed to marginal
value. We will illustrate with an example from tolling. (We will only focus on the
essential features of the problem, and so ignore realistic aspects such as hourly
dispatch capability, ramp-up effects, outages, emissions, heat rate curves, etc.) Al-
though we have already encountered the basic structure of these deals, we will recap
the central aspects here.

The essential structure of a tolling deal is a spread option between power revenue
and fuel costs. There are in fact additional costs, both variable (proportional to gen-
eration level) and fixed (e.g., start-up costs [including volumes of fuel] necessary to
bring the unit to a minimum level of generation). In addition, part of the spread op-
tionality includes the ability to generate incrementally above some minimum level
of output. The basic form for the payoff from starting up on a given day4 can be
represented as

24

(
Cmin(P−HRminG−VOM)+
(Cmax−Cmin)(P−HRincG−VOM)+

)
− SC−F ·G (4.6)

where the notation is as follows:
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• P, G: power and gas prices (resp.)
• Cmin, Cmax: generation levels at min and max capacity (resp.)
• HRmin, HRmax: unit heat rates at min and max capacity

• HRinc: incremental heat rate, equal to HRmaxCmax−HRminCmin
Cmax−Cmin• VOM : variable O&M

• SC: start-up cost
• F : start-up fuel amount

The presence of volume-independent costs and min-run operational levels means
the optimal dispatch problem cannot be reduced to a series of (daily) spread op-
tions. For example, it may be optimal to run the plant during periods of negative
price spreads so as to avoid start charges for periods where spreads are very high.
We can craft the problem as an optimal control, normalizing by 24Cmax and using
the notation α = Cmin/Cmax, X = SC + F ·G,5 and Z = P −HR ·G−VOM (for
notational convenience we ignore the distinction between heat rates at different
operational levels). The problem is then stated as6

Vt (Gt ,Pt ,ut−1)= sup
ut ,...,uT

EQ
t

T∑
s=t

us(αZs+ (1−α)Z+s − (1−us−1)Xs) (4.7)

where dispatch occurs over days indexed by t , . . . ,T and we have chosen an appro-
priate pricing measure Q. The control u indicates the state of the unit: 0 means the
unit is off, 1 means the unit is off. (We implicitly assume here that there are no lim-
itations on start-ups/shut-downs.) The optimal control at a given time will depend
on the power and gas prices at that time, as well as the state of the unit at the pre-
vious time. We can write this expression in the usual form amenable for backward
induction:

Vt (Gt ,Pt ,ut−1)

= max
ut (Gt ,Pt ,ut−1)

{ut (αZt + (1−α)Z+t − (1−ut−1)Xt )+EQ
t Vt+1(G,P,ut )}

=max

{
ut−1(αZt + (1−α)Z+t )+EQ

t Vt+1(G,P,ut−1),

(1−ut−1)(αZt + (1−α)Z+t −Xt )+EQ
t Vt+1(G,P, 1−ut−1)

}
(4.8)

4.2.0.2 State-dependent value proxies

In the second equation in (4.8), we see that the optimal decision is between staying
in the current state (e.g., remaining on) and switching (e.g., starting up). We now
adapt here some of the duality results from Gyurkó et al. (2011). Introduce a family
of state-dependent Q–martingales Mut

i . Then we have that
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Vt (Gt ,Pt ,ut−1)

= sup
ut ,...,uT

EQ
t

[
T−1∑
s=t

(H(Gs ,Ps ;us−1,us)−Mus
s+1+Mus

s )+H(GT ,PT ;uT−1,uT )

]

≤ EQ
t max

ut ,...,uT

[
T−1∑
s=t

(H(Gs ,Ps ;us−1,us)−Mus
s+1+Mus

s )+H(GT ,PT ;uT−1,uT )

]
(4.9)

where

H(GT ,PT ;ut−1,ut )= ut (αZt + (1−α)Z+t − (1−ut−1)Xt ) (4.10)

Thus we have

Vt (Gt ,Pt ,ut−1)≤ inf
M

EQ
t max

ut ,...,uT

⎡⎢⎣
T−1∑
s=t

(H(Gs ,Ps ;us−1,us)−Mus
s+1+Mus

s )+
H(GT ,PT ;uT−1,uT )

⎤⎥⎦
(4.11)

To see that the duality gap is again zero, consider the Doob-Meyer decomposition
of the value function:

M̃ut
t+1 = M̃ut

t +Vt+1(Gt+1,Pt+1,ut )−EQ
t Vt+1(G,P,ut ) (4.12)

Using this martingale, we see that the infimum in (4.11) is bounded above by

EQ
t max

ut ,...,uT

⎡⎢⎣
T−1∑
s=t

(H(Gs ,Ps ;us−1,us)−Vs+1(Gs+1,Ps+1,us)+
EQ

s Vs+1(G,P,us))+H(GT ,PT ;uT−1,uT )

⎤⎥⎦ (4.13)

Now, since

Vt (Gt ,Pt ;ut−1)≥ ut (αZt + (1−α)Z+t − (1−ut−1)Xt )+EQ
t Vt+1(G,P,ut )

(4.14)
we see that the infimum is further bounded by

EQ
t max

ut ,...,uT

⎡⎢⎣
T−1∑
s=t

(Vs(Gs ,Ps ,us−1)−Vs+1(Gs+1,Ps+1,us))+
H(GT ,PT ;uT−1,uT )

⎤⎥⎦
= EQ

t max
ut ,...,uT

[Vt (Gt ,Pt ,ut−1)−VT (GT ,PT ,uT−1)

+H(GT ,PT ;uT−1,uT )]≤ Vt (Gt ,Pt ,ut−1) (4.15)
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where the last inequality in (4.15) follows from the fact that the value function
always dominates any constituent payoff term. Thus we see that the duality gap
is zero for this special choice of martingale, just as in the conventional American
option case. So we again see a natural approach to getting a good upper bound: with
a suitable lower-bound approximation, we can find the martingale component (via
Doob-Meyer) then perform the above pathwise optimization (see also Andersen
and Broadie [2004]7).

4.2.0.3 More tolling: lower and upper bounds8,9

Having outlined how good upper bounds on the value function can be obtained, we
now turn attention to some approximate (lower-bound) valuations that not only
offer computational feasibility and provide a means for obtaining the desired up-
per bounds, but also allow decomposition of the tolling value in components that
can be related to instruments that trade in reasonably liquid markets. These would
certainly include forward prices and futures in most developed power and gas mar-
kets, but in many cases options (typically at-the-money [ATM], for both monthly
and daily exercise).

To provide some context, we note that, as an option, the value from the physical
tolling contract comes from the ability to reverse operational decisions and to com-
mit to specific operational strategies based on current information. For example,
we may decide to start the plant on a given day, and leave it on for the remainder of
some period (say, a week). Or, we may decide to shut the plant down on a Friday
night and leave it off for the weekend, starting back up on Monday. In general, as
described above, this kind of Markov control problem will depend on the current
state of the unit (including the number of state changes up to the current time) as
well as the current value of prices. We can anticipate that this exercise surface will
be quite complicated, but some intuitive, suboptimal control choices readily suggest
themselves.

Assume we are at the start of a month. Then, we can elect to run the unit in one
of the following three ways:

1. If economical, run at min capacity for the whole month, with the option to ramp
up to max capacity each day.

2. If economical, run at min capacity each day, and shut down until the start of the
next day; we have the option to ramp up to max capacity in the relevant temporal
block (e.g. on-peak and off-peak) within each day.

3. If economical, run at max capacity for each temporal block of each day, and shut
down at the end of that block.

Note that in modes 2 and 3, start-up costs are incurred each day. That is to say, price
spreads must be sufficiently high to overcome variable and start-up costs. (Thus
mode 3 is simply a collection of block [on-peak and off-peak] spread options, with
strike price being VOM plus baked-in start charges.) In mode 1, there is flexibility
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to remain on if the unit is already up (thus avoiding a single start charge that would
effectively be prorated over the entire month). Based on price and volatility infor-
mation at the start of the month in question, we can choose to operate in the mode
yielding the highest value. In other words, the value is given by

max(EQ
0 V1,EQ

0 V2,EQ
0 V3) (4.16)

where the constituent payoffs V1,2,3 are given in the Appendix to this chapter.10

The expression in (4.16) obviously represents a lower-bound valuation, as it en-
compasses only a subset of possible operational flexibility. The central question then
is: how good of a (lower) bound is it? Before addressing this issue, we note that we
can always bind the value from above by considering perfect foresight operation
across paths. This amounts to taking the (trivial) zero martingale in the duality
expression (4.11). Our question can then be rephrased as determining where the
true value is situated between these two bounds. For this we turn to the martingale
duality techniques we have just discussed.

As an example, we perform an actual valuation of a specific power plant. Unit
characteristics are shown in Table 4.2:

We do not strive for any particular realism for the prices and volatili-
ties/correlations, but we take not unreasonable values for all months (so no
seasonality, but forward vols are allowed to decline by 5% per month to mimic
the Samuelson effect), as displayed in Table 4.3:

As with storage, in practice actual inputs would arise from the estimators out-
lined in Section 3.1. Depending on the particular market structure, correlations
will either be implied from projected heat rate volatilities or directly estimated;
the critical caveat is whether or not vega hedges can be put on (i.e., whether or

Table 4.2 Representative operational characteristics for tolling

HR_min HR_max VOM SC F C_min C_max
(MMBtu/MWh) (MMBtu/MWh) ($/MWh) ($) (MMBtu) (MW) (MW)

10 8 2.5 10,000 1,000 50 100

Table 4.3 Representative price and covariance data for tolling. Constant across contract

months (Jul12–Jun15); no seasonal structure, but Samuelson effect for volatility term structure

Fwd prices Monthly vols Monthly corrs Cash vols Cash corrs

Onpk Offpk Gas Onpk Offpk Gas Onpk- Onpk- Offpk- Onpk Offpk Gas Onpk- Onpk- Offpk-

offpk gas gas offpk gas gas

($/MWh) ($/MWh) ($/MMBtu)

50 35 7 0.3 0.3 0.4 0.6 0.8 0.8 1.8 1.7 0.5 0.5 0.6 0.6
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Figure 4.3 Bounded tolling valuations. Comparison of three-strategy dispatch option (4.16)

(lower bound), perfect foresight dispatch (upper bound), least-squares Monte Carlo, and

martingale duality

not leg volatilities trade; see also the Appendix to Chapter 3). The three-year deal
term begins one month from inception (we assume that the setting is the summer
of 2012). The results from the upper- and lower-bound calculations, least-squares
(LSQ) Monte Carlo (using basis functions of the form (7.199) and (7.200)), and the
duality formulation (using the LSQ valuation as martingale proxy) are presented in
Figure 4.3.11

We observe the following points. First, the tightness of the regression-based result
and the corresponding duality result indicate that this particular set of basis func-
tions is in fact a good choice: the duality gap is small. The obvious drawback of least-
squares Monte Carlo is that the choice of regressors is typically arbitrary and we sel-
dom know how good (or bad) they are; in conjunction with duality techniques we
see we have a useful diagnostic. Second, we have a good idea of where the true value
lies relative to the lower bound (three-strategy dispatch) and upper bound (perfect
foresight/lookback dispatch). This is important because these two valuations are
both simple and intuitive, and fairly straightforward to implement (as is the impor-
tant calculation of the associated hedges).12 However, in practice we rarely know
how far off these bounds are from the true value, and it would be good to have a
useful assessment (beyond the natural choice of taking the midpoint valuation).

Finally, we come to perhaps the most important point: we now have some idea
of how much physical, operational detail is necessary for a given tolling problem.
Put differently, we can assess the incremental cost of excluding certain operational
characteristics. Roughly speaking, from Figure 4.3 we see that the lower bound
captures about 85–90% of the true value. That is to say, these three basic opera-
tional strategies account for a fairly high percentage of value. It is probably possible
to conceive of other operational modes that can be incorporated in a tractable
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manner in payoffs such as (4.16). The question, as always, is whether it is worth do-
ing so. We see here a manner of gauging the incremental value. We thus have here
a means of bridging market-based, financial valuations with physical, spot-based
valuations.13

4.3 Appendix

4.3.1 (Monthly) Spread option representation of storage

We introduce the following notation:

• F : forward prices
• O: option prices
• N : # months
• V : positions in spread options
• U : positions in max options
• X : positions in min options

Represent the portfolio payoff as

N∑
i=1

i∑
j=1

[Vij(Fi−Fj)
++Uij max(Fi ,Fj)−Xij min(Fi ,Fj)] (4.17)

In other words, sell spread options and max options and buy min options against
the facility (for simplicity fuel and commodity costs have been omitted but it should
be clear how to include them); note that diagonal elements in this ensemble (i = j)
correspond to forward positions. We require that, regardless of how these options
are exercised, no physical constraint will be violated. Introducing this (presumably
clear) notation for facility constraints, this framework gives rise to the following
optimization problem (a linear program):

max
N∑

i=1

i∑
j=1

[VijO
spread
ij +UijO

max
ij −XijO

min
ij ]

s.t.

N∑
j=i+1

Vji+
N∑

j=i+1

Xji+
i∑

j=1

Xij ≤MIQi

i−1∑
j=1

Vij +
N∑

j=i+1

Uji+
i∑

j=1

Uij ≤MWQi
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InvMini ≤ C0+
i∑

k=1

⎡⎣ N∑
j=k

(Vjk +Xjk)−
k∑

j=1

(Vkj +Ukj)

⎤⎦≤ InvMaxi

InvMini ≤ C0+
i∑

k=1

⎡⎣ k∑
j=1

Xkj −
N∑

j=k

Ujk

⎤⎦≤ InvMaxi

(4.18)

That is, the optimal allocation of options are constrained such that, under the
worst-case situation where they are all exercised, we have that

1. Injections from spread option sales and min option purchases do not exceed
maximum monthly injection quantities.

2. Withdrawals from spread-option sales and max-option sales do not exceed
maximum monthly withdrawal quantities.

3. Cumulative constraints (inventory requirements less initial capacity) are not
violated, in two senses:
a) Total inflows against subsequent months minus total outflows from preceding

months
b) Total inflows from preceding months minus total outflows against subsequent

months (spread options cannot enter into this balance).

4.3.2 Lower-bound tolling payoffs

Refer back to (4.16) and the associated discussion. The payoffs for the three basic
operational strategies (min-run/ramp to max, daily start-up/shut-down, and block
start-up/shut) are given (resp.) by

V1 = β(α(Pon−HRminG−VOM)+ (1−α)(Pon−HRincG−VOM)+)
+ (1−β)(α(Poff −HRminG−VOM)+ (1−α)(Poff −HRincG−VOM)+)

V2 =
⎛⎝ α(Pday −HRminG−VOM)− SC−F .G

(1−α)
( 2

3 (Pon−HRincG−VOM)++
1
3 (Poff −HRincG−VOM)+

) ⎞⎠
+ (1−β)(Poff −HRmaxG−VOM − SC−F .G)+

V3 = β
( ( 2

3 (Pon−HRmaxG−VOM)− SC−F .G
)+( 1

3 (Poff −HRmaxG−VOM)− SC−F .G
)+

)
+ (1−β)(Poff −HRmaxG−VOM − SC−F .G)+ (4.19)

where β is the ratio of on-peak to off-peak days, and we assume the usual breakout
in U.S. markets of 16 on-peak hours and 8 off-peak hours on a peak day. Note
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that the daily start and block start options have a common component for off-
peak days. (For convenience we assume the unit was already on at the start of the
period in question, so there is no need to include one-day start charges in the min-
run strategy.) It should be clear how fuel switching can be incorporated in this
framework.



5 Analytical Techniques

5.1 Change of measure techniques

We will now discuss in detail a powerful set of techniques based on changes of
probability measure. These techniques are extremely useful for reducing the com-
putational complexity of pricing a wide variety of structured products, as well as
identifying and extracting the essential features of many valuation problems. By this
latter point we mean not simply numerical aspects (important as they are), but re-
ducing a problem so that those statistics sufficient for establishing robust valuations
(i.e., value drivers) can be obtained.

We have already seen two examples of these techniques. The first is the standard
Black-Scholes framework, where the replication cost of an option is given by the
conditional expectation of the terminal payoff under a probability measure under
which the price of the underlying asset is a martingale. The second is the Margrabe
formula for pricing a spread option, where the option price, denominated in terms
of one of the underlying leg assets, is also given by a conditional expectation of the
redenominated payoff. But this redenominated asset (the ratio of the two legs) de-
pends only on a specific combination of the constituent volatilities and correlation
(namely, the ratio volatility). Let us provide a bit of overview.

5.1.1 Review/main ideas

Although our purpose here is not to provide a complete treatment of the relevant,
technical concepts from measure theoretic probability, it is appropriate to provide
a quick outline and definitions.1 Two probability measures P and Q are said to be
equivalent if they share a common sample space� and a common sigma algebra F
of events,2 and the following holds for any event A:

P(A) > 0⇔Q(A) > 0

In other words, events that are possible (impossible) under P are possible (impos-
sible) Q. (That is, they define the same null sets.) The so-called Radon-Nikodym

131
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theorem states that there is a measureable function ξ (that is, measureable with
respect to the common sigma algebra of the two probability measures) such that

Q(A)= Epξ1A (5.1)

where 1A denotes the indicator function with respect to the event A. The function
ξ is commonly referred to as the Radon-Nikodym (RN) derivative and is usually
written as

dQ

dP
= ξ (5.2)

By taking the measure of the universal event we immediately see that any candidate
RN derivative must satisfy Epξ = 1, which in the context of stochastic processes
amounts to the requirement that the RN derivative, conceived of as a process, must
be a P−martingale.

5.1.1.1 A concrete example

To dispense with some of the abstraction, it is worth stressing that many classes of
processes that we are interested in will retain their basic structural form under the
kinds of measure changes that are important for valuation purposes. To fix matters,
we will here state a collection of basic foundational results for Gaussian processes,
which will be derived in the course of this section. The central message is the man-
ner in which means and covariances change under specific measure changes, which
can broadly be thought of in terms of re-denominating the basic units in which
some market are reckoned.

Assume we have n assets which have the following dynamics under a measure Q:

dzi =− 1
2σ

2
i dt +σidwi

where dwidwj = ρijdt . Assume further we have a contingent claim with payoff of
the form

YT = ezk(T)Xk(e
zi(T))

where Xk is a multilinear form. Then for the following changes of measure

dQp

dQ
= ezp(T)−zp

we have the following results:

(i). zk(T) ∼ N(zk + (ρpkσpσk − 1
2σ

2
k )τ ,σk) under Qp where τ = T − t , or in

Stochastic Differential Equation (SDE) form, dzk = (ρpkσpσk − 1
2σ

2
k )dt +

σkdwk
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(ii). zk(T)− z1(T) ∼ Nn−1(zk − z1 − 1
2 (σ

2
1 − 2ρ1kσ1σk + σ 2

k )τ ,�ijτ) under Q1,
where Nn−1 denotes the multidimensional normal cumulative distribution
function (CDF) and the covariance matrix is given by �ij = σ 2

1 − ρ1iσ1σi −
ρ1jσ1σj+ρijσiσj ; in SDE form dz̃k =− 1

2�kkdt+√�kkdw̃k where z̃k ≡ zk−z1

and dw̃k is a standard Brownian motion with dw̃idw̃j =�ijdt/
√
�ii�jj

(iii). EQ
t YT = ezk EQk

t Xk(e
zi(T)−zk(T))

(iv). For the special case where Xk can be expressed in the form I(Ak
ijzj ≤ bk

i ), the ex-
pectations in part (iii) can be evaluated in terms of multidimensional normal
CDFs using the fact that normality is retained under linear transformations
and the known results for the means and covariances from the change of
measure results in part (ii).

5.1.1.2 Girsanov and beyond

Technicalities aside, computations involving change of measure are greatly facil-
itated (in a very wide range of applications/models) via characteristic functions.
(We will see the central role characteristic functions play in the construction of the
canonical class of Lévy process models in Section 5.2.1) In fact, the utility of the
characteristic function formulation goes well beyond this theoretical elegance. This
point can be seen in the derivation of the well-known Girsanov transformation,
which plays a central role in standard BS option pricing theory. Suppose that, under
the physical (i.e., observed) measure P, log prices are given by GBM with drift:

dz = (μ−σ 2/2)dt +σdw (5.3)

Now, if we seek a pricing measure Q under which prices are martingales (from
which meaningful [in whatever sense] option prices, say, can be derived), we must
have3

EQ
t ezT = ez (5.4)

Now, the RN process must be a P−martingale, so must take the form dQ
dP =

exp(− 1
2α

2τ +αwτ ) for some α, where τ ≡ T − t . Thus we have

EQ
t ezT = ez− 1

2α
2τ+(μ−σ 2/2)τEP

t e(α+σ)(wT−w) = ez+(μ+ασ)τ (5.5)

using standard results for the characteristic function of a normal random variable.4

Thus, the condition that z be a Q–martingale becomes

α =−μ
σ

(5.6)

which is of course the familiar Girsanov result for change of measure for GBM
(as well as illustrating the economic intuition of the Sharpe ratio for weighting
preferences in the appropriate portfolio).
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This standard textbook derivation of Girsanov can be augmented by the following
example, which is quite simple but also serves to introduce some underlying sub-
tleties. A basic intuition that must be grasped is that a measure change essentially
changes the (probabilistic) weightings given to the paths of a process; a measure
change cannot change the fundamental nature of the process itself.5 We saw in the
context of Girsanov that a measure change served to change the drift of the under-
lying process, but not its diffusive structure. This point holds true in general. So, for
example, a jump process will remain some kind of jump process under a measure
change, and if the process is suitably simple, should retain some basic features (such
as remaining a Poisson process, in particular). To see this, consider the logarithm z
of a price process (under the physical measure P) with only linear drift and jumps
(i.e., no diffusion term):

dz = (μ−λk)dt + jdq (5.7)

where the jump intensity is denoted (as usual) by λ and where k = E(ej − 1). To
(helpfully) fix matters we suppose that the jump amplitude (given by j) is binomi-
ally distributed: the log process shifts up by u with probability p and shifts down
by d with probability 1− p (so that the price process goes up to eu or down to
ed); in between jumps the process simply trends linearly. Again, we seek a P-
martingale process induces a measure change Q under which the price process is
a Q-martingale. A suitable candidate ξ must have the following P-dynamics:

dξ =−λk′dt + j′dq (5.8)

for some new jump amplitude j′ and where k′ ≡ E(ej′ − 1) = P(eu′ − 1) +
(1− p)(ed′ − 1) for some new up/down moves u′ and d′. Using basic results of Itô
calculus for jumps and (5.2), we have that

EQ
t ezT = e−ξEP

t ezT+ξT = exp(z+ (μ−λk−λk′ +λE(ej+j′ − 1))(T − t)) (5.9)

The terms in the exponent proportional to the time horizon in (5.9) can be
written as

μ−λk−λk′ +λE(ejej′ − ej′ + ej′ − 1)

= μ−λk+λEej′(ej − 1)= μ−λk+λ′E′(ej − 1) (5.10)

where λ′ = λEej′ and the prime on the expectation operator in (5.10) denotes an-
other measure change induced by the RN derivative ej′/Eej′ . Now, the first thing
to note is that the requirement that the price process becomes a martingale under
the measure change cannot be uniquely determined; from (5.10) we only require
that the jump amplitude of the RN process satisfy μ− λk+ λ′E′(ej − 1) = 0. This
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reflects the fact that, outside of the realm of complete, Gaussian markets, the pric-
ing measure exists but in general is nonunique (the so-called second fundamental
theorem of asset pricing). Also, although we have established the necessary mar-
tingale conditions, we have not yet said anything about the dynamics of the price
process under the new measure, as in the Girsanov case. For this, we appeal to the
intuition that the process will retain its (pure) jump form and, using basic results
for the arrival times of a Poisson process, we see that

EQ
t 1(τ1 > T)= e−ξEP

t eξT 1(τ1 > T)

= e−ξ+ξ−λk′(T−t)−λ(T−t) = exp(−λEej′(T − t))= e−λ′(T−t) (5.11)

where τ1 denotes the arrival time of the first jump. (5.11) demonstrates that under
the new measure, the jumps retain their Poisson structure with new intensity λ′.6
For further development of these points, see the excellent articles by Benninga et al.
(2002) and Schroder (1999).7

With the relevant context established, we can now turn to some actual examples.

5.1.2 Dimension reduction/computation
facilitation/estimation robustness

5.1.2.1 Basic spread structures

First we consider a simple (but very common) structure in energy markets, a spread
option. The terminal payoff is given by

(S2(T)−αS1(T))
+ (5.12)

for two assets S1 and S2 and some weighting factor α.8 We are concerned with
valuing expectations of the form

EQ
t (S2(T)−αS1(T))

+ (5.13)

under an appropriate (pricing) measure Q. Now, (5.13) can be written as

EQ
t (S2(T)−αS1(T))

+ = EQ
t (S1(T)

(
S2(T)

S1(T)
−α

)+
= EQ

t S1(T)(S̃(T)−α)+
(5.14)

with S̃(T) ≡ S2(T)
S1(T)

. Under the following change of measure (recall that prices of

tradeables are martingales under the pricing measure):9

dQ1

dQ
≡ S1(T)

S1
(5.15)
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the expectation in question can be written as

S1EQ1
t (S̃(T)−α)+ (5.16)

What has been done here essentially is to change the basic underlying units in which
prices are reckoned; that is, we are taking asset 1 to be the numeraire. Denominated
in these units, the underlying option price becomes simply a Q1−expectation. It
is important to stress that this change of measure/change of numeraire does not
change the basic interpretation of (redenominated) prices as martingales, viz.

EQ1
t S̃(T)= EQ

t
S1(T)

S1

S2(T)

S1(T)
= 1

S1
EQ

t S2(T)= S̃ (5.17)

We immediately see that the dimensionality of the problem has been reduced from
two to one. The computational benefits should be obvious, but more importantly
the essential features driving the value of the option are more readily extracted and
delineated. However, all of this depends on actually being able to evaluate the ex-
pectation under this new measure, so we will consider this issue with some specific
assumptions about the underlying process. It turns out the measure change is fea-
sible under a rather rich class of processes, but for now we will focus on the usual
lognormal case.10

5.1.2.2 Martingale dynamics

First, it is worth starting with a generalization of a more basic issue already dis-
cussed, namely the change from the observable, physical measure (denoted by P)
to the pricing measure (Q). Assume log prices z follow joint Brownian motion with
drift:

dz1 =
(
μ1− 1

2σ
2
1

)
dt +σ1dw1

dz2 =
(
μ2− 1

2σ
2
2

)
dt +σ2dw2

(5.18)

with (in terms of the usual Itô isometry) dw1dw2 = ρdt . We seek an RN process
such that, under the associated change of measure, the log prices are exponential
martingales (which amounts to the condition that the linear drifts μi are absent).
We assume this process ξ has the following P−dynamics:

dξ =− 1
2 (α

2
1 + 2ρα1α2+α2

2
)dt +α1dw1+α2dw2 (5.19)

Let us again highlight a useful application of (conditional) characteristic func-
tions, by more generally determining the dynamics of the log prices under this new
measure. Let

f = EQ
t eiφ1z1(T)+iφ2z2(T) = e−ξEP

t eξ(T)+iφ1z1(T)+iφ2z2(T) (5.20)
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Thus, the entity f̃ ≡ eξ f is a P−martingale, and thus from Itô’s lemma11 must satisfy
the following PDE:

f̃t + (μ1− 1
2σ

2
1 )f̃z1 + (μ2− 1

2σ
2
2 )f̃z2 − 1

2 (α
2
1 + 2ρα1α2+α2

2)f̃ξ

+ 1
2σ

2
1 f̃z1z1 +ρσ1σ2 f̃z1z2 + 1

2σ
2
2 f̃z2z2

+ 1
2 (α

2
1 + 2ρα1α2+α2

2)f̃ξξ +σ1(α1+ρα2)f̃z1ξ +σ2(α2+ρα1)f̃z2ξ = 0 (5.21)

Now, substituting for f̃ , we find that12

ft +
(
μ1+σ1(α1+ρα2)− 1

2σ
2
1

)
fz1 +

(
μ2+σ2(α2+ρα1)− 1

2σ
2
2

)
fz2

+ 1
2σ

2
1 fz1z1 +ρσ1σ2fz1z2 + 1

2σ
2
2 fz2z2 = 0 (5.22)

Consequently, the Q−dynamics of the log prices are given by

dz1 =
(
μ1+σ1(α1+ρα2)− 1

2σ
2
1

)
dt +σ1dw1

dz2 =
(
μ2+σ2(α2+ρα1)− 1

2σ
2
2

)
dt +σ2dw2

(5.23)

Note the confirmation of the general intuition that under a measure change
for standard BM, the covariance structure will be unchanged. We also see the
conditions that must hold for the measure change to take prices into martingales:

μ1+σ1(α1+ρα2)= 0

μ2+σ2(α2+ρα1)= 0
(5.24)

We see that for uncorrelated assets the appropriate transformation is a pair of sep-
arate one-dimensional Girsanov transformations. This linear system can be easily
solved, and we will see a number of additional applications later (e.g., importance
sampling for simulations, discussed in Section 7.5). Note in particular that in this
case the martingale measure is unique.

5.1.2.3 Numeraires and greeks

Having established the relation between the physical and pricing measures, we can
now turn attention to the measure change associated with the change of numeraire
in (5.15). Characteristic functions again prove a very fruitful approach to some of
the computational issues involved in the problem. Ultimately (from (5.16)) we are
concerned with the distribution of the ratio S̃ under the measure Q1. By the Fourier
inversion theorem, the characteristic function will provide us with the necessary
information. So consider (in terms of log-differences instead of price ratios)

f = EQ1
t eiφ(z2(T)−z1(T)) = e−z1 EQ

t e(1−iφ)z1(T)+iφz2(T) (5.25)
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which in terms of standard results becomes

f = e−z1+(1−iφ)(z1− 1
2σ

2
1 τ)+ 1

2 (1−2iφ−φ2)σφ2
1τ+iφ(z2− 1

2σ
2
2 τ)− 1

2φ
2σ 2

2 τ+ρσ1σ2τφ(i+φ2)

= eiφ((z2−z1)− 1
2 (σ

2
1−2ρσ1σ2+σ 2

2 )τ )− 1
2φ

2(σ 2
1−2ρσ1σ2+σ 2

2 )τ (5.26)

Thus, under the measure with leg 1 as numeraire, the price ratio (exponential of
the log-price difference) is a martingale, and lognormally distributed with volatility

equal to the ratio volatility σ =
√
σ 2

1 − 2ρσ1σ2+σ 2
2 (recall the discussion of storage

spread options in Section 3.1.4). Consequently, the expectation in (5.16) gives an
option price of

S1BS(S̃,α,σ) (5.27)

which is precisely the Margrabe formula previously encountered in Chapter 3 (and
derived alternatively in Chapter 7).

Although this is a simple example, it should suffice to show how change of
measure techniques can greatly facilitate the derivation and computation of many
option pricing problems. A very general situation is to evaluate expectations of pay-
offs of the following form: F(S1,S2, . . . ,SN ) = S1F(1, S2

S1
, . . . , SN

S1
). In many cases of

interest the distribution of the reduced set of assets (redenominated using asset 1
as numeraire) can be determined under the measure change in (5.15), reducing
the computational complexity by one dimension. More than this: the sufficient
statistics needed for robust valuation (i.e., the identification of value drivers) are
often made structurally clear from this reduced form. The ratio volatility is a case
in point. In many situations (and the structure of the underlying market, e.g., the
breadth of liquidity, is the crucial factor) it is not necessary to estimate and project
separately leg volatilities and correlations. The ratio volatility is all that is needed (a
fortuitous situation, as volatilities typically allow for more robust estimation than
correlations).

Measure changes also offer benefits in the determination of option greeks, which
are often produced naturally in the computation of option value. Note that the
standard pricing formula can be rewritten as follows:

EQ
t (S2(T)− S1(T))

+

= EQ
t S2(T)1(S2(T) > S1(T))−EQ

t S1(T)1(S2(T)S1(T))

= S2EQ2
t 1(S2(T) > S1(T))− S1EQ1

t 1(S2(T) > S1(T))

= S2EQ2
t 1(S̃(T) > 1)− S1EQ1

t 1(S̃(T) > 1) (5.28)

so that greeks are simply read off from the coefficients of the initial asset prices (via
Euler’s theorem for homogenous functions of degree one). We also see here that the
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problem amounts to computations of binary options under the appropriate mea-
sure, and that these binaries are of one less dimension than the original problem.
This trick can be generalized to a wide range of problems, as we will now see.

5.1.3 Max/min options

As an application, consider an option on the maximum of two assets. The terminal
payoff is given by

(max(S1,S2)−K)+ (5.29)

Similar to the decomposition used in (5.28), the pricing problem can be written as

EQ
t (max(S1,S2)−K)+

= EQ
t (S1(T)−K)1(S1(T) > S2(T),S1(T) > K)

+EQ
t (S2(T)−K)1(S2(T) > S1(T),S2(T) > K)

= S1EQ1
t 1(S1(T) > S2(T),S1(T) > K)+ S2EQ2

t 1(S2(T) > S1(T),S2(T) > K)

−K(EQ
t 1(S1(T) > S2(T),S1(T) > K)+EQ

t 1(S2(T) > S1(T),S2(T) > K))
(5.30)

Thus, in terms of log prices, the option valuation problem becomes one of
calculating expectations of the form

EQi
t 1(zi(T)− zj(T) < a,zi(T) < b) (5.31)

We discuss various methods for computing such expectations later. First, we note
a few more general options with payoffs of similar form that commonly appear in
energy markets.

• Fuel switching in tolling (option to choose cheaper of two fuels with which to
generate electricity): (S3−min(S1,S2))

+
• Pipeline segmentation in transport (option to flow gas to the higher priced of

two delivery points): (max(S2,S3)− S1)
+

• Multiple injection/withdrawal points in storage: (max(S3,S4)−min(S1,S2))
+.

For example, the fuel-switching case will have constituent terms such as

EQ
t S3(T)1(S3(T) > S2(T),S2(T) < S1(T)) (5.32)

which, in terms of the numeraire S3, becomes

S3EQ3
t 1(S̃(T) < 1, S̃2(T) < S̃1(T)) (5.33)
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which is precisely of the form (5.31). In general, it proves useful to work in terms
of log prices, and the category of max/min options can be reduced to calculating
expectations of the form

EQ
t eαizi(T)1(Akjzj(T) < bk) (5.34)

where the summation convention of repeated indices is adopted. We now discuss in
detail how to carry out these kinds of calculations.

5.1.4 Quintessential option pricing formula

5.1.4.1 The basic setting

Valuation of options with payoff structures such as those in (5.34) was studied in
Skipper and Buchen (2003). The idea is to use change of measure techniques as
follows. We have that

EQ
t eαi zi(T)1(Akjzj(T) < bk)= EQ

t eαizi(T) ·EQα
t 1(Akjzj(T) < bk)

= EQ
t eαizi(T) ·EQα

t 1(z̃k(T) < bk) (5.35)

where we define z̃k ≡ Akjzj and the new measure Qα by

dQα
dQ

= eαi zi(T)

EQ
t eαizi(T)

(5.36)

So the first issue is to determine the distribution of z̃k under this measure. We again
turn to the characteristic function as a means of carrying out the calculations that
are needed to flesh out the essential results. We have that

f = EQα
t eiφk z̃k(T) = EQ

t e(αi+iφkAki)zi(T)

EQ
t eαi zi(T)

(5.37)

Note that, to this point, we have said nothing about the distribution of z under
the pricing measure (or any measure for that matter). The result in (5.37) is thus
quite general, and can be applied whenever we know the characteristic function of
the primary random variables in question. As we have mentioned (and will pursue
in great detail later), there is a very wide and rich class of processes for which the
characteristic function is known. We are referring of course to Lévy processes, and,
armed with the connection of stochastic volatility models to time-changed Brow-
nian motions, we will devote much attention to the canonical class of affine jump
diffusions (which are not themselves of Lévy type). The common thread in all of
this is the facilitation of analysis through the (conditional) characteristic function.
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5.1.4.2 The standard Gaussian case

An obvious choice to consider is the case of joint normality. In this case the log
prices satisfy

dzi =− 1
2σ

2
i dt +σidwi (5.38)

with dwidwj =ρijdt . Now we apply the same line of reasoning used in the derivation

of (5.24). From (5.37) we have that f̃ ≡ f · EQ
t eαizi(T) is a Q−martingale and so

satisfies the following PDE:

f̃t − 1
2σ

2
1 f̃zi + 1

2 Xij f̃zizj = 0 (5.39)

where Xij ≡ ρijσiσj . Note also that

EQ
t eαizi(T) = eαi(zi− 1

2σ
2
i τ)+ 1

2 Xijαiαjτ (5.40)

Substituting the expression for f̃ yields

ft + (− 1
2σ

2
i +Xijαj)fzi + 1

2 Xijfzizj = 0 (5.41)

Thus, the effect of the measure change on the asset dynamics is to the leave the
covariance structure unchanged (not surprising) and to shift the (vector) mean by
the vector Xα. This is of course just a generalized Girsanov transformation, with
(5.24) being a special case. So we further find that

EQα
t eiφk z̃k(T)

= EQα
t eiφkAkjzj(T) = eiφkAkj(zj− 1

2σ
2
j τ+Xjmαmτ)− 1

2 AkjXjnAmnφkφmτ (5.42)

and thus obtain the Qα−mean and covariance of z̃.13 As an example, consider the
case of a numeraire change, say in terms of asset 1. Then αi = δi1 and A is an N − 1
by N matrix of the form

Aij =
⎧⎨⎩
−1, j = 1
1, j = i+ 1
0 otherwise

(5.43)

Thus, the Qα−drift and covariance (resp.) are given by

μ̃= zk − z1− 1
2 (σ

2
1 − 2ρk1σ1σk +σ 2

k )τ

�̃mn = (σ 2
1
−ρk1σ1σk −ρm1σ1σm+ρkmσmσk)τ

(5.44)
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(Compare with the results in Carmona and Durrleman [2005].) Of course, (5.44)
illustrates once again that a change of measure that takes the form of a change of nu-
meraire retains the martingale property of (redenominated) tradeables. Note again
the reappearance of the ratio vol in this valuation (of course there is an associated
correlation structure for more than two assets).

Consequently, in the joint normal case, we see that payoffs that can be de-
composed into constituent terms such as (5.35) are reduced to the evaluation of
expectations of the form

E1(z̃ < b)=Nn(b; μ̃,�̃) (5.45)

where Nn is the n−dimensional cumulative normal distribution function:

Nn(b; μ̃,�̃)= 1√
(2π)n det �̃

∫ b

−∞
dz exp

(
− 1

2 (z− μ̃)T �̃−1(z− μ̃)
)

(5.46)

Now, in truth this may not seem like any great triumph, as the evaluation of multi-
dimensional integrals is in general quite challenging numerically. We will consider
some techniques for addressing this problem in Chapter 7, but in practice five di-
mensions is about as high as one can get without having to resort to simulation
methods. Still, there is little doubt that the formal approach stemming from (5.35)
is quite nice and in fact quite useful in many applications. Finally, we stress yet again
that the applicability extends beyond the usual case of joint normality.

Change of measure techniques are also very useful for obtaining certain sym-
metry results pertaining to a popular structure in energy markets, namely options
struck against some average price (i.e., Asian options), as we will now see.

5.1.5 Symmetry results: Asian options

Because of the large volatilities commonly encountered in energy markets (see EW
for a useful accounting of the issue), it is often desirable to structure products
around the average of an asset price during some period (be it a month, a year, or
longer), in order to “smooth out” price spikes and other regime shifts that charac-
terize such markets. The instrument of choice here is the so-called Asian option,
whose payoff is the average price over some period against some strike. Such a
payoff can either be of fixed strike variety, where the payoff is given by

⎛⎝ 1

T − t

T∫
t

SSds−K

⎞⎠+ (5.47)
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or floating strike variety, with payoff

⎛⎝k · ST − 1

T − t

T∫
t

Ssds

⎞⎠+ (5.48)

These options are not terribly easy to value, even in the standard case of GBM. The
seminal paper on the topic is Geman and Yor (1993), who, using rather obscure
results for Bessel processes, are able to compute the Laplace transform of the option
price for the fixed strike case, which can then be inverted.14 Note that the above
payoffs refer to continuously averaged prices; in general the payoff will be on the
discrete (e.g., daily) average. For the discrete case, approximation techniques that
take advantage of the particular properties of GBM (in particular, analytical results
for conditional normal variables) are available and reasonably effective; see Nielsen
(2001) for an excellent overview.15 The salient results can also be found in EW.

The concern here is with the relationship between the fixed and floating strike
options with payoffs given in (5.47) and (5.48). This is an interesting question to
resolve, as most of the available analytical techniques are for the fixed strike case.
This problem was first solved by Henderson and Wojakowski (2002) for GBM via
an application of Girsanov’s theorem. We will take a related but slightly differ-
ent approach that will prove useful for extending the results to more general Lévy
processes. We write the general floating strike valuation problem as

V = e−r(T−t)EQ
t

⎛⎝k · ST − 1

T − t

T∫
t

Ssds

⎞⎠+= e−r(T−t)EQ
t ST

⎛⎝k− 1

T − t

T∫
t

Ss

ST
ds

⎞⎠+
(5.49)

where we explicitly introduce discounting effects. In fact, it is important here that
we specify the form of the Q–dynamics, noting the nonzero drift:

dS

S
= (r− q)dt +σdw (5.50)

(We will see that a particularly interesting aspect of the symmetry result to be de-
rived only arises when interest rates and dividends are present in the risk-neutral
process.) Now, we apply the (by now) familiar numeraire change of measure given

by dQs
dQ = e−(r−q)(T−t)ST

S
16 to get

V = Se−q(T−t)EQs
t

⎛⎝k− 1

T − t

T∫
t

SS

ST
ds

⎞⎠+ (5.51)
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Plainly, (5.51) is highly reminiscent of the fixed strike (put) problem, although the
dividend rate has taken the place of the discount rate. However, the entity being
averaged is not a price as such, and in fact is not even a price redenominated in
terms of the asset S (as it is expressed in terms of units of the terminal price). Thus,
it would seem that the numeraire change/measure change has not achieved much
benefit. Fortunately this is not the case. Let us write the Q–dynamics of the log
price as

dz = (r− q− 1
2σ

2)dt +σdw (5.52)

Now, the problem amounts to determining what the dynamics of ezs−zT under the
measure change given by dQS

dQ = ezT−z−(r−q)(T−t). To answer this question, we again
appeal to characteristic functions as a convenient means of elucidating the transfor-
mation of the process. The characteristic function of the ratio (in (5.51)) under this
measure is given by

EQS
t eiφ(zs−zT ) = e−z−(r−q)(T−t)EQ

t eiφzs+(1−iφ)zT (5.53)

Using the law of iterated expectations and the results for the characteristic function
of Gaussian processes, we find that

EQs
t eiφ(zs−zT ) = e−z−(r−q)(T−t)EQ

t eiφzs EQ
s e(1−iφ)zT

= e−z−(r−q)(T−t)EQ
t eiφzs e(1−iφ)(zs+(r−q− 1

2σ
2)(T−s))+ 1

2 (1−iφ)2σ 2(T−s)

= e−z−(r−q)(T−t)+(1−iφ)(r−q− 1
2σ

2)(T−s)+ 1
2 (1−iφ)2σ 2(T−s)

EQ
t ezs

= e−(r−q)(T−t)+(1−iφ)(r−q− 1
2σ

2)(T−s)+ 1
2 (1−iφ)2σ 2(T−s)+(r−q)(s−t)

= eiφ(q−r− 1
2σ

2)(T−s)+ 1
2φ

2σ 2(T−s) (5.54)

So, what has been established in (5.54) is the following. Under the measure change
induced by the terminal price “numeraire” (properly discounted), the price ratio
Ss
ST

appearing in the averaging term of the payoff in (5.51) is GBM, with expected

value e(q−r)(T−s),17 volatility σ , and the roles of the discount rate and dividend
rate interchanged. Indeed, (5.54) establishes that the Q–dynamics of z̃t ,T ≡ zt − zT

depend only on the time difference T − t , so that the average can be written as

T∫
t

ez̃s,T ds =
T−t∫
t

ez̃0,s ds (5.55)

This is of course a continuously summed ensemble of lognormal variables over the
same effective time horizon as the original fixed strike problem. Thus, valuation of
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the floating strike Asian call option represented by (5.51) is equivalent to valuing a
corresponding fixed strike Asian put option, with the correspondence given by

V call
float(S,k, r,q)= SV

put
fixed(1,k,q, r) (5.56)

Of course, by homogeneity, the result in (5.56) can be expressed in terms of the
current price S and strike kS. The volatility of course is unchanged. Hence, we
have established the desired association between fixed and floating strike Asian
options, and furthermore have shown the great utility of change of measure tech-
niques – specifically in conjunction with characteristic functions as a computational
framework – in making the result clear.18

These results are in fact valid for much more general processes (e.g., those with
jumps); see the Appendix to this chapter. The central feature, as we have noted, is
the ability to form tractable results via the (conditional) characteristic function of
the underlying process. We thus now turn to a discussion of a very broad class of
processes (two, actually) for which such an approach is feasible.

5.2 Affine jump diffusions/characteristic
function methods

Let us re-emphasize the central theme of this work: valuation through the iden-
tification of appropriate exposures via the construction of specific portfolios.
Achieving this objective obviously requires the proper tools, and one such powerful
tool is the language of stochastic calculus,19 specifically in the analysis of portfo-
lio dynamics. There is of course a very well-developed theory here, with so-called
semi-martingales20 as the centerpiece. We wish to employ this machinery as widely
as possible, while simultaneously encompassing a class of stochastic models whose
breadth is no wider than necessary. It is a basic (and frankly, overstated) truism
that actually existing price processes, especially in energy markets, do not follow
Gaussian laws. Although we shall demonstrate that it is often neither necessary nor
desirable for a model to explicitly account for all characteristics of an underlying
price process, it is important nonetheless to have a framework that allows one to
answer (to an acceptable degree) the question of which characteristics do matter. To
this end, we retain the basic foundation of analysis based on semi-martingales.21

5.2.1 Lévy processes

5.2.1.1 The starting point

We recall a very elementary property of Brownian motion: stationary, independent
increments. It is natural to inquire as to how far this basic aspect can be extended.
The answer is given by the class of stochastic processes known as Lévy processes,
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which we have already discussed previously. The essence of such processes is that
they include not just familiar Brownian motion with drift, but also a very rich class
of (discontinuous) jump processes. Furthermore, the discontinuous class encom-
passes not only well-known Poisson processes, but also a less well-known category
that is reminiscent, in some ways, of (continuous) diffusive motion. We repeat the
definition here for ease of exposition.

Definition: A Lévy process is a stochastic process Xt
22 satisfying:

(i). X0 = 0 a.s.
(ii). The increments Xti −Xtj and Xti′ −Xtj for tj′ > tj′ ≥ ti > tj are independent

(iii). The increments Xti−Xtj
are stationary; i.e. Xti −Xtj is distributed as Xti−tj

(iv). X is continuous in probability.23

A deeply important and useful result is the famed Lévy-Khintchine representa-
tion, which provides an explicit expression for the characteristic function of a Lévy
process: EeiφXt = etψ(φ), where the so-called characteristic exponentψ is given by24

ψ(φ)= iφα− 1
2 Aφ2+

∫
R/{0}

(eiφx − 1− iφxh(x))v(dx) (5.57)

where h is some function concentrated around the origin, e.g., h(x)= 1(|x|< 1) is a
very common choice. Before explaining what the entity ν in the integrand of (5.57)
represents, we point out that the first two terms clearly correspond to Brownian
motion with drift (per unit of time), as claimed. To understand what the integral
in (5.57) represents, first assume that the expression h(x) is absent and that v(x)
is integrable across the entire real line (i.e., including the origin). Then, it is not
hard to see that the integral term corresponds to a Poisson jump, with intensity
(arrival rate) of jumps given by

∫
R

ν(dx) (again, per unit of time) and amplitude

(distribution) of jumps given by v(dx)/
∫
R

v(dx). So, as claimed we see that (Poisson)

jumps are included in the class of Lévy models.

5.2.1.2 A more general category of jumps

However, great subtlety is introduced when we consider the case where ν(x) is not
integrable. Here, we must refer to v(x) by its proper name: the Lévy measure of
the process. It has the interpretation that the expected number of jumps within the
time interval [0, t) with amplitudes inside some (Borel) set B is given by

E{# jumps ∈ B up to time t} = t

∫
B

v(dx) (5.58)

Particularly nice intuition is provided by Lewis (2001) in terms of random mea-
sures. We define a counting process which represents the number of jumps within
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some time interval [0, t] which have size within an interval B (excluding the origin);
this process is a Poisson process with mean given by (5.58). It is precisely the lifting
of the restriction of integrability of the Lévy measure across the entire real line that
gives rise to a very rich class of jump processes.

To understand this class better, consider the following decomposition of (5.57)
for the usual case of indicator function truncation:

∫
R/{0}

(eiφx − 1− iφx1|x|<1)v(dx)=
∫

|x|≥1

(eiφx − 1)v(dx)

+
∫

0<|x|≤1

(eiφx − 1− iφx)v(dx)

=
∫

|x|≥1

(eiφx − 1)v(dx)+
∑

n

∫
1

2n+1≤|x|≤ 1
2n

(eiφx − 1− iφx)v(dx) (5.59)

The ensemble in (5.59) is clearly associated with a superposition of (standard) Pois-
son jumps, specifically a single term representing “large” amplitude jumps (i.e.,
those greater than 1 in absolute value), and an infinite (but countable) collec-
tion of “smaller and smaller” amplitude jumps of “faster and faster” intensities
(arrival rates). More accurately, the nth term in the summation in (5.59) is the
characteristic function25 of a pure martingale jump process (note the compen-
sator term −iφx in the integrand) whose amplitude is confined to the interval
εn = {x : 1

2n+1 ≤ |x| ≤ 1
2n }, with intensity given by (recall the trick used in the ordi-

nary Poisson case) λn = v(εn). In the case of non-integrability of the Lévy measure,
divergence26 implies that these intensities tend to infinity as the interval of support
for the amplitude shrinks.

5.2.1.3 A recap

We have thus outlined a foundational result, namely the Lévy-Itô decomposi-
tion, which states that any Levy process is decomposable into three independent
processes:

1. A Brownian motion with drift
2. A pure jump (point) process, specifically a compound Poisson process
3. A pure jump (martingale) process with a countable number of jumps within any

finite interval.
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In general, then, Lévy processes can be thought of as Brownian motion with drift,
plus a summation (broadly conceived) of jumps within the time interval in question
and across all possible jump sizes. Roughly speaking, there is a non-separable, “two
dimensional” structure to jumps in general. If the Lévy measure is integrable across
the entire real interval, then we can think of jumps as being two (separable) inde-
pendent “one dimensional” entities: first, as a jump as such (i.e., without reference
to jump size), and second (conditionally on a jump occurring) as a jump of par-
ticular (stochastic) size. In other words, in this case (and this case only) the jump
process is the familiar compound Poisson process, with associated jump intensities
and amplitudes.

In general though, jumps can have a much richer structure, and this is the
meaning of the third class of jumps in the Lévy-Itô decomposition. This class is
commonly referred to as infinite activity jumps, because (over any time horizon)
they correspond to a countable number of arbitrarily small-sized jumps.27 Exam-
ples of such pure jump processes as they apply to financial research are the variance
Gamma process28 see (Madan et al. [1998]), and the normal inverse Gaussian pro-
cess (see Barndoff-Nielsen and Shephard [2012]). Now, there is little doubt that
this is an appealing theoretical notion, both in terms of greater generality and the
fact that this representation does permit for a fair amount of analytical results (e.g.,
in terms of option pricing). Also, there is the obvious intuition that a process that
can exhibit jumps of arbitrary size over any time interval is strongly reminiscent of
Brownian motion itself. In other words, in the interest of both theoretical sparsity
and completeness, there might be good reason to model prices as purely jump pro-
cesses, as this should include as special cases the usual compound Poisson process
(directly) and Brownian motion (indirectly). This approach has been advocated by
Carr et al. (2002) and Geman (2002).29

While Lévy processes undoubtedly provide a rich and indeed beautiful general-
ization of familiar Brownian motion, they unfortunately do not capture all of the
aspects that we would like from a model. In particular, they do not directly incor-
porate stochastic volatility. Let us be clear about our objection: we do not propose
building elaborate models that “realistically” capture many known (stylized) facts
about observed price series. (E.g., we strongly advise against estimating jump dif-
fusions, much less stochastic volatility models, from available data, for reasons the
reader will discover in Chapter 6.) We have emphasized this viewpoint through-
out. Rather, our objective is to have a modeling framework that is both flexible and
rich enough to enable us to understand the interplay between valuation and hedg-
ing that forms the basis of any trading strategy underlying portfolio construction.
(Indeed, in a real sense valuation is portfolio construction.) The fact remains that
stochastic volatility is a feature we would like to include in our modeling building
blocks, and so we must turn attention to how, if at all, it can be integrated with Lévy
modeling.
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5.2.2 Stochastic volatility

5.2.2.1 Some background

As the name suggests, stochastic volatility models are models for which the vari-
ance of a stochastic process is itself random. We will see quite general examples in
the next subsection on affine jump diffusions (e.g., the well-known Heston model),
but we can note in passing other models that are popular in the literature such
as Constant Elasticity of Variance (CEV) (probably better characterized as a local
volatility model) and Stochastic Alpha Beta Rho (SABR).30 There is a good discus-
sion of stochastic volatility in EW, where certain effects of interest in energy markets
are discussed. In the interest of completeness we outline some of the reasons why
jumps alone might be insufficient in modeling efforts.

• The so-called inverse leverage effect in commodity (chiefly energy) prices, where
volatility (both realized and implied) tends to increase with the level of prices
(typically represented by treating movements of stochastic volatility and price as
negatively correlated)

• Different patterns in excess kurtosis (fatness of tails relative to normality) distin-
guishing jumps from stochastic volatility, as a function of time horizon; jumps
are typically characterized by decreasing excess kurtosis as the time horizon
increases, while stochastic volatility gives rise to the opposite pattern

• Similar differences in the implied volatility surface for processes driven by jumps
and by stochastic volatility; the smile/skew in the former case tends to be steep
for prompt contracts and a flat for longer-dated contracts, while the latter tends
to have a flat prompt structure and steepness further out (and in truth both
effects can be present simultaneously).

Our focus here will be more narrow, primarily to show how such models can be tied
in with Lévy processes, and to lead into the canonical class of affine jump diffusions
where these effects can be more readily modeled (at, of course, the cost of losing
some generality).

5.2.2.2 Time change results

The first thing to note is that a common feature of stochastic volatility models is
that the associated log-price processes no longer possess independent increments.
(Typically the joint process dynamics remain Markovian, but this is a different is-
sue.) Thus, we can immediately anticipate that such log-price models cannot be of
Lévy type. However, we hold out some hope that stochastic volatility models can be
related to Lévy processes, given the appeal of such models laid out in the previous
section. Progress can be made from the following intuition. We have characterized
volatility as a measure of information accumulation over specific time horizons.
(Recall the discussion in Section 2.2) Note that nothing in this conception rules out
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the possibility of this time horizon being random itself. One thinks of the common
situation where unanticipated news events suddenly impact prices. In energy mar-
kets, weather would be a typical case, although other examples include unplanned
outages of a large (baseline) generation unit or an announcement of a major gas
pipeline development.31 It should be recalled that pure jump processes such as the
aforementioned variance Gamma can also be crafted in terms of a time-changed
Brownian motion. In other words, in this model deterministic time is replaced by
a “stochastic clock,” or ordinary time becomes “business time.” Thus, we anticipate
that our conception of volatility can be generalized: volatility is still a measure of in-
formation flow, but we allow the relevant time horizon over which this information
accumulates to be stochastic, as well.

In fact, the above intuition has some basis in fact. It turns out that every semi-
martingale can be written as a time-changed Brownian motion (Monroe [1978]; see
also Karatzas and Shreve [1991]). These considerations lead us to examine the use
of time-changed Lévy processes as a means for modeling stochastic volatility. We
start with some Lévy process Xt and a random time32 Tt . We then introduce a new

process Y obtained by evaluating X at T : Yt
�=XTt . To understand the nature of the

process Y , it is natural to consider its characteristic function. Under the assumption
that the time change T is independent of the underlying process X , we have that

EeiφYt = EeiφXTt

= E(E(eiφXu |Tt = u))= EeTtψX (φ) =LT (−ψX(φ)) (5.60)

using (5.57), and where L is the Laplace transform of the random time. Note that
in general the Lévy status of X is not retained. We will consider a special class of
random times in Section 8.1.4 in the context of dependent Lévy processes known
as subordinators, which are pure jump processes with only positive jumps. In this
case, a subordinated Lévy process remains a Lévy process. However, (5.60) provides
a general framework of ascertaining the distribution of stochastic volatility models
when the requisite Fourier and Laplace transforms are known.33

5.2.2.3 An illustration of conditioning without independence

Let us consider an example. First we will establish a useful but (seemingly) not
widely used result. Consider the problem of finding a conditional expectation. We
have that

Pr(x2|x1)= Pr(x1,x2)

Pr(x1)
=

1
(2π)n1+n2

∫∞
−∞

∫∞
−∞ dφ1dφ2f (φ1,φ2)e−iφT

1 x1−iφT
2 x2

1
(2π)n1

∫∞
−∞ dφ1f (φ1,0)e−iφT

1 x1

(5.61)
where f denotes the characteristic function (Fourier transform) of the process:

f (φ)= Ee−iφTx
. Here x = (x1 x2)

T is some (random) vector and the indices 1 and



Analytical Techniques 151

2 denote some partition of this vector. Using the result δ(x= 1
(2π)n

∞∫
−∞

dφeiφT x), we

find that (assuming justification of interchanging orders of integration)

E(e−iφT x2 |x1)

∫∞
−∞ dφ1f (φ1,φ)e−iφT

1 x1∫∞
−∞ dφ1f (φ1,0)e−iφT

1 x1
(5.62)

Thus, as long as the characteristic function is known, the conditional characteristic
function can be evaluated, at least numerically. Note that the dimension of problem
is reduced to the dimension of the nonconditioned variable.34

However, our chief concern here is with stochastic volatility models. As we have
done before, we will introduce some concepts that will be properly developed in
subsequent sections. In that spirit, consider the popular stochastic volatility model
of Heston (1993):

dz =− 1
2σ

2vdt +σ√vdw

dv = κ(1− v)dt +√vdw′
(5.63)

with dwdw′ = ρdt and in contrast to the conventional representation, the stochastic
variance is normalized with its long-term value set to one. Now, with ν unitless we
can define the following random time:

TT = t +
T∫

t

vsds (5.64)

We introduce the following auxiliary processes:35

dV = vdt

d�=√vdw

d�′ = √vdw′
(5.65)

(Note the association between cumulative [integrated] variance and [accumulated]
stochastic time.) We then have that36

zT = z− 1
2σ

2

T∫
t

vsdsσ

T∫
t

√
vsdws = z− 1

2σ
2(VT −V )+σ(�T −�) (5.66)

Now, if the (log) price and stochastic variance are uncorrelated (ρ = 0), it should
be intuitively clear that the � term is a time-changed standard Brownian motion,
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evaluated at TT − t . In this case, the (log) price is indeed a time-changed Lévy
process (Brownian motion with drift).37 In the general case (nonzero correlation)
we cannot make this conclusion, so this particular stochastic time change cannot be
the one implied by the aforementioned result of Monroe (1978). However, we can
still ask if we can somehow relate the Heston model to Lévy processes.

To answer this question, we apply the results for conditional expectations derived
above. Specifically, we ask about the distribution of � given V . To use our condi-
tional characteristic function results, have to know the underlying unconditional
characteristic functions. As will be seen when we discuss affine processes, the joint
characteristic function can be written

Et eiφ0VT
+iφ1�T+iφ2�

′
T = eiφ1V+iφ1�+iφ2�

′+β(t ;φ0,φ1,φ2)v+γ (t ;φ0,φ1,φ2) (5.67)

where un-subscripted variables represent time–t (i.e., current) values, and the
coefficients β and γ satisfy the following ordinary differential equations (ODEs):

β̇+ (−κ + iρφ1+ iφ2)β+ 1
2β

2+ iφ0− 1
2φ

2
1 − 1

2φ
2
2 −ρφ1φ2 = 0

γ̇ + κβ = 0
(5.68)

with β(T)= γ (T)= 0. Thus,38

Et (e
iφ1

(�T−�) |VT −V ,�′T −�′)

=

∞∫
−∞

∞∫
−∞

dφ0dφ1e−iφ0(VT−V )−iφ2(�
′
T−�′)+β(φ0,φ1,φ2)v+γ (φ0,φ1,φ2)

∞∫
−∞

∞∫
−∞

dφ0dφ1e−iφ0(VT−V )−iφ2(�
′
T−�′)+β(φ0,0,φ2)v+γ (φ0,0,φ2)

(5.69)

While this may look intractable, note from the governing ODEs that only certain
combinations of the Fourier variables occur. In particular, the following change of
variables is suggested:

φ2 = φ̃2−ρφ1

φ0 = φ̃0− i 1
2ρ

2
s φ

2
1

(5.70)

where ρ2
s = 1− ρ2. Thus, a given β with nonzero φ1–dependence can be trans-

formed into the solution of an equivalent ODE with φ1 = 0. Using this sub-
stitution in the numerator of the above conditional expectation, and adjusting
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integration contours appropriately (we will discuss applications of contour in-
tegration to option pricing in greater detail in the next subsection), we find
that

e−iφ0(VT−V )−iφ2(�
′
T−�′)+β(φ0,φ1,φ2)v+γ (φ0,φ1,φ2)→

e−iφ0(VT−V )−iφ2(�
′
T−�′)+β(φ0,0,φ2)v+γ (φ0,0,φ2)eiφ1ρ(�

′
T−�′)− 1

2ρ
2
s φ

2
2 (5.71)

from which we can conclude

Et (e
iφ1(�T−�)|VT −V ,�′T −�′)= eiφ1ρ(�

′
T−�′)− 1

2ρ
2
s φ

2
2 (5.72)

In other words, conditional on the stochastic time (change) VT −V and the auxil-
iary variable �′T −�′, the auxiliary variable �T −� is normal. Note that when
there is no correlation, this latter auxiliary variable is precisely a time-changed
Brownian motion, a fact that we have now established rigorously rather than in-
tuitively.39 This sort of idea can serve as the basis of exact simulations of such
processes (i.e., without recourse to discretizing the underlying SDE in (5.63); see
Broadie and Kaya [2006]).

5.2.2.4 Ornstein-Uhlenbeck (OU) based modeling

We thus see that there is a connection between the Heston model and a suitably
interpreted Lévy process. We will briefly discuss another approach to modeling
stochastic volatility with Lévy processes. Consider the following non-Gaussian
Ornstein-Uhlenbeck (OU) process:

dy =−κydt + dL (5.73)

where L is a Lévy process (typically with no drift and positive increments, i.e., a
subordinator). Letting ỹ = eκt y, we see that dỹ = eκt dL and thus

YT = e−κ(T−t)y+
T∫

t

e−κ(T−s)dLs (5.74)

and consequently

Et eiφyT = eiφe−κ(T−t)y
Et eiφ

∫ T
t e−κ(T−s)dLs = eiφe−κ(T−t)y+∫ T

t ψ(φe−κ(T−s))ds (5.75)
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where ψ is the characteristic exponent of L.40 This approach is used by Barndorff-
Nielsen and Shephard (2001) to construct a wide class of stochastic volatility
models.

5.2.2.5 Modeling: generality and sufficiency

We have described to this point how the commonly used model of Brownian
motion can be extended in its essentials (primarily, stationary, independent in-
crements) to incorporate features such as jumps. We have further indicated how
this generalization can be itself extended (via time changes) to include additional
features such as stochastic volatility. It remains the case, however, that we would
like a modeling framework that more transparently integrates both aspects (jumps
and stochastic volatility) while retaining (indeed, potentially enlarging) tractabil-
ity. There is in fact a category of stochastic processes that allow great flexibility in
modeling jumps and stochastic volatility, and in fact other behaviors such as mean
reversion. We are referring to the canonical class of affine jump diffusions. These
models also provide a very useful means for ascertaining the relationship between
spot and forward dynamics, and between dynamics under different measures. It is
in fact quite straightforward to craft and analyze portfolio dynamics (the founda-
tion of our approach to valuation) using affine jump diffusions. In addition, they
share with Lévy processes the fact that many computations and analyses can be car-
ried out conveniently via Fourier methods (i.e., through characteristic functions).
The principal drawback of such models is that they take a very specific form, and
thus lose much of the generality offered by Lévy models (and their time-changed
extensions).

However, this is not a problem as such. Our ultimate objective is to understand
how much certain features of actually existing energy markets matter, or more accu-
rately, do not matter. The question that must always be asked is whether a particular
modeling representation is sufficient to answer various questions put in front of it.
For example, we would generally not want to value an option using a jump diffu-
sion model that we fit to data. However, we would very much like to understand
the effects of pricing an option driven by a jump process, when we ignore jumps
and concentrate on effects that are more robustly appraised, such as the diffusive
structure. Generality is nice, but is often not necessary for understanding what we
need to know for a particular problem (and indeed, can often be a barrier to such
understanding). We have taken the time to introduce and discuss Lévy processes
(and their extensions through time changes) because (apart from the fact that they
are an interesting and important topic in their own right) we can better see how the
effects they are intended to capture through a very general framework can be suf-
ficiently provided through a more restricted, canonical form. With these points in
mind, we now turn to a fuller discussion and applications of affine jump diffusions.
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5.2.3 Pseudo-unification: affine jump diffusions

5.2.3.1 Basic structure

We will consider now the general class of affine jump diffusions. These processes
have dynamics that can be generically written as

dzi = (Aijzj + bi)dt +σ k
i
√

zkdwk
i +σ 0

1 dw0
i + jikdqk (5.76)

where the usual convention of summation over a repeated index not on the left-
hand side is adopted.41 Here w denotes a standard Brownian motion (diffusive),
and q is a Poisson jump process (discontinuous). We further assume that the
covariance structure of the diffusive components is given by

dwk
i dwl

j = δklρ
k
ij (5.77)

and that the i-th jump intensity takes the form

λi = λi0+λijzj (5.78)

The jumps are independent, but note that the number of term processes need not
be equal to the number of state variables. Consequently, the specification in (5.76)
allows for a sort of joint dependence across jumps. Note further that the “aggregate”
covariance structure, so to speak, becomes (as an Itô isometry)

E(σ k
i
√

zkdwk
i +σ 0

i dw0
i )(σ

k
j
√

zkdwk
j +σ 0

j dw0
j )= (zkXk

ij +X0
ij)dt (5.79)

where
Xk

ij ≡ ρk
ijσ

k
i σ

k
j (5.80)

5.2.3.2 Governing equations

In light of (5.79), (5.78), and the drift term in (5.76), it should be clear why these
processes are referred to as affine: they are fully described by entities that are linear
in the underlying state variables plus a constant. This structure permits the char-
acteristic function to be determined by solving a system of (nonlinear) ordinary
differential equations (ODEs). (We have already seen the great computational util-
ity of employing characteristic functions in the context of change of measure; we
will now see yet more applications.) This is very significant, as the problem (for a
general process) would ordinarily entail having to solve a partial integro-differential
equation (PIDE) in several dimensions, a very daunting task to say the least. To ap-
preciate the utility, let us explicitly indicate that the dynamics in (5.76) take place
under a specific measure, which we denote by Q. Then we are interested in the
following:

f = EQ
t eiεnφnzn(T) (5.81)
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where εn is sort of an indicator/flag only taking on values 0 or 1. Thus, (5.81) could
represent the characteristic function of a single state variable or of the entire joint
ensemble or of particular combinations of variables. Since f is a Q–martingale,
by using the Itô calculus extended for jumps (see Tankov and Cont [2003] for a
thorough discussion), we find that it satisfies the following PIDE:

ft + (Aijzj+bi)fzi + 1
2 (X

k
ij zk+X0

ij)fzizj + (λk0+λklzl)E
Q(f (zi+ jik)− f )= 0 (5.82)

and of course f (z,T) = eiεnφnzn . Now, due to the affine structure, we can seek a
solution to (5.82) of the following form:

f = eα0(t ;φ)+αk(t ;φ)zk (5.83)

Substituting (5.83) into (5.82) and collecting coefficients of zk , we get the following
system of ODEs:

α̇k +Aikαi+ 1
2 Xk

ijαiαj +λikKi(α)= 0

α̇0+ biαi+ 1
2 X0

ijαiαj +λi0Ki(α)= 0
(5.84)

where

Ki(α)≡ EQ(eαmjmi − 1) (5.85)

and the terminal conditions are

αk(T)= iεkφk

α0(T)= 0
(5.86)

Thus, we see that calculation of the characteristic function in (5.81) has been re-
duced to solving the system of ODEs in (5.84)–(5.86). These will in general be
nonlinear, but in the absence of jumps, the quadratic structure gives the system a
Riccati form. We will see shortly a number of nontrivial cases where this system can
be solved analytically. In general, though, this system can be readily solved numer-
ically, although we will see examples where care must be exercised (e.g., volatility
scaling laws on time horizons of different orders of magnitude42). Therefore, the
kinds of models represented in (5.76) are understandably popular. Of course, know-
ing the characteristic function is tantamount (in theory at least) to knowing the
distribution of the underlying process (via Fourier inversion). However, it turns
out that many applications of interest – specifically option valuation – can be car-
ried out directly in terms of the characteristic function, without recourse to any
inversion, as we will now see.
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5.2.4 General results/contour integration

5.2.4.1 The primary calculation

Consider the following valuation problem:

EQ
t (e

zT −K)+ (5.87)

In terms of indicator functions, (5.87) can be written as

EQ
t (e

zT −K)+ = EQ
t ezT 1(zT > logK)−K ·EQ

t 1(zT > logK) (5.88)

Consider the second expectation in (5.88):

EQ
t 1(zT > logK)=

∞∫
−∞

dzT Pr(zT |z)1(zT > logK) (5.89)

Now, let us assume the (conditional) characteristic function of the process z is
known. Denoting the characteristic function by f and using the Fourier inversion
formula, (5.89) becomes

EQ
t 1(zT > logK)=

∞∫
−∞

dzT 1(zT > logK)
1

2π

∞∫
−∞

dφf (φ)e−iφzT (5.90)

Let us emphasize that the integral wrt. φ in (5.90) is one-dimensional, even though
the characteristic function f will in general be multidimensional in terms of the un-
derlying state variables43 (see (5.83)). Now, we would like to interchange the order
of integration in (5.90) (for reasons that will soon become apparent). However, as
the limits of integration stand, this is not possible as e−iφzT is not integrable along
the entire real φ−axis. This problem can be remedied by choosing a contour of in-
tegration in the Fourier inversion that lies below the real φ−axis, say with negative
imaginary part. See Figure 5.1.

We thus write eq. (5.90) as

EQ
t 1(zT > logK)=

∞∫
−∞

dzT 1(zT > logK)
1

2π

∫
�

dφf (φ)e−iφzT (5.91)
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convergence of integrals such as (5.91) (as analogues of (5.90))

where � is a contour like the one in Figure 5.1. Interchanging the order of
integration (which is now justified) in (5.91), we get

EQ
t 1(zT > logK)= 1

2π

∫
�

dφf (φ)

∞∫
−∞

dzT e−iφzT 1(zT > logK)

= 1

2π

∫
�

dφf (φ)

∞∫
k

dzT e−iφzT = 1

2π

∫
�

dφf (φ)
e−iφk

iφ
(5.92)

where k ≡ logK . Now, it is customary in the literature to shift the contour � back
to the real φ−axis, and when taking into account the pole at φ = 0, we get

EQ
t 1(zT > logK)= 1

2
+ 1

π

∞∫
0

dφRe

[
f (φ)

e−iφk

iφ

]
(5.93)

We would like to point out that, although it is common to approach the computa-
tion in (5.93) as a real integral, it is actually not necessary, and we will see examples
(in Chapter 7) where it is actually preferable numerically to directly perform the
integration in the complex plane in (5.92).

5.2.4.2 Primary calculation (continued): change of measure

Turning now to the first expectation in (5.88), change of measure techniques prove
very useful. We have that

EQ
t ezT 1(zT > logK)= EQ

t ezT ·EQz
t 1(zT > logK) (5.94)
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where Qz is a measure defined by dQz
dQ = ezT /EQ

t ezT . Now, if we can determine the
characteristic function of z under this measure, then the same argument used to
derive (5.93) can be applied here as well. Of course, this is a very easy task:

f z(φ)= EQz
t eiφzT = EQ

t ei(φ−i)zT

EQ
t ezT

= f (φ− i)

f (−i)
(5.95)

Now, in most cases of interest Q will be a valuation measure under which z is an
exponential martingale, so the option value can be written in standard form as

EQ
t (e

zT −K)+

= ez

⎛⎝ 1
2 +

1

π

∞∫
0

dφRe

[
f (φ− i)

f (−i)

e−iφk

iφ

]⎞⎠−K

⎛⎝ 1
2 +

1

π

∞∫
0

dφRe

[
f (φ)

e−iφk

iφ

]⎞⎠
(5.96)

So, the option valuation problem amounts to a pair of quadratures, as long as the
characteristic function of the underlying process is known. We will have a bit more
to say on quadrature in Chapter 7, but it suffices for now to note that in practice the
problem in (5.96) proves amenable to standard techniques such as Gauss-Laguerre.

5.2.4.3 Additional applications

In fact, although it does not appear to be widely known, this technique can be ap-
plied to a wider class of structures often encountered in energy markets, specifically
cases where it is more natural to consider the underlying DGP directly, and not
transformed via logarithms. Obvious examples include basis options (as in natural
gas markets) or options on realized variance. The basic valuation problem in this
case is

EQ
t (zT − k)+ (5.97)

which of course can be written as

EQ
t zT 1(zT > k)− k ·EQ

t 1(zT > k) (5.98)

We will continue to restrict attention to cases where the (conditional) character-
istic function of the underlying process z is known. Then, the second term in
(5.98) presents no problems, as we have just seen. However, the first term does
not appear directly amenable to the change of measure techniques that proved so
fruitful in arriving at (5.96), precisely because z itself may not represent a valid
numeraire. However, these methods can be employed indirectly. Consider the
following expectation:

EQ
t eαzT 1(zT > k) (5.99)
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Proceeding as in (5.94), we find that

EQ
t eαzT 1(zT > k)= EQ

t eαzT ·EQα
t 1(zT > k) (5.100)

where the new measure Qα is defined via dQα
dQ = eαzT

EQ
t eαzT

. So, to evaluate the expres-

sion in (5.99) we need to know the characteristic function of z under this measure,
which is obtained as follows:

f α(φ)= EQα
t eiφzT = EQ

t e(α+iφ)zT

EQ
t eαzT

= f (φ− iα)

f (−iα)
(5.101)

an obvious generalization of (5.95). Thus, following (5.92) we have that

EQ
t eαzT 1(zT > k)= 1

2π

∫
�

dφf (φ− iα)
e−iφk

iφ
(5.102)

for an appropriately chosen contour �. Now, assuming sufficient regularity of the
integrand, upon taking a derivative wrt. α under the integral in (5.102) and setting
α to 0 yields

EQ
t zT 1(zT > k)= −i

2π

∫
�

dφf ′(φ) e−iφk

iφ
(5.103)

Consequently the ensemble in (5.98) can be evaluated via characteristic functions,
as long as the derivatives entailed in (5.103) can be readily evaluated. In fact, for the
class of affine jump diffusions considered above, the characteristic function has the
form f = exp(αi(φ)zi+α0(φ)) so that derivatives wrt. φ are given by (aizi+ a0)f
where a≡ ∂α

∂φ and, using (5.84), satisfy the following (linear) system of ODEs:

ȧk +Aikai+ aiX
k
ijαj + anλikEQjnie

αmjmi = 0

ȧ0+ biai+ aiX
0
ijαj + anλi0EQjnie

αmjmi = 0
(5.104)

with terminal conditions suitably derived from (5.86).44 We thus see that this
framework for option valuation encompasses a fairly rich class of both processes
and structures.

It is important to stress that the result in (5.96) is quite general (as is (5.103)). It
applies for any process for which the characteristic function is obtainable. It thus
applies to the class of Lévy processes, as well as the class of affine jump diffusions
presently under discussion. Let us consider some specific examples now. (We will
work in terms of log prices throughout, unless explicitly noted.)
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5.2.5 Specific examples

5.2.5.1 Black-Scholes

The standard Black-Scholes model needs very little introduction, so we simply write
the dynamics of the log-price here:

dz =− 1
2σ

2dt +σdw (5.105)

The characteristic function satisfies

ft − 1
2σ

2fz + 1
2σ

2fzz = 0 (5.106)

with f (z,T)= exp(iφz). The solution is easily seen to be

f = eiφ(z− 1
2σ

2τ)− 1
2σ

2φ2τ (5.107)

(We will take τ = T − t) throughout. Now, using the standard result,

1
2 +

1

2π

∞∫
−∞

dφ
eiαφ−β2φ2/2

iφ
=N

(
α

β

)
(5.108)

It is readily seen that the option pricing formula (5.96) becomes

ezN

(
z− k+ 1

2σ
2τ

σ
√
τ

)
K ·N

(
z− k− 1

2σ
2τ

σ
√
τ

)
(5.109)

which is of course the Black-Scholes formula. For a related application, consider an
option on a Gaussian process (i.e., the so-called Bachelier model):

dz = σdw (5.110)
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with characteristic function f = eiφz− 1
2 σ

2φ2τ . For an option with payoff (z− k)+,
we have (from (5.103) with any contour � below the real φ –axis) that

EQ
t (zT − k)+ = 1

2π

∫
�

dφ(z+ iφσ 2τ)eiφz− 1
2 σ

2φ2τ e−iφk

iφ
− kN

(
z− k

σ
√
τ

)

= (z− k)N

(
z− k

σ
√
τ

)
+ 1

2π
σ 2τ

∫
�

dφeiφ(z−k) 1
2σ

2φ2τ

= (z− k)N

(
z− k

σ
√
τ

)
+ 1

2π
σ
√
τ e
− 1

2 (
z−k
σ
√
τ
)

2 ∫
�

dφe
− 1

2 (φ−i z−k
σ
√
τ
)

2

= (z− k)N

(
z− k

σ
√
τ

)
+σ√τϕ

(
z− k

σ
√
τ

)
(5.111)

which of course can be verified by direct calculation.

5.2.5.2 Merton

Merton’s well-known jump diffusion model (see Merton [1990]) can be written as

dz = (− 1
2σ

2−λk
)

dt +σdw+ jdq (5.112)

where λ is the jump intensity (so that the probability of a jump in an infinitesimal

time step dt is λdt ) and k ≡ EQ(ej − 1) = eμj+ 1
2σ

2
j − 1 for normally distributed

jump amplitudes. The characteristic function f now satisfies a PIDE:

ft −
( 1

2σ
2+λk

)
fz + 1

2σ
2fzz +λEQ(f (z+ j)− f )= 0 (5.113)

again with terminal condition f (z,T)= exp(iφz). The solution is easily found to be

f = exp
(

iφz+ τ(−iφ(λk+ 1
2σ

2)− 1
2σ

2φ2+λ(eiφμj−σ 2
j φ

2/2− 1))
)

(5.114)

Now, substituting (5.114) into the basic option pricing formula (5.96), expanding

the exponential in terms of λeiφμj−σ 2
j φ

2/2, and using the result (5.108), we recover
the well-known infinite series result

e−λ̃τ
∞∑

n=0

(λ̃τ )
n

n!

(
ezN

(
z− k+ rn+ 1

2 v2
n

vv

)
−Ke−rn N

(
z− k+ rn− 1

2 v2
n

vv

))
(5.115)



Analytical Techniques 163

where

rn =−λkτ +n(μj +σ 2
j /2)

v2
n = σ 2τ +nσ 2

j

λ̃= λ(k+ 1)

(5.116)

5.2.5.3 Heston

A very well-known (and popular) stochastic volatility model is due to Heston
(1993), and is probably the first published research to make use of characteristic
function methods for option pricing. (We have already appealed to Heston several
times to illustrate earlier points.) The model is given by

dz =− 1
2 vdt +√vdwz

dv = κ(θ − v)dt +σ√vdwv

(5.117)

where dwzdwv = ρdt (as an Itô isometry). The PDE satisfied by the characteristic
function is

ft − 1
2 vfz + κ(θ − v)fv + 1

2 vfzz +ρσvfzv + 1
2σ

2vfvv = 0 (5.118)

with the usual terminal condition. We look for a solution of the form

f = exp(iφz+C(t ;φ)v+D(t ;φ)) (5.119)

with C(T ;φ)= D(T ;φ)= 0. These coefficients can be seen to satisfy the following
system of ODEs:

Ċ+ (iρσφ− κ)C+ 1
2σ

2c2− 1
2φ(φ+ i)= 0

Ḋ+ κθC = 0
(5.120)

These can be solved analytically by the standard transformation for Riccati
equations,45 yielding

C =−2m1

σ 2

1− e(m2−m1)τ

1− m1
m2

e(m2−m1)τ

D=−2κθ

σ 2

(
m1τ + log

(
1− m1

m2
e(m2−m1)τ

1− m1
m2

)) (5.121)

where m1,2 are the roots of the quadratic equation

m2+ (κ − iφρσ)m− σ
2

4
φ(φ+ i)= 0 (5.122)
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Computationally, a particularly convenient form of (5.121) is the following:

C =− φ(φ+ i)

g + γ 1+E
1−E

eD = 2p exp
( 1

2 p(g − γ )τ)(
1+E+ g

γ (1−E)
)p

(5.123)

where g ≡ κ − iρσφ,γ ≡ √g2+σ 2φ(φ+ i), p = 2κθ
σ 2 , and E = exp(−γ τ). Note

that for φ = −i the results in either (5.121) or (5.123) give no contribution to
the characteristic function, confirming that z is a Q–exponential martingale, as we
would expect. With the results in (5.123), the option value can be obtained via
Gauss-Laguerre quadrature. It should be pointed out here that potential difficul-
ties arise due to the (implicit) presence of branch-cut singularities (arising from
complex logarithms and/or complex powers). We will say a bit more about this is-
sue in Chapter 7 on numerics, but here we simply note the work of Lord and Kahl
(2008).46

5.2.5.4 Schwartz

Apart from option pricing, the methods under discussion greatly facilitate the ex-
traction of certain structures from a wide class of problems. As an example, we
consider a general class of processes originally popularized by Schwartz (see, e.g.,
Schwartz [1997] or Gibson and Schwartz [1990]). A simple representation will
suffice here. We take the underlying process dynamics to be

dz = κ(θ − z)dt +σzdwz

dθ = μdt +σθdwθ
(5.124)

with dwzdwφ = ρdt . The log-price z is a mean-reverting process with a nonsta-
tionary stochastic mean. These features are fairly common in energy markets. An
example is the generation stack in electricity markets. The marginal generation unit
(that sets the market heat rate) is mean reverting: demand tends to be driven by fun-
damental, mean-reverting entities such as temperature (so that during heat waves,
say, the market-clearing heat rate is set by a unit higher up on the stack, and when
the heat wave subsides the marginal unit comes back down the stack).47 However,
there are also long-term, non-stationary capital effects governing the overall growth
of the stack (that is, the level to which the marginal unit reverts). Due to capital sub-
stitution effects across the economy as a whole, we anticipate that the marginal heat
and long-term mean are negatively correlated: ρ < 0. (See EW for a full discussion
of the generation stack in power modeling.)

Although (5.124) is a linear, Gaussian process, it is still nonstandard and it is
not immediately clear what type of probabilistic behavior it gives rise to. However,



Analytical Techniques 165

characteristic function methods prove quite helpful in deriving this structure. The
characteristic function f = Et eiφzT satisfies

ft + κ(θ − z)fz +μfθ + 1
2σ

2
z fzz +ρσzσθ fzθ + 1

2σ
2
z fθθ = 0 (5.125)

Looking for a solution of the form f = exp(αz+βθ + γ ) we get the following
ensemble:

α̇− κα = 0

β̇− κα = 0

γ̇ +μβ+ 1
2σ

2
z α

2+ρσzαβ+ 1
2σ

2
θ β

2 = 0

(5.126)

with α(T)= iφ, β(T)= γ (T)= 0. These ODEs are readily solved to get

α = iφe−κτ

β = iφ(1− e−κτ )

γ = iφμ

(
τ − 1− e−κτ

κ

)
− 1

2
φ2
(
σ̃ 2 1− e−2κt

2κ
+ 2(ρσz −σθ )σθ 1− e−κt

κ
+σ 2

θ τ

)
(5.127)

where σ̃ 2 = σ 2
z − 2ρσzσθ + σ 2

φ . (Note that this entity is reminiscent of the ratio
volatility that plays a central role in spread option pricing.) From the quadratic
structure (in φ) of (5.127), we see that indeed the process z is Gaussian. Of pri-
mary interest here is the volatility structure, identifiable as the quadratic term in
the expression for γ in (5.127). This can be seen to possess features of both a mean-
reverting process (asymptoting variance) and a nonstationary process (linearly
growing variance). Typical behavior of the volatility can be seen in Figure 5.2.

Figure 5.2 is somewhat mislabeled as showing a “term structure,” which is not
really meaningful as (5.124) is better thought of as a spot process, in which case
this figure is really showing a variance scaling law (annualized in terms of volatil-
ity). However, we will see shortly how the implied forward dynamics are readily
obtained from such models, and that the term “structure” is indeed captured here.
The main point to be taken here is that the arresting of the volatility drop-off (the
so-called Samuelson effect) and eventual increase and leveling off is not an illu-
sory effect and is commonly seen in commodity markets, an exemplification being
power-gas (forward) heat rates. (It can be discerned in the examples from Section
3.1.3) Again, this effect is due to the capital structure of the particular market, and
manifests itself over different time horizons in different markets. For example, the
effect typically appears around maturities of two to three years in electricity mar-
kets, and four to five years in gas transport markets. We again call attention to a
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Figure 5.2 Volatility term structure for mixed stationary/non-stationary effects

theme that will be prevalent throughout this work, namely the idea of volatility as
representing information flows over different time scales. This example here, al-
though quite simple, nonetheless captures important features of actually existing
markets.

5.2.6 Application to change of measure

5.2.6.1 The quintessential formula, revisited

We have already seen in the derivation of (5.96) how change-of-measure techniques
facilitated the underlying argument by identifying the two constituent expectations
as being special cases of a more general computation. This categorization was possi-
ble because of the ability to exploit the particular form of the characteristic function
of the underlying process. Affine jump diffusions permit a rather general use of
change of measure, which, as we will see later, can prove quite useful in various
numerical applications. In fact, let us consider a generalization of the quintessential
option pricing formula of Section 5.1.

The basic problem we are interested in is the following:

EQ
t eakzk(T)1(Kijzj(T)≤ Li) (5.128)

This can be written as

EQ
t eakzk(T)EQa

t 1(Kijzj(T)≤ Li) (5.129)

where the new measure Qa is defined through the RN derivative

dQa

dQ
= eakzk(T)

EQ
t eakzk(T)

(5.130)
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Consequently, the problem in (5.129) requires knowledge of the distribution of the
matrix random vector z̃(T)= Kz(T) under the measure Qa. To determine this, we
consider

f = EQa
t eiφk

�
z k(T) = EQ

t e(aj+iφkKkj)zj(T)

EQ
t eaizi(T)

(5.131)

Now, for the class of affine jump diffusions, both of these expectations can be
obtained. We have

EQ
t e(aj+iφkKkj)zj(T) = eα

′
kzk+α′0

EQ
t eaizi(T) = eαkzk+α0

(5.132)

where α′ and α both satisfy the system (5.84) with the following terminal condi-
tions:

α′k(T)= ak + iφjKjk , α′0(T)= 0

αk(T)= ak , α0(T)= 0
(5.133)

Now, in some sense, we are done. We have the characteristic function of z̃ under Qa

via

EQa
t eiφk ẑk(T) = e(α

′
k−αk)zk+α′0−α0 (5.134)

and thus we can calculate (in principle) the expectation EQa
t 1(z̃j(T)≤ Li) by a fairly

straightforward extension of the approach taken in the one-dimensional case. We
will have much more to say about some of the issues involved in the Chapter 7, when
we will see how appropriate use of contour integration can be of great utility. Here
we briefly give an indication of the essence of the calculation in two dimensions.

5.2.6.2 Higher dimensions

Consider the following expectation:

E1(z1 < γ1,z2 < γ2) (5.135)

Assuming we know the characteristic function f of the joint process, (5.135) can be
written

∞∫
−∞

∞∫
−∞

dz1dz21(z1 < γ1,z2 < γ2)
1

(zπ)2

∫
�1

∫
�2

dφ1dφ2f (φ1,φ2)e
−iφ1z1−iφ2z2

(5.136)
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where the contours �1,2 are chosen to permit interchanging the orders of integra-
tion:

E1(z1 < γ1,z2 < γ2)= 1

(zπ)2

∫
�1

∫
�2

dφ1dφ2f (φ1,φ2)
e−iφ1γ1

−iφ1

e−iφ2γ2

−iφ2
(5.137)

which is entirely analogous to (5.92). Of course, by moving the contours back to
the real φ -axes and taking into account the poles, a form similar to (5.93) can be
obtained. Again, though, we will see that this step is neither necessary nor desirable.

5.2.6.3 Restricted forms

Although this general result is definitely useful, it would still be of interest to say
something about specific structures induced by measure changes in (5.130). Here
we must consider some special cases owing to the fundamentally nonlinear nature
of the dynamics in (5.76), in contrast to the linear, Gaussian case. A natural choice
would be to take K = I (the identity matrix), so that (5.131) amounts to determin-
ing the dynamics of the original process under the change of measure. We look for
a solution to (5.132) of the form

α′k = αk +βk ,α′0 = α0+β0 (5.138)

with βk(T) = iφk , β0(T) = 0. Now using (5.84), the system of equations for α′
become

α̇k + β̇k +Aik(αi+βi)+ 1
2 Xk

ij(αi+βi)(αj +βj)+λikKi(α+β)= 0

α̇0+ β̇k + bik(αi+βi)+ 1
2 X0

ij(αi+βi)(αj +βj)+λi0Ki(α+β)= 0
(5.139)

We also have that

Ki(α+β)= EQ(e(αm+βm)jmi − 1)

= EQeαmjmi (eβmjmi − 1)+EQ(eαmjmi − 1)

= EQeαmjmi EQi
α (eβmjmi − 1)+EQ(eαmjmi − 1) (5.140)

with the new measures Qi
α defined through the RN derivatives

dQi
α

dQ
= eαmjmi

EQeαmjmi
(5.141)



Analytical Techniques 169

Using the fact that α satisfies the system (5.84), the ensemble (5.139) becomes

β̇k +βi(Aik +Xk
ijαj)+ 1

2 Xk
ijβiβj + λ̃ikK̃i(β)= 0

β̇0+βi(bi+X0
ijαj)+ 1

2 X0
ijβiβj + λ̃i0K̃i(β)= 0

(5.142)

where under the induced measure change we have

λ̃ik = λikEQeαmjmi

K̃i(β)= EQi
α (eβmjmi − 1)

(5.143)

Consequently, the characteristic function (5.134) is of the form exp(βkzk +β0)

where β satisfies the same kind of Riccati system as in (5.84). Thus, the process
z remains an affine jump diffusion under the new measure Qa. However, the drift
and jump dynamics are changed. The drift changes as

Aik → Aik +Xk
ijαj

bi → bi+X0
ijαj

(5.144)

and the jump intensities and distribution of jump amplitudes changes are laid out
in (5.141) and (5.143). (Note, not surprisingly, that the covariance structure is un-
changed.) We thus see great commonality with, and much generalization of, the
results for the pure diffusive case (e.g., in (5.42)) as well as the Lévy case (e.g., in
(5.208)). There is a complication, however: the new dynamics will now have ex-
plicit time dependence, as the entities α are of course nonconstant in the general
case. Similarly, the induced jump measure change in (5.141) will also be impacted.
However, we have arrived at our desired result: the measure change (5.130) re-
tains the affine structure of the underlying system. In Chapter 7 we will address
the question of how, numerically, the kinds of binary option valuations entailed in
(5.128) can be obtained. The point to be taken now is that, armed with the ability
to carry out such calculations, more general expectations can be similarly obtained
via change of measure.

5.2.7 Spot and implied forward models

It should be clear that a great many features of actually existing energy markets can
be incorporated in the affine class of processes in (5.76), chief among them mean
reversion and jumps (but also, obviously, stochastic volatility). These features arise
due to various physical and operational constraints that impact energy markets. Ex-
amples include mean-reverting temperature driving demand for electricity, as well
as equilibrating supply/demand constraints along the generation stack. In addition,
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the actual form of this stack gives rise to jumps during conditions of stressed sup-
ply. As usual, we direct the reader to EW for a complete discussion. The main point
we wish to emphasize here is that these physical constraints refer to effects at the
spot level of price dynamics. However, any valuation/hedging problem can only
take place in terms of (financially traded) forwards or futures. We do not propose
here to investigate in any thorough sense the relationship between spot and futures
prices. We only note here that there is such a relationship, and we explain how the
class of affine jump diffusions offers a convenient framework for illustrating this
relationship, as well as the critical question of what kinds of value drivers arise from
different kinds of hedging strategies around futures.

5.2.7.1 Affine dynamics

So we start by specifying a spot process with dynamics under two measures, P and
Q, where, in line with standard notation, P represents the measure governing the
actual, observed data-generating process (i.e., the physical measure) and Q repre-
sents a measure under which expectations relevant for valuation and hedging takes
place (i.e., the pricing measure). We further assume that the spot process remains
affine under both of these measures. We thus write the dynamics in (5.76) as

dzi = (AP
ij zj + bP

i )dt +σ k
i
√

zkdwk
i +σ 0

i dw0
i + jikdqk (5.145)

under the physical measure and

dzi = (AQ
ij zj + bQ

i )dt +σ k
i
√

zkdwk
i +σ 0

i dw0
i + jikdqk (5.146)

under the pricing measure. The covariance structure is of course unchanged, while
the jump intensities change so that λP

i = λP
i0+ λP

ij zj under P and λQ
i = λQ

i0+ λQ
ij zj

under Q. In addition, the jump amplitudes differ under the two measures, and
we indicate this through the (pseudo) moment generating function K P,Q

i (α) =
EP,Q(eαmjmi − 1). Now, we write the futures price as the expectation of spot under
the pricing measure:48

Ft ,T = EQ
t ST (5.147)

Working in terms of log assets, for those entities which represent log prices we have

Fi
t ,T = EQ

t ezi(T) (5.148)

Since z is an affine process, the log-forward price f (we drop the superscript i for
convenience) satisfies

f = αQ
i zi+αQ

0 (5.149)

where αQ satisfies a system such as (5.84) and the superscript Q highlights the fact
that the parameters of the Q–process are being used. Generically, we have that the
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dynamics of the log forward are

df = (α̇Q
k zk + α̇Q

0 )dt +αQ
i dzi (5.150)

Since there are different spot dynamics under the two measures, we clearly see there
are likewise different forward dynamics, as well. Using (5.84), we see that (5.150)
can be written as

df =−
(

zk(A
Q
ikα

Q
i + 1

2 Xk
ijα

Q
i α

Q
j +λQ

ikK Q
i (α

Q))+
bQ

i α
Q
i + 1

2 X0
ijα

Q
i α

Q
j +λQ

i0K Q
i (α

Q)

)
dt +αQ

i dzi (5.151)

Now, using the different dynamics under P and Q, we see that (5.151) becomes

df =− 1
2α

Q
i (X

Q
ij zk +X0

ij)α
Q
j dt

−K Q
i (α

Q)(λ
Q
ikzk +λQ

i0)dt

+αQ
i ((A

M
ik −AQ

ik)zk + bM
i − bQ

i )dt

+αQ
i (σ

k
i
√

zkdwk
i +σ 0

i dw0
i + jikdqk) (5.152)

where M can denote either P or Q. Some specific examples will be most useful in
illustrating how particular behavior in spot is manifested in the forwards. However,
even at an abstract level several important points can be discerned.

5.2.7.2 Ramifications for pricing and valuation

First, note that the log forward retains the affine structure under both measures.
Of course, the forward can be obtained directly via (5.149), but there are often
applications where the dynamics are of interest and these are handily provided by
(5.152). In particular, the usual affine machinery for option valuation is completely
applicable here (with the minor complication that there is now explicit time depen-
dence involved). An example would be monthly storage valuation, where spread
options involving monthly legs of differing times to maturity are used as hedging
instruments. Specifically, some injection (say) decisions will be made in conjunc-
tion with some decisions to withdraw in the future, and the latter kind of decision
will involve entering into (short) forward positions that will have nonzero times to
maturity. The basic valuation structure is thus of the form

EQ
t (FT1,T2 −FT1,T1)

+ (5.153)

with T2 > T1 > t .49 Thus we see the need for understanding the “incremental” (so
to speak) dynamics of F , which can be obtained from (5.152). We further note here
that the typical dichotomy one often sees between forward-based and spot-based
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valuations is in truth largely a false one. The fact that forward and spot prices must
be related (albeit usually in a more complicated manner than (5.148)) means that
there must be some kind of relationship between respective valuations in terms of
them. One reason (there are others) that the different approaches give rise to differ-
ent values is the nature of the resolution of the two entities: forwards typically apply
over lower resolution time blocks than spot. One advantage of the affine framework
in (5.146) and (5.152) is that examples can be constructed in which the temporal
resolution is the same for both forward and spot representations, and the conver-
gence of the two valuations can be demonstrated. (We considered such examples in
Chapter 4.)

Second, we can see how the dynamics in (5.152) depend critically on which
measure is being considered. Under Q, the linear drift terms vanish and the
jump compensator terms are precisely such that the log forward is an exponential
Q–martingale, as expected from (5.148). In fact, we explicitly have

dF

F
= (K M

i (α
Q)(λM

ik zk +λM
i0 )−K Q

i (α
Q)(λ

Q
ikzk +λQ

i0))dt

+αQ
i ((A

M
ik −AQ

ik)zk + bM
i − bQ

i )dt

+αQ
i (σ

k
i
√

zkdwk
i +σ 0

i dw0
i )+ (eα

Q
i jik − 1)dqk (5.154)

Now consider the forward dynamics under the physical (P) measure. In this case,
the drift terms do not vanish.50 Both the linear drift and the jump compensator
terms are present in (5.154). This means that the evolution of the forwards under
the physical measure will inherit (at least in time-modulated form) many of the
characteristics of the physical spot process. In particular, there can be something
like mean-reverting effects in financially traded forwards, even though there is no
explicit mechanism for effecting such mean reversion! It should go without saying
that this situation can have enormous effects on valuation, depending on the kind
of hedging strategy that is adopted (and hence, what kind of exposures are created).
Put differently, the kinds of value drivers that are relevant can be very different
depending on the particular hedging strategy employed.

5.2.7.3 Example: variance scaling laws

Some specific examples will serve to illustrate these points. Consider a mean-
reverting log price, with respective P– and Q–dynamics:

dz = κP(θP − z)dt +σdw

dz = κQ(θQ− z)dt +σdw
(5.155)
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with κQ �= κP . The log forward is easily seen to be

ft ,T = ze−kQ(T−t)+ θQ(1− e−kQ(T−t))+ σ 2

4kQ
(1− e−2kQ(T−t)) (5.156)

The Q–dynamics of the forward are

dFt ,T

Ft ,T
= σ e−kQ(T−t)dw (5.157)

while the P–dynamics are

dFt ,T

Ft ,T
= e−κQ(T−t)(κPθP − κQθQ− (κP − κQ)z)dt +σ e−κQ(T−t)dw (5.158)

There are a few things of note here. First, the evolution of the forward in (5.157)
gives rise to a term structure for volatility:

σ̃t ,T = σ
√

1− exp(−2kQ(T − t))

2κQ(T − t)
(5.159)

This model thus illustrates the well-known Samuelson effect that is often seen in
commodity markets, namely the run-up in volatility as time to maturity decreases.
This behavior is a reflection of the general nature of volatility as a measure of ac-
cumulation of information over particular intervals of time. The intuition in this
case is that, due to mean reversion, significant movements in spot are of dimin-
ishing importance for the determination of future spot (and hence expectation of
future spot) as the time horizon under consideration increases. Alternatively, signif-
icant movements are of increasing importance for expectations of future spot over
smaller time horizons (as there is correspondingly less time for those movements to
equilibrate). Indeed, in terms of the rate of change of variance with respect to time
we have

∂vt ,T

∂t
= σ 2e−2kQ(T−t) (5.160)

indicating how the flow of information increases incrementally the closer one is
to expiration. Note of course that a critical factor here is the strength of mean re-
version; as κQ ↓ 0 the term structure of volatility flattens and the accumulation of
information is uniform over all time horizons.

The next thing to see is that, under the physical measure, the dynamics of the
forward inherit many of the properties of the spot. In this simple model, since the
relationship between log forward and log spot is affine (via (5.156)), by simple sub-
stitution it can be seen that the P–dynamics of the forward in (5.158) are mean
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reverting, albeit with some time modulation. This fact has obvious significance as
far as the value that can be collected from different hedging strategies with the for-
ward. In general, a static hedging strategy will collect the cumulative variance under
the physical measure, while dynamic hedging is necessary to extract the quadratic
variation given by (5.159). Although the affine structure makes it straightforward
to determine the cumulative variance of the forward over any time interval, it is
actually trivial to calculate this variance to expiry, since FT ,T = EQ

T ezT = ezT . Thus,
the cumulative variance over the total term is just the cumulative variance of spot
under the physical measure, which for convenience we annualize as a volatility:

υt ,T = σ
√

1− exp(−2κP(T − t))

2κP(T − t)
(5.161)

Since in general κQ < κP , the term structures in (5.159) and (5.161) will be quite
different.51 An example is shown in Figure 5.3.

The effect shown in Figure 5.3 is not simply a theoretical curiosity, but is in fact
observed in actual commodity markets. We saw real examples and discussed these
kinds of phenomena in greater detail in Section 3.1.3. Having laid out a specific
example (additional ones can be found in the Appendix to this chapter), we now
turn to a more general formalization of these ideas.

5.2.8 Fundamental drivers and exogeneity

As we have stressed in Chapter 3, the particular characteristics of commodity mar-
kets make the distinction between static and dynamic hedging strategies critically
important. Specifically, we pointed out that the particular nature of fundamental
relationships between traded assets determines which of those assets must be dy-
namically hedged to extract optimal value of a structured product depending on all
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of the assets. In this section we will describe some of the features of energy price
models that give rise to such effects. We should note here that we will revisit (and
in fact expand upon) these points in the next chapter when we discuss econometric
issues.

5.2.8.1 Background examples

First, let us review (from Section 3.1.3) a basic model of the joint (spot) dynamics
of (log) gas and power prices:

dg = μg dt +σg dwg

dh= kh(θ − h)dt +σhdwh

p= h+ g

(5.162)

Again, the basic intuition is clear: gas prices are essentially diffusive input costs, with
the ultimate product determined by supply and demand factors (namely, the gen-
eration stack and weather, respectively) that are mean reverting.52 (In general there
is some [typically negative] instantaneous correlation between gas and [market-
clearing] heat rate.) We have previously noted that the equilibrating relationship
between power and gas prices impacts the value that can be extracted from dynam-
ically as opposed to statically trading those assets. However, there is another point
to be raised regarding the structure of the simple model in (5.162): specifically, it
can be seen that the equilibrating relationship53 between power and gas is driven
by the heat rate, which is not itself dependent on that relationship. In the parlance
of economics, the heat rate is an exogenous variable (in common language terms,
it is a variable that is in some sense external to a model, and may be thought of as
given) while power and gas are endogenous variables (again in common language,
the variables that the model is trying to explain).

For further elucidation, consider the Schwartz-type model in (5.124), where the
mean-reversion level is itself stochastic. The basic, fundamental relationship be-
tween power and gas in (5.162) still holds, even though the overall dynamics of the
heat rate are very different. Indeed, in this case the heat rate is itself subject to an
equilibrating relationship reflecting the capital structure of the entire economy (i.e.,
not just the commodity markets). Consider also the important role temperature
and weather effects play in the formation of prices. Clearly such effects help deter-
mine the equilibrium level of prices (over the appropriate time scale) but are not
themselves determined by this equilibrium state.

5.2.8.2 Formalization

To formalize some of these points, consider the following model (motivated by
Pesaran et al. [2000]):54
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d

(
x
y

)
=
[(

bx

by

)
+
(

Axx 0
Axy Ayy

)(
x
y

)]
dt +

(
σx · dwx

σy · dwy

)
(5.163)

where · denotes Hadamard (element-by-element) matrix multiplication. In (5.163)
x is an m-dimensional vector of exogenous variables and y is an n-dimensional
vector of endogenous variables. Note that the exogenous variables can be analyzed
independently of the endogenous variables, but not vice versa (of course). Clearly,
models such as (5.162) and (5.220) can be fit into the framework of (5.163). We can
construct additional log-price processes via affine relationships of the form

z = cT
x x+ cT

y y (5.164)

We thus have a generalization of the basic power-gas-heat rate model of (5.162).
Typically, (5.163) and (5.164) refer to spot relationships, and of course we are pri-
marily concerned with forward relationships since much of the portfolio formation
(both static and dynamic) that is the backbone of valuation will be conducted in
terms of forward-traded entities (such as futures).

5.2.8.3 Underlying structure: more variance scaling laws

Thus, we consider expectations of the form55

Ft ,T = Et ezT (5.165)

Plainly, the characteristic function methods we have developed in this chapter are
ideally suited for evaluating expressions such as (5.165). Let us stress that the system
(5.163) is, owing to its essential linearity, jointly Gaussian and so (again invoking
linearity) expectations such as (5.165) can be computed in a number of ways. We
appeal to characteristic functions here because they greatly facilitate these compu-
tations, and because they have application across a wide range of (non-Gaussian)
processes. So, looking for a solution of the form Ft ,T = exp(γ T

x x+ γ T
y y+ γ0), we

obtain the following system of ODEs:56

γ̇x +AT
xxγx +AT

yxγy = 0, γx(T)= cx

γ̇y +AT
yyγy = 0, γy(T)= cy

(5.166)

Following the approach laid out in Section 5.2.7, we see that the forward dynamics
(under the pricing measure) are given by

dFt ,F

Ft ,T
= γ T

x σx · dwx + γ T
y σy · dwy (5.167)
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(Compare with (5.215).) Although it will not be possible to provide an analytic
solution to (5.167), some important general points can be made.

As is well known, a linear system of ODEs can in principle be solved by the fol-
lowing transformation (although in practice it is generally not a good idea to do so;
see the entertaining account in Moler and van Loan [2003]):

ẋ = Ax = VJV−1x ⇒ ẏ = Jy (5.168)

where y = V−1x and V is the matrix of generalized eigenvectors of A, with J the
corresponding Jordan block form of eigenvalues.57 It can thus be seen from (5.166)
that the modulation factors acting on the volatility terms in (5.167) will depend
on the eigenvalue/eigenvector structure of the matrices A in the (spot) dynamics
(5.163). In fact, the forward dynamics will in general depend on the interplay of
the eigenstructures, so to speak, owing to the (inhomogeneous) term AT

yxγy in the
first set of equations in (5.166). A specific example has already been encountered
in (5.215). We have already discussed the reality of the volatility term structure
in commodity markets, and we have here a general model that gives rise to this
(Samuelson) effect, by relating that structure to the underlying (joint) behavior of
both fundamental (that is, non-price) drivers and other price components. But of
course (as we have emphasized), volatility is a measure of information accumula-
tion over specific intervals of time, and thus we also have here an illustration of how
information accumulation over different time scales that is specific to various phys-
ical drivers (as encapsulated by their underlying eigenvalue/eigenvector structure)
manifests itself in the dynamics of financial contracts that settle against functions
of those drivers.

The importance of these dynamics (specifically, the time scales over which differ-
ent effects combine) can be seen when we consider the evolution under the physical
measure. Again following Section 5.2.7, we find that the physical dynamics are given
by

dFt ,F

Ft ,T
=
(
γ T

x (b
P
x − bQ

x + (AP
xx −AQ

xx)x)+
γ T

y (b
P
y − bQ

y + (AP
yx −AQ

yx)x+ (AP
yy −AQ

yy)y)

)
+ γ T

x σx · dwx + γ T
y σy · dwy (5.169)

where superscripts P and Q denote the (in general different) drift terms under
the physical and pricing measures, respectively. Compare with (5.158).58 We have
stressed repeatedly the different value that accrues from static as opposed to dy-
namic hedging strategies, and (5.169) illustrates the manner in which the relevant
time scales manifest themselves in the drift of forward prices. In general, the precise
nature of the dynamics will be complicated and depend on the eigenstructure of the
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underlying drivers, but at the heart of the process are the operative time scales of
these drivers.

We have already said much about the critical importance of time scales in
Chapter 2, in particular on the interplay of prices and their fundamental drivers
operating on differing time scales.59 The discussion here has served to present
these concepts (which we have encountered several times already) from the angle of
techniques ordinarily applied to change-of-measure techniques (namely, via char-
acteristic functions). We have to this point emphasized the difference in value that
accrues from different hedging strategies (e.g., static vs. dynamic) in the forma-
tion of specific portfolios around structured products. We now revisit the subject
of Chapter 3, namely the representation of value and how, again in terms of trading
strategies, valuation depends on the construction of portfolios from which partic-
ular kinds of exposure are created (or more accurately, how one kind of exposure is
replaced by another, presumably preferable, exposure60).

5.2.9 Minimal martingale applications

In this section we provide a more detailed discussion of issues previously raised in
Section 3.2 on pricing in incomplete markets via the minimal martingale measure
(MMM).

5.2.9.1 Continuous time/affine case

We start here with a process following our familiar affine jump diffusion (sans
jumps), under the physical (P) measure (recall (5.76) from Section 5.2.3):

dzi = (Aijzj + bi)dt +σ k
i
√

zkdwk
i +σ 0

i dw0
i (5.170)

where as usual the summation convention over repeated indices not on the LHS is
adopted and we again take dwk

i dwl
j = δklρ

k
ij and adopt the notation Xk

ij ≡ ρk
ijσ

k
i σ

k
j .

We assume there are N state variables, of which the first N ′ ≤ N represent log
prices of traded assets. We now look for a Radon-Nikodym (RN) process61 of the
following form:

dξ =− 1
2 Mdt +αk

i σ
k
i
√

zkdwk
i +α0

i σ
0
i dw0

i (5.171)

where M = zkα
k
i Xk

ijα
k
j +α0

i X0
ijα

0
j , so ξ is an exponential P–martingale This form is

chosen for convenience; in general the factors α will be state dependent (i.e., the RN
process will not itself be affine). Now, we are interested in the state dynamics under
a new measure Q defined by

dQ

dP
= eξT−ξ (5.172)
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To derive these dynamics, consider the characteristic function of z(T) under Q:

f = EQ
t eiφkzk(T) = e−ξEP

t eξT+iφkzk(T) (5.173)

Thus, f̃ ≡ f eξ is a P–martingale and so satisfies62

f̃t + (Aijzj + bi)f̃zi + 1
2 (zkXk

ij +X0
ij)f̃zizj

− 1
2 Mf̃ξ + 1

2 Mf̃ξξ + (zkXk
ijα

k
j +X0

ijα
0
j )f̃ziξ = 0 (5.174)

By substitution, we find that the coefficient of fzi , and hence the Q–drift, is given by

Aikzk + bi+ zkXk
ijα

k
j +X0

ijα
0
j (5.175)

Thus, the condition that tradeables are Q–martingales becomes

Aikzk + bi+ zkXk
ijα

k
j +X0

ijα
0
j + 1

2 (zkXk
ii +X0

ii)= 0,1, . . . ,N ′ (5.176)

The first thing to note is that in general (i.e., for N ′ < N), there is no unique so-
lution to the equations in (5.176), indicating again the general non-uniqueness
of equivalent martingale measures (EMM) in incomplete markets. To specify a
choice, we consider the MMM. This is defined by the change of measure under
which martingales that are orthogonal to tradeables under P remain martingales
under Q. Orthogonality here means that the product of two martingales (or more
generally the martingale components [e.g., arising from Doob-Meyer] of two ran-
dom variables) is itself a martingale, or equivalently, that they have zero quadratic
covariation. As will be seen, this amounts to requiring that martingales that are
orthogonal to tradeables are also orthogonal to the RN process.

5.2.9.2 MMM conditions

So, consider the following exponential P–martingale:

dx =− 1
2 M ′dt +βk

i σ
k
i
√

zkdwk
i +β0

i σ
0
i dw0

i (5.177)

Orthogonality with tradeables implies that

zkXk
ijβ

k
j +X0

ijβ
0
j = 0, i = 1, . . . ,N ′ (5.178)

Now, we have to require that x is an exponential Q–martingale. We can proceed
as we did in (5.175) for the change of measure. The adjustment to the P–drift of
x is given by the coefficient of the xξ cross term of a similar PDE to the one in
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(5.174). But this adjustment must be zero to ensure that x remains an exponential
Q–martingale, so we have that

zkα
k
i Xk

ijβ
k
j +α0

i X0
ijβ

0
j = 0 (5.179)

These requirements mean that we must have, ∀k, that

αk
i = α0

i , i = 1, . . . ,N ′

αk
i = 0, i =N ′ + 1, . . . ,N

(5.180)

It is worth noting the form the dynamics of the RN process in (5.171) now take:

dξ =− 1
2 Mdt +α0

i (σ
k
i
√

zkdwk
i +σ 0

i dw0
i ) (5.181)

In other words, the randomness driving this process is a linear combination of the
various sources of randomness driving each traded state variable. The condition
(5.176) that tradeables be Q–martingales becomes

(zkXk
ij +X0

ij)α
0
j +Aikzk + bi+ 1

2 (zkXk
ii +X0

ii)= 0, i = 1, . . . ,N ′ (5.182)

and we have a unique solution (as many equations as unknowns). After these
equations are solved, the Q–dynamics of the non-traded state variables (e.g.,
stochastic variance) can be obtained.

5.2.9.3 Heston-type examples

As an example, consider (yet again) Heston:

dz = (μ− v/2)dt +√vdw1

dv = κ(θ − v)dt +σ√vdw2

(5.183)

There is only one tradeable, and the martingale condition becomes

vα0
1 +μ= 0 (5.184)

from which the Q–drift of stochastic variance is given by

κ(θ − v)+ vρσα0
1 = κ

(
θ − ρσμ

κ
− v
)

(5.185)

so that the physical mean reversion rate is unchanged, but the level is adjusted. Note
that if the tradeable is already a Q–martingale (μ= 0), or if stochastic variance
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is orthogonal to price (ρ = 0), then the Q–dynamics of variance are unchanged
under the MMM. In fact, affinity is not necessarily retained under the MMM, as
the following “augmented Heston” example shows. Consider this process:63

dz = (μ− (vX2
11+X0

11)/2)dt +σ 2
1

√
vdw2

1 +σ 0
1 dw0

1

dz = κ(θ − v)dt +σ 2
2

√
vdw2

2 +σ 0
2 dw0

2

(5.186)

In this case, the stochastic variance Q–drift is given by

κ(θ − v)−μvX2
21+X0

21

vX2
11+X0

11

(5.187)

and only for rather uninteresting cases (e.g., Heston-only or deterministic volatility)
will the structure remain affine.

5.2.9.4 Optimal hedge ratios

An important question, obviously, concerns the nature of the hedges that the MMM
corresponds to. We have already seen (in (3.63)) the notion of the MMM as a mea-
sure under which orthogonal projections of the value function onto the space of
tradeables produce residuals that are (zero mean) martingales under both physical
and pricing measure. This property permitted (formal) application of EMM pric-
ing techniques. There is in fact another interpretation that is more closely tied to a
portfolio optimization problem, specifically variance minimization.

We will consider rather general (diffusive) dynamics, with tradeables denoted by
S and non-traded state variables denoted by x. The portfolio dynamics around some
structured product (with value function V ) and positions−� in the tradeables can
be written as

d�= (Vt + 1
2LV )dt + (VSi −�i)dSi+Vxi dxi (5.188)

(Recall (3.68).) Now, taking the value function V to be an expectation under some
(as yet unspecified) pricing measure Q, we take hedges of the form�i =Vsi+�ijVxj

for some (also as yet unspecified) matrix � (of less than full rank). Using the PDE
solved by V (recall the example in (3.79)), (5.188) can be written as

d�=−μQ
xi

Vxi dt −�ijVxj dSi+Vxi dxi

= Vxi (μ
P
xi
−μQ

xi
−�jiμ

P
Sj
)dt +Vxi (σxi dwxi −�jiσSj dwSj ) (5.189)

The notation in (5.189) should be clear: both entities (tradeables and non-
tradeables) have some drift terms under both measures,64 and some (correlated)
diffusive structure. The requirement that the hedge residual in (5.189) have zero
expectation/drift under the physical measure can be written in matrix form as

�TμP
S = μP

x −μQ
x (5.190)
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Obviously, this condition is not sufficient to determine the hedge component as-
sociated with sensitivity to non-tradeables given the pricing measure, nor is it very
useful in selecting or even characterizing the pricing measure given some hedge
component. We must turn to some other criteria to seek a connection between a
pricing measure and a hedging regime.

A natural choice is minimum residual variance. We can only hope to attain
tractable results with a local measure, since the cumulative variance involves an
integration with “vega” weighting Vx . From (5.189), this requires that

� = X−1
SS XSx (5.191)

in terms of the process covariances. (This is essentially a regression analysis.) While
this argument fixes the (optimal) hedge volume, it in general leaves (5.190) violated,
and more importantly still says nothing about the nature of the pricing measure.
However, it should be clear from generalizations of (5.175) and (5.182) that the
MMM is precisely that measure for which the solution (5.191) implies (5.190).65 In
other words, MMM is the local variance optimizing measure for which the residual
error has expectation zero under the physical measure.

As an example, the MMM-optimal hedge for Heston is given by

�opt = VS+ ρσ
S

Vv (5.192)

using (5.184) and (5.185). This expression has obvious parallels with the familiar
vega-adjusted delta hedge in the presence of volatility skew.

5.2.9.5 Connection with entropy

An interesting result is that for these (affine) processes, we can show that the MMM
corresponds to the Minimal Entropy Measure (MEM) (in general the MMM cor-
responds to the minimal reverse entropy measure). That is, we consider measure
changes that minimize the entity

EP
(

dQ

dP
log

dQ

dP

)
= EQ

(
log

dQ

dP

)
(5.193)

(The entropy measure will be seen to have econometric applications in Section 6.5.)
Now, the drift of ξ under Q simply changes sign, and we are faced with minimizing

EQ
t (ξT − ξ)= EQ

t

T∫
t

1
2 (zkα

k
i Xk

ijα
k
j +α0

i X0
ijα

0
j )ds (5.194)
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such that

Aikzk + bi+ zkXk
ijα

k
j +X0

ijα
0
j + 1

2 (zkXk
ii +X0

ii)= 0, i = 1, . . . ,N ′ (5.195)

Note that since the RN process is not in general affine, we cannot resort to the usual
machinery associated with such processes. However, we note that the integrand in
(5.194) is a quadratic form, so we can require that it be minimized subject to the
martingale constraint for tradeables. In particular, note that the integrand can be
written in matrix form as

((α1)T · · ·(α0)T )

⎛⎜⎝ z1X1 · · · 0
...

. . . 0
0 0 X0

⎞⎟⎠
⎛⎜⎝ α1

...
α0

⎞⎟⎠ (5.196)

Now, using Lagrange multipliers, it is easy to show that the solution to the following
minimization problem:

min 1
2 xT Ax

st Cx = b
(5.197)

with A symmetric, positive definite, is given by

x∗ = A−1CT (CA−1CT )−1b (5.198)

In our case, A is block-diagonal with inverse⎛⎜⎜⎝
(z1X1)

−1 · · · 0
...

. . . 0

0 0 (X0)
−1

⎞⎟⎟⎠ (5.199)

and C has the form ⎛⎜⎝ (z1X1)1 · · · (X0)1
(z1X1)2 · · · (X0)2

...
...

...

⎞⎟⎠ (5.200)

where the subscripts denotes rows of the corresponding submatrices. Thus, A−1CT

has the form ⎛⎜⎝ e1 e2 . . .

e2 e2 . . .
...

...

⎞⎟⎠ (5.201)
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where ei is a unit vector of dimension N with eij = δij . Thus, the optimal allocation
will have the form ⎛⎜⎝ α̂1

...
α̂0

⎞⎟⎠ (5.202)

with α̂k
i = α̂0

i for each k and fixed i = 1, . . . ,N ′ and α̂k
i = 0 for fixed k and i > N ′.

But this is exactly the same form as the condition for the MMM.66

Having established a general framework and methodology for valuation in terms
of portfolio formation (implicitly entailing specific trading strategies), we now turn
attention to an important facet of structured products that is pervasive in energy
markets, namely the fact that many such structures are associated with the state of
some system (e.g., a power plant being on or off), and that valuation must optimize
(in the appropriate sense) with regards to decisions that affect that state.

5.3 Appendix

5.3.1 More Asian option results

5.3.1.1 Extension to Lévy processes

Recall the discussion from Section 5.1.5, on Asian option symmetries for Brownian
processes. Note that the crux of the argument developed there is two-fold: namely
the ability to employ characteristic functions (to elucidate the change of measure
employed in (5.51)), and the independence of increments of the underlying process
(that enabled us to conclude that the average was retained in the payoff via (5.55)).
It is reasonable to speculate whether the fixed-floating symmetry holds for more
general processes for which each of those two features is present. We are of course
referring to Lévy processes. In terms of log prices, we recall the basic argument laid
out in (5.49) and (5.51):

V call
float = e−r(T−t)EQ

t ezT

⎛⎝k− 1

T − t

T∫
t

ezs−zT ds

⎞⎠+

= e−r(T−t)EQ
t ezT EQz

t

⎛⎝k− 1

T − t

T∫
t

ezs−zT ds

⎞⎠+ (5.203)

with the measure change given by dQz
dQ = ezT

EQ
t ezT

. We are again confronted with the

question: what is the distribution of the entity z̃t ,T ≡ zt − zT under this mea-
sure change? To answer this question, recall the basic result for the characteristic
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function of a Lévy process from Section 5.2.1:

EQ
t eiφzT = exp

⎛⎜⎝z+ (T − t)

⎛⎜⎝iφa− 1

2
φ2σ 2+

∫
R\{0}

(eiφx − 1− iφxh(x))μ(dx)

⎞⎟⎠
⎞⎟⎠

(5.204)
Note that the requirement that the log-asset z be an exponential Q–martingale67

becomes

a+ 1

2
σ 2+

∫
R\{0}

(ex − 1− xh(x))μ(dx)= r− q (5.205)

We introduce the notation J(φ) ≡ ∫
R\{0}

(eiφx − 1− iφxh(x))μ(dx). Proceeding as

before, we seek the characteristic function of z̃ under the new measure:

EQz
t eiφz̃s,T = e−z−(r−q)(T−t)EQ

t e(1−iφ)zT+iφzs = e−z−(r−q)(T−t)EQ
t eiφzs EQ

s e(1−iφ)zT

= e−z−(r−q)(T−t)EQ
t ezs(T−s)((1−iφ)a+ 1

2 (1−iφ)2σ 2+J(−φ−i))

= e−(r−q)(T−t)+(T−s)((1−iφ)a+ 1
2 (1−iφ)2σ 2+J(−φ−i))+(s−t)(a+ 1

2σ
2+J(−i))

= e(T−s)(−(r−q)+(1−iφ)a+ 1
2 (1−iφ)2σ 2+J(−φ−i))

= e(T−s)(−(r−q)+a+ 1
2σ

2−iφ(a+σ 2)− 1
2φ

2σ 2+J(−φ−i)) (5.206)

Now, the term involving J in the exponent in final entity in (5.206) appears to dash
our hopes here, but this proves to not be the case. For we have

J(−φ− i)=
∫

R\{0}
(e(1−iφ)x − 1+ (−1+ iφ)xh(x))μ(dx)

=
∫

R\{0}
(exe−iφx − ex + ex − 1+ (−1+ iφ)xh(x))μ(dx)

=
∫

R\{0}
(ex(e−iφx − 1)+ iφxh(x))μ(dx)+

∫
R\{0}

(ex − 1− xh(x))μ(dx)

(5.207)

Thus (5.206) becomes

EQz
t eiφz̃s,T = exp((T − s)(iφã− 1

2
φ2σ 2+

∫
R\{0}

(eiφx − 1− iφxh̃(x))μ(dx)))

(5.208)
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where h̃(x) = exh(−x), μ̃(dx) = e−xμ(−dx)68, and ã = −a− σ 2. Therefore, the
log-difference process involved in the option payoff in (5.203) remains a Lévy pro-
cess under the measure Qz . The main impact of the measure change is to adjust
the linear drift (as in the usual Brownian case) and to modify the Lévy measure as
specified above.69 Note that the expected value is

EQz
t ez̃s,T = exp((T − s)(−a− 1

2
σ 2+

∫
R\{0}

(1− e−x − xh(−x))μ(dx)))= e(q−r)(T−s)

(5.209)
So, as happened with the standard GBM case, the role of interest rate and dividend
rate are switched. We thus see that the fixed-floating symmetry that existed in the
Black-Scholes environment also prevails in the much more general Lévy case.70 Of
course, these symmetry results, while very interesting, do not provide any guidance
on the actual pricing of Asian options under Lévy processes.71 (Obviously, they do
reduce the scope of the problem to the valuation of either fixed or floating strike
options.) On this issue, there appear to be few viable results, apart from rather
dissatisfactory approximations such as moment matching/Edgeworth expansions.
We refer the reader to recent work by Cai and Kou (2011); see also Albrecher (2004).

5.3.1.2 Further extensions

It is worth exploring briefly the possibility of dropping at least the independent
increments assumption in these arguments. Ultimately, we are concerned with
evaluating expectations of the following form:

EQz
t eiφ(zs−zT ) = EQ

t e(1−iφ)zT+iφzs

EQ
t ezT

= EQ
t eiφzs EQ

s e(1−iφ)zT

EQ
t ezT

(5.210)

Now, if we assume that the characteristic function of z takes the form EQ
t eiφzT =

eα(T−t ;φ)z+β(T−t ;φ), then (5.210) can be written as

eβ(T−s;φ)EQ
t e(iφ+α(T−s;φ))zs

eα(T−t ;−i)z+β(T−t ;−i)
(5.211)

The expectation in the numerator in (5.211) has the form of a characteristic func-
tion, although it clearly is not. Still, it raises hope that there may be classes of
processes rich enough that certain structures are preserved under measure changes
to make such computations in (5.211) feasible.72 We now begin investigating such
questions.
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5.3.2 Further change-of-measure applications

5.3.2.1 Additional energy market applications

It is worth considering the case introduced in (5.124), of a mean-reverting spot
with a stochastic (non-stationary) mean. In fact, to illustrate our continuing theme
of volatility over different time scales, we make the following modification (to the
Q–dynamics):

dz = κz(θ − z)dt +σzdwz

dθ = κθ (θ̄ − θ)dt +σθdwθ
(5.212)

so that the stochastic mean is now also mean reverting, but we may suppose it mean
reverts at a (much) slower rate than the log-asset itself (i.e,. κθ � κz). The forward
Ft ,T = EQ

t ezT has the form exp(α(t)z+β(t)θ + γ (t)) where the relevant ODEs are

α̇− κzα = 0

β̇− κθβ+ κθα = 0
(5.213)

with α(T)= 1, β(T)= 0. (Compare with (5.126).) The solution is readily found to
be

α = e−κz (T−t)

β =− κz

κz − κθ (e
−κz (T−t)− e−κθ (T−t))

(5.214)

(Of course for κθ = 0 the structure in (5.127) is recovered.) It is also not hard to see
that the forward dynamics (again, under Q) are given by

dFt ,T

Ft ,T
= σze−κz (T−t)dwz −σθ κz

κz − κθ (e
−κz (T−t)− e−κθ (T−t))dwθ (5.215)

In this case, the forward dynamics has a term with (local) volatility modulated by
a monotonically decreasing (as a function of time-to-maturity) exponential func-
tion as in (5.157), due to mean reversion in (log) spot. Now, however, there is a
second term due to the stochasticity of the mean reversion level. For nonzero mean
reversion rate of the stochastic level (i.e., κθ �= 0), the modulation of volatility (β in
(5.214)) is not monotone, but has a general shape like that shown in Figure 5.4.

For nonzero κθ the modulation factor increases initially and then peaks before
asymptoting to zero. (Note that for the non-stationary mean case, where κθ = 0,
there is no peak and the modulation factor is monotonically increasing, aymptoting
to one.) The location of the peak (as a function of time to maturity) depends on the
relative sizes of the mean reversion rates. The interpretation is as follows. If the
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Figure 5.4 Volatility modulation factor for mean-reverting stochastic mean

mean reversion levels moves, then the expectation of the level to which spot reverts
will in general also move in the same direction. However, if this movement in the
mean happens sufficiently far from maturity, then (due to mean reversion in the
stochastic mean), the stochastic mean will tend to revert to its equilibrium level θ̄
over the term, in which case the expectation of spot will experience little movement
(since the expectation is that spot will still tend to come near the equilibrium level).
This is to be contrasted with the non-stationary mean case, where movements of
the stochastic mean impart permanent changes in expectations.

Another example is the forward process for the Heston model in (5.117). It proves
more interesting to modify the original Heston process to include mean reversion
(under the Q measure):

dz = (χ − κzz− 1
2 v
)

dt +√vdwz

dv = κ(θ − v)dt +σ√vdwv

(5.216)

The forward price Ft ,T = EQ
t ezT satisfies

Ft + (χ − κzz− 1
2 v)Fz + κ(θ − v)Fv + 1

2 vFzz +ρσvFzv + 1
2 vσ 2fvv = 0 (5.217)

Using a solution of the form F = exp(α(t)z+β(t)v+ γ (t)) we find (not surpris-
ingly) that α = e−κz (T−t) and that the Q–dynamics are given by

dFt ,T

Ft ,T
= e−κz (T−t)√vdwz +βσ

√
vdwz (5.218)
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where β satisfies (making the substitution τ = T − t)

β̇ = (ρσ e−κzτ − κ)β+ 1
2 e−kzτ (e−κzτ − 1) (5.219)

with β(0) = 0. We now see why the introduction of mean reversion makes the
problem interesting. If κz = 0 the inhomogeneous term in (5.219) vanishes, and
given the initial condition it is easy to see that β = 0. Thus, the dynamics in
(5.218) are just the Heston spot dynamics, which is not surprising since under the
Q measure z is an exponential martingale. Thus (again, not surprisingly), there is
no volatility term structure unless there is mean reversion in spot. Unfortunately,
for κz �= 0 the equation (5.219) does not appear to be solvable analytically (al-
though it can of course be transformed to a linear second-order ODE like any other
one-dimensional Riccati equation), as in the regular Heston case. Still, it presents
no problems numerically and we can discern the relevant features of the forward
dynamics. Typical behavior is shown in Figure 5.5.

Note that there some similarities with the case of a mean-reverting stochastic
mean considered above, and in fact there is a similar interpretation of the effect. Suf-
ficiently close to maturity (where “sufficiently” is dependent on the relative mean
reversion rates), a big move in stochastic variance will take a while to revert to
its long-term mean. Thus, over that term the (log) spot will be correspondingly
more volatile, which for a mean-reverting process means a greater probability of
overshooting/undershooting its long-term mean. The aggregate effect is greater
volatility around the expectation of terminal spot. (This effect is of course absent in
the case of non-stationary spot, hence as expected β = 0 and there is no contribu-
tion to variability of expected spot from variability of stochastic variance as such –
i.e., an effect dependent on σ .)
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As a final example, consider the following model of spikes motivated by Hik-
spoors and Jaimungal (2007). The log-(spot) price z is decomposed into two
components, one a mean-reverting diffusive process, the other a pure jump process
with level-dependent drift (under measure Q):

z = y+ 1

dy = κy(θ − y)dt +σdw

dl =−κl ldt + jdq

(5.220)

with the jump term being a standard, Merton-type Poisson process with nor-
mally distributed amplitudes.73 The intuition here is clear: the log asset (say, a
log-heat rate) is “usually” mean reverting and continuously valued, but during
“extreme” conditions (such as during outages) the heat rate can (briefly) spike up
and (quickly) come back down. The forward price is given by Ft ,T = EQ

t eyT+lT and
satisfies

Ft + κy(θ − y)Fy − κl lFl + 1
2σ

2Fyy +λEQ(F(l+ j)−F)= 0 (5.221)

It is easy to show that Ft ,T = exp(ye−κy(T−t)+ le−κl(T−t)+α(T− t))74 and that the
Q–dynamics are given by

dFt ,F

Ft ,F
=−λ(EQeje−κl (T−t) − 1)dt +σ e−κy(T−t)dw+ (eje−κl (T−t) − 1)dq (5.222)



6 Econometric Concepts

6.1 Cointegration and mean reversion

As we endeavored to emphasize throughout Chapter 2, the reality of non-
stationarity (in light of relevant time scales) demands that great care be exercised
in analyzing energy-market data (challenging in its own right in light of the ham-
mer and anvil of data sparsity/high volatility). In fact, one may reasonably wonder
if there is any extent to which the well-established tools developed for stationary
time series have relevance to real-world data. However, it turns out that there is
an important concept, known as cointegration, which allows for the investigation
of stationary relationships between entities that are individually non-stationary. In
some sense it is probably not surprising that such a concept has viability, espe-
cially in energy markets. After all, there are a number of fundamental drivers (e.g.,
weather-driven demand, stack structure, etc.) that place certain physical constraints
on (joint) price formation. Obviously, there are different time scales over which
these effects occur, but the relevant effect is to constrain the extent to which certain
price relationships (e.g., price-gas ratios) can vary. This is the essence of a cointegrat-
ing relationship, and we will now discuss some of the specific techniques that can
be brought to bear on such problems. In particular, we point out how they relate to
certain, more robust, methods we have already presented.

6.1.1 Basic ideas

First, we present the very basic concepts. A non-stationary variable y is said to be
integrated of order 1 (denoted by I(1)) if its first differences (�yt ≡ yt − yt−1) are
stationary. A vector of non-stationary processes is said to be cointegrated if there is
some linear combination of them that is stationary. Since a linear combination of
stationary variables is of course stationary, in general a cointegrating relationship
(if it exists) will not be unique; at a minimum some sort of normalization or iden-
tification in terms of one of the entities can be imposed. In addition, there can in
general be more than one cointegrating relationship.1 Let us now consider some of
these issues in a bit more operational detail.

191
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6.1.1.1 Common stochastic drivers

Consider an N–dimensional process y which is non-stationary and I(1). The pro-
cess is said to be cointegrated if there exists an N × h (nonzero) matrix A (with
h≤N) such that each component of z ≡ AT y is stationary. We will assume that the
columns of A are linearly independent (that is, the rank of A is h). There are said to
be h cointegrating relationships, corresponding to the columns of A. (An obvious
special case is h = N , in which case the process y is in fact stationary.) The actual
relationships are not unique, as stationarity is persevered under the transformation
A → ACT for any h× h (nonzero) matrix C. This fact can be used to write the
cointegrating relationships in a useful form. Write the matrix A as2

A=
(

A1

A2

)
(6.1)

where A1 is h× h and A2 is (n− h)× h. Now, choose C st. CAT
1 = I (the h× h

identity matrix) and let �≡−A−T
1 AT

2 . Then, partitioning y in the obvious way, the
cointegrating relationship can be expressed as

zt = z̃t +Ezt = (I −�)
⎛⎜⎝ y1t

h×h

y2t
(n−h)×h

⎞⎟⎠ (6.2)

Since z is stationary, it is meaningful to write the unconditional expectation in (6.2)
(so that z̃ is a zero mean stationary process).

We now write

y1t = �y2t +Ezt + z̃t (6.3)

Since the first difference of y is stationary, we anticipate that we can write the
following dynamics:

�y2t = μ2t + ε2t (6.4)

where the drift μ2t can be thought of as the conditional expectation of �y2t and
ε2t can be thought of as some white-noise process. Thus, in this representation the
process y consists of two different types of entities: n− h purely non-stationary
components (e.g., diffusions with drift, as in (6.4)) and h (non-stationary) compo-
nents that stand in a linear relationship with the purely non-stationary drivers (as
in (6.3)), such that the resulting residual is stationary. The entities y2 can be char-
acterized as common stochastic trends. These are fundamentally different from the
probably more familiar case of deterministic trending (e.g., trend-stationary linear
growth), although in any finite sample the two effects can appear very similar.

It is important to keep these two categories distinct in any econometric analysis.
For example, running standard regressions on non-stationary time series can lead



Econometric Concepts 193

to very misleading results. Evidence can be found for relationships that do not exist.
Let us consider an example.

6.1.1.2 Spurious regressions I: when zero is not zero

Following the old adage that a picture is worth a thousand words, we will illus-
trate two seemingly similar scenarios with very different econometric ramifications.
Assume we have two processes (call them x and y) that are unrelated. Process x
is non-stationary, say, a random walk/Brownian motion. Now, in the first sce-
nario, y is simply (stationary) white noise. In the second scenario, y is also a
(non-stationary) Brownian motion. In both cases y is independent of x. In plain
language terms, there is no relation between the two processes, and we would, per-
haps naively, expect familiar econometric analysis to bear out this impression. It
turns out our naiveté would be exposed.

To demonstrate, we simulate two pairs of time series: (1) a random walk and
an independent white noise, and (2) two independent random walks. We further
have two different sample sizes for each pair, 500 and 2,000. For each of these 4
combinations, we generate 200 scenarios, and compute the standard OLS regres-
sion coefficient between the constituent series. Our uninformed intuition would
anticipate that (a) the estimator would be distributed about zero (since there is no
underlying relation) and (b) the estimator would become more narrowly dispersed
with increasing sample size. It turns out that we would be (partly) wrong: the intu-
ition holds true only in the former case (of white noise regressed against a random
walk). Figures 6.1 and 6.2 make clear the distinction between the two cases.3

Figure 6.1 indicates that the estimator, although noisy, is indeed distributed about
zero, and that it becomes less noisy as the underlying sample size increases. These
two points are actually not unrelated. It is precisely because of the fact that the esti-
mator variance decreases (as the sample grows) that we can speak of it as converging
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(in either the common language sense or the appropriate strict probabilistic sense)
to something (presumably, an actual population entity). In fact, the variance of the
estimator decreases proportionately with sample size, as conventional diagnostics
would predict (i.e., the standard deviation for the 2,000-size sample is half of that
for the 500 sample size). Put differently, the probability of the estimator producing
a numerical value very far from zero (and thus giving the [false] impression of a real
relationship) decreases as more data points are added.

Figure 6.2 provides a good illustration of these points by contrast. Although
the estimator appears distributed about zero, this is misleading. Visually, the dis-
tribution of the estimator does not seem very different between the two sample
sizes. There does not appear to be any sense of convergence of the estimator. This
would be problematic in its own right, but given the (again, visually) much greater
variability of the estimator in this case than the previous one, concerns can (and
should) actually be raised that almost any numerical value could be produced by
the estimator for a given sample, and potentially falling within the range for which
conventional diagnostics would (completely falsely) identify the result as indicative
of a real population property. Unlike the previous case, there is in fact no reason
to think that adding information (by increasing the sample size) will decrease the
probability that we are misled into thinking we have identified a real relationship.

These concerns prove to be well founded, and we will now turn to the theoretical
explanation.

6.1.1.3 Spurious regressions II: a bit of theory

We will elucidate the underlying theory with a very simple example. Consider
(again) the following correlated Brownian motion:
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�xt = σxε
x
t

�yt = σyε
y
t

(6.5)

with the disturbances ε having unit variance and correlation Eεx
t ε

y
t = ρ. Clearly,

the dependency structure in (6.5) is described by the correlation between the dif-
ferences. However suppose that, this fact unbeknownst to us, we decide to apply
OLS to some realization of the time series x and y (i.e., we look for a relation-
ship between levels instead of returns). That is, we look to estimate a model of the
following form:4

yt = γ xt +ut (6.6)

with u some assumed (normal) disturbance. The OLS estimator is given by

γ̂ = 〈xt yt 〉
〈x2

t 〉
(6.7)

Now, paralleling the argument used in the analysis of unit root tests (e.g., (2.22)),
the large sample limit of (6.7) can be written as

γ̂ ∼ σy

σx

1∫
0

wx
s w

y
s ds

1∫
0
(wx

s )
2ds

(6.8)

where w
x,y
t are correlated Brownian motions. By decomposing in terms of condi-

tional relationships between x and y, (6.8) can be written as

γ̂ ∼ σy

σx
(ρ+

√
1−ρ2

1∫
0

wx
s vsds

1∫
0
(wx

s )
2ds

) (6.9)

where v is a Brownian motion independent of wx .
We see an important point here: (6.9) does not involve explicit dependence on the

sample size, as in, say, the (stationary) AR(1) case in (2.21). This implies that, for an
arbitrary realization of (6.5), no matter how large the sample, the OLS estimator will
have a nonvanishing probability of lying in any arbitrary interval. In other words,
the estimator does not converge to anything. This situation should be contrasted
with the stationary case, where the probability of the estimator lying arbitrarily
far from the true model values is vanishingly small (as the sample size increases).
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For example, for the uncorrelated case (ρ = 0), there is obviously no relation be-
tween the two time series. Yet, the OLS estimator can lie arbitrarily far from zero,
no matter how large the sample size. This is the essence of spurious regressions:
statistically significant results for an inconsistent estimator. Naively running regres-
sions on non-stationary time series can yield evidence of relationships that simply
do not exist. (See Proposition 18.2 in Hamilton [1994] for the multidimensional
generalization of (6.9).)

6.1.1.4 A sneak peek at error-correction models

Note that there is a rather trivial case where OLS does yield consistent results here:
the case of perfect correlation or anti-correlation (i.e., ρ =±1). Here, the underly-
ing relationship is simply yt = σy

σx
xt . In fact, as we move away from the correlated

Brownian case and assume there is a linear relationship such as (6.6), then OLS will
be a consistent estimator:

γ̂ = γ + 〈xt ut 〉
〈x2

t 〉
(6.10)

although of course the (asymptotic) diagnostics will be different from the case
of standard OLS (the estimator in (6.10) is said to be super-consistent, converg-
ing like T−1 instead of the usual T−1/2; see Hamilton [1994]). In other words, if
( −γ 1 )T is the sole cointegrating vector for the process ( xt yt )

T , OLS can
validly be used to estimate it.5

In general, some specific mechanism must be introduced in the drift of the pro-
cess dynamics to exhibit a nontrivial stationary relationship in conjunction with
individual non-stationary behavior. For example, we could extend (6.5) like

�xt = b1(yt−1− γ xt−1)+σxε
x
t

�yt = b2(yt−1− γ xt−1)+σyε
y
t

(6.11)

from which we see that

�(yt − γ xt )= (b2− γ b1)(yt−1− γ xt−1)+
√
σ 2

y − 2γρσxσy + γ 2σ 2
x εt (6.12)

with ε ∼N(0,1). Thus if |1+ b2− γ b1|< 1, the entity yt − γ xt is stationary while
x and y are individually non-stationary.6 The kind of model in (6.14), where non-
stationary dynamics are driven by both Brownian terms and deviations from some
stationary (equilibrium, so to speak) relationship, will be considered in greater
detail in Section 6.1.3. Before doing so, however, we turn attention to the idea
of causality in econometrics, and its connection to structure within cointegrated
systems.
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6.1.2 Granger causality

A natural question to ask here is the following: how does cointegration relate (if
at all) to the more familiar dependency category of correlation, and indeed, more
deeply to causality? We certainly have no intention of delving into any philosophical
issues here. Our interest here is simply in the informational structure (if any) that
can be exploited when forming conditional expectations of some stochastic process.
Very broadly, the issue can be framed as follows: does knowing something about
one variable tell us something about another variable (and in what sense)? In other
words, we are seeking to characterize incremental information.

6.1.2.1 A standard heat-rate example

To show the essential ideas, consider the following special case of the model (3.26):

�gt = σgε
g
t

�pt =−κ(pt−1− gt−1)+σpε
p
t

(6.13)

which can be thought of as a simple heat-rate model, with g and p log gas and
log-power prices, respectively, and with a cointegrating relationship h≡ p− g rep-
resenting the stationary log-heat rate. The long-term variance of the log-heat rate is
finite and given by7

σ 2
h

2κ − κ2
(6.14)

where σ 2
h = σ 2

g − 2ρσgσp+σ 2
p . The cumulative correlation between gas and power

is given by

ρT = Cov(gT ,pT )√
Var(gT )Var(pT )

= Var(gT )+Cov(gT ,hT )√
Var(gT )(Var(gT )+ 2Cov(gT ,hT )+Var(hT ))

(6.15)

Owing to the fact that the long-term heat rate variance is finite while the long-term
gas variance grows linearly with time, we immediately see that ρT → 1 as T →∞.

We see in this simple example a general principle: a cointegrating relationship is
the counterpart of very strong long-term correlation.8 (Of course, over any finite
time horizon, power and gas can effectively de-correlate, which is another way of
saying that the heat rate can blow out; the ramifications of this kind of behavior
depends on the strength of mean reversion κ [as well as the magnitude of the heat
rate vol σh], which again reflects the importance of time scales in the problem.)
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However, there is another aspect to the dynamics of the dependency. Rewrite (6.13)
in AR form:

gt = gt−1+σgε
g
t

pt = pt−1− κ(pt−1− gt−1)+σpε
p
t

(6.16)

We see from (6.16) that (log) power plays no role in projecting future values of
(log) gas, while (log) gas does play a role in projecting future values of (log) power.
In other words, the relationship between power and gas is not symmetrical. The
equilibrium condition that characterizes the joint system (namely, the [stationary]
heat rate) affects the dynamics of power, but not gas.

This notion can be formalized by the concept of Granger causality. Granger
causality has nothing to do with causality in any philosophical sense, but is rather
a (testable) econometric property. So, we say that a time series xt Granger-causes a
time series yt if the conditional expectation of yt given the history of x and y, has
lower variance than the conditional expectation given the history of y only:

Var(E(yt |yt−1, . . . ,xt−1, . . .)) < Var(E(yt |yt−1, . . .)) (6.17)

(Alternatively, if the variance relation in (6.17) holds as an equality, y is said to be
exogenous [in a time-series sense] wrt. x.) Technically, we are sneaking in some
assumptions about stationarity when we invoke unconditional variances in (6.17)
(the same point applies to the formulation in terms of mean-squared forecast error,
as in Hamilton [1994]), however this is tangential to the main point. The issue
concerns the benefit from conditioning on one data set as opposed to another.

6.1.2.2 Stochastic trends and more hints of error correction

Operationally (and again implicitly invoking some degree of stationarity), Granger
causality is commonly tested by running joint hypothesis tests (e.g., standard F–
tests from OLS) on regressions of lagged x and lagged y against contemporaneous
y. These are not of great concern to us. We simply note that dynamics such as (6.16)
capture this aspect. In fact, we consider the following generalization of the simple
model in (6.14), in conjunction with the stochastic trend representation of (6.3)
and (6.4):

�

(
y1

y2

)
t

=
(

B1

B2

)
(y1−�y2)t−1+ εt (6.18)

for h cointegrating relationships and with an appropriate block structure in the vari-
ous vectors and matrices. We thus see a means for identifying which of the stochastic
trends (y2), if any, can be regarded as Granger causative: those components corre-
sponding to the rows of B2 with all zeros have dynamics that are independent of the
cointegrating relationship.
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The issue of Granger causality is not merely a theoretical curiosity, but actually
has very real implications for valuation and hedging. Mahoney and Wolyniec (2012)
demonstrate that, in valuing spread options on cointegrated pairs, it is imperative
that the Granger-caused leg be dynamically hedged. (This example was in fact con-
sidered here in Section 3.1.3.) The volatility that is collected with a statically hedged
Granger-caused leg will be lower in general than that collected with the dynamic
strategy. (The Granger-causative leg can be statically hedged.) As a final example of
an application to trading, consider the following portfolio:

�t ,T = y1T − y1t −�(y2T − y2t )= ξT − ξt (6.19)

where ξ ≡ y1−�y2 is a stationary process with (unconditional) mean zero.9 Con-
sequently, (6.19) provides a means of detecting trading opportunities. Because ξ
effectively has a directional bias (due to its implicit mean reversion), we can assess
the probability that the current spread is high (or low, in which case the sign of
the positions in (6.19) would need to be reversed) relative the holding period. This
simple example again displays the ubiquitous nature of time scales.10

We can now turn to a more systematic discussion of the dynamic interplay of
equilibrium and diffusive effects in cointegrated systems.

6.1.3 Vector Error Correction Model (VECM)

6.1.3.1 Basic framework

We start with a basic vector autoregressive (VAR)11 process:

yt =�1yt−1+�2yt−2+·· ·�pyt−p+ εt (6.20)

where y is an N × 1 vector process (so �i are N ×N matrices) and the random
error term is serially uncorrelated but has contemporaneous covariance structure
given by

Eεtε
T
t =� (6.21)

In operator notation, we can write (6.20) as

(I −�1L−�2L2−·· ·�pLp)yt = εt (6.22)

where of course L is the lag operator: Lyt = yt−1. Now, one might suppose that the
operator representation in (6.22) is invertible (say, formally in terms of an infinite
series representation as in the one-dimensional case) if the eigenvalues of the con-
stituent matrices �i are sufficiently bounded. This is in fact the case, although the
properly derivable result (see Hamilton [1994]) is that the roots of

det(I −�1z−�2z2−·· ·�pzp)= 0 (6.23)
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lie outside the unit circle.12 (We shall consider in greater detail the roles eigenvalues
play in connecting certain important features of these kinds of processes later.) If
this condition is satisfied, then (6.22) is invertible, yielding a Wold-type (convergent
infinite series) moving average representation. In other words, the (vector) process
y is stationary. We shall be interested in situations where some roots of (6.23) lie on
the unit circle, in which case the process is non-stationary.13

6.1.3.2 An appropriate representation and factorization

It turns out that it is convenient to rewrite (6.20) in a form more reminiscent of
continuous-time stochastic processes. To this end, in matrix form we write (6.22) as

( I −�1 −�2 · · · −�p )

⎛⎜⎜⎜⎜⎜⎝
I I 0 · · · 0
0 I 0 · · · 0
0 I −I · · · 0
...

...
... · · · ...

0 I −I · · · −I

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

I −I 0 · · · 0
0 I 0 · · · 0
0 I −I · · · 0
...

...
... · · · ...

0 0 0 · · · −I

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
yt

yt−1

yt−2
...

yt−p

⎞⎟⎟⎟⎟⎟⎠= εt (6.24)

(Note that the product of the (p + 1)N × (p + 1)N matrices14 is the identity.)
Consequently (6.24) becomes

�yt = �0yt−1+�1�yt−1+· · ·�p−1�yt−p+1+ εt · (6.25)

where�yt = yt − yt−1 is the differencing operator and

�p−1 =−�p

�p−2 =−(�p−1+�p)

...

�1 =−(�2+·· ·+�p)

�0 =−I + (�1+·· ·+�p)

(6.26)

This is the so-called VECM representation of the VAR. In this form, the dynamics
of the differences are driven not just by the previous (lagged) differences, but also
by the previous value of the level, through the term �0yt−1 . This latter entity can be
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thought of as a sort of equilibrium level driving the dynamics. Of particular interest
is the case where there exists some matrix A such that AT y is stationary. In general
A will be N × h, where h≤N is the number of cointegrating relationships. In such
a case the equilibrium coefficient can be written as15

�0 =−BAT (6.27)

for some N × h matrix B. (The sign choice is simply conventional.) Thus, in gen-
eral, �0 will not have full rank. The task of estimating the model in (6.25) entails
satisfying the restriction in (6.27) and conducting the appropriate diagnostics.

6.1.3.3 ML estimation

We will outline Johansen’s maximum likelihood approach to estimating VECMs
because, apart from the intellectual value of the inherent ingenuity entailed, it is
useful to understand some of the underlying concepts and structures as they will
be relevant when we relate cointegrating relationships to variance scaling laws. In
addition, it can be seen how the underlying approach is quite flexible and readily
extended to situations not always presented in detail in standard treatments. For
simplicity, we will consider the single-lag case, so that p = 1 in (6.20) and (6.25);
it should be clear how the idea is extended to higher lags. It is useful to first review
some properties of the ML estimator for an unrestricted VAR, which we have al-
ready considered in (2.25), where we noted the estimator of the matrix coefficient
in (2.27). The log-likelihood function is given by

L=−1

2

∑
t

(yt −�1yt−1)
T�−1(yt −�1yt−1)− TN

2
log2π− T

2
log det� (6.28)

where T is the number of data points. Now, it is not hard to show that the ML
estimator of the covariance matrix is simply related to the realized residuals εt ≡
yt − �̂1yt−1 via

�̂= 1

T

∑
t

εtε
T
t (6.29)

(A useful result here, which will be used again in the discussion of the likelihood
ratio method in Monte Carlo in the next chapter, is that ∂

∂A logdetA = A−T for
a general matrix A.) We further note, from the fact that (adopting the summa-

tion convention) εi
t�
−1
ij ε

j
t = εi

tε
j
t�
−1
ji = Tr(εtε

T
t �

−1) and the linearity of the trace
operator, that the optimal value of the likelihood function can be written as

L=−TN

2
− TN

2
log 2π − T

2
logdet� (6.30)

This form will prove efficacious for deriving results in the restricted case of
cointegrating relationships represented by (6.27).
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6.1.3.4 Concentrating the likelihood

To this end, consider ML estimation of the model in (6.25) (again for p= 1), subject
to the constraint in (6.27). The likelihood function is given by

L=−1

2

∑
t

(�yt +BAT yt−1)
T
�−1(�yt +BAT yt−1)− TN

2
log2π − T

2
logdet�

(6.31)
The idea now is to “concentrate” the likelihood function, by optimizing over dif-
ferent levels, employing subsequently finer resolutions of information. To this end,
first assume we know the optimal estimate of A. Then the maximization posed by
(6.31) is a standard VAR, from which we get

B̂(A)=−〈�yt yT
t−1〉A(AT 〈yt−1yT

t−1〉A)−1 (6.32)

For the covariance structure, from (6.30) we see that the problem becomes
minimization of

det�̂= det

(
1

T
〈(�yt +BAT yt−1)(�yt +BAT yt−1)

T 〉
)

= det(�uu+BAT�vu+�uvABT +BAT�vvABT ) (6.33)

where �uu is the sample variance of �yt , �vv is the sample variance of yt−1, and
�uv = �T

vu is the sample covariance between �yt and yt−1. This structure can be
further simplified by introducing the following factorization:

�uu = FFT

�vv =HHT

�uv = FRHT

(6.34)

where R is a diagonal matrix. The representation in (6.34) arises from the so-called
canonical correlation problem, which seeks a linear combination between two ran-
dom variables such that the correlation is maximized subject to unit variance; see
Hamilton (1994) for more details. The relevant result here is that the solution F of
(6.34) arise as (columns of) eigenvectors of the generalized eigenvalue problem

�uv�
−1
vv �

T
uvx = λ�uux (6.35)

with the eigenvectors normalized by xT�uux, and the diagonal elements of R being
the square roots of the eigenvalues. (A similar result prevails for H with u and v
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reversed; the eigenvalues are unchanged.) Consequently, the objective now becomes
minimization of

det(I + B̃ÃT R+RÃB̃T + B̃ÃT ÃB̃T ) (6.36)

with Ã≡HT A and B̃≡ F−1B. With this notation, (6.32) can be written as

B̃=−RÃ(ÃT Ã)−1 (6.37)

The final step is to minimize

det(I −RÃ(ÃT Ã)
−1

ÃT R)= det(I − ÃT R2Ã(ÃT Ã)
−1
)= det(Ã(I −R2)Ã)

det(ÃT A)
(6.38)

wrt. Ã. (In the second equation in (6.38) we have employed Sylvester’s determinant
identity.) As is well known, cointegrating relationships are nonunique up to linear
transformations, so we are free to impose some sort of normalization, which for
convenience we take to be ÃT Ã. Then (6.38) becomes

det(I −AT R2A) (6.39)

(Recall that A is N×h, so although it is column orthogonal, it is not necessarily row
orthogonal.) Although we will not show it here (see Johansen [1988]), the optimal
solution is to take the columns of A to be standard unit vectors such that the h
largest diagonal elements16 of R are selected, so to speak. Assuming R is ordered so
that the diagonal elements are in decreasing order (upper left to lower right), this
can be achieved by taking the columns of U to be the first h unit vectors ei . For
example, the 3× 2 case would be ⎛⎝ 1 0

0 1
0 0

⎞⎠ (6.40)

(The intuition here is that, in the unrestricted case, the determinant in (6.39)
is �

i
(1− r2

ii) ≡ �
i
(1−λi) so in the restricted case we would expect only the h

largest eigenvalues to be present.) Finally, the ML estimator of the (instantaneous)
covariance matrix is

�̂=�uu−�uvAAT�vu (6.41)

6.1.3.5 Some more asymptotics

This outline of Johansen’s (1988, 1991) ML estimation of VECM should serve to
convey the central ideas. It is not hard to include additional lags or deterministic
terms (such as drifts or seasonal dummies); see Hamilton (1994) for more details.
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It is probably also worth saying something about the (asymptotic) diagnostics. Note
that the entities of interest are the eigenvalues in (6.35). The matrix in question is
given by

�−1
uu �uv�

−1
vv �

T
uv = 〈�yt�yT

t 〉−1〈�yt yT
t−1〉〈yt−1 yT

t−1〉−1〈�yt yT
t−1〉T (6.42)

Now, following the heuristics employed when discussing the Dickey-Fuller diagnos-
tics for unit root processes (e.g., in (2.38)) and invoking the implicit decompositions
in (6.34), we have the following:

〈�yt�yT
t 〉−1 ∼

⎛⎝TF

1∫
0

dwsdwT
s FT

⎞⎠−1

= T−1F−T

1∫
0

dwsdwT
s F−1

〈�yt yT
t−1〉 ∼ T · F

1∫
0

dwsw
T
s HT

〈yt−1yT
t−1〉−1 ∼

⎛⎝TH

1∫
0

ds ·wsw
T
s HT

⎞⎠−1

= T−1H−T

⎛⎝ 1∫
0

ds ·wsw
T
s

⎞⎠−1

H−1

(6.43)

where (it turns out) w denotes a standard, (n − h)–dimensional Brownian mo-
tion; see Johansen (1988, 1991) for much greater detail. Thus (due to the similarity
transformation involving F), the eigenvalues of the estimation are asymptotically
distributed as the eigenvalues of

1∫
0

dwsw
T
s

⎛⎝ 1∫
0

ds ·wsw
T
s

⎞⎠−1 1∫
0

wsdwT
s (6.44)

Obviously, the random variable in (6.44) is nonstandard, and the critical values
must be obtained via simulation; see MacKinnon et al. (1999). (It is worth noting
that for the one-dimensional case, (6.44) reduces to the square of the DF statistic in
(2.22), so Johansen’s procedure also provides an alternative means of testing for the
presence of unit roots.) Recall that any cointegrating relationship is nonunique up
to a linear transformation, so hypothesis testing of cointegration typically entails
testing whether there is a relationship (as opposed to none), or one more relation-
ship (given a particular number of relationships). It should go without saying that
great care must be used in employing asymptotic results in testing for cointegration;
see Mallory and Lence (2012).
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In light of this last point, we ask whether there are alternative, more robust means
for detecting multiple cointegrating relationships, given the clear power and rele-
vance of the concept. It turns out that there is indeed such an approach, and it ties
in with the variance scaling laws we have previously emphasized.

6.1.4 Connection to scaling laws

Consider the following n–dimensional process:

dzi = (Aijzj + bi)dt +σidwi (6.45)

With dwidwj = ρijdt and we adopt the notation Xij ≡ ρijσiσj . This is a Gaussian
process, and the structure can be discerned from the characteristic function. In
particular the covariance structure (over some interval τ ) is extracted from the
coefficients of the Fourier variables in

τ∫
0

ds·αiXijαj (6.46)

where α satisfies
α̇ = Akiακ , αi(0)= iφ i (6.47)

Now, use the Jordan decomposition17 to write in matrix form A= PJP−1 where P
is a nonsingular matrix and J is a diagonal matrix of the eigenvalues of A. Making
the substitution α = P−Tβ we get

β̇ = J β,β(0)= iPTφ (6.48)

Thus, β = iKPTφ where K = eJ = diag(e−κiτ ) and −κ are the eigenvalues of A
(also the diagonal elements of J)18. So, α = iP−T KPTφ and the covariance matrix
is given by

τ∫
0

ds·PKX̃KPT (6.49)

where X̃ = P−1XP−T . Now, from the form of K we introduce the matrix E with
elements given by

Ejn = 1− e−(κj+κn)τ

κj + κn
(6.50)

so that the covariance matrix is given by

P(X̃ ◦E)PT (6.51)
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where ◦ denotes the Hadamard product (element-by-element multiplication).
Now, what does all of this have to do with cointegration? Well, following the

Johansen framework, assume that z is non-stationary and that A can be written as
A=RHT where R and H are n×h matrices such that the product HT z is stationary.
Letting ξ =HT z, (6.45) implies that

dξk = (HikRilξl +Hikbi)dt +Hikσidwi (6.52)

From the preceding analysis, stationarity of ξ implies that the eigenvalues of HT R
must all be negative. Furthermore, non-stationarity of z implies that at least one
eigenvalue of A(= RHT )must be zero. For example, a possible form for J is⎛⎜⎜⎝

−κ1 0 0 0
0 −κ2 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ (6.53)

with κ1,2 > 0. (Note that the nonzero eigenvalues of RHT must be the same as
those of HT R.) Thus the presence of a zero eigenvalue is a necessary, but not suffi-
cient condition for non-stationarity. The matrix P must also have a particular form,
which is not terribly restrictive. It simply has to allow linearly growing terms in all
of the diagonal terms of the covariance structure in (6.51) E.g., if P was the identity
matrix, then clearly z1,2 would simply be mean reverting and thus stationary. For
the example in (6.53), we have that

E =

⎛⎜⎜⎜⎜⎝
1−e−2κ1τ

2κ1

1−e−(κ1+κ2)τ

κ1+κ2

1−e−κ1τ

κ1

1−e−κ1τ

κ1

1−e−2κ2τ

2κ2

1−e−κ2τ

κ2

1−e−κ2τ

κ2

τ τ

τ

⎞⎟⎟⎟⎟⎠ (6.54)

Now, the matrix in (6.53) can be factored as⎛⎜⎜⎝
1 0
0 1
0 0
0 0

⎞⎟⎟⎠( −κ1 0 0 0
0 −κ2 0 0

)
(6.55)

Thus, we see that the choice

HT =
( −κ1 0 0 0

0 −κ2 0 0

)
P−1. (6.56)
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gives the desired linear combination that yields stationary variables. For in this case
the linearly growing terms in (6.54) are killed off, giving the resulting ensemble a
mean-reverting covariance structure. (Recall the preservation of Gaussianity under
linear transformations.)

Up to this stage, we have assumed a particular structure for A in the dynamics of
z and shown how this is essentially equivalent to the standard VECM cointegration
formalism, and that this formalism is consistent with the underlying covariance
scaling laws. We would like to proceed in reverse now, and see if we can in general
infer any information about the underlying cointegrating relationships from the
covariance scaling laws. To this end, consider the scaling law from (6.51). First, note
that for small time horizons, the matrix E in (6.50) is approximately a matrix of all
ones, in which case the scaling law is simply the local dynamics of the underlying
diffusion in (6.45), namely X . Thus there is little information to be gained at this
time scale (not surprisingly). However, for very large time horizons, the matrix E
becomes (again continuing with the example at hand)

E ∼ τ

⎛⎜⎜⎝
0 0 0 0

0 0 0
1 1

1

⎞⎟⎟⎠ (6.57)

Consequently, the covariance matrix in (6.51) will have zero eigenvalues (two in
this example). Note that the expression in (6.51) does not entail a similarity trans-
form because in general P is not orthogonal. However, it is easy to show in general
that two matrices W and V related via W = PVPT will share any eigenvalues that
are zero. Note further that any zero eigenvalues must be inherited from a structure
of the form (6.57), as the local covariance structure X will in general be positive
definite.

We thus have a useful (and presumably robust) criterion for the number of coin-
tegrating relationships: the number of zero eigenvalues of the long-term covariance
scaling law matrix. (See Mahoney [2015b] for examples consistent with Johansen’s
test.)

6.2 Stochastic filtering

6.2.1 Basic concepts

A general problem encountered with many estimation problems is the fact that cer-
tain stochastic drivers of interest are not directly observable, and hence cannot be
explicitly included in any kind of estimation procedure (such as ML). An obvious
example is stochastic volatility. Consequently, any viable econometric technique
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must operate only on observable data, while at the same time taking into account
the dynamics implied by the model being tested against that data. This is the task
of stochastic filtering, which, as the name suggests, is a means of extracting in-
formation about unobservable state processes. An example in the context of ML
estimation should convey the essential ideas.

Recall that in ML estimation we optimize, with respect to a set of a model pa-
rameters, the log-likelihood function over the data set: max

θ
L(z;θ) where θ are the

model parameters, z is the data set, and the log-likelihood function is given by

L(z;θ)=
∑

t

logPrθ (zt |It−1) (6.58)

The notation here refers to the fact that the conditional density is parameter-
dependent, and the probability of an observation at a given time is dependent on
the information I over previous times. For example, this information set might the
previous history of prices, e.g., It ={z0:t }≡ {z0, . . . ,zt }19. In general, this data is gen-
erated by some stochastic process x, which is only partially observable, so we must
relate the distribution of observables to the distribution of the state process. It is as-
sumed that there is some (non-invertible!) transformation between state variables
and observables (often termed the measurement equation).

Bayesian methods prove quite useful here. We have the following steps (essentially
an application of the Chapman-Kolmogorov equation):

Pr(xt+1|It )=
∫
�

dxt Pr(xt ,xt+1|It )=
∫
�

dxt Pr(xt+1|xt )Pr(xt |It )

Pr(zt+1|It )=
∫
�

dxt+1 Pr(xt+1,zt+1|It )=
∫
�

dxt+1 Pr(zt+1|xt+1)Pr(xt+1|It )

Pr(xt+1|It+1)= Pr(xt+1|It )Pr(zt+1|xt+1)

Pr(zt+1|It )
(6.59)

where � is the sample space of the state process x. (In the perhaps more famil-
iar context of Bayesian reasoning, the ensemble in (6.59) can be characterized as
prediction [the first equation] and updating [the third equation], along with an
appropriate normalization [the second equation]) Alternatively, we can even more
succinctly write (6.59) in terms of joint (rather than marginal) densities as

Pr(x0:n+1|z0:n+1)= Pr(zn+1|xn+1)Pr(xn+1|xn)∫
dxn:n+1 Pr(zn+1|xn+1)Pr(xn+1|xn)Pr(xn|z0:n)

Pr(x0:n|z0:n)

(6.60)
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There are a few assumptions implicit in (6.59) that we should make explicit here.
First, the dynamics of the underlying state process are Markovian (this is used in
the second equation of (6.59)). Second, conditioned on the current state of the
process, the observation is independent of previous observations (this is used in
the first equation of (6.59)). It is further assumed that both the transition density
Pr(xt+1|xt ) for the dynamics of the state and the conditional observation density
Pr(zt |xt ) are known (from the model in question). For example, recall the pop-
ular Heston stochastic volatility model (or any other such model). As we saw in
Chapter 5, the transition density can be retrieved from the conditional character-
istic function (which has a known analytical form). The measurement equation is
trivial, since the price is the observation and the observation density is simply a
delta function. In this context we could write (6.59) as

Pr(St+1,vt+1|S0:t )=
∞∫

0

dvt Pr(St+1,vt+1|St ,vt )Pr(vt |S0:t )

Pr(St+1|S0:t )=
∞∫

0

dvt+1 Pr(St+1,vt+1|S0:t )

Pr(vt+1|S0:t+1)= Pr(St+1,vt+1|S0:t )

Pr(St+1|S0:t )

(6.61)

Note that (6.61) makes clear that, although the joint dynamics (price and stochastic
variance) are Markovian, the dynamics of price alone are not (the dynamics depend
on the entire history, not just the most recent observation).

The recursive nature of the filter should be clear, and for given initial densities
of the state and observation, the ensemble in (6.59) can be iteratively carried out
to build up the terms needed in the log-likelihood function in (6.58). It should be
equally clear, however, that this is computationally formidable task, as there are
multidimensional integrations involved. The compact form of (6.59) or (6.61) is
deceptively simple. There are a number of techniques commonly used for tackling
this problem, such as particle filters and Markov-Chain Monte Carlo (MCMC). We
will not discuss these (essentially sampling/simulation based methods) here, but
merely direct the reader to the relevant literature.20 Instead we will consider a case
(linear, Gaussian) where the recursion can be performed analytically, namely the
very well-known Kalman filter.

6.2.2 The Kalman filter and its extensions

6.2.2.1 The classic filter

A very popular technique originally due to Kalman (1960) and bearing his name is,
at heart, a (deceptively21) simple application of conditional expectation for normal



210 Modeling and Valuation of Energy Structures

variables. We will demonstrate the essential features here. We start with a Gaussian
vector process z, partitioned into x and y:

z ∼N(μ,�)

z =
(

x
y

)
y|x ∼N(μy +�yx�

−1
xx (x−μx),�yy −�yx�

−1
xx �

T
yx)

(6.62)

Now, we suppose that there is some state process governing the overall system
dynamics:

xk+1 = Fxk +wk+1,w ∼N(0,Q) (6.63)

with w independent of x. We further suppose that these state variables are not
directly observable (e.g., only some of them are, or only particular functions of
them are, etc.). Obvious examples would include price dynamics driven by stochas-
tic volatility, with the former but not the latter being observable. We express this
assumption by introducing a so-called measurement/observation equation:22

zk+1 =Hxk+1 (6.64)

Note that time-inhomogeneity can easily be introduced into all of these relation-
ships, as well as sources of uncertainty in the observation equation (“measurement
error”), but we omit them here for convenience. Now, we look for the dynamics of
the filtered/estimated value of the state variable. Denoting this entity by a hat, we
have

xk = x̂k + vk ,vk ∼N(0,Pk) (6.65)

(Since the underlying problem is linear, the Gaussian structure is retained.) The op-
timal (in terms of variance-minimizing) value of the filtered/projected state variable
is simply its expectation conditional on the current information set:

x̂k = Ekxk ≡ E(xk|zk , Ik−1) (6.66)

with the associated conditional variance/uncertainty Pk . Using the standard re-
sults above for conditional normals (and assuming state noise and filter noise are
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uncorrelated), we get the following relations:

zk+1 =Hxk+1 =HFxk+Hwk+1

Ekxk+1 = Fx̂k ≡ x̃

Ekzk+1 =HFx̂k =Hx̃

xk+1−Ekxk+1 = F(xk− x̂k)+wk+1

zk+1−Ekzk+1 =HF(xk− x̂k)+Hwk+1

�xx = FPkFT +Q≡ P̃

�zz =HFPkFT HT +HQHT =HP̃HT

�xz = FPkFT HT +QHT = P̃HT

(6.67)

Assembling these, we find that

x̂k+1 = E(xk+1|zk+1, Ik)= x̃+ P̃HT (HP̃HT )−1(zk+1−Hx̃)≡ x̃+K(zk+1−Hx̃)
(6.68)

where K is known as the Kalman gain matrix. The (k+ 1)–conditional variance is
given by

Pk+1 = P̃− P̃HT (HP̃HT )−1HP̃ = (I −KH)P̃ (6.69)

It is interesting to note that in the case under consideration (namely, no measure-
ment error), the following relation holds: HPk = 0 · ∀k. (Sensibly, we also have that
Hx̂k = zk .) This is not too surprising: there are fewer observables than state vari-
ables, so we would expect there to be some combinations (“preferred directions” if
you will) of the state variables that have zero variance (owing to the lack of mea-
surement error and the underlying linearity of the stochastic structure). In other
words, the (square) covariance matrix of the projected state variable is singular (de-
generate, in fact; it has less than full rank). We would further anticipate this state
of affair manifesting itself in non-robustness of estimation, as the uncertainty asso-
ciated with individual components of the state variable become quite noisy in the
face of having to balance out each other (in terms of some linear combinations).23

So, starting from an initial (unconditional) estimate of the state variable’s mean
and variance, the recursion and filter can proceed. It is a useful exercise to verify
that the general recursive filter in (6.59) recovers the Kalman filter results for the
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special case where all the conditional densities are Gaussian. The primary tool is the
fact that under convolutions Gaussian structures are retained:

∞∫
−∞

dx
1√

(2π)N detV
e−

1
2 (z−Ax−a)T V−1(z−Ax−a)

1√
(2π)M detW

e−
1
2 (x−By−b)T W−1(x−By−b)

= 1√
(2π)N det�

e−
1
2 (z−A(By+b)−a)T�−1(z−A(By+b)−a) (6.70)

where z is N × 1, x and y are M × 1, and the various matrices have appropriate
dimensions. The result in (6.70) is obtained from suitably completing the square in
x and the covariance matrix� is given by

�= (I −ACD−1CT AT V−1)−1V (6.71)

where CCT =W and D= I +CT AT V−1AC. Using the Woodbury matrix identity,
(6.71) can be written as

�= (I +AC(D−CT AT V−1AC)−1CT AT V−1)V = V +AW AT (6.72)

Using these results in (6.59), we see that if xt+1|xt ∼N(F ,Q) and xt |It ∼N(x̂t ,Pt ),
then xt+1|It ∼ N(x̃t , P̃t ) (prediction) zt+1|It ∼ N(Hx̃t ,HP̃t HT ) and (normal-
ization), where x̃t = Fx̂t and P̃t = Q + FPt FT . Finally, we get xt+1|It+1 ∼
N(x̃t +Kt (zt+1−Hx̃t ), (I −Kt H)P̃t ) (update), where Kt = P̃t HT (HP̃t HT )−1.
These are of course the Kalman filter results in (6.68) and (6.69).

6.2.2.2 ML estimator

As another example, consider an application to calculation of the likelihood
function for maximum likelihood estimation. The entity of interest is (note the
dependence on the [assumed known] initial state)

Pr(x0,Z1, . . . ,ZT )=
T∏

i=1

Pr(zi|zi−1, . . . ,x0) (6.73)

The non-Markovian structure of the problem (or more accurately, of the observ-
ables) can clearly be seen in (6.73), where a conditional density of the observable
does not depend only on the observable at the prior time, but on all previous ob-
servables. It proves interesting to analyze the path in (6.73) en toto, as the (by now)
familiar Kalman structure will again fall out.
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From the state dynamics (6.63) and observable relation (6.64) we get

z1 =Hw1 +HFx0

z2 =Hw2+HFw1+HF2x0

...

zn =HFnx0+H
n∑

i=1

Fn−iwi

...

(6.74)

Owing to the special form of (6.74), the covariance matrix of the joint density in
(6.73) has a block structure, with upper diagonal elements given by

�mn =H
m∑

i=1

Fm−iQFT(n−i)HT =HQmFT(n−m)HT (6.75)

for n≥m and where Q0 = 0, Qi = FQi−1FT +Q. This covariance structure has the
following factorization: � = XXT , where

X =

⎛⎜⎜⎜⎝
HC 0 0 · · ·

HFC HC 0 · · ·
HF2C HFC HC · · ·

...
...

...
. . .

⎞⎟⎟⎟⎠ (6.76)

and CCT = Q. Note that in general X is not a square matrix, since H is not square
(fewer observables than states). Thus, this factorization cannot be used to facilitate
inversion of the covariance matrix in the density function (this is precisely how the
filtering problem manifests itself).

Fortunately we do not require the actual Cholesky factorization, as the special
structure can be suitably exploited. In fact, we do not even need the actual in-
verse of the Cholesky factors. Denoting the block Cholesky structure by (Cij) and
its (similarly lower triangular) inverse by (Dij), the log-likelihood function in (6.73)
entails calculation of the entity ZT Z , where the vector Z has elements given by Zn=

n∑
i−1

Dni(zi − μi), where the (unconditional) mean μ can be read off from (6.74).

From this it follows that zn−μn=
n∑

i=1
CniZi and that Zn=C−1

nn (zn−μn−
n−1∑
i=1

CniZi).

Thus, the factorization of the aggregate density is broken out into conditional terms,
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with in particular CnnCT
nn representing the conditional covariance at nth step. These

covariances can be calculated iteratively24 from the Cholesky algorithm25 as follows:

C11CT
11 =HQ1HT ≡HQ̃1HT

C22CT
22 =H(Q2−FQ1HT (C11CT

11)
−1HQ1FT )HT

=H(Q+F(Q1−Q1HT (C11CT
11)
−1HQ1)F

T )HT ≡HQ̃2HT

C33CT
33 =H

⎛⎜⎝ Q3−F2Q1HT (C11CT
11)
−1HQ1F2T−

F(Q2−FQ1HT (C11CT
11)
−1

HQ1FT (C22CT
22)
−1
)

H(Q2−FQ1HT (C11CT
11)
−1

HQ1FT )T FT

⎞⎟⎠HT

=H(Q+F(Q̃2− Q̃2HT (C22CT
22)
−1

HQ̃2)F
T )HT ≡HQ̃3HT (6.77)

So proceeding inductively, we see that we recover the basic Kalman algorithm.

6.2.2.3 Nonlinear extensions I: the basics

Although the Kalman filter is unquestionably elegant, its underlying assumptions
of linearity (both in terms of state dynamics and relation between state and observ-
able) are obviously rather limiting, and a generalization to nonlinear problems is
desirable. Let us craft the relationships in (6.63) and (6.64) as follows. The state
dynamics and measurement relationship can be written generally as

xn+1 = f (xn,wn+1)

zn+1 = h(xn+1)
(6.78)

with f and g nonlinear functions in their arguments and where w is (for conve-
nience) taken to be Gaussian noise.26 An obvious first approach to filtering the
system in (6.78) is to simply linearize (via Taylor expansion) the nonlinear entities
about the current value of the projected state variable:

xn+1 ≈ f (x̂n, 0)+ fx(x̂n, 0)T (xn− x̂n)+ fw(x̂n, 0)T wn+1

zn+1 ≈ h(f (x̂n, 0))+ hx(f (x̂n, 0))T (xn+1− f (x̂n, 0))
(6.79)

Standard (linear) Kalman filtering can then be applied to the (approximate) system
in (6.79). This approach is known as the Extended Kalman Filter (EKF). (In essence
the EKF approximates the densities in the generic filter (6.59) with Gaussian forms.)

6.2.2.4 Nonlinear extensions II: the sweet (non-) smell of success

Although simple and intuitive, the EKF has a serious flaw, namely that it is only
as good as the underlying linear (first order) approximation. For highly nonlin-
ear problems the EKF can perform rather poorly.27 In addition, calculation of the
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gradients in (6.79) is potentially expensive. An alternative approach, the oddly-
named Unscented Kalman Filter (UKF) directly uses the nonlinear dynamics and
observable relationship (so no linearizations are involved28), and in fact shares cer-
tain affinities with quasi-maximum likelihood estimation (to be studied in Section
6.5.2) and quasi-Monte Carlo integration (see Section 7.5.3). To understand the
idea, we first introduce the unscented transform (unsurprisingly).

Consider a (vector) random variable x with mean μx and covariance matrix �x .
We are interested in finding approximations to the mean and variance of the vari-
able y = f (x), related to x through some nonlinear transformation. (Linearization
would yield μy ≈ f (μx) and �y ≈ fx(μx)

T�xfx(μx).) Introduce weights wi and
so-called sigma points xi satisfying29

∑
i

wi = 1

∑
i

wixi = μx

∑
i

wi(xi−μx)(xi−μx)
T =�x

(6.80)

We then take the desired approximations to be

μy ≈
∑

i

wif (xi)

�y ≈
∑

i

wi(f (xi)−μy)(f (xi)−μy)
T

(6.81)

In other words, the full nonlinearity is used in the approximation of the mean
and covariance, as opposed to deriving these entities from an approximation of the
nonlinearity. Note that for affine transformations, these approximations are exact,
regardless of the particular choice of weights and sigma points. For 2n+ 1 sigma
points in n–dimensions, a convenient choice is

x0 = μx , w0 = κ

n+ κ
xi = μx +

√
n+ κLi , wi = 1

2

1

n+ κ
xn+i = μx −

√
n+ κLi , wn+i = 1

2

1

n+ κ

(6.82)

for i = 1, . . . ,n, where κ is a suitable (positive) constant and Li is the ith column of
the Cholesky factor of �x : LLT =�x .
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The basic idea and motivation behind the unscented transform is that it is often
better to approximate the probabilistic impact (e.g., via approximate Gaussianity)
of a nonlinear relationship than to try to approximate the relationship itself. Put
differently, it may be advisable to get good approximations for, say, the first two
moments induced by a nonlinear transformation, than to try to ascertain the impact
of the nonlinearity on the distribution as a whole. This is the essential feature of
UKT: to use an unscented transformation (e.g., (6.82)) to extract the means and
covariances of the distributions underlying the filtering algorithm in (6.59). (These
distributions can of course be extracted exactly in the linear case, owing to the true
Gaussian nature in that case.)

To illustrate, we consider a special case of the nonlinear system (6.78), which is
linear in the disturbance:

xn+1 = f (xn)+wn+1

zn+1 = h(xn+1)
(6.83)

with w Gaussian noise. The next-step predicted mean and variance are given by
x̃n = Enxn+1 = Enf (xn) and P̃n = En(xn+1 − x̃n)(xn+1 − x̃n)

T . These can be com-
puted via unscented transform, with the prior step’s projected means and variances
(x̂n−1 and Pn−1, resp.) used as the basis of an ensemble such as (6.82) to form
the necessary sigma points. Updating then takes place, with the measurement
mean (Enzn+1 = Enh(xn+1)) and measurement variance and covariance (Kxz =
En(xn+1−Ezxn+1)(zn+1−Ezzn+1)

T and Kzz = En(zn+1−Ezzn+1)(zn+1−Ezzn+1)
T )

similarly being computed via unscented transform. From these we get the Kalman
gain KxzK−1

zz and the familiar recursion in (6.68) and (6.69), albeit calculated very
differently from the standard linear case.30 To reiterate: the idea is that we approx-
imate with Gaussians (via mean and covariance calculations based on the actual
nonlinearity) the non-Gaussian densities induced by the nonlinear structure, as
opposed to using exact Gaussian entities based on linear approximations to the
nonlinear system.

6.2.2.5 Continuous-time heuristics

It is of interest to consider, if only non-rigorously, the continuous-time limit of the
Kalman filter. In the dynamics (6.63), let F = I+A, where A and also Q are O(�t).
Then the process dynamics become

�xk+1 = Axk+wk+1 (6.84)

and the measurement equation can be written as

�zk+1 =H�xk+1 =HAxk+Hwk+1 (6.85)
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So, with respect to the filtration (information set) generated by (zk , x̂k−1)
31 we have

Ek�zk+1 =HAx̂k

Ek�zk+1�zT
k+1 =HA(Pk+ x̂k x̂T

k )A
T HT +HQHT

(6.86)

Call this (observation) filtration Iz . From the Kalman filter/recursion,

x̂k+1 = Fx̂k +K(zk+1−HFx̂k) (6.87)

which in turn implies

�x̂k+1 = Ax̂k +K(zk+1−Hx̂k −HAx̂k)= Ax̂k+K(�zk+1−HAx̂k) (6.88)

Now take the following Cholesky factorization: Q = CCT (so that C is O(�t
1
2 ).

Heuristically we anticipate that, in the limit of infinitesimal time steps, we will have
the following dynamics with respect to Iz :

dz =HAx̂dt +HCdw

dx̂ = Ax̂dt +Kt HCdw
(6.89)

where we have altered the notation by reabsorbing factors of �t → dt . Note dw
is a standard Brownian motion with dwdwT = I . (Note also that the dynamics of
observables and estimators are perfectly correlated.)

As indicated in (6.89), the Kalman gain matrix K is time dependent and O(1). In
fact, we have that

P̃ = FPkFT +Q= Pk +APk +PkAT +APkAT +Q (6.90)

and recalling the fact that HPk = 0, we get that

P̃HT = (PkAT +APkAT +Q)HT

HP̃HT =H(APkAT +Q)HT
(6.91)

so in the small time-step limit we have (again rescaling to leading order)

K = P̃HT (HP̃HT )−1 = (PkA+Q)�tHT (HQHT )−1�t−1 (6.92)

with the time-step scalings obviously canceling out. Thus, the (infinitesimal)
dynamics of the covariance matrix are found to be32

dPk+1 =
⎡⎣ Q−QHT (HQHT )−1HQ+
(I −QHT (HQHT )−1H)APk+
PkAT (I −HT (HQHT )−1HQ)

⎤⎦dt (6.93)
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6.2.2.6 Trading strategies and observables

Obviously, after all of this, it is fair to ask: why do we even care? We have repeat-
edly stressed the importance of (variance) scaling laws in commodity markets, and
for our purposes here we will associate such scaling with some form of mean re-
version in the underlying commodity. Of course, when there is mean reversion,
there are opportunities to trade: buy when the commodity is sufficiently below its
(long-term) mean, sell when it is sufficiently above (with “sufficient” referring to
a likelihood of return being high enough). This certainly sounds nice, but there is
a small problem: we rarely know what the (true) mean is, and therefore we rarely
know when we have identified a trading opportunity! Leaving this minor complica-
tion aside for the moment, a very interesting mathematical problem for discerning
the underlying structure of such strategies can be crafted in terms of stochastic con-
trol and dynamic programming, topics which have been investigated in Section 3.3
(and will be returned to in Section 7.6).

To make this context a bit clearer, consider the results of Boguslavsky and Bo-
guslavskaya (2004), introduced in Section 3.3.1. A standard OU process is studied,
and a trader is assumed to make transactions with the objective of maximizing ter-
minal wealth.33 The resulting stochastic control problem proves tractable (via the
well-known HJB formulation), yielding results for value function dynamics and
optimality criteria for trading decisions. This work is based, of course, on the un-
realistic assumption that the true mean reversion level is known. It would be highly
useful to extend these results to the case where the mean is not known, and de-
cisions must be made based on some projection of that mean, as inferred from
observable prices. This is precisely where the representation in (6.89) and (6.93)
could prove fruitful. This system should allow for application of the HJB-type pro-
cedures discussed in Chapter 3 under the incomplete information filtration (which
of course is the actual situation we encounter) by taking a value function of the form
V (z, x̂,w, t) wrt. to the (Markovian) dynamics in (6.89). (Here w denotes wealth,
e.g., for the trading control problem.) It is not immediately clear how tractable the
resulting PDE will be, as it lacks the affine structure possessed by the complete in-
formation case. (Another complication is that under the observation filtration, the
[instantaneous] covariance matrix in the dynamics of (6.89) becomes time depen-
dent.) We cannot hope to address this topic here, and so leave it as a potentially
interesting avenue of future research.

6.2.2.7 Performance

A natural question finally arises: how well does all this work in practice? Sadly,
the answer is, not very well. We will illustrate with a familiar example, a
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mean-reverting process with stochastic reversion level. The continuous-time form
and its discrete-time counterpart are:

dx = κx(y− x)dt +σxdwx

dy =−κyydt +σydwy

xn+1 = (1− κx�t)xn+ κx�t · yn+ εx
n

yn+1 =−κy�t · yn+ εy
n

(6.94)

with (instantaneous) correlation ρ. In the notation of (6.63), we will consider the
following numerical example:

F =
(

0.25 0.75
0 0.05

)
,Q=

(
0.32 −0.6 · 0.3 · 0.02

−0.6 · 0.3 · 0.02 0.022

)
dt (6.95)

with dt = 1/365. In other words, the process x is essentially a standard mean-
reverting process; the mean-reversion level is stochastic but very slowly varying
(and very nearly white noise). We first consider the full-information case, which
in the notation of (6.64) implies H = I . In this case the usual machinery of VAR
econometrics can be employed, but it is useful to see the output of a numerical,
nonlinear optimization. This is shown in Figure 6.3 for the variance of process x.
As can be seen, the estimator, although convergent (the average across paths gives
a volatility of 30%, the true value), is definitely not Gaussian. In contrast, exact so-
lution of the MLE conditions for the VAR does produce an asymptotically normal
distribution. Clearly, there are effects due to the numerical optimization at play. We
will see more on this kind of problem in Section 6.5.4.

Next we consider the partial information case, where only process x is observed,
so that we take H = (1 0). Results are shown in Figure 6.4.

Now, in addition to non-normality, the convergence properties are worse (the
sample average volatility is 27%). In fact, the estimators of the (unobserved) mean
and correlation perform terribly, giving sample averages of 200% and −4% (re-
spectively)! It almost goes without saying that the estimator of the mean reversion
coefficients (the matrix F in (6.95)) is poor; we have already seen examples of this
behavior with the standard VAR. What is striking here is that the covariance esti-
mator is also poor; typically, covariance estimators are comparatively robust. We
have attempted to put forward the best case for the filtering estimator here by fo-
cusing on the variance; however, we actually have produced a cautionary tale about
filtering.
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Figure 6.3 Standardized filtering distribution, full information case. The estimator is unbiased and

consistent, but due to numerical issues is clearly non-normal (200 simulations)
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Figure 6.4 Standardized filtering distribution, partial information case

6.2.3 Heston vs. generalized autoregressive conditional
heteroskedasticity (GARCH)

6.2.3.1 Overview and commentary

As we have just seen, the possibility that the dynamics of interest may depend on
unobserved entities such as stochastic volatility makes it necessary to resort to com-
putationally intensive procedures such as filtering. In addition to the formidable
challenges of the actual calculations, there is the ubiquitous problem of non-
robustness in finite samples, especially for nonlinear problems (even those without
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a great deal of structure). There is thus some interest in dealing only with observable
entities. The so-called autoregressive conditional heteroskedasticity (ARCH) and
GARCH classes of models34 effectively model returns, or more accurately residuals,
both of which are directly observable. To illustrate, consider the AR(p) process

yt = φ0+φ1yt−1+·· ·φpyp+ut (6.96)

The random error/shock/innovation u is now assumed to have the following form:

ut =
√

htεt (6.97)

where εt is standard white noise and h satisfies

ht = ω+β1ht−1+·· ·+βrhr +α1u2
t−1+·· ·+αqu2

t−q (6.98)

Eq. (6.98) is termed a GARCH(r,q) model. (For r = 0 it becomes simply an
ARCH(q)model.) Note that, at time t , the “amplitude,” so to speak, of the random-
ness in (6.97) is known via (6.98), although of course the white noise component
is not. (As can be seen from (6.98), one of the purposes of ARCH models is to cap-
ture the well-known effect of volatility clustering where periods of relatively greater
turbulence are followed by periods of relatively greater tranquility.) The system
(6.96)–(6.98) can equivalently be written as

yt = φ0 +
p∑

i=1

φi yt−i +
√

htεt , εt ∼N(0,1)

ht = ω+
r∑

i=1

βiht−i+
q∑

i=1

αi

⎛⎝yt−i−φ0−
p∑

j=1

φjyt−i−j

⎞⎠2 (6.99)

The system in (6.99) is jointly estimated via maximum likelihood, using the
conditional density exp(− 1

2 (yt −φ0 −φ1 yt−1 −·· ·−φp yp)
2/ht )/

√
2πht .35,36 This

nonlinear problem ordinarily must be solved via numerical optimization. The pri-
mary point here is that, unlike stochastic volatility models that are similar (but not
equivalent, see below), all of the analysis takes place in terms of observables (i.e.,
no filtering is required). This particular issue does not greatly concern us here, as
there is quite a voluminous literature on GARCH models that the reader can refer
to if interested (see Endnote 34). We are instead concerned with tractable GARCH
models that relate to the canonical stochastic volatility processes previously consid-
ered in Chapter 2. It is a somewhat common misconception that, in the small-time
limit, GARCH models converge to a diffusive, stochastic volatility process. This is
not necessarily the case, as certain technical conditions must be further imposed
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(see Alexander and Lazar [2004]). Thus, GARCH models should be thought of as
an alternative to stochastic volatility models, and not a discrete-time counterpart.

This nonequivalence is in fact not surprising. Precisely the point of these models
is to separate unobservable state dynamics from their observable manifestations.
In other words, the operative viewpoint is that it is not so important why re-
turns/residuals are, say, autocorrelated with nondeterministic volatility, only that
they are so. The main concern is then with modeling these observable features
directly, as opposed to indirectly via some mechanism responsible for their man-
ifestation, as in stochastic volatility models. One obvious concern here is that these
mechanisms may, in fact, be important, and as a consequence it may be good to
try to understand them as opposed to simply (formally) capturing their effects in a
model of price returns. For example, a GARCH model that mimics the behavior of
a Heston process may not correspond to any discretization of the Heston SDE and
may not provide any insight on the underlying stochastic variance driver. This may
not be important for many applications, but that is a separate issue.

Of larger concern is the fact that these models in some sense replace one problem
with another one, while avoiding the main challenges. Without doubt, the filtering
problem posed by stochastic volatility models (or any other model with unobserved
state variables) is often quite formidable, as we have seen. Avoiding this problem
is definitely beneficial. However, the GARCH paradigm accomplishes this by con-
structing an essentially ad hoc modeling framework that possesses just as much (if
not more) structure as the stochastic volatility models it seeks to overturn. (This ad
hoc nature is why, to be honest, so much GARCH modeling gives the impression
of an everything-and-the-kitchen-sink approach; again refer to Endnote 34.) Thus,
the concerns we have raised here, namely the lack of robustness of complex mod-
els in the face of limited data and information, apply just as much to the GARCH
repertoire as they do to more standard, continuous-time models. It is simply not
clear what is gained by the alternative paradigm put forth by GARCH.

6.2.3.2 Time scales: they are everywhere

There is in fact a stronger case to be made against GARCH modeling, and it relates
to one of our central themes: GARCH models are not scale invariant. That is to say,
they are not consistent across iterations of the (purported) dynamics. To see what
we mean, consider a standard AR(1) process:

xn = φxn−1+σεn (6.100)

with ε ∼N(0,1). Now, iterating (6.100), we see that

xn = φ2xn−2+σεn+φσεn−1 = φ2xn−2+σ
√

1+φ2ε̃n (6.101)
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with ε̃∼N(0,1). It can be seen that (6.101) is still an AR(1) process, with of course
different parameters. The relation between the parameters as the process is iterated
reflects the scaling behavior of the underlying process. The process remains AR(1)
whether one considers the dynamics at a daily resolution or a monthly resolution
(say). There is an isomorphism, so to speak, across time horizons.

In contrast, GARCH models do not display this consistency. For example,
consider the GARCH(1, 1) model

xn = φxn−1+
√

hnεn

hn = ω+β1hn−1+α1(xn−1−φxn−2)
2

(6.102)

We see that

xn = φ2xn−2+φ
√

hn−1εn−1+
√

hnεn

= φ2xn−2+
√

hn+φ2hn−1ε̃n = φ2xn−2+
√

h̃nε̃n (6.103)

Now, it is not hard to see that h̃n ≡ hn + φ2hn−1 does not follow the GARCH
recipe in (6.102) for a two-step time horizon. In other words, we cannot speak
of a GARCH model as such across time scales/horizons. Rather, we would have
separate GARCH models for different time horizons under consideration. This fact
highlights yet again the essentially ad hoc nature of GARCH. But perhaps more
importantly, it demonstrates the basic inability of GARCH to shed light on the dy-
namics that manifest themselves in the scaling laws whose importance in actual
valuation problems cannot be understated.

We have stepped onto our soap box here because GARCH modeling is extremely
popular, so we feel the need to explain why we devote such little time to it in this
volume. As we have already mentioned, we do wish to focus on a special case where
there is a continuous-time connection to a member of the canonical class of affine
jump diffusions, namely the Heston stochastic volatility model.

6.2.3.3 A continuous-time limit

Heston and Nandi (2000) propose the following GARCH-type model:37

zt = zt−1+λht +
√

htεt

ht = ω+βht−1+α
(
εt−1− γ

√
ht−1

)2 (6.104)

with ε ∼ N(0,1) and independent of h. This model differs from the more familiar
VGARCH and NGARCH models with which it bears a passing similarity, specif-
ically through the presence of conditional variance as a return premium in the
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(log-)price dynamics (compare also with Duan [1995]). Note in (6.104) that ht is
observable at time t − 1, while of course zt is not. By making the scaling ht =� · vt

where � is the time step, and introducing a suitable reparameterization, Heston
and Nandi show that in the small step limit

Et−�(vt+�− vt )= k(θ − vt )�+O(�2)

vart−�(vt+�)= σ 2vt�+O(�2)

Corrt−�(vt+�,zt )→±1

(6.105)

so that the limiting dynamics take the familiar Heston form

dz = λvdt +√vdw

dv = κ(θ − v)dt +σ√vdw
(6.106)

So we see that the Heston-Nandi GARCH model does indeed have a continuous-
time limit corresponding to a (well-known) stochastic volatility model, albeit one
with rather stringent requirements on the instantaneous joint dynamics of log
price and variance (i.e., perfect correlation or anticorrelation). The Heston-Nandi
model, like its continuous time counterpart, permits tractable computation of the
conditional characteristic function (and hence facilitates the calculation of option
values). To see this, consider the following iterated expectations:

Et eiφzt+n = Et Et+n−1eiφzt+n = Et eiφ(zt+n−1+λht+n)Et+n−1eiφ
√

ht+n εt+n

= Et eiφ(zt+n−1+λht+n)−φ2ht+n/2 = Et Et+n−2eiφzt+n−1+(iφλ−φ2/2)ht+n

= Et eiφ(zt+n−2+λht+n−1)Et+n−2

e
iφ
√

ht+n−1 εt+n−1+(iφλ−φ2/2)

(
ω+βht+n−1+α

(
εt+n−1−γ

√
ht+n−1

)2
)

(6.107)

Now, we will spare the reader the gory details (Heston and Nandi [2000] may be
consulted if so desired), but it should be clear from (6.107) that as this iteration
is continued, an essentially affine exponential form will be produced. In fact, as
Heston and Nandi show, the coefficients in this form can be calculated recursively
as a system of difference equations, clearly an analogue to the system of ODEs that
prevails in the continuous time case. It is interesting to note that a subsidiary result

is the calculation of expectations such as Eeaw+bw2
, with w a standard normal. These

expectations will play an important part in the discussion of Wishart processes to
be analyzed in Subsections 6.3 and 8.1.5.

One facet of almost all the problems we encounter in energy markets is the ques-
tion of joint dependence. This is an extremely important topic that we must now
turn to, and we will focus on the particular dependency notion of copulas.
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6.3 Sampling distributions

6.3.1 The reality of small samples

At the risk of repeating ourselves, limited sample size is a pervasive feature of energy
market data. In fact, the risk of redundancy is worth taking because the impact of
small samples on econometric investigations cannot be overstated. We simply can-
not caution enough about the potential for producing seriously misleading results
when this issue is not handled with sufficient care. (There is, however, little need to
elaborate on the sources of this state of affairs: relatively [in comparison to finan-
cial markets] rapid changes in underlying market structure rendering older price
history irrelevant, high volatilities/jumps presenting a barrier to robust estimation,
etc.38)

Ultimately, the central question comes down to one of stability of an estimator. It
is important to know, when actual numerical values are churned out by an estima-
tor operating on a particular set of data, how sensitive these values are to this specific
realization. In principle, the underlying population could have produced a differ-
ent realization, and it would be good to know if the estimator will produce wildly
different values for a new sample, or whether the new output is reasonably well be-
haved. Recall that our objective is the establishment of actual portfolio positions to
facilitate the extraction of a suitably identified value driver. It is thus imperative that
whatever operational tools we adopt, they avoid simply optimizing to noise. This
goal leads us necessarily to the question of estimator performance in finite samples,
as opposed to some operationally meaningless asymptotic sense.

6.3.1.1 Estimation in small samples

We introduced the concept of sampling distributions in Section 2.2.2. There, the
objective was to discuss entities (some might call them, wrongly, test statistics) that
indirectly reflect a population characteristic of interest, while at the same time prove
amenable to analysis of their distributional properties (in essence, an understanding
of their robustness). A paradigmatic example is variance scaling laws as indicators
of mean reversion. As is well known, variances are typically more robustly estimated
than mean-reversion rates. An associated issue is how to ascertain the behavior of a
variance estimator in an actual, finite sample.

A class of matrix-valued processes called Wishart processes prove suitable as a
means of investigating the finite sample properties of variance estimators. (We will
revisit such distributions in Section 8.1.5 as representations of matrix-valued joint
dependency.) It will turn out that we can say quite a bit about these distributions in
fairly general Gaussian cases (including the case of non-i.i.d. returns characterized
by mean reversion), and derive more limited (but still useful) results for non-
Gaussian cases (specifically concerning the mean of the estimator, thus representing
an expansion of the results in Section 2.2.3).
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6.3.2 Wishart distribution and more general sampling
distributions

6.3.2.1 Standard case

Consider a p–vector x of (zero mean) normal deviates with covariance matrix �.
Assume further that we have n independent realizations of this random vector,
which we arrange as a p×n matrix:

X =

⎛⎜⎜⎜⎝
x1

1 x2
1 · · · xn

1
x1

2 x2
2 · · · xn

2
...

... · · · ...
x1

p x2
p · · · xn

p

⎞⎟⎟⎟⎠ (6.108)

Now, note that the elements of XXT correspond to the usual ensemble estimates

of the covariance matrix (i.e., the sample covariance). For example, (XXT )ii = x
j
i x

j
i

which is of course a common estimator of n�ii . We can thus begin to understand
the properties of this estimator by analyzing the (random) matrix XXT .

The p × p matrix S ≡ XXT is said to possess a Wishart distribution, denoted
as S ∼ Wp(�,n). Here the positive integer n is called the number of degrees of
freedom. This law can be thought of as a generalization of the familiar chi-squared

distribution (for the same degree of freedom):39 χ2(n)
law=W1(1,n). The Wishart

distribution is the distribution of the sample covariance matrix of a joint normal
Np(0,�); i.e., it is the sampling distribution for the MLE estimator of the covariance
matrix.

Not surprisingly, we will examine the characteristic function of S as a means to
determining its probability distribution. For matrix-valued random variables we
consider

f ( )= EeiTr(XXT ) = Eeix
j
kx

j
l lk = Eeix

j
k klx

j
l = (Eeix1

k klx
1
l )n (6.109)

for (symmetric) matrix-valued Fourier variables . In (6.109) we have used the fact
that the columns of X (essentially, the sample of x) in (6.108) are independent. The
problem is thus reduced to the calculation of an expectation of the form

g = Et ei ij zi(T)zj(T) (6.110)

with z a correlated, driftless Brownian motion (with covariance structure repre-
sented by�). We have that

gt + 1

2
�ijgzizj = 0 (6.111)



Econometric Concepts 227

Owing to the quadratic structure of the exponent in (6.110), we seek a solution to
(6.111) of the form

g = eω0+ 1
2ωij zizj (6.112)

with the coefficients ω being functions of time only (really T − t). Substituting
(6.112) into (6.111) (and as usual making the transformation t → τ ≡ T − t), we
get the following system of (matrix) Riccati ODEs:

ω̇0 = 1

2

∑
ij

ωij = 1

2
Tr(ω�)

ω̇= ω�ω
(6.113)

with initial conditions ω0(0) = 0, ω(0) = 2i . We will see such ODEs again in
Section 8.1.5, e.g., (8.68). Adopting the solution technique there, we write ω= u−1

so that u̇=−�, from which we get u=− i
2 

−1(I − 2i �τ) and finally

ω= 2i(I − 2i �τ)−1 (6.114)

Turning attention to the first equation in (6.113), we have that40

ω̇0 = Tr((I − 2i �τ)−1i �)⇒

ω0 =−
1

2
Tr log(I − 2i �τ)⇒

eω0 = 1√
det(I − 2i �τ)

(6.115)

Putting all of this together, by taking z = 0 and τ = 1 we find that the characteristic
function of the general Wishart RV is

EeiTr(XXT ) = det (I − 2i �)−n/2 (6.116)

From this result, the probability density of a Wishart variable is given by

Pr(S)= det(S)
n−p−1

2 e− 1
2 Tr(�−1S)

2
np
2 det (�)n/2πp(p−1)/4

p
�

j=1
�
(

n−j+1
2

) (6.117)

See Adhikari (2007). Note from (6.116) that

EeiTr( 1
n XXT )→ eiTr( �) (6.118)
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as n→∞, indicating convergence to the true covariance matrix in the large sample
limit (owing to the delta function form of the inverse transform of (6.118)). (In fact,
it can also be seen from (6.116) that E 1

n XXT = �, so as an estimator the sample
covariance matrix is unbiased [for i.i.d. Gaussian variables].)

6.3.2.2 Extensions I: non-I.I.D. Gaussian

We will now indicate how the results for the Wishart distribution in (6.116) can be
extended to more general situations. Space constraints will prevent us from provid-
ing full details, but by now the reader should be sufficiently well equipped with the
necessary tools to embark on the project himself.

Recall the canonical affine diffusion model (sans jumps) from Section 5.2.3:

dzi = (Aijzj + bi)dt +σ k
i
√

zkdwk
i +σ 0

i dw0
i (6.119)

where selected elements of z can be thought of as log prices. We remain concerned
with the distributional properties of the sample covariance estimator over a (finite)
set of N returns:41

X̂N = 1

N

N∑
i=1

�zi�zT
i (6.120)

where �zi ≡ z(ti)− z(ti−1) for some set of observation times ti . Proceeding as in
the i.i.d. case, we can discern the distribution of the sample covariance matrix X̂N

from its characteristic function. However, the problem in the general case is that
returns are not necessarily i.i.d., so we cannot invoke an argument like that used
in (6.109). However, we apply an iterative procedure that allows us to build up
the sample-wise characteristic function from the (in principle) known conditional
characteristic functions. We will outline the idea here; we will return to it in Section
6.5.5 when we discuss spectral methods in econometrics.

First we treat the purely Gaussian case, where σ k = 0 · ∀k ≥ 1. Consider the
characteristic function of X̂N :

Et0 exp(iTr(�X̂N ))= Et0 exp

(
i

1

N

N∑
i=1

Tr(��zi�zT
i )

)
(6.121)

Now, unlike the i.i.d. case, we cannot reduce (6.121) to the N-th power of the
single time step characteristic function (as in (6.109)). However, using iterated
expectations, we can write (6.121) as
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Et0 exp

(
i

1

N

N∑
i=1

Tr(��zi�zT
i )

)

= Et0

[
exp

(
i

1

N

N−1∑
i=1

Tr(��zi�zT
i )

)
EtN−1 exp

(
i

1

N
Tr(��zN�zT

N )

)]
(6.122)

The innermost expectation in (6.122) can be written as

exp

(
i

1

N
zT

N−1�zN−1

)
EtN−1 exp

(
i

1

N
(zT

N�zN − zT
N�N−1− zT

N−1�zN )

)
(6.123)

A difficulty presented by the expectation in (6.123) is the presence of the time tN−1

state variables, which means that the conditional expectation is not a martingale
(nor is it amenable to the discounting adjustment used in the derivation of the
familiar Feynman-Kac formula). However, the following expectation

EtN−1 exp

(
i

1

N
(zT

N�zN − 2zT
N�x)

)
(6.124)

for arbitrary x is amenable to standard techniques, whereby the expectation satisfies
a PDE (an evolution equation involving the process infinitesimal generator) whose
solution can be reduced, owing to the special form of the underlying dynamics, to
a system of ODEs. Specifically, we seek a solution to (6.124) of the form

exp(zT
N−1αzN−1+ zT

N−1β+ γ ) (6.125)

where α, β, and γ are resp. matrix-, vector-, and scalar-valued functions (of time to
maturity). Using (by now) standard techniques, it is straightforward to show that
these coefficients satisfy the following (matrix) Riccati system of ODEs:

α̇ = 2ATα+ 2αX◦α

β̇ = (AT + 2αX◦)β+ 2αb

γ̇ = bTβ+ 1

2
βT X◦β+Tr(X◦α)

(6.126)

where we have the initial conditions α(0) =  , β(0) = −2 x, and γ (0) = 0.42

With this (formal) solution in hand, the conditional expectation in (6.123) can be
obtained by setting x = zN−1.

We are not concerned here with the solution of the system in (6.126), as we have
already briefly discussed matrix Riccati ODEs. Rather, our interest lies in exploiting
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the tractable nature of the calculation of the one-step conditional expectation (via
reduction to a system of ODEs) to iteratively construct the characteristic function
of the finite sample estimator in (6.120). To see how this is possible, consider condi-
tioning on time tN−2 in (6.122). Using the expression in (6.125), we are confronted
with the following expectation:

EtN−2 exp

(
i

1

N
�zT

N−1��zN−1+ zT
N−1αzN−1+ zT

N−1β+ γ
)

(6.127)

Now, owing to the quadratic form of the exponent in (6.127), we can compute the
conditional expectation in the same way as done with the construction in (6.125)
and (6.126), with of course different initial conditions for the ODEs. This approach
is facilitated by the following important fact. The system in (6.126), owing to its
structure and initial conditions, is affine-quadratic in the state variable. (Specifi-
cally, α does not depend on the state variable, β is affine, and γ is affine-quadratic.)
Thus, the exponent in (6.127) retains the necessary affine-quadratic form. It should
then be clear that continued iterations of the expectation operator (conditional on
the decreasing series of observation times) will produce the desired characteristic
function. We leave as an open question whether any tractable results akin to those
in Section 2.2.3 can be obtained.

6.3.2.3 Extensions II: non-Gaussian

In the non-Gaussian case (e.g., generalized versions of Heston stochastic volatility),
we unfortunately cannot employ the methods used in the previous section, be-
cause of the presence of expressions involving z in the Hessian (second-derivative)
term. While the characteristic function may be out of reach (as far as those tractable
techniques are concerned), the expected value of the finite size sample variance is
obtainable. In other words, we can evaluate

Et0 X̂N = 1

N
Et0

N∑
i=1

�zi�zT
i (6.128)

Ultimately, the problem amounts to the calculation of expectations of the following
form:

Et0 zm(ti)zn(ti) (6.129)

(Note that we have switched notation so that subscripts now refer to a vector com-
ponent, not a vector evaluated at some time index.) We can seek solutions to (6.129)
of the form zTαz+zTβ+γ , with the coefficients (as functions of time to maturity)
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satisfying the following system of ODEs:

α̇ = 2ATα

β̇ = ATβ+ 2αb+H

γ̇ = bTβ+H0

(6.130)

where the vector H has coefficients given by Hk = Tr(Xkα) and the initial condi-
tions are α(0) = δmn, β(0) = γ (0) = 0. Again, we eschew detailed analysis of this
system, and reaffirm the main point that expressions for the finite sample ensemble
covariance can be derived for the very general class of affine diffusions.

Having given some attention to the analytics of finite sample estimation, we now
turn to some of the more practical matters.

6.4 Resampling and robustness

In this section we will address issues pertaining to the information that can be ex-
tracted from a sample itself, while making minimal resort to assumptions about the
underlying DGP and theoretical results that depend on large sample sizes.

6.4.1 Basic concepts

It will prove useful to revise somewhat our abstract definition of an estimator from
Section 2.1.1. There, we defined an estimator to be a map from some (finite) sample
to some set of parameters, which stand in some relation to a set of model parameters
defined through an underlying probability distribution. Here, we wish to retain that
sense of abstraction while being a bit less explicit about the underlying probabilistic
nature.

To this end, let us define an econometric model to be a relation of the following
form:

M(zi ,εi ;θ)= 0, ∀i ∈ {1, . . . ,S} (6.131)

where zi denotes the ith element of some vector-valued sample (of size S) of observ-
able data, εi is an unobservable vector (which can be thought of as corresponding
to some random driver or noise with generic distributional/dynamic properties [al-
though we will typically assume independence across realizations]), and θ is some
vector of model parameters. Equivalently, we can view the model as a parameter-
dependent map from the set of unobservables to the set of observables: Mθ : ε⇒ z.
An estimator associated with a model is defined to be a map from the set of
observables to an estimate of the model parameters:

EM({zi})= θ̂ (6.132)
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Finally, we specify a mechanism for extracting estimates of the unobservables from
the parameter estimates and the observables:43

ε̂i =M−1(zi ; θ̂ ) (6.133)

We term these the (realized) residuals.
A simple example would be the familiar AR(1) process from (2.17). Here the

observables are the primary variable x and its lagged value: zi = (xi xi−1)
T . The

model parameter is simply the autoregressive coefficient: θ = φ. It is clear what the
(unobservable) random term is (E is a Gaussian driver). We note here, however, that
unlike the conventional AR formulation, the abstract definitions in (6.131)–(6.133)
make no specifications about the nature of E (e.g., there is no necessary assumption
of normality). Indeed, we have not even claimed that the model in (6.131) is a DGP
(or inquired as to the consequences if it is, e.g., hypothesis testing). We thus make
no (explicit) reference to a relation between estimator and true parameter value
as in Section 2.1.1. Consequently, if we formally invoke a method such as MLE to
estimate φ (as in (2.18)), we do not attempt to connect this construct to any kind
of moment or other population condition. (See (2.16), and Section 6.5 below).
However, we can still extract residuals via ε̂i = xi− φ̂xi−1.44

Since we decline to specify any sense in which the estimator establishes a connec-
tion to the “true” parameter values (or even what such a connection would mean),
it may well be asked: how useful is this revised formalism? We will now attempt to
address this concern.

6.4.2 Information conditioning

6.4.2.1 Econometric challenges

What are the primary challenges facing any econometric analysis? At the risk of
painting with broad brush strokes, there are two central issues:45

1. Sample sizes are not large enough to permit robust analysis.
2. The DGP that generated the actual data is not (and cannot be) known in entirety,

and indeed, may not be constant over time.

We will mention again that both of these issues are particularly acute in energy
markets. As we have already pointed out (and will consider in great detail in Section
6.5), results for the properties of many popular estimators are often asymptotic in
nature; that is, they apply only for large samples. But, it is never known in practice
whether a given sample is large enough for the asymptotic results to be valid or
useful, and we will see an example in Section 6.5 where a (simulated) data set that
is large by the standards of energy-market data (i.e., more than 1,000 points) can
yield extremely poor results in comparison to the asymptotic theory. This example
is particularly striking because the DGP is actually known. This brings us to point
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number 2 above: we never really know what the DGP is! It is true that we may have
various, good reasons for believing that volatility is stochastic or that a given price
series has jumps. But it remains the case that we simply never know for sure, and at
any rate energy markets are particularly characterized by rather rapid evolution in
their structure (see EW). It is simply inconceivable that we would ever have a model
that is both reasonably tractable and acceptably complex. This situation is in turn
exacerbated by the small sample issue brought up in point number 1.

In (empirical) modeling, a general principle applies: there is a definite trade-
off between robustness and structure. It is very easy to add complexity to a model
sufficient to destroy its robustness given the sample size at our disposal. Given
these problems, it is desirable to have an estimation technique that is both accom-
modative of small sample sizes and makes as few explicit modeling assumptions
as possible. We can now turn to the abstract estimator framework introduced in
Section 6.4.1.

6.4.2.2 Models, estimators, and stability

Consider the following situation. We have a set of variables {(xi ,yi)} and we want
to investigate the relationship (if any) between x and y. There are a few possibili-
ties that immediately suggest themselves: (1) there is a linear relationship between
the two, apart from Gaussian noise; (2) there is a nonlinear relationship (say,
polynomial in x) with Gaussian noise; and (3) there is a linear relationship with
non-Gaussian noise. Assume further the sample is small, say 25 elements. Which
model, based on one of these three possibilities, is best in this situation? The answer
is actually not obvious. Depending on the nature of x and y, it can be very difficult
(if not practically impossible) to statistically distinguish between the three models
in a small sample (recall the example in (2.23), a stationary series with very weak
mean reversion). Put differently, in this scenario could a wrong model perform
better than a model based on the true relationship?

We will investigate this latter question, in the context of standard econometric
techniques, in Section 6.5. Here we ask a different question: given a particular choice
of model and an associated estimator (e.g., a linear model along with OLS), what
information can we extract from the available data themselves about this model-
estimator pair? The issue can be characterized as one of stability. Recall that our
estimation procedure produces estimates of the (unobservable) noise terms (see
(6.133)). As noise qua noise (assuming independence for the moment), any partic-
ular realization of these terms in the sample is statistically equivalent to any other
realization for the sample in question. This latter caveat is important: we are al-
ways concerned with estimation based on a sample of a particular size, and not in
some operationally empty limiting case. Thus we see a potential criterion for assess-
ing model robustness: how sensitive are the estimated parameters to the particular
residuals (estimated errors) that happened to appear in the sample in question?
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Put differently, if these errors changed, how much would the estimated parameters
change?

Our concern here is to avoid optimizing to noise, which is very easy to do in
models with much structure in small samples. The question then becomes: for our
sample (which is the only data we have available), just how much structure is pos-
sessed by the model in question? It is important to understand that this question
does not stand in an abstract sense, but only in relation to the data being modeled
and estimated. Put this way, it is natural to investigate the impact of the residuals
implied by the model and estimator. We would expect the effects of model structure,
as manifested in the estimation procedure, to be reflected by the resulting residuals,
which have the advantage of being easier to analyze. In fact, these residuals offer a
natural means of hypothesis testing, so to speak. If the model in question charac-
terizes the particular sample, and the associated estimator performs effectively for
this sample, then the (implied) residuals should be good representatives of noise
and not structure. In principle, then, these residuals could be used to generate (in
some as-yet unspecified manner) new noise terms and thus new (synthetic, really)
samples (incorporating supposed structure and noise). These synthetic samples can
in turn be estimated (in a manner of speaking), and the output assessed.

6.4.2.3 Residuals and conditioning

In other words, conditional on the actual sample, the model/estimator pair produces
residuals whose (supposed) status as noise can be tested, at least in terms of stability.
Visually this procedure can be expressed as

M(zi ,εi ;θ)= 0, EM({zi}) = θ̂→
ε̂i =M−1(zi ; θ̂ )→
Mθ̂ : ε̂′i ⇒ z′i ⇒ EM({z′i})= θ̂ ′

(6.134)

In the event that this picture is worth less than a thousand words, let us explain
what we mean here. From an econometric model that expresses a relationship be-
tween structure and noise, we have an estimator mapping observables to estimates
of underlying (structural) parameter values. The original model then allows us to
derive residuals (i.e., estimates of the [unobservable] noise), as a function of the
sample and estimated parameter values. In turn, these residuals can be used to con-
struct synthetic samples from which reestimated parameter values can be obtained.
Finally, the stability of the estimator and the robustness of the model, always in the
context of a particular sample, can be assessed.

Note that this procedure can always be carried out, and it should be. The stan-
dard approach that views econometrics in terms of hypothesis testing of models and
statistical significance of parameters is critically dependent on large samples and
(largely) untestable assumptions about the underlying DGP.46 By contrast, viewing
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the problem as one of stability analysis is much broader in nature. For large enough
samples and with sufficient knowledge of the DGP, stability analysis can of course
be crafted as familiar testing of statistical significance. The reverse, however, is gen-
erally not true, and of course the usual situation is precisely one of small samples
and insufficient information about the true DGP.

We are emphasizing two, although ultimately related, concepts in (6.134). First,
we have the fact that all relevant information flows from the actual sample that
we possess. (Obviously, if we have good prior reason to believe that this sample
should be truncated or augmented, this should be done, but when the econometric
analysis commences, we can only use that data for drawing conclusions.) Related to
points we will raise when we discuss simulation in Chapter 7, imposing structure
(through formal modeling) cannot create information not already present in the
original sample. Furthermore, the residuals that arise from econometric analysis
on this data are dependent on the model and associated estimator that are being
employed. Second, as these residuals are resampled (in some model-dependent but
otherwise still unspecified way) to produce synthetic samples, new estimates of the
model parameter are produced. These new estimates can be used to assess, in light
of the estimates derived from the original sample, the stability of the underlying
estimator.

Thus, we have the following synergy:

• The sample as the central source of conditional information
• The residuals as dependent on sample, model, and estimator
• Resampled residuals as a means of assessing the robustness of the estimator given

the model.

We can now turn attention to the operational question of how the generation of
synthetic samples in (6.134) can be carried out, and shed more light on this synergy.

6.4.3 Bootstrapping

The idea behind the standard bootstrap, which can be characterized as resam-
pling with replacement,47 is actually quite simple and can best be conveyed with
a concrete example. Consider estimation of a VAR process:

xn =�xn−1+ εn (6.135)

Standard MLE (say) produces an estimate �̂ of the (regression) coefficient matrix
and a corresponding set of residuals ε̂n(≡ xn − �̂xn−1). As we have seen, in small
samples (or more accurately, samples small in relation to the characteristic time
scales of the underlying dynamics48) this estimator can perform very poorly. By
this we mean that the (asymptotic) results that provide an idea of the distribution
of the estimator in large samples are of little practical use in finite samples.
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Bootstrapping eschews the question of distributional properties of the esti-
mators and instead addresses the question of estimator sensitivity (of course,
in large samples these two issues are basically equivalent). It does this by con-
structing synthetic time series on which re-estimation can be conducted. The
basis of this re-estimation is the original estimated coefficient matrix and orig-
inal residuals. A new set of residuals is created by resampling the original set,
uniformly with replacement. This approach leads to a synthetic time series
xi via

xi
n = �̂xi

n−1+ ε̂ni (6.136)

where ni denotes the index of the nth element of the residuals for ith resam-
pling.49 This procedure may be repeated as many times as necessary, producing
a set of (resampled) estimates �̂i . (An occasionally useful variant is so-called
parametric bootstrapping, where some suitable distributional form is assumed
for/fitted to the [finite sample] residuals and used as the basis of regenerating
samples.) Note of course an implicit, but important, assumption underlying the
method: independence of the population disturbances. This is a limitation of
the method’s applicability, and must be balanced against its undoubted simplic-
ity. (So-called block bootstrapping, whereby blocks of data are resampled, is
means of preserving some serial dependence.) For more on bootstrapping, see
MacKinnon (2006).

Although it is common to present bootstrapping as a facilitator for conducting
hypothesis testing and constructing confidence intervals, this is not how we would
view it. As we discussed in Section 3.1.1, however useful the language and formalism
of statistical inference may be, it is ultimately tangential to our ultimate objective of
forming definite portfolios for the purpose of extracting a specific value associated
with some structured product. As such, we cannot be content with knowing (in
whatever sense) that some model parameter value is statistically significant or not;
we have to put on actual values/hedges. It is therefore imperative that we have some
idea of how sensitive these values are to the particular sample used in the econo-
metrics. We are always receiving new information (data), and we need to know how
important this information is for the task at hand. Bootstrapping is precisely such
a tool for addressing these kinds of questions. The formalism of the previous sub-
section can now be seen as a necessary precursor for establishing the conceptual
framework behind what is, ultimately, a very simple methodology (precisely the
appeal).

Just in case the point is not sufficiently clear yet, we will close this chapter with a
detailed discussion of the shortcomings of several popular econometric techniques
in finite samples.
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6.5 Estimation in finite samples

As a final lesson, we discuss the econometric ramifications of the reality of finite
samples. We will focus on the results of an important study by Zhou (2001).50

In this work, estimation of a Cox-Ingersoll-Ross (CIR) square-root process is
considered:

dr = κ(θ − r)dt +σ√rdw (6.137)

(The study takes place in the context of interest rates, but (6.137) can be immedi-
ately recognized as the stochastic variance process of the Heston model.) This work
provides a cautionary tale on the use of asymptotic results for drawing statistical
inference, and nicely illustrates the trade-off between robustness and structure in
estimation. The central lesson is that, even in situations where we have realized
paths of length much greater than commonly encountered in energy markets and
where the underlying DGP is known (Zhou applies simulation to generate samples
paths of (6.137) of size 500–1,500), the asymptotic diagnostics (which are the typi-
cally the only theoretical/analytical results available for many common econometric
techniques) can give extremely misleading (if not incorrect) results regarding the
model parameter estimates.

Several standard techniques are applied, some of which have already been in-
troduced; in the interest of being reasonably complete, we will provide brief
overviews.

6.5.1 Basic concepts

6.5.1.1 Central limit theorem

We start with a foundational result that is, often only implicitly, at the heart of
much econometric analysis: the celebrated Central Limit Theorem (CLT)51. This
result states that for a realized sample {Xi} of size N of i.i.d. variables with mean μ
and finite variance σ 2, the sample mean and population mean are related via

√
N

σ

(
X1 +·· ·XN

N
−μ

)d

∼N(0,1) (6.138)

as N →∞ . In other words, the entity on the LHS of (6.138) is distributionally a
standard normal as the sample size tends to infinity. We know the reader would be
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disappointed if we did not invoke characteristic functions to establish this result, so
we have that (WLOG we take μ= 0):

E exp

(
iφN−1/2

∑
i

Xi

)
= (EeiφN−1/2X1)

N = fX(φN−1/2)N

=
(

1− σ
2φ2

2N
+O(N−2)

)N

→ e−σ 2φ2/2 (6.139)

The CLT thus provides a connection between sample average and population mean.
Let us now see how the CLT is used in econometric diagnosis. We first turn to the
actual estimators themselves.

6.5.1.2 Maximum likelihood

The standard workhorse in a great many econometric techniques is MLE, which we
have already introduced in Section 2.1.1, and in fact used throughout. To facilitate
the fluidity of the exposition we repeat the relevant results here. In MLE we seek
those values of a model that, if true, are most consistent with a given set of realized
data. (By consistency we mean the plain language meaning: with alternative values,
there is a lower probability that the model would have generated the observed data.)
This goal is achieved by maximizing the so-called log-likelihood function over the
data set:

θ̂ = arg max
θ

L(z;θ) (6.140)

where θ are the model parameters, the hat denotes estimated entities, z is the data
set, and the log-likelihood function is given by

L(z;θ)= 1

T
log
∏

t

f (zt ;θ)= 1

T

∑
t

log f (zt ;θ) (6.141)

where f (zt ;θ) is the functional form of the (parameter-dependent) density of obser-
vation zt and T the number of observations. (The implicit assumption in (6.141), as
we shall see, is that the observations are independent and identically distributed.) A
simple application would be to the standard linear model in (2.5), where the density
is Gaussian and the usual OLS estimators can be recovered.52 Note that, evaluated at
the true parameter value θ∗, the first-order optimality condition satisfies (assuming
certain regularity conditions; see Hamilton [1994])

E
∂

∂θ
L(z;θ)

∣∣∣∣
θ∗
= 1

T

∑
t

E
∂

∂θ
log f (zt ;θ)

∣∣∣∣∣
θ∗

= 1

T

∑
t

∂

∂θ

∫
dz f (z;θ)

∣∣∣∣∣
θ∗
= 0 (6.142)
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since the density integrates to 1. This essentially demonstrates the (asymptotic)
consistency of MLE.

To support this latter claim, we need to investigate what, exactly, the formal me-
chanics of optimizing (6.141) means. In other words, how does the output of the
optimization procedure relate to the actual model parameters? It is here we invoke
the CLT. Under i.i.d. assumptions, the sample average

1

T

∑
t

∂

∂θ
log f (zt ;θ) (6.143)

is asymptotically distributed (normally) around the population expectation

E
∂

∂θ
log f (z;θ) (6.144)

with the variance of the distribution decreasing like the reciprocal of the sample size.
Since the expectation in (6.144) is zero for the true model parameter, the first-order
optimization condition in MLE corresponds to the sample analogue of a particu-
lar population condition. (We will see in Section 6.5.3 how this condition can be
effectively inverted to provide [asymptotic] distributional information about the
estimators themselves.)

Now, the i.i.d. assumption is fairly restrictive, and it is common to apply the
formal optimization in (6.140) in situations outside the range where the CLT is
rigorously valid. Specifically, when applied to the realizations of processes such as
(6.137), the constituent terms in the log-likelihood function (6.141) are conditional
densities, not unconditional densities as required by the CLT. Our chief concern
here is to outline what can go wrong in such cases. Of course, a formal procedure
can always be used mechanistically; however, extreme care must be employed when
interpreting the output. The question ultimately remains: what is the connection
between the sample condition derived from (6.143) and the population condition
derived from (6.144)? Let us frame this question in an appropriate form.

6.5.1.3 Averages: population vs. sample vs. time

The typical approach for applying MLE to processes such as (6.137) is to optimize
the following log-likelihood function:

L(z;θ)= 1

T

∑
t

logPrθ (zt |zt−1) (6.145)

where Prθ (zt |zt−1) denotes the parameter-dependent (conditional) transitional
density for the process. Clearly, as random variables, each constituent term in the
summation in (6.145) has a different distribution, hence the i.i.d. assumption can-
not be valid, and we cannot appeal to the standard CLT in associating the first-order
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condition from optimizing (6.145) with a population condition as we did in (6.143)
and (6.144). However, conditionally this connection of course still exists. That is, for
a given x we can write

1

Tz

∑
t

∂

∂θ
logPrθ (zt |x)= 0⇔ Ex

∂

∂θ
logPrθ (z|x)= 0 (6.146)

as the conditional sample size Tz → ∞. Now, thinking of x as drawn from
some population with an unconditional density Prθ (x), we can invoke iterated
expectations and write the following:

1

TzTx

∑
t ,u

∂

∂θ
logPrθ (zt |xu)= 0⇔ E

∂

∂θ
logPrθ (z|x)= 0 (6.147)

with the usual CLT asymptotics applying (for the limit of large Tx). However, it is
difficult (if not impossible) to implement (6.147) in practice because we typically
do not have “cross-sectional”53 (so to speak) realizations of the DGP; we typically
have only a single path on which to base the estimation.54 (This is precisely why
time averages across conditional densities [as in (6.145)] are universally resorted to
in practice.)

Nonetheless, we anticipate that, for sufficiently large sample sizes, time averages
such as (6.145)55 will well approximate the unconditional expectations needed for
invoking standard limiting results, so long as the underlying stochastic drivers are
sufficiently “nice.” To be a bit more precise, what is required is the property of er-
godicity, which means that large-sample time averages of a (stationary) stochastic
process converge (in the appropriate distributional sense) to the unconditional ex-
pectation of the process. (Intuitively, ergodicity implies that points sufficiently far
apart on a path are independent.) In fact, the standard CLT can be generalized
to the case of stationary, ergodic martingale differences56 (Billingsley, 1961). To
outline the idea, consider a stochastic process Xt (wrt. some filtration) satisfying
Et−1Xt = 0, with state-independent conditional variance Et−1X2

t = σ 2
t−1 <∞, and

possessing an unconditional mean: EXt = 0. Proceeding as in (6.139), we see that

E exp

(
iφN−1/2

N∑
i=1

Xi

)
= E

(
exp

(
iφN−1/2

N−1∑
i=1

Xi

)
EN−1eiφN

−1/2XN

)

= E

(
exp

(
iφN−1/2

N−1∑
i=1

Xi

)
f (iφN−1/2;XN−1)

)

= E

(
exp

(
iφN−1/2

N−2∑
i=1

Xi

)
EN−2

(
eiφN

−1/2XN−1

(
1− σ

2
N−1φ

2

2N
+O(N−2)

)))
(6.148)
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where f is the (conditional) characteristic function of the process X . Continuing
with the iterated expectations, we see that (6.148) behaves asymptotically like

E exp

(
IφN−1/2

N∑
i=1

Xi

)

=
N∏

i=1

E

(
1− σ

2
i−1φ

2

2N
+O(N−2)

)
∼ exp

(
− σ̄

2φ2

2

)
(6.149)

as N →∞, and where σ̄ 2 = lim
N→∞N−1

N∑
i=1
σ 2

i−1. (See Proposition 7.8 in Hamil-

ton [1994].) The asymptotic normality of the large-sample time average is thus
established by (6.149).57

Keep in mind that the relevant characterization of stationarity/ergodicity applies
to the process X , which may itself be a function of other process, which is the ac-
tual objective of the econometrics. E.g., in MLE we would be concerned with time
averages such as (6.145), from which we extract estimates of the model parameters
for the underlying DGP. With the obvious extension of (6.149) to higher dimen-
sions, we calculate the conditional covariance in the case of MLE to be (recall the
argument used in (6.142))

Et
∂

∂θ
logprθ (zt+1|zt )

∂

∂θT
logPrθ (zt+1|zt )

= Et
1

Prθ

∂2

∂θ∂θT
Prθ (zt+1|zt )−Et

∂2

∂θ∂θT
logPrθ (zt+1|zt )

=−Et
∂2

∂θ∂θT
logPrθ (zt+1|zt ) (6.150)

yielding the familiar result that the asymptotic covariance of the MLE estimator is
−T−1I−1, where I is the well-known Fisher information matrix (the Hessian of
the log density). A more casual derivation will be provided in Section 6.5.2.

6.5.1.4 Asymptotics: a sense of false security

We have engaged in this somewhat lengthy exposition for several reasons. The
formal mechanics of popular tools such as MLE (and related techniques to be con-
sidered shortly) are not terribly interesting as such, as they are ultimately just cranks
for producing numbers. What is of importance is the ability to interpret those num-
bers in light of some model representing a stochastic process of interest. Let us stress
again: our primary concern is the construction of good valuations for structured
products. This means relating the structure in question to some set of available
hedging instruments (or more accurately relating the respective payoffs), and ac-
counting for residual risk. Obviously, any estimation procedure produces estimates
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of both a particular relation and of an associated residual. Uncertainty around the
estimated relation is the flip side of uncertainty regarding the residual, which drives
the valuation (since the penultimate deal price is the cost of hedging plus a charge
for remaining risk). As we have endeavored to show here, the justification for many
standard econometric techniques (we have focused on MLE, but the point applies
more generally) only holds asymptotically, i.e., for large sample sizes.

The unfortunate fact is that the formal theory offers almost no guidance as to
whether a particular set of data is large enough for these asymptotic results to be ap-
pealed to. Since stationarity/ergodicity is at the heart of these asymptotic results, we
see once again the role that time scales play in the empirical analysis of the problem.
The sample size is not large or small as such, but only in relation to the operative
time scales of the underlying DGP.

With the relevant concepts and rationales laid out, we can turn more briefly to
some important, related techniques before turning to a concrete example.

6.5.2 MLE and QMLE

We discussed MLE in a fair amount of detail in Section 6.5.1. We now turn to a
related technique, for which many of the asymptotic arguments of that section can
be readily adapted.

6.5.2.1 Quasi-Maximum Likelihood Estimation (QMLE) and informational

requirements

The feasibility of MLE requires that the densities underlying the objective func-
tion in (6.141) be both known and sufficiently tractable to facilitate the ensuing
optimization (which typically requires some sort of numerical procedure). To over-
come these potentially serious difficulties, an alternative, related approach known
as QMLE is often resorted to. Under QMLE, the log-likelihood function that is
maximized is given by

L(θ)= 1

T

∑
t

log f ′(zt ;θ) (6.151)

where f ′ is not the true density of the underlying DGP. Rather, it is an auxiliary
or proxy density that (hopefully) bears some similarity to the true density (call it
f ) while being more tractable. Thus, there is not necessarily a “true” value of the
model parameter as such, although the auxiliary density could be (and often is)
taken as an approximation to the true density, in which case the QMLE parameters
do correspond to the parameters of the DGP. To understand how this relationship
manifests itself, note that

L(θ)=− 1

T

∑
t

log
f (zt )

f ′(zt ;θ)
+ 1

T

∑
t

log f (zt ) (6.152)
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Thus, maximizing the (quasi) log-likelihood function is equivalent to minimiz-
ing the so-called Kullback-Leibler (KL) divergence (defined as E log(f /f ′)), well
known from information theory. (The KL divergence is obviously related to the
relative entropy measures considered in Section 5.2.9.) In other words, for a given
class of auxiliary models, QMLE selects the one that (effectively) minimizes relative
entropy/informational discrepancy under the DGP.

6.5.2.2 Convergence and consistency

To understand the sense in which the QMLE estimator is consistent (or inconsis-
tent), we turn to the question of the asymptotic behavior. To leading order, the first
order condition for maximization of the (quasi) log-likelihood function (6.151)
becomes

0= 1

T

∑
t

∂

∂θ
log f ′(zt ;θ∗)+ 1

T

∑
t

∂2

∂θ∂θT
log f ′(zt ;θ∗)(θ̂ − θ∗)+·· · (6.153)

where θ∗ is the “true” parameter value, θ̂ is the QMLE estimator. What is meant
by “true” here? Recalling the caveats from Section 6.5.1 and assuming sufficient
stationarity/ergodicity conditions, we see that the first term on the RHS of (6.153)
converges to

Ef
∂

∂θ
log f ′(z;θ∗)= ∂

∂θ

(
Ef log

f ′

f
−Ef log f

)∣∣∣∣
θ∗

(6.154)

(Here Ef denotes expectation wrt. the true density f .) Thus, if θ∗ is taken to be the
minimizer of the KL divergence, (6.154) is zero (first-order condition) and we see
from (6.153) that

θ̂ − θ∗ ∼N(0,
1

T
H−1JH−1) (6.155)

and

H =−Ef

(
∂2 log f ′

∂θ∂θT

∣∣∣∣
θ∗

)−1

J = Ef

(
∂ log f ′

∂θ

∣∣∣∣
θ∗

)(
∂ log f ′

∂θ

∣∣∣∣
θ∗

)T
(6.156)

giving rise to the familiar Huber “sandwich” for the parameter covariance. Note
that when f ′ = f (i.e., regular MLE), the parameter covariance reduces (along with
T−1 scaling) to the usual inverse of the Fisher information matrix (the Hessian of
the log density), by the well-known matrix information equality.58

Having established the sense in which the QMLE estimator can properly be con-
sidered consistent, let us now consider the case where the auxiliary density f ′ is
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actually an approximation to the true density f of the underlying DGP. As we have
just seen, the QMLE estimator is asymptotically the minimizer of the KL divergence.
It also stands in some relation to the true parameter of the DGP:

θ∗QMLE = K(θ∗DGP) (6.157)

It will not in general be true that the map K in (6.157) is the identity transforma-
tion. Consequently, the QMLE estimator is inconsistent (although it may well be
consistent under certain conditions; see Newey and Steigerwald [1997]).59 How-
ever, we would anticipate that if the auxiliary density is a good approximation of
the true density, then the KL divergence will be small and the map K is near iden-
tity. In such a case, QMLE may be inconsistent, but only moderately so. But there
is a deeper point, as we shall see: in small samples, QMLE, though asymptotically
inconsistent, may actually outperform MLE based on the true density!

Having covered likelihood-based methods, we can now (briefly) turn to a more
encompassing, expectation-based technique (and its offshoots).

6.5.3 GMM, EMM, and their offshoots

6.5.3.1 Moment conditions

MLE is actually a special case of a more general technique, which we generically
refer to as moment matching. As the name suggests, for a given model we may have
some known expression for expectations of the form Eg(z;θ)= 0 for some vector g ,
which is solved for the parameter θ by replacing population entities by their sample
analogues; compare with (6.142). A very simple (and common) example is estimat-
ing a Gaussian variable by matching sample means and standard deviations to their
population counterparts. An extremely influential extension of this (classical) idea,
due to Hansen (1982) is known as the Generalized Method of Moments (GMM).
Suppose we start with some vector-valued set of (population) expectations and its
corresponding set of sample averages:60

Eg(z;θ)⇔ ḡ(Z ;θ)≡ 1

T

∑
t

g(zt ;θ) (6.158)

In general, the number of moment conditions may be different from the number of
parameters being estimated (e.g., Eg(z;θ)= 0∈�d and θ ∈�p with p �= d), making
classical moment matching ill-determined. The idea behind GMM is to instead craft
the sample analogue of the moment conditions as a minimization problem, for a
suitable weighting matrix across conditions. In other words, for some symmetric
matrix W we take

θ̂ = arg min
θ

ḡ(Z ;θ)T ·W · ḡ(Z ;θ) (6.159)
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We do not here go into detail about the optimal choice of weighting matrix (see
chapter 14 of Hamilton [1994]), although we will note that in practice, GMM is
often implemented iteratively, first using W = I (the identity matrix) and then up-
dating with the sample covariance matrix (for the conditions (6.158); recall the
estimator of the noise covariance in a VAR, e.g., (6.29)).

As its name suggests, GMM is quite general and includes as special cases a num-
ber of well-known techniques. These include OLS where the moment conditions
amount to orthogonality between regressors and residual (see (2.5)): E(y − αx −
β) = 0 and Ex(y − αx− β). MLE also clearly falls in this category, as the relevant
moment condition can be seen in (6.142): E ∂

∂θ logPrθ (z)= 0. (In these cases, there
are as many moment conditions as unknown parameters, so there is no need for a
weighting matrix; i.e., GMM is just identifiable.)

6.5.3.2 Asymptotics

The first order optimality condition associated with (6.159) is

ḡ(Z ;θ)T

∂θ
·W · ḡ(Z ;θ)= 0 (6.160)

Proceeding similarly to the case of QMLE (see (6.153)), the asymptotic consistency
and normality of the GMM estimator can be established as follows. Denoting the
true parameter value by θ∗, to leading order we have

0= 1

T

∑
t

gθ (zt ;θ∗ + θ̂ − θ∗)T ·W · 1

T

∑
t

g(zt ;θ∗ + θ̂ − θ∗)

≈ 1

T

∑
t

gθ (zt ;θ∗)T ·W ·
(

1

T

∑
t

g(zt ;θ∗)+ 1

T

∑
t

gθ (zt ;θ∗)(θ̂ − θ∗)
)

(6.161)

Thus, by smuggling in the appropriate assumptions regarding stationar-
ity/ergodicity, we see (via CLT) that

θ̂ − θ∗ ∼N(0,
1

T
(DT WD)−1 (DT WCWD)(DT WD)−1) (6.162)

as T →∞, where D ≡ Egθ (z;θ) and C ≡ Eg(z;θ)g(z;θ)T . (The optimal weighting
matrix is given by W =C−1, in which case the estimator covariance matrix reduces
to 1

T (D
T C−1D)−1; see Hamilton [1994].) It should be emphasized that moment

conditions are often based on some process dynamics, and take a conditional form,
e.g.,

Et g(zt+1)= g̃(zt ;θ) (6.163)

for some parameter-dependent process z. However, by invoking arguments similar
to those used in the discussion of MLE (e.g., (6.149)), these asymptotic results still
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hold. (Hansen [1982, 2007] is quite careful to emphasize these important qualifi-
cations.) However, this is precisely the point that must be stressed: the concerns
raised in Section 6.5.1. about the appropriateness of relying on asymptotic results
hold just as true here.

For completeness we briefly mention some related techniques. A drawback of
GMM is that the choice of moment conditions is virtually unlimited and, in large
part, arbitrary. This is offset by the fact that GMM is quite flexible and (usually)
very tractable. It thus contrasts with MLE with its comparatively greater efficiency
(it can attain the information-theoretical Cramér-Rao lower bound on estimator
[co]variance; essentially the inverse of the Fisher information matrix) but fre-
quently intractable nature. It is thus desirable to seek a middle ground, which is
the objective of the Efficient Method of Moments (EMM). EMM combines aspects
of QMLE and so-called indirect inference. We have already discussed QMLE, so we
will give a quick overview of indirect inference.

6.5.3.3 Indirect inference

The idea behind indirect inference is to estimate a model for which, say, MLE is
intractable by introducing an auxiliary model (as in QMLE) which is tractable. The
auxiliary model typically possesses some set of parameters υ distinct from (in fact,
generally unrelated to) the actual model parameters θ . Assume we have an estimator
υ̂(Y ) of the auxiliary parameters for the sample in question, Y = {yt }. Now, for a
particular value θ of the primary model we construct a set of simulated time series
Y θs according the DGP/model that is being estimated. For each such path, we find a
set of estimators from the auxiliary model υ̂(Y θs ). The central idea behind indirect
inference is to construct an estimator θ̂ of the model in question by making the
set of (simulation-derived) auxiliary parameters as close as possible to the original
estimator (based on the actual sample), in the appropriate sense. For example, we
could match the original estimator to the average estimator (across the S paths):

θ̂ (Y )= arg min
θ

∥∥∥∥∥υ̂(Y )− 1

S

∑
s

υ̂(Y θs )

∥∥∥∥∥
2

(6.164)

Alternatively, the estimator across an average auxiliary log-likelihood function
could be used:

θ̂ (Y )= arg min
θ

∥∥∥∥∥υ̂(Y )− arg max
υ

1

S

∑
s

Laux(Y
ϑ
s ;υ)

∥∥∥∥∥
2

(6.165)

Of course, a weighting matrix could be introduced in the minimization criteria,
as in GMM. Indirect inference is particularly useful when the underlying DGP
has unobservable components such as stochastic volatility. (Thus avoiding resort
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to filtering.) For more on indirect inference, see Smith (2008) and the references
therein.

6.5.3.4 EMM

The idea behind EMM can now be better understood. First, an auxiliary model,
parameterized by υ, is introduced, and a corresponding estimate υ̂ is obtained via
QMLE. This initial step establishes the following moment conditions, deduced from
the sample analogue of the first order conditions:

1

T

∑
t

∂

∂υ
log faux(yt ; υ̂)= 0⇔ E

∂

∂υ
log faux(y;υ)= 0 (6.166)

where yt is the sample in question and faux is the auxiliary density. (In (6.166), the
(population) expectation is with respect to the underlying DGP.) Next, GMM is
applied, using the moment conditions in (6.166) as the minimization criteria. This
typically entails, as in the case of indirect inference, the use of simulation. That is,
we construct pathwise averages of the form:61

m(θ ; υ̂)= 1

S

∑
s

∂

∂υ
log faux(y

θ
s ;υ̂) (6.167)

where θ refers to the parameter of interest of the underlying DGP. The estimator of
this parameter is then taken (in usual GMM fashion) to be

θ̂ = arg min
θ

m(θ ; υ̂)T ·W ·m(θ ; υ̂) (6.168)

for suitable (symmetric) weighting matrix W . Due to its simulation-based nature,
EMM is well suited to problems such as stochastic volatility, where the volatility
is not observable.62 For more on EMM, see Andersen et al. (1999) or Gallant and
Tauchen (2010). Needless to say, the small-sample robustness of methods such as
EMM is every bit dependent on underlying stationarity/ergodicity as the previous
methods we have discussed.

We are now finally in a position to discuss Zhou’s (2001) findings.

6.5.4 A study of estimators in small samples

6.5.4.1 The setup

The CIR model in (6.137) proves a nice econometric testing ground precisely be-
cause it adds a bit of structure to standard GBM (mean-reversion and non-Gaussian
deviations) while retaining an analytical form for the transition density:

Pr(rt+�t |rt )= ce−u−v
( v

u

)q/2
Iq(2

√
uv) (6.169)
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where q = 2κθ
σ 2 − 1, c = 2κ

σ 2(1−e−κ�t )
, u = ce−κ�t rt , v = crt+�t , and Iq denotes the

modified Bessel function of the first kind of order q. Note that it is straightforward
to obtain the (conditional) mean and variance:63

μ̃t ,t�t ≡ Et rt+�t = rt e−κ�t+ θ(1− e−κ�t )

σ̃ 2
t ,t+�t ≡ Et r2

rt+�t
− (Et rt+�t)

2 = σ
2

κ
(1− e−κ�t )(rt e−κ�t + θ

2
(1− e−κ�t ))

(6.170)

giving rise to a Gaussian approximation of the true density via

Pr(rt+�t |rt )≈ 1√
2πσ̃ 2

t ,t+�t

exp

(
− (rt+�t − μ̃t ,t+�t )

2

2σ̃t ,t+�t

)
(6.171)

The (conditional) density in (6.169) can plainly be used in standard MLE, e.g.,
(6.140) and (6.141). Obviously the main impediment is calculation of the Bessel
function, but there exist efficient algorithms for carrying this out (see Press et al.
[2007]). Additionally, the very convenient form of the (conditional) moment ex-
pressions in (6.170) make possible the application of techniques such as QMLE64

or GMM. What could be better? As we shall see, an embarrassment of riches is not
all it is cracked up to be.

6.5.4.2 Simulation tests

Another nice aspect of the CIR model is that it is quite amenable to simulation.
Zhou (2001) exploits the mixture of Poisson and Gamma characterization to gen-
erate random samples; more recent approaches (in the context of Heston) include
Broadie and Kaya (2006) and Andersen (2006). Thus it is easy to create many re-
alizations of a given sample size. Zhou considers several scenarios, each with two
different sample sizes: 500 and 1,500. The scenarios essentially run the gamut
from low mean reversion-low conditional variance to high mean reversion-high
conditional variance. Both of these extreme cases are computationally and econo-
metrically challenging. With a step size of seven days (one week), these cases have
parameter values given below:

Low Mean Reversion, High Mean Reversion,
Low conditional Variance High conditional variance

κ = 0.15 κ = 15
θ = 8.7 θ = 87
σ = 0.2 σ = 7.9

Et rt+�t=0.997rt+0.025 Et rt+�t = 0.75rt + 2.17
Vart rt+�t = 7.5 · 10−4rt + 9.4 · 10−6 Vart rt+�t = 0.79rt + 1.14

(6.172)
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Zhou finds that the distributions of the estimators from these popular techniques
(he also considers EMM) are decidedly non-normal and that their biases decrease
very slowly with increased sample size. It is a striking result precisely because
the true model is known (and its structure, though non-Gaussian, is not terri-
bly complex) and the sample sizes quite large in relation to actual market data. It
should be further stressed that Zhou’s study took place in the context of interest-
rate modeling; the sample sizes he used are especially large by energy-market
standards. His conclusions, broadly stated, are that while MLE has the highest
efficiency (in terms of variance), QMLE and EMM perform best in terms of infer-
ence. QMLE in particular offers great benefits in terms of computational feasibility
and ease of implementation. His results strongly caution against trying to seek out
full-information estimators as a first resort.

However, while we do not doubt the prescriptions that follow from this study, we
do believe there are numerical issues that amplify the starkness of the results (e.g.,
figures 1 and 2 in Zhou [2001]). We will therefore illustrate these points with our
own computational analysis.

6.5.4.3 In revision of Zhou

The primary challenge in implementing full-information MLE for the CIR model is
the calculation of the modified Bessel function in the transition density in (6.169).
Zhou (2001) employs the aforementioned Poisson-Gamma mixing series solution.
However, this series has regions of non-convergence, especially in the low mean
reversion case (Zhou’s scenario 1). In this case, the argument q of the Bessel func-
tion is very large and the series solution breaks down. (There is a gamma function
calculation involved that becomes highly problematic in this regime; consult any
text on special functions.) Zhou thus resorts to a standard asymptotic expansion in
this case for evaluation of the Bessel function. We believe this distorts his results,
although his conclusions are largely left intact.

We employ an approach based on a continued fraction expansion from Press et
al. (2007). (For the optimization we use standard iterated Newton/gradient search,
constraining the mean reversion rate κ to be positive.) We generate 500 realiza-
tions of time series of length 500 each (keeping the weekly time step used by Zhou
[2001] and the mixing approach for drawing a random deviate at each time step).
We “normalize” the estimates by subtracting the corresponding true parameter
value and dividing by the standard error (which we take as the standard devia-
tion across paths); i.e., we look at the t-statistics essentially. We in fact analyze
an alternative formulation of QMLE, based not on moment matching but instead
on the discretized (Euler) approximation to the underlying SDE, so that we still
take a Gaussian transition density but with conditional mean and variance given by
vt+κ(θ−vt )�t and σ 2v�t ; compare with the small step limit of (6.170). (This ap-
proach is commonly termed discretized maximum likelihood estimation [DMLE].)
The results for the low mean reversion case are presented in Figures 6.5 through 6.7.
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The following points stand out:

1. The three estimators are generally very similarly distributed, and largely not
asymptotically normal.

2. The estimator of the mean reversion rate is highly biased and skewed right.
3. The estimator of the mean reversion level is not very biased, but very fat-tailed

(somewhat symmetrically).
4. The estimator of the volatility is asymptotically normal about the true value.



Econometric Concepts 251

0

0.05

0.1

0.15

0.2

0.25 t-stat, low mean reversion

–3 –2 –1 10
–2

.5
–1

.5
–0

.5 0.
5

1.
5

2.
52 3

sig^, mle sig^, qmle sig^, dmle N(0,1)

Figure 6.7 Distribution of t-statistic, volatility

Point number 2 should come as no surprise. It is well known that in finite samples
it is very difficult to identify mean reversion in nearly nonstationary time series. We
have already seen this in a very simple example in (2.23). Point number 4 also is not
particularly shocking. It highlights the general comparatively superior robustness
of volatility estimation. Again, we indicated why this should be expected to be the
case in the example in (2.24). The results here clearly conform to these familiar
(stylized) facts.

Point number 1 represents the biggest departure between our results and those of
Zhou (2001). Contra Zhou, we see little statistical discrepancy between the full-
information MLE and various approximations based on retaining second-order
moment information only, with the exception of mean reversion level (although
even here we do not see the biases in MLE as reported by Zhou). (However, it
is clear that these estimators are not asymptotically normal, except in the case of
volatility estimation.) Nonetheless, these results point to an important fact: full in-
formation is either not necessary for estimation of certain parameters (volatility)
or is not helpful for the estimation of others (mean reversion rate). It goes with-
out saying that computationally QMLE is much faster than MLE (since it avoids
the burden of the Bessel function calculations). Put differently, even when we know
the true DGP (and so resort to approximation is not necessary), it may be better to
simply ignore this information and apply an approximation anyway. We thus affirm
Zhou’s basic conclusion as to the superiority of QMLE over MLE.

Note that it remains the case that some approximations are better than others.
While in the low mean reversion/low conditional variance case, DMLE is basically
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indistinguishable from QMLE (and MLE), this is not true in the other scenario un-
der consideration, namely high mean reversion/high conditional variance (Zhou’s
[2001] scenario 8). We present our results for this case in Figures 6.8 through 6.10.

First, note that, unlike the previous scenario, the MLE and QMLE do conform
asymptotically to normal behavior.65 (This again represents a point of depar-
ture from Zhou’s [2001] results, which actually suggests problems with his Bessel
function calculation that go beyond the breakdown of the series representation.)
Second, except in the case of the mean reversion level, DMLE is clearly strongly
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biased, even for the volatility. This is not terribly surprising: in the case of high con-
ditional variance, the Euler discretization should not be expected to be a very good
approximation to the underlying DGP, and these results bear that out. So, while this
scenario again affirms the basic point of preferring QMLE over MLE, it also high-
lights the critical point that the issue in estimation invariably comes down to the
use of conditional information. Actually, more specifically it is a question of time
scales (once again). The divergence (of the approximation) comes down to the size
of κ�t , which precisely reflects the relevant time scale of the process.

We can now provide an assessment.

6.5.4.4 The lessons learned

First, we see the basic irrelevance of asymptotic results for estimation diagnostics.
For a time series of length 500 (which corresponds to 500 weekly observations,
which greatly exceeds the data availability in many [if not most] energy markets)
the distribution of several popular estimators are clearly non-Gaussian, which is the
predicted form from standard asymptotic analysis. (See, again, Sections 6.5.2 and
6.5.3.) Thus, in assessing the stability of an estimator for an actual sample (recall the
discussion in Section 6.4) one must exercise great caution in employing asymptotic
results. (It would probably not be an overstatement to say that one should never
rely on asymptotics.) Now, there are some qualifications to this pessimism. Volatil-
ity estimators generally do conform to their asymptotic distribution, if conditional
information is correctly specified in light of the prevailing time scales. (Recall the
poor performance of DMLE in the case of high conditional variance.) But as a gen-
eral observation, asymptotics are fairly useless in practice, and what appears to be
a large sample size may in reality be small, again in comparison to the underly-
ing time scales. In particular, direct estimation of mean reversion rates is extremely
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problematic if the process in question is not sufficiently stationary (again, in the
operational sense of a sample and not in the abstract sense of a population), and
effort is better spent on indirect estimation as revealed by variance scaling laws (as
in Section 2.2).

Second, using full information in an estimator often provides little benefit and
can in fact be needlessly costly. We saw in two econometrically challenging cases
(weak mean reversion, strong conditional variance) that partial information QMLE
was distributed almost identically to full information MLE. When we speak of par-
tial information here, we mean that in QMLE we (correctly) specified the first two
(conditional) moments, as opposed to using essentially all the moments as entailed
in MLE. Now, as we showed in Section 6.5.2, QMLE identifies that proxy density
that minimizes the relative entropy measure (KL distance) between the proxy and
true density. Our results here indicate that the correctly specified conditional Gaus-
sian is indeed a very good approximation to the non-Gaussian CIR (square root)
process (in the sense of relative entropy). (In fact, for the nearly non-stationary
case, even the incorrectly specified DMLE approximation is a good one.) This is an
important point, as it is not a priori obvious that an estimator based on the Gaus-
sian approximation should produce results similar to that of an estimator based on
the true density. (We in fact observe that the estimators behave similarly pathwise,
not just distributionally.) MLE thus proves needlessly costly from a computational
standpoint66 and in fact provides little real benefit, as can be seen in estimation of
the mean reversion parameter. Mean reversion rates are simply extremely hard to
estimate in finite samples, with or without full information.67

It is worth stressing that in this study, we know the actual DGP. Obviously in
actual applications we will not have this knowledge. The analysis here suggests that
in fact we are better off not worrying about what the actual DGP is, if we can instead
get better conditional information about the first two moments only. As always,
the main econometric challenge here is overcoming the informational constraints
imposed by the sample in question. Generally speaking, the smaller the sample (and
sample size is in truth a function of the operative time scales), the less structure one
can introduce and expect to achieve robust results. Indeed, while we have presented
QMLE as superior alternative to MLE (which it clearly is in many ways), it, too,
suffers from many of the same problems. (Which is why, e.g., we generally advise
against trying to directly estimate mean reversion.) We are thus led to present the
following important corollary: knowing the qualitative features of a process is not the
same thing econometrically as knowing the actual DGP.68

The upshot here is clear: while it is important to understand the econometric
techniques presented here, one needs to be acutely aware that they have rather
severe limitations and, if they are to be employed, one must adopt an extremely
critical eye when assessing their output.
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6.5.5 Spectral methods

We know the reader would be disappointed if we did not close out our little (econo-
metric) adventure with an application of characteristic functions to the problem of
estimation. For those models where the characteristic function is known (or at least
is amenable to numerical determination, e.g., the class of affine jump diffusions),
the characteristic function can be used as a matching criterion. (In some sense, the
characteristic function can be thought of as providing all of the moments to be used
in a moment-matching procedure.) We start with the basic relationship

f (φ;zt )= Et eiφT zt+1 (6.173)

where z is some d–dimensional process, φ ∈ �d , and f is the conditional char-
acteristic function. (Recall the examples from Section 5.2.5, such as standard
Black-Scholes, Merton’s jump diffusion, and Heston’s stochastic volatility model.)
There are several econometric techniques based on the expression in (6.173), which
we proceed to discuss now.

6.5.5.1 Direct ML and GMM estimation

Singleton (2001) proposes inverting the relationship (6.173) to obtain (via the
Fourier inversion theorem) the (conditional) density of the underlying process,
which can then be used in standard MLE. The obvious problem here is the compu-
tational burden, which grows exponentially with the dimension of the state space,
and of course the well-known challenges presented by oscillatory integrands (to say
nothing of truncation error of the infinite integration region). Possible remedies
here include partial information estimations based on suitable linear combinations
of the state variables. For example, (6.173) can obviously be used to calculate the
characteristic function of entities such as tT

l z, where tl has elements δkl . Characteris-
tic function inversion then amounts to one-dimensional integrations for any index
l, producing (conditional) densities for any single-state variable given all previous-
time state variables. Another possibility is to extract moment conditions from the
derivatives of the characteristic function (evaluated at φ = 0) for use in standard
GMM.

Apart from the computational issues, further difficulties are presented when un-
observable variables (such as stochastic volatility) are introduced. Singleton (2001)
considers simulation-based methods for essentially filtering out such latent vari-
ables; recall the discussion in Section 6.5.3. (In addition, if possible, option market
data can be exploited in the estimation, since as we know that the affine frame-
work permits a reasonably efficient computational framework for option pricing.)
To consider alternative approaches in this case, we must present some prefatory
results.
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6.5.5.2 Unconditional entities and latent variables

For exposition we will confine attention to the affine case, and for the moment
ignore jumps. We will also assume time homogeneity, so that only the sample
time step (further assumed uniform) matters. Broadly, we will characterize the
state variables as observable (log) prices and unobservable stochastic volatility (the
paradigmatic example of course being Heston). We will indicate these (multidi-
mensional) categories by z and v, respectively. Then, using the results from Section
5.2, we have that

f (φ, 0;zt−1,vt−1)= Et−1eiφT zt+i0T vt

= exp(αT (�t ;φ, 0)zt−1+βT (�t ;φ, 0)vt−1+ γ (�t ;φ, 0)) (6.174)

where the coefficients (αT ,βT ,γ )T solve a system of ODEs (as in, say, (5.84)) with
initial conditions (αT ,βT ,γ )T (0)= (iφT , 0T , 0)T , and �t is the time step between
points in the sample.

Now, we are interested in the (joint) characteristic function of the observables, so
introducing another Fourier variable, employing iterated expectations in (6.174),
and again exploiting affinity, we see that

Et−2eiφT
0 zt−1+iφT

1 zt = Et−2eiφT
0 zt−1 exp(αT (�t ;φ1,0)zt−1+βT(�t ;φ1,0)vt−1+γ (�t ;φ1,0))

= exp

⎛⎝ αT (�t ;φ0− iα(�t ;φ1,0),−iβ(�t ;φ1,0))zt−2+
βT (�t ;φ0− iα(�t ;φ1,0),−iβ(�t ;φ1,0))vt−2+
γ (�t ;φ1,0)+ γ (�t ;φ0− iα(�t ;φ1,0),−iβ(�t ;φ1,0))

⎞⎠
≡ exp(αT (�t ;φ∗0 ,ψ∗0 )zt−2+βT (�t ;φ∗0 ,ψ∗0 )vt−2+ γ (�t ;φ1,0)+ γ (�t ;φ∗0 ,ψ∗0 ))

(6.175)

Repeating this process, we get the following recursive result (see Jiang and Knight
[2002] and Rockinger and Semenova [2005]):

Et−p−1eiφT
0 zt−p+···+iφT

p zt

= exp

( p∑
k=0

γ (�t ;φ∗k ,ψ∗k )+αT (�t ;φ∗0 ,ψ∗0 )zt−p−1+βT (�t ;φ∗0 ,ψ∗0 )vt−p−1

)
(6.176)

with

φ∗p = φp,ψ∗p = 0

φ∗k = φk − iα(�t ;φ∗k+1,ψ∗k+1),ψ
∗
k =−iβ(�t ;φ∗k+1,ψ∗k+1)

(6.177)
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Assuming sufficient stationarity in all the variables (such that unconditional expec-
tations can be meaningfully defined), we get from (6.176) that

EeiφT
0 zt−p+···+iφT

p zt = exp

( p∑
k=0

γ (�t ;φ∗k ,ψ∗k )
)

·E exp(αT (�t ;φ∗0 ,ψ∗0 )zt−p−1+βT (�t ;φ∗0 ,ψ∗0 )vt−p−1) (6.178)

Note that in the special case where the observables are not mean reverting (in other
words, in the affine dynamics there are no drift terms proportional to z) we have
that α= iφ. Then, in terms of (purely stationary) log returns rt ≡ zt − zt−1, (6.177)
and (6.178) can be used to show that

EeiφT
0 rt−p+···+iφT

p rt = Ee−iφT
0 zt−p−1+(φ0−φ1)

T zt−p···+(φp−1−φp)
T zt−1+iφT

p zt

= exp

( p∑
k=0

γ (�t ;φk ,ψ∗k )
)
·E exp(βT (�t ;φ0,ψ∗0 )vt−p−1) (6.179)

with ψ∗p = 0, ψ∗k = −iβ(�t ,φk+1,ψ∗k+1). In the customary example of a Heston-
driven stochastic variance, the unconditional expectation can be obtained as a
long-term limit of the conditional expectation, yielding (see (5.123) to review the
parametric notation)

E exp(βT (�t ;φ0,ψ∗0 )vt−p−1)=
(

1− β(�t ;φ0,ψ∗0 )σ 2

2κ

)2κθ/σ 2

(6.180)

Recall from Section 5.2 that in many cases (including those with jumps), the coeffi-
cients α, β, and γ are known analytically. In general, however, numerical solution
of the underlying system of ODEs will be necessary.

It is worth asking at this stage: what is our objective here? Latent variables such
as stochastic volatility (which are by definition not observable) manifest themselves
in certain observable characteristics, prominent among these being heteroskedas-
ticity and autocorrelation (of returns). We cannot condition on something that we
cannot observe, so to capture the joint structure of (observable) prices or returns,
we must work in terms of unconditional entities such as (6.178), with the contri-
bution from conditional latent dynamics effectively integrated out. This approach
can thus be thought of as an alternative to explicit or formal filtering. We are now
led to consider estimation based on matching to the so-called empirical charac-
teristic function, which can be extracted from the (observable) data for any block
length p+ 1.
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6.5.5.3 Empirical characteristic function estimation

Consider a sample of size T , denoted by

X =
(

z1 · · · zT

v1 · · · vT

)
(6.181)

Now, divide this sample into T − p overlapping blocks of size p+ 1 and define the
vector y via yj = (zT

j , . . . ,zT
j+p)

T . The empirical characteristic function (ECF) is then
given by

g(φ;y)= 1

T − p

T−p∑
j=1

eiφT yj (6.182)

Denoting the (unconditional) characteristic function in (6.178) (or (6.179)) by
f (φ) and the underlying vector of model parameters by θ . An ECF estimator can
then be crafted à la GMM as

θ̂ = arg min
θ

∞∫
−∞

|f (φ)− g(φ;y)|2w(φ)dφ (6.183)

for an appropriate weighting function w (e.g., Gaussian). The role of the block
length p+1 can be understood intuitively as a trade-off between cost and efficiency:
larger values of p (i.e., longer block lengths) may be needed to better incorporate
the effects of ergodicity arising from the (non-i.i.d.) stochastic variances, but this
also of course increases the dimension of the integration in (6.183). In general, the
estimator in (6.183) will display asymptotically normal consistency, a result whose
utility we know must be viewed with a bit of trepidation. See Jiang and Knight
(2002) and Rockinger and Semenova (2005) for a fuller discussion.69

6.6 Appendix

6.6.1 Continuous vs. discrete time

Up to this stage, the bulk of our discussion has concerned continuous time pro-
cesses, e.g., the canonical class of affine jump diffusions in Chapter 5. There is
no need to delve into any deep philosophical issues to recognize the appeal of
continuous time modeling. (We have already seen in Chapter 5 the great utility
continuous time modeling provides for our central objective of identifying relevant
value drivers arising from portfolio dynamics.) At the same time, there is a natural
(unavoidable?) tendency to disregard information that may arise in the time inter-
vals between discretely observed data, if only as a (reasonable) approximation. The
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issue here is not so much the fact that data, and their subsequent econometric anal-
ysis, are (perhaps necessarily) reckoned as discrete entities. Rather, the question
concerns the nature of the process that generated the data, and in what ways the
passage of time matters. As we will see in due course, the importance to which we
assign the role of time scales in characterizing the relevant behavior of a process is
considerable. The horizons of interest are typically not impacted by any distinction
between continuous time reality and discrete time approximation. Nonetheless,
we should comment here on the role that small-time discretization effects play in
econometric analysis.

Consider a generic diffusive process governed by

dx = μ(x)dt +σ(x)dw

for some vector-valued process x. We typically have a set of observations denoted
by

x(t0),x(t1), · · · ,x(tN )

for some set of N times, usually equally spaced, e.g., ti = ih for some time step h.
Following Yu (2014), we distinguish the following two limiting cases:

N →∞,h fixed

h→ 0,N fixed
(6.184)

These two cases correspond to increasing sample size for a fixed resolution and
increasing resolution for a fixed sample size, respectively.70 To illustrate, consider
the standard mean-reverting process

dz = κ(θ − z)dt +σdw (6.185)

and its discrete-time analogue

zn = c+φzn−1+ εn (6.186)

with εn ∼N(0,σ 2�t), c = κθ�t , and φ = 1− κ�t for some (small) time step�t .
The conditional densities are both Gaussian, respectively:

zT |z ∼N(ze−κ(T−t)+ θ(1− e−κ(T−t)),σ 2 1− e−2κ(T−t)

2κ

zn+1|zn ∼N(φzn+ c,σ 2�t)

(6.187)

Even simple econometric ramifications can immediately be seen from (6.187). The
optimization problem posed by MLE, say, is considerably simpler in the discrete
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time case. Note also that (6.186) can of course be thought of as a standard Eu-
ler discretization/approximation to (6.185). Note that this particular scheme is not
the only possible one, and we see right away another challenge in analyzing con-
tinuous time models, namely the integration of underlying SDEs. Certainly, in
the small time-step limit, the densities in (6.187) correspond to one another. It
is thus reasonable to wonder how important the continuous/discrete dichotomy
really is. As is so often the case, it depends. We are, in fact, more interested in a
third alternative to the categories in (6.184), namely the role time horizons (for
whatever class of dynamics) play in characterizing the flow of information, and ul-
timately their impact on valuation problems. (We are of course also interested in
the basic inapplicability of large sample results for crafting robust estimators, and
how to deal with the reality of small samples.) So, we will have little more to say
on this issue, and will primarily operate in the widely used discrete-time frame-
work, shifting to continuous time when suitable for extracting certain effects of
interest.

6.6.2 Estimation issues for variance scaling laws

6.6.2.1 Multidimensional diffusive processes

In an important paper, Grzywacz and Wolyniec (2011) discuss some of the ram-
ifications of the fact that commodity markets exhibit volatility whose effects are
manifested (econometrically and otherwise) over differing time scales. We discuss
these results in the context of a multidimensional setting. So consider a general
Gaussian process with dynamics

dzi = (Aijzj + bi)dt +σidwi (6.188)

for i = 1, . . . ,N and (instantaneous) covariance structure given by dwidwj =
ρijσiσjdt ≡ Xijdt . Consider now the sample covariance of T +1 discretely observed
realizations of (6.188):

v̄ = 1

T

T∑
i=1

�zi�zT
i − μ̄μ̄T (6.189)

where�zi ≡ zi− zi−1 and the sample mean μ̄ is given simply by

μ̄= 1

T

T∑
i=1

�zi = 1

T
(zT − z0)

71 (6.190)
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6.6.2.2 A familiar story: sample vs. population

We are interested in knowing what, if any, relationship the sample variance in
(6.189) has to the properties of the underlying process in (6.188). This is not as
trivial a question as it may seem. Consider the case where A= 0, so the underlying
process is simply a (correlated) random walk. Then clearly, in expectation (6.189)
converges to the population covariance, and sensibly we can associate the sample
variance with the population variance. However, in the presence of mean reversion
(say), it is not immediately obvious what the sample variance would converge to.
Note that differences are not i.i.d., so a standard premise commonly appealed to
(if only implicitly) in statistical applications is no longer valid. It is precisely one of
the contributions of Grzywacz and Wolyniec (2011) to address this question in the
one-dimensional case. We now extend those results to higher dimensions.

6.6.2.3 Another familiar story: affine analysis

First, we need to understand the distributional properties of z. Using the character-

istic function methods developed in Chapter 2, we see that f =Et eiφT z(T ′)= eα
T z+α0

where the coefficients satisfy the following system of ODEs:

α̇ = ATα, α(0)= iφ

α̇0 = bTα+ 1

2
αT Xα, α0(0)= 0

(6.191)

where we have made the transformation τ = T ′ − t (for some time horizon T ′).
Now, it is not hard to see from (6.191) that the overall structure of the pro-
cess will be Gaussian (i.e., the characteristic function will be an exponential of a
linear-quadratic form in φ), but it remains necessary to understand, at some level,
the precise form. To this end, we introduce the diagonal factorization previously
considered in Section 6.1.4 (again postponing consideration of the complications
introduced by multiple eigenvalues): A= V�V−1 where V are the eigenvectors of
A and � is a diagonal matrix of the eigenvalues λi . Thus the natural substitution
β = V Tα transforms the system (6.191) into

β̇ =�β, β(0)= iV Tφ

α̇0 = b̃Tβ+ 1

2
βT X̃β, α0(0)= 0

(6.192)

where b̃ = V−1b and X̃ = V−1XV−T . The transformed system (6.192) is easy
to solve (the system now decouples owning to the diagonal nature), and upon
transforming back we get
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α = iV−T LτV Tφ = iL̃T
τ φ

α0 = ibT V−T GτV Tφ− 1

2
φT V

⎛⎝ τ∫
0

dsLsX̃Ls

⎞⎠V Tφ

= ibT G̃T
τ φ−

1

2
φT

τ∫
0

dsL̃sXL̃T
s φ (6.193)

where L and G are diagonal matrices given by

Lτ = diag(exp(λiτ))

Gτ =
τ∫

0

dsLs = diag

(
exp(λiτ)− 1

λi

)
(6.194)

and where L̃≡VLV−1 (with a similar expression for G). Thus we see that z is indeed
normally distributed, with

z(τ )∼NN

⎛⎝L̃τ z+ G̃τ b,

τ∫
0

dsL̃sXL̃T
s

⎞⎠ 72 (6.195)

or alternatively

z(τ )− z ∼NN

⎛⎝�

Lτ z+ G̃τ b,

τ∫
0

dsL̃sXL̃T
s

⎞⎠ (6.196)

where
�

L ≡ L̃− I .
With the necessary dynamics in hand, we can now ask what the expectation of

the sample variance is. We have

E0v̄ = 1

T

T∑
i=1

E0�zi�zτi −E0μ̄μ̄
T

= 1

T

T∑
i=1

E0�zi�zT
i −

1

T2
E0(zT − z0)(zT − z0)

T (6.197)
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As the covariance of the sample mean is fairly straightforward to evaluate, we will
focus on the terms in the summation. We write these as

1

T

T∑
i=1

E0�zi�zT
i =

1

T

T∑
i=1

E0Ei−1(zi− zi−i)(zi− zi−i)
T (6.198)

where we have invoked the telescoping property of conditional expectations in the
last equation. Now, from the process dynamics we have

Ei−i(zi− zi−i)(zi− zi−i)
T

= (�L�t zi−1+ G̃�t b)(
�

L�t zi−1+ G̃�t b)T +
�t∫

0

dsL̃sXL̃T
s

= �

L�t zi−1zT
i−1

�

L
T

�t + 2sym(
�

L�t zi−1bT G̃T
�t )+ G̃�t bbT G̃T

�t

�t∫
0

dsL̃sXL̃T
s (6.199)

where �t is the time step between observations, so that the time index i will rep-
resent τi ≡ i�t (so that �t = T ′/T), and sym denotes the symmetrization of a
matrix: SYM(A)≡ 1

2 (A+AT ). Also,

E0zi−1 = di−1

E0zi−1zT
i−1 = di−1dT

i−1+
τi−1∫
0

dsL̃sXL̃T
s

(6.200)

where dt−1 = L̃τi−1 z0+ G̃τi−1 b. From this we get

E0(zi− zi−1)(zi− zi−1)
T = �

L�t

⎛⎝di−1dT
i−1+

τi−1∫
0

dsL̃sXL̃T
s

⎞⎠�

L
T

�t

+ 2sym(
�

L�t di−1bT G̃T
�t )+ G̃�t bbT G̃T

�t +
�t∫

0

dsL̃sXL̃T
s (6.201)
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6.6.2.4 Putting it all together, and a one-dimensional example

We can now start to put these results together. The expectation (conditional on
initial time) of the sample variance is

E0v̄= 1

T

T∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
�

L�t

(
di−1dT

i−1+
τi−1∫
0

dsL̃sXL̃T
s

)
�

L
T

�t+

2sym(
�

L�t di−1bT G̃T
�t )+

G̃�t bbT G̃T
�t +

�t∫
0

dsL̃sXL̃T
s

⎞⎟⎟⎟⎟⎟⎟⎠−
1

T2
E0(zT − z0)(zT − z0)

T

(6.202)
It is easy to see that if the process is purely diffusive (so that L = I and for con-
venience we ignore drift), then this expectation is just the population covariance
X�t .

In the one-dimensional (standard mean-reverting) case, we see that

E0v̄ = 1

T

T∑
i=1

⎛⎜⎜⎜⎝
(1− e−κ�t )2

(
(e−κτi−1 z0+ θ(1− e−κτi−1))2

+σ 2

2κ (1− e−2κτi−1)

)
−

2(1− e−κ�t )2θ(e−κτi−1 z0+ θ(1− e−κτi−1))+
(1− e−κ�t )2θ2+ σ 2

2κ (1− e−2κ�t )

⎞⎟⎟⎟⎠
− 1

T2
E0(zT − z0)(zT − z0)

T

= 1

T

T∑
i=1

⎛⎜⎝ (1− e−κ�t )2(z0− θ)2e−2κτi−1+
σ 2

2κ (1− e−κ�t )2(1− e−2κτi−1)+
σ 2

2κ (1− e−2κ�t )

⎞⎟⎠− 1

T2
E0(zT − z0)(zT − z0)

T

(6.203)

Now, ignoring the last term as asymptotically small and assuming for convenience
that the process starts at the long-term mean, (6.203) can be rewritten as

E0v̄ = σ
2

2κ
= (1− e−κ�t )

1

T

T∑
i=1

((1− e−κ�τ )(1− e−2κτi−1)+ 1+ e−κ�t

= σ
2

κ
(1− e−κ�t )

1

T

T∑
i=1

(1− 1

2
(1− e−κ�t )e−2κτi−1 (6.204)

The contribution of the exponentials to the summation will tend to be small for
larger sample sizes and/or time horizons,73 so we arrive at the result

E0v̄ ≈ σ
2

κ
(1− e−κ�t ) (6.205)
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which is essentially the result of Grzywacz and Wolyniec (2011), namely that in
expectation the sample variance displays evidence of mean reversion at half the
actual rate.

6.6.2.5 Some general asymptotics

Let us continue to consider the special case where the process starts at the reversion
level, which we take to be zero. This amounts to requiring that z0 = b = 0. Then,
the result in (6.202) can be written conveniently as

E0v̄ = 1

T

T∑
i=1

V

⎛⎝(L�t − I)

τi−1∫
0

dsLsX̃Ls(L�t − I)+
�t∫

0

dsLsX̃Ls

⎞⎠V T

− 1

T2
E0(zT − z0)(zT − z0)T (6.206)

Now, the integrands in (6.206) have the form

τ∫
0

dsX̃ije
(λi+λj)s = X̃ij

e(λi+λj)s− 1

λi+λj
(6.207)

and thus can be written as X̃ ◦ Kτ , where the denotes Hadamard (element-by-
element) matrix multiplication and the elements of K are given by74 Kij(τ ) =
(exp(λi + λj)τ − 1)/(λi + λj). Ignoring again the second term in (6.206) (as it will
vanish asymptotically), we are led to consider

E0v̄ = V ((L�t − I)(X̃ ◦ 1

T
〈Kτi−1〉)(L�t − I)+ X̃ ◦K�t )V

T (6.208)

where brackets denote ensemble summation. Now, assuming all eigenvalues are
(strictly) negative (so, roughly speaking, the process can be thought of as station-
ary over long enough time horizons), we see (as in the one dimensional case, e.g.,
(6.204)) we see that the long-term sample average of the matrix K is simply the ma-
trix Mij =−(λi + λj)

−1 and the asymptotic behavior of the estimator (the sample
variance) is given by

E0v̄ ∼ V (−(L�t − I)(X̄ ◦M)(L�t − I)+ X̃ ◦K�t )V
T (6.209)



266 Modeling and Valuation of Energy Structures

6.6.2.6 A two-dimensional example

It would now be helpful to consider an actual example, and we will use again
the “cascading” extension of the standard mean-reverting model, with a stochastic
mean-reversion level:75

dx = κx(y− x)dt +σxdwx

dy = κy(θ − y)dt +σydwy

(6.210)

The associated eigenvalues and eigenvector matrix are, respectively, given by

(−κx ,−κy) and

(
1 r
0 1

)
, where r = κx

κx−κy
.76 For further convenience we will

assume the processes in (6.210) are independent, so that X =
(
σ 2

x 0
0 σ 2

y

)
and

X̃ =
(
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. The asymptotic result (6.209) then becomes
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The result in (6.211) must be compared with the corresponding analytical results
for the process covariance matrix over a time interval�t , which is given by⎛⎜⎜⎜⎜⎜⎝
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We thus see that the result of Grzywacz and Wolyniec (2011) has an analogue in
higher dimensions, specifically the convergence of the sample covariance to a form
reflecting half of the true mean-reversion rate.

However, as interesting as this generalization may be, there is actually a more
important observation to be made. Recall that the applicability of the asymptotic
result in (6.211) depends on the sample size being large enough that the ensemble
(matrix) averages77 1

T 〈exp((λi+λj)τk)〉 tend to zero. With sufficient algebraic ef-
fort, it can be shown that these correction terms for sample variance of process x
are given by
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(6.213)

(Compare with (6.204).) Of course, for stationary processes, the expression in
(6.213) tends to zero as T →∞. However, the issue becomes a bit more subtle
for finite sample sizes. It can be seen from (6.213) that the most slowly varying
terms are those involving the smallest mean-reversion rates. In the typical case, the
stochastic mean (y) in (6.210) exhibits much less mean reversion than the primary
asset (x). That is to say, deviations of the stochastic mean from its equilibrium level
represent a more slowly varying transient that deviations of the heat rate from the
mean itself. A common example is a heat rate, where the stochastic mean reflects
capital effects (such as stack growth), which are typically “more” non-stationary
than heat rates themselves, which are also driven by factors such as weather. As
a result there is typically a balance between longer-term, relatively non-stationary
(supply) effects, and shorter-term, relatively stationary (demand) effects. (This is
not just a theoretical nicety: we will shortly see evidence in the actual data, as man-
ifested in variance scaling laws.) Again we see the importance of time scales in a
problem, where the impact of information from particular sources depends on the
time scale over which such sources operate.

Thus, the effects of small samples (specifically, their corruption of asymp-
totic convergence of estimators and the attendant instability) on the standard
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estimator (6.189) are most acutely channeled by the most non-stationary factors
in the process dynamics. As the correction terms in (6.213) indicate, even for sim-
ple estimators such as the sample variance, reducing the impact of slower varying
time scales on the presumed relation between sample and population requires that
the sample size be large in relation to the characteristic time scale of the most
non-stationary underlying driver. A fortiori we would expect more sophisticated
methods that impose much greater structure on the problem to be even more sus-
ceptible to these time-scaling effects. Let us further stress: this is not simply an
issue of being unable to extract useful information regarding long-term effects.
Even the estimation of short-term effects is affected by the presence of (relatively) more
non-stationary factors!

6.6.3 High-frequency scaling

With the advent of technological innovations in information processing and data
collection, there has been much interest in trading over very small time horizons.78

This interest applies to commodity markets no less than equity markets. While
much econometric work concerning high-frequency data is well beyond the scope
of the present volume (a good recent source is Aït-Sahalia and Jacod [2014]), we will
mention some tools that represent generalizations of the concepts that apply over
more conventional (e.g., daily) time horizons. Specifically, we are interested in mod-
eling realized variance, which as we have already seen (e.g., Chapter 3) plays a central
role in valuation. Furthermore, the relative importance of time scales in commod-
ity markets means that valuation is critically dependent on the choice of hedging
strategy and portfolio formation. Here, we will take a somewhat different approach
from prior sections and look into the behavior of variance over decreasingly small
time horizons. Of interest here will be the role played by jumps.

6.6.3.1 Quadratic variation

First we start with the notion of quadratic variation, which should be very familiar
to most readers. The basic foundational concept is the well-known class of semi-
martingales, which are stochastic processes Xt that can be decomposed into two
càdlàg,79 adapted80 processes as

Xt =Mt +At (6.214)

where Mt is a local martingale81 and At is a finite variation process. For our
purposes this latter characteristic means that, over any finite time interval [0,T],

plim
h→0+

int(T/h)∑
i=1

|Aih−A(i−1)h|<∞ (6.215)
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where int(x) denotes the integer part of x. Then, we can define the quadratic
variation (QV)82 of X :

[X]T = plim
h→0+

int(T/h)∑
i=1

(Xih−X(i−1)h)
2 (6.216)

giving rise to the familiar isometry d[X]t = (dXt )
2. Plainly QV relates to realized

variance (RV), although we do not elaborate on this fact here.83 (Recall the standard
result that Brownian motion has infinite variation but finite quadratic variation,
while a continuous finite variation process has zero quadratic variation; it is not
hard to see that [w]T = T for a standard Brownian motion.)

Before going further, we should recall why we would care about things like
quadratic variation. We have actually already seen the main ideas laid out in Chapter
3 on dynamic optimality and informational efficiency for portfolio construction.
In fact, eq. (3.25) makes clear the role quadratic variation plays as a value driver in
terms of which residual exposure must be reckoned. That discussion took place in
the context of continuous (diffusion) processes and continuous portfolio rebalanc-
ing. To this latter point, we can never actually re-hedge in continuous time, so we
are obviously interested in the limiting behavior in discrete time of entities such as
(6.216). In many markets, intraday rebalancing is possible (and as a result, poten-
tially significant incremental value over re-hedging based on daily settlement only),
which raises the question of how value drivers behave over higher (time) resolu-
tions. In addition, it should be fairly clear that sums-of-squares are rather easy to
implement in practice and so possess some inherent econometric appeal.

6.6.3.2 Jumps and such

As just noted, much of our previous discussion has neglected jump effects. There
is no doubting the existence of jump effects in energy markets, so it is worth inves-
tigating the impact jumps have on entities of interest such as quadratic variation.
For simplicity, we will confine attention to the case where A is a continuous process
(and thus has zero quadratic variation) so that any jump effects are associated with
the (local) martingale component M . We thus write (6.214) as

Xt =Mc
t +Md

t +At (6.217)

where the superscripts c and d denote continuous and discontinuous components,
respectively. We will further assume that A and Mc,d are independent. With these
assumptions, it is reasonably straightforward to show that
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[X]T =
[
Mc]

T +
[

Md
]

T
⇒

E0[X]T = E0

T∫
0

varu(dMc
u)+E0

N(T)∑
u=1

Eu−(�Md
u )

2
(6.218)

where N(T) is the number of jumps in the time interval in question and where
�Md

u = Md
u −Md

u− is the jump size at the jump time u. In other words, in the
limit of infinitesimal resolution, the sum-of-squares of the process differences con-
verges at least in expectation to the integrated (conditional, instantaneous) variance
of the continuous martingale term plus the quadratic variation of the discontinu-
ous (jump) component. (In fact, stronger results are possible, such as convergence
in probability for specified dynamics; for more on the relationship between QV,
RV, and integrated variance [IV], see Barndorff-Nielsen and Shephard [2002] or
McAleer and Medeiros [2008].)

As (6.218) indicates, the realized variance/quadratic variation will in general in-
clude contributions from both the (continuous) diffusion components and the
jump components. It is of interest to be able to distinguish the two effects, so
we consider a variant of standard quadratic variation, originally due to Barndorff-
Nielsen and Shephard (2004a, b).84

6.6.3.3 Power/bipower variation

A natural generalization of (6.216) is the rth order power variation, defined as

[X]r
T = plim

h→0+
h1−r/2

int(T/h)∑
i=1

|Xih−X(i−1)h|r (6.219)

Note that for a Brownian motion with time-inhomogeneous volatility, i.e., with
dynamics dXt = σt dwt , we have that

[X]r
T = E|φ|r

T∫
0

σ r
t dt (6.220)

with φ a unit normal. A further extension is the (r, s) -order bipower variation,
defined by

[X]r,s
T = plim

h→0+
h1−(r+s)/2

int(T/h)∑
i=2

|Xih−X(i−1)h|r |X(i−1)h−X(i−2)h|s (6.221)
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For the aforementioned inhomogeneous Brownian motion, we would have that

[X]r,s
T = E|φ|r ·E|φ|s

T∫
0

σ r+s
t dt (6.222)

While interesting in their own right, power and bipower variation find their great-
est utility in identifying jumps in a process. We will confine attention to the class
of finite activity jump processes (so essentially compound Poisson processes). We
write such processes generically as

Xt =
t∫

0

μsds+
t∫

0

σsdws+
Nt∑

i=1

Ji (6.223)

for suitably adapted, càdlàg drifts, volatilities, and jumps (with diffusions and
jumps independent). Then, it is not hard to see that the following hold:85,86

[X]t =
t∫

0

σ 2
s ds+

Nt∑
i=1

J2
i

[X]1,1
t = 2

π

t∫
0

σ 2
s ds

(6.224)

Thus, the difference between RV and π
2 times the realized (1, 1) bipower variation

can serve as consistent estimator of the QV of the underlying jump component.
This simple procedure can serve as a simple means for detecting, if not the actual
presence of jumps, then the magnitude of their impact. As always, the question we
ask regarding any effect is: how much does it matter?

As we illustrated with examples in (2.43) and (2.45), the impact of jumps depends
(to a very large extent) on the time horizon over which particular jumps operate.
Specifically, the issue concerns how jumps in spot processes manifest themselves as
jumps in expectations that form the basis of trading (i.e., in forwards). For example,
we saw how the standard mean-reverting plus jump model of heat rates with spikes
(basically, Merton plus mean reversion) gives rise to forward dynamics where the
impact of jumps is primarily close to expiration. It is well known that delta hedging
in the presence of jumps can be difficult (because of the nature of the hedging er-
ror). As we have noted, this difficulting is reflected in the instability of estimates of
value drivers in the range where jumps are operative. It is thus important that one
recognize where these effects can occur, and adjust accordingly (e.g., by not over-
attributing collectable value to jumps). Techniques such as bipower variation can
be useful in identifying jumps, but only if one knows the right place to look.87



7 Numerical Methods

7.1 Basics of spread option pricing

Spread options are pervasive in energy markets. While we must refer the reader
to EW for a complete treatment of the various structures that entail such option-
ality, for context we will outline a few examples here, stressing that other, more
mathematical, issues are the central focus here. To recap, examples include:

• Tolling/heat rate options: a right to buy fuel and sell power
• Transport: a right to flow natural gas from one location to another
• Storage: a right to buy natural gas in summer and sell it in winter.

Indeed, as we have seen, phenomena in energy markets such as mean reversion
that offer a striking contrast to equity markets can be well understood (in terms
of how they impact valuation) from a study of spread options, making the tech-
niques developed here very relevant for understanding the valuation of other kinds
of products. Such options can be either financially or physically settled, and we
have discussed in great detail the relevant factors impacting both kinds of valua-
tion. Here, we simply note that the essential characteristic of such optionality is a
payoff of the form

(S2− S1−K)+ (7.1)

This payoff has some definite similarities with the payoff of a single asset option, and
one might suppose that at least a few of the well-developed methods for pricing the
latter kind of option can be applied to the former. This intuition is true to an extent,
and we will discuss in this section both the commonalities and differences.

7.1.1 Measure changes

First, we examine to what extent the standard BS results carry over when an
additional asset is introduced. Assume the two asset prices follow GBM:

272
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dS1

S1
= μ1dt +σ1dw1

dS2

S2
= μ2dt +σ2dw2

(7.2)

with some (instantaneous) correlation between them (dw1dw2 = ρdt in the Itô
isometry). Now, following the usual heuristic approach adopted in derivations of
the BS equations, assume we hold a portfolio� of an option V and some positions
�i in the underlyings, and demand that the resulting portfolio is instantaneously
riskless (we again neglect any effects due to discounting, and hence omit any kind
of cash/bond term in the portfolio). The portfolio dynamics are given by

d�= dV +�1dS1+�2dS2

= (Vt + 1
2 (σ

2
1 S2

1VS1S1 + 2ρσ1σ2S1S2VS1S2 +σ 2
2 S2

2VS2S2))dt

+ (VS1 +�1)dS1+ (VS2 +�2)dS2 (7.3)

Now, the usual argument (which, as we have seen in the previous sections of this
chapter, is rather problematic even if it does formally reproduce the correct re-
sult) holds that if we take �i = −VSi , then the option value must satisfy (to avoid
arbitrage opportunities that are assumed to not exist) the following PDE:

Vt + 1
2 (σ

2
1 S2

1VS1S1 + 2ρσ1σ2S1S2VS1S2 +σ 2
2 S2

2VS2S2)= 0 (7.4)

with terminal conditions given by (7.1): V (S1,S2,T) = (S2− S1−K)+. There are
clearly similarities with the usual BS equation here, as we are still dealing with a
second-order, parabolic PDE. The obvious question is: can it be solved, as it can in
the BS case?

It turns out for the special case K = 0 (i.e., no fixed strike) that it can. With the
similarity transformation S2 = SS1, V = S1U(S), the PDE becomes

Ut + 1
2σ

2S2USS = 0 (7.5)

with U(S,T)= (S− 1)+. The entity σ is given by

σ 2 = σ 2
1 − 2ρσ1σ2+σ 2

2 (7.6)

and can be termed, for obvious reasons, the ratio volatility.1 The solution for U is
clearly of BS type, and the general solution for the option price can be written as

V (S1,S2)= S1VBS

(
S2

S1
,1,σ

)
(7.7)
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or explicitly as

V = S2N

(
log(S2/S1)+ 1

2σ
2τ

σ
√
τ

)
− S1N

(
log(S2/S1)− 1

2σ
2τ

σ
√
τ

)
(7.8)

Where, as usual, time to maturity is given by τ ≡ T − t . A straightforward calcula-
tion shows that the deltas are simply the coefficients of S1 and S2 in the expression
(7.8).2 The evident correspondence of the asset S1 with the fixed strike in the stan-
dard BS setup is in fact not a coincidence, as will be made clear in the next section
when change-of-measure techniques will be used to derive this result much more
compactly.

The result in (7.8) is commonly referred to as the Margrabe formula, and pro-
vides a very useful means for valuing spread-type structures. Note in particular
that, after rescaling in terms of S1, the option value depends only on the ratio of the
assets, time to maturity, and the ratio volatility. That is, the individual leg volatil-
ities and correlation do not enter into the calculation directly, but only through
the specific form given by (7.6). This point has been seen to have great importance
for reducing the scope of identifying the relevant valuation parameters for a given
pricing problem.3

Before turning attention to the complications arising from the case of a nonzero
fixed strike K in the payoff (7.1), it is worth noting another approach to modeling
spread-type structures. Note that this payoff depends only on the difference be-
tween the two assets (hence the term "spread"). Now, it is certainly plausible that
in some situations it is more appropriate to model this difference directly, that is,
without separate reference to the constituent legs comprising this difference. For
example, instead of viewing this spread as the difference of lognormal assets, we
could view the spread itself as normally distributed.4 This is the so-called Bache-
lier model of option pricing. An application we will briefly note here is a natural
gas transport option (recall Section 1.2.2). In these markets, locational prices (say,
a Rockies price) do not trade as stand-alone commodities. Rather, they trade as
differentials to some primary hub or backbone price (say, Henry Hub gas).5 Now,
in general such differentials can (and often are) negative, so a lognormal repre-
sentation of the process relevant for valuation might not be appropriate.6 In such
cases the spread is often modeled directly (as opposed to separate modeling of the
two legs and their joint behavior), and an obvious choice is to treat the spread
as normally distributed. A suitable model of the process under the pricing mea-
sure (recall that as tradeables the spreads/differentials are martingales under such a
measure) is

dz = σdw (7.9)
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A straightforward calculation yields

EQ
t (zT − k)+ = (z− k)N

(
z− k

σ

)
+σ ·�

(
z− k

σ

)
(7.10)

We will have more to say on the value drivers appropriate for using such models
later. The point that must be stressed here is that the choice of model is driven
by the structure of the underlying market. In markets where the basis is liquidly
traded on a forward basis, these products are the appropriate hedging instrument,
and valuation (which we stress again is the necessary counterpart of hedging) must
take place in terms of these (and not the legs as such).

We now turn attention to the question of how to price spread options when there
is a nonzero strike term.

7.1.2 Approximations

It should not be terribly hard to see that the similarity solution used in (7.7) to
derive the Margrabe formula cannot be used when there is a nonzero strike (that is,
K �= 0). Although we will discuss in great detail in this chapter various numerical
methods (primarily quadrature) for effectively computing the option price in this
case, there is great utility in having analytical expressions for the price, even if only
approximately. We would expect the Margrabe formula to still provide some range
of validity, by expanding the payoff function for small K :

(S2− S1−K)+ ≈ (S2− S1)
+−K ·H(S2− S1) (7.11)

where H denotes the Heaviside step function. Thus the full spread option is, at
least for sufficiently small strikes, approximately a combination of a Margrabe-type
option and a digital/binary option. An important conclusion, which we will ex-
pand upon later, is that even in the general case we would expect the ratio volatility
to play an important role in the valuation of the option. This has major ramifica-
tions for identifying and estimating the appropriate value driver in a given valuation
problem.

However, even if we can establish the relevance of the ratio volatility for a par-
ticular valuation problem, it may be desirable to account for “higher order,” so to
speak, terms in the expansion in (7.11). (Note that even a stand-alone digital spread
option will have formal dependence on the correlation between the two legs.) A
number of approximations have been developed to this end. A veritable menagerie
is presented in Venkatramanan and Alexander (2011). We will focus on the most
well-known techniques here.
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By far the most widely used approach is originally due to Kirk (1996). The basic
idea can be understood by treating the “aggregate strike” S̃1 = S1 +K as approxi-
mately lognormal,7 in which case the standard Margrabe result can be applied. The
necessary (covariance) parameters are obtained via moment matching:

Et S̃1(T)S2(T)= S2(S1eρσ1σ2τ +K)→ S̃1S2eρ̃σ̃1σ2τ

Et S̃1(T)
2 = S2

1eσ
2τ + 2S1K +K 2 → S̃2

1eσ̃
2
1 τ

(7.12)

where the tildes denote the equivalent lognormal entities (we anticipate that the
volatility of S2 will remain unchanged). Of course, (7.12) can be readily solved, but
an extremely useful form comes from approximating the exponentials by a first-
order Taylor series, in which case we find that

σ̃1S̃1 = S1σ1, ρ̃ = ρ (7.13)

or more commonly

σ̃1 = S1

S1+K
σ1 (7.14)

The approximation thus becomes

V (S1,S2,σ1,σ2,ρ)≈ S̃1VBS

(
S2

S̃1
,1, σ̃

)
(7.15)

where the adjusted ratio volatility is given by

σ̃ 2 = σ̃ 2
1 − 2ρσ̃1σ2+σ 2

2 (7.16)

Observe that to leading order in the relative strike (K/S1) the adjusted volatility is
approximately

σ̃ 2 = σ 2+ 2σ1(ρσ2−σ1)
K

S1
(7.17)

which highlights not only the relevance of the ratio volatility even in problems with
nonzero strike, but also how the correction term is related to a vega hedge in one of
the leg assets (see Endnote 3 above).8 A point that is sometimes overlooked is that
the delta with respect to leg 1 will include a vega contribution due to the dependence
of σ1 on S1 in (7.14).

Now, an obvious question is: how good is the approximation? The short answer
is, surprisingly good. Consider the following set of parameters:

S1 = S2 = 1, σ1 = σ2 = 0.5, ρ = 0.8, τ = 0.75
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Figure 7.1 shows a comparison of the extrinsic value (defined as option value minus
intrinsic value [current payoff]) for a range of strikes, between the Kirk approxima-
tion and the exact value (here obtained from quadrature, to be discussed in greater
detail in Section 7.4). As can be seen, Kirk provides an excellent approximation for
a very wide range of strikes (in this case, up to 50% of either underlying leg), es-
pecially for positive strikes. The poor agreement for negative strikes reflects the fact
that the underlying equivalent lognormal approximation in (7.12) breaks down for
negative values of the summands. (The obvious remedy in such cases is to treat
S2 − K as lognormal, but we will not pursue such an investigation here.) But for
the deep OTM strikes (where the equivalent lognormal approximation should be
expected to be reasonable but a priori not necessarily fantastic), it is quite striking
how well Kirk performs.

There are of course limits to any approximation, and we show the results (for the
OTM case) for very high correlation (ρ = 0.99) in Figure 7.2.

So we can see in such cases that the approximation is less impressive. (A fortiori
the Kirk deltas and other greeks will likewise be less accurate, as well.) In fact, the
accuracy of Kirk depends, as well, on the moneyness between the two legs and time
to maturity, and we do not propose to catalog the extent of its range of validity here.
The point is that Kirk is a very effective (and not surprisingly, very popular) tech-
nique for getting good spread-option values in a wide range of situations, without
much more pain than a standard European option calculation.

Although we shall not delve into any details here, we will note that the equiva-
lent lognormal approximation (via moment matching) in (7.12) can be effectively
applied to higher dimensional options, such as those with payoffs such as

(S3−min(S1,S2)−K)+ (7.18)
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Figure 7.2 Comparison of spread option extrinsic value as a function of strike. ρ = 0.99, OTM

only

which might be encountered in a tolling deal with fuel-switching optionality. Here,
the Kirk-type transformation would be S̃i = Si+K for i= 1,2 and a corresponding
adjustment for volatilities. The resulting option (sans fixed strike) was considered
(in very general form) in Section 5.1 via change-of-measure techniques.

A final approximation to be (briefly) considered is due to Bjerksund and Stens-
land (2006). The main idea here is to approximate the nonlinear (in terms of log
prices) exercise boundary by an effectively linear region, over which the resulting
option can be readily evaluated. That is, the payoff (ez2 − ez1 −K)+ is replaced by

(ez2 − ez1 −K)1(z2 > az1+ b) (7.19)

Note that this essentially represents valuation under a suboptimal exercise policy.9

Thus, tight (hopefully) lower bounds can be obtained by choosing the parameters
a and b to maximize the expectation of (7.19). The natural question is, how tight?
Bjerksund and Stensland report excellent lower bounds for levels of ratio volatility
typically encountered in equity markets. Our experience with volatilities more char-
acteristic of energy markets suggest good, but not overwhelming, results. We do not
propose to undertake a full critique/analysis here. We merely wish to note that the
approach is very interesting, and can be readily extended to higher dimensions. The
important point to note is that the resulting expectation of payoffs such as (7.19)
can again be handled well by change-of-measure techniques, as we will see.
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7.2 Conditional expectation as a representation
of value

As we have stressed throughout, the conditional expectation of the terminal payoff
of some structured product only has meaning as the value of this product to the
extent that it is related to some portfolio constructed around that product. Typically
this will involve some sort of (dynamic) hedge in the underlying commodities. The
classic example is the BS paradigm, where the value of an (European) option on
some (lognormal) asset is given by the expectation of the terminal payoff under
a (unique, in this case) martingale measure. Of course, in the given context this
value means that the structure in question can be perfectly replicated by a particular
hedging strategy:

�= (ST −K)+−Vt −
T∫

t

�sdSs = 0 (7.20)

if the value and hedges are taken to be the corresponding BS values. Now, we
have gone into great detail elsewhere (principally, Chapter 3) regarding the sense
in which we can continue to write Vt = EQ

t (ST −K)+ for an appropriate measure
Q, stressing the critical connection of this value process to the hedging process �t

and the overall construction of a portfolio process that creates exposure to a partic-
ular entity (the value drivers). We do not intend any further review here, except to
remind the reader that our objective in evaluating such conditional expectations is
never as a free-floating calculation, but rather as a means to a specific end, namely
producing good, robust valuations of actual structured products. Still, the actual
calculations are by no means trivial (the basic formulation in (7.20) becomes all the
more challenging with the introduction of multiple assets, operational constraints,
non-Gaussian dynamics, and so on), so the remainder of our journey here will focus
on numerical techniques appropriate for valuation problems in energy markets.

7.3 Interpolation and basis function expansions

We have seen in Chapter 5 how change-of-measure techniques can greatly ame-
liorate many of the computational challenges that arise in pricing problems, even
vanilla ones. This facilitation largely takes place through dimensional reduction,
effectively "removing” one asset from consideration by treating it as a numeraire
(roughly speaking, the units in which the other assets are expressed). Unfortunately,
in most applications it is not possible to fully exploit this reduction, primarily due
to the existence of certain costs, both variable and fixed. (In truth what this means is
that there is in fact an extra dimension to any pricing problem, specifically a bond-
type asset.) Simple examples include variable operation and maintenance (VOM)
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costs in tolling and commodity charges in gas transport and storage. The basic
payoff in such cases can generically be written as

(S2
T − S1

T −K)+

with the associated pricing problem becoming the evaluation of conditional expec-
tations (under an appropriate measure) of the following form:

EQ
t (S

2
T − S1

T −K)+

We have discussed in Section 7.1 various approximation methods (e.g., Kirk) that
allow change–of-measure techniques to be employed. While some of these tech-
niques are surprisingly effective, it is of course important to ascertain just how
effective they are, and to have methods applicable outside the range of the ap-
proximations’ domain of viability. In this section we will explore some approaches,
broadly categorized as interpolation based, for systematically decomposing such
problems.

7.3.1 Pearson and related approaches

7.3.1.1 Conditioning and dimension reduction

We consider a technique originally due to Pearson (1995). The underlying stochas-
tic process is jointly lognormal, and it will prove convenient to work in terms of log
prices. We take the terminal payoff to be

(eμ2+σ2z2 − eμ1+σ1z1 −K)+ (7.21)

For further convenience we have absorbed factors of square root of time to maturity
in the volatilities.10 The joint density is given by

Pr(z1,z2)= 1√
(2π)2ρ2

s

exp

(
− z2

1 − 2ρz1z2+ z2
2

2ρ2
s

)
(7.22)

where ρ is the correlation (between the asset returns) and ρs ≡
√

1−ρ2. The den-
sity in (7.22) can be rewritten (either by simple algebra or from standard results for
conditional normals) as

Pr(z1,z2)= 1√
2π

e−z2
1/2

1√
2πρ2

s

exp(−(z2−ρz1)
2/2ρ2

s ) (7.23)
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This fact proves critical to the method, for the expectation of the payoff (7.21) can
be written

E(eμ2+σ2z2 − eμ1+σ1z1 −K)+

=
∫ ∞

−∞
dz1

1√
2π

e−z2
1/2
∫ ∞

−∞
dz2(e

μ2+σ2z2 − eμ1+σ1z1 −K)
+

Pr(z2|z1) (7.24)

Now, making the substitution z2 = ρsξ + ρz1 in (7.24), the “inner” integral can be
written as ∫ ∞

−∞
dξ(eμ2+σ2ρz1+σ2ρsξ − eμ1+σ1z1 −K)

+ 1√
2π

e−ξ2/2

= eμ2+σ2ρz1+ 1
2σ

2
2 ρ

2
s N(d+σ2ρs)− (eμ1+σ1z1 +K)N(d) (7.25)

with d = μ2+σ2ρz1−log(eμ1+σ1z1+K)
σ2ρs

. Consequently, (7.24) becomes

E(eμ2+σ2z2 − eμ1+σ1z1 −K)+

=
∫ ∞

−∞
dz1

1√
2π

e−z2
1/2e−μ2+σ2ρz1+ 1

2σ
2
2 ρ

2
s N(d+σ2ρs)

−
∫ ∞

−∞
dz1

1√
2π

e−z2
1/2e−μ1+σ1z1 N(d)

−K

∫ ∞

−∞
dz1

1√
2π

e−z2
1/2N(d) (7.26)

7.3.1.2 Evaluation via interpolation

Now, the first thing to note is that the two-dimensional integration in (7.24) has
been reduced to a one-dimensional integration.11 This in itself is quite beneficial,
as there are a host of well-known, effective techniques available for quadrature in
one dimension (see, e.g., Press et al. [2007]). The approach adopted by Pearson was
to interpolate the normal cumulative distribution functions (CDF) in (7.26) by a
piecewise exponential-affine approximation along some discrete grid along the real
z1–axis. That is, a set of grid points

zi
1 = (i−N/2)h, i = 0, . . .N (7.27)

is introduced (so±Nh/2 are very large in absolute value), and between neighboring
grid points the normal CDF is approximated by12

N(d(z1))≈ αie
z1 +βi ,zi

1 < z1 < zi+1
1 (7.28)
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This is achieved by matching end-point values:

αi = N(d(zi+1
1 ))−N(d(zi

1))

ezi+1
1 − ezi

1

βi =N(d(zi
1))−αie

zi
1

(7.29)

For example, the third integral in (7.26) is approximated by

∑
i

∫ zi+1
1

zi
1

dz1
1√
2π

e−z2
1/2(αie

z1 +βi) (7.30)

Similar expressions arise for the other integrals.13 Thus, the problem becomes one
of evaluating integrals of the form

∫ zi+1
1

zi
1

dz1
1√
2π

e−z2
1/2(αie

c+bz1 +βi) (7.31)

The terms proportional to β are plainly just evaluations of the standard normal
CDF, e.g., N(zi+1

1 )−N(zi
1). For the terms proportional to α, completing the square

in the exponent also yields a standard evaluation, e.g., N(zi+1
1 − b)− N(zi

1− b).
Note that the numerical error in this case is driven by the extent to which the nor-
mal CDFs in (7.26) are well approximated by piecewise affine exponentials in (7.28).
Since this interpolation is a good approximation in this case (note that this method
is easily tailored to adaptability depending on local steepness), and since the under-
lying interpolation and attendant standard normal CDF evaluations are quite easy
to carry out (see Press et al. [2007] for a standard algorithm), it can be seen that
Pearson provides an extremely useful method for numerically computing spread-
option values. As we will see in the next subsection, the underlying idea here can be
greatly generalized.

7.3.1.3 Extension to higher dimensions

As a brief example of this latter point, consider an option with payoff
(ez3 −min(ez1 ,ez2)−K)+. The general expectation of this payoff for nonzero fixed
strike K will require a three-dimensional integration. However, by factoring the
underlying probability density via Pr(z1,z2,z3) = Pr(z3|z1,z2) and using the fact
that normality is retained under conditioning,14 an “inner” integral (in z3) can be
formed that is analytically tractable for given values of z1 and z2 (recall the ap-
proaches developed in Chapter 5 for max/min options). Then, adopting a “bilinear”
approximation of the form

αije
z1+z2 +βije

z1 + γije
z2 + δij (7.32)
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within a two-dimensional set of grid points (in the z1− and z2−dimensions), we
can use efficient algorithms for the two-dimensional normal CDF (again, to be
presented in the subsection on quadrature), to obtain accurate valuations.

Note also that the payoff function in (7.21) can be written in terms of prices as

S2 · 1(S2− S1−K > 0)− S1 · 1(S2− S1−K > 0)−K · 1(S2− S1−K > 0) (7.33)

So, using change-of-measure results (and Euler’s theorem), we see that the deltas
are essentially binary option values under the appropriate numeraire. In practice
they can simply be read off from the coefficients of the underlying price in the op-
tion value formula. Thus the Pearson ensemble in (7.26) automatically provides
the deltas of the spread option, and with a bit of algebra all of the greeks (e.g., gam-
mas and vegas) can be obtained, without recourse to numerical differentiation (e.g.,
finite difference).

In fact, we can see here a useful application of the change-of-measure techniques
presented in Chapter 5. Equation (7.26) can be written as

E(eμ2+σ2z2 − eμ1+σ1z1 −K)+

= En(eμ2+σ2ρz1+ 1
2σ

2
2 ρ

2
s N(d+σ2ρs))

−En(eμ1+σ1z1 N(d))−KEn(N(d)) (7.34)

where En denotes expectation wrt. a standard unit normal. Now, we have seen
how exponential factors inside expectations lend themselves to convenient measure
changes, e.g.,

Eeaz f (z)= Eeaz ·Eaf (z) (7.35)

where under the measure change effected by the RN derivative eaz/Eeaz a unit
normal becomes distributed as N(a, 1) , i.e., the mean is simply shifted. Thus,
expectations of the form (7.35) are reducible to expectations wrt. a normal of
general mean. In the context of Pearson’s approach, if the function f in (7.35) is
approximated as

f (z)≈
∑

i

(αie
z +βi)1(zi < z < zi+1) (7.36)

for some set of grid points zi . Hence evaluation of (7.36) entails evaluation of

Ea
∑

i

(αie
z +βi)1(zi < z < zi+1)

=
∑

i

αiE
a+11(zi < z < zi+1)+

∑
i

βiE
a1(zi < z < zi+1) (7.37)
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Now, any of these expectations can be readily evaluated in terms of the standard
normal CDF:

Ea1(zi < z < zi+1)=N(zi+1− a)−N(zi− a) (7.38)

So again we see that if the approximation in (7.36) is good, then the resulting
numerical algorithm will be quite effective.

7.3.1.4 Spread options under affine processes

As an extension of the result in (7.37), consider the problem of spread-option valu-
ation when the underlying legs belong to the class of affine jump diffusions studied
in Section 5.2. As we saw there, the characteristic function of the underlying process
option pricing can be obtained from a system of ODEs (which can often be solved
analytically). In turn, the characteristic function can be used to price options via
quadrature. In fact, more basic (binary) structures with indicator payoffs whose
values can be expressed as

EQ
t 1(z1(T) < α1,z2(T) < α2) (7.39)

are amenable to this technique. This fact can be used to price spread options under
general (affine) processes by applying the above interpolation techniques. The basic
valuation problem can be written as follows:

EQ
t (e

z2(T)− ez1(T)−K)+

= EQ
t ez2(T) ·EQ2

t 1(ez2(T)

− ez1(T)−K > 0)−EQ
t ez1(T) ·EQ1

t 1(ez2(T)− ez1(T)−K > 0)

−K ·EQ
t 1(ez2(T)− ez1(T)−K > 0) (7.40)

using the measure change dQk
dQ = ezk (T)

EQ
t ezk (T)

.

So, the first thing to note is the primary valuation problem reduces to the evalua-
tion of the expectation of certain indicator functions. The problem, again, is that the
underlying region of integration is nonlinear for nonzero strike K . We circumvent
this problem by adopting a discretization in z1 and a piecewise linear approxima-
tion to the exercise region in the (z1,z2) plane. Specifically, we approximate the
constituent expectations in (7.40) by the following ensemble:

∑
i

EQ
t 1(zi

1 < z1(T) < zi+1
1 )1(z2(T) > αiz1(T)+βi) (7.41)
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The issue amounts to the calculation of the joint characteristic function of (z1, z̃i
2),

where z̃i
2 ≡ αiz1+βi . But this is straightforward, as we have

EQ
t eiφ1z1(T)+iφ2 z̃2 (T) = EQ

t ei(φ1−αφ2)z1(T)+iφ2z2(T)

= f (φ1−αφ2,φ2) (7.42)

We will see more on expectations like these in Section 7.7.

7.3.1.5 Further generalizations

As a final note, using the law of iterated expectations, we have

E(eμ2+σ2z2 − eμ1+σ1z1 −K)+ = E
[
E((eμ2+σ2z2 − eμ1+σ1z1 −K)+|z1)

]
= E

[
E

(
eμ2+σ2z2 1

(
z2 >

logX −μ2

σ2

∣∣∣∣z1

)]
−E

[
X ·E

(
1

(
z2 >

logX −μ2

σ2

)∣∣∣∣z1

)]
(7.43)

with X = eμ1+σ1z1 + K . Now, in any case where the conditional expectation is
known, the inner expectation can (at least in principle) be obtained as a function of
z1, at which point the interpolation-based approach described above (e.g., in (7.37))
can be applied to the outer expectation. As we will see in the discussion of copulas
in Chapter 8, there is a class of distributions for which this is (conceivably) possible,
namely the so-called elliptical distributions (which include, as a special case, joint
normality). This class is in fact reasonably rich and enjoys a fairly wide range of
applications.15

The basic idea underlying Pearson’s approach can thus be seen to be quite general
and powerful. In fact, the essence of the idea can be greatly expanded to include
features such as early exercise optionality, which in general present considerable
computational challenges. Before delving into that problem in detail, we outline a
highly efficient algorithm for interpolation-based valuation.

7.3.2 The grid model16

7.3.2.1 Main idea

We will discuss here a method originally developed by Eydeland (1994, 1996); the
implementation considered here is synopsized in Eydeland and Mahoney (2002).
Consider the following expectation:

V (z, t)= Et U(zt )=
∞∫

−∞
U(zt )Pr(zT |z)dz (7.44)
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(The function U may be thought of as an option payoff function, with T de-
noting expiry.) For the time being we will assume the random variable z to be
(conditionally) normal, so that (7.44) can be written

V (z, t)=
∞∫

−∞
U(zT )

1√
2πσ 2

e−(zT−μ)2/2σ 2
dz (7.45)

To specify some structure, we take the (conditional) variance to be state indepen-
dent (we will subsume any explicit time dependence in the parameterization) and
take the (conditional) mean to be affine in the state variable z: μ = az + b. For
example, for GBM we would have

μ= z+μ′ − 1
2σ
′2, σ = σ ′

while for a mean-reverting process we would have

μ= θ(1− e−κτ )+ ze−κτ , σ = σ ′
√

1− exp(−2κτ)

2κτ

using standard notation.17

Now, in contrast to the Pearson approach, we introduce two sets of
grids/discretizations, one for the current time t and one for the terminal time T .
Specifically, we take

zi = μt + (i−N/2)ht

zi
T = μT + (i−N/2)hT

(7.46)

for i = 0, . . . ,N (compare with (7.27)). Note that in general the (discretization)
step size will differ between the two times. The “means” about which the grids are
centered may also differ. We now proceed as in Pearson. The payoff function is in-
terpolated between the time-T grid points quasi-linearly as in (7.28), so evaluating
(7.45) at zi gives (we drop explicit dependence on the current time)

V (zi)=
∑

j

z
j+1
T∫

z
j
T

(αje
zT +βj)

1√
2πσ 2

e−(zT−azi−b)
2
/2σ 2

dz (7.47)
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Upon making the substitution zT = σξ + azi+ b, (7.47) becomes

V (zi)=
∑

j

(z
j+1
T −azi−b)/σ∫

(z
j
T−azi−b)/σ

(αje
azi+b+σξ +βj)

1√
2π

e−ξ2/2dξ (7.48)

Of course, integrals of this form can be evaluated easily, as we have seen with Pear-
son. However, we will now see that there is a rationale for the discretization chosen
in (7.46). Note that the lower (say) limit of integration in (7.48) can be written
(apart from the divisor σ ) as

μT + (j−N/2)hT − aμt − (i−N/2)aht − b (7.49)

So, if we make the choice
hT = aht (7.50)

then (7.49) depends only on the difference between the indices i and j. For conve-
nience we can take μT = aμt + b. (For further convenience we could take μt = z,
so that the center of the time t grid corresponds to the current log price.)

7.3.2.2 Computational feasibility

Consequently (7.48) becomes

V (zi)= ezi
T+σ 2/2

∑
j

(
N

(
j− i+ 1

σ
hT −σ

)
−N

(
j− i

σ
hT −σ

))
αj

+
∑

j

(
N

(
j− i+ 1

σ
hT

)
−N

(
j− i

σ
hT

))
βj (7.51)

Thus, the calculations in (7.51) entail a pair of matrix multiplications of the form∑
j

Ti−jxj (7.52)

The matrix T has a special form: it is constant along subdiagonals. As such,
matrix multiplications such as (3.64) can be carried out efficiently via the Fast
Fourier Transform (FFT). We have already encountered many fruitful applications
of Fourier analysis and general transform methods in Chapter 5. Our intent here is
not to provide a full-blown treatment of numerical methods that are well covered
in standard texts (e.g., Dahlquist and Björck [1974] or Press et al. [2007]). We will
assume that methods such as the FFT are sufficiently familiar to the reader that we
may merely emphasize the relevant points.
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As is well known, the FFT permits matrix multiplications that would ordinarily
require a computationally costly O(N 2) operation count (with N representing the
size of the matrix in question) to be done in a much more manageable O(N logN)
operations. In particular, Toeplitz matrix multiplications such as (3.64) can be
performed very quickly.18,19 Thus, valuation of the expectation in (7.44) can be
efficiently obtained for a vector of initial (log) prices, not just a scalar as in Pearson.
The significance of this point will be made clear in the next section when we begin to
consider early exercise-type options (e.g., American options), when it is necessary
to have valuations across a range of underlying (log) prices. Note again that, like
Pearson, the main driver of the discretization error is the accuracy with which the
piecewise affine function used in (7.28) approximates the payoff function in (7.44).
We would expect this approximation to be good in a wide range of applications. In
fact, the grid model outlined here will be exact for a European call, so long as the
(log) strike is taken as one of the discretization points. Another advantage of this
method that should be emphasized is that, by incorporating the asymptotic behav-
ior of the payoff function (usually known in many applications), problems created
by the truncation of the grid at finite end points will be considerably muted, as these
correction terms are easily obtained in terms of standard normal CDFs and added
on to (7.51).

In other words, so long as there is no error incurred in representing the transition
density in the time step between t and T , interpolation error is the only source of
error in the calculation. Note that the problem being solved here is essentially an
integration of a PDE of the form20

Vt + (χ − κz)Vz + 1
2σ

2Vzz = 0 (7.53)

with terminal condition V (z,T) = U(z). Now, there are standard approaches for
integrating such PDEs numerically (such as Crank-Nicolson [finite difference]; in
the context of financial applications, see Wilmott et al. [1997]). The main issue of
interest here is the fact that, generally speaking, such numerical evaluation cannot,
for stability reasons, treat the temporal and spatial discretizations independently.
One of the big advantages of the grid model is that these two aspects of the problem
(space and time, so to speak), can be treated independently. There is no need to
constrain the time discretization to obtain a desired spatial discretization.

7.3.2.3 Extraction of greeks

Since the value function is obtained across a grid of points (centered about the cur-
rent value of the underlying log price), greeks such as deltas and gammas can easily
be obtained numerically via finite difference. Generally speaking it is preferable to
avoid recourse to finite differences, but since the necessary inputs are automatically
produced by the grid model, differencing is certainly a natural choice in practice.
However, there is also an interpretation similar to the one appealed to with Pearson,
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as in (7.33) via Euler. Using the relation between the grids in (7.46) and (7.50), the
factor multiplying the terms involving α in (7.51) becomes

ezi
T+σ 2/2 = eazi+b+σ 2/2 (7.54)

and we anticipate that the z–derivative (from which the actual delta is obtained via
S∂S = ∂z ) will be given by

aezi
T+σ 2/2

∑
j

(
N

(
j− i+ 1

σ
hT −σ

)
−N

(
j− i

σ
hT −σ

))
αj (7.55)

This is in fact correct, as we can see from the following formulation (which we will
revisit when we consider simulation-based approaches):

∂V

∂z
= a

∞∫
−∞

U(zT )
(zT −μ)
σ 2

1√
2πσ 2

e−(zT−μ)2/2σ 2
dz (7.56)

Now, if we perform the usual interpolation, (7.56) becomes

∂V

∂z

∣∣∣∣
zi
= a

∑
j

(z
j+1
T −azi−b)/σ∫

(z
j
T−azi−b)/σ

(αje
azi+b+σξ +βj)

ξ

σ

1√
2π

e−ξ2/2dξ (7.57)

which further reduces to

∂V

∂z

∣∣∣∣
zi
= aezi

T+σ 2/2
∑

j

(
N

(
j− i+ 1

σ
hT −σ

)
−N

(
j− i

σ
hT −σ

))
αj

a

z
ezi

T+σ 2/2
∑

j

αj

(
ϕ

(
j− i+ 1

σ
hT −σ

)
−ϕ

(
j− i

σ
hT −σ

))

+ a

σ

∑
j

βj

(
ϕ

(
j− i+ 1

σ
hT

)
−ϕ

(
j− i

σ
hT

))

= aezi
T+σ 2/2

∑
j

(
N

(
j− i+ 1

σ
hT −σ

)
−N

(
j− i

σ
hT −σ

))
αj

+ a

σ

∑
j

(
U(z

j+1
T )ϕ

(
j− i+ 1

σ
hT

)
−U(z

j
T )ϕ

(
j− i

σ
hT
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(7.58)
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where ϕ(z) = 1√
2π

e−z2/2 is the standard normal density, and in the last equation

in (7.58) we have used the fact that at each grid point U(z) = αez + β.21 As this
latter telescoping sum is only evaluated at the extremities of the grid, it vanishes
and result (7.55) is established. (Note that homogeneity/Euler does not apply, in
general, to the class of problems to be considered in the remainder of the chapter,
as the presence of mean reversion means the problem is not scale-independent, so
to speak.)

7.3.2.4 Higher dimensions

Finally, as with Pearson, extensions to higher dimensions are possible. However,
it turns out there is a twist. Consider the following generalizations of (7.44) and
(7.45):

V (x,y, t)= Et U(xT ,yT )=
∞∫

−∞

∞∫
−∞

U(xT ,yT )Pr(xT ,yT |x,y)dxT dyT (7.59)

and

V (x,y, t)=
∞∫

−∞

∞∫
−∞

U(xT ,yT )
1√

(2π)2σ 2
x σ

2
y (1−ρ2)

e
− 1

2

(
(xT−μx )2

σ2
x

−2ρ
(xT−μx )(yT−μy )

σxσy
+ (yT−μy )2

σ2
y

)
dxT dyT (7.60)

Now, as in the one-dimensional case we confine attention to (Gaussian) affine cases
where the conditional covariance structure is state-independent and the conditional
means take the form

μx = axxx+ axyy+ bx

μy = ayxx+ ayyy+ by

(7.61)

An example would be a mean-reverting process with a stochastic drift:

dz = κ(θ − z)dt +σzdwz

dθ = μdt +σθdwθ
(7.62)

in which case axx = e−κτ , axy = 1− e−κτ , ayx = 0, ayy = 1.
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We can now see where the aforementioned twist arises. Continuing with the
generalization, we introduce (spatial) grids at each time:

xi = μx
t + (i−Nx/2)h

x
t , yj = μy

t + (j−Ny/2)h
y
t

xi
T = μx

T + (i−Nx/2)h
x
T , y

j
T = μy

T + (j−Ny/2)h
y
T

(7.63)

Again proceeding similarly to the one-dimensional case, we introduce an interpola-
tion of the (“bilinear”) form (7.32). Then (allowing for shifts arising from suitable
changes of measure), we find that we are led to consider integrals of the form 22

∑
m,n

ξm+1
ij∫
ξm

ij

ζ n+1
ij∫
ζ n

ij

1√
(2π)2(1−ρ2)

e−(ξ2−2ρξζ+ζ 2)/2(1−ρ2)dξdζ (7.64)

where, for example,

ξm
ij =

μx
T + (m−Nx/2)hx

T − axx(μ
x
i + (i−Nx/2)hx

t )− axy(μ
y
t + (j−Ny/2)h

y
t )

σx
(7.65)

Now, our objective is to get the underlying interpolation in (7.64) into a form sim-
ilar to (3.64) so that the FFT (in two dimensions) can be applied. That is, we need
the underlying matrix multiplication to be of the form23

∑
j

Ti−m,j−nxmn (7.66)

Unfortunately, due to its two-dimensional structure, (7.65) does not permit (7.64)
to be expressed in the form (7.66). In the one-dimensional case, suitably adjusting
the grid size between times as in (7.50) was sufficient to yield the Toeplitz struc-
ture (3.64) in the valuation algorithm. However, note that if the two-dimensional
price/state dynamics were such that the means “decoupled” (in the sense that a
given asset’s [instantaneous] mean depends only on it and not the other assets24),
then the same approach used in the one-dimensional case would be applicable here.

This observation leads us to introduce an (evenly spaced) auxiliary grid given by

x̃i = μ̃x
t + (i−Nx/2)h̃

x
t

ỹj = μ̃y
t + (i−Ny/2)h̃

y
t

(7.67)
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and related to the time–t grid via

x̃ = axxx+ axyy+ bx

ỹ = ayxx+ ayyy+ by

(7.68)

In matrix form, z = a−1(z̃ − b). Consequently, this relation induces an irregu-
larly spaced time–t grid,25 and by also introducing an auxiliary value function the
approximation to the basic valuation expression in (7.59) and (7.60) becomes

Ṽ (x̃i , ỹj , t)≡ V (xij ,yij , t)

=
∑
m,n

μx
T+(m+1−Nx/2)hx

T∫
μx

T+(m−Nx/2)hx
T

μ
y
T+(n+1−Ny/2)h

y
T∫

μ
y
T+(n−Ny/2)h

y
T

Umn(xT ,yT )ϕ2

(
xT −μx

σx
,

yT −μy

σy
;ρ

)
dxT dyT (7.69)

with Umn denoting an interpolant of the form (7.32), and where ϕ2 is the stan-
dard two-dimensional Gaussian density. Now, upon making the obvious substation
(z→μ+σ z)), by construction (see (7.67) and (7.61)) the limits of integration (al-
lowing for the usual shifts arising from measure changes) will have the form (upon
using the inverse form of (7.68))

μx
T + (m−Nx/2)hx

T − axxxij − axyyij − bx

σx

= μ
x
T + (m−Nx/2)hx

T − μ̃x − (i−Nx/2)h̃x

σx
(7.70)

with similar results for the y–dimension limits. Thus, if we take the auxiliary time–
t grid to be identical to the time–T grid (i.e., hT = h̃) then the various constituent
matrix multiplications inherent in (7.69) take the form (7.69). As stated, this is
effectively a two-dimensional convolution,26 for which the FFT can be applied,
yielding a huge computational savings, namely O(N 2 logN) as opposed to O(N 4).

Of course, a disadvantage in this case is the fact that we often need the time–t
value function at a regularly shaped grid such as in (7.63) and not the irregular
grid induced by the transformation in (7.68). This is the case for the kinds of early
exercise and control problems to be considered in the next section, when the ba-
sic valuation procedure in (7.59) must be carried out recursively. What must be
done in this case is to perform another interpolation, between the irregular grid
where the value function is known, and the desired regular grid. This is not a par-
ticularly taxing task, as the regular grid can be mapped into the new coordinates
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represented by (7.68), at which stage every mapped point can be identified as being
inside a rectangle, and then interpolated via (7.32). This is not a particularly exces-
sive computational burden (either in terms of pure cost or additional algorithmic
architecture), although it does introduce an additional source of error. However,
this must be balanced by the significant gains in speed via the FFT.

We emphasize these points because there are oftentimes a need to introduce auxil-
iary grids. For example, in the 1D case this is not necessary because we can still fully
exploit the efficiencies of the FFT by suitably adjusting the relationship between
grids via (7.50). However, we will see in the next section that this adjustment might
not always be the most advisable approach, as there are cases where the grid size ad-
justment across time steps can manifest itself in numerical overflow/underflow in
certain situations. The question of time stepping is an important one, and the real
power of the grid model comes in applications involving early exercise or control-
type features, which are ubiquitous in energy markets. We now consider this very
rich class of problems, which were already introduced in Section 3.3; the reader may
want to review that discussion.

7.3.2.5 Early exercise options

Problems involving timing decisions and their optimization are very commonplace
in energy markets. The basic structure of such problems is that a decision must
be made now that will alter the future state of the system under consideration, and
hence the value that can be extracted from that system is determined by the particu-
lar decision policies. More accurately, the value is characterized by the optimization
of such policies. The basic optionality usually encountered in energy markets is op-
erational in nature. Typical examples are storage and tolling. In storage, an injection
(say) changes the state of the facility by increasing the inventory available for future
use (e.g., future withdrawals and sale into the market). In tolling, a decision to turn
the plant on may entail operation during off-peak periods during which margins
are low, in order to collect high margins during on-peak periods and avoid start-up
costs. We will see detailed representations and analysis of both kinds of deals later.
The main point here is that these kinds of deals entail optimal stopping times.

To quickly review, stopping times are random times that are measureable with
respect to the filtration of some stochastic process.27 What this means practically is
that a decision depending on a stopping time can be made on the basis of informa-
tion available at the present time. An example might be the first time a price crosses
a certain price from above. Again, we refer the reader to sources such as Etheridge
(2002) or Shreve (2004a) for greater exposition. The main result that concerns us
here is that many of these problems of interest can be crafted (in a general sense) as
an optimal stopping-time problem. That is, they take the form

V (S, t)= sup
τ

EQ
t F(Sτ ) (7.71)
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where τ represents a stopping time, F is some payoff function, and “sup” denotes
supremum. The expression in (7.71) says that the value of the early exercise struc-
ture is an expectation of the payoff function, optimized with respect to measureable
exercise policies. Not surprisingly, such problems present considerable computa-
tional challenges, as determination of the optimal exercise/control/decision policy
is usually extremely difficult (even apart from evaluation of the associated expec-
tation). This is true for generic financial problems (there is no known analytical
solution of the standard, American option problem), and the challenges are com-
pounded even further in physical energy structures where various operational
constraints must be accounted for. Effective means of approaching these problems
will be our focus for the bulk of this chapter.

We will necessarily limit our concern to discrete-time versions of (7.71). First
consider an American option.28 The standard approach to the valuation is to note
that, at any point in time, one can compare the value from exercising the option
immediately, to the expected value of the option given that it is held (i.e., not exer-
cised). The problem is solved recursively. First, at expiration (say, time T), there is
no early exercise value obviously and the value is simply intrinsic:

V (S,T)= (S−K)+ (7.72)

At previous time steps (prior to maturity), the value is the greater of either intrinsic
or the expected value of the next-step value:

Vn(S)=max((S−K)+,e−r�t EQ
n Vn+1) (7.73)

where we adopt the notation Vn(S) ≡ V (S, t +n�t) and �t is the time-step size.
For N time steps, n= 0 corresponds to the initial time, and n= N corresponds to
the terminal time, where the value function is known (eq. (7.72)). It is important
to understand that the conditional expectation in (7.73) (commonly referred to as
the continuation value) requires, for its valuation, knowledge of the value function
along the time grid at the next time step. Here we see the essence of the computa-
tional challenge posed by early exercise problems. Because the expectation in (7.73)
is essentially a projection of the next-time value function onto the current-time
state space,29 this calculation must be carried out along each point of the current-
time grid. This is in general a computationally intensive task. Indeed, it renders
simulation-based approaches very hard to apply (we will discuss this issue in great
detail later). In general, there is a “computation-within-a-computation” aspect to
the problem.

7.3.2.6 Comparison with trees

A common approach to the problem is the binomial tree model (see, e.g., Shreve
[2004a]), where the underlying is modeled as taking one of two possible future
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states, say, up or down. Since the relation along a time step is specified by the
up/down probabilities of the representation of the underlying, we have30

EQ
n Vn+1 = pVn+1(uS)+ qVn+1(dS) (7.74)

Since, by construction of the tree, a node corresponding to a particular value of the
underlying is connected to the nodes corresponding to up/down moves on the next-
time tree, the calculation in (7.74) can be readily carried out. In general, however,
we would like to be able to specify a bit more detail about the underlying transition
probability. This is precisely where the grid model comes in. It should be clear from
the analysis leading to (7.51) that the grid model will produce the expectation of the
next-time value function along the entire current-time grid, as required to evaluate
(7.73). Furthermore, it does so quite efficiently, exploiting the O(N logN) speed of
the FFT. Eydeland and Mahoney (2003) present a battery of tests comparing the grid
method to standard binomial trees, demonstrating both the algorithmic efficiency
and superior convergence properties. We reproduce a very small subset here.

It is not hard to see that the binomial tree involves N(N + 1)/2 multiplications,
while the grid model requires O(T ·N logN) operations, where T is the number
of time steps. Thus, in terms of operation count, there can in fact be a trade-off
between the two methods when the number of times steps is high enough (say,
daily time steps for a year). On the other hand, precisely one of the strengths of the
grid is the ability to separate time discretization from spatial discretization, so it can
be well tailored to problems where the early-exercise optionality is on discrete time
scales (e.g., Bermudan options). We will emphasize this fact by comparing results
from the grid model and binomial tree for the case of a European option, where a
single time step is sufficient (for the grid model). We show the runtimes in Table 7.1.

Of course, the actual comparative runtimes do not conform to their theoretical
ratios, reflecting various overhead issues. However, the relevant pattern is clear:

Table 7.1 Runtimes, grid vs. binomial. 110%

OTM, one year maturity, 50% volatility.

OTM European Option
Runtimes (cs)

N Grid Binomial

128 0.026 0.025

256 0.063 0.062

512 0.074 0.148

1024 0.132 0.462

2048 0.238 1.694

4096 0.526 7.373

8192 0.983 30.541
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binomial runtime grows quadratically with spatial resolution, while grid runtime
grows (approximately) linearly. Figure 7.3 shows the convergence rates of the two
methods, again for increasing spatial resolution. The grid model is clearly superior
in this case, reflecting the fact that error arises solely from the spatial discretization
(and none from temporal discretization).

7.3.2.7 Example: gas storage

A concrete energy-related illustration is in order. We consider an example from gas
storage, which should also serve as a preview of the dynamic programming methods
to be considered later. We assume that, under the pricing measure Q, gas spot prices
are given by

G = eg ′+χ (7.75)

where χ is a (deterministic) seasonality factor and g ′ is a mean-reverting process:

dg ′ = κ(θ − g ′)dt +σdw (7.76)

so that the log-price g satisfies31

dg = (κ(θ − g)+ χ̇ + κχ)dt +σdw (7.77)

Note that the dynamics of the forward price

Ft ,T = EQ
t egT (7.78)

are given by
dFt ,T

Ft ,T
= σ e−κ(T−t)dw (7.79)
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(Not surprisingly, the forward price is a Q–martingale.) Explicitly, we have the
following relation between spot and forward:

Ft ,T = exp

(
ge−κ(T−t)+ θ(1− e−κ(T−t))+χT −χt e−κ(T−t)+ σ

2

4κ
(1− e−2κ(T−t))

)
(7.80)

These results can be obtained by various means, but the characteristic functions
methods developed in Chapter 5 are particularly convenient and should prove a
useful exercise to the reader.

Now, the valuation of storage depends not only on the current gas price, but also
on the current level of inventory (i.e., the state of the system, to use the language
of dynamic programming). Depending on both price and inventory, the optimal
decision may be to inject (increase inventory by buying gas from the market) or
to withdraw (decrease inventory by selling gas into the market). Algorithmically,
we must discretize both price and inventory, making the problem inherently two-
dimensional. The basic valuation problem can be expressed as

Vn(Gi ;Qj)=max
q
{−qP(Gi ;q)+ e−rdt EnVn+1(S;Qj + q)} (7.81)

where the “payoff ” P is given by

P(G;q)=
{

G/(1− finj)+ kinj , q> 0(inj)
G/(1− fwdr)− kwdr , q> 0(wdr)

(7.82)

where f and k denote fuel losses32 and commodity charges, respectively. A typical
constraint on the optimization in (7.82) is of the form

qmin ≤ q≤ qmax (7.83)

where qmin < 0 is the maximum withdrawal rate and qmax > 0 is the maximum in-
jection rate. These constraints will obviously be binding (in the plain language sense
of not being able to inject/withdraw at the fastest possible rate) when the inventory
is large enough or small enough, but also when ratchets are present, so that the
maximum allowable flow rates are explicitly inventory dependent. Typically, there
are also constraints on the terminal inventory (e.g., the facility must be empty at the
end of the deal). Note that it is often more convenient to write (7.81) in terms of
the state (inventory) rather than the control:

Vn(Gi ;Qj)=max
Q
{−(Q−Qj)P(Gj ;Q−Qj)+ e−rdt EnVn+1(S;Q)} (7.84)

Now, for a given inventory level, the grid model can be used to efficiently evaluate
the conditional expectation in (7.81) or (7.84). Thus, if we discretize the allow-
able state space (inventory level) we can determine the optimal control conditional
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on information at time n.33 An issue that arises is that, in some applications, the
mean-reversion rate κ in (7.77) might be sufficiently large that numerical over-
flows/underflows can occur when the grid-matching condition (7.50) is imposed.
In this, the relation between grid sizes is given by

hn+1 = e−κ�t hn (7.85)

where �t is the temporal step size, typically one day (i.e., 1/365). For example,
Bjerksund et al. (2008) consider a case with a very high mean reversion rate of 18.25.
(We will have more to say about this particular work later.) Thus, the grid step size
gets reduced by about 5% for each time step. This means that the grid step size at the
initial time step is insignificant compared to the grid step size at the terminal time
step. (For a one-year deal the ratio would be about 10−8). Equivalently, the terminal
time grid step size is enormous compared to the initial grid step size. Ideally, the set
of grid points represents a sampling of the underlying distribution across most of its
range, say, five standard deviations. A tiny step size means this sampling is severely
truncated, whereas a huge step size can lead to numerical overflow from too big a
range.

Fortunately we can correct for this effect and still retain the power of the under-
lying method. To do this, we introduce a “parallel” grid at each time step, akin to
the auxiliary grid employed in the two-dimensional case in the previous section:

z̃i
n = μ̃n+ (i−N/2)h̃n (7.86)

We proceed as before. The time n+ 1 value function is again interpolated between
the grid points on this auxiliary grid:

Vn(z
i
n)=

∑
j

z̃
j+1
n+1∫

z̃
j
n+1

dz(α
j
n+1ez +β j

n+1)
1√

2πσ 2
n,n+1

e−(z−μ
i
n,n+1)

2
/σ 2

n,n+1 (7.87)

where σn,n+1 denotes the step volatility (i.e., the conditional volatility between times
n and n+ 1). We now impose the same condition as before to create the Toeplitz
form, as well as some conditions for convenience:

h̃n+1 = an,n+1hn

hn+1 = hn

μ̃n+1 = an,n+1μn+ bn,n+1

μ̃n = μn

(7.88)
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In other words, we obtain the value at the primary grid by integrating the next
step value function along the auxiliary grid. For a given time step, both primary
and auxiliary grids are “centered” at the same mean, but of course their grid step
sizes differ. (We take a constant step grid size for each grid across time steps.) See
Figure 7.4.

Note that there is essentially no need for an additional interpolation due to the
nesting of the grids. For example, we only need to identify, for each auxiliary grid
point, the primary grid points that contain it:

z
j′
n+1 < z̃

j
n+1 < z̃

j+1
n+1 < z

j′′
n+1 (7.89)

This amounts to finding the index such that (j′ −N/2)hn+1<(j−N/2)h̃n+1. Thus,
we can perform the usual exponential interpolation of the time n+1 value function
between the primary grid points j′ and j′′ and confine the integration interval to the
relevant auxiliary grid points.

7.3.2.8 Example: swings/recalls

Two popular products in energy markets involve structures with multiple exer-
cise rights, either in terms of the ordinal number of exercises or the allocation of
some total volume across some time period. For example, a swing option usually
involves the transaction of a fixed volume (e.g., natural gas or electricity) over a def-
inite period of time (e.g., the upcoming winter or summer). One of the parties is
obliged to acquire this volume (either physically or in terms of financial settlement)
by contract end, but they have the option of when they transact specific blocks
(typically, there are minimum and maximum blocks limiting the sizes in which
they can exercise). This product can be crafted exactly like (7.81), (usually) without
complications arising from physical operation (e.g., ratchets).

In contrast, recalls are essentially generalized American (or Bermudan) options
with a specified number of exercise rights in a given time period. (Thus, there are
limiting valuations: a single recall right amounts to an ordinary American option,

Spatial Grid (Lower) and Auxiliary Grid (Upper)

Z
~N/2–1 Z

~N/2+1Z
~N/2

Z N/2–1 Z N/2+1Z N/2

Figure 7.4 Grid alignment
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while the number of recalls equal to the number of days in the period in ques-
tion amounts to an ordinary daily European option.) In the intermediate case, this
structure can be valued by the following generalization of (7.73):

V k
n (S)=max((S−K)++ e−r�t EQ

n V k−1
n+1 ,e−r�t EQ

n V k
n+1) (7.90)

where the superscript k denotes the number of available recalls (exercise rights),
with the convention V 0 ≡ 0. (In the context of the familiar binomial tree model
(7.74), one might think of a binomial “forest,” so to speak.) Note that the exercise
boundary (separating regions of exercise from holding/non-exercise) now becomes
three-dimensional in nature.

While the general overview of the grid model has been confined to the standard
(log-) normal case, the method can be extended to a much richer class of processes,
as we now see.

7.3.3 Further applications of characteristic functions

7.3.3.1 Grid model, generalized

Let us write again the main valuation problem from (7.44), noting explicit depen-
dence on a particular measure:

V (z, t)= EQ
t U(zT )=

∞∫
−∞

U(zT )Pr(zT |z)dz (7.91)

We again employ the usual (“quasi-linear”) interpolation used in (7.28), but it
proves convenient here to write (7.91) as

V (z, t)= EQ
t

∑
j

(αje
zT +βj)1(z

i
T < zT < z

j+1
T ) (7.92)

To evaluate the expectations in (7.92), we will employ the characteristic func-
tion methods presented in Section 5.2. Denoting the (conditional) characteristic
function by f , the Fourier inversion formula implies that

Pr(zT |z)= 1

2π

∞∫
−∞

dφf (φ;z)e−iφzT = 1

2π

∫
�

dφf (φ;z)e−iφzT (7.93)

where, as in Section 5.2, we allow for contour changes (indicated by �) that will
justify reversing orders of integration implicit in (7.92). We are thus led to consider
expressions of the form
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EQ
t 1(z

j
T < zT < z

j+1
T )=

∞∫
−∞

dzT 1(z
j
T < zT < z

j+1
T )Pr(zT |z)

=
∞∫

−∞
dzT 1(z

j
T < zT < z

j+1
T )

1

2π

∫
�

dφf (φ;z)e−iφzT (7.94)

Now, by choosing the contour � such that the orders of integration in (7.94) may
be reversed, (7.94) becomes

1

2π

∫
�

dφf (φ;z)
e−iφz

j+1
T − e−iφz

j
T

−iφ
(7.95)

In the cases considered in Section 5.2 for a standard call, one of the grid points was
at −∞ and the contour was taken to be parallel to but below the real φ–axis (i.e.,
of the form φr − iε with ε > 0 and φr ∈ (−∞,∞)), ensuring convergence under
the interchanged order of integration. We note here that this standard choice is in
fact not necessary, and by retaining flexibility in the choice of contour, there can
be great numerical benefits, as we shall see later in this chapter. Our main concern
here is with employing fast computational algorithms for more general processes
with known characteristic functions.

7.3.3.2 Application to affine processes

To this end, consider the class of affine jump diffusions studied in Chapter 5. These
will have characteristic functions of the form34

f (φ;z)= eα(τ ;φ)z+β(τ ;φ) (7.96)

Specifically, we consider in the one-dimensional case a process of the form

dz = (χ − κz)dt +σdw+ jdq (7.97)

in which case the coefficient of z in (7.96) is separable: α = iφa(τ ) where a= e−κτ .
Thus, (7.95) takes the form

1

2π

∫
�

dφeβ(τ ;φ) e−iφ(z
j+1
T −a(τ )z)− e−iφ(z

j
T−a(τ )z)

−iφ
(7.98)

So, if we construct spatial grids as in (7.46) with the step sizes related by hT =
a(τ )ht , the expression in (7.98) will depend only on the difference in indices, just
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as in the Gaussian case previously considered. Consequently, as long as we can nu-
merically evaluate integrals such as those in (7.98) without great burden, we have
reduced the valuation problem to an efficient, FFT-based matrix multiplication.
(See Eydeland and Mahoney [2003], and related work by Lord et al. [2008].)

7.3.3.3 Issues with American structures

Another, non-standard example would be an American variance option under He-
ston.35 The payoff at expiry is (VT −V −K)+ where V is realized (integrated)
variance with Q–dynamics given by

dν = κ(θ − ν)dt +σ√νdw

dV = νdt
(7.99)

so that VT−V =
T∫
t
νsds . Conventionally, we shall take V = 0. The general backward

induction algorithm for valuation can be written

Un(ν,V )=max((V −K)+,EQ
n Un+1(ν

′,V ′)) (7.100)

As before, we require an efficient means of evaluating the conditional expectation
within the max operator in (7.100). In this case, it makes more sense to employ a
true linear interpolation (i.e., not in terms of exponentials) and so, assuming a dis-
cretized grid in (v,V )–space,36 we are led to consider expectations of the following
form:

g(νk
n ,V l

n)≡ EQ
n 1(νi

n+1 < ν
′ < νi+1

n+1)1(V
j
n+1 < V ′ < V

j+1
n+1)

h(νk
n ,V l

n)≡ EQ
n ν

′V ′1(νi
n+1 < ν

′ < νi+1
n+1)1(V

j
n+1 < V ′ < V

j+1
n+1)

(7.101)

(as well as one involving a factor of just v and one involving a factor of just V ). For
the first expectation we have, using characteristic functions, that

EQ
n 1(νi

n+1 < ν
′ < νi+1

n+1)1(V
j
n+1 < V ′ < V

j+1
n+1)

= 1

(2π)2

∫
�1

∫
�2

dφ1dφ2eiφ2V i
n+β(φ1,φ2)ν

k
n+γ (φ1,φ2)

e−iφ1ν
i+1
n+1 − e−iφ1ν

i
n+1

−iφ1

e−iφ2V
j+1
n+1 − e−iφ2V

j
n+1

−iφ2
(7.102)
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for appropriately chosen contours �1,2 and where β and γ satisfy

β̇− κβ+ 1
2σ

2β2+ iφ2 = 0

γ̇ + κθβ = 0
(7.103)

with terminal37 conditions β = iφ1 and γ = 0. Of course, the system in (7.103)
can be solved analytically as it can in the regular Heston case. However, there is
little point here in writing out the explicit solution. The main point we want to
emphasize here is that the solution is nonlinear in the Fourier variables φ1,2. This
fact presents some challenges for crafting the backward induction in (7.100) in a
form amenable to fast transform techniques.

Because β is nonlinear in φ1,2, the combination β(φ1,φ2)vk
n − iφ1vi

n+1 (say) in
(7.102) does not depend (and cannot be made to depend) only on the difference
between grid indices k− i as it does in the (linear) Gaussian case. However, since in
the typical case the time discretization is small (e.g., a single day so 1/365 ≈ 0.003
in annualized terms), we can exploit the fact that β is approximately iφ1. We can
write

β = iφ1+β ′ (7.104)

where β ′ is small over the time interval in question. Thus, using a Taylor series
expansion, we can write(7.102) as

1

(2π)2

∫
�1

∫
�2

dφ1dφ2

eβ
′(φ1,φ2)ν

k
n+γ (φ1,φ2)

e−iφ1(ν
i+1
n+1−νk

n)− e−iφ1(ν
i
n+1−νk

n)

−iφ1

e−iφ2(V
j+1
n+1−V l

n)− e−iφ2(V
j
n+1−V l

n)

−iφ2

= 1

(2π)2

∫
�1

∫
�2

dφ1dφ2

eγ (φ1,φ2)
e−iφ1(ν

i+1
n+1−νk

n)− e−iφ1(ν
i
n+1−νk

n)

−iφ1

e−iφ2(V
j+1
n+1−V l

n)− e−iφ2(V
j
n+1−V l

n)

−iφ2

+ 1

(2π)2
νk

n

∫
�1

∫
�2

dφ1dφ2β
′(φ1,φ2)

eγ (φ1,φ2)
e−iφ1(ν

i+1
n+1−νk

n)− e−iφ1(ν
i
n+1−νk

n)

−iφ1

e−iφ2(V
j+1
n+1−V l

n)− e−iφ2(V
j
n+1−V l

n)

−iφ2
+·· ·

(7.105)

Note that each integration in the expansion can now be made to depend (for a
suitable grid discretization) only on the difference of respective indices. Thus, the
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problem can be treated as a series of problems where each term is amenable to FFT
techniques. Plainly, American options on an asset driven by Heston dynamics can
be similarly treated.38

To illustrate the plausibility of this approach, let us consider the standard mean-
reverting process

dz = κ(θ − z)dt +σdw (7.106)

with characteristic function f = exp(iφ(ze−κτ + θ(1 − e−κτ )) − φ2σ 2(1 −
e−2κτ )/(4κ)) over a time interval τ = T − t , which will be assumed small in the
subsequent analysis. We are concerned with evaluating integrals of the form

Pr(zT < γ )= 1

2π

∫
�

dφf (φ)
e−iφγ

−iφ
(7.107)

Now, using the form of the characteristic function, (7.107) can be written as

1

2π

∫
�

dφ
eiφ(γ−z)+α0(φ)

−iφ
eiφz(e−κτ−1)

= 1

2π

∑
n

zn(e−κt − 1)n

n!

∫
�

dφ(iφ)n
e−iφ(γ−z)+α0(φ)

−iφ
(7.108)

where it should be clear what α0 represents. From the basic result 1
2π

∫
�

dφ e−iαφ−β2φ2/2

−iφ

= N( αβ ), it can be seen through successive differentiations wrt. α that the terms in

(7.108) will decay like (1−e−κτ )n

(1−e−2κτ )
n− 1

2
. Thus, although the integral in (7.107) can of

course be evaluated exactly, in the regime of small τ it can be well approximated by
a series of integrals involving only the difference γ − z, which is the necessary con-
dition for being able to employ fast convolution methods for early exercise options
(e.g., American variance swaps under Heston in (7.100)).

We have established to this point a quite general framework for evaluating early-
exercise options, which will see further applications in certain control problems of
relevance, such as tolling and storage. In general, however, even problems without
such features are of interest (and challenging), so we will now turn attention to
more general quadrature techniques.

7.4 Quadrature

In this section we will discuss rather generic methods for numerically evaluating
integrals that arise as expectations in problems of interest.
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7.4.1 Gaussian

7.4.1.1 Basic formulas

As mentioned in Section 5.2, the integrals that arise in characteristic function-based
approaches (e.g., option valuation) are often well handled by Gaussian quadrature.
While it is not our intent here to provide a self-contained (much less full) exposition
of such methods here (standard texts such as Press et al. [2007] should be consulted
for that purpose), it will prove useful to give a cursory overview as the basic notions
will be useful for later discussions.

The essential idea is that integrals of the form

b∫
a

dx ·w(x)f (x) (7.109)

can be well approximated by the sum

N∑
i=1

wif (xi) (7.110)

for reasonably small values of N if the function f can be well approximated by
a polynomial with respect to the weighting function w (in the sense of orthogo-
nality across the interval in question). In fact, the approximation will be exact for
functions within that class of basis polynomials. (Generally speaking, N quadra-
ture points give exact results for polynomials of degree 2N − 1, for the schemes we
will be interested in here.) Computation of the weights w and abscissas/collocation
points x is fairly standard provided the set of orthogonal polynomials with respect
to the weighting function can be obtained without great difficulty. Common ex-
amples are Gauss-Laguerre, Gauss-Hermite, and Gauss-Legendre, with respective
weight functions and interval of integration given by39

w(x)= xαe−x , 0< x <∞ (7.111)

and

w(x)= e−x2
, −∞< x <∞ (7.112)

and

w(x)= 1, −1< x < 1 (7.113)

Of course, we would be remiss if we failed to mention that old warhorse, the trape-
zoidal rule, even though it does not technically fall under the rubric of Gaussian
quadrature. The trapezoidal rule is exact for 1st degree (“linear”) polynomials and
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is related to the previously discussed interpolation/basis function approaches, with
expansions in terms of “hat functions” of the form

ϕi(x)=
{

1− 1
h |x− ih|, |x− ih|< h

0, |x− ih|> h

}
(7.114)

Assume we are concerned with integration over the interval [0,1]. Then, the
quadrature points are given by xi = ih where h = 1/N for N+1 quadrature points
and the weights are given by wi = h ∀i except x0 = xN = h/2.

Not surprisingly, the relevant set of orthogonal polynomials (which determine
the class of functions for which the approximation (7.110) will be accurate) are,
respectively, the classical Laguerre and Hermite polynomials. The Hermite case is
obviously relevant for the valuation of expectations under Gaussian densities, as we
will shortly explore. Gauss-Laguerre is quite useful for general valuation of integrals
in the expression (2.6.21). As an example, we can see the convergence in the case of
Heston (for typical parameter values) in Figure 7.5.

7.4.1.2 Pearson, revisited

We can also compare quadrature-based approaches to Pearson’s technique for
evaluating spread options with nonzero strikes. Recall from (7.26) that the basic
valuation problem can be reduced (via use of conditional densities) to an integral
of the form

E(eμ2+σ2z2 − eμ1+σ1z1 −K)+ =
∫ ∞

−∞
dz1

1√
2π

e−z2
1/2F(z1) (7.115)
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Figure 7.5 Convergence of Gauss-Laguerre quadrature for Heston. Parameter values are S= 1,

K = 1, ν = 0.1, τ = 1, κ = 6, θ = 0.1, ρ =−0.6, σ = 0.3
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for some nonlinear function F of z1 (known in terms of the standard normal CDF).
In Pearson’s approach, this function was interpolated in terms of piecewise affine
exponentials that could be evaluated exactly (within the constituent intervals of
interpolation). Alternatively, (7.115) lends itself well to Gauss-Hermite quadrature.
In fact, from (7.33) we see that the deltas can likewise be alternatively obtained
via quadrature. (Indeed, as has been noticed, all relevant greeks [i.e., gammas and
vegas] are obtainable via integration.) Recall that

EQ(ez2 − ez1 −K)+ = EQez2 ·EQ2 1(ez2 − ez1 −K > 0)

−EQez1 ·EQ1 1(ez2 − ez1 −K > 0)−K ·EQ1(ez2 − ez1 −K > 0) (7.116)

where the measure changes are given by dQi
dQ = ezi

EQezi
. Now for homogeneous prob-

lems (e.g., as occur with martingale pricing), Euler’s theorem implies that the
expected values of the indicator functions in (7.116) are the option deltas. Thus,
an expression such as (7.115) can be used to compute these deltas. In particular, the
deltas will involve an integral of the form

∞∫
−∞

dz1
1√
2π

e−z2
1/2N

(
μ2+σ2ρz1− log(eμ1+σ1z1 +K)

σ2ρs

)
(7.117)

where the meansμi will entail some adjustment through the mean change. Thus, we
see that the evaluations of the deltas amount to the same kind of quadrature prob-
lem. (With a bit of algebra the other greeks, e.g., gammas and vegas, can likewise be
extracted; see Section 7.5.2 for likelihood-based methods in simulation.)

7.4.1.3 Generalizations (and limitations)

More generally, consider max/min options with nonzero strikes. In energy markets
such structures appear naturally in tolling problems with fuel-switching units, nat-
ural gas storage with multiple injection and/or withdrawal points, or natural gas
transport with segmented paths (such that gas may flow from the cheaper of multi-
ple receipt points to the more expensive of multiple delivery points). In most cases
there are variable (non-stochastic) charges which prevent change-of-measure tech-
niques from being (directly) used. A suitable payoff to illustrate how to approach
such problems is

(max(ez2 ,ez3)− ez1 −K)+ (7.118)

with K �= 0. Following Pearson, we write the joint (three-dimensional) density as
Pr(z1,z2,z3) = Pr(z1|z2,z3)Pr(z2,z3), where the conditional density can be readily
obtained by standard results (e.g., see (7.128)). Then we write
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V =
∞∫

−∞

∞∫
−∞

dz2dz3 Pr(z2,z3)

∞∫
−∞

dz1 Pr(z1|z2,z3)(X(z2,z3)− ez1)+ (7.119)

where X(z2,z3) ≡max(ez2 ,ez3)−K . Now, the conditional density Pr(z1|z2,z3) re-
mains normal, therefore the “inner” integral in (7.119) over z1 can be evaluated
analytically for given z2,3 (it is just a standard BS put problem). It remains now to
handle the “outer” integral over z2,3. As we have done before, we shall jump ahead
to topics that will be considered in greater detail later, in this case multidimensional
quadrature. Note that the density Pr(z2,z3) is jointly normal, so it might seem plau-
sible that some kind of generalized Gauss-Hermite quadrature can be applied here.
In fact, in the special case of zero correlation between assets 2 and 3, the joint den-
sity is just the product of two separate normal densities, in which case the usual
quadrature can be applied across each dimension. We will see in the next section
that this idea can indeed be generalized to arbitrary correlation structures.40

The idea is to “diagonalize” the correlation structure by a suitable linear transfor-
mation (in terms of eigenvectors). This approach is quite effective for computing
the option value. An important issue obviously concerns the deltas (and other
greeks). Here, though, we see some limitations to quadrature, namely situations
where the underlying functional is not well approximated by polynomials. As can
be seen from change-of-measure results, this calculation essentially entails the ex-
pectation of an exponential factor over the exercise region. For the delta wrt. asset 1
in (7.118), this is not problematic, because the resulting integrand remains continu-
ous and hence amenable to Gaussian quadrature. However, for the other two deltas,
due to the presence of the max( ) function between assets 2 and 3, a discontinuity
is introduced which renders Gaussian quadrature ineffective. A feasible way around
this problem is to further decompose the “outer” probability kernel in (7.119) via
Pr(z2,z3) = Pr(z2|z3)Pr(z3) and perform a Pearson-style interpolation in terms of
z2, as a function of z3. Finally, Gaussian quadrature can be carried out wrt. z3. This
latter integration can typically be carried out with a fairly small number of points.
We are thus effectively employing an adaptive sort of quadrature, where much work
is devoted to one dimension, and much less to the other (recall that one dimension
is analytically accounted for).

7.4.1.4 Application: tolling

Yet another problem of interest is encountered in tolling,41 where the optionality to
run a unit can extend across an entire day, yielding a weighted average of on- and
off-peak power prices at minimum generation levels, plus incremental optimality
in both blocks to ramp up to maximum capacity. The basic payoff is
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[
Cmin(16Pon+ 8Poff − 24HRminG− 24 ·VOM)−X −F ·G+ zPoff+
(Cmax−Cmin)(16(Pon−HRincG−VOM)++ 8(Poff −HRincG−VOM)+)

]+
(7.120)

so that, on a given (week) day, one can start the unit for the entire day, running
for 16 peak hours and 8 off-peak hours at minimum operating capacity, incurring
variable fuel costs (at minimum heat-rate conversion) and operational costs, as well
as fixed start-up costs and start-up fuel amounts. (There can also be off-peak power
revenue for a start-up.) Once up at the min level, one can ramp up to max level in
each temporal block, which incurs only variable costs.42 By normalizing the prob-
lem by the total daily megawatt hours (i.e., 24Cmax), (7.120) can be written (in
terms of log prices) as

[
a1ez1 + a2ez2 − g0ez3 −K0+
(b1ez1 − g1ez3 −K1)

++ (b2ez2 − g2ez3 −K2)
+
]+

(7.121)

where we will not bother to explicitly identify the parameters in (7.121) with the
various unit parameters, as it should be clear enough what they comprise. The
expectation of the terminal payoff given by (7.121) in general entails a three-
dimensional integration. However, following the approach of Pearson adopted
for max/min options, we write the three-dimensional density as Pr(z1,z2,z3) =
Pr(z1,z2)Pr(z3|z1,z2), and try to attack the problem as a two-dimensional integra-
tion over z1 and z2 wrt. to a function with z3 integrated out (so to speak). The
complication here is that, as a function of z1,2, the expression in (7.121) does not
appear reducible to a form that is analytically tractable (e.g., a standard put payoff).
However, note that for fixed z1,2 (e.g., at the “outer” quadrature abscissas), (7.121)
has the form (recall the notation from Section 4.2)

(Z0− g0ez3 + (Z1− g1ez3)++ (Z2− g2ez3)+)+ (7.122)

For z3 sufficiently large, the expression in (7.122) equals zero; for z3, sufficiently
small, is a payoff for a standard in-the-money put. Plainly, there is some critical
value z∗3 (possibly at −∞, in which case (7.122) makes no contribution for the
outer quadrature points in question) for which the “inner” z3− integration can

be written as
z∗3∫
−∞

dz3(Z ′ − g ′ez3)Pr(z3), which is expressible as a standard BS put

value. Determining this cutoff point is a simple problem of trial and error; there
are only a few points that could qualify (e.g., it could be where all the constituent
terms in (7.122) are positive, etc.) and these just need to be tested to find the largest.
Consequently, the extension of Pearson’s method used for max/min options can
also be applied here.
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7.4.1.5 Application: normal CDFs

Another example is computation of standard normal distribution functions so
ubiquitous in mathematical finance. Consider first the two-dimensional case:

N2(a,b;ρ)= 1

2π

a∫
−∞

b∫
−∞

dxdy · e−(x2−2ρxy+y2)
/

2(1−ρ2) (7.123)

Following the approach used in Pearson’s method in Section 7.3.1, we decompose
the density in the integrand via conditioning to get

N2(a,b;ρ)= 1

2π

a∫
−∞

dx · e−x2/2

b∫
−∞

dy · e−(y−ρx)2
/

2(1−ρ2)

= 1√
2π

a∫
−∞

dx · e−x2/2N

(
b−ρx√

1−ρ2

)
(7.124)

Now, it might seem tempting to employ Gauss-Hermite quadrature here, by in-
cluding a factor of 1(x < a) in the integrand and extending the integration range to
+∞. However, it would quickly be revealed, as has already been pointed out, that
the success of Gaussian quadrature depends critically on the integrand being well
behaved in the appropriate sense. The discontinuity of the indicator function ren-
ders the method ill-suited in this case. (A similar phenomenon will be seen when
we consider the calculation of various greeks in option-pricing problems, where
Gaussian quadrature works extremely well for the option values, but very poorly
for certain greeks.)

Fortunately, there is an alternate tack that allows effective use of Gaussian quadra-
ture. Taking the derivative of (7.124) wrt. ρ (and assuming differentiation can be
taken under the integral sign), we get

∂N2

∂ρ
= 1

2π

a∫
−∞

dx · e−x2/2e−(b−ρx)2
/

2(1−ρ2)

(
bρ− x

(1−ρ2)
3/2

)

= 1

2π
e−b2/2

a∫
−∞

dx · e−(x−ρb)2
/

2(1−ρ2)

(
bρ− x

(1−ρ2)
3/2

)

= 1

2π
√

1−ρ2
e−(a2−2ρab+b2)

/
2(1−ρ2) (7.125)
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Using the known result for ρ = 0, we get

N2(a,b;ρ)= 1

2π

ρ∫
0

dr 1√
1−r2

e−(a2−2rab+b2)
/

2(1−r2)+N(a)N(b) (7.126)

Finally, the substitution r = sinθ in (7.126) gives the computationally useful result
(originally due to Sheppard; see Amos [1969])

N2(a,b;ρ)= 1
2π

sin−1ρ∫
0

dθe−(a2−2sinθab+b2)
/

2cos2θ +N(a)N(b) (7.127)

which can be handled easily and efficiently with Gauss-Legendre quadrature.43

Note that the originally two-dimensional problem in (7.123) has been reduced to
a one-dimensional one, which can in fact be accurately evaluated with not much
computational cost. An example is shown in Figure 7.6.

As we saw in Section 5.1.4 on the quintessential option-pricing formula, many
applications of interest can be transformed to calculations involving the cumu-
lative normal distribution function in higher dimensions. It can be shown that
the kinds of conditioning carried out in the evaluation of the two-dimensional
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Figure 7.6 Convergence results for 2-dimensional normal CDF. Parameter values are a = 1.5,

b= 1.5, ρ =−0.99
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problem can be extended to higher dimensions, allowing the calculation of interest
to be obtained recursively. Recalling the basic result for conditional normals:

μy|x = μy +�yz�
−1
xx (x−μx)

�y|x =�yy −�yx�
−1
xx �xy

(7.128)

in terms of the unconditional means and covariances (μ and �, respectively), we
proceed as follows. First, for the three dimensional case, we have

N3(γ1,γ2,γ3;ρ12,ρ13,ρ23)=
γ1∫

−∞
dx1

1√
2π

e−x2
1/2N2

(
γ2−ρs

12x1

ρs
12

,
γ3−ρs

13x1

ρs
13

; ρ̃23

)
(7.129)

where ρs
1i =

√
1−ρ2

1i and ρ̃23 = ρ23−ρ12ρ13
ρs

12ρ
s
13

. Next, the substitution y =N(x1) allows

the integral to be transformed into a form suitable for Gauss-Legendre quadra-
ture, using the algorithm previously derived for N2 and accurate approximations
for N−1 in terms of rational functions or Halley’s third-order iterative scheme.44

Note that exploiting the conditional structure again achieves dimensional reduc-
tion, from three to two, and in fact high accuracy can be obtained with relatively
few quadrature points in each dimension.

Generalizations to higher dimensions proceed similarly. We have

Nn(γ ;�)=
γ∫

−∞
dx

1√
(2π)n det�

e−xT�−1x/2

=
γ1∫

−∞
dx1e−x2

1/2Nn−1

(
γi+1−ρs

1,i+1x1

ρs
1,i+1

;�̃

)
(7.130)

where the index i in (7.130) denotes dependence on elements 2 through n of the n–

dimensional vector γ and ρs
1,i+1 =

√
1−ρ2

1,i+1 for i= 1, . . . ,n−1. The conditional

covariance correlation �̃ has elements given by

�̃ij = ρi+1,j+1−ρ1,i+1ρ1,j+1

ρs
1,i+1ρ

s
1,j+1

(7.131)

The inverse normal CDF substitution again allows use of Gauss-Legendre. The
procedure is iterative, working backward (for the quadrature calculation in each
dimension) until, say, a calculation of N2 is required.

Obviously this nesting of the problem makes the overall procedure rather bur-
densome as the number of dimensions increases. There is reason to hope that the
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efficiency of Gaussian quadrature, namely the need for a relatively small number
of quadrature points (and hence computations) in each dimension will ameliorate
this problem, but it certainly will not eliminate it, so we will consider some of these
issues now.

7.4.2 High dimensions

7.4.2.1 Generic setup

A common class of problems encountered in financial applications (including
commodity markets) takes the following form:

∞∫
−∞

dxH(x)
1√

(2π)n det�
e−

1
2 (x−μ)T�−1(x−μ) (7.132)

for an n–dimensional vector x. Now, as � will typically represent a (symmetric,
positive-definite) covariance matrix, it permits a factorization of the form� =LLT ,
in which case the substitution x = Ly + μ transforms (7.132) to (note that the
Jacobian of the transformation is L=√det�)

∞∫
−∞

dyH(Ly+μ) 1√
(2π)n

e−
1
2 yT y (7.133)

Given the form of the integrand in (7.133), a natural approach to is look for a multi-
sum version of (7.110) for the Gauss-Hermite case (7.112).45 The integral in (7.133)
would be approximated as ∑

i,j,...

wiwj · · ·H̃(yi ,yj , . . .) (7.134)

where H̃(y) ≡ H(Ly+μ) is evaluated at the Gauss-Hermite abscissas. This latter
computation can (and obviously should) be performed outside the multiplication
loops in (7.134). For example, the arguments of H must be evaluated at

x
ij...
k = μk +Lk1yi

1+Lk2yi
2+·· · (7.135)

where yi denote the quadrature points. The element-by-element multiplication in
(7.135) needs to only be computed for a single set of quadrature points, across each
column in L for each row/dimension. Then, the appropriate contribution to each
argument in (7.134) can be invoked as needed.

Now, there are several possible choices for the underlying factorization � =LLT .
An obvious candidate is the standard Cholesky factorization where L is a
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lower triangular matrix.46 Another possible choice is in terms of the eigenval-
ues/eigenvectors of the covariance matrix:47

� = V�V T (7.136)

where V is a matrix whose columns are the eigenvectors of � and � is a diagonal
matrix of the eigenvalues. Consequently, we could take L = V�1/2 (where the ex-
ponent 1/2 represents element-by-element square root). In fact, Cholesky can also
be put in this tri-factor form by taking

LLT = ADAT (7.137)

where D is diagonal and A is lower triangular with ones across the diagonal.48 In
general, for any possible factorization L, another possible factorization is given by
LO where O is an orthogonal matrix (that is, OOT = I). To the best of our knowl-
edge, it does not appear possible to definitively say which factorization is best for a
given problem; some experimentation is probably necessary. Note that an advantage
of representations such as (7.136) or (7.137) is in the identification of certain “char-
acteristic” scales in a given problem, which can facilitate various kinds of adaptive
quadrature. (This is akin to the notion of effective dimension reduction that will
be seen later in conjunction with certain simulation-based techniques.) We will
only demonstrate here the feasibility of this technique by comparing it to some test
cases.49

So, consider a payoff function max(ez1 ,ez2 ,ez3 ,ez4) for jointly normal variables,
and a correlation structure given by corr(zi ,zj) = ρ|i−j|. We show typical conver-
gence results (against the “exact” quintessential formula) for different values of ρ in
Figures 7.7 and 7.8. As can be seen, depending on the particular correlation struc-
ture, convergence can be extremely rapid for one correlation matrix decomposition,
but not necessarily for another. As noted, some experimentation will be necessary
in practice. However, we can clearly see the basic effectiveness of the approach here.

While (7.134) is certainly straightforward, it obviously suffers from the fact that
its computational cost grows exponentially with dimension, rendering it infeasi-
ble for high-dimensional problems.50 Still, given the nice convergence properties
of Gaussian quadrature in general, it is worth investigating the extent to which
(7.134) can be employed. If a small number of quadrature points in each dimension
is sufficient for high accuracy, then the dimensionality of tractable problems may
be reasonably high.51 In our experience the number dimensions for which quadra-
ture is feasible is five, perhaps six. It remains the case, then, that the dimension of
problems for which the above “full-grid” approach (we will understand this choice
of words shortly) is feasible is not terribly large. An alternative approach in higher
dimensions is still required.
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Figure 7.7 Convergence of Gaussian quadrature. Comparison of different decompositions of

correlation matrix for (effective) diagonalization. Payoff is max across 4 assets, each with expected

value 1, time to maturity 1, volatilities 0.4, 0.5, 0.6, and 0.7. Correlation structure is given by

corr(zi,zj)= ρ|i−j| with ρ = 0.9
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Figure 7.8 Convergence of Gaussian quadrature. Same parameters as Figure 7.7, but ρ =−0.9

7.4.2.2 Sparse grid quadrature

We begin by introducing some notation. First, we consider quadrature schemes that
are “embedded,” that is to say, as we go to finer levels of resolutions/discretization,
the quadrature points used at the previous level are included in subsequent levels.52

A simple example would be the familiar trapezoidal rule in (7.114), where the reso-
lution is increased from 2l+1 quadrature points to 2l+1+1 points (i.e., the step size
is halved). We define a (one-dimensional) level l quadrature rule Ql as an operator
on some function f via
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Qlf ≡
Nl∑

i=0

wl
i f (x

l
i ) (7.138)

for some set of (level-dependent) weights wl
i and quadrature points xl

i (with Nl+ 1
weights and points, respectively). Let us also denote by ℵl the class of functions for
which the scheme in (7.138) is exact. (We will assume that this class is nested; i.e.
ℵl ⊂ℵl+1.53) Note that multidimensional quadrature can be constructed via tensor
products as

(Ql1 ⊗Ql2 ⊗·· ·⊗QlD )f =
Nl1∑

i1=0

Nl2∑
i2=0

· · ·
NlD∑

iD=0

wl1
i1

wl2
i2
· · ·wlD

iD
f (xl1

i1
,xl2

i2
, · · · ,xlD

iD
) (7.139)

where D is the number of dimensions and in general the level of resolution can differ
across dimensions. Note we see from (7.139) the motivation for the characterization
“full grid”: all of the (one-dimensional) quadrature points are used across each
dimension.

We now note a rather trivial (but ultimately important) point. Using telescoping
sums, we have that

Qlf =
l∑

i=0

�Qif (7.140)

where �Qi ≡ Qi − Qi−1 (with Q−1 ≡ 0). The implication of (7.140) is the fol-
lowing: for any function f ∈ ℵl (or more generally functions well approximated by
members of this class), the incremental value of going to a higher-level resolution in
the quadrature scheme (7.138) is zero (or more generally tends to zero).54 Conse-
quently, the additional workload of going to this higher level is largely unnecessary
and inefficient. This idea, namely that quadrature points should be added only if
they are needed for a given level of accuracy, can be exploited to create quadra-
ture schemes in higher dimensions that greatly ameliorate the so-called curse of
dimensionality (i.e., the fact that the computational burden grows exponentially
with dimension).

The idea (originally due to Smolyak [1963]; see also Holtz [2011]) starts with the
following representation. Invoking (7.140), we write (7.139) as

(Ql1 ⊗Ql2 ⊗·· ·⊗QlD )f =
l1∑

i1=0

l2∑
i2=0

· · ·
lD∑

iD=0

(�Qi1 ⊗�Qi2 ⊗·· ·⊗�QiD )f (7.141)

which follows from telescoping sums and the bilinearity of the tensor product. We
now note the following: for quadrature rules that are exact for certain categories of
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functions, the full-grid ensemble (7.141) will involve redundancies across quadra-
ture points. For example, consider a scheme that is exact for polynomials of (total)
degree d. Introduce monomials of the form

xk1
1 xk2

2 · · ·xkD
D (7.142)

with k1 + k2 + ·· ·kD = d. Then it can be seen that (7.141) is inefficient because
many of the terms vanish for monomials such as (7.142). This point leads us to
seek multidimensional schemes that are exact for monomials of a given degree, an
obvious generalization of one-dimensional Gaussian quadrature. However, unlike
the one-dimensional case, it is in general not possible to constructively prescribe the
minimal number of quadrature points necessary to achieve a given (polynomial)
degree of accuracy (see Cools [2002]).55

Smolyak’s very clever idea was to consider a compromise by taking the tensor
product in (7.141) only over those terms contributing to the discretization error as
the degree of accuracy is increased. The approach is highly reminiscent of modern,
multi-resolution techniques such as wavelet analysis (in the context of quantitative
finance, see Dempster et al. [2000] or de Wiart and Dempster [2011]). That is, we
write the quadrature scheme as

Il(f )=
l∑

|i|=0

(�Qii ⊗�Qi2 ⊗·· ·⊗�QiD )f (7.143)

where the index i is a D–dimensional vector of non-negative integers with “norm”
given by |i| ≡ i1+ ·· · iD. In other words, each term in the summation in (7.143) is
taken over all indices with a given total degree (or more broadly conceived, a given
level of resolution). The expression (7.143) can also be written as (see Wasilkowski
and Woźniakowski [1995])

Il(f )=
l∑

|i|=l−D+1

(−)l−|i|(D−1
l−|i|)(Qii ⊗Qi2 ⊗·· ·⊗QiD )f (7.144)

We may think of the one-dimensional schemes Qk as being exact for polynomials of
degree 2k−1 (as in the standard Gaussian case), in which case the multidimensional
scheme in (7.143) is exact for multinomials of total degree l. More generally, we can
think of (7.143) as a device for introducing, for increasing levels of resolution, only
those quadrature points (and associated weights) necessary for the level of exactness
required for that level. Thus, for a given dimension, as the resolution increases the
amount of new points (and hence the resulting computational burden) grows much
more slowly than the corresponding full-grid case. (We refer the reader to table 1 in
Heiss and Winschel (2006).)
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Table 7.2 Comparison of quadrature techniques. Probability mass of 4D unit hypercube

for standard multi-normal. “Exact” value given by Gauss-Legendre quadrature via (7.130)

and 10 quadrature points in each dimension. Full grid value based on trapezoidal rule

and 65= (27+1) points per dimension (redundant multiplications in the tensor product

(7.139) are taken into account by appropriate nesting). Sparse grid result also based on

trapezoidal rule with resolution levels 2 through 8 in (7.144).

Value Operation count

Full 0.058622 18,129,540

Sparse 0.058566 117,532

GauLeg 0.058642 1,110

To illustrate, we compute the expected value of 1(0≤ x ≤ 1) with x a four-
dimensional unit normal with correlation matrix with elements ρij = 0.8|i−j|. We
use the trapezoidal rule, and compare with Gaussian quadrature via (7.130). The
results are shown in Table 7.2. Obviously, we would never use the trapezoidal rule
in practice for evaluating such an integral. However, this example serves to make
clear the great computational feasibility of sparse grid quadrature.

7.5 Simulation

7.5.0.1 Preamble

In this section we will provide an overview of simulation-based methods relevant
for problems arising in energy markets. As usual, no claims to completeness are
made, and we assume some basic familiarity on the reader’s part. We recommend
the excellent text by Glasserman (2004) for greater detail than that provided here.
We do feel it necessary to emphasize here that simulation methods are inherently
computational techniques. That is, they are simply means to an end. They can be
extremely useful means (and in many cases, they are the only feasible means), but
they are ultimately just tools for calculating a certain entity of interest. Like any
other tool, they can be appropriate or inappropriate for a given problem, and clev-
erly applied or completely misapplied. It must be said bluntly: simulation does not
add to one’s knowledge.56 Put differently, there is nothing that can be produced by
a simulation that was not already present in the initial assumptions. This is not to
say that the simulation cannot produce concrete numbers (e.g., prices, hedge ratios,
etc.) that could not otherwise be obtained. The point is that the resulting numbers
are only as good as the input numbers used to generate the output.

We engage in this bit of editorializing here because we have commonly encoun-
tered a tendency to believe that, the more complex a problem is, the quicker one
must resort to simulation in order to arrive at some kind of solution, and that the
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less need there is to understand the essential features of a problem. This viewpoint
is flawed for a number of reasons. First, as already noted, bad input almost certainly
guarantees bad output, and in energy markets with rather sparse data series and
many fundamental changes in the recent history, input data will often be of mixed
(at best) quality. It is simply an illusion of security that churning out a great number
of scenarios based on spotty underlying data will produce useful results. Second, re-
liance on simulation can encourage laziness of thought in tackling a problem (to be
quite frank about it), as the relative ease with which many simulations can be im-
plemented tends to allow one to overlook the need to identify the relevant features
of a given problem, features that could (indeed, should) be used to produce robust
approximations. Worse: a tempting belief that scenario generation can compensate
for poorly estimated model parameters can become hard to resist. (As a general
rule, robust approximations are to be preferred to precise nonsense.) Of course,
overreliance on a particular methodology is not unique to simulation, but in our
experience there is greater danger here than with other methods. This danger is es-
pecially enhanced in energy markets, where various operational constraints present
numerous challenges. Finally, we repeat a recurring theme of this work: valuation
means replication, and any valuation technique that does not produce hedges whose
precise meaning refers to a trading strategy around which the stated value can be ex-
tracted/collected (with residual risk properly identified and accounted for) is simply
rubbish.

The simple fact is that the great complexity of many structured products is of lit-
tle relevance in producing good valuations. While we have often encountered great
surprise when we argue that, say, hourly electricity prices should not (necessarily)
be modeled when valuing tolling or full requirement deals, it remains the case that
(as of this writing) there is no kind of traded product that gives direct exposure to
prices at that level of resolution.57 It is thus irrelevant whether one has a good model
of, say, hourly price-load correlation58 (and in reality, one never has such a model),
if this is not the entity one has exposure to in light of available hedging instruments.
There is little reason to believe that trying to infer the desired relationship between
exposure and available portfolios via elaborate auxiliary models is superior to di-
rectly ascertaining that relationship from the start. The former approach is at best
unnecessary, at worst seriously misleading.

With this little lecture out of the way, we now turn attention to some specific
techniques related to simulation.

7.5.1 Monte Carlo

7.5.1.1 Integration as expectation

The basic idea here needs little elaboration. The central problem of interest is the
evaluation of integrals of the form
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V =
∫
�

dx · f (x)=
∫ 1

0
dx · f (x) · 1�(x) (7.145)

for some region � inside the unit hyper-cube of Rn. The expression in (7.145)
clearly can be expressed as an expectation:

V = E
[
f (x) · 1�(x)

]
(7.146)

with x a uniform deviate in Rn. The natural intuition is to approximate (7.145) by
a sample average

1

N

N∑
i=1

f (xi)1�(xi) (7.147)

where xi are drawn identically and independently (IID) from a uniform deviate in
the unit hypercube. Now, intuition is fine as far it goes, but it is worth asking how
(if at all) the arithmetic entity in (7.147) relates the integral of interest in (7.145).
To answer this question, first note that the expectation of each of term in (7.147) is
the same (via the assumption of identity in distribution), hence the expectation of
(7.147) equals (7.146) and thus integral of interest in (7.145). This equality in ex-
pectation implies that the approximation in (7.147) is unbiased. Second, since the
entity in (7.147) is itself a random variable, it is useful to ask how far any particular
realization of it can be from its expected value. Here the assumption of indepen-
dence of distribution, along with the Central Limit Theorem,59 tells us that the
variance of the approximation/estimate in (7.147) is O( 1

N ). Hence, as more simu-
lations are used, the probability that any particular realization of (7.147) is far (in
terms of some arbitrary tolerance) from the true value in (7.145) is correspond-
ingly small. These two points convey the sense in which the entity (7.147) has a
connection to the integral of interest in (7.145).

7.5.1.2 Generation of random deviates

We belabor these rather basic points because we wish to emphasize the crucial dis-
tinction between sample averages and population means, a point that was given
much attention in Chapters 2 and 6 in the context of estimation. As an arithmetic
expression (7.147) is merely a crank; for the output to be meaningful it must be
understood what the purpose of the tool is and how it relates to the objective in
question. We should note here some standard techniques for actually generating
the random variables used in simulation-based calculations. Of course, the idea of
algorithmically generating random variables is a contradiction in terms, hence the
actual methodology is termed pseudorandom number generation. The basic idea,
used in the vast majority of popular applications and algorithms, involves so-called
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linear congruential generation. For some initial value X0 (termed the seed) and a
modulus m, the following sequence is generated:

Xn+1 = (aXn+ b) mod m (7.148)

for suitable choices of a and b. Obviously, the recursion in (7.148) will only produce
m distinct values, and will eventually repeat itself. However, for “good” choices of
the underlying parameters, the maximal period (m) can be attained, and for suf-
ficiently long periods the resulting sequence will resemble “true” randomness (in
the sense that it will pass statistical hypothesis tests). Press et al. (2007) provide a
solid overview, as well as algorithms of good practical use; see also Park and Miller
(1988).60 The sequence in (7.148) thus effectively gives a uniformly distributed
set of integers, which obviously can be normalized to yield a set of (independent)
uniforms on [0,1].

7.5.1.3 Non-uniform deviates

Of course, in a great many applications it is more suitable to employ simulations
in terms of normally distributed random variables, rather than uniform deviates.
As is well-known, for continuously valued random variables X with known distri-
bution function F(x)≡ Pr(X ≤ x), F(X) is uniformly distributed. Thus F−1(U) is
distributed as X for U uniformly distributed on (0,1). Thus, by simulating standard
uniforms, general random variables can be generated by inverting the distribution
function. Clearly, the feasibility of this method depends on the distribution func-
tion being sufficiently tractable that the resulting inversion is not too numerically
taxing. A quite simple example, useful for modeling jump diffusions, is the expo-
nential density, where Pr(x) = λe−λx .61 In practice, there are superior methods,
such as acceptance/rejection (to be outlined shortly; see also Press et al., 2007),
which actually form the basis of other important applications such as Markov Chain
Monte Carlo (which were mentioned in Chapter 6 in the context of stochastic fil-
tering). Ideally, a method should be tailored to the nature of the distribution to be
simulated/sampled. A very useful example is the simulation of standard normals. Of
course, there exist very efficient techniques for inverting the standard normal CDF,
but the algorithm of choice is the Box-Muller method, which is a transformation of
two independent uniform deviates (x1,x2) via

x1 = e−
1
2 (y

2
1+y2

2 )

x2 = 1
2π tan−1 y2

y1

(7.149)

To see this, we argue in reverse: if (y1,y2) are independent unit normals, then upon
transforming to polar coordinates in the CDF it is easy to see that (7.149) implies
that (x1,x2) are independent uniforms. 62 Note that the deviates are produced in
pairs, a fact that can be exploited for efficiency.
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7.5.1.4 Acceptance/rejection

The method just outlined requires that the inverse of the CDF in question be fea-
sibly calculated (or that the underlying structure permits suitable tricks as in the
Gaussian/Box-Muller case). This requirement may be restrictive in many cases, so
we note an alternative here. Assume we have a CDF G which is not only easily in-
vertible63 but also “close” to the desired CDF F . In fact, we require the ratio F/G to
be bounded by a (positive) constant c, as close to 1 as possible. Now assume that Y is
distributed according to G: Y ∼G. Denote the respective densities by f and g . Now
draw independently a uniform RV U . The acceptance/rejection method works by

keeping (accepting) Y if U ≤ f (Y )
cg(Y ) and repeating the process otherwise (rejecting).

The claim is that the accepted deviates (again, drawn from G but only conditionally
kept) are distributed according to F .

To see this, consider the following conditional probability: Pr(Y ≤ y|U ≤ f (Y )
cg(Y ) ).

Since

Pr

(
U ≤ f (Y )

cg(Y )

)
=
∫
�

∫
[0,1]

dudyg(y)1

(
u≤ f (y)

cg(y)

)
=
∫
�

dyg(y) f (y)
cg(y) = c−1

Pr

(
Y ≤ y,U ≤ f (Y )

cg(Y )

)
=
∫
�

∫
[0,1]

dudy′g(y′)1(y′ ≤ y)1

(
u≤ f (y′)

cg(y′)

)

=
∫
�

dy′g(y′)1(y′ ≤ y)
f (y′)
cg(y′)

= c−1F(y) (7.150)

Thus, by Bayes’s rule, we see that Y conditioned on U being within the acceptance
region is indeed distributed as F .64

7.5.1.5 Joint dependency

Here, we note a very standard approach for generating multidimensional Gaus-
sian deviates with a given covariance structure. (We will consider multidimensional
aspects of simulation for copulas in Section 8.1.1.) We are referring of course to
Cholesky decomposition, which is a factorization of a symmetric matrix into a
lower triangular form: � =LLT . If � is a correlation matrix and z is a vector of
independent unit normals, then w = Lz is clearly a vector of correlated unit nor-
mals (with correlation matrix� ). As already pointed out in the subsection on high
dimensional quadrature, this factorization is not unique. Obviously, Cholesky is a
simple and convenient choice, and in fact alternative choices (e.g., diagonalization
via [orthogonal] eigenvectors) do not offer any substantial advantages (in terms
of convergence, etc.). The simulation error depends on the underlying covariance
structure, which obviously cannot be affected by one particular factorization as op-
posed to another. However, we will point out cases where this is not true, when we
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consider low-discrepancy alternatives to Monte Carlo simulation (i.e., quasi-Monte
Carlo).

As already indicated, the variance of any particular simulation is of great impor-
tance in determining the usefulness of the simulation’s output. We will now discuss
various standard techniques for improving simulation efficiency (i.e., reducing the
variance of the simulation).

7.5.2 Variance reduction

7.5.2.1 Antithetics

There are a number of techniques that are fairly easy to incorporate into any sim-
ulation scheme that can aid nontrivially in variance reduction. One such method
involves so-called antithetic variates. The idea here is very simple. In many applica-
tions the random deviates in question are identically distributed under simple, say,
affine, transformations. For example, if x is N(0,1), then so is −x. Similarly, if x is
U(0,1) then 1−x is also. Thus, if a random sample is generated, it is very simple to
create another random sample under this transformation. Apart from reducing the
computational cost of having to generate another random set from whatever con-
gruence generator one is using, the resulting variance of the estimator is reduced.
This can be seen as follows. For the Gaussian case we have the following (unbiased)
estimator:

V̂ = 1

2

(
1

N

∑
i

f (xi)+ 1

N

∑
i

f (−xi)

)
(7.151)

Using the independence of each draw, we see that the variance of the estimator is
given by

var(V̂ )= 1
2N

(
var(f (x))+ 1

2 cov(f (x), f (−x))
)

(7.152)

Therefore, in those cases where the objective function is negatively correlated un-
der the transformation, the variance in (7.152) will be less than the constituent
variances, in particular the variance of the base case estimator (i.e., without the
antithetic variate).65

7.5.2.2 Control variates

A generally more effective technique is the use of so-called control variates, often
referred to as a regression-based technique, for reasons that will become obvious.
Consider the following estimator:

V̂ = 1

N

∑
i

f (xi)+�
(

1

N

∑
i

g(xi)− g0

)
(7.153)

where g is some function whose expectation is known, with Eg(x) = g0. Clearly
this estimator is unbiased, for any value of �. With this freedom, we can choose�



324 Modeling and Valuation of Energy Structures

to minimize the variance of V̂ . Straightforward calculation shows that this optimal
value is given by

�̂=−cov(f (x),g(x))

var(g(x))
(7.154)

The connection between control variates and regression should be clear now.
Of course, the actual covariance in (7.154) is not known (the expectation of f is

precisely what is being sought), so in practice we use the sample covariance (and
variance). It is easy to see that for f = g , �̂=−1 and the estimator becomes V̂ = g0

with variance (trivially) zero. A classic example of this technique is to evaluate an
Asian option using a European option (with known BS value) as the control variate.
Finally, we note an obvious generalization of (7.153) and (7.154). We consider a
multidimensional problem, with multiple control variates

V̂ = 1

N

∑
i

f (xi)+�1

(
1

N

∑
i

g1(xi)− g0
1

)
+·· ·�K

(
1

N

∑
i

gK (xi)− g0
K

)
(7.155)

where x now denotes a multidimensional random variable, and gk are functions
with known expectations g0

k . Variance minimization of the estimator V̂ requires
that the following linear system be satisfied:∑

k

cov(gi ,gk)�k = cov(gi , f ) (7.156)

again illustrating the connection to regressions.

7.5.2.3 Importance sampling and its connection to measure change

Since the purpose of these variance reduction techniques is to effectively increase
the convergence properties of a simulation, we point out a method that is closely
related to the change-of-measure techniques described in Chapter 5. A simple
example will suffice here, as we will further develop these concepts later in the
chapter in conjunction with contour integration. Assume we are interested in the
calculating following tail probability via simulation:

Pr(z > α)= E [1(z > α)] (7.157)

where z is a unit normal and α is large (e.g., more than two standard deviations).
Clearly, simulation will converge very slowly because an extremely large number
of paths will be required to get nonzero samples. (The same issue arises in trying
to value deep OTM options by simulation.) A standard textbook trick is to note
that, by completing the square, the underlying probability density in (7.157) can be

rewritten as 1√
2π

e−z2/2 = 1√
2π

e−(z−α)2/2e−αz+α2/2, in which case the desired ex-

pectation can be re-crafted as a new expectation wrt. a Gaussian density with mean
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centered about the tail point of interest,66 which will consequently converge more
rapidly. For obvious reasons, this approach is termed importance sampling. There is
in fact a deeper aspect to the approach beyond algebraic manipulations. Note that
the additional exponential factor is reminiscent of a Girsanov-type transformation,
which naturally leads us to consider applications of change of measure. Explicitly
introducing an underlying probability measure P, (7.157) can be written as

EP1(z > α)= EP ξ(z)

EPξ(z)

EPξ(z)

ξ(z)
1(z > α)

= EPξ(z) ·EPξ ξ (z)−11(z > α) (7.158)

where ξ(z) is some (suitably chosen) function of z and the measure Pξ is de-

fined via
dPξ
dP = ξ(z)

EPξ(z)
. Note that (7.158) is completely general and the only real

consideration in applying this approach is that the ensuing change of measure be
feasible/tractable. Maintaining this generality, a possible consideration in choosing
ξ(z) is that, under the new measure, the expectation of z is centered about the tail
quantile α:

EPξ z = EPzξ(z)

EPξ(z)
= α (7.159)

Plainly, the familiar class of affine jump diffusions we have considered in great de-
tail throughout provides such feasibility, in particular with adjustment factors of the
form ξ = eγ z . It should be clear how the standard textbook example can be recov-
ered from this framework. Importance sampling is thus seen to be an important and
quite general technique for facilitating the convergence of standard Monte Carlo
schemes, when done properly (see Endnote 66). We will consider other connections
to complex variable theory later in this chapter.

7.5.2.4 Brownian bridge construction

Finally, it is worth noting here a technique, although not strictly directed toward
variance reduction or convergence as such, is nonetheless quite useful in facilitating
certain calculations based on simulation. In many applications, we are interested
not simply in the distribution of some entity at a terminal time (e.g., in the case
of a vanilla or European option), but in the distribution of an entire path (that is
to say, the distribution of a process through time). Familiar examples from finan-
cial markets are Asian and lookback options. Obviously, path dependency is quite
important in energy markets, due to various physical/operational constraints that
impact valuation. Examples include natural gas storage and tolling. Commonly, we
are interested in discrete time versions of a (vector) Brownian motion with drift,
e.g.,

�z
j
i = μi�t +σi

√
�tφ

j
i (7.160)
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where φ are unit normals with correlation structure Eφ
j
iφ

j′
i′ = δjj ,ρii (so j is

a time-step index and i is a commodity index). While increments are inde-
pendent, (log) prices have the following correlation structure: corr (zt ,zt ′) =√

min(t , t ′)
/

max(t , t ′). The aggregate correlation structure (across time and asset)

can be conveniently represented via the Kronecker (matrix) product:

(
√

min(t , t ′)
/

max(t , t ′))⊗ (ρij) (7.161)

(In other words, the matrix structure has the form of blocks of cross-commodity
correlations for a particular pair of time horizons.) It is not hard to show that the
Cholesky decomposition of a Kronecker product is the Kronecker product of the
constituent factors.67 (The temporal correlation matrix has a particularly simply
Cholesky factorization: (1/

√
max(t , t ′)) for the lower triangular form.) Thus, paths

can be simulated either by directly iterating (7.160) or by imposing the aggregate
correlation structure in (7.161). As a general rule, there is no compelling advan-
tage of one approach over the other. However, there is a case for preferring the
former approach to the latter. It often proves useful for facilitating the convergence
of a simulation procedure by adjusting the simulated paths to match certain known
properties of the underlying distribution. Typically, this involves moment match-
ing of some sort. A suitable approach is an affine transformation at the level of
the normal deviates, e.g., z → A(z − 〈z〉), where brackets denote sample averages,
and the matrix A is chosen so that the sample covariance matrix matches a spec-
ified covariance matrix � = CCT . This is achieved by taking A = CĈ−1 where Ĉ
is the Cholesky factor of the sample covariance matrix 〈(z−〈z〉)(z−〈z〉)T 〉. (By
construction the sample average is zero.)

Another approach that proves useful in many applications involves the so-called
Brownian bridge construction. The Brownian bridge is a Brownian motion condi-
tioned to be 0 at some terminal endpoint. There are several different constructions
of the Brownian bridge that are well known in the literature; the construction of in-
terest here entails a linear interpolation. For the general case this can be represented
as

B0
t ∼N

(
Bt1 +

t − t1

t2− t1
(Bt2 −Bt1),

(t2− t)(t − t1)

t2− t1

)
(7.162)

where B is a Brownian motion, B◦ is a Brownian bridge, and t1≤ t ≤ t2 The result in
(7.162) provides a means of simulating paths of a Brownian motion. The problem
is broken up into increasingly finer levels of resolution. Consider a terminal time T .
We have BT =

√
T · z with z ∼N(0,1). Then we note that by interpolating between

B0 = 0 and BT via (7.162), an entity with the proper distribution is obtained. In
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fact, the necessary covariance structure is also obtained. This observation leads to
the construction of the following sequence:

Btn+1
2k+1

= tn
k+1− tn+1

2k+1

tn
k+1− tn

k

Btn
k
+ tn+1

2k+1− tn
k

tn
k+1− tn

k

Btn
k+1
+
√√√√ (tn

k+1− tn+1
2k+1)(t

n+1
2k+1− tn

k )

tn
k+1− tn

k

· z

Btn+1
2k
= Btn+1

k
,Btn+1

2k+2
= Btn

k+1

(7.163)

for some sequence of points satisfying tn+1
2k = tn

k < tn+1
2k+1 < tn

k+1 = tn+1
2k+1, and with

z drawn from a sequence of independent unit normals. The result in (7.163) can be
readily derived by induction, by first calculating the characteristic function of Bn+1

2k+1
conditional on information at resolution level n, then further conditioning on Btn

k
.

The most convenient approach to take in practice is to successively bisect the time
horizon in question, so that first BT is simulated, then BT/2 is constructed, then
BT/4 and B3T/4, etc.; see the algorithm in Glasserman (2004). As with the prior ap-
proaches for path generation, there is no real computational or statistical advantage
to employing (7.163). The main advantage comes when considering alternatives to
Monte Carlo simulation, and in fact relates to our ubiquitous theme of time scales.
The multi-resolution aspect of the Brownian bridge involves the construction of
components operating on coarser/broader time scales, with increasingly finer time
scales being filled out each step, in contrast to typical time-stepping methods. This
multilevel structure can often be exploited to facilitate variance reduction, since
the most important drivers can often be more readily identified, if not isolated.
Note that in higher dimensions the algorithm in (7.163) can be suitably modified
by taking z → Cz where C is some factorization satisfying CCT =� for the desired
correlation structure. We have already seen in the subsection on quadrature that
different choices for this factorization can produce different convergence results.
This is also the case here, where the dimension of the main drivers, so to speak, of
a problem can be best extracted from specific representations. (An example would
be familiar PCA, for transforming data such that most of the underlying variance is
concentrated in a few drivers.)

We will further consider these issues in the section on quasi-Monte Carlo. Our
next topic continues with a central theme of this work, namely, the connection of
the so-called greeks (delta, gamma, etc.) to valuation, specifically as a means of
both extracting value (through hedging) and quantifying the (residual) exposure
induced by the value function. Simulation as a computational tool is only use-
ful for a particular valuation problem to the extent that the necessary greeks can
also be obtained. We now demonstrate effective techniques for carrying out these
calculations.
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7.5.2.5 Application: likelihood ratio for greeks

As we have emphasized throughout, the greeks/sensitivities for any valuation prob-
lem are not just theoretical niceties, but are critical to the meaning and extraction of
value in the first place. Computation of these greeks is thus of central concern to any
computational methodology. A common approach to determining greeks is simply
finite differencing: the sensitivity to a given parameter (e.g., volatility) is obtained by
central differences, by first reevaluating the problem with the parameter bumped up
by some small value (either additively or multiplicatively), then reevaluating again
with the parameter bumped down by the same amount. The numerical derivative
is then the approximation to the desired greek. This method is certainly straight-
forward, and there is often no other feasible approach to the problem. However, it
suffers from a number of drawbacks that would preferably be avoided.

First, inasmuch as any non-analytical (i.e., numerical) result is an approximation
(however good), numerical differentiation necessarily adds another layer of approx-
imation (i.e., error) to the problem. For some higher-order greeks (such as gamma),
taking too small a perturbation size can result in numerical instabilities, especially
when simulation is used. Second, for simulation-based methods great care must
be exercised in ensuring that only the entity of interest is varied between paths (al-
though often this is simply a case of ensuring that the same set of paths are used for
each bump). Finally, the underlying simulation may be computationally costly, and
having to calculate multiple perturbations (e.g., for each price along a given forward
curve) may become rather burdensome. In general it is useful to have a means of
calculating important greeks without having to make recourse to finite differences.

The so-called likelihood ratio method (so named because it involves expressions
often encountered in common likelihood tests) is one such method. We will con-
sider the general exposition in the Gaussian case. The basic valuation integral (in
N–dimensions) is

V = 1√
(2π)n det�

∞∫
−∞

dx · e−xT�−1x/2H(exp(μ+σ ◦ x)) (7.164)

where ◦ denotes the Hadamard product (element-by-element matrix/vector mul-
tiplication). We have baked time dependence into the volatilities σ , and μ =
logF − 1

2σ ◦ σ in terms of the inception prices F . Let C = �−1 be the inverse of
the correlation matrix and denote any normalization constant by D. Introduce the
variable ξ = μ+σ ◦ x and write the valuation problem as

V = D−1

σ1 · · ·σN

∞∫
−∞

dξ exp

⎛⎝−1

2

∑
ij

Cij(ξi−μi)(ξj −μj)

σiσj

⎞⎠H(eξ ) (7.165)
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Thus we have (using ∂
∂F = 1

F
∂
∂μ and symmetry of C)

∂V

∂Fk
= D−1

Fkσ1 · · ·σN

∞∫
−∞

dξ exp

⎛⎝−1

2

∑
ij

Cij(ξi−μi)(ξj −μj)

σiσj

⎞⎠H(eξ )

∑
j

Ckj(ξj −μj)

σkσj
(7.166)

so that upon re-substituting for x we get

∂V

∂Fk
= D−1

Fkσk

∞∫
−∞

dx exp(− 1
2 xT Cx)H(exp(μ+σ ◦ x))(Cx)k (7.167)

In other words, the vector of deltas are obtained by taking the expectation of the
payoff function times the vector Cx. Similarly, gamma is given by

∂2V

∂Fk∂Fk′
= −�k

Fk
δkk′ − Ckk′V

FkFk′σkσk′

+ D−1

FkFk′σkσk′

∞∫
−∞

dx exp

(
−1

2
xT Cx

)
H(exp(μ+σ ◦ x))(Cx)k(Cx)k′

(7.168)

For the (forward) vega68 we have

∂V

∂σk
=− D−1

σkσ1 · · ·σN

∞∫
−∞

dξ exp

⎛⎝−1

2

∑
ij

Cij(ξi−μi)(ξj −μj)

σiσj
H(eξ )

+ D−1

σ1 · · ·σN

∞∫
−∞

dξ exp(−")H(eξ )
⎛⎝∑

j

Ckj(ξk−μk)(ξj −μj)

σ 2
k σj

−
∑

j

Ckj(ξj −μj)

σj

⎞⎠ (7.169)
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(where the meaning of the variable " should be clear) so that

∂V

∂σk
=−D−1

σk

∞∫
−∞

dξ exp

(
−1

2
xT Cx

)
H(exp(μ+σ ◦ x))(−1+ (xk −σk)(Cx)k)

(7.170)
Now, in general we will need the correlation greeks as well (because there may be de-
pendencies fixed through a heat rate volatility that will manifest themselves through
correlation sensitivities). To get these, note that

C� = I

Cθ�+C�θ = 0

Cθ =−C�θC

(7.171)

and

det(�+ dθ�θ)= det(�)det(I + dθ C�θ)

= det(�)(1+ dθ Tr(C�θ))+ o(dθ) (7.172)

so that

∂ det(�)

∂θ
= det(�)Tr(C�θ)

∂ det (�)−1/2

∂θ
=−1

2
det(�)−1/2Tr(C�θ)

(7.173)

Finally, we see that

∂V

∂ρkl
=D−1

∞∫
−∞

dx exp

(
−1

2
xT Cx

)
H(exp(μ+σ ◦x))

1

2
(xT C�ρklCx−Tr(C�ρkl))

(7.174)
To understand the effect of the sensitivity correlation matrix, note that (using the 3
asset case for illustrative purposes)

�ρ12 =
⎛⎝ 0 1 0

1 0 0
0 0 0

⎞⎠ (7.175)
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and it can be readily seen that the effect of multiplication is simply to filter out any
elements of the multiplied matrix or vector except those with indices 1 or 2. Thus,

∂V

∂ρkl
=D−1

∞∫
−∞

dx exp

(
−1

2
xT Cx

)
H(exp(μ+σ ◦x))((Cx)k(Cx)l−Ckl) (7.176)

Note that there is in fact a relationship between the gammas and vegas.69 Recall
(3.56), which reproduce here with suitably modified notation:

Vρkl = FkFlσkσl�kl

Vσk = Fk

∑
l

ρklσlFl�kl
(7.177)

The first equation in (7.177) follows immediately from (7.176) and (7.168). The
second equation is straightforward to derive using the result for gamma (simply
cross multiply by the correlation matrix), and we leave it as an exercise for the
reader. The obvious point here is the computational benefit offered by (7.177): once
gammas are in hand, vegas (including correlation sensitivities) fall out at once.

Now, although these results are formally rather nice, they suffer from a serious
problem in practice: they have poor convergence properties, precisely due to the
various factors Cx introduced in the calculation. The reason is as follows. The
likelihood ratio method essentially takes a derivative of the logarithm of the un-
derlying (parameterized) probability density, call it Prθ . The resulting derivative is
the weighting factor introduced in the various expressions above. Since by defini-
tion

∫
dxPrθ (x) = 1, it follows that

∫
dx ∂
∂θ Prθ (x) =

∫
dxPrθ (x)

∂
∂θ logPrθ (x) = 0

and thus the expectation of the weighting factor is 0 (see Capriotti, 2008)70. (Note
that the vector factor Cx in, e.g., (7.167) clearly has zero mean.) What this means
is that ensemble-based approximations will (potentially) involve both positive and
negative terms in the (sample) average, contributing cancelations and hence noise
(i.e., additional variance) to the calculation. Figure 7.9 compares likelihood ratio
results against straightforward finite differencing, for a standard (ATM) call. As can
be seen, finite difference clearly outperforms the likelihood ratio.

7.5.2.6 Illustration: spread option calculations

This defect highlights the need for a good control variate. We will illustrate with a
standard spread option with nonzero strike. A suitable control variate is the corre-
sponding zero strike structure, which of course can be evaluated analytically via the
Margrabe formula. Figure 7.10 compares the results of the delta calculation using
likelihood ratio only, likelihood in conjunction with the (Margrabe) control variate,
and finite differencing.
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Visually it is clear that the likelihood ratio combined with a control variate yields
superior results. (Although it is not immediately clear from the graph, finite differ-
encing outperforms likelihood ratio only, just as it did in the Black-Scholes example
shown in Figure 7.9.) These examples serve to drive home a larger point: simula-
tion is only a computational device, and like any tool it can be misappropriated, or
made more efficient in collaboration with other computational foils. Ultimately it
remains just a means to an end. The idea that good greeks can be produced from
raw simulations is doubly problematic. First, the value that those greeks (as actual
hedge volumes) are meant to extract must be determined by a valuation framework
prior to any simulation. The simulation itself provides no information regarding
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the essence of this value (as related to a replication strategy). Second, if simulation
is the chosen means for conducting the calculation in question (and no doubt, of-
tentimes simulations is the only feasible means), great care must be employed in the
implementation. Noisy greeks are worse than useless.

This question of efficiency and convergence brings us to our next topic.

7.5.3 Quasi-Monte Carlo

We know from appeals to the Central Limit Theorem that the rate of convergence
of Monte Carlo schemes (at heart, pseudo-random number generation) is O( 1√

N
),

where N is the number of simulations. Not only is this rate rather slow, but standard
Monte Carlo suffers from an additional inefficiency. The essence of any quadra-
ture scheme is to discretize, so to speak, the unit hypercube.71 By construction,
Monte Carlo schemes fill out the unit hypercube independently (memoryless would
probably be a better characterization). That is, as more points are generated (thus
presumably facilitating the accuracy of the computation), there is no relationship
to the points previously generated. In particular, it is possible that a newly gen-
erated point is nearby previously generated points. This effect manifests itself in
the well-known clustering72 of simulated points, which can easily be seen in a
two-dimensional scatterplot. This can lead to inefficiencies (for a particular set of
simulated points) in the sense that the integrand is effectively and needlessly re-
sampled. Conversely, gaps or empty regions left unfilled lead to undersampling.
Standard quadrature schemes avoid these problems by uniformly discretizing the
integration region. However, such schemes are prohibitively expensive due to the
exponentially growing cost with the number of dimensions. There is also no way of
adding a new quadrature point without completely reconstructing the quadrature
grid (and of course completely resampling the integrand). It is desirable to have a
method that retains the uniformity of standard discretization while permitting easy
addition of new points.

7.5.3.1 Low-discrepancy sequences

This objective is accomplished, to a large degree, with so-called quasi-Monte Carlo
schemes. These schemes generate a (multidimensional) sequence that fills out the
unit hypercube more uniformly than standard (pseudo-random) Monte Carlo. The
basis of such methods is so-called low-discrepancy sequences, which (not surpris-
ingly) are sequences for which any finite subsequence has low discrepancy. In the
event that this description is not helpful, we provide the following definition of the
discrepancy of a d-dimensional set S= {x1, . . . ,xN } with xi ∈ [0,1]d :

DN (S)= sup
B∈I

∣∣∣∣#(xi ∈ B)

N
−V (B)

∣∣∣∣ (7.178)
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where I is the set of d-dimensional boxes within the unit hypercube and V is the
volume of a box. Intuitively, (7.178) provides a measure of how uniformly well
(or poorly) the set fills any region of the unit hypercube. The discrepancy (or
more accurately, its close cousin the star discrepancy) of a set is used (via the
Koksma-Hlawka inequality) to bound the error of approximations such as (7.147)
to integrals of the form (7.145), along with a measure of the variation of the inte-
grand (roughly speaking, its smoothness). These bounds are often not very useful
in practice, because apart from being difficult to actually calculate, they can be in-
finite, as well. For many popular choices of low-discrepancy sequences (to be listed
below), the discrepancy has the following order of magnitude:

O

(
logdN

N

)
(7.179)

Although logN grows much slower than N , the seemingly impressive rate of con-
vergence in (7.179) (in comparison to O(N−1/2) for standard Monte Carlo) must
be tempered by the fact that as the dimension d grows, quasi-Monte Carlo loses
its effectiveness. Furthermore, the ability of low-discrepancy sequences to fill in the
unit hypersphere more uniformly than (pseudo-) Monte Carlo is a result of the fact
that there is an effective correlation (or memory, for lack of a better term) between
successive iterates in the sequence. (Put differently, pseudo-random schemes fill the
unit hypersphere indirectly, while quasi-Monte Carlo methods fill it directly.) This
fact makes quasi-Monte Carlo unsuitable for problems requiring path generation;
it is essentially a quadrature scheme at heart. However, since a great many prob-
lems of interest can be crafted as expectations/quadratures, quasi-Monte Carlo is a
viable option in many cases. This is especially true when used in conjunction with
so-called scrambling techniques that overcome the aforementioned deficiencies in
higher dimensions.

7.5.3.2 Specific examples and constructs

Very useful expositions on low discrepancy sequences and their applications can be
found in Caflisch (1998) and Glasserman (2004). Here we will briefly outline the
construction of some of the more popular sequences, and give examples of their
effectiveness in energy market applications. We start with the van der Corput se-
quence. This sequence simply reverses the representation of the integers under some
base b:

n=
m∑

j=0

aj(n)b
j ⇒�b(n)=

m∑
j=0

aj(n)b
−j−1 (7.180)

The Halton sequence is a natural generalization of the van der Corput sequence to
higher dimensions:

h(n)= (�b1(n), . . . ,�bd (n)) (7.181)
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with bi relatively prime. Most modern approaches are based on the work of Nieder-
reiter (1988), who introduced the terms (t ,m, s) -nets and (t , s) -sequences. A very
popular special case is the so-called Sobol’ sequence, which is constructed as follows
(see Joe and Kuo, 2008b). In d dimensions, the jth component of a Sobol’ sequence
is generated by starting with a primitive polynomial:

xsj + a1,jx
sj−1+ a2,jx

sj−2+·· ·asj−1,jx+ 1 (7.182)

where the coefficients ak,j are either 0 or 1. Next, introduce the following recursion
relationship:

mk,j = 2a1,jmk−1,j⊗ 22a2,jmk−2,j⊗·· ·⊗
2sj−1asj−1,jmk−sj+1,j⊗ 2sj mk−sj ,j⊗mk−sj ,j

(7.183)

for some positive integers mk,j , and where⊕ is the bitwise exclusive-or (XOR) oper-

ator.73 Then, a set of direction numbers is constructed from νk,j = mk,j

2k , from which
the desired Sobol’ component is given by

xi,j = i1ν1,j⊗ i2ν2,j⊗·· · (7.184)

where the binary form of i is given by i = (· · · i3i2i1)2. This discussion should serve
as an outline of the main idea; actual implementations (via Gray code in C/C++)
can be found in Press et al. 2007 or Joe and Kuo (2008b).

7.5.3.3 Issues in high dimensions

One rather serious drawback to using low-discrepancy sequences is their tendency
to display strange patterns in higher dimensions; effectively, they start clustering
along hyperplanes and so begin to fill the entire space very inefficiently. Again, this
is an inherent feature of the construction of these sequences, namely an effective au-
tocorrelation. We illustrate this phenomenon in Figure 7.11, using a straightforward
implementation (specifically, the algorithm from Press et al. [2007]).

There are a few ways of addressing this issue. So-called scrambling techniques
essentially randomize the binary representation of the Sobol’ iterates; see Chi et al.
(2005). Alternatively, a judicious choice of initial seed,74 so to speak, can produce
Sobol’ sets without clustering. Figure 7.12 shows the results from the algorithm of
Joe and Kuo (2008b).

It bears repeating that simulation techniques are ultimately quadrature methods.
Their chief utility comes in applications to high-dimensional problems. We provide
an illustration in Figure 7.13. We price again an option with payoff equal to the
maximum of four lognormal assets, which are taken as independent with unit vari-
ances. (An “exact” numerical value is obtained from the methods used in Section



336 Modeling and Valuation of Energy Structures

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Sobol Points

Figure 7.11 Clustering of Sobol’ points
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Figure 7.12 Sobol’ points with suitably chosen seed

7.4.2.) It can be seen that, while both quasi- and pseudo-Monte Carlo techniques
converge for sufficiently large numbers of realizations, quasi-Monte Carlo (Sobol’
in this case) does so more uniformly. This is of course a reflection of the nature of
the method, to fill out the unit hypercube more regularly than pseudo-Monte Carlo
(i.e., random number generation). Both approaches, however, inherently perform
the same task: quadrature.

We now turn attention to an important topic in energy markets with these
features, namely control problems.
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Figure 7.13 Convergence of quasi- and pseudo-Monte Carlo

7.6 Stochastic control and dynamic
programming

An important class of problems encountered in energy markets involves optimal
control of some stochastic process. This situation arises because there are many
structures whose value depends on some (operational) state of the underlying
(physical) system, and the decision to induce a change in this state depends on
the dynamic, stochastic behavior of some underlying price system. Typical exam-
ples (which have been discussed elsewhere in this work) are tolling and natural gas
storage. In the former, the decision to start up or shut down a power plant depends
on spark spreads now, plus the expected value of the future toll given a change in
the system state (i.e., the plant turned on or off). In the latter, a decision to inject
or withdraw fuel depends on the price of gas now plus the expected value of future
storage given a system change (i.e., capacity increased or reduced). In these prob-
lems, there is an apparent paradox in that the value depends on the decision taken
now, but the decision to take now depends on the value!

Of course, there is no paradox, and we have in fact discussed these kinds of prob-
lems already in several places, most notably Section 3.3. In fact, even in this chapter
we have presented methods of solution (e.g., Section 7.3.2). We will briefly review
the main ideas before focusing on another numerical approach that ties in with the
simulation-based techniques that we have just presented. The major theme of this
section should be stated quite clearly: control problems are quite challenging com-
putationally. It is unavoidable that some sort of approximate solution method must
be resorted to, which by nature provides a lower bound on value. The imperative
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question then becomes: how good is this value? Put differently, how much more
value is there? As we will see, a powerful set of techniques already encountered in
Chapter 3 (duality) provide a feasible means of answering these questions.

7.6.1 Hamilton-Jacobi-Bellman equation

As already noted, the relevant material here has already been covered in Section
3.3.1, so we will only present the pertinent results. A general representation of the
kinds of problems of interest is captured by (3.97):

V (St ,At , t)= sup
a

Et

⎛⎝ T∫
t

e−r(s−t)g(Ss ,As ;as)ds+ e−r(T−t)f (ST ,AT )

⎞⎠ ,

A ∈A,a ∈ a (7.185)

over some finite time horizon. The meaning of (7.185) is that the value V (depen-
dent on prices S and some system state A) is the supremum taken over all (adapted)
actions (a) of the expected value accruing from some terminal payoff f and accu-
mulated gains/losses g . Bellman’s principle of optimality states the following. For
Markov decision processes (almost always the typical case), the optimal present de-
cision consists of the action that optimizes any immediate payoff plus the expected
value of the objective function over the remaining horizon, given the present ac-
tion. This principle leads to the following ensembles for numerically solving (7.185)
(recall again Section 3.3.1):

V (St ,At , t)=max
a
(g(St ,A;a)�t + e−r�t Et V (St+�t ,A+ a�t , t +�t))

Vt + 1
2LV +max

a
(g(S,A;a)+μT VS+ aVA)− rV = 0 (7.186)

The second equation in (7.186) is commonly referred to as the Hamilton-Jacobi-
Bellman equation, although the first equation (a precursor in discrete time) is
probably more commonly employed as a solution technique.

In fact, we have already seen implementations of this discrete-time calcula-
tion, namely, the Grid Model of Section 7.3.2. The feasibility of this approach
hinges critically on the ability to efficiently carry out the underlying expectations
in (7.186).

7.6.2 Dual approaches

We can now contrast direct methods for solving (7.186) with so-called dual meth-
ods. Again, we will be brief, as this material has already appeared in Section 3.3.2.
As noted above, direct methods seek solutions to (7.186) by optimizing across
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the space of actions/decisions/controls (or equivalently, across the space of state
changes). An alternative approach is to frame the problem in such a manner that
optimization is carried out over the space of candidate value functions. To see this,
recall the analysis in Section 3.3.2. The standard American option problem (in
terms of stopping times) satisfies the following relations:

V (St , t)= sup
t≤τ≤T

Et (e
−r(τ−t)f (Sτ ))= sup

t≤τ≤T
Et (e

−r(τ−t)f (Sτ )−πτ +πτ )

≤ sup
t≤τ≤T

Et (e
−r(τ−t)f (Sτ )−πτ )+πt ≤ Et max

t≤τ≤T
(e−r(τ−t)f (Sτ )−πτ )

+πt ⇒ ·V (St ,t)≤ inf
π

{
Et max

t≤τ≤T
(e−r(τ−t)f (Sτ )−πτ )+πt

}
(7.187)

where π represents a supermartingale (i.e., a process satisfying πt ≥ EtπT ). In par-
ticular, since the (discounted) value function is itself a martingale, (7.187) implies
that the closer a candidate supermartingale is to the true value process, the tighter
the upper bound is. (The difference between an upper- and lower-bound valuation
via (7.187) is commonly referred to as the duality gap.) In fact, this latter point is
worth emphasizing: (7.187) provides an upper bound, in contrast to many other
methods that, by their nature, can only provide lower bounds. Let us now consider
some of these methods, before turning to how duality-based upper bounds can be
used in conjunction with simulation-based valuation methods.

7.6.3 LSQ

7.6.3.1 Challenges for dynamic programming

Let us consider the standard backward induction formulation of an American
derivative in discrete time (so that it is really Bermudan in nature), in terms of the
comparison between immediate payoff and the so-called continuation value (i.e.,
the value of holding or non-exercise):75

Vn(Si)=max(P(Si),En,iVn+1(S)) (7.188)

where P is some payoff function, and at some terminal time T (the starting point of
the recursion) we have that VT (S)= P(S). In (7.188), the subscript n, i in the con-
ditional expectation operator is meant to emphasize the dependence on the time n
asset value Si . This latter point highlights the difficulty in applying simulation-based
methods to problems of this sort. Simulations typically involve the generation of
paths from some initial point. But, to carry out the backward induction in (7.188),
conditional expectations (of the next-step value function) must be calculated at each
point on a path. These expectations could similarly be computed via simulation,
however, it is precisely this necessary information that the typical simulation does
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not provide (because they are not generated from intermediate points, only from
the initial point). What is needed, in essence, is a “simulation within a simulation,”
so to speak. While grid- or tree-based methods are (reasonably) well suited for this
task (because the connection between grids/trees of neighboring time steps via tran-
sition densities can often be efficiently exploited), simulation is computationally
infeasible here.

7.6.3.2 Regression-based approximations

An alternative approach is the following, broadly known as Least Squares Monte
Carlo (LSQ). First, recall the modern notion of conditional expectation as a projec-
tion onto a sub-sigma algebra of the underlying probability space. This framework
clearly has affinities with the regression techniques encountered in Chapter 2, and
we are accordingly led to represent conditional expectation as an appropriate ex-
pansion in terms of some set of regressors.76 That is, we look for an approximation
(to the continuation value) of the following form:

Cn(z
i
n)≡ En,iVn+1(z)≈

∑
j

βjβj(z
i
n)≡ Ĉn(z

i
n) (7.189)

for some set of basis functions Bj . In (7.189), superscripts on z denote path indices
and subscripts denote time steps. The coefficients are computed from a standard
regression across paths of the time n+1 value function on the basis functions eval-
uated along the time n path variables. There is typically little a priori guidance for
how to best choose these basis functions for a given problem, and in practice the
choice is fairly ad hoc; typical examples include:

• Monomials: 1,z,z2, . . .
• Indicator and related functions: H(z),z+, . . . , and powers thereof
• Special functions, e.g., Hermite or Laguerre polynomials
• Tensor products of the above choices in higher dimensions.

The pioneering work on this technique was done by Longstaff and Schwartz (2001)
and Tstitsiklis and van Roy (2001).77 (These will henceforth be denoted by LS
and TR, respectively.) It is worth briefly noting the subtle difference between the
approaches adopted in these two works. The essential point concerns how the con-
tinuation value is propagated in the backward induction. First, note that (7.188)
can be written as a recursion on continuation value via

Cn(zn)= EnVn+1(zn+1)= En max(P(zn+1),En+1Vn+2(zn+2))

= En max(p(zn+1),Cn+1(zn+1)) (7.190)
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with the convention CT = 0. (The setup in (7.190) is sometimes referred to as Q
value iteration.) In the TR approach, the backward induction is implemented as

Vn(Zn)=max(P(zn), Ĉn(zn)) (7.191)

whereas in LS it is performed as

Vn(zn)= P(zn)1(P(zn) > Ĉn(zn))+Vn+1(zn)1(Ĉn(zn) > P(zn)) (7.192)

It can thus be seen that TR and LS can be broadly characterized as value function
approximations and stopping time approximations, respectively. It is probably not
inaccurate to say that LS is the more popular technique in practice, although there
are certainly arguments in favor of using TR. The TR formulation is continuous,
whereas LS is discontinuous, which may impact pathwise sensitivities for calcula-
tions of greeks. However, TR is potentially more sensitive to the propagation of
error across time steps, which is generally less of an issue for LS (since the approxi-
mation to the continuation value is only used to decide on the exercise boundary).
See Stentoft (2012) for a recent numerical study.

7.6.3.3 A suitable choice of regressors

In truth, the choice of the particular methodology for employing the continuation
value is of less importance than having good bounds on whatever particular value
is produced, and we will investigate this problem shortly. (We tend to find TR to
be the more convenient framework for this objective, but this preference is largely
of little impact.) With this in mind, we will now indicate a particular choice of
indicator functions in (7.189) that have an intuitive interpretation and are simple
to implement. First note how the coefficients are calculated:∑

i

Bk(z
i
n)V (z

i
n+1)=

∑
j

βj

∑
i

Bj(z
i
n)Bk(z

i
n) (7.193)

In matrix notation, (7.193) can be written as 〈BBT 〉β = 〈BV 〉, where brack-
ets denote pathwise summations. A very convenient choice here would be an
“orthonormal” basis, i.e., ∀z there is only one index j such that

Bj(z)= 1 (7.194)

and zero otherwise. That is, if (7.194) holds for some value of j, then we have that
Bk(z)= 0 for k �= j. The coefficients are then given by

βk =
∑

i
Bk(z

i
n)V (z

i
n+1)∑

i
Bk(zi

n)
(7.195)
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Note that this expression has the intuitive interpretation of an average of the value
function across those paths that are in some sense “similar” to the path upon which
the conditioning is based. It is basically equivalent to kernel-based estimation.78

Heuristically, we can write (7.189) as

E
z

j
n
V (zn+1)≈

∑
i

V (zi
n+1)1(z

i
n ∼ z

j
n)∑

i
1(zi

n ∼ z
j
n)

(7.196)

where the symbol ∼ is meant to convey some notion of “similarity” between paths
(e.g., akin to a common node in a multinomial tree, albeit a “fuzzy” node, so to
speak). Operationally, this notion could (in practice does) simply mean something
like “approximately equal to.”

For example, since we will often be considering Gaussian problems, the path
variables will take the form

zi
n = z0− 1

2
σ 2tn+σ√tnφ

i
n (7.197)

with φi
n∼N(0,1). Thus, there is a simple transformation relating the path variables

to standard normal deviates, and the notion of “similarity” driving the basis func-
tions can be applied at the level of the generated random deviates. The exercise can
thus be treated as an issue of indexing paths appropriately and averaging over paths
with a common index. Since this indexing can be handled outside of any loops that
handle the backward induction central to control problems, the actual calculation
of the expected value is greatly facilitated.

Continuing the example, consider the following choice:

En,iV (zn+1)≈ β1B1(z
i
n)+β2B2(z

i
n) (7.198)

where

B1(z)= 1
(
z > z0− 1

2σ
2tn
)

B2(z)= 1
(
z < z0− 1

2σ
2tn
) (7.199)

In other words, the basis functions depend on whether the underlying random de-
viate is positive or negative. Thus, the conditional expectation is an average across
paths for which the log price (say) is above (below) its unconditional mean. Note
that extensions to higher dimensions can be implemented straightforwardly via
tensor products, e.g.,

B11(z)≡ B1(z1)⊗B1(z2)= 1
(
z1 > z10− 1

2σ
2
1 tn,z2 > z20− 1

2σ
2
2 tn
)

(7.200)
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In general, there will be no definite relationship (in an ordinal sense) between
regression-based approximations such as (7.189) and the true value function. Ide-
ally, we would like to have some sense of a lower-bound valuation that can be used
(we will see) in conjunction with duality-based approaches to derive an upper-
bound valuation. To attain lower bounds, LSQ typically proceeds in two stages.
First, a preliminary set of (price) paths is generated that serves as the basis for the
regression calculation in (7.189). Then, a secondary set of paths is generated that is
used, in conjunction with the basis function coefficients computed in the prelimi-
nary stage, to carry out the backward induction of (7.188) (as implemented either
via LS or TR). This two-stage process effectively means that a suboptimal exercise
policy is used in the (final) procedure, and hence that the resulting valuation will
be a lower bound to the true value.

For example, using (7.195) for a set of paths denoted by z̃i
t , we would calculate

for another set of paths:

Ezt V (zt+1)≈
∑

k

βkBk(zt )= βkz

=
∑

i

V (z̃i
n+1)

Bkz (z̃
i
n)∑

i′
Bkz (z̃

i′
n )
=
∑

i

V (z̃i
n+1)

1(i ∼ kz)∑
i′

1(i′ ∼ kz)
(7.201)

where kz is the index k st. Bk(zt ) = 1 and 0 otherwise. The notation in the last
equation in (7.201) indicates that the conditional expectation of V using the new
set of paths is a weighted average of V using the old set of paths, which are similar
(in the sense of sharing the same non-zero basis function index) to the (new) point
on which the conditioning is based.

7.6.3.4 Assessing the basis functions/lower bound

So we again turn to the all-important question of just how good these lower bounds
are. Let us stress that our primary objective in employing techniques such as LSQ is
to have an approximation of the conditional expectation in order to create a proxy
value function to be used in upper-bound duality approaches. Keep in mind that,
in addition to being (by construction) upper bounds, expressions such as (7.187)
replace stopping time/control problems by pathwise expectations (of a look-back
nature). This is an enormous advantage because, as we have seen, the former
class of problems is very difficult to solve via simulation, while the latter are quite
amenable to simulation. More generally, control problems often suffer from the
computational burden associated with high dimensions (hence the need for ap-
proximate valuations), something for which simulation-based methods are much
better suited. Duality approaches thus provide a ready means for ascertaining the
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quality of a lower-bound valuation (obtained from simulation, policy approxima-
tion, etc.): we simply check how good or bad the proxy is by seeing how big the
resulting duality gap is. We will now turn to this topic.

7.6.4 Duality (again)

7.6.4.1 Multiple stopping times/exercise rights

Since the kinds of problems we are typically confronted with in energy markets
entail multiple exercise rights (e.g., the ability to change some operational state of
the system in question more than once in some time period), it is worth examining
some generalizations of the basic duality result in (7.187). We first turn to work by
Meinshausen and Hambly (2004) (hereafter referred to as MH), which crafts the
problem in terms of incremental exercise value. (For context, it may help to review
the formulation in (7.90).) To begin the exposition, assume the structure has k
exercise rights and denote the payoff upon exercise by Ht , a stochastic process that
may have some dependence on other, more basic processes.79 Define a policy πt to
be a sequence of (strictly) ordered stopping times t ≤ τ1 < τ2 < · · ·< τn ≤ T over
some time horizon [t ,T]. Then the value of the structure is given by

V k
t = sup

πt

EQ
t

k∑
n=1

Hτn (7.202)

under a suitable pricing measure Q. Confining attention to the discrete-time case
and appealing to Bellman, (7.202) can be written as

V k
t = sup

t≤τ1≤T
EQ

1 (Hτ1 +V k−1
τ1+1) (7.203)

where the “+1” in the subscript refers to the minimum time between exercises. In
the more familiar operational form (see again (7.90)), (7.203) can be written as

V k
t =max(Ht +EQ

t V k−1
t+1 ,EQ

t V k
t+1) (7.204)

which has the intuitive interpretation of comparing exercise now plus the expected
value of one less right with the expected value of all rights.

7.6.4.2 Marginal valuation

To further facilitate the analysis, we state the familiar Doob-Meyer decomposi-
tion (in discrete time; see Etheridge [2002]): under suitable technical conditions,
a stochastic process X adapted to some filtration F can be written as Xt = Mt +
At , where M is a martingale wrt. F and A is a previsible process (i.e., At+1 is
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Ft -measureable) with A0 = 0 (conventionally). If X is a supermartingale, then A is
nonincreasing (i.e., At+1 ≤ At ). Constructively we have

At+1 = At +Et Xt+1−Xt

Mt+1 =Mt +Xt+1−Et Xt+1

(7.205)

We can apply this result as follows.80 We first introduce the marginal value function
defined by�V k

t ≡ V k
t −V k−1

t .81 Then from (7.203) we see that

�V k
t = sup

t≤τ1<T
EQ

t (Hτ1 +V k−1
τ1+1)−V k−1

t

= sup
t≤τ1<T

EQ
t (Hτ1 +V k−1

τ1 +EQ
t V k−1

τ1+1−V k−1
τ1
)−V k−1

t

= sup
t≤τ1<T

EQ
t (Hτ1 +V k−1

τ1 +Ak−1
τ1+1−Ak−1

τ1
)−V k−1

t

= sup
t≤τ1<T

EQ
t (Hτ1 +Mk−1

τ1 +Ak−1
τ1+1)−V k−1

t = sup
t≤τ1<T

EQ
t (Hτ1 +Ak−1

τ1+1)−Ak−1
τ1

(7.206)

where we introduce obvious notation for rights-dependent A and M from Doob-
Meyer and optional stopping is invoked in the last equation in (7.206). (Note from
(7.204) that Ak

t+1 − Ak
t = −(Ht −EQ

t �V k
t+1)

+, from which it can be proved that

the optimal exercise time of the kth right is identical to the first time where Ak
t

is strictly negative.) Using induction, (7.206) can be used to prove the intuitive
result that the marginal value decreases with the number of exercise rights. In
fact, the marginal value is also a supermartingale (however, it is dominated by the
incremental continuation value for one less right; i.e., E�V k

t+1 ≤�V k
t ≤ E�V k−1

t+1 ).
Now, being essentially a nested series of single-stopping time problems, (7.206)

forms the cornerstone of a generalization of the basic Kogan-Haugh duality result
in (7.187). We defer the bulk of the details to MH and here only outline the main
idea of the argument. By splitting the stopping times and using the fact that A is
nonincreasing, we see that

�V k
0 = sup

0≤τ≤τ1

EQ
0 ((Hτ +Ak−1

τ+1)1{τ<τ1} + sup
τ1≤τ ′≤T

EQ
τ1
(Hτ ′ +Ak−1

τ ′+1)1{τ=τ1})

≤ sup
0≤τ≤τ1

EQ
0 (Hτ1{τ<τ1} + ( sup

τ1≤τ ′≤T
EQ
τ1
(Hτ ′ +Ak−1

τ ′+1)1{τ=τ1})

= sup
0≤τ≤τ1

EQ
0 (Hτ1{τ<τ1} +�V k

τ 1{τ=τ1}) (7.207)

Using the ordering relations between the marginal value process and the incre-
mental continuation value, introducing a martingale M starting at zero, and again
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invoking optional stopping, we see that

�V k
0 ≤ EQ

0 max
0≤τ≤τ1

(Hτ1{τ<τ1} +EQ
τ �V k−1

τ 1{τ=τ1} −Mτ ) (7.208)

so that, as usual in these duality approaches, a supremum over (stochastic) stopping
times is replaced by a (pathwise) maximum over deterministic times. Obviously,
(7.208) can be extended (in the by-now familiar) manner of taking infimums across
martingales M and stopping time τ1. In fact, MH show that the duality gap is zero,
with equality being attained for the optimal stopping time for the first exercise right
and the martingale component of the true value function (for the level of exercise
rights under consideration). Further manipulations of (7.208) lead to the desired
generalization, which we simply state here:

�V k
0 = inf

π
inf
M

⎧⎪⎨⎪⎩EQ
0 max

u∈{0,...,T}\
{τ1,...,τk−1}

(Hu−Mu)

⎫⎪⎬⎪⎭ (7.209)

In other words, the marginal value is the double infimum of an expectation of a
pathwise maximum over a restricted set of deterministic points, taken over all stop-
ping times and all martingales (started from zero). Note that for the case of single
exercise right (k = 1), (7.209) reduces to the Kogan-Haugh result (7.187).

7.7 Complex variable techniques for
characteristic function applications

In this section we will consider some numerical issues associated with some of the
techniques introduced in Chapter 5, specifically methods involving the use of char-
acteristic functions. In particular we will investigate the role complex analysis plays
in connecting several underlying concepts.

7.7.1 Change of contour/change of measure

7.7.1.1 Importance sampling revisited

In this subsection we discuss how certain change-of-measure techniques for fa-
cilitating the valuation of deep out-of-the-money (OTM) probabilities in affine
diffusion models can be related to changes of contours in the complex plane in
the quadrature formulas for calculating these probabilities. For background, let us
review the discussion in Section 7.5.2, and consider the evaluation of the following
probability:

Pr(z > γ ) (7.210)
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where z is a unit normal and γ is some number significantly greater than two
standard deviations, say, four. As is well known, using simulation to evaluate this
probability (we ignore for exposition the fact that there is a well-known algorithm
for computing the cumulative distribution function for the standard normal) will
give very poor results, due to the fact that it is highly unlikely that a given random
sample will produce very many outcomes in the tail of the distribution, so a very
large number of draws is necessary to yield accurate results of the corresponding
probability. As we will see, quadrature methods suffer from the same problem. The
standard textbook solution to this problem is to complete the square in the normal
density function and transform the problem into one of taking an expectation of
a new function under a normal distribution with nonzero mean. However, this is
actually a change-of-measure result, as can be seen here:

Pr(z > γ )= EP1(z > γ )

= EPe−εzeεz1(z > γ )= EPe−εz ·EPε eεz1(z > γ ) (7.211)

where P denotes a measure under which z is a standard normal and the new
measure Pε is defined by

dPε
dP

= e−εz

EPe−εz
= e−ε2/2−εz (7.212)

Under Pε , it is not hard to see that z is normally distributed with variance 1 and
mean −ε . Thus, if we choose ε =−γ , we see that if we simulate under Pε , we will
not be sampling the tail of the distribution, so we should expect Monte Carlo to be
much more effective. This is indeed what we see in practice; see Table 7.3 for some
typical results.

7.7.1.2 Convergence of quadrature

A similar issue arises in quadrature-based methods. To see this, recall the basic
result (to be generalized shortly)

1

2
+ 1

2π

∞∫
−∞

dφ
eiγφ−φ2/2

iφ
=N(γ ) (7.213)

Table 7.3 Importance sampling for calculating Pr(z > 3) for z a standard

normal. 2,000 paths.

Straight sim Sim imp samp Exact

0.00050 0.00141 0.00135
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We can see here that for values of γ large in absolute magnitude (i.e., corresponding
to the tails of the distribution), this integrand will be affected by highly oscilla-
tory terms that can hamper numerical accuracy. This is indeed what happens when
this expression is used for deep OTM probabilities. A remedy to this problem is as
follows.

We consider any random process for which we have suitable (either analytical or
numerical) knowledge of the characteristic function: f (φ)= EPeiφz . Then recalling
the results from Section 5.2.4, we have that

E1(z > γ )=
∞∫
γ

dz
1

2π

∞+iε∫
−∞+iε

dφf (φ)e−iφz (7.214)

Here, in the inversion of the Fourier transform, we have shifted the contour of
integration to ensure that the integrand converges (e.g., we take ε < 0 for γ > 082).
This allows us to reverse the order of integration in (7.214):

E1(z > γ )= 1

2π

∞+iε∫
−∞+iε

dφf (φ)
e−iφγ

iφ
(7.215)

Now, the approach usually encountered in the literature is to shift the contour back
onto the real axis (in φ− space), taking into account the pole at the origin:

E1(z > γ )= 1

2
+ 1

π

∞∫
−∞

dφRe

[
e−iφγ f (φ)

iφ

]
(7.216)

However, there really is no compelling reason to do so. In fact, it proves judicious
to keep the integration contour in the complex plane, by choosing the offset from
the origin appropriately. For example, the characteristic function for a standard

normal is e−φ2/2. If we choose ε =−γ , then along this path the oscillatory terms
will be completely suppressed. But note that this is precisely the choice made for the
change-of-measure result used to ensure adequate sampling. Note further that this
is also the choice used in familiar asymptotic methods from contour integration
such as stationary phase and steepest descent (more generally, referred to as saddle-
point methods), namely that the exponent have a local minimum along the chosen
contour:

−iγ −φ = 0 (7.217)

Table 7.4 shows a comparison of results.
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Table 7.4 Quadrature methods for computing Pr(z > 3) for z a standard

normal. Here, “adj” denotes the contour-shifted result.

Quad Quad adj Exact

0.001248 0.00135 0.00135

7.7.1.3 Linear extensions

In fact, this result is quite general. Consider our usual general affine diffusion model
with P–dynamics:

dzi = (Aijzj + bi)dt +σ k
i
√

zkdwk
i +σ 0

i dw0
i (7.218)

where the summation convention over repeated indices not on the left-hand side
is adopted. We further assume that dwk

i dwl
j = δklρ

k
ij and adopt the notation Xk

ij ≡
ρk

ijσ
k
i σ

k
j . To provide a rather concrete framework, consider two particular assets 1

and 2, and the following probability:

Pr(z1(T) > γ1,z2(T) > γ2)= EP
t 1(z1(T) > γ1,z2(T) > γ2) (7.219)

Here, γ is a positive (in the element-by-element sense) vector. To evaluate
the expression in (7.219), we need the (conditional) characteristic function
EP

t eiφ1z1(T)+iφ2z2(T). As we saw in Section 5.2.3, the affine form permits a solution of
the following form: eα0+αj zj , with the coefficients α satisfying the following system
of ODEs:

α̇k +Aikαi+ 1
2 Xk

ijαiαj = 0

α̇0+ biαi+ 1
2 X0

ijαiαj = 0
(7.220)

The terminal conditions are α1(T)= iφ1, α2(T)= iφ2, and αk(T)= 0 for k �= 1,2.
Then, the probability (7.219) can be written as

EP
t 1(z1(T) > γ1,z2(T) > γ2)

= 1

(2π)2

∞+iε1∫
−∞+iε1

∞+iε2∫
−∞+iε2

dφ1dφ2
e−iφ1γ1

iφ1

e−iφ2γ2

iφ2
eαk(φ1,φ2)zk+α0(φ1,φ2) (7.221)
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(Note that we require ε1,2 < 0 for convergence.83) Now, the saddle-point condition
requires that, along the chosen contour, we have:

∂φ1αk(φ1,φ2)zk + ∂φ1α0(φ1,φ2)= iγ1

∂φ2αk(φ1,φ2)zk + ∂φ2α0(φ1,φ2)= iγ2

(7.222)

where the notation for partial derivatives with respect to φi should be clear. A nat-
ural choice is to require that this minimum occur where the contour intersects the
imaginary φ–axis in each dimension, in which case we require ε to satisfy

∂φ1αk(iε1, iε2)zk + ∂φ1α0(iε1, iε2)= iγ1

∂φ2αk(iε1, iε2)zk + ∂φ2α0(iε1, iε2)= iγ2

(7.223)

We can now show that this is the same condition that will hold under a suitable
change of measure that aligns the expected values of z1,2 suitably. Consider the
follow measure change:

dPε
dP

= e−εkzk(T)

EP
t e−εkzk(T)

(7.224)

Now, under Pε the condition characteristic function is given by

EPε
t eiφ1z1(T)+iφ2z2(T) = EP

t e(−ε1+iφ1)z1(T)+(−ε2+iφ2)z2(T)

EP
t e−ε1z1(T)−ε2z2(T)

= exp((αk(iεj +φj)−αk(iεj))zk +α0(iεj +φj)−α0(iεj)) (7.225)

where the coefficients α satisfy the same system (7.220), except with terminal con-
ditions α1(T)=−ε1+ iφ1, α2(T)=−ε2+ iφ2, and αk(T)= 0 for k �= 1,2. From
this, we can see that the requirement that the mean of z1, say, under Pε be equal to
γ1 is given by84

iγ1 = EPε
t iz1(T)= n∂φ1αk(iεj)zk + ∂φ1α0(iεj) (7.226)

and a similar result for the expectation of z2. But these are precisely the conditions
stated in (7.223). In other words, the usual change-of-measure techniques that facil-
itate importance sampling for calculation of OTM probabilities exactly correspond
to saddle-point methods that facilitate the same computation when done in terms
of quadrature.

As an example, consider a standard bivariate normal, with characteristic function

f = e−
1
2 (φ

2
1+2ρφ1φ2+φ2

2 ) (7.227)
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The saddle-point condition becomes

iγ1 = φ1+ρφ2

iγ2 = ρφ1+φ2

(7.228)

for (φ1φ2)= (iε1, iε2). But this is also of course the Girsanov-type result that would
arise from a mean-matching condition. Results are shown in Table 7.5.

7.7.1.4 Nonlinear extensions

The analysis we have just considered is essentially local in nature. That is, it is appro-
priate for processes that are linear in some sense. Alternatively, the optimal contour
(in each dimension) can be characterized as linear. In general, we can deform the
contour of integration in any appropriate way (taking into account poles, branch
points, etc.). We will concentrate here on the one-dimensional case. Thus we can
write

E1(z > γ )=
∞∫
γ

dz
1

2π

∫
c

dφf (φ)e−iφz (7.229)

where C is some contour below the real φ-axis (continuing with the assumption of
positive γ ). Now, reversing the order of integration in (7.229), we get

E1(z > γ )= 1

2π

∫
c

dφf (φ)
e−iφγ

iφ
(7.230)

Now, we require that along the contour of integration, the imaginary part of any
exponential form is zero:

Im{αk(φr + iφi)zk +α0(φr + iφi)} = γφr (7.231)

where φr represents some, say, set of quadrature points along the real φ− axis (e.g.,
Gauss-Laguerre) and φi is chosen to satisfy the condition in (7.231). There are a
number of ways to approach this problem. For each quadrature point, we can solve
a nonlinear equation for the corresponding location in the complex φ−plane. Al-
ternatively, for a set of quadrature points, we can implement the above condition as

Table 7.5 Quadrature results for standard bivariate normal. Pr(z1 > γ1,z2 > γ2) for

γ1 = 3,γ2 = 4,ρ = 0.8; 30 grid points. Here, “exact” refers to Sheppard’s method

(7.127).

Quad Quad adj Exact

−3.73614E-05 2.30821E-05 2.30593E-05
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a minimization problem (e.g., in terms of squared sums of differences). The point
is this: we now consider a global or nonlinear version of conventional saddle-point
methods.

As an example, consider a standard CIR process (e.g., the Heston variance
process):

dv = κ(θ − v)dt +σ√vdw (7.232)

For the parameters κ = 6, θ = 0.09, σ = 0.4, ρ = −0.6 and initial conditions v =
0.09. We take time-to-maturity τ = 0.25. We look for the probability that stochastic
variance will be well above its long-term mean, i.e., Et 1(vT > 0.2).85 We show a
comparison of results in Table 7.6, for both (global) contour deformation and the
(local) approach described in Section 7.7.1.3.

As can be seen, the contour deformation approach converges much more quickly
than the conventional approach where the contour is shifted back to the real φ –
axis. This reflects the fact that oscillations in the integrand are suppressed, thus
facilitating the use of quadrature-based techniques. The contour of integration for
20 quadrature points is shown in Figure 7.14.

Table 7.6 Comparison of OTM probabilities for Heston variance. Contour

deformation, nonlinear vs. linear.

QuadPts Contour (nonlinear) Contour (linear)

10 0.005126 −0.016043
20 0.005139 0.003193

30 0.005139 0.004644
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Figure 7.14 Integration contour for quadrature
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We leave as an open question the issue of how this technique can be extended
to higher dimensions (e.g., to calculate the joint probability of a Heston-driven
price and integrated variance). Given the feasibility of the idea in one dimension,
however, this does seem like a topic worth pursuing.

7.7.2 FFT and other transform methods

7.7.2.1 Strike space vs. price space

We have already seen how Fourier methods find application to the efficient compu-
tations of conditional expectations in Section 7.3.2 (on the Grid Model). We have
also found great utility in a class of canonical processes (the class of affine jump
diffusions) for which option valuation can be carried out in terms of the Fourier
transform of the underlying price processes (i.e., the characteristic function). In
those problems, the analysis essentially takes place in (log-) price space. We now
wish to consider an alternative approach, where the (log) strike is the primary vari-
able. More accurately, we wish to consider analyzing the problem with reference to
the Fourier space of the strike.86 So, we start with a standard European option, with
value in terms of log entities given by

V (k)= EQ
t (e

zT − ek)+ (7.233)

under an appropriate measure Q. Now, let us formally take the Fourier transform
of (7.233) wrt. k:

Ṽ (φ)= EQ
t F(ezT − ek)+ = EQ

t

zT∫
−∞

dk(ezT − ek)eiφk (7.234)

We assume that the Fourier variable φ satisfies Im{φ} < 0 so that the integrals in
(7.234) converge. Then we can write

Ṽ (φ)= EQ
t ezT

zT∫
−∞

dkeiφk −EQ
t

zT∫
−∞

dke(1+iφ)k

= EQ
t

e(1+iφ)zT

iφ
−EQ

t
e(1+iφ)zT

1+ iφ
= f (φ− i;z)

iφ(1+ iφ)
(7.235)

where f denotes the (conditional) characteristic function of z. Applying the Fourier
inversion theorem, we thus get

V (k)= 1

2π

∫
�

dφe−iφk f (φ− i;z)

iφ(1+ iφ)
(7.236)
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where � denotes any contour in the complex φ–plane lying below the real axis.
As we saw in the preceding sections, the actual location of this contour should be
chosen to facilitate numerical convergence and stability. (This approach should be
contrasted with the approach adopted in the original paper by Carr and Madan
[1999], who considered a “modulated” value function given by v(k)≡ eαkV (k)with
α > 0. The exponential-damping factor ensures square integrability and thus valid-
ity of the Fourier analysis. Note that −α effectively plays the role of the imaginary
part of the Fourier variable φ in (7.236).)

7.7.2.2 An adjoint relationship

Thus, for any process for which the (conditional) characteristic function is known,
(7.236) can be used to calculate the option price as a function of (log) strike. This
result can be contrasted with results such as (7.95), which are essentially performed
in (log-)price space. In fact, we have yet another duality result connecting the two
approaches. Continue working in one dimension, and assume we have a product
with terminal payoff G(zT ,k). Then we have that

V (z,k)= EQ
t G(zT ,k)= EQ

t
1

2π

∫
�k

dφke−iφkkG̃k(zT ,φk)

= 1

2π

∫
�k

dφke−iφkkEQ
t G̃k(zT ,φk) (7.237)

in terms of the Fourier transform G̃k of the payoff wrt. (log-) price k, and where
�k is a suitably chosen contour of integration in the complex φk–plane. Alterna-
tively, we can also operate in terms of the Fourier transform of the underlying price
process, i.e., the characteristic function. We also have

V (z,k)=
∞∫

−∞
dzT G(zT ,k)Pr(zT |z)

=
∞∫

−∞
dzT G(zT ,k)

1

2π

∫
�z

dφze−iφz zT EQ
t eiφz zT

= 1

2π

∫
�z

dφzEQ
t eiφz zT

∞∫
−∞

dzT e−iφz zT G(zT ,k)= 1

2π

∫
�z

dφzEQ
t eiφz zT G̃∗z (φz ,k)

(7.238)
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where G̃z is the Fourier transform of the payoff wrt. (log-) price z, and �z is a
suitably chosen contour of integration in the complex φz –plane. (Complex conju-
gation is denoted by the superscript ∗.) Combining (7.237) and (7.238) we get the
following duality relation:

V (z,k)= 1

2π

∫
�k

dφke−iφkkEQ
t G̃k(zT ,φk)= 1

2π

∫
�z

dφzG̃∗z (φz ,k)EQ
t eiφz zT (7.239)

which is reminiscent of adjoint relationships between operators in the theory of
ODEs.

7.7.2.3 Numerical implementation

The primary benefit of the formula in (7.235) comes in situations where valuations
for large numbers of strikes are required (e.g., management of a book of options
with a wide range of moneyness). In such cases, the FFT87 proves to be of great
use. In particular, the so-called fractional FFT is especially helpful (see the excellent
paper of Chourdakis [2005b], as well as Bailey and Swartztrauber [1995]). Since the
fractional FFT (and the need for it) is likely less familiar than the standard FFT, we
will confine the bulk of our exposition here to outlining this technique.

Integrals of the form (7.236) can be evaluated by a suitable discretization
in φ –space, requiring the evaluation of summations of the form V̂ (k) =
�φ
∑

j
e−iφj kh(φj) , where φj are the φ –grid points of resolution�φ . Now, as is well

known, summations of this form can be efficiently computed for a range of (log-
strike) values k if both this range and the φ –grid take special forms. Specifically,
consider the following ensemble:

kl =�kl, l =−N/2, . . . ,N/2− 1

φj = 2π j

N�k
, j =−N/2, . . . ,N/2− 1

Hj =
N/2−1∑

l=−N/2

hle
2π ijl/N

(7.240)

Then, the components of the vector H can be computed with cost O(N logN), as
opposed to O(N 2) for ordinary matrix multiplication, via the celebrated FFT; see
Press et al. (2007) for greater detail.

The point that concerns us here is the fact that in the ensemble (7.240), there
is a necessary relationship between the resolution of the (log-) strike grids and the
Fourier grids, namely

�k�φ = 2π

N
(7.241)
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(This is essentially the Heisenberg uncertainty principle.) The immediate impli-
cation of (7.241) is that there is an inverse relationship between the resolution of
the (log-) strike grid and the Fourier grid. In other words, for a fine-resolution
Fourier grid (necessary for accurate quadrature in the Fourier inversion in (7.236)),
the corresponding (log-) strike grid will be very coarse. In particular, there will be
unnecessary and inefficient valuation of options that are very deep ITM (corre-
sponding to− 1

2 N�k =− 1
2�

−1
φ ) and very deep OTM (corresponding to 1

2 N�k =
− 1

2�
−1
φ ).88 Even if performing these evaluations (where extrinsic value is minis-

cule) is deemed tolerable, to get a sufficiently fine resolution of (log-) strike space,
an extremely high number of grid points is required (see (7.241)), greatly adding
to the computational burden. It is clearly desirable to be able to separate the
discretizations in the two spaces. This is where the fractional FFT comes in.

The fractional FFT is a method for rapid computation of matrix multiplications
of the form

Hj

N/2−1∑
l=−N/2

hle
2π ijlγ (7.242)

for arbitrary γ . Thus, the particular choice 2πγ =�k�φ can be freely made, i.e.,
without the requirement that γ = 1/N in the regular FFT case. Consequently, the
separation of grids is attained. Of course, like anything else in life, this achievement
is not free, and the cost is the need to perform three FFT calculations, each of twice
the size of the original problem. However, since the size of the grids needed for a
given accuracy and resolution are typically much smaller than the regular FFT case,
the gains are substantially more than the pain. The trick is to exploit the fact that
the product of a Fourier transform is the Fourier transform of the convolution.

Introduce the following auxiliary vectors (with appropriately interpreted negative
indices):

y =
⎛⎝ (

hje−iπ j2γ
)N/2−1

j=−N/2

(0)3N/2−1
j=N/2

⎞⎠ , z =
⎛⎜⎝

(
eiπ j2γ

)N/2−1

j=−N/2(
eiπ(N−j)2γ

)3N/2−1

j=N/2

⎞⎟⎠ (7.243)

Then the fractional FFT is obtained via

(e−iπ l2γ )
N/2−1
l=−N/2⊗J−1{J(y)⊗J(z)} (7.244)

where J denotes Fourier transform and ⊗ is the Hadamard (element-by-element)
matrix product. Again, see Chourdakis (2005a) for more details.

7.7.2.4 Higher dimensions

We now consider extensions of (7.235) to higher dimensions. In particular, con-
sider the case of a standard spread option. The valuation requires the following
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expectation:
V (k)= EQ

t (e
z2(T)− ez1(T)− ek)+ (7.245)

If we attempt to proceed as we did in (7.234) by taking the Fourier transform in
(7.245) wrt. k, we immediately run into a problem. Because the exercise boundary
is now nonlinear, the subsequent expectations (after the Fourier transformation)
cannot be carried out analytically:

Ṽ (φ)= EQ
t

⎡⎢⎣1(z2(T) > z1(T))

log(ez2(T)−ez1(T) )+iα∫
−∞+iα

dφ(ez2(T)− ez1(T)− ek)eiφk

⎤⎥⎦
(7.246)

with α > 0. It can easily be seen from (7.246) that, after the Fourier integration,
the resulting expectation cannot be reduced to a characteristic function evalua-
tion (as occurs in the one-dimensional case). However, these Fourier methods
can be applied if we approximate the exercise boundary in a suitable manner. The
idea (adopted by Dempster and Hong [2000]) is to operate in reverse, in a sense,
by specifying a framework in which Fourier methods are applicable, which indi-
rectly results in an approximation to the exercise boundary (as opposed to directly
approximating this boundary).

We start by noting a (somewhat artificial) product for which Fourier methods
can be directly applied, with bilinear payoff (ez1(T)− ek1)+(ez2(T)− ek2)+. Since
the exercise region is linear (in the (k1,k2) plane), the Fourier transform of the
option value can easily be expressed in terms of the (joint) characteristic func-
tion of the process (z1,z2). Note, in fact, as in the one-dimensional case, inverse
transformation yields the option value across a grid of strike values, call them

(ki
1,k

j
2). We can use this fact to construct an approximation to (7.246) that implic-

itly entails an approximation to the true exercise boundary. First, we again employ
change-of-measure techniques to reduce the valuation problem to the form

EQz
t 1(ez2(T)− ez1(T)− ek > 0) (7.247)

where Qz is a shorthand notation for a numeraire change, e.g., dQ1
dQ = ez1

Eez1 . Now,
consider the following entity:

U(k1,k2)= EQz
t 1(z1(T) > k1)1(z2(T) > k2) (7.248)

Fourier transformation (with the Fourier variable suitably restricted to ensure
convergence) yields

Ũ(φ1,φ2)= EQz
t

eiφ1z1(T)

iφ1

eiφ2z2(T)

iφ2
= fz(φ1,φ2)

−φ1φ2
(7.249)
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where fz is the characteristic function of (z1,z2) under the measure change in
question. Inverting (7.249) (using an appropriate contour of integration) gives

EQz
t 1(z1(T) > k1)1(z2(T) > k2)= 1

(2π)2

∫
�1

∫
�2

fz(φ1,φ2)

−φ1φ2
e−iφ1k1−iφ2k2 dφ1dφ2

(7.250)
Now, as in the one-dimensional case, multidimensional integrals such as (7.250)
can be efficiently evaluated via the FFT,89 producing values across a grid of (log)
strikes. We will now put this fact to our advantage. For the specified grid of strikes,
we can easily (having applied the FFT) evaluate expectations of the form

EQz
t 1(ki

1 < z1(T) < ki+1
1 )1(z2(T) > k

j
2) (7.251)

for indices (i, j) on the grid. In particular, for a given k1–index i, we can choose the
smallest k2 –index j(i) st. ez2−ez1−ek > 0 for the region over which the integration
in (7.251) occurs. Thus, the following ensemble∑

i

EQz
t 1(ki

1 < z1(T) < ki+1
1 )1(z2(T) > k

j(i)
2 ) (7.252)

represents a lower-bound valuation (because the payoff is strictly positive in the
effective exercise region, hence some profitable exercises get ignored). Essentially,
the exercise region is being approximated by a collection of rectangles; we refer the
reader to figures 2 and 3 in Dempster and Hong (2000).



8 Dependency Modeling

8.1 Dependence and copulas

As should be quite clear to this stage, the need to understand the joint dependence
between multiple stochastic entities is of critical importance in energy markets.
We have of course considered numerous examples in the context of spread-option
structures, where the relevant measure of dependence in Gaussian scenarios is cor-
relation.1 We have also considered some fairly rich classes of canonical processes
that extend the standard Gaussian framework (affine jump diffusions and Lévy pro-
cesses). In addition, we examined the interplay between short-term co-movements
and long-term stationarity through cointegration analysis. We now examine an-
other concept useful for modeling joint structure, namely, copulas. As will be seen,
an interesting facet of copulas is the ability to construct joint dependency in terms
of specified marginal distributions. To the extent that marginal distributions may
often be extracted from market information (through, say, option prices), the flexi-
bility offered by copula-based models can be quite enticing. Not surprisingly, there
is a voluminous literature available, including book-length treatments by Nelsen
(1999) and detailed survey articles in Embrechts et al. (2002, 2003). Our objective
here is to provide an overview and highlight the most promising directions as they
pertain to energy modeling.

8.1.1 Concepts of dependence

8.1.1.1 Introduction

A copula is simply the joint distribution function of a set of random variables with
uniformly distributed marginals:

C(u1, . . . ,un)= Pr(U1 ≤ u1, . . . ,Un ≤ un) (8.1)

where Ui ∼ U(0,1).2 (Thus, in the case of independence we would have C =
u1 · · ·un). For a general (continuous) random variable X with CDF F , it is not hard
to see that F(X) is uniformly distributed.3 Thus, (8.1) implies that

359
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C(u1, . . . ,un)= Pr(F1(X1)≤ u1, . . . ,F1(Xn)≤ un)

Pr((X1 ≤ F−1
1 (u1), . . . ,Xn ≤ F−1

1 (un))= F(F−1
n (u1), . . . ,F−1

n (un))
(8.2)

using continuity and monotonicity of Fi , and where F is the joint distribution
function of the random variables Xi . A relationship can clearly be seen between
distribution functions of general random variables and copulas. It turns out this re-
lationship is rather strong, as according to Sklar’s theorem, any (multivariate) CDF
can uniquely be written as a copula function:4

F(x1, . . .xn)= C(F(x1), . . . ,F(xn)) (8.3)

Note that this result also holds for the “reverse” distribution function, defined as
F̃(x)≡ Pr(X > x)= 1−F(x). E.g., in two dimensions we have

F̃(x1,x2)= 1−F1(x1)−F2(x2)+F(x1,x2)

= F̃1(x1)+ F̃2(x2)− 1+C(1− F̃1(x1), 1− F̃2(x2))= C̃(F̃1(x1), F̃2(x2))

(8.4)

and it is easy to show that C̃ satisfies the requirements for being a valid copula
function.5

Keeping in line with Endnote 2, the so-called Fréchet-Höffding bounds put con-
straints on the degree of codependency embodied by a copula (and thus by Sklar’s
theorem, the joint dependency of any set of random variables). Specifically, we have
that

max

(
1−n+

n∑
i=1

ui , 0

)
≤ C(u1, . . . ,un)≤min(u1, . . . ,un) (8.5)

The upper bound corresponds to random variables with (perfect) comonotonicity,
i.e., they can be expressed as functions of a single random variable. In two dimen-
sions, the lower bound corresponds to the case of countermonotonicity, or perfect
negative dependence.6 (While the upper bound is always a valid copula function, it
turns out that the lower bound is only a copula in two dimensions.)

8.1.1.2 Measures of dependency

Having just mentioned two categories of dependence between random variables
(co- and countermonotonicity), it is worth discussing some other measures char-
acterizing joint structure, especially those that can be readily computed and con-
trasted for specific examples of copulas. An obvious, and very familiar, measure of
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dependence is simply (linear) correlation. Though doubtless not necessary at this
stage, we nonetheless write out the formula:

ρ(X ,Y )= Cov(X ,Y )√
Var(X)

√
Var(Y )

= E(XY )−E(X)E(Y )√
E(X2)−E(X)2

√
E(Y 2)−E(Y )2

(8.6)

As the name suggests, linear correlation is a measure of linear dependence be-
tween two random variables. It is not hard to see from (8.6) that correlation is,
effectively, invariant under linear transformations. (We say “effectively” because of
the different effects of increasing vs. decreasing transformations, e.g., ρ(−X ,Y ) =
−ρ(X ,Y )). Clearly, by Cauchy-Schwartz, we have −1 ≤ ρ ≤ 1, with the bounds
being attained only for the cases of perfect linear monotonicity (i.e., when Y = kX
for some constant k) . Despite the widespread popularity and use of correlation, we
will see that is only an appropriate measure of dependency within a certain class of
joint distributions, namely the class of elliptical distributions.7,8

An alternative set of measures refers to the notion of concordancy, or the degree to
which ordering is retained across pairings of the variables in question. For example,
the pairs (x1,y1) and (x2,y2) are concordant if (x2− x1)(y2− y1)> 0 and discordant
if (x2− x1)(y2− y1) < 0. A specific (and popular) example is Kendall’s tau, which
measures the relative difference between the degree of concordancy and discordancy
between two random variables. The population version can be written as

τ(X ,Y )= Pr((X2−X1)(Y2−Y1) > 0)−Pr((X2−X1)(Y2−Y1) < 0) (8.7)

It can be shown (see Embrechts et al. [2003]) that this result can be expressed in
terms of the copula via

τ(X ,Y )= 4EC(U ,V )− 1= 4

1∫
0

1∫
0

C(u,v)dC(u,v)− 1 (8.8)

For the case of joint normality, there is an explicit expression for Kendall tau in
terms of the primary dependency characteristic, namely correlation:

τ(xi ,xj)= 2

π
arcsin ρij (8.9)

This so-called arcsin formula is in fact generalizable to the class of elliptical distri-
butions (see Section 8.1.2), which include standard normality as a special case; see
Lindskog et al. (2003).

Another common concordancy measure is Spearman’s rho, which is essentially
the linear correlation of rank: ρS(X ,Y ) = ρ(F(X),G(Y )), which can be shown to
satisfy
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ρs(X ,Y )= 12

1∫
0

1∫
0

uvdC(u,v)− 3 (8.10)

Perfect positive/negative dependence correspond to ρS =±1.
Note that both Kendall’s tau and Spearman’s rho are invariant under strictly

increasing (general) transformations, a property that does not hold for linear cor-
relation. This invariance property affords an interesting contrast between the two
dependency measures. For a given pair of marginals, any value of Kendall’s tau
or Spearman’s rho can be attained for a suitable choice of joint dependency (i.e.,
choice of copula). This is not true for correlation, as can be seen from the following
simple example from Embrechts et al. (2002). Assume X and Y are lognormally
distributed, with logX ∼ N(0,1) and logY ∼ N(0,σ 2). Maximal dependence, i.e.,

comonotonicity, is characterized by (X ,Y )
d=(ez ,eσ z), and minimal dependence,

i.e., countermonotonicity, is characterized by (X ,Y )
d=(ez ,e−σ z), with z ∼ N(0,1).

It is thus easy to see that the maximal and minimal attainable correlations between
X and Y are given by

ρmax = eσ − 1√
e− 1

√
eσ 2 − 1

,ρmin = e−σ − 1√
e− 1

√
eσ 2 − 1

(8.11)

Thus, the linear correlation can be made as small as desired by taking σ suffi-
ciently large, despite the perfect (positive or negative) dependence between the two
variables. This phenomenon will not arise with measures of association such as
Kendall’s tau or Spearman’s rho.

Another concept here is tail dependence. In many applications (e.g., value at risk
or insurance), we are not interested in joint dependence as such, but the joint de-
pendence conditional on some extreme events happening together. For example, we
might be concerned with the probability of one part of a portfolio suffering large
losses given that a different part of the portfolio suffers a large loss. Mathematically
this is characterized by the so-called coefficient of (upper) tail dependence, given by

λU ≡ lim
u→1−Pr(Y > FY (u)|X > FX(u)) (8.12)

provided the limit exists. Lower tail dependence may be similarly characterized;
indeed, in financial contexts it is useful to express it as

λL lim
u→0+Pr(Y <−VaRu(Y )|X <−VaRu(X)) (8.13)

where VaRu represents value at risk at the u–th percentile. If (say) λU = 0, X and
Y are said to not exhibit (upper) tail dependence.9 We will see when we consider
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some specific examples of copulas that not all joint dependency structures possess
tail dependence. This fact has obvious implications for risk management, as it can
be shown that popular measures of dependency such as correlation can give a mis-
leading picture of, say, portfolio exposure. Two useful results that follow from the
definition are

λU = lim
u→1−

1− 2u+C(u,u)

1−u
,λL = lim

u→0+
C(u,u)

u
(8.14)

8.1.1.3 Key points

Having laid out the bare essentials here, we wish to emphasize a few points. First, in
much the same way as general random variables in one dimension can be simulated
by first generating a uniform variate and then inverting the CDF of the variable in
question, so, too, can general multidimensional random variables be simulated via
generation of multidimensional uniform variates related to the original variables
via a suitable copula. Some specific examples will be considered shortly, with algo-
rithms tailored to the specific form of the dependency structure in question. As a
very generic approach, one can in theory always condition on the copula iteratively
as follows. In n–dimensions, define lower dimensional CDFs via

Ck(u1, . . . ,uk)= C(u1, . . . ,uk , 1, . . . , 1),k = 2, . . . ,n− 1 (8.15)

with C1(u1)= u1, and then construct conditional CDFs via Bayes rule:

Ck(uk|u1, . . . ,uk−1)= Pr(Uk ≤ uk|U1 = u1, . . . ,Uk−1 = uk−1)

= ∂k−1Ck

∂u1 . . . ∂uk−1

/
∂k−1Ck−1

∂u1 . . . ∂uk−1
(8.16)

1. Simulate u1 from U(0,1).
2. Simulate u2 from C2(u2|u1).
3. Simulate un from Cn(un|u1, . . . ,un−1).

Obviously, this approach assumes some degree of analytical/computational
tractability of the underlying conditional expressions (or more accurately, their
inverses), but as noted can always be applied in principle, and so the general prob-
lem of n–dimensional simulation can be reduced to a sequence of one-dimensional
simulations.

A second point is that the consideration of the joint structure of a set of random
variables can be separated from the marginal structure of the constituent variables
via Sklar’s theorem. This point is significant, as in many valuation problems, this
marginal information can be inferred (in the proper sense) from market-supplied
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information, such as option prices. As we alluded to in Chapter 7, spread-option
valuations can be carried out under a rather general class of processes for which
the conditional density is readily obtained. In such cases, we have some degree of
flexibility in choosing the joint dependency structure while retaining the marginal
structure that replicates observed market prices.

As a third point, we have already seen an example where correlation can give a
misleading indication of joint dependency. Correlation is of course very widely used
as a dependency measure, and one might say misused, as well. It is not hard to con-
struct examples of joint distribution functions that are quite different, yet yield the
same numerical value of linear correlation; see Embrechts et al., 2002. (This point
refers to the notion of tail dependence [or lack thereof] discussed above.) There are
a number of other shortcomings of correlation as a dependency measure. We have
already considered the non-invariance of correlation under rank-preserving trans-
formations. While independent random variables are of course uncorrelated, the
reverse is not true (as shown by the trivial example Y = X2, with X a standard nor-
mal). Thus, some amount of caution should be employed when using correlation
as dependency measure. (We have already emphasized this point from a somewhat
different angle when considering the difference between volatilities as value drivers
under static vs. dynamic trading strategies in Chapter 3.) In general, knowledge
of marginal distributions and correlations are not sufficient to determine the joint
distribution, except in certain special cases (the class of so-called elliptical distri-
butions to be considered below). (Nor, as we saw above, is it possible in general to
attain any arbitrary value of correlation for a given set of marginals.)

8.1.1.4 Relevance for energy modeling (and beyond)

Before going further, it is necessary to situate the discussion within the context
of energy modeling.10 There is probably little need at this stage to emphasize the
inherent interest in studying dependency structures for commodity processes. In
particular, there is clearly value in considering generalizations of, if not alternatives
to, correlation as the paragon of dependency metrics. This is not to deny that cor-
relation is a very useful concept in many applications, only that it must be used
properly, and that there may be applications where it is completely inappropriate.
The simple heat-rate model in (2.42) offers a good illustration of how correlation
may be operative in some regimes, but not others (depending on demand condi-
tions and stack convexity). As well, there is some merit in being able to move away
from correlation while still retaining some degree of rigor.11

In addition, there is the fact that all markets are, ultimately, interconnected. We
mean here not simply the relation between two classes of commodities that stand
in a production relationship, such as natural gas and electricity or crude oil and
refined products such as gasoline and heating oil. There are also cross-commodity
and cross-asset dependencies, such as between natural gas and crude oil or between
commodities and equities (see Delatte and Lopez [2012] or Grégoire et al. [2008]).
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Recent history bears this latter claim out in particular. It is well known that in the
aftermath of the financial crisis of 2008, commodity volatilities were sharply down
across the board. At the same time, some commodities (most notably crude) dis-
played a volatility term structure more reminiscent of equities than commodities
(i.e., relatively flat; recall Figure 2.11). These kinds of dependencies can entail not
just tail relationships as such, but symmetric or antisymmetric effects (that is to
say, different kinds of behaviors on the upside as opposed to the downside). To
the extent that it remains preferable to model individually the dynamics of distinct
markets, there needs to be means for connecting these dynamics in a joint model.
Copula methods provide just such an approach.

Let us now consider different classes of copulas.

8.1.2 Classification

8.1.2.1 Archimedean

Archimedean copulas are defined by specifying a function ϕ with domain on the
unit interval and range on the non-negative reals, and then taking

C(u1, . . . ,un)= ϕ[−1](ϕ(u1)+ . . .+ϕ(un)) (8.17)

where ϕ[−1] denotes the pseudo-inverse, given by

ϕ[−1](t)=
{
ϕ−1(t), 0≤ t ≤ ϕ(0)
0, ϕ(0)≤ t ≤∞ (8.18)

Some common examples include the Gumbel family:

ϕ(t)= (− log t)θ ,C(u,v)= exp(−((− logu)θ + (− logv)θ )
1/θ
) (8.19)

for 0< θ ≤ 1, and the Clayton family:

ϕ(t)= (t−θ − 1)/θ , C(u,v)= (u−θ + v−θ − 1)−1/θ (8.20)

for θ ≥ 0. Note that the common feature of these members is the single param-
eter θ . This aspect permits high-dimensional dependencies to be modeled with a
high degree of sparseness. Archimedean copulas in general have tail dependence;
e.g., for the Gumbel family, a straightforward application of l’Hôpital’s rule yields
λU = 2− 21/θ . Similarly for the Clayton family, we have that λL = 2−1/θ . (Note
that the case θ → 0+ corresponds to independence and θ →∞ corresponds to
perfect comonotonicity for the Clayton family, while the analogous situations for
the Gumbel family are θ = 1 and θ→ 0+, respectively.)
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8.1.2.2 Elliptical

Elliptical distributions12 are a very popular category that include, as a special case,
joint Gaussians. They are characterized by their characteristic functions, which as
we have seen provide a very powerful computational framework. We first note the
definition of a spherical random vector, which is distributionally invariant under
orthogonal transformations:

X
d=OX (8.21)

where OOT = OT O = In. (Unless otherwise noted, we will assume that we are op-

erating in n dimensions.) Plainly, then, the characteristic function f (φ)= EeiφT X of
a spherical random vector satisfies f (Oφ)= f (φ), and in fact it can be shown that
there exists a function g (termed the generator) such that f (φ) = g(φTφ). (Alter-

natively, spherical random vectors can be defined as X
d=R ·U where R is a positive

random variable and U is uniformly distributed on the unit hypersphere in n− 1
dimensions, independent of R; note that under either convention spherical random
variables have zero mean.) Elliptical random vectors extend this concept via affine
maps on spherical random vectors. Namely, Y is elliptical if there exists a spherical
random vector X , a matrix A, and a vector μ such that

Y
d=AX +μ (8.22)

From the definition, it is easy to see that the characteristic function of Y satisfies

f (φ)= EeiφT Y = eiφTμEeiφT AX = eiϕTμg(φT AATφ)= eiφTμ(φT�φ) (8.23)

where � = AAT .13 (Note that in general X could be taken to be k−dimensional, in
which case A is n× k, i.e., of reduced rank.)

Elliptical distributions are thus characterized by the triplet (μ,�,g)14. (Alter-
natively, this characterization can serve as the definition of ellipticity.) Clearly,
multidimensional Gaussian random variables are elliptical, with g(x)= exp(−x/2)
and μ and � having the interpretation of the mean and covariance, respectively.
(Other examples are usefully documented in Hamada and Valdez [2004] and Lands-
man and Valdez [2003].) In general, μ will always correspond to the mean of the
distribution (when the mean exists), but obviously g and� are only unique up to a
constant scaling, which can always conventionally be chosen so that � corresponds
to the covariance matrix (again, for variables with finite second moments). Note
that only in the Gaussian case does zero correlation between variables imply inde-
pendence. Elliptical distributions have important applications in portfolio analysis,
for obvious reasons: they offer a generalization of standard mean-variance analysis
(i.e., in terms of scale and location).

General elliptically distributed variables retain a number of useful features from
the Gaussian case, chiefly linearity and conditionality. It is not hard to see that if
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Y ∈ R
n is elliptical with triplet (μ,�,g), then b+ BY is also elliptical with triplet

(b+Bμ,B�BT ,g). If Y is partitioned as ( Y1 Y2 )
T with Y1 ∈ R

p, Y2 ∈ R
q and

p+ q= n, then clearly Y1 and Y2 are elliptical.15 Y2|Y1 is also elliptical with triplet

(μ2+�21�
−1
11 (Y1−μ1),�22−�21�

−1
11 �12,g ′) (8.24)

where g ′ is a different generator and we use the following partitions: μ=
(
μ1

μ2

)
,

� =
(
�11 �12

�21 �22

)
. This result is of course very well known for the Gaussian

case; the more general discussion can be found in Fang et al. (1987). It is actu-
ally useful to sketch out the general derivation using characteristic functions, as it
also serves to illustrate some subtle points regarding elliptical distributions. Using
Bayes’s theorem and the definition of ellipticity, we have that16

E(eiφT
2 Y2 |Y1)=

∫
dY2eiφT

2 Y2 Pr(Y2|Y1)

=
1

(2π)n =
∫

dY2eiφT
2 Y2
∫

dφ̃e−iφ̃T
1 Y1−iφ̃T

2 Y2 g(φ̃T�φ̃)

1
(2π)p

∫
dφ1e−iφT

1 Y1 g(φT
1 �11φ1)

=
∫

dφ1e−iφT
1 Y1 g(φT

1 �11φ1+φT
2 �21φ1+φT

1 �12φ2+φT
2 �22φ2)∫

dφ1e−iφT
1 Y1 g(φT

1 �11φ1)

(8.25)

Upon introducing the Cholesky factorization C1CT
1 =�11 and the substitution ξ1=

C−T
1 φ1, (8.25) can be written as

E(eiφT
2 Y2|Y1)

=
∫

dξ1e−iξT
1 C−1

1 Y1 g(ξT
1 ξ1+φT

2 �21C−T
1 ξ1+ ξT

1 C−1
1 �12φ2+φT

2 �22φ2)∫
dξ1e−iξT

1 C−1
1 Y1 g(ξT

1 ξ1)

= e−iφT
2 �21�

−1
11 Y1

∫
dξ1e−iξT

1 C−1
1 Y1 g(ξT

1 ξ1+φT
2 (�22−�21�

−1
11 �12)φ2)∫

dξ1e−iξT
1 C−1

1 Y1 g(ξT
1 ξ1)

(8.26)

Now, we note the following about (8.26). First, the Fourier variable φ2 appears

only in the following two forms: e−iφT
2 �21�

−1
11 Y1 (as a multiplicative factor) and as

a function of φT
2 (�22−�21�

−1
11 �12)φ2 (also multiplicatively). This confirms the

claims made about the conditional means and variances. Second, the conditional
characteristic generator (given by the ratio of integrals in (8.26)) is in general dif-
ferent from the unconditional generator, and more importantly depends on the
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conditional variable Y1. In truth, it is more accurate to speak of a family of con-
ditional generators, all dependent on the variable upon which conditioning takes
place. (Obviously, in the case of joint normality, the characteristic generator factors
nicely, thus greatly simplifying (8.26) and recovering the standard results for condi-
tional normality.) We speculate that this behavior is related to the inconsistency of
elliptical marginal distributions mentioned in Endnote 14.

In general, elliptical distributions do not always have tail dependence. It proves
useful to derive an alternative formula for (upper) tail dependence to illustrate this
point. Since Pr(V > v|U = u)= 1− ∂

∂u C(u,v), it follows that

λU = lim
u→1−

(
2− d

du
C(u,u)

)
= lim

u→1−

(
2− ∂

∂s
C(s, t)

∣∣∣∣
s=t=u

− ∂
∂t

C(s, t)

∣∣∣∣
s=t=u

)
= lim

u→1−(Pr(V > u|U = u)+Pr(U > u|V = u))= 2 lim
u→1−Pr(V > u|U = u)

(8.27)

where the last equation in (8.27) only holds true for symmetric copulas (i.e., those
for which C(u,v) = C(v,u)). Applying this result to a Gaussian copula and using
standard results for conditional normals, we get

λU = 2 lim
u→1−Pr(V > v|U = u)= 2 lim

u→∞Pr(Y > x|X = x)

= 2 lim
u→∞

(
1−N

(
x−ρx√

1−ρ2

))
= 0 (8.28)

where ρ is the correlation parameter of the Gaussian copula and X and Y are
defined as follows: X = N−1(U), Y = N−1(V ). Equation (8.28) shows that the
Gaussian copula is (asymptotically) tail independent.17 Although this property
represents a potential drawback to using (popular) Gaussian models for many risk-
management applications, it is not true in general that elliptical distributions lack
tail dependence. For example, the Student t-copula has tail dependence, even when
the correlation parameter is zero (see Schmidt [2007]).

8.1.2.3 Generalized elliptical

We also note here the so-called generalized elliptical distributions (e.g., Frahm
and Jaekel [2007, 2008]). These are defined very similarly to regular elliptical
distributions, namely in law we have that the random vector X ∈R

d satisfies

X = μ+R�U (k) (8.29)
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where U (k) is uniformly distributed on the unit hypersphere Sk−1, � ∈ R
d×k , μ ∈

R
d , and R is a random variable. In contrast to the usual elliptical case, R need not be

positive or independent of U . The ramifications of this fact are that any spherical
invariance is lost and μ need not correspond to the expected value of X , and �
need not be associated with the Cholesky factorization of the covariance matrix
of X . This class allows for the modeling of tail dependence and radial asymmetry.
Generalized elliptical variables find application in random matrix theory, which we
will discuss in Section 8.2.1.

8.1.2.4 Empirical

The empirical copula is simply based on the empirical distribution of some sample,
modulo a rank transformation. In other words, suppose we have some (vector)
sample (xk

1 , . . . ,xk
d) for k = 1, . . . ,N . Then we can define empirical CDFs via

F̃i(x)= 1

N

∑
k

1(xk
i ≤ x) (8.30)

The empirical copula is then defined as

C̃(u1, . . . ,ud)= 1

N

∑
k

1(F̃1(x
k
1)≤ u1, . . . , F̃d(x

k
d)≤ u1) (8.31)

Clearly, N · F̃i(x
j
i ) is the rank of the point x

j
i within the ith dimension of the sample.

8.1.2.5 Product (generalized)

We have already seen a rather trivial example of a copula corresponding to indepen-
dent variables, namely the product copula C⊥(u1, . . . ,ud) = u1 · · ·ud . We consider
here some extensions of this structure for constructing more general copulas, with
the particular application in mind of capturing correlation skew. Introduce a k–
vector C of copulas (with range [0,1]d), and a k× d matrix G of strictly increasing

functions from [0,1] to [0,1]. The elements of G satisfy
k∏

i=1
Gij(v)= v, ∀j. Then, the

following function

C̃(u1, . . . ,ud)=
k∏

i=1

Ci(Ci1(u1), . . . ,Gid(ud)) (8.32)

can be shown to be a copula (see Liebscher [2008] and Lucic [2012]).18 A sample

parameterized example would be Gij(u)= uθij ·with ·
k∑

i=1
θij = 1,∀j.

What does such a model gain us? In many applications, there is an asymmetry in
how states are to be jointly valued. For example, consider the case of a basket option,
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for simplicity on two variables. The payoff takes the form (w1S1+w2S2−K)+.
(To further fix matters, one may think of S1,2 as traded entities whose marginals
may be “implied” from market data, say, option prices.) It may be the case that we
want a pricing functional that weights joint downward movements differently than
joint upward movements. Now, let C denote a 2 vector of Gaussian copulas with
different correlation parameters. (It will prove useful to conduct the analysis via
transformations to uniforms.) That is,

Ci(u1,u2)=N2(N
−1(u1),N−1(u2);ρi) (8.33)

where N denotes standard cumulative normal distribution functions (of the appro-
priate dimension). Take the following choice for G:

G =
(

uθ1 uθ2

u1−θ1 u1−θ2

)
(8.34)

and so we write (8.32) as

C̃(u1,u2)=N2(N
−1(uθ1),N−1(uθ2);ρ1)·N2(N

−1(u1−θ1),N−1(u1−θ2);ρ2) (8.35)

It can be seen from (8.35) that, depending on the relative magnitudes of the pa-
rameters θ1,2, the behavior of the copula C̃ will have different behavior when u1,2

are near 1 (corresponding to joint upward movement in prices) and when they are
near 0 (corresponding to joint downward movement in prices). For example, if θ1,2

are close to 0 (say, 0.1), then C̃ behaves like N2(N−1(uθ1),N−1(uθ2);ρ1) when u1,2

are both small, and like N2(N−1(u1−θ1),N−1(u1−θ2);ρ2) when u1,2 are both near
1. Thus, different correlation behaviors can be captured in different regimes (i.e.,
skew) with models such as (8.32).

8.1.2.6 Vine

As we have seen, the primary strength of copulas is the ability to separately model
marginal and joint distributions. However, in the models considered thus far, the
dependency structure is in some sense fixed across the individual RVs in question.
For example, a Gaussian or multivariate t copula imposes the same category of de-
pendency across pairs of RVs (e.g., correlation). In some applications, it may be
desirable to have different categories of dependency within the overall ensemble of
RVs. For example, some pairs (but not others) may exhibit nonsymmetric depen-
dency, whole other pairs may possess heavy tail dependency. So-called vine copulas
provide a means of incorporating such heterogeneous dependency structures.

The basic idea is well described by pair copula construction (PCC). Let us illus-
trate in three dimensions, for variables denoted by (x1,x2,x3). By Bayes law, the
underlying density can be written as19
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f1,2,3(x1,x2,x3)= f3|1,2(x3|x1,x2)f2|1(x2|x1)f1(x1) (8.36)

Note that from Bayes law and Sklar’s theorem20 we have

f2|1(x2|x1)= f1,2(x1,x2)

f1(x1)
=

∂2

∂x1∂x2
C1,2(F1(x1),F2(x2))

f1(x1)

= c1,2(F1(x1),F2(x2))f2(x2) (8.37)

where c1,2(u1,u2) ≡ ∂2

∂u1∂u2
C1,2(u1,u2) is the copula density associated with the

copula C1,2. Applying the result in (8.37) repeatedly to (8.36), we see that

f1,2,3(x1,x2,x3)

= c1,3|2(F1|2(x1|x2),F3|2(x3|x2))

× c2,3(F2(x2),F3(x3))c1,2(F1(x1),F2(x2))

× f1(x1)f2(x2)f3(x3) (8.38)

In addition, we note the result for conditioning on a univariate variable v:21

f (x|v)= cx,v(Fx(x),Fv(v))fx(x)⇒

F(x|v)=
x∫

−∞
cx,v(Fx(u),Fv(v))fx(u)du

=
x∫

−∞

∂2

∂Fx(u)∂Fv(v)
Cx,v(Fx(u),Fv(v))fx(u)du= ∂

∂Fv(v)
Cx,v(Fx(x),Fv(v))

(8.39)

Observe what (8.38) and (8.39) allow us to do. Making the simplifying assump-
tion that any parameterization (but not arguments) of the constituent pair copulas
are independent of the conditioning variables, we have great flexibility in construct-
ing multivariate dependency structures using only the dependency structures across
pairs of the RVs in question (as well as the individual marginals, of course). We can
thus create models where some pairs of variables have an Archimedean dependence,
while others have Gaussian dependence, and still others have Lévy dependence.

In general, these constructions are not unique, and as the number of dimensions
increases, the number of possible combinations of pairings increases. There are
several different variants for addressing this problem (R-vines, D-vines, C-vines,
etc.), and we refer the reader to such sources as Czado (2010).
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8.1.2.7 Lévy

An important extension of copula concepts concerns the class of Lévy processes,
which we studied in Chapter 5. For review,22 these may be thought of as encom-
passing Brownian motion with drift, plus jumps broadly understood (i.e., standard
compound Poisson processes as well as so-called infinite activity jump processes).
This very rich class can be extended to include (at least some) stochastic volatility
models via stochastic time changes. It is probably useful to recall the cornerstone

result, the Lévy-Khintchine formula: EeiφT xt = etψ(φ), where x is a d–dimensional
Lévy process and ψ is called the characteristic exponent of the process and given by

ψ(φ)= iφTα− 1

2
φT Aφ+

∫
Rd/{0}

(eiφT x − 1− iφT x1|x|<1)v(dx) (8.40)

The entity of central importance here is ν, the so-called Lévy measure of the process.
It has the interpretation that the expected number of jumps within the time interval
[0, t ) with amplitudes inside some (Borel) set B is given by

E{# jumps ∈ B up to time t} = t

∫
B

v(dx) (8.41)

Marginal measures may be obtained as follows. Consider component x1. Then we
have

Eeiφ1x1(t) = exp

⎛⎜⎝t

⎛⎜⎝iφ1α1− 1

2
A11φ

2
1 +

∫
Rd/{0}

(eiφ1x − 1− iφ1x1|x|<1)νdx

⎞⎟⎠
⎞⎟⎠

= exp

⎛⎜⎜⎜⎝t

⎛⎜⎜⎜⎝
iφ1

(
α1+

∫
Rd/{0}

x(1x1<1− 1|x|<1)v(dx)

)
− 1

2 A11φ
2
1+∫

R/{0}
dx1(eiφ1x − 1− iφ1x1x1<1)

∫
Rd−1/{0}

v(x)dx2 . . .dxd

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

(8.42)

from which we can infer that ν1(x1) =
∫

Rd−1/{0}
ν(x)dx2 · · ·dxd . Observe that in-

dependence of the components of x requires that v(x) = ∑k

[
vk(xk)

∏
j �=k
δ(xj)

]
.

In two dimensions, perfect codependence can be represented by ν(x1,x2) =
ν1(x1)δ(x2− x1).
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Note that the Lévy measure need not be integrable over the entire real space Rd .
However, it is required that min(1, |x|2)ν(x) be integrable near 0 (hence the trunca-
tion term in the integrand in (8.40)). Thus, in general it is not possible to separate
the arrival (or intensity) of jumps from their amplitude. Only in the special (famil-
iar) case of the compound Poisson process is this possible, where the normalization
of the Lévy measure over Rd allows one to conceive of the probability of a jump oc-
curring, distinct from the probability of a particular sized jump occurring (because
the normalized measure can serve as a valid probability measure of jump ampli-
tudes and the normalization can be interpreted as the jump intensity). The more
general framework (of non-integrable Lévy measures) gives rise to the notion of so-
called infinite activity jump processes, which have a nonvanishing expected number
of jumps of arbitrarily small size over any finite time interval.23

One can clearly see now the interpretation of the various terms of the character-
istic exponent in (8.40). The first two terms plainly correspond to linear drift and
(Gaussian) diffusion, respectively. The term in the integral comprises two effects:
a standard Poisson process representing “large” jumps, and a countably infinite
number of (Poisson) jumps of increasingly large intensity and decreasingly small
amplitudes. This latter point can be seen by writing the relevant terms as∫

Rd/{0}
(eiφT x − 1− iφT x1|x|<1)v(dx)=

∫
|x|≥1

(eiφT x − 1)v(dx)

+
∫

0<|x|≤1

(eiφT x − 1− iφT x)v(dx)

=
∫

|x|≥1

(eiφT x − 1)v(dx)+
∑

n

∫
1

2n+1≤|x|≤ 1
2n

(eiφT x − 1− iφT x)v(dx) (8.43)

The first term in the last equation in (8.43) clearly represents the contribution of
a standard Poisson process, over jumps of magnitude greater than 1, with inten-
sity given by λ0 ≡

∫
|x|≥1

ν(dx) and the distribution of jump amplitudes given by

λ−1
0 ν(dx)1|x|≥1. The second term corresponds to an infinite sum of Poisson jumps

with linear drift, over decreasingly small size and increasingly large arrival rates.
(The intensity of the nth jump is v( 1

2n+1 ≤ |x| ≤ 1
2n ), which is divergent due to the

non-integrability of the Lévy measure, and the distribution of jump amplitudes is
confined to infinitesimally small intervals.)24

Now, a multidimensional Lévy process obviously entails a certain kind of de-
pendency structure (namely, the matrix A in (8.40), which captures the covariance
structure of the continuous, diffusive components and the Lévy measure ν, which
drives the structure of the discontinuous, jump components). A natural question
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then concerns how restrictive25 this default (so to speak) structure is for modeling
joint Lévy processes. We will now begin to investigate this question.

8.1.2.8 Precursor to dynamics

With the introduction of Lévy processes, we have implicitly introduced the notion
of dynamics to the dependency problem, which had hitherto been absent. Recall
one of the chief motivations for the copula concept: the ability to specify individual
marginal behavior separately from joint. However, it does not follow that individ-
ual dynamics can be specified independently from collective dynamics.26 In other
words, dynamic behavior can be thought of as a continuum of marginal distri-
butions, and it is certainly not clear how the copula concept carries over in such
cases, at least not without introducing some notion of dynamics in the copula itself.
At a minimum, the standard definition of a copula provides little guidance on the
matter.27

Time-dependent behavior presents some challenges for applying copulas, and
we will see in the context of Lévy processes that certain copulas (called, not sur-
prisingly, Lévy copulas) can be constructed as a particular means of dealing with
these challenges. Of course, Lévy processes constitute a specific structural assump-
tion, and therefore sacrifice some generality. It is therefore worth briefly discussing
the character of dependency in rather more general processes before turning to the
particulars of the Lévy class.

8.1.3 Dependency: continuous vs. discontinuous
processes

8.1.3.1 General diffusive dynamics

Generically, a continuous (diffusive) process can be written as

dx = μ(x)dt +σ(x)dwt (8.44)

for some vector-valued process x. It is important to understand that the dynamics
in (8.44) are not well defined as they stand, but are really a shorthand notation for
an integral representation

xT = x+
T∫

t

μ(xs)ds+
T∫

t

σ(xs)dws (8.45)

which can be well defined. The obvious challenge lies in specifying what, exactly,
is meant by the stochastic differential dwt (and the associated integration with re-
spect to it). Of course, the approach that dominates the literature (virtually without
challenge) is the renowned Itô calculus, in which the appropriate limiting represen-
tation of the integrals in (8.45) entails a dominant balance (so to speak) between
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deterministic first-order and stochastic second-order terms. Needless to say, Gaus-
sian dynamics (completely defined by their underlying covariance structure) are
the natural way of viewing the system in (8.44). (It goes without saying that this
issue is of great interest from the perspective of valuation via [dynamic] portfolio
formation.)

It is far beyond the scope of this book to consider the possibility of non–Itô-
constructed dynamics. The only point we wish to make concerns the compelling
reasons to adopt correlation as a dependency measure for continuous processes.
This follows from the need to give the dynamics in (8.44) (the natural way to rep-
resent stochastic change) a rigorous foundation via (8.45). While, formally, one
can always repeatedly draw stochastic differentials from any (marginal) distribution
they like, then combine these differentials via their preferred copula, it is very, very
far from obvious that this formal procedure has any kind of mathematical meaning
(as does the case of, say, affine diffusions).

8.1.3.2 Jump processes

Continuing with these themes, defining jump dynamics also requires a coherent
foundation in an integral representation. As in the continuous case, a particular
approach is dominant, namely the compound Poisson process (or more gener-
ally a Poisson point process). In this framework, the only kinds of dependencies
that can be incorporated between jump drivers are either dependence or inde-
pendence. A typical example is the canonical class of affine jump diffusions from
Section 5.2.3, e.g., (5.76). Here the Itô isometry (familiar from the diffusive case)
reads

dqidqj = δijdqj (8.46)

Admittedly, this restriction is somewhat restrictive. It is of course compen-
sated (pardon the pun) by the great flexibility that jump modeling provides
in capturing certain structural effects of interest (see Sections 5.2.1 and 5.2.3).
Still, it remains of interest to see whether the dependencies implicit in the
construction of standard diffusive and Poisson dynamics can be made more
general.

As already noted, the question of dependency between (dynamic) processes is
very general, and does not necessarily concern Lévy processes as such; rather,
the latter are a special case of the former, and any notion of dependency that
is crafted to Lévy processes comes at the cost that any structural assumption
brings. Having said this, the application of copula concepts to joint Lévy pro-
cesses does serve to nicely illustrate the underlying challenges, and introduces a
rich set of analytical tools, as well. We will therefore give the topic some attention
now.
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8.1.4 Consistency: static vs. dynamic

Extending the copula concept to Lévy processes presents a number of challenges
that actually serve to clarify the essence of these small-jump effects (as well as facili-
tating the simulation of such processes, it turns out). Let us recall what the primary
objective is. We want a framework for building up joint dependencies while re-
taining a given marginal structure. However, a few difficulties are encountered. At
the risk of belaboring the obvious, Lévy processes are processes, and hence any ap-
propriate copula structure would have to be time dependent, and it is not entirely
clear how to incorporate such dynamics in a way that retains the underlying Lévy
marginal structure. It is actually worthwhile to consider this point in more detail, as
it illustrates themes we have emphasized throughout, namely the idea of volatility
as a measure of information accumulation over particular time horizons.

8.1.4.1 Stable processes

We employ an example used by Tankov and Cont (2003). First we introduce the
class of so-called α-stable Lévy processes,28 which have the property that ax1 +
bx2

d= cx + d with aα + bα = cα for any constants a,b, c, and d and some constant
α satisfying 0 < α ≤ 2. Here x1,2 are independent copies of the underlying Lévy
process. An obvious example is a multidimensional zero-mean normal, with α= 2.
By considering the characteristic function, it can be shown that the Lévy measure
for a stable pure jump process in R

n has the form r−γ g(d�) in generalized spherical
coordinates (here � is short hand for the angle variables/solid angle element), in
which case α = γ − n. Further consideration of the characteristic function leads to
the result

EeiφT xβt = etψ(β1/αφ) (8.47)

from which we conclude the following scaling law:

xβt
d=β1/αxt (8.48)

This is clearly true for Gaussian processes, with α = 2.
An example with α = 1 is the well-known Cauchy process Zt , with (in two

dimensions) Lévy measure ν(x,y) = (x2+ y2)−3/2 and terminal (time t) density
t

2π ((x
2+ y2)

2+ t2)−3/2. The corresponding copula can be explicitly written out,
but its precise form is not important here (see Tankov and Cont [2003] for the ac-
tual result). What concerns us here is that this Copula, denoted by CZ , is not time
dependent, but is also not the independence copula: CZ (u,v) �=C⊥(u,v)≡ uv. Now
introduce a standard Brownian motion Wt (governed by the independence copula
and independent of Z) and consider the process Xt = Zt +Wt . Note that Z is 1-

stable and W is 2-stable. From the scaling law in (8.48), we see that Xt/t
d=Z1+W1/t

and Xt/t1/2 d=Zt1/2 +W1. Hence, upon invoking the suitable limiting theorems
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(again, see Tankov and Cont [2003] for the details), we see that Xt/t
d→Z1 as t→∞

and Xt/t1/2 d→W1 as t → 0+. Consequently, the large and small time behavior of
X is very different, and in particular its copula is time dependent,29 despite the fact
that its constituent components are independent with time-independent copulas.
This example illustrates two points. One, as claimed, extension of the copula con-
cept for modeling joint dependency for Lévy processes is not straightforward, and
there are some complicating issues that require careful attention. Second, we see
here the role that time scales play in the analysis of even a simple toy problem. The
time scales over which the two processes are distributionally invariant are different,
and this fact has implications for how their joint structure behaves, with obvious
ramifications for modeling that structure. At a minimum, it would appear that the
copula approach is not ideally suited for studying multivariate Lévy processes. But,
let us continue the fight.

8.1.4.2 Lévy measures

More generally, another complication is the fact that the natural characterization
of Lévy processes is through the Lévy measure, and not through the density or dis-
tribution function, which of course is the natural basis (so to speak) of standard
copula models. It turns out that many of the usual copula results can be adapted
if this alternative viewpoint (i.e., measures as opposed to densities) is adopted, as
shown in the work of Tankov (2003) and Tankov and Cont (2003). We will con-
fine attention here to the case where the underlying processes have only positive
jumps.30 The relevant entity here is the so-called (upper) tail integral, defined by

U(x)≡ v([x,∞])=
∞∫

x

v(dx) (8.49)

in one dimension, with obvious extensions to higher dimensions. Akin to the rela-
tionship between joint distribution functions and marginal distribution function,
we have that U(0, . . . ,xk , . . .0) = Uk(xk), where Uk is the tail measure of the kth

component. (Conventionally, U(0) is defined to be∞ to avoid having to notation-
ally distinguish between infinite and finite activity processes.) We also define the
generalized inverse of U to be

U−1(y)≡ inf{x > 0 : U(x)≤ y} (8.50)

Another useful result is the series representation of pure jump processes with
only positive-valued jumps. These processes are termed subordinators and their
characteristic function takes the form31
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Eeiφxt = exp

⎛⎜⎝ ∫
Rd/{0}

(
eiφT x − 1

)
v(dx)

⎞⎟⎠ (8.51)

We claim that, in law, the process xt is equivalent to the following entity:

∞∑
i=1

U−1(�i)1(Vi ≤ t) (8.52)

where �i are the arrival times of a standard (unit) Poisson process (so that��i are
independent with��i distributed as e−��i ), and Vi are standard uniform deviates
independent of �i . This equivalence follows from verifying that the characteristic
functions agree. First let nθ denote the largest n s.t. �n ≤ θ for some (arbitrar-

ily large) number θ and let Xθ =
nθ∑

i=1
U−1(�i)1(Vi ≤ t). Then, by conditioning on

nθ and using well-known results concerning Poisson arrival times,32 we find that
(letting u and v denote independent uniform random variables)

EeiφXθ = EEnθ eiφXθ =
∑

n

e−θ (θEeiφU−1(θu)1(v≤t))
n

n!

= exp

⎛⎜⎝θ
⎛⎜⎝tθ−1

∞∫
U−1(θ)

eiφxv(dx)+ 1− t − 1

⎞⎟⎠
⎞⎟⎠

= exp

⎛⎜⎝t

∞∫
U−1(θ)

(eiθx − 1)v(dx)

⎞⎟⎠ (8.53)

from which the required result follows by taking the limit θ→∞.33 In fact, this ap-
proach is commonly used for simulating Lévy processes (see Asmussen and Glynn
[2007]), since it obviously is not very difficult to generate the underlying sequence
of exponential and uniform deviates. (This argument employs an approximation
that effectively truncates the number of jumps. It is interesting to note that the re-
sult can also be derived by considering a small amplitude limit of the truncated Lévy
measure, by essentially arguing in reverse: the truncated measure can be normalized
to a valid probability distribution, which when applied to the ordered jumps of the
process produce a set of ordered uniforms that are equal in law to the arrival times
of a standard Poisson process. See El-Bachir [2008]. There is thus a duality between
the size of jump amplitudes and the number of jump arrivals.)
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8.1.4.3 Sklar’s theorem extended

We are now in a position to state Tankov’s extension of Sklar’s theorem for Lévy
copulas. First we define a positive Lévy copula. This is a function F : [0,∞]d →
[0,∞] that is (1) increasing (so that dF is a positive measure), (2) satisfies
F(u) = 0 if at least one component of u is zero, and (3) has uniform marginals
(Fi(z)≡ F(∞, . . . ,zi , . . . ,∞)= z). Note that we are essentially operating in terms of
the “reverse” distribution function, so to speak: Pr(X ≥ x)= 1−Pr(X ≤ x). (Com-
pare with Endnote 5, and see (8.4).) Let xt be a Lévy process in R

d having only pos-
itive jumps in every component, with joint tail integral U and marginal tail integral
Ui . Then there exists a positive Lévy copula F s.t. U(x) = F(U1(x1), . . . ,Ud(xd)).
(The converse is also true.) This result not only serves as an analogue to the case
of a regular copula, but also allows the time dynamics to be concentrated in the
marginal (where it naturally arises due to the underlying Lévy structure), and not
the joint structure. Note that the usual representations of, say, independence and
perfect co-monotonicity have to be modified. From the discussion following (8.42),
the independence Lévy copula becomes

F⊥(x1, . . .xn)=
n∑

i=1

xi

∏
j �=1

1(xj =∞) (8.54)

while in two dimensions, perfect codependence becomes

U(x1,x2)=
∞∫

x1

∞∫
x2

v1(ξ1)δ(ξ2− ξ1)dξ1dξ2 =
∞∫

x1

dξ1v1(ξ1)H(ξ1− ξ2)

=U1(min(x1,x2))=min(U1(x1),U1(x2)) (8.55)

from which we write F‖(x1,x2)=min(x1,x2).
An example is the extension of the Archimedean class of copulas. This includes

the so-called Clayton family:

Fθ (u,v)= (u−θ + v−θ )−1/θ (8.56)

for θ > 0. (Contrast with (8.20), in particular the ramifications of the different
ranges and domains.) Another example is the generalization of the result in (8.52).
The result involves conditional Lévy copulas for generating dependent Poisson ar-
rival times and is reminiscent of the result in (8.16). To demonstrate the intuition,
we simply outline the result in two dimensions, for the specific case of the Clayon
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Lévy copula. We introduce the conditional distribution function and its inverse
from (8.56):

Fθ (v|u)= ∂

∂u
Fθ (u,v)=

(
1+

(u

v

)θ)−1−1/θ

,

F−1(y|x)= x(y
− θ

1+θ − 1)−1/θ

(8.57)

We then have the following representation for a two-dimensional subordinator:

Xt =
∞∑

i=1

U−1(�i)1(Vi ≤ t)

Yt =
∞∑

i=1

U−1(F−1(Wi|�i))1(Vi ≤ t)

(8.58)

where Wi is another sequence of uniforms, independent of Vi (and of course �i).
For more details, see Tankov (2003).

8.1.4.4 Application: spark spreads

Finally, we note some applications of Lévy copulas to spark spread modeling in
Benth and Kettler (2010) and Meyer-Brandis and Morgan (2014). These models are
actually inspired by the original work of Barndorff-Nielsen and Shephard (2001),
who considered Ornstein-Uhlenbeck processes driven by Lévy innovations, and
also have similarities to the approach taken by Hikspoors and Jaimungal (2007).
The basic model takes the form Pa(t) = �a(t)(Y a

1 (t)+Y a
2 (t)), where the super-

script a denotes either electricity or gas (the spark spread is of course given by
Pe−HR ·Pg for some heat rate). The factor� represents a seasonality factor, while
Y 1 and Y 2 capture effects of autocorrelation and spikes, respectively, through the
follow dynamics:

dY a
1 = κa

1 (θ
a−Y a

1 )dt +σ adwa

dY a
2 = κa

2 Y a
2 dt + dLa

(8.59)

where La is a subordinator (i.e., only positive-valued jumps are modeled). A joint
structure can be imposed on the Lévy terms through a suitable Lévy copula, say
Clayton. The Brownian terms can be correlated, but are independent of the Lévy
components. Not surprisingly, given the central role the characteristic exponent
plays in defining Lévy processes, option-pricing results can be obtained via methods
previously discussed (in Chapter 5). For example (dropping the superscripts for

convenience), Y2(T)= e−κ2(T−t)Y2+
T∫
t

eκ2sdLs so using the i.i.d. property of Lévy

processes, we find that
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Et eiφY2(T) = exp(iφe−κ2(T−t)Y2)Et exp

⎛⎝ T∫
t

e−κ2(T−s)dLs

⎞⎠
= exp

⎛⎝iφe−κ2(T−t)Y2+
T∫

t

ψL2(φe−κ2(T−s))ds

⎞⎠ (8.60)

where ψL2 is the characteristic exponent of L2. Meyer-Brandis and Morgan (2014)
derive expressions for the spread option formula, using by-now familiar methods
involving characteristic functions.

8.1.5 Wishart processes

While we have endeavored to examine concepts of dependency that are much
broader than the familiar class of (linear) correlation, it remains the case that cor-
relation (and more generally, covariance) is a very useful concept, when properly
employed. In the canonical affine processes studied in Chapter 5, instantaneous
correlation/covariance between the underlying Brownian drivers34 manifests itself
indirectly in some global (so to speak) dependency structure that is in general
difficult to characterize systematically. With the Lévy copulas of the preceding sub-
section, a global dependency structure could be imposed upon a special category of
pure jump processes. Here, we consider a third alternative, namely directly model-
ing the dynamics of (stochastic) correlation/covariance. This leads us to investigate
matrix affine jump diffusions, a special case of which include the (somewhat)
well-known class of Wishart processes.

8.1.5.1 Affine representation

We start with a model from Leippold and Trojani (2010). Denoting by S+n the cone35

of symmetric, positive semi-definite n× n matrices, the dynamics of a matrix � ⊂
S+n are specified as

d� = (��T +M�+�MT )dt +√� · dW · Q+QT · dW T ·√�+ dJ (8.61)

with �, M , and Q n× n real matrices, W a n× n matrix of standard Brownian
motions, and J a pure jump process in S+n . The matrix square root for symmetric
matrices is defined in terms of the familiar eigenvalue-eigenvector factorization by

� = V T�V ⇒√
� = V T

√
�V (8.62)

with V a matrix of eigenvectors of� (arranged by column) and� the correspond-
ing diagonal matrix of eigenvalues.36 (Of course the square root of a diagonal
matrix is simply given by (

√
�)ij ≡ δij

√
�ii .) As a technical point, we impose



382 Modeling and Valuation of Energy Structures

the additional restriction that ��T � (n− 1)QT Q to ensure that
∑

is positive
semi-definite. With these restrictions, and the assumption that the jump intensity
have the affine form λJ (

∑
) = λ0 + Tr(λ1�) for λ0 ≥ 0 and λ1 ∈ S+n , the process

in (8.61) provides coherent dynamics for modeling (positive-definite) stochas-
tic covariances/correlations. (See Leippold and Trojani [2010] and the references
therein.)

The special form ��T = βQT Q (for non-negative β) and no jumps leads to
the so-called Wishart process, with the stronger requirement that β > n+ 1 en-
suring that � is positive definite a.s. We call attention to this special case because
of the connection to the Wishart distribution in sampling distributions discussed
in Section 6.2.2. However, there is obviously merit in studying the more general
case in (8.61), so we will take a broader perspective here. (On Wishart processes
as such, see Bru [1991].) We illustrate with a generalization of our old friend, the
Heston stochastic volatility model (see da Fonseca et al., 2007, 2008). We start with
a (vector) price process with dynamics given by

dSi

Si
= μidt +�1/2

ij dwj (8.63)

where the matrix process� follows (8.61) with J = 0 (i.e., no jumps). The vector w
in (8.63) is a vector of standard Brownian motions. We will shortly specify the rela-
tion between the Brownian drivers of the return processes (8.63) and the covariance
processes (8.61). In terms of log-prices z we have that

dzi = d logSi = μidt +�1/2
ij dwj − 1

2
�

1/2
ij dwj�

1/2
ij′ dwj′

=
(
μi− 1

2
�ii

)
dt +�1/2

ij dwj (8.64)

For convenience we write (8.61) (sans jumps) in index notation for the Wishart
case:

d�ij = (βQkiQkj +Mik�kj +�ikMjk)dt +�1/2
ik dWklQlj +QkidWlk�

1/2c
lj (8.65)

8.1.5.2 Matrix Riccati structure

Owing to the individual affine form of (8.64) and (8.65), we have hope that we
can apply the methods developed in Chapter 5 to derive a system of ODEs that
determine the characteristic function of the (log-) price process, and consequently
the terminal distribution of the process. This requires, as already mentioned, that
we specify the relation (correlation) between the constituent Brownian drivers. To
retain the desirable affine structure this requires that we assume (See Da Fonesca et
al., 2007)

dwjdWkl = δjkρkldt (8.66)
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We already saw in Section 6.3 the important role played by the Wishart distribu-
tion in the question of sampling distributions.37 However, since the presence of
stochastic processes that are inherently matrix entities introduces some important
complications to the basic affine problems studied in Chapter 5, we devote a bit
more space to this issue here. So, letting f = Et eiφkzk(T) denote the (conditional)
characteristic function of the log-price z, we see that f satisfies the following PDE
(employing the summation convention):

ft + (μi− 1
2�ii)fzi + (βQkiQkj +Mik�kj +�ikMjk)f�ij + 1

2�ij fzizj

+ 2�ii′QljQlj′ f�ij�i′ j′ + (�ii′ρlQlj +�i′jρkQki)f�ij zi′ = 0 (8.67)

where we have used the independence within W and w, the cross-structural relation
in (8.66), and exploited the underlying symmetry of�. By looking for a solution to
(8.67) of the familiar form f = exp(Aij�ij +Bizi+C), we find that B= iφ and that
A and C satisfy the following matrix Riccati ODE:

Ȧ= A(M + iQTρφT )+ (MT + iφρT Q)A+ 2AQT QA+ γ
Ċ = iφTμ+βTr(AQT Q)

(8.68)

where γ ≡ −c 1
2 (φφ

T + idiag(φ)). In (8.68) we have made the substitution t →
T − t so the initial conditions become A(0)= C(0)= 0.

Matrix Riccati ODEs, like their scalar counterparts, are reasonably amenable to
analysis. For example, a solution for A can be written in the following form: A =
A2A−1

1 , where A1,2 satisfy the following linear system:(
Ȧ1

Ȧ2

)
=
( −M − iQTρφT 2QT Q

γ MT + iφρT Q

)(
A1

A2

)
(8.69)

as can be verified using Ȧ = Ȧ2A−1
1 − A2A−1

1 Ȧ1A−1
1 . For more on matrix Riccati

ODEs, see Benner and Mena (2004).

8.2 Signal and noise in portfolio construction

As we have emphasized repeatedly, valuation entails the formation of portfolios via
hedging and proper accounting for unhedged risk. Dynamic aspects of this prob-
lem were examined in Chapter 3. In this section we will consider aspects of the static
portfolio construction problem that are greatly dependent on estimation, or more
accurately, sensitive to estimation noise. To provide further context, a central con-
cern here will be sample size in comparison to the number of assets in question. It is
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not uncommon in energy markets to encounter situations where the sample size is
of the same order of magnitude as the number of underlyings. For example, in load
valuation problems, we are often concerned with how expected price and load co-
move over some time horizon. Often, such contracts apply to a seasonal term, such
as summer months. To the extent that liquid futures markets convey useful infor-
mation about realized prices (and to the extent that we can form projections of load
based on other, more stationary drivers such as weather), we can investigate histor-
ically how realizations diverged from expectations, as comprised as a set tailored to
the term in question. In many cases, the available data pertinent to this situation
is comparable in size to the number of constituent factors (e.g., pricing a summer
load deal requires knowledge of 6 drivers over a specific term, and there may be less
than 10 years of [seasonal] futures data). It thus becomes challenging to be able to
distinguish structure from noise in these co-movements, as the dimensionality of
the problem effectively increases.

8.2.1 Random matrices

8.2.1.1 Markowitz reviewed

Let us first review very briefly the textbook Markowitz portfolio optimization prob-
lem. A generic formulation is the selection of portfolio weights (long and short
positions are allowed) w across N assets, with returns μ and covariance matrix
�, such that a given rate of (expected) return μ0 is attained at minimal portfolio
variance:

min wT�w

st wTμ= μ0

(8.70)

Standard application of Lagrange multipliers yields optimal portfolio weights

w∗ = μ0
�−1μ

μT�−1μ
(8.71)

As already noted, portfolio optimization theory is standard material, and this very
simple framework is more than adequate for our purposes here. Let us now look
at alternative mathematical representations of (8.71) that will help tease out the
econometric issues that are of interest to us.

8.2.1.2 Eigenportfolios

Since a covariance matrix is necessarily symmetric, it permits an eigenvalue-
eigenvector factorization of the following form:

�V = V�⇒� = V�V T (8.72)
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where � is a diagonal matrix of the eigenvalues λi of
∑

and V is an orthogonal
matrix whose columns are the eigenvectors of � (column i corresponds to the ith

diagonal element of �). Now, each of these eigenvectors can be thought of as a
portfolio itself, which we will term eigenportfolios (for obvious reasons)38. The (ex-
pected) returns of the eigenportfolios are given by g =V Tμ. Note that any portfolio
w can be expressed in terms of eigenportfolios u via w = Vu; the expected return is
independent of the representation since wTμ = uT g . (As we know, however, rep-
resentations that are equivalent mathematically may not necessarily be equivalent
econometrically, and we will soon see how an eigenportfolio representation can be
superior in identifying noise components in the portfolio optimization problem.)

We see from (8.71) that the optimal portfolio weights can be expressed in terms
of eigenportfolios as

w∗∞V�−1g (8.73)

The vector�−1g has elements gi/λi . Thus, the optimal weights can be decomposed
into eigenportfolios, with more weight given to eigenportfolios corresponding to
small eigenvalues (or more accurately, small in comparison to the associated eigen-
return). Note that, from V T�V =�, we see that the eigenportfolios can be ranked
in terms of riskiness according to the size of the eigenvalues of the covariance ma-
trix. We will understand better the significance of the covariance eigenvalues in
general when we look at principal component analysis in Section 8.2.2. The point
we want to emphasize here is that the optimal portfolio weights will be highly sen-
sitive to any small eigenvalues (as a general rule, the more highly correlated the
assets are, the more small eigenvalues there will be). This is not too surprising: low-
risk eigenportfolios will tend to be favored in a portfolio variance minimization
problem.

Why is the question of sensitivity important here? In practice, we of course never
know the true value of the covariance matrix, and can only use an estimated value in
any portfolio optimization.39 For example, a common estimator for the covariance
is the sample covariance:

�̂ = 1

T

∑
t

xt xT
t (8.74)

for some sample of a vector of returns xt .40 In matrix form, the expression in (8.74)
can be written as �̂ = 1

T XXT , where X is a N ×T matrix of returns (each column
corresponds to a return in the sample, each row is a sample of returns for a particu-
lar asset). The behavior of ensembles such as (8.74) obviously has relevance for the
question of sampling distributions. The point here is that the estimator in (8.74)
obviously depends on the realized sample, which is of course random. (Trivially,
a different realized sample produces a different estimate of the covariance matrix.)
We have called attention throughout this chapter to the challenges presented by
small sample sizes. The issue of interest here is related, but slightly different. Note
that there are two dimensions (so to speak) to the problem: sample size, and the
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number of assets. If the number of assets is small relative to the sample size (say,
four vs. 1,000), then one would expect the sample covariance to be a reasonable
estimator. However, if the number of assets is comparable to the sample size (e.g.,
500 samples of 100 assets), then the answer is no longer clear. In other words, we
are interested in the limiting cases T � 1, N � 1, q≡N/T =O(1).

The role of eigenvalues is again important here. Note that, for N > T (i.e., more
assets than samples), the matrix XXT has N −T eigenvalues equal to zero.41 This
follows simply from the fact that the null-space of XT has dimensionality N −T in
this situation. Now, these zero eigenvalues (of the sample covariance) are spurious,
as they do not correspond to any corresponding singular property of the population
covariance. Indeed, as the sample size increases for the assets in question (that is,
T →∞ for N fixed), all of the eigenvalues of the sample covariance are nonzero and
have real informational content. These considerations lead to the following ques-
tion in the intermediate case of interest: how significant (in the common language
sense) are small eigenvalues in a given sample (referring to the number of assets in
relation to sample size)? In other words, for a particular sample covariance, are the
small eigenvalues meaningful, or do they simply represent noise? This is a very im-
portant question in the context of portfolio optimization since, as we have seen, the
small eigenvalue/low risk eigenportfolios are given a disproportionately large share
of the weight. It is imperative that we avoid optimizing to noise. In other words, do
low-risk eigenportfolios really exist, or are they just a manifestation of insufficient
data?

To understand the effects of covariance estimator sensitivity on portfolio opti-
mization, it is useful to examine some results from random matrix theory.

8.2.1.3 Eigenvalue distribution

Since we anticipate that some of the sample covariance matrix eigenvalues have real
informational content (while some do not), we can approach the problem as fol-
lows. Can we reconstruct the estimated covariance matrix using the large (“real”)
eigenvalues, while filtering or otherwise cleaning up the small (“spurious”) eigen-
values? Our objective is to have a systematic means of doing so.42 Results from
random matrix theory that concern the spectrum of entities of XXT provide some
insights. As usual, we will mainly focus on the basics; the interested reader can
consult sources such as Bouchaud and Potters (2009) or Laloux et al. (1999).

The central ideas can be conveyed with the simplest possible example, namely the
spectrum of the empirical correlation matrix of i.i.d. assets (with unit variance). In
this case, the density of the eigenvalues is given by the celebrated Marcenko-Pastur
(MP) law:

p(λ)= 1

2πλq

√
(λmax−λ)(λ−λmin) (8.75)
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for q< 1 and where λmax/min = (1±√q)2. (For q> 1 the density has a point mass
[Dirac delta function] of weight 1 − 1/q at zero; for q = 1 the familiar Wigner
semicircle law can be recovered.)

The result in (8.75) indicates that the spectrum of the correlation matrix of a
large sample of a large number of i.i.d. random variables is bounded. We should
therefore take the existence of eigenvalues of an empirical correlation matrix out-
side this range as an indication that the sample in question is not i.i.d., and that
those eigenvalues may indeed have informational content. It is not uncommon for
a large dimensional stochastic system to be well described by a much smaller system
of primary drivers, along with a larger system that can be characterized as noise. A
well-known example is the natural gas (Henry Hub) forward curve. Individual con-
tracts on the curve tend to move up and down in concert, with neighboring months
(especially within a season) being highly correlated. We will see more on this con-
cept in Section 8.2.2 on principal component analysis, when it will be shown that
it is precisely the largest eigenvalues that correspond to these more primary drivers,
with the associated eigenvectors indicating the direction (properly understood) of
those drivers. (In the natural gas example, the primary direction would correspond
to an equal weighting of all months under consideration, e.g., the winter contracts.)

We thus expect those (larger) eigenvalues outside the MP band to be significant
(in the plain language sense of the word) while those (smaller) ones inside the band
to be representative of noise, and filtered out (so to speak) from subsequent analy-
sis. How can this be done? A straightforward approach is to simply not distinguish
between these noise components. That is, they are essentially blended while re-
taining the total trace of the empirical correlation matrix.43 Consider the spectral
decomposition of a (symmetric) matrix in terms of its eigenvalues/eigenvectors:

V =
N∑

i=1

λiviv
T
i (8.76)

with the eigenvalues sorted in decreasing order. Suppose we retain the K largest
eigenvalues. Then we can define a cleaned correlation matrix via

Ṽ =
k∑

i=1

λiviv
T
i + aIN (8.77)

with a = 1
N

N∑
i=k+1

λi and IN the N × N identity matrix. Technically, Ṽ is not a

correlation matrix, since its diagonal elements are not all ones, so a suitable normal-
ization as in Rebonato and Jäckel [1999] should be applied. An alternative cleaning

would be to simply replace the diagonal elements of
K∑

i=1
λivivT

i .
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8.2.1.4 Spectral estimators and robust covariance estimation

Let us return to the elliptically distributed random variables from Section 8.1.2. (as
well as their generalizations). Recall that these were defined through their charac-
teristic function and contained as a special case (joint) Gaussians. Specifically, if y is

elliptically distributed with zero mean, then EeiφT y = g(φT�φ) and, if the covari-
ance matrix exists, it can be associated (up to a scaling) with the so-called dispersion
matrix �. Apart from the special case of normality, however, it will not in gen-
eral be the covariance matrix, and in particular the usual ML covariance estimator
(that is, 1

N 〈yiyT
i 〉) will not correspond to the dispersion matrix. The correct MLE

result is obtained as follows. Recall from Endnote 14 that the density of an (zero-
mean) elliptical variable can be written as 1√

det�
h(yT�−1y). Applying some matrix

derivative results, we find the ML estimator is given by the fixed point equation

�̂ = 2

N

〈
L′(yT �̂−1y)yyT

〉
(8.78)

where L(x)≡− logh(x). For the Gaussian case, h∝ e−x/2 and the usual MLE result
is easily recovered; note also the scale invariance in (8.78).

Departures from the special Gaussian case give rise to some interesting phenom-
ena. We recall again (from Section 8.1.2) the fact that, for elliptically distributed
variables, lack of correlation is not the same as independence (the reverse is ob-
viously always true). Consequently, results such as the MP law that consider the
spectrum of the correlation matrix with i.i.d. run the risk of being misapplied, such
as in eigenvalue cleaning. A good example of this problem can be found in Frahm
and Jaekel (2008).

8.2.1.5 Shrinkage

So-called shrinkage methods shift the empirical correlation matrix closer to the
identity:

�α = α�̂+ (1−α)I (8.79)

for 0≤ α ≤ 1. Thus, the new eigenvalues are given by λα = 1+α(λ̂− 1). Shrinkage
estimators are essentially Bayesian techniques that appropriately adjust the “prior”
weighting of assets in accordance to the their relative returns, i.e., minimal diver-
sification; see (8.71). As such, the largest eigenvalues (that is, those with the most
informational content) are generally least affected by this "updating.” In truth, any
appropriate matrix that could serve the role as a prior estimate could be employed
in (8.79), such as a matrix with ones along the diagonal and all off-diagonal ele-
ments equal to the average empirical correlations (akin to the cleaning method in
(8.77)). The choice of the adjustment parameter α is rather problem dependent. In
line with the Bayesian underpinnings, for problems where the signal-to-noise ratio
is believed to be large/small, α should be chosen close to 1/0. Alternatively, if a high



Dependency Modeling 389

(low) degree of diversification is desired, α should correspondingly be small (large).
For a nonlinear extension of shrinkage, see Ledoit and Wolf (2014).

8.2.2 Principal components and related concepts

Another useful application of the eigenvalue-eigenvector structural decomposition
is the well-known Principal Components Analysis (PCA). To understand the main
idea, consider a random vector x with zero mean and covariance matrix �. Now,
introduce a linear transformation of x via y = Ax. We would first like to choose the
matrix A to render the transformed variable independent (or at least de-correlated).
Equation (8.72) provides the necessary result: if A= V T (where V is the matrix of
[orthogonal] eigenvectors of the covariance matrix), then EyyT = V T ExxT V =
V T�V =�. Note that the inverse transformation is trivial: x = Vy. Thus, we have
a decomposition of the variable x in terms of the eigenvectors of the covariance
matrix, with coefficients given by the (uncorrelated) components of the random
vector y.

There is yet another aspect of this expansion. In many applications, a very large
percentage of the covariance matrix eigenvalues are much smaller than the largest
eigenvalues (e.g., the top two or three). For example, for the popular correlation
form ρ|i−j|, with ρ = 0.95 we have the following eigen decomposition:⎛⎜⎜⎝

1 0.95 0.90 0.86
1 0.95 0.90

1 0.95
1

⎞⎟⎟⎠⇒

�= dig

⎛⎜⎜⎝
3.76
0.16
0.05
0.03

⎞⎟⎟⎠ ,V =

⎛⎜⎜⎝
0.49 −0.65 −0.51 0.27
0.51 −0.27 0.49 −0.65
0.51 0.27 0.49 0.65
0.49 0.65 −0.51 −0.27

⎞⎟⎟⎠ (8.80)

It can be seen that one eigenvalue is much larger than the rest. The variance of
the transformed entity y1 is (in this case) 94% of the total variance (across all the
components).44 The corresponding eigenvector thus represents the basis of a sub-
space capturing the bulk of the variability of the original variable x, which here
has an effective (so to speak) dimension of one.45 We thus anticipate that in many
applications, the following approximation can be utilized:

xi ≈ Vi1y1 (8.81)

with y1 having variance λ1 (the largest eigenvalue of the covariance matrix). So,
a common application of PCA is to employ these primary drivers/factors in place
of the constituent variables of the full system. Instead of having to model (say) all
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the variables, it is often sufficient to consider just a few, representing significant
dimension reduction.

There is a well-known interpretation to the first three components of a PCA anal-
ysis, especially when these components comprise the great bulk of total variance.
The first component is of course the so-called market mode or market portfo-
lio, with more-or-less equal weights assigned to all (normalized) assets. The next
component consists of antisymmetric positions across the assets, and thus various
spread positions. The third component consists of symmetric positions across as-
sets, and so represents aggregations of pairs of assets.46 For a given portfolio with
normalized weights denoted by wi , the portfolio variance can be written as

wT�w = wT V�V T w = uT�u= λiu
2
i (8.82)

where u≡ V T w are the portfolio weights in terms of eigenportfolios. Since uT u=
wT w = 1, we see that the portfolio variance can be decomposed into a weighted
average of the variance of the various factors. In particular, the more aligned the
portfolio is with the market mode, the higher the portfolio variance. Consequently,
PCA can provide a means of identifying portfolios that are market-neutral, i.e.,
portfolios whose variance is attributable to asset spreads rather than overall market
moves as such.47



Notes

1 Synopsis of Selected Energy Markets and
Structures

1. More recent expositions include Wolyniec (2015), Swindle (2014), and Geman
(2009).

2. We assume that the reader has a basic familiarity and understanding of such
basic instruments as futures and options.

3. We will define the precise manner in which we use terms such as “stable” in
Chapter 2.

4. Supply shocks such as outages can further force high-cost units into service.
5. For crude oil. For the most part, natural gas time series date back to the mid-

1990s, and electricity data typically begins in the early 2000s.
6. Despite obvious biases, McLean and Elkind (2004) has a useful overview of this

transition.
7. And going even further, the exposure may be related not to the Northeast as

such, but to Boston as opposed to New York.
8. As is well known, futures and forwards are not the same, although they are nu-

merically equal as prices when discount rates are independent of the underlying
asset. Futures are marked-to-market daily (futures are costless to enter into and
entail an accrued cash flow), whereas forwards are not. (Mathematically, fu-
tures are martingales with the money market unit of account as numeraire,
while forwards are martingales with the zero-coupon bond as numeraire.) Fu-
tures are thus appropriate for (dynamic) hedging strategies. We will generally
ignore the distinction throughout. For more details see Björk (2009).

9. We are referring of course to the distinction between periods of high de-
mand (on-peak, typically weekdays during business hours) and low demand
(off-peak, typically weekends and nighttime).

10. In addition, there is always the possibility of operational failure (outages),
which may amount to simply a derate of expected revenue (when the presence
or absence of the unit in the generation stack does not materially affect power
prices) or may substantially alter the hedging/replication strategy we employ
(e.g ., how many option positions we put on against the plant), and thus how
we value the plant.

391
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11. In the terminology of econometrics, the issue here is one of stationarity vs. non-
stationarity, or the extent to which expectations of the future can be formed
based on unconditional as opposed to conditional information. These concepts
will be covered in Chapter 2.

12. U.S. power prices are denominated in units of $/MWh (megawatt hours) and
natural gas prices in units of $/MMBtu. Heat rates are conversion factors that
reflect the efficiency of a unit in converting fuel inputs into power outputs.

13. As well, there could be fixed volumes of fuel required for start-up.
14. And if possible, finding upper bounds as close as possible to the lower bound.
15. The convention in (1.2) is in terms of delivery volume, which requires the (per-

unit) receipt price to be grossed up.
16. In truth, there can be multiple delivery and/or receipt points, pipe segmenta-

tion, etc. These remain generalized spread structures, however.
17. We leave aside the question of whether hub variability, which for Henry Hub

is reflected in market instruments through option prices, is related to basis
variability.

18. Mathematically, basis looks (at least far enough from maturity) more like a
(discontinuous) pure jump process as opposed to a (continuous) diffusive
process.

19. We mention here that some storage facilities permit injection from/withdrawal
to multiple physical locations.

20. And summed over each hour in the term, of course. We ignore this feature here
as it is not material to the exposition.

21. The reason for this is not too surprising. Power prices and load (demand) are
both related economic entities, hence the information flows that drive power
should be expected to drive load, as well. (We will see in Chapter 2 the connec-
tion between information flow and variance accumulation.) Thus, loads, even
system loads that have a seasonal pattern (similar to temperature), should be ex-
pected to be fundamentally distinct from such more-or-less periodic processes
such as weather (even when the latter is an important driver of the former).

22. Load is an interesting structure because although it has (or may have) a vega, as
a bilinear product it has a delta but no gamma.

23. We are merely illustrating a point here. As we will see, variances, correlations,
etc. may not be relevant for a particular valuation problem (although they may
well be).

24. For obvious reasons, similar points apply to projecting (monthly) temperature.
25. In truth, even loads dominated by seasonal effects display such features; e.g.,

within their overall seasonal structure, system loads have had a discernable
downward shift (demand destruction) after the crisis in 2008.

26. In truth, as we shall see, hedging does not so much create residual risk as it
entails a transformation of risk.
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2 Data Analysis and Statistical Issues

1. Often it is better to craft the problem and subsequent analysis in terms of ra-
tios, but this will merely clutter the notation so we will employ an additive
representation here.

2. The disturbance is a population entity. That is, it is a property of the DGP as
such. In contrast, the more widely used term residual to be discussed later (and
which we have already used in its common language sense) is a sample property.
That is, it is a property of a particular realization of some DGP, or more accu-
rately of some estimator operating on a realization of that DGP. The distinction
between population and sample is extremely important, but we will tend not
to overemphasize the subtle (but nonetheless real) difference as it applies to
disturbance vs. residual.

3. Plainly, for long exposure we would want to reduce the price we bid, and for
a short exposure we would want to increase the price we ask (in which case
we would be more concerned with, say, the 75th percentile of the residual
distribution).

4. For example, depending on the particular product, the entity of interest (or
more accurately its statistical properties) may be the ratio yT/xT (for heat-
rate products) or yT − xT (for basis products). Thus, the structure in question
may dictate that a particular function of the portfolio components be analyzed
econometrically, as opposed to analyzing the components as such.

5. Another practical example would be load modeling, with a single year’s worth
of hourly data. With 365 ·24= 8760 points, this sample may appear to be quite
sizeable, and at the hourly level, it may well be. However, it nonetheless repre-
sents only one year of data, so an econometric analysis that fails to adequately
account for time scales (or more accurately, the conditional information that is
operative at different time scales) may simply involve optimizing to the partic-
ulars of that year (i.e., fitting to noise). Depending on the relative importance
of information flows at different time scales (a question that is of course deal
dependent), a particular sample may be huge or tiny.

6. As we shall see, even this distinction is somewhat empty, as there are in fact
degrees of detail that can be encompassed continuously under the umbrella
of variance scaling laws. Over the appropriate time horizon, however, the
distinction does indeed make sense.

7. This is actually not entirely true because, as we shall see in the next section, the
variance scaling law of temperature does imply some propagation of informa-
tion across more than one month’s time, and this effect can have great impact
on valuing products which are highly sensitive to weather (such as load-serving
contracts). However, from an illustrative purpose, such effects are not critically
important. True enough that a hot month presently will likely be followed by a
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hotter-than-normal month, but the relevant question is how much hotter, and
there is little doubt that the effect dissipates fairly quickly with time.

8. We actually alluded to this concept in the introductory example.
9. Since spot commodities as such do not trade (physical delivery or possession

must be made, implying the necessary infrastructure or architecture for doing
so), there is no economic or financial reason that commodity (spot) prices must
be martingales, even under a pricing measure.

10. More generally (and accurately), the important concept is ergodicity, which
essentially means that population entities (such as expectations) can be well
proxied by sample entities (such as time averages), when the sample is suffi-
ciently large. It is a question of inferring information about a population from
pathwise information. For a long enough sample, stationarity should be the
dominant effect for ergodic series. We will have much more to say on this topic
of asymptotic diagnostics.

11. We will discuss shortly what we mean here by “degree.”
12. Or more generally, any deal with volumetric risk. Volume as such does not

trade, hence its covariation with price must be related to some other market
instrument (usually options or other volatility-dependent structures [such as
tolls]; typically expected volume is accounted for via futures positions).

13. Put differently, it is hard to subdivide any realization of this series into indepen-
dent pieces unless the sample is extremely large: current information persists for
a long time.

14. By which we mean: the estimator will behave very differently from its associ-
ated theory. Consequently, this (asymptotic) theory can give a very misleading
picture of estimator stability (that is, in any given sample there is a very definite
possibility that the estimator is simply optimizing to noise).

15. The chief assumption, apart from the normality of the deviations, is non-
stochasticity of the regressors x. More generally, the regressors can be stochastic
but independent of the deviations, in which case the properties of the estima-
tor must be thought of as conditional (on the regressors). Another common
generalization is auto-correlation between deviations. (The critical feature that
must be retained is independence of regressors and disturbance, lest one con-
front so-called identification issues.) Even very slight weakening of the classical
OLS assumptions renders many statistical properties of the resulting estimators
only asymptotically valid, i.e., valid in the limit of large sample size. Consult
Hamilton (1994) for a thorough discussion.

16. The manner in which the estimated variance is obtained will be clear momen-
tarily when the notion of unbiasedness is discussed.

17. A similar expression could be crafted for β̂ but it contributes nothing to the
point we wish to make.

18. For the standard assumptions of OLS, (2.8) implies normality of the estimator,
with (2.9) and (2.10) providing the mean and variance, respectively. However,
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this result is not useful for diagnostics about the estimator, as the variance σ 2

is in general not known and so could not be employed in any diagnostics.
Rather, estimates of the residual variance must be used (see (2.7)), hence the
precise diagnostic form will in general be non-normal (but in the case of stan-
dard OLS, will be standard, e.g., involving the t-distribution [hence the term
t-statistic]). However, many asymptotic results are normal, so results such as
(2.10) do have some utility, if only pedagogical. Note that as the number of
(non-stochastic) regressors x increases, the variance in (2.10) shrinks like the
reciprocal of sample size.

19. To understand the idea, one can ask how likely it would be for a putative unit
normal to manifest itself as 5 standard deviations, say, above or below its mean.
For the classic OLS model the exact distributional properties of the estimator
can be obtained, but in general there is only recourse to asymptotic results for
the diagnostics (i.e., the distribution of the estimators for very large sample
size). We will discuss some of the perils and pitfalls of relying on asymptotic
results later, but thinking in terms of normally distributed estimators will serve
to convey the necessary intuition.

20. We do not intend to dwell on philosophical matters to any great extent, but
technically speaking non-rejection or failure to reject is not the same thing as
acceptance.

21. We will not go into various notions of convergence for random variables, such
as almost sure convergence, convergence in distribution, convergence in prob-
ability, etc., which play a role in econometric analysis. See Hamilton (1994) for
a proper discussion.

22. These results can be thought of as analogues to (2.9) and (2.10). For normally
distributed deviations, OLS produces the same estimators as MLE for the re-
gression coefficients. A subtle point that we shall not elaborate upon here is that
OLS estimator for the deviation variance is not equivalent to that from MLE,
although for large enough samples the distinction is not of great consequence;
see Hamilton (1994).

23. More accurately, conditional ML as the estimator is conditional on the initial
value of the time series; i.e., the (unconditional) distribution of the initial value
is ignored.

24. Although the random noise εt is independent of the prior xt−1 (and uncondi-
tionally zero mean), this is a pathwise property. The relevant expectation for
analyzing (2.19) is taken across paths. In addition, the joint dependence of the
estimator in (2.19) on the components of the vector ε is inherently nonlinear.
Hence, we cannot appeal to iterated expectations to establish unbiasedness, as
in the case of OLS.

25. So-called because the polynomial lag operator representation of the time series
(2.17) has a root on the unit circle. I.e., with Lxn = xn−1 the process in (2.17)
can be written as�(L)xn ≡ (1−φL)xn = εn, so that stationarity (φ < 1), say, is
characterized by a root outside the unit circle.
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26. These are just statements of the classical Central Limit Theorem (CLT), to be
discussed in Section 6.5.1.

27. It exhibits standard square root of sample size convergence. More generally, we
anticipate that variance estimators, by better conforming to the requirements of
the CLT (see the previous endnote), will tend to exhibit (distributional) behav-
ior that is less model-dependent than mean reversion estimators. It is in this
sense we can characterize variance estimators as being (comparatively) more
robust than mean reversion estimators.

28. We trust that it will be clear from the context when the variable T denotes
matrix transpose and when it denotes terminal time/number of data.

29. We will later discuss ramifications of dropping this assumption, e.g., the dis-
tinction between algebraic and geometric multiplicity of an eigenvalue, Jordan
normal forms, etc.

30. We are appealing to the fact that, for stationary processes, sample properties
converge to population properties (the so-called ergodic principle).

31. Slightly nonstandard as it satisfies dwdwT =�dt .
32. The analogue in higher dimensions of the process in (2.23) that is technically

stationary but econometrically indistinguishable from non-stationary part is
a process whose response matrix (so to speak) has (some) eigenvalues nearly
on/just within the unit circle. It would be a useful exercise for the reader to
derive the analogue of (2.24) to deduce the comparative robustness of the
covariance estimator.

33. I am grateful to Krzysztof Wolyniec for emphasizing the importance of this
topic.

34. We will switch between discrete- and continuous-time formulations as conve-
nient. See the Appendix to Chapter 6 for a brief discussion of the connections
(and disconnections) between the two.

35. A somewhat unrelated point, but as Keynes supposedly said, the market can
remain irrational longer than an investor can remain liquid.

36. We ignore throughout the case of so-called explosively growing processes, with
roots of the characteristic polynomial inside the unit circle.

37. In the technical econometric sense, exogeneity (in contrast to endogeneity)
refers to variables that determine some equilibrium relationships, but are not
themselves subject to that equilibrium.

38. We cannot deny: there is a Bayesian flavor to this discussion. The point being,
in any analysis, resort must be made to some kind of prior information.

39. Again, forwards are of interest to us because they are the primary trad-
ing/hedging instruments available in energy markets.

40. The phenomena described here are distinct from estimation biases as tradition-
ally understood; in the context of mean reversion see, e.g., Parsons (2008) or Yu
(2009).

41. For convenience, we assume that the process starts from zero.
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42. We have shown here how the sample variance (itself a random variable)
corresponds to a population entity of the sample on which the estimator
operates.

43. And of course, the weaker the mean reversion rate, the less relevant the
distortionary effect is.

44. It can be seen that, even on a monthly basis, there can be extreme events, such
as the spikes due to severe supply disruptions associated with Hurricane Kat-
rina in the fall of 2005, as well as the crisis-associated run-up in prices (and
subsequent) collapse in the summer of 2008.

45. Owing to the non-stationarity of (monthly) natural gas, we have not attempted
to deseasonalize this time series.

46. Although natural gas displays clear commodity-like behavior throughout the
overall sample, even it shows a delineation precrisis and postcrisis, specifically
a general decline in volatility (attributable both to demand destruction and
structural market changes [shale, etc.]).

47. Recall that we treat futures as equivalent to futures in our exposition.
48. Under a pricing measure, forward/futures prices are of course martingales. The

question here concerns the nature of prices under the physical measure. The
claim of efficient markets theory is that risk-adjusted prices are martingales,
which of course, absent a theory of risk adjustment, is untestable. Nonetheless,
we can simply ask in plain-language terms if (liquid) futures markets display
any readily exploitable opportunities, reminiscent of mean reversion. We will
see that generally speaking they do not. We cannot here discuss the techni-
calities associated with efficient market theory; see EW for a discussion of the
inefficiency of energy futures markets for long-dated contracts (say, with more
than three years to maturity).

49. A period roughly corresponding to the end of fighting in Libya in early 2011
and the start of the collapse in crude prices in summer 2014.

50. Recall Figure 2.11 as an indication of the recent financialization of forward
crude. Fundamentals desks eagerly await weekly releases of inventory levels by
various reporting agencies, but it is generally fallacious to believe that in liquid
futures markets one can systematically trade on the basis of publicly available
information.

51. In power markets summer typically comprises June through September,
whereas in (U.S.) gas markets winter typically spans November through March,
so seasonality in the two markets do not coincide.

52. There is little doubt that man-made, non-stationary effects such as urbaniza-
tion and general economic growth have had an effect on temperature, as can
be discerned from longer term time series (say, back to the 1960s) for locations
such as Las Vegas or Phoenix (or even Dallas). (We take no position on the is-
sue of AGW.) It is a common practice in weather derivative markets to look at
discrepancies between ten- and twenty-year temperature averages.
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53. We will ignore here pure supply-side effects such as unit outages forcing
inefficient (i.e., high marginal cost) units into service (giving rise to spikes).

54. It is worth noting a feature of forward heat rates. We will see in Section 5.2.5 a
model (due to Schwartz) of a mean-reverting spot model with a non-stationary
(stochastic) mean. The resulting forward dynamics give rise to the term struc-
ture shown in Figure 5.2. (This figure actually shows the volatility scaling law
for the spot process, but in this model the spot scaling law is equivalent to the
forward volatility term structure.) The increase and leveling off of volatility is
in fact seen in actual markets, as we will see in Chapter 3 (see Figure 3.5). This
behavior is due to (non-stationary) capital structure effects, namely changes in
the generation stack. We briefly note here that such capital effects are also op-
erational in regards to spreads, which reflect consumption/production across
time.

3 Valuation, Portfolios, and Optimization

1. For example, an injection/withdrawal schedule for a storage facility, or a
dispatch schedule for a power plant.

2. The classic Black-Scholes paradigm, which we will analyze shortly, is a prime
example of the role different measures play in hedging and valuation.

3. For simplicity we will assume that the temporal dependence is only on expiry.
4. We ignore here the complication that futures typically settle against the average

price over some period, usually a particular month, e.g., November 2014, or a
particular season, e.g., summer 2015.

5. So in general the set of available instruments can consist (depending on the
particular market) of both observables such as prices, and unobservables such
as volatility (as implied by options prices). Keep in mind that option prices
provide projections of realized cumulative volatility, i.e., integrated volatility
over some term. Thus, stochastic volatility (really, variance) models can only
be useful to the extent that they provide a ready connection between implied
and realized volatility (which is generally unobservable).

6. Note that this does not mean that prices equal expected values under the
everyday, real-world probability measure (usually referred to as the physical
measure). However, in liquid futures markets there is abundant evidence that
current prices are in fact good projections of future values (in other words,
over most time horizons of interest, there is little evidence of [systematic] bias
in these markets).

7. Think of a storage deal, spanning a single injection-withdrawal season, say
from April 2015 to March 2016.

8. For simplicity we ignore transaction costs here.
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9. Notice the ordering of the arguments is not arbitrary; it is meant to suggest
(and we will clarify in due course) that the value driver and its projection are
the primary variables, and the associated value function/hedges/actions are
in some sense “adapted” (in the plain language, not technical probabilistic,
sense) to these drivers.

10. It is well-known that delta-hedging an option creates exposure to realized
volatility; we will greatly elaborate on this point later.

11. Here is a very simple example. It is often not possible to rebalance forward po-
sitions intra-month (exceptions being markets where balance-of-the-month
[“balmo”] contracts trade). Thus, it is irrelevant how volatile or “spiky” (spot)
prices get within a month, if we can only hedge those prices with static con-
tracts for that month. In general the volatility that can be collected through
such portfolios is much less than the usual volatility estimated from the
standard deviation of daily returns.

12. To say nothing of the typically great computational challenges presented by
optimizing this operational flexibility.

13. By physical measure we simply mean the probability measure under which the
time series of prices is actually observed. We will discuss different probabil-
ity measures as they pertain to valuation and hedging in this volume, but we
will assume that the reader already has a good grasp of these concepts. Björk
(2009) is an outstanding reference on these topics, especially as they pertain to
finance.

14. Shreve (2004a, b) is a good reference for the specifics of stochastic calculus and
stochastic differential equations, with applications to finance in mind. Again,
we assume sufficient familiarity on the reader’s part here.

15. A put option would be handled no differently, except the payoff would be
(K − S)+.

16. Formally, any arbitrage opportunity refers to a portfolio whose price is ≤ 0
and whose terminal payoff is > 0 almost surely. This can easily be seen to be
operationally equivalent to the law of one price.

17. We trust that it will be clear from the context when a subscript refers to a time
index and when it refers to a partial derivative.

18. We will discuss both of these points in subsequent sections. The first point can
be seen from inspecting the payoff function graphically and invoking Jensen’s
inequality. The second point is related to the notion of a numeraire, and can
be understood by seeing that if the units in which the prices of the underlying
and strike are doubled (say), then from an economic perspective, the price of
the option should simply double.

19. As a further preview, we will argue against the standard approach that mimics
(e.g., in the case of stochastic volatility models) the derivation of BS by intro-
ducing fictitious instruments (such as options) and establishing consistency
relationships across the (augmented) set of assets.
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20. Here, “projection” does not refer to its technical, mathematical meaning but
the plain language sense of an (risk-adjusted) estimate (or guess).

21. It should be clear that this framework can be trivially adjusted for the case of
selling a structure.

22. Note that there is no explicit reference to prices (or other traded entities) in
(3.14). This is not an oversight. In this portfolio, the dependence on prices is
indirect, through the value drivers (which are certainly a characteristic of the
underlying price processes) and their projections. The notation is meant to
emphasize that for a structured product, the bet is on a value driver, and that
any price bet should be excluded from the portfolio in question (because it is
generally more efficient to bet on prices directly via traded instruments such
as futures).

23. For a general diffusive process satisfying dS = μdt + σdw, from Ito we have
that a function V (S, t) satisfies dV = (Vt +μVS+ 1

2σ
2VSS)dt + σVSdw, so if

V is a martingale under this measure it can be readily seen that the follow-
ing partial differential equation (PDE) is satisfied: Vt +μVS + 1

2σ
2VSS = 0.

The Feynman-Kac formula establishes this connection between PDEs and
martingales.

24. It is well-known that for GBM this is the only measure that is equivalent in
some sense (to be made precise later) to the original data-generating process.

25. Technically, the precise result (obscured due to our suppression of interest
rates) is that discounted prices/payoffs are martingales under the risk-neutral
measure.

26. As we saw, the issue ultimately comes down to a question of the time scales
over which information accumulates. E.g., knowing that the current month is
hotter than normal or that a large generation unit has experienced an outage
affects our short-term projections much more than our long-term projections.

27. We ignore effects here like outages that give rise to jumps and spikes.
28. As we saw in Chapter 2, the issue is not so much the presence or absence

of mean reversion as such, but rather the time scales over which such effects
operate. For our purposes here we will treat the phenomenon as binary.

29. The (instantaneous) power-gas correlation ρ′ can be extracted from ρ′σgσp =
ρσgσh+σ 2

g .
30. Obviously, when bidding on a structure, we can always attribute zero value

to extrinsic (optionality minus intrinsic), but it is just as obvious that few
counterparties will part with this value for nothing.

31. Of course, cases where dynamic hedges can only be put on closer to maturity
can be readily handled in this framework.

32. Notice the implicit assumption we make here: the value driver σα is a function
only of moneyness and time-to-maturity (both at inception). In other words,
we assume that the value driver does not depend on prices as such. This is actu-
ally not always a valid assumption; periods of large structural change (such as
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the introduction of the Rockies Express [REX] pipeline in 2007) can engender
such a dependence. An important consideration here concerns sample selec-
tion, and the ability to project historical information about the value driver in
question (in the econometric language employed in Chapter 2, the issue comes
down to stationarity vs. non-stationarity). This objective (projection from an
actual sample) has consequences for the question of when (and whether) it
is better to analyze cash flows (as was done in the analysis around (3.31)) as
opposed to value drivers. See also the following endnote.

33. As an estimator, the idea behind this approach is the following. In terms of
realized and projected value drivers (vectors σ and σ̂ resp.), write the portfo-
lio as �(σ) = �(σ̂ )+�T

σ̂
(σ − σ̂ )+ ·· · . If the realized value driver satisfies

�(σ)= 0, then to leading order the portfolio (constructed in terms of the pro-
jected value driver) is driven by the difference between realized and projected
value drivers. In particular, under mild assumptions regarding dependence
between value driver and price, if σ̂ =E0σ , then E0

[
�(σ̂ )

]= 0 (again, to lead-
ing order). (We must stress that these expectations are wrt. the physical [“real
world”] measure; pricing [martingale] measures, as frequently [and unthink-
ingly] employed in the industry are irrelevant here.) We are being somewhat
sloppy here, as the value driver in question is clearly a pathwise entity, and so
does depend on prices. However, for suitably chosen value drivers (indeed, this
is precisely one of the defining criteria of a good value driver, as is definiteness
of sign of the components of the gradient �σ̂ ), the dependence will be weak
enough such that the ensemble averages used in estimation (i.e., as sample
analogues of population properties) have meaning. (To understand the issue,
the reader should ask why it makes sense to average, say, the last ten years of
August temperatures in Dallas, while it does not make sense to average the last
ten years of GDP.) We will return to these themes in the subsequent chapters.

34. Note that an algorithm similar to (3.32) can be crafted in terms of
Gaussian (Bachelier) options, which would be appropriate for natural
gas basis/transport options (recall the underlying market structure from
Section 1.2.2).

35. This is not entirely true, as it is sometimes possible to dynamically hedge intra-
month via balmo contracts. We do not show the results here, but this hedging
strategy typically collects a volatility between the return volatility and static
volatility shown in Figure 3.6.

36. By extrinsic value we mean the difference between total (option) value and
intrinsic value. We should stress that although “intrinsic” commonly means
evaluation of terminal payoff based on current market prices, this conception
is basically operationally meaningless. Intrinsic can only mean that value that
can be locked in right now, which of course, assuming liquid (forward) mar-
kets, does indeed amount to the same evaluation. It should simply be stressed
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that this valuation entails a definite hedging strategy (e.g., full position in un-
derlying for positive intrinsic, no position at all for zero intrinsic). Note then,
that if you cannot even get off a static hedge for some product (say, illiquid gas
transport), it makes no sense to speak of “intrinsic value.”

37. The second derivative in (3.36) is to be understood in the sense of a generalized
function or distribution.

38. In (3.37), < x >t is the quadratic variation process for x, and of course is
simply t for Brownian motion.

39. The expectation of the delta function term produces a conditional density,
which is of lognormal form, and the resulting integral can be analytically
evaluated.

40. Note that this counter-hedge (based on the BS delta) effectively synthesizes a
put position, which of course has the same extrinsic as the corresponding call
(via put-call parity).

41. In truth, the vast majority of structured deals around storage are rentals/leases
of various terms (usually one to three years, occasionally as long as five [al-
though such long-term deals are very rare in the postcrisis world of dried-up
liquidity and collapsing volatilities]).

42. As well, there are typically fuel costs on injection (i.e., you must inject an
extra volume due to physical losses) and fixed charges on either injection or
withdrawal. These features do not substantially affect our points here.

43. We will spell out later the form of optimal intrinsic, as well as a near-optimal
static replication strategy in terms of spread options, for a very general case
of non-salt domes units, with fuel and commodity charges, and ratchets (flow
rates dependent on the inventory of the facility). The problem can broadly
be represented as either a dynamic programming problem, or approximately
as a linear program, conditional on no operational constraints being violated
regardless of option exercise. See the Appendix to Chapter 4.

44. Of course, after gas has been injected, it is still possible to reverse the corre-
sponding forward sale and sell spot gas from storage. We will consider such
valuations later, but for now this aspect is tangential to our main point here.

45. It is a lower bound partly because, as we have noted, we ignoring spot-forward
optionality that arises after gases have been injected. However, in general there
are additional representations of monthly option value in terms of max/min
options and similar such structures. We will describe these later. In truth, for
the salt dome example starting with zero initial inventory, this spread option
value is in fact the best monthly representation.

46. There are traded spread option products in energy markets, of course. How-
ever, note the particular structure here: the option on (say), June injection
and November withdrawal is exercised at the end of May, at which point
the withdrawal leg (November) has not expired. This pre-expiry feature has
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ramifications on the underlying ratio volatility structure (via the well-known
Samuelson effect), which we will discuss later.

47. We will note here that the optimal allocation of spread options (referred to
in Endnote 44) can be determined analytically (it is simply the pair-wise col-
lection of injection-withdrawal months along the subdiagonal, e.g., Apr–May,
May–Jun, etc.) and gives a value of 3.56.

48. Even here, though, we should note how rapidly moving market events have
rendered even the best expositions incomplete. Since EW’s publication in 2003
there have been major structural changes to the U.S. energy market, including
the Rockies Express (REX) pipeline, the transition of ERCOT from a zonal to
a nodal market, and of course the ramifications of the shale revolution.

49. Options struck against the international benchmark for crude oil, Brent, also
trade.

50. These settle against average spot price for a given month, or effectively futures
prices at expiry.

51. These are struck/exercised every day within a given month, if in-the-money
(i.e., if the spot price is above the strike).

52. Precrisis, floating strike (cash) options traded in some gas markets, e.g., SoCal.
53. The only value driver in this table we have not already explicitly referred to

is convexity for load deals. This is simply the relation between realized vol-
ume (volumetric risk is the central feature of such deals) and realized price
volatility.

54. Gamma is commonly, and indeed usefully, viewed as a measure of sensi-
tivity of delta, the underlying hedge, and thus plays an important role in
assessing dynamic trading costs and the feasibility of conducting such hedging
strategies. However, this concern is separate from the one we have here.

55. This assumes valuation under a measure for which probability of future
prices is scale invariant; see Alexander and Nogueira (2006). Thus, these
results would not hold true for a measure under which prices were log-mean-
reverting, say. But this of course highlights the point that these various greeks
are intimately related to dynamic rather than static hedging strategies, and
little significance should be attached to them outside of such a context.

56. This assumes, of course, that the variability associated with projecting corre-
lation does not vitiate the utility of locking in (so to speak) the leg volatilities
through vega hedging. In general, correlation estimates can be quite noisy,
especially in comparison to volatility estimates.

57. Vega is always positive for a single asset option, but as we will see, the leg vegas
for a spread option have indeterminate sign, depending on the leg volatili-
ties and correlation. The ratio vega (for a Margrabe-type option) is of course
always positive.

58. The cost is always positive, and typically (although in principle not necessar-
ily) the same for either long or short positions.
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59. Generally speaking, Leland’s formula overstates hedge costs, as can be seen
from simulation studies. Given that the structures of interest typically exist
within a larger portfolio, it is important to take advantage of aggregation as
much as possible in reducing these (hedging) costs.

60. At expiry, V = (S−K)+ so�=H(S−K) and�S = δ(S−K).
61. Many of the concepts in this section originated in joint work with Krzysztof

Wolyniec.
62. Or, when vega hedges are introduced, a bet on realized correlation.
63. And usually does, in energy markets.
64. A full discussion of these technical concepts can be found in any standard text,

e.g. Björk (2009). For our purposes here a filtration is a (nested) sequence of
collections of events (themselves sets of outcomes) describing the manner in
which information about a stochastic process is revealed through time (ba-
sically, the dynamics of the process), and a process is said to be adapted to
a filtration if it is measureable wrt. the filtration (a fancy way of simply say-
ing that information provided by the filtration at a particular point in time is
sufficient to determine the value of the process at that time).

65. Essentially this means the value of the process is known at the current time;
e.g., in a financial context you would know what hedge to put on right now.

66. Recall from Section 3.1.6 that a bond term is implicitly included in the replica-
tion strategy derived from (3.61), to maintain self-financing. The bond term
is not explicitly present in the (portfolio) dynamics because of our prevailing
assumption of zero interest rates.

67. A far more technical, but still useful, exposition can be found in Davis (2005).
68. We will in fact be interested in weakening the standard assumption further by

considering non-Gaussian price and/or state dynamics. This characteristic is
of course not equivalent to market incompleteness as such. There are special
instances of market completeness in non-Gaussian settings, but these are very
much the exception and not the norm. However, even Gaussian models, e.g.,
the mean-reverting model with stochastic mean in (5.124), can exhibit incom-
pleteness. The tools we will develop here can in fact be applied to a wide range
of processes, so it will be useful to conceive the problem around prototypical
incomplete market models such as stochastic volatility. (Under a pricing mea-
sure, linear [i.e., Gaussian] models are in fact complete across structures with
payoffs that depend only on the subset of tradeables, as opposed to nonlinear
[i.e., non-Gaussian] models that are not.)

69. Note that static hedges can easily be incorporated in the framework of (3.62)
by taking�s =�t for all s ≥ t .

70. Although the primary focus in energy markets is on spread structures, we
are going to start with the analysis of the standard option to better relate
our results to the standard literature. This simplification will not affect the
conclusions in any substantial way.
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71. Technically, these results refer to discounted tradeables; as usual we will
neglect effects due to discounting throughout this discussion.

72. By which we mean without reference to the (subjective) preferences of any
agents.

73. Note that in general the reverse is also true, in the context of derivative se-
curities: for a given EMM, there is not a unique physical measure that gives
rise to it, even when (underlying) prices themselves are martingales under
both physical and pricing measures. This highlights the basic pointlessness
of the common practice of “calibrating” price models to match market option
quotes (which, even when they exist, are often illiquid anyway), at least when
such models are divorced from actual portfolios consisting of the calibrating
instruments. Even in this case, however, the point of the portfolio is to effi-
ciently create some desired exposure, not to guarantee consistency with market
prices (e.g., you should not bake your view on prices into a delta-hedged op-
tion portfolio: not because of some inconsistency but rather because there are
more efficient ways of betting on price [futures], and the option portfolio is
meant to extract exposure to realized volatility, not price).

74. A common, but mistaken, interpretation of the MMM is that it is the EMM
that leaves the DGP under the original, physical measure as unchanged as pos-
sible. It is actually the residuals from a particular hedging strategy (namely,
a [dynamic, orthogonal] projection onto the space of tradeables) that are
minimally affected.

75. For example, there may be parametric dependence through projected
quadratic variation and the use of a BS pricing/hedging functional. We will
see just such an example shortly.

76. We will soon see examples of how this can be done, but for now we appeal to
the example of BS pricing/hedging, with exposure being realized vs. projected
volatility.

77. It is worth pointing out the contrast between static and dynamic hedging
strategies, which as we have stressed is extremely important in commod-
ity markets. Consider the case of rolling intrinsic. Since here we specify the
hedging program (always hold intrinsic positions), we proceed in the reverse
manner, namely, we must find a value component (of the value function) cor-
responding these particular hedge dynamics. Note that if we only use price
information in the value function, we could only satisfy a condition such as
(3.67) if we take the value component to be intrinsic value, and this is not real-
istic as it is highly implausible that some counterparty would transact extrinsic
value for nothing. Hence we anticipate that the corresponding value com-
ponent must use non-price information, or more accurately non-observable
price-related information. Since we know from Section 3.1.4 that rolling in-
trinsic creates exposure to realized local time, which of course depends on
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the physical dynamics of the price process (under the physical measure, ob-
viously, which is where the residual exposure is reckoned), we plainly must
know something about these dynamics. It is here we can see the problem with
rolling intrinsic, at least in comparison to other valuation/hedging strategies
(that is, value functions) such as BS: the informational requirements are quite
high. In financial markets we must know something about the price drift. In
commodity markets we must know something about the mean reversion rate
and level. In both cases these entities are notoriously hard to estimate (see
Chapters 2 and 6). In fact, we can see here that in general the informational
requirements will be higher in commodity markets, due to these kinds of ef-
fects, which are ultimately traceable to the particular kinds of time scales that
are operational in those markets (again, see Chapter 2). We can start to see
here the informational efficiency of programs such as BS valuation/hedging.

78. Admittedly, under the canonical class of affine jump diffusions that we will
consider in Chapter 5, independence is preserved under the two measures. But
this fact is a consequence of the specialized assumptions about the underlying
price dynamics, and not a general conclusion.

79. Note that while a pricing measure may of course be identical to the physical
measure, it is meaningless to operate from an assumption that they are equal.
This amounts to putting the cart before the horse. (One is reminded of the
joke about the economist on a deserted island with a can of beans: “Assume
we have a can opener.”)

80. For an ATM option, the BS value is approximately linear in volatility, but not
for OTM or ITM options. Again, this point is not itself relevant unless we beg
the question by assuming that price and volatility are independent under the
pricing measure.

81. Models such as (3.131) where the mean and covariance have an affine form
(i.e., constant plus linear in the state variables) are very popular due to their
great tractability, and will be considered in great detail in Chapter 5. (See
Section 5.2.5 for more details on Heston in particular.)

82. We present here the spot process. Technically, we should be considering the
corresponding forward process, as these are the actual instruments available
for hedging in energy markets (spot commodities do not trade as such, as
physical possession must be taken at some point). However, using the tech-
niques developed in the prior sections, we know that the affine framework
readily allows transition between spot and forward formulations. Since the
extra complications (e.g., time-dependence) introduced by forward modeling
is not relevant to the points we wish to make, we will instead employ spot
models.

83. Examples in energy markets would include NYMEX natural gas and PJM West
Hub electricity (on-peak).
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84. Note that for jump processes, we must introduce a continuum of auxiliary
options to be able to derive the martingale pricing equation.

85. With appropriate vega adjustment, of course.
86. We should call attention to somewhat similar work by Poulsen et al. (2009).

The use of so-called plug-in estimators has some affinity with our approach;
see Gandy and Luitgard (2013).

87. In the econometrics terminology employed in Chapter 2, in this case variance
becomes less stationary/more non-stationary.

88. Although we do not present the results here, we note that the optimal hedging
parameter for the mean reversion level is fairly flat across rates and nearly
equal to the physical level; it asymptotes to the optimal local value as the
reversion rate increases.

89. In fact, much of the material presented here will receive a more focused
discussion in Section 7.6.

90. Analogous decisions must be made when the unit is currently up, i.e., to stay
on or shut down.

91. We will see an example in terms of portfolio optimization shortly.
92. Note that strictly speaking the discrete-time form of (3.101) renders the ex-

ercise policy Bermudan, not American, in nature (i.e., exercise can only take
place at specific times prior to expiry).

93. We trust it will be clear from the context when a subscript t represents a partial
derivative wrt. time, and when it refers to a driver/state at a particular time.

94. The dependence is implicit; the point at which the arguments in the max func-
tion are equal represents the decision boundary separating exercise regions
from hold regions in time/driver space; see Kwok (1998) for a discussion in
the context of standard American options.

95. Forgive us this academic dalliance. Simply think of utility as a proxy for wealth.
96. The calculations are reminiscent of the ones employed for affine jump dif-

fusions. We note that multidimensional extensions are possible, although we
omit the details here.

97. Each multiplier represents the incremental value of a specific constraint, i.e.,
the sensitivity of optimal value to replacing the 0 in a constraint in (3.107) by
ε. That is, they are shadow prices.

98. The original problem (3.107) is typically referred to as the primal problem.
99. This does not conflict with the usual connection between prices of (dis-

counted) tradeables and martingales, once the reinvested payoff at exercise
is accounted for. Put differently, the optimally stopped value process is a
martingale.

100. We can mention here that many numerical approaches to these kinds of prob-
lems, such as simulation, produce lower bounds on value, hence it is quite
useful to be able to find upper bounds on value.

101. See also Section 4.1. Examples from tolling will be considered in Section 4.2.
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102. It is possible to craft financially settled deals (so-called virtual storage) or even
physical deals (so-called park and loans) where inventory can go negative.

103. The spread options represent injection and withdrawal decision between ap-
propriate temporal blocks (typically, contract months, but we leave it quite
general here). More generally, the portfolio consists of max and min options
across different withdrawal and injection periods. While (by put-call parity)
these appear at first blush to be simply identical to spread options and for-
wards, they are in fact not redundant when fuel losses are taken into account.
See the Appendix to Chapter 4 for the actual algorithm.

104. In practice the constituent options typically must be replicated via delta-
hedging, creating a complex set of exposures across decision months, effec-
tively a term surface of quadratic variations.

105. It is a trivial, but nonetheless useful, exercise to verify this statement for general
affine jump diffusions and their associated forward relations and dynamics
using results such as (5.76), (5.149), and (5.152).

106. As a side note, observe the necessary role played by mean reversion for the
existence of extrinsic value. Intuitively it can be seen from (3.121) or (3.122)
that, apart from deterministic or seasonal effects, the value function is only
dependent on state (inventory). Note also, in the absence of a volatility term
structure (i.e., no mean reversion), it is clear that the spread options in the bas-
ket formulation have only intrinsic value. As a general rule, it can be shown
(empirically) that as the resolution of the (forward) hedging instruments in-
creases, the “monthly” lower bound approaches the “daily” true value; see
Section 4.1. This illustrates an important theme we will revisit in Section 4.2
when we consider tolling: so-called spot and forward valuation methodolo-
gies are not alternatives to one another but are in fact closely related through
particular market structures.

107. For more on control-based approaches to storage valuation, see Ahn et al.
(2002), Thompson et al. (2009), and Ludkovski and Carmona (2010).

108. As we will see, the (purely) diffusive joint dynamics will not be altered under
a change of measure.

109. In particular, we examined the consequences of eschewing the standard ap-
proach of introducing auxiliary (fictitious, really) assets by means of which
consistency relations can be established across valuations.

110. In other words, we only use information that has just been revealed, and not
some longer history.

111. As well as estimates of the volatility of variance and correlation with price,
both of which must be filtered as well as even standard techniques such as a
sample covariance estimator cannot be applied. In addition we must use as-
yet-unspecified risk-adjusted parameters for the drift of the variance in the
valuation functional.

112. Indeed, it may possess jumps, as well.
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4 Selected Case Studies

1. I would like to acknowledge Krzysztof Wolyniec for motivating this investiga-
tion.

2. We have discussed here the valuation of storage from a monthly perspective
(however “monthly” may be conceived operationally) and its convergence to
daily value with finer levels of market resolution. We have not said anything
about the important daily component of value for a given monthly resolution.
In other words, after a set of spread options has been allocated at inception,
once a particular month is entered into, one may deviate from committed
monthly flows (either injection or withdrawal) on a daily basis (e.g., if prices
spike on some day, one may decide to release more gas from storage than the
initial monthly schedule requires, etc.). There is clearly additional (option)
value to this aspect of storage, and the obvious question is: how much more
value relative to the monthly value can be captured through suitable hedg-
ing/trading strategies? We cannot address this question in detail here, but see
Endnote 13 below for a sketch of possible approaches.

3. The reader should not hesitate to refer to the relevant parts of Chapter 7 for
greater clarification.

4. In general there will be a distinction between power prices for weekdays and
weekends, as well as between onpeak and offpeak periods within a given day.
For convenience we ignore this important distinction here; it should be clear
that these effects can be incorporated in a straightforward manner.

5. We will assume throughout that the start charges are already appropriately
normalized.

6. Note that we implicitly assume that, for the time period in question, the num-
ber of switches (changes in operational state) is effectively unlimited (e.g., there
can be as many as one per day).

7. Some recent work offering computational benefits (by avoiding nested Monte
Carlo for the martingale construction) is Schoenmakers et al. (2012).

8. Many of the results to be discussed here stem from joint work with Krzysztof
Wolyniec.

9. Although we focus here on tolling, the methodology presented is in fact a quite
general approach. In light of the representations of storage valuation that we
have already considered, it should be evident that other deal types can be readily
incorporated in the duality framework.

10. In Section 7.4.1 we will discuss some of the issues involved in evaluating the
Q-expectations of these kinds of payoffs. As a practical matter of valuation, we
note the following:

These expectations will obviously depend upon the joint distribution of
power and gas. Valuation in terms of a replicating hedging strategy will in
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turn depend on the availability of liquid instruments for relative pricing. In
some markets, there will be traded leg options, and occasionally ATM spark-
spread (heat-rate) options. In other markets we may only be able to hedge
price exposure, but there may be the possibility to dynamically hedge with
balance-of-month contracts.

The above payoff structure is conditional on expectations/projections at the
start of a month. In general we will be faced with a forward-starting valuation,
e.g., next summer valued today. Thus there is a contribution to value arising
from forward variability that can also be captured by a suitable hedging strategy.
Just as in the cash/intra-month case, the relevant forward-value drivers depend
on the underlying market structure.

The upshot of these two points is that correlation may not be the relevant
value driver in all, or even most, cases. To begin with, on a cash basis there
may not be sufficiently liquid option markets on which to base a projection of
leg volatility, in which case separate nonmarket (i.e., historical) projections of
volatilities and correlations is likely non-robust and probably pointless. Second,
the aggregate (or blended) correlation that may accrue on a daily basis (that is,
arising from the separate forward- and cash-hedging regimes) may have little
relevance for deals with any kind of stringent physical constraints (i.e., anything
besides vanilla spark spread options).

11. The peaks and troughs in Figure 4.3 reflect the different distribution of on-peak
and off-peak hours within the deal months; recall from Table 4.3 that there is
no seasonal structure in the price curves.

12. We present simulation-based results for the lower bound here, but in truth the
quadrature techniques that we discussed in Section 7.4 can also be brought to
bear.

13. We note here that the duality methods outlined here for tolling can also be ap-
plied to assess the lower-bound storage valuation from Section 4.1. The main
idea was presented in Section 3.3.2 and involves using the constituent spread
options as the basis of the martingale proxy. In practice, the shadow price (wrt.
inventory; see [3.125]) that arises naturally out of the spread-option linear pro-
gram in (4.18) can be employed for daily management of injection/withdrawal
decisions in light of prevailing spot prices. In fact, prompt futures prices are
typically a good proxy for shadow prices (at least when the facility is not nearly
empty or nearly full), so incremental daily storage value can be viewed as a kind
of spread option between spot and prompt.

5 Analytical Techniques

1. A longer overview (but still very much on the short and sweet side) can be
found in an appendix in Björk (2009). See also Shreve (2004a, b).
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2. Events are sets of outcomes, and the associated probability measure is defined
over the set of events and countable unions and complements thereof, i.e., the
sigma algebra of events.

3. Over some time horizon [t ,T].
4. We will state general results later, but the relevant result in one dimension is

E exp(iφz)= exp(iφμ− 1
2φ

2σ 2) for z ∼N(μ,σ 2).
5. By this we simply mean that continuous processes remain continuous processes

under a measure change; a continuous process cannot be transformed into a
jump process via measure change (although in general a process’s canonical
form can change, e.g., a Gaussian process may become non-Gaussian, etc.).

6. Thus, in contrast with the diffusive case, where the structure of the stochas-
tic driver is not altered by the change of measure (the covariance remains the
same), for jump processes there is a structural change: the jump intensity is dif-
ferent. It is not hard to show (via characteristic function methods) that, also in
contrast with the Brownian case, the drift of a jump process does not change
numerically. However, it changes relative to the (new) jump driver, and it is pre-
cisely the (unconstrained) freedom of selecting the jump amplitude of the RN
process that gives rise to the nonuniqueness of the martingale measure.

7. As we shall see subsequently, characteristic functions provide an extremely nice
framework for establishing the precise form of the induced dynamics under a
measure change, for a wide range of processes.

8. Examples would include spark spread options between power and gas (in which
case α would represent a heat rate) and natural gas transport options (in which
case α would represent fuel losses along the pipe).

9. Note that, as remarked previously, the RN derivative is in general a process
itself.

10. For more on the use of numeraires in option pricing, see the aforementioned
papers by Benninga et al. (2002) and Schroder (1999).

11. For general continuous processes we have a result of the form df = (ft+ζ f )dt+
fzdw, from which the martingale condition on f requires that the drift term
vanish.

12. Note that all terms involving ζ vanish, reflecting the status of eζ(T) as a P-
martingale.

13. Of course this result could have been obtained directly from (5.37) by expand-
ing out the results for the characteristic function under Q and collecting terms
appropriately in φ, but, apart from being a tad burdensome (so we see again the
great analytical utility offered by measure change approaches), the approach
laid out here will prove greatly useful in more general, affine problems where
the manipulations would be far less tractable. It is thus worth introducing the
tactic here.

14. It is worth noting the contribution of Geman and Eydeland (1995) to the prob-
lem. Carr and Schröder (2004) employ analytic continuation to extend the
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original results of Geman and Yor (1993), another example of the great utility
afforded by complex analysis (a theme we emphasize throughout here).

15. In particular, Curran (1992) provides very accurate lower bounds for the Asian
option price.

16. Note, using (5.50), that the requirement that the RN derivative be a Q–
martingale is satisfied.

17. Conditioned on the current time t .
18. Although Girsanov is of course essentially a characteristic function result, in

practice it often proves rather awkward to employ directly (that is, without
explicit reference to its underlying construct).

19. More precisely, Itô calculus.
20. A semi-martingale is a stochastic process that can be decomposed into a local

(“ordinary”) martingale and an adapted, finite variation process (by which we
informally mean a process whose value is known at the current time and which
only has a countable set of discontinuities). Among other desirable properties,
they are the largest class of processes for which stochastic integration can be
reasonably defined, quadratic variation always exists, and reducing the available
information set does not affect semi-martingale status. As already noted in the
text, these properties are crucial for constructing portfolio dynamics necessary
for valuation problems.

21. We thus ignore, for the most part, entities such as fractional Brownian motion
(fBM), which is similar in many ways to ordinary Brownian motion, except
that the assumption of independent increments is dropped. For an overview of
fBM, see Nualart (2006). Broadly speaking, such effects represent long-range
dependencies. We also (largely) neglect effects at the other end of the spectrum,
namely on very short time scales (e.g., high frequency). Here, due to market
microstructure effects, estimates of quadratic variation (say) do not scale pro-
portionately (so that, e.g., entities based on minute-by-minute returns do not
converge to scaled versions based on daily returns). We very briefly discuss high
frequency issues in the Appendix to Chapter 6.

22. We will confine attention here to one-dimensional processes, although it should
be fairly obvious how to extend the discussion to higher dimensions. This lat-
ter issue will be considered in Chapter 8, on the subject of joint dependency
structures.

23. This definition is related to the property of right continuity with left limits
(càdlàg in French), which is obviously suitable for financial applications (as
the customary assumption is that one puts on a hedge based on current [price]
information).

24. As usual, we provide no formal proofs here, as there is a copious literature
on Lévy processes that the reader can draw upon for technical details. We can
recommend Kyprianou (2006) and Papapantoleon (2008) as good sources of
information.
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25. We assume unit time interval for convenience.
26. In truth, the nature of the divergence does need to be restricted by requiring

that min(1, |x|2)v(x) be integrable near 0, as should be clear from the integrals
in (5.59).

27. Roughly speaking, again, “activity” is an inherently two-dimensional entity;
to repeat, only in the case of integrable Lévy measures can jumps be de-
composed into categorically distinct (Poisson) entities such as “intensity” and
“amplitude.”

28. We note in passing that this process is built up from time-changed Brownian
motion; see the next subsection on stochastic volatility models as they relate to
time-changed processes.

29. We do not propose to critically evaluate this position here. What we wish to note
is that, as a practical matter, the data set that is typically available in energy mar-
kets (the aforementioned studies were based on equity markets) simply do not
support the resolution necessary to conclusively answer the question of whether
the data-generating process is an infinite activity process. Of far greater impor-
tance is the fact that the hedging strategies that are available in these markets
(and as will be shown, these strategies are central to the question of valuation)
will take place over time horizons that effectively render this question (of jump
activity) somewhat moot. (This is certainly the case with the rather mundane
case of compound Poisson processes.) We should point out here that, even in
the continuous process case (e.g., joint normality), that not all representations
are created equal. A simple example is the case of correlation vs. ratio volatil-
ity. These are obviously isomorphic (so to speak), but as a practical matter it is
generally preferable to estimate volatilities as opposed to correlations. A fortiori,
while a pure jump representation may be theoretically (or at least aesthetically)
superior to a diffusive representation, we would generally expect the latter to
be more robust than the former in terms of the important operational task
of estimation. It is for these reasons that we will, for the most part, eschew
consideration of pure jump processes in this book.

30. Of course, the menagerie of GARCH models prevalent in the literature should
also be mentioned. We will briefly discuss GARCH models in the next chapter,
but it is worth noting here that these models are models of directly observable
residuals (e.g., of some other model of returns, say), as opposed to the kind of
(continuous-time) unobservable stochastic volatility models we are considering
here. There is no necessary correspondence between the two kinds of models
(e.g., in the limit of infinitesimal time steps), despite popular impressions to
the contrary.

31. In the United States there are weekly announcements of various fundamen-
tal statistics such as crude oil and natural gas inventories, which of course may
come in above or below expectations and thus impact (short-term) price move-
ments. However, inasmuch as the arrival of this information is publicly known
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and the drivers in question cannot realistically vary by extreme amounts week
over week (recall the discussion of variance scaling laws in Chapter 2), these
events are better characterized as jumps of limited extent. In informationally
efficient (i.e., liquid) futures markets, there is little reason to think that such
events are systematically exploitable.

32. Clearly, T must be positive valued and increasing.
33. Obviously, the assumption of independence between the process being time-

changed and the time change itself is somewhat restrictive. Carr and Wu
(2004) claim to circumvent this restriction and retain the tractable structure
of (5.60) by applying a complex-valued measure change via the optional stop-
ping theorem. However, as we understand the argument, this approach largely
amounts to a notational/computational device. Wu (2008) seems to confirm
this suspicion. In truth, the types of stochastic volatility models of interest
are more conveniently analyzed in terms of the canonical affine processes we
will discuss in the next subsection, so we will not pursue this particular issue
further.

34. A useful exercise for the reader is to use this result to verify the standard result
that a partitioned normal variable is also conditionally normal, with condi-
tional mean and covariance given by μx2|x1 = μ2 + �T

12�
−1
11 (x1−μ1) and

�x2|x1 = �22−�T
12�

−1
11 �12 where μ and � are the unconditional means and

the notation for the partitioned means and covariances should be clear from
the context.

35. As will be clear in the next subsection, the ensemble (5.65) retains the affine
structure of the model (5.63) (essentially, instantaneous drifts and variances
are one degree polynomials).

36. The expression in (5.66) finds use in simulations of the Heston model; see
Broadie and Kaya (2006).

37. Alternatively, we can say that it is possible to condition price on integrated
(cumulative) variance. This is a standard approach for pricing options un-
der (independent) stochastic volatility: the option price is e.g., a Black-Scholes
expression integrated over the (occasionally known) distribution of stochastic
(integrated) volatility.

38. Note that when we speak of an “unconditional” expectation here, we are being a
bit sloppy, as there is always conditioning, but only on information at inception
(i.e., we will take “conditional” here to mean conditional across the entirety of
a path).

39. Note that we can view the dynamics of x =�T −�, conditional on the above
information set, as the following Lévy process (with an abuse of notation): dx=
ρ(�′T −�′)dt +ρs

√
VT −V dw. The second term is of course a time-changed

(standard) Brownian motion. The first term can be thought of as a stochastic
drift, with mean zero. It is thus akin to a regression residual.
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40. The result in (5.75) follows from the independence of increments of L and the
proportionality of the log-characteristic function of Lévy processes to the time
horizon in question.

41. We refer the reader to Tankov and Cont (2003) for the technical details for
rigorously defining stochastic dynamics for general jump diffusions.

42. The difficulties associated with problems exhibiting very different time scales
is in fact a very well-studied topic in the numerical analysis of ODEs, where
such behavior is called stiffness. We call attention to this issue here, but will not
discuss it in any depth, as the subject matter is well covered in either standard
texts (e.g., Press et al. [2007]) or with explicit reference to affine jump diffusions
(Huang and Yu [2007]). Suffice to say that the issue entails a question of stability
vs. efficiency of any particular scheme for integrating the underlying system. As
we have emphasized throughout this volume, the presence of time scales of
differing orders of magnitude are a hallmark feature of commodity markets.

43. Or more accurately, the current values of the state variables.
44. We are being a bit sloppy in (5.104), as in general α will have a multidimensional

dependence on φ, making a a matrix-valued entity. However, it should be clear
to the reader how to proceed, so we will not dwell on the details here.

45. I.e., let C = 2
σ 2 ẇ/w.

46. In addition, since v represents a (positive) variance, the process parameters
must satisfy certain conditions to ensure that the process never goes negative,
specifically the so-called Feller condition: 2κθ ≥ σ 2. We note that we have not
experienced any numerical problems with the formulation in (5.123), even in
cases where the Feller condition is violated (the scenario studied by Lord and
Kahl [2008]). The issue in this case is that the amplitude of the function D in
(5.121) does not decay fast enough to suppress oscillations arising from phase
shifts due to the branch cut singularities. These phase shifts are themselves
a numerical phenomenon dependent on the particular (analytical) represen-
tation (the effect does not arise from a direct integration of the governing
equations (5.120)), giving a good example that mathematical equivalence does
not necessarily imply operational equivalence.

47. As is well known, a realistic feature of electricity markets is spikes, which of
course can be modeled by jump processes. We will consider such an example
later.

48. This representation is, strictly speaking, false, as actually existing fu-
tures/forwards contracts (we will ignore throughout the subtle but important
difference between the two) settle not against terminal spot as such, but rather
the average spot price over some specified time block, usually a particular calen-
dar month, e.g., July 2014. (For sufficiently long times to maturities [obviously a
market-dependent criterion], traded futures contracts may only settle on lower
resolutions such as seasonal or quarterly blocks, e.g., Q1 of 2018.) However,
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this fact does not detract from the usefulness of (5.147) in elucidating sev-
eral important points, namely how certain features of physical spot markets
are manifested in financial futures markets, and how value drivers are impacted
by different hedging strategies with futures (e.g., static vs. dynamic).

49. I.e., injection takes place at T1 along with commitment (also undertaken at T1)
to withdraw at T2.

50. Or more accurately, they do not necessarily vanish. In general the parameters
under the two measures will be distinct (except of course for the covariance
matrices).

51. The magnitude of the difference between the two mean reversion rates will of
course be a reflection of the preferences of market participants. The point is,
in liquid forward markets, the precise nature of these preferences is irrelevant
and the forward price is simply a given, at least from the perspective of valuing
structured products.

52. In truth, fuel prices themselves exhibit some mean reverting, over a long enough
time horizon. In other words, (5.162) is a representation of relative time scales
over which the effects of interest are operational. This point was given much
attention in Section 2.2.

53. Probably better termed a stationary relationship, in the terminology of econo-
metrics; see Chapter 2 for more details.

54. For simplicity we ignore jumps here, but it should be clear that they can be
readily incorporated.

55. As a forward price, the expectation in (5.165) must be wrt. some pricing
measure. However, the techniques involved in the subsequent analysis do not
particularly depend on any kind of martingale structure, so we simply omit any
explicit reference to a probability measure.

56. Of course, the full solution to (5.165) involves the entity γ0, which also satisfies
an ODE that is not hard to derive. However, in general this entity does not enter
into the forward dynamics in affine models, so we neglect it here. (Its evolution
is dependent on the coefficients of the state variables, but not vice versa.)

57. That is to say, a block diagonal matrix with block elements of the form⎛⎜⎝ λ 1 0

0
. . . 1

0 0 λ

⎞⎟⎠ where λ is an eigenvalue and the dimension of the block

corresponds to the multiplicity of the eigenvalue.
58. And also, apart from the jump terms, (5.154).
59. The idea that information accumulation associated with prices may vary on

a much longer time scale than the information accumulation associated with
some fundamental relationship(s) between those prices is of course simply a
more abstract formulation of the well-known econometric concept of cointe-
gration. The role of exogenous variables considered here can be seen to fit in
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the (also well-known econometrically) category of Granger causation. There
will be more on all of this in Chapter 6.

60. Examples would include exchanging price exposure for volatility exposure in
a delta-hedged leg option, or volatility exposure for correlation exposure in a
vega-hedged spread option.

61. The reader may want to revisit Section 5.1.
62. Recall the applications in Section 5.1.
63. An interesting commodity application of models such as (5.186) is to augment

the system with a similar log-load process and the integrated variance dV = vdt .
A pathwise relationship can then be seen between power-load covariance and
realized power variance, illustrating the claims made about vega-hedging load
deals in Section 1.2.4.

64. The drift of tradeables under the pricing measure is of course zero.
65. For a volatility-weighted RN process with coefficients α (akin to (5.171)), the

relationship between means under physical and pricing measures is given by
μQ = μP + Xα in terms of the process covariance X . Now, for another P-
martingale with volatility coefficients β, the condition of orthogonality with
tradeables requires that Xβ= 0 for only those rows corresponding to tradeables,
and the requirement that this process remain a martingale under Q requires
that αT Xβ = 0. These conditions imply that the RN coefficients can be par-

titioned as α = ( αT
S 0T

)T
, where the nonzero components correspond to

tradeables. Similarly partitioning X , the equation imposing zero drift of trade-
ables under Q can be solved, from which the expression for the Q-drift of the
non-traded entities can be shown to be equivalent to (5.190) and (5.191).

66. For the extension of these results to processes with jumps, as well as some
discussion of the discrete-time case, see Mahoney (2015a). Jumps actually in-
troduce some very nontrivial complications to the problem. The equivalence
between MMM and the entropy measure no longer holds, and in general the
MMM under jump processes entails a signed measure. The equivalence with lo-
cal variance minimization no longer holds, either. In fact, it is a useful exercise
to extend the analysis of 5.2.9.4 to, say, Merton’s model (the resulting expres-
sion for the local variance-minimizing hedge can be cross-checked with Tankov
and Cont [2003]). These results will show that, unlike in the diffusive case, the
optimal hedge ratios are dependent on the value function itself. In other words,
it is not clear how pathwise properties that hold true in the diffusive case carry
over to the discontinuous case.

67. Properly discounted, of course.
68. Using the shorthand notation μ(−dx)= μ(−x)dx.
69. The “truncation” function (for lack of a better term) h retains the salient feature

of being confined about the origin.
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70. This result was first published by Eberlein and Papapantoleon (2005a). In fact,
there are similar symmetries across other structures that can be crafted as either
fixed or floating payoffs, such as lookback options.

71. We are referring to options with arithmetically averaged payoffs; as in the Brow-
nian case, geometrically averaged payoffs clearly present little problem for such
models.

72. Note that, as in the Lévy case, this is a rather different question from asking
whether the option valuation in question is feasible after the measure change.
This nontrivial difficulty does not detract from the obvious use and power of
symmetry relationships, however.

73. A natural extension of the standard Merton jump diffusion in (5.112) to in-
clude mean reversion directly runs into two problems in practice. To mimic
actual data, both the mean-reversion rate (necessary to equilibrate jumps) and
diffusive volatility (necessary to reflect randomness during “normal” periods)
must be unreasonably high. Hence the appeal of model such as (5.220), where
the two effects (jumps vs. diffusions) are in some sense separated.

74. It is easy, but not terribly illuminating, to write out the ODE solved by α.

6 Econometric Concepts

1. As we will see, when there is a single cointegrating relationship, OLS can con-
sistently be used to extract estimates of it, although of course the relevant
diagnostics will not be standard.

2. Since the row rank of a matrix equals its column rank, we assume that A has
been suitably arranged so that A1 in (6.1) is nonsingular.

3. We are being somewhat abusive of notation in referring to “cointegrated pro-
cesses” in Figure 6.1. We can think of that scenario (involving a random
walk and white noise) as entailing a linear stochastic relationship between two
non-stationary variables, with the multiplicative coefficient equal to zero and
additive stationary noise. Technically, the trivial linear relationship y = 0 · x+ ε
is excluded by the formal definition of cointegration. Nonetheless, the slop-
piness of notation does not detract from the overall message, which is that
conventional econometric techniques can yield extremely misleading results
when applied to non-stationary time series except under very special (and
fortuitous) conditions. Roughly speaking, there has to be some kind of under-
lying stationary relationship in order to apply these methods to non-stationary
processes.

4. For convenience we omit a constant term.
5. See Hamilton (1994) for a discussion of what OLS produces in the presence of

multiple cointegrating relationships. We will discuss a more general approach
to the problem in Section 6.1.3.



Notes 419

6. The joint dynamics in (6.14) are linear and hence Gaussian in nature. It would
be a useful exercise for the reader to derive the characteristic function of the
process (in the continuous-time limit) using the methods of Chapter 5. It can be
seen that the relevant system of ODEs involves a matrix with a zero eigenvalue,
which manifests itself in a process variance that grows linearly with large time
horizon, a tell-tale sign of non-stationarity. (A second eigenvalue is the negative
[in this case] number b2 − γ b1, indicating a variance scaling reminiscent of
mean reversion over some smaller time horizon.) We will examine this idea in
more detail in Section 6.1.4.

7. This result also follows from the continuous-time limit of (6.13), from which
it can be seen that the (log-)heat rate is a standard mean-reverting process
(note that there is an implicit time step factor baked into the coefficients of
the discrete-time model, and the κ2 drops out in the limit).

8. It is not hard to see from (6.15) that for a general cointegrating coefficient γ as
in (6.14), the long-term correlation will be sgn(γ ).

9. This can be seen by applying the same kind of transformation to (6.19) as in
(6.12).

10. Let us stress that we do not seriously believe that such spread-trading opportu-
nities are very prevalent in liquid futures markets, or that if they are, that they
are painlessly exploitable (recall Keynes’s dictum regarding market irrationality
and investor liquidity). We only wish to illustrate how the necessary objective is
to identity drivers whose variance scaling grows much less rapidly than that of
the constituent legs.

11. Not to be confused with value at risk!
12. This is simply a nonlinear eigenvalue problem, which is reducible to a standard

eigenvalue problem; see Press et al. (2007).
13. We ignore the cases of explosive growth, where some roots lie strictly within the

unit circle. We further ignore, except in passing, cases where the roots on the
unit circle are complex, which is a hallmark feature of seasonal non-stationarity.
In other words, we will assume that any roots not outside the unit circle are
equal to 1.

14. In case it is not clear from the format, the first matrix is block lower triangular
starting with the (3, 3) block, with all nonzero blocks being the negative iden-
tity. In the second matrix, starting in the (3, 2) block, the blocks are shifted
pairs of +/− identity matrices (surrounded by zero matrices). The objective is
to recraft the dynamics to involve only lagged differences, plus a term in the pre-
vious level. Conceptually the level at any other prior time could be used instead,
but using the prior time is conventional.

15. These results fall under the umbrella of the celebrated Granger Representation
Theorem; see Hamilton (1994).

16. Which are also the eigenvalues since R is diagonal.
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17. In truth we should use the Schur decomposition, but this will be done in the
sequel.

18. We are somewhat glossing over the issue of multiple eigenvalues, but this is not
important at this stage.

19. More accurately I is the filtration generated by this process. With this short-
hand notation understood, we have, e.g., that It = zt ∪ It−1, which will be used
subsequently in (6.59).

20. See, for example, Javaheri et al. (2003), Johannnes and Polson (2003), Doucet
and Johansen (2008), or Fulop (2011). These techniques are typically applied
to the recursion in terms of joint densities in (6.60), rather than the filter-
ing (marginal) densities in (6.59). The central challenge concerns evaluation
of the (normalization) integral in the denominator in (6.60), specifically both
its high-dimensional nature and the fact that the joint density from the prior
step, Pr(xn|z0:n), generally will not be available in a form amenable to numerical
quadrature. However, note that, since the normalization integral can be writ-
ten as

∫
dxn Pr(xn|z0:n)

∫
dxn+1 Pr(zn+1|xn+1)Pr(xn+1|xn), it takes the form of

an expectation, and we anticipate that simulation can be applied to evaluate it.
(Simulation as a computational tool will be discussed in Section 7.5.) In partic-
ular, since the density Pr(xn|z0:n) can be evaluated point-wise but not (usually)
directly sampled, importance sampling, that is evaluation of expectations via
Epf = Eq p

q f (where the superscript refers to the density with respect to which
the expectation is taking place) can be applied, with a judicious choice of aux-
iliary density for which direct sampling is possible. (Importance sampling will
be discussed in Section 7.5.2.) Recursive methods known as Sequential Monte
Carlo are employed in particle filtering to carry out this routine.

21. We say “deceptively” because the typical textbook-style exposition (see, e.g.,
Welch and Bishop [2006]) entails an overemphasis on computational issues (al-
gorithmic flow charts, etc.) and a proliferation of unnecessary jargon (a priori
and a posteriori estimates/updates, etc.). The main point is under-emphasized,
if not missed altogether.

22. We are considering linear models for the moment, which of course exclude
most stochastic volatility models. We will later relax the assumption of linearity.

23. The situation is reminiscent of the phenomenon of multicollinearity in OLS,
where there is (near) linear dependence between a subset of regressors. The
estimator can retain predictive power as a whole, but the diagnostics associated
with individual parameters can become extremely unstable. (Recall that OLS
entails an inversion of a matrix that becomes singular [or nearly so] in this case.)
This discussion serves to distinguish engineering applications of filtering from
financial applications: financial observables (prices) are typically untainted by
any signal noise.

24. As can the conditional means, but we omit the details.
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25. E.g., from C11CT
11 = HQ1HT and C11CT

21 = HQ1FT HT we can extract an
expression for C21CT

21 that is used in the calculation of C22CT
22, etc.

26. We note again that (as in the linear case) noise can also be incorporated in the
measurement relation, as well.

27. If x ∼ N(0,1), then Ex2 = 1, but linearization about the mean of x would
suggest Ex2 = 0!

28. Nor is there a need for any Jacobians.
29. The analogy to quadrature techniques should be clear to many readers; see

Section 7.4.
30. There are in fact some subtle implementation details that do not really concern

us here, such as augmentation of the space state in the case of nonlinear noise
and guidance on the judicious choice of scaling constants in the construction of
the sigma points; see Wan and van der Merwe [2001] or Javaheri et al. [2003].

31. It must be stressed that this filtration is distinct from the natural filtration of
the underlying (partially observed) process.

32. The system in (6.89) and (6.93) may be thought of as analogues of the
(continuous-time) Kalman-Bucy equations, which typically includes measure-
ment noise and does not make reference to the observation filtration.

33. Wealth is modeled via a power utility function. The academic nature of this
assumption does not, however, detract from the usefulness of the subsequent
results.

34. Acronyms for (resp.) autoregressive conditional heteroskedasticity and gener-
alized ARCH. There is a bewildering number of offshoots of these models, as
documented in Bollerslev (2008), such as the amusingly named PARCH.

35. The estimation is conditional on some set of initial data points, as is the typical
case with autoregressions. Note that a simple test for heteroskedasticity (in the
ARCH case) is to run a standard regression (say, OLS with F-test diagnostics)
on the (lagged, squared) residuals from an ordinary autoregression in (6.96).

36. Alternative techniques such as quasi-maximum likelihood estimation (QMLE)
can be employed when the innovations are non-Gaussian, but estimators based
on Gaussian disturbances nonetheless produce useful results. See Section 6.5.

37. Heston and Nandi allow a general number of lags in the conditional variance,
which for convenience we eschew.

38. EW should be consulted on these points.
39. To review, for integer degrees of freedom a chi-squared variable is distributed as

a sum (over the degrees of freedom) of independent, squared standard normals.
40. In (6.115) we have used results for the matrix logarithm, which is defined (akin

to the matrix exponential) via formal Taylor series expansion; e.g., log(I +A)=
A− 1

2 A2+ 1
3 A3−·· · for matrices with a suitably defined norm satisfying ‖A‖<

1. We have also used the result that for diagonal matrices, log(V�V−1) = V ·
log� ·V−1 with the logarithm of a diagonal matrix defined in the obvious way.
Finally we have used the well-known relation between the matrix eigenvalues
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and the matrix determinant. The end result is the well-known formula relating
the trace of a matrix logarithm to the logarithm of the determinant.

41. In general the ensemble in (6.120) would only be taken over those elements of
the process that correspond to log prices, and not entities such as stochastic
volatility. For ease of exposition we will suppress such explicit notation. Need-
less to say we will ignore any issues concerning the filtering of unobserved state
variables.

42. Compare with (6.113). For more on linear-quadratic jump diffusions, see
Cheng and Scaillet (2007).

43. Obviously, the inverse in (6.133) is to be viewed as a notational device.
44. Note that this formalism can be extended to models where some of the unob-

servables are in fact structural and categorically distinguished from the random
drivers/noise, as in stochastic volatility models (e.g., Heston). With such mod-
els, the estimator in (6.132) must entail some kind of filtering of the unobserved
state variables, as discussed in Section 6.2, and the extraction of unobservables
(now broadly understood to mean not just Brownian drivers [say] but also
stochastic variance terms) will be far more involved than suggested by (6.133).
(I.e., projected state variables are distinguished from proper residuals.) Since
these complications will only obscure the main points we wish to make here,
we will not consider them in any greater detail.

45. Certainly, pure computational challenges (e.g., optimizing likelihood functions,
computing high-dimensional integrals in filtering, etc.) can also be significant,
but this topic will be the focus of Chapter 7.

46. By which we mean, the principal question asked concerns hypotheses about
model parameters given a model, invariably in some operationally unhelpful
limit of very large samples. By contrast, we argue for conditioning on the actual
(finite-sized) sample being analyzed, for which the concern is with robustness
and stability of the model and estimator being employed.

47. As distinct from resampling without replacement, e.g., the so-called jackknife.
48. This question is intimately related to the question of how close the eigenval-

ues of � are to the unit circle. As always, the issue concerns the connection of
population to sample.

49. E.g., the resampled indices might be {3,1,8,3, . . . }, in which case the second
resampled residual is the first residual from the original set.

50. I would like to thank Krzysztof Wolyniec for impressing upon me the signifi-
cance of this paper.

51. We also note its close cousin, the Law of Large Numbers (LLN). Both results re-
fer to a (asymptotic) relation between sample mean and population mean, but
the CLT is stronger in that it specifies the distributional form of that relation.

52. In truth, the estimator σ̂ of the standard deviation of the noise term is slightly
different; for MLE it is the sum of the squared (realized) residuals divided by the
number of observations, for OLS it is the sum-squared residuals divided by the
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number of observations less two. This obviously does not affect the consistency
of the MLE estimator (in the statistical sense that, as the number of observations
increases, the bias of the estimator decreases).

53. We do not mean here the sense in which cross-sectional is often used in
econometrics, e.g., across futures contracts of a given time to maturity.

54. This problem is not dissimilar to the situation encountered when applying sim-
ulation techniques to the valuation of American-style options, as we will see in
Chapter 7.

55. Or more accurately, the first-order optimality conditions based on (6.145).
56. If Xt is a martingale, then X0,X1 − X0,X2 − X1, . . . is a martingale difference

sequence; see Hamilton (1994).
57. It would be a good workout for the reader to apply the kind of argument used

in (6.149), along with the results associated with the Wishart process (e.g.,
(6.116)), to re-derive the asymptotics for the standard VAR process in (2.36).

58. When the auxiliary model equals the true model, integration by parts and
(6.142) shows that J =H ; see also (6.150).

59. For example, the lag coefficients of an AR(1) process with non-Gaussian dis-
turbance term can be consistently estimated by (counterfactually) assuming
the disturbance is Gaussian, although consistent estimation of the disturbance
depends on its actual nature.

60. Z is simply the set of realizations {zt }.
61. In the typical application, the simulation would in fact take the form of a very

long time series, with the ensemble average in (6.167) taking place along the
path. In such cases, there is not really an auxiliary density as such, rather
the constituent terms in (6.167) are conditional auxiliary densities. Recall the
discussion associated with (6.149).

62. There are a host of simulation-based techniques whose essence is clear enough
and we will not go into them here. These include Simulated Method of Mo-
ments and Simulated Maximum Likelihood. The idea of course is that the
necessary expectations are computed via simulation.

63. Note that, to leading order in (small) �t , (6.170) conforms to a (Euler)
discretization of (6.137).

64. Although we have a natural interpretation of the density in (6.171) as an ap-
proximation to the true density in (6.169), recall from Section 6.5.2 that in
general QMLE selects that approximation that minimizes the KL divergence
between the two densities, or effectively the relative entropy.

65. There actually remains some bias in the mean reversion-rate estimator.
66. Indeed, this issue led to some misleading results in Zhou (2001).
67. Attempting to identify possible trading opportunities requires knowing both

mean reversion rate and level. Seeing that a price is above or below its long-term
mean is useful only if there is some idea as to how long it will take the price
to revert (and therefore being able to quantify how significant the deviation
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is). It goes without saying that being wrong about this point can have serious
monetary consequences. You can be right about your bet long term, but this
is of little matter if you are crushed short term waiting for the bet to play out.
(This is not to say that the econometrics give much confidence in being able to
identify the mean itself, either.)

68. I.e., knowing the true underlying parameters. It is not enough to know that a
process is driven by jumps, stochastic volatility, mean reversion, etc. One must
obtain actual, numerical values for the parameters underlying such processes,
if such models are to be used for valuation purposes.

69. Bates (2006) also considers characteristic function-based estimation of affine
processes with latent variables, using a conditional result reminiscent of the re-
sults in Section 5.2.2 as a filtering device. Chacko and Viceira (2003) also apply
matching methods discussed here, but by simply integrating the conditional
characteristic function across the latent space (weighted by the unconditional
latent density, of course). Although this is viewed as a Markovian partial in-
formation characteristic function, it cannot really be, as stochastic volatility
processes (e.g., Heston) are not Markovian and the density conditional only on
price (say) depends on the entire past history of prices. See Section 6.2.

70. Yu (2014) also notes a third option of increasing both sample size and resolu-
tion.

71. It should be clear from this expression why the population mean of a process is
rather difficult to estimate from a sample average: only two data points are used
in the estimator.

72. We trust there will be no confusion between using N as both the number of
variables and the normal CDF.

73. The terms involving exponentials simply comprise a (convergent) geometric
series, the contribution from which vanishes in the limit when divided by the
sample size.

74. We will casually switch between treating the time parameter as a subscript or as
a (proper) function argument.

75. The subsequent analysis will of course take θ = 0.
76. For simplicity we will assume different mean-reversion rates.
77. Across the time points τk .
78. We leave aside the question of whether technology is merely revealing an

underlying market microstructure, or in fact creating it.
79. Continue à droite, limite à gauche (pardon our French.) In English, right con-

tinuous with left limits. This conception is important for modeling jumps in
financial applications, as it captures the notion of unanticipated shocks but
continuity after such shocks; see Tankov and Cont (2003). In fact, in many
applications A is actually previsible/predictable/left continuous, which means
At is Ft−-measureable (heuristically, its value is known an instant ahead).

80. To the filtered probability space on which X is defined.
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81. The distinction between a local martingale and a martingale is a rather sub-
tle technical distinction that need not greatly concern us here. Suffice to say
the relevance concerns the construction of Itô integrals that are central to so
much modeling. (The set of local martingales is closed under the operation of
stochastic integration.) All martingales are local martingales, but not vice versa;
roughly speaking, local martingales typically possess some kind of anomaly (to
engage in some physics speak) that amounts to a singularity on the domain of
definition. A good example in the context of mathematical finance (the CEV
process) can be found in Carr et al. (2007). Further intuition may be gained by
considering the difference between futures and forwards.

82. Note that QV is in general a process.
83. RV converges in probability to QV in the limit of infinitesimal resolution.
84. A somewhat related approach can be found in Aït-Sahalia (2004).
85. The first expression in (6.224) is fairly easy to establish. The second expression

requires a bit more work, in particular a judicious application of the triangular
rule for inequalities involving absolute values of sums and differences.

86. Recall from Section 3.2 the important role of QV in the valuation of options in
incomplete markets. In particular, for the Heston stochastic volatility model
we saw that valuation with a pricing functional not derived from an EMM
provided a robust framework for extracting QV in conjunction with a specific
hedging strategy. We will say here that we observe broadly similar results for
valuing options under jump diffusions. It is worth noting that in the familiar
Merton jump diffusion formula (6.224), the QV from (6.224) is only vaguely
apparent, even in expected value. This is not too surprising, as the conventional
EMM result for Merton is based on replication via a continuum of hedging in-
struments, which amounts to assuming the solution to the problem at hand.
We see again the critical need for identifying entities such as QV which are not
only robust to estimation but have a direct connection to valuation in terms of
a specific hedging regime.

87. In other words, do not look for jumps as such, but rather where their effects
matter the most, e.g., close to maturity.

7 Numerical Methods

1. The log-asset ratio is a difference of normal variables, whose covariance struc-
ture has a well-known quadratic form. In the context of spark spread options,
this volatility is commonly referred to as a heat-rate volatility.

2. Recall again from Euler’s formula that, since the option value is homogeneous
of degree one, V = S1VS1 + S2VS2 .
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3. An interesting fact is that, although the vega of the spread option with respect to
the ratio volatility is of course positive, the individual leg vegas are of indetermi-
nate sign. This follows simply from the chain rule, e.g,. ∂σ∂σ1

= σ1−ρσ2
σ . Note that

what determines the sign is the regression coefficient between the (normalized)
returns ( ρσ2

σ1
).

4. Obviously these two models are not consistent with one another. As always, the
primary criterion for deciding between models comes down to the question of:
what trades, and how do tradeables relate to the payoff in question?

5. This situation also applies to other fuel markets, and a few electricity markets.
6. Indeed, standard valuation via GBM may give misleading, if not spurious re-

sults, as it may simply reflect the variability of the common backbone, and not
the variability of the spread as such. See Figure 1.3.

7. In truth, Kirk’s original idea was to write the dynamics of the aggregate strike as
d(S1+K)

S1+K = S1
S1+K σ1dw1, from which the association in (7.14) naturally follows.

See Li et al. (2008) for a similar (equivalent lognormal) approach.
8. The combination ρσ1− σ2 also appears in the valuation of the digital, second-

order term in (7.11).
9. A similar idea is employed in the trigonometric approximation of Carmona and

Durrleman (2003).
10. So, e.g., in terms of inception prices the means are given by μi = logSi− 1

2σ
2
i .

11. Note that when K = 0, the expression for d becomes linear in z1 and
the resulting integrals can be integrated exactly via the well-known result∫∞
−∞ dz e−z2/2√

2π
N(az + b) = N( b√

1+a2
). The reader can verify that the Margrabe

formula is recovered in this case.
12. There are in fact two discretizations, one for each normal CDF appearing in the

different integrands in (7.26).
13. Typically for quadrature over infinite intervals, the set of grid points is trun-

cated at some suitably large finite value, where “suitable” refers to the range for
which the omitted contributions are numerically (and probabilistically) neg-
ligible. In truth, the asymptotic behavior of the integrand may be effectively
employed to enhance accuracy, as we will see in the next subsection.

14. We will see the general result for this claim in the subsection on quadrature
methods.

15. As will be seen, elliptical distributions are defined by their characteristic func-

tions, which have the form eiφTμ#(φT�φ) for some vector μ and matrix �.
These obviously encompass the Gaussian case.

16. The results in this section arose from joint work with Alexander Eydeland.
17. In truth we are considering the expectation in (7.44) with respect to an arbitrary

measure, i.e., prices need not be martingales. Although this means that the
resulting valuation cannot be an option price in the sense of representation
of a replication strategy, expectations such as that in (7.44) prove useful (and
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meaningful) in control problems to be studied later, so it is worth introducing
such problems now.

18. By embedding the underlying Toeplitz matrix in a larger (twice as big and
padded with zeros) circulant matrix (a special kind of Toeplitz matrix where
each column is a cyclic permutation [periodic wraparound] of the first col-
umn), the problem can be crafted as a convolution and, as is well known, the
Fourier transform of a convolution is the product of the Fourier transform of
the two entities being convolved. Toeplitz matrix multiplication thus requires
two Fourier transforms and one inverse transform.

19. We note in passing here another very fast transform method, the so-called fast
Gauss transform, applied to option pricing in Broadie and Yamamoto (2003).

20. This general form encompasses both mean reversion and GBM, obviously.
Pearson’s method can likewise be viewed as solving a PDE (in two spatial
dimensions).

21. We use the fact that ϕ(x−σ)= ϕ(x)exσ−σ 2/2. This is essentially the same trick
that allows terms to cancel out in a straightforward calculation of deltas (via
differentiation) in the BS model.

22. I.e., take xT = μx +σxξ , yT = μy +σyζ and use the assumptions in (7.61).
23. It is not hard to verify that (7.66) is essentially a two-dimensional convolution,

so that its Fourier transform is the product of the Fourier transforms of the
convolved entities.

24. In (7.61) this requirement would be satisfied if axy = ayx = 0.
25. Essentially, the grid is a tile pattern of parallelograms. Note that the time-T grid

in (7.63) will be unchanged.
26. In truth, as happens in the one-dimensional case, the multiplication in (7.66)

must be embedded in a larger (twice the size in both dimensions, with zero
padding), circulant-type matrix multiplication for which the 2D FFT can be
directly applied. See Eydeland and Mahoney (2003) for details.

27. More accurately, if τ is a stopping time with respect to the filtration Jt of some
random process, then the event {τ ≤ t} ∈ Jt . Equivalently, the random variable
1{τ ≤ t} is Jt –measureable.

28. As is well known, in the usual GBM/BS framework, an American call option
has no early exercise optionality unless there are dividends. (The put option
always has early exercise value.) Since we will typically be considering valua-
tion and hedging strategies with futures (which are driftless under the pricing
measure), this condition will be satisfied (so to speak) as long as interest rates
are nonzero. Although the discounting issue will not really be relevant when we
consider physical control problems for non-martingale spot prices, it is in gen-
eral important and so we will reintroduce explicit discounting in the exposition
here.

29. We are here appealing, in a very heuristic manner, to the modern definition of
conditional expectation.
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30. Here p and q are the probabilities of up/down moves, respectively (so p+q= 1)
and u and d are the size of the up/down moves, respectively (under the pricing
measure). The binomial model is essentially a finite difference approximation
to the underlying valuation PDE.

31. Note that, even under the pricing measure, spot prices are not martingales.
This is not problematic in any sense, as spot assets are (typically) not traded on
a forward, financial basis. That is to say, transactions in terms of spot must be
settled physically, i.e., actual possession of the asset must be assumed by one of
the transacting parties.

32. The typical convention is to render per-unit cash flows relative to delivered
volumes, or equivalently relative to state changes.

33. Typically, some kind of penalty is applied to ensure that constraints are satisfied.
For example, if the terminal condition requires an empty tank, then we would
take VT (S;Qj)=−M (where M is very large), except for Qj = 0 where VT = 0
for all S.

34. For simplicity we here consider only time-homogenous problems, which are
functions only of time-to-maturity τ = T − t .

35. Recall the discussion of load-serving products from Section 1.2.4. There, we
saw that a load deal (statically) hedged at expected load creates an exposure to
relative power-load covariance (pathwise), and that in many deals (primarily
industrial) this entity has a relationship to realized price variation. We thus saw
the feasibility of further hedging such deals with volatility-derived instruments.
A delta-hedged option is one possibility, a variance swap is another. Hence the
interest in being able to evaluate such structures here.

36. Obviously, this grid will only occupy the first quadrant (i.e., only positive values
for both variables).

37. Meaning at the present time n of the iteration in (7.100).
38. Boundary terms do indeed present a challenge in more than one dimension.

In this case, it is difficult to appeal to asymptotic behavior as there is no single
“preferred” or “natural” direction to invoke in the asymptotics. E.g., it makes
little sense to speak of the behavior of a spread option for large values of the
long leg without specifying the order of magnitude of the short leg. In this case,
there is probably little more that can be done beyond truncating the discretized
asset space at very large values.

39. The actual quadrature points can be generated using algorithms found in any
standard text, e.g., Press et al. (2007).

40. A useful exercise for the reader would be to employ these methods to gauge
the (continued surprising) effectiveness of Kirk-type approximations for spread
products with fixed strike components.

41. We considered tolling deals in great detail in Section 4.2, and this slightly out-
of-context example provides a good example of quadrature-based techniques
for rather complex problems.
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42. Incremental heat rate is derived from HRminCmin + HRinc(Cmax−Cmin) =
HRmaxCmax.

43. Of course, the range
[
0, sin−1ρ

]
must be (linearly) mapped to the range [−1,1]

appropriate for this quadrature scheme.
44. An extension of Newton’s method. See Acklam (2002).
45. Note that most documented algorithms for Gauss-Hermite quadrature (e.g.,

Press et al. [2007]) need to be suitably modified to take into account the factors
of 1/2 in the exponent and 1√

2π
multiplying the exponential.

46. A simple algorithm is given in Press et al. (2007). It can easily be shown that
the transformation Lij → Ln+1−i,n+1−j produces a factorization in terms of an
upper triangular matrix.

47. The Jacobi rotation algorithm is a standard (and robust) algorithm for com-
puting the eigenvalues and eigenvectors of a symmetric matrix; again consult
Press et al. (2007) for the relevant details. Recall that the eigenvectors of dis-
tinct eigenvalues of a real, symmetric matrix are orthogonal (and in fact form
a complete basis set, in which case can always be expressed as an orthonormal
set via Gramm-Schmidt).

48. The so-called triangular factorization; see Hamilton (1994). The diagonal el-
ements of D are the same as the diagonal elements of L in the Cholesky
factorization.

49. It turns out that the form (7.134) is well suited to obtaining various
greeks/option sensitivities via the so-called likelihood ratio method, which will
receive a fuller exposition in the next section on simulation methods. As we will
see, for payoffs V (x) under some n–dimensional Gaussian process x, the deltas
can be obtained from the expected value of V�−1x, where � is the process
covariance matrix.

50. E.g., for a 6–dimensonal problem with 10 quadrature points in each dimension
(often quite sufficient for one-dimensional problems), 1 million total points are
required.

51. We are speaking here in the context of commonly encountered problems in
energy markets; e.g., tolling problems with on-peak and off-peak components
and fuel switching, gas transport problems with multiple receipt and delivery
points, etc. It is safe to say Gaussian quadrature will not be applicable to 30-year
mortgage-backed security valuation.

52. In general, standard Gaussian schemes such as (7.111) and (7.112) are not em-
bedded, so that as higher accuracy is sought, a completely new set of quadrature
weights/points (and hence a completely new set of evaluations of the function
being integrated) are required. It is possible to extend Gaussian quadrature to
retain a nested structure (e.g., Gauss-Kronrod-Patterson or Clenshaw-Curtis
schemes), but this is a somewhat advanced topic in numerical analysis that we
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cannot present in any kind of depth here. Again, Press et al. (2007) serves as a
good starting point for pursuing these topics further.

53. In other words, if you have a function well approximated by level l–type func-
tions (so that schemes such as (7.138) should be expected to perform well),
then going to a higher level of resolution will not gain much in way of accuracy.
We will exploit this point shortly for facilitating higher-dimensional schemes.

54. Examples would be Gaussian schemes that are exact for polynomials of a given
degree that remain exact (for that degree) as the number of quadrature points
is increased. Another example would be functions that are piecewise linear over
intervals of size h, and thus can be exactly integrated via the trapezoidal rule;
such functions are still exactly integrated by this scheme when the number of
quadrature points is doubled (so that the step size is halved).

55. In fact, one-dimensional embedded schemes also suffer from this problem.
56. The old adage “garbage in, garbage out” comes to mind here.
57. Note the claim here. We are not saying that (historical) hourly prices are irrele-

vant to good valuation of such products. Rather, we are saying that hourly prices
should not be directly modeled (at least in such markets where hourly prices
do not trade). It is the relationship of hourly prices to those entities that clear
against traded products (e.g., monthly prices vs. futures) that should be mod-
eled. (At any rate, there is seldom sufficient data in energy markets to permit
robust estimation of hourly models.)

58. Or more absurdly, supply-demand conditions for time horizons well beyond
the maturity of any (traded) forward curve.

59. The Central Limit Theorem (CLT) states that the distribution of the sample av-
erage of N IID variables is asymptotically normal about the population mean,
with variance decreasing such as 1/N . (More accurately, the entity 1

N 1/2

∑
i

xi−μ
σ

is asymptotically distributed as a standard normal, where μ and σ are respec-
tively the population mean and standard deviation.) The basic intuition can be
gleaned from looking at the characteristic function of the sample average (in-
deed, the standard proof follows the same path). A classic interview question
applies the CLT by asking how many coin flips out of, say, 100, would need to
be heads (or tails) for the observer to conclude that the coin was not fair.

60. We should mention here a popular alternative to linear congruential generators,
the so-called Mersenne twister, which is a matrix linear recursion over a binary
field with very long period (of the form 2n − 1, a Mersenne prime [hence the
name]).

61. Here λ would be the jump intensity. As is well known, the inter-arrival times of
the jumps of a Poisson process are independent and exponentially distributed.

62. Another useful trick for simulating points uniformly distributed over an n-
dimensional hypersphere is to simulate n independent unit normals, and then
normalize these by the L2 norm, as can be seen from transforming the CDF
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via generalized spherical coordinates. Recall that such random variables (not
surprisingly, termed spherical random variables) played a central role in the
study of the important topic of joint dependency, considered in Chapter 8 in
the context of copulas.

63. In truth, the real requirement is that RVs can be readily drawn from G, whether
via the inverse operating on a uniform RV or some other tractable method.

64. It is worth noting that the basic idea of acceptance/rejection also underlies
the use of Markov Chain Monte Carlo (e.g., the so-called Gibbs sampler or
the Metropolis-Hastings algorithm) and particle filters used to implement the
general filtering algorithm discussed in Section 6.2.

65. We also see here the claim made previously about the O(1/
√

N) computational
efficiency of simulation.

66. This approach will only be effective for right-tailed probabilities, i.e., for α > 0,
since otherwise the additional exponential factor will contribute divergently
growing terms that will hamper convergence. The left-tailed probabilities (i.e.,
the case α < 0) are easily handled, however, by considering Pr(z > α) =
1− Pr(z < α). This is the same situation that arises in option pricing, where
it is advisable (either numerically or econometrically) to always consider OTM
options; e.g., value OTM puts rather than ITM calls.

67. This fact also holds true for eigenvalue/eigenvector calculations, which often
proves useful in dimension reduction techniques such as principal components
analysis (PCA), which we will consider in Chapter 8.

68. We will explain shortly the distinction between forward and cash vegas. The
alert reader will no doubt anticipate that the distinction relates to the structure
of the underlying market, specifically the market for options (volatility), e.g.,
whether the extent of traded options is monthly, daily, etc.

69. This was previously pointed out in Section 3.1.6.
70. This argument is also used to deduce certain properties of the information ma-

trix used in diagnostics for maximum likelihood estimation, as we noted in
Chapter 6.

71. For ease of exposition we assume the region of integration in question is (0,1)d

in R
d .

72. Pseudo-clustering is a more appropriate characterization, although in any finite
sample the ramifications are quite real.

73. I.e., for for bits (0 or 1) b1 and b2, b1 XOR b2 = 1 iff b1 and b2 are different.
74. I.e., the primitive polynomial and resulting direction numbers.
75. We revert to our usual custom of ignoring discounting effects, although we

should stress that, in the absence of mean-reverting effects (or more gen-
erally volatility scaling laws; see Chapter 2), many control problems have
no operational/early exercise premium. Recall the well-known example of a
non-dividend paying stock under GBM.
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76. These regressors are, necessarily, meant to reflect pathwise relationships.
As such, they cannot really be used in conjunction with the quasi-Monte
Carlo methods of Subsection 7.5.3, which are by nature a means of (non-
stochastically) filling out regions in hyperspace, and thus are best suited for
problems which can be crafted as (high-dimensional) quadratures.

77. These are certainly the most well-known (and popular) expositions. However,
the basic idea appears to have been used as early as Carriere (1996). For an early
application in energy markets, see Ghiuvea et al. (2001).

78. It also bears some similarity to tree-based regression from machine learning;
see Hastie et al. (2009).

79. E.g., a spark spread option. Recall, in the context of tolling, the concrete
example in Section 4.2.

80. By exploiting the nonincreasing nature of A, observe that the duality result
in (7.187) can actually be crafted in terms of martingale value proxies, not
supermartingales. This fact will be used when we apply duality to control
problems.

81. I.e., it is the incremental value (of losing an exercise right). Note that the
difference operator here applies to the exercise rights, not the usual case in
econometrics where it applies to the time index (as in Chapters 2 or 6). Trivially
(using telescoping sums), the value function for a given level of exercise rights
can be obtained from all marginal value functions of lower order (so to speak).

82. Note that the case γ < 0 is suitably handled by using the identity Pr(z > γ )=
1− Pr(z < γ ) and considering a contour above the real axis (i.e., ε > 0). This
approach amounts to shifting the contour of integration and accounting for the
crossing of a pole.

83. Recall that γ is positive. In the case where one (or both) of the components of
γ is negative, we can (as in the one-dimensional case) employ identities such
as Pr(x > a,y > b) = Pr(x > a) − Pr(x > a,y < b) and shift contours above
(instead of below) the real axis to facilitate the desired calculation.

84. From the usual result that partial derivatives of the characteristic evaluated at
ϕ = 0 yield appropriate moments of the underlying distribution.

85. In truth, we are usually more interested in integrated variance, which re-
quires introducing the process dV = vdt . However, it is simpler to consider
instantaneous variance here for the approach we wish to illustrate.

86. This problem was first studied by Carr and Madan (1999); a useful overview
can be found in Borak et al. (2005).

87. Already encountered in Section 7.3.2.
88. These are the so-called Nyquist frequencies arising from the implicit, imposed

periodicity of the value function (truncated in the frequency regime).
89. In d dimensions and resolution size N (in each dimension) the operation cost

is O(N d logN) vs. O(N 2d) for ordinary matrix multiplication.
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8 Dependency Modeling

1. Allowing for the important caveat about market structure, namely the existence
of liquid option markets in determining whether it is correlation, or a ratio
volatility, that is the relevant measure.

2. Note that an arbitrary function C will not be a valid copula function un-
less it satisfies certain consistency and other technical conditions, such as
C(1, . . . ,uk , . . . , 1) = uk and C(u1, . . . , 0, . . . ,un) = 0; see Nelsen (1999). These
are mainly common-sense requirements that allow interpretation as a distri-
bution function, e.g., in two dimensions we must have C(x2,y2)−C(x1,y2)−
C(x2,y1)+C(x1,y1)≥ 0, which amounts to the requirement that the probabil-
ity mass of the box [x1,x1) ×

[
y1,y2) be non-negative.

3. This follows from Pr(F(X) < x)= Pr(X < F−1(x))= x.
4. The uniqueness result only holds for continuous random variables; for discrete

random variables, the CDF can still be written in terms of a copula function,
but the result is nonunique (more specifically, it is only unique on the Cartesian
product of the ranges of the marginal distributions).

5. E.g., if C̃(q, r)= q+ r−1+C(1− q, 1− r) for some copula C, then C̃(q, 0)= 0
and C̃(q, 1)= q. It should be clear why the convention in terms of the standard
distribution function is chosen, although this alternative framework will prove
suitable when we consider applications to Lévy processes.

6. In such a case random variables u and v can be written as F−1
1 (u) and

F−1
2 (1−u) for some uniform variate u and some CDFs Fi .

7. Even here, there may be cases where the second moments do not
exist.

8. We have already seen, from the perspective of valuation, that correlation may
not be the appropriate entity of interest, even when the underlying physical
(joint) distribution is indeed characterized by correlation.

9. More technically, they are asymptotically independent in the upper
tail.

10. There is as always the risk of getting distracted by particular, mathematical de-
tails. Obviously, like any other tool, copulas are useful in certain situations but
not in others, and one should be careful not to overstate their applicability. As
marginal information is necessarily contained in any joint dependency struc-
ture, one can reasonably ask if it is not better in some cases to directly model
this joint behavior instead of breaking a problem into separate analyses of the
marginals and the copula. For a spirited debate on the issue, see Mikosch (2005)
and Genest and Rémillard (2006).

11. We are here thinking in opposition to strange creatures such as Dynamic Condi-
tional Correlation (DCC), an escapee from the GARCH bestiary. (See Caporin
and McAleer [2013] for a critical discussion.) Such models are essentially ad
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hoc attempts to formally model the manifestations of information accumula-
tion over different time scales, at the cost of severing the explicit link to the
mechanisms giving rise to those time scales. As a result, DCC dependency struc-
ture varies with the choice of (individual) marginal distributions. See again
Section 6.2.3.

12. We should confess to a bit of subterfuge here, as elliptical distributions are a
completely separate entity from copulas, as such. An elliptical copula is simply
a copula derived from the CDF of an elliptical distribution. An elliptical dis-
tribution has a very specific set of marginals (see Endnote 14), whereas an RV
with an elliptical copula can of course have arbitrary marginals. However, ellip-
tical distributions represent a sufficiently important class of joint dependency,
and are commonly presented in conjunction with copulas, so we feel justified
in including them in our discussion here. The reader should keep in mind these
subtleties, however.

13. The matrix� can be thought of as characterizing the linear dependencies of the
distribution, while the radial variable R (in the base spherical representation)
generates nonlinear dependencies. It is this separation that creates (in the non-
Gaussian) a nonequivalence between independence and noncorrelation.

14. Yet another characterization of elliptical distributions is through the resulting
density, which can be seen to have the form 1√

det�
cnhn(

1
2 (x−μ)T�−1(x−μ))

for some function h (also termed a generator) and normalization constant
c, both dimension dependent. In fact, it is far more common to operate in
terms of the density generator rather than the characteristic function genera-
tor. Note that in general the marginals will not necessarily correspond to the
one-dimensional versions of the families characterizing the joint structure. For
example, the marginal of a N(0, In) normal is N(0,1), but the marginals of a
multivariate logistic variable are not themselves logistic. This phenomenon is
known as inconsistency and can induce rather odd effects when considering
loss distributions of portfolios.

15. Recall Endnote 14: the marginals are elliptical, but they do not necessarily be-
long to the same class or family that characterizes the joint distribution, except
in certain special cases (e.g., normal).

16. For convenience we set the unconditional means to zero.
17. Obviously the result only holds for correlations strictly less than one.
18. The proof basically follows from the definition of a copula and the product

requirement on G (note that for the case under consideration, Gij(0) = 0 and
Gij(1)= 1).

19. Density functions will be denoted by lowercase (f ), distribution functions by
uppercase (F).

20. See Patton (2006) for a discussion of conditional copulas, in particular an
extension of Sklar’s theorem.
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21. Multivariate generalizations are possible; see Czado (2010).
22. To facilitate the exposition, we will unavoidably encounter some overlap with

material previously presented in Chapter 5.
23. Since this kind of behavior clearly mimics diffusive (continuous) behavior,

some researchers (e.g., Carr et al. 2002) have gone so far as to advocate
modeling in terms of pure jump processes. Whatever one may think of this
approach, Lévy processes clearly offer great flexibility in modeling a wide range
of processes.

24. Note, then, that the choice of truncation interval (e.g., |x| ≤ 1 in (8.43)) is
essentially arbitrary (conventional is probably a better term), so long as it ex-
cludes the origin. (Note that, since 1|x|≤1 = 1|x|≤ε + 1ε≤|x|≤1 for small ε, and
the integrand corresponding to the infinite activity jumps is [to leading order] a
quadratic form in φ, there is thus some freedom in how the structure of a given
Lévy process can be allocated [so to speak] between diffusive and pure [infinite
activity] jump components.) This fact can be employed to show that the Lévy
property is preserved under linearity for independent Lévy processes.

25. In the sense of precluding more general dependency structures.
26. Obviously, the presupposition is that we care about dynamics as such, and not

simply terminal distributions.
27. For a (formal) recipe in the context of GARCH modeling, see Patton (2006).
28. For more on stable processes, see Borak et al. (2005).
29. The small time copula is the Brownian component’s independence copula,

and the large time copula is the Cauchy process’s copula, which are of course
different.

30. The more general case is considered in Kallsen and Tankov (2006). This restric-
tion is not as stringent as it may seem, as it has obvious relevance for modeling
stochastic volatility with Lévy processes; see Barndorff-Nielsen and Shephard
(2001).

31. Note that the non-integrability of the Lévy measure is weaker than in the
standard case: only min(1, |x|)v(x) need be integrable.

32. Namely, that, conditional on the number of events within a given time interval,
the arrival times are distributed as a ranked set of uniforms. Given the complete
symmetry inherent in the summation in (8.53), the terms may be treated as
independent uniforms.

33. This result can be extended to more general pure jump processes; see Rosinski
(2001).

34. Along with either perfect dependence or complete independence between the
Poisson jump components.

35. Essentially a vector space closed under multiplication by a positive scalar.
36. The result in (8.62) can be generalized for nonsymmetric matrices without

multiple eigenvalues by using the inverse matrix of eigvenvectors (note that the
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matrix square root does not always exist). We will also use the notation�1/2 to
denote matrix square root.

37. Specifically, the distribution of various entities [such as variance] under the
typical case in practice of small sample sizes.

38. The term factors may perhaps be more familiar to some readers.
39. Nor do we know the expected returns, which are notoriously hard to estimate

robustly. We do not even know (usually) whether joint normality is a good
model for any particular situation. We will ignore these concerns here.

40. We will ignore the contributions of means, both sample and population, in this
discussion.

41. Recall the discussion in Section 6.1.3 on the eigenvalues of matrices of less than
full rank.

42. This kind of problem arises in other applications involving correlation matrices.
For example, oftentimes the Cholesky factorization of a correlation matrix is re-
quired (e.g., in simulations; see Chapter 7), the algorithm for which requires the
underlying matrix be positive definite, which is equivalent to requiring that the
matrix has all positive eigenvalues. In such cases where the (estimated) correla-
tion matrix is “slightly” negative definite (meaning the most negative eigenvalue
is small in absolute value), it is possible to reconstruct a valid (i.e., positive def-
inite) correlation matrix by imposing a ceiling on the negative eigenvalues (say,
replacing them by a small, but positive number) and then using the eigenvalue-
eigenvector factorization in (8.72), suitably rescaling the eigenvectors so the
resulting product has ones along the diagonal. See Rebonato and Jäckel (1999)
or Schöttle and Werner (2004).

43. This is akin to the sum of the eigenvalues in a principal components analysis
representing the total variance of the driving factors.

44. Note that the corresponding eigenvector has nearly equal elements. This is a
typical pattern in the case where there is high pair-wise correlation among
the original entities. There is an interpretation in terms of the eigenportfolios
discussed in Section 8.2.1: the highest risk eigenportfolio, with nearly equal
weights across assets, can be thought of as the so-called market portfolio. The
lower risk eigenportfolios can be seen to consist of various spread positions
across the assets.

45. We encountered the notion of effective dimensionality when we considered
approaches for increasing the efficiency of simulation in Chapter 7.

46. In interest rate work one often sees the terms level, slope, and curvature for
these components, respectively.

47. PCA represents, essentially, a change in basis. We should therefore mention
recent work on a similar concept, so-called balanced baskets. See Bailey and
López de Prado (2012).
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